WorldWideScience

Sample records for apoa-i mimetic peptide

  1. NCAM Mimetic Peptides: An Update

    DEFF Research Database (Denmark)

    Berezin, Vladimir; Bock, Elisabeth

    2008-01-01

    sequences contain one or several NCAM homophilic binding sites involved in NCAM binding to itself, have been identified. By means of NMR titration analysis and molecular modeling a number of peptides derived from NCAM and targeting NCAM heterophilic ligands such as the fibroblast growth factor receptor...... and heparan sulfate proteoglycans (HSPG) have been identified. The FGL, dekaCAM, FRM/EncaminA, BCL, EncaminC and EncaminE peptides all target the FGF receptor whereas the heparin binding peptide HBP targets HSPG. Moreover, a number of NCAM binding peptides have been identified employing screening...

  2. SuperMimic – Fitting peptide mimetics into protein structures

    Directory of Open Access Journals (Sweden)

    Schmidt Ulrike

    2006-01-01

    Full Text Available Abstract Background Various experimental techniques yield peptides that are biologically active but have unfavourable pharmacological properties. The design of structurally similar organic compounds, i.e. peptide mimetics, is a challenging field in medicinal chemistry. Results SuperMimic identifies compounds that mimic parts of a protein, or positions in proteins that are suitable for inserting mimetics. The application provides libraries that contain peptidomimetic building blocks on the one hand and protein structures on the other. The search for promising peptidomimetic linkers for a given peptide is based on the superposition of the peptide with several conformers of the mimetic. New synthetic elements or proteins can be imported and used for searching. Conclusion We present a graphical user interface for finding peptide mimetics that can be inserted into a protein or for fitting small molecules into a protein. Using SuperMimic, promising locations in proteins for the insertion of mimetics can be found quickly and conveniently.

  3. SuperMimic – Fitting peptide mimetics into protein structures

    Science.gov (United States)

    Goede, Andrean; Michalsky, Elke; Schmidt, Ulrike; Preissner, Robert

    2006-01-01

    Background Various experimental techniques yield peptides that are biologically active but have unfavourable pharmacological properties. The design of structurally similar organic compounds, i.e. peptide mimetics, is a challenging field in medicinal chemistry. Results SuperMimic identifies compounds that mimic parts of a protein, or positions in proteins that are suitable for inserting mimetics. The application provides libraries that contain peptidomimetic building blocks on the one hand and protein structures on the other. The search for promising peptidomimetic linkers for a given peptide is based on the superposition of the peptide with several conformers of the mimetic. New synthetic elements or proteins can be imported and used for searching. Conclusion We present a graphical user interface for finding peptide mimetics that can be inserted into a protein or for fitting small molecules into a protein. Using SuperMimic, promising locations in proteins for the insertion of mimetics can be found quickly and conveniently. PMID:16403211

  4. Apolipoprotein E mimetic peptide protects against diffuse brain injur y

    Institute of Scientific and Technical Information of China (English)

    Yaning Zhao; Jianmin Li; Qiqun Tang; Junling Gao; Changxiang Chen; Liwei Jing; Pan Zhang; Shuxing Li

    2014-01-01

    Apolipoprotein E plays a crucial role in inhibiting chronic neurodegenerative processes. Howev-er, its impact on neurological function following diffuse brain injury is still unclear. This study was designed to evaluate the therapeutic effects and mechanisms of action of apolipoprotein E mimetic peptide on diffuse brain injury. Apolipoprotein E mimetic peptide was administered into the caudal vein of rats with diffuse brain injury before and after injury. We found that apo-lipoprotein E mimetic peptide signiifcantly decreased the number of apoptotic neurons, reduced extracellular signal-regulated kinase1/2 phosphorylation, down-regulated Bax and cytochrome c expression, decreased malondialdehyde content, and increased superoxide dismutase activity in a dose-dependent manner. These experimental ifndings demonstrate that apolipoprotein E mimetic peptide improves learning and memory function and protects against diffuse brain injury-induced apoptosis by inhibiting the extracellular signal-regulated kinase1/2-Bax mito-chondrial apoptotic pathway.

  5. Self-assembly of fibronectin mimetic peptide-amphiphile nanofibers

    Science.gov (United States)

    Rexeisen, Emilie Lynn

    Many therapeutic strategies incorporate peptides into their designs to mimic the natural protein ligands found in vivo. A few examples are the short peptide sequences RGD and PHSRN that mimic the primary and synergy-binding domains of the extracellular matrix protein, fibronectin, which is recognized by the cell surface receptor, alpha5beta 1 integrin. Even though scaffold modification with biomimetic peptides remains one of the most promising approaches for tissue engineering, the use of these peptides in therapeutic tissue-engineered products and drug delivery systems available on the commercial market is limited because the peptides are not easily able to mimic the natural protein. The design of a peptide that can effectively target the alpha5beta1 integrin would greatly increase biomimetic scaffold therapeutic potential. A novel peptide containing both the RGD primary binding domain and PHSRN synergy-binding domain for fibronectin joined with the appropriate linker should bind alpha 5beta1 integrin more efficiently and lead to greater cell adhesion over RGD alone. Several fibronectin mimetic peptides were designed and coupled to dialkyl hydrocarbon tails to make peptide-amphiphiles. The peptides contained different linkers connecting the two binding domains and different spacers separating the hydrophobic tails from the hydrophilic headgroups. The peptide-amphiphiles were deposited on mica substrates using the Langmuir-Blodgett technique. Langmuir isotherms indicated that the peptide-amphiphiles that contained higher numbers of serine residues formed a more tightly packed monolayer, but the increased number of serines also made transferring the amphiphiles to the mica substrate more difficult. Atomic force microscopy (AFM) images of the bilayers showed that the headgroups might be bent, forming small divots in the surface. These divots may help expose the PHSRN synergy-binding domain. Parallel studies undertaken by fellow group members showed that human

  6. Interactions of Bio-Inspired Membranes with Peptides and Peptide-Mimetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Michael Sebastiano

    2015-08-01

    Full Text Available Via Dissipative Particle Dynamics (DPD and implicit solvent coarse-grained (CG Molecular Dynamics (MD we examine the interaction of an amphiphilic cell-penetrating peptide PMLKE and its synthetic counterpart with a bio-inspired membrane. We use the DPD technique to investigate the interaction of peptide-mimetic nanoparticles, or nanopins, with a three-component membrane. The CG MD approach is used to investigate the interaction of a cell-penetrating peptide PMLKE with single-component membrane. We observe the spontaneous binding and subsequent insertion of peptide and nanopin in the membrane by using CG MD and DPD approaches, respectively. In addition, we find that the insertion of peptide and nanopins is mainly driven by the favorable enthalpic interactions between the hydrophobic components of the peptide, or nanopin, and the membrane. Our study provides insights into the mechanism underlying the interactions of amphiphilic peptide and peptide-mimetic nanoparticles with a membrane. The result of this study can be used to guide the functional integration of peptide and peptide-mimetic nanoparticles with a cell membrane.

  7. Basal Lamina Mimetic Nanofibrous Peptide Networks for Skeletal Myogenesis

    Science.gov (United States)

    Yasa, I. Ceren; Gunduz, Nuray; Kilinc, Murat; Guler, Mustafa O.; Tekinay, Ayse B.

    2015-11-01

    Extracellular matrix (ECM) is crucial for the coordination and regulation of cell adhesion, recruitment, differentiation and death. Therefore, equilibrium between cell-cell and cell-matrix interactions and matrix-associated signals are important for the normal functioning of cells, as well as for regeneration. In this work, we describe importance of adhesive signals for myoblast cells’ growth and differentiation by generating a novel ECM mimetic peptide nanofiber scaffold system. We show that not only structure but also composition of bioactive signals are important for cell adhesion, growth and differentiation by mimicking the compositional and structural properties of native skeletal muscle basal lamina. We conjugated laminin-derived integrin binding peptide sequence, “IKVAV”, and fibronectin-derived well known adhesive sequence, “RGD”, into peptide nanostructures to provide adhesive and myogenic cues on a nanofibrous morphology. The myogenic and adhesive signals exhibited a synergistic effect on model myoblasts, C2C12 cells. Our results showed that self-assembled peptide nanofibers presenting laminin derived epitopes support adhesion, growth and proliferation of the cells and significantly promote the expression of skeletal muscle-specific marker genes. The functional peptide nanofibers used in this study present a biocompatible and biodegradable microenvironment, which is capable of supporting the growth and differentiation of C2C12 myoblasts into myotubes.

  8. A Novel Peptide Thrombopoietin Mimetic Designing and Optimization Using Computational Approach.

    Science.gov (United States)

    Singh, Vimal Kishor; Kumar, Neeraj; Kalsan, Manisha; Saini, Abhishek; Chandra, Ramesh

    2016-01-01

    Thrombopoietin receptor (TPOR) is a cytokine receptor protein present on the cell surface. The activation of TPOR by thrombopoietin (TPO) (a glycoprotein hormone) triggers an intracellular cascade of megakaryocytopoiesis for the formation of platelets. Recent studies on ex vivo megakaryocytopoiesis have evolved the possibilities of therapeutics uses. These findings have paved the way for the development of various TPO alternatives (recombinant TPO, peptide, and non-peptide TPO mimetics), which are useful in regenerative medicine. However, these alternatives possess various limitations such as induction of autoimmune effects, high production cost, low specificity, and hence activity. In the present study, a novel peptidic TPO mimetic was designed through computational studies by studying the binding sites of TPO and TMP to TPOR and analogs of known mimetics. Screening of combinatorial library was done through molecular docking using ClusPro. These studies indicated mimetic-9 as a significant molecule since it was found to have better binding score of -938.8 kcal/mol with seven hydrogen bonds and a high number of hydrophobic interactions, than known mimetic TMP with docking score of -798.4 kcal/mol and TMP dimer with docking score of -811.9 kcal/mol for TPOR. Mimetic9-TPOR complex was further assessed by the molecular dynamics simulation, and their complex was found to be stable with an RMSD value of 0.091 Å. While studying the parameters, mimetic-9 was found to have overall good physiochemical properties with positive grand average hydropathy (GRAVY) score and high instability index score and was found to be localized in the extracellular region. The designed mimetic-9 might prove to be a useful lead molecule for mimicking the role of TPO for in vitro platelet production with higher efficiency. PMID:27630985

  9. Improved surface bioactivity of stainless steel substrates using osteocalcin mimetic peptide

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Samaneh [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Tissue Engineering and Biomaterials Division, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161 (Iran, Islamic Republic of); Naderi-Manesh, Hossein, E-mail: naderman@modares.ac.ir [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Vali, Hojatollah [Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7 (Canada); Faghihi, Shahab, E-mail: sfaghihi@nigeb.ac.ir [Tissue Engineering and Biomaterials Division, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161 (Iran, Islamic Republic of)

    2014-02-14

    Although stainless steel has a good biocompatibility for most clinical cases, the higher tissue response (bone bonding property) is required in orthopedic field. In this study, to improve bone-bonding ability of stainless steel substrates, a specific sequence of osteocalcin mimetic peptide is used as bioactive coating material to biochemically modify the surface of metallic samples. This sequence consists of thirteen amino acids present in the first helix of osteocalcin is synthesized in amidic form and physically adsorbed on the surface of 316LS (316 low carbon surgical grade) stainless steel substrates. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to characterize the surface of peptide coated and uncoated substrates. The bioactivity and bone bonding ability of coated and uncoated substrates are assessed by level of hydroxyapatite formation, using transmission electron microscopy (TEM), energy-dispersive x-ray (EDS), and scanning electron microscopy (SEM). The pre-osteoblast cell attachment and proliferation are also evaluated by MTT assay. The results show that the surface of coated sample is homogenously covered by the peptide and display a rougher surface relative to uncoated sample. TEM images reveal the formation of plate-like hydroxyapatite crystals in the presence of the peptide and an amorphous calcium phosphate phase without the peptide. Pre-osteoblast cells proliferation is significantly higher on the surface of peptide coated substrate, while cell attachment remains unaffected by the peptide coatings. Pre-osteoblast cells also demonstrate a higher degree of spreading on the surface of coated sample. It is believed that osteocalcin mimetic peptide improve surface bioactivity and promote hydroxyapatite crystal formation may lead to increased mineralization and bone formation on the surface of metallic biomedical devices. - Graphical abstract: A peptide sequence located in the first helix of OC is selected based on its

  10. Glycosaminoglycan-Mimetic Signals Direct the Osteo/Chondrogenic Differentiation of Mesenchymal Stem Cells in a Three-Dimensional Peptide Nanofiber Extracellular Matrix Mimetic Environment.

    Science.gov (United States)

    Arslan, Elif; Guler, Mustafa O; Tekinay, Ayse B

    2016-04-11

    Recent efforts in bioactive scaffold development focus strongly on the elucidation of complex cellular responses through the use of synthetic systems. Designing synthetic extracellular matrix (ECM) materials must be based on understanding of cellular behaviors upon interaction with natural and artificial scaffolds. Hence, due to their ability to mimic both the biochemical and mechanical properties of the native tissue environment, supramolecular assemblies of bioactive peptide nanostructures are especially promising for development of bioactive ECM-mimetic scaffolds. In this study, we used glycosaminoglycan (GAG) mimetic peptide nanofiber gel as a three-dimensional (3D) platform to investigate how cell lineage commitment is altered by external factors. We observed that amount of fetal bovine serum (FBS) presented in the cell media had synergistic effects on the ability of GAG-mimetic nanofiber gel to mediate the differentiation of mesenchymal stem cells into osteogenic and chondrogenic lineages. In particular, lower FBS concentration in the culture medium was observed to enhance osteogenic differentiation while higher amount FBS promotes chondrogenic differentiation in tandem with the effects of the GAG-mimetic 3D peptide nanofiber network, even in the absence of externally administered growth factors. We therefore demonstrate that mesenchymal stem cell differentiation can be specifically controlled by the combined influence of growth medium components and a 3D peptide nanofiber environment.

  11. A new tool in peptide engineering: a photoswitchable stilbene-type beta-hairpin mimetic.

    Science.gov (United States)

    Erdélyi, Máté; Karlén, Anders; Gogoll, Adolf

    2005-12-23

    Peptide secondary structure mimetics are important tools in medicinal chemistry, as they provide analogues of endogenous peptides with new physicochemical and pharmacological properties. The development, synthesis, photochemical investigation, and conformational analysis of a stilbene-type beta-hairpin mimetic capable of light-triggered conformational changes have been achieved. In addition to standard spectroscopic techniques (nuclear Overhauser effects, amide temperature coefficients, circular dichroism spectroscopy), the applicability of self-diffusion measurements (longitudinal eddy current delay pulsed-field gradient spin echo (LED-PGSE) NMR technique) in conformational studies of oligopeptides is demonstrated. The title compound shows photoisomerization of the stilbene chromophore, resulting in a change in solution conformation between an unfolded structure and a folded beta-hairpin.

  12. Apolipoprotein Mimetic Peptides: A New Approach for the Treatment of Asthma

    Directory of Open Access Journals (Sweden)

    Xianglan eYao

    2012-03-01

    Full Text Available New treatments are needed for severe asthmatics to improve disease control and avoid severe toxicities associated with oral corticosteroids. We have used a murine model of house dust mite (HDM-induced asthma to identify steroid-unresponsive genes that might represent targets for new therapeutic approaches for severe asthma. This strategy identified apolipoprotein E as a steroid-unresponsive gene with increased mRNA expression in the lungs of HDM-challenged mice. Furthermore, apolipoprotein E functioned as an endogenous negative regulator of airway hyperreactivity and goblet cell hyperplasia in experimental HDM-induced asthma. The ability of apolipoprotein E, which is expressed by lung macrophages, to attenuate AHR and goblet cell hyperplasia is mediated by low density lipoprotein (LDL receptors expressed by airway epithelial cells. Consistent with this, administration of an apolipoprotein E mimetic peptide, corresponding to amino acids 130 to 149 of the LDL receptor-binding domain of the holo-apoE protein, significantly reduced AHR and goblet cell hyperplasia in HDM-challenged apoE-/- mice. These findings identified the apolipoprotein E - LDL receptor pathway as a new druggable target for asthma that can be activated by administration of apoE mimetic peptides. Similarly, apolipoprotein A-I may have therapeutic potential in asthma based upon its anti-inflammatory, anti-oxidative and anti-fibrotic properties. Furthermore, administration of apolipoprotein A-I mimetic peptides has attenuated airway inflammation, airway remodeling and airway hyperreactivity in murine models of experimental asthma. Thus, site-directed delivery of inhaled apolipoprotein E or apolipoprotein A-I mimetic peptides may represent novel treatment approaches that can be developed for asthma, including severe disease.

  13. Supramolecular assembly of electrostatically stabilized, hydroxyproline-lacking collagen-mimetic peptides

    OpenAIRE

    Krishna, Ohm D.; Kiick, Kristi L.

    2009-01-01

    The mechanical and biological functions of the native collagens remain an inspiration in materials design, but widespread application of de novo collagens has been limited in part by the need for hydroxylated proline in the formation of stable triple helical structures. In order to address this continued need and to expand the potential for recombinant expression of functional, hydroxyproline-lacking collagen-mimetic peptides, we have designed a hydrophilic, non-repetitive, and thermally stab...

  14. Template-Tethered Collagen Mimetic Peptides for Studying Heterotrimeric Triple-Helical Interactions

    OpenAIRE

    Li, Yang; Mo, Xiao; Kim, Daniel; Yu, S. Michael

    2010-01-01

    Collagen mimetic peptides (CMPs) have been used to elucidate the structure and stability of the triple helical conformation of collagen molecules. Although CMP homotrimers have been widely studied, very little work has been reported regarding CMP heterotrimers because of synthetic difficulties. Here we present the synthesis and characterization of homotrimers and ABB type heterotrimers comprising natural and synthetic CMP sequences that are covalently tethered to a template, a tris(2-aminoeth...

  15. Bioactive Mimetics of Conotoxins and other Venom Peptides

    OpenAIRE

    Duggan, Peter J.; Kellie L Tuck

    2015-01-01

    Ziconotide (Prialt®), a synthetic version of the peptide ω-conotoxin MVIIA found in the venom of a fish-hunting marine cone snail Conus magnus, is one of very few drugs effective in the treatment of intractable chronic pain. However, its intrathecal mode of delivery and narrow therapeutic window cause complications for patients. This review will summarize progress in the development of small molecule, non-peptidic mimics of Conotoxins and a small number of other venom peptides. This will incl...

  16. Bioactive Mimetics of Conotoxins and other Venom Peptides.

    Science.gov (United States)

    Duggan, Peter J; Tuck, Kellie L

    2015-10-01

    Ziconotide (Prialt®), a synthetic version of the peptide ω-conotoxin MVIIA found in the venom of a fish-hunting marine cone snail Conus magnus, is one of very few drugs effective in the treatment of intractable chronic pain. However, its intrathecal mode of delivery and narrow therapeutic window cause complications for patients. This review will summarize progress in the development of small molecule, non-peptidic mimics of Conotoxins and a small number of other venom peptides. This will include a description of how some of the initially designed mimics have been modified to improve their drug-like properties. PMID:26501323

  17. Bioactive Mimetics of Conotoxins and other Venom Peptides

    Directory of Open Access Journals (Sweden)

    Peter J. Duggan

    2015-10-01

    Full Text Available Ziconotide (Prialt®, a synthetic version of the peptide ω-conotoxin MVIIA found in the venom of a fish-hunting marine cone snail Conus magnus, is one of very few drugs effective in the treatment of intractable chronic pain. However, its intrathecal mode of delivery and narrow therapeutic window cause complications for patients. This review will summarize progress in the development of small molecule, non-peptidic mimics of Conotoxins and a small number of other venom peptides. This will include a description of how some of the initially designed mimics have been modified to improve their drug-like properties.

  18. The action of mimetic peptides on connexins protects fibroblasts from the negative effects of ischemia reperfusion

    Science.gov (United States)

    Glass, Beverley J.; Hu, Rebecca G.; Phillips, Anthony R. J.; Becker, David L.

    2015-01-01

    ABSTRACT Connexins have been proposed as a target for therapeutic treatment of a variety of conditions. The main approaches have been by antisense or small peptides specific against connexins. Some of these peptides enhance communication while others interfere with connexin binding partners or bind to the intracellular and extracellular loops of connexins. Here, we explored the mechanism of action of a connexin mimetic peptide by evaluating its effect on gap junction channels, connexin protein levels and hemichannel activity in fibroblast cells under normal conditions and following ischemia reperfusion injury which elevates Cx43 levels, increases hemichannel activity and causes cell death. Our results showed that the effects of the mimetic peptide were concentration-dependent. High concentrations (100-300 μM) significantly reduced Cx43 protein levels and GJIC within 2 h, while these effects did not appear until 6 h when using lower concentrations (10-30 μM). Cell death can be reduced when hemichannel opening and GJIC were minimised. PMID:26471768

  19. The action of mimetic peptides on connexins protects fibroblasts from the negative effects of ischemia reperfusion

    Directory of Open Access Journals (Sweden)

    Beverley J. Glass

    2015-11-01

    Full Text Available Connexins have been proposed as a target for therapeutic treatment of a variety of conditions. The main approaches have been by antisense or small peptides specific against connexins. Some of these peptides enhance communication while others interfere with connexin binding partners or bind to the intracellular and extracellular loops of connexins. Here, we explored the mechanism of action of a connexin mimetic peptide by evaluating its effect on gap junction channels, connexin protein levels and hemichannel activity in fibroblast cells under normal conditions and following ischemia reperfusion injury which elevates Cx43 levels, increases hemichannel activity and causes cell death. Our results showed that the effects of the mimetic peptide were concentration-dependent. High concentrations (100-300 μM significantly reduced Cx43 protein levels and GJIC within 2 h, while these effects did not appear until 6 h when using lower concentrations (10-30 μM. Cell death can be reduced when hemichannel opening and GJIC were minimised.

  20. Triple Effect of Mimetic Peptides Interfering with Neural Cell Adhesion Molecule Homophilic Cis Interactions

    DEFF Research Database (Denmark)

    Li, S. Z.; Kolkova, Kateryna; Rudenko, Olga;

    2005-01-01

    The neural cell adhesion molecule (NCAM) is pivotal in neural development, regeneration, and learning. Here we characterize two peptides, termed P1-B and P2, derived from the homophilic binding sites in the first two N-terminal immunoglobulin (Ig) modules of NCAM, with regard to their effects...... on neurite extension and adhesion. To evaluate how interference of these mimetic peptides with NCAM homophilic interactions in cis influences NCAM binding in trans, we employed a coculture system in which PC12-E2 cells were grown on monolayers of fibroblasts with or without NCAM expression and the rate...... of neurite outgrowth subsequently was analyzed. P2, but not P1-B, induced neurite outgrowth in the absence of NCAM binding in trans. When PC12-E2 cells were grown on monolayers of NCAM-expressing fibroblasts, the effect of both P1-B and P2 on neurite outgrowth was dependent on peptide concentrations. P1-B...

  1. Activity of potent and selective host defense peptide mimetics in mouse models of oral candidiasis.

    Science.gov (United States)

    Ryan, Lisa K; Freeman, Katie B; Masso-Silva, Jorge A; Falkovsky, Klaudia; Aloyouny, Ashwag; Markowitz, Kenneth; Hise, Amy G; Fatahzadeh, Mahnaz; Scott, Richard W; Diamond, Gill

    2014-07-01

    There is a strong need for new broadly active antifungal agents for the treatment of oral candidiasis that not only are active against many species of Candida, including drug-resistant strains, but also evade microbial countermeasures which may lead to resistance. Host defense peptides (HDPs) can provide a foundation for the development of such agents. Toward this end, we have developed fully synthetic, small-molecule, nonpeptide mimetics of the HDPs that improve safety and other pharmaceutical properties. Here we describe the identification of several HDP mimetics that are broadly active against C. albicans and other species of Candida, rapidly fungicidal, and active against yeast and hyphal cultures and that exhibit low cytotoxicity for mammalian cells. Importantly, specificity for Candida over commensal bacteria was also evident, thereby minimizing potential damage to the endogenous microbiome which otherwise could favor fungal overgrowth. Three compounds were tested as topical agents in two different mouse models of oral candidiasis and were found to be highly active. Following single-dose administrations, total Candida burdens in tongues of infected animals were reduced up to three logs. These studies highlight the potential of HDP mimetics as a new tool in the antifungal arsenal for the treatment of oral candidiasis.

  2. Bioenergetic programming of macrophages by the apolipoprotein A-I mimetic peptide 4F

    OpenAIRE

    Datta, Geeta; Kramer, Philip A.; Johnson, Michelle S.; Sawada, Hirotaka; Smythies, Lesley E.; Crossman, David K.; Chacko, Balu; Ballinger, Scott W.; Westbrook, David G.; Mayakonda, Palgunachari; Anantharamaiah, G.M.; Darley-Usmar, Victor M.; White, C. Roger

    2015-01-01

    The apoA-I (apolipoprotein A-I) mimetic peptide 4F favours the differentiation of human monocytes to an alternatively activated M2 phenotype. The goal of the present study was to test whether the 4F-mediated differentiation of MDMs (monocyte-derived macrophages) requires the induction of an oxidative metabolic programme. 4F treatment induced several genes in MDMs that play an important role in lipid metabolism, including PPARγ (peroxisome-proliferator-activated receptor γ) and CD36. Addition ...

  3. Connexin mimetic peptides fail to inhibit vascular conducted calcium responses in renal arterioles

    DEFF Research Database (Denmark)

    Sørensen, Charlotte Mehlin; Salomonsson, Max; Braunstein, Thomas Hartig;

    2008-01-01

    Vascular conducted responses are believed to play a central role in controlling the microcirculatory blood flow. The responses most likely spread through gap junctions in the vascular wall. At present, four different connexins (Cx) have been detected in the renal vasculature, but their role...... of mimetic peptides directed against one or more connexins. Preglomerular resistance vessels were microdissected from kidneys of Sprague-Dawley rats and loaded with fura 2. The vessels were stimulated locally by applying electrical current through a micropipette, and the conducted calcium response...

  4. Apolipoprotein A-I and A-I mimetic peptides: a role in atherosclerosis

    Directory of Open Access Journals (Sweden)

    Getz GS

    2011-06-01

    Full Text Available Godfrey S Getz, Catherine A ReardonThe University of Chicago, Department of Pathology, Chicago, IL, USAAbstract: Cardiovascular disease remains a major cause of morbidity and mortality in the westernized world. Atherosclerosis is the underlying cause of most cardiovascular diseases. Atherosclerosis is a slowly evolving chronic inflammatory disorder involving the intima of large and medium sized arteries that is initiated in response to high plasma lipid levels, especially LDL. Cells of both the innate and adaptive immunity are involved in this chronic inflammation. Although high plasma LDL levels are a major contributor to most stages of the evolution of atherosclerosis, HDL and its major protein apoA-I possess properties that attenuate and may even reverse atherosclerosis. Two major functions are the ability to induce the efflux of cholesterol from cells, particularly lipid-loaded macrophages, in the artery wall for transfer to the liver, a process referred to as reverse cholesterol transport, and the ability to attenuate the pro-inflammatory properties of LDL. The removal of cellular cholesterol from lipid-loaded macrophages may also be anti-inflammatory. One of the most promising therapies to enhance the anti-atherogenic, anti-inflammatory properties of HDL is apoA-I mimetic peptides. Several of these peptides have been shown to promote cellular cholesterol efflux, attenuate the production of pro-inflammatory cytokines by macrophages, and to attenuate the pro-inflammatory properties of LDL. This latter effect may be related to their high affinity for oxidized lipids present in LDL. This review discusses the functional properties of the peptides and their effect on experimental atherosclerosis and the results of initial clinical studies in humans.Keywords: apoA-I, mimetic peptides, HDL, anti-inflammatory, atherosclerosis

  5. Impact of peptide clustering on unbinding forces in the context of fusion mimetics

    International Nuclear Information System (INIS)

    Highlights: ► Coiled-coil peptides as SNARE mimetics for membrane fusion. ► Interaction forces assessed by colloidal probe microscopy. ► Lateral organization of lipopeptides visualized by atomic force microscopy. -- Abstract: Coiled-coil zipping and unzipping is a pivotal process in SNARE-regulated membrane fusion. In this study we examine this process mediated by a minimal model for coiled-coil formation employing force spectroscopy in the context of membrane-coated surfaces and probes. The interaction forces of several hundred pN are surprisingly low considering the proposed amount of molecular bonds in the contact zone. However, by means of high-resolution imaging employing atomic force microscopy and studying the lateral mobility of lipids and peptides as a function of coiled-coil formation, we are able to supply a detailed view on processes occurring on the membrane surfaces during force measurements. The interaction forces determined here are not only dependent on the peptide concentration on the surface, but also on the regional organization of lateral peptide clusters found prior to coiled-coil formation

  6. A novel anti-inflammatory role of NCAM-derived mimetic peptide, FGL

    DEFF Research Database (Denmark)

    Downer, Eric J; Cowley, Thelma R; Lyons, Anthony;

    2010-01-01

    novel anti-inflammatory agent. Administration of FGL to aged rats attenuated the increased expression of markers of activated microglia, the increase in pro-inflammatory interleukin-1beta (IL-1beta) and the impairment in long-term potentiation (LTP). We report that the age-related increase in microglial......Age-related cognitive deficits in hippocampus are correlated with neuroinflammatory changes, typified by increased pro-inflammatory cytokine production and microglial activation. We provide evidence that the neural cell adhesion molecule (NCAM)-derived mimetic peptide, FG loop (FGL), acts as a...... CD200 in vitro. We provide evidence that the increase in CD200 is reliant on IL-4-induced extracellular signal-regulated kinase (ERK) signal transduction. These findings provide the first evidence of a role for FGL as an anti-inflammatory agent and identify a mechanism by which FGL controls...

  7. Activity of antimicrobial peptide mimetics in the oral cavity: I. Activity against biofilms of Candida albicans.

    Science.gov (United States)

    Hua, J; Yamarthy, R; Felsenstein, S; Scott, R W; Markowitz, K; Diamond, G

    2010-12-01

    Naturally occurring antimicrobial peptides hold promise as therapeutic agents against oral pathogens such as Candida albicans but numerous difficulties have slowed their development. Synthetic, non-peptidic analogs that mimic the properties of these peptides have many advantages and exhibit potent, selective antimicrobial activity. Several series of mimetics (with molecular weight oral Candida strains as a proof-of-principle for their antifungal properties. One phenylalkyne and several arylamide compounds with reduced mammalian cytotoxicities were found to be active against C. albicans. These compounds demonstrated rapid fungicidal activity in liquid culture even in the presence of saliva, and demonstrated synergy with standard antifungal agents. When assayed against biofilms grown on denture acrylic, the compounds exhibited potent fungicidal activity as measured by metabolic and fluorescent viability assays. Repeated passages in sub-minimum inhibitory concentration levels did not lead to resistant Candida, in contrast to fluconazole. Our results demonstrate the proof-of principle for the use of these compounds as anti-Candida agents, and their further testing is warranted as novel anti-Candida therapies.

  8. Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Aaron A.; Liu, Wei; Chun, Eugene; Katritch, Vsevolod; Wu, Huixian; Vardy, Eyal; Huang, Xi-Ping; Trapella, Claudio; Guerrini, Remo; Calo, Girolamo; Roth, Bryan L.; Cherezov, Vadim; Stevens, Raymond C. (Ferrara); (Scripps); (UNC)

    2012-07-11

    Members of the opioid receptor family of G-protein-coupled receptors (GPCRs) are found throughout the peripheral and central nervous system, where they have key roles in nociception and analgesia. Unlike the 'classical' opioid receptors, {delta}, {kappa} and {mu} ({delta}-OR, {kappa}-OR and {mu}-OR), which were delineated by pharmacological criteria in the 1970s and 1980s, the nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP, also known as ORL-1) was discovered relatively recently by molecular cloning and characterization of an orphan GPCR. Although it shares high sequence similarity with classical opioid GPCR subtypes ({approx}60%), NOP has a markedly distinct pharmacology, featuring activation by the endogenous peptide N/OFQ, and unique selectivity for exogenous ligands. Here we report the crystal structure of human NOP, solved in complex with the peptide mimetic antagonist compound-24 (C-24) (ref. 4), revealing atomic details of ligand-receptor recognition and selectivity. Compound-24 mimics the first four amino-terminal residues of the NOP-selective peptide antagonist UFP-101, a close derivative of N/OFQ, and provides important clues to the binding of these peptides. The X-ray structure also shows substantial conformational differences in the pocket regions between NOP and the classical opioid receptors {kappa} (ref. 5) and {mu} (ref. 6), and these are probably due to a small number of residues that vary between these receptors. The NOP-compound-24 structure explains the divergent selectivity profile of NOP and provides a new structural template for the design of NOP ligands.

  9. Deleterious Effects of High Dose Connexin 43 Mimetic Peptide Infusion After Cerebral Ischaemia in Near-Term Fetal Sheep

    Directory of Open Access Journals (Sweden)

    Alistair J. Gunn

    2012-05-01

    Full Text Available Hypoxic-ischaemic brain injury at birth is associated with 1–3/1000 cases of moderate to severe encephalopathy. Previously, we have shown that connexin 43 hemichannel blockade, with a specific mimetic peptide, reduced the occurrence of seizures, improved recovery of EEG power and sleep state cycling, and improved cell survival following global cerebral ischaemia. In the present study, we examined the dose response for intracerebroventricular mimetic peptide infusion (50 µmol/kg/h for 1 h, followed by 50 µmol/kg/24 h (low dose or 50 µmol/kg/h for 25 h (high dose or vehicle only (control group, starting 90 min after the end of ischaemia, following global cerebral ischaemia, induced by 30 min bilateral carotid artery occlusion, in near-term fetal sheep (128 ± 1 days gestation. Both peptide infusion groups were associated with a transient significant increase in EEG power between 2–12 h after ischaemia. The ischaemia-low dose group showed a significant recovery of EEG power from day five compared to the ischaemia-vehicle and -high dose groups. In contrast, the high dose infusion was associated with greater secondary increase in impedance (brain cell swelling, as well as a trend towards a greater increase in lactate concentration and mortality. These data suggest that higher doses of connexin mimetic peptide are not beneficial and may be associated with adverse outcomes, most likely attributable to uncoupling of connexin 43 gap junctions leading to dysfunction of the astrocytic syncytium.

  10. New mimetic peptides inhibitors of Αβ aggregation. Molecular guidance for rational drug design.

    Science.gov (United States)

    Barrera Guisasola, Exequiel E; Andujar, Sebastián A; Hubin, Ellen; Broersen, Kerensa; Kraan, Ivonne M; Méndez, Luciana; Delpiccolo, Carina M L; Masman, Marcelo F; Rodríguez, Ana M; Enriz, Ricardo D

    2015-05-01

    A new series of mimetic peptides possessing a significant Aβ aggregation modulating effect was reported here. These compounds were obtained based on a molecular modelling study which allowed us to perform a structural-based virtual selection. Monitoring Aβ aggregation by thioflavin T fluorescence and transmission electron microscopy revealed that fibril formation was significantly decreased upon prolonged incubation in presence of the active compounds. Dot blot analysis suggested a decrease of soluble oligomers strongly associated with cognitive decline in Alzheimer's disease. For the molecular dynamics simulations, we used an Aβ42 pentameric model where the compounds were docked using a blind docking technique. To analyze the dynamic behaviour of the complexes, extensive molecular dynamics simulations were carried out in explicit water. We also measured parameters or descriptors that allowed us to quantify the effect of these compounds as potential inhibitors of Aβ aggregation. Thus, significant alterations in the structure of our Aβ42 protofibril model were identified. Among others we observed the destruction of the regular helical twist, the loss of a stabilizing salt bridge and the loss of a stabilizing hydrophobic interaction in the β1 region. Our results may be helpful in the structural identification and understanding of the minimum structural requirements for these molecules and might provide a guide in the design of new aggregation modulating ligands.

  11. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    Energy Technology Data Exchange (ETDEWEB)

    Hennings, Leah; Artaud, Cecile; Jousheghany, Fariba; Monzavi-Karbassi, Behjatolah; Pashov, Anastas; Kieber-Emmons, Thomas, E-mail: tke@uams.edu [Winthrop P. Rockefeller Cancer Institute and Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2011-11-11

    Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs). To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs) that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I), and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses.

  12. Identification of antiviral mimetic peptides with interferon α-2b-like activity from a random peptide library using a novel functional biopanning method

    Institute of Scientific and Technical Information of China (English)

    Qi ZHANG; Gang BAI; Jia-qi CHEN; Wang TIAN; Yu CAO; Peng-wei PAN; Chao WANG

    2008-01-01

    Aim: To screen for interferon (IFN) α-2b mimetic peptides with antiviral activity. Methods: Selecting IFN receptor-binding peptides from a phage-display heptapeptide library using a novel functional biopanning method. This method was developed to identify peptides with activity against vesicular stomatitis virus (VSV) inducing cytopathic effects on WISH cells. Results: Sixteen positive clones were obtained after 3 rounds of functional selection. Ten clones were picked from these positive clones according to the results of phage ELISA and were sequenced. The amino acid sequences homologous to IFNα-2b were defined by residues AB loop 31-37, BC loop 68-74, C helix 93-99, CD loop 106-112, D helix 115-121, DE loop 132-138, and E helix 143-161. Two of the peptides, designated clones T3 and T9, aligned with the IFNAR2-binding domains (AB loop and E helix), were synthe-sized and designated as IR-7 and KP-7, respectively. Both KP-7 and IR-7 were found to compete with GFP/IFNtα-2b for receptor binding and mimicked the antivi-ral activity of IFNα-2b cooperatively. Conclusion: Two IFNα-2b mimetic peptides with antiviral activity were derived from a phage-display heptapeptide library using a novel functional selection method.

  13. An apoA-I mimetic peptide increases LCAT activity in mice through increasing HDL concentration

    Directory of Open Access Journals (Sweden)

    Xun Chen, Charlotte Burton, Xuelei Song, Lesley Mcnamara, Annunziata Langella, Simona Cianetti, Ching H. Chang, Jun Wang

    2009-01-01

    Full Text Available Lecithin cholesterol acyltransferase (LCAT plays a key role in the reverse cholesterol transport (RCT process by converting cholesterol to cholesteryl ester to form mature HDL particles, which in turn deliver cholesterol back to the liver for excretion and catabolism. HDL levels in human plasma are negatively correlated with cardiovascular risk and HDL functions are believed to be more important in atheroprotection. This study investigates whether and how D-4F, an apolipoprotein A-I (apoA-I mimetic peptide, influences LCAT activity in the completion of the RCT process. We demonstrated that the apparent rate constant value of the LCAT enzyme reaction gives a measure of LCAT activity and determined the effects of free metals and a reducing agent on LCAT activity, showing an inhibition hierarchy of Zn2+>Mg2+>Ca2+ and no inhibition with β-mercaptoethanol up to 10 mM. We reconstituted nano-disc particles using apoA-I or D-4F with phospholipids. These particles elicited good activity in vitro in the stimulation of cholesterol efflux from macrophages through the ATP-binding cassette transporter A1 (ABCA1. With these particles we studied the LCAT activity and demonstrated that D-4F did not activate LCAT in vitro. Furthermore, we have done in vivo experiments with apoE-null mice and demonstrated that D-4F (20 mg/kg body weight, once daily subcutaneously increased LCAT activity and HDL level as well as apoA-I concentration at 72 hours post initial dosing. Finally, we have established a correlation between HDL concentration and LCAT activity in the D-4F treated mice.

  14. The CNTF-derived peptide mimetic Cintrofin attenuates spatial-learning deficits in a rat post-status epilepticus model

    DEFF Research Database (Denmark)

    Russmann, Vera; Seeger, Natalie; Zellinger, Christina;

    2013-01-01

    Ciliary neurotrophic growth factor is considered a potential therapeutic agent for central nervous system diseases. We report first in vivo data of the ciliary neurotrophic growth factor peptide mimetic Cintrofin in a rat post-status epilepticus model. Cintrofin prevented long-term alterations...... in the number of doublecortin-positive neuronal progenitor cells and attenuated the persistence of basal dendrites. In contrast, Cintrofin did neither affect acute status epilepticus-associated alterations in hippocampal cell proliferation and neurogenesis nor reveal any relevant effect on seizure activity....... Whereas status epilepticus caused a significant disturbance in spatial learning in reversed peptide-treated rats, the performance of Cintrofin-treated rats did not differ from controls. The study confirms that Cintrofin comprises an active sequence mimicking effects of its parent molecule. While the data...

  15. Sera from children with autism induce autistic features which can be rescued with a CNTF small peptide mimetic in rats.

    Directory of Open Access Journals (Sweden)

    Syed Faraz Kazim

    Full Text Available Autism is a neurodevelopmental disorder characterized clinically by impairments in social interaction and verbal and non-verbal communication skills as well as restricted interests and repetitive behavior. It has been hypothesized that altered brain environment including an imbalance in neurotrophic support during early development contributes to the pathophysiology of autism. Here we report that sera from children with autism which exhibited abnormal levels of various neurotrophic factors induced cell death and oxidative stress in mouse primary cultured cortical neurons. The effects of sera from autistic children were rescued by pre-treatment with a ciliary neurotrophic factor (CNTF small peptide mimetic, Peptide 6 (P6, which was previously shown to exert its neuroprotective effect by modulating CNTF/JAK/STAT pathway and LIF signaling and by enhancing brain derived neurotrophic factor (BDNF expression. Similar neurotoxic effects and neuroinflammation were observed in young Wistar rats injected intracerebroventricularly with autism sera within hours after birth. The autism sera injected rats demonstrated developmental delay and deficits in social communication, interaction, and novelty. Both the neurobiological changes and the behavioral autistic phenotype were ameliorated by P6 treatment. These findings implicate the involvement of neurotrophic imbalance during early brain development in the pathophysiology of autism and a proof of principle of P6 as a potential therapeutic strategy for autism.

  16. Synergy between a collagen IV mimetic peptide and a somatotropin-domain derived peptide as angiogenesis and lymphangiogenesis inhibitors

    OpenAIRE

    Koskimaki, Jacob E.; Lee, Esak; Chen, William; Rivera, Corban G.; Rosca, Elena V.; Pandey, Niranjan B.; Popel, Aleksander S.

    2012-01-01

    Angiogenesis is central to many physiological and pathological processes. Here we show two potent bioinformatically-identified peptides, one derived from collagen IV and translationally optimized, and one from a somatotropin domain-containing protein, synergize in angiogenesis and lymphangiogenesis assays including cell adhesion, migration and in vivo Matrigel plugs. Peptide-peptide combination therapies have recently been applied to diseases such as human immunodeficiency virus (HIV), but re...

  17. Impact of the erythropoietin-derived peptide mimetic Epotris on the histopathological consequences of status epilepticus

    DEFF Research Database (Denmark)

    Zellinger, Christina; Seeger, Natalie; Hadamitzky, Martin;

    2011-01-01

    of this peptide to interfere with the histopathological consequences of electrical-induced status epilepticus in rats. The peptide attenuated status epilepticus-associated expansion of the neuronal progenitor cell population in a significant manner. Moreover, Epotris affected the number of persistent basal...

  18. EPOR-Based Purification and Analysis of Erythropoietin Mimetic Peptides from Human Urine by Cys-Specific Cleavage and LC/MS/MS

    Science.gov (United States)

    Vogel, Matthias; Thomas, Andreas; Schänzer, Wilhelm; Thevis, Mario

    2015-09-01

    The development of a new class of erythropoietin mimetic agents (EMA) for treating anemic conditions has been initiated with the discovery of oligopeptides capable of dimerizing the erythropoietin (EPO) receptor and thus stimulating erythropoiesis. The most promising amino acid sequences have been mounted on various different polymeric structures or carrier molecules to obtain highly active EPO-like drugs exhibiting beneficial and desirable pharmacokinetic profiles. Concomitant with creating new therapeutic options, erythropoietin mimetic peptide (EMP)-based drug candidates represent means to artificially enhance endurance performance and necessitate coverage by sports drug testing methods. Therefore, the aim of the present study was to develop a strategy for the comprehensive detection of EMPs in doping controls, which can be used complementary to existing protocols. Three model EMPs were used to provide proof-of-concept data. Following EPO receptor-facilitated purification of target analytes from human urine, the common presence of the cysteine-flanked core structure of EMPs was exploited to generate diagnostic peptides with the aid of a nonenzymatic cleavage procedure. Sensitive detection was accomplished by targeted-SIM/data-dependent MS2 analysis. Method characterization was conducted for the EMP-based drug peginesatide concerning specificity, linearity, precision, recovery, stability, ion suppression/enhancement, and limit of detection (LOD, 0.25 ng/mL). Additionally, first data for the identification of the erythropoietin mimetic peptides EMP1 and BB68 were generated, demonstrating the multi-analyte testing capability of the presented approach.

  19. Osteonectin-derived peptide increases the modulus of a bone-mimetic nanocomposite.

    Science.gov (United States)

    Sarvestani, Alireza S; He, Xuezhong; Jabbari, Esmaiel

    2008-02-01

    Many factors contribute to the toughness of bone including the presence of nano-size apatite crystals, a dense network of collagen fibers, and acidic proteins with the ability to link the mineral phase to the gelatinous collagen phase. We investigated the effect of a glutamic acid (negatively charged) peptide (Glu6), which mimics the terminal region of the osteonectin glycoprotein of bone, on the shear modulus of a synthetic hydrogel/apatite nanocomposite. One end of the synthesized peptide was functionalized with an acrylate group (Ac-Glu6) to covalently attach the peptide to the hydrogel phase of the composite matrix. When microapatite crystals (5 microm diameter) were used, addition of Ac-Glu6 peptide did not affect the modulus of the microcomposite. However, when nanoapatite crystals (100 nm diameter) were used, addition of Ac-Glu6 resulted in significant reinforcement of the shear modulus of the nanocomposite ( approximately 100% in elastic shear modulus). Furthermore, addition of Ac-Gly6 (a neutral glycine sequence) or Ac-Lys6 (a positively charged sequence) did not reinforce the nanocomposite. These results demonstrate that the reinforcement effect of the Glu6 peptide, a sequence in the terminal region of osteonectin, is modulated by the size of the apatite crystals. The findings of this work can be used to develop advanced biomimetic composites for skeletal tissue regeneration. PMID:17609937

  20. Hydrophobic amino acids in the hinge region of the 5A apolipoprotein mimetic peptide are essential for promoting cholesterol efflux by the ABCA1 transporter.

    Science.gov (United States)

    Sviridov, Denis O; Andrianov, Alexander M; Anishchenko, Ivan V; Stonik, John A; Amar, Marcelo J A; Turner, Scott; Remaley, Alan T

    2013-01-01

    The bihelical apolipoprotein mimetic peptide 5A effluxes cholesterol from cells and reduces inflammation and atherosclerosis in animal models. We investigated how hydrophobic residues in the hinge region between the two helices are important in the structure and function of this peptide. By simulated annealing analysis and molecular dynamics modeling, two hydrophobic amino acids, F-18 and W-21, in the hinge region were predicted to be relatively surface-exposed and to interact with the aqueous solvent. Using a series of 5A peptide analogs in which F-18 or W-21 was changed to either F, W, A, or E, only peptides with hydrophobic amino acids in these two positions were able to readily bind and solubilize phospholipid vesicles. Compared with active peptides containing F or W, peptides containing E in either of these two positions were more than 10-fold less effective in effluxing cholesterol by the ABCA1 transporter. Intravenous injection of 5A in C57BL/6 mice increased plasma-free cholesterol (5A: 89.9 ± 13.6 mg/dl; control: 38.7 ± 4.3 mg/dl (mean ± S.D.); P < 0.05) and triglycerides (5A: 887.0 ± 172.0 mg/dl; control: 108.9 ± 9.9 mg/dl; P < 0.05), whereas the EE peptide containing E in both positions had no effect. Finally, 5A increased cholesterol efflux approximately 2.5-fold in vivo from radiolabeled macrophages, whereas the EE peptide was inactive. These results provide a rationale for future design of therapeutic apolipoprotein mimetic peptides and provide new insights into the interaction of hydrophobic residues on apolipoproteins with phospholipids in the lipid microdomain created by the ABCA1 transporter during the cholesterol efflux process.

  1. ApoE mimetic peptide decreases Aβ production in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Pak Daniel TS

    2010-04-01

    Full Text Available Abstract Background Apolipoprotein E (apoE is postulated to affect brain Aβ levels through multiple mechanisms--by altering amyloid precursor protein (APP processing, Aβ degradation, and Aβ clearance. We previously showed that an apoE-derived peptide containing a double repeat of the receptor-binding region was similarly effective in increasing APP processing in vivo. Here, we further examined whether peptides containing tandem repeats of the apoE receptor-binding region (amino acids 141-149 affected APP trafficking, APP processing, and Aβ production. Results We found that peptides containing a double or triple tandem repeat of the apoE receptor-binding region, LRKLRKRLL, increased cell surface APP and decreased Aβ levels in PS1-overexpressing PS70 cells and in primary neurons. This effect was potentiated by a sequential increase in the number of apoE receptor-binding domain repeats (trimer > dimer > monomer. We previously showed that the apoE dimer increased APP CTF in vivo; to determine whether the dimer also affected secreted APP or Aβ levels, we performed a single hippocampal injection of the apoE dimer in wild-type mice and analyzed its effect on APP processing. We found increased sAPPα and decreased Aβ levels at 24 hrs after treatment, suggesting that the apoE dimer may increase α-secretase cleavage. Conclusions These data suggest that small peptides consisting of tandem repeats of the apoE receptor-binding region are sufficient to alter APP trafficking and processing. The potency of these peptides increased with increasing repeats of the receptor binding domain of apoE. In addition, in vivo administration of the apoE peptide (dimer increased sAPPα and decreased Aβ levels in wild-type mice. Overall, these findings contribute to our understanding of the effects of apoE on APP processing and Aβ production both in vitro and in vivo.

  2. Matrix-Bound VEGF Mimetic Peptides: Design and Endothelial Cell Activation in Collagen Scaffolds

    OpenAIRE

    Chan, Tania R.; Stahl, Patrick J.; Yu, S. Michael

    2011-01-01

    Long term survival and success of artificial tissue constructs depend greatly on vascularization. Endothelial cell (EC) differentiation and vasculature formation are dependent on spatio-temporal cues in the extracellular matrix that dynamically interact with cells, a process difficult to reproduce in artificial systems. Here we present a novel bifunctional peptide that mimics matrix-bound vascular endothelial growth factor (VEGF) and can be used to encode spatially controlled angiogenic signa...

  3. A peptide mimetic targeting trans-homophilic NCAM binding sites promotes spatial learning and neural plasticity in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Igor Kraev

    Full Text Available The key roles played by the neural cell adhesion molecule (NCAM in plasticity and cognition underscore this membrane protein as a relevant target to develop cognitive-enhancing drugs. However, NCAM is a structurally and functionally complex molecule with multiple domains engaged in a variety of actions, which raise the question as to which NCAM fragment should be targeted. Synthetic NCAM mimetic peptides that mimic NCAM sequences relevant to specific interactions allow identification of the most promising targets within NCAM. Recently, a decapeptide ligand of NCAM--plannexin, which mimics a homophilic trans-binding site in Ig2 and binds to Ig3--was developed as a tool for studying NCAM's trans-interactions. In this study, we investigated plannexin's ability to affect neural plasticity and memory formation. We found that plannexin facilitates neurite outgrowth in primary hippocampal neuronal cultures and improves spatial learning in rats, both under basal conditions and under conditions involving a deficit in a key plasticity-promoting posttranslational modification of NCAM, its polysialylation. We also found that plannexin enhances excitatory synaptic transmission in hippocampal area CA1, where it also increases the number of mushroom spines and the synaptic expression of the AMPAR subunits GluA1 and GluA2. Altogether, these findings provide compelling evidence that plannexin is an important facilitator of synaptic functional, structural and molecular plasticity in the hippocampal CA1 region, highlighting the fragment in NCAM's Ig3 module where plannexin binds as a novel target for the development of cognition-enhancing drugs.

  4. [Glucagon-like peptide-1 (GLP-1) mimetics: a new treatment for Alzheimer's disease?].

    Science.gov (United States)

    García-Casares, Natalia; García-Arnés, Juan Antonio; Gómez-Huelgas, Ricardo; Valdivielso-Felices, Pedro; García-Arias, Carlota; González-Santos, Pedro

    2014-12-01

    Introduccion. Los analogos del glucagon-like peptide-1 (GLP-1) son una opcion terapeutica establecida en los pacientes con diabetes tipo 2. Sin embargo, las propiedades de los analogos del GLP-1 van mas alla del control estrictamente metabolico del paciente diabetico. Los efectos neuroprotectores de los analogos del GLP-1 se han puesto de manifiesto en estudios recientes y han abierto nuevos campos de investigacion en trastornos neurodegenerativos como la enfermedad de Alzheimer (EA), entre otros. Objetivo. Revision sistematica de los estudios experimentales y ensayos clinicos en humanos que demuestran las propiedades neuroprotectoras de los analogos del GLP-1 en la EA. Desarrollo. Los estudios experimentales que se han llevado a cabo en modelos de roedores con EA demuestran las propiedades neuroprotectoras de los analogos del GLP-1 sobre el sistema nervioso central que reducen las placas de beta-amiloide, el estres oxidativo y la respuesta inflamatoria cerebral. Recientemente se han puesto en marcha estudios con analogos del GLP-1 en humanos con deterioro cognitivo y EA. Conclusiones. Los analogos del GLP-1 presentan propiedades neuroprotectoras. Al considerarse la diabetes tipo 2 un factor de riesgo para el deterioro cognitivo y la demencia, deben considerarse los beneficios de los analogos del GLP-1 sobre la cognicion. Del mismo modo, los analogos del GLP-1 suponen un tratamiento prometedor en la EA.

  5. The apolipoprotein-AI mimetic peptide L4F at a modest dose does not attenuate weight gain, inflammation, or atherosclerosis in LDLR-null mice.

    Directory of Open Access Journals (Sweden)

    Michelle M Averill

    Full Text Available High density lipoprotein (HDL cholesterol levels are inversely related to cardiovascular disease risk and associated with a reduced risk of type 2 diabetes. Apolipoprotein A-I (apoA-I; major HDL protein mimetics have been reported to reduce atherosclerosis and decrease adiposity. This study investigated the effect of L4F mimetic peptide and apoA-I overexpression on weight gain, insulin resistance, and atherosclerosis in an LDL receptor deficient (Ldlr-/- model fed a high fat high sucrose with cholesterol (HFHSC diet.Studies in differentiated 3T3-L1 adipocytes tested whether L4F could inhibit palmitate-induced adipocyte inflammation. In vivo studies used male Ldlr-/- mice fed a HFHSC diet for 12 weeks and were injected daily with L4F (100 µg/mouse subcutaneously during the last 8 weeks. Wild-type and apoA-I overexpressing Ldlr-/- mice were fed HFHSC diet for 16 weeks.Neither L4F administration nor apoA-I overexpression affected weight gain, total plasma cholesterol or triglycerides in our studies. While pre-treatment of 3T3-L1 adipocytes with either L4F or HDL abolished palmitate-induced cytokine expression in vitro, L4F treatment did not affect circulating or adipose tissue inflammatory markers in vivo. Neither L4F administration nor apoA-I overexpression affected glucose tolerance. ApoA-I overexpression significantly reduced atherosclerotic lesion size, yet L4F treatment did not affect atherosclerosis.Our results suggest that neither L4F (100 µg/day/mouse nor apoA-I overexpression affects adiposity or insulin resistance in this model. We also were unable to confirm a reduction in atherosclerosis with L4F in our particular model. Further studies on the effect of apoA-I mimetics on atherosclerosis and insulin resistance in a variety of dietary contexts are warranted.

  6. A cell adhesion molecule mimetic, FGL peptide, induces alterations in synapse and dendritic spine structure in the dentate gyrus of aged rats: a three-dimensional ultrastructural study

    DEFF Research Database (Denmark)

    Popov, Victor I; Medvedev, Nikolay I; Kraev, Igor V;

    2008-01-01

    through enhancement of synaptic function. We examined the effect of FGL on synaptic and dendritic structure in the brains of aged (22-month-old) rats that were injected subcutaneously (8 mg/kg) at 2-day intervals until 19 days after the start of the experiment. Animals were perfused with fixative, brains...... structure of synapses and dendritic spines in hippocampus of aged rats, complementing data showing its effect on cognitive processes.......The FGL peptide is a neural cell adhesion molecule (NCAM) mimetic comprising a 15-amino-acid-long sequence of the FG loop region of the second fibronectin type III module of NCAM. It corresponds to the binding site of NCAM for the fibroblast growth factor receptor 1. FGL improves cognitive function...

  7. The properties conferred upon triple-helical collagen-mimetic peptides by the presence of cysteine residues

    OpenAIRE

    David A. Slatter; Bihan, Dominique G.; Jarvis, Gavin E.; Stone, Rachael; Pugh, Nicholas; Giddu, Sumana; Farndale, Richard W.

    2012-01-01

    Recently, the ability of polymeric collagen-like peptides to regulate cell behavior has generated great interest. A triple-helical peptide known as collagen-related peptide (CRP) contains the sequence (Gly-Pro-Hyp)10. With Gly-Pro-Cys triplets appended to both of its termini, designated CRPcys, chemical cross-linking using heterobifunctional reagents generates CRPcys-XL, a potent, widely used, polymeric agonist for platelet Glycoprotein VI, whereas non-cross-linked, monomeric CRPcys antagoniz...

  8. Peptide mimetic of the S100A4 protein modulates peripheral nerve regeneration and attenuates the progression of neuropathy in myelin protein P0 null mice

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Pinchenko, Volodymyr; Dmytriyeva, Oksana;

    2013-01-01

    We recently found that S100A4, a member of the multifunctional S100 protein family, protects neurons in the injured brain and identified two sequence motifs in S100A4 mediating its neurotrophic effect. Synthetic peptides encompassing these motifs stimulated neuritogenesis and survival in vitro an......, such as Charcot-Marie-Tooth type 1 disease. Moreover, our data suggest that S100A4 is a neuroprotectant in PNS and that other S100 proteins, sharing high homology in the H3 motif, may have important functions in PNS pathologies......., these effects were attributed to the modulatory effect of H3 on initial axonal sprouting. In contrast to the modest effect of H3 on the time course of regeneration, H3 had a long-term neuroprotective effect in the myelin protein P0 null mice, a model of dysmyelinating neuropathy (Charcot-Marie-Tooth type 1...... disease), where the peptide attenuated the deterioration of nerve conduction, demyelination and axonal loss. From these results, S100A4 mimetics emerge as a possible means to enhance axonal sprouting and survival, especially in the context of demyelinating neuropathies with secondary axonal loss...

  9. A Placebo-Controlled Study on the Effects of the Glucagon-Like Peptide-1 Mimetic, Exenatide, on Insulin Secretion, Body Composition and Adipokines in Obese, Client-Owned Cats

    DEFF Research Database (Denmark)

    Hoelmkjaer, Kirsten M.; Albrechtsen, Nicolai J. Wewer; Holst, Jens J.;

    2016-01-01

    Glucagon-like Peptide-1 mimetics increase insulin secretion and reduces body weight in humans. In lean, healthy cats, short-term treatment has produced similar results, whereas the effect in obese cats or with extended duration of treatment is unknown. Here, prolonged (12 weeks) treatment...... with the Glucagon-like Peptide-1 mimetic, exenatide, was evaluated in 12 obese, but otherwise healthy, client-owned cats. Cats were randomized to exenatide (1.0 μg/kg) or placebo treatment twice daily for 12 weeks. The primary endpoint was changes in insulin concentration; the secondary endpoints were glucose...... by exenatide (P>0.05). Twelve weeks of exenatide was well-tolerated, with only two cases of mild, self-limiting gastrointestinal signs and a single case of mild hypoglycemia. The long-term insulinotropic effect of exenatide appeared less pronounced in obese cats compared to previous short-term studies in lean...

  10. A Peptide Mimetic of 5-Acetylneuraminic Acid-Galactose Binds with High Avidity to Siglecs and NKG2D.

    Directory of Open Access Journals (Sweden)

    Laura L Eggink

    Full Text Available We previously identified several peptide sequences that mimicked the terminal sugars of complex glycans. Using plant lectins as analogs of lectin-type cell-surface receptors, a tetravalent form of a peptide with the sequence NPSHPLSG, designated svH1C, bound with high avidity to lectins specific for glycans with terminal 5-acetylneuraminic acid (Neu5Ac-galactose (Gal/N-acetylgalactosamine (GalNAc sequences. In this report, we show by circular dichroism and NMR spectra that svH1C lacks an ordered structure and thus interacts with binding sites from a flexible conformation. The peptide binds with high avidity to several recombinant human siglec receptors that bind preferentially to Neu5Ac(α2,3Gal, Neu5Ac(α2,6GalNAc or Neu5Ac(α2,8Neu5Ac ligands. In addition, the peptide bound the receptor NKG2D, which contains a lectin-like domain that binds Neu5Ac(α2,3Gal. The peptide bound to these receptors with a KD in the range of 0.6 to 1 μM. Binding to these receptors was inhibited by the glycoprotein fetuin, which contains multiple glycans that terminate in Neu5Ac(α2,3Gal or Neu5Ac(α2,6Gal, and by sialyllactose. Binding of svH1C was not detected with CLEC9a, CLEC10a or DC-SIGN, which are lectin-type receptors specific for other sugars. Incubation of neuraminidase-treated human peripheral blood mononuclear cells with svH1C resulted in binding of the peptide to a subset of the CD14+ monocyte population. Tyrosine phosphorylation of siglecs decreased dramatically when peripheral blood mononuclear cells were treated with 100 nM svH1C. Subcutaneous, alternate-day injections of svH1C into mice induced several-fold increases in populations of several types of immune cells in the peritoneal cavity. These results support the conclusion that svH1C mimics Neu5Ac-containing sequences and interacts with cell-surface receptors with avidities sufficient to induce biological responses at low concentrations. The attenuation of inhibitory receptors suggests that svH1C

  11. Block of Brain Sodium Channels by Peptide Mimetics of the Isoleucine, Phenylalanine, and Methionine (IFM) Motif from the Inactivation Gate

    OpenAIRE

    Eaholtz, Galen; Colvin, Anita; Leonard, Daniele; Taylor, Charles(8 Cherryl House, Seymour Gardens, Sutton Coldfield, West Midlands, B74 4ST, U.K.); Catterall, William A.

    1999-01-01

    Inactivation of sodium channels is thought to be mediated by an inactivation gate formed by the intracellular loop connecting domains III and IV. A hydrophobic motif containing the amino acid sequence isoleucine, phenylalanine, and methionine (IFM) is required for the inactivation process. Peptides containing the IFM motif, when applied to the cytoplasmic side of these channels, produce two types of block: fast block, which resembles the inactivation process, and slow, use-dependent block sti...

  12. Effects of Synthetic Neural Adhesion Molecule Mimetic Peptides and Related Proteins on the Cardiomyogenic Differentiation of Mouse Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Ruodan Xu

    2015-04-01

    Full Text Available Background/Aims: Pluripotent stem cells differentiating into cardiomyocyte-like cells in an appropriate cellular environment have attracted significant attention, given the potential use of such cells for regenerative medicine. However, the precise mechanisms of lineage specification of pluripotent stem cells are still largely to be explored. Identifying the role of various small synthetic peptides involved in cardiomyogenesis may provide new insights into pathways promoting cardiomyogenesis. Methods: In the present study, using a transgenic murine embryonic stem (ES cell lineage expressing enhanced green fluorescent protein (EGFP under the control of α-myosin heavy chain (α-MHC promoter (pαMHC-EGFP, we investigated the cardiomyogenic effects of 7 synthetic peptides (Betrofin3, FGLs, FGLL, hNgf_C2, EnkaminE, Plannexin and C3 on cardiac differentiation. The expression of several cardiac-specific markers was determined by RT-PCR whereas the structural and functional properties of derived cardiomyocytes were examined by immunofluorescence and electrophysiology, respectively. Results: The results revealed that Betrofin3, an agonist of brain derived neurotrophic factor (BDNF peptide exerted the most striking pro-cardiomyogenic effect on ES cells. We found that BDNF receptor, TrkB expression was up-regulated during differentiation. Treatment of differentiating cells with Betrofin3 between days 3 and 5 enhanced the expression of cardiac-specific markers and improved cardiomyocyte differentiation and functionality as revealed by genes regulation, flow cytometry and patch clamp analysis. Thus Betrofin3 may exert its cardiomyogenic effects on ES cells via TrkB receptor. Conclusion: Taken together, the results suggest that Betrofin3 modulates BDNF signaling with positive cardiomyogenic effect in stage and dose-dependent manner providing an effective strategy to increase ES cell-based generation of cardiomyocytes and offer a novel therapeutic approach to

  13. Effect of an NCAM mimetic peptide FGL on impairment in spatial learning and memory after neonatal phencyclidine treatment in rats

    DEFF Research Database (Denmark)

    Secher, Thomas; Berezin, Vladimir; Bock, Elisabeth;

    2008-01-01

    , including cognitive impairment relevant to schizophrenia. The present study investigated the effect of FGL on spatial learning and memory deficits induced by neonatal PCP treatment. Rat pups were treated with 30mg/kg PCP on postnatal days 7, 9, and 11. Additionally, the rats were subjected to a chronic FGL......The FGL peptide is a neural cell adhesion molecule-derived fibroblast growth factor receptor agonist. FGL has both neurotrophic and memory enhancing properties. Neonatal phencyclidine (PCP) treatment on postnatal days 7, 9, and 11 has been shown to result in long-lasting behavioral abnormalities...... treatment regimen where FGL was administered throughout development. Rats were tested as adults for spatial reference memory, reversal learning, and working memory in the Morris water maze. The PCP-treated rats demonstrated a robust impairment in working memory and reversal learning. However, the long...

  14. Impact of the NCAM derived mimetic peptide plannexin on the acute cellular consequences of a status epilepticus

    DEFF Research Database (Denmark)

    Zellinger, Christina; Hadamitzky, Martin; Bock, Elisabeth;

    2011-01-01

    Plannexin represents a NCAM-derived peptide mimicking trans-homophilic NCAM interaction, which proved to exert neuroprotective effects in vitro. The effect of plannexin was evaluated in a rat status epilepticus model. As expected, prolonged seizure activity resulted in a pronounced cell loss...... in hippocampal subregions. The comparison between the vehicle- and plannexin-treated animals with status epilepticus did not reveal neuroprotective effects of plannexin on mature neurons. However, treatment with plannexin partially prevented the reduction in the number of doublecortin-labeled neuronal progenitor...... cells, which was evident 48h following status epilepticus. In conclusion, the data might give first evidence that plannexin can protect immature neurons in vivo. Future studies are necessary to evaluate whether disease-modifying or preventive effects are observed in models of epileptogenesis....

  15. Mapping the Interaction of B Cell Leukemia 3 (BCL-3) and Nuclear Factor κB (NF-κB) p50 Identifies a BCL-3-mimetic Anti-inflammatory Peptide.

    Science.gov (United States)

    Collins, Patricia E; Grassia, Gianluca; Colleran, Amy; Kiely, Patrick A; Ialenti, Armando; Maffia, Pasquale; Carmody, Ruaidhrí J

    2015-06-19

    The NF-κB transcriptional response is tightly regulated by a number of processes including the phosphorylation, ubiquitination, and subsequent proteasomal degradation of NF-κB subunits. The IκB family protein BCL-3 stabilizes a NF-κB p50 homodimer·DNA complex through inhibition of p50 ubiquitination. This complex inhibits the binding of the transcriptionally active NF-κB subunits p65 and c-Rel on the promoters of NF-κB target genes and functions to suppress inflammatory gene expression. We have previously shown that the direct interaction between p50 and BCL-3 is required for BCL-3-mediated inhibition of pro-inflammatory gene expression. In this study we have used immobilized peptide array technology to define regions of BCl-3 that mediate interaction with p50 homodimers. Our data show that BCL-3 makes extensive contacts with p50 homodimers and in particular with ankyrin repeats (ANK) 1, 6, and 7, and the N-terminal region of Bcl-3. Using these data we have designed a BCL-3 mimetic peptide based on a region of the ANK1 of BCL-3 that interacts with p50 and shares low sequence similarity with other IκB proteins. When fused to a cargo carrying peptide sequence this BCL-3-derived peptide, but not a mutated peptide, inhibited Toll-like receptor-induced cytokine expression in vitro. The BCL-3 mimetic peptide was also effective in preventing inflammation in vivo in the carrageenan-induced paw edema mouse model. This study demonstrates that therapeutic strategies aimed at mimicking the functional activity of BCL-3 may be effective in the treatment of inflammatory disease.

  16. Mimetic discretization methods

    CERN Document Server

    Castillo, Jose E

    2013-01-01

    To help solve physical and engineering problems, mimetic or compatible algebraic discretization methods employ discrete constructs to mimic the continuous identities and theorems found in vector calculus. Mimetic Discretization Methods focuses on the recent mimetic discretization method co-developed by the first author. Based on the Castillo-Grone operators, this simple mimetic discretization method is invariably valid for spatial dimensions no greater than three. The book also presents a numerical method for obtaining corresponding discrete operators that mimic the continuum differential and

  17. Chronic stress in adulthood followed by intermittent stress impairs spatial memory and the survival of newborn hippocampal cells in aging animals: prevention by FGL, a peptide mimetic of neural cell adhesion molecule

    DEFF Research Database (Denmark)

    Borcel, Erika; Pérez-Alvarez, Laura; Herrero, Ana Isabel;

    2008-01-01

    In this study, we examined whether chronic stress in adulthood can exert long-term effects on spatial-cognitive abilities and on the survival of newborn hippocampal cells in aging animals. Male Wistar rats were subjected to chronic unpredictable stress at midlife (12 months old) and then reexposed...... each week to a stress stimulus. When evaluated in the water maze at the early stages of aging (18 months old), chronic unpredictable stress accelerated spatial-cognitive decline, an effect that was accompanied by a reduction in the survival of newborn cells and in the number of adult granular cells......, a peptide mimetic of neural cell adhesion molecule, during the 4 weeks of continuous stress not only prevented the deleterious effects of chronic stress on spatial memory, but also reduced the survival of the newly generated hippocampal cells in aging animals. FGL treatment did not, however, prevent...

  18. Unimodular-Mimetic Cosmology

    CERN Document Server

    Nojiri, S; Oikonomou, V K

    2016-01-01

    We combine the unimodular gravity and mimetic gravity theories into a unified theoretical framework, which is proposed to solve the cosmological constant problem and the dark matter issue. After providing the formulation of the unimodular mimetic gravity and investigating all the new features that the vacuum unimodular gravity implies, by using the underlying reconstruction method, we realize some well known cosmological evolutions, with some of these being exotic for the ordinary Einstein-Hilbert gravity. Specifically we provide the vacuum unimodular mimetic gravity description of the de Sitter cosmology, of the perfect fluid with constant equation of state cosmology, of the Type IV singular cosmology and of the $R^2$ inflation cosmology. Moreover, we investigate how cosmologically viable cosmologies, which are compatible with the recent observational data, can be realized by the vacuum unimodular mimetic gravity. Since in some cases, the graceful exit from inflation problem might exist, we provide a qualita...

  19. Unimodular-mimetic cosmology

    Science.gov (United States)

    Nojiri, S.; Odintsov, S. D.; Oikonomou, V. K.

    2016-06-01

    We combine the unimodular gravity and mimetic gravity theories into a unified theoretical framework, which is proposed to provide a suggestive proposal for a framework that may assist in the discussion and search for a solution to the cosmological constant problem and the dark matter issue. After providing the formulation of the unimodular mimetic gravity and investigating all the new features that the vacuum unimodular gravity implies, by using the underlying reconstruction method, we realize some well known cosmological evolutions, with some of these being exotic for the ordinary Einstein-Hilbert gravity. Specifically we provide the vacuum unimodular mimetic gravity description of the de Sitter cosmology and of the perfect fluid with constant equation of state cosmology. As we demonstrate, these cosmologies can be realized by vacuum mimetic unimodular gravity, without the existence of any matter fluid source. Moreover, we investigate how cosmologically viable cosmologies, which are compatible with the recent observational data, can be realized by the vacuum unimodular mimetic gravity. Since in some cases, a graceful exit from inflation problem might exist, we provide a qualitative description of the mechanism that can potentially generate the graceful exit from inflation in these theories, by searching for the unstable de Sitter solutions in the context of unimodular mimetic theories of gravity.

  20. Mimetic finite difference method

    Science.gov (United States)

    Lipnikov, Konstantin; Manzini, Gianmarco; Shashkov, Mikhail

    2014-01-01

    The mimetic finite difference (MFD) method mimics fundamental properties of mathematical and physical systems including conservation laws, symmetry and positivity of solutions, duality and self-adjointness of differential operators, and exact mathematical identities of the vector and tensor calculus. This article is the first comprehensive review of the 50-year long history of the mimetic methodology and describes in a systematic way the major mimetic ideas and their relevance to academic and real-life problems. The supporting applications include diffusion, electromagnetics, fluid flow, and Lagrangian hydrodynamics problems. The article provides enough details to build various discrete operators on unstructured polygonal and polyhedral meshes and summarizes the major convergence results for the mimetic approximations. Most of these theoretical results, which are presented here as lemmas, propositions and theorems, are either original or an extension of existing results to a more general formulation using polyhedral meshes. Finally, flexibility and extensibility of the mimetic methodology are shown by deriving higher-order approximations, enforcing discrete maximum principles for diffusion problems, and ensuring the numerical stability for saddle-point systems.

  1. Involvement of the Receptor for Formylated Peptides in the in Vivo Anti-Migratory Actions of Annexin 1 and its Mimetics

    Science.gov (United States)

    Perretti, Mauro; Getting, Stephen J.; Solito, Egle; Murphy, Philip M.; Gao, Ji-Liang

    2001-01-01

    An innovative avenue for anti-inflammatory therapy is inhibition of neutrophil extravasation by potentiating the action of endogenous anti-inflammatory mediators. The glucocorticoid-inducible protein annexin 1 and derived peptides are effective in inhibiting neutrophil extravasation. Here we tested the hypothesis that an interaction with the receptor for formylated peptide (FPR), so far reported only in vitro, could be the mechanism for this in vivo action. In a model of mouse peritonitis, FPR antagonists abrogated the anti-migratory effects of peptides Ac2-26 and Ac2-12, with a partial reduction in annexin 1 effects. A similar result was obtained in FPR (knock-out) KO mice. Binding of annexin 1 to circulating leukocytes was reduced (>50%) in FPR KO mice. In vitro, annexin binding to peritoneal macrophages was also markedly reduced in FPR KO mice. Finally, evidence of direct annexin 1 binding to murine FPR was obtained with HEK-293 cells transfected with the receptor. Overall, these results indicate a functional role for FPR in the anti-migratory effect of annexin 1 and derived peptides. PMID:11395373

  2. Apolipoprotein A-I Mimetic Peptide D-4F Reduces Cardiac Hypertrophy and Improves Apolipoprotein A-I-Mediated Reverse Cholesterol Transport From Cardiac Tissue in LDL Receptor-null Mice Fed a Western Diet.

    Science.gov (United States)

    Han, Jie; Zhang, Song; Ye, Ping; Liu, Yong-Xue; Qin, Yan-Wen; Miao, Dong-Mei

    2016-05-01

    Epidemiological studies have suggested that hypercholesterolemia is an independent determinant of increased left ventricular (LV) mass. Because high-density lipoprotein and its major protein apolipoprotein A-I (apoA-I) mediate reverse cholesterol transport (RCT) and have cardiac protective effects, we hypothesized that the apoA-I mimetic peptide D-4F could promote RCT in cardiac tissue and decrease cardiac hypertrophy induced by hypercholesterolemia. Low-density lipoprotein receptor-null mice were fed by a Western diet for 18 weeks and then randomized to receive water, or D-4F 0.3 mg/mL, or D-4F 0.5 mg/mL added to drinking water for 6 weeks. After D-4F administration, an increase in high-density lipoprotein cholesterol and a decrease in low-density lipoprotein cholesterol, total cholesterol, and triglyceride in a trend toward dose-responsivity were found in cardiac tissue. Ultrasound biomicroscopy revealed a reduction in LV posterior wall end-diastolic dimension, and an increase in mitral valve E/A ratio and LV ejection fraction. Hematoxylin-eosin staining showed reduced LV wall thickness and myocardial cell diameter. The protein levels of ABCA1 and LXRα were elevated in cardiac tissue of D-4F treated mice compared with the controls (P < 0.05). These results demonstrated that D-4F treatment reduced cardiac hypertrophy, and improved cardiac performance in low-density lipoprotein receptor-null mice fed a Western diet, presumably through the LXRα-ABCA1 pathway associated with enhanced myocardial RCT. PMID:26828321

  3. Bradykinin antagonists modified with dipeptide mimetic beta-turn inducers.

    Science.gov (United States)

    Alcaro, Maria C; Vinci, Valerio; D'Ursi, Anna M; Scrima, Mario; Chelli, Mario; Giuliani, Sandro; Meini, Stefania; Di Giacomo, Marcello; Colombo, Lino; Papini, Anna Maria

    2006-05-01

    Bradykinin (BK) is involved in a wide variety of pathophysiological processes. Potent BK peptide antagonists can be developed introducing constrained unnatural amino acids, necessary to force the secondary structure of the molecule. In this paper, we report a structure-activity relationship study of two peptide analogues of the potent B2 antagonist HOE 140 by replacing the D-Tic-Oic dipeptide with conformationally constrained dipeptide mimetic beta-turn inducers. PMID:16504505

  4. Mimetic Compact Stars

    CERN Document Server

    Momeni, D; Gholizade, H; Myrzakulov, R

    2015-01-01

    Modified gravity models have been constantly proposed with the purpose of evading some standard gravity shortcomings. Recently proposed by A.H. Chamseddine and V. Mukhanov, the Mimetic Gravity arises as an optimistic alternative. Our purpose in this work is to derive Tolman-Oppenheimer-Volkoff equations and solutions for such a gravity theory. We solve them numerically for quark star and neutron star cases. The results are carefully discussed.

  5. 胶原模拟多肽对L929细胞粘附的影响%The effect of collagen mimetic peptides on L929 cells adhesion

    Institute of Scientific and Technical Information of China (English)

    陈晖娟; 刘玲蓉; 王静洁; 张其清

    2012-01-01

    Collagen mimetic peptides (CMPs) incorporating the triple-helical sequence or/and integrin-binding sequence were designed. To evaluate biocompatibility of CMPs in vitro, fibroblast cells (L929) were cultured. The proliferation and attachment of cell were observed in certain time. It is demonstrated that all CMPs had no obvious effect on the proliferation of L929 cells. The results also show that all CMPs promote migration and at- tachment of L929 to the coated surface. And the cells attachment shape and proliferation rate of L929 were good. After coating with CMP27 which containing the triple-helical sequence and integrin-binding sequence, the cell adhesion and spreading of L929 were significantly improved compared with others, and comparable to that observed on type I collagen. The triple-helical sequence and the integrin-binding sequence were shown to be im- portant roles on promoting cell adhesion collaboratively. Therefore, CMP is effective for improving the bioactiv- ity of cell adhesion, and could be potentially used as an adhesive for biomedical application. Moreover, this study provided new insights in designing other peptide-based bioaetivity materials.%设计合成了3种模拟胶原三螺旋结构或/和整合素识别位点的胶原模拟多肽(CMP),对其进行体外细胞相容性评价,研究其对小鼠成纤维细胞(L929)生长、粘附的影响。实验证实,3种CMP对成纤维细胞生长无明显的细胞毒性反应;3种包被胶原模拟多肽的基底均能在一定程度上促进细胞粘附、生长,具有良好的细胞粘附率和细胞附着形态,其中包含三螺旋结构和整合素识别位点的CMP27具有更好的促粘附效果,细胞粘附数量和形态与胶原接近。初步研究结果证实,胶原三螺旋结构与整合素识别位点共同作用促进L929细胞粘附。因此,CMP可以有效促进细胞粘附,有望作为粘附剂应用于生物医学领域,可为设计以多肽为基础的生物活性

  6. Nonconventional amide bond formation catalysis: programming enzyme specificity with substrate mimetics

    OpenAIRE

    F. Bordusa

    2000-01-01

    This article reports on the design and characteristics of substrate mimetics in protease-catalyzed reactions. Firstly, the basis of protease-catalyzed peptide synthesis and the general advantages of substrate mimetics over common acyl donor components are described. The binding behavior of these artificial substrates and the mechanism of catalysis are further discussed on the basis of hydrolysis, acyl transfer, protein-ligand docking, and molecular dynamics studies on the trypsin model. The g...

  7. Cylindrical solutions in mimetic gravity

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, Davood; Myrzakulov, Kairat; Myrzakulov, Ratbay [Eurasian National University, Eurasian International Center for Theoretical Physics and Department of General and Theoretical Physics, Astana (Kazakhstan); Raza, Muhammad [COMSATS Institute of Information Technology, Department of Mathematics, Sahiwal (Pakistan)

    2016-06-15

    This paper is devoted to investigate cylindrical solutions in mimetic gravity. The explicit forms of the metric of this theory, namely mimetic-Kasner (say) have been obtained. In this study we have noticed that the Kasner's family of exact solutions needs to be reconsidered under this type of modified gravity. A no-go theorem is proposed for the exact solutions in the presence of a cosmological constant. (orig.)

  8. Bio-mimetic Flow Control

    Science.gov (United States)

    Choi, Haecheon

    2009-11-01

    Bio-mimetic engineering or bio-mimetics is the application of biological methods and systems found in nature to the study and design of engineering systems and modern technology (from Wikipedia). The concept itself is old, but successful developments have been made recently, especially in the research field of flow control. The objective of flow control based on the bio-mimetic approach is to develop novel concepts for reducing drag, increasing lift and enhancing aerodynamic performance. For skin friction reduction, a few ideas have been suggested such as the riblet from shark, compliant surface from dolphin, microbubble injection and multiple front-body curvature from penguin, and V-shaped protrusion from sailfish. For form drag reduction, several new attempts have been also made recently. Examples include the V-shaped spanwise grooves from saguaro cactus, overall shape of box fish, longitudinal grooves on scallop shell, bill of swordfish, hooked comb on owl wing, trailing-edge protrusion on dragonfly wing, and fillet. For the enhancement of aerodynamic performance, focuses have been made on the birds, fish and insects: e.g., double layered feather of landing bird, leading-edge serration of humpback-whale flipper, pectoral fin of flying fish, long tail on swallowtail-butterfly wing, wing flapping motion of dragonfly, and alula in birds. Living animals adapt their bodies to better performance in multi purposes, but engineering requires single purpose in most cases. Therefore, bio-mimetic approaches often produce excellent results more than expected. However, they are sometimes based on people's wrong understanding of nature and produce unwanted results. Successes and failures from bio-mimetic approaches in flow control will be discussed in the presentation.

  9. Many Faces of Mimetic Gravity

    CERN Document Server

    Hammer, Katrin

    2015-01-01

    We consider the recently introduced mimetic gravity, which is a Weyl-symmetric extension of the General Relativity and which can play a role of an imperfect fluid-like Dark Matter with a small sound speed. In this paper we discuss in details how this higher- derivative scalar-tensor theory goes beyond the construction by Horndeski, keeping only one scalar degree of freedom on top of two standard graviton polarizations. In particular, we consider representations of the theory in different sets of Weyl-invariant variables and connect this framework to the singular Brans-Dicke theory. Further, we find solution of equations of motion for the mimetic gravity in the synchronous reference frame in a general curved spacetime. This solution is exact in the test-field approximation or in the case of a shear-free spacetime without any other matter.

  10. Novel and Convenient Method for the Preparation of Phosphonate Peptides and Phosphonamidate Peptides

    Institute of Scientific and Technical Information of China (English)

    XU Jia-Xi; FU Nan-Yan; GAO Yuan-He; ZHNAG Qi-Han; DUAN Li-Fang

    2003-01-01

    @@ Phosphonate and phosphonamidate peptides are phosphorus analogues of natural peptides. They have been great used as stable mimetics of tetrahedral transition states as enzyme inhibitors and as haptens for catalytic antibody research in recent years. Although several methods are available for the preparation of phosphonate peptides and phosphonamidate peptides, all of them use phosphonic acid derivatives as starting materials. The overall yields from the synthesis of phosphonic acid derivatives to desired peptides are not satisfactory in most cases.

  11. 载脂蛋白E模拟肽ApoE23对细菌性脓毒血症小鼠血浆脂多糖浓度的影响及机制研究%The effect and mechanism of an apolipoprotein E mimetic peptide ApoE23 on plasma lipopolysaccharide levels in the septic mice

    Institute of Scientific and Technical Information of China (English)

    殷丽军; 王传清; 杨昌生; 付盼; 王爱敏

    2014-01-01

    Objective To observe the effect of apolipoprotein E mimetic peptide (ApoE23) on lipopolysaccharide (LPS) levels in plasma and the regulatory role of ApoE23 on low density lipoprotein receptor (LDLR) on liver cells in the septic mice.Methods An ApoE mimetic peptide was designed and referred terminologically as ApoE23 in abbreviation.ApoE23 was synthesized by using solid phase synthesis assay and were refined by using high performance liquid chromatography (HPLC).The peptide was identified and confirmed by using electron spray ionization mass spectrometry and amino acid composition analysis.The C57BL mice infected with Salmonella typhimurium group B were treated with apoE23 injected into tail vein.The plasma LPS levels were measured by using immunoturbidimetry.The LDLR expression and level on liver cells were measured by real time PCR and western blot respectively.Results The plasma LPS levels significantly increased and the liver LDLR expression decreased in the septic mice.ApoE23 treatment markedly reduced the plasma LPS levels and redressed the LDLR down-expressions on liver cells both in mRNA and protein levels compared to the septic mice without ApoE23 treatment.Conclusions The reduction of LPS level after ApoE23 treatment may be associated with the modulation role of ApoE23 in LDLR expression on liver cells,and ApoE23 may be a potential agent against bacterial sepsis as well.One of possible mechanisms was most likely associated with effect of ApoE23 on LDLR expression.%目的 观察载脂蛋白E (ApoE)模拟肽ApoE23对细菌性脓毒血症小鼠血浆脂多糖(LPS)质量浓度变化的影响及其对肝脏低密度脂蛋白受体(LDLR)表达的调节作用.方法 设计ApoE模拟肽(ApoE23)并采用固相合成法进行合成,高效液相色谱(HPLC)技术对合成物进行纯化,电离子质谱对合成物进行鉴定并对合成物进行氨基酸组成分析;B组鼠伤寒沙门氏菌诱导C57BL细菌性脓毒血症模型并对感

  12. Unimodular mimetic F(R) inflation

    Science.gov (United States)

    Odintsov, S. D.; Oikonomou, V. K.

    2016-07-01

    We propose the unimodular-mimetic F(R) gravity theory, to resolve cosmological constant problem and dark matter problem in a unified geometric manner. We demonstrate that such a theory naturally admits accelerating universe evolution. Furthermore, we construct unimodular-mimetic F(R) inflationary cosmological scenarios compatible with the Planck and BICEP2/Keck-Array observational data. We also address the graceful exit issue, which is guaranteed by the existence of unstable de Sitter vacua.

  13. Amyloid-beta induced CA1 pyramidal cell loss in young adult rats is alleviated by systemic treatment with FGL, a neural cell adhesion molecule-derived mimetic peptide.

    Directory of Open Access Journals (Sweden)

    Nicola J Corbett

    Full Text Available Increased levels of neurotoxic amyloid-beta in the brain are a prominent feature of Alzheimer's disease. FG-Loop (FGL, a neural cell adhesion molecule-derived peptide that corresponds to its second fibronectin type III module, has been shown to provide neuroprotection against a range of cellular insults. In the present study impairments in social recognition memory were seen 24 days after a 5 mg/15 µl amyloid-beta(25-35 injection into the right lateral ventricle of the young adult rat brain. This impairment was prevented if the animal was given a systemic treatment of FGL. Unbiased stereology was used to investigate the ability of FGL to alleviate the deleterious effects on CA1 pyramidal cells of the amyloid-beta(25-35 injection. NeuN, a neuronal marker (for nuclear staining was used to identify pyramidal cells, and immunocytochemistry was also used to identify inactive glycogen synthase kinase 3beta (GSK3β and to determine the effects of amyloid-beta(25-35 and FGL on the activation state of GSK3β, since active GSK3β has been shown to cause a range of AD pathologies. The cognitive deficits were not due to hippocampal atrophy as volume estimations of the entire hippocampus and its regions showed no significant loss, but amyloid-beta caused a 40% loss of pyramidal cells in the dorsal CA1 which was alleviated partially by FGL. However, FGL treatment without amyloid-beta was also found to cause a 40% decrease in CA1 pyramidal cells. The action of FGL may be due to inactivation of GSK3β, as an increased proportion of CA1 pyramidal neurons contained inactive GSK3β after FGL treatment. These data suggest that FGL, although potentially disruptive in non-pathological conditions, can be neuroprotective in disease-like conditions.

  14. Programming of enzyme specificity by substrate mimetics: investigations on the Glu-specific V8 protease reveals a novel general principle of biocatalysis.

    Science.gov (United States)

    Wehofsky, N; Bordusa, F

    1999-01-25

    In this paper the universal validity of the substrate mimetic concept in enzymatic C-N ligations was expanded to anionic leaving groups based on the specificity determinants of Glu-specific endopeptidase from Staphylococcus aureus (V8 protease). In an empirical way a specific mimetic moiety was designed from simple structure-function relationship studies. The general function of the newly developed substrate mimetics to serve as an artificial recognition site for V8 protease have been examined by hydrolysis kinetic studies. Enzymatic peptide syntheses qualify the strategy of substrate mimetics as a powerful concept for programming the enzyme specificity in the direction of a more universal application of enzymes in the general area of biocatalysis. PMID:9989609

  15. Fibronectin- and collagen-mimetic ligands regulate bone marrow stromal cell chondrogenesis in three-dimensional hydrogels

    Directory of Open Access Journals (Sweden)

    JT Connelly

    2011-09-01

    Full Text Available Modification of tissue engineering scaffolds with bioactive molecules is a potential strategy for modulating cell behavior and guiding tissue regeneration. While adhesion to RGD peptides has been shown to inhibit in vitro chondrogenesis, the effects of extracellular matrix (ECM-mimetic ligands with complex secondary and tertiary structures are unknown. This study aimed to determine whether collagen- and fibronectin-mimetic ligands would retain biologic functionality in three-dimensional (3D hydrogels, whether different ECM-mimetic ligands differentially influence in vitro chondrogenesis, and if effects of ligands on differentiation depend on soluble biochemical stimuli. A linear RGD peptide, a recombinant fibronectin fragment containing the seven to ten Type III repeats (FnIII7-10 and a triple helical, collagen mimetic peptide with the GFOGER motif were covalently coupled to agarose gels using the sulfo-SANPAH crosslinker, and bone marrow stromal cells (BMSCs were cultured within the 3D hydrogels. The ligands retained biologic functionality within the agarose gels and promoted density-dependent BMSC spreading. Interactions with all adhesive ligands inhibited stimulation by chondrogenic factors of collagen Type II and aggrecan mRNA levels and deposition of sulfated glycosaminoglycans. In medium containing fetal bovine serum, interactions with the GFOGER peptide enhanced mRNA expression of the osteogenic gene osteocalcin whereas FnIII7-10 inhibited osteocalcin expression. In conclusion, modification of agarose hydrogels with ECM-mimetic ligands can influence the differentiation of BMSCs in a manner that depends strongly on the presence and nature of soluble biochemical stimuli.

  16. Screening for the mimetic homologous oligopeptides of keratins 14 and 17 related with psoriasis from phage random peptide library%应用噬菌体肽库研究银屑病相关的角蛋白K14,K17模拟表位

    Institute of Scientific and Technical Information of China (English)

    张亮; 刘玉峰; 杨乔欣; 任君萍; 黎志东

    2001-01-01

    目的获得与银屑病相关的角蛋白K14和K17同源序列的模拟表位,评估含有此基序的短肽与银屑病发病的关系. 方法将1株抗角蛋白K14和K17同源序列的单克隆抗体(mAb)5G5经亲和层析纯化后进行生物素标记,对噬菌体递呈的随机6肽库进行3轮淘洗并进行ELISA检测. 挑取10个阳性克隆进行DNA测序,分析所获数据,并进行竞争阻断实验. 结果氨基酸序列分析表明模拟短肽的基序为VL(x)AG,角蛋白K14、K17的同源序列及链球菌M蛋白均含有此基序. 携有这些短肽的噬菌体可与mAb 5G5特异结合,并可阻断单抗与角蛋白反应. 结论含有此基序的短肽可以模拟mAb 5G5识别的与银屑病相关的角蛋白K14和K17同源序列的抗原表位,为银屑病特异性短肽的研究提供了一个新途径,同时也为肽疫苗用于银屑病的治疗提供了崭新的思路.%AIM To acquire the mimetic homologous oligopeptides of human epidermal keratins 14 and 17 related with psoriasis and evaluate the effect of the oligopeptides on the pathogenesis of psoriasis. METHODS The mAb 5G5 recognizing the common epitope of human epidermal keratin K14 and K17 was purified by HiTrap Protein G affinity column, and was biotinylated by the biotin ester. A 6-mer phage random peptide library was biopanned for 3 cycles, then positive clones were identified by ELISA and DNA were extracted for sequencing. RESULTS Amino acid sequence analysis showed that 10 positive clones selected randomly had the consensus Amino acid sequence (motif) VL(x)AG. The motif VL(x)AG could be detected in the homologous amino acid sequence of keratins 14 and 17, and streptococcal M protein contained the motif too. The phages of positive clones reacted with mAb 5G5 specifically and prevented the interaction between mAb 5G5 and keratins with dose-dependent effects. CONCLUSION The motif could mimic the common epitope on human epidermal keratins 14,17 and streptococcal M protein, perhaps the

  17. Cosmological perturbations in mimetic matter model

    CERN Document Server

    Matsumoto, Jiro; Sushkov, Sergey V

    2015-01-01

    We investigate the cosmological evolution of mimetic matter model with arbitrary scalar potential. The cosmological reconstruction is explicitly done for different choices of potential. The cases that mimetic matter model shows the evolution as Cold Dark Matter(CDM), wCDM model, dark matter and dark energy with dynamical $Om(z)$ or phantom dark energy with phantom-non-phantom crossing are presented in detail. The cosmological perturbations for such evolution are studied in mimetic matter model. For instance, the evolution behavior of the matter density contrast which is different from usual one, i.e. $\\ddot \\delta + 2 H \\dot \\delta - \\kappa ^2 \\rho \\delta /2 = 0$ is investigated. The possibility of peculiar evolution of $\\delta$ in the model under consideration is shown. Special attention is paid to the behavior of matter density contrast near to future singularity where decay of perturbations may occur much earlier the singularity.

  18. Mimetic desire and scapegoat mechanism in sport

    Directory of Open Access Journals (Sweden)

    Jernej Pisk

    2012-12-01

    Full Text Available BACKGROUND: The most fundamental question about sport is what is sport, what is its origin and its essence? Because sport is connected with the human being (there is no sport without human beings different anthropological visions of human being result in different understandings of sport. OBJECTIVE: The objective of this paper is to present and explain an anthropological vision of the human being and society as was developed by René Girard. In his view mimetic desire and the scapegoat mechanism have a central role in any culture, religion or other secular institutions. The explanatory power of his theory is presented when it is applied to the world of sport. METHODS: Our methodology is philosophical, involving conceptual analysis and the application of the outcomes to sport. RESULTS: In the paper we show that mimetic desire can be recognized as one of the important origins of recreational and competitive sports. When people recognize what other people are able to do or accomplish in sport this invokes the mimetic desire as a result of which motivation for sport and competiveness can arise. But mimetic rivalry leads to an unstable situation. Therefore a second element is needed: Scapegoating in sport is presented as a mean to preserve the good reputation of sport, to keep peace in sport as well as in society as a whole. Finally, the attempt to overcome mimetic desire and scapegoating in sport is presented and the question if this is worth trying at all is opened. CONCLUSIONS: The theories of mimetic desire and scapegoat mechanism have great explanatory power when they are applied to the field of sport. They could reveal us some hidden motives and forces which drive athletes and sport as a whole. Moreover, they exceed the world of sport and reveal the influence of sport on the whole of society.

  19. Collagen-like peptides and peptide-polymer conjugates in the design of assembled materials

    OpenAIRE

    Luo, Tianzhi; Kiick, Kristi L.

    2013-01-01

    Collagen is the most abundant protein in mammals, and there has been long-standing interest in understanding and controlling collagen assembly in the design of new materials. Collagen-like peptides (CLP), also known as collagen-mimetic peptides (CMP) or collagen-related peptides (CRP), have thus been widely used to elucidate collagen triple helix structure as well as to produce higher-order structures that mimic natural collagen fibers. This mini-review provides an overview of recent progress...

  20. Plasma levels of glucagon like peptide-1 associate with diastolic function in elderly men

    DEFF Research Database (Denmark)

    Nathanson, D; Zethelius, B; Berne, C;

    2011-01-01

    Congestive heart failure is a major cause of morbidity and mortality in diabetes. Besides the glycaemic effects of glucagon-like peptide 1 (GLP-1) mimetics, their effects on the heart are of interest....

  1. Mimetic dark matter, ghost instability and a mimetic tensor-vector-scalar gravity

    OpenAIRE

    Chaichian, Masud; Klusoň, Josef; Oksanen, Markku; Tureanu, Anca

    2014-01-01

    Recently modified gravitational theories which mimic the behaviour of dark matter, the so-called "Mimetic Dark Matter", have been proposed. We study the consistency of such theories with respect to the absence of ghost instability and propose a new tensor-vector-scalar theory of gravity, which is a generalization of the previous models of mimetic dark matter with additional desirable features. The original model proposed by Chamseddine and Mukhanov [JHEP 1311 (2013) 135, arXiv:1308.5410] is c...

  2. Antibody mimetics: promising complementary agents to animal-sourced antibodies.

    Science.gov (United States)

    Baloch, Abdul Rasheed; Baloch, Abdul Wahid; Sutton, Brian J; Zhang, Xiaoying

    2016-01-01

    Despite their wide use as therapeutic, diagnostic and detection agents, the limitations of polyclonal and monoclonal antibodies have inspired scientists to design the next generation biomedical agents, so-called antibody mimetics that offer many advantages over conventional antibodies. Antibody mimetics can be constructed by protein-directed evolution or fusion of complementarity-determining regions through intervening framework regions. Substantial progress in exploiting human, butterfly (Pieris brassicae) and bacterial systems to design and select mimetics using display technologies has been made in the past 10 years, and one of these mimetics [Kalbitor® (Dyax)] has made its way to market. Many challenges lie ahead to develop mimetics for various biomedical applications, especially those for which conventional antibodies are ineffective, and this review describes the current characteristics, construction and applications of antibody mimetics compared to animal-sourced antibodies. The possible limitations of mimetics and future perspectives are also discussed. PMID:25264572

  3. Oestrogene mimetic isoflavones’ pharmacokinetics and pharmacodynamics

    Directory of Open Access Journals (Sweden)

    Anca Dragomirescu,

    2008-12-01

    Full Text Available Genisteine is the most abundant and the most studied estrogen-mimetic izoflavone. It's chemical formula is 4',5,7 – trihidroxyisoflavone. It has also estrogen-modulated properties by its binding ability to the beta type estrogen receptor. Genisteine presents the following farmacodinamic effects: antiaterogen effect, prevention of estrogen-dependent cancers, especially breast cancer, prevention of skin aging body, osteoprogen effect, prevention of osteoporosis at the menopauses women. Despite all these real benefits, there are also many adverse effects, registered both in humans and animals. Thus, the sheep feeding with some Fabaceae species, containing estrogen-mimetic isoflavones were stopped their reproductive function(isoflavones acted as an oral contraceptive. In humans, phytoestroges influence is still under evaluation, being suspected effects such as cerebral involution - via abusive apoptosis - or disturbance in hormonal status, in male children. All these are added to already known allergies, caused by soy proteins.

  4. A note on a mimetic scalar-tensor cosmological model

    Energy Technology Data Exchange (ETDEWEB)

    Rabochaya, Yevgeniya; Zerbini, Sergio [Universita di Trento, Dipartimento di Fisica, Povo, Trento (Italy); TIFPA-INFN, Povo, Trento (Italy)

    2016-02-15

    A specific Hordenski scalar-gravity mimetic model is investigated within a FLWR space-time. The mimetic scalar field is implemented via a Lagrangian multiplier, and it is shown that the model has equations of motion formally similar to the original simpler mimetic matter model of Chamseddine-Mukhanov-Vikman. Several exact solutions describing inflation, bounces, and future-time singularities are presented and discussed. (orig.)

  5. Cosmological perturbations in a mimetic matter model

    Science.gov (United States)

    Matsumoto, Jiro; Odintsov, Sergei D.; Sushkov, Sergey V.

    2015-03-01

    We investigate the cosmological evolution of a mimetic matter model with arbitrary scalar potential. The cosmological reconstruction—which is the method for constructing a model for an arbitrary evolution of the scale factor—is explicitly performed for different choices of potential. The cases where the mimetic matter model shows the evolution as cold dark matter (CDM), the w CDM model, dark matter and dark energy with a dynamical O m (z ) [where O m (z )≡[(H (z )/H0)2-1 ]/[(1 +z )3-1 ] ], and phantom dark energy with a phantom-nonphantom crossing are presented in detail. The cosmological perturbations for such evolutions are studied in the mimetic matter model. For instance, the evolution behavior of the matter density contrast (which is different than the usual one, i.e., δ ¨+2 H δ ˙-κ2ρ δ /2 =0 ) is investigated. The possibility of a peculiar evolution of δ in the model under consideration is shown. Special attention is paid to the behavior of the matter density contrast near the future singularity, where the decay of perturbations may occur much earlier than the singularity.

  6. NEC violation in mimetic cosmology revisited

    Directory of Open Access Journals (Sweden)

    Anna Ijjas

    2016-09-01

    Full Text Available In the context of Einstein gravity, if the null energy condition (NEC is satisfied, the energy density in expanding space–times always decreases while in contracting space–times the energy density grows and the universe eventually collapses into a singularity. In particular, no non-singular bounce is possible. It is, though, an open question if this energy condition can be violated in a controlled way, i.e., without introducing pathologies, such as unstable negative-energy states or an imaginary speed of sound. In this letter, we will re-examine the claim that the recently proposed mimetic scenario can violate the NEC without pathologies. We show that mimetic cosmology is prone to gradient instabilities even in cases when the NEC is satisfied (except for trivial examples. Most interestingly, the source of the instability is always the Einstein–Hilbert term in the action. The matter stress-energy component does not contribute spatial gradient terms but instead makes the problematic curvature modes dynamical. We also show that mimetic cosmology can be understood as a singular limit of known, well-behaved theories involving higher-derivative kinetic terms and discuss ways of removing the instability.

  7. NEC violation in mimetic cosmology revisited

    Science.gov (United States)

    Ijjas, Anna; Ripley, Justin; Steinhardt, Paul J.

    2016-09-01

    In the context of Einstein gravity, if the null energy condition (NEC) is satisfied, the energy density in expanding space-times always decreases while in contracting space-times the energy density grows and the universe eventually collapses into a singularity. In particular, no non-singular bounce is possible. It is, though, an open question if this energy condition can be violated in a controlled way, i.e., without introducing pathologies, such as unstable negative-energy states or an imaginary speed of sound. In this letter, we will re-examine the claim that the recently proposed mimetic scenario can violate the NEC without pathologies. We show that mimetic cosmology is prone to gradient instabilities even in cases when the NEC is satisfied (except for trivial examples). Most interestingly, the source of the instability is always the Einstein-Hilbert term in the action. The matter stress-energy component does not contribute spatial gradient terms but instead makes the problematic curvature modes dynamical. We also show that mimetic cosmology can be understood as a singular limit of known, well-behaved theories involving higher-derivative kinetic terms and discuss ways of removing the instability.

  8. From neutron stars to quark stars in mimetic gravity

    Science.gov (United States)

    Astashenok, Artyom V.; Odintsov, Sergei D.

    2016-09-01

    Realistic models of neutron and quark stars in the framework of mimetic gravity with a Lagrange multiplier constraint are presented. We discuss the effect of a mimetic scalar aiming to describe dark matter on the mass-radius relation and the moment of inertia for slowly rotating relativistic stars. The mass-radius relation and moment of inertia depend on the value of the mimetic scalar in the center of the star. This fact leads to the ambiguity in the mass-radius relation for a given equation of state. Such ambiguity allows us to explain some observational facts better than in standard general relativity. The case of mimetic potential V (ϕ )˜A eC ϕ2 is considered in detail. The relative deviation of the maximal moment of inertia is approximately twice as large as the relative deviation of the maximal stellar mass. We also briefly discuss the mimetic f (R ) gravity. In the case of f (R )=R +a R2 mimetic gravity, it is expected that the increase of maximal mass and maximal moment of inertia due to the mimetic scalar becomes much stronger with bigger parameter a . The influence of the scalar field in mimetic gravity can lead to the possible existence of extreme neutron stars with large masses.

  9. Disformal transformations, veiled General Relativity and Mimetic Gravity

    Energy Technology Data Exchange (ETDEWEB)

    Deruelle, Nathalie [APC, CNRS-Université Paris 7, 75205 Paris CEDEX 13 (France); Rua, Josephine, E-mail: deruelle@ihes.fr, E-mail: rua@cbpf.br [Instituto de Cosmologia, Relatividade e Astrofísica—ICRA/CBPF, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro (Brazil)

    2014-09-01

    In this Note we show that Einstein's equations for gravity are generically invariant under ''disformations''. We also show that the particular subclass when this is not true yields the equations of motion of ''Mimetic Gravity''. Finally we give the ''mimetic'' generalization of the Schwarzschild solution.

  10. A cosmological solution to mimetic dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Saadi, Hassan [American University of Beirut, Physics Department, Beirut (Lebanon)

    2016-01-15

    In this paper, a cosmological solution to Mimetic Dark Matter (MDM) for an exponential potential is provided. Then a solution for the 0 - i perturbed Einstein differential equation of MDM is obtained based on an exponential potential that satisfies inflation for some initial conditions. Another general potential is suggested that incorporates inflation too. Then quantum perturbations are included. The constants in the model can be tuned to be in agreement with the fluctuation amplitude of the cosmic microwave background (CMB) radiation. Finally, the spectral index is calculated for the suggested potentials. Moreover, MDM is shown to be a viable model to produce dark matter, inflation, and CMB's fluctuation. (orig.)

  11. A cosmological solution to mimetic dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Saadi, Hassan, E-mail: hls01@mail.aub.edu [Physics Department, American University of Beirut, Beirut (Lebanon)

    2016-01-11

    In this paper, a cosmological solution to Mimetic Dark Matter (MDM) for an exponential potential is provided. Then a solution for the 0-i perturbed Einstein differential equation of MDM is obtained based on an exponential potential that satisfies inflation for some initial conditions. Another general potential is suggested that incorporates inflation too. Then quantum perturbations are included. The constants in the model can be tuned to be in agreement with the fluctuation amplitude of the cosmic microwave background (CMB) radiation. Finally, the spectral index is calculated for the suggested potentials. Moreover, MDM is shown to be a viable model to produce dark matter, inflation, and CMB’s fluctuation.

  12. Tunable elastin-mimetic multiblock hybrid copolymers for biomedical applications

    Science.gov (United States)

    Grieshaber, Sarah Elizabeth

    Elastin-mimetic hybrid polymers (EMHPs) have been developed to capture the multiblock molecular architecture of tropoelastin, allowing tunability in chemical, structural, biological, and mechanical properties. Multiblock EMHPs containing flexible synthetic segments were first synthesized via step growth polymerization of diazido-poly(ethylene glycol) (PEG) and alkyne-terminated AKA3KA (K = lysine, A = alanine) (AK2) peptide employing copper (I)-catalyzed alkyne-azide cycloaddition reaction (CuAAC, or orthogonal click chemistry). Covalent crosslinking of the EMHPs with hexamethylene diisocyanate (HMDI) through the lysine residues in the peptide domain afforded an elastomeric hydrogel (xEMHP) with a compressive modulus of 0.12 +/- 0.018 MPa when hydrated. xEMHPs exhibited minimal cytotoxicity to primary porcine vocal fold fibroblasts. The modular nature of the synthesis allowed facile adjustment of the peptide sequence to modulate the structural and the biological properties of EMHPs. Thus, EMHPs containing integrin-binding peptides were constructed using di-azido-PEG and an alkyne-terminated AK2 peptide with a terminal, integrin-binding GRGDSP domain via the step growth click coupling reaction. Hydrogels formed by covalent crosslinking of the RGD-containing EMHPs had a compressive modulus of 1.06 +/- 0.1MPa when hydrated. Neonatal human dermal fibroblasts (NHDFs) were able to adhere to the hydrogels within 1 h, and to spread and develop F-actin filaments 24 h post seeding. NHDF proliferation was only observed on hydrogels containing RGD domains, demonstrating the importance of integrin engagement for cell growth and the potential use of these EMHPs as tissue engineering scaffolds. The tunability of the EMHP system was further investigated by development of self-assembling, pH-responsive multiblock polymers composed of alternating domains of poly(acrylic acid) (PAA) and a peptide derived from the hydrophobic domains of elastin with the sequence (VPGVG)2 (VG2). The

  13. NEC violation in mimetic cosmology revisited

    CERN Document Server

    Ijjas, Anna; Steinhardt, Paul J

    2016-01-01

    In the context of Einstein gravity, if the null energy condition (NEC) is satisfied, the energy density in expanding space-times always decreases while in contracting space-times the energy density grows and the universe eventually collapses into a singularity. In particular, no non-singular bounce is possible. It is, though, an open question if this energy condition can be violated in a controlled way, i.e., without introducing pathologies, such as unstable negative-energy states or an imaginary speed of sound. In this paper, we will re-examine the claim that the recently proposed mimetic scenario can violate the NEC without pathologies. We show that mimetic cosmology is prone to gradient instabilities even in cases when the NEC is satisfied (except for trivial examples). Most interestingly, the source of the instability is always the Einstein-Hilbert term in the action. The matter stress-energy component does not contribute spatial gradient terms but instead makes the problematic curvature modes dynamical. ...

  14. The testosterone mimetic properties of icariin

    Institute of Scientific and Technical Information of China (English)

    Zhen-Bao Zhang; Qing-Tao Yang

    2006-01-01

    Aim: To evaluate the testosterone mimetic properties of icariin. Methods: Forty-eight healthy male Sprague-Dawley rats at the age of 15 months were randomly divided into four groups with 12 rats each: the control group (C), the model group (M), the icariin group (ICA) and the testosterone group (T). The reproductive system was damaged by cyclogroup for 7 consecutive days, respectively. The levels of serum testosterone, luteinizing hormone (LH), follicle stimulating hormone (FSH), serum bone Gla-protein (BGP) and tartrate-resistant acid phosphatase activity in serum (StrACP) were determined. The histological changes of the testis and the penis were observed by microscope with hematoxylin-eosin (HE) staining and terminal deoxynucleotidyl transferase biotin-dUTP-X nick end labeling (TUNEL),respectively. Results: (1) Icariin improved the condition of reproductive organs and increased the circulating levels of testosterone. (2) Icariin treatment also improved the steady-state serum BGP and might have promoted bone formation. At the same time, it decreased the serum levels of StrACP and might have reduced the bone resorption. (3)Icarrin suppressed the extent of apoptosis of penile cavernosal smooth muscle cells. Conclusion: Icariin has testosterone mimetic properties and has therapeutic potential in the management of hypoandrogenism.

  15. Synthetic oligosaccharides as heparin-mimetics displaying anticoagulant properties.

    Science.gov (United States)

    Avci, Fikri Y; Karst, Nathalie A; Linhardt, Robert J

    2003-01-01

    Heparin and low molecular weight heparins are major clinical anticoagulants and the drugs of choice for the treatment of deep venous thrombosis. The discovery of an antithrombin binding domain in heparin focused interest on understanding the mechanism of heparin's antithrombotic/ anticoagulant activity. Various heparin-mimetic oligosaccharides have been prepared in an effort to replace polydisperse heparin and low molecular weight heparins with a structurally-defined anticoagulant. The goal of attaining a heparin-mimetic with no unwanted side-effects has also provided motivation for these efforts. This article reviews structure-activity relationship (SAR) of structurally-defined heparin-mimetic oligosaccharides. PMID:14529394

  16. Glucagon-like peptide-1, glucose homeostasis and diabetes

    DEFF Research Database (Denmark)

    Holst, Jens Juul; Deacon, Carolyn F; Vilsbøll, Tina;

    2008-01-01

    pancreatic beta cells, and inhibits glucagon secretion, gastric emptying and food intake, leading to weight loss. GLP-1 mimetics, which are stable-peptide-based activators of the GLP-1 receptor, and incretin enhancers, which inhibit the incretin-degrading enzyme dipeptidyl peptidase-4, have emerged...

  17. Caloric Restriction Mimetics Enhance Anticancer Immunosurveillance.

    Science.gov (United States)

    Pietrocola, Federico; Pol, Jonathan; Vacchelli, Erika; Rao, Shuan; Enot, David P; Baracco, Elisa E; Levesque, Sarah; Castoldi, Francesca; Jacquelot, Nicolas; Yamazaki, Takahiro; Senovilla, Laura; Marino, Guillermo; Aranda, Fernando; Durand, Sylvère; Sica, Valentina; Chery, Alexis; Lachkar, Sylvie; Sigl, Verena; Bloy, Norma; Buque, Aitziber; Falzoni, Simonetta; Ryffel, Bernhard; Apetoh, Lionel; Di Virgilio, Francesco; Madeo, Frank; Maiuri, Maria Chiara; Zitvogel, Laurence; Levine, Beth; Penninger, Josef M; Kroemer, Guido

    2016-07-11

    Caloric restriction mimetics (CRMs) mimic the biochemical effects of nutrient deprivation by reducing lysine acetylation of cellular proteins, thus triggering autophagy. Treatment with the CRM hydroxycitrate, an inhibitor of ATP citrate lyase, induced the depletion of regulatory T cells (which dampen anticancer immunity) from autophagy-competent, but not autophagy-deficient, mutant KRAS-induced lung cancers in mice, thereby improving anticancer immunosurveillance and reducing tumor mass. Short-term fasting or treatment with several chemically unrelated autophagy-inducing CRMs, including hydroxycitrate and spermidine, improved the inhibition of tumor growth by chemotherapy in vivo. This effect was only observed for autophagy-competent tumors, depended on the presence of T lymphocytes, and was accompanied by the depletion of regulatory T cells from the tumor bed. PMID:27411589

  18. The Mimetic Principle in the Underground Economy

    Directory of Open Access Journals (Sweden)

    Cristina Voicu

    2009-08-01

    Full Text Available There has been in the recent years an increased preoccupation at international level for the research of the mechanism of development of the underground economy. The numerous vain attempts to measure the dimension of the underground economy persuaded us to embark on a qualitative research of this economic phenomenon. In our investigation on the roots of the underground economy we drew very close to the psychological and sociological aspects of the phenomenon itself. The process of humanizing that has at its origin components of the mimetic principle, like acquisitive mimesis, prompt us to ponder over J.M. Keynes’ words: „The avoidance of taxes is the only intellectual ambition that one feels rewarded for.”

  19. The mimetic finite difference method for elliptic problems

    CERN Document Server

    Veiga, Lourenço Beirão; Manzini, Gianmarco

    2014-01-01

    This book describes the theoretical and computational aspects of the mimetic finite difference method for a wide class of multidimensional elliptic problems, which includes diffusion, advection-diffusion, Stokes, elasticity, magnetostatics and plate bending problems. The modern mimetic discretization technology developed in part by the Authors allows one to solve these equations on unstructured polygonal, polyhedral and generalized polyhedral meshes. The book provides a practical guide for those scientists and engineers that are interested in the computational properties of the mimetic finite difference method such as the accuracy, stability, robustness, and efficiency. Many examples are provided to help the reader to understand and implement this method. This monograph also provides the essential background material and describes basic mathematical tools required to develop further the mimetic discretization technology and to extend it to various applications.

  20. Promises and Challenges of Smac Mimetics as Cancer Therapeutics.

    Science.gov (United States)

    Fulda, Simone

    2015-11-15

    Inhibitor of Apoptosis (IAP) proteins block programmed cell death and are expressed at high levels in various human cancers, thus making them attractive targets for cancer drug development. Second mitochondrial activator of caspases (Smac) mimetics are small-molecule inhibitors that mimic Smac, an endogenous antagonist of IAP proteins. Preclinical studies have shown that Smac mimetics can directly trigger cancer cell death or, even more importantly, sensitize tumor cells for various cytotoxic therapies, including conventional chemotherapy, radiotherapy, or novel agents. Currently, several Smac mimetics are under evaluation in early clinical trials as monotherapy or in rational combinations (i.e., GDC-0917/CUDC-427, LCL161, AT-406/Debio1143, HGS1029, and TL32711/birinapant). This review discusses the promise as well as some challenges at the translational interface of exploiting Smac mimetics as cancer therapeutics.

  1. Temporally degradable collagen-mimetic hydrogels tuned to chondrogenesis of human mesenchymal stem cells.

    Science.gov (United States)

    Parmar, Paresh A; Skaalure, Stacey C; Chow, Lesley W; St-Pierre, Jean-Philippe; Stoichevska, Violet; Peng, Yong Y; Werkmeister, Jerome A; Ramshaw, John A M; Stevens, Molly M

    2016-08-01

    collagen-mimetic protein, cross-linked via multiple enzymatically degradable peptides, provides a highly adaptable and well defined platform to recapitulate a high degree of biological complexity, which could be applicable to numerous tissue engineering and regenerative medicine applications. PMID:27214650

  2. A Finite Element Framework for Some Mimetic Finite Difference Discretizations

    OpenAIRE

    Rodrigo, Carmen; Gaspar, Francisco; Hu, Xiaozhe; Zikatanov, Ludmil

    2015-01-01

    In this work we derive equivalence relations between mimetic finite difference schemes on simplicial grids and modified N\\'ed\\'elec-Raviart-Thomas finite element methods for model problems in $\\mathbf{H}(\\operatorname{\\mathbf{curl}})$ and $H(\\operatorname{div})$. This provides a simple and transparent way to analyze such mimetic finite difference discretizations using the well-known results from finite element theory. The finite element framework that we develop is also crucial for the design...

  3. From neutron stars to quark stars in mimetic gravity

    CERN Document Server

    Astashenok, A V

    2015-01-01

    Realistic models of neutron and quark stars in the framework of mimetic gravity with Lagrange multiplier constraint are presented. We discuss the effect of mimetic scalar aiming to describe dark matter on mass-radius relation and the moment of inertia for slowly rotating relativistic stars. The mass-radius relation and moment of inertia depend on the value of mimetic scalar in the center of star. This fact leads to the ambiguity in the mass-radius relation for a given equation of state. {Such ambiguity allows to explain some observational facts better than in standard General Relativity}. The case of two mimetic potentials namely $V(\\phi)\\sim A\\phi^{-2}$ and $V(\\phi)\\sim Ae^{B\\phi^{2}}$ is considered in detail. The relative deviation of maximal moment of inertia is approximately twice larger than the relative deviation of maximal stellar mass. We also briefly discuss the mimetic $f(R)$ gravity. In the case of $f(R)=R+aR^2$ mimetic gravity it is expected that increase of maximal mass and maximal moment of iner...

  4. BSA-boronic acid conjugate as lectin mimetics.

    Science.gov (United States)

    Narla, Satya Nandana; Pinnamaneni, Poornima; Nie, Huan; Li, Yu; Sun, Xue-Long

    2014-01-10

    We report bovine serum albumin (BSA)-boronic acid (BA) conjugates as lectin mimetics and their glyco-capturing capacity. The BSA-BA conjugates were synthesized by amidation of carboxylic acid groups in BSA with aminophenyl boronic acid in the presence of EDC, and were characterized by Alizarin Red S (ARS) assay and SDS-PAGE gel. The BSA-BA conjugates were immobilized onto maleimide-functionalized silica beads and their sugar capturing capacity and specificity were confirmed by ARS displacement assay. Further, surface plasmon resonance (SPR) analysis of the glyco-capturing activity of the BSA-BA conjugates was conducted by immobilizing BSA-BA onto SPR gold chip. Overall, we demonstrated a BSA-BA-based lectin mimetics for glyco-capturing applications. These lectin mimetics are expected to provide an important tool for glycomics and biosensor research and applications.

  5. Static spherically symmetric solutions in mimetic gravity: rotation curves & wormholes

    CERN Document Server

    Myrzakulov, Ratbay; Vagnozzi, Sunny; Zerbini, Sergio

    2015-01-01

    In this work, we analyse static spherically symmetric solutions in the framework of mimetic gravity, an extension of general relativity where the conformal degree of freedom of gravity is isolated in a covariant fashion. Here we extend previous works by considering in addition a potential for the mimetic field. An appropriate choice of such potential allows for the reconstruction of a number of interesting cosmological and astrophysical scenarios. We explicitly show how to reconstruct such a potential for a general static spherically symmetric space-time. A number of applications and scenarios are then explored, among which traversable wormholes. Finally, we analytically reconstruct potentials which leads to solutions to the equations of motion featuring polynomial corrections to the Schwarzschild spacetime. Accurate choices for such corrections could provide an explanation for the inferred flat rotation curves of spiral galaxies within the mimetic gravity framework, without the need for particle dark matter.

  6. (Pseudoamide-linked oligosaccharide mimetics: molecular recognition and supramolecular properties

    Directory of Open Access Journals (Sweden)

    José L. Jiménez Blanco

    2010-02-01

    Full Text Available Oligosaccharides are currently recognised as having functions that influence the entire spectrum of cell activities. However, a distinct disadvantage of naturally occurring oligosaccharides is their metabolic instability in biological systems. Therefore, much effort has been spent in the past two decades on the development of feasible routes to carbohydrate mimetics which can compete with their O-glycosidic counterparts in cell surface adhesion, inhibit carbohydrate processing enzymes, and interfere in the biosynthesis of specific cell surface carbohydrates. Such oligosaccharide mimetics are potential therapeutic agents against HIV and other infections, against cancer, diabetes and other metabolic diseases. An efficient strategy to access this type of compounds is the replacement of the glycosidic linkage by amide or pseudoamide functions such as thiourea, urea and guanidine. In this review we summarise the advances over the last decade in the synthesis of oligosaccharide mimetics that possess amide and pseudoamide linkages, as well as studies focussing on their supramolecular and recognition properties.

  7. Peptide-membrane Interactions by Spin-labeling EPR

    Science.gov (United States)

    Smirnova, Tatyana I.; Smirnov, Alex I.

    2016-01-01

    Site-directed spin labeling (SDSL) in combination with Electron Paramagnetic Resonance (EPR) spectroscopy is a well-established method that has recently grown in popularity as an experimental technique, with multiple applications in protein and peptide science. The growth is driven by development of labeling strategies, as well as by considerable technical advances in the field, that are paralleled by an increased availability of EPR instrumentation. While the method requires an introduction of a paramagnetic probe at a well-defined position in a peptide sequence, it has been shown to be minimally destructive to the peptide structure and energetics of the peptide-membrane interactions. In this chapter, we describe basic approaches for using SDSL EPR spectroscopy to study interactions between small peptides and biological membranes or membrane mimetic systems. We focus on experimental approaches to quantify peptide-membrane binding, topology of bound peptides, and characterize peptide aggregation. Sample preparation protocols including spin-labeling methods and preparation of membrane mimetic systems are also described. PMID:26477253

  8. Preferred conformation of endomorphin-1 in aqueous and membrane-mimetic environments.

    Science.gov (United States)

    Fiori, S; Renner, C; Cramer, J; Pegoraro, S; Moroder, L

    1999-08-01

    The newly discovered endomorphin-1 (Tyr-Pro-Trp-Phe-NH2) and endomorphin-2 (Tyr-Pro-Phe-Phe-NH2) are potent opioid peptides with the highest affinity and selectivity for the mu receptor among all known endogenous ligands. To investigate a possible correlation between these biological properties and the conformational preferences of the small peptides, a comparative structural analysis was performed of endomorphin-1 in aqueous buffer and in membrane-mimicking SDS and AOT normal and reverse micelles by the use of CD, FT-IR, fluorescence and(1)H-NMR spectroscopy. It is well established for opioid peptides that, independently of the receptor selectivity, the Tyr1 residue plays the role of the primary pharmacophore and that the orientation of the second aromatic pharmacophore relative to the tyrosine side-chain dictates the mu or delta-receptor selectivity. By varying the environment of endomorphin-1 from water to the amphipathic SDS micelles and even more efficiently to the AOT reverse micelles, the display of the aromatic side-chains changes from an interaction of the Tyr1 and Phe4 residues to a switch of the Trp3 indole group into close contact with the phenolic moiety to prevent this type of interaction and to force an orientation of the Phe4 side-chain into the opposite direction. This conformational switch is accompanied by a stabilization of the cis -Pro2 isomer and the resulting spatial array of the pharmacophoric groups correlate well with the structural model of mu receptor-bound opioid peptides. The results indicate that AOT reverse micelles with a woof 10, where almost exclusively ordered water is secluded in the cavity, constitute with their electrostatic and hydrophobic potential an excellent mimetic of amphipathic surfaces as present on lipid bilayers and on ligand-recognition and ligand-binding sites of proteins. PMID:10438613

  9. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes

    Directory of Open Access Journals (Sweden)

    Catia Algieri

    2014-07-01

    Full Text Available An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported.

  10. Combinatorial solid-phase synthesis of hapalosin mimetics

    DEFF Research Database (Denmark)

    Olsen, Jacob A.; Jensen, Knud J.; Nielsen, John

    2000-01-01

    The solid-phase synthesis of a small library of mimetics of the cyclic depsipeptide hapalosin is described. 3-Amino-4-hydroxy-5-nitrobenzoic acid was anchored through the anilino moiety to a backbone amide linker (BAL) handle support. Using chemoselective reactions and without the need for...

  11. Dark energy oscillations in mimetic F (R ) gravity

    Science.gov (United States)

    Odintsov, S. D.; Oikonomou, V. K.

    2016-08-01

    In this paper we address the problem of dark energy oscillations in the context of mimetic F (R ) gravity with potential. The issue of dark energy oscillations can be a problem in some models of ordinary F (R ) gravity, and a remedy that can make the oscillations milder is to introduce additional modifications in the functional form of the F (R ) gravity. As we demonstrate, the power-law modifications are not necessary in the mimetic F (R ) case, and by appropriately choosing the mimetic potential and the Lagrange multiplier, it is possible to make the oscillations almost vanish at the end of the matter domination era and during the late-time acceleration era. We examine the behavior of the dark energy equation of state parameter and of the total effective equation of state parameter as functions of the redshift, and we compare the resulting picture with the ordinary F (R ) gravity case. As we also show that the present day values of the dark energy equation of state parameter and of the total effective equation of state parameter are in better agreement with the observational data, in comparison to the ordinary F (R ) gravity case. Finally, we study the evolution of the growth factor as a function of the redshift for all the mimetic models we use.

  12. Metabolic effects of the incretin mimetic exenatide in the treatment of type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Catherine A Schnabel

    2006-03-01

    Full Text Available Catherine A Schnabel, Matthew Wintle, Orville KoltermanAmylin Pharmaceuticals, Inc, 9360 Towne Centre Drive, Suite 110, San Diego, CA 92121, USAAbstract: Interventional studies have demonstrated the impact of hyperglycemia on the development of vascular complications associated with type 2 diabetes, which underscores the importance of safely lowering glucose to as near-normal as possible. Among the current challenges to reducing the risk of vascular disease associated with diabetes is the management of body weight in a predominantly overweight patient population, and in which weight gain is likely with many current therapies. Exenatide is the first in a new class of agents termed incretin mimetics, which replicate several glucoregulatory effects of the endogenous incretin hormone, glucagon-like peptide-1 (GLP-1. Currently approved in the US as an injectable adjunct to metformin and/or sulfonylurea therapy, exenatide improves glycemic control through multiple mechanisms of action including: glucose-dependent enhancement of insulin secretion that potentially reduces the risk of hypoglycemia compared with insulin secretagogues; restoration of first-phase insulin secretion typically deficient in patients with type 2 diabetes; suppression of inappropriately elevated glucagon secretion to reduce postprandial hepatic output; and slowing the rate of gastric emptying to regulate glucose appearance into the circulation. Clinical trials in patients with type 2 diabetes treated with subcutaneous exenatide twice daily demonstrated sustained improvements in glycemic control, evidenced by reductions in postprandial and fasting glycemia and glycosylated hemoglobin (HbA1c levels. Notably, improvements in glycemic control with exenatide were coupled with progressive reductions in body weight, which represents a distinct therapeutic benefit for patients with type 2 diabetes. Acute effects of exenatide on beta-cell responsiveness along with significant reductions

  13. Elaborate Mimetic Vocal Displays by Female Superb Lyrebirds

    Directory of Open Access Journals (Sweden)

    Anastasia H Dalziell

    2016-04-01

    Full Text Available Some of the most striking vocalizations in birds are made by males that incorporate vocal mimicry in their sexual displays. Mimetic vocalization in females is largely undescribed, but it is unclear whether this is because of a lack of selection for vocal mimicry in females, or whether the phenomenon has simply been overlooked. These issues are thrown into sharp relief in the superb lyrebird, Menura novaehollandiae, a basal oscine passerine with a lek-like mating system and female uniparental care. The spectacular mimetic song display produced by courting male lyrebirds is a textbook example of a sexually selected trait, but the vocalizations of female lyrebirds are largely unknown. Here, we provide the first analysis of the structure and context of the vocalizations of female lyrebirds. Female lyrebirds were completely silent during courtship; however, females regularly produced sophisticated vocal displays incorporating both lyrebird-specific vocalizations and imitations of sounds within their environment. The structure of female vocalizations varied significantly with context. While foraging, females mostly produced a complex lyrebird-specific song, whereas they gave lyrebird-specific alarm calls most often during nest defense. Within their vocal displays females also included a variety of mimetic vocalizations, including imitations of the calls of dangerous predators, and of alarm calls and song of harmless heterospecifics. Females gave more mimetic vocalizations during nest defense than while foraging, and the types of sounds they imitated varied between these contexts, suggesting that mimetic vocalizations have more than one function. These results are inconsistent with previous portrayals of vocalizations by female lyrebirds as rare, functionless by-products of sexual selection on males. Instead, our results support the hypotheses that complex female vocalizations play a role in nest defense and mediate female-female competition for

  14. Apolipoprotein E-mimetics inhibit neurodegeneration and restore cognitive functions in a transgenic Drosophila model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Svetlana Sarantseva

    Full Text Available BACKGROUND: Mutations of the amyloid precursor protein gene (APP are found in familial forms of Alzheimer's disease (AD and some lead to the elevated production of amyloid-beta-protein (Abeta. While Abeta has been implicated in the causation of AD, the exact role played by Abeta and its APP precursor are still unclear. PRINCIPAL FINDINGS: In our study, Drosophila melanogaster transgenics were established as a model to analyze AD-like pathology caused by APP overexpression. We demonstrated that age related changes in the levels and pattern of synaptic proteins accompanied progressive neurodegeneration and impairment of cognitive functions in APP transgenic flies, but that these changes may be independent from the generation of Abeta. Using novel peptide mimetics of Apolipoprotein-E, COG112 or COG133 proved to be neuroprotective and significantly improved the learning and memory of APP transgenic flies. CONCLUSIONS: The development of neurodegeneration and cognitive deficits was corrected by injections of COG112 or COG133, novel mimetics of apolipoprotein-E (apoE with neuroprotective activities.

  15. Design and characterization of short antimicrobial peptides using leucine zipper templates with selectivity towards microorganisms.

    Science.gov (United States)

    Ahmad, Aqeel; Azmi, Sarfuddin; Srivastava, Saurabh; Kumar, Amit; Tripathi, Jitendra Kumar; Mishra, Nripendra N; Shukla, Praveen K; Ghosh, Jimut Kanti

    2014-11-01

    Design of antimicrobial peptides with selective activity towards microorganisms is an important step towards the development of new antimicrobial agents. Leucine zipper sequence has been implicated in cytotoxic activity of naturally occurring antimicrobial peptides; moreover, this motif has been utilized for the design of novel antimicrobial peptides with modulated cytotoxicity. To understand further the impact of substitution of amino acids at 'a' and/or 'd' position of a leucine zipper sequence of an antimicrobial peptides on its antimicrobial and cytotoxic properties four short peptides (14-residue) were designed on the basis of a leucine zipper sequence without or with replacement of leucine residues in its 'a' and 'd' positions with D-leucine or alanine or proline residue. The original short leucine zipper peptide (SLZP) and its D-leucine substituted analog, DLSA showed comparable activity against the tested Gram-positive and negative bacteria and the fungal strains. The alanine substituted analog (ASA) though showed appreciable activity against the tested bacteria, it showed to some extent lower activity against the tested fungi. However, the proline substituted analog (PSA) showed lower activity against the tested bacterial or fungal strains. Interestingly, DLSA, ASA and PSA showed significantly lower cytotoxicity than SLZP against both human red blood cells (hRBCs) and murine 3T3 cells. Cytotoxic and bactericidal properties of these peptides matched with peptide-induced damage/permeabilization of mammalian cells and bacteria or their mimetic lipid vesicles suggesting cell membrane could be the target of these peptides. As evidenced by tryptophan fluorescence and acrylamide quenching studies the peptides showed similarities either in interaction or in their localization within the bacterial membrane mimetic negatively charged lipid vesicles. Only SLZP showed localization inside the mammalian membrane mimetic zwitterionic lipid vesicles. The results show

  16. Dynamical behavior in mimetic F(R) gravity

    CERN Document Server

    Leon, Genly

    2015-01-01

    We investigate the cosmological behaviour of mimetic F(R) gravity. This scenario is the F(R) extension of usual mimetic gravity classes, which are based on re-parametrizations of the metric using new, but not extra, degrees of freedom, that can lead to a wider family of solutions. Performing a detailed dynamical analysis for exponential, power-law, and arbitrary F(R) forms, we extracted the corresponding critical points. Interestingly enough, we found that although the new features of mimetic F(R) gravity can affect the universe evolution at early and intermediate times, at late times they will not have any effect, and the universe will result at stable states that coincide with those of usual F(R) gravity. However, this feature holds for the late-time background evolution only. On the contrary, the behaviour of the perturbations is expected to be different since the new term contributes to the perturbations even if it does not contribute at the the background level.

  17. Dark Energy Oscillations in Mimetic $F(R)$ Gravity

    CERN Document Server

    Odintsov, S D

    2016-01-01

    In this paper we address the problem of dark energy oscillations in the context of mimetic $F(R)$ gravity with potential. The issue of dark energy oscillations can be a problem in some models of ordinary $F(R)$ gravity and a remedy that can make the oscillations milder is to introduce additional modifications in the functional form of the $F(R)$ gravity. As we demonstrate the power-law modifications are not necessary in the mimetic $F(R)$ case, and by appropriately choosing the mimetic potential and the Lagrange multiplier, it is possible to make the oscillations almost to vanish at the end of the matter domination era and during the late-time acceleration era. We examine the behavior of the dark energy equation of state parameter and of the total effective equation of state parameter as functions of the redshift and we compare the resulting picture with the ordinary $F(R)$ gravity case. As we also show, the present day values of the dark energy equation of state parameter and of the total effective equation ...

  18. A recombinant mimetics of the HIV-1 gp41 prehairpin fusion intermediate fused with human IgG Fc fragment elicits neutralizing antibody response in the vaccinated mice

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Zhi; Pan, Chungen; Lu, Hong; Shui, Yuan [Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065 (United States); Li, Lin [Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065 (United States); School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515 (China); Li, Xiaojuan; Xu, Xueqing; Liu, Shuwen [School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515 (China); Jiang, Shibo, E-mail: sjiang@nybloodcenter.org [Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065 (United States); School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515 (China)

    2010-07-30

    Research highlights: {yields} One recombinant mimetics of gp41 prehairpin fusion intermediate (PFI) consisting of gp41 N46 sequence, foldon and IgG Fc, designated N46FdFc, was expressed. {yields} N46FdFc-induced antibodies in mice that neutralized HIV-1 infection, inhibited PIE7 binding to PFI, blocked gp41 six-helix bundle formation, and suppressed HIV-1 mediated cell-cell fusion. {yields} These findings provide an important clue for developing recombinant gp41 PFI mimetics-based HIV vaccines. -- Abstract: HIV-1 gp41 prehairpin fusion intermediate (PFI) composed of three N-terminal heptad repeats (NHR) plays a crucial role in viral fusion and entry and represents an attractive target for anti-HIV therapeutics (e.g., enfuvirtide) and vaccines. In present study, we constructed and expressed two recombinant gp41 PFI mimetics, designated N46Fd and N46FdFc. N46Fd consists of N46 (residues 536-581) in gp41 NHR and foldon (Fd), a trimerization motif. N46FdFc is composed of N46Fd fused with human IgG Fc fragment as an immunoenhancer. We immunized mice with N46 peptide, N46Fd and N46FdFc, respectively, and found that only N46FdFc elicited neutralizing antibody response in mice against infection by HIV-1 strains IIIB (clade B, X4), 92US657 (clade B, R5), and 94UG103 (clade A, X4R5). Anti-N46FdFc antibodies inhibited PIE7 binding to PFI, blocked gp41 six-helix bundle formation, and suppressed HIV-1 mediated cell-cell fusion. These findings provide an important clue for developing recombinant gp41 PFI mimetics-based HIV vaccines.

  19. Self-assembling peptides form nanodiscs that stabilize membrane proteins

    DEFF Research Database (Denmark)

    Midtgaard, Søren Roi; Pedersen, Martin Cramer; Kirkensgaard, Jacob Judas Kain;

    2014-01-01

    -assemble in combination with phospholipids to form discoidal shaped particles that can stabilize membrane proteins. In the present study, we have investigated an ApoA1 mimetic peptide with respect to its solution structure when in complex with phospholipids. This was achieved using a powerful combination of small-angle X...... show that, like the ApoA1 and derived nanodiscs, these peptide discs can accommodate and stabilize a membrane protein. Finally, we exploit their dynamic properties and show that the 18A discs may be used for transferring membrane proteins and associated phospholipids directly and gently...

  20. Light-switched inhibitors of protein tyrosine phosphatase PTP1B based on phosphonocarbonyl phenylalanine as photoactive phosphotyrosine mimetic.

    Science.gov (United States)

    Wagner, Stefan; Schütz, Anja; Rademann, Jörg

    2015-06-15

    Phosphopeptide mimetics containing the 4-phosphonocarbonyl phenylalanine (pcF) as a photo-active phosphotyrosine isoster are developed as potent, light-switchable inhibitors of the protein tyrosine phosphatase PTP1B. The photo-active inhibitors 6-10 are derived from phosphopeptide substrates and are prepared from the suitably protected pcF building block 12 by Fmoc-based solid phase peptide synthesis. All pcF-containing peptides are moderate inhibitors of PTP1B with KI values between 10 and 50μM. Irradiation of the inhibitors at 365nm in the presence of the protein PTP1B amplify the inhibitory activity of pcF-peptides up to 120-fold, switching the KI values of the best inhibitors to the sub-micromolar range. Photo-activation of the inhibitors results in the formation of triplet intermediates of the benzoylphosphonate moiety, which deactivate PTP1B following an oxidative radical mechanism. Deactivation of PTP1B proceeds without covalent crosslinking of the protein target with the photo-switched inhibitors and can be reverted by subsequent addition of reducing agent dithiothreitol (DTT).

  1. Bcl-2/MDM2 Dual Inhibitors Based on Universal Pyramid-Like α-Helical Mimetics.

    Science.gov (United States)

    Wang, Ziqian; Song, Ting; Feng, Yingang; Guo, Zongwei; Fan, Yudan; Xu, Wenjie; Liu, Lu; Wang, Anhui; Zhang, Zhichao

    2016-04-14

    No α-helical mimetic that exhibits Bcl-2/MDM2 dual inhibition has been rationally designed due to the different helicities of the α-helixes at their binding interfaces. Herein, we extracted a one-turn α-helix-mimicking ortho-triarene unit from o-phenylene foldamers. Linking benzamide substrates with a rotatable C-N bond, we constructed a novel semirigid pyramid-like scaffold that could support its two-turn α-helix mimicry without aromatic stacking interactions and could adopt the different dihedral angles of the key residues of p53 and BH3-only peptides. On the basis of this universal scaffold, a series of substituent groups were installed to capture the key residues of both p53TAD and BimBH3 and balance the differences of the bulks between them. Identified by FP, ITC, and NMR spectroscopy, a compound 6e (zq-1) that directly binds to Mcl-1, Bcl-2, and MDM2 with balanced submicromolar affinities was obtained. Cell-based experiments demonstrated its antitumor ability through Bcl-2/MDM2 dual inhibition simultaneously.

  2. Synthesis and characterization of an elastin-mimetic amphiphilic block copolymer protein

    Science.gov (United States)

    Lee, Terrence Anita-Talley

    2000-10-01

    The overall goal in material science is to be able to control the molecular architecture of a material and thus its end properties. There is no method that offers greater control than the biological synthesis of proteins. From the DNA sequence to the final synthesized protein, the entire process is finitely controlled. This present work describes methods developed and used to synthesize protein polymers by manipulating this process. From the initial DNA sequence chosen, the end properties that the protein polymer will have are dictated. An amphiphilic diblock copolymer was designed based on environmentally responsive elastin-mimetic peptide sequences [(Val/Ile)-Pro-Gly-Xaa-Gly] (Xaa = Ala or Glu for the hydrophilic block, Val or Phe for the hydrophobic block) and synthesized using a genetic engineering approach. Differential scanning calorimetry measurements in aqueous solution revealed that reversible hydrophobic folding and assembly of the copolymer occurs above the inverse temperature transition, Tt, of the hydrophobic block. This process results in the formation of 50 nm protein-based micellar aggregates, which were characterized by electron microscopy and temperature-dependent dynamic light scattering techniques. The distribution of micellar aggregates can be altered reproducibly through variation of environmental conditions including pH and temperature. The uniform and defined macromolecular architecture of this protein copolymer permits greater control over the physical properties of the micelles, which therefore may facilitate applications in controlled release of small molecules.

  3. An NCAM mimetic, FGL, alters hippocampal cellular morphometry in young adult (4 month-old) rats.

    Science.gov (United States)

    Ojo, Bunmi; Gabbott, Paul L; Rezaie, Payam; Corbett, Nicola; Medvedev, Nikolay I; Cowley, Thelma R; Lynch, Marina A; Stewart, Michael G

    2013-06-01

    The neural cell adhesion molecule, NCAM, is ubiquitously expressed within the CNS and has roles in development, cognition, neural plasticity and regulation of the immune system. NCAM is thus potentially an important pharmacological target for treatment of brain diseases. A cell adhesion mimetic FGL, a 15 amino-acid peptide derived from the second fibronectin type-III module of NCAM, has been shown to act as a neuroprotective agent in experimental disease and ageing models, restoring hippocampal/cognitive function and markedly alleviating deleterious changes in the CNS. However, the effects of FGL on the hippocampus of young healthy rats are unknown. The present study has examined the cellular neurobiological consequences of subcutaneous injections of FGL, on hippocampal cell morphometry in young (4 month-old) rats. We determined the effects of FGL on hippocampal volume, pyramidal neuron number/density (using unbiased quantitative stereology), and examined aspects of neurogenesis (using 2D morphometric analyses). FGL treatment reduced total volume of the dorsal hippocampus (associated with a decrease in total pyramidal neuron numbers in CA1 and CA3), and elevated the number of doublecortin immunolabeled neurons in the dentate gyrus, indicating a likely influence on neurogenesis in young healthy rats. These data indicate that FGL has a specific age dependent effect on the hippocampus, differing according to the development and maturity of the CNS.

  4. Stable Incretin Mimetics Counter Rapid Deterioration of Bone Quality in Type 1 Diabetes Mellitus.

    Science.gov (United States)

    Mansur, Sity Aishah; Mieczkowska, Aleksandra; Bouvard, Béatrice; Flatt, Peter R; Chappard, Daniel; Irwin, Nigel; Mabilleau, Guillaume

    2015-12-01

    Type 1 diabetes mellitus is associated with a high risk for bone fractures. Although bone mass is reduced, bone quality is also dramatically altered in this disorder. However, recent evidences suggest a beneficial effect of the glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) pathways on bone quality. The aims of the present study were to conduct a comprehensive investigation of bone strength at the organ and tissue level; and to ascertain whether enzyme resistant GIP or GLP-1 mimetic could be beneficial in preventing bone fragility in type 1 diabetes mellitus. Streptozotocin-treated mice were used as a model of type 1 diabetes mellitus. Control and streptozotocin-diabetic animals were treated for 21 days with an enzymatic-resistant GIP peptide ([D-Ala(2) ]GIP) or with liraglutide (each at 25 nmol/kg bw, ip). Bone quality was assessed at the organ and tissue level by microCT, qXRI, 3-point bending, qBEI, nanoindentation, and Fourier-transform infrared microspectroscopy. [D-Ala2]GIP and liraglutide treatment did prevent loss of whole bone strength and cortical microstructure in the STZ-injected mice. However, tissue material properties were significantly improved in STZ-injected animals following treatment with [D-Ala2]GIP or liraglutide. Treatment of STZ-diabetic mice with [D-Ala(2) ]GIP or liraglutide was capable of significantly preventing deterioration of the quality of the bone matrix. Further studies are required to further elucidate the molecular mechanisms involved and to validate whether these findings can be translated to human patients.

  5. FABRICATION AND BIOCOMPATIBILITY OF CELL OUTER MEMBRANE MIMETIC SURFACES

    Institute of Scientific and Technical Information of China (English)

    Ming-ming Zong; Yong-kuan Gong

    2011-01-01

    The surface design used for improving biocompatibility is one of the most important issues for the fabrication of medical devices. For mimicking the ideal surface structure of cell outer membrane, a large number of polymers bearing phosphorylcholine (PC) groups have been employed to modify the surfaces of biomaterials and medical devices. It has been demonstrated that the biocompatibility of the modified materials whose surface is required to interact with a living organism has been obviously improved by introducing PC groups. In this review, the fabrication strategies of cell outer membrane mimetic surfaces and their resulted biocompatibilities were summarized.

  6. Mimetic Finite Differences for Flow in Fractures from Microseismic Data

    KAUST Repository

    Al-Hinai, Omar

    2015-01-01

    We present a method for porous media flow in the presence of complex fracture networks. The approach uses the Mimetic Finite Difference method (MFD) and takes advantage of MFD\\'s ability to solve over a general set of polyhedral cells. This flexibility is used to mesh fracture intersections in two and three-dimensional settings without creating small cells at the intersection point. We also demonstrate how to use general polyhedra for embedding fracture boundaries in the reservoir domain. The target application is representing fracture networks inferred from microseismic analysis.

  7. Mimetic discretization of two-dimensional magnetic diffusion equations

    Science.gov (United States)

    Lipnikov, Konstantin; Reynolds, James; Nelson, Eric

    2013-08-01

    In case of non-constant resistivity, cylindrical coordinates, and highly distorted polygonal meshes, a consistent discretization of the magnetic diffusion equations requires new discretization tools based on a discrete vector and tensor calculus. We developed a new discretization method using the mimetic finite difference framework. It is second-order accurate on arbitrary polygonal meshes and a consistent calculation of the Joule heating is intrinsic within it. The second-order convergence rates in L2 and L1 norms were verified with numerical experiments.

  8. Clicked bis-PEG-peptide conjugates for studying calmodulin-Kv7.2 channel binding

    OpenAIRE

    Bonache de Marcos, María Ángeles; Alaimo, Alessandro; Malo, Covadonga; Millet, Oscar; Villarroel, Alvaro; González-Muñiz, Rosario

    2014-01-01

    The recombinant Kv7.2 calmodulin (CaM) binding site (Q2AB CaMBD) shows a high tendency to aggregate, thus complicating biochemical and structural studies. To facilitate these studies we have conceived bis-PEG-peptide CaMBD-mimetics linking helices A and B in single, easy to handle molecules. Short PEG chains were selected as spacers between the two peptide molecules, and a Cu(i)-catalyzed cycloaddition (CuAAC) protocol was used to assemble the final bis-PEG-peptide conjugate, by the convenien...

  9. The mimetic repertoire of the spotted bowerbird Ptilonorhynchus maculatus

    Science.gov (United States)

    Kelley, Laura A.; Healy, Susan D.

    2011-06-01

    Although vocal mimicry in songbirds is well documented, little is known about the function of such mimicry. One possibility is that the mimic produces the vocalisations of predatory or aggressive species to deter potential predators or competitors. Alternatively, these sounds may be learned in error as a result of their acoustic properties such as structural simplicity. We determined the mimetic repertoires of a population of male spotted bowerbirds Ptilonorhynchus maculatus, a species that mimics predatory and aggressive species. Although male mimetic repertoires contained an overabundance of vocalisations produced by species that were generally aggressive, there was also a marked prevalence of mimicry of sounds that are associated with alarm such as predator calls, alarm calls and mobbing calls, irrespective of whether the species being mimicked was aggressive or not. We propose that it may be the alarming context in which these sounds are first heard that may lead both to their acquisition and to their later reproduction. We suggest that enhanced learning capability during acute stress may explain vocal mimicry in many species that mimic sounds associated with alarm.

  10. Ionic supramolecular bonds preserve mechanical properties and enable synergetic performance at high humidity in water-borne, self-assembled nacre-mimetics

    Science.gov (United States)

    Das, Paramita; Walther, Andreas

    2013-09-01

    Although tremendous effort has been focused on enhancing the mechanical properties of nacre-mimetic materials, conservation of high stiffness and strength against hydration-induced decay of mechanical properties at high humidity remains a fundamental challenge in such water-borne high-performance materials. Herein, we demonstrate that ionic supramolecular bonds, introduced by infiltration of divalent Cu2+ ions, allow efficient stabilization of the mechanical properties of self-assembled water-borne nacre-mimetics based on sustainable sodium carboxymethylcellulose (Na+CMC) and natural sodium montmorillonite nanoclay (Na+MTM) against high humidity (95% RH). The mechanical properties in the highly hydrated state (Young's modulus up to 13.5 GPa and tensile strength up to 125 MPa) are in fact comparable to a range of non-crosslinked nacre-mimetic materials in the dry state. Moreover, the Cu2+-treated nacre-inspired materials display synergetic mechanical properties as found in a simultaneous improvement of stiffness, strength and toughness, as compared to the pristine material. Significant inelastic deformation takes place considering the highly reinforced state. This contrasts the typical behaviour of tight, covalent crosslinks and is suggested to originate from a sacrificial, dynamic breakage and rebinding of transient supramolecular ionic bonds. Considering easy access to a large range of ionic interactions and alteration of counter-ion charge via external stimuli, we foresee responsive and adaptive mechanical properties in highly reinforced and stiff bio-inspired bulk nanocomposites and in other bio-inspired materials, e.g. nanocellulose papers and peptide-based materials.Although tremendous effort has been focused on enhancing the mechanical properties of nacre-mimetic materials, conservation of high stiffness and strength against hydration-induced decay of mechanical properties at high humidity remains a fundamental challenge in such water-borne high

  11. I. Collagen-like polypeptides. II. Helix-turn-helix peptides and turn mimetics.

    OpenAIRE

    Dai, Nan

    2008-01-01

    Collagen is one of the most important and abundant proteins in mammals. It consists of three left-handed PPII helixes coiled along a common axis to form a very compact right-handed super helix. The primary structure is shown to be (Gly-Xaa-Yaa)n repeats with high content of prolyl residues at both Xaa and Yaa positions. Cis-trans isomerization of the prolyl amide bonds is one of the rate-limiting steps during collagen triple helix folding. The conformationally locked alkene isosteres Fmoc-...

  12. Structural basis for inhibition of the protein tyrosine phosphatase 1B by phosphotyrosine peptide mimetics

    NARCIS (Netherlands)

    Groves, M R; Yao, Z J; Roller, P P; Burke, T R; Barford, D

    1998-01-01

    Protein tyrosine phosphatases regulate diverse cellular processes and represent important targets for therapeutic intervention in a number of diseases. The crystal structures of protein tyrosine phosphatase 1B (PTP1B) in complex with small molecule inhibitors based upon two classes of phosphotyrosin

  13. A metallothionein mimetic peptide protects neurons against kainic acid-induced excitotoxicity

    DEFF Research Database (Denmark)

    Sonn, Katrin; Pankratova, Stanislava; Korshunova, Irina;

    2010-01-01

    the neuroprotective effect of EmtinB in the in vitro and in vivo models of kainic acid (KA)-induced neurotoxicity. We show that EmtinB passes the blood-brain barrier and is detectable in plasma for up to 24 hr. Treatment with EmtinB significantly attenuates seizures in C57BL/6J mice exposed to moderate (20 mg...

  14. Fluorescence Spectra and Enzymatic Property of Hemoglobin as Mimetic Peroxidase

    Institute of Scientific and Technical Information of China (English)

    LiDe-jia; LiHai-cheng; ZouGuo-lin

    2003-01-01

    Intrinsic fluorescence emission maxima of hemo-lobin(Hb) was investigated in relation to peroxidase property of Hb. The peroxidase activity of Hb was based on its catalytic activity for oxidation of o-phenylenediamine by hydrogen peroxide. Hb was treated in the condition (temperature,ethanol and salt) that tetramer-dimer equilibrium of Hb is shifted to the dimer state and its fluorescence spectrum was measured. When Hb treated in temperature (60-70 ℃), ethanol concentration (60%-70%) and NaCl concentration (2. 5-3.0 mol/L), the fluorescence emission maxima of Hb shifted towards red wavelength and its activity decreased quickly.Experimental results revealed that the activity and stability of Hb as mimetic peroxidase was closely relative to the hydrophobic environment of active center of Hb, and when Hb (FeⅡ) converted into met Hb (FeⅢ ), its activity was 1. 6 times as much as that of Hb.

  15. Fluorescence Spectra and Enzymatic Property of Hemoglobin as Mimetic Peroxidase

    Institute of Scientific and Technical Information of China (English)

    Li De-jia; Li Hai-cheng; Zou Guo-lin

    2003-01-01

    Intrinsic fluorescence emission maxima of hemoglobin(Hb) was investigated in relation to peroxidase property of Hb. The peroxidase activity of Hb was based on its catalytic activity for oxidation of o-phenylenediamine by hydrogen peroxide. Hb was treated in the condition (temperature,ethanol and salt) that tetramer-dimer equilibrium of Hb is shifted to the dimer state and its fluorescence spectrum was measured. When Hb treated in temperature (60-70 ℃ ), ethanol concentration (60 %-70 % ) and NaCl concentration (2.5-3.0 mol/L), the fluorescence emission maxima of Hb shifted towards red wavelength and its activity decreased quickly.Experimental results revealed that the activity and stability of Hb as mimetic peroxidase was closely relative to the hydrophobic environment of active center of Hb, and when Hb (FeⅡ) converted into met Hb (FeⅢ ), its activity was 1. 6times as much as that of Hb.

  16. A Novel Bio-mimetic Wireless Micro Robot for Endoscope

    Institute of Scientific and Technical Information of China (English)

    YE Dong-dong; YAN Guo-zheng; WANG Kua-dong; MA Guan-ying

    2008-01-01

    A novel bio-mimetic wireless micro robot for endoscope is developed. Its autonomous manner is earthworm-like and driven by linear actuators based on DC motor. It is different from the conventional micro robot endoscope that wireless module is used for communicating and power transfer. The fabricated micro robot system is detailedly described, including structure, micro robot locomotion principle, communication control module and wireless power transfer module. The experimental results show that the driving force of the lineaar actuator can reach to 2.55 N and supplying power is up to 480 mW DC power for receiving coil in the proposed system, which all fulfill the need of the micro robot system. The micro robot can creep reliably in the large intestine of pig and other contact environments.

  17. Possible interaction of quinolone antibiotics with peptide transporter 1 in oral absorption of peptide-mimetic drugs.

    Science.gov (United States)

    Arakawa, Hiroshi; Kamioka, Hiroki; Kanagawa, Masahiko; Hatano, Yasuko; Idota, Yoko; Yano, Kentaro; Morimoto, Kaori; Ogihara, Takuo

    2016-01-01

    The study investigated whether quinolone antibiotics inhibit the PEPT1-mediated uptake of its substrates. Among the quinolones examined, lomefloxacin, moxifloxacin (MFLX) and purlifloxacin significantly inhibited the uptake of PEPT1 substrate phenylalanine-Ψ(CN-S)-alanine (Phe-Ψ-Ala) in HeLa/PEPT1 cells to 31.6 ± 1.3%, 27.6 ± 2.9%, 36.8 ± 2.2% and 32.6 ± 1.4%, respectively. Further examination showed that MFLX was an uncompetitive inhibitor, with an IC50 value of 4.29 ± 1.29 mm. In addition, MFLX significantly decreased the cephalexin and valacyclovir uptake in HeLa/PEPT1 cells. In an in vivo study in rats, the maximum plasma concentration (C(max)) of orally administered Phe-Ψ-Ala was significantly decreased in the presence of MFLX (171 ± 1 ng/ml) compared with that in its absence (244 ± 9 ng/ml). The area under the concentration-time curve (AUC) of orally administered Phe-Ψ-Ala in the presence of MFLX (338 ± 50 ng/ml · h) tended to decrease compared with that in its absence (399 ± 75 ng/ml · h). The oral bioavailability of Phe-Ψ-Ala in the presence and absence of MFLX was 41.7 ± 6.2% and 49.2 ± 9.2%, respectively. The results indicate that administration of quinolone antibiotics concomitantly with PEPT1 substrate drugs may potentially result in drug-drug interaction. PMID:26590007

  18. Type I Collagen and Collagen Mimetics as Angiogenesis Promoting Superpolymers

    Energy Technology Data Exchange (ETDEWEB)

    Twardowski, T.; Fertala, A.; Orgel, J.P.R.O.; San Antonio, J.D. (TJU); (IIT); (Widener)

    2008-07-18

    Angiogenesis, the development of blood vessels from the pre-existing vasculature, is a key component of embryogenesis and tissue regeneration. Angiogenesis also drives pathologies such as tumor growth and metastasis, and hemangioma development in newborns. On the other hand, promotion of angiogenesis is needed in tissues with vascular insufficiencies, and in bioengineering, to endow tissue substitutes with appropriate microvasculatures. Therefore, much research has focused on defining mechanisms of angiogenesis, and identifying pro- and anti-angiogenic molecules. Type I collagen, the most abundant protein in humans, potently stimulates angiogenesis in vitro and in vivo. Crucial to its angiogenic activity appears to be ligation and possibly clustering of endothelial cell (EC) surface {alpha}1{beta}1/{alpha}2{beta}1 integrin receptors by the GFPGER502-507 sequence of the collagen fibril. However, additional aspects of collagen structure and function that may modulate its angiogenic properties are discussed. Moreover, type I collagen and fibrin, another angiogenic polymer, share several structural features. These observations suggest strategies for creating 'angiogenic superpolymers', including: modifying type I collagen to influence its biological half-life, immunogenicity, and integrin binding capacity; genetically engineering fibrillar collagens to include additional integrin binding sites or angiogenic determinants, and remove unnecessary or deleterious sequences without compromising fibril integrity; and exploring the suitability of poly(ortho ester), PEG-lysine copolymer, tubulin, and cholesteric cuticle as collagen mimetics, and suggesting means of modifying them to display ideal angiogenic properties. The collagenous and collagen mimetic angiogenic superpolymers described here may someday prove useful for many applications in tissue engineering and human medicine.

  19. Clinical relevance of intestinal peptide uptake

    Institute of Scientific and Technical Information of China (English)

    Hugh; James; Freeman

    2015-01-01

    AIM: To determine available information on an independent peptide transporter 1(Pep T1) and its potential relevance to treatment, this evaluation was completed.METHODS: Fully published English language literature articles sourced through Pub Med related to protein digestion and absorption, specifically human peptide and amino acid transport, were accessed and reviewed.Papers from 1970 to the present, with particular emphasis on the past decade, were examined. In addition,abstracted information translated to English in Pub Med was also included. Finally, studies and reviews relevant to nutrient or drug uptake, particularly in human intestine were included for evaluation. This work represents a summary of all of these studies with particular reference to peptide transporter mediated assimilation of nutrients and pharmacologically active medications.RESULTS: Assimilation of dietary protein in humans involves gastric and pancreatic enzyme hydrolysis to luminal oligopeptides and free amino acids. During the ensuing intestinal phase, these hydrolytic products are transported into the epithelial cell and, eventually, the portal vein. A critical component of this process is the uptake of intact di-peptides and tri-peptides by an independent Pep T1. A number of "peptide-mimetic" pharmaceutical agents may also be transported through this carrier, important for uptake of different antibiotics, antiviral agents and angiotensin-converting enzyme inhibitors. In addition, specific peptide products of intestinal bacteria may also be transported by Pep T1, with initiation and persistence of an immune response including increased cytokine production and associated intestinal inflammatory changes. Interestingly, these inflammatory changes may also be attenuated with orallyadministered anti-inflammatory tripeptides administered as site-specific nanoparticles and taken up by this Pep T1 transport protein. CONCLUSION: Further evaluation of the role of this transporter in treatment of

  20. A non-linear constrained optimization technique for the mimetic finite difference method

    Energy Technology Data Exchange (ETDEWEB)

    Manzini, Gianmarco [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Svyatskiy, Daniil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bertolazzi, Enrico [Univ. of Trento (Italy); Frego, Marco [Univ. of Trento (Italy)

    2014-09-30

    This is a strategy for the construction of monotone schemes in the framework of the mimetic finite difference method for the approximation of diffusion problems on unstructured polygonal and polyhedral meshes.

  1. Encoding Cell-Instructive Cues to PEG-Based Hydrogels via Triple Helical Peptide Assembly

    OpenAIRE

    Stahl, Patrick J.; Yu, S. Michael

    2012-01-01

    Effective synthetic tissue engineering scaffolds mimic the structure and composition of natural extracellular matrix (ECM) to promote optimal cellular adhesion, proliferation, and differentiation. Among many proteins of the ECM, collagen and fibronectin are known to play a key role in the scaffold’s structural integrity as well as its ability to support cell adhesion. Here, we present photocrosslinked poly(ethylene glycol) diacrylate (PEGDA) hydrogels displaying collagen mimetic peptides (CMP...

  2. Mimetic orthosis for lower limbs to be applied on rehabilitation for hemiplegic persons

    OpenAIRE

    P.S. Luna; E. Cardiel; R. Muñoz; Urrutia, R.; Villanueva, D.; P.R.Hernández

    2008-01-01

    A rehabilitation tool based on an innovative mimetic active orthosis for hemiplegics is presented. It follows concepts of neuronal learning from afferent information from movements, similar to those lost after brain damage. An artificial gait pattern is applied on knee and hip articulations of a functional modified limb by using an exoskeleton powered by pneumatic muscles. Key Words: Key Words: Key Words: Key Words: Key Words: Active orthosis, mimetic orthosis, gait rehabilitation.

  3. Superoxide radical induces sclerotial differentiation in filamentous phytopathogenic fungi: a superoxide dismutase mimetics study.

    Science.gov (United States)

    Papapostolou, Ioannis; Georgiou, Christos D

    2010-03-01

    This study shows that the superoxide radical (O(2) *( -)), a direct indicator of oxidative stress, is involved in the differentiation of the phytopathogenic filamentous fungi Rhizoctonia solani, Sclerotinia sclerotiorum, Sclerotium rolfsii and Sclerotinia minor, shown by using superoxide dismutase (SOD) mimetics to decrease their sclerotial differentiation. The production rate of O(2) *(-) and SOD levels in these fungi, as expected, were significantly lowered by the SOD mimetics, with concomitant decrease of the indirect indicator of oxidative stress, lipid peroxidation. PMID:20007647

  4. Reissner-Nordstr\\"om Black Holes in Mimetic $F(R)$ Gravity

    CERN Document Server

    Oikonomou, V K

    2015-01-01

    In this paper we study under which conditions the Reissner-Nordstr\\"om-anti de Sitter black hole can be a solution of the vacuum mimetic $F(R)$ gravity with Lagrange multiplier and mimetic scalar potential. As we demonstrate, the resulting picture in the mimetic $F(R)$ gravity case, is different in comparison to the ordinary $F(R)$ gravity case, with the two descriptions resulting to a different set of constraints that need to hold true. We also investigate the metric perturbations in the mimetic $F(R)$ gravity case, for the Reissner-Nordstr\\"om-anti de Sitter black hole metric, at first order of the perturbed variables. Interestingly enough, the resulting equations are identical to the ones corresponding to the ordinary $F(R)$ gravity Reissner-Nordstr\\"om-anti de Sitter black hole, at least at first order. We attribute this feature to the particular form of the Reissner-Nordstr\\"om-anti de Sitter metric, and we speculate for which cases there could be differences between the mimetic and non-mimetic case. Sin...

  5. Mixed mimetic spectral element method for Stokes flow: A pointwise divergence-free solution

    Science.gov (United States)

    Kreeft, Jasper; Gerritsma, Marc

    2013-05-01

    In this paper we apply the recently developed mimetic discretization method to the mixed formulation of the Stokes problem in terms of vorticity, velocity and pressure. The mimetic discretization presented in this paper and in Kreeft et al. [51] is a higher-order method for curvilinear quadrilaterals and hexahedrals. Fundamental is the underlying structure of oriented geometric objects, the relation between these objects through the boundary operator and how this defines the exterior derivative, representing the grad, curl and div, through the generalized Stokes theorem. The mimetic method presented here uses the language of differential k-forms with k-cochains as their discrete counterpart, and the relations between them in terms of the mimetic operators: reduction, reconstruction and projection. The reconstruction consists of the recently developed mimetic spectral interpolation functions. The most important result of the mimetic framework is the commutation between differentiation at the continuous level with that on the finite dimensional and discrete level. As a result operators like gradient, curl and divergence are discretized exactly. For Stokes flow, this implies a pointwise divergence-free solution. This is confirmed using a set of test cases on both Cartesian and curvilinear meshes. It will be shown that the method converges optimally for all admissible boundary conditions.

  6. Rational design of ApoA-I Mimetic-polypharmacophoric of high free binding energy hopping scaffolds generated by integrating nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.

    OpenAIRE

    Ioannis Grigoriadis

    2015-01-01

    4F is an anti-inflammatory, apolipoprotein A-I (apoA-I)-mimetic peptide that is active in vivo at nanomolar concentrations in the presence of a large molar excess of apoA-I. Physiologic concentrations (∼35 μM) of human apoA-I did not inhibit the production of LDL-induced monocyte chemotactic activity by human aortic endothelial cell cultures, but adding nanomolar concentrations of 4F in the presence of ∼35 μM apoA-I significantly reduced this inflammatory response. A common stra...

  7. Reissner–Nordström Anti-de Sitter Black Holes in Mimetic F(R Gravity

    Directory of Open Access Journals (Sweden)

    V. K. Oikonomou

    2016-05-01

    Full Text Available In this paper, we study under which conditions the Reissner–Nordström anti-de Sitter black hole can be a solution of the vacuum mimetic F ( R gravity with Lagrange multiplier and mimetic scalar potential. As the author demonstrates, the resulting picture in the mimetic F ( R gravity case is a trivial extension of the standard F ( R approach, and in effect, the metric perturbations in the mimetic F ( R gravity case, for the Reissner–Nordström anti-de Sitter black hole metric, at the first order of the perturbed variables are the same at the leading order.

  8. Synthesis of rigid tryptophan mimetics by the diastereoselective Pictet-Spengler reaction of β³-homo-tryptophan derivatives with chiral α-amino aldehydes.

    Science.gov (United States)

    Slupska, Marta; Pulka-Ziach, Karolina; Deluga, Edyta; Sosnowski, Piotr; Wilenska, Beata; Kozminski, Wiktor; Misicka, Aleksandra

    2015-12-01

    The Pictet-Spengler (PS) cyclizations of β(3)-hTrp derivatives as arylethylamine substrates were performed with L-α-amino and D-α-amino aldehydes as carbonyl components. During the PS reaction, a new stereogenic center was created, and the mixture of cis/trans 1,3-disubstituted 1,2,3,4-tetrahydro-β-carbolines was obtained. The ratio of cis/trans diastereomers depends on the stereogenic centre of used amino aldehyde and the size of substituents. It was confirmed by 1H and 2D NMR (ROESY) spectra. The conformations of cyclic products were studied by 2D NMR ROESY spectra. Products of the PS condensation after removal of protecting group(s) can be incorporated into a peptide chain as tryptophan mimetics with the possibility of the β-turn induction. PMID:26767743

  9. Light-Adaptive Supramolecular Nacre-Mimetic Nanocomposites.

    Science.gov (United States)

    Zhu, Baolei; Noack, Manuel; Merindol, Remi; Barner-Kowollik, Christopher; Walther, Andreas

    2016-08-10

    Nature provides design paradigms for adaptive, self-healing, and synergistic high-performance structural materials. Nacre's brick-and-mortar architecture is renowned for combining stiffness, toughness, strength, and lightweightness. Although elaborate approaches exist to mimic its static structure and performance, and to incorporate functionalities for the engineering world, there is a profound gap in addressing adaptable mechanical properties, particularly using remote, quick, and spatiotemporal triggers. Here, we demonstrate a generic approach to control the mechanical properties of nacre-inspired nanocomposites by designing a photothermal energy cascade using colloidal graphene as light-harvesting unit and coupling it to molecularly designed, thermoreversible, supramolecular bonds in the nanoconfined soft phase of polymer/nanoclay nacre-mimetics. The light intensity leads to adaptive steady-states balancing energy uptake and dissipation. It programs the mechanical properties and switches the materials from high stiffness/strength to higher toughness within seconds under spatiotemporal control. We envisage possibilities beyond mechanical materials, for example, light-controlled (re)shaping or actuation in highly reinforced nanocomposites. PMID:27455047

  10. Furoxans (1,2,5-Oxadiazole-N-Oxides) as Novel NO Mimetic Neuroprotective and Procognitive Agents

    Energy Technology Data Exchange (ETDEWEB)

    Schiefer, Isaac T.; VandeVrede, Lawren; Fa; , Mauro; Arancio, Ottavio; Thatcher, Gregory R.J. (Columbia); (UIC)

    2012-08-31

    Furoxans (1,2,5-oxadiazole-N-oxides) are thiol-bioactivated NO-mimetics that have not hitherto been studied in the CNS. Incorporation of varied substituents adjacent to the furoxan ring system led to modulation of reactivity toward bioactivation, studied by HPLC-MS/MS analysis of reaction products. Attenuated reactivity unmasked the cytoprotective actions of NO in contrast to the cytotoxic actions of higher NO fluxes reported previously for furoxans. Neuroprotection was observed in primary neuronal cell cultures following oxygen glucose deprivation (OGD). Neuroprotective activity was observed to correlate with thiol-dependent bioactivation to produce NO{sub 2}{sup -}, but not with depletion of free thiol itself. Neuroprotection was abrogated upon cotreatment with a sGC inhibitor, ODQ, thus supporting activation of the NO/sGC/CREB signaling cascade by furoxans. Long-term potentiation (LTP), essential for learning and memory, has been shown to be potentiated by NO signaling, therefore, a peptidomimetic furoxan was tested in hippocampal slices treated with oligomeric amyloid-{beta} peptide (A{beta}) and was shown to restore synaptic function. The novel observation of furoxan activity of potential therapeutic use in the CNS warrants further studies.

  11. Structural and Functional Studies of Peptide-Carbohydrate Mimicry

    Science.gov (United States)

    Johnson, Margaret A.; Pinto, B. Mario

    Certain peptides act as molecular mimics of carbohydrates in that they are specifically recognized by carbohydrate-binding proteins. Peptides that bind to anti-carbohydrate antibodies, carbohydrate-processing enzymes, and lectins have been identified. These peptides are potentially useful as vaccines and therapeutics; for example, immunologically functional peptide molecular mimics (mimotopes) can strengthen or modify immune responses induced by carbohydrate antigens. However, peptides that bind specifically to carbohydrate-binding proteins may not necessarily show the corresponding biological activity, and further selection based on biochemical studies is always required. The degree of structural mimicry required to generate the desired biological activity is therefore an interesting question. This review will discuss recent structural studies of peptide-carbohydrate mimicry employing NMR spectroscopy, X-ray crystallography, and molecular modeling, as well as relevant biochemical data. These studies provide insights into the basis of mimicry at the molecular level. Comparisons with other carbohydrate-mimetic compounds, namely proteins and glycopeptides, will be drawn. Finally, implications for the design of new therapeutic compounds will also be presented.

  12. Prey from the eyes of predators: Color discriminability of aposematic and mimetic butterflies from an avian visual perspective.

    Science.gov (United States)

    Su, Shiyu; Lim, Matthew; Kunte, Krushnamegh

    2015-11-01

    Predation exerts strong selection on mimetic butterfly wing color patterns, which also serve other functions such as sexual selection. Therefore, specific selection pressures may affect the sexes and signal components differentially. We tested three predictions about the evolution of mimetic resemblance by comparing wing coloration of aposematic butterflies and their Batesian mimics: (a) females gain greater mimetic advantage than males and therefore are better mimics, (b) due to intersexual genetic correlations, sexually monomorphic mimics are better mimics than female-limited mimics, and (c) mimetic resemblance is better on the dorsal wing surface that is visible to predators in flight. Using a physiological model of avian color vision, we quantified mimetic resemblance from predators' perspective, which showed that female butterflies were better mimics than males. Mimetic resemblance in female-limited mimics was comparable to that in sexually monomorphic mimics, suggesting that intersexual genetic correlations did not constrain adaptive response to selection for female-limited mimicry. Mimetic resemblance on the ventral wing surface was better than that on the dorsal wing surface, implying stronger natural and sexual selection on ventral and dorsal surfaces, respectively. These results suggest that mimetic resemblance in butterfly mimicry rings has evolved under various selective pressures acting in a sex- and wing surface-specific manner.

  13. Static spherically symmetric solutions in mimetic gravity: rotation curves and wormholes

    Science.gov (United States)

    Myrzakulov, Ratbay; Sebastiani, Lorenzo; Vagnozzi, Sunny; Zerbini, Sergio

    2016-06-01

    In this work, we analyse static spherically symmetric solutions in the framework of mimetic gravity, an extension of general relativity where the conformal degree of freedom of gravity is isolated in a covariant fashion. Here we extend previous works by considering, in addition, a potential for the mimetic field. An appropriate choice of such a potential allows for the reconstruction of a number of interesting cosmological and astrophysical scenarios. We explicitly show how to reconstruct such a potential for a general static spherically symmetric space-time. A number of applications and scenarios are then explored, among which are traversable wormholes. Finally, we analytically reconstruct potentials, which leads to solutions to the equations of motion featuring polynomial corrections to the Schwarzschild space-time. Accurate choices for such corrections could provide an explanation for the inferred flat rotation curves of spiral galaxies within the mimetic gravity framework, without the need for particle dark matter.

  14. The two faces of mimetic Horndeski gravity: disformal transformations and Lagrange multiplier

    CERN Document Server

    Arroja, Frederico; Karmakar, Purnendu; Matarrese, Sabino

    2015-01-01

    We show that very general scalar-tensor theories of gravity (including, e.g., Horndeski models) are generically invariant under disformal transformations. However there is a special subset, when the transformation is not invertible, that yields new equations of motion which are a generalization of the so-called "mimetic" dark matter theory recently introduced by Chamsedinne and Mukhanov. These new equations of motion can also be derived from an action containing an additional Lagrange multiplier field. The general mimetic scalar-tensor theory has the same number of derivatives in the equations of motion as the original scalar-tensor theory. As an application we show that the simplest mimetic scalar-tensor model is able to mimic the cosmological background of a flat FLRW model with an irrotational barotropic perfect fluid with any constant equation of state.

  15. Topical Administration of a Connexin43-based peptide Augments Healing of Chronic Neuropathic Diabetic Foot Ulcers: A Multicenter, Randomized Trial

    OpenAIRE

    Grek, Christina L.; Prasad, G.M.; Viswanathan, Vijay; Armstrong, David G.; Gourdie, Robert G.; Ghatnekar, Gautam S.

    2015-01-01

    Nonhealing neuropathic foot ulcers remain a significant problem in individuals with diabetes. The gap-junctional protein connexin43 (Cx43) has roles in dermal wound healing and targeting Cx43 signaling accelerates wound reepithelialization. In a prospective, randomized, multi-center clinical trial we evaluated the efficacy and safety of a peptide mimetic of the C-terminus of Cx43, ACT1, in accelerating the healing of chronic diabetic foot ulcers (DFUs) when incorporated into standard of care ...

  16. An updated review on cancer risk associated with incretin mimetics and enhancers.

    Science.gov (United States)

    Tseng, Chin-Hsiao; Lee, Kuo-Yang; Tseng, Farn-Hsuan

    2015-01-01

    Incretin-based therapies, including the use of incretin mimetics of glucagon-like peptide-1 receptor (GLP-1R) agonists and incretin enhancers of dipeptidyl-peptidase 4 (DPP-4) inhibitors, are widely used by clinicians for glucose lowering in patients with type 2 diabetes mellitus. These agents have benefits of a lower risk of hypoglycemia, being neutral for body weight for DPP-4 inhibitors and having a potential for weight reduction with GLP-1R agonists. They may also have a neutral or beneficial cardiovascular effect. Despite these benefits, an increased risk of cancer (especially pancreatic cancer and thyroid cancer) associated with incretin-based therapies has been reported. In this article, we reviewed related literature of experimental animal and observational human studies, clinical trials, and meta-analyses published until December 15, 2014. Current studies suggested a probable role of GLP-1R activation on the development of pancreatic cancer and thyroid cancer in rodents, but such an effect in humans is not remarkable due to the lower or lack of expression of GLP-1R on human pancreatic ductal cells and thyroid tissues. Findings in human studies are controversial and inconclusive. In the analyses of the US Food and Drug Administration adverse events reporting system, a significantly higher risk of pancreatic cancer was observed for GLP-1R agonists and DPP-4 inhibitors, but a significantly higher risk of thyroid cancer was only observed for GLP-1R agonists. Such a higher risk of pancreatic cancer or thyroid cancer could not be similarly demonstrated in other human observational studies or analyses of data from clinical trials. With regards to cancers other than pancreatic cancer and thyroid cancer, available studies supported a neutral association in humans. Some preliminary studies even suggested a potentially beneficial effect on the development of other cancers with the use of incretins. Based on current evidence, continuous monitoring of the cancer issues

  17. An overview on antidiabetic medicinal plants having insulin mimetic property

    Directory of Open Access Journals (Sweden)

    DK Patel

    2012-04-01

    Full Text Available Diabetes mellitus is one of the common metabolic disorders acquiring around 2.8% of the world's population and is anticipated to cross 5.4% by the year 2025. Since long back herbal medicines have been the highly esteemed source of medicine therefore, they have become a growing part of modern, high-tech medicine. In view of the above aspects the present review provides profiles of plants (65 species with hypoglycaemic properties, available through literature source from various database with proper categorization according to the parts used, mode of reduction in blood glucose (insulinomimetic or insulin secretagogues activity and active phytoconstituents having insulin mimetics activity. From the review it was suggested that, plant showing hypoglycemic potential mainly belongs to the family Leguminoseae, Lamiaceae, Liliaceae, Cucurbitaceae, Asteraceae, Moraceae, Rosaceae and Araliaceae. The most active plants are Allium sativum, Gymnema sylvestre, Citrullus colocynthis, Trigonella foenum greacum, Momordica charantia and Ficus bengalensis. The review describes some new bioactive drugs and isolated compounds from plants such as roseoside, epigallocatechin gallate, beta-pyrazol-1-ylalanine, cinchonain Ib, leucocyandin 3-O-beta-d-galactosyl cellobioside, leucopelargonidin-3-O-alpha-L rhamnoside, glycyrrhetinic acid, dehydrotrametenolic acid, strictinin, isostrictinin, pedunculagin, epicatechin and christinin-A showing significant insulinomimetic and antidiabetic activity with more efficacy than conventional hypoglycaemic agents. Thus, from the review majorly, the antidiabetic activity of medicinal plants is attributed to the presence of polyphenols, flavonoids, terpenoids, coumarins and other constituents which show reduction in blood glucose levels. The review also discusses the management aspect of diabetes mellitus using these plants and their active principles.

  18. An overview on antidiabetic medicinal plants having insulin mimetic property

    Institute of Scientific and Technical Information of China (English)

    Patel DK; Prasad SK; Kumar R; Hemalatha S

    2012-01-01

    Diabetes mellitus is one of the common metabolic disorders acquiring around 2.8% of the world’s population and is anticipated to cross 5.4% by the year 2025. Since long back herbal medicines have been the highly esteemed source of medicine therefore, they have become a growing part of modern, high-tech medicine. In view of the above aspects the present review provides profiles of plants (65 species) with hypoglycaemic properties, available through literature source from various database with proper categorization according to the parts used, mode of reduction in blood glucose (insulinomimetic or insulin secretagogues activity) and active phytoconstituents having insulin mimetics activity. From the review it was suggested that, plant showing hypoglycemic potential mainly belongs to the family Leguminoseae, Lamiaceae, Liliaceae, Cucurbitaceae, Asteraceae, Moraceae, Rosaceae and Araliaceae. The most active plants are Allium sativum, Gymnema sylvestre, Citrullus colocynthis, Trigonella foenum greacum, Momordica charantia and Ficus bengalensis. The review describes some new bioactive drugs and isolated compounds from plants such as roseoside, epigallocatechin gallate, beta-pyrazol-1-ylalanine, cinchonain Ib, leucocyandin 3-O-beta-d-galactosyl cellobioside, leucopelargonidin-3- O-alpha-L rhamnoside, glycyrrhetinic acid, dehydrotrametenolic acid, strictinin, isostrictinin, pedunculagin, epicatechin and christinin-A showing significant insulinomimetic and antidiabetic activity with more efficacy than conventional hypoglycaemic agents. Thus, from the review majorly, the antidiabetic activity of medicinal plants is attributed to the presence of polyphenols, flavonoids, terpenoids, coumarins and other constituents which show reduction in blood glucose levels. The review also discusses the management aspect of diabetes mellitus using these plants and their active principles.

  19. An overview on antidiabetic medicinal plants having insulin mimetic property.

    Science.gov (United States)

    Patel, D K; Prasad, S K; Kumar, R; Hemalatha, S

    2012-04-01

    Diabetes mellitus is one of the common metabolic disorders acquiring around 2.8% of the world's population and is anticipated to cross 5.4% by the year 2025. Since long back herbal medicines have been the highly esteemed source of medicine therefore, they have become a growing part of modern, high-tech medicine. In view of the above aspects the present review provides profiles of plants (65 species) with hypoglycaemic properties, available through literature source from various database with proper categorization according to the parts used, mode of reduction in blood glucose (insulinomimetic or insulin secretagogues activity) and active phytoconstituents having insulin mimetics activity. From the review it was suggested that, plant showing hypoglycemic potential mainly belongs to the family Leguminoseae, Lamiaceae, Liliaceae, Cucurbitaceae, Asteraceae, Moraceae, Rosaceae and Araliaceae. The most active plants are Allium sativum, Gymnema sylvestre, Citrullus colocynthis, Trigonella foenum greacum, Momordica charantia and Ficus bengalensis. The review describes some new bioactive drugs and isolated compounds from plants such as roseoside, epigallocatechin gallate, beta-pyrazol-1-ylalanine, cinchonain Ib, leucocyandin 3-O-beta-d-galactosyl cellobioside, leucopelargonidin-3- O-alpha-L rhamnoside, glycyrrhetinic acid, dehydrotrametenolic acid, strictinin, isostrictinin, pedunculagin, epicatechin and christinin-A showing significant insulinomimetic and antidiabetic activity with more efficacy than conventional hypoglycaemic agents. Thus, from the review majorly, the antidiabetic activity of medicinal plants is attributed to the presence of polyphenols, flavonoids, terpenoids, coumarins and other constituents which show reduction in blood glucose levels. The review also discusses the management aspect of diabetes mellitus using these plants and their active principles.

  20. Reproductive isolation related to mimetic divergence in the poison frog Ranitomeya imitator

    DEFF Research Database (Denmark)

    Twomey, Evan; Vestergaard, Jacob Schack; Summers, Kyle

    2014-01-01

    study the Peruvian poison frog Ranitomeya imitator, a species that has undergone a mimetic radiation into four distinct morphs. Using a combination of colour–pattern analysis, landscape genetics and mate-choice experiments, we show that a mimetic shift in R. imitator is associated with a narrow...... phenotypic transition zone, neutral genetic divergence and assortative mating, suggesting that divergent selection to resemble different model species has led to a breakdown in gene flow between these two populations. These results extend the effects of mimicry on speciation into a vertebrate system...

  1. A Note on Schwarzschild de Sitter Black Holes in Mimetic $F(R)$ Gravity

    CERN Document Server

    Oikonomou, V K

    2016-01-01

    In this brief note we investigate the conditions under which a Schwarzschild de Sitter black hole spacetime is a solution of the mimetic $F(R)$ gravity with Lagrange multiplier and potential. As we demonstrate, the resulting mimetic $F(R)$ gravity is a slight modification of the ordinary $F(R)$ gravity case, however the resulting perturbation equations are not in all cases identical to the ordinary $F(R)$ gravity case. In the latter case, the perturbation equations are identical to the ones corresponding to the Reissner-Nordstr\\"{o}m anti-de Sitter black hole.

  2. A note on Schwarzschild-de Sitter black holes in mimetic F(R) gravity

    Science.gov (United States)

    Oikonomou, V. K.

    2016-05-01

    In this paper, we investigate the conditions under which a Schwarzschild-de Sitter black hole spacetime is a solution of the mimetic F(R) gravity with Lagrange multiplier and potential. As we demonstrate, the resulting mimetic F(R) gravity is a slight modification of the ordinary F(R) gravity case, however the resulting perturbation equations are not in all cases identical to the ordinary F(R) gravity case. In the latter case, the perturbation equations are identical to the ones corresponding to the Reissner-Nordström anti-de Sitter black hole.

  3. A Note on Schwarzschild de Sitter Black Holes in Mimetic $F(R)$ Gravity

    OpenAIRE

    Oikonomou, V.K.

    2016-01-01

    In this brief note we investigate the conditions under which a Schwarzschild de Sitter black hole spacetime is a solution of the mimetic $F(R)$ gravity with Lagrange multiplier and potential. As we demonstrate, the resulting mimetic $F(R)$ gravity is a slight modification of the ordinary $F(R)$ gravity case, however the resulting perturbation equations are not in all cases identical to the ordinary $F(R)$ gravity case. In the latter case, the perturbation equations are identical to the ones c...

  4. Synthesis of new enantiopure poly(hydroxyaminooxepanes as building blocks for multivalent carbohydrate mimetics

    Directory of Open Access Journals (Sweden)

    Léa Bouché

    2014-01-01

    Full Text Available New compounds with carbohydrate-similar structure (carbohydrate mimetics are presented in this article. Starting from enantiopure nitrones and lithiated TMSE-allene we prepared three 1,2-oxazine derivatives which underwent a highly stereoselective Lewis acid-induced rearrangement to give bicyclic products in good yield. Subsequent reductive transformations delivered a library of new poly(hydroxyaminooxepane derivatives. The crucial final palladium-catalyzed hydrogenolysis of the 1,2-oxazine moiety was optimized resulting in a reasonably efficient approach to a series of new seven-membered carbohydrate mimetics.

  5. Micelle bound structure and DNA interaction of brevinin-2-related peptide, an antimicrobial peptide derived from frog skin.

    Science.gov (United States)

    Bandyopadhyay, Susmita; Ng, Boon Yee; Chong, Charmaine; Lim, Ming Zhen; Gill, Sonia Kiran; Lee, Ke Hui; Sivaraman, J; Chatterjee, Chiradip

    2014-10-01

    Brevinin-2-related peptide (BR-II), a novel antimicrobial peptide isolated from the skin of frog, Rana septentrionalis, shows a broad spectrum of antimicrobial activity with low haemolytic activity. It has also been shown to have antiviral activity, specifically to protect cells from infection by HIV-1. To understand the active conformation of the BR-II peptide in membranes, we have investigated the interaction of BR-II with the prokaryotic and eukaryotic membrane-mimetic micelles such as sodium dodecylsulfate (SDS) and dodecylphosphocholine (DPC), respectively. The interactions were studied using fluorescence and circular dichroism (CD) spectroscopy. Fluorescence experiments revealed that the N-terminus tryptophan residue of BR-II interacts with the hydrophobic core of the membrane mimicking micelles. The CD results suggest that interactions with membrane-mimetic micelles induce an α-helix conformation in BR-II. We have also determined the solution structures of BR-II in DPC and SDS micelles using NMR spectroscopy. The structural comparison of BR-II in the presence of SDS and DPC micelles showed significant conformational changes in the residues connecting the N-terminus and C-terminus helices. The ability of BR-II to bind DNA was elucidated by agarose gel retardation and fluorescence experiments. The structural differences of BR-II in zwitterionic versus anionic membrane mimics and the DNA binding ability of BR-II collectively contribute to the general understanding of the pharmacological specificity of this peptide towards prokaryotic and eukaryotic membranes and provide insights into its overall antimicrobial mechanism.

  6. Antimicrobial peptides.

    Science.gov (United States)

    Zhang, Ling-Juan; Gallo, Richard L

    2016-01-11

    Antimicrobial peptides and proteins (AMPs) are a diverse class of naturally occurring molecules that are produced as a first line of defense by all multicellular organisms. These proteins can have broad activity to directly kill bacteria, yeasts, fungi, viruses and even cancer cells. Insects and plants primarily deploy AMPs as an antibiotic to protect against potential pathogenic microbes, but microbes also produce AMPs to defend their environmental niche. In higher eukaryotic organisms, AMPs can also be referred to as 'host defense peptides', emphasizing their additional immunomodulatory activities. These activities are diverse, specific to the type of AMP, and include a variety of cytokine and growth factor-like effects that are relevant to normal immune homeostasis. In some instances, the inappropriate expression of AMPs can also induce autoimmune diseases, thus further highlighting the importance of understanding these molecules and their complex activities. This Primer will provide an update of our current understanding of AMPs. PMID:26766224

  7. Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Ali Adem Bahar

    2013-11-01

    Full Text Available The rapid increase in drug-resistant infections has presented a serious challenge to antimicrobial therapies. The failure of the most potent antibiotics to kill “superbugs” emphasizes the urgent need to develop other control agents. Here we review the history and new development of antimicrobial peptides (AMPs, a growing class of natural and synthetic peptides with a wide spectrum of targets including viruses, bacteria, fungi, and parasites. We summarize the major types of AMPs, their modes of action, and the common mechanisms of AMP resistance. In addition, we discuss the principles for designing effective AMPs and the potential of using AMPs to control biofilms (multicellular structures of bacteria embedded in extracellular matrixes and persister cells (dormant phenotypic variants of bacterial cells that are highly tolerant to antibiotics.

  8. Investigation of Structural Mimetics of Natural Phosphate Ion Binding Motifs

    OpenAIRE

    Evgeny A. Kataev; Tatiana A. Shumilova

    2015-01-01

    Phosphates are ubiquitous in biology and nearly half of all proteins interact with their partners by means of recognition of phosphate residues. Therefore, a better understanding of the phosphate ion binding by peptidic structures is highly desirable. Two new receptors have been designed and synthesized and their anion binding properties in an acetonitrile solution have been determined. The structure of hosts mimics a part of the kinase active site that is responsible for the recognition of ...

  9. Reissner–Nordström Anti-de Sitter Black Holes in Mimetic F(R) Gravity

    Science.gov (United States)

    Oikonomou, V. K.

    2016-05-01

    In this paper we study under which conditions the Reissner-Nordstr\\"om-anti de Sitter black hole can be a solution of the vacuum mimetic $F(R)$ gravity with Lagrange multiplier and mimetic scalar potential. As we demonstrate, the resulting picture in the mimetic $F(R)$ gravity case, is different in comparison to the ordinary $F(R)$ gravity case, with the two descriptions resulting to a different set of constraints that need to hold true. We also investigate the metric perturbations in the mimetic $F(R)$ gravity case, for the Reissner-Nordstr\\"om-anti de Sitter black hole metric, at first order of the perturbed variables. Interestingly enough, the resulting equations are identical to the ones corresponding to the ordinary $F(R)$ gravity Reissner-Nordstr\\"om-anti de Sitter black hole, at least at first order. We attribute this feature to the particular form of the Reissner-Nordstr\\"om-anti de Sitter metric, and we speculate for which cases there could be differences between the mimetic and non-mimetic case. Since the perturbation equations are the same for the two cases, it is possible to have black hole instabilities in the mimetic $F(R)$ gravity case too, which can be interpreted as anti-evaporation of the black hole.

  10. Aspects of late-time evolution in mimetic F(R) gravity

    Science.gov (United States)

    Oikonomou, V. K.

    2016-09-01

    We demonstrate how to describe in an unified way early and late-time acceleration in the context of mimetic F(R) gravity. As we show, an exponential F(R) gravity model has appealing features, with regard to unification and we perform an analysis of the late-time evolution. The resulting picture is interesting since in the mimetic case, certain pathologies of some ordinary F(R) models are remedied in a consistent way, owing to the presence of the mimetic potential and the Lagrange multiplier. We quantify the late-time evolution analysis by studying the scaled dark energy density, the dark energy equation of state and the total effective equation of state, and as we show the late-time evolution is crucially affected by the functional form of the F(R) gravity. It is intriguing that the most appealing case corresponds to the exponential F(R) gravity which unifies late- and early-time acceleration. Finally, we study the behavior of the effective gravitational constant and the growth factor, and as we show, significant differences between the mimetic and ordinary F(R) exponential model are spotted in the growth factor.

  11. Incretin mimetics: a novel therapeutic option for patients with type 2 diabetes - a review

    DEFF Research Database (Denmark)

    Hansen, Katrine Bilberg; Vilsbøll, Tina; Knop, Filip K

    2010-01-01

    factors such as weight loss, decrease in blood pressure and changes in lipid profile. Current clinical data on the two available incretin mimetics, exenatide and liraglutide, are evaluated in this review, focusing on pharmacology, efficacy, safety and tolerability. The review is built on a systematic Pub...

  12. Gramicidin S derivatives containing cis- and trans-morpholine amino acids (MAAS) as turn mimetics

    NARCIS (Netherlands)

    Kapoerchan, V.V.; Spalburg, E.; Neeling, A.J. de; Mars-Groenendijk, R.H.; Noort, D.; Otero, J.M. de; Ferraces-Casais, P.; Llamas-Saiz, A.L.; Raaij, M.J. van; Doorn, J. van; Marel, G.A. van der; Overkleeft, H.S.; Overhand, M.

    2010-01-01

    The cyclic decapeptide gramicidin S (GS) was used as a model for the evaluation of four turn mimetics. For this purpose, one of the D-Phe-Pro two-residue turn motifs in the rigid cyclic β-hairp0in structure of GS was replaced with morpholine amino acids (MAA 2-5), differing in stereochemistry and le

  13. Application of Mn(Ⅱ) as a Mimetic Enzyme of Horseradish Peroxidase

    Institute of Scientific and Technical Information of China (English)

    Ai Xia HAN; Li Hong NIU; Rui CHANG; Fu Shi ZHANG

    2005-01-01

    In this study, Mn( Ⅱ ) as a mimetic enzyme of horseradish peroxidase (HRP) was applied to the determination of hydrogen peroxide (H2O2). The method introduced in this paper is based on Mn(Ⅱ)'s catalytic effect on the oxidation of 4-aminoantipyrine(4-AAP) with modified Trinder's reagent N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3, 5-dimethoxyaniline(DAOS) by H2O2.By coupling this mimetic catalytic reaction with the catalytic reaction of glucose oxidase (GOD),glucose can be detected. Under optimum conditions, the calibration graphs for the determination of H2O2 and glucose are in the range of 1.0×10-3-1.0×10-1 mol/L and 1.0×10-3-14×10-3 mol/L respectively. The detection limit is 5.9×10-4 mol/L for H2O2 and is 9.2×10-4 mol/L for glucose.The feasibility of Mn ( Ⅱ ) as a HRP mimetic enzyme in practical clinical analysis has been proven in the determination of glucose in human serum. So far, Mn ( Ⅱ ) is the simplest and the most inexpensive mimetic enzyme.

  14. Reissner–Nordström Anti-de Sitter Black Holes in Mimetic F(R) Gravity

    OpenAIRE

    Oikonomou, V.K.

    2016-01-01

    In this paper we study under which conditions the Reissner-Nordstr\\"om-anti de Sitter black hole can be a solution of the vacuum mimetic $F(R)$ gravity with Lagrange multiplier and mimetic scalar potential. As we demonstrate, the resulting picture in the mimetic $F(R)$ gravity case, is different in comparison to the ordinary $F(R)$ gravity case, with the two descriptions resulting to a different set of constraints that need to hold true. We also investigate the metric perturbations in the mim...

  15. Social variables exert selective pressures in the evolution and form of primate mimetic musculature.

    Science.gov (United States)

    Burrows, Anne M; Li, Ly; Waller, Bridget M; Micheletta, Jerome

    2016-04-01

    Mammals use their faces in social interactions more so than any other vertebrates. Primates are an extreme among most mammals in their complex, direct, lifelong social interactions and their frequent use of facial displays is a means of proximate visual communication with conspecifics. The available repertoire of facial displays is primarily controlled by mimetic musculature, the muscles that move the face. The form of these muscles is, in turn, limited by and influenced by phylogenetic inertia but here we use examples, both morphological and physiological, to illustrate the influence that social variables may exert on the evolution and form of mimetic musculature among primates. Ecomorphology is concerned with the adaptive responses of morphology to various ecological variables such as diet, foliage density, predation pressures, and time of day activity. We present evidence that social variables also exert selective pressures on morphology, specifically using mimetic muscles among primates as an example. Social variables include group size, dominance 'style', and mating systems. We present two case studies to illustrate the potential influence of social behavior on adaptive morphology of mimetic musculature in primates: (1) gross morphology of the mimetic muscles around the external ear in closely related species of macaque (Macaca mulatta and Macaca nigra) characterized by varying dominance styles and (2) comparative physiology of the orbicularis oris muscle among select ape species. This muscle is used in both facial displays/expressions and in vocalizations/human speech. We present qualitative observations of myosin fiber-type distribution in this muscle of siamang (Symphalangus syndactylus), chimpanzee (Pan troglodytes), and human to demonstrate the potential influence of visual and auditory communication on muscle physiology. In sum, ecomorphologists should be aware of social selective pressures as well as ecological ones, and that observed morphology might

  16. Antifungal Activity of 14-Helical β-Peptides against Planktonic Cells and Biofilms of Candida Species

    Directory of Open Access Journals (Sweden)

    Namrata Raman

    2015-08-01

    Full Text Available Candida albicans is the most prevalent cause of fungal infections and treatment is further complicated by the formation of drug resistant biofilms, often on the surfaces of implanted medical devices. In recent years, the incidence of fungal infections by other pathogenic Candida species such as C. glabrata, C. parapsilosis and C. tropicalis has increased. Amphiphilic, helical β-peptide structural mimetics of natural antimicrobial α-peptides have been shown to exhibit specific planktonic antifungal and anti-biofilm formation activity against C. albicans in vitro. Here, we demonstrate that β-peptides are also active against clinically isolated and drug resistant strains of C. albicans and against other opportunistic Candida spp. Different Candida species were susceptible to β-peptides to varying degrees, with C. tropicalis being the most and C. glabrata being the least susceptible. β-peptide hydrophobicity directly correlated with antifungal activity against all the Candida clinical strains and species tested. While β-peptides were largely ineffective at disrupting existing Candida biofilms, hydrophobic β-peptides were able to prevent the formation of C. albicans, C. glabrata, C. parapsilosis and C. tropicalis biofilms. The broad-spectrum antifungal activity of β-peptides against planktonic cells and in preventing biofilm formation suggests the promise of this class of molecules as therapeutics.

  17. Antifungal Activity of 14-Helical β-Peptides against Planktonic Cells and Biofilms of Candida Species.

    Science.gov (United States)

    Raman, Namrata; Lee, Myung-Ryul; Lynn, David M; Palecek, Sean P

    2015-01-01

    Candida albicans is the most prevalent cause of fungal infections and treatment is further complicated by the formation of drug resistant biofilms, often on the surfaces of implanted medical devices. In recent years, the incidence of fungal infections by other pathogenic Candida species such as C. glabrata, C. parapsilosis and C. tropicalis has increased. Amphiphilic, helical β-peptide structural mimetics of natural antimicrobial α-peptides have been shown to exhibit specific planktonic antifungal and anti-biofilm formation activity against C. albicans in vitro. Here, we demonstrate that β-peptides are also active against clinically isolated and drug resistant strains of C. albicans and against other opportunistic Candida spp. Different Candida species were susceptible to β-peptides to varying degrees, with C. tropicalis being the most and C. glabrata being the least susceptible. β-peptide hydrophobicity directly correlated with antifungal activity against all the Candida clinical strains and species tested. While β-peptides were largely ineffective at disrupting existing Candida biofilms, hydrophobic β-peptides were able to prevent the formation of C. albicans, C. glabrata, C. parapsilosis and C. tropicalis biofilms. The broad-spectrum antifungal activity of β-peptides against planktonic cells and in preventing biofilm formation suggests the promise of this class of molecules as therapeutics. PMID:26287212

  18. Activation of the insulin receptor (IR) by insulin and a synthetic peptide has different effects on gene expression in IR-transfected L6 myoblasts

    DEFF Research Database (Denmark)

    Jensen, M.; Palsgaard, J.; Borup, R.;

    2008-01-01

    Single-chain peptides have been recently produced that display either mimetic or antagonistic properties against the insulin and IGF-1 (insulin-like growth factor 1) receptors. We have shown previously that the insulin mimetic peptide S597 leads to significant differences in receptor activation...... and initiation of downstream signalling cascades despite similar binding affinity and in vivo hypoglycaemic potency. It is still unclear how two ligands can initiate different signalling responses through the IR (insulin receptor). To investigate further how the activation of the IR by insulin and S597...... differentially activates post-receptor signalling, we studied the gene expression profile in response to IR activation by either insulin or S597 using microarray technology. We found striking differences between the patterns induced by these two ligands. Most remarkable was that almost half of the genes...

  19. A biomimetic collagen derived peptide exhibits anti-angiogenic activity in triple negative breast cancer.

    Directory of Open Access Journals (Sweden)

    Elena V Rosca

    Full Text Available We investigated the application of a mimetic 20 amino acid peptide derived from type IV collagen for treatment of breast cancer. We showed that the peptide induced a decrease of proliferation, adhesion, and migration of endothelial and tumor cells in vitro. We also observed an inhibition of triple negative MDA-MB-231 xenograft growth by 75% relative to control when administered intraperitoneally for 27 days at 10 mg/kg. We monitored in vivo the changes in vascular properties throughout the treatment using MRI and found that the vascular volume and permeability surface area product decreased significantly. The treatment also resulted in an increase of caspase-3 activity and in a reduction of microvascular density. The multiple mode of action of this peptide, i.e., anti-angiogenic, and anti-tumorigenic, makes it a viable candidate as a therapeutic agent as a monotherapy or in combination with other compounds.

  20. Water-Floating Giant Nanosheets from Helical Peptide Pentamers.

    Science.gov (United States)

    Lee, Jaehun; Choe, Ik Rang; Kim, Nak-Kyoon; Kim, Won-Je; Jang, Hyung-Seok; Lee, Yoon-Sik; Nam, Ki Tae

    2016-09-27

    One of the important challenges in the development of protein-mimetic materials is understanding the sequence-specific assembly behavior and dynamic folding change. Conventional strategies for constructing two-dimensional (2D) nanostructures from peptides have been limited to using β-sheet forming sequences as building blocks due to their natural tendency to form sheet-like aggregations. We have identified a peptide sequence (YFCFY) that can form dimers via a disulfide bridge, fold into a helix, and assemble into macroscopic flat sheets at the air/water interface. Due to the large driving force for 2D assembly and high elastic modulus of the resulting sheet, the peptide assembly induces flattening of the initially round water droplet. Additionally, we found that stabilization of the helix by dimerization is a key determinant for maintaining macroscopic flatness over a few tens of centimeters even with a uniform thickness of <10 nm. Furthermore, the ability to transfer the sheets from a water droplet to another substrate allows for multiple stacking of 2D peptide nanostructures, suggesting possible applications in biomimetic catalysis, biosensors, and 2D related electronic devices. PMID:27583783

  1. Minimum active structure of insulin-like peptide 5.

    Science.gov (United States)

    Belgi, Alessia; Bathgate, Ross A D; Kocan, Martina; Patil, Nitin; Zhang, Suode; Tregear, Geoffrey W; Wade, John D; Hossain, Mohammed Akhter

    2013-12-12

    Insulin-like peptide 5 (INSL5) is a complex two-chain peptide hormone constrained by three disulfide bonds in a pattern identical to insulin. High expression of INSL5 in the colon suggests roles in activation of colon motility and appetite control. A more recent study indicates it may have significant roles in the regulation of insulin secretion and β-cell homeostasis. This peptide thus has considerable potential for the treatment of eating disorders, obesity, and/or diabetes. However, the synthesis of INSL5 is extremely challenging either by chemical or recombinant means. The A-chain is very poorly soluble and the B-chain is highly aggregating in nature which, together, makes their postsynthesis handling and purification very difficult. Given these difficulties, we have developed a highly active INSL5 analogue that has a much simpler structure with two disulfide bonds and is thus easier to assemble compared to native INSL5. This minimized peptide represents an attractive new mimetic for investigating the functional role of INSL5.

  2. Triple-enzyme mimetic activity of nickel-palladium hollow nanoparticles and their application in colorimetric biosensing of glucose.

    Science.gov (United States)

    Wang, Qingqing; Zhang, Lingling; Shang, Changshuai; Zhang, Zhiquan; Dong, Shaojun

    2016-04-01

    We demonstrate that nickel-palladium hollow nanoparticles (NiPd hNPs) exhibit triple-enzyme mimetic activity: oxidase-like activity, peroxidase-like activity and catalase-like activity. As peroxidase mimetics, the catalytic activity of NiPd hNPs was investigated in detail. On this basis, a simple glucose biosensor with a wide linear range and low detection limit was developed. PMID:27009927

  3. Binding Mode of Insulin Receptor and Agonist Peptide

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Insulin is a protein hormone secreted by pancreatic β cells. One of its main functions is to keep the balance of glucose inside the body by regulating the absorption and metabolism of glucose in the periphery tissue, as well as the production and storage of hepatic glycogen. The insulin receptor is a transmembrane glycoprotein in which two α subunits with a molecular weight of 135 kD and twoβ subunits with a molecular weight of 95 kD are joined by a disulfide bond to form a β-α-α-β structure. The extracellular α subunit, especially, its three domains near the N-terminal are partially responsible for signal transduction or ligand-binding, as indicated by the experiments. The extracellular α subunits are involved in binding the ligands. The experimental results indicate that the three domains of the N-terminal of the α subunits are the main determinative parts of the insulin receptor to bind the insulin or mimetic peptide.We employed the extracellular domain (PDBID: 1IGR) of the insulin-like growth factor-1 receptor (IGF-1 R ) as the template to simulate and optimize the spatial structures of the three domains in the extracellular domain of the insulin receptor, which includes 468 residues. The work was accomplished by making use of the homology program in the Insight Ⅱ package on an Origin3800 server. The docking calculations of the insulin receptor obtained by homology with hexapeptides were carried out by means of the program Affinity. The analysis indicated that there were hydrogen bonding, and electrostatic and hydrophobic effects in the docking complex of the insulin receptor with hexapeptides.Moreover, we described the spatial orientation of a mimetic peptide with agonist activity in the docking complex. We obtained a rough model of binding of DLAPSQ or STIVYS with the insulin receptor, which provides the powerful theoretical support for designing the minimal insulin mimetic peptide with agonist activity, making it possible to develop oral small

  4. Methylidynetrisphosphonates: Promising C1 building block for the design of phosphate mimetics

    Directory of Open Access Journals (Sweden)

    Vadim D. Romanenko

    2013-05-01

    Full Text Available Methylidynetrisphosphonates are representatives of geminal polyphosphonates bearing three phosphonate (PO3H2 groups at the bridged carbon atom. Like well-known methylenebisphosphonates (BPs, they are characterized by a P–C–P backbone structure and are chemically stable mimetics of the endogenous metabolites, i.e., inorganic pyrophosphates (PPi. Because of its analogy to PPi and an ability to chelate metal ions, the 1,1,1-trisphosphonate structure is of great potential as a C1 building block for the design of phosphate mimetics. The purpose of this review is to present a concise summary of the state of the art in trisphosphonate chemistry with particular emphasis on the synthesis, structure, reactions, and potential medicinal applications of these compounds.

  5. Mimetic Theory for Cell-Centered Lagrangian Finite Volume Formulation on General Unstructured Grids

    Energy Technology Data Exchange (ETDEWEB)

    Sambasivan, Shiv Kumar [Los Alamos National Laboratory; Shashkov, Mikhail J. [Los Alamos National Laboratory; Burton, Donald E. [Los Alamos National Laboratory; Christon, Mark A. [Los Alamos National Laboratory

    2012-07-19

    A finite volume cell-centered Lagrangian scheme for solving large deformation problems is constructed based on the hypo-elastic model and using the mimetic theory. Rigorous analysis in the context of gas and solid dynamics, and arbitrary polygonal meshes, is presented to demonstrate the ability of cell-centered schemes in mimicking the continuum properties and principles at the discrete level. A new mimetic formulation based gradient evaluation technique and physics-based, frame independent and symmetry preserving slope limiters are proposed. Furthermore, a physically consistent dissipation model is employed which is both robust and inexpensive to implement. The cell-centered scheme along with these additional new features are applied to solve solids undergoing elasto-plastic deformation.

  6. Viable Mimetic Completion of Unified Inflation-Dark Energy Evolution in Modified Gravity

    CERN Document Server

    Nojiri, S; Oikonomou, V K

    2016-01-01

    In this paper, we demonstrate that a unified description of early and late-time acceleration is possible in the context of mimetic $F(R)$ gravity. We study the inflationary era in detail and demonstrate that it can be realized even in mimetic $F(R)$ gravity where traditional $F(R)$ gravity fails to describe the inflation. By using standard methods we calculated the spectral index of primordial curvature perturbations and the scalar-to-tensor ratio. We use two $F(R)$ gravity models and as it turns out, for both the models under study the observational indices are compatible with both the latest Planck and the BICEP2/Keck array data. Finally, the graceful exit from inflation is guaranteed by the existence of growing curvature perturbations when the slow-roll era ends.

  7. Incretin mimetics: a novel therapeutic option for patients with type 2 diabetes - a review

    DEFF Research Database (Denmark)

    Hansen, Katrine Bilberg; Vilsbøll, Tina; Knop, Filip K

    2010-01-01

    Type 2 diabetes mellitus is a metabolic disease associated with low quality of life and early death. The goal in diabetes treatment is to prevent these outcomes by tight glycemic control and minimizing vascular risk factors. So far, even intensified combination regimen with the traditional...... are initiated. Since the compounds have no insulinotropic activity at lower glucose concentrations the risk of hypoglycemia - a well-known shortcoming of existing antidiabetes treatments - is low. Additionally, incretin mimetics have been shown to be associated with beneficial effects on cardiovascular risk...... factors such as weight loss, decrease in blood pressure and changes in lipid profile. Current clinical data on the two available incretin mimetics, exenatide and liraglutide, are evaluated in this review, focusing on pharmacology, efficacy, safety and tolerability. The review is built on a systematic Pub...

  8. The contribution of skin antimicrobial peptides to the system of innate immunity in anurans.

    Science.gov (United States)

    Conlon, J Michael

    2011-01-01

    Cationic peptides with the propensity to adopt an amphipathic α-helical conformation in a membrane-mimetic environment are synthesized in the skins of many species of anurans (frogs and toads). These peptides frequently display cytolytic activities against a range of pathogenic bacteria and fungi consistent with the idea that they play a role in the host's system of innate immunity. However, the importance of the peptides in the survival strategy of the animal is not clearly understood. It is a common misconception that antimicrobial peptides are synthesized in the skins of all anurans. In fact, the species distribution is sporadic suggesting that their production may confer some evolutionary advantage to the organism but is not necessary for survival. Although growth inhibitory activity against the chytrid fungus Batrachochytrium dendrobatidis, responsible for anuran population declines worldwide, has been demonstrated in vitro, the ability of frog skin antimicrobial peptides to protect the animal in the wild appears to be limited and there is no clear correlation between their production by a species and its resistance to fatal chytridiomycosis. The low potency of many frog skin antimicrobial peptides is consistent with the hypothesis that cutaneous symbiotic bacteria may provide the major system of defense against pathogenic microorganisms in the environment with antimicrobial peptides assuming a supplementary role in some species.

  9. Molecular Physiology of Glucagon-Like Peptide-1 Insulin Secretagogue Action in Pancreatic β Cells

    OpenAIRE

    Leech, Colin A.; Dzhura, Igor; Chepurny, Oleg G.; Kang, Guoxin; Schwede, Frank; Genieser, Hans-G.; Holz, George G.

    2011-01-01

    Insulin secretion from pancreatic β cells is stimulated by glucagon-like peptide-1 (GLP-1), a blood glucose-lowering hormone that is released from enteroendocrine L cells of the distal intestine after the ingestion of a meal. GLP-1 mimetics (e.g., Byetta) and GLP-1 analogs (e.g., Victoza) activate the β cell GLP-1 receptor (GLP-1R), and these compounds stimulate insulin secretion while also lowering levels of blood glucose in patients diagnosed with type 2 diabetes mellitus (T2DM). An additio...

  10. Targeting diverse protein-protein interaction interfaces with α/β-peptides derived from the Z-domain scaffold.

    Science.gov (United States)

    Checco, James W; Kreitler, Dale F; Thomas, Nicole C; Belair, David G; Rettko, Nicholas J; Murphy, William L; Forest, Katrina T; Gellman, Samuel H

    2015-04-14

    Peptide-based agents derived from well-defined scaffolds offer an alternative to antibodies for selective and high-affinity recognition of large and topologically complex protein surfaces. Here, we describe a strategy for designing oligomers containing both α- and β-amino acid residues ("α/β-peptides") that mimic several peptides derived from the three-helix bundle "Z-domain" scaffold. We show that α/β-peptides derived from a Z-domain peptide targeting vascular endothelial growth factor (VEGF) can structurally and functionally mimic the binding surface of the parent peptide while exhibiting significantly decreased susceptibility to proteolysis. The tightest VEGF-binding α/β-peptide inhibits the VEGF165-induced proliferation of human umbilical vein endothelial cells. We demonstrate the versatility of this strategy by showing how principles underlying VEGF signaling inhibitors can be rapidly extended to produce Z-domain-mimetic α/β-peptides that bind to two other protein partners, IgG and tumor necrosis factor-α. Because well-established selection techniques can identify high-affinity Z-domain derivatives from large DNA-encoded libraries, our findings should enable the design of biostable α/β-peptides that bind tightly and specifically to diverse targets of biomedical interest. Such reagents would be useful for diagnostic and therapeutic applications.

  11. Targeting diverse protein–protein interaction interfaces with α/β-peptides derived from the Z-domain scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Checco, James W.; Kreitler, Dale F.; Thomas, Nicole C.; Belair, David G.; Rettko, Nicholas J.; Murphy, William L.; Forest, Katrina T.; Gellman, Samuel H. (UW)

    2015-04-14

    Peptide-based agents derived from well-defined scaffolds offer an alternative to antibodies for selective and high-affinity recognition of large and topologically complex protein surfaces. Here, we describe a strategy for designing oligomers containing both α- and β-amino acid residues ("α/β-peptides") that mimic several peptides derived from the three-helix bundle "Z-domain" scaffold. We show that α/β-peptides derived from a Z-domain peptide targeting vascular endothelial growth factor (VEGF) can structurally and functionally mimic the binding surface of the parent peptide while exhibiting significantly decreased susceptibility to proteolysis. The tightest VEGF-binding α/β-peptide inhibits the VEGF₁₆₅-induced proliferation of human umbilical vein endothelial cells. We demonstrate the versatility of this strategy by showing how principles underlying VEGF signaling inhibitors can be rapidly extended to produce Z-domain–mimetic α/β-peptides that bind to two other protein partners, IgG and tumor necrosis factor-α. Because well-established selection techniques can identify high-affinity Z-domain derivatives from large DNA-encoded libraries, our findings should enable the design of biostable α/β-peptides that bind tightly and specifically to diverse targets of biomedical interest. Such reagents would be useful for diagnostic and therapeutic applications.

  12. Human peptide transporters

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Brodin, Birger; Jørgensen, Flemming Steen;

    2002-01-01

    Peptide transporters are epithelial solute carriers. Their functional role has been characterised in the small intestine and proximal tubules, where they are involved in absorption of dietary peptides and peptide reabsorption, respectively. Currently, two peptide transporters, PepT1 and PepT2...

  13. Camouflage mimetico e il problema della rappresentazione pittorica / Mimetic Camouflage and the Problem of Pictorial Representation

    OpenAIRE

    Méndez Baiges, Maite

    2015-01-01

    A hundred years ago , during the I World War, the first forms of military camouflage were devoloped. The earlier Unité de Camouflage was born in February 1915 in the french army. Mimetic camouflage design, called Disruptive Pattern Material (DPM), was the product of an intention of deceit based on concealment of equipment and facilities against the enemy. These primitive forms of invisibility searched the mimesis with the environment, and they developed both abstract and figurative solutions....

  14. Endowing Single-Chain Polymer Nanoparticles with Enzyme-Mimetic Activity

    OpenAIRE

    Perez-Baena, Irma; Barroso-Bujans, Fabienne; Gasser, Urs; Arbe, Arantxa; Moreno Segurado, Ángel J.; Colmenero de León, Juan; Pomposo, José A.

    2013-01-01

    The development of simple, efficient, and robust strategies affording the facile construction of biomimetic organocatalytic nano-objects is currently a subject of great interest. Herein, a new pathway to artificial organocatalysts based on partially collapsed individual soft nano-objects displaying useful and diverse biomimetic catalytic functions is reported. Single-chain polymer nanoparticles endowed with enzyme-mimetic activity synthesized following this new route display (i) a relatively ...

  15. Female preferences drive the evolution of mimetic accuracy in male sexual displays

    OpenAIRE

    Coleman, Seth William; Patricelli, Gail Lisa; Coyle, Brian; Siani, Jennifer; Borgia, Gerald

    2007-01-01

    Males in many bird species mimic the vocalizations of other species during sexual displays, but the evolutionary and functional significance of interspecific vocal mimicry is unclear. Here we use spectrographic cross-correlation to compare mimetic calls produced by male satin bowerbirds (Ptilonorhynchus violaceus) in courtship with calls from several model species. We show that the accuracy of vocal mimicry and the number of model species mimicked are both independently related to male mating...

  16. Physics of cell adhesion: some lessons from cell-mimetic systems

    OpenAIRE

    Sackmann, Erich; Smith, Ana-Sunčana

    2014-01-01

    Cell adhesion is a paradigm of the ubiquitous interplay of cell signalling, modulation of material properties and biological functions of cells. It is controlled by competition of short range attractive forces, medium range repellant forces and the elastic stresses associated with local and global deformation of the composite cell envelopes. We review the basic physical rules governing the physics of cell adhesion learned by studying cell-mimetic systems and demonstrate the importance of thes...

  17. Mechanisms of heparanase inhibition by the heparan sulfate mimetic PG545 and three structural analogues ☆

    OpenAIRE

    Hammond, Edward; Handley, Paul; Dredge, Keith; Bytheway, Ian

    2013-01-01

    The tetrasaccharide heparan sulfate (HS) mimetic PG545, a clinical anti-cancer candidate, is an inhibitor of the HS-degrading enzyme heparanase. The kinetics of heparanase inhibition by PG545 and three structural analogues were investigated to understand their modes of inhibition. The cholestanol aglycon of PG545 significantly increased affinity for heparanase and also modified the inhibition mode. For the tetrasaccharides, competitive inhibition was modified to parabolic competition by the a...

  18. A mimetic spectral element solver for the Grad-Shafranov equation

    CERN Document Server

    Palha, Artur; Felici, Federico

    2015-01-01

    In this work we present a robust and accurate arbitrary order solver for the fixed-boundary plasma equilibria in toroidally axisymmetric geometries. To achieve this we apply the mimetic spectral element formulation presented in [56] to the solution of the Grad-Shafranov equation. This approach combines a finite volume discretization with the mixed finite element method. In this way the discrete differential operators ($\

  19. A unified approach to Mimetic Finite Difference, Hybrid Finite Volume and Mixed Finite Volume methods

    OpenAIRE

    Droniou, Jerome; Eymard,, Robert; Gallouët, Thierry; Herbin, Raphaele

    2008-01-01

    International audience We investigate the connections between several recent methods for the discretization of ani\\-so\\-tropic heterogeneous diffusion operators on general grids. We prove that the Mimetic Finite Difference scheme, the Hybrid Finite Volume scheme and the Mixed Finite Volume scheme are in fact identical up to some slight generalizations. As a consequence, some of the mathematical results obtained for each of the method (such as convergence properties or error estimates) may ...

  20. Aerodynamic Bio-Mimetics of Gliding Dragonflies for Ultra-Light Flying Robot

    OpenAIRE

    Akira Obata; Shotarou Shinohara; Kyohei Akimoto; Kakeru Suzuki; Miyuki Seki

    2014-01-01

    A detailed investigation including a low-speed flow study is presented on the development of ultra-light dragonfly mimetic flying robots with a focus on the dragonfly’s remarkable gliding capability. It is revealed that the dragonfly’s corrugated wing structure and cruciform configuration provide superior flying characteristics for fixed wing robots in low Reynolds number flight. It was also found that the dragonfly configuration has additional merit in its compatibility with propellers or hi...

  1. Modified Gauss-Bonnet gravity with Lagrange multiplier constraint as mimetic theory

    OpenAIRE

    Astashenok, Artyom V.; Odintsov, Sergei D.; Oikonomou, V.K.

    2015-01-01

    In this paper we propose and extensively study mimetic $f({\\cal G})$ modified gravity models, with various scenarios of cosmological evolution, with or without extra matter fluids. The easiest formulation is based on the use of Lagrange multiplier constraint. In certain versions of this theory, it is possible to realize accelerated expansion of the Universe or even unified evolution which includes inflation with dark energy, and at the same time in the same theoretical framework, dark matter ...

  2. Bio-mimetic mineralization potential of collagen hydrolysate obtained from chromium tanned leather waste.

    Science.gov (United States)

    Banerjee, Pradipta; Madhu, S; Chandra Babu, N K; Shanthi, C

    2015-04-01

    Hydroxyapatite (HA) ceramics serve as an alternative to autogenous-free bone grafting by virtue of their excellent biocompatibility. However, chemically synthesized HA lacks the strong load-bearing capacity as required by bone. The bio-mimetic growth of HA crystals on collagen surface provides a feasible solution for synthesizing bone substitutes with the desired properties. This study deals with the utilization of the collagen hydrolysate recovered from leather waste as a substrate for promoting HA crystal growth. Bio-mimetic growth of HA was induced by subjecting the hydrolysate to various mineralization conditions. Parameters that would have a direct effect on crystal growth were varied to determine the optimal conditions necessary. Maximum mineralization was achieved with a combination of 10mM of CaCl2, 5mM of Na2HPO4, 100mM of NaCl and 0.575% glutaraldehyde at a pH of 7.4. The metal-protein interactions leading to formation of HA were identified through Fourier-transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD) studies. The crystal dimensions were determined to be in the nanoscale range by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The size and crystallinity of bio-mimetically grown HA indicate that hydrolysate from leather waste can be used as an ideal alternative substrate for bone growth.

  3. Role of phosphate on stability and catalase mimetic activity of cerium oxide nanoparticles.

    Science.gov (United States)

    Singh, Ragini; Singh, Sanjay

    2015-08-01

    Cerium oxide nanoparticles (CeNPs) have been recently shown to scavenge reactive oxygen and nitrogen species (ROS and RNS) in different experimental model systems. CeNPs (3+) and CeNPs (4+) have been shown to exhibit superoxide dismutase (SOD) and catalase mimetic activity, respectively. Due to their nanoscale dimension, CeNPs are expected to interact with the components of biologically relevant buffers and medium, which could alter their catalytic properties. We have demonstrated earlier that CeNPs (3+) interact with phosphate and lose the SOD activity. However, very little is known about the interaction of CeNPs (4+) with the phosphate and other anions, predominantly present in biological buffers and their effects on the catalase mimetic-activity of these nanoparticles. In this study, we report that catalase mimetic-activity of CeNPs (4+) is resistant to the phosphate anions, pH changes and composition of cell culture media. Given the abundance of phosphate anions in the biological system, it is likely that internalized CeNPs would be influenced by cytoplasmic and nucleoplasmic concentration of phosphate.

  4. Aspects of Late-time Evolution in Mimetic $F(R)$ Gravity

    CERN Document Server

    Oikonomou, V K

    2016-01-01

    We demonstrate how to describe in an unified way early and late-time acceleration in the context of mimetic $F(R)$ gravity. As we show, an exponential $F(R)$ gravity model has appealing features, with regard to unification, and we perform an analysis of the late-time evolution. The resulting picture is interesting since in the mimetic case, certain pathologies of some ordinary $F(R)$ models are remedied in a consistent way, owing to the presence of the mimetic potential and the Lagrange multiplier. We quantify the late-time evolution analysis by studying the scaled dark energy density, the dark energy equation of state and the total effective equation of state, and as we show the late-time evolution is crucially affected by the functional form of the $F(R)$ gravity. It is intriguing that the most appealing case corresponds to the exponential $F(R)$ gravity which unifies late and early-time acceleration. Finally, we study the behavior of the effective gravitational constant and the growth factor, and as we sho...

  5. Manipulation of health span and function by dietary caloric restriction mimetics.

    Science.gov (United States)

    Roth, George S; Ingram, Donald K

    2016-01-01

    After nearly a century of rigorous investigation and testing, dietary caloric restriction (CR) remains the most robust and reproducible method for slowing aging and maintaining health, function, and vitality. This intervention has been applied to species across the evolutionary spectrum, but for a number of reasons, practical applicability to humans has been questioned. To overcome these issues, we initiated the field of CR mimetics in 1998 and have observed its development into a full-fledged antiaging industry. Basically, strategies that enable individuals to obtain the biological benefits of CR without reducing actual food intake can be considered CR mimetics, whether functional, pharmaceutical, nutraceutical, or other. Some of the best known candidates include resveratrol and related agents, the antidiabetic drug metformin, and rapamycin and other mTOR regulators. While the mechanisms of action vary, these and essentially all CR mimetic candidates work through at least some of the same pathways as actual CR. While the entire field continues to evolve rapidly, the current status will be reviewed here, with particular focus on recent developments, the most practical relevance and applicability for potential consumers, and new strategies for the future. PMID:26214681

  6. Smac mimetic-derived augmentation of chemotherapeutic response in experimental pancreatic cancer

    International Nuclear Information System (INIS)

    Pancreatic ductal adenocarcinoma (PDAC) is highly resistant to conventional chemotherapy, in part due to the overexpression of inhibitors of apoptosis proteins (IAPs). Smac is an endogenous IAP-antagonist, which renders synthetic Smac mimetics attractive anticancer agents. We evaluated the benefits of combining a Smac mimetic, JP1201 (JP), with conventional chemotherapy agents used for PDAC management. Cell viability assays and protein expression analysis were performed using WST-1 reagent and Western blotting, respectively. Apoptosis was detected by annexin V/propidium iodide staining. In vivo tumor growth and survival studies were performed in murine PDAC xenografts. JP and gemcitabine (Gem) inhibited PDAC cell proliferation with additive effects in combination. The percentage of early apoptotic cells in controls, JP, Gem and JP + Gem was 17%, 26%, 26% and 38%, respectively. JP-induced apoptosis was accompanied by PARP-1 cleavage. Similar additive anti-proliferative effects were seen for combinations of JP with doxorubicin (Dox) and docetaxel (DT). The JP + Gem combination caused a 30% decrease in tumor size in vivo compared to controls. Median animal survival was improved significantly in mice treated with JP + Gem (38 d) compared to controls (22 d), JP (28 d) or Gem (32 d) (p = 0.01). Animal survival was also improved with JP + DT treatment (32 d) compared to controls (16 d), JP (21 d) or DT alone (27 d). These results warrant further exploration of strategies that promote chemotherapy-induced apoptosis of tumors and highlight the potential of Smac mimetics in clinical PDAC therapy

  7. AGN 191976: a novel thromboxane A2-mimetic with ocular hypotensive properties.

    Science.gov (United States)

    Krauss, A H; Woodward, D F; Chen, J; Gibson, L L; Lai, R K; Protzman, C E; Shan, T; Williams, L S; Gac, T S; Burk, R M

    1995-01-01

    The possible subdivision of thromboxane A2-sensitive (TP) receptors is currently a controversial subject. We report herein on a novel thromboxane A2 mimetic, AGN 191976, which has almost identical pharmacological activity to the well-characterized prostaglandin H2/thromboxane A2 (PGH2/TxA2) mimetic U-46619, but its effects on intraocular pressure are quite distinct from U-46619. Prostanoid receptor activity was determined in vitro using different smooth muscle assays and platelets. Intraocular pressure was measured tonometrically in ocular normotensive Beagle dogs and Cynomolgus monkeys. Conjunctival microvascular permeability was determined in guinea pigs. Despite closely resembling U-46619 as a potent and selective TP receptor agonist, AGN 191976 was a potent ocular hypotensive in dogs and monkeys whereas U-46619 did not lower IOP in either species. The ocular hypotensive effect of AGN 191976 in dogs was attenuated by pretreatment with the TP receptor antagonist SQ 29548. Thus, the ocular hypotensive effects of AGN 191976 are consistent with TP receptor stimulation. Both TxA2-mimetics caused plasma leakage in the guinea pig conjunctiva. The disparate activities of U-46619 and AGN 191976 in our studies suggest the existence of heterogeneous populations of TP-receptors in the eye.

  8. Bio-mimetic Nanostructure Self-assembled from Au@Ag Heterogeneous Nanorods and Phage Fusion Proteins for Targeted Tumor Optical Detection and Photothermal Therapy

    Science.gov (United States)

    Wang, Fei; Liu, Pei; Sun, Lin; Li, Cuncheng; Petrenko, Valery A.; Liu, Aihua

    2014-10-01

    Nanomaterials with near-infrared (NIR) absorption have been widely studied in cancer detection and photothermal therapy (PTT), while it remains a great challenge in targeting tumor efficiently with minimal side effects. Herein we report a novel multifunctional phage-mimetic nanostructure, which was prepared by layer-by-layer self-assembly of Au@Ag heterogenous nanorods (NRs) with rhodamine 6G, and specific pVIII fusion proteins. Au@Ag NRs, first being applied for PTT, exhibited excellent stability, cost-effectivity, biocompatibility and tunable NIR absorption. The fusion proteins were isolated from phage DDAGNRQP specifically selected from f8/8 landscape phage library against colorectal cancer cells in a high-throughput way. Considering the definite charge distribution and low molecular weight, phage fusion proteins were assembled on the negatively charged NR core by electrostatic interactions, exposing the N-terminus fused with DDAGNRQP peptide on the surface. The fluorescent images showed that assembled phage fusion proteins can direct the nanostructure into cancer cells. The nanostructure was more efficient than gold nanorods and silver nanotriangle-based photothermal agents and was capable of specifically ablating SW620 cells after 10 min illumination with an 808 nm laser in the light intensity of 4 W/cm2. The prepared nanostructure would become an ideal reagent for simutaneously targeted optical imaging and PTT of tumor.

  9. Apo A1 Mimetic Rescues the Diabetic Phenotype of HO-2 Knockout Mice via an Increase in HO-1 Adiponectin and LKBI Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jian Cao

    2012-01-01

    Full Text Available Insulin resistance, with adipose tissue dysfunction, is one of the hallmarks of metabolic syndrome. We have reported a metabolic syndrome-like phenotype in heme oxygenase (HO-2 knockout mice, which presented with concurrent HO-1 deficiency and were amenable to rescue by an EET analog. Apo A-I mimetic peptides, such as L-4F, have been shown to induce HO-1 expression and decrease oxidative stress and adiposity. In this study we aimed to characterize alleviatory effects of HO-1 induction (if any on metabolic imbalance observed in HO-2 KO mice. In this regard, HO-2(−/− mice were injected with 2 mg/kg/day L-4F, or vehicle, i.p., for 6 weeks. As before, compared to WT animals, the HO-2 null mice were obese, displayed insulin resistance, and had elevated blood pressure. These changes were accompanied by enhanced tissue (hepatic oxidative stress along with attenuation of HO-1 expression and activity and reduced adiponectin, pAMPK, and LKB1 expression. Treatment with L-4F restored HO-1 expression and activity and increased adiponectin, LKB1, and pAMPK in the HO-2(−/− mice. These alterations resulted in a decrease in blood pressure, insulin resistance, blood glucose, and adiposity. Taken together, our results show that a deficient HO-1 response, in a state with reduced HO-2 basal levels, is accompanied by disruption of metabolic homeostasis which is successfully restored by an HO-1 inducer.

  10. A novel method for oral delivery of apolipoprotein mimetic peptides synthesized from all L-amino acids

    OpenAIRE

    Navab, Mohamad; Ruchala, Piotr; Alan J Waring; Lehrer, Robert I.; Hama, Susan; Hough, Greg; Palgunachari, Mayakonda N.; Anantharamaiah, G.M.; Fogelman, Alan M.

    2009-01-01

    Administered subcutaneously, D-4F or L-4F are equally efficacious, but only D-4F is orally efficacious because of digestion of L-4F by gut proteases. Orally administering niclosamide (a chlorinated salicylanilide used as a molluscicide, antihelminthic, and lampricide) in temporal proximity to oral L-4F (but not niclosamide alone) in apoE null mice resulted in significant improvement (P < 0.001) in the HDL-inflammatory index (HII), which measures the ability of HDL to inhibit LDL-induced monoc...

  11. Insight into the structural mechanism of the bi-modal action of an NCAM mimetic, the C3 peptide

    DEFF Research Database (Denmark)

    Kiselyov, Vladislav V; Li, Shizhong; Berezin, Vladimir;

    2009-01-01

    proposed. In one of them, the FGFR Ig2-Ig3 modules are involved in binding to NCAM, whereas in another - the FGFR "acid box" region mediates the interaction. The bi-modal effect of C3 can be explained in the context of the former model and is not consistent with the latter, thus providing evidence in...

  12. Targeted Recombinant Fusion Proteins of IFNγ and Mimetic IFNγ with PDGFβR Bicyclic Peptide Inhibits Liver Fibrogenesis In Vivo

    NARCIS (Netherlands)

    Bansal, Ruchi; Prakash, J.; Ruiter, de Marieke; Poelstra, Klaas

    2014-01-01

    Hepatic stellate cells (HSCs), following transdifferentiation to myofibroblasts plays a key role in liver fibrosis. Therefore, attempts to attenuate this myofibroblastic phenotype would be a promising therapeutic approach. Interferon gamma (IFNγ) is a potent anti-fibrotic cytokine, but its pleiotrop

  13. Neuroplastin-65 and a mimetic peptide derived from its homophilic binding site modulate neuritogenesis and neuronal plasticity

    DEFF Research Database (Denmark)

    Owczarek, Sylwia; Soroka, Vladislav; Kiryushko, Darya;

    2011-01-01

    Neuroplastin-65 (Np65) is a brain-specific cell adhesion molecule belonging to the immunoglobulin superfamily. Homophilic trans-interaction of Np65 mediates adhesion between cells and modulates synaptic plasticity. This interaction solely occurs through the first immunoglobulin (Ig) module of Np6...

  14. A peptide mimetic targeting trans-homophilic NCAM binding sites promotes spatial learning and neural plasticity in the hippocampus

    DEFF Research Database (Denmark)

    Kraev, Igor; Henneberger, Christian; Rossetti, Clara;

    2011-01-01

    a homophilic trans-binding site in Ig2 and binds to Ig3--was developed as a tool for studying NCAM's trans-interactions. In this study, we investigated plannexin's ability to affect neural plasticity and memory formation. We found that plannexin facilitates neurite outgrowth in primary hippocampal neuronal...

  15. Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel

    Science.gov (United States)

    Replicating the multi-hierarchical self-assembly of collagen has long-attracted scientists, from both the perspective of the fundamental science of supramolecular chemistry and that of potential biomedical applications in tissue engineering. Many approaches to drive the self-assembly of synthetic s...

  16. Identification of Shc Src homology 2 domain-binding peptoid-peptide hybrids.

    Science.gov (United States)

    Choi, Won Jun; Kim, Sung-Eun; Stephen, Andrew G; Weidlich, Iwona; Giubellino, Alessio; Liu, Fa; Worthy, Karen M; Bindu, Lakshman; Fivash, Matthew J; Nicklaus, Marc C; Bottaro, Donald P; Fisher, Robert J; Burke, Terrence R

    2009-03-26

    A fluorescence anisotropy (FA) competition-based Shc Src homology 2 (SH2) domain-binding was established using the high affinity fluorescein isothiocyanate (FITC) containing peptide, FITC-NH-(CH2)4-CO-pY-Q-G-L-S-amide (8; Kd = 0.35 microM). Examination of a series of open-chain bis-alkenylamide containing peptides, prepared as ring-closing metathesis precursors, showed that the highest affinities were obtained by replacement of the original Gly residue with N alpha-substituted Gly (NSG) "peptoid" residues. This provided peptoid-peptide hybrids of the form "Ac-pY-Q-[NSG]-L-amide." Depending on the NSG substituent, certain of these hybrids exhibited up to 40-fold higher Shc SH2 domain-binding affinity than the parent Gly-containing peptide (IC50 = 248 microM) (for example, for N-homoallyl analogue 50, IC50 = 6 microM). To our knowledge, this work represents the first successful example of the application of peptoid-peptide hybrids in the design of SH2 domain-binding antagonists. These results could provide a foundation for further structural optimization of Shc SH2 domain-binding peptide mimetics. PMID:19226165

  17. Identificaiton of Shc Src Homology 2 Domain-Binding Peptoid – Peptide Hybrids

    Science.gov (United States)

    Choi, Won Jun; Kim, Sung Eun; Stephen, Andrew G.; Weidlich, Iwona; Giubellino, Alessio; Liu, Fa; Worthy, Karen M.; Bindu, Lakshman; Fivash, Matthew J.; Nicklaus, Marc C.; Bottaro, Donald P.; Fisher, Robert J.; Burke, Terrence R.

    2009-01-01

    A fluorescence anisotropy (FA) competition – based Shc Src homology 2 (SH2) domain-binding was established using the high affinity fluorescein isothiocyanate (FITC)-containing peptide, FITC-NH-(CH2)4-CO-pY-Q-G-L-S-amide (8; Kd = 0.35 μM). Examination of a series of open – chain bis-alkenylamide containing peptides, prepared as ring – closing metathesis precursors, showed that the highest affinities were obtained by replacement of the original Gly residue with Nα-substituted Gly (NSG) “peptoid” residues. This provided peptoid-peptide hybrids of the form, “Ac-pY-Q-[NSG]-L-amide.” Depending on the NSG substituent, certain of these hybrids exhibited up to 40 – fold higher Shc SH2 domain binding affinity than the parent Gly-containing peptide (IC50 = 248 μM), (for example, N-homo-allyl analogue 50; IC50 = 6 μM). To our knowledge, this work represents the first successful example of the application of peptoid-peptide hybrids in the design of SH2 domain-binding antagonists. These results could provide a foundation for further structural optimization of Shc SH2 domain-binding peptide mimetics. PMID:19226165

  18. [small beta]-Turn mimetic-based stabilizers of protein-protein interactions for the study of the non-canonical roles of leucyl-tRNA synthetase

    DEFF Research Database (Denmark)

    Kim, Chanwoo; Jung, Jinjoo; Thanh Tung, Truong;

    2016-01-01

    For the systematic perturbation of protein-protein interactions, we designed and synthesized tetra-substituted hexahydro-4H-pyrazino[2,1-c][1,2,4]triazine-4,7(6H)-diones as [small beta]-turn mimetics. We then devised a new synthetic route to obtain [small beta]-turn mimetic scaffolds via tandem N...

  19. PeptideAtlas

    Data.gov (United States)

    U.S. Department of Health & Human Services — PeptideAtlas is a multi-organism, publicly accessible compendium of peptides identified in a large set of tandem mass spectrometry proteomics experiments. Mass...

  20. Better Living through Chemistry: Caloric Restriction (CR) and CR Mimetics Alter Genome Function to Promote Increased Health and Lifespan.

    Science.gov (United States)

    Gillespie, Zoe E; Pickering, Joshua; Eskiw, Christopher H

    2016-01-01

    Caloric restriction (CR), defined as decreased nutrient intake without causing malnutrition, has been documented to increase both health and lifespan across numerous organisms, including humans. Many drugs and other compounds naturally occurring in our diet (nutraceuticals) have been postulated to act as mimetics of caloric restriction, leading to a wave of research investigating the efficacy of these compounds in preventing age-related diseases and promoting healthier, longer lifespans. Although well studied at the biochemical level, there are still many unanswered questions about how CR and CR mimetics impact genome function and structure. Here we discuss how genome function and structure are influenced by CR and potential CR mimetics, including changes in gene expression profiles and epigenetic modifications and their potential to identify the genetic fountain of youth. PMID:27588026

  1. Better Living through Chemistry: Caloric Restriction (CR) and CR Mimetics Alter Genome Function to Promote Increased Health and Lifespan

    Science.gov (United States)

    Gillespie, Zoe E.; Pickering, Joshua; Eskiw, Christopher H.

    2016-01-01

    Caloric restriction (CR), defined as decreased nutrient intake without causing malnutrition, has been documented to increase both health and lifespan across numerous organisms, including humans. Many drugs and other compounds naturally occurring in our diet (nutraceuticals) have been postulated to act as mimetics of caloric restriction, leading to a wave of research investigating the efficacy of these compounds in preventing age-related diseases and promoting healthier, longer lifespans. Although well studied at the biochemical level, there are still many unanswered questions about how CR and CR mimetics impact genome function and structure. Here we discuss how genome function and structure are influenced by CR and potential CR mimetics, including changes in gene expression profiles and epigenetic modifications and their potential to identify the genetic fountain of youth. PMID:27588026

  2. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  3. Antimicrobial Peptides in 2014

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2015-03-01

    Full Text Available This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.

  4. Peptide Nucleic Acid Synthons

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  5. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2003-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  6. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  7. Peptide Nucleic Acids (PNA)

    DEFF Research Database (Denmark)

    2002-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  8. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    2015-01-01

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  9. An easily accessible sulfated saccharide mimetic inhibits in vitro human tumor cell adhesion and angiogenesis of vascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Grazia Marano

    2012-05-01

    Full Text Available Oligosaccharides aberrantly expressed on tumor cells influence processes such as cell adhesion and modulation of the cell’s microenvironment resulting in an increased malignancy. Schmidt’s imidate strategy offers an effective method to synthesize libraries of various oligosaccharide mimetics. With the aim to perturb interactions of tumor cells with extracellular matrix proteins and host cells, molecules with 3,4-bis(hydroxymethylfuran as core structure were synthesized and screened in biological assays for their abilities to interfere in cell adhesion and other steps of the metastatic cascade, such as tumor-induced angiogenesis.The most active compound, (4-{[(β-D-galactopyranosyloxy]methyl}furan-3-ylmethyl hydrogen sulfate (GSF, inhibited the activation of matrix-metalloproteinase-2 (MMP-2 as well as migration of the human melanoma cells of the lines WM-115 and WM-266-4 in a two-dimensional migration assay. GSF inhibited completely the adhesion of WM-115 cells to the extracellular matrix (ECM proteins, fibrinogen and fibronectin.In an in vitro angiogenesis assay with human endothelial cells, GSF very effectively inhibited endothelial tubule formation and sprouting of blood vessels, as well as the adhesion of endothelial cells to ECM proteins. GSF was not cytotoxic at biologically active concentrations; neither were 3,4-bis{[(β-D-galactopyranosyloxy]methyl}furan (BGF nor methyl β-D-galactopyranoside nor 3,4-bis(hydroxymethylfuran, which were used as controls, eliciting comparable biological activity. In silico modeling experiments, in which binding of GSF to the extracellular domain of the integrin αvβ3 was determined, revealed specific docking of GSF to the same binding site as the natural peptidic ligands of this integrin. The sulfate in the molecule coordinated with one manganese ion in the binding site.These studies show that this chemically easily accessible molecule GSF, synthesized in three steps from 3,4-bis

  10. An easily accessible sulfated saccharide mimetic inhibits in vitro human tumor cell adhesion and angiogenesis of vascular endothelial cells

    Science.gov (United States)

    Marano, Grazia; Gronewold, Claas; Frank, Martin; Merling, Anette; Kliem, Christian; Sauer, Sandra; Wiessler, Manfred; Frei, Eva

    2012-01-01

    Summary Oligosaccharides aberrantly expressed on tumor cells influence processes such as cell adhesion and modulation of the cell’s microenvironment resulting in an increased malignancy. Schmidt’s imidate strategy offers an effective method to synthesize libraries of various oligosaccharide mimetics. With the aim to perturb interactions of tumor cells with extracellular matrix proteins and host cells, molecules with 3,4-bis(hydroxymethyl)furan as core structure were synthesized and screened in biological assays for their abilities to interfere in cell adhesion and other steps of the metastatic cascade, such as tumor-induced angiogenesis. The most active compound, (4-{[(β-D-galactopyranosyl)oxy]methyl}furan-3-yl)methyl hydrogen sulfate (GSF), inhibited the activation of matrix-metalloproteinase-2 (MMP-2) as well as migration of the human melanoma cells of the lines WM-115 and WM-266-4 in a two-dimensional migration assay. GSF inhibited completely the adhesion of WM-115 cells to the extracellular matrix (ECM) proteins, fibrinogen and fibronectin. In an in vitro angiogenesis assay with human endothelial cells, GSF very effectively inhibited endothelial tubule formation and sprouting of blood vessels, as well as the adhesion of endothelial cells to ECM proteins. GSF was not cytotoxic at biologically active concentrations; neither were 3,4-bis{[(β-D-galactopyranosyl)oxy]methyl}furan (BGF) nor methyl β-D-galactopyranoside nor 3,4-bis(hydroxymethyl)furan, which were used as controls, eliciting comparable biological activity. In silico modeling experiments, in which binding of GSF to the extracellular domain of the integrin αvβ3 was determined, revealed specific docking of GSF to the same binding site as the natural peptidic ligands of this integrin. The sulfate in the molecule coordinated with one manganese ion in the binding site. These studies show that this chemically easily accessible molecule GSF, synthesized in three steps from 3,4-bis

  11. Bio-mimetic mineralization potential of collagen hydrolysate obtained from chromium tanned leather waste

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Pradipta; Madhu, S. [School of Bio Science and Technology, Vellore Institute of Technology University, Vellore 632014, Tamil Nadu (India); Chandra Babu, N.K. [Tannery Division, CSIR-Central Leather Research Institute, Chennai 600 020, Tamil Nadu (India); Shanthi, C., E-mail: cshanthi@vit.ac.in [School of Bio Science and Technology, Vellore Institute of Technology University, Vellore 632014, Tamil Nadu (India)

    2015-04-01

    Hydroxyapatite (HA) ceramics serve as an alternative to autogenous-free bone grafting by virtue of their excellent biocompatibility. However, chemically synthesized HA lacks the strong load-bearing capacity as required by bone. The bio-mimetic growth of HA crystals on collagen surface provides a feasible solution for synthesizing bone substitutes with the desired properties. This study deals with the utilization of the collagen hydrolysate recovered from leather waste as a substrate for promoting HA crystal growth. Bio-mimetic growth of HA was induced by subjecting the hydrolysate to various mineralization conditions. Parameters that would have a direct effect on crystal growth were varied to determine the optimal conditions necessary. Maximum mineralization was achieved with a combination of 10 mM of CaCl{sub 2}, 5 mM of Na{sub 2}HPO{sub 4}, 100 mM of NaCl and 0.575% glutaraldehyde at a pH of 7.4. The metal–protein interactions leading to formation of HA were identified through Fourier-transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD) studies. The crystal dimensions were determined to be in the nanoscale range by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The size and crystallinity of bio-mimetically grown HA indicate that hydrolysate from leather waste can be used as an ideal alternative substrate for bone growth. - Highlights: • Collagen hydrolysate, extracted from leather industry waste is subjected to biomineralization. • Optimal conditions required for HA growth are identified. • FTIR studies reveal higher Ca−COO{sup −} and low C−N stretch with higher HA formation. • AFM and SEM studies reveal nanometer ranged HA crystals.

  12. Bio-mimetic mineralization potential of collagen hydrolysate obtained from chromium tanned leather waste

    International Nuclear Information System (INIS)

    Hydroxyapatite (HA) ceramics serve as an alternative to autogenous-free bone grafting by virtue of their excellent biocompatibility. However, chemically synthesized HA lacks the strong load-bearing capacity as required by bone. The bio-mimetic growth of HA crystals on collagen surface provides a feasible solution for synthesizing bone substitutes with the desired properties. This study deals with the utilization of the collagen hydrolysate recovered from leather waste as a substrate for promoting HA crystal growth. Bio-mimetic growth of HA was induced by subjecting the hydrolysate to various mineralization conditions. Parameters that would have a direct effect on crystal growth were varied to determine the optimal conditions necessary. Maximum mineralization was achieved with a combination of 10 mM of CaCl2, 5 mM of Na2HPO4, 100 mM of NaCl and 0.575% glutaraldehyde at a pH of 7.4. The metal–protein interactions leading to formation of HA were identified through Fourier-transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD) studies. The crystal dimensions were determined to be in the nanoscale range by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The size and crystallinity of bio-mimetically grown HA indicate that hydrolysate from leather waste can be used as an ideal alternative substrate for bone growth. - Highlights: • Collagen hydrolysate, extracted from leather industry waste is subjected to biomineralization. • Optimal conditions required for HA growth are identified. • FTIR studies reveal higher Ca−COO− and low C−N stretch with higher HA formation. • AFM and SEM studies reveal nanometer ranged HA crystals

  13. Complexes of neutralizing and non-neutralizing affinity matured Fabs with a mimetic of the internal trimeric coiled-coil of HIV-1 gp41.

    Directory of Open Access Journals (Sweden)

    Elena Gustchina

    Full Text Available A series of mini-antibodies (monovalent and bivalent Fabs targeting the conserved internal trimeric coiled-coil of the N-heptad repeat (N-HR of HIV-1 gp41 has been previously constructed and reported. Crystal structures of two closely related monovalent Fabs, one (Fab 8066 broadly neutralizing across a wide panel of HIV-1 subtype B and C viruses, and the other (Fab 8062 non-neutralizing, representing the extremes of this series, were previously solved as complexes with 5-Helix, a gp41 pre-hairpin intermediate mimetic. Binding of these Fabs to covalently stabilized chimeric trimers of N-peptides of HIV-1 gp41 (named (CCIZN363 or 3-H has now been investigated using X-ray crystallography, cryo-electron microscopy, and a variety of biophysical methods. Crystal structures of the complexes between 3-H and Fab 8066 and Fab 8062 were determined at 2.8 and 3.0 Å resolution, respectively. Although the structures of the complexes with the neutralizing Fab 8066 and its non-neutralizing counterpart Fab 8062 were generally similar, small differences between them could be correlated with the biological properties of these antibodies. The conformations of the corresponding CDRs of each antibody in the complexes with 3-H and 5-Helix are very similar. The adaptation to a different target upon complex formation is predominantly achieved by changes in the structure of the trimer of N-HR helices, as well as by adjustment of the orientation of the Fab molecule relative to the N-HR in the complex, via rigid-body movement. The structural data presented here indicate that binding of three Fabs 8062 with high affinity requires more significant changes in the structure of the N-HR trimer compared to binding of Fab 8066. A comparative analysis of the structures of Fabs complexed to different gp41 intermediate mimetics allows further evaluation of biological relevance for generation of neutralizing antibodies, as well as provides novel structural insights into immunogen

  14. Arbitrary Order Mixed Mimetic Finite Differences Method with Nodal Degrees of Freedom

    Energy Technology Data Exchange (ETDEWEB)

    Iaroshenko, Oleksandr [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gyrya, Vitaliy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Manzini, Gianmarco [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-01

    In this work we consider a modification to an arbitrary order mixed mimetic finite difference method (MFD) for a diffusion equation on general polygonal meshes [1]. The modification is based on moving some degrees of freedom (DoF) for a flux variable from edges to vertices. We showed that for a non-degenerate element this transformation is locally equivalent, i.e. there is a one-to-one map between the new and the old DoF. Globally, on the other hand, this transformation leads to a reduction of the total number of degrees of freedom (by up to 40%) and additional continuity of the discrete flux.

  15. Unified description of dark energy and dark matter in mimetic matter model

    CERN Document Server

    Matsumoto, Jiro

    2016-01-01

    The existence of dark matter and dark energy in cosmology is implied by various observations, however, they are still unclear because they have not been directly detected. In this Letter, an unified model of dark energy and dark matter that can explain the evolution history of the Universe later than inflationary era, the time evolution of the growth rate function of the matter density contrast, the flat rotation curves of the spiral galaxies, and the gravitational experiments in the solar system is proposed in mimetic matter model.

  16. From Complex Natural Products to Simple Synthetic Mimetics by Computational De Novo Design.

    Science.gov (United States)

    Friedrich, Lukas; Rodrigues, Tiago; Neuhaus, Claudia S; Schneider, Petra; Schneider, Gisbert

    2016-06-01

    We present the computational de novo design of synthetically accessible chemical entities that mimic the complex sesquiterpene natural product (-)-Englerin A. We synthesized lead-like probes from commercially available building blocks and profiled them for activity against a computationally predicted panel of macromolecular targets. Both the design template (-)-Englerin A and its low-molecular weight mimetics presented nanomolar binding affinities and antagonized the transient receptor potential calcium channel TRPM8 in a cell-based assay, without showing target promiscuity or frequent-hitter properties. This proof-of-concept study outlines an expeditious solution to obtaining natural-product-inspired chemical matter with desirable properties. PMID:27111835

  17. The Mimetic Finite Element Method and the Virtual Element Method for elliptic problems with arbitrary regularity.

    Energy Technology Data Exchange (ETDEWEB)

    Manzini, Gianmarco [Los Alamos National Laboratory

    2012-07-13

    We develop and analyze a new family of virtual element methods on unstructured polygonal meshes for the diffusion problem in primal form, that use arbitrarily regular discrete spaces V{sub h} {contained_in} C{sup {alpha}} {element_of} N. The degrees of freedom are (a) solution and derivative values of various degree at suitable nodes and (b) solution moments inside polygons. The convergence of the method is proven theoretically and an optimal error estimate is derived. The connection with the Mimetic Finite Difference method is also discussed. Numerical experiments confirm the convergence rate that is expected from the theory.

  18. Aerodynamic Bio-Mimetics of Gliding Dragonflies for Ultra-Light Flying Robot

    Directory of Open Access Journals (Sweden)

    Akira Obata

    2014-05-01

    Full Text Available A detailed investigation including a low-speed flow study is presented on the development of ultra-light dragonfly mimetic flying robots with a focus on the dragonfly’s remarkable gliding capability. It is revealed that the dragonfly’s corrugated wing structure and cruciform configuration provide superior flying characteristics for fixed wing robots in low Reynolds number flight. It was also found that the dragonfly configuration has additional merit in its compatibility with propellers or high lift devices. This combination with such classic aero-engineering makes possible robots with broader flight envelope than conventional fixed-wing flying robots.

  19. Inflation in f(R,φ)-theories and mimetic gravity scenario

    Energy Technology Data Exchange (ETDEWEB)

    Myrzakulov, R.; Sebastiani, L. [Eurasian National University, Department of General and Theoretical Physics and Eurasian Center for Theoretical Physics, Astana (Kazakhstan); Vagnozzi, S. [University of Copenhagen, Niels Bohr International Academy and Discovery Center, Niels Bohr Institute, Copenhagen Oe (Denmark); Nordita, KTH Royal Institute of Technology and Stockholm University, Stockholm (Sweden); Stockholm University, AlbaNova, Department of Physics, The Oskar Klein Centre for Cosmoparticle Physics, Stockholm (Sweden); University of Melbourne, ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Melbourne, VIC (Australia)

    2015-09-15

    We investigate inflation within f(R,φ)-theories, where a dynamical scalar field is coupled to gravity. A class of models which can support early-time acceleration with the emerging of an effective cosmological constant at high curvature is studied. The dynamics of the field allow for exit from inflation leading to the correct amount of inflation in agreement with cosmological data. Furthermore, the spectral index and tensor-to-scalar ratio of the models are carefully analyzed. A generalization of the theory to incorporate dark matter in the context of mimetic gravity, and further extensions of the latter, are also discussed. (orig.)

  20. Cluster Based Hybrid Niche Mimetic and Genetic Algorithm for Text Document Categorization

    Directory of Open Access Journals (Sweden)

    A. K. Santra

    2011-09-01

    Full Text Available An efficient cluster based hybrid niche mimetic and genetic algorithm for text document categorization to improve the retrieval rate of relevant document fetching is addressed. The proposal minimizes the processing of structuring the document with better feature selection using hybrid algorithm. In addition restructuring of feature words to associated documents gets reduced, in turn increases document clustering rate. The performance of the proposed work is measured in terms of cluster objects accuracy, term weight, term frequency and inverse document frequency. Experimental results demonstrate that it achieves very good performance on both feature selection and text document categorization, compared to other classifier methods.

  1. STAT1, STAT3 and p38MAPK are involved in the apoptotic effect induced by a chimeric cyclic interferon-{alpha}2b peptide

    Energy Technology Data Exchange (ETDEWEB)

    Blank, Viviana C.; Pena, Clara [Institute of Biochemistry and Biophysics (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junin 956-C1113AAD Buenos Aires (Argentina); Roguin, Leonor P., E-mail: rvroguin@qb.ffyb.uba.ar [Institute of Biochemistry and Biophysics (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junin 956-C1113AAD Buenos Aires (Argentina)

    2010-02-15

    In the search of mimetic peptides of the interferon-{alpha}2b molecule (IFN-{alpha}2b), we have previously designed and synthesized a chimeric cyclic peptide of the IFN-{alpha}2b that inhibits WISH cell proliferation by inducing an apoptotic response. Here, we first studied the ability of this peptide to activate intracellular signaling pathways and then evaluated the participation of some signals in the induction of apoptosis. Stimulation of WISH cells with the cyclic peptide showed tyrosine phosphorylation of Jak1 and Tyk2 kinases, tyrosine and serine phosphorylation of STAT1 and STAT3 transcription factors and activation of p38 MAPK pathway, although phosphorylation levels or kinetics were in some conditions different to those obtained under IFN-{alpha}2b stimulus. JNK and p44/42 pathways were not activated by the peptide in WISH cells. We also showed that STAT1 and STAT3 downregulation by RNA interference decreased the antiproliferative activity and the amount of apoptotic cells induced by the peptide. Pharmacological inhibition of p38 MAPK also reduced the peptide growth inhibitory activity and the apoptotic effect. Thus, we demonstrated that the cyclic peptide regulates WISH cell proliferation through the activation of Jak/STAT signaling pathway. In addition, our results indicate that p38 MAPK may also be involved in cell growth regulation. This study suggests that STAT1, STAT3 and p38 MAPK would be mediating the antitumor and apoptotic response triggered by the cyclic peptide in WISH cells.

  2. RNAi delivery by exosome-mimetic nanovesicles - Implications for targeting c-Myc in cancer.

    Science.gov (United States)

    Lunavat, Taral R; Jang, Su Chul; Nilsson, Lisa; Park, Hyun Taek; Repiska, Gabriela; Lässer, Cecilia; Nilsson, Jonas A; Gho, Yong Song; Lötvall, Jan

    2016-09-01

    To develop RNA-based therapeutics, it is crucial to create delivery vectors that transport the RNA molecule into the cell cytoplasm. Naturally released exosomes vesicles (also called "Extracellular Vesicles") have been proposed as possible RNAi carriers, but their yield is relatively small in any cell culture system. We have previously generated exosome-mimetic nanovesicles (NV) by serial extrusions of cells through nano-sized filters, which results in 100-times higher yield of extracellular vesicles. We here test 1) whether NV can be loaded with siRNA exogenously and endogenously, 2) whether the siRNA-loaded NV are taken up by recipient cells, and 3) whether the siRNA can induce functional knock-down responses in recipient cells. A siRNA against GFP was first loaded into NV by electroporation, or a c-Myc shRNA was expressed inside of the cells. The NV were efficiently loaded with siRNA with both techniques, were taken up by recipient cells, which resulted in attenuation of target gene expression. In conclusion, our study suggests that exosome-mimetic nanovesicles can be a platform for RNAi delivery to cell cytoplasm. PMID:27344366

  3. BH3 Mimetics Reactivate Autophagic Cell Death in Anoxia-Resistant Malignant Glioma Cells

    Directory of Open Access Journals (Sweden)

    Holger Hetschko

    2008-08-01

    Full Text Available Here, we investigated the specific roles of Bcl-2 family members in anoxia tolerance of malignant glioma. Flow cytometry analysis of cell death in 17 glioma cell lines revealed drastic differences in their sensitivity to oxygen withdrawal (<0.1% O2. Cell death correlated with mitochondrial depolarization, cytochrome C release, and translocation of green fluorescent protein (GFP-tagged light chain 3 to autophagosomes but occurred in the absence of caspase activation or phosphatidylserine exposure. In both sensitive and tolerant glioma cell lines, anoxia caused a significant up-regulation of BH3-only genes previously implicated in mediating anoxic cell death in other cell types (BNIP3, NIX, PUMA, and Noxa. In contrast, we detected a strong correlation between anoxia resistance and high expression levels of antiapoptotic Bcl-2 family proteins Bcl-xL, Bcl-2, and Mcl-1 that function to neutralize the proapoptotic activity of BH3-only proteins. Importantly, inhibition of both Bcl-2 and Bcl-xL with the small-molecule BH3 mimetics HA14-1 and BH3I-2′ and by RNA interference reactivated anoxia-induced autophagic cell death in previously resistant glioma cells. Our data suggest that endogenous BH3-only protein induction may not be able to compensate for the high expression of antiapoptotic Bcl-2 family proteins in anoxia-resistant astrocytomas. They also support the conjecture that BH3 mimetics may represent an exciting new approach for the treatment of malignant glioma.

  4. Catalytic mechanism of Cu(p-OTs)2/ethanolamine as mimetic enzyme

    Institute of Scientific and Technical Information of China (English)

    宋继国; 沈培康

    2004-01-01

    The electrochemical behaviors of various copper salts complexes coordinated with equal molar ethanolamine were studied, and those of Cu(p-OTs)2 and Cu(p-OTs)2/ethanolamine(1:1) complex in CH3OH or DMF were characterized. The results show that the reduction of Cu( Ⅱ ) in Cu(p-OTs)2 is via one two-electron step mechanism both in CH3 OH and DMF. The reduction mechanism transforms to two one-electron steps in the case of Cu (p-OTs)2/ethanolamine(1:1) in DMF. However, it does not change in CH3 OH. All the Cu( Ⅱ )/ethanolamine(1:1) with the electrochemical reactions are through two one-electron steps, and can act as mimetic enzyme to oxidize 1, 1'-bi-2-naphthol. The Cu( Ⅱ )/ethanolamine(1:1) with electrochemical reactions through one two-electron step could not act as mimetic enzyme. It is concluded that the transformation between centre Cu( Ⅱ ) and Cu( Ⅰ ) is the crucial condition for the catalytic activity of copper-amine complex.

  5. Inhibition of Antiapoptotic BCL-XL, BCL-2, and MCL-1 Proteins by Small Molecule Mimetics

    Directory of Open Access Journals (Sweden)

    D.S. Dalafave

    2010-08-01

    Full Text Available Informatics and computational design methods were used to create new molecules that could potentially bind antiapoptotic proteins, thus promoting death of cancer cells. Apoptosis is a cellular process that leads to the death of damaged cells. Its malfunction can cause cancer and poor response to conventional chemotherapy. After being activated by cellular stress signals, proapoptotic proteins bind antiapoptotic proteins, thus allowing apoptosis to go forward. An excess of antiapoptotic proteins can prevent apoptosis. Designed molecules that mimic the roles of proapoptotic proteins can promote the death of cancer cells. The goal of our study was to create new putative mimetics that could simultaneously bind several antiapoptotic proteins. Five new small molecules were designed that formed stable complexes with BCL-2, BCL-XL, and MCL-1 antiapoptotic proteins. These results are novel because, to our knowledge, there are not many, if any, small molecules known to bind all three proteins. Drug-likeness studies performed on the designed molecules, as well as previous experimental and preclinical studies on similar agents, strongly suggest that the designed molecules may indeed be promising drug candidates. All five molecules showed “drug-like” properties and had overall drug-likeness scores between 81% and 96%. A single drug based on these mimetics should cost less and cause fewer side effects than a combination of drugs each aimed at a single protein. Computer-based molecular design promises to accelerate drug research by predicting potential effectiveness of designed molecules prior to laborious experiments and costly preclinical trials.

  6. Modeling anisotropic flow and heat transport by using mimetic finite differences

    Science.gov (United States)

    Chen, Tao; Clauser, Christoph; Marquart, Gabriele; Willbrand, Karen; Büsing, Henrik

    2016-08-01

    Modeling anisotropic flow in porous or fractured rock often assumes that the permeability tensor is diagonal, which means that its principle directions are always aligned with the coordinate axes. However, the permeability of a heterogeneous anisotropic medium usually is a full tensor. For overcoming this shortcoming, we use the mimetic finite difference method (mFD) for discretizing the flow equation in a hydrothermal reservoir simulation code, SHEMAT-Suite, which couples this equation with the heat transport equation. We verify SHEMAT-Suite-mFD against analytical solutions of pumping tests, using both diagonal and full permeability tensors. We compare results from three benchmarks for testing the capability of SHEMAT-Suite-mFD to handle anisotropic flow in porous and fractured media. The benchmarks include coupled flow and heat transport problems, three-dimensional problems and flow through a fractured porous medium with full equivalent permeability tensor. It shows firstly that the mimetic finite difference method can model anisotropic flow both in porous and in fractured media accurately and its results are better than those obtained by the multi-point flux approximation method in highly anisotropic models, secondly that the asymmetric permeability tensor can be included and leads to improved results compared the symmetric permeability tensor in the equivalent fracture models, and thirdly that the method can be easily implemented in existing finite volume or finite difference codes, which has been demonstrated successfully for SHEMAT-Suite.

  7. Synthesis of cellulose nanocrystals carrying tyrosine sulfate mimetic ligands and inhibition of alphavirus infection.

    Science.gov (United States)

    Zoppe, Justin O; Ruottinen, Ville; Ruotsalainen, Janne; Rönkkö, Seppo; Johansson, Leena-Sisko; Hinkkanen, Ari; Järvinen, Kristiina; Seppälä, Jukka

    2014-04-14

    We present two facile approaches for introducing multivalent displays of tyrosine sulfate mimetic ligands on the surface of cellulose nanocrystals (CNCs) for application as viral inhibitors. We tested the efficacy of cellulose nanocrystals, prepared either from cotton fibers or Whatman filter paper, to inhibit alphavirus infectivity in Vero (B) cells. Cellulose nanocrystals were produced by sulfuric acid hydrolysis leading to nanocrystal surfaces decorated with anionic sulfate groups. When the fluorescent marker expressing Semliki Forest virus vector, VA7-EGFP, was incubated with CNCs, strong inhibition of virus infectivity was achieved, up to 100 and 88% for cotton and Whatman CNCs, respectively. When surface sulfate groups of CNCs were exchanged for tyrosine sulfate mimetic groups (i.e. phenyl sulfonates), improved viral inhibition was attained. Our observations suggest that the conjugation of target-specific functionalities to CNC surfaces provides a means to control their antiviral activity. Multivalent CNCs did not cause observable in vitro cytotoxicity to Vero (B) cells or human corneal epithelial (HCE-T) cells, even within the 100% virus-inhibitory concentrations. Based on the similar chemistry of known polyanionic inhibitors, our results suggest the potential application of CNCs as inhibitors of other viruses, such as human immunodeficiency virus (HIV) and herpes simplex viruses. PMID:24628489

  8. A mimetic finite difference method for the Stokes problem with elected edge bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Lipnikov, K [Los Alamos National Laboratory; Berirao, L [DIPARTMENTO DI MATERMATICA

    2009-01-01

    A new mimetic finite difference method for the Stokes problem is proposed and analyzed. The unstable P{sub 1}-P{sub 0} discretization is stabilized by adding a small number of bubble functions to selected mesh edges. A simple strategy for selecting such edges is proposed and verified with numerical experiments. The discretizations schemes for Stokes and Navier-Stokes equations must satisfy the celebrated inf-sup (or the LBB) stability condition. The stability condition implies a balance between discrete spaces for velocity and pressure. In finite elements, this balance is frequently achieved by adding bubble functions to the velocity space. The goal of this article is to show that the stabilizing edge bubble functions can be added only to a small set of mesh edges. This results in a smaller algebraic system and potentially in a faster calculations. We employ the mimetic finite difference (MFD) discretization technique that works for general polyhedral meshes and can accomodate non-uniform distribution of stabilizing bubbles.

  9. Copper Complexes of Nicotinic-Aromatic Carboxylic Acids as Superoxide Dismutase Mimetics

    Directory of Open Access Journals (Sweden)

    Virapong Prachayasittikul

    2008-12-01

    Full Text Available Nicotinic acid (also known as vitamin B3 is a dietary element essential for physiological and antihyperlipidemic functions. This study reports the synthesis of novel mixed ligand complexes of copper with nicotinic and other select carboxylic acids (phthalic, salicylic and anthranilic acids. The tested copper complexes exhibited superoxide dismutase (SOD mimetic activity and antimicrobial activity against Bacillus subtilis ATCC 6633, with a minimum inhibition concentration of 256 μg/mL. Copper complex of nicotinic-phthalic acids (CuNA/Ph was the most potent with a SOD mimetic activity of IC50 34.42 μM. The SOD activities were observed to correlate well with the theoretical parameters as calculated using density functional theory (DFT at the B3LYP/LANL2DZ level of theory. Interestingly, the SOD activity of the copper complex CuNA/Ph was positively correlated with the electron affinity (EA value. The two quantum chemical parameters, highest occupied molecular orbital (HOMO and lowest unoccupied molecular orbital (LUMO, were shown to be appropriate for understanding the mechanism of the metal complexes as their calculated energies show good correlation with the SOD activity. Moreover, copper complex with the highest SOD activity were shown to possess the lowest HOMO energy. These findings demonstrate a great potential for the development of value-added metallovitamin-based therapeutics.

  10. Peptide-modified PELCL electrospun membranes for regulation of vascular endothelial cells.

    Science.gov (United States)

    Zhou, Fang; Jia, Xiaoling; Yang, Yang; Yang, Qingmao; Gao, Chao; Zhao, Yunhui; Fan, Yubo; Yuan, Xiaoyan

    2016-11-01

    The efficiency of biomaterials used in small vascular repair depends greatly on their ability to interact with vascular endothelial cells (VECs). Rapid endothelialization of the vascular grafts is a promising way to prevent thrombosis and intimal hyperplasia. In this work, modification of electrospun membranes of poly(ethylene glycol)-b-poly(l-lactide-co-ε-caprolactone) (PELCL) by three different peptides for regulation of VECs were studied in order to obtain ideal bioactive biomaterials as small diameter vascular grafts. QK (a mimetic peptide to vascular endothelial growth factor), Arg-Glu-Asp-Val (REDV, a specific adhesive peptide to VECs) and Val-Ala-Pro-Gly (VAPG, a specific adhesive peptide to vascular smooth muscle cells) were investigated. Surface properties of the modified membranes and the response of VECs were verified. It was found that protein adsorption and platelet adhesion were effectively suppressed with the introduction of QK, REDV or VAPG peptides on the PELCL electrospun membranes. Both QK- and REDV-modified electrospun membranes could accelerate the proliferation of VECs in the first 9days, and the QK-modified electrospun membrane promoted cell proliferation more significantly than the REDV-modified one. The REDV-modified PELCL membrane was the most favorable for VECs adhesion than QK- and VAPG-modified membranes. It was suggested that QK- or REDV-modified PELCL electrospun membranes may have great potential applications in cardiovascular biomaterials for rapid endothelialization in situ. PMID:27524062

  11. Antibacterial and leishmanicidal activities of temporin-SHd, a 17-residue long membrane-damaging peptide.

    Science.gov (United States)

    Abbassi, Feten; Raja, Zahid; Oury, Bruno; Gazanion, Elodie; Piesse, Christophe; Sereno, Denis; Nicolas, Pierre; Foulon, Thierry; Ladram, Ali

    2013-02-01

    Temporins are a family of short antimicrobial peptides (8-17 residues) that mostly show potent activity against Gram-positive bacteria. Herein, we demonstrate that temporin-SHd, a 17-residue peptide with a net charge of +2 (FLPAALAGIGGILGKLF(amide)), expressed a broad spectrum of antimicrobial activity. This peptide displayed potent antibacterial activities against Gram-negative and Gram-positive bacteria, including multi-drug resistant Staphylococcus aureus strains, as well as antiparasitic activity against promastigote and the intracellular stage (amastigote) of Leishmania infantum, at concentration not toxic for the macrophages. Temporin-SHd that is structured in a non-amphipathic α-helix in anionic membrane-mimetic environments, strongly and selectively perturbs anionic bilayer membranes by interacting with the polar head groups and acyl region of the phospholipids, with formation of regions of two coexisting phases: one phase rich in peptide and the other lipid-rich. The disruption of lipid packing within the bilayer may lead to the formation of transient pores and membrane permeation/disruption once a threshold peptide accumulation is reached. To our knowledge, Temporin-SHd represents the first known 17-residue long temporin expressing such broad spectrum of antimicrobial activity including members of the trypanosomatidae family. Additionally, since only a few shorter members (13 residues) of the temporin family are known to display antileishmanial activity (temporins-TA, -TB and -SHa), SHd is an interesting tool to analyze the antiparasitic mechanism of action of temporins. PMID:23116712

  12. Theoretical studies on the interactions of XIAP-BIR3 domain with bicyclic and tricyclic core monovalent Smac mimetics.

    Science.gov (United States)

    Ling, Baoping; Dong, Lihua; Zhang, Rui; Wang, Zhiguo; Liu, Yongjun; Liu, Chengbu

    2010-11-01

    X-linked IAP can bind caspase-9 and inhibit its activity. Mitochondrial protein Smac/DIABLO can also interact with XIAP and relieve the inhibition on caspase-9 to induce apoptosis. A series of artificial Smac mimetics have been used to mimic the Smac N-terminal tetrapeptide AVPI to bind to XIAP-BIR3, but these structural diverse mimetics exhibited distinct binding affinities. To get an insight into the binding nature and optimize the structures, molecular docking and dynamics simulations were used to study the binding of XIAP-BIR3 with three groups of Smac mimetics. The docking results reveal that these Smac mimetics anchored on the surface groove of XIAP-BIR3 and superimposed well with AVPI. The modifications on the seven-membered ring of bicyclic core segment do not strengthen the binding affinity, while a benzyl introduced to the five-membered ring is favorable to the binding. Molecular dynamics simulations on three typical systems show that these complexes are very stable. Hydrogen bonds between the bicyclic core segment and Thr308 play critical roles in maintaining the stability of complex. The binding free energies calculated by MM_PBSA method are consistent with the experimental results. PMID:20980180

  13. Design and modular parallel synthesis of a MCR derived α-helix mimetic protein-protein interaction inhibitor scaffold

    NARCIS (Netherlands)

    Antuch, Walfrido; Menon, Sanjay; Chen, Quin-Zene; Lu, Yingchun; Sakamuri, Sukumar; Beck, Barbara; Schauer-Vukašinović, Vesna; Agarwal, Seema; Hess, Sibylle; Dömling, Alexander

    2006-01-01

    A terphenyl α-helix mimetic scaffold recognized to be capable of disrupting protein-protein interactions was structurally morphed into an easily amenable and versatile multicomponent reaction (MCR) backbone. The design, modular in-parallel library synthesis, initial cell based biological data, and p

  14. Iron oxide superparamagnetic nanoparticles conjugated with a conformationally blocked α-Tn antigen mimetic for macrophage activation

    Science.gov (United States)

    Manuelli, Massimo; Fallarini, Silvia; Lombardi, Grazia; Sangregorio, Claudio; Nativi, Cristina; Richichi, Barbara

    2014-06-01

    Among new therapies to fight tumors, immunotherapy is still one of the most promising and intriguing. Thanks to the ongoing structural elucidation of several tumor antigens and the development of innovative antigen carriers, immunotherapy is in constant evolution and it is largely used either alone or in synergy with chemotherapy/radiotherapy. With the aim to develop fully synthetic immunostimulants we have recently developed a mimetic of the α-Tn mucin antigen, a relevant tumor antigen. The 4C1 blocked mimetic 1, unique example of an α-Tn mimetic antigen, was functionalized with an ω-phosphonate linker and used to decorate iron oxide superparamagnetic nanoparticles (MNPs), employed as multivalent carriers. MNPs, largely exploited for supporting and carrying biomolecules, like antibodies, drugs or antigens, consent to combine in the same nanometric system the main features of an inorganic magnetic core with a bioactive organic coating. The superparamagnetic glyconanoparticles obtained, named GMNPs, are indeed biocompatible and immunoactive, and they preserve suitable characteristics for use as heat mediators in the magnetic fluid hyperthermia (MFH) treatment of tumors. All together these properties make GMNPs attracting devices for innovative tumor treatment.Among new therapies to fight tumors, immunotherapy is still one of the most promising and intriguing. Thanks to the ongoing structural elucidation of several tumor antigens and the development of innovative antigen carriers, immunotherapy is in constant evolution and it is largely used either alone or in synergy with chemotherapy/radiotherapy. With the aim to develop fully synthetic immunostimulants we have recently developed a mimetic of the α-Tn mucin antigen, a relevant tumor antigen. The 4C1 blocked mimetic 1, unique example of an α-Tn mimetic antigen, was functionalized with an ω-phosphonate linker and used to decorate iron oxide superparamagnetic nanoparticles (MNPs), employed as multivalent

  15. Plant signalling peptides

    OpenAIRE

    Wiśniewska, Justyna; Trejgell, Alina; Tretyn, Andrzej

    2003-01-01

    Biochemical and genetic studies have identified peptides that play crucial roles in plant growth and development, including defence mechanisms in response to wounding by pests, the control of cell division and expansion, and pollen self-incompatibility. The first two signalling peptides to be described in plants were tomato systemin and phytosulfokine (PSK). There is also biochemical evidence that natriuretic peptide-like molecules, immunologically-relatedt o those found ...

  16. Polycyclic peptide therapeutics.

    Science.gov (United States)

    Baeriswyl, Vanessa; Heinis, Christian

    2013-03-01

    Owing to their excellent binding properties, high stability, and low off-target toxicity, polycyclic peptides are an attractive molecule format for the development of therapeutics. Currently, only a handful of polycyclic peptides are used in the clinic; examples include the antibiotic vancomycin, the anticancer drugs actinomycin D and romidepsin, and the analgesic agent ziconotide. All clinically used polycyclic peptide drugs are derived from natural sources, such as soil bacteria in the case of vancomycin, actinomycin D and romidepsin, or the venom of a fish-hunting coil snail in the case of ziconotide. Unfortunately, nature provides peptide macrocyclic ligands for only a small fraction of therapeutic targets. For the generation of ligands of targets of choice, researchers have inserted artificial binding sites into natural polycyclic peptide scaffolds, such as cystine knot proteins, using rational design or directed evolution approaches. More recently, large combinatorial libraries of genetically encoded bicyclic peptides have been generated de novo and screened by phage display. In this Minireview, the properties of existing polycyclic peptide drugs are discussed and related to their interesting molecular architectures. Furthermore, technologies that allow the development of unnatural polycyclic peptide ligands are discussed. Recent application of these technologies has generated promising results, suggesting that polycyclic peptide therapeutics could potentially be developed for a broad range of diseases. PMID:23355488

  17. Insulin C-peptide test

    Science.gov (United States)

    C-peptide ... the test depends on the reason for the C-peptide measurement. Ask your health care provider if ... C-peptide is measured to tell the difference between insulin the body produces and insulin someone injects ...

  18. Targeting p38 or MK2 Enhances the Anti-Leukemic Activity of Smac-Mimetics.

    Science.gov (United States)

    Lalaoui, Najoua; Hänggi, Kay; Brumatti, Gabriela; Chau, Diep; Nguyen, Nhu-Y N; Vasilikos, Lazaros; Spilgies, Lisanne M; Heckmann, Denise A; Ma, Chunyan; Ghisi, Margherita; Salmon, Jessica M; Matthews, Geoffrey M; de Valle, Elisha; Moujalled, Donia M; Menon, Manoj B; Spall, Sukhdeep Kaur; Glaser, Stefan P; Richmond, Jennifer; Lock, Richard B; Condon, Stephen M; Gugasyan, Raffi; Gaestel, Matthias; Guthridge, Mark; Johnstone, Ricky W; Munoz, Lenka; Wei, Andrew; Ekert, Paul G; Vaux, David L; Wong, W Wei-Lynn; Silke, John

    2016-02-01

    Birinapant is a smac-mimetic (SM) in clinical trials for treating cancer. SM antagonize inhibitor of apoptosis (IAP) proteins and simultaneously induce tumor necrosis factor (TNF) secretion to render cancers sensitive to TNF-induced killing. To enhance SM efficacy, we screened kinase inhibitors for their ability to increase TNF production of SM-treated cells. We showed that p38 inhibitors increased TNF induced by SM. Unexpectedly, even though p38 is required for Toll-like receptors to induce TNF, loss of p38 or its downstream kinase MK2 increased induction of TNF by SM. Hence, we show that the p38/MK2 axis can inhibit or promote TNF production, depending on the stimulus. Importantly, clinical p38 inhibitors overcame resistance of primary acute myeloid leukemia to birinapant.

  19. Myoglobin as Mimetic Enzyme and Its Analytical Application in Determination of H2O2

    Institute of Scientific and Technical Information of China (English)

    ZHENG Qi; CAO Qihua; LIU Zhihong; CAI Ruxiu

    2006-01-01

    The characteristic of Myoglobin as mimetic enzyme was studied and applied in the determination of H2 O2with o-phenylenediamine as substrate. The absorbance obtained at 40 ℃ was found to be proportional to the concentration of H2O2 in the range oF2.0×10-5-2.0×10-7 mol/L,with a correlation coefficient of 0. 999 1. The proposed method is simple and highly sensitive to a detection limit oF2.7 ×10-8 mol/L. The relative standard deviations were within 5% for the determination of different concentrations of H2O2.Satisfied results were obtained in the determination of H2O2 in rainwater by this method, and the recoveries were at the range of 97.2%-105.4%.

  20. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds known as peptide nucleic acids, bind complementary DNA and RNA strands, and generally do so more strongly than the corresponding DNA or RNA strands while exhibiting increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from...

  1. The Thrombospondin-1 Mimetic ABT-510 Increases the Uptake and Effectiveness of Cisplatin and Paclitaxel in a Mouse Model of Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Nicole E. Campbell

    2010-03-01

    Full Text Available Epithelial ovarian cancer (EOC comprises approximately 90% of ovarian cancers and arises from the surface epithelium. Typical treatment of EOC involves cytoreductive surgery combined with chemotherapy. More recent therapies have targeted the tumor vasculature using antiangiogenic compounds such as thrombospondin-1 (TSP-1. TSP-1 mimetic peptides such as ABT-510 have been created and have been in various clinical trials. We have previously shown that ABT-510 reduces abnormal vasculature associated with tumor tissue and increases the presence of mature blood vessels. It has been hypothesized that treatment with antiangiogenic compounds would allow increased delivery of cytotoxic agents and enhance treatment. In this study, we evaluated the potential role of ABT-510 and various chemotherapeutics (cisplatin and paclitaxel on tumor progression, angiogenesis, and the benefits of combinational treatments on tissue uptake and perfusion using an orthotopic syngeneic mouse model of EOC. Animals were treated with ABT-510 (100 mg/kg per day alone or in combination with cisplatin (2 mg/kg per 3 days or paclitaxel (10 mg/kg per 2 days at 60 days after tumor induction. Radiolabeled and fluorescently labeled paclitaxel demonstrated a significant increase in tumor uptake after ABT-510 treatment. Combined treatment with ABT-510 and cisplatin or paclitaxel resulted in a significant increase in tumor cell and tumor endothelial cell apoptosis and a resultant decrease in ovarian tumor size. Combined treatment also regressed secondary lesions and eliminated the presence of abdominal ascites. The results from this study show that through vessel normalization, ABT-510 increases uptake of chemotherapy drugs and can induce regression of advanced ovarian cancer.

  2. The characterization of decellularized human skeletal muscle as a blueprint for mimetic scaffolds.

    Science.gov (United States)

    Wilson, Klaire; Terlouw, Abby; Roberts, Kevin; Wolchok, Jeffrey C

    2016-08-01

    The use of decellularized skeletal muscle (DSM) as a cell substrate and scaffold for the repair of volumetric muscle loss injuries has shown therapeutic promise. The performance of DSM materials motivated our interest in exploring the chemical and physical properties of this promising material. We suggest that these properties could serve as a blueprint for the development of next generation engineered materials with DSM mimetic properties. In this study, whole human lower limb rectus femoris (n = 10) and upper limb supraspinatus muscle samples (n = 10) were collected from both male and female tissue donors. Skeletal muscle samples were decellularized and nine property values, capturing key compositional, architectural, and mechanical properties, were measured and statistically analyzed. Mean values for each property were determined across muscle types and sexes. Additionally, the influence of muscle type (upper vs lower limb) and donor sex (male vs female) on each of the DSM material properties was examined. The data suggests that DSM materials prepared from lower limb rectus femoris samples have an increased modulus and contain a higher collagen content then upper limb supraspinatus muscles. Specifically, lower limb rectus femoris DSM material modulus and collagen content was approximately twice that of lower limb supraspinatus DSM samples. While muscle type did show some influence on material properties, we did not find significant trends related to sex. The material properties reported herein may be used as a blueprint for the data-driven design of next generation engineered scaffolds with muscle mimetic properties, as well as inputs for computational and physical models of skeletal muscle. PMID:27324779

  3. Covariant Hořava-like and mimetic Horndeski gravity: cosmological solutions and perturbations

    Science.gov (United States)

    Cognola, Guido; Myrzakulov, Ratbay; Sebastiani, Lorenzo; Vagnozzi, Sunny; Zerbini, Sergio

    2016-11-01

    We consider a variant of the Nojiri–Odintsov covariant Hořava-like gravitational model, where diffeomorphism invariance is broken dynamically via a non-standard coupling to a perfect fluid. The theory allows one to address some of the potential instability problems present in Hořava–Lifshitz gravity due to explicit diffeomorphism invariance breaking. The fluid is instead constructed from a scalar field constrained by a Lagrange multiplier. In fact, the Lagrange multiplier construction allows for an extension of the Hořava-like model to include the scalar field of mimetic gravity, an extension which we thoroughly explore. By adding a potential for the scalar field, we show how one can reproduce a number of interesting cosmological scenarios. We then turn to the study of perturbations around a flat FLRW background, showing that the fluid in question behaves as an irrotational fluid, with zero sound speed. To address this problem, we consider a modified version of the theory, adding higher derivative terms in a way which brings us beyond the Horndeski framework. We compute the sound speed in this modified higher order mimetic Hořava-like model and show that it is non-zero, which means that perturbations therein can be sensibly defined. Caveats to our analysis, as well as comparisons to projectable Hořava–Lifshitz gravity, are also discussed. In conclusion, we present a theory of gravity which preserves diffeomorphism invariance at the level of the action but breaks it dynamically in the UV, reduces to General Relativity (GR) in the IR, allows the realization of a number of interesting cosmological scenarios, is well defined when considering perturbations around a flat FLRW background, and features cosmological dark matter emerging as an integration constant.

  4. Inhibition of Salmonella enterica biofilm formation using small-molecule adenosine mimetics.

    Science.gov (United States)

    Koopman, Jacob A; Marshall, Joanna M; Bhatiya, Aditi; Eguale, Tadesse; Kwiek, Jesse J; Gunn, John S

    2015-01-01

    Biofilms have been widely implicated in chronic infections and environmental persistence of Salmonella enterica, facilitating enhanced colonization of surfaces and increasing the ability of the bacteria to be transmitted to new hosts. Salmonella enterica serovar Typhi biofilm formation on gallstones from humans and mice enhances gallbladder colonization and bacterial shedding, while Salmonella enterica serovar Typhimurium biofilms facilitate long-term persistence in a number of environments important to food, medical, and farming industries. Salmonella regulates expression of many virulence- and biofilm-related processes using kinase-driven pathways. Kinases play pivotal roles in phosphorylation and energy transfer in cellular processes and possess an ATP-binding pocket required for their functions. Many other cellular proteins also require ATP for their activity. Here we test the hypothesis that pharmacological interference with ATP-requiring enzymes utilizing adenosine mimetic compounds would decrease or inhibit bacterial biofilm formation. Through the screening of a 3,000-member ATP mimetic library, we identified a single compound (compound 7955004) capable of significantly reducing biofilm formation by S. Typhimurium and S. Typhi. The compound was not bactericidal or bacteriostatic toward S. Typhimurium or cytotoxic to mammalian cells. An ATP-Sepharose affinity matrix technique was used to discover potential protein-binding targets of the compound and identified GroEL and DeoD. Compound 7955004 was screened against other known biofilm-forming bacterial species and was found to potently inhibit biofilms of Acinetobacter baumannii as well. The identification of a lead compound with biofilm-inhibiting capabilities toward Salmonella provides a potential new avenue of therapeutic intervention against Salmonella biofilm formation, with applicability to biofilms of other bacterial pathogens.

  5. The BH3 Mimetic Obatoclax Accumulates in Lysosomes and Causes Their Alkalinization.

    Directory of Open Access Journals (Sweden)

    Vasileios A Stamelos

    Full Text Available Obatoclax belongs to a class of compounds known as BH3 mimetics which function as antagonists of Bcl-2 family apoptosis regulators. It has undergone extensive preclinical and clinical evaluation as a cancer therapeutic. Despite this, it is clear that obatoclax has additional pharmacological effects that contribute to its cytotoxic activity. It has been claimed that obatoclax, either alone or in combination with other molecularly targeted therapeutics, induces an autophagic form of cell death. In addition, obatoclax has been shown to inhibit lysosomal function, but the mechanism of this has not been elucidated. We have evaluated the mechanism of action of obatoclax in eight ovarian cancer cell lines. Consistent with its function as a BH3 mimetic, obatoclax induced apoptosis in three cell lines. However, in the remaining cell lines another form of cell death was evident because caspase activation and PARP cleavage were not observed. Obatoclax also failed to show synergy with carboplatin and paclitaxel, chemotherapeutic agents which we have previously shown to be synergistic with authentic Bcl-2 family antagonists. Obatoclax induced a profound accumulation of LC-3 but knockdown of Atg-5 or beclin had only minor effects on the activity of obatoclax in cell growth assays suggesting that the inhibition of lysosomal function rather than stimulation of autophagy may play a more prominent role in these cells. To evaluate how obatoclax inhibits lysosomal function, confocal microscopy studies were conducted which demonstrated that obatoclax, which contains two basic pyrrole groups, accumulates in lysosomes. Studies using pH sensitive dyes demonstrated that obatoclax induced lysosomal alkalinization. Furthermore, obatoclax was synergistic in cell growth/survival assays with bafilomycin and chloroquine, two other drugs which cause lysosomal alkalinization. These studies explain, for the first time, how obatoclax inhibits lysosomal function and suggest that

  6. Smac mimetic and oleanolic acid synergize to induce cell death in human hepatocellular carcinoma cells.

    Science.gov (United States)

    Liese, Juliane; Abhari, Behnaz Ahangarian; Fulda, Simone

    2015-08-28

    Chemotherapy resistance of hepatocellular carcinoma (HCC) is still a major unsolved problem highlighting the need to develop novel therapeutic strategies. Here, we identify a novel synergistic induction of cell death by the combination of the Smac mimetic BV6, which antagonizes Inhibitor of apoptosis (IAP) proteins, and the triterpenoid oleanolic acid (OA) in human HCC cells. Importantly, BV6 and OA also cooperate to suppress long-term clonogenic survival as well as tumor growth in a preclinical in vivo model of HCC underscoring the clinical relevance of our findings. In contrast, BV6/OA cotreatment does not exert cytotoxic effects against normal primary hepatocytes, pointing to some tumor selectivity. Mechanistic studies show that BV6/OA cotreatment leads to DNA fragmentation and caspase-3 cleavage, while supply of the pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) revealed a cell type-dependent requirement of caspases for BV6/OA-induced cell death. The receptor interacting protein (RIP)1 kinase Inhibitor Necrostatin-1 (Nec-1) or genetic knockdown of RIP1 fails to rescue BV6/OA-mediated cell death, indicating that BV6/OA cotreatment does not primarily engage necroptotic cell death. Notably, the addition of several reactive oxygen species (ROS) scavengers significantly decreases BV6/OA-triggered cell death, indicating that ROS production contributes to BV6/OA-induced cell death. In conclusion, cotreatment of Smac mimetic and OA represents a novel approach for the induction of cell death in HCC and implicates further studies.

  7. New perspectives on exploitation of incretin peptides for the treatment of diabetes and related disorders

    Institute of Scientific and Technical Information of China (English)

    Nigel; Irwin; Peter; R; Flatt

    2015-01-01

    The applicability of stable gut hormones for the treatment of obesity-related diabetes is now undisputable. This is based predominantly on prominent and sustained glucoselowering actions, plus evidence that these peptides can augment insulin secretion and pancreatic islet function over time. This review highlights the therapeutic potential of glucagon-like peptide-1(GLP-1), glucose-dependent insulinotropic polypeptide(GIP), oxyntomodulin(OXM) and cholecystokinin(CCK) for obesity-related diabetes.Stable GLP-1 mimetics have already been successfully adopted into the diabetic clinic, whereas GIP, CCK and OXM molecules offer promise as potential new classes of antidiabetic drugs. Moreover, recent studies have shown improved therapeutic effects following simultaneous modulation of multiple receptor signalling pathways by combination therapy or use of dual/triple agonist peptides. However, timing and composition of injections may be important to permit interludes of beta-cell rest. The review also addresses the possible perils of incretin based drugs for treatment of prediabetes. Finally, the unanticipated utility of stable gut peptides as effective treatments for complications of diabetes, bone disorders, cognitive impairment and cardiovascular dysfunction is considered.

  8. Peptide inhibition of p22phox and Rubicon interaction as a therapeutic strategy for septic shock.

    Science.gov (United States)

    Kim, Ye-Ram; Koh, Hyun-Jung; Kim, Jae-Sung; Yun, Jin-Seung; Jang, Kiseok; Lee, Joo-Youn; Jung, Jae U; Yang, Chul-Su

    2016-09-01

    Sepsis is a clinical syndrome that complicates severe infection and is characterized by the systemic inflammatory response syndrome (SIRS), is a life threatening disease characterized by inflammation of the entire body. Upon microbial infection, p22phox-gp91phox NADPH oxidase (NOX) complexes produce reactive oxygen species (ROS) that are critical for the elimination of invading microbes. However, excess production of ROS represents a key element in the cascade of deleterious processes in sepsis. We have previously reported direct crosstalk between autophagy and phagocytosis machineries by demonstrating that the Rubicon protein interacts with p22phox upon microbial infection, facilitating phagosomal trafficking of the p22phox-gp91phox NOX complex to induce a ROS burst, inflammatory cytokine production, and thereby, potent anti-microbial activities. Here, we showed N8 peptide, an N-terminal 8-amino acid peptide derived from p22phox, was sufficient for Rubicon interaction and thus, capable of robustly blocking the Rubicon-p22phox interaction and profoundly suppressing ROS and inflammatory cytokine production. Consequently, treatment with the Tat-N8 peptide or a N8 peptide-mimetic small-molecule dramatically reduced the mortality associated with Cecal-Ligation-and-Puncture-induced polymicrobial sepsis in mice. This study demonstrates a new anti-sepsis therapeutic strategy by blocking the crosstalk between autophagy and phagocytosis innate immunity machineries, representing a potential paradigm shift for urgently needed therapeutic intervention against this life-threatening SIRS. PMID:27267627

  9. Engineering of a Novel Simplified Human Insulin-Like Peptide 5 Agonist.

    Science.gov (United States)

    Patil, Nitin A; Hughes, Richard A; Rosengren, K Johan; Kocan, Martina; Ang, Sheng Yu; Tailhades, Julien; Separovic, Frances; Summers, Roger J; Grosse, Johannes; Wade, John D; Bathgate, Ross A D; Hossain, Mohammed Akhter

    2016-03-10

    Insulin-like peptide 5 (INSL5) has recently been discovered as only the second orexigenic gut hormone after ghrelin. As we have previously reported, INSL5 is extremely difficult to assemble and oxidize into its two-chain three-disulfide structure. The focus of this study was to generate structure-activity relationships (SARs) of INSL5 and use it to develop a potent and simpler INSL5 mimetic with RXFP4 agonist activity. A series of human and mouse INSL5 (hINSL5/mINSL5) analogues were designed and chemically synthesized, resulting in a chimeric INSL5 analogue exhibiting more than 10-fold higher potency (0.35 nM) at human RXFP4 compared with native hINSL5 (4.57 nM). The SAR study also identified a key residue (K(A15)) in the A-chain of mINSL5 that contributes to improved RXFP4 affinity and potency of mINSL5 compared with hINSL5. This knowledge ultimately led us to engineer a minimized hINSL5 mimetic agonist that retains native hINSL5-like RXFP4 affinity and potency at human RXFP4. This minimized analogue was synthesized in 17.5-fold higher yield and in less time compared with hINSL5. PMID:26824523

  10. Non-peptidic analogs of the cell adhesion motif RGD prevent experimental liver injury.

    Science.gov (United States)

    Bruck, R; Hershkoviz, R; Lider, O; Shirin, H; Aeed, H; Halpern, Z

    2000-07-01

    In chronic viral hepatitis, autoimmune hepatitis, and some chronic cholestatic liver diseases, T lymphocytes serve as effector cells of the immunostimulatory processes. Cellular interactions of immune cells with extracellular matrix components are regulated primarily via the beta 1 subfamily of integrin receptors. The target epitope of several such integrin receptors is the Arg-Gly-Asp sequence, a cell adhesion motif shared by several matrix-associated adhesive glycoproteins. We review the use of synthetic non-peptidic analogs of RGD in the prevention of immune-mediated, concanavalin A-induced liver damage in mice and in inhibiting the development of liver cirrhosis in rats. The Con A-induced elevation of serum transaminases and tumor necrosis factor-alpha and the infiltration of liver tissue by inflammatory cells were inhibited by pretreatment of the mice with the synthetic RGD mimetics. In rats, the progression of thioacetamide-induced liver cirrhosis was markedly inhibited by the co-administration of the RGD mimetic SF-6,5. The compounds described here may be examined therapeutically for pathological conditions in the liver, manifested as necro-inflammation and fibrosis. PMID:10909422

  11. Engineering of a Novel Simplified Human Insulin-Like Peptide 5 Agonist.

    Science.gov (United States)

    Patil, Nitin A; Hughes, Richard A; Rosengren, K Johan; Kocan, Martina; Ang, Sheng Yu; Tailhades, Julien; Separovic, Frances; Summers, Roger J; Grosse, Johannes; Wade, John D; Bathgate, Ross A D; Hossain, Mohammed Akhter

    2016-03-10

    Insulin-like peptide 5 (INSL5) has recently been discovered as only the second orexigenic gut hormone after ghrelin. As we have previously reported, INSL5 is extremely difficult to assemble and oxidize into its two-chain three-disulfide structure. The focus of this study was to generate structure-activity relationships (SARs) of INSL5 and use it to develop a potent and simpler INSL5 mimetic with RXFP4 agonist activity. A series of human and mouse INSL5 (hINSL5/mINSL5) analogues were designed and chemically synthesized, resulting in a chimeric INSL5 analogue exhibiting more than 10-fold higher potency (0.35 nM) at human RXFP4 compared with native hINSL5 (4.57 nM). The SAR study also identified a key residue (K(A15)) in the A-chain of mINSL5 that contributes to improved RXFP4 affinity and potency of mINSL5 compared with hINSL5. This knowledge ultimately led us to engineer a minimized hINSL5 mimetic agonist that retains native hINSL5-like RXFP4 affinity and potency at human RXFP4. This minimized analogue was synthesized in 17.5-fold higher yield and in less time compared with hINSL5.

  12. Glucagon-like peptide-1 (GLP-1) and the regulation of human invariant natural killer T cells: lessons from obesity, diabetes and psoriasis.

    LENUS (Irish Health Repository)

    Hogan, A E

    2011-11-01

    The innate immune cells, invariant natural killer T cells (iNKT cells), are implicated in the pathogenesis of psoriasis, an inflammatory condition associated with obesity and other metabolic diseases, such as diabetes and dyslipidaemia. We observed an improvement in psoriasis severity in a patient within days of starting treatment with an incretin-mimetic, glucagon-like peptide-1 (GLP-1) receptor agonist. This was independent of change in glycaemic control. We proposed that this unexpected clinical outcome resulted from a direct effect of GLP-1 on iNKT cells.

  13. Bioinspired Hydroxyapatite/Poly(methyl methacrylate) Composite with a Nacre-Mimetic Architecture by a Bidirectional Freezing Method.

    Science.gov (United States)

    Bai, Hao; Walsh, Flynn; Gludovatz, Bernd; Delattre, Benjamin; Huang, Caili; Chen, Yuan; Tomsia, Antoni P; Ritchie, Robert O

    2016-01-01

    Using a bidirectional freezing technique, combined with uniaxial pressing and in situ polymerization, "nacre-mimetic" hydroxyapatite/poly(methyl methacrylate) (PMMA) composites are developed by processing large-scale aligned lamellar ceramic scaffolds. Structural and mechanical characterization shows "brick-and-mortar" structures, akin to nacre, with interesting combinations of strength, stiffness, and work of fracture, which provide a pathway to making strong and tough lightweight materials. PMID:26554760

  14. Diabetes-Impaired Wound Healing Is Improved by Matrix Therapy With Heparan Sulfate Glycosaminoglycan Mimetic OTR4120 in Rats

    OpenAIRE

    Tong, Miao; Tuk, Bastiaan; Shang, Peng; Hekking, Ineke M.; Esther M G Fijneman; Guijt, Marnix; Hovius, Steven E. R.; Johan W van Neck

    2012-01-01

    Wound healing in diabetes is frequently impaired, and its treatment remains a challenge. We tested a therapeutic strategy of potentiating intrinsic tissue regeneration by restoring the wound cellular environment using a heparan sulfate glycosaminoglycan mimetic, OTR4120. The effect of OTR4120 on healing of diabetic ulcers was investigated. Experimental diabetes was induced by intraperitoneal injection of streptozotocin. Seven weeks after induction of diabetes, rats were ulcerated by clamping ...

  15. PNA Peptide chimerae

    DEFF Research Database (Denmark)

    Koch, T.; Næsby, M.; Wittung, P.;

    1995-01-01

    Radioactive labelling of PNA has been performed try linking a peptide segment to the PNA which is substrate for protein kinase A. The enzymatic phosphorylation proceeds in almost quantitative yields....

  16. The SMAC mimetic, LCL-161, reduces survival in aggressive MYC-driven lymphoma while promoting susceptibility to endotoxic shock.

    Science.gov (United States)

    West, A C; Martin, B P; Andrews, D A; Hogg, S J; Banerjee, A; Grigoriadis, G; Johnstone, R W; Shortt, J

    2016-01-01

    Inhibitor of apoptosis proteins (IAPs) antagonize caspase activation and regulate death receptor signaling cascades. LCL-161 is a small molecule second mitochondrial activator of caspase (SMAC) mimetic, which both disengages IAPs from caspases and induces proteasomal degradation of cIAP-1 and -2, resulting in altered signaling through the NFκB pathway, enhanced TNF production and sensitization to apoptosis mediated by the extrinsic pathway. SMAC mimetics are undergoing clinical evaluation in a range of hematological malignancies. Burkitt-like lymphomas are hallmarked by a low apoptotic threshold, conveying sensitivity to a range of apoptosis-inducing stimuli. While evaluating LCL-161 in the Eμ-Myc model of aggressive Burkitt-like lymphoma, we noted unexpected resistance to apoptosis induction despite 'on-target' IAP degradation and NFκB activation. Moreover, LCL-161 treatment of lymphoma-bearing mice resulted in apparent disease acceleration concurrent to augmented inflammatory cytokine-release in the same animals. Indiscriminate exposure of lymphoma patients to SMAC mimetics may therefore be detrimental due to both unanticipated prolymphoma effects and increased susceptibility to endotoxic shock. PMID:27043662

  17. Highly stable and self-repairing membrane-mimetic 2D nanomaterials assembled from lipid-like peptoids

    Science.gov (United States)

    Jin, Haibao; Jiao, Fang; Daily, Michael D.; Chen, Yulin; Yan, Feng; Ding, Yan-Huai; Zhang, Xin; Robertson, Ellen J.; Baer, Marcel D.; Chen, Chun-Long

    2016-07-01

    An ability to develop sequence-defined synthetic polymers that both mimic lipid amphiphilicity for self-assembly of highly stable membrane-mimetic 2D nanomaterials and exhibit protein-like functionality would revolutionize the development of biomimetic membranes. Here we report the assembly of lipid-like peptoids into highly stable, crystalline, free-standing and self-repairing membrane-mimetic 2D nanomaterials through a facile crystallization process. Both experimental and molecular dynamics simulation results show that peptoids assemble into membranes through an anisotropic formation process. We further demonstrated the use of peptoid membranes as a robust platform to incorporate and pattern functional objects through large side-chain diversity and/or co-crystallization approaches. Similar to lipid membranes, peptoid membranes exhibit changes in thickness upon exposure to external stimuli; they can coat surfaces in single layers and self-repair. We anticipate that this new class of membrane-mimetic 2D nanomaterials will provide a robust matrix for development of biomimetic membranes tailored to specific applications.

  18. Tumor penetrating peptides

    Directory of Open Access Journals (Sweden)

    Tambet eTeesalu

    2013-08-01

    Full Text Available Tumor-homing peptides can be used to deliver drugs into tumors. Phage library screening in live mice has recently identified homing peptides that specifically recognize the endothelium of tumor vessels, extravasate, and penetrate deep into the extravascular tumor tissue. The prototypic peptide of this class, iRGD (CRGDKGPDC, contains the integrin-binding RGD motif. RGD mediates tumor homing through binding to αv integrins, which are selectively expressed on various cells in tumors, including tumor endothelial cells. The tumor-penetrating properties of iRGD are mediated by a second sequence motif, R/KXXR/K. This C-end Rule (or CendR motif is active only when the second basic residue is exposed at the C-terminus of the peptide. Proteolytic processing of iRGD in tumors activates the cryptic CendR motif, which then binds to neuropilin-1 activating an endocytic bulk transport pathway through tumor tissue. Phage screening has also yielded tumor-penetrating peptides that function like iRGD in activating the CendR pathway, but bind to a different primary receptor. Moreover, novel tumor-homing peptides can be constructed from tumor-homing motifs, CendR elements and protease cleavage sites. Pathologies other than tumors can be targeted with tissue-penetrating peptides, and the primary receptor can also be a vascular zip code of a normal tissue. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. The tumor-penetrating peptides are capable of taking a payload deep into tumor tissue in mice, and they also penetrate into human tumors ex vivo. Targeting with these peptides specifically increases the accumulation in tumors of a variety of drugs and contrast agents, such as doxorubicin, antibodies and nanoparticle-based compounds. Remarkably the drug to be targeted does not have to be coupled to the peptide; the bulk transport system activated by the peptide sweeps along any compound that is

  19. Introduction to Peptide Synthesis

    OpenAIRE

    Stawikowski, Maciej; Fields, Gregg B.

    2002-01-01

    A number of synthetic peptides are significant commercial or pharmaceutical products, ranging from the dipeptide sugar-substitute aspartame to clinically used hormones, such as oxytocin, adrenocorticotropic hormone, and calcitonin. This unit provides an overview of the field of synthetic peptides and proteins. It discusses selecting the solid support and common coupling reagents. Additional information is provided regarding common side reactions and synthesizing modified residues.

  20. Advances in peptidic and peptidomimetic-based approaches to inhibit STAT signaling in human diseases.

    Science.gov (United States)

    Szelag, Malgorzata; Wesoly, Joanna; Bluyssen, Hans A R

    2016-01-01

    STATs promote fundamental cellular processes, marking them as convergence points of many oncogenic and inflammatory pathways. Therefore, aberrant activation of STAT signaling is implicated in a plethora of human diseases, like cancer, inflammation and auto-immunity. Identification of STAT-specific inhibitors is the topic of great practical importance, and various inhibitory strategies are being pursued. An interesting approach includes peptides and peptide-like biopolymers, because they allow the manipulation of STAT signaling without the transfer of genetic material. Phosphopeptides and peptidomimetics directly target STATs by inhibiting dimerization. Despite that a large number of efficient peptide- based STAT3-specific inhibitors have been reported to date, none of them was able to meet the pharmacological requirements to serve as a potent anti-cancer drug. The existing limitations, like metabolic instability and poor cell permeability during in vivo tests, excluded these macromolecules from further clinical development. To overcome these liabilities, in the last five years many advances have been made to develop next generation STAT-specific inhibitors. Here we discuss the pitfalls of current STAT inhibitory strategies and review the progress on the development of peptide-like prodrugs directly targeting STATs. Novel strategies involve screening of high-complexity libraries of random peptides, as specific STAT3 or STAT5 DNA-binding inhibitors, to construct cell permeable peptide aptamers and aptides for cancer therapy. Another new direction is synthesis of negative dominant α-helical mimetics of the STAT3 N-domain, preventing oligomerization on DNA. Moreover, construction of phosphopeptide conjugates with molecules mediating cellular uptake offers new therapeutic possibilities in treatment of cancer, asthma and allergy.

  1. Interfacial Cavity Filling To Optimize CD4-Mimetic Miniprotein Interactions with HIV-1 Surface Glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Morellato-Castillo, Laurence; Acharya, Priyamvada; Combes, Olivier; Michiels, Johan; Descours, Anne; Ramos, Oscar H.P.; Yang, Yongping; Vanham, Guido; Ariën, Kevin K.; Kwong, Peter D.; Martin, Loïc; Kessler, Pascal [ITM-Antwerp; (CEA-CNRS); (NIH)

    2013-08-05

    Ligand affinities can be optimized by interfacial cavity filling. A hollow (Phe43 cavity) between HIV-1 surface glycoprotein (gp120) and cluster of differentiation 4 (CD4) receptor extends beyond residue phenylalanine 43 of CD4 and cannot be fully accessed by natural amino acids. To increase HIV-1 gp120 affinity for a family of CD4-mimetic miniproteins (miniCD4s), we targeted the gp120 Phe43 cavity with 11 non-natural phenylalanine derivatives, introduced into a miniCD4 named M48 (1). The best derivative, named M48U12 (13), bound HIV-1 YU2 gp120 with 8 pM affinity and showed potent HIV-1 neutralization. It contained a methylcyclohexyl derivative of 4-aminophenylalanine, and its cocrystal structure with gp120 revealed the cyclohexane ring buried within the gp120 hydrophobic core but able to assume multiple orientations in the binding pocket, and the aniline nitrogen potentially providing a focus for further improvement. Altogether, the results provide a framework for filling the interfacial Phe43 cavity to enhance miniCD4 affinity.

  2. Magnetic field-induced ordering of a polymer-grafted biomembrane-mimetic hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Firestone, M.A.; Tiede, D.M.; Seifert, S.

    2000-03-23

    A biomembrane-mimetic complex fluid that spontaneously orients in the presence of a magnetic field to yield a highly ordered lamellar structure is described. Macroscopically oriented lamellae were produced by exploiting the inverted thermoreversible phase transition of the material, that is, by aligning the sample below the phase transition temperature (<16 C)(i.e., in the fluid, hexagonal micellar phase) and warming to produce the lamellar gel phase in a 7.05 T magnetic field. The in situ field-induced alignment was studied by deuterium NMR. The lamellar domains were found to preferentially orient perpendicular to the applied field (negative order). Characterization of the magnetic field-induced anisotropy by polarized optical microscopy and small-angle X-ray scattering/diffraction (SAXS) indicates that it persists even upon field termination. The directional alignment was flipped by 90{degree}, with the lamellar domains oriented parallel to the field (positive order), simply by modifying the composition through the addition of a lanthanide ion (EU{sup 3+}). The system offers the opportunity to spatially organize both membrane and aqueous soluble proteins in an anisotropic matrix, thereby facilitating structure and dynamic studies using a range of techniques, including magnetic resonance (both NMR as well as EPR), optical spectroscopy, and small-angle neutron and X-ray scattering.

  3. A superoxide dismutase/catalase mimetic nanomedicine for targeted therapy of inflammatory bowel disease.

    Science.gov (United States)

    Zhang, Qixiong; Tao, Hui; Lin, Yongyao; Hu, Ying; An, Huijie; Zhang, Dinglin; Feng, Shibin; Hu, Houyuan; Wang, Ruibing; Li, Xiaohui; Zhang, Jianxiang

    2016-10-01

    Oxidative stress, resulting from excessive generation of reactive oxygen species (ROS), plays a pivotal role in the initiation and progression of inflammatory bowel disease (IBD). To develop an efficacious and safe nanotherapy against IBD, we designed and developed a superoxide dismutase/catalase mimetic nanomedicine comprising a hydrogen peroxide-eliminating nanomatrix and a free radical scavenger Tempol (Tpl). To this end, an oxidation-responsive β-cyclodextrin material (OxbCD) was synthesized, and a Tpl-loaded OxbCD nanoparticle (Tpl/OxbCD NP) was produced. Hydrolysis of OxbCD NP could be triggered by hydrogen peroxide, leading to on-demand release of loaded Tpl molecules from Tpl/OxbCD NP. OxbCD NP was able to efficiently accumulate in the inflamed colon in mice, thereby dramatically reducing nonspecific distribution after oral delivery. In three mouse colitis models, oral administration of Tpl/OxbCD NP notably mitigated manifestations relevant to colitis, and significantly suppressed expression of proinflammatory mediators, with the efficacy superior over free Tpl or a control nanomedicine based on poly(lactide-co-glycolide) (PLGA). Accordingly, by scavenging multiple components of ROS, Tpl/OxbCD NP may effectively reduce ulcerative colitis in mice, and it can be intensively developed as a translational nanomedicine for the management of IBD and other inflammatory diseases. PMID:27525680

  4. Mimetic finite difference method for the stokes problem on polygonal meshes

    Energy Technology Data Exchange (ETDEWEB)

    Lipnikov, K [Los Alamos National Laboratory; Beirao Da Veiga, L [DIPARTIMENTO DI MATE; Gyrya, V [PENNSYLVANIA STATE UNIV; Manzini, G [ISTIUTO DI MATEMATICA

    2009-01-01

    Various approaches to extend the finite element methods to non-traditional elements (pyramids, polyhedra, etc.) have been developed over the last decade. Building of basis functions for such elements is a challenging task and may require extensive geometry analysis. The mimetic finite difference (MFD) method has many similarities with low-order finite element methods. Both methods try to preserve fundamental properties of physical and mathematical models. The essential difference is that the MFD method uses only the surface representation of discrete unknowns to build stiffness and mass matrices. Since no extension inside the mesh element is required, practical implementation of the MFD method is simple for polygonal meshes that may include degenerate and non-convex elements. In this article, we develop a MFD method for the Stokes problem on arbitrary polygonal meshes. The method is constructed for tensor coefficients, which will allow to apply it to the linear elasticity problem. The numerical experiments show the second-order convergence for the velocity variable and the first-order for the pressure.

  5. Species limits in polymorphic mimetic Eniclases net-winged beetles from New Guinean mountains (Coleoptera, Lycidae).

    Science.gov (United States)

    Bocek, Matej; Bocak, Ladislav

    2016-01-01

    Species delimitation was compared in a group of closely related lineages of aposematically colored Eniclases (Coleoptera, Lycidae) using morphology, genetic distances, and Bayesian implementation of the Poisson Tree Processes model. A high diversity of net-winged beetles was found in previously unsampled regions of New Guinea and ten new species are described: Eniclases bicolor sp. n., Eniclases bokondinensis sp. n., Eniclases brancuccii sp. n., Eniclases elelimensis sp. n., Eniclases infuscatus sp. n., Eniclases niger sp. n., Eniclases pseudoapertus sp. n., Eniclases pseudoluteolus sp. n., Eniclases tikapurensis sp. n., and Eniclases variabilis sp. n. Different levels of genetic and morphological diversification were identified in various sister-species pairs. As a result, both morphological and molecular analyses are used to delimit species. Sister-species with uncorrected pairwise genetic divergence as low as 0.45% were morphologically distinct not only in color pattern, but also in the relative size of eyes. Conversely, differences in color pattern regardless of their magnitude did not necessarily indicate genetic distance and intraspecific mimicry polymorphism was common. Additionally, genetic divergence without morphological differentiation was detected in one sister-species pair. Low dispersal propensity, diverse mimicry patterns, and mimetic polymorphism resulted in complex diversification of Eniclases and uncertain species delimitation in recently diversified lineages.

  6. Bacterial mimetics of endocrine secretory granules as immobilized in vivo depots for functional protein drugs

    Science.gov (United States)

    Céspedes, María Virtudes; Fernández, Yolanda; Unzueta, Ugutz; Mendoza, Rosa; Seras-Franzoso, Joaquin; Sánchez-Chardi, Alejando; Álamo, Patricia; Toledo-Rubio, Verónica; Ferrer-Miralles, Neus; Vázquez, Esther; Schwartz, Simó; Abasolo, Ibane; Corchero, José Luis; Mangues, Ramon; Villaverde, Antonio

    2016-01-01

    In the human endocrine system many protein hormones including urotensin, glucagon, obestatin, bombesin and secretin, among others, are supplied from amyloidal secretory granules. These granules form part of the so called functional amyloids, which within the whole aggregome appear to be more abundant than formerly believed. Bacterial inclusion bodies (IBs) are non-toxic, nanostructured functional amyloids whose biological fabrication can be tailored to render materials with defined biophysical properties. Since under physiological conditions they steadily release their building block protein in a soluble and functional form, IBs are considered as mimetics of endocrine secretory granules. We have explored here if the in vivo implantation of functional IBs in a given tissue would represent a stable local source of functional protein. Upon intratumoral injection of bacterial IBs formed by a potent protein ligand of CXCR4 we have observed high stability and prevalence of the material in absence of toxicity, accompanied by apoptosis of CXCR4+ cells and tumor ablation. Then, the local immobilization of bacterial amyloids formed by therapeutic proteins in tumors or other tissues might represent a promising strategy for a sustained local delivery of protein drugs by mimicking the functional amyloidal architecture of the mammals’ endocrine system. PMID:27775083

  7. A superoxide dismutase/catalase mimetic nanomedicine for targeted therapy of inflammatory bowel disease.

    Science.gov (United States)

    Zhang, Qixiong; Tao, Hui; Lin, Yongyao; Hu, Ying; An, Huijie; Zhang, Dinglin; Feng, Shibin; Hu, Houyuan; Wang, Ruibing; Li, Xiaohui; Zhang, Jianxiang

    2016-10-01

    Oxidative stress, resulting from excessive generation of reactive oxygen species (ROS), plays a pivotal role in the initiation and progression of inflammatory bowel disease (IBD). To develop an efficacious and safe nanotherapy against IBD, we designed and developed a superoxide dismutase/catalase mimetic nanomedicine comprising a hydrogen peroxide-eliminating nanomatrix and a free radical scavenger Tempol (Tpl). To this end, an oxidation-responsive β-cyclodextrin material (OxbCD) was synthesized, and a Tpl-loaded OxbCD nanoparticle (Tpl/OxbCD NP) was produced. Hydrolysis of OxbCD NP could be triggered by hydrogen peroxide, leading to on-demand release of loaded Tpl molecules from Tpl/OxbCD NP. OxbCD NP was able to efficiently accumulate in the inflamed colon in mice, thereby dramatically reducing nonspecific distribution after oral delivery. In three mouse colitis models, oral administration of Tpl/OxbCD NP notably mitigated manifestations relevant to colitis, and significantly suppressed expression of proinflammatory mediators, with the efficacy superior over free Tpl or a control nanomedicine based on poly(lactide-co-glycolide) (PLGA). Accordingly, by scavenging multiple components of ROS, Tpl/OxbCD NP may effectively reduce ulcerative colitis in mice, and it can be intensively developed as a translational nanomedicine for the management of IBD and other inflammatory diseases.

  8. Smac mimetics and innate immune stimuli synergize to promote tumor death

    Science.gov (United States)

    Beug, Shawn T.; Tang, Vera A.; LaCasse, Eric C.; Cheung, Herman H.; Beauregard, Caroline E.; Brun, Jan; Nuyens, Jeffrey P.; Earl, Nathalie; St-Jean, Martine; Holbrook, Janelle; Dastidar, Himika; Mahoney, Douglas J.; Ilkow, Carolina; Le Boeuf, Fabrice; Bell, John C.; Korneluk, Robert G.

    2016-01-01

    Smac mimetic compounds (SMC), a class of drugs that sensitize cells to apoptosis by counteracting the activity of inhibitor of apoptosis (IAP) proteins, have proven safe in Phase I clinical trials in cancer patients. However, because SMCs act by enabling transduction of pro-apoptotic signals, SMC monotherapy may only be efficacious in the subset of patients whose tumors produce large quantities of death-inducing proteins such as inflammatory cytokines. As such, we reasoned that SMCs would synergize with agents that stimulate a potent yet safe “cytokine storm”. Here we show that oncolytic viruses and adjuvants such as poly(I:C) and CpG induce bystander death of cancer cells treated with SMCs that is mediated by interferon beta (IFNβ), tumor necrosis factor alpha (TNFα) and/or TNF-related apoptosis-inducing ligand (TRAIL). This combinatorial treatment resulted in tumor regression and extended survival in two mouse models of cancer. As these and other adjuvants have been proven safe in clinical trials, it may be worthwhile to explore their clinical efficacy in combination with SMCs. PMID:24463573

  9. Characterization of the insertase BamA in three different membrane mimetics by solution NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Morgado, Leonor; Zeth, Kornelius; Burmann, Björn M.; Maier, Timm; Hiller, Sebastian, E-mail: sebastian.hiller@unibas.ch [University of Basel, Biozentrum (Switzerland)

    2015-04-15

    The insertase BamA is the central protein of the Bam complex responsible for outer membrane protein biogenesis in Gram-negative bacteria. BamA features a 16-stranded transmembrane β-barrel and five periplasmic POTRA domains, with a total molecular weight of 88 kDa. Whereas the structure of BamA has recently been determined by X-ray crystallography, its functional mechanism is not well understood. This mechanism comprises the insertion of substrates from a dynamic, chaperone-bound state into the bacterial outer membrane, and NMR spectroscopy is thus a method of choice for its elucidation. Here, we report solution NMR studies of different BamA constructs in three different membrane mimetic systems: LDAO micelles, DMPC:DiC{sub 7}PC bicelles and MSP1D1:DMPC nanodiscs. The impact of biochemical parameters on the spectral quality was investigated, including the total protein concentration and the detergent:protein ratio. The barrel of BamA is folded in micelles, bicelles and nanodiscs, but the N-terminal POTRA5 domain is flexibly unfolded in the absence of POTRA4. Measurements of backbone dynamics show that the variable insertion region of BamA, located in the extracellular lid loop L6, features high local flexibility. Our work establishes biochemical preparation schemes for BamA, which will serve as a platform for structural and functional studies of BamA and its role within the Bam complex by solution NMR spectroscopy.

  10. A mimetic spectral element solver for the Grad-Shafranov equation

    Science.gov (United States)

    Palha, A.; Koren, B.; Felici, F.

    2016-07-01

    In this work we present a robust and accurate arbitrary order solver for the fixed-boundary plasma equilibria in toroidally axisymmetric geometries. To achieve this we apply the mimetic spectral element formulation presented in [56] to the solution of the Grad-Shafranov equation. This approach combines a finite volume discretization with the mixed finite element method. In this way the discrete differential operators (∇, ∇×, ∇ṡ) can be represented exactly and metric and all approximation errors are present in the constitutive relations. The result of this formulation is an arbitrary order method even on highly curved meshes. Additionally, the integral of the toroidal current Jϕ is exactly equal to the boundary integral of the poloidal field over the plasma boundary. This property can play an important role in the coupling between equilibrium and transport solvers. The proposed solver is tested on a varied set of plasma cross sections (smooth and with an X-point) and also for a wide range of pressure and toroidal magnetic flux profiles. Equilibria accurate up to machine precision are obtained. Optimal algebraic convergence rates of order p + 1 and geometric convergence rates are shown for Soloviev solutions (including high Shafranov shifts), field-reversed configuration (FRC) solutions and spheromak analytical solutions. The robustness of the method is demonstrated for non-linear test cases, in particular on an equilibrium solution with a pressure pedestal.

  11. Gene Transcriptional and Metabolic Profile Changes in Mimetic Aging Mice Induced by D-Galactose.

    Directory of Open Access Journals (Sweden)

    Yue-Yue Zhou

    Full Text Available D-galactose injection has been shown to induce many changes in mice that represent accelerated aging. This mouse model has been widely used for pharmacological studies of anti-aging agents. The underlying mechanism of D-galactose induced aging remains unclear, however, it appears to relate to glucose and 1ipid metabolic disorders. Currently, there has yet to be a study that focuses on investigating gene expression changes in D-galactose aging mice. In this study, integrated analysis of gas chromatography/mass spectrometry-based metabonomics and gene expression profiles was used to investigate the changes in transcriptional and metabolic profiles in mimetic aging mice injected with D-galactose. Our findings demonstrated that 48 mRNAs were differentially expressed between control and D-galactose mice, and 51 potential biomarkers were identified at the metabolic level. The effects of D-galactose on aging could be attributed to glucose and 1ipid metabolic disorders, oxidative damage, accumulation of advanced glycation end products (AGEs, reduction in abnormal substance elimination, cell apoptosis, and insulin resistance.

  12. Antimicrobial Peptides from Plants

    Science.gov (United States)

    Tam, James P.; Wang, Shujing; Wong, Ka H.; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  13. Antimicrobial Peptides from Plants

    Directory of Open Access Journals (Sweden)

    James P. Tam

    2015-11-01

    Full Text Available Plant antimicrobial peptides (AMPs have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic, lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms.

  14. Electron transfer in peptides.

    Science.gov (United States)

    Shah, Afzal; Adhikari, Bimalendu; Martic, Sanela; Munir, Azeema; Shahzad, Suniya; Ahmad, Khurshid; Kraatz, Heinz-Bernhard

    2015-02-21

    In this review, we discuss the factors that influence electron transfer in peptides. We summarize experimental results from solution and surface studies and highlight the ongoing debate on the mechanistic aspects of this fundamental reaction. Here, we provide a balanced approach that remains unbiased and does not favor one mechanistic view over another. Support for a putative hopping mechanism in which an electron transfers in a stepwise manner is contrasted with experimental results that support electron tunneling or even some form of ballistic transfer or a pathway transfer for an electron between donor and acceptor sites. In some cases, experimental evidence suggests that a change in the electron transfer mechanism occurs as a result of donor-acceptor separation. However, this common understanding of the switch between tunneling and hopping as a function of chain length is not sufficient for explaining electron transfer in peptides. Apart from chain length, several other factors such as the extent of the secondary structure, backbone conformation, dipole orientation, the presence of special amino acids, hydrogen bonding, and the dynamic properties of a peptide also influence the rate and mode of electron transfer in peptides. Electron transfer plays a key role in physical, chemical and biological systems, so its control is a fundamental task in bioelectrochemical systems, the design of peptide based sensors and molecular junctions. Therefore, this topic is at the heart of a number of biological and technological processes and thus remains of vital interest.

  15. Electromembrane extraction of peptides.

    Science.gov (United States)

    Balchen, Marte; Reubsaet, Léon; Pedersen-Bjergaard, Stig

    2008-06-20

    Rapid extraction of eight different peptides using electromembrane extraction (EME) was demonstrated for the first time. During an extraction time of 5 min, the model peptides migrated from a 500 microL aqueous acidic sample solution, through a thin supported liquid membrane (SLM) of an organic liquid sustained in the pores in the wall of a porous hollow fiber, and into a 25 microL aqueous acidic acceptor solution present inside the lumen of the hollow fiber. The driving force of the extraction was a 50 V potential sustained across the SLM, with the positive electrode in the sample and the negative electrode in the acceptor solution. The nature and the composition of the SLM were highly important for the EME process, and a mixture of 1-octanol and 15% di(2-ethylhexyl) phosphate was found to work properly. Using 1mM HCl as background electrolyte in the sample and 100 mM HCl in the acceptor solution, and agitation at 1050 rpm, enrichment up to 11 times was achieved. Recoveries were found to be dependent on the structure of the peptide, indicating that the polarity and the number of ionized groups were important parameters affecting the extraction efficiency. The experimental findings suggested that electromembrane extraction of peptides is possible and may be a valuable tool for future extraction of peptides. PMID:18479691

  16. Oxpholipin 11D: an anti-inflammatory peptide that binds cholesterol and oxidized phospholipids.

    Directory of Open Access Journals (Sweden)

    Piotr Ruchala

    Full Text Available BACKGROUND: Many gram-positive bacteria produce pore-forming exotoxins that contain a highly conserved, 12-residue domain (ECTGLAWEWWRT that binds cholesterol. This domain is usually flanked N-terminally by arginine and C-terminally by valine. We used this 14-residue sequence as a template to create a small library of peptides that bind cholesterol and other lipids. METHODOLOGY/RESULTS: Several of these peptides manifested anti-inflammatory properties in a predictive in vitro monocyte chemotactic assay, and some also diminished the pro-inflammatory effects of low-density lipoprotein in apoE-deficient mice. The most potent analog, Oxpholipin-11D (OxP-11D, contained D-amino acids exclusively and was identical to the 14-residue design template except that diphenylalanine replaced cysteine-3. In surface plasmon resonance binding studies, OxP-11D bound oxidized (phospholipids and sterols in much the same manner as D-4F, a widely studied cardioprotective apoA-I-mimetic peptide with anti-inflammatory properties. In contrast to D-4F, which adopts a stable alpha-helical structure in solution, the OxP-11D structure was flexible and contained multiple turn-like features. CONCLUSION: Given the substantial evidence that oxidized phospholipids are pro-inflammatory in vivo, OxP-11D and other Oxpholipins may have therapeutic potential.

  17. Model membrane interaction and DNA-binding of antimicrobial peptide Lasioglossin II derived from bee venom.

    Science.gov (United States)

    Bandyopadhyay, Susmita; Lee, Meryl; Sivaraman, J; Chatterjee, Chiradip

    2013-01-01

    Lasioglossins, a new family of antimicrobial peptide, have been shown to have strong antimicrobial activity with low haemo-lytic and mast cell degranulation activity, and exhibit cytotoxic activity against various cancer cells in vitro. In order to understand the active conformation of these pentadecapeptides in membranes, we have studied the interaction of Lasioglossin II (LL-II), one of the members of Lasioglossins family with membrane mimetic micelle Dodecylphosphocholine (DPC) by fluorescence, Circular Dichroism (CD) and two dimensional (2D) (1)H NMR spectroscopy. Fluorescence experiments provide evidence of interaction of the N-terminal tryptophan residue of LL-II with the hydrophobic core of DPC micelle. CD results show an extended chain conformation of LL-II in water which is converted to a partial helical conformation in the presence of DPC micelle. Moreover we have determined the first three-dimensional NMR structure of LL-II bound to DPC micelle with rmsd of 0.36Å. The solution structure of LL-II shows hydrophobic and hydrophilic core formation in peptide pointing towards different direction in the presence of DPC. This amphipathic structure may allow this peptide to penetrate deeply into the interfacial region of negatively charged membranes and leading to local membrane destabilization. Further we have elucidated the DNA binding ability of LL-II by agarose gel retardation and fluorescence quenching experiments.

  18. Therapeutic HIV Peptide Vaccine

    DEFF Research Database (Denmark)

    Fomsgaard, Anders

    2015-01-01

    infection directed to subdominant conserved HIV-1 epitopes restricted to frequent HLA supertypes. The rationale for selecting HIV peptides and adjuvants are provided. Peptide subunit vaccines are regarded as safe due to the simplicity, quality, purity, and low toxicity. The caveat is reduced immunogenicity......Therapeutic vaccines aim to control chronic HIV infection and eliminate the need for lifelong antiretroviral therapy (ART). Therapeutic HIV vaccine is being pursued as part of a functional cure for HIV/AIDS. We have outlined a basic protocol for inducing new T cell immunity during chronic HIV-1...... and hence adjuvants are included to enhance and direct the immune response. Although the vaccine has been tested in ART naïve individuals, we recommend future testing of the vaccine during (early started) ART that improves immune function and to select individuals likely to benefit. Peptides representing...

  19. Synthetic antibiofilm peptides.

    Science.gov (United States)

    de la Fuente-Núñez, César; Cardoso, Marlon Henrique; de Souza Cândido, Elizabete; Franco, Octavio Luiz; Hancock, Robert E W

    2016-05-01

    Bacteria predominantly exist as multicellular aggregates known as biofilms that are associated with at least two thirds of all infections and exhibit increased adaptive resistance to conventional antibiotic therapies. Therefore, biofilms are major contributors to the global health problem of antibiotic resistance, and novel approaches to counter them are urgently needed. Small molecules of the innate immune system called host defense peptides (HDPs) have emerged as promising templates for the design of potent, broad-spectrum antibiofilm agents. Here, we review recent developments in the new field of synthetic antibiofilm peptides, including mechanistic insights, synergistic interactions with available antibiotics, and their potential as novel antimicrobials against persistent infections caused by biofilms. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. PMID:26724202

  20. Biomimetic peptide nanosensors.

    Science.gov (United States)

    Cui, Yue; Kim, Sang N; Naik, Rajesh R; McAlpine, Michael C

    2012-05-15

    The development of a miniaturized sensing platform tailored for sensitive and selective detection of a variety of biochemical analytes could offer transformative fundamental and technological opportunities. Due to their high surface-to-volume ratios, nanoscale materials are extremely sensitive sensors. Likewise, peptides represent robust substrates for selective recognition due to the potential for broad chemical diversity within their relatively compact size. Here we explore the possibilities of linking peptides to nanosensors for the selective detection of biochemical targets. Such systems raise a number of interesting fundamental challenges: What are the peptide sequences, and how can rational design be used to derive selective binders? What nanomaterials should be used, and what are some strategies for assembling hybrid nanosensors? What role does molecular modeling play in elucidating response mechanisms? What is the resulting performance of these sensors, in terms of sensitivity, selectivity, and response time? What are some potential applications? This Account will highlight our early attempts to address these research challenges. Specifically, we use natural peptide sequences or sequences identified from phage display as capture elements. The sensors are based on a variety of nanomaterials including nanowires, graphene, and carbon nanotubes. We couple peptides to the nanomaterial surfaces via traditional surface functionalization methods or self-assembly. Molecular modeling provides detailed insights into the hybrid nanostructure, as well as the sensor detection mechanisms. The peptide nanosensors can distinguish chemically camouflaged mixtures of vapors and detect chemical warfare agents with sensitivities as low as parts-per-billion levels. Finally, we anticipate future uses of this technology in biomedicine: for example, devices based on these sensors could detect disease from the molecular components in human breath. Overall, these results provide a

  1. Dicyclopropylmethyl peptide backbone protectant.

    Science.gov (United States)

    Carpino, Louis A; Nasr, Khaled; Abdel-Maksoud, Adel Ali; El-Faham, Ayman; Ionescu, Dumitru; Henklein, Peter; Wenschuh, Holger; Beyermann, Michael; Krause, Eberhard; Bienert, Michael

    2009-08-20

    The N-dicyclopropylmethyl (Dcpm) residue, introduced into amino acids via reaction of dicyclopropylmethanimine hydrochloride with an amino acid ester followed by sodium cyanoborohydride or triacetoxyborohydride reduction, can be used as an amide bond protectant for peptide synthesis. Examples which demonstrate the amelioration of aggregation effects include syntheses of the alanine decapeptide and the prion peptide (106-126). Avoidance of cyclization to the aminosuccinimide followed substitution of Fmoc-(Dcpm)Gly-OH for Fmoc-Gly-OH in the assembly of sequences containing the sensitive Asp-Gly unit.

  2. Invertebrate FMRFamide related peptides.

    Science.gov (United States)

    Krajniak, Kevin G

    2013-06-01

    In 1977 the neuropeptide FMRFamide was isolated from the clam, Macrocallista nimbosa. Since then several hundred FMRFamide-related peptides (FaRPs) have been isolated from invertebrate animals. Precursors to the FaRPs likely arose in the cnidarians. With the transition to a bilateral body plan FaRPs became a fixture in the invertebrate phyla. They have come to play a critical role as neurotransmitters, neuromodulators, and neurohormones. FaRPs regulate a variety of body functions including, feeding, digestion, circulation, reproduction, movement. The evolution of the molecular form and function of these omnipresent peptides will be considered.

  3. An investigation of the mimetic enzyme activity of two-dimensional Pd-based nanostructures

    Science.gov (United States)

    Wei, Jingping; Chen, Xiaolan; Shi, Saige; Mo, Shiguang; Zheng, Nanfeng

    2015-11-01

    In this work, we investigated the mimetic enzyme activity of two-dimensional (2D) Pd-based nanostructures (e.g. Pd nanosheets, Pd@Au and Pd@Pt nanoplates) and found that they possess intrinsic peroxidase-, oxidase- and catalase-like activities. These nanostructures were able to activate hydrogen peroxide or dissolved oxygen for catalyzing the oxidation of organic substrates, and decompose hydrogen peroxide to generate oxygen. More systematic investigations revealed that the peroxidase-like activities of these Pd-based nanomaterials were highly structure- and composition-dependent. Among them, Pd@Pt nanoplates displayed the highest peroxidase-like activity. Based on these findings, Pd-based nanostructures were applied for the colorimetric detection of H2O2 and glucose, and also the electro-catalytic reduction of H2O2. This work offers a promising prospect for the application of 2D noble metal nanostructures in biocatalysis.In this work, we investigated the mimetic enzyme activity of two-dimensional (2D) Pd-based nanostructures (e.g. Pd nanosheets, Pd@Au and Pd@Pt nanoplates) and found that they possess intrinsic peroxidase-, oxidase- and catalase-like activities. These nanostructures were able to activate hydrogen peroxide or dissolved oxygen for catalyzing the oxidation of organic substrates, and decompose hydrogen peroxide to generate oxygen. More systematic investigations revealed that the peroxidase-like activities of these Pd-based nanomaterials were highly structure- and composition-dependent. Among them, Pd@Pt nanoplates displayed the highest peroxidase-like activity. Based on these findings, Pd-based nanostructures were applied for the colorimetric detection of H2O2 and glucose, and also the electro-catalytic reduction of H2O2. This work offers a promising prospect for the application of 2D noble metal nanostructures in biocatalysis. Electronic supplementary information (ESI) available: TEM images, EDX and dispersion stability of Pd-based nanomaterials

  4. Natriuretic peptides and cerebral hemodynamics

    DEFF Research Database (Denmark)

    Guo, Song; Barringer, Filippa; Zois, Nora Elisabeth;

    2014-01-01

    Natriuretic peptides have emerged as important diagnostic and prognostic tools for cardiovascular disease. Plasma measurement of the bioactive peptides as well as precursor-derived fragments is a sensitive tool in assessing heart failure. In heart failure, the peptides are used as treatment...

  5. Descriptors for antimicrobial peptides

    DEFF Research Database (Denmark)

    Jenssen, Håvard

    2011-01-01

    Introduction: A frightening increase in the number of isolated multidrug resistant bacterial strains linked to the decline in novel antimicrobial drugs entering the market is a great cause for concern. Cationic antimicrobial peptides (AMPs) have lately been introduced as a potential new class of ...

  6. Inhibition of PI3K/BMX Cell Survival Pathway Sensitizes to BH3 Mimetics in SCLC.

    Science.gov (United States)

    Potter, Danielle S; Galvin, Melanie; Brown, Stewart; Lallo, Alice; Hodgkinson, Cassandra L; Blackhall, Fiona; Morrow, Christopher J; Dive, Caroline

    2016-06-01

    Most small cell lung cancer (SCLC) patients are initially responsive to cytotoxic chemotherapy, but almost all undergo fatal relapse with progressive disease, highlighting an urgent need for improved therapies and better patient outcomes in this disease. The proapoptotic BH3 mimetic ABT-737 that targets BCL-2 family proteins demonstrated good single-agent efficacy in preclinical SCLC models. However, so far clinical trials of the BH3 mimetic Navitoclax have been disappointing. We previously demonstrated that inhibition of a PI3K/BMX cell survival signaling pathway sensitized colorectal cancer cells to ABT-737. Here, we show that SCLC cell lines, which express high levels of BMX, become sensitized to ABT-737 upon inhibition of PI3K in vitro, and this is dependent on inhibition of the PI3K-BMX-AKT/mTOR signaling pathway. Consistent with these cell line data, when combined with Navitoclax, PI3K inhibition suppressed tumor growth in both an established SCLC xenograft model and in a newly established circulating tumor cell-derived explant (CDX) model generated from a blood sample obtained at presentation from a chemorefractory SCLC patient. These data show for the first time that a PI3K/BMX signaling pathway plays a role in SCLC cell survival and that a BH3 mimetic plus PI3K inhibition causes prolonged tumor regression in a chemorefractory SCLC patient-derived model in vivo These data add to a body of evidence that this combination should move toward the clinic. Mol Cancer Ther; 15(6); 1248-60. ©2016 AACR. PMID:27197306

  7. Mimetic Muscles in a Despotic Macaque (Macaca mulatta) Differ from Those in a Closely Related Tolerant Macaque (M. nigra).

    Science.gov (United States)

    Burrows, Anne M; Waller, Bridget M; Micheletta, Jérôme

    2016-10-01

    Facial displays (or expressions) are a primary means of visual communication among conspecifics in many mammalian orders. Macaques are an ideal model among primates for investigating the co-evolution of facial musculature, facial displays, and social group size/behavior under the umbrella of "ecomorphology". While all macaque species share some social behaviors, dietary, and ecological parameters, they display a range of social dominance styles from despotic to tolerant. A previous study found a larger repertoire of facial displays in tolerant macaque species relative to despotic species. The present study was designed to further explore this finding by comparing the gross morphological features of mimetic muscles between the Sulawesi macaque (Macaca nigra), a tolerant species, and the rhesus macaque (M. mulatta), a despotic species. Five adult M. nigra heads were dissected and mimetic musculature was compared to those from M. mulatta. Results showed that there was general similarity in muscle presence/absence between the species as well as muscle form except for musculature around the external ear. M. mulatta had more musculature around the external ear than M. nigra. In addition, M. nigra lacked a zygomaticus minor while M. mulatta is reported to have one. These morphological differences match behavioral observations documenting a limited range of ear movements used by M. nigra during facial displays. Future studies focusing on a wider phylogenetic range of macaques with varying dominance styles may further elucidate the roles of phylogeny, ecology, and social variables in the evolution of mimetic muscles within Macaca Anat Rec, 299:1317-1324, 2016. © 2016 Wiley Periodicals, Inc. PMID:27343148

  8. Chronic delivery of a thrombospondin-1 mimetic decreases skeletal muscle capillarity in mice.

    Science.gov (United States)

    Audet, Gerald N; Fulks, Daniel; Stricker, Janelle C; Olfert, I Mark

    2013-01-01

    Angiogenesis is an essential process for normal skeletal muscle function. There is a growing body of evidence suggesting that thrombospondin-1 (TSP-1), a potent antiangiogenic protein in tumorigenesis, is an important regulator of both physiological and pathological skeletal muscle angiogenesis. We tested the hypothesis that chronic exposure to a TSP-1 mimetic (ABT-510), which targets the CD36 TSP-1 receptor, would decrease skeletal muscle capillarity as well as alter the balance between positive and negative angiogenic proteins under basal conditions. Osmotic minipumps with either ABT-510 or vehicle (5% dextrose) were implanted subcutaneously in the subscapular region of C57/BL6 mice for 14 days. When compared to the vehicle treated mice, the ABT-510 group had a 20% decrease in capillarity in the superficial region of the gastrocnemius (GA), 11% decrease in the plantaris (PLT), and a 35% decrease in the soleus (SOL). ABT-510 also decreased muscle protein expression of vascular endothelial growth factor (VEGF) in both the GA (-140%) and SOL (-62%); however there was no change in VEGF in the PLT. Serum VEGF was not altered in ABT-510 treated animals. Endogenous TSP-1 protein expression in all muscles remained unaltered. Tunnel staining revealed no difference in muscle apoptosis between ABT-510 and vehicle treated groups. These data provide evidence that the anti-angiogenic effects of TSP-1 are mediated, at least in part, via the CD36 receptor. It also suggests that under physiologic conditions the TSP-1/CD36 axis plays a role in regulating basal skeletal muscle microvessel density.

  9. Chronic delivery of a thrombospondin-1 mimetic decreases skeletal muscle capillarity in mice.

    Directory of Open Access Journals (Sweden)

    Gerald N Audet

    Full Text Available Angiogenesis is an essential process for normal skeletal muscle function. There is a growing body of evidence suggesting that thrombospondin-1 (TSP-1, a potent antiangiogenic protein in tumorigenesis, is an important regulator of both physiological and pathological skeletal muscle angiogenesis. We tested the hypothesis that chronic exposure to a TSP-1 mimetic (ABT-510, which targets the CD36 TSP-1 receptor, would decrease skeletal muscle capillarity as well as alter the balance between positive and negative angiogenic proteins under basal conditions. Osmotic minipumps with either ABT-510 or vehicle (5% dextrose were implanted subcutaneously in the subscapular region of C57/BL6 mice for 14 days. When compared to the vehicle treated mice, the ABT-510 group had a 20% decrease in capillarity in the superficial region of the gastrocnemius (GA, 11% decrease in the plantaris (PLT, and a 35% decrease in the soleus (SOL. ABT-510 also decreased muscle protein expression of vascular endothelial growth factor (VEGF in both the GA (-140% and SOL (-62%; however there was no change in VEGF in the PLT. Serum VEGF was not altered in ABT-510 treated animals. Endogenous TSP-1 protein expression in all muscles remained unaltered. Tunnel staining revealed no difference in muscle apoptosis between ABT-510 and vehicle treated groups. These data provide evidence that the anti-angiogenic effects of TSP-1 are mediated, at least in part, via the CD36 receptor. It also suggests that under physiologic conditions the TSP-1/CD36 axis plays a role in regulating basal skeletal muscle microvessel density.

  10. Dramatic nano-fluidic properties of carbon nanotube membranes as a platform for protein channel mimetics

    Science.gov (United States)

    Hinds, Bruce

    2013-03-01

    Carbon nanotubes have three key attributes that make them of great interest for novel membrane applications: 1) atomically flat graphite surface allows for ideal fluid slip boundary conditions and extremely fast flow rates 2) the cutting process to open CNTs inherently places functional chemistry at CNT core entrance for chemical selectivity and 3) CNT are electrically conductive allowing for electrochemical reactions and application of electric fields gradients at CNT tips. Pressure driven flux of a variety of solvents (H2O, hexane, decane ethanol, methanol) are 4-5 orders of magnitude higher than conventional Newtonian flow [Nature 2005, 438, 44] due to atomically flat graphite planes inducing nearly ideal slip conditions. However this is eliminated with selective chemical functionalization [ACS Nano 2011 5(5) 3867-3877] needed to give chemical selectivity. These unique properties allow us to explore the hypothesis of producing ``Gatekeeper'' membranes that mimic natural protein channels to actively pump through rapid nm-scale channels. With anionic tip functionality strong electroosmotic flow is induced by unimpeded cation flow with similar 10,000 fold enhancements [Nature Nano 2012 7(2) 133-39]. With enhanced power efficiency, carbon nanotube membranes were employed as the active element of a switchable transdermal drug delivery device that can facilitate more effective treatments of drug abuse and addiction. Recently methods to deposit Pt monolayers on CNT surface have been developed making for highly efficient catalytic platforms. Discussed are other applications of CNT protein channel mimetics, for large area robust engineering platforms, including water purification, flow battery energy storage, and biochemical/biomass separations. DOE EPSCoR (DE-FG02-07ER46375) and DARPA, W911NF-09-1-0267

  11. Self-Assembled, Iridescent, Crustacean-Mimetic Nanocomposites with Tailored Periodicity and Layered Cuticular Structure.

    Science.gov (United States)

    Wang, Baochun; Walther, Andreas

    2015-11-24

    Natural high-performance materials inspire the pursuit of ordered hard/soft nanocomposite structures at high fractions of reinforcements and with balanced molecular interactions. Herein, we develop a facile, waterborne self-assembly pathway to mimic the multiscale cuticle structure of the crustacean armor by combining hard reinforcing cellulose nanocrystals (CNCs) with soft poly(vinyl alcohol) (PVA). We show iridescent CNC nanocomposites with cholesteric liquid-crystal structure, in which different helical pitches and photonic band gaps can be realized by varying the CNC/PVA ratio. We further show that multilayered crustacean-mimetic materials with tailored periodicity and layered cuticular structure can be obtained by sequential preparation pathways. The transition from a cholesteric to a disordered structure occurs for a critical polymer concentration. Correspondingly, we find a transition from stiff and strong mechanical behavior to materials with increasing ductility. Crack propagation studies using scanning electron microscopy visualize the different crack growth and toughening mechanisms inside cholesteric nanocomposites as a function of the interstitial polymer content for the first time. Different extents of crack deflection, layered delamination, ligament bridging, and constrained microcracking can be observed. Drawing of highly plasticized films sheds light on the mechanistic details of the transition from a cholesteric/chiral nematic to a nematic structure. The study demonstrates how self-assembly of biobased CNCs in combination with suitable polymers can be used to replicate a hierarchical biological structure and how future design of these ordered multifunctional nanocomposites can be optimized by understanding mechanistic details of deformation and fracture. PMID:26372330

  12. Bio-Mimetics of Disaster Anticipation-Learning Experience and Key-Challenges.

    Science.gov (United States)

    Tributsch, Helmut

    2013-01-01

    Anomalies in animal behavior and meteorological phenomena before major earthquakes have been reported throughout history. Bio-mimetics or bionics aims at learning disaster anticipation from animals. Since modern science is reluctant to address this problem an effort has been made to track down the knowledge available to ancient natural philosophers. Starting with an archaeologically documented human sacrifice around 1700 B.C. during the Minoan civilization immediately before a large earthquake, which killed the participants, earthquake prediction knowledge throughout antiquity is evaluated. Major practical experience with this phenomenon has been gained from a Chinese earthquake prediction initiative nearly half a century ago. Some quakes, like that of Haicheng, were recognized in advance. However, the destructive Tangshan earthquake was not predicted, which was interpreted as an inherent failure of prediction based on animal phenomena. This is contradicted on the basis of reliable Chinese documentation provided by the responsible earthquake study commission. The Tangshan earthquake was preceded by more than 2,000 reported animal anomalies, some of which were of very dramatic nature. They are discussed here. Any physical phenomenon, which may cause animal unrest, must involve energy turnover before the main earthquake event. The final product, however, of any energy turnover is heat. Satellite based infrared measurements have indeed identified significant thermal anomalies before major earthquakes. One of these cases, occurring during the 2001 Bhuj earthquake in Gujarat, India, is analyzed together with parallel animal anomalies observed in the Gir national park. It is suggested that the time window is identical and that both phenomena have the same geophysical origin. It therefore remains to be demonstrated that energy can be released locally before major earthquake events. It is shown that by considering appropriate geophysical feedback processes, this is

  13. Allosteric inhibition of factor XIa. Sulfated non-saccharide glycosaminoglycan mimetics as promising anticoagulants.

    Science.gov (United States)

    Al-Horani, Rami A; Gailani, David; Desai, Umesh R

    2015-08-01

    Recent development of sulfated non-saccharide glycosaminoglycan mimetics, especially sulfated pentagalloyl glucopyranoside (SPGG), as potent inhibitors of factor XIa (FXIa) (J. Med. Chem. 2013; 56:867-878 and J. Med. Chem. 2014; 57:4805-4818) has led to a strong possibility of developing a new line of factor XIa-based anticoagulants. In fact, SPGG represents the first synthetic, small molecule inhibitor that appears to bind in site remote from the active site. Considering that allosteric inhibition of FXIa is a new mechanism for developing a distinct line of anticoagulants, we have studied SPGG's interaction with FXIa with a goal of evaluating its pre-clinical relevance. Comparative inhibition studies with several glycosaminoglycans revealed the importance of SPGG's non-saccharide backbone. SPGG did not affect the activity of plasma kallikrein, activated protein C and factor XIIIa suggesting that SPGG-based anticoagulation is unlikely to affect other pathways connected with coagulation factors. SPGG's effect on APTT of citrated human plasma was also not dependent on antithrombin or heparin cofactor II. Interestingly, SPGG's anticoagulant potential was diminished by serum albumin as well as factor XI, while it could be reversed by protamine or polybrene, which implies possible avenues for developing antidote strategy. Studies with FXIa mutants indicated that SPGG engages Lys529, Arg530 and Arg532, but not Arg250, Lys252, Lys253 and Lys255. Finally, SPGG competes with unfractionated heparin, but not with polyphosphates and/or glycoprotein Ibα, for binding to FXIa. These studies enhance understanding on the first allosteric inhibitor of FXIa and highlight its value as a promising anticoagulant. PMID:25935648

  14. The effect of superoxide dismutase mimetic and catalase on the quality of postthawed goat semen.

    Science.gov (United States)

    Shafiei, Mojtaba; Forouzanfar, Mohsen; Hosseini, Sayyed Morteza; Esfahani, Mohammad Hossein Nasr

    2015-05-01

    Manganese(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin chloride (MnTE) is a cell-permeable superoxide dismutase mimetic agent which can convert superoxide to hydrogen peroxide (H2O2). Supplementation of MnTE to a commercial semen extender can protect sperm from superoxide but not H2O2. Therefore, we proposed that addition of catalase (0.0, 200, or 400 IU/mL) in combination with MnTE (0.1 μM) may further improve the cryopreservation efficiency of goat semen in commercially optimized freezing media such as Andromed. Therefore, ejaculates were obtained from three adult bucks twice a week during the breeding season and diluted with Andromed supplemented with or without MnTE and catalase and were frozen in liquid nitrogen. Sperm parameters and reactive oxygen species contents were evaluated 2 hours after dilution (before freezing) and after freezing/thawing. The results revealed that all the treatments significantly (P ≤ 0.05) improved sperm motility, viability, and membrane integrity after freezing and reduced reactive oxygen species content compared with the control group, but maximum improvement was obtained in MnTE + 400 IU/mL catalase. In addition, supplementation with these antioxidants significantly (P ≤ 0.05) increases the cleavage rate after IVF. In conclusion, the results of present study suggest that addition of antioxidant MnTE or catalase to commercial optimized media, such as Andromed, improves total motility, membrane integrity, and viability of goat semen samples after thawing. But the degree of improvement for these parameters significantly (P ≤ 0.05) higher when MnTE and catalase were simultaneously added to the cryopreservation media.

  15. Leukocyte mimetic polysaccharide microparticles tracked in vivo on activated endothelium and in abdominal aortic aneurysm.

    Science.gov (United States)

    Bonnard, Thomas; Serfaty, Jean-Michel; Journé, Clément; Ho Tin Noe, Benoît; Arnaud, Denis; Louedec, Liliane; Derkaoui, Sidi Mohammed; Letourneur, Didier; Chauvierre, Cédric; Le Visage, Catherine

    2014-08-01

    We have developed injectable microparticles functionalized with fucoidan, in which sulfated groups mimic the anchor sites of P-selectin glycoprotein ligand-1 (PSGL-1), one of the principal receptors supporting leukocyte adhesion. These targeted microparticles were combined with a fluorescent dye and a T2(∗) magnetic resonance imaging (MRI) contrast agent, and then tracked in vivo with small animal imaging methods. Microparticles of 2.5μm were obtained by a water-in-oil emulsification combined with a cross-linking process of polysaccharide dextran, fluorescein isothiocyanate dextran, pullulan and fucoidan mixed with ultrasmall superparamagnetic particles of iron oxide. Fluorescent intravital microscopy observation revealed dynamic adsorption and a leukocyte-like behaviour of fucoidan-functionalized microparticles on a calcium ionophore induced an activated endothelial layer of a mouse mesentery vessel. We observed 20times more adherent microparticles on the activated endothelium area after the injection of functionalized microparticles compared to non-functionalized microparticles (197±11 vs. 10±2). This imaging tool was then applied to rats presenting an elastase perfusion model of abdominal aortic aneurysm (AAA) and 7.4T in vivo MRI was performed. Visual analysis of T2(∗)-weighted MR images showed a significant contrast enhancement on the inner wall of the aneurysm from 30min to 2h after the injection. Histological analysis of AAA cryosections revealed microparticles localized inside the aneurysm wall, in the same areas in which immunostaining shows P-selectin expression. The developed leukocyte mimetic imaging tool could therefore be relevant for molecular imaging of vascular diseases and for monitoring biologically active areas prone to rupture in AAA. PMID:24769117

  16. Smac mimetic SM-164 potentiates APO2L/TRAIL- and doxorubicin-mediated anticancer activity in human hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Shuijun Zhang

    Full Text Available BACKGROUND: The members of inhibitor of apoptosis proteins (IAPs family are key negative regulators of apoptosis. Overexpression of IAPs are found in hepatocellular carcinoma (HCC, and can contribute to chemotherapy resistance and recurrence of HCC. Small-molecule Second mitochondria-derived activator of caspases (Smac mimetics have recently emerged as novel anticancer drugs through targeting IAPs. The specific aims of this study were to 1 examine the anticancer activity of Smac mimetics as a single agent and in combination with chemotherapy in HCC cells, and 2 investigate the mechanism of anticancer action of Smac mimetics. METHODS: Four HCC cell lines, including SMMC-7721, BEL-7402, HepG2 and Hep3B, and 12 primary HCC cells were used in this study. Smac mimetic SM-164 was used to treat HCC cells. Cell viability, cell death induction and clonal formation assays were used to evaluate the anticancer activity. Western blotting analysis and a pancaspase inhibitor were used to investigate the mechanisms. RESULTS: Although SM-164 induced complete cIAP-1 degradation, it displayed weak inhibitory effects on the viability of HCC cells. Nevertheless, SM-164 considerably potentiated Apo2 ligand or TNF-related apoptosis-inducing ligand (APO2L/TRAIL- and Doxorubicin-mediated anticancer activity in HCC cells. Mechanistic studies demonstrated that SM-164 in combination with chemotherapeutic agents resulted in enhanced activation of caspases-9, -3 and cleavage of poly ADP-ribose polymerase (PARP, and also led to decreased AKT activation. CONCLUSIONS: Smac mimetics can enhance chemotherapeutic-mediated anticancer activity by enhancing apoptosis signaling and suppressing survival signaling in HCC cells. This study suggests Smac mimetics are potential therapeutic agents for HCC.

  17. Glucagon-like peptide-1

    DEFF Research Database (Denmark)

    Holst, Jens Juul

    2006-01-01

    insulinotropic products of proglucagon gene expression. The incretin effect is markedly impaired or absent in patients with type 2 diabetes because of decreased secretion of GLP-1 and a loss of the insulinotropic effects of GIP. Metabolic control can be restored or greatly improved by administration of exogenous...... loss for up to 2 years. The DPP-IV inhibitors, given once or twice daily by mouth, also appear to provide lasting improvement in HbA(1)c, but are weight-neutral. The first incretin mimetic has reached the market in the US, and applications for approval of the first inhibitors are expected to be filed...

  18. A mimetic finite difference method for two-phase flow models with dynamic capillary pressure and hysteresis

    CERN Document Server

    Zhang, Hong

    2016-01-01

    Saturation overshoot and pressure overshoot are studied by incorporating dynamic capillary pressure, capillary pressure hysteresis and hysteretic dynamic coefficient with a traditional fractional flow equation. Using the method of lines, the discretizations are constructed by applying Castillo-Grone's mimetic operators in the space direction and explicit trapezoidal integrator in the time direction. Convergence tests and conservation property of the schemes are presented. Computed profiles capture both the saturation overshoot and pressure overshoot phenomena. Comparisons between numerical results and experiments illustrate the effectiveness and different features of the models.

  19. Intracellular Ca2+ Modulation during Short Exposure to Ischemia-Mimetic Factors in Isolated Rat Ventricular Myocytes

    OpenAIRE

    Danijel, Pravdic; Nikolina, Vladic; Zeljko, Bosnjak J

    2009-01-01

    We investigated the effects of different ischemia-mimetic factors on intracellular Ca2+ concentration ([Ca2+]i). Ventricular myocytes were isolated from adult Wistar rats, and [Ca2+]i was measured using fluorescent indicator fluo-4 AM by confocal microscopy. Intracellular pH was measured using c5-(and-6)-carboxy SNARF-1 AM, a dual emission pH-sensitive ionophore. Myocytes were exposed to hypoxia, extracellular acidosis (pHo 6.8), Na-lactate (10 mM), or to combination of those factors for 25 m...

  20. Peptides derived from the solvent-exposed loops 3 and 4 of BDNF bind TrkB and p75(NTR) receptors and stimulate neurite outgrowth and survival

    DEFF Research Database (Denmark)

    Fobian, Kristina; Owczarek, Sylwia; Budtz, Christian;

    2010-01-01

    Brain-derived neurotrophic factor (BDNF) is critically involved in modeling the developing nervous system and is an important regulator of a variety of crucial functions in the mature CNS. BDNF exerts its action through interactions with two transmembrane receptors, either separately or in concert....... BDNF has been implicated in several neurological disorders, and irregularities in BDNF function may have severe consequences. Administration of BDNF as a drug has thus far yielded few practicable results, and the potential side effects when using a multifunctional protein are substantial. In an effort...... to produce more specific compounds without side effects, small peptides mimicking protein function have been developed. The present study characterized two mimetic peptides, Betrofin 3 and Betrofin 4, derived from the BDNF sequence. Both Betrofins bound the cognate BDNF receptors, TrkB and p75(NTR...

  1. Biochemical functionalization of peptide nanotubes with phage displayed peptides

    Science.gov (United States)

    Swaminathan, Swathi; Cui, Yue

    2016-09-01

    The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering.

  2. Biochemical functionalization of peptide nanotubes with phage displayed peptides.

    Science.gov (United States)

    Swaminathan, Swathi; Cui, Yue

    2016-09-01

    The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering. PMID:27479451

  3. Synthesis and conformational analysis of constrained beta-turn mimetics using a bicyclic turn inducer and the Petasis three-component reaction on solid-phase

    OpenAIRE

    Danieli, E; Trabocchi, A.; G. MENCHI; Guarna, A

    2007-01-01

    A new set of β-turn mimetics incorporating a bicyclic turn inducer was achieved by use of the solid-phase Petasis reaction in a stereoselective fashion. The stereoselectivity of the reaction turned out to be dependent on the side chain of the amino acid preceding the reverse turn inducer. The β-turn mimetics were stabilized by strong intramolecular 10-membered ring hydrogen bonds, detected by conformational analysis by NMR and molecular modelling, whilst the turn type was controlled by the fi...

  4. Radiolabelled peptides for oncological diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Laverman, Peter; Boerman, Otto C.; Oyen, Wim J.G. [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, Nijmegen (Netherlands); Sosabowski, Jane K. [Queen Mary University of London, Centre for Molecular Oncology, Barts Cancer Institute, London (United Kingdom)

    2012-02-15

    Radiolabelled receptor-binding peptides targeting receptors (over)expressed on tumour cells are widely under investigation for tumour diagnosis and therapy. The concept of using radiolabelled receptor-binding peptides to target receptor-expressing tissues in vivo has stimulated a large body of research in nuclear medicine. The {sup 111}In-labelled somatostatin analogue octreotide (OctreoScan trademark) is the most successful radiopeptide for tumour imaging, and was the first to be approved for diagnostic use. Based on the success of these studies, other receptor-targeting peptides such as cholecystokinin/gastrin analogues, glucagon-like peptide-1, bombesin (BN), chemokine receptor CXCR4 targeting peptides, and RGD peptides are currently under development or undergoing clinical trials. In this review, we discuss some of these peptides and their analogues, with regard to their potential for radionuclide imaging of tumours. (orig.)

  5. Antimicrobial Peptides (AMPs

    Directory of Open Access Journals (Sweden)

    Mehrzad Sadredinamin

    2016-04-01

    Full Text Available Antimicrobial peptides (AMPs are extensive group of molecules that produced by variety tissues of invertebrate, plants, and animal species which play an important role in their immunity response. AMPs have different classifications such as; biosynthetic machines, biological sources, biological functions, molecular properties, covalent bonding patterns, three dimensional structures, and molecular targets.These molecules have multidimensional properties including antimicrobial activity, antiviral activity, antifungal activity, anti-parasite activity, biofilm control, antitumor activity, mitogens activity and linking innate to adaptive immunity that making them promising agents for therapeutic drugs. In spite of this advantage of AMPs, their clinical developments have some limitation for commercial development. But some of AMPs are under clinical trials for the therapeutic purpose such as diabetic foot ulcers, different bacterial infections and tissue damage. In this review, we emphasized on the source, structure, multidimensional properties, limitation and therapeutic applications of various antimicrobial peptides.

  6. Antimicrobial peptides in Echinoderms

    Directory of Open Access Journals (Sweden)

    C Li

    2010-05-01

    Full Text Available Antimicrobial peptides (AMPs are important immune effector molecules for invertebrates, including echinoderms, which lack a vertebrate-type adaptive immune system. Here we summarize the knowledge of such peptides in echinoderms. Strongylocins are a novel family of cysteine-rich AMPs, recently identified in the sea urchins, Strongylocentrotus droebachiensis and S. purpuratus. Although these molecules present diverse amino acid sequences, they share an identical cysteine arrangement pattern, dissimilar to other known AMPs. A family of heterodimeric AMPs, named centrocins, are also present in S. droebachiensis. Lysozymes and fragments of larger proteins, such as beta-thymocins, actin, histone 2A and filamin A have also been shown to display antimicrobial activities in echinoderms. Future studies on AMPs should be aimed in revealing how echinoderms use these AMPs in the immune response against microbial pathogens.

  7. SMAC mimetic Debio 1143 synergizes with taxanes, topoisomerase inhibitors and bromodomain inhibitors to impede growth of lung adenocarcinoma cells.

    Science.gov (United States)

    Langdon, Casey G; Wiedemann, Norbert; Held, Matthew A; Mamillapalli, Ramanaiah; Iyidogan, Pinar; Theodosakis, Nicholas; Platt, James T; Levy, Frederic; Vuagniaux, Gregoire; Wang, Shaomeng; Bosenberg, Marcus W; Stern, David F

    2015-11-10

    Targeting anti-apoptotic proteins can sensitize tumor cells to conventional chemotherapies or other targeted agents. Antagonizing the Inhibitor of Apoptosis Proteins (IAPs) with mimetics of the pro-apoptotic protein SMAC is one such approach. We used sensitization compound screening to uncover possible agents with the potential to further sensitize lung adenocarcinoma cells to the SMAC mimetic Debio 1143. Several compounds in combination with Debio 1143, including taxanes, topoisomerase inhibitors, and bromodomain inhibitors, super-additively inhibited growth and clonogenicity of lung adenocarcinoma cells. Co-treatment with Debio 1143 and the bromodomain inhibitor JQ1 suppresses the expression of c-IAP1, c-IAP2, and XIAP. Non-canonical NF-κB signaling is also activated following Debio 1143 treatment, and Debio 1143 induces the formation of the ripoptosome in Debio 1143-sensitive cell lines. Sensitivity to Debio 1143 and JQ1 co-treatment was associated with baseline caspase-8 expression. In vivo treatment of lung adenocarcinoma xenografts with Debio 1143 in combination with JQ1 or docetaxel reduced tumor volume more than either single agent alone. As Debio 1143-containing combinations effectively inhibited both in vitro and in vivo growth of lung adenocarcinoma cells, these data provide a rationale for Debio 1143 combinations currently being evaluated in ongoing clinical trials and suggest potential utility of other combinations identified here.

  8. Comparison of CR36, a new heparan mimetic, and pentosan polysulfate in the treatment of prion diseases.

    Science.gov (United States)

    Larramendy-Gozalo, Claire; Barret, Agnès; Daudigeos, Estelle; Mathieu, Emilie; Antonangeli, Lucie; Riffet, Cécile; Petit, Emmanuel; Papy-Garcia, Dulce; Barritault, Denis; Brown, Paul; Deslys, Jean-Philippe

    2007-03-01

    Sulfated polyanions, including pentosan polysulfate (PPS) and heparan mimetics, number among the most effective drugs that have been used in experimental models of prion disease and are presumed to act in competition with endogenous heparan sulfate proteoglycans as co-receptors for prion protein (PrP) on the cell surface. PPS has been shown to prolong the survival of animals after intracerebral perfusion and is in limited use for the experimental treatment of human transmissible spongiform encephalopathies (TSEs). Here, PPS is compared with CR36, a new heparan mimetic. Ex vivo, CR36 was more efficient than PPS in reducing PrPres in scrapie-infected cell cultures and showed long-lasting activity. In vivo, CR36 showed none of the acute toxicity observed with PPS and reduced PrPres accumulation in spleens, but had only a marginal effect on the survival time of mice infected with bovine spongiform encephalopathy. In contrast, mice treated with PPS that survived the initial toxic mortality had no detectable PrPres in the spleens and lived 185 days longer than controls (+55%). These results show, once again, that anti-TSE drugs cannot be encouraged for human therapeutic trials solely on the basis of in vitro or ex vivo observations, but must first be subjected to in vivo animal studies.

  9. Activation of concurrent apoptosis and necroptosis by SMAC mimetics for the treatment of refractory and relapsed ALL.

    Science.gov (United States)

    McComb, Scott; Aguadé-Gorgorió, Júlia; Harder, Lena; Marovca, Blerim; Cario, Gunnar; Eckert, Cornelia; Schrappe, Martin; Stanulla, Martin; von Stackelberg, Arend; Bourquin, Jean-Pierre; Bornhauser, Beat C

    2016-05-18

    More precise treatment strategies are urgently needed to decrease toxicity and improve outcomes for treatment-refractory leukemia. We used ex vivo drug response profiling of high-risk, relapsed, or refractory acute lymphoblastic leukemia (ALL) cases and identified a subset with exquisite sensitivity to small-molecule mimetics of the second mitochondria-derived activator of caspases (SMAC) protein. Potent ex vivo activity of the SMAC mimetic (SM) birinapant correlated with marked in vivo antileukemic effects, as indicated by delayed engraftment, decreased leukemia burden, and prolonged survival of xenografted mice. Antileukemic activity was dependent on simultaneous execution of apoptosis and necroptosis, as demonstrated by functional genomic dissection with a multicolored lentiCRISPR approach to simultaneously disrupt multiple genes in patient-derived ALL. SM specifically targeted receptor-interacting protein kinase 1 (RIP1)-dependent death, and CRISPR-mediated disruption of RIP1 completely blocked SM-induced death yet had no impact on the response to standard antileukemic agents. Thus, SM compounds such as birinapant circumvent escape from apoptosis in leukemia by activating a potent dual RIP1-dependent apoptotic and necroptotic cell death, which is not exploited by current therapy. Ex vivo drug activity profiling could provide important functional diagnostic information to identify patients who may benefit from targeted treatment with birinapant in early clinical trials. PMID:27194728

  10. Influence of Block Copolymerization on the Antifreeze Protein Mimetic Ice Recrystallization Inhibition Activity of Poly(vinyl alcohol).

    Science.gov (United States)

    Congdon, Thomas R; Notman, Rebecca; Gibson, Matthew I

    2016-09-12

    Antifreeze (glyco) proteins are produced by many cold-acclimatized species to enable them to survive subzero temperatures. These proteins have multiple macroscopic effects on ice crystal growth which makes them appealing for low-temperature applications-from cellular cryopreservation to food storage. Poly(vinyl alcohol) has remarkable ice recrystallization inhibition activity, but its mode of action is uncertain as is the extent at which it can be incorporated into other high-order structures. Here the synthesis and characterization of well-defined block copolymers containing poly(vinyl alcohol) and poly(vinylpyrrolidone) by RAFT/MADIX polymerization is reported, as new antifreeze protein mimetics. The effect of adding a large second hydrophilic block is studied across a range of compositions, and it is found to be a passive component in ice recrystallization inhibition assays, enabling retention of all activity. In the extreme case, a block copolymer with only 10% poly(vinyl alcohol) was found to retain all activity, where statistical copolymers of PVA lose all activity with very minor changes to composition. These findings present a new method to increase the complexity of antifreeze protein mimetic materials, while retaining activity, and also to help understand the underlying mechanisms of action.

  11. Phenylalanine and Phenylglycine Analogues as Arginine Mimetics in Dengue Protease Inhibitors.

    Science.gov (United States)

    Weigel, Lena F; Nitsche, Christoph; Graf, Dominik; Bartenschlager, Ralf; Klein, Christian D

    2015-10-01

    Dengue virus is an increasingly global pathogen. One of the promising targets for antiviral drug discovery against dengue and related flaviviruses such as West Nile virus is the viral serine protease NS2B-NS3. We here report the synthesis and in vitro characterization of potent peptidic inhibitors of dengue virus protease that incorporate phenylalanine and phenylglycine derivatives as arginine-mimicking groups with modulated basicity. The most promising compounds were (4-amidino)-L-phenylalanine-containing inhibitors, which reached nanomolar affinities against dengue virus protease. The type and position of the substituents on the phenylglycine and phenylalanine side chains has a significant effect on the inhibitory activity against dengue virus protease and selectivity against other proteases. In addition, the non-natural, basic amino acids described here may have relevance for the development of other peptidic and peptidomimetic drugs such as inhibitors of the blood clotting cascade.

  12. Structural and computational analysis of peptide recognition mechanism of class-C type penicillin binding protein, alkaline D-peptidase from Bacillus cereus DF4-B.

    Science.gov (United States)

    Nakano, Shogo; Okazaki, Seiji; Ishitsubo, Erika; Kawahara, Nobuhiro; Komeda, Hidenobu; Tokiwa, Hiroaki; Asano, Yasuhisa

    2015-01-01

    Alkaline D-peptidase from Bacillus cereus DF4-B, called ADP, is a D-stereospecific endopeptidase reacting with oligopeptides containing D-phenylalanine (D-Phe) at N-terminal penultimate residue. ADP has attracted increasing attention because it is useful as a catalyst for synthesis of D-Phe oligopeptides or, with the help of substrate mimetics, L-amino acid peptides and proteins. Structure and functional analysis of ADP is expected to elucidate molecular mechanism of ADP. In this study, the crystal structure of ADP (apo) form was determined at 2.1 Å resolution. The fold of ADP is similar to that of the class C penicillin-binding proteins of type-AmpH. Docking simulations and fragment molecular orbital analyses of two peptides, (D-Phe)4 and (D-Phe)2-(L-Phe)2, with the putative substrate binding sites of ADP indicated that the P1 residue of the peptide interacts with hydrophobic residues at the S1 site of ADP. Furthermore, molecular dynamics simulation of ADP for 50 nsec suggested that the ADP forms large cavity at the active site. Formation of the cavity suggested that the ADP has open state in the solution. For the ADP, having the open state is convenient to bind the peptides having bulky side chain, such as (D-Phe)4. Taken together, we predicted peptide recognition mechanism of ADP. PMID:26370172

  13. A Short Peptide That Mimics the Binding Domain of TGF-β1 Presents Potent Anti-Inflammatory Activity.

    Directory of Open Access Journals (Sweden)

    Emília R Vaz

    Full Text Available The transforming growth factor beta 1 (TGF-β1 is a pleiotropic cytokine with multiple roles in development, wound healing, and immune regulation. TGF-β1-mediated immune dysfunction may lead to pathological conditions, such as inflammation. Chronic inflammatory process is characterized by a continuous release of pro-inflammatory cytokines, and the inhibition or the blockage of these cytokines signaling pathways are considered a target treatment. In this context, despite the high numbers of TGF-β-targeted pathways, the inducible regulatory T cells (iTreg to control inflammation seems to be a promising approach. Our aim was to develop novel peptides through phage display (PhD technology that could mimic TGF-β1 function with higher potency. Specific mimetic peptides were obtained through a PhD subtraction strategy from whole cell binding using TGF-β1 recombinant as a competitor during elution step. We have selected a peptide that seems to play an important role on cellular differentiation and modulation of TNF-α and IL-10 cytokines. The synthetic pm26TGF-β1 peptide tested in PBMC significantly down-modulated TNF-α and up-regulated IL-10 responses, leading to regulatory T cells (Treg phenotype differentiation. Furthermore, the synthetic peptide was able to decrease leukocytes rolling in BALB/C mice and neutrophils migration during inflammatory process in C57BL/6 mice. These data suggest that this peptide may be useful for the treatment of inflammatory diseases, especially because it displays potent anti-inflammatory properties and do not exhibit neutrophils' chemoattraction.

  14. A small molecule glycosaminoglycan mimetic blocks Plasmodium invasion of the mosquito midgut.

    Directory of Open Access Journals (Sweden)

    Derrick K Mathias

    Full Text Available Malaria transmission-blocking (T-B interventions are essential for malaria elimination. Small molecules that inhibit the Plasmodium ookinete-to-oocyst transition in the midgut of Anopheles mosquitoes, thereby blocking sporogony, represent one approach to achieving this goal. Chondroitin sulfate glycosaminoglycans (CS-GAGs on the Anopheles gambiae midgut surface are putative ligands for Plasmodium falciparum ookinetes. We hypothesized that our synthetic polysulfonated polymer, VS1, acting as a decoy molecular mimetic of midgut CS-GAGs confers malaria T-B activity. In our study, VS1 repeatedly reduced midgut oocyst development by as much as 99% (P<0.0001 in mosquitoes fed with P. falciparum and Plasmodium berghei. Through direct-binding assays, we observed that VS1 bound to two critical ookinete micronemal proteins, each containing at least one von Willebrand factor A (vWA domain: (i circumsporozoite protein and thrombospondin-related anonymous protein-related protein (CTRP and (ii vWA domain-related protein (WARP. By immunofluorescence microscopy, we observed that VS1 stains permeabilized P. falciparum and P. berghei ookinetes but does not stain P. berghei CTRP knockouts or transgenic parasites lacking the vWA domains of CTRP while retaining the thrombospondin repeat region. We produced structural homology models of the first vWA domain of CTRP and identified, as expected, putative GAG-binding sites on CTRP that align closely with those predicted for the human vWA A1 domain and the Toxoplasma gondii MIC2 adhesin. Importantly, the models also identified patches of electropositive residues that may extend CTRP's GAG-binding motif and thus potentiate VS1 binding. Our molecule binds to a critical, conserved ookinete protein, CTRP, and exhibits potent malaria T-B activity. This study lays the framework for a high-throughput screen of existing libraries of safe compounds to identify those with potent T-B activity. We envision that such compounds when

  15. Combinational spinal GAD65 gene delivery and systemic GABA-mimetic treatment for modulation of spasticity.

    Directory of Open Access Journals (Sweden)

    Osamu Kakinohana

    Full Text Available BACKGROUND: Loss of GABA-mediated pre-synaptic inhibition after spinal injury plays a key role in the progressive increase in spinal reflexes and the appearance of spasticity. Clinical studies show that the use of baclofen (GABA(B receptor agonist, while effective in modulating spasticity is associated with major side effects such as general sedation and progressive tolerance development. The goal of the present study was to assess if a combined therapy composed of spinal segment-specific upregulation of GAD65 (glutamate decarboxylase gene once combined with systemic treatment with tiagabine (GABA uptake inhibitor will lead to an antispasticity effect and whether such an effect will only be present in GAD65 gene over-expressing spinal segments. METHODS/PRINCIPAL FINDINGS: Adult Sprague-Dawley (SD rats were exposed to transient spinal ischemia (10 min to induce muscle spasticity. Animals then received lumbar injection of HIV1-CMV-GAD65 lentivirus (LVs targeting ventral α-motoneuronal pools. At 2-3 weeks after lentivirus delivery animals were treated systemically with tiagabine (4, 10, 20 or 40 mg/kg or vehicle and the degree of spasticity response measured. In a separate experiment the expression of GAD65 gene after spinal parenchymal delivery of GAD65-lentivirus in naive minipigs was studied. Spastic SD rats receiving spinal injections of the GAD65 gene and treated with systemic tiagabine showed potent and tiagabine-dose-dependent alleviation of spasticity. Neither treatment alone (i.e., GAD65-LVs injection only or tiagabine treatment only had any significant antispasticity effect nor had any detectable side effect. Measured antispasticity effect correlated with increase in spinal parenchymal GABA synthesis and was restricted to spinal segments overexpressing GAD65 gene. CONCLUSIONS/SIGNIFICANCE: These data show that treatment with orally bioavailable GABA-mimetic drugs if combined with spinal-segment-specific GAD65 gene overexpression can

  16. Bio-Mimetics of Disaster Anticipation—Learning Experience and Key-Challenges

    Directory of Open Access Journals (Sweden)

    Helmut Tributsch

    2013-03-01

    Full Text Available Anomalies in animal behavior and meteorological phenomena before major earthquakes have been reported throughout history. Bio-mimetics or bionics aims at learning disaster anticipation from animals. Since modern science is reluctant to address this problem an effort has been made to track down the knowledge available to ancient natural philosophers. Starting with an archaeologically documented human sacrifice around 1700 B.C. during the Minoan civilization immediately before a large earthquake, which killed the participants, earthquake prediction knowledge throughout antiquity is evaluated. Major practical experience with this phenomenon has been gained from a Chinese earthquake prediction initiative nearly half a century ago. Some quakes, like that of Haicheng, were recognized in advance. However, the destructive Tangshan earthquake was not predicted, which was interpreted as an inherent failure of prediction based on animal phenomena. This is contradicted on the basis of reliable Chinese documentation provided by the responsible earthquake study commission. The Tangshan earthquake was preceded by more than 2,000 reported animal anomalies, some of which were of very dramatic nature. They are discussed here. Any physical phenomenon, which may cause animal unrest, must involve energy turnover before the main earthquake event. The final product, however, of any energy turnover is heat. Satellite based infrared measurements have indeed identified significant thermal anomalies before major earthquakes. One of these cases, occurring during the 2001 Bhuj earthquake in Gujarat, India, is analyzed together with parallel animal anomalies observed in the Gir national park. It is suggested that the time window is identical and that both phenomena have the same geophysical origin. It therefore remains to be demonstrated that energy can be released locally before major earthquake events. It is shown that by considering appropriate geophysical feedback

  17. Development of electrospun bone-mimetic matrices for bone regenerative applications

    Science.gov (United States)

    Phipps, Matthew Christopher

    Although bone has a dramatic capacity for regeneration, certain injuries and procedures present defects that are unable to heal properly, requiring surgical intervention to induce and support osteoregeneration. Our research group has hypothesized that the development of a biodegradable material that mimics the natural composition and architecture of bone extracellular matrix has the potential to provide therapeutic benefit to these patients. Utilizing a process known as electrospinning, our lab has developed a bone-mimetic matrix (BMM) consisting of composite nanofibers of the mechanically sta-ble polymer polycaprolactone (PCL), and the natural bone matrix molecules type-I colla-gen and hydroxyapatite nanocrystals (HA). We herein show that BMMs supported great-er adhesion, proliferation, and integrin activation of mesenchymal stem cells (MSCs), the multipotent bone-progenitor cells within bone marrow and the periosteum, in comparison to electrospun PCL alone. These cellular responses, which are essential early steps in the process of bone regeneration, highlight the benefits of presenting cells with natural bone molecules. Subsequently, evaluation of new bone formation in a rat cortical tibia defect showed that BMMs are highly osteoconductive. However, these studies also revealed the inability of endogenous cells to migrate within electrospun matrices due to the inherently small pore sizes. To address this limitation, which will negatively impact the rate of scaf-fold-to-bone turnover and inhibit vascularization, sacrificial fibers were added to the ma-trix. The removal of these fibers after fabrication resulted in BMMs with larger pores, leading to increased infiltration of MSCs and endogenous bone cells. Lastly, we evaluat-ed the potential of our matrices to stimulate the recruitment of MSCs, a vital step in bone healing, through the sustained delivery of platelet derived growth factor-BB (PDGF-BB). BMMs were found to adsorb and subsequently release greater

  18. A multilevel multiscale mimetic (M 3) method for two-phase flows in porous media

    Science.gov (United States)

    Lipnikov, K.; Moulton, J. D.; Svyatskiy, D.

    2008-07-01

    We describe a multilevel multiscale mimetic (M 3) method for solving two-phase flow (water and oil) in a heterogeneous reservoir. The governing equations are the elliptic equation for the reservoir pressure and the hyperbolic equation for the water saturation. On each time step, we first solve the pressure equation and then use the computed flux in an explicit upwind finite volume method to update the saturation. To reduce the computational cost, the pressure equation is solved on a much coarser grid than the saturation equation. The coarse-grid pressure discretization captures the influence of multiple scales via the subgrid modeling technique for single-phase flow recently proposed in [Yu. A. Kuznetsov. Mixed finite element method for diffusion equations on polygonal meshes with mixed cells. J. Numer. Math., 14 (4) (2006) 305-315; V. Gvozdev. discretization of the diffusion and Maxwell equations on polyhedral meshes. Technical Report Ph.D. Thesis, University of Houston, 2007; Yu. Kuznetsov. Mixed finite element methods on polyhedral meshes for diffusion equations, in: Computational Modeling with PDEs in Science and Engineering, Springer-Verlag, Berlin, in press]. We extend significantly the applicability of this technique by developing a new robust and efficient method for estimating the flux coarsening parameters. Specifically, with this advance the M 3 method can handle full permeability tensors and general coarsening strategies, which may generate polygonal meshes on the coarse grid. These problem dependent coarsening parameters also play a critical role in the interpolation of the flux, and hence, in the advection of saturation for two-phase flow. Numerical experiments for two-phase flow in highly heterogeneous permeability fields, including layer 68 of the SPE Tenth Comparative Solution Project, demonstrate that the M 3 method retains good accuracy for high coarsening factors in both directions, up to 64 for the considered models. Moreover, we demonstrate

  19. Design of Decorated Self-Assembling Peptide Hydrogels as Architecture for Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Annj Zamuner

    2016-08-01

    Full Text Available Hydrogels from self-assembling ionic complementary peptides have been receiving a lot of interest from the scientific community as mimetic of the extracellular matrix that can offer three-dimensional supports for cell growth or can become vehicles for the delivery of stem cells, drugs or bioactive proteins. In order to develop a 3D “architecture” for mesenchymal stem cells, we propose the introduction in the hydrogel of conjugates obtained by chemoselective ligation between a ionic-complementary self-assembling peptide (called EAK and three different bioactive molecules: an adhesive sequence with 4 Glycine-Arginine-Glycine-Aspartic Acid-Serine-Proline (GRGDSP motifs per chain, an adhesive peptide mapped on h-Vitronectin and the growth factor Insulin-like Growth Factor-1 (IGF-1. The mesenchymal stem cell adhesion assays showed a significant increase in adhesion and proliferation for the hydrogels decorated with each of the synthesized conjugates; moreover, such functionalized 3D hydrogels support cell spreading and elongation, validating the use of this class of self-assembly peptides-based material as very promising 3D model scaffolds for cell cultures, at variance of the less realistic 2D ones. Furthermore, small amplitude oscillatory shear tests showed that the presence of IGF-1-conjugate did not alter significantly the viscoelastic properties of the hydrogels even though differences were observed in the nanoscale structure of the scaffolds obtained by changing their composition, ranging from long, well-defined fibers for conjugates with adhesion sequences to the compact and dense film for the IGF-1-conjugate.

  20. Fusion peptide P15-CSP shows antibiofilm activity and pro-osteogenic activity when deposited as a coating on hydrophilic but not hydrophobic surfaces.

    Science.gov (United States)

    Li, Xian; Contreras-Garcia, Angel; LoVetri, Karen; Yakandawala, Nandadeva; Wertheimer, Michael R; De Crescenzo, Gregory; Hoemann, Caroline D

    2015-12-01

    In the context of porous bone void filler for oral bone reconstruction, peptides that suppress microbial growth and promote osteoblast function could be used to enhance the performance of a porous bone void filler. We tested the hypothesis that P15-CSP, a novel fusion peptide containing collagen-mimetic osteogenic peptide P15, and competence-stimulating peptide (CSP), a cationic antimicrobial peptide, has emerging properties not shared by P15 or CSP alone. Peptide-coated surfaces were tested for antimicrobial activity toward Streptoccocus mutans, and their ability to promote human mesenchymal stem cell (MSC) attachment, spreading, metabolism, and osteogenesis. In the osteogenesis assay, peptides were coated on tissue culture plastic and on thin films generated by plasma-enhanced chemical vapor deposition to have hydrophilic or hydrophobic character (water contact angles 63°, 42°, and 92°, respectively). S. mutans planktonic growth was specifically inhibited by CSP, whereas biofilm formation was inhibited by P15-CSP. MSC adhesion and actin stress fiber formation was strongly enhanced by CSP, P15-CSP, and fibronectin coatings and modestly enhanced by P15 versus uncoated surfaces. Metabolic assays revealed that CSP was slightly cytotoxic to MSCs. MSCs developed alkaline phosphatase activity on all surfaces, with or without peptide coatings, and consistently deposited the most biomineralized matrix on hydrophilic surfaces coated with P15-CSP. Hydrophobic thin films completely suppressed MSC biomineralization, consistent with previous findings of suppressed osteogenesis on hydrophobic bioplastics. Collective data in this study provide new evidence that P15-CSP has unique dual capacity to suppress biofilm formation, and to enhance osteogenic activity as a coating on hydrophilic surfaces.

  1. Fusion peptide P15-CSP shows antibiofilm activity and pro-osteogenic activity when deposited as a coating on hydrophilic but not hydrophobic surfaces.

    Science.gov (United States)

    Li, Xian; Contreras-Garcia, Angel; LoVetri, Karen; Yakandawala, Nandadeva; Wertheimer, Michael R; De Crescenzo, Gregory; Hoemann, Caroline D

    2015-12-01

    In the context of porous bone void filler for oral bone reconstruction, peptides that suppress microbial growth and promote osteoblast function could be used to enhance the performance of a porous bone void filler. We tested the hypothesis that P15-CSP, a novel fusion peptide containing collagen-mimetic osteogenic peptide P15, and competence-stimulating peptide (CSP), a cationic antimicrobial peptide, has emerging properties not shared by P15 or CSP alone. Peptide-coated surfaces were tested for antimicrobial activity toward Streptoccocus mutans, and their ability to promote human mesenchymal stem cell (MSC) attachment, spreading, metabolism, and osteogenesis. In the osteogenesis assay, peptides were coated on tissue culture plastic and on thin films generated by plasma-enhanced chemical vapor deposition to have hydrophilic or hydrophobic character (water contact angles 63°, 42°, and 92°, respectively). S. mutans planktonic growth was specifically inhibited by CSP, whereas biofilm formation was inhibited by P15-CSP. MSC adhesion and actin stress fiber formation was strongly enhanced by CSP, P15-CSP, and fibronectin coatings and modestly enhanced by P15 versus uncoated surfaces. Metabolic assays revealed that CSP was slightly cytotoxic to MSCs. MSCs developed alkaline phosphatase activity on all surfaces, with or without peptide coatings, and consistently deposited the most biomineralized matrix on hydrophilic surfaces coated with P15-CSP. Hydrophobic thin films completely suppressed MSC biomineralization, consistent with previous findings of suppressed osteogenesis on hydrophobic bioplastics. Collective data in this study provide new evidence that P15-CSP has unique dual capacity to suppress biofilm formation, and to enhance osteogenic activity as a coating on hydrophilic surfaces. PMID:26097095

  2. The neural cell adhesion molecule-derived peptide FGL facilitates long-term plasticity in the dentate gyrus in vivo

    DEFF Research Database (Denmark)

    Dallérac, Glenn; Zerwas, Meike; Novikova, Tatiana;

    2011-01-01

    The neural cell adhesion molecule (NCAM) is known to play a role in developmental and structural processes but also in synaptic plasticity and memory of the adult animal. Recently, FGL, a NCAM mimetic peptide that binds to the Fibroblast Growth Factor Receptor 1 (FGFR-1), has been shown to have...... a beneficial impact on normal memory functioning, as well as to rescue some pathological cognitive impairments. Whether its facilitating impact may be mediated through promoting neuronal plasticity is not known. The present study was therefore designed to test whether FGL modulates the induction......-frequency stimulation (HFS) to the medial perforant path. The results suggest that although FGL did not alter basal synaptic transmission, it facilitated both the induction and maintenance of LTP. Interestingly, FGL also modified the heterosynaptic plasticity observed at the neighboring lateral perforant path synapses...

  3. GM-3 Lactone Mimetic Interacts with CD4 and HIV-1 Env Proteins, Hampering HIV-1 Infection without Inducing a Histopathological Alteration.

    Science.gov (United States)

    Richichi, Barbara; Pastori, Claudia; Gherardi, Stefano; Venuti, Assunta; Cerreto, Antonella; Sanvito, Francesca; Toma, Lucio; Lopalco, Lucia; Nativi, Cristina

    2016-08-12

    Glycosphingolipids (GSLs) are involved in HIV-1 entry. GM-3 ganglioside, a widespread GSL, affects HIV entry and infection in different ways, depending on the concentration, through its anchoring activity in lipid rafts. This explains why the induction of an altered GSLs metabolism was a tempting approach to reducing HIV-1 cell infection. This study assayed the biological properties of a synthetic GM-3 lactone mimetic, 1, aimed at blocking HIV-1 infection without inducing the adverse events expected by an altered metabolism of GLSs in vivo. The mimetic, conjugated to immunogenic protein ovalbumin and multivalently presented, was able to bind the CD4 molecule with high affinity and block its engagement with gp120, thus inhibiting virus entry. Elicited antimimetic antibodies were also able to block HIV-1 infection in vitro, with activity complementary to that observed for 1. These preliminary results show that the use of GSLs mimetics can be a novel promising mode to block HIV-1 infection and that 1 and other GSL mimetics deserve further attention. PMID:27626296

  4. The PeptideAtlas Project

    OpenAIRE

    Deutsch, Eric W.

    2010-01-01

    PeptideAtlas is a multi-species compendium of peptides observed with tandem mass spectrometry methods. Raw mass spectrometer output files are collected from the community and reprocessed through a uniform analysis and validation pipeline that continues to advance. The results are loaded into a database and the information derived from the raw data is returned to the community via several web-based data exploration tools. The PeptideAtlas resource is useful for experiment planning, improving g...

  5. Human Antimicrobial Peptides and Proteins

    OpenAIRE

    Guangshun Wang

    2014-01-01

    As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified ...

  6. Evolutionary trace-based peptides identify a novel asymmetric interaction that mediates oligomerization in nuclear receptors.

    Science.gov (United States)

    Gu, Peili; Morgan, Daniel H; Sattar, Minawar; Xu, Xueping; Wagner, Ryan; Raviscioni, Michele; Lichtarge, Olivier; Cooney, Austin J

    2005-09-01

    Germ cell nuclear factor (GCNF) is an orphan nuclear receptor that plays important roles in development and reproduction, by repressing the expression of essential genes such as Oct4, GDF9, and BMP15, through binding to DR0 elements. Surprisingly, whereas recombinant GCNF binds to DR0 sequences as a homodimer, endogenous GCNF does not exist as a homodimer but rather as part of a large complex termed the transiently retinoid-induced factor (TRIF). Here, we use evolutionary trace (ET) analysis to design mutations and peptides that probe the molecular basis for the formation of this unusual complex. We find that GCNF homodimerization and TRIF complex formation are DNA-dependent, and ET suggests that dimerization involves key functional sites on both helix 3 and helix 11, which are located on opposing surfaces of the ligand binding domain. Targeted mutations in either helix of GCNF disrupt the formation of both the homodimer and the endogenous TRIF complex. Moreover, peptide mimetics of both of these ET-determined sites inhibit dimerization and TRIF complex formation. This suggests that a novel helix 3-helix 11 heterotypic interaction mediates GCNF interaction and would facilitate oligomerization. Indeed, it was determined that the endogenous TRIF complex is composed of a GCNF oligomer. These findings shed light on an evolutionarily selected mechanism that reveals the unusual DNA-binding, dimerization, and oligomerization properties of GCNF.

  7. Peptides that influence membrane topology

    Science.gov (United States)

    Wong, Gerard C. L.

    2014-03-01

    We examine the mechanism of a range of polypeptides that influence membrane topology, including antimicrobial peptides, cell penetrating peptides, viral fusion peptides, and apoptosis proteins, and show how a combination of geometry, coordination chemistry, and soft matter physics can be used to approach a unified understanding. We will also show how such peptides can impact biomedical problems such as auto-immune diseases (psoriasis, lupus), infectious diseases (viral and bacterial infections), and mitochondrial pathologies (under-regulated apoptosis leads to neurodegenerative diseases whereas over-regulated apoptosis leads to cancer.)

  8. Improving Peptide Applications Using Nanotechnology.

    Science.gov (United States)

    Narayanaswamy, Radhika; Wang, Tao; Torchilin, Vladimir P

    2016-01-01

    Peptides are being successfully used in various fields including therapy and drug delivery. With advancement in nanotechnology and targeted delivery carrier systems, suitable modification of peptides has enabled achievement of many desirable goals over-riding some of the major disadvantages associated with the delivery of peptides in vivo. Conjugation or physical encapsulation of peptides to various nanocarriers, such as liposomes, micelles and solid-lipid nanoparticles, has improved their in vivo performance multi-fold. The amenability of peptides to modification in chemistry and functionalization with suitable nanocarriers are very relevant aspects in their use and have led to the use of 'smart' nanoparticles with suitable linker chemistries that favor peptide targeting or release at the desired sites, minimizing off-target effects. This review focuses on how nanotechnology has been used to improve the number of peptide applications. The paper also focuses on the chemistry behind peptide conjugation to nanocarriers, the commonly employed linker chemistries and the several improvements that have already been achieved in the areas of peptide use with the help of nanotechnology. PMID:26279082

  9. Improving Peptide Applications Using Nanotechnology.

    Science.gov (United States)

    Narayanaswamy, Radhika; Wang, Tao; Torchilin, Vladimir P

    2016-01-01

    Peptides are being successfully used in various fields including therapy and drug delivery. With advancement in nanotechnology and targeted delivery carrier systems, suitable modification of peptides has enabled achievement of many desirable goals over-riding some of the major disadvantages associated with the delivery of peptides in vivo. Conjugation or physical encapsulation of peptides to various nanocarriers, such as liposomes, micelles and solid-lipid nanoparticles, has improved their in vivo performance multi-fold. The amenability of peptides to modification in chemistry and functionalization with suitable nanocarriers are very relevant aspects in their use and have led to the use of 'smart' nanoparticles with suitable linker chemistries that favor peptide targeting or release at the desired sites, minimizing off-target effects. This review focuses on how nanotechnology has been used to improve the number of peptide applications. The paper also focuses on the chemistry behind peptide conjugation to nanocarriers, the commonly employed linker chemistries and the several improvements that have already been achieved in the areas of peptide use with the help of nanotechnology.

  10. Biodiscovery of aluminum binding peptides

    Science.gov (United States)

    Adams, Bryn L.; Sarkes, Deborah A.; Finch, Amethist S.; Hurley, Margaret M.; Stratis-Cullum, Dimitra

    2013-05-01

    Cell surface peptide display systems are large and diverse libraries of peptides (7-15 amino acids) which are presented by a display scaffold hosted by a phage (virus), bacteria, or yeast cell. This allows the selfsustaining peptide libraries to be rapidly screened for high affinity binders to a given target of interest, and those binders quickly identified. Peptide display systems have traditionally been utilized in conjunction with organic-based targets, such as protein toxins or carbon nanotubes. However, this technology has been expanded for use with inorganic targets, such as metals, for biofabrication, hybrid material assembly and corrosion prevention. While most current peptide display systems employ viruses to host the display scaffold, we have recently shown that a bacterial host, Escherichia coli, displaying peptides in the ubiquitous, membrane protein scaffold eCPX can also provide specific peptide binders to an organic target. We have, for the first time, extended the use of this bacterial peptide display system for the biodiscovery of aluminum binding 15mer peptides. We will present the process of biopanning with macroscopic inorganic targets, binder enrichment, and binder isolation and discovery.

  11. Polyclonal Peptide Antisera.

    Science.gov (United States)

    Pihl, Tina H; Illigen, Kristin E; Houen, Gunnar

    2015-01-01

    Polyclonal antibodies are relatively easy to produce and may supplement monoclonal antibodies for some applications or even have some advantages. The choice of species for production of (peptide) antisera is based on practical considerations, including availability of immunogen (vaccine) and animals. Two major factors govern the production of antisera: the nature of adaptive immune responses, which take place over days/weeks and ethical guidelines for animal welfare. Here, simple procedures for immunization of mice, rabbits, sheep, goats, pigs, horses, and chickens are presented. PMID:26424267

  12. Structural and Antimicrobial Features of Peptides Related to Myticin C, a Special Defense Molecule from the Mediterranean Mussel Mytilus galloprovincialis.

    Science.gov (United States)

    Domeneghetti, Stefania; Franzoi, Marco; Damiano, Nunzio; Norante, Rosa; El Halfawy, Nancy M; Mammi, Stefano; Marin, Oriano; Bellanda, Massimo; Venier, Paola

    2015-10-28

    Mussels (Mytilus spp.) have a large repertoire of cysteine-stabilized α,β peptides, and myticin C (MytC) was identified in some hundreds of transcript variants after in vivo immunostimulation. Using a sequence expressed in Italian mussels, we computed the MytC structure and synthesized the mature MytC and related peptide fragments (some of them also prepared in oxidized form) to accurately assess their antibacterial and antifungal activity. Only when tested at pH 5 was the reduced MytC as well as reduced and oxidized fragments including structural β-elements able to inhibit Gram-positive and -negative bacteria (MIC ranges of 4-32 and 8-32 μM, respectively). Such fragments caused selective Escherichia coli killing (MBC of 8-32 μM) but scarcely inhibited two fungal strains. In detail, the antimicrobial β-hairpin MytC[19-40]SOX caused membrane-disrupting effects in E. coli despite its partially ordered conformation in membrane-mimetic environments. In perspective, MytC-derived peptides could be employed to protect acidic mucosal tissues, in cosmetic and food products, and, possibly, as adjuvants in aquaculture.

  13. A synthetic NCAM-derived mimetic peptide, FGL, exerts anti-inflammatory properties via IGF-1 and interferon-gamma modulation

    DEFF Research Database (Denmark)

    Downer, Eric J; Cowley, Thelma R; Cox, Fionnuala;

    2009-01-01

    reactivity associated with aging. Administration of FGL reversed the age-related decline in IGF-1 in hippocampus, while abrogating the age-related increase in IFNgamma. FGL robustly promotes IGF-1 release from primary neurons and IGF-1 is pivotal in FGL induction of neuronal Akt phosphorylation and...... subsequent CD200 ligand expression in vitro. In addition, FGL abrogates both age- and IFNgamma-induced increases in markers of glial cell activation, including major histocompatibility complex class II (MHCII) and CD40. Finally, the proclivity of FGL to attenuate IFNgamma-induced glial cell activation in...... vitro is IGF-1-dependent. Overall, these findings suggest that FGL, by correcting the age-related imbalance in hippocampal levels of IGF-1 and IFNgamma, attenuates glial cell activation associated with aging. These findings also highlight a novel mechanism by which FGL can impact on neuronal CD200...

  14. The collagen I mimetic peptide DGEA enhances an osteogenic phenotype in mesenchymal stem cells when presented from cell-encapsulating hydrogels.

    Science.gov (United States)

    Mehta, Manav; Madl, Christopher M; Lee, Shimwoo; Duda, Georg N; Mooney, David J

    2015-11-01

    Interactions between cells and the extracellular matrix (ECM) are known to play critical roles in regulating cell phenotype. The identity of ECM ligands presented to mesenchymal stem cells (MSCs) has previously been shown to direct the cell fate commitment of these cells. To enhance osteogenic differentiation of MSCs, alginate hydrogels were prepared that present the DGEA ligand derived from collagen I. When presented from hydrogel surfaces in 2D, the DGEA ligand did not facilitate cell adhesion, while hydrogels presenting the RGD ligand derived from fibronectin did encourage cell adhesion and spreading. However, the osteogenic differentiation of MSCs encapsulated within alginate hydrogels presenting the DGEA ligand was enhanced when compared with unmodified alginate hydrogels and hydrogels presenting the RGD ligand. MSCs cultured in DGEA-presenting gels exhibited increased levels of osteocalcin production and mineral deposition. These data suggest that the presentation of the collagen I-derived DGEA ligand is a feasible approach for selectively inducing an osteogenic phenotype in encapsulated MSCs.

  15. Structure of Ristocetin A in Complex with a Bacterial Cell-wall Mimetic

    Energy Technology Data Exchange (ETDEWEB)

    Nahoum, V.; Spector, S; Loll, P

    2009-01-01

    Antimicrobial drug resistance is a serious public health problem and the development of new antibiotics has become an important priority. Ristocetin A is a class III glycopeptide antibiotic that is used in the diagnosis of von Willebrand disease and which has served as a lead compound for the development of new antimicrobial therapeutics. The 1.0 A resolution crystal structure of the complex between ristocetin A and a bacterial cell-wall peptide has been determined. As is observed for most other glycopeptide antibiotics, it is shown that ristocetin A forms a back-to-back dimer containing concave binding pockets that recognize the cell-wall peptide. A comparison of the structure of ristocetin A with those of class I glycopeptide antibiotics such as vancomycin and balhimycin identifies differences in the details of dimerization and ligand binding. The structure of the ligand-binding site reveals a likely explanation for ristocetin A's unique anticooperativity between dimerization and ligand binding.

  16. Detection of Hg2+ based on the selective inhibition of peroxidase mimetic activity of BSA-Au clusters.

    Science.gov (United States)

    Zhu, Rui; Zhou, Yan; Wang, Xi-Liang; Liang, Li-Ping; Long, Yi-Juan; Wang, Qin-Long; Zhang, Hai-Jie; Huang, Xiao-Xiao; Zheng, Hu-Zhi

    2013-12-15

    It was found that Hg(2+) can inhibit the peroxidase mimetic activity of bovine serum albumin (BSA) protected Au clusters (BSA-Au) due to the specific interaction between Hg(2+) and Au(+) existed onto the surface of BSA-Au clusters. By coupling with 3, 3', 5, 5'-tetramethylbenzidine (TMB)-H2O2 chromogenic reaction, a novel method for Hg(2+) detection was developed based on the inhibiting effect of Hg(2+) on BSA-Au clusters peroxidase-like activity. This method exhibited high selectivity and sensitivity. As low as 3 nM (0.6 ppb, 3σ) Hg(2+) could be detected with a linear range from 10 nM (2 ppb) to 10 µM (2 ppm) and this method was successfully applied for the determination of total mercury content in skin lightening products.

  17. Synthesis of multivalent carbohydrate mimetics with aminopolyol end groups and their evaluation as L-selectin inhibitors

    Directory of Open Access Journals (Sweden)

    Joana Salta

    2015-05-01

    Full Text Available In this article a series of divalent and trivalent carbohydrate mimetics on the basis of an enantiopure aminopyran and of serinol is described. These aminopolyols are connected by amide bonds to carboxylic acid derived spacer units either by Schotten–Baumann acylation or by coupling employing HATU as reagent. The O-sulfation employing the SO3·DMF complex was optimized. It was crucial to follow this process by 700 MHz 1H NMR spectroscopy to ensure full conversion and to use a refined neutralization and purification protocol. Many of the compounds could not be tested as L-selectin inhibitor by SPR due to their insolubility in water, nevertheless, a divalent and a trivalent amide showed surprisingly good activities with IC50 values in the low micromolar range.

  18. Sulfated levan from Halomonas smyrnensis as a bioactive, heparin-mimetic glycan for cardiac tissue engineering applications.

    Science.gov (United States)

    Erginer, Merve; Akcay, Ayca; Coskunkan, Binnaz; Morova, Tunc; Rende, Deniz; Bucak, Seyda; Baysal, Nihat; Ozisik, Rahmi; Eroglu, Mehmet S; Agirbasli, Mehmet; Toksoy Oner, Ebru

    2016-09-20

    Chemical derivatives of levan from Halomonas smyrnensis AAD6(T) with low, medium and high levels of sulfation were synthesized and characterized by FTIR and 2D-NMR. Sulfated levan samples were found to exhibit anticoagulation activity via the intrinsic pathway like heparin in a dose-dependent manner. Exceptionally high heparin equivalent activity of levan sulfate was shown to proceed via thrombin inhibition where decreased Factor Xa activity with increasing concentration was observed in antithrombin tests and above a certain concentration, levan sulfate showed a better inhibitor activity than heparin. In vitro experimental results were then verified in silico by docking studies using equilibrium structures obtained by molecular dynamic simulations and results suggested a sulfation dependent binding mechanism. With its high biocompatibility and heparin mimetic activity, levan sulfate can be considered as a suitable functional biomaterial to design biologically active, functionalized, thin films and engineered smart scaffolds for cardiac tissue engineering applications. PMID:27261753

  19. Radiolabelled peptides for oncological diagnosis.

    NARCIS (Netherlands)

    Laverman, P.; Sosabowski, J.K.; Boerman, O.C.; Oyen, W.J.G.

    2012-01-01

    Radiolabelled receptor-binding peptides targeting receptors (over)expressed on tumour cells are widely under investigation for tumour diagnosis and therapy. The concept of using radiolabelled receptor-binding peptides to target receptor-expressing tissues in vivo has stimulated a large body of resea

  20. Urinary Peptides in Rett Syndrome.

    Science.gov (United States)

    Solaas, K. M.; Skjeldal, O.; Gardner, M. L. G.; Kase, B. F.; Reichelt, K. L.

    2002-01-01

    A study found a significantly higher level of peptides in the urine of 53 girls with Rett syndrome compared with controls. The elevation was similar to that in 35 girls with infantile autism. Levels of peptides were lower in girls with classic Rett syndrome than those with congenital Rett syndrome. (Contains references.) (Author/CR)

  1. Structural Characterization of Peptide Antibodies

    DEFF Research Database (Denmark)

    Chailyan, Anna; Marcatili, Paolo

    2015-01-01

    The role of proteins as very effective immunogens for the generation of antibodies is indisputable. Nevertheless, cases in which protein usage for antibody production is not feasible or convenient compelled the creation of a powerful alternative consisting of synthetic peptides. Synthetic peptide...

  2. Solid-phase peptide synthesis

    DEFF Research Database (Denmark)

    Jensen, Knud Jørgen

    2013-01-01

    This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective....

  3. Mesenchymal stem cell responses to bone-mimetic electrospun matrices composed of polycaprolactone, collagen I and nanoparticulate hydroxyapatite.

    Directory of Open Access Journals (Sweden)

    Matthew C Phipps

    Full Text Available The performance of biomaterials designed for bone repair depends, in part, on the ability of the material to support the adhesion and survival of mesenchymal stem cells (MSCs. In this study, a nanofibrous bone-mimicking scaffold was electrospun from a mixture of polycaprolactone (PCL, collagen I, and hydroxyapatite (HA nanoparticles with a dry weight ratio of 50/30/20 respectively (PCL/col/HA. The cytocompatibility of this tri-component scaffold was compared with three other scaffold formulations: 100% PCL (PCL, 100% collagen I (col, and a bi-component scaffold containing 80% PCL/20% HA (PCL/HA. Scanning electron microscopy, fluorescent live cell imaging, and MTS assays showed that MSCs adhered to the PCL, PCL/HA and PCL/col/HA scaffolds, however more rapid cell spreading and significantly greater cell proliferation was observed for MSCs on the tri-component bone-mimetic scaffolds. In contrast, the col scaffolds did not support cell spreading or survival, possibly due to the low tensile modulus of this material. PCL/col/HA scaffolds adsorbed a substantially greater quantity of the adhesive proteins, fibronectin and vitronectin, than PCL or PCL/HA following in vitro exposure to serum, or placement into rat tibiae, which may have contributed to the favorable cell responses to the tri-component substrates. In addition, cells seeded onto PCL/col/HA scaffolds showed markedly increased levels of phosphorylated FAK, a marker of integrin activation and a signaling molecule known to be important for directing cell survival and osteoblastic differentiation. Collectively these results suggest that electrospun bone-mimetic matrices serve as promising degradable substrates for bone regenerative applications.

  4. The effect of a diiodothyronine mimetic on insulin sensitivity in male cardiometabolic patients: a double-blind randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Fleur van der Valk

    Full Text Available BACKGROUND AND AIMS: Obesity and its associated cardiometabolic co-morbidities are increasing worldwide. Since thyroid hormone mimetics are capable of uncoupling the beneficial metabolic effects of thyroid hormones from their deleterious effects on heart, bone and muscle, this class of drug is considered as adjacent therapeutics to weight-lowering strategies. This study investigated the safety and efficacy of TRC150094, a thyroid hormone mimetic. MATERIALS AND METHODS: This 4-week, randomized, placebo-controlled, double-blind trial was conducted in India and The Netherlands. Forty subjects were randomized at a 1:1 ratio to receive either TRC150094 dosed at 50 mg or placebo once daily for 4 weeks. Hyperinsulinemic euglycemic clamp and (1H-Magnetic Resonance Spectroscopy (MRS were performed before and after treatment. RESULTS: At baseline, subjects were characterized by markedly impaired hepatic and peripheral insulin sensitivity. TRC150094 dosed 50 mg once daily was safe and well tolerated. Hepatic nor peripheral insulin sensitivity improved after TRC150094 treatment, expressed as the suppression of Endogenous Glucose Production from 59.5 to 62.1%; p = 0.477, and the rate of glucose disappearance from 28.8 to 26.4 µmol kg(-1min(-1, p = 0.185. TRC150094 administration did not result in differences in fasting plasma free fatty acids from 0.51 to 0.51 mmol/L, p = 0.887 or in insulin-mediated suppression of lipolysis from 57 to 54%, p = 0.102. Also, intrahepatic triglyceride content was unaltered. CONCLUSION: Collectively, these data show that, in contrast to the potent metabolic effects in experimental models, TRC150094 at a dose of 50 mg daily does not improve the metabolic homeostasis in subjects at an increased cardiometabolic risk. Further studies are needed to evaluate whether TRC150094 has beneficial effects in patients with more severe metabolic derangement, such as overt diabetes mellitus and hypertriglyceridemia. TRIAL REGISTRATION

  5. NiCoBP-doped carbon nanotube hybrid: A novel oxidase mimetic system for highly efficient electrochemical immunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bing; He, Yu; Liu, Bingqian; Tang, Dianping, E-mail: dianping.tang@fzu.edu.cn

    2014-12-03

    Highlights: • We report a new oxidase mimetic system for highly efficient electrochemical immunoassay. • NiCoBP-doped carbon nanotube hybrids were used as the nanocatalysts. • NiCoBP-doped carbon nanotube hybrids were used as the mimic oxidase. - Abstract: NiCoBP-doped multi-walled carbon nanotube (NiCoBP–MWCNT) was first synthesized by using induced electroless-plating method and functionalized with the biomolecules for highly efficient electrochemical immunoassay of prostate-specific antigen (PSA, used as a model analyte). We discovered that the as-synthesized NiCoBP–MWCNT had the ability to catalyze the glucose oxidization with a stable and well-defined redox peak. The catalytic current increased with the increment of the immobilized NiCoBP–MWCNT on the electrode. Transmission electron microscope (TEM) and energy dispersive X-ray spectrometry (EDX) were employed to characterize the as-prepared NiCoBP–MWCNT. Using the NiCoBP–MWCNT-conjugated anti-PSA antibody as the signal-transduction tag, a new enzyme-free electrochemical immunoassay protocol could be designed for the detection of target PSA on the capture antibody-functionalized immunosensing interface. Experimental results revealed that the designed immunoassay system could exhibit good electrochemical responses toward target PSA, and allowed the detection of PSA at a concentration as low as 0.035 ng mL{sup −1}. More importantly, the NiCoBP-MWCNT-based oxidase mimetic system could be further extended for the monitoring of other low-abundance proteins or disease-related biomarkers by tuning the target antibody.

  6. Structure-Activity Studies of Brassinosteroids and the Search for Novel Analogues and Mimetics with Improved Bioactivity.

    Science.gov (United States)

    Back, Thomas G.; Pharis, Richard P.

    2003-12-01

    A number of novel brassinosteroid analogues were synthesized and subjected to the rice leaf lamina inclination bioassay. Modified B-ring analogues included lactam, thiolactone, cyclic ether, ketone, hydroxyl, and exocyclic methylene derivatives of brassinolide. Those derivatives containing polar functional groups retained considerable bioactivity, whereas the exocyclic methylene compounds were devoid of activity. Analogues containing normal alkyl and cycloalkyl substituents at C-24 (in place of the isopropyl group of brassinolide) showed an inverse relationship between activity and chain length or ring size, respectively. The corresponding cyclopropyl and cyclobutyl derivatives were significantly more active than brassinolide and appear to be the most potent brassinosteroids reported to date. When synergized with the auxin indole-3-acetic acid (IAA), their bioactivity can be further enhanced by 1-2 orders of magnitude. The cyclopropyl derivative, when coapplied with the auxin naphthaleneacetic acid, gave a significant increase in yield of wheat in a field trial. Certain 25- and 26-hydroxy derivatives are known metabolites of brassinosteroids. All of the C-25 stereoisomers of 25-hydroxy, 26-hydroxy, and 25,26-dihydroxy derivatives of brassinolide were prepared and shown to be much less active than brassinolide. This indicates that they are likely metabolic deactivation products of the parent phytohormone. A series of methyl ethers of brassinolide was synthesized to block deactivation by glucosylation of the free hydroxyl groups. The most significant finding was that the compound where three of the four hydroxyl groups (at C-3, C-22, and C-23) had been converted to methyl ethers retained substantial bioactivity. This type of modification could, in theory, allow brassinolide or 24-epibrassinolide to resist deactivation and thus offer greater persistence in field applications. A series of nonsteroidal mimetics of brassinolide was designed and synthesized. Two of the

  7. Enhancement of the Regenerative Potential of Anorganic Bovine Bone Graft Utilizing a Polyglutamate-Modified BMP2 Peptide with Improved Binding to Calcium-Containing Materials.

    Science.gov (United States)

    Bain, Jennifer L; Bonvallet, Paul P; Abou-Arraj, Ramzi V; Schupbach, Peter; Reddy, Michael S; Bellis, Susan L

    2015-09-01

    no side effects were observed with E7BMP2pep/ABB. Furthermore, histological analysis of the tissues revealed that grafts with rBMP2, but not E7BMP2pep, induced formation of adipose tissue in the defect area. Collectively, these results suggest that E7-modified BMP2-mimetic peptides may enhance the regenerative potential of commercial graft materials without the deleterious effects or high costs associated with rBMP2 treatments. PMID:26176902

  8. Effect of specific amino acid substitutions in the putative fusion peptide of structural glycoprotein E2 on Classical Swine Fever Virus replication

    International Nuclear Information System (INIS)

    E2, along with Erns and E1, is an envelope glycoprotein of Classical Swine Fever Virus (CSFV). E2 is involved in several virus functions: cell attachment, host range susceptibility and virulence in natural hosts. Here we evaluate the role of a specific E2 region, 818CPIGWTGVIEC828, containing a putative fusion peptide (FP) sequence. Reverse genetics utilizing a full-length infectious clone of the highly virulent CSFV strain Brescia (BICv) was used to evaluate how individual amino acid substitutions within this region of E2 may affect replication of BICv. A synthetic peptide representing the complete E2 FP amino acid sequence adopted a β-type extended conformation in membrane mimetics, penetrated into model membranes, and perturbed lipid bilayer integrity in vitro. Similar peptides harboring amino acid substitutions adopted comparable conformations but exhibited different membrane activities. Therefore, a preliminary characterization of the putative FP 818CPIGWTGVIEC828 indicates a membrane fusion activity and a critical role in virus replication. - Highlights: • A putative fusion peptide (FP) region in CSFV E2 protein was shown to be critical for virus growth. • Synthetic FPs were shown to efficiently penetrate into lipid membranes using an in vitro model. • Individual residues in the FP affecting virus replication were identified by reverse genetics. • The same FP residues are also responsible for mediating membrane fusion

  9. Effect of specific amino acid substitutions in the putative fusion peptide of structural glycoprotein E2 on Classical Swine Fever Virus replication

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Sainz, I.J. [Plum Island Animal Disease Center, ARS, USDA (United States); Largo, E. [Biophysics Unit (CSIC-UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao (Spain); Gladue, D.P.; Fletcher, P. [Plum Island Animal Disease Center, ARS, USDA (United States); O’Donnell, V. [Plum Island Animal Disease Center, ARS, USDA (United States); Plum Island Animal Disease Center, DHS, Greenport, NY 11944 (United States); Holinka, L.G. [Plum Island Animal Disease Center, ARS, USDA (United States); Carey, L.B. [Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), E-08003 Barcelona (Spain); Lu, X. [Plum Island Animal Disease Center, DHS, Greenport, NY 11944 (United States); Nieva, J.L. [Biophysics Unit (CSIC-UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao (Spain); Borca, M.V., E-mail: manuel.borca@ars.usda.gov [Plum Island Animal Disease Center, ARS, USDA (United States)

    2014-05-15

    E2, along with E{sup rns} and E1, is an envelope glycoprotein of Classical Swine Fever Virus (CSFV). E2 is involved in several virus functions: cell attachment, host range susceptibility and virulence in natural hosts. Here we evaluate the role of a specific E2 region, {sup 818}CPIGWTGVIEC{sup 828}, containing a putative fusion peptide (FP) sequence. Reverse genetics utilizing a full-length infectious clone of the highly virulent CSFV strain Brescia (BICv) was used to evaluate how individual amino acid substitutions within this region of E2 may affect replication of BICv. A synthetic peptide representing the complete E2 FP amino acid sequence adopted a β-type extended conformation in membrane mimetics, penetrated into model membranes, and perturbed lipid bilayer integrity in vitro. Similar peptides harboring amino acid substitutions adopted comparable conformations but exhibited different membrane activities. Therefore, a preliminary characterization of the putative FP {sup 818}CPIGWTGVIEC{sup 828} indicates a membrane fusion activity and a critical role in virus replication. - Highlights: • A putative fusion peptide (FP) region in CSFV E2 protein was shown to be critical for virus growth. • Synthetic FPs were shown to efficiently penetrate into lipid membranes using an in vitro model. • Individual residues in the FP affecting virus replication were identified by reverse genetics. • The same FP residues are also responsible for mediating membrane fusion.

  10. Liraglutide, a long-acting GLP-1 mimetic, and its metabolite attenuate inflammation after intracerebral hemorrhage

    DEFF Research Database (Denmark)

    Hou, Jack; Manaenko, Anatol; Hakon, Jakob;

    2012-01-01

    The inflammatory response plays a pivotal role in propagating injury of intracerebral hemorrhage (ICH). Glucagon-like-peptide-1 (GLP-1) is a hormone with antidiabetic effect and may also have antiinflammatory properties. Despite consensus that the glucoregulatory action is mediated by the GLP-1...... receptor (GLP-1R), mechanisms in the brain remain unclear. We investigated the effect of a long-acting GLP-1 analog, liraglutide, and its truncated metabolite, GLP-1(9-36)a from dipeptidyl peptidase-4 (DPP-4) cleavage in ICH-induced brain injury. Primary outcomes were cerebral edema formation......, neurobehavior, and inflammatory parameters. GLP-1(9-36)a, GLP-1R inhibitor, adenosine monophosphate-activated protein kinase (AMPK) phosphorylation inhibitor and DPP-4 inhibitor were administered to examine the mechanisms of action. Liraglutide suppressed neuroinflammation, prevented brain edema and neurologic...

  11. Conus venom peptide pharmacology.

    Science.gov (United States)

    Lewis, Richard J; Dutertre, Sébastien; Vetter, Irina; Christie, MacDonald J

    2012-04-01

    Conopeptides are a diverse group of recently evolved venom peptides used for prey capture and/or defense. Each species of cone snails produces in excess of 1000 conopeptides, with those pharmacologically characterized (≈ 0.1%) targeting a diverse range of membrane proteins typically with high potency and specificity. The majority of conopeptides inhibit voltage- or ligand-gated ion channels, providing valuable research tools for the dissection of the role played by specific ion channels in excitable cells. It is noteworthy that many of these targets are found to be expressed in pain pathways, with several conopeptides having entered the clinic as potential treatments for pain [e.g., pyroglutamate1-MrIA (Xen2174)] and one now marketed for intrathecal treatment of severe pain [ziconotide (Prialt)]. This review discusses the diversity, pharmacology, structure-activity relationships, and therapeutic potential of cone snail venom peptide families acting at voltage-gated ion channels (ω-, μ-, μO-, δ-, ι-, and κ-conotoxins), ligand-gated ion channels (α-conotoxins, σ-conotoxin, ikot-ikot, and conantokins), G-protein-coupled receptors (ρ-conopeptides, conopressins, and contulakins), and neurotransmitter transporters (χ-conopeptides), with expanded discussion on the clinical potential of sodium and calcium channel inhibitors and α-conotoxins. Expanding the discovery of new bioactives using proteomic/transcriptomic approaches combined with high-throughput platforms and better defining conopeptide structure-activity relationships using relevant membrane protein crystal structures are expected to grow the already significant impact conopeptides have had as both research probes and leads to new therapies. PMID:22407615

  12. Potential of phage-displayed peptide library technology to identify functional targeting peptides

    Science.gov (United States)

    Krumpe, Lauren RH; Mori, Toshiyuki

    2010-01-01

    Combinatorial peptide library technology is a valuable resource for drug discovery and development. Several peptide drugs developed through phage-displayed peptide library technology are presently in clinical trials and the authors envision that phage-displayed peptide library technology will assist in the discovery and development of many more. This review attempts to compile and summarize recent literature on targeting peptides developed through peptide library technology, with special emphasis on novel peptides with targeting capacity evaluated in vivo. PMID:20150977

  13. Radiopharmaceutical development of radiolabelled peptides

    Energy Technology Data Exchange (ETDEWEB)

    Fani, Melpomeni; Maecke, Helmut R. [University Hospital Freiburg, Department of Nuclear Medicine, Freiburg (Germany)

    2012-02-15

    Receptor targeting with radiolabelled peptides has become very important in nuclear medicine and oncology in the past few years. The overexpression of many peptide receptors in numerous cancers, compared to their relatively low density in physiological organs, represents the molecular basis for in vivo imaging and targeted radionuclide therapy with radiolabelled peptide-based probes. The prototypes are analogs of somatostatin which are routinely used in the clinic. More recent developments include somatostatin analogs with a broader receptor subtype profile or with antagonistic properties. Many other peptide families such as bombesin, cholecystokinin/gastrin, glucagon-like peptide-1 (GLP-1)/exendin, arginine-glycine-aspartic acid (RGD) etc. have been explored during the last few years and quite a number of potential radiolabelled probes have been derived from them. On the other hand, a variety of strategies and optimized protocols for efficient labelling of peptides with clinically relevant radionuclides such as {sup 99m}Tc, M{sup 3+} radiometals ({sup 111}In, {sup 86/90}Y, {sup 177}Lu, {sup 67/68}Ga), {sup 64/67}Cu, {sup 18}F or radioisotopes of iodine have been developed. The labelling approaches include direct labelling, the use of bifunctional chelators or prosthetic groups. The choice of the labelling approach is driven by the nature and the chemical properties of the radionuclide. Additionally, chemical strategies, including modification of the amino acid sequence and introduction of linkers/spacers with different characteristics, have been explored for the improvement of the overall performance of the radiopeptides, e.g. metabolic stability and pharmacokinetics. Herein, we discuss the development of peptides as radiopharmaceuticals starting from the choice of the labelling method and the conditions to the design and optimization of the peptide probe, as well as some recent developments, focusing on a selected list of peptide families, including somatostatin

  14. Peptide primary messengers in plants

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The peptide primary messengers regulate embryonic development,cell growth and many other activities in animal cells. But recent evidence verified that peptide primary messengers are also involved in plant defense responses, the recognition between pollen and stigma and keep the balance between cell proliferation and differentiations in shoot apical meristems. Those results suggest that plants may actually make wide use of peptide primary messengers, both in embryonic development and late life when they rally their cells to defend against pathogens and insect pests. The recent advance in those aspects is reviewed.

  15. Screening of TACE Peptide Inhibitors from Phage Display Peptide Library

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To obtain the recombinant tumor necrosis factor-α converting enzyme (TACE) ectodomain and use it as a selective molecule for the screening of TACE peptide inhibitors, the cDNA coding catalytic domain (T800) and full-length ectodomain (T1300) of TACE were amplified by RTPCR, and the expression plasmids were constructed by inserting T800 and T1300 into plasmid pET28a and pET-28c respectively. The recombinant T800 and T1300 were induced by IPTG, and SDSPAGE and Western blotting analysis results revealed that T800 and T1300 were highly expressed in the form of inclusion body. After Ni2+-NTA resin affinity chromatography, the recombinant proteins were used in the screening of TACE-binding peptides from phage display peptide library respectively. After 4 rounds of biopanning, the positive phage clones were analyzed by ELISA, competitive inhibition assay and DNA sequencing. A common amino acid sequence (TRWLVYFSRPYLVAT) was found and synthesized. The synthetic peptide could inhibit the TNF-α release from LPS-stimulated human peripheral blood mononuclear cells (PBMC) up to 60.3 %. FACS analysis revealed that the peptide mediated the accumulation of TNF-α on the cell surface. These results demonstrate that the TACE-binding peptide is an effective antagonist of TACE.

  16. Organization of Hyaluronan and Versican in the Extracellular Matrix of Human Fibroblasts Treated With the Viral Mimetic Poly I:C

    OpenAIRE

    Evanko, Stephen P.; Potter-Perigo, Susan; Johnson, Pamela Y.; Wight, Thomas N.

    2009-01-01

    We have examined structural details of hyaluronan- and versican-rich pericellular matrices in human lung fibroblasts, as well as fixation effects after treatment with the viral mimetic, poly I:C. Lateral aggregation of hyaluronan chains was promoted by acid-ethanol-formalin fixation compared with a network appearance with formalin alone. However, hyaluronidase-sensitive cable structures were seen in live cells, suggesting that they are not a fixation artifact. With all fixatives, versican and...

  17. On the Translation of Onomatopoeia and Mimetic Words from Japanese to Chinese%小议日语拟声拟态词的汉译

    Institute of Scientific and Technical Information of China (English)

    张新

    2011-01-01

    日语具有丰富的拟声拟态词。拟声拟态词用于生动地描摹事物的声音和形态,弥补了日语形容词数量较少的缺陷,在日语中出现的频率很高,数量上也远远高于汉语的拟声词。由于这个特点,在对它们进行汉译时,就会产生无法与汉语一一对应的问题。本文以高慧勤和叶渭渠的《伊豆的舞女》的中译本为例,探讨拟声拟态词汉译的方法。%Japanese has a large number of onomatopoeia and mimetic words.These words are used to vividly describe the sounds and shapes of various things,and they makes up the defect of small amount of Japanese adjectives.The occurrence frequency of onomatopoeia and mimetic words in Japanese is very high,and the number of them is far bigger than the ones in Chinese.Therefore,it is difficult to exactly translate Japanese onomatopoeia and mimetic words to Chinese.Taking the Chinese versions of The Izu Dancer translated by Gao Huiqin and Ye Weiqu for example,this article discusses the methods of translating Japanese onomatopoeia and mimetic words into Chinese.

  18. Bio-mimetic Nanostructure Self-assembled from Au@Ag Heterogeneous Nanorods and Phage Fusion Proteins for Targeted Tumor Optical Detection and Photothermal Therapy

    OpenAIRE

    Fei Wang; Pei Liu; Lin Sun; Cuncheng Li; Valery. A. Petrenko; Aihua Liu

    2014-01-01

    Nanomaterials with near-infrared (NIR) absorption have been widely studied in cancer detection and photothermal therapy (PTT), while it remains a great challenge in targeting tumor efficiently with minimal side effects. Herein we report a novel multifunctional phage-mimetic nanostructure, which was prepared by layer-by-layer self-assembly of Au@Ag heterogenous nanorods (NRs) with rhodamine 6G, and specific pVIII fusion proteins. Au@Ag NRs, first being applied for PTT, exhibited excellent stab...

  19. New vasoactive peptides in cirrhosis

    DEFF Research Database (Denmark)

    Kimer, Nina; Goetze, Jens Peter; Bendtsen, Flemming;

    2014-01-01

    BACKGROUND: Patients with cirrhosis have substantial circulatory imbalance between vasoconstrictive and vasodilating forces. The study of circulatory vasoactive peptides may provide important pathophysiological information. This study aimed to assess concentrations, organ extraction and relations...

  20. Peptide-LNA oligonucleotide conjugates

    DEFF Research Database (Denmark)

    Astakhova, I Kira; Hansen, Lykke Haastrup; Vester, Birte;

    2013-01-01

    properties, peptides were introduced into oligonucleotides via a 2'-alkyne-2'-amino-LNA scaffold. Derivatives of methionine- and leucine-enkephalins were chosen as model peptides of mixed amino acid content, which were singly and doubly incorporated into LNA/DNA strands using highly efficient copper......(i)-catalyzed azide-alkyne cycloaddition (CuAAC) "click" chemistry. DNA/RNA target binding affinity and selectivity of the resulting POCs were improved in comparison to LNA/DNA mixmers and unmodified DNA controls. This clearly demonstrates that internal attachment of peptides to oligonucleotides can significantly...... improve biomolecular recognition by synthetic nucleic acid analogues. Circular dichroism (CD) measurements showed no distortion of the duplex structure by the incorporated peptide chains while studies in human serum indicated superior stability of the POCs compared to LNA/DNA mixmers and unmodified DNA...

  1. Peptide nanostructures in biomedical technology.

    Science.gov (United States)

    Feyzizarnagh, Hamid; Yoon, Do-Young; Goltz, Mark; Kim, Dong-Shik

    2016-09-01

    Nanostructures of peptides have been investigated for biomedical applications due to their unique mechanical and electrical properties in addition to their excellent biocompatibility. Peptides may form fibrils, spheres and tubes in nanoscale depending on the formation conditions. These peptide nanostructures can be used in electrical, medical, dental, and environmental applications. Applications of these nanostructures include, but are not limited to, electronic devices, biosensing, medical imaging and diagnosis, drug delivery, tissue engineering and stem cell research. This review offers a discussion of basic synthesis methods, properties and application of these nanomaterials. The review concludes with recommendations and future directions for peptide nanostructures. WIREs Nanomed Nanobiotechnol 2016, 8:730-743. doi: 10.1002/wnan.1393 For further resources related to this article, please visit the WIREs website. PMID:26846352

  2. 鞋靴仿生设计思维与方法的研究%Research on the Idea and Method of Footwear Bio-mimetic Design

    Institute of Scientific and Technical Information of China (English)

    赵坚; 赵强; 周海燕

    2013-01-01

    On the basis of research on the thought and method for footwear bio-mimetic design was carried out,the bionic footwear design process was divided into four steps which were observation,analysis,refactoring and design.Taking butterfly as prototype,the specific methods for footwear bio-mimetic design was explored from shape,pattern,texture and color,so as the application space ofbio-mimetic design thinking and method were presented.%通过对鞋靴仿生设计思维方法的研究,将鞋靴仿生设计过程分为观察、分析、重构、设计四个步骤.以蝴蝶为仿生原型,从色彩、形态、图案、肌理四方面,探讨了鞋靴仿生设计的具体方法,以期拓展鞋靴仿生设计思维和方法的应用空间.

  3. A novel BH3 mimetic efficiently induces apoptosis in melanoma cells through direct binding to anti-apoptotic Bcl-2 family proteins, including phosphorylated Mcl-1.

    Science.gov (United States)

    Liu, Yubo; Xie, Mingzhou; Song, Ting; Sheng, Hongkun; Yu, Xiaoyan; Zhang, Zhichao

    2015-03-01

    The Bcl-2 family modulates sensitivity to chemotherapy in many cancers, including melanoma, in which the RAS/BRAF/MEK/ERK pathway is constitutively activated. Mcl-1, a major anti-apoptotic protein in the Bcl-2 family, is extensively expressed in melanoma and contributes to melanoma's well-documented chemoresistance. Here, we provide the first evidence that Mcl-1 phosphorylation at T163 by ERK1/2 and JNK is associated with the resistance of melanoma cell lines to the existing BH3 mimetics gossypol, S1 and ABT-737, and a novel anti-apoptotic mechanism of phosphorylated Mcl-1 (pMcl-1) is revealed. pMcl-1 antagonized the known BH3 mimetics by sequestering pro-apoptotic proteins that were released from Bcl-2/Mcl-1. Furthermore, an anthraquinone BH3 mimetic, compound 6, was identified to be the first small molecule to that induces endogenous apoptosis in melanoma cells by directly binding Bcl-2, Mcl-1, and pMcl-1 and disrupting the heterodimers of these proteins. Although compound 6 induced upregulation of the pro-apoptotic protein Noxa, its apoptotic induction was independent of Noxa. These data reveal the promising therapeutic potential of targeting pMcl-1 to treat melanoma. Compound 6 is therefore a potent drug that targets pMcl-1 in melanoma.

  4. Targeting cancer with peptide aptamers

    OpenAIRE

    Seigneuric, Renaud; Gobbo, Jessica; Colas, Pierre; Garrido, Carmen

    2011-01-01

    A major endeavour in cancer chemotherapy is to develop agents that specifically target a biomolecule of interest. There are two main classes of targeting agents: small molecules and biologics. Among biologics (e.g.: antibodies), DNA, RNA but also peptide aptamers are relatively recent agents. Peptide aptamers are seldom described but represent attractive agents that can inhibit a growing panel of oncotargets including Heat Shock Proteins. Potential pitfalls and coming challenges towards succe...

  5. Peptides and proteins

    Energy Technology Data Exchange (ETDEWEB)

    Bachovchin, W.W.; Unkefer, C.J.

    1994-12-01

    Advances in magnetic resonance and vibrational spectroscopy make it possible to derive detailed structural information about biomolecular structures in solution. These techniques are critically dependent on the availability of labeled compounds. For example, NMR techniques used today to derive peptide and protein structures require uniformity {sup 13}C-and {sup 15}N-labeled samples that are derived biosynthetically from (U-6-{sup 13}C) glucose. These experiments are possible now because, during the 1970s, the National Stable Isotope Resource developed algal methods for producing (U-6-{sup 13}C) glucose. If NMR techniques are to be used to study larger proteins, we will need sophisticated labelling patterns in amino acids that employ a combination of {sup 2}H, {sup 13}C, and {sup 15}N labeling. The availability of these specifically labeled amino acids requires a renewed investment in new methods for chemical synthesis of labeled amino acids. The development of new magnetic resonance or vibrational techniques to elucidate biomolecular structure will be seriously impeded if we do not see rapid progress in labeling technology. Investment in labeling chemistry is as important as investment in the development of advanced spectroscopic tools.

  6. Kinins and peptide receptors.

    Science.gov (United States)

    Regoli, Domenico; Gobeil, Fernand

    2016-04-01

    This paper is divided into two sections: the first contains the essential elements of the opening lecture presented by Pr. Regoli to the 2015 International Kinin Symposium in S. Paulo, Brazil on June 28th and the second is the celebration of Dr. Regoli's 60 years of research on vasoactive peptides. The cardiovascular homeostasis derives from a balance of two systems, the renin-angiotensin system (RAS) and the kallikrein-kinin system (KKS). The biologically active effector entity of RAS is angiotensin receptor-1 (AT-1R), and that of KKS is bradykinin B2 receptor (B2R). The first mediates vasoconstriction, the second is the most potent and efficient vasodilator. Thanks to its complex and multi-functional mechanism of action, involving nitric oxide (NO), prostacyclin and endothelial hyperpolarizing factor (EDHF). B2R is instrumental for the supply of blood, oxygen and nutrition to tissues. KKS is present on the vascular endothelium and functions as an autacoid playing major roles in cardiovascular diseases (CVDs) and diabetes. KKS exerts a paramount role in the prevention of thrombosis and atherosclerosis. Such knowledge emphasizes the already prominent value of the ACE-inhibitors (ACEIs) for the treatment of CVDs and diabetes. Indeed, the ACEIs, thanks to their double action (block of the RAS and potentiation of the KKS) are the ideal agents for a rational treatment of these diseases. PMID:26408609

  7. Antimicrobial peptides in annelids

    Directory of Open Access Journals (Sweden)

    A Tasiemski

    2008-06-01

    Full Text Available Gene encoded antimicrobial peptides (AMPs are widely distributed among living organisms including plants, invertebrates and vertebrates. They constitute important effectors of the innate immune response by exerting multiple roles as mediators of inflammation with impact on epithelial and inflammatory cells influencing diverse processes such as cytokine release, cell proliferation, angiogenesis, wound healing, chemotaxis and immune induction. In invertebrates, most of the data describe the characterization and/or the function of AMPs in the numerically and economically most representative group which are arthropods. Annelids are among the first coelomates and are therefore of special phylogenetic interest. Compared to other invertebrate groups, data on annelid’s immunity reveal heavier emphasis on the cellular than on the humoral response suggesting that immune defense of annelids seems to be principally developed as cellular immunity.This paper gives an overview of the variety of AMPs identified in the three classes of annelids, i.e. polychaetes, oligochaetes and achaetes. Their functions, when they have been studied, in the humoral or cellular response of annelids are also mentioned.

  8. Antimicrobial peptides in crustaceans

    Directory of Open Access Journals (Sweden)

    RD Rosa

    2010-11-01

    Full Text Available Crustaceans are a large and diverse invertebrate animal group that mounts a complex and efficient innate immune response against a variety of microorganisms. The crustacean immune system is primarily related to cellular responses and the production and release of important immune effectors into the hemolymph. Antimicrobial proteins and/or peptides (AMPs are key components of innate immunity and are widespread in nature, from bacteria to vertebrate animals. In crustaceans, 15 distinct AMP families are currently recognized, although the great majority (14 families comes from members of the order Decapoda. Crustacean AMPs are generally cationic, gene-encoded molecules that are mainly produced by circulating immune-competent cells (hemocytes or are derived from unrelated proteins primarily involved in other biological functions. In this review, we tentatively classified the crustacean AMPs into four main groups based on their amino acid composition, structural features and multi-functionality. We also attempted to summarize the current knowledge on their implication both in an efficient response to microbial infections and in crustacean survival.

  9. Material Binding Peptides for Nanotechnology

    Directory of Open Access Journals (Sweden)

    Urartu Ozgur Safak Seker

    2011-02-01

    Full Text Available Remarkable progress has been made to date in the discovery of material binding peptides and their utilization in nanotechnology, which has brought new challenges and opportunities. Nowadays phage display is a versatile tool, important for the selection of ligands for proteins and peptides. This combinatorial approach has also been adapted over the past decade to select material-specific peptides. Screening and selection of such phage displayed material binding peptides has attracted great interest, in particular because of their use in nanotechnology. Phage display selected peptides are either synthesized independently or expressed on phage coat protein. Selected phage particles are subsequently utilized in the synthesis of nanoparticles, in the assembly of nanostructures on inorganic surfaces, and oriented protein immobilization as fusion partners of proteins. In this paper, we present an overview on the research conducted on this area. In this review we not only focus on the selection process, but also on molecular binding characterization and utilization of peptides as molecular linkers, molecular assemblers and material synthesizers.

  10. Collagen-like antimicrobial peptides.

    Science.gov (United States)

    Masuda, Ryo; Kudo, Masakazu; Dazai, Yui; Mima, Takehiko; Koide, Takaki

    2016-11-01

    Combinatorial library composed of rigid rod-like peptides with a triple-helical scaffold was constructed. The component peptides were designed to have various combinations of basic and neutral (or hydrophobic) amino acid residues based on collagen-like (Gly-Pro-Yaa)-repeating sequences, inspired from the basic and amphiphilic nature of naturally occurring antimicrobial peptides. Screening of the peptide pools resulted in identification of antimicrobial peptides. A structure-activity relationship study revealed that the position of Arg-cluster at N-terminus and cystine knots at C-terminus in the triple helix significantly contributed to the antimicrobial activity. The most potent peptide RO-A showed activity against Gram-negative Escherichia coli and Gram-positive Bacillus subtilis. In addition, Escherichia coli exposed to RO-A resulted in abnormal elongation of the cells. RO-A was also shown to have remarkable stability in human serum and low cytotoxicity to mammalian cells. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 453-459, 2016. PMID:27271210

  11. Cleavage-Independent HIV-1 Env Trimers Engineered as Soluble Native Spike Mimetics for Vaccine Design

    Directory of Open Access Journals (Sweden)

    Shailendra Kumar Sharma

    2015-04-01

    Full Text Available Viral glycoproteins mediate entry by pH-activated or receptor-engaged activation and exist in metastable pre-fusogenic states that may be stabilized by directed rational design. As recently reported, the conformationally fixed HIV-1 envelope glycoprotein (Env trimers in the pre-fusion state (SOSIP display molecular homogeneity and structural integrity at relatively high levels of resolution. However, the SOSIPs necessitate full Env precursor cleavage, which requires endogenous furin overexpression. Here, we developed an alternative strategy using flexible peptide covalent linkage of Env subdomains to produce soluble, homogeneous, and cleavage-independent Env mimics, called native flexibly linked (NFL trimers, as vaccine candidates. This simplified design avoids the need for furin co-expression and, in one case, antibody affinity purification to accelerate trimer scale-up for preclinical and clinical applications. We have successfully translated the NFL design to multiple HIV-1 subtypes, establishing the potential to become a general method of producing native-like, well-ordered Env trimers for HIV-1 or other viruses.

  12. Targeted delivery of a model immunomodulator to the lymphatic system: comparison of alkyl ester versus triglyceride mimetic lipid prodrug strategies.

    Science.gov (United States)

    Han, Sifei; Quach, Tim; Hu, Luojuan; Wahab, Anisa; Charman, William N; Stella, Valentino J; Trevaskis, Natalie L; Simpson, Jamie S; Porter, Christopher J H

    2014-03-10

    A lipophilic prodrug approach has been used to promote the delivery of a model immunomodulator, mycophenolic acid (MPA), to the lymphatic system after oral administration. Lymphatic transport was employed to facilitate enhanced drug uptake into lymphocytes, as recent studies demonstrate that targeted drug delivery to lymph resident lymphocytes may enhance immunomodulatory effects. Two classes of lymph-directing prodrugs were synthesised. Alkyl chain derivatives (octyl mycophenolate, MPA-C8E; octadecyl mycophenolate, MPA-C18E; and octadecyl mycophenolamide, MPA-C18AM), to promote passive partitioning into lipids in lymphatic transport pathways, and a triglyceride mimetic prodrug (1,3-dipalmitoyl-2-mycophenoloyl glycerol, 2-MPA-TG) to facilitate metabolic integration into triglyceride deacylation-reacylation pathways. Lymphatic transport, lymphocyte uptake and plasma pharmacokinetics were assessed in mesenteric lymph and carotid artery cannulated rats following intraduodenal infusion of lipid-based formulations containing MPA or MPA prodrugs. Patterns of prodrug hydrolysis in rat digestive fluid, and cellular re-esterification in vivo, were evaluated to examine the mechanisms responsible for lymphatic transport. Poor enzyme stability and low absorption appeared to limit lymphatic transport of the alkyl derivatives, although two of the three alkyl chain prodrugs - MPA-C18AM (6-fold) and MPA-C18E (13-fold) still increased lymphatic drug transport when compared to MPA. In contrast, 2-MPA-TG markedly increased lymphatic drug transport (80-fold) and drug concentrations in lymphocytes (103-fold), and this was achieved via biochemical incorporation into triglyceride deacylation-reacylation pathways. The prodrug was hydrolysed rapidly to 2-mycophenoloyl glycerol (2-MPA-MG) in the presence of rat digestive fluid, and 2-MPA-MG was subsequently re-esterified in the enterocyte with oleic acid (most likely originating from the co-administered formulation) prior to accessing the

  13. Targeted delivery of a model immunomodulator to the lymphatic system: comparison of alkyl ester versus triglyceride mimetic lipid prodrug strategies.

    Science.gov (United States)

    Han, Sifei; Quach, Tim; Hu, Luojuan; Wahab, Anisa; Charman, William N; Stella, Valentino J; Trevaskis, Natalie L; Simpson, Jamie S; Porter, Christopher J H

    2014-03-10

    A lipophilic prodrug approach has been used to promote the delivery of a model immunomodulator, mycophenolic acid (MPA), to the lymphatic system after oral administration. Lymphatic transport was employed to facilitate enhanced drug uptake into lymphocytes, as recent studies demonstrate that targeted drug delivery to lymph resident lymphocytes may enhance immunomodulatory effects. Two classes of lymph-directing prodrugs were synthesised. Alkyl chain derivatives (octyl mycophenolate, MPA-C8E; octadecyl mycophenolate, MPA-C18E; and octadecyl mycophenolamide, MPA-C18AM), to promote passive partitioning into lipids in lymphatic transport pathways, and a triglyceride mimetic prodrug (1,3-dipalmitoyl-2-mycophenoloyl glycerol, 2-MPA-TG) to facilitate metabolic integration into triglyceride deacylation-reacylation pathways. Lymphatic transport, lymphocyte uptake and plasma pharmacokinetics were assessed in mesenteric lymph and carotid artery cannulated rats following intraduodenal infusion of lipid-based formulations containing MPA or MPA prodrugs. Patterns of prodrug hydrolysis in rat digestive fluid, and cellular re-esterification in vivo, were evaluated to examine the mechanisms responsible for lymphatic transport. Poor enzyme stability and low absorption appeared to limit lymphatic transport of the alkyl derivatives, although two of the three alkyl chain prodrugs - MPA-C18AM (6-fold) and MPA-C18E (13-fold) still increased lymphatic drug transport when compared to MPA. In contrast, 2-MPA-TG markedly increased lymphatic drug transport (80-fold) and drug concentrations in lymphocytes (103-fold), and this was achieved via biochemical incorporation into triglyceride deacylation-reacylation pathways. The prodrug was hydrolysed rapidly to 2-mycophenoloyl glycerol (2-MPA-MG) in the presence of rat digestive fluid, and 2-MPA-MG was subsequently re-esterified in the enterocyte with oleic acid (most likely originating from the co-administered formulation) prior to accessing the

  14. A neuroligin-1-derived peptide stimulates phosphorylation of the NMDA receptor NR1 subunit and rescues MK-801-induced decrease in long-term potentiation and memory impairment

    DEFF Research Database (Denmark)

    Korshunova, Irina; Gjørlund, Michelle D; Jacobsen, Sylwia Owczarek;

    2015-01-01

    neurolide-1 effects on short- and long-term social and spatial memory in social recognition, Morris water-maze, and Y-maze tests. We found that subcutaneous neurolide-1 administration, restored hippocampal LTP compromised by NMDA receptor inhibitor MK-801. It counteracted MK-801-induced memory deficit...... in the water-maze and Y-maze tests after long-term treatment (24 h and 1-2 h before the test), but not after short-term exposure (1-2 h). Long-term exposure to neurolide-1 also facilitated social recognition memory. In addition, neurolide-1-induced phosphorylation of the NMDA receptor NR1 subunit on a site...... receptor phosphorylation after treatment with NL1 or a mimetic peptide, neurolide-1, was quantified by immunoblotting. Subsequently, we investigated effects of neurolide-1 on long-term potentiation (LTP) induction in hippocampal slices compromised by NMDA receptor inhibitor MK-801. Finally, we investigated...

  15. Highly specific inhibition of leukaemia virus membrane fusion by interaction of peptide antagonists with a conserved region of the coiled coil of envelope

    Directory of Open Access Journals (Sweden)

    van Aalten Daan MF

    2008-08-01

    Full Text Available Abstract Background Human T-cell leukaemia virus (HTLV-1 and bovine leukaemia virus (BLV entry into cells is mediated by envelope glycoprotein catalyzed membrane fusion and is achieved by folding of the transmembrane glycoprotein (TM from a rod-like pre-hairpin intermediate to a trimer-of-hairpins. For HTLV-1 and for several virus groups this process is sensitive to inhibition by peptides that mimic the C-terminal α-helical region of the trimer-of-hairpins. Results We now show that amino acids that are conserved between BLV and HTLV-1 TM tend to map to the hydrophobic groove of the central triple-stranded coiled coil and to the leash and C-terminal α-helical region (LHR of the trimer-of-hairpins. Remarkably, despite this conservation, BLV envelope was profoundly resistant to inhibition by HTLV-1-derived LHR-mimetics. Conversely, a BLV LHR-mimetic peptide antagonized BLV envelope-mediated membrane fusion but failed to inhibit HTLV-1-induced fusion. Notably, conserved leucine residues are critical to the inhibitory activity of the BLV LHR-based peptides. Homology modeling indicated that hydrophobic residues in the BLV LHR likely make direct contact with a pocket at the membrane-proximal end of the core coiled-coil and disruption of these interactions severely impaired the activity of the BLV inhibitor. Finally, the structural predictions assisted the design of a more potent antagonist of BLV membrane fusion. Conclusion A conserved region of the HTLV-1 and BLV coiled coil is a target for peptide inhibitors of envelope-mediated membrane fusion and HTLV-1 entry. Nevertheless, the LHR-based inhibitors are highly specific to the virus from which the peptide was derived. We provide a model structure for the BLV LHR and coiled coil, which will facilitate comparative analysis of leukaemia virus TM function and may provide information of value in the development of improved, therapeutically relevant, antagonists of HTLV-1 entry into cells.

  16. Neuropeptides and neuropeptide receptors: drug targets, and peptide and non-peptide ligands: a tribute to Prof. Dieter Seebach.

    Science.gov (United States)

    Hoyer, Daniel; Bartfai, Tamas

    2012-11-01

    both central and peripheral nervous system disorders. Both, receptor subtype-selective antagonists and agonists are being developed, as illustrated by the success of somatostatin agonists, angiotensin, and endothelin antagonists, and the expected clinical applications of NK-1/2/3 (substance P) receptor antagonists, CRF, vasopressin, NPY, neurotensin, orexin antagonists, or neuropeptide receptor modulators; such ligands have efficacy in preclinical or clinical models of pain and neuropsychiatric diseases, such as migraine, chronic/neuropathic pain, anxiety, sleep disorders, depression, and schizophrenia. In addition, both positive and negative allosteric modulators have been described with interesting in vivo activities (e.g., at galanin receptors). The field has become more complex now that an increasing number of heteromeric neuropeptide receptors are described, e.g., ghrelin receptors with 5-HT(2C) or dopamine D(1), D(2) receptors. At long last, structure-based drug discovery can now be envisaged with confidence, since crystal or solution structure of GPCRs and GPCR-ligand complexes, including peptide receptors, are published almost on a monthly basis. Finally, although most compounds acting at peptide receptors are still peptidomimetics, the last decade has seen the emergence of low-molecular-weight nonpeptide ligands (e.g., for orexin, ghrelin, or neurokinin receptors), and surprising progress has been made with β- and γ-peptides as very stable and potent mimetics of, e.g., somatostatin (SRIF), where the native SRIF has a half-life limited to 2-3 min. This last point will be illustrated more specifically, as we have had a long-standing collaboration with Prof. D. Seebach to whom this review is dedicated at the occasion of his 75th birthday.

  17. Automated solid-phase peptide synthesis to obtain therapeutic peptides

    Directory of Open Access Journals (Sweden)

    Veronika Mäde

    2014-05-01

    Full Text Available The great versatility and the inherent high affinities of peptides for their respective targets have led to tremendous progress for therapeutic applications in the last years. In order to increase the drugability of these frequently unstable and rapidly cleared molecules, chemical modifications are of great interest. Automated solid-phase peptide synthesis (SPPS offers a suitable technology to produce chemically engineered peptides. This review concentrates on the application of SPPS by Fmoc/t-Bu protecting-group strategy, which is most commonly used. Critical issues and suggestions for the synthesis are covered. The development of automated methods from conventional to essentially improved microwave-assisted instruments is discussed. In order to improve pharmacokinetic properties of peptides, lipidation and PEGylation are described as covalent conjugation methods, which can be applied by a combination of automated and manual synthesis approaches. The synthesis and application of SPPS is described for neuropeptide Y receptor analogs as an example for bioactive hormones. The applied strategies represent innovative and potent methods for the development of novel peptide drug candidates that can be manufactured with optimized automated synthesis technologies.

  18. Peptides and Food Intake

    Directory of Open Access Journals (Sweden)

    Carmen Sobrino Crespo

    2014-04-01

    Full Text Available Nutrients created by the digestion of food are proposed to active G protein coupled receptors on the luminal side of enteroendocrine cells e.g. the L-cell. This stimulates the release of gut hormones. Hormones released from the gut and adipose tissue play an important rol in the regulation of food intake and energy expenditure (1.Many circulating signals, including gut hormones, can influence the activity of the arcuate nucleus (ARC neurons directly, after passing across the median eminence. The ARC is adjacent to the median eminence, a circumventricular organ with fenestrated capillaries and hence an incomplete blood-brain barrier (2. The ARC of the hypothalamus is believed to play a crucial role in the regulation of food intake and energy homeostasis. The ARC contains two populations of neurons with opposing effect on food intake (3. Medially located orexigenic neurons (i.e those stimulating appetite express neuropeptide Y (NPY and agouti-related protein (AgRP (4-5. Anorexigenic neurons (i.e. those inhibiting appetite in the lateral ARC express alpha-melanocyte stimulating hormone (α-MSH derived from pro-opiomelanocortin (POMC and cocaine and amphetamine-regulated transcript (CART (6. The balance between activities of these neuronal circuits is critical to body weight regulation.In contrast, other peripheral signals influence the hypothalamus indirectly via afferent neuronal pathway and brainstem circuits. In this context gastrointestinal’s vagal afferents are activated by mechanoreceptors and chemoreceptors, and converge in the nucleus of the tractus solitaries (NTS of the brainstem. Neuronal projections from the NTS, in turn, carry signals to the hypotalamus (1, 7. Gut hormones also alter the activity of the ascending vagal pathway from the gut to the brainstem. In the cases of ghrelin and Peptide tyrosine tyrosine (PYY, there are evidences for both to have a direct action on the arcuate nucleus and an action via the vagus nerve a

  19. Leucokinin mimetic elicits aversive behavior in mosquito Aedes aegypti (L.) and inhibits the sugar taste neuron.

    Science.gov (United States)

    Kwon, Hyeogsun; Ali Agha, Moutaz; Smith, Ryan C; Nachman, Ronald J; Marion-Poll, Frédéric; Pietrantonio, Patricia V

    2016-06-21

    Insect kinins (leucokinins) are multifunctional peptides acting as neurohormones and neurotransmitters. In females of the mosquito vector Aedes aegypti (L.), aedeskinins are known to stimulate fluid secretion from the renal organs (Malpighian tubules) and hindgut contractions by activating a G protein-coupled kinin receptor designated "Aedae-KR." We used protease-resistant kinin analogs 1728, 1729, and 1460 to evaluate their effects on sucrose perception and feeding behavior. In no-choice feeding bioassays (capillary feeder and plate assays), the analog 1728, which contains α-amino isobutyric acid, inhibited females from feeding on sucrose. It further induced quick fly-away or walk-away behavior following contact with the tarsi and the mouthparts. Electrophysiological recordings from single long labellar sensilla of the proboscis demonstrated that mixing the analog 1728 at 1 mM with sucrose almost completely inhibited the detection of sucrose. Aedae-KR was immunolocalized in contact chemosensory neurons in prothoracic tarsi and in sensory neurons and accessory cells of long labellar sensilla in the distal labellum. Silencing Aedae-KR by RNAi significantly reduced gene expression and eliminated the feeding-aversion behavior resulting from contact with the analog 1728, thus directly implicating the Aedae-KR in the aversion response. To our knowledge, this is the first report that kinin analogs modulate sucrose perception in any insect. The aversion to feeding elicited by analog 1728 suggests that synthetic molecules targeting the mosquito Aedae-KR in the labellum and tarsi should be investigated for the potential to discover novel feeding deterrents of mosquito vectors. PMID:27274056

  20. Glucagon-like peptide-1 (GLP-1 analog liraglutide inhibits endothelial cell inflammation through a calcium and AMPK dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Nadia M Krasner

    Full Text Available Liraglutide is a glucagon-like peptide-1 (GLP-1 mimetic used for the treatment of Type 2 diabetes. Similar to the actions of endogenous GLP-1, liraglutide potentiates the post-prandial release of insulin, inhibits glucagon release and increases satiety. Recent epidemiological studies and clinical trials have suggested that treatment with GLP-1 mimetics may also diminish the risk of cardiovascular disease in diabetic patients. The mechanism responsible for this effect has yet to be determined; however, one possibility is that they might do so by a direct effect on vascular endothelium. Since low grade inflammation of the endothelium is an early event in the pathogenesis of atherosclerotic cardiovascular disease (ASCVD, we determined the effects of liraglutide on inflammation in cultured human aortic endothelial cells (HAECs. Liraglutide reduced the inflammatory responses to TNFα and LPS stimulation, as evidenced by both reduced protein expression of the adhesion molecules VCAM-1 and E-Selectin, and THP-1 monocyte adhesion. This was found to result from increased cell Ca2+ and several molecules sensitive to Ca2+ with known anti inflammatory actions in endothelial cells, including CaMKKβ, CaMKI, AMPK, eNOS and CREB. Treatment of the cells with STO-609, a CaMKK inhibitor, diminished both the activation of AMPK, CaMKI and the inhibition of TNFα and LPS-induced monocyte adhesion by liraglutide. Likewise, expression of an shRNA against AMPK nullified the anti-inflammatory effects of liraglutide. The results indicate that liraglutide exerts a strong anti-inflammatory effect on HAECs. They also demonstrate that this is due to its ability to increase intracellular Ca2+ and activate CAMKKβ, which in turn activates AMPK.

  1. [Liraglutide (Victoza): human glucagon-like peptide-1 used in once daily injection for the treatment of type 2 diabetes].

    Science.gov (United States)

    Scheen, A J; Van Gaal, L F

    2010-01-01

    Liraglutide (Victoza) is a peptide produced by DNA recombinant technology, which presents 97% homology with human glucagon-like peptide-1 (GLP-1) but is resistant to dipeptidylpeptidase-4, the enzyme that degrades the natural hormone. It actives the GLP-1 receptor and exerts an incretin mimetic effect during at least 24 hours after a single subcutaneous injection. Besides a glucose-dependent stimulatory effect of insulin secretion, liraglutide inhibits glucagon secretion and retards gastric emptying. In patients with type 2 diabetes, it reduces glycated haemoglobin by at least 1%, without inducing hypoglycaemia. It also induces a moderate weight loss and a mild reduction in blood pressure. Gastrointestinal adverse events (nausea, vomiting) may occur during the initial phase of treatment, but rarely impose the interruption of the medication and usually diminish with time.Although indicated in combination with other glucose-lowering agents, liraglutide is currently reimbursed in Belgium only if administered in patients with type 2 diabetes not sufficiently controlled with a combination of metformin plus sulfonylurea or metformin plus a thiazolidinedione. Victoza is presented in prefilled pens and is injected subcutaneously once a day. Treatment will be initiated with 0.6 mg to improve digestive tolerance and the daily dose will be increased to 1.2 mg (usual dose) after at least one week, and up to 1.8 mg (maximal dose) if necessary. PMID:20857706

  2. Peptides: A new class of anticancer drugs

    Directory of Open Access Journals (Sweden)

    Ryszard Smolarczyk

    2009-07-01

    Full Text Available Peptides are a novel class of anticancer agents embracing two distinct categories: natural antibacterial peptides, which are preferentially bound by cancer cells, and chemically synthesized peptides, which bind specifically to precise molecular targets located on the surface of tumor cells. Antibacterial peptides bind to both cell and mitochondrial membranes. Some of these peptides attach to the cell membrane, resulting in its disorganization. Other antibacterial peptides penetrate cancer cells without causing cell membrane damage, but they disrupt mitochondrial membranes. Thanks to phage and aptamer libraries, it has become possible to obtain synthetic peptides blocking or activating some target proteins found in cancer cells as well as in cells forming the tumor environment. These synthetic peptides can feature anti-angiogenic properties, block enzymes indispensable for sustained tumor growth, and reduce tumor ability to metastasize. In this review the properties of peptides belonging to both categories are discussed and attempts of their application for therapeutic purposes are outlined.

  3. Perspectives and Peptides of the Next Generation

    Science.gov (United States)

    Brogden, Kim A.

    Shortly after their discovery, antimicrobial peptides from prokaryotes and eukaryotes were recognized as the next potential generation of pharmaceuticals to treat antibiotic-resistant bacterial infections and septic shock, to preserve food, or to sanitize surfaces. Initial research focused on identifying the spectrum of antimicrobial agents, determining the range of antimicrobial activities against bacterial, fungal, and viral pathogens, and assessing the antimicrobial activity of synthetic peptides versus their natural counterparts. Subsequent research then focused on the mechanisms of antimicrobial peptide activity in model membrane systems not only to identify the mechanisms of antimicrobial peptide activity in microorganisms but also to discern differences in cytotoxicity for prokaryotic and eukaryotic cells. Recent, contemporary work now focuses on current and future efforts to construct hybrid peptides, peptide congeners, stabilized peptides, peptide conjugates, and immobilized peptides for unique and specific applications to control the growth of microorganisms in vitro and in vivo.

  4. Exploration of the Medicinal Peptide Space.

    Science.gov (United States)

    Gevaert, Bert; Stalmans, Sofie; Wynendaele, Evelien; Taevernier, Lien; Bracke, Nathalie; D'Hondt, Matthias; De Spiegeleer, Bart

    2016-01-01

    The chemical properties of peptide medicines, known as the 'medicinal peptide space' is considered a multi-dimensional subset of the global peptide space, where each dimension represents a chemical descriptor. These descriptors can be linked to biofunctional, medicinal properties to varying degrees. Knowledge of this space can increase the efficiency of the peptide-drug discovery and development process, as well as advance our understanding and classification of peptide medicines. For 245 peptide drugs, already available on the market or in clinical development, multivariate dataexploration was performed using peptide relevant physicochemical descriptors, their specific peptidedrug target and their clinical use. Our retrospective analysis indicates that clusters in the medicinal peptide space are located in a relatively narrow range of the physicochemical space: dense and empty regions were found, which can be explored for the discovery of novel peptide drugs. PMID:26876881

  5. Effect of Resveratrol as Caloric Restriction Mimetic and Environmental Enrichment on Neurobehavioural Responses in Young Healthy Mice

    Directory of Open Access Journals (Sweden)

    Mustapha Shehu Muhammad

    2014-01-01

    Full Text Available Caloric restriction and environmental enrichment have been separately reported to possess health benefits such as improvement in motor and cognitive functions. Resveratrol, a natural polyphenolic compound, has been reported to be caloric restriction mimetic. This study therefore aims to investigate the potential benefit of the combination of resveratrol as CR and EE on learning and memory, motor coordination, and motor endurance in young healthy mice. Fifty mice of both sexes were randomly divided into five groups of 10 animals each: group I animals received carboxymethylcellulose (CMC orally per kg/day (control, group II animals were maintained on every other day feeding, group III animals received resveratrol 50 mg/kg, suspended in 10 g/L of (CMC orally per kg/day, group IV animals received CMC and were kept in an enriched environment, and group V animals received resveratrol 50 mg/kg and were kept in EE. The treatment lasted for four weeks. On days 26, 27, and 28 of the study period, the animals were subjected to neurobehavioural evaluation. The results obtained showed that there was no significant change (P>0.05 in neurobehavioural responses in all the groups when compared to the control which indicates that 50 mg/kg of resveratrol administration and EE have no significant effects on neurobehavioural responses in young healthy mice over a period of four weeks.

  6. Ochre Bathing of the Bearded Vulture: A Bio-Mimetic Model for Early Humans towards Smell Prevention and Health

    Directory of Open Access Journals (Sweden)

    Helmut Tributsch

    2016-01-01

    Full Text Available Since primordial times, vultures have been competing with man for animal carcasses. One of these vultures, the once widespread bearded vulture ( Gypaetus barbatus , has the habit of bathing its polluted feathers and skin in red iron oxide - ochre - tainted water puddles. Why? Primitive man may have tried to find out and may have discovered its advantages. Red ochre, which has accompanied human rituals and everyday life for more than 100,000 years, is not just a simple red paint for decoration or a symbol for blood. As modern experiments demonstrate, it is active in sunlight producing aggressive chemical species. They can kill viruses and bacteria and convert smelly organic substances into volatile neutral carbon dioxide gas. In this way, ochre can in sunlight sterilize and clean the skin to provide health and comfort and make it scentless, a definitive advantage for nomadic meat hunters. This research thus also demonstrates a sanitary reason for the vulture’s habit of bathing in red ochre mud. Prehistoric people have therefore included ochre use into their rituals, especially into those in relation to birth and death. Significant ritual impulses during evolution of man may thus have developed bio-mimetically, inspired from the habits of a vulture. It is discussed how this health strategy could be developed to a modern standard helping to fight antibiotics-resistant bacteria in hospitals.

  7. Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking.

    Science.gov (United States)

    Wu, Hsiao-Mei; Lin, Ying-Hsiu; Yen, Tzu-Chi; Hsieh, Chia-Lung

    2016-01-01

    Lipid rafts are membrane nanodomains that facilitate important cell functions. Despite recent advances in identifying the biological significance of rafts, nature and regulation mechanism of rafts are largely unknown due to the difficulty of resolving dynamic molecular interaction of rafts at the nanoscale. Here, we investigate organization and single-molecule dynamics of rafts by monitoring lateral diffusion of single molecules in raft-containing reconstituted membranes supported on mica substrates. Using high-speed interferometric scattering (iSCAT) optical microscopy and small gold nanoparticles as labels, motion of single lipids is recorded via single-particle tracking (SPT) with nanometer spatial precision and microsecond temporal resolution. Processes of single molecules partitioning into and escaping from the raft-mimetic liquid-ordered (Lo) domains are directly visualized in a continuous manner with unprecedented clarity. Importantly, we observe subdiffusion of saturated lipids in the Lo domain in microsecond timescale, indicating the nanoscopic heterogeneous molecular arrangement of the Lo domain. Further analysis of the diffusion trajectory shows the presence of nano-subdomains of the Lo phase, as small as 10 nm, which transiently trap the lipids. Our results provide the first experimental evidence of non-uniform molecular organization of the Lo phase, giving a new view of how rafts recruit and confine molecules in cell membranes. PMID:26861908

  8. Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking

    Science.gov (United States)

    Wu, Hsiao-Mei; Lin, Ying-Hsiu; Yen, Tzu-Chi; Hsieh, Chia-Lung

    2016-02-01

    Lipid rafts are membrane nanodomains that facilitate important cell functions. Despite recent advances in identifying the biological significance of rafts, nature and regulation mechanism of rafts are largely unknown due to the difficulty of resolving dynamic molecular interaction of rafts at the nanoscale. Here, we investigate organization and single-molecule dynamics of rafts by monitoring lateral diffusion of single molecules in raft-containing reconstituted membranes supported on mica substrates. Using high-speed interferometric scattering (iSCAT) optical microscopy and small gold nanoparticles as labels, motion of single lipids is recorded via single-particle tracking (SPT) with nanometer spatial precision and microsecond temporal resolution. Processes of single molecules partitioning into and escaping from the raft-mimetic liquid-ordered (Lo) domains are directly visualized in a continuous manner with unprecedented clarity. Importantly, we observe subdiffusion of saturated lipids in the Lo domain in microsecond timescale, indicating the nanoscopic heterogeneous molecular arrangement of the Lo domain. Further analysis of the diffusion trajectory shows the presence of nano-subdomains of the Lo phase, as small as 10 nm, which transiently trap the lipids. Our results provide the first experimental evidence of non-uniform molecular organization of the Lo phase, giving a new view of how rafts recruit and confine molecules in cell membranes.

  9. Functional characterization of solute carrier (SLC) 26/sulfate permease (SulP) proteins in membrane mimetic systems.

    Science.gov (United States)

    Srinivasan, Lakshmi; Baars, Tonie Luise; Fendler, Klaus; Michel, Hartmut

    2016-04-01

    Solute carrier (SLC) 26 or sulfate permease (SulP) anion transporters, belong to a phylogenetically ancient family of secondary active transporters. Members of the family are involved in several human genetic diseases and cell physiological processes. Despite their importance, the substrates for transport by this family of proteins have been poorly characterized. In this study, recombinant StmYchM/DauA, a SulP from Salmonella typhimurium was purified to homogeneity and functionally characterized. StmYchM/DauA was found to be a dimer in solution as determined by size exclusion chromatography coupled to multiple angle light scattering. We report a functional characterization of the SulP proteins in two membrane mimetic systems and reveal a dual nature of anionic substrates for SulP. StmYchM/DauA functionally incorporated into nanodiscs could bind fumarate with millimolar affinities (KD = 4.6 ± 0.29 mM) as detected by intrinsic tryptophan fluorescence quench studies. In contrast, electrophysiological experiments performed in reconstituted liposomes indicate a strong bicarbonate transport in the presence of chloride but no detectable electrogenic fumarate transport. We hence suggest that while SulP acts as an electrogenic bicarbonate transporter, fumarate may serve as substrate under different conditions indicating multiple functions of SulP. PMID:26774215

  10. Structural basis of activation-dependent binding of ligand-mimetic antibody AL-57 to integrin LFA-1

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongmin; Liu, Jin-huan; Yang, Wei; Springer, Timothy; Shimaoka, Motomu; Wang, Jia-huai; (CH-Boston); (DFCI)

    2010-09-21

    The activity of integrin LFA-1 ({alpha}{sub L}{beta}{sub 2}) to its ligand ICAM-1 is regulated through the conformational changes of its ligand-binding domain, the I domain of {alpha}{sub L} chain, from an inactive, low-affinity closed form (LA), to an intermediate-affinity form (IA), and then finally, to a high-affinity open form (HA). A ligand-mimetic human monoclonal antibody AL-57 (activated LFA-1 clone 57) was identified by phage display to specifically recognize the affinity-upregulated I domain. Here, we describe the crystal structures of the Fab fragment of AL-57 in complex with IA, as well as in its unligated form. We discuss the structural features conferring AL-57's strong selectivity for the high affinity, open conformation of the I domain. The AL-57-binding site overlaps the ICAM-1 binding site on the I domain. Furthermore, an antibody Asp mimics an ICAM Glu by forming a coordination to the metal-ion dependent adhesion site (MIDAS). The structure also reveals better shape complementarity and a more hydrophobic interacting interface in AL-57 binding than in ICAM-1 binding. The results explain AL-57's antagonistic mimicry of LFA-1's natural ligands, the ICAM molecules.

  11. BH3 mimetic ABT-737 sensitizes colorectal cancer cells to ixazomib through MCL-1 downregulation and autophagy inhibition.

    Science.gov (United States)

    Yang, Lifeng; Wan, Juefeng; Xiao, Sheng; Barkhouse, Darryll; Zhu, Ji; Li, Guichao; Lu, Bo; Zhang, Zhen

    2016-01-01

    The proteasome inhibitor MLN9708 is an orally administered drug that is hydrolyzed into its active form, MLN2238 (ixazomib). Compared with Bortezomib, MLN2238 has a shorter proteasome dissociation half-life and a lower incidence and severity of peripheral neuropathy, which makes it an attractive candidate for colorectal cancer treatment. In the present study, we observed that MLN2238 induced autophagy, as evidenced by conversion of the autophagosomal marker LC3 from LC3I to LC3II, in colorectal cancer cell lines. Mcl-1, an anti-apoptotic Bcl-2 family protein, was markedly elevated after treating a colorectal cancer cell line with MLN2238. We proved that inhibiting Mcl-1 expression enhances MLN2238 induced apoptosis and negatively regulates autophagy. Co-administration of BH3 mimetic ABT-737 with MLN2238 synergistically kills colorectal cancer cells through MCL-1 neutralization and autophagy inhibition. Furthermore, the synergistic killing effect of the combination therapy is correlated with P53 status in colorectal cancer. These data highlight that the combination of ABT-737 with MLN9708 is a promising therapeutic strategy for human colorectal cancer. PMID:27429848

  12. Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking.

    Science.gov (United States)

    Wu, Hsiao-Mei; Lin, Ying-Hsiu; Yen, Tzu-Chi; Hsieh, Chia-Lung

    2016-01-01

    Lipid rafts are membrane nanodomains that facilitate important cell functions. Despite recent advances in identifying the biological significance of rafts, nature and regulation mechanism of rafts are largely unknown due to the difficulty of resolving dynamic molecular interaction of rafts at the nanoscale. Here, we investigate organization and single-molecule dynamics of rafts by monitoring lateral diffusion of single molecules in raft-containing reconstituted membranes supported on mica substrates. Using high-speed interferometric scattering (iSCAT) optical microscopy and small gold nanoparticles as labels, motion of single lipids is recorded via single-particle tracking (SPT) with nanometer spatial precision and microsecond temporal resolution. Processes of single molecules partitioning into and escaping from the raft-mimetic liquid-ordered (Lo) domains are directly visualized in a continuous manner with unprecedented clarity. Importantly, we observe subdiffusion of saturated lipids in the Lo domain in microsecond timescale, indicating the nanoscopic heterogeneous molecular arrangement of the Lo domain. Further analysis of the diffusion trajectory shows the presence of nano-subdomains of the Lo phase, as small as 10 nm, which transiently trap the lipids. Our results provide the first experimental evidence of non-uniform molecular organization of the Lo phase, giving a new view of how rafts recruit and confine molecules in cell membranes.

  13. SIRT3 participates in glucose metabolism interruption and apoptosis induced by BH3 mimetic S1 in ovarian cancer cells.

    Science.gov (United States)

    Xiang, Xi-Yan; Kang, Jin-Song; Yang, Xiao-Chun; Su, Jing; Wu, Yao; Yan, Xiao-Yu; Xue, Ya-Nan; Xu, Ye; Liu, Yu-He; Yu, Chun-Yan; Zhang, Zhi-Chao; Sun, Lian-Kun

    2016-08-01

    The Bcl-2 antiapoptotic proteins are important cancer therapy targets; however, their role in cancer cell metabolism remains unclear. We found that the BH3-only protein mimetic S1, a novel pan Bcl-2 inhibitor, simultaneously interrupted glucose metabolism and induced apoptosis in human SKOV3 ovarian cancer cells, which was related to the activation of SIRT3, a stress-responsive deacetylase. S1 interrupted the cellular glucose metabolism mainly through causing damage to mitochondrial respiration and inhibiting glycolysis. Moreover, S1 upregulated the gene and protein expression of SIRT3, and induced the translocation of SIRT3 from the nucleus to mitochondria. SIRT3 silencing reversed the effects of S1 on glucose metabolism and apoptosis through increasing the level of HK-II localized to the mitochondria, while a combination of the glycolysis inhibitor 2-DG and S1 intensified the cytotoxicity through further upregulation of SIRT3 expression. This study underscores an essential role of SIRT3 in the antitumor effect of Bcl-2 inhibitors in human ovarian cancer through regulating both metabolism and apoptosis. The manipulation of Bcl-2 inhibitors combined with the use of classic glycolysis inhibitors may be rational strategies to improve ovarian cancer therapy. PMID:27277143

  14. Ochre Bathing of the Bearded Vulture: A Bio-Mimetic Model for Early Humans towards Smell Prevention and Health.

    Science.gov (United States)

    Tributsch, Helmut

    2016-01-01

    Since primordial times, vultures have been competing with man for animal carcasses. One of these vultures, the once widespread bearded vulture ( Gypaetus barbatus ), has the habit of bathing its polluted feathers and skin in red iron oxide - ochre - tainted water puddles. Why? Primitive man may have tried to find out and may have discovered its advantages. Red ochre, which has accompanied human rituals and everyday life for more than 100,000 years, is not just a simple red paint for decoration or a symbol for blood. As modern experiments demonstrate, it is active in sunlight producing aggressive chemical species. They can kill viruses and bacteria and convert smelly organic substances into volatile neutral carbon dioxide gas. In this way, ochre can in sunlight sterilize and clean the skin to provide health and comfort and make it scentless, a definitive advantage for nomadic meat hunters. This research thus also demonstrates a sanitary reason for the vulture's habit of bathing in red ochre mud. Prehistoric people have therefore included ochre use into their rituals, especially into those in relation to birth and death. Significant ritual impulses during evolution of man may thus have developed bio-mimetically, inspired from the habits of a vulture. It is discussed how this health strategy could be developed to a modern standard helping to fight antibiotics-resistant bacteria in hospitals. PMID:26784238

  15. Biologically and mechanically driven design of an RGD-mimetic macroporous foam for adipose tissue engineering applications.

    Science.gov (United States)

    Rossi, Eleonora; Gerges, Irini; Tocchio, Alessandro; Tamplenizza, Margherita; Aprile, Paola; Recordati, Camilla; Martello, Federico; Martin, Ivan; Milani, Paolo; Lenardi, Cristina

    2016-10-01

    Despite clinical treatments for adipose tissue defects, in particular breast tissue reconstruction, have certain grades of efficacy, many drawbacks are still affecting the long-term survival of new formed fat tissue. To overcome this problem, in the last decades, several scaffolding materials have been investigated in the field of adipose tissue engineering. However, a strategy able to recapitulate a suitable environment for adipose tissue reconstruction and maintenance is still missing. To address this need, we adopted a biologically and mechanically driven design to fabricate an RGD-mimetic poly(amidoamine) oligomer macroporous foam (OPAAF) for adipose tissue reconstruction. The scaffold was designed to fulfil three fundamental criteria: capability to induce cell adhesion and proliferation, support of in vivo vascularization and match of native tissue mechanical properties. Poly(amidoamine) oligomers were formed into soft scaffolds with hierarchical porosity through a combined free radical polymerization and foaming reaction. OPAAF is characterized by a high water uptake capacity, progressive degradation kinetics and ideal mechanical properties for adipose tissue reconstruction. OPAAF's ability to support cell adhesion, proliferation and adipogenesis was assessed in vitro using epithelial, fibroblast and endothelial cells (MDCK, 3T3L1 and HUVEC respectively). In addition, in vivo subcutaneous implantation in murine model highlighted OPAAF potential to support both adipogenesis and vessels infiltration. Overall, the reported results support the use of OPAAF as a scaffold for engineered adipose tissue construct. PMID:27428768

  16. Rational Structure-Based Rescaffolding Approach to De Novo Design of Interleukin 10 (IL-10) Receptor-1 Mimetics.

    Science.gov (United States)

    Ruiz-Gómez, Gloria; Hawkins, John C; Philipp, Jenny; Künze, Georg; Wodtke, Robert; Löser, Reik; Fahmy, Karim; Pisabarro, M Teresa

    2016-01-01

    Tackling protein interfaces with small molecules capable of modulating protein-protein interactions remains a challenge in structure-based ligand design. Particularly arduous are cases in which the epitopes involved in molecular recognition have a non-structured and discontinuous nature. Here, the basic strategy of translating continuous binding epitopes into mimetic scaffolds cannot be applied, and other innovative approaches are therefore required. We present a structure-based rational approach involving the use of a regular expression syntax inspired in the well established PROSITE to define minimal descriptors of geometric and functional constraints signifying relevant functionalities for recognition in protein interfaces of non-continuous and unstructured nature. These descriptors feed a search engine that explores the currently available three-dimensional chemical space of the Protein Data Bank (PDB) in order to identify in a straightforward manner regular architectures containing the desired functionalities, which could be used as templates to guide the rational design of small natural-like scaffolds mimicking the targeted recognition site. The application of this rescaffolding strategy to the discovery of natural scaffolds incorporating a selection of functionalities of interleukin-10 receptor-1 (IL-10R1), which are relevant for its interaction with interleukin-10 (IL-10) has resulted in the de novo design of a new class of potent IL-10 peptidomimetic ligands. PMID:27123592

  17. Rational Structure-Based Rescaffolding Approach to De Novo Design of Interleukin 10 (IL-10 Receptor-1 Mimetics.

    Directory of Open Access Journals (Sweden)

    Gloria Ruiz-Gómez

    Full Text Available Tackling protein interfaces with small molecules capable of modulating protein-protein interactions remains a challenge in structure-based ligand design. Particularly arduous are cases in which the epitopes involved in molecular recognition have a non-structured and discontinuous nature. Here, the basic strategy of translating continuous binding epitopes into mimetic scaffolds cannot be applied, and other innovative approaches are therefore required. We present a structure-based rational approach involving the use of a regular expression syntax inspired in the well established PROSITE to define minimal descriptors of geometric and functional constraints signifying relevant functionalities for recognition in protein interfaces of non-continuous and unstructured nature. These descriptors feed a search engine that explores the currently available three-dimensional chemical space of the Protein Data Bank (PDB in order to identify in a straightforward manner regular architectures containing the desired functionalities, which could be used as templates to guide the rational design of small natural-like scaffolds mimicking the targeted recognition site. The application of this rescaffolding strategy to the discovery of natural scaffolds incorporating a selection of functionalities of interleukin-10 receptor-1 (IL-10R1, which are relevant for its interaction with interleukin-10 (IL-10 has resulted in the de novo design of a new class of potent IL-10 peptidomimetic ligands.

  18. Spontaneous Packaging and Hypothermic Storage of Mammalian Cells with a Cell-Membrane-Mimetic Polymer Hydrogel in a Microchip.

    Science.gov (United States)

    Xu, Yan; Mawatari, Kazuma; Konno, Tomohiro; Kitamori, Takehiko; Ishihara, Kazuhiko

    2015-10-21

    Currently, continuous culture/passage and cryopreservation are two major, well-established methods to provide cultivated mammalian cells for experiments in laboratories. Due to the lack of flexibility, however, both laboratory-oriented methods are unable to meet the need for rapidly growing cell-based applications, which require cell supply in a variety of occasions outside of laboratories. Herein, we report spontaneous packaging and hypothermic storage of mammalian cells under refrigerated (4 °C) and ambient conditions (25 °C) using a cell-membrane-mimetic methacryloyloxyethyl phosphorylcholine (MPC) polymer hydrogel incorporated within a glass microchip. Its capability for hypothermic storage of cells was comparatively evaluated over 16 days. The results reveal that the cytocompatible MPC polymer hydrogel, in combination with the microchip structure, enabled hypothermic storage of cells with quite high viability, high intracellular esterase activity, maintained cell membrane integrity, and small morphological change for more than 1 week at 4 °C and at least 4 days at 25 °C. Furthermore, the stored cells could be released from the hydrogel and exhibited the ability to adhere to a surface and achieve confluence under standard cell culture conditions. Both hypothermic storage conditions are ordinary flexible conditions which can be easily established in places outside of laboratories. Therefore, cell packaging and storage using the hydrogel incorporated within the microchip would be a promising miniature and portable solution for flexible supply and delivery of small amounts of cells from bench to bedside.

  19. Peptide Vaccine: Progress and Challenges

    Directory of Open Access Journals (Sweden)

    Weidang Li

    2014-07-01

    Full Text Available Conventional vaccine strategies have been highly efficacious for several decades in reducing mortality and morbidity due to infectious diseases. The bane of conventional vaccines, such as those that include whole organisms or large proteins, appear to be the inclusion of unnecessary antigenic load that, not only contributes little to the protective immune response, but complicates the situation by inducing allergenic and/or reactogenic responses. Peptide vaccines are an attractive alternative strategy that relies on usage of short peptide fragments to engineer the induction of highly targeted immune responses, consequently avoiding allergenic and/or reactogenic sequences. Conversely, peptide vaccines used in isolation are often weakly immunogenic and require particulate carriers for delivery and adjuvanting. In this article, we discuss the specific advantages and considerations in targeted induction of immune responses by peptide vaccines and progresses in the development of such vaccines against various diseases. Additionally, we also discuss the development of particulate carrier strategies and the inherent challenges with regard to safety when combining such technologies with peptide vaccines.

  20. Recent development of peptide self-assembly

    Institute of Scientific and Technical Information of China (English)

    Xiubo Zhao; Fang Pan; Jian R. Lu

    2008-01-01

    Amino acids are the building blocks to build peptides and proteins. Recent development in peptide synthesis has however enabled us to mimic this natural process by preparing various long and short peptides possessing different conformations and biological functions. The self-assembly of short designed peptides into molecular nanostructures is becoming a growing interest in nanobiotechnology. Self-assembled peptides exhibit several attractive features for applications in tissue regeneration, drug delivery, biological surface engineering as well as in food science, cosmetic industry and antibiotics. The aim of this review is to introduce the readers to a number of representative studies on peptide self-assembly.

  1. GLUCAGON LIKE PEPTIDE – 1: A NEW ERA IN TREATMENT OF TYPE- 2 DIABETES MELLITUS

    Directory of Open Access Journals (Sweden)

    Singhal Manmohan

    2010-09-01

    Full Text Available Therapies based on the incretin hormone glucagon-like peptide 1 (GLP-1 are novel treatment options for type 2 diabetes that act through a variety of complementary mechanisms. GLP-1 is produced by the proglucagon gene in L-cells of the small intestine in response to nutrients. It stimulates glucose-dependent insulin release from the pancreatic islets. In addition to its insulinotropic effects, it is thought to exert ant hyperglycemic effects by slowing gastric emptying, inhibiting inappropriate glucagon release, stimulating β-cell proliferation and differentiation, and improving satiety. GLP-1 secretion is decreased in type 2 diabetes, thus making it a logical target for novel treatments of type 2 diabetes. In clinical trials, GLP-1 effects are evident regardless of the duration or severity of diabetes. Thus, modulating GLP-1 levels and GLP-1 activity through administration of the native hormone, analogs, and mimetics or by inhibiting its degradation has become a major focus of investigation for treating type 2 diabetes over the past decade.

  2. Antiviral active peptide from oyster

    Science.gov (United States)

    Zeng, Mingyong; Cui, Wenxuan; Zhao, Yuanhui; Liu, Zunying; Dong, Shiyuan; Guo, Yao

    2008-08-01

    An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster ( Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10 5 kDa, 5 1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10 5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.

  3. Antiviral active peptide from oyster

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster (Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10-5 kDa, 5-1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10?5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.

  4. Radioactive labelling of peptidic hormones

    International Nuclear Information System (INIS)

    The labelling of peptidic hormones requires stability, specificity and sensitivity of the label. Introduction of a radioactive atome is one way to satisfy these criteria. Several processes have been described to prepare radioactive TRF: synthesis of the peptide with labelled aminoacids or introduction of the label into the hormone. In that approach, tritium can be substituted in the imidazole ring, via precursors activating the proper carbon. Monoiodo TRF leads essentially to tritium labelling of the 5 positions whereas monoazo TRF allows the preparation of 3H TRF labelled in the 2 positions. Di-substituted TRF leads to labelling into the 2 and 5 carbons. Labelled analogs of TRF can be prepared with labelled iodine; further developments of peptide labelling, will be presented. In particular, the homolytic scission of the C-iodine, bond by photochemical activation. The nascent carbon radical can be stabilized by a tritiated scavenger. This approach eliminates the use of heavy metal catalysts

  5. Peptide Antibiotics for ESKAPE Pathogens

    DEFF Research Database (Denmark)

    Thomsen, Thomas Thyge

    is considered poor compared to medicines for lifestyle diseases. According to the WHO we could be moving towards a post-antibiotic era in which previously treatable infections become fatal. Of special importance are multidrug resistant bacteria from the ESKAPE group (Enterococcus faecium, Staphylococcus aureus...... a cecropin-mellitin hybrid peptide and proved effective in killing colistin resistant Gram-negative A. baumannii in vitro. The molecule was improved with regard to toxicity, as measured by hemolytic ability. Further, this peptide is capable of specifically killing non-growing cells of colistin resistant A...

  6. Peptides and the new endocrinology

    Science.gov (United States)

    Schwyzer, Robert

    1982-01-01

    The discovery of regulatory peptides common to the nervous and the endocrine systems (brain, gut, and skin) has brought about a revolution in our concepts of endocrinology and neurology. We are beginning to understand some of the complex interrelationships between soma and psyche that might, someday, be important for an integrated treatment of diseases. Examples of the actions of certain peptides in the periphery and in the central nervous system are given, and their biosynthesis and molecular anatomy as carriers for information are discussed.

  7. Novel Formulations for Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2014-10-01

    Full Text Available Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy.

  8. An enhancer peptide for membrane-disrupting antimicrobial peptides

    Directory of Open Access Journals (Sweden)

    Zhang Hong

    2010-02-01

    Full Text Available Abstract Background NP4P is a synthetic peptide derived from a natural, non-antimicrobial peptide fragment (pro-region of nematode cecropin P4 by substitution of all acidic amino acid residues with amides (i.e., Glu → Gln, and Asp → Asn. Results In the presence of NP4P, some membrane-disrupting antimicrobial peptides (ASABF-α, polymyxin B, and nisin killed microbes at lower concentration (e.g., 10 times lower minimum bactericidal concentration for ASABF-α against Staphylococcus aureus, whereas NP4P itself was not bactericidal and did not interfere with bacterial growth at ≤ 300 μg/mL. In contrast, the activities of antimicrobial agents with a distinct mode of action (indolicidin, ampicillin, kanamycin, and enrofloxacin were unaffected. Although the membrane-disrupting activity of NP4P was slight or undetectable, ASABF-α permeabilized S. aureus membranes with enhanced efficacy in the presence of NP4P. Conclusions NP4P selectively enhanced the bactericidal activities of membrane-disrupting antimicrobial peptides by increasing the efficacy of membrane disruption against the cytoplasmic membrane.

  9. Strategic approaches to optimizing peptide ADME properties.

    Science.gov (United States)

    Di, Li

    2015-01-01

    Development of peptide drugs is challenging but also quite rewarding. Five blockbuster peptide drugs are currently on the market, and six new peptides received first marketing approval as new molecular entities in 2012. Although peptides only represent 2% of the drug market, the market is growing twice as quickly and might soon occupy a larger niche. Natural peptides typically have poor absorption, distribution, metabolism, and excretion (ADME) properties with rapid clearance, short half-life, low permeability, and sometimes low solubility. Strategies have been developed to improve peptide drugability through enhancing permeability, reducing proteolysis and renal clearance, and prolonging half-life. In vivo, in vitro, and in silico tools are available to evaluate ADME properties of peptides, and structural modification strategies are in place to improve peptide developability. PMID:25366889

  10. Histidine-Containing Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2000-01-01

    Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics.......Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics....

  11. Lipoxygenase inhibitor peptides and their use

    OpenAIRE

    Schurink, M.; Boeriu, C.G.; Berkel, van, A.M.; Wichers, H J

    2006-01-01

    The present invention is in the field of enzyme inhibition. In particular it relates to peptide inhibitors for lipoxygenases. The lipoxygenase peptide inhibitors of have the potential to be used as therapeutic drugs as well as food preservatives.

  12. Natriuretic peptides in cardiometabolic regulation and disease

    DEFF Research Database (Denmark)

    Zois, Nora Elisabeth; Bartels, Emil Daniel; Hunter, Ingrid;

    2014-01-01

    decade. Dysregulation of the natriuretic peptide system has been associated with obesity, glucose intolerance, type 2 diabetes mellitus, and essential hypertension. Moreover, the natriuretic peptides have been implicated in the protection against atherosclerosis, thrombosis, and myocardial ischaemia. All...

  13. Single administration of p2TA (AB103, a CD28 antagonist peptide, prevents inflammatory and thrombotic reactions and protects against gastrointestinal injury in total-body irradiated mice.

    Directory of Open Access Journals (Sweden)

    Salida Mirzoeva

    Full Text Available The goal of this study was to elucidate the action of the CD28 mimetic peptide p2TA (AB103 that attenuates an excessive inflammatory response in mitigating radiation-induced inflammatory injuries. BALB/c and A/J mice were divided into four groups: Control (C, Peptide (P; 5 mg/kg of p2TA peptide, Radiation (R; total body irradiation with 8 Gy γ-rays, and Radiation + Peptide (RP; irradiation followed by p2TA peptide 24 h later. Gastrointestinal tissue damage was evaluated by analysis of jejunum histopathology and immunohistochemistry for cell proliferation (Cyclin D1 and inflammation (COX-2 markers, as well as the presence of macrophages (F4/80. Pro-inflammatory cytokines IL-6 and KC as well as fibrinogen were quantified in plasma samples obtained from the same mice. Our results demonstrated that administration of p2TA peptide significantly reduced the irradiation-induced increase of IL-6 and fibrinogen in plasma 7 days after exposure. Seven days after total body irradiation with 8 Gy of gamma rays numbers of intestinal crypt cells were reduced and villi were shorter in irradiated animals compared to the controls. The p2TA peptide delivery 24 h after irradiation led to improved morphology of villi and crypts, increased Cyclin D1 expression, decreased COX-2 staining and decreased numbers of macrophages in small intestine of irradiated mice. Our study suggests that attenuation of CD28 signaling is a promising therapeutic approach for mitigation of radiation-induced tissue injury.

  14. Purification, structure and function of bioactive peptides

    OpenAIRE

    Eriste, Elo

    2004-01-01

    Peptides are vitally important molecules and many evoke cellular responses. The completion of several genome sequencing projects has revealed a number of new genes. However, as functional peptides often contain posttranslational modifications and/or occur at various lengths, it is of great importance to detect, purify and characterize novel bioactive peptides. To achieve these goals, new methods for peptide detection, isolation and functional characterization have to be d...

  15. Development and use of engineered peptide deformylase in chemoenzymatic peptide synthesis

    NARCIS (Netherlands)

    Di Toma, Claudia

    2012-01-01

    Deze thesis beschrijft het onderzoek naar potentieel van het gebruik van het peptide deformylase (PDF) in chemo enzymatische peptide synthese. PDF is geschikt voor selective N terminale deformylatie van bepaalde N-formyl-peptides zonder gelijktijdige hydrolyse van de peptide binding. Door de uitdagi

  16. Interpreting peptide mass spectra by VEMS

    DEFF Research Database (Denmark)

    Mathiesen, Rune; Lundsgaard, M.; Welinder, Karen G.;

    2003-01-01

    of peptide MS/MS spectra imported in text file format. Peaks are annotated, the monoisotopic peaks retained, and the b-and y-ion series identified in an interactive manner. The called peptide sequence is searched against a local protein database for sequence identity and peptide mass. The report compares...

  17. Synthetic Procedures for Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  18. Characterization of synthetic peptides by mass spectrometry

    DEFF Research Database (Denmark)

    Prabhala, Bala Krishna; Mirza, Osman Asghar; Højrup, Peter;

    2015-01-01

    Mass spectrometry (MS) is well suited for analysis of the identity and purity of synthetic peptides. The sequence of a synthetic peptide is most often known, so the analysis is mainly used to confirm the identity and purity of the peptide. Here, simple procedures are described for MALDI-TOF-MS an...

  19. Double-Stranded Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2001-01-01

    A novel class of compounds, known as peptide nucleic acids, form double-stranded structures with one another and with ssDNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  20. Peptides and metallic nanoparticles for biomedical applications.

    NARCIS (Netherlands)

    Kogan, M.J.; Olmedo, I.; Hosta, L.; Guerrero, A.R.; Cruz Ricondo, L.J.; Albericio, F.

    2007-01-01

    In this review, we describe the contribution of peptides to the biomedical applications of metallic nanoparticles. We also discuss strategies for the preparation of peptide-nanoparticle conjugates and the synthesis of the peptides and metallic nanoparticles. An overview of the techniques used for th

  1. Diversity of wheat anti-microbial peptides.

    Science.gov (United States)

    Egorov, Tsezi A; Odintsova, Tatyana I; Pukhalsky, Vitaliy A; Grishin, Eugene V

    2005-11-01

    From seeds of Triticum kiharae Dorof. et Migusch., 24 novel anti-microbial peptides were isolated and characterized by a combination of three-step HPLC (affinity, size-exclusion and reversed-phase) with matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry and Edman degradation. Based on sequence similarity and cysteine motifs, partially sequenced peptides were assigned to 7 families: defensins, thionins, lipid-transfer proteins, hevein-like peptides, knottin-like peptides, glycine-rich peptides, and MBP-1 homologs. A novel subfamily of defensins consisting of 6 peptides and a new family of glycine-rich (8 peptides with different repeat motifs) were identified. Three 6-cysteine knottin-like peptides represented by N- and C-terminally truncated variants revealed no sequence homology to any known plant anti-microbial peptides. A new 8-cysteine hevein-like peptide and three 4-cysteine peptides homologous to MBP-1 from maize were isolated. This is the first communication on the occurrence of nearly all families of plant anti-microbial peptides in a single species. PMID:16269343

  2. Toxins and antimicrobial peptides: interactions with membranes

    Science.gov (United States)

    Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.

    2009-08-01

    The innate immunity to pathogenic invasion of organisms in the plant and animal kingdoms relies upon cationic antimicrobial peptides (AMPs) as the first line of defense. In addition to these natural peptide antibiotics, similar cationic peptides, such as the bee venom toxin melittin, act as nonspecific toxins. Molecular details of AMP and peptide toxin action are not known, but the universal function of these peptides to disrupt cell membranes of pathogenic bacteria (AMPs) or a diverse set of eukaryotes and prokaryotes (melittin) is widely accepted. Here, we have utilized spectroscopic techniques to elucidate peptide-membrane interactions of alpha-helical human and mouse AMPs of the cathelicidin family as well as the peptide toxin melittin. The activity of these natural peptides and their engineered analogs was studied on eukaryotic and prokaryotic membrane mimics consisting of peptide potency, was monitored with a sensitive fluorescence leakage assay. Detailed molecular information on peptidemembrane interactions and peptide structure was further gained through vibrational spectroscopy combined with circular dichroism. Finally, steady-state fluorescence experiments yielded insight into the local environment of native or engineered tryptophan residues in melittin and human cathelicidin embedded in bilayer vesicles. Collectively, our results provide clues to the functional structures of the engineered and toxic peptides and may impact the design of synthetic antibiotic peptides that can be used against the growing number of antibiotic-resistant pathogens.

  3. Reversal of obesity and insulin resistance by a non-peptidic glucagon-like peptide-1 receptor agonist in diet-induced obese mice.

    Directory of Open Access Journals (Sweden)

    Min He

    Full Text Available BACKGROUND: Glucagon-like peptide-1 (GLP-1 is recognized as an important regulator of glucose homeostasis. Efforts to utilize GLP-1 mimetics in the treatment of diabetes have yielded clinical benefits. A major hurdle for an effective oral therapy has been the difficulty of finding a non-peptidic GLP-1 receptor (GLP-1R agonist. While its oral bioavailability still poses significant challenges, Boc5, one of the first such compounds, has demonstrated the attainment of GLP-1R agonism in diabetic mice. The present work was to investigate whether subchronic Boc5 treatment can restore glycemic control and induce sustainable weight loss in diet-induced obese (DIO mice, an animal model of human obesity and insulin resistance. METHODOLOGY/PRINCIPAL FINDINGS: DIO mice were treated three times a week with Boc5 (0.3, 1 and 3 mg for 12 weeks. Body weight, body mass index (BMI, food intake, fasting glucose, intraperitoneal glucose tolerance and insulin induced glucose clearance were monitored regularly throughout the treatment. Glucose-stimulated insulin secretion, β-cell mass, islet size, body composition, serum metabolic profiles, lipogenesis, lipolysis, adipose hypertrophy and lipid deposition in the liver and muscle were also measured after 12 weeks of dosing. Boc5 dose-dependently reduced body weight, BMI and food intake in DIO mice. These changes were associated with significant decreases in fat mass, adipocyte hypertrophy and peripheral tissue lipid accumulation. Boc5 treatment also restored glycemic control through marked improvement of insulin sensitivity and normalization of β-cell mass. Administration of Boc5 (3 mg reduced basal but enhanced insulin-mediated glucose incorporation and noradrenaline-stimulated lipolysis in isolated adipocytes from obese mice. Furthermore, circulating leptin, adiponectin, triglyceride, total cholesterol, nonesterified fatty acid and high-density lipoprotein/low-density lipoprotein ratio were normalized to various

  4. Bioactive peptides in dairy products

    Directory of Open Access Journals (Sweden)

    Donata Marletta

    2010-01-01

    Full Text Available Bioactive peptides are specific protein fragments that have a positive impact on body functions and conditions and may ultimately influence health. Most of the biological activities are encrypted within the primary sequence of the native protein and can be released by enzymatic hydrolysis and proteolysis or by food processing. Milk is a rich source of bioactive peptides which may contribute to regulate the nervous, gastrointestinal and cardiovascular systems as well as the immune system, confirming the added value of dairy products that, in certain cases, can be considered functional foods. The main biological activities of these peptides and their bioavailability in dairy products are reviewed. The natural concentration of these biomolecules is quite low and, to date one of the main goals has been to realize products enriched with bioactive peptides that have beneficial effects on human health and proven safety. Even though several health-enhancing products have already been launched and their integration in the diet could help in the prevention of chronic diseases such as hypertension, cancer and osteoporosis, more clinical trials are required in order to develop a deeper understanding of the activity of biopeptides on the human physiological mechanisms and also to assess the efficacy of their effects in a long term view. New scientific data are also needed to support their commercialisation in compliance with current regulations.

  5. Tempol, a superoxide dismutase mimetic agent, ameliorates cisplatin-induced nephrotoxicity through alleviation of mitochondrial dysfunction in mice.

    Directory of Open Access Journals (Sweden)

    Lamiaa A Ahmed

    Full Text Available Mitochondrial dysfunction is a crucial mechanism by which cisplatin, a potent chemotherapeutic agent, causes nephrotoxicity where mitochondrial electron transport complexes are shifted mostly toward imbalanced reactive oxygen species versus energy production. In the present study, the protective role of tempol, a membrane-permeable superoxide dismutase mimetic agent, was evaluated on mitochondrial dysfunction and the subsequent damage induced by cisplatin nephrotoxicity in mice.Nephrotoxicity was assessed 72 h after a single i.p. injection of cisplatin (25 mg/kg with or without oral administration of tempol (100 mg/kg/day. Serum creatinine and urea as well as glucosuria and proteinuria were evaluated. Both kidneys were isolated for estimation of oxidative stress markers, adenosine triphosphate (ATP content and caspase-3 activity. Moreover, mitochondrial oxidative phosphorylation capacity, complexes I-IV activities and mitochondrial nitric oxide synthase (mNOS protein expression were measured along with histological examinations of renal tubular damage and mitochondrial ultrastructural changes. Tempol was effective against cisplatin-induced elevation of serum creatinine and urea as well as glucosuria and proteinuria. Moreover, pretreatment with tempol notably inhibited cisplatin-induced oxidative stress and disruption of mitochondrial function by restoring mitochondrial oxidative phosphorylation, complexes I and III activities, mNOS protein expression and ATP content. Tempol also provided significant protection against apoptosis, tubular damage and mitochondrial ultrastructural changes. Interestingly, tempol did not interfere with the cytotoxic effect of cisplatin against the growth of solid Ehrlich carcinoma.This study highlights the potential role of tempol in inhibiting cisplatin-induced nephrotoxicity without affecting its antitumor activity via amelioration of oxidative stress and mitochondrial dysfunction.

  6. Allosteric Inhibition of Factor XIIIa. Non-Saccharide Glycosaminoglycan Mimetics, but Not Glycosaminoglycans, Exhibit Promising Inhibition Profile.

    Science.gov (United States)

    Al-Horani, Rami A; Karuturi, Rajesh; Lee, Michael; Afosah, Daniel K; Desai, Umesh R

    2016-01-01

    Factor XIIIa (FXIIIa) is a transglutaminase that catalyzes the last step in the coagulation process. Orthostery is the only approach that has been exploited to design FXIIIa inhibitors. Yet, allosteric inhibition of FXIIIa is a paradigm that may offer a key advantage of controlled inhibition over orthosteric inhibition. Such an approach is likely to lead to novel FXIIIa inhibitors that do not carry bleeding risks. We reasoned that targeting a collection of basic amino acid residues distant from FXIIIa's active site by using sulfated glycosaminoglycans (GAGs) or non-saccharide GAG mimetics (NSGMs) would lead to the discovery of the first allosteric FXIIIa inhibitors. We tested a library of 22 variably sulfated GAGs and NSGMs against human FXIIIa to discover promising hits. Interestingly, although some GAGs bound to FXIIIa better than NSGMs, no GAG displayed any inhibition. An undecasulfated quercetin analog was found to inhibit FXIIIa with reasonable potency (efficacy of 98%). Michaelis-Menten kinetic studies revealed an allosteric mechanism of inhibition. Fluorescence studies confirmed close correspondence between binding affinity and inhibition potency, as expected for an allosteric process. The inhibitor was reversible and at least 9-fold- and 26-fold selective over two GAG-binding proteins factor Xa (efficacy of 71%) and thrombin, respectively, and at least 27-fold selective over a cysteine protease papain. The inhibitor also inhibited the FXIIIa-mediated polymerization of fibrin in vitro. Overall, our work presents the proof-of-principle that FXIIIa can be allosterically modulated by sulfated non-saccharide agents much smaller than GAGs, which should enable the design of selective and safe anticoagulants. PMID:27467511

  7. Chemical ultraviolet absorbers topically applied in a skin barrier mimetic formulation remain in the outer stratum corneum of porcine skin.

    Science.gov (United States)

    Haque, T; Crowther, J M; Lane, M E; Moore, D J

    2016-08-20

    The objective of the present study was to evaluate the fate of three chemical sunscreens, isoamyl p-methoxycinnamate (IPMC), diethylamino hydroxybenzoyl hexyl benzoate (DHHB), and bis-ethylhexylphenol methoxyphenyl triazine (BEMT), topically applied to mammalian skin from a skin barrier mimetic oil-in-water formulation. High Performance Liquid Chromatography (HPLC) methods were developed for the analysis of each molecule and validated. Franz cell permeation studies were conducted following application of finite doses of the formulations to excised porcine skin. A vehicle formulation containing no sunscreens was evaluated as a control. Permeation studies were conducted for 12h after which full mass balance studies were carried out. Analysis of individual UV sunscreens was achieved with HPLC following application of the formulation to the skin with no interference from the vehicle components. No skin permeation of any of the chemical sunscreens was evident after 12h. While sunscreens were detected in up to 12 tape strips taken from the SC, 87% or more of the applied doses recovered in the first 5 tape strips. When corrected for the amount of protein removed per tape strip this corresponded to a penetration depth in porcine stratum corneum of ∼1.7μm. Mass balance studies indicated total recovery values were within accepted guidelines for cosmetic formulations. Overall, only superficial penetration into the SC was observed for each compound. These findings are consistent with the physicochemical properties of the selected UV absorbing molecules and their formulation into an ordered biomimetic barrier formulation thus support their intended use in topical consumer formulations designed to protect from UV exposure. To our knowledge this is the first report of depth profiling of chemical sunscreens in the SC that combines tape stripping and protein determination following in vitro Franz cell studies. PMID:27321112

  8. Effects of transmembrane potential and pH gradient on the cytochrome c-promoted fusion of mitochondrial mimetic membranes.

    Science.gov (United States)

    Kawai, Cintia; Pessoto, Felipe S; Graves, Catharine V; Carmona-Ribeiro, Ana Maria; Nantes, Iseli L

    2013-08-01

    The present study investigated the effects of ΔΨ and ΔpH (pH gradient) on the interaction of cytochrome c with a mitochondrial mimetic membrane composed of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and cardiolipin (CL) leading to vesicle fusion. ΔpH generated by lowered bulk pH (pH(out)) of PCPECL liposomes, with an internal pH (pH(in)) of 8.0, favored vesicle fusion with a titration sigmoidal profile (pK(a) ~ 6.9). Conversely, ΔpH generated by enhanced pH(in) of PCPECL at a pH(out) of 6.0 favored the fusion of vesicles with a linear profile. We did not observe a significant amount of liposome fusion when ΔpH was generated by lowered pH(in) at a pH(out) of 8.0. At bulk acidic pH, ΔΨ generated by Na⁺ gradient also favored cyt c-promoted vesicle fusion. At acidic and alkaline pH(out), the presence of ΔpH and ΔΨ did not affect cytochrome c binding affinity measured by pyrene quenching. Therefore, cytochrome c-mediated PC/PE/CL vesicle fusion is dependent of ionization of the protein site L (acidic pH) and the presence of transmembrane potential. The effect of transmembrane potential is probably related to the generation of defects on the lipid bilayer. These results are consistent with previous reports showing that cytochrome c release prior to the dissipation of the ΔΨ(M) blocks inner mitochondrial membrane fusion during apoptosis.

  9. Rediscovering Chemical Gardens: Self-Assembling Cytocompatible Protein-Intercalated Silicate-Phosphate Sponge-Mimetic Tubules.

    Science.gov (United States)

    Punia, Kamia; Bucaro, Michael; Mancuso, Andrew; Cuttitta, Christina; Marsillo, Alexandra; Bykov, Alexey; L'Amoreaux, William; Raja, Krishnaswami S

    2016-08-30

    The classic chemical garden experiment is reconstructed to produce protein-intercalated silicate-phosphate tubules that resemble tubular sponges. The constructs were synthesized by seeding calcium chloride into a solution of sodium silicate-potassium phosphate and gelatin. Sponge-mimetic tubules were fabricated with varying percentages of gelatin (0-15% w/v), in diameters ranging from 200 μm to 2 mm, characterized morphologically and compositionally, functionalized with biomolecules for cell adhesion, and evaluated for cytocompatibility. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy analysis (EDS) experiments showed that the external surface of the tubules was relatively more amorphous in texture and carbon/protein-rich in comparison to the interior surface. Transmission electron microscopy (TEM) images indicate a network composed of gelatin incorporated into the inorganic scaffold. The presence of gelatin in the constructs was confirmed by infrared spectroscopy. Powder X-ray diffraction (XRD) was used to identify inorganic crystalline phases in the scaffolds that are mainly composed of Ca(OH)2, NaCl, and Ca2SiO4 along with a band corresponding to amorphous gelatin. Bioconjugation and coating protocols were developed to program the scaffolds with cues for cell adhesion, and the resulting constructs were employed for 3D cell culture of marine (Pyrocystis lunula) and mammalian (HeLa and H9C2) cell lines. The cytocompatibility of the constructs was demonstrated by live cell assays. We have successfully shown that these biomimetic materials can indeed support life; they serve as scaffolds that facilitate the attachment and assembly of individual cells to form multicellular entities, thereby revisiting the 350-year-old effort to link chemical gardens with the origins of life. Hybrid chemical garden biomaterials are programmable, readily fabricated and could be employed in tissue engineering, biomolecular materials development, 3D mammalian

  10. Substrate-Independent Robust and Heparin-Mimetic Hydrogel Thin Film Coating via Combined LbL Self-Assembly and Mussel-Inspired Post-Cross-linking.

    Science.gov (United States)

    Ma, Lang; Cheng, Chong; He, Chao; Nie, Chuanxiong; Deng, Jie; Sun, Shudong; Zhao, Changsheng

    2015-12-01

    In this work, we designed a robust and heparin-mimetic hydrogel thin film coating via combined layer-by-layer (LbL) self-assembly and mussel-inspired post-cross-linking. Dopamine-grafted heparin-like/-mimetic polymers (DA-g-HepLP) with abundant carboxylic and sulfonic groups were synthesized by the conjugation of adhesive molecule, DA, which exhibited substrate-independent adhesive affinity to various solid surfaces because of the formation of irreversible covalent bonds. The hydrogel thin film coated substrates were prepared by a three-step reaction: First, the substrates were coated with DA-g-HepLP to generate negatively charged surfaces. Then, multilayers were obtained via LbL coating of chitosan and the DA-g-HepLP. Finally, the noncovalent multilayers were oxidatively cross-linked by NaIO4. Surface ATR-FTIR and XPS spectra confirmed the successful fabrication of the hydrogel thin film coatings onto membrane substrates; SEM images revealed that the substrate-independent coatings owned 3D porous morphology. The soaking tests in highly alkaline, acid, and concentrated salt solutions indicated that the cross-linked hydrogel thin film coatings owned high chemical resistance. In comparison, the soaking tests in physiological solution indicated that the cross-linked hydrogel coatings owned excellent long-term stability. The live/dead cell staining and morphology observations of the adhered cells revealed that the heparin-mimetic hydrogel thin film coated substrates had low cell toxicity and high promotion ability for cell proliferation. Furthermore, systematic in vitro investigations of protein adsorption, platelet adhesion, blood clotting, and blood-related complement activation confirmed that the hydrogel film coated substrates showed excellent hemocompatibility. Both the results of inhibition zone and bactericidal activity indicated that the gentamycin sulfate loaded hydrogel thin films had significant inhibition capability toward both Escherichia coli and

  11. Reaction kinetics and targeting to cellular glutathione S-transferase of the glutathione peroxidase mimetic PhSeZnCl and its D,L-polylactide microparticle formulation.

    Science.gov (United States)

    Bartolini, D; Piroddi, M; Tidei, C; Giovagnoli, S; Pietrella, D; Manevich, Y; Tew, K D; Giustarini, D; Rossi, R; Townsend, D M; Santi, C; Galli, F

    2015-01-01

    Catalytic properties and cellular effects of the glutathione peroxidase (GPx)-mimetic compound PhSeZnCl or its d,l-lactide polymer microencapsulation form (M-PhSeZnCl) were investigated and compared with the prototypical Se-organic compounds ebselen and diselenide (PhSe)2. PhSeZnCl was confirmed to catalyze the ping-pong reaction of GPx with higher Vmax than ebselen and (PhSe)2, but the catalytic efficiency calculated for the cosubstrates glutathione (GSH) and H2O2, and particularly the high reactivity against thiols (lowest KM for GSH in the series of test molecules), suggested poor biological applicability of PhSeZnCl as a GPx mimetic. Cytotoxicity of PhSeZnCl was demonstrated in various cancer cell lines via increased reactive oxygen species (ROS) generation, depletion of intracellular thiols, and induction of apoptosis. Experiments carried out in GSH S-transferase P (GSTP)-overexpressing K562 human erythroleukemia cells and in GSTP1-1-knockout murine embryonic fibroblasts (MEFs) demonstrated that this cytosolic enzyme represents a preferential target of the redox disturbances produced by this Se-compound with a key role in controlling H2O2 generation and the perturbation of stress/survival kinase signaling. Microencapsulation was adopted as a strategy to control the thiol reactivity and oxidative stress effects of PhSeZnCl, then assessing applications alternative to anticancer. The uptake of this "depowered" GPx-mimetic formulation, which occurred through an endocytosis-like mechanism, resulted in a marked reduction of cytotoxicity. In MCF-7 cells transfected with different allelic variants of GSTP, M-PhSeZnCl lowered the burst of cellular ROS induced by the exposure to extracellular H2O2, and the extent of this effect changed between the GSTP variants. Microencapsulation is a straightforward strategy to mitigate the toxicity of thiol-reactive Se-organic drugs that enhanced the antioxidant and cellular protective effects of PhSeZnCl. A mechanistic linkage of

  12. Deceit, desire, and The Dunciad: mimetic theory and Alexander Pope – and – Birthing the canon: Eliot, Hegel, Marx and literary labour

    OpenAIRE

    Doolittle, Allan Laurence

    2008-01-01

    Essay 1: This paper analyses Alexander Pope’s depiction of apocalypse in his seminal satiric masterpiece, The Dunciad. Rene Girard’s mimetic theory explains Pope’s relationship to his literary rivals and his motivation in writing, expanding and obsessing over this work throughout the entire course of his life. This paper reads Pope’s literary and critical efforts to control the literary scene of early eighteenth-century England in a Girardian framework. Essay 2: This two-part study examines t...

  13. A mass, energy, enstrophy and vorticity conserving (MEEVC) mimetic spectral element discretization for the 2D incompressible Navier-Stokes equations

    CERN Document Server

    Palha, Artur

    2016-01-01

    In this work we present a mimetic spectral element discretization for the 2D incompressible Navier-Stokes equations that in the limit of vanishing dissipation exactly preserves mass, kinetic energy, enstrophy and total vorticity on unstructured grids. The essential ingredients to achieve this are: (i) a velocity-vorticity formulation in rotational form, (ii) a sequence of function spaces capable of exactly satisfying the divergence free nature of the velocity field, and (iii) a conserving time integrator. Proofs for the exact discrete conservation properties are presented together with numerical test cases on highly irregular grids.

  14. Hypoxia and Hypoxia Mimetics Decrease Aquaporin 5 (AQP5) Expression through Both Hypoxia Inducible Factor-1α and Proteasome-Mediated Pathways

    OpenAIRE

    Kawedia, Jitesh D.; Fan Yang; Sartor, Maureen A.; David Gozal; Maria Czyzyk-Krzeska; Menon, Anil G.

    2013-01-01

    The alveolar epithelium plays a central role in gas exchange and fluid transport, and is therefore critical for normal lung function. Since the bulk of water flux across this epithelium depends on the membrane water channel Aquaporin 5 (AQP5), we asked whether hypoxia had any effect on AQP5 expression. We show that hypoxia causes a significant (70%) decrease in AQP5 expression in the lungs of mice exposed to hypoxia. Hypoxia and the hypoxia mimetic, cobalt, also caused similar decreases in AQ...

  15. Fabrication of Odor Sensor Using Peptide

    Science.gov (United States)

    Hotokebuchi, Yuta; Hayashi, Kenshi; Toko, Kiyoshi; Chen, Ronggang; Ikezaki, Hidekazu

    We report fabrication of an odor sensor using peptides. Peptides were designed to acquire the specific reception for a target odor molecule. Au surface of the sensor electrode was coated by the designed peptide using the method of self assembled monolayers (SAMs). Functionalized Au surfaces by the peptides were confirmed by ellipsometry and cyclic voltammetry. The odorants of vanillin, phenethyl alcohol and hexanol were discriminated by QCM sensor with the peptide surface. Moreover, we verified specific interaction between amino acid (Trp) and vanillin by fluorescence assay.

  16. Computer-Aided Design of Antimicrobial Peptides

    DEFF Research Database (Denmark)

    Fjell, Christopher D.; Hancock, Robert E.W.; Jenssen, Håvard

    2010-01-01

    chemical parameters with biological activities of the peptide, using statistical methods. In this review we will discuss two different in silico strategies of computer-aided antibacterial peptide design, a linear correlation model build as an extension of traditional principal component analysis (PCA......) and a non-linear artificial neural network model. Studies on structurally diverse peptides, have concluded that the PCA derived model are able to guide the antibacterial peptide design in a meaningful way, however requiring rather a high homology between the peptides in the test-set and the in silico...

  17. Peptide-enhanced oral delivery of therapeutic peptides and proteins

    DEFF Research Database (Denmark)

    Kristensen, Mie; Foged, Camilla; Berthelsen, Jens;

    2013-01-01

    Systemic therapy upon oral delivery of biologics, such as peptide and protein drugs is limited due to their large molecular size, their low enzymatic stability and their inability to cross the intestinal epithelium. Ways to overcome the epithelial barrier include the use of peptide-based excipients...... throughout the gastrointestinal (GI) tract, chemical stability is an inherent challenge when employing amino acid-based excipients for oral delivery, and multiple approaches have been investigated to improve this. The exact mechanisms of transepithelial translocation are discussed, and it is believed...... that CPP-mediated translocation involves transcytosis and/or direct translocation through the epithelial cells; whereas TJMP-mediated translocation is dependent on interaction with transmembrane or peripheral TJ proteins. This review focuses on the CPPs and the TJMPs currently employed as excipients...

  18. Towards the MHC-peptide combinatorics.

    Science.gov (United States)

    Kangueane, P; Sakharkar, M K; Kolatkar, P R; Ren, E C

    2001-05-01

    The exponentially increased sequence information on major histocompatibility complex (MHC) alleles points to the existence of a high degree of polymorphism within them. To understand the functional consequences of MHC alleles, 36 nonredundant MHC-peptide complexes in the protein data bank (PDB) were examined. Induced fit molecular recognition patterns such as those in MHC-peptide complexes are governed by numerous rules. The 36 complexes were clustered into 19 subgroups based on allele specificity and peptide length. The subgroups were further analyzed for identifying common features in MHC-peptide binding pattern. The four major observations made during the investigation were: (1) the positional preference of peptide residues defined by percentage burial upon complex formation is shown for all the 19 subgroups and the burial profiles within entries in a given subgroup are found to be similar; (2) in class I specific 8- and 9-mer peptides, the fourth residue is consistently solvent exposed, however this observation is not consistent in class I specific 10-mer peptides; (3) an anchor-shift in positional preference is observed towards the C terminal as the peptide length increases in class II specific peptides; and (4) peptide backbone atoms are proportionately dominant at the MHC-peptide interface.

  19. Natural and synthetic peptides with antifungal activity.

    Science.gov (United States)

    Ciociola, Tecla; Giovati, Laura; Conti, Stefania; Magliani, Walter; Santinoli, Claudia; Polonelli, Luciano

    2016-08-01

    In recent years, the increase of invasive fungal infections and the emergence of antifungal resistance stressed the need for new antifungal drugs. Peptides have shown to be good candidates for the development of alternative antimicrobial agents through high-throughput screening, and subsequent optimization according to a rational approach. This review presents a brief overview on antifungal natural peptides of different sources (animals, plants, micro-organisms), peptide fragments derived by proteolytic cleavage of precursor physiological proteins (cryptides), synthetic unnatural peptides and peptide derivatives. Antifungal peptides are schematically reported based on their structure, antifungal spectrum and reported effects. Natural or synthetic peptides and their modified derivatives may represent the basis for new compounds active against fungal infections. PMID:27502155

  20. Flourescent Peptide-Stabilized Silver-Nanoclusters

    DEFF Research Database (Denmark)

    Gregersen, Simon

    for instance small molecules, DNA oligomers, and proteins. Peptides are an intriguing class of biomolecular ligands, due to the large combinatorial space these provide. Furthermore, as peptides have a propensity to fold up into well-defined and somewhat rigid secondary structures, they may serve as excellent...... throughput dramatically with regards to discovery of novel ligands. Our approach employs Fmoc solid-phase peptide synthesis on a PEGA resin which allows for on-resin screening of peptide ligands which, in turn, removes the tedious and labor-intensive work-up of synthesized peptides. The method allows for on......-resin formation of peptide-stabilized Ag-NCs in a reversible manner, which makes identification of novel lead compound from combinatorial peptide libraries possible with a few simple steps. This resulted in the discovery of at least one promising candidate (P262) showing brighter emission, spectral homogeneity...

  1. 圆二色谱研究胶原模拟多肽三螺旋结构及其热稳定性%Study of Collagen Mimetic Peptide’s Triple-Helix Structure and Its Thermostability by Circular Dichroism

    Institute of Scientific and Technical Information of China (English)

    张之宝; 王静洁; 陈晖娟; 熊青青; 刘玲蓉; 张其清

    2014-01-01

    In the present study ,the authors explore the triple-helix conformation and thermal stability of collagen mimetic pep-tides (CMPs) as a function of peptide sequence and/or chain length by circular dichroism (CD) .Five CMPs were designed and synthetized varying the number of POG triplets or incorporating an integrin α2β1 binding motif Gly-Phe-Hyp-Gly-Glu-Arg (GFOGER) .CD spectroscopy from 260 to 190 nm was recorded to confirm the existence of triple-helix conformation at room temperature ,while thermal melting and thermal annealing of triple-helix (thermal unfolding and refolding of triple-helix ,respec-tively) was characterized by monitoring ellipticity at 225 nm as a function of temperature .The results demonstrated that all the CMPs adopted triple-helix conformation ,and the thermal stability of the CMPs was enhanced with increasing the number of POG triplets .In contrast to natural collagen ,the thermal denaturation processes of CMPs were reversible ,i .e .the triple-helix unfol-ded upon heating while refolded upon cooling .Meanwhile ,the phenomenon of “hysteresis” was observed by comparing melting and thermal curves .These findings add new insights to the mechanisms of collagen and CMPs assembly ,as well as provide an alternative approach to the fabrication of artificial collagen-likes biomaterials .%胶原是广泛研究和应用的生物材料,具有独特的三螺旋结构,此结构与其生物学性能密切相关。以胶原模拟多肽(collagen mimetic peptide ,CM P)作为胶原的模型分子,通过圆二色谱研究了CM P的三螺旋结构、热稳定性等随序列或长度的改变所发生的规律性变化。根据形成胶原三螺旋结构的重复序列(POG )n及胶原上α2β1整合素识别位点序列GFOGER设计五种不同序列或长度的CM P ,采用圆二色谱表征了CM P的三螺旋结构,并通过检测CM P的程序升温变性和程序降温复性过程中圆二色谱的变化,研究了CM P三螺旋结

  2. Taylor Dispersion Analysis as a promising tool for assessment of peptide-peptide interactions

    DEFF Research Database (Denmark)

    Høgstedt, Ulrich B; Schwach, Grégoire; van de Weert, Marco;

    2016-01-01

    . In this work, we show that protein-protein and peptide-peptide interactions can advantageously be investigated by measurement of the diffusion coefficient using Taylor Dispersion Analysis. Through comparison to Dynamic Light Scattering it was shown that Taylor Dispersion Analysis is well suited...... for the characterization of protein-protein interactions of solutions of α-lactalbumin and human serum albumin. The peptide-peptide interactions of three selected peptides were then investigated in a concentration range spanning from 0.5mg/ml up to 80mg/ml using Taylor Dispersion Analysis. The peptide-peptide interactions...... determination indicated that multibody interactions significantly affect the PPIs at concentration levels above 25mg/ml for the two charged peptides. Relative viscosity measurements, performed using the capillary based setup applied for Taylor Dispersion Analysis, showed that the viscosity of the peptide...

  3. Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: Influence of peptide molecular weight.

    Science.gov (United States)

    Mohan, Aishwarya; McClements, David Julian; Udenigwe, Chibuike C

    2016-12-15

    Encapsulation of peptides can be used to enhance their stability, delivery and bioavailability. This study focused on the effect of the molecular weight range of whey peptides on their encapsulation within soy lecithin-derived nanoliposomes. Peptide molecular weight did not have a major impact on encapsulation efficiency or liposome size. However, it influenced peptide distribution amongst the surface, core, and bilayer regions of the liposomes, as determined by electrical charge (ζ-potential) and FTIR analysis. The liposome ζ-potential depended on peptide molecular weight, suggesting that the peptide charged groups were in different locations relative to the liposome surfaces. FTIR analysis indicated that the least hydrophobic peptide fractions interacted more strongly with choline on the liposome surfaces. The results suggested that the peptides were unequally distributed within the liposomes, even at the same encapsulation efficiency. These findings are important for designing delivery systems for commercial production of encapsulated peptides with improved functional attributes. PMID:27451165

  4. Taylor Dispersion Analysis as a promising tool for assessment of peptide-peptide interactions.

    Science.gov (United States)

    Høgstedt, Ulrich B; Schwach, Grégoire; van de Weert, Marco; Østergaard, Jesper

    2016-10-10

    Protein-protein and peptide-peptide (self-)interactions are of key importance in understanding the physiochemical behavior of proteins and peptides in solution. However, due to the small size of peptide molecules, characterization of these interactions is more challenging than for proteins. In this work, we show that protein-protein and peptide-peptide interactions can advantageously be investigated by measurement of the diffusion coefficient using Taylor Dispersion Analysis. Through comparison to Dynamic Light Scattering it was shown that Taylor Dispersion Analysis is well suited for the characterization of protein-protein interactions of solutions of α-lactalbumin and human serum albumin. The peptide-peptide interactions of three selected peptides were then investigated in a concentration range spanning from 0.5mg/ml up to 80mg/ml using Taylor Dispersion Analysis. The peptide-peptide interactions determination indicated that multibody interactions significantly affect the PPIs at concentration levels above 25mg/ml for the two charged peptides. Relative viscosity measurements, performed using the capillary based setup applied for Taylor Dispersion Analysis, showed that the viscosity of the peptide solutions increased with concentration. Our results indicate that a viscosity difference between run buffer and sample in Taylor Dispersion Analysis may result in overestimation of the measured diffusion coefficient. Thus, Taylor Dispersion Analysis provides a practical, but as yet primarily qualitative, approach to assessment of the colloidal stability of both peptide and protein formulations.

  5. Significant in vivo anti-inflammatory activity of Pytren4Q-Mn a superoxide dismutase 2 (SOD2 mimetic scorpiand-like Mn (II complex.

    Directory of Open Access Journals (Sweden)

    Carolina Serena

    Full Text Available The clinical use of purified SOD enzymes has strong limitations due to their large molecular size, high production cost and immunogenicity. These limitations could be compensated by using instead synthetic SOD mimetic compounds of low molecular weight.We have recently reported that two SOD mimetic compounds, the Mn(II complexes of the polyamines Pytren2Q and Pytren4Q, displayed high antioxidant activity in bacteria and yeast. Since frequently molecules with antioxidant properties or free-radical scavengers also have anti-inflammatory properties we have assessed the anti-inflammatory potential of Pytren2Q and Pytren4Q Mn(II complexes, in cultured macrophages and in a murine model of inflammation, by measuring the degree of protection they could provide against the cellular injury produced by lipopolisacharide, a bacterial endotoxin.In this report we show that the Mn(II complex of Pytren4Q but not that of Pytren2Q effectively protected human cultured THP-1 macrophages and whole mice from the inflammatory effects produced by LPS. These results obtained with two molecules that are isomers highlight the importance of gathering experimental data from animal models of disease in assessing the potential of candidate molecules.The effective anti-inflammatory activity of the Mn(II complex of Pytren4Q in addition to its low toxicity, water solubility and ease of production would suggest it is worth taking into consideration for future pharmacological studies.

  6. Morphometric comparisons of plant-mimetic juvenile fish associated with plant debris observed in the coastal subtropical waters around Kuchierabu-jima Island, southern Japan

    Science.gov (United States)

    2016-01-01

    The general morphological shape of plant-resembling fish and plant parts were compared using a geometric morphometrics approach. Three plant-mimetic fish species, Lobotes surinamensis (Lobotidae), Platax orbicularis (Ephippidae) and Canthidermis maculata (Balistidae), were compared during their early developmental stages with accompanying plant debris (i.e., leaves of several taxa) in the coastal subtropical waters around Kuchierabu-jima Island, closely facing the Kuroshio Current. The degree of similarity shared between the plant parts and co-occurring fish species was quantified, however fish remained morphologically distinct from their plant models. Such similarities were corroborated by analysis of covariance and linear discriminant analysis, in which relative body areas of fish were strongly related to plant models. Our results strengthen the paradigm that morphological clues can lead to ecological evidence to allow predictions of behavioural and habitat choice by mimetic fish, according to the degree of similarity shared with their respective models. The resemblance to plant parts detected in the three fish species may provide fitness advantages via convergent evolutionary effects. PMID:27547571

  7. A mimetic, semi-implicit, forward-in-time, finite volume shallow water model: comparison of hexagonal–icosahedral and cubed-sphere grids

    Directory of Open Access Journals (Sweden)

    J. Thuburn

    2014-05-01

    Full Text Available A new algorithm is presented for the solution of the shallow water equations on quasi-uniform spherical grids. It combines a mimetic finite volume spatial discretization with a Crank–Nicolson time discretization of fast waves and an accurate and conservative forward-in-time advection scheme for mass and potential vorticity (PV. The algorithm is implemented and tested on two families of grids: hexagonal–icosahedral Voronoi grids, and modified equiangular cubed-sphere grids. Results of a variety of tests are presented, including convergence of the discrete scalar Laplacian and Coriolis operators, advection, solid body rotation, flow over an isolated mountain, and a barotropically unstable jet. The results confirm a number of desirable properties for which the scheme was designed: exact mass conservation, very good available energy and potential enstrophy conservation, consistent mass, PV and tracer transport, and good preservation of balance including vanishing ∇ × ∇, steady geostrophic modes, and accurate PV advection. The scheme is stable for large wave Courant numbers and advective Courant numbers up to about 1. In the most idealized tests the overall accuracy of the scheme appears to be limited by the accuracy of the Coriolis and other mimetic spatial operators, particularly on the cubed-sphere grid. On the hexagonal grid there is no evidence for damaging effects of computational Rossby modes, despite attempts to force them explicitly.

  8. Methanol extract ofDesmodium gangeticumDC root mimetic post-conditioning effect in isolated perfused rat heart by stimulating muscarinic receptors

    Institute of Scientific and Technical Information of China (English)

    Gino A Kurian; Jose Paddikkala

    2012-01-01

    Objective:To evaluate pharmacological mimetic action of herbal extractDesmodium gangeticum (DG) roots on ischemia reperfusion injury.Methods:With the help of Langendroff perfusion technique, ischemic post condition (POC) mimetic action of DG methanol root extract was evaluated and compared by using standard drugs that acts as muscarinic receptor agonist and antagonist, namely acetylcholine (Ach) and atropine (Atr) respectively in an isolated rat heart. Results:The physiological parameters like left ventricular developed pressure, end diastolic pressure and working index of isolated rat heart showed significant recovery in DG root extract administrated rat heart, similar to the recovery by POC. Kymogram results showed muscarinic receptor agonist like action for DG methanol root extract, confirmed in rat heart by muscarnic receptor agonist (acetylcholine) and anatoginst (atropine). Administration of DG root extract prior to reperfusion showed better antioxidant status in myocardial tissue homogenate and mitochondrial, complemented by the levels of cardiac specific marker proteins in myocardial tissue and perfusate. Even though DG methanol root extract mimics its action similar to that of Ach, the myocardial protection mediated by the extract was superior to Ach, due to the presence of antioxidants in the crude extract.Conclusions: DG methanol root extract provides myocardial protection towards IRI by stimulating muscarinic receptors.

  9. Highly stable hexacoordinated nonoxidovanadium(IV) complexes of sterically constrained ligands: syntheses, structure, and study of antiproliferative and insulin mimetic activity.

    Science.gov (United States)

    Dash, Subhashree P; Pasayat, Sagarika; Bhakat, Saswati; Roy, Satabdi; Dinda, Rupam; Tiekink, Edward R T; Mukhopadhyay, Subhadip; Bhutia, Sujit K; Hardikar, Manasi R; Joshi, Bimba N; Patil, Yogesh P; Nethaji, M

    2013-12-16

    Three highly stable, hexacoordinated nonoxidovanadium(IV), V(IV)(L)2, complexes (1-3) have been isolated and structurally characterized with tridentate aroylhydrazonates containing ONO donor atoms. All the complexes are stable in the open air in the solid state as well as in solution, a phenomenon rarely observed in nonoxidovanadium(IV) complexes. The complexes have good solubility in organic solvents, permitting electrochemical and various spectroscopic investigations. The existence of nonoxidovanadium(IV) complexes was confirmed by elemental analysis, ESI mass spectroscopy, cyclic voltammetry, EPR, and magnetic susceptibility measurements. X-ray crystallography showed the N3O3 donor set to define a trigonal prismatic geometry in each case. All the complexes show in vitro insulin mimetic activity against insulin responsive L6 myoblast cells, with complex 3 being the most potent, which is comparable to insulin at the complex concentration of 4 μM, while the others have moderate insulin mimetic activity. In addition, the in vitro antiproliferative activity of complexes 1-3 against the HeLa cell line was assayed. The cytotoxicity of the complexes is affected by the various functional groups attached to the bezoylhydrazone derivative and 2 showed considerable antiproliferative activity compared to the most commonly used chemotherapeutic drugs.

  10. Antibody Peptide Based Antifungal Immunotherapy

    OpenAIRE

    Magliani, Walter; Conti, Stefania; Giovati, Laura; Zanello, Pier Paolo; Sperindè, Martina; Ciociola, Tecla; Polonelli, Luciano

    2012-01-01

    Fungal infections still represent relevant human illnesses worldwide and some are accompanied by unacceptably high mortality rates. The limited current availability of effective and safe antifungal agents makes the development of new drugs and approaches of antifungal vaccination/immunotherapy every day more needed. Among them, small antibody(Ab)-derived peptides are arousing great expectations as new potential antifungal agents. In this topic, the search path from the study of the yeast kill...

  11. Antimicrobial peptides in human sepsis

    Directory of Open Access Journals (Sweden)

    Lukas eMartin

    2015-08-01

    Full Text Available Nearly 100 years ago, antimicrobial peptides (AMPs were identified as an important part of innate immunity. They exist in species from bacteria to mammals and can be isolated in body fluids and on surfaces constitutively or induced by inflammation. Defensins have anti-bacterial effects against Gram-positive and Gram-negative bacteria as well as anti-viral and anti-yeast effects. Human neutrophil peptides (HNP 1-3 and human beta-defensins (HBDs 1-3 are some of the most important defensins in humans. Recent studies have demonstrated higher levels of HNP -1-3 and HBD-2 in sepsis. The bactericidal/permeability increasing protein (BPI attenuates local inflammatory response and decreases systemic toxicity of endotoxins. Moreover, BPI might reflect the severity of organ dysfunction in sepsis. Elevated plasma lactoferrin is detected in patients with organ failure. HNP-1-3, lactoferrin, BPI and heparin-binding protein (HBP are increased in sepsis. Human lactoferrin peptide 1-11 (hLF 1-11 possesses antimicrobial activity and modulates inflammation. The recombinant form of lactoferrin (talactoferrin alpha, TLF has been shown to decrease mortality in critically ill patients. A phase II/III study with TLF in sepsis did not confirm this result. The growing number of multiresistant bacteria is an ongoing problem in sepsis therapy. Furthermore, antibiotics are known to promote the liberation of pro-inflammatory cell components and thus augment the severity of sepsis. Compared to antibiotics, AMPs kill bacteria but also neutralize pathogenic factors such as lipopolysaccharide (LPS. The obstacle to applying naturally occurring AMPs is their high nephro- and neurotoxicity. Therefore, the challenge is to develop peptides to treat septic patients effectively without causing harm. This overview focuses on natural and synthetic AMPs in human and experimental sepsis and their potential to provide significant improvements in the treatment of critically ill with severe

  12. Antimicrobial Peptides: Versatile Biological Properties

    Directory of Open Access Journals (Sweden)

    Muthuirulan Pushpanathan

    2013-01-01

    Full Text Available Antimicrobial peptides are diverse group of biologically active molecules with multidimensional properties. In recent past, a wide variety of AMPs with diverse structures have been reported from different sources such as plants, animals, mammals, and microorganisms. The presence of unusual amino acids and structural motifs in AMPs confers unique structural properties to the peptide that attribute for their specific mode of action. The ability of these active AMPs to act as multifunctional effector molecules such as signalling molecule, immune modulators, mitogen, antitumor, and contraceptive agent makes it an interesting candidate to study every aspect of their structural and biological properties for prophylactic and therapeutic applications. In addition, easy cloning and recombinant expression of AMPs in heterologous plant host systems provided a pipeline for production of disease resistant transgenic plants. Besides these properties, AMPs were also used as drug delivery vectors to deliver cell impermeable drugs to cell interior. The present review focuses on the diversity and broad spectrum antimicrobial activity of AMPs along with its multidimensional properties that could be exploited for the application of these bioactive peptides as a potential and promising drug candidate in pharmaceutical industries.

  13. Antihypertensive Peptides from Milk Proteins

    Directory of Open Access Journals (Sweden)

    Heikki Vapaatalo

    2010-01-01

    Full Text Available Dietary proteins possess a wide range of nutritional and functional properties. They are used as a source of energy and amino acids, which are needed for growth and development. Many dietary proteins, especially milk proteins, contain physiologically active peptides encrypted in the protein sequence. These peptides may be released during gastrointestinal digestion or food processing and once liberated, cause different physiological functions. Milk-derived bioactive peptides are shown to have antihypertensive, antimicrobial, immunomodulatory, antioxidative and mineral-binding properties. During the fermentation of milk with certain lactobacilli, two interesting tripeptides Ile-Pro-Pro and Val-Pro-Pro are released from casein to the final product. These lactotripeptides have attenuated the development of hypertension in several animal models and lowered blood pressure in clinical studies. They inhibit ACE in vitro at micromolar concentrations, protect endothelial function in vitro and reduce arterial stiffness in humans. Thus, milk as a traditional food product can after certain processing serve as a functional food and carry specific health-promoting effects, providing an option to control blood pressure.

  14. EGFR-targeted TRAIL and a Smac mimetic synergize to overcome apoptosis resistance in KRAS mutant colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Yvonne Möller

    Full Text Available TRAIL is a death receptor ligand that induces cell death preferentially in tumor cells. Recombinant soluble TRAIL, however, performs poorly as an anti-cancer therapeutic because oligomerization is required for potent biological activity. We previously generated a diabody format of tumor-targeted TRAIL termed Db(αEGFR-scTRAIL, comprising single-stranded TRAIL molecules (scTRAIL and the variable domains of a humanized variant of the EGFR blocking antibody Cetuximab. Here we define the bioactivity of Db(αEGFR-scTRAIL with regard to both EGFR inhibition and TRAIL receptor activation in 3D cultures of Caco-2 colorectal cancer cells, which express wild-type K-Ras. Compared with conventional 2D cultures, Caco-2 cells displayed strongly enhanced sensitivity toward Db(αEGFR-scTRAIL in these 3D cultures. We show that the antibody moiety of Db(αEGFR-scTRAIL not only efficiently competed with ligand-induced EGFR function, but also determined the apoptotic response by specifically directing Db(αEGFR-scTRAIL to EGFR-positive cells. To address how aberrantly activated K-Ras, which leads to Cetuximab resistance, affects Db(αEGFR-scTRAIL sensitivity, we generated stable Caco-2tet cells inducibly expressing oncogenic K-Ras(G12V. In the presence of doxycycline, these cells showed increased resistance to Db(αEGFR-scTRAIL, associated with the elevated expression of the anti-apoptotic proteins cIAP2, Bcl-xL and FlipS. Co-treatment of cells with the Smac mimetic SM83 restored the Db(αEGFR-scTRAIL-induced apoptotic response. Importantly, this synergy between Db(αEGFR-scTRAIL and SM83 also translated to 3D cultures of oncogenic K-Ras expressing HCT-116 and LoVo colorectal cancer cells. Our findings thus support the notion that Db(αEGFR-scTRAIL therapy in combination with apoptosis-sensitizing agents may be promising for the treatment of EGFR-positive colorectal cancers, independently of their KRAS status.

  15. Chemical Methods for Peptide and Protein Production

    Directory of Open Access Journals (Sweden)

    Istvan Toth

    2013-04-01

    Full Text Available Since the invention of solid phase synthetic methods by Merrifield in 1963, the number of research groups focusing on peptide synthesis has grown exponentially. However, the original step-by-step synthesis had limitations: the purity of the final product decreased with the number of coupling steps. After the development of Boc and Fmoc protecting groups, novel amino acid protecting groups and new techniques were introduced to provide high quality and quantity peptide products. Fragment condensation was a popular method for peptide production in the 1980s, but unfortunately the rate of racemization and reaction difficulties proved less than ideal. Kent and co-workers revolutionized peptide coupling by introducing the chemoselective reaction of unprotected peptides, called native chemical ligation. Subsequently, research has focused on the development of novel ligating techniques including the famous click reaction, ligation of peptide hydrazides, and the recently reported a-ketoacid-hydroxylamine ligations with 5-oxaproline. Several companies have been formed all over the world to prepare high quality Good Manufacturing Practice peptide products on a multi-kilogram scale. This review describes the advances in peptide chemistry including the variety of synthetic peptide methods currently available and the broad application of peptides in medicinal chemistry.

  16. Human Antimicrobial Peptides and Proteins

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2014-05-01

    Full Text Available As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between −3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32 can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized

  17. Role of the LytSR two-component regulatory system in adaptation to cationic antimicrobial peptides in Staphylococcus aureus.

    Science.gov (United States)

    Yang, Soo-Jin; Xiong, Yan Q; Yeaman, Michael R; Bayles, Kenneth W; Abdelhady, Wessam; Bayer, Arnold S

    2013-08-01

    Many host defense cationic antimicrobial peptides (HDPs) perturb the staphylococcal cell membrane (CM) and alter transmembrane potential (ΔΨ) as key parts of their lethal mechanism. Thus, a sense-response system for detecting and mediating adaptive responses to such stresses could impact organism survival; the Staphylococcus aureus LytSR two-component regulatory system (TCRS) may serve as such a ΔΨ sensor. One well-known target of this system is the lrgAB operon, which, along with the related cidABC operon, has been shown to be a regulator in the control of programmed cell death and lysis. We used an isogenic set of S. aureus strains: (i) UAMS-1, (ii) its isogenic ΔlytS and ΔlrgAB mutants, and (iii) plasmid-complemented ΔlytSR and ΔlrgAB mutants. The ΔlytS strain displayed significantly increased in vitro susceptibilities to all HDPs tested (neutrophil-derived human neutrophil peptide 1 [hNP-1], platelet-derived thrombin-induced platelet microbicidal proteins [tPMPs], and the tPMP-mimetic peptide RP-1), as well as to calcium-daptomycin (DAP), a cationic antimicrobial peptide (CAP). In contrast, the ΔlrgAB strain exhibited no significant changes in susceptibilities to these cationic peptides, indicating that although lytSR positively regulates transcription of lrgAB, increased HDP/CAP susceptibilities in the ΔlytS mutant were lrgAB independent. Further, parental UAMS-1 (but not the ΔlytS mutant) became more resistant to hNP-1 and DAP following pretreatment with carbonyl cyanide m-chlorophenylhydrazone (CCCP) (a CM-depolarizing agent). Of note, lytSR-dependent survival against CAP/HDP killing was not associated with changes in either surface positive charge, expression of mprF and dlt, or CM fluidity. The ΔlytS strain (but not the ΔlrgAB mutant) displayed a significant reduction in target tissue survival in an endocarditis model during DAP treatment. Collectively, these results suggest that the lytSR TCRS plays an important role in adaptive responses of

  18. Molecular imaging probes derived from natural peptides.

    Science.gov (United States)

    Charron, C L; Hickey, J L; Nsiama, T K; Cruickshank, D R; Turnbull, W L; Luyt, L G

    2016-06-01

    Covering: up to the end of 2015.Peptides are naturally occurring compounds that play an important role in all living systems and are responsible for a range of essential functions. Peptide receptors have been implicated in disease states such as oncology, metabolic disorders and cardiovascular disease. Therefore, natural peptides have been exploited as diagnostic and therapeutic agents due to the unique target specificity for their endogenous receptors. This review discusses a variety of natural peptides highlighting their discovery, endogenous receptors, as well as their derivatization to create molecular imaging agents, with an emphasis on the design of radiolabelled peptides. This review also highlights methods for discovering new and novel peptides when knowledge of specific targets and endogenous ligands are not available. PMID:26911790

  19. Use of Galerina marginata genes and proteins for peptide production

    Energy Technology Data Exchange (ETDEWEB)

    Hallen-Adams, Heather E.; Scott-Craig, John S.; Walton, Jonathan D.; Luo, Hong

    2016-03-01

    The present invention relates to compositions and methods comprising genes and peptides associated with cyclic peptides and cyclic peptide production in mushrooms. In particular, the present invention relates to using genes and proteins from Galerina species encoding peptides specifically relating to amatoxins in addition to proteins involved with processing cyclic peptide toxins. In a preferred embodiment, the present invention also relates to methods for making small peptides and small cyclic peptides including peptides similar to amanitin. Further, the present inventions relate to providing kits for making small peptides.

  20. Antimicrobial Peptides in Toroidal and Cylindrical Pores

    OpenAIRE

    Mihajlovic, Maja; Lazaridis, Themis

    2010-01-01

    Antimicrobial peptides (AMPs) are small, usually cationic peptides, which permeabilize biological membranes. Their mechanism of action is still not well understood. Here we investigate the preference of alamethicin and melittin for pores of different shapes, using molecular dynamics (MD) simulations of the peptides in pre-formed toroidal and cylindrical pores. When an alamethicin hexamer is initially embedded in a cylindrical pore, at the end of the simulation the pore remains cylindrical or ...

  1. Interaction of small peptides with lipid bilayers.

    OpenAIRE

    Damodaran, K. V.; Merz, K M; Gaber, B P

    1995-01-01

    Molecular dynamics simulations of the tripeptide Ala-Phe-Ala-O-tert-butyl interacting with dimyristoylphosphatidylcholine lipid bilayers have been carried out. The lipid and aqueous environments of the peptide, the alkyl chain order, and the lipid and peptide dynamics have been investigated with use of density profiles, radial distribution functions, alkyl chain order parameter profiles, and time correlation functions. It appears that the alkyl chain region accommodates the peptides in the bi...

  2. Self-assembly of tetraphenylalanine peptides

    OpenAIRE

    Mayans Tayadella, Enric; Ballano Ballano, María Gema; Casanovas Salas, Jordi; Díaz Andrade, Angélica María; Pérez Madrigal, Maria del Mar; Estrany Coda, Francesc; Puiggalí Bellalta, Jordi; Cativiela Marín, Carlos A.; Alemán Llansó, Carlos

    2015-01-01

    Three different tetraphenylalanine (FFFF) based peptides that differ at the N- and C-termini have been synthesized by using standard procedures to study their ability to form different nanoassemblies under a variety of conditions. The FFFF peptide assembles into nanotubes that show more structural imperfections at the surface than those formed by the diphenylalanine (FF) peptide under the same conditions. Periodic DFT calculations (M06L functional) were used to propose a model that consists o...

  3. Salt-resistant short antimicrobial peptides.

    Science.gov (United States)

    Mohanram, Harini; Bhattacharjya, Surajit

    2016-05-01

    Antimicrobial peptides (AMPs) are promising leads for the development of antibiotics against drug resistant bacterial pathogens. However, in vivo applications of AMPs remain obscure due to salt and serum mediated inactivation. The high cost of chemical synthesis of AMPs also impedes potential clinical application. Consequently, short AMPs resistant toward salt and serum inactivation are desirable for the development of peptide antibiotics. In this work, we designed a 12-residue amphipathic helical peptide RR12 (R-R-L-I-R-L-I-L-R-L-L-R-amide) and two Trp containing analogs of RR12 namely RR12Wpolar (R-R-L-I-W-L-I-L-R-L-L-R-amide), and RR12Whydro (R-R-L-I-R-L-W-L-R-L-L-R-amide). Designed peptides demonstrated potent antibacterial activity; MIC ranging from 2 to 8 μM, in the presence of sodium chloride (150 mM and 300 mM). Antibacterial activity of these peptides was also detected in the presence of human serum. Designed peptides, in particular RR12 and RR12Whydro, were only poorly hemolytic. As a mode of action; these peptides demonstrated efficient permeabilization of bacterial cell membrane and lysis of cell structure. We further investigated interactions of the designed peptides with lipopolysaccharide (LPS), the major component of the outer membrane permeability barrier of Gram-negative bacteria. Designed peptides adopted helical conformations in complex with LPS. Binding of peptides with LPS has yielded dissociation the aggregated structures of LPS. Collectively, these designed peptides hold ability to be developed for salt-resistant antimicrobial compounds. Most importantly, current work provides insights for designing salt-resistant antimicrobial peptides. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 345-356, 2016. PMID:26849911

  4. Genome-based peptide fingerprint scanning

    OpenAIRE

    Giddings, Michael C.; Shah, Atul A.; Gesteland, Ray; Moore, Barry

    2002-01-01

    We have implemented a method that identifies the genomic origins of sample proteins by scanning their peptide-mass fingerprint against the theoretical translation and proteolytic digest of an entire genome. Unlike previously reported techniques, this method requires no predefined ORF or protein annotations. Fixed-size windows along the genome sequence are scored by an equation accounting for the number of matching peptides, the number of missed enzymatic cleavages in each peptide, the number ...

  5. The Function and Development of Soybean Peptides

    Institute of Scientific and Technical Information of China (English)

    Yang Caiyan; Song Junmei

    2009-01-01

    Soybean peptides are small molecules hydrolyzed soy protein,from three to six amino acid composition of the peptide mixture,in 1000Da molecular weight below.Because it has a lot of good physical and chemical properties and physiological functions,in many areas has been widely used.This paper reviews the soybean peptide physical and chemical characteristics,physiological functions,technology and applications in the food industry.

  6. Insect inducible antimicrobial peptides and their applications.

    Science.gov (United States)

    Ezzati-Tabrizi, Reyhaneh; Farrokhi, Naser; Talaei-Hassanloui, Reza; Alavi, Seyed Mehdi; Hosseininaveh, Vahid

    2013-12-01

    Antimicrobial peptides (AMPs) are found as important components of the innate immune system (host defense) of all invertebrates. These peptides can be constitutively expressed or induced in response to microbial infections. Indeed, they vary in their amino acid sequences, potency and antimicrobial activity spectra. The smaller AMPs act greatly by disrupting the structure or function of microbial cell membranes. Here, the insect innate immune system with emphasis on inducible antimicrobial peptide properties against microbial invaders has been discussed.

  7. Modulation of autoimmunity with artificial peptides

    Science.gov (United States)

    La Cava, Antonio

    2010-01-01

    The loss of immune tolerance to self antigens leads to the development of autoimmune responses. Since self antigens are often multiple and/or their sequences may not be known, one approach to restore immune tolerance uses synthetic artificial peptides that interfere or compete with self peptides in the networks of cellular interactions that drive the autoimmune process. This review describes the rationale behind the use of artificial peptides in autoimmunity and their mechanisms of action. Examples of use of artificial peptides in preclinical studies and in the management of human autoimmune diseases are provided. PMID:20807590

  8. A cyclic peptidic serine protease inhibitor

    DEFF Research Database (Denmark)

    Zhao, Baoyu; Xu, Peng; Jiang, Longguang;

    2014-01-01

    Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC), of the serine protease murine urokinase...... pocket, its carbonyl group aligning improperly relative to Ser195 and the oxyanion hole, explaining why the peptide is an inhibitor rather than a substrate. Substitution of the P1 Arg with novel unnatural Arg analogues with aliphatic or aromatic ring structures led to an increased affinity, depending...... of this peptidic inhibitor, a concept different from conventional attempts at improving inhibitor affinity by reducing the entropic burden....

  9. Synthetic peptide vaccines: palmitoylation of peptide antigens by a thioester bond increases immunogenicity

    DEFF Research Database (Denmark)

    Beekman, N.J.C.M.; Schaaper, W.M.M.; Tesser, G.I.;

    1997-01-01

    or an amide bond. It was found that these S-palmitoylated peptides were much more immunogenic than N-palmitoylated peptides and at least similar to KLH-conjugated peptides with respect to appearance and magnitude of induced antibodies (canine parvovirus) or immunocastration effect (gonadotropin...

  10. Driving engineering of novel antimicrobial peptides from simulations of peptide-micelle interactions

    DEFF Research Database (Denmark)

    Khandelia, Himanshu; Langham, Allison A; Kaznessis, Yiannis N

    2006-01-01

    peptides and their interaction with membrane mimics. In this article, we discuss the promise and the challenges of widely used models and detail our recent work on peptide-micelle simulations as an attractive alternative to peptide-bilayer simulations. We detail our results with two large structural...

  11. Peptide Nucleic Acids Complexes of Two Peptide Nucleic Acid Strands and One

    DEFF Research Database (Denmark)

    1999-01-01

    Peptide nucleic acids and analogues of peptide nucleic acids are used to form duplex, triplex, and other structures with nucleic acids and to modify nucleic acids. The peptide nucleic acids and analogues thereof also are used to modulate protein activity through, for example, transcription arrest...

  12. Mechanism and kinetics of peptide partitioning into membranes from all-atom simulations of thermostable peptides

    OpenAIRE

    Ulmschneider, Martin B.; Doux, Jacques P F; Killian, J. Antoinette; Smith, Jeremy C.; Ulmschneider, Jakob P.

    2010-01-01

    Partitioning properties of transmembrane (TM) polypeptide segments directly determine membrane protein folding, stability, and function, and their understanding is vital for rational design of membrane active peptides. However, direct determination of water-to-bilayer transfer of TM peptides has proved difficult. Experimentally, sufficiently hydrophobic peptides tend to aggregate, while atomistic computer simulations at physiological temperatures cannot yet reach the long time scales required...

  13. Delivery of platelet-derived growth factor as a chemotactic factor for mesenchymal stem cells by bone-mimetic electrospun scaffolds.

    Directory of Open Access Journals (Sweden)

    Matthew C Phipps

    Full Text Available The recruitment of mesenchymal stem cells (MSCs is a vital step in the bone healing process, and hence the functionalization of osteogenic biomaterials with chemotactic factors constitutes an important effort in the tissue engineering field. Previously we determined that bone-mimetic electrospun scaffolds composed of polycaprolactone, collagen I and nanohydroxyapatite (PCL/col/HA supported greater MSC adhesion, proliferation and activation of integrin-related signaling cascades than scaffolds composed of PCL or collagen I alone. In the current study we investigated the capacity of bone-mimetic scaffolds to serve as carriers for delivery of an MSC chemotactic factor. In initial studies, we compared MSC chemotaxis toward a variety of molecules including PDGF-AB, PDGF-BB, BMP2, and a mixture of the chemokines SDF-1α, CXCL16, MIP-1α, MIP-1β, and RANTES. Transwell migration assays indicated that, of these factors, PDGF-BB was the most effective in stimulating MSC migration. We next evaluated the capacity of PCL/col/HA scaffolds, compared with PCL scaffolds, to adsorb and release PDGF-BB. We found that significantly more PDGF- BB was adsorbed to, and subsequently released from, PCL/col/HA scaffolds, with sustained release extending over an 8-week interval. The PDGF-BB released was chemotactically active in transwell migration assays, indicating that bioactivity was not diminished by adsorption to the biomaterial. Complementing these studies, we developed a new type of migration assay in which the PDGF-BB-coated bone-mimetic substrates were placed 1.5 cm away from the cell migration front. These experiments confirmed the ability of PDGF-BB-coated PCL/col/HA scaffolds to induce significant MSC chemotaxis under more stringent conditions than standard types of migration assays. Our collective results substantiate the efficacy of PDGF-BB in stimulating MSC recruitment, and further show that the incorporation of native bone molecules, collagen I and nano

  14. A Smac-mimetic sensitizes prostate cancer cells to TRAIL-induced apoptosis via modulating both IAPs and NF-kappaB

    International Nuclear Information System (INIS)

    Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising agent for human cancer therapy, prostate cancer still remains resistant to TRAIL. Both X-linked inhibitor of apoptosis (XIAP) and nuclear factor-kappaB function as key negative regulators of TRAIL signaling. In this study, we evaluated the effect of SH122, a small molecule mimetic of the second mitochondria-derived activator of caspases (Smac), on TRAIL-induced apoptosis in prostate cancer cells. The potential of Smac-mimetics to bind XIAP or cIAP-1 was examined by pull-down assay. Cytotoxicity of TRAIL and/or Smac-mimetics was determined by a standard cell growth assay. Silencing of XIAP or cIAP-1 was achieved by transient transfection of short hairpin RNA. Apoptosis was detected by Annexin V-PI staining followed by flow cytometry and by Western Blot analysis of caspases, PARP and Bid. NF-kappaB activation was determined by subcellular fractionation, real time RT-PCR and reporter assay. SH122, but not its inactive analog, binds to XIAP and cIAP-1. SH122 significantly sensitized prostate cancer cells to TRAIL-mediated cell death. Moreover, SH122 enhanced TRAIL-induced apoptosis via both the death receptor and the mitochondrial pathway. Knockdown of both XIAP and cIAP-1 sensitized cellular response to TRAIL. XIAP-knockdown attenuated sensitivity of SH122 to TRAIL-induced cytotoxicity, confirming that XIAP is an important target for IAP-inhibitor-mediated TRAIL sensitization. SH122 also suppressed TRAIL-induced NF-kappaB activation by preventing cytosolic IkappaB-alpha degradation and RelA nuclear translocation, as well as by suppressing NF-kappaB target gene expression. These results demonstrate that SH122 sensitizes human prostate cancer cells to TRAIL-induced apoptosis by mimicking Smac and blocking both IAPs and NF-kappaB. Modulating IAPs may represent a promising approach to overcoming TRAIL-resistance in human prostate cancer with constitutively active NF-kappaB signaling

  15. Glucagon-like peptide-1

    DEFF Research Database (Denmark)

    Deacon, C F; Holst, Jens Juul; Carr, R D

    1999-01-01

    Type 2 diabetes mellitus is a metabolic disease resulting in raised blood sugar which, if not satisfactorily controlled, can cause severe and often debilitating complications. Unfortunately, for many patients, the existing therapies do not give adequate control. Glucagon-like peptide-1 (GLP-1) is...... an incretin hormone which has a spectrum of activities which oppose the symptoms of diabetes. Of particular significance is the fact that these actions are glucose-dependent, meaning that the risk of severe hypoglycemia is practically eliminated. The recent elucidation of the key role of dipeptidyl...

  16. Atrial natriuretic peptides in plasma

    DEFF Research Database (Denmark)

    Goetze, Jens P; Holst Hansen, Lasse; Terzic, Dijana;

    2015-01-01

    Measurement of cardiac natriuretic peptides in plasma has gained a diagnostic role in the assessment of heart failure. Plasma measurement is though hampered by the marked instability of the hormones, which has led to the development of analyses that target N-terminal fragments from the prohormone....... These fragments are stable in plasma and represent surrogate markers of the actual natriuretic hormone. Post-translational processing of the precursors, however, is revealing itself to be a complex event with new information still being reported on proteolysis, covalent modifications, and amino acid...

  17. Antimicrobial peptides in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    A Bogaerts

    2010-01-01

    Full Text Available The nematode Caenorhabditis elegans is one of the most successful model species for experimental research because of its sequenced genome, the versatile genetic toolkit and the straightforward breeding among others. In natural conditions however, this tiny worm is constantly surrounded by micro-organisms, simultaneously a source of indispensable nutrition and inevitable pathogens. Lacking an adaptive immune system, the worm solely relies on its innate immune defence to cope with its challenging life style. Hence C. elegans is an excellent model to gain more insight in innate immunity, which is remarkably preserved between invertebrate and vertebrate animals. The innate defence consists of receptors to detect potential pathogens, a complex network of signalling pathways and last but not least, effector molecules to abolish harmful microbes. In this review, we focus on the antimicrobial peptides, a vital subgroup of effector molecules. We summarise the current knowledge of the different families of C. elegans antimicrobial peptides, comprising NLPs, caenacins, ABFs, caenopores, and a recently discovered group with antifungal activity among which thaumatin-like proteins.

  18. Development of Designed Site-Directed Pseudopeptide-Peptido-Mimetic Immunogens as Novel Minimal Subunit-Vaccine Candidates for Malaria

    Directory of Open Access Journals (Sweden)

    Luisa F. Carreño

    2010-12-01

    Full Text Available Synthetic vaccines constitute the most promising tools for controlling and preventing infectious diseases. When synthetic immunogens are designed from the pathogen native sequences, these are normally poorly immunogenic and do not induce protection, as demonstrated in our research. After attempting many synthetic strategies for improving the immunogenicity properties of these sequences, the approach consisting of identifying high binding motifs present in those, and then performing specific changes on amino-acids belonging to such motifs, has proven to be a workable strategy. In addition, other strategies consisting of chemically introducing non-natural constraints to the backbone topology of the molecule and modifying the α-carbon asymmetry are becoming valuable tools to be considered in this pursuit. Non-natural structural constraints to the peptide backbone can be achieved by introducing peptide bond isosters such as reduced amides, partially retro or retro-inverso modifications or even including urea motifs. The second can be obtained by strategically replacing L-amino-acids with their enantiomeric forms for obtaining both structurally site-directed designed immunogens as potential vaccine candidates and their Ig structural molecular images, both having immuno-therapeutic effects for preventing and controlling malaria.

  19. Production of peptide antisera specific for mouse and rat proinsulin C-peptide 2

    DEFF Research Database (Denmark)

    Blume, N; Madsen, O D; Kofod, Hans;

    1990-01-01

    not seem to increase the end point titre as tested in direct ELISA. The specificity of the antiserum was determined by competitive ELISA and histochemistry on pancreas sections. Only the synthetic C-peptide 2, but not the homologous synthetic C-peptide 1 from mouse and rat competed efficiently in ELISA...... for antibody binding to the immunizing antigen. Antisera to C-peptide 2, stained islet beta-cells on mouse and rat, but not monkey pancreas sections in immunocytochemical analysis. Preabsorption to the synthetic C-peptide 2, but not the synthetic mouse and rat C-peptide 1 abolished staining. In conclusion we...

  20. Determination of peptide content of DOTA-peptides by metal titration and UPLC

    International Nuclear Information System (INIS)

    Radiolabelled DOTA-peptides are in use for Peptide Receptor Radionuclide Scintigraphy (PRS) and Therapy (PRRT), e.g with 177Lu-DOTA-TATE or 90Y-DOTATOC. Labelling conditions are frequently critical. Therefore, the ingredients of the reaction, e.g. radiometal (90Y and 177Lu) and DOTA-peptide should be pure and the content known. Quality control of DOTA-peptide, can be performed with various methods, most commonly by UV. There are numerous conditions in which this is hampered, e.g. impurities may also have UV-absorption. The aim of the study was to quantify content and purity of DOTA-peptide