WorldWideScience

Sample records for apkc-exocyst complex controls

  1. Control of complex systems

    CERN Document Server

    Albertos, Pedro; Blanke, Mogens; Isidori, Alberto; Schaufelberger, Walter; Sanz, Ricardo

    2001-01-01

    The world of artificial systems is reaching complexity levels that es­ cape human understanding. Surface traffic, electricity distribution, air­ planes, mobile communications, etc. , are examples that demonstrate that we are running into problems that are beyond classical scientific or engi­ neering knowledge. There is an ongoing world-wide effort to understand these systems and develop models that can capture its behavior. The reason for this work is clear, if our lack of understanding deepens, we will lose our capability to control these systems and make they behave as we want. Researchers from many different fields are trying to understand and develop theories for complex man-made systems. This book presents re­ search from the perspective of control and systems theory. The book has grown out of activities in the research program Control of Complex Systems (COSY). The program has been sponsored by the Eu­ ropean Science Foundation (ESF) which for 25 years has been one of the leading players in stimula...

  2. Control in Complex Organizations

    DEFF Research Database (Denmark)

    Rennstam, Jens; Kärreman, Dan

    The extant research on organizational control builds on the assumption of vertical control – managers are thought to develop orders, rules and norms to control the operating core. Yet it is claimed that work becomes increasingly “knowledge intensive” and that organizations rely heavily for their...... productivity on the knowledge and creativity of their work force. In this type of “knowledge work,” the strong focus on vertical control is insufficient as it fails to account for the important operative and horizontal interactions upon which many contemporary organizations depend. Drawing on practice theory...... and an ethnographic study of engineering work, this paper theorizes control as a form of work that does not only belong to formal management, but is dispersed among various work activities, including horizontal ones. The article introduces the idea of control work as a key practice in contemporary...

  3. Decentralized control of complex systems

    CERN Document Server

    Siljak, Dragoslav D

    2011-01-01

    Complex systems require fast control action in response to local input, and perturbations dictate the use of decentralized information and control structures. This much-cited reference book explores the approaches to synthesizing control laws under decentralized information structure constraints.Starting with a graph-theoretic framework for structural modeling of complex systems, the text presents results related to robust stabilization via decentralized state feedback. Subsequent chapters explore optimization, output feedback, the manipulative power of graphs, overlapping decompositions and t

  4. ON COMPLEX DYNAMIC CONTROL SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    CHENG Daizhan

    2003-01-01

    This paper presents some recent works on the control of dynamic systems, which have certain complex properties caused by singularity of the nonlinear structures, structure-varyings, or evolution process etc. First, we consider the structure singularity of nonlinear control systems. It was revealed that the focus of researches on nonlinear control theory is shifting from regular systems to singular systems. The singularity of nonlinear systems causes certain complexity. Secondly, the switched systems are considered. For such systems the complexity is caused by the structure varying. We show that the switched systems have significant characteristics of complex systems. Finally, we investigate the evolution systems. The evolution structure makes complexity, and itself is a proper model for complex systems.

  5. Complex Control Chart Interpretation

    OpenAIRE

    Darja Noskievičová

    2013-01-01

    Identification of the assignable causes of process variability and the restriction and elimination of their influence are the main goals of statistical process control (SPC). Identification of these causes is associated with so called tests for special causes or runs tests. From the time of the formulation of the first set of such rules (Western Electric rules) several different sets have been created (Nelson rules, Boeing AQS rules, Trietsch rules). This paper deals with th...

  6. Control efficacy of complex networks

    Science.gov (United States)

    Gao, Xin-Dong; Wang, Wen-Xu; Lai, Ying-Cheng

    2016-06-01

    Controlling complex networks has become a forefront research area in network science and engineering. Recent efforts have led to theoretical frameworks of controllability to fully control a network through steering a minimum set of driver nodes. However, in realistic situations not every node is accessible or can be externally driven, raising the fundamental issue of control efficacy: if driving signals are applied to an arbitrary subset of nodes, how many other nodes can be controlled? We develop a framework to determine the control efficacy for undirected networks of arbitrary topology. Mathematically, based on non-singular transformation, we prove a theorem to determine rigorously the control efficacy of the network and to identify the nodes that can be controlled for any given driver nodes. Physically, we develop the picture of diffusion that views the control process as a signal diffused from input signals to the set of controllable nodes. The combination of mathematical theory and physical reasoning allows us not only to determine the control efficacy for model complex networks and a large number of empirical networks, but also to uncover phenomena in network control, e.g., hub nodes in general possess lower control centrality than an average node in undirected networks.

  7. Control Principles of Complex Networks

    OpenAIRE

    Liu, Yang-Yu; Barabási, Albert-Laszló

    2015-01-01

    A reflection of our ultimate understanding of a complex system is our ability to control its behavior. Typically, control has multiple prerequisites: It requires an accurate map of the network that governs the interactions between the system's components, a quantitative description of the dynamical laws that govern the temporal behavior of each component, and an ability to influence the state and temporal behavior of a selected subset of the components. With deep roots in nonlinear dynamics a...

  8. Complexity control in statistical learning

    Indian Academy of Sciences (India)

    Sameer M Jalnapurkar

    2006-04-01

    We consider the problem of determining a model for a given system on the basis of experimental data. The amount of data available is limited and, further, may be corrupted by noise. In this situation, it is important to control the complexity of the class of models from which we are to choose our model. In this paper, we first give a simplified overview of the principal features of learning theory. Then we describe how the method of regularization is used to control complexity in learning. We discuss two examples of regularization, one in which the function space used is finite dimensional, and another in which it is a reproducing kernel Hilbert space. Our exposition follows the formulation of Cucker and Smale. We give a new method of bounding the sample error in the regularization scenario, which avoids some difficulties in the derivation given by Cucker and Smale.

  9. Concurrency Control Mechanism of Complex Objects

    Institute of Scientific and Technical Information of China (English)

    徐庆云; 王能斌

    1992-01-01

    A complex object is an abstraction and description of a complex entity of the real world.Many applications in such domains as CIMS,CAD and OA define and manipulate a complex object as a single unit.In this paper,a definition of the model of complex objects is given,and the concurrency control mechanism of complex objects in WHYMX object-oriented database system is described.

  10. Controlling Congestion on Complex Networks

    OpenAIRE

    Buzna, Lubos; Carvalho, Rui

    2015-01-01

    From the Internet to road networks and the power grid, modern life depends on controlling flows on critical infrastructure networks that often operate in a congested state. Yet, we have a limited understanding of the relative performance of the control mechanisms available to manage congestion and of the interplay between network topology, path layout and congestion control algorithms. Here, we consider two flow algorithms (max-flow and uniform-flow), and two more realistic congestion control...

  11. Structural Dissection for Controlling Complex Networks

    CERN Document Server

    Wang, Wen-Xu; Zhao, Chen; Liu, Yang-Yu; Lai, Ying-Cheng

    2015-01-01

    Controlling complex networked systems has been a central goal in different fields and understanding controllability of complex networks has been at the forefront of contemporary science. Despite the recent progress in the development of controllability theories for complex networks, we continue to lack efficient tools to fully understand the effect of network topology and interaction strengths among nodes on controllability. Here we establish a framework to discern the significance of links and nodes for controlling general complex networks in a simple way based on local information. A dissection process is offered by the framework to probe and classify nodes and links completely, giving rise to a criterion for strong structural controllability. Analytical results indicate phase transitions associated with link and node categories, and strong structural controllability. Applying the tools to real networks demonstrate that real technological networks are strong structurally controllable, whereas most of real s...

  12. Controlling Congestion on Complex Networks

    CERN Document Server

    Buzna, Lubos

    2016-01-01

    From the Internet to road networks and the power grid, modern life depends on controlling flows on critical infrastructure networks that often operate in a congested state. Yet, we have a limited understanding of the relative performance of the control mechanisms available to manage congestion and of the interplay between network topology, path layout and congestion control algorithms. Here, we consider two flow algorithms (max-flow and uniform-flow), and two more realistic congestion control schemes (max-min fairness and proportional fairness). We analyse how the algorithms and network topology affect throughput, fairness and the location of bottleneck edges. Our results show that on large random networks a network operator can implement the trade-off (proportional fairness) instead of the fair allocation (max-min fairness) with little sacrifice in throughput. We illustrate how the previously studied uniform-flow approach leaves networks severely underutilised in comparison with congestion control algorithms...

  13. Emergence of bimodality in controlling complex networks

    CERN Document Server

    Jia, Tao; Csóka, Endre; Pósfai, Márton; Slotine, Jean-Jacques; Barabási, Albert-László

    2015-01-01

    Our ability to control complex systems is a fundamental challenge of contemporary science. Recently introduced tools to identify the driver nodes, nodes through which we can achieve full control, predict the existence of multiple control configurations, prompting us to classify each node in a network based on their role in control. Accordingly a node is critical, intermittent or redundant if it acts as a driver node in all, some or none of the control configurations. Here we develop an analytical framework to identify the category of each node, leading to the discovery of two distinct control modes in complex systems: centralized vs distributed control. We predict the control mode for an arbitrary network and show that one can alter it through small structural perturbations. The uncovered bimodality has implications from network security to organizational research and offers new insights into the dynamics and control of complex systems.

  14. Opinion control in complex networks

    Science.gov (United States)

    Masuda, Naoki

    2015-03-01

    In many political elections, the electorate appears to be a composite of partisan and independent voters. Given that partisans are not likely to convert to a different party, an important goal for a political party could be to mobilize independent voters toward the party with the help of strong leadership, mass media, partisans, and the effects of peer-to-peer influence. Based on the exact solution of classical voter model dynamics in the presence of perfectly partisan voters (i.e., zealots), we propose a computational method that uses pinning control strategy to maximize the share of a party in a social network of independent voters. The party, corresponding to the controller or zealots, optimizes the nodes to be controlled given the information about the connectivity of independent voters and the set of nodes that the opposing party controls. We show that controlling hubs is generally a good strategy, but the optimized strategy is even better. The superiority of the optimized strategy is particularly eminent when the independent voters are connected as directed (rather than undirected) networks.

  15. Opinion control in complex networks

    CERN Document Server

    Masuda, Naoki

    2014-01-01

    In many instances of election, the electorate appears to be a composite of partisan and independent voters. Given that partisans are not likely to convert to a different party, a main goal for a party could be to mobilize independent voters toward the party with the help of strong leadership, mass media, partisans, and effects of peer-to-peer influence. Based on the exact solution of the classical voter model dynamics in the presence of perfectly partisan voters (i.e., zealots), we propose a computational method to maximize the share of the party in a social network of independent voters by pinning control strategy. The party, corresponding to the controller or zealots, optimizes the nodes to be controlled given the information about the connectivity of independent voters and the set of nodes that the opponent party controls. We show that controlling hubs is generally a good strategy, whereas the optimized strategy is even better. The superiority of the optimized strategy is particularly eminent when the inde...

  16. Minimum-cost control of complex networks

    Science.gov (United States)

    Li, Guoqi; Hu, Wuhua; Xiao, Gaoxi; Deng, Lei; Tang, Pei; Pei, Jing; Shi, Luping

    2016-01-01

    Finding the solution for driving a complex network at the minimum energy cost with a given number of controllers, known as the minimum-cost control problem, is critically important but remains largely open. We propose a projected gradient method to tackle this problem, which works efficiently in both synthetic and real-life networks. The study is then extended to the case where each controller can only be connected to a single network node to have the lowest connection complexity. We obtain the interesting insight that such connections basically avoid high-degree nodes of the network, which is in resonance with recent observations on controllability of complex networks. Our results provide the first technical path to enabling minimum-cost control of complex networks, and contribute new insights to locating the key nodes from a minimum-cost control perspective.

  17. Predictive Approaches to Control of Complex Systems

    CERN Document Server

    Karer, Gorazd

    2013-01-01

    A predictive control algorithm uses a model of the controlled system to predict the system behavior for various input scenarios and determines the most appropriate inputs accordingly. Predictive controllers are suitable for a wide range of systems; therefore, their advantages are especially evident when dealing with relatively complex systems, such as nonlinear, constrained, hybrid, multivariate systems etc. However, designing a predictive control strategy for a complex system is generally a difficult task, because all relevant dynamical phenomena have to be considered. Establishing a suitable model of the system is an essential part of predictive control design. Classic modeling and identification approaches based on linear-systems theory are generally inappropriate for complex systems; hence, models that are able to appropriately consider complex dynamical properties have to be employed in a predictive control algorithm. This book first introduces some modeling frameworks, which can encompass the most frequ...

  18. Controlling synchronous patterns in complex networks

    Science.gov (United States)

    Lin, Weijie; Fan, Huawei; Wang, Ying; Ying, Heping; Wang, Xingang

    2016-04-01

    Although the set of permutation symmetries of a complex network could be very large, few of them give rise to stable synchronous patterns. Here we present a general framework and develop techniques for controlling synchronization patterns in complex network of coupled chaotic oscillators. Specifically, according to the network permutation symmetry, we design a small-size and weighted network, namely the control network, and use it to control the large-size complex network by means of pinning coupling. We argue mathematically that for any of the network symmetries, there always exists a critical pinning strength beyond which the unstable synchronous pattern associated to this symmetry can be stabilized. The feasibility of the control method is verified by numerical simulations of both artificial and real-world networks and demonstrated experimentally in systems of coupled chaotic circuits. Our studies show the controllability of synchronous patterns in complex networks of coupled chaotic oscillators.

  19. Synchronizability on complex networks via pinning control

    Indian Academy of Sciences (India)

    Yi Liang; Xingyuan Wang

    2013-04-01

    It is proved that the maximum eigenvalue sequence of the principal submatrices of coupling matrix is decreasing. The method of calculating the number of pinning nodes is given based on this theory. The findings reveal the relationship between the decreasing speed of maximum eigenvalue sequence of the principal submatrices for coupling matrix and the synchronizability on complex networks via pinning control. We discuss the synchronizability on some networks, such as scale-free networks and small-world networks. Numerical simulations show that different pinning strategies have different pinning synchronizability on the same complex network, and the synchronizability with pinning control is consistent with one without pinning control in various complex networks.

  20. Structurally Robust Control of Complex Networks

    OpenAIRE

    Nacher, Jose C; Akutsu, Tatsuya

    2014-01-01

    Robust control theory has been successfully applied to numerous real-world problems using a small set of devices called {\\it controllers}. However, the real systems represented by networks contain unreliable components and modern robust control engineering has not addressed the problem of structural changes on a large network. Here, we introduce the concept of structurally robust control of complex networks and provide a concrete example using an algorithmic framework that is widely applied i...

  1. Local Geometrical Machinery for Complexity and Control

    Science.gov (United States)

    Ivancevic, Vladimir G.; Reid, Darryn J.

    2015-11-01

    In this Chapter, we present local geometrical machinery for studying complexity and control, consisting of dynamics on Kähler manifolds, which combine three geometrical structures-Riemannian, symplectic and complex (Hermitian)-in a mutually compatible way. In other words, every Kähler manifold is simultaneously Riemannian, symplectic and complex (Hermitian). It is well known that Riemannian manifolds represent the stage on which Lagrangian dynamics is set, symplectic manifolds represent the stage for Hamiltonian dynamics, and complex (Hermitian) varieties comprise the stage for quantum dynamics. Therefore, Kähler manifolds represent the richest dynamical stage available where Lagrangian, Hamiltonian, and quantum dynamics all dance together.

  2. Subjective task complexity in the control room

    International Nuclear Information System (INIS)

    Understanding of what makes a control room situation difficult to handle is important when studying operator performance, both with respect to prediction as well as improvement of the human performance. Previous exploratory work on complexity showed a potential for prediction and explanation of operator performance. This report investigates in further detail the theoretical background and the structure of operator rated task complexity. The report complements the previous work on complexity to make a basis for development of operator performance analysis tools. The first part of the report outlines an approach for studying the complexity of the control room crew's work. The approach draws upon man-machine research as well as problem solving research. The approach identifies five complexity-shaping components: 'task work characteristics', 'teamwork characteristics', 'individual skill', 'teamwork skill', and 'interface and support systems'. The crew's work complexity is related to concepts of human performance quality and human error. The second part of the report is a post-hoc exploratory analysis of four empirical HRP studies, where operators' conception of the complexity of control room work is assessed by questionnaires. The analysis deals with the structure of complexity questionnaire ratings, and the relationship between complexity ratings and human performance measures. The main findings from the analysis of structure was the identification of three task work factors which were named Masking, Information load and Temporal demand, and in addition the identification of one interface factor which was named Navigation. Post-hoc analysis suggests that operator's subjective complexity, which was assessed by questionnaires, is related to workload, task and system performance, and operator's self-rated performance. (Author). 28 refs., 47 tabs

  3. Controlling complex networks with conformity behavior

    Science.gov (United States)

    Wang, Xu-Wen; Nie, Sen; Wang, Wen-Xu; Wang, Bing-Hong

    2015-09-01

    Controlling complex networks accompanied by common conformity behavior is a fundamental problem in social and physical science. Conformity behavior that individuals tend to follow the majority in their neighborhood is common in human society and animal communities. Despite recent progress in understanding controllability of complex networks, the existent controllability theories cannot be directly applied to networks associated with conformity. Here we propose a simple model to incorporate conformity-based decision making into the evolution of a network system, which allows us to employ the exact controllability theory to explore the controllability of such systems. We offer rigorous theoretical results of controllability for representative regular networks. We also explore real networks in different fields and some typical model networks, finding some interesting results that are different from the predictions of structural and exact controllability theory in the absence of conformity. We finally present an example of steering a real social network to some target states to further validate our controllability theory and tools. Our work offers a more realistic understanding of network controllability with conformity behavior and can have potential applications in networked evolutionary games, opinion dynamics and many other complex networked systems.

  4. Control of complex physically simulated robot groups

    Science.gov (United States)

    Brogan, David C.

    2001-10-01

    Actuated systems such as robots take many forms and sizes but each requires solving the difficult task of utilizing available control inputs to accomplish desired system performance. Coordinated groups of robots provide the opportunity to accomplish more complex tasks, to adapt to changing environmental conditions, and to survive individual failures. Similarly, groups of simulated robots, represented as graphical characters, can test the design of experimental scenarios and provide autonomous interactive counterparts for video games. The complexity of writing control algorithms for these groups currently hinders their use. A combination of biologically inspired heuristics, search strategies, and optimization techniques serve to reduce the complexity of controlling these real and simulated characters and to provide computationally feasible solutions.

  5. Pinning impulsive control algorithms for complex network

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wen [School of Information and Mathematics, Yangtze University, Jingzhou 434023 (China); Lü, Jinhu [Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China); Chen, Shihua [College of Mathematics and Statistics, Wuhan University, Wuhan 430072 (China); Yu, Xinghuo [School of Electrical and Computer Engineering, RMIT University, Melbourne VIC 3001 (Australia)

    2014-03-15

    In this paper, we further investigate the synchronization of complex dynamical network via pinning control in which a selection of nodes are controlled at discrete times. Different from most existing work, the pinning control algorithms utilize only the impulsive signals at discrete time instants, which may greatly improve the communication channel efficiency and reduce control cost. Two classes of algorithms are designed, one for strongly connected complex network and another for non-strongly connected complex network. It is suggested that in the strongly connected network with suitable coupling strength, a single controller at any one of the network's nodes can always pin the network to its homogeneous solution. In the non-strongly connected case, the location and minimum number of nodes needed to pin the network are determined by the Frobenius normal form of the coupling matrix. In addition, the coupling matrix is not necessarily symmetric or irreducible. Illustrative examples are then given to validate the proposed pinning impulsive control algorithms.

  6. Controlling complex Langevin dynamics at finite density

    Energy Technology Data Exchange (ETDEWEB)

    Aarts, Gert; Bongiovanni, Lorenzo [Swansea University, Department of Physics, College of Science, Swansea (United Kingdom); Seiler, Erhard [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Muenchen (Germany); Sexty, Denes [Universitaet Heidelberg, Institut fuer Theoretische Physik, Heidelberg (Germany); Stamatescu, Ion-Olimpiu [Universitaet Heidelberg, Institut fuer Theoretische Physik, Heidelberg (Germany); FEST, Heidelberg (Germany)

    2013-07-15

    At nonzero chemical potential the numerical sign problem in lattice field theory limits the use of standard algorithms based on importance sampling. Complex Langevin dynamics provides a possible solution, but it has to be applied with care. In this review, we first summarise our current understanding of the approach, combining analytical and numerical insight. In the second part we study SL(N,C) gauge cooling, which was introduced recently as a tool to control complex Langevin dynamics in nonabelian gauge theories. We present new results in Polyakov chain models and in QCD with heavy quarks and compare various adaptive cooling implementations. (orig.)

  7. Controlling complex Langevin dynamics at finite density

    CERN Document Server

    Aarts, Gert; Seiler, Erhard; Sexty, Denes; Stamatescu, Ion-Olimpiu

    2013-01-01

    At nonzero chemical potential the numerical sign problem in lattice field theory limits the use of standard algorithms based on importance sampling. Complex Langevin dynamics provides a possible solution, but it has to be applied with care. In this review, we first summarise our current understanding of the approach, combining analytical and numerical insight. In the second part we study SL(N,C) gauge cooling, which was introduced recently as a tool to control complex Langevin dynamics in nonabelian gauge theories. We present new results in Polyakov chain models and in QCD with heavy quarks and compare various adaptive cooling implementations.

  8. Homophilic Dscam interactions control complex dendrite morphogenesis

    OpenAIRE

    Michael E Hughes; Bortnick, Rachel; Tsubouchi, Asako; Bäumer, Philipp; Kondo, Masahiro; Uemura, Tadashi; Schmucker, Dietmar

    2007-01-01

    The morphogenesis of complex dendritic fields requires highly specific patterning and dendrite-dendrite recognition mechanisms. Alternative splicing of the Drosophila cell surface receptor Dscam results in up to 38,016 different receptor isoforms and in vitro binding studies suggested that sequence variability in immunoglobulin-like ecto-domains determines the specificity of strictly homophilic interactions. We report that diverse Dscam receptors play an important role in controlling cell-int...

  9. Traffic Control Under Complex Weather Conditions in Suining Airport

    Institute of Scientific and Technical Information of China (English)

    吕维峰

    2014-01-01

    Complex weather conditions is meaning thunderstorm freezing turbulence wind-shear low visibility weather affect the flight safety. When confronted with complex weather conditions,the controllers should know the weather condition and trend weather,and notify the aircraft under your control zone.The controllers provide the required services to the pilots,help the pilots to avoid the complex weather.In this paper, through different complex weathers under different control command,get the different methods of control.

  10. Supervisory control for a complex robotic system

    International Nuclear Information System (INIS)

    The Robotic Radiation Survey and Analysis System investigates the use of advanced robotic technology for performing remote radiation surveys on nuclear waste shipping casks. Robotic systems have the potential for reducing personnel exposure to radiation and providing fast reliable throughput at future repository sites. A primary technology issue is the integrated control of distributed specialized hardware through a modular supervisory software system. Automated programming of robot trajectories based upon mathematical models of the cask and robot coupled with sensory feedback enables flexible operation of a commercial gantry robot with the reliability needed to perform autonomous operations in a hazardous environment. Complexity is managed using structured software engineering techniques resulting in the generation of reusable command primitives which contribute to a software parts catalog for a generalized robot programming language

  11. Kolmogorov-Chaitin Complexity of Digital Controller Implementations

    Institute of Scientific and Technical Information of China (English)

    James F. Whidborne; John McKernan; Da-Wei Gu

    2006-01-01

    The complexity of linear, fixed-point arithmetic digital controllers is investigated from a Kolmogorov-Chaitin perspective. Based on the idea of Kolmogorov-Chaitin complexity, practical measures of complexity are developed for state-space realizations, parallel and cascade realizations, and for a newly proposed generalized implicit state-space realization.The complexity of solutions to a restricted complexity controller benchmark problem is investigated using this measure.The results show that from a Kolmogorov-Chaitin viewpoint, higher-order controllers with a shorter word-length may have lower complexity and better performance, than lower-order controllers with longer word-length.

  12. Measuring control structure complexity through execution sequence grammars

    OpenAIRE

    MacLennan, Bruce J.

    1981-01-01

    A method for measuring the complexity of control structures is presented. It is based on the size of a grammar describing the possible execution sequences of the control structure. This method is applied to a number of control structures, including Pascal's control structures, Dijkstra's operators, and a structure recently proposed by Parnas. The verification of complexity measures is briefly discussed. (Author)

  13. Polycomb repressive complex 1 controls uterine decidualization.

    Science.gov (United States)

    Bian, Fenghua; Gao, Fei; Kartashov, Andrey V; Jegga, Anil G; Barski, Artem; Das, Sanjoy K

    2016-01-01

    Uterine stromal cell decidualization is an essential part of the reproductive process. Decidual tissue development requires a highly regulated control of the extracellular tissue remodeling; however the mechanism of this regulation remains unknown. Through systematic expression studies, we detected that Cbx4/2, Rybp, and Ring1B [components of polycomb repressive complex 1 (PRC1)] are predominantly utilized in antimesometrial decidualization with polyploidy. Immunofluorescence analyses revealed that PRC1 members are co-localized with its functional histone modifier H2AK119ub1 (mono ubiquitination of histone-H2A at lysine-119) in polyploid cell. A potent small-molecule inhibitor of Ring1A/B E3-ubiquitin ligase or siRNA-mediated suppression of Cbx4 caused inhibition of H2AK119ub1, in conjunction with perturbation of decidualization and polyploidy development, suggesting a role for Cbx4/Ring1B-containing PRC1 in these processes. Analyses of genetic signatures by RNA-seq studies showed that the inhibition of PRC1 function affects 238 genes (154 up and 84 down) during decidualization. Functional enrichment analyses identified that about 38% genes primarily involved in extracellular processes are specifically targeted by PRC1. Furthermore, ~15% of upregulated genes exhibited a significant overlap with the upregulated Bmp2 null-induced genes in mice. Overall, Cbx4/Ring1B-containing PRC1 controls decidualization via regulation of extracellular gene remodeling functions and sheds new insights into underlying molecular mechanism(s) through transcriptional repression regulation. PMID:27181215

  14. Complex chemosensory control of female reproductive behaviors.

    Science.gov (United States)

    Fraser, Eleanor J; Shah, Nirao M

    2014-01-01

    Olfaction exerts a profound influence on reproductive physiology and behavior in many animals, including rodents. Odors are recognized by sensory neurons residing in the main olfactory epithelium (MOE) and the vomeronasal organ (VNO) in mice and many other vertebrates. The relative contributions of the MOE and VNO in the display of female behaviors are not well understood. Mice null for Cnga2 or Trpc2 essentially lack odor-evoked activity in the MOE and VNO, respectively. Using females mutant for one or both of Cnga2 and Trpc2, we find that maternal care is differentially regulated by the MOE and VNO: retrieval of wandering pups requires the MOE and is regulated redundantly by the VNO whereas maternal aggression requires both sensory epithelia to be functional. Female sexual receptivity appears to be regulated by both the MOE and VNO. Trpc2 null females have previously been shown to display male-type mounting towards other males. Remarkably, we find that females double mutant for Cnga2 and Trpc2 continue to mount other males, indicating that the disinhibition of male-type sexual displays observed in Trpc2 null females does not require chemosensory input from a functional MOE. Taken together, our findings reveal a previously unappreciated complexity in the chemosensory control of reproductive behaviors in the female mouse. PMID:24587340

  15. Complex chemosensory control of female reproductive behaviors.

    Directory of Open Access Journals (Sweden)

    Eleanor J Fraser

    Full Text Available Olfaction exerts a profound influence on reproductive physiology and behavior in many animals, including rodents. Odors are recognized by sensory neurons residing in the main olfactory epithelium (MOE and the vomeronasal organ (VNO in mice and many other vertebrates. The relative contributions of the MOE and VNO in the display of female behaviors are not well understood. Mice null for Cnga2 or Trpc2 essentially lack odor-evoked activity in the MOE and VNO, respectively. Using females mutant for one or both of Cnga2 and Trpc2, we find that maternal care is differentially regulated by the MOE and VNO: retrieval of wandering pups requires the MOE and is regulated redundantly by the VNO whereas maternal aggression requires both sensory epithelia to be functional. Female sexual receptivity appears to be regulated by both the MOE and VNO. Trpc2 null females have previously been shown to display male-type mounting towards other males. Remarkably, we find that females double mutant for Cnga2 and Trpc2 continue to mount other males, indicating that the disinhibition of male-type sexual displays observed in Trpc2 null females does not require chemosensory input from a functional MOE. Taken together, our findings reveal a previously unappreciated complexity in the chemosensory control of reproductive behaviors in the female mouse.

  16. Solving complex problems: Human identification and control of complex systems

    OpenAIRE

    Funke, Joachim

    1991-01-01

    Studying complex problem solving by means of computer-simulated scenarios has become one of the favorite themes of modern theorists in German-speaking countries who are concerned with the psychology of thinking. Following the pioneering work of Dietrich Doerner (University of Bamberg, FRG) in the mid-70s, many new scenarios have been developed and applied in correlational as well as in experimental studies (for a review see Funke, 1988). Instead of studying problem-solving behavior in restric...

  17. Driver graph: the hidden geometry in controlling complex networks

    OpenAIRE

    Zhang, Xizhe; Lv, Tianyang; Pu, Yuanyuan

    2016-01-01

    The ability to control a complex network towards a desired behavior relies on our understanding of the complex nature of these social and technological networks. The existence of numerous control schemes in a network promotes us to wonder: what is the underlying principle of all control schemes and driver nodes? Here we introduce driver graph, a simple geometry that reveals the complex relationship between all control schemes and driver nodes. We prove that the node adjacent to a driver node ...

  18. Control system for the FFAG complex at KURRI

    International Nuclear Information System (INIS)

    A simple and convenient control system has been developed for the 150 MeV proton FFAG accelerator complex at Research Reactor Institute, Kyoto University. This control system is designed as a distributed control scheme and developed with simple and versatile tools, such as PLCs, LabVIEW and an IP based network, expecting applications in small accelerators, which are often operated by non-specialists in computer programming or in control systems. The control system for the FFAG accelerator complex has actually been developed by non-specialists, and the developed control system was successfully used for commissioning the FFAG complex.

  19. Code Samples Used for Complexity and Control

    Science.gov (United States)

    Ivancevic, Vladimir G.; Reid, Darryn J.

    2015-11-01

    The following sections are included: * MathematicaⓇ Code * Generic Chaotic Simulator * Vector Differential Operators * NLS Explorer * 2C++ Code * C++ Lambda Functions for Real Calculus * Accelerometer Data Processor * Simple Predictor-Corrector Integrator * Solving the BVP with the Shooting Method * Linear Hyperbolic PDE Solver * Linear Elliptic PDE Solver * Method of Lines for a Set of the NLS Equations * C# Code * Iterative Equation Solver * Simulated Annealing: A Function Minimum * Simple Nonlinear Dynamics * Nonlinear Pendulum Simulator * Lagrangian Dynamics Simulator * Complex-Valued Crowd Attractor Dynamics * Freeform Fortran Code * Lorenz Attractor Simulator * Complex Lorenz Attractor * Simple SGE Soliton * Complex Signal Presentation * Gaussian Wave Packet * Hermitian Matrices * Euclidean L2-Norm * Vector/Matrix Operations * Plain C-Code: Levenberg-Marquardt Optimizer * Free Basic Code: 2D Crowd Dynamics with 3000 Agents

  20. Emergence of complexity in controlling simple regular networks

    Science.gov (United States)

    Gao, Xin-Dong; Shen, Zhesi; Wang, Wen-Xu

    2016-06-01

    Quantifying the capacity of a given node or a bunch of nodes in maintaining a system's controllability is a crucial problem in complex networks and control theory. We give a systematic analysis of the ability of a single node or a pairs of nodes to control an undirected unweighted chain and ring. By combining algebraic theory and graph spectrum analysis, we derive analytic expressions for the control range of some given control inputs and find that complex phenomena emerge even from these simplest graph structures. Specifically, the control range is sensitive to the location of driver nodes and shows complex periodic behaviors. Our findings have implications for evaluating the control range and practically controlling complex networks.

  1. Multi-layer model predictive control of complex water systems

    OpenAIRE

    Sun, Congcong

    2015-01-01

    This thesis is devoted to design a multi-layer MPC controller applied to the complex water network taking into account that the different layers with different time scales and control objectives have their own controller. A two-layer temporal hierarchy coordinating scheme has been applied to coordinate the MPC controllers for the supply and transportation layers. An integrated real-time simulation-optimization approach which contributes to consider the effect of more complex dynamics, better ...

  2. Communication and control for networked complex systems

    CERN Document Server

    Peng, Chen; Han, Qing-Long

    2015-01-01

    This book reports on the latest advances in the study of Networked Control Systems (NCSs). It highlights novel research concepts on NCSs; the analysis and synthesis of NCSs with special attention to their networked character; self- and event-triggered communication schemes for conserving limited network resources; and communication and control co-design for improving the efficiency of NCSs. The book will be of interest to university researchers, control and network engineers, and graduate students in the control engineering, communication and network sciences interested in learning the core principles, methods, algorithms and applications of NCSs.

  3. Operational Assessment of Controller Complexity Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In today's operations, acceptable levels of controller workload are maintained by assigning sector capacities based on simple aircraft count and a capacity...

  4. Integrated pollution control for oil refinery complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kiperstok, A. [Bahia Univ., Salvador, BA (Brazil); Sharratt, P.N. [Manchester Univ. (United Kingdom). Inst. of Science and Technology

    1993-12-31

    Improving environmental performance of oil refineries is a complex task. Emission limits, operating constraints, available technologies, operating techniques, and local environment sensitivity must all be considered. This work describes efforts to build an interactive software to deal with this problem. 8 refs., 5 figs.

  5. Complex systems relationships between control, communications and computing

    CERN Document Server

    2016-01-01

    This book gives a wide-ranging description of the many facets of complex dynamic networks and systems within an infrastructure provided by integrated control and supervision: envisioning, design, experimental exploration, and implementation. The theoretical contributions and the case studies presented can reach control goals beyond those of stabilization and output regulation or even of adaptive control. Reporting on work of the Control of Complex Systems (COSY) research program, Complex Systems follows from and expands upon an earlier collection: Control of Complex Systems by introducing novel theoretical techniques for hard-to-control networks and systems. The major common feature of all the superficially diverse contributions encompassed by this book is that of spotting and exploiting possible areas of mutual reinforcement between control, computing and communications. These help readers to achieve not only robust stable plant system operation but also properties such as collective adaptivity, integrity an...

  6. Centralized Stochastic Optimal Control of Complex Systems

    Energy Technology Data Exchange (ETDEWEB)

    Malikopoulos, Andreas [ORNL

    2015-01-01

    In this paper we address the problem of online optimization of the supervisory power management control in parallel hybrid electric vehicles (HEVs). We model HEV operation as a controlled Markov chain using the long-run expected average cost per unit time criterion, and we show that the control policy yielding the Pareto optimal solution minimizes the average cost criterion online. The effectiveness of the proposed solution is validated through simulation and compared to the solution derived with dynamic programming using the average cost criterion.

  7. Complex systems and networks dynamics, controls and applications

    CERN Document Server

    Yu, Xinghuo; Chen, Guanrong; Yu, Wenwu

    2016-01-01

    This elementary book provides some state-of-the-art research results on broad disciplinary sciences on complex networks. It presents an in-depth study with detailed description of dynamics, controls and applications of complex networks. The contents of this book can be summarized as follows. First, the dynamics of complex networks, for example, the cluster dynamic analysis by using kernel spectral methods, community detection algorithms in bipartite networks, epidemiological modeling with demographics and epidemic spreading on multi-layer networks, are studied. Second, the controls of complex networks are investigated including topics like distributed finite-time cooperative control of multi-agent systems by applying homogenous-degree and Lyapunov methods, composite finite-time containment control for disturbed second-order multi-agent systems, fractional-order observer design of multi-agent systems, chaos control and anticontrol of complex systems via Parrondos game and many more. Third, the applications of ...

  8. B Complex Test Control Center (TCC) #4210

    Data.gov (United States)

    Federal Laboratory Consortium — The TCC is a dual control room facility for the B-1 and B-2 Test Positions on the B-Stand. The TCC houses continually-updated, state-of-the-art Data Acquisition and...

  9. Low-complexity controllers for time-delay systems

    CERN Document Server

    Özbay, Hitay; Bonnet, Catherine; Mounier, Hugues

    2014-01-01

    This volume in the newly established series Advances in Delays and Dynamics (ADD@S) provides a collection of recent results on the design and analysis of Low Complexity Controllers for Time Delay Systems. A widely used indirect method to obtain low order controllers for time delay systems is to design a controller for the reduced order model of the plant. In the dual indirect approach, an infinite dimensional controller is designed first for the original plant model; then, the controller is approximated by keeping track of the degradation in performance and stability robustness measures. The present volume includes new techniques used at different stages of the indirect approach. It also includes new direct design methods for fixed structure and low order controllers. On the other hand, what is meant by low complexity controller is not necessarily low order controller. For example, Smith predictor or similar type of controllers include a copy of the plant internally in the controller, so they are technically ...

  10. Synchronization of general complex networks via adaptive control schemes

    Indian Academy of Sciences (India)

    Ping He; Chun-Guo Jing; Chang-Zhong Chen; Tao Fan; Hassan Saberi Nik

    2014-03-01

    In this paper, the synchronization problem of general complex networks is investigated by using adaptive control schemes. Time-delay coupling, derivative coupling, nonlinear coupling etc. exist universally in real-world complex networks. The adaptive synchronization scheme is designed for the complex network with multiple class of coupling terms. A criterion guaranteeing synchronization of such complex networks is established by employing the Lyapunov stability theorem and adaptive control schemes. Finally, an illustrative example with numerical simulation is given to show the feasibility and efficiency of theoretical results.

  11. Controlling defectiveness in a complex product

    Energy Technology Data Exchange (ETDEWEB)

    Harris, C.L.

    1976-09-01

    A common practice when measuring defectiveness in a complicated product is to assign ''demerit'' points to each defect in proportion to the seriousness of the fault. A plan is presented for monitoring defectives by using a modified demerit per unit control chart. The statistics presented are basic to control charts for demerits. What is different is the chart format which has the advantage of minimum effort for daily updates and independence from required sample sizes. Basically, the charts were designed for simplicity of use where product quantities are not large. Emphasis is placed on maintaining perspective between plotting data and completing the circle of defect reporting, analysis and corrective action feedback.

  12. A new main control room for the AGS complex

    International Nuclear Information System (INIS)

    A new Main Control Room (MCR) has been built to control the accelerators of the AGS Complex. A new physical environment was produced to better control light, sound, temperature, and traffic. New control consoles were built around the work-stations that make up the distributed control system. Equipment placement within consoles and console placement within the room reflect attention to the ''human factors'' needs of the operator. 1 ref., 2 figs

  13. A Multiobjective Optimization Framework for Stochastic Control of Complex Systems

    Energy Technology Data Exchange (ETDEWEB)

    Malikopoulos, Andreas [ORNL; Maroulas, Vasileios [ORNL; Xiong, Professor Jie [The University of Tennessee

    2015-01-01

    This paper addresses the problem of minimizing the long-run expected average cost of a complex system consisting of subsystems that interact with each other and the environment. We treat the stochastic control problem as a multiobjective optimization problem of the one-stage expected costs of the subsystems, and we show that the control policy yielding the Pareto optimal solution is an optimal control policy that minimizes the average cost criterion for the entire system. For practical situations with constraints consistent to those we study here, our results imply that the Pareto control policy may be of value in deriving online an optimal control policy in complex systems.

  14. Controlling complex networks: How much energy is needed?

    CERN Document Server

    Yan, Gang; Lai, Ying-Cheng; Lai, Choy-Heng; Li, Baowen

    2012-01-01

    The outstanding problem of controlling complex networks is relevant to many areas of science and engineering, and has the potential to generate technological breakthroughs as well. We address the physically important issue of the energy required for achieving control by deriving and validating scaling laws for the lower and upper energy bounds. These bounds represent a reasonable estimate of the energy cost associated with control, and provide a step forward from the current research on controllability toward ultimate control of complex networked dynamical systems.

  15. Control problem organization in the U-70 complex control system

    International Nuclear Information System (INIS)

    The technological subsystem (TS) may be considered from the viewpoint of the U-70 control system (CS) as a set of interrelated control and measurement sections. According the CS problem on servicing the technological subsystem is reduced to separate control and measurement problems, composed in form of three types of the basic problems combinations. The basic problem of each type realizes one of the functions: data measurement, data review and data control. Presently the control and measurement problems of all TS of the U-70 CS organized according to the rules, described in the report. The CS dialogue menu contains 4068 items. In spite of the great volume the work with the above menu does not cause difficulties by the users, because it adequately reflects the TS structure and the rules of its structural scheme are logical and correspond to the needs both of operational control of the accelerating facilities, and research problems, solved by means of the CS

  16. Complex regulation controls Neurogenin3 proteolysis

    Directory of Open Access Journals (Sweden)

    Ryan Roark

    2012-10-01

    The ubiquitin proteasome system (UPS is known to be responsible for the rapid turnover of many transcription factors, where half-life is held to be critical for regulation of transcriptional activity. However, the stability of key transcriptional regulators of development is often very poorly characterised. Neurogenin 3 (Ngn3 is a basic helix–loop–helix transcription factor that plays a central role in specification and differentiation of endocrine cells of the pancreas and gut, as well as spermatogonia and regions of the brain. Here we demonstrate that Ngn3 protein stability is regulated by the ubiquitin proteasome system and that Ngn3 can be ubiquitylated on lysines, the N-terminus and, highly unusually, on non-canonical residues including cysteines and serines/threonines. Rapid turnover of Ngn3 is regulated both by binding to its heterodimeric partner E protein and by the presence of cdk inhibitors. We show that protein half-life does appear to regulate the activity of Ngn3 in vivo, but, unlike the related transcription factor c-myc, ubiquitylation on canonical sites is not a requirement for transcriptional activity of Ngn3. Hence, we characterise an important new level of Ngn3 post-translational control, which may regulate its transcriptional activity.

  17. Safety control program for complex system based on behavior science

    Institute of Scientific and Technical Information of China (English)

    LIANG Mei-jian; YANG Guang; CHEN Da-wei

    2008-01-01

    To control complex system's safety effectively, safety control program was supported based on the principles of behavioral science that shapes organizational be-havior, and organizational behavior produced individual behavior. The program can be structured into a model that consists of three modules including individual behavior rectifi-cation, organization behavior diagnosis and model of safety culture. The research result not only reveals the deep cause of complex system accidents but also provides structural descriptions with the accidents cause.

  18. Safety control program for complex system based on behavior science

    Institute of Scientific and Technical Information of China (English)

    LIANG Mei-jian; YANG Guang; CHEN Da-wei

    2008-01-01

    To control complex system's safety effectively,safety control program was supported based on the principles of behavioral science that shapes organizational behavior,and organizational behavior produced individual behavior.The program can be structured into a model that consists of three modules including individual behavior rectification,organization behavior diagnosis and model of safety culture.The research result not only reveals the deep cause of complex system accidents but also provides structural descriptions with the accidents cause.

  19. Complexity, Analysis and Control of Singular Biological Systems

    CERN Document Server

    Zhang, Qingling; Zhang, Xue

    2012-01-01

    Complexity, Analysis and Control of Singular Biological Systems follows the control of real-world biological systems at both ecological and phyisological levels concentrating on the application of now-extensively-investigated singular system theory. Much effort has recently been dedicated to the modelling and analysis of developing bioeconomic systems and the text establishes singular examples of these, showing how proper control can help to maintain sustainable economic development of biological resources. The book begins from the essentials of singular systems theory and bifurcations before tackling  the use of various forms of control in singular biological systems using examples including predator-prey relationships and viral vaccination and quarantine control. Researchers and graduate students studying the control of complex biological systems are shown how a variety of methods can be brought to bear and practitioners working with the economics of biological systems and their control will also find the ...

  20. Special issue on decentralized control of large scale complex systems

    Czech Academy of Sciences Publication Activity Database

    Bakule, Lubomír

    2009-01-01

    Roč. 45, č. 1 (2009), s. 1-2. ISSN 0023-5954 R&D Projects: GA MŠk(CZ) LA 282 Institutional research plan: CEZ:AV0Z10750506 Keywords : decentralized control * large scale complex systems Subject RIV: BC - Control Systems Theory Impact factor: 0.445, year: 2009

  1. Stabilization of complex network with hybrid impulsive and switching control

    International Nuclear Information System (INIS)

    This paper studies the asymptotic stability properties of a class of complex dynamical networks under a hybrid impulsive and switching control. By utilizing the concept of impulsive control and the stability results for impulsive systems, some new criteria for global and local stability are established for this model. Some numerical examples and simulations are included to illustrate the effectiveness of the theoretical results

  2. Complexity Control of Fast Motion Estimation in H.264/MPEG-4 AVC with Rate-Distortion-Complexity optimization

    DEFF Research Database (Denmark)

    Wu, Mo; Forchhammer, Søren; Aghito, Shankar Manuel

    A complexity control algorithm for H.264 advanced video coding is proposed. The algorithm can control the complexity of integer inter motion estimation for a given target complexity. The Rate-Distortion-Complexity performance is improved by a complexity prediction model, simple analysis of the pa...

  3. Energy scaling and reduction in controlling complex networks

    OpenAIRE

    Chen, Yu-Zhong; Wang, Le-Zhi; Wang, Wen-Xu; Lai, Ying-Cheng

    2016-01-01

    Recent works revealed that the energy required to control a complex network depends on the number of driving signals and the energy distribution follows an algebraic scaling law. If one implements control using a small number of drivers, e.g. as determined by the structural controllability theory, there is a high probability that the energy will diverge. We develop a physical theory to explain the scaling behaviour through identification of the fundamental structural elements, the longest con...

  4. Strategy optimization for controlled Markov process with descriptive complexity constraint

    Institute of Scientific and Technical Information of China (English)

    JIA QingShan; ZHAO QianChuan

    2009-01-01

    Due to various advantages in storage and Implementation,simple strategies are usually preferred than complex strategies when the performances are close.Strategy optimization for controlled Markov process with descriptive complexity constraint provides a general framework for many such problems.In this paper,we first show by examples that the descriptive complexity and the performance of a strategy could be Independent,and use the F-matrix in the No-Free-Lunch Theorem to show the risk that approximating complex strategies may lead to simple strategies that are unboundedly worse in cardinal performance than the original complex strategies.We then develop a method that handles the descriptive complexity constraint directly,which describes simple strategies exactly and only approximates complex strategies during the optimization.The ordinal performance difference between the resulting strategies of this selective approximation method and the global optimum is quantified.Numerical examples on an engine maintenance problem show how this method Improves the solution quality.We hope this work sheds some insights to solving general strategy optimization for controlled Markov procase with descriptive complexity constraint.

  5. Design of Low Complexity Model Reference Adaptive Controllers

    Science.gov (United States)

    Hanson, Curt; Schaefer, Jacob; Johnson, Marcus; Nguyen, Nhan

    2012-01-01

    Flight research experiments have demonstrated that adaptive flight controls can be an effective technology for improving aircraft safety in the event of failures or damage. However, the nonlinear, timevarying nature of adaptive algorithms continues to challenge traditional methods for the verification and validation testing of safety-critical flight control systems. Increasingly complex adaptive control theories and designs are emerging, but only make testing challenges more difficult. A potential first step toward the acceptance of adaptive flight controllers by aircraft manufacturers, operators, and certification authorities is a very simple design that operates as an augmentation to a non-adaptive baseline controller. Three such controllers were developed as part of a National Aeronautics and Space Administration flight research experiment to determine the appropriate level of complexity required to restore acceptable handling qualities to an aircraft that has suffered failures or damage. The controllers consist of the same basic design, but incorporate incrementally-increasing levels of complexity. Derivations of the controllers and their adaptive parameter update laws are presented along with details of the controllers implementations.

  6. Control capability analysis for complex spacecraft thruster configurations

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The set of forces and moments that can be generated by thrusters of a spacecraft is called the"control capability"with respect to the thruster configuration.If the control capability of a thruster configuration is adequate to fulfill a given space mission,we say this configuration is a feasible one with respect to the task.This study proposed a new way to analyze the control capability of the complex thruster configuration.Precise mathematical definitions of feasibility were proposed,based on which a criterion to judge the feasibility of the thruster configuration was presented through calculating the shortest distance to the boundary of the controllable region as a function of the thruster configuration.Finally,control capability analysis for the complex thruster configuration based on its feasibility with respect to the space mission was given followed by a 2-D thruster configuration example to demonstrate its validity.

  7. Ecological Complexity and the Success of Fungal Biological Control Agents

    OpenAIRE

    Knudsen, Guy R.; Louise-Marie C. Dandurand

    2014-01-01

    Fungal biological control agents against plant pathogens, especially those in soil, operate within physically, biologically, and spatially complex systems by means of a variety of trophic and nontrophic interspecific interactions. However, the biocontrol agents themselves are also subject to the same types of interactions, which may reduce or in some cases enhance their efficacy against target plant pathogens. Characterization of these ecologically complex systems is challenging, but a number...

  8. A Phosphorylated Pseudokinase Complex Controls Cell Wall Synthesis in Mycobacteria

    OpenAIRE

    Gee, Christine L.; Papavinasasundaram, Kadamba G.; Blair, Sloane R.; Baer, Christina E.; Falick, Arnold M.; King, David S.; Griffin, Jennifer E.; Venghatakrishnan, Harene; Zukauskas, Andrew; Wei, Jun-Rong; Dhiman, Rakesh K.; Crick, Dean C.; Rubin, Eric J.; Sassetti, Christopher M.; Alber, Tom

    2012-01-01

    Prokaryotic cell wall biosynthesis is coordinated with cell growth and division, but the mechanisms regulating this dynamic process remain obscure. Here, we describe a phosphorylation-dependent regulatory complex that controls peptidoglycan (PG) biosynthesis in Mycobacterium tuberculosis. We found that PknB, a PG-responsive Ser-Thr protein kinase (STPK), initiates complex assembly by phosphorylating a kinase-like domain in the essential PG biosynthetic protein, MviN. This domain was structura...

  9. Modelling, Estimation and Control of Networked Complex Systems

    CERN Document Server

    Chiuso, Alessandro; Frasca, Mattia; Rizzo, Alessandro; Schenato, Luca; Zampieri, Sandro

    2009-01-01

    The paradigm of complexity is pervading both science and engineering, leading to the emergence of novel approaches oriented at the development of a systemic view of the phenomena under study; the definition of powerful tools for modelling, estimation, and control; and the cross-fertilization of different disciplines and approaches. This book is devoted to networked systems which are one of the most promising paradigms of complexity. It is demonstrated that complex, dynamical networks are powerful tools to model, estimate, and control many interesting phenomena, like agent coordination, synchronization, social and economics events, networks of critical infrastructures, resources allocation, information processing, or control over communication networks. Moreover, it is shown how the recent technological advances in wireless communication and decreasing in cost and size of electronic devices are promoting the appearance of large inexpensive interconnected systems, each with computational, sensing and mobile cap...

  10. Qualitative analysis and control of complex neural networks with delays

    CERN Document Server

    Wang, Zhanshan; Zheng, Chengde

    2016-01-01

    This book focuses on the stability of the dynamical neural system, synchronization of the coupling neural system and their applications in automation control and electrical engineering. The redefined concept of stability, synchronization and consensus are adopted to provide a better explanation of the complex neural network. Researchers in the fields of dynamical systems, computer science, electrical engineering and mathematics will benefit from the discussions on complex systems. The book will also help readers to better understand the theory behind the control technique and its design.

  11. Controlling Uncertainty Decision Making and Learning in Complex Worlds

    CERN Document Server

    Osman, Magda

    2010-01-01

    Controlling Uncertainty: Decision Making and Learning in Complex Worlds reviews and discusses the most current research relating to the ways we can control the uncertain world around us.: Features reviews and discussions of the most current research in a number of fields relevant to controlling uncertainty, such as psychology, neuroscience, computer science and engineering; Presents a new framework that is designed to integrate a variety of disparate fields of research; Represents the first book of its kind to provide a general overview of work related to understanding control

  12. Energy scaling and reduction in controlling complex networks

    Science.gov (United States)

    Chen, Yu-Zhong; Wang, Le-Zhi; Wang, Wen-Xu; Lai, Ying-Cheng

    2016-01-01

    Recent works revealed that the energy required to control a complex network depends on the number of driving signals and the energy distribution follows an algebraic scaling law. If one implements control using a small number of drivers, e.g. as determined by the structural controllability theory, there is a high probability that the energy will diverge. We develop a physical theory to explain the scaling behaviour through identification of the fundamental structural elements, the longest control chains (LCCs), that dominate the control energy. Based on the LCCs, we articulate a strategy to drastically reduce the control energy (e.g. in a large number of real-world networks). Owing to their structural nature, the LCCs may shed light on energy issues associated with control of nonlinear dynamical networks.

  13. Energy scaling and reduction in controlling complex networks.

    Science.gov (United States)

    Chen, Yu-Zhong; Wang, Le-Zhi; Wang, Wen-Xu; Lai, Ying-Cheng

    2016-04-01

    Recent works revealed that the energy required to control a complex network depends on the number of driving signals and the energy distribution follows an algebraic scaling law. If one implements control using a small number of drivers, e.g. as determined by the structural controllability theory, there is a high probability that the energy will diverge. We develop a physical theory to explain the scaling behaviour through identification of the fundamental structural elements, the longest control chains (LCCs), that dominate the control energy. Based on the LCCs, we articulate a strategy to drastically reduce the control energy (e.g. in a large number of real-world networks). Owing to their structural nature, the LCCs may shed light on energy issues associated with control of nonlinear dynamical networks. PMID:27152220

  14. Complex envelope control of pulsed accelerating fields in superconducting cavities

    CERN Document Server

    Czarski, T

    2010-01-01

    A digital control system for superconducting cavities of a linear accelerator is presented in this work. FPGA (Field Programmable Gate Arrays) based controller, managed by MATLAB, was developed to investigate a novel firmware implementation. The LLRF - Low Level Radio Frequency system for FLASH project in DESY is introduced. Essential modeling of a cavity resonator with signal and power analysis is considered as a key approach to the control methods. An electrical model is represented by the non-stationary state space equation for the complex envelope of the cavity voltage driven by the current generator and the beam loading. The electromechanical model of the superconducting cavity resonator including the Lorentz force detuning has been developed for a simulation purpose. The digital signal processing is proposed for the field vector detection. The field vector sum control is considered for multiple cavities driven by one klystron. An algebraic, complex domain model is proposed for the system analysis. The c...

  15. Efficient target control of complex networks based on preferential matching

    CERN Document Server

    Zhang, Xizhe; Lv, Tianyang

    2016-01-01

    Controlling a complex network towards a desire state is of great importance in many applications. Existing works present an approximate algorithm to find the driver nodes used to control partial nodes of the network. However, the driver nodes obtained by this algorithm depend on the matching order of nodes and cannot get the optimum results. Here we present a novel algorithm to find the driver nodes for target control based on preferential matching. The algorithm elaborately arrange the matching order of nodes in order to minimize the size of the driver nodes set. The results on both synthetic and real networks indicate that the performance of proposed algorithm are better than the previous one. The algorithm may have various application in controlling complex networks.

  16. Natural enemy interactions constrain pest control in complex agricultural landscapes

    OpenAIRE

    Martin, Emily A.; Reineking, Björn; Seo, Bumsuk; Steffan-Dewenter, Ingolf

    2013-01-01

    Biological control of pests by natural enemies is a major ecosystem service delivered to agriculture worldwide. Quantifying and predicting its effectiveness at large spatial scales is critical for increased sustainability of agricultural production. Landscape complexity is known to benefit natural enemies, but its effects on interactions between natural enemies and the consequences for crop damage and yield are unclear. Here, we show that pest control at the landscape scale is driven by diffe...

  17. Modelling and Control of a Complex Buoyancy-Driven Airship

    OpenAIRE

    Wu, Xiaotao,; Moog, Claude; Márquez-Martínez, Luis Alejandro; Hu, Yueming

    2010-01-01

    The general model for a new generation airship is introduced from the model of an elementary mechanical system which embodies the core of the problem to more complex. It is shown that the basic properties of a suitable two degree of freedom mechanical system are instrumental for the analysis and synthesis of advanced airships. It is shown that the control of the airship mechanical system yields suitable approximations for the control of the airship subject to aerodynamic forces.

  18. Scalable Harmonization of Complex Networks With Local Adaptive Controllers

    Czech Academy of Sciences Publication Activity Database

    Kárný, Miroslav; Herzallah, R.

    -, - (2016). ISSN 2168-2216 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Adaptive control * Adaptive estimation * Bayes methods * Complex networks * Decentralized control * Feedback * Feedforward systems * Recursive estimation Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.699, year: 2014 http://library.utia.cas.cz/separaty/2016/AS/karny-0457337.pdf

  19. Requirements documentation of a controlled complex motion system

    OpenAIRE

    Carli, Alessandro; Andreozzi, Stefano; Fiaschetti, Andrea; Oboe, Roberto; Ohnishi, Kouhei

    2008-01-01

    The implementation of a controlled complex motion system requires integration of technologically heterogeneous subsystems and collaboration of experts, skilled in different technologies. To attain the desired requirements it is suitable to apply a design procedure organized according to a systematic approach, divided in different steps and representing standalone activities. The fundamental steps are the elicitation, decomposition and formalization of requirements. The systematic procedure pr...

  20. Structural permeability of complex networks to control signals

    Science.gov (United States)

    Lo Iudice, Francesco; Garofalo, Franco; Sorrentino, Francesco

    2015-09-01

    Many biological, social and technological systems can be described as complex networks. The goal of affecting their behaviour has motivated recent work focusing on the relationship between the network structure and its propensity to be controlled. While this work has provided insight into several relevant problems, a comprehensive approach to address partial and complete controllability of networks is still lacking. Here, we bridge this gap by developing a framework to maximize the diffusion of the control signals through a network, while taking into account physical and economic constraints that inevitably arise in applications. This approach allows us to introduce the network permeability, a unified metric of the propensity of a network to be controllable. The analysis of the permeability of several synthetic and real networks enables us to extract some structural features that deepen our quantitative understanding of the ease with which specific controllability requirements can be met.

  1. Synchronizing and controlling hyperchaos in complex Lorentz-Haken systems

    International Nuclear Information System (INIS)

    Synchronizing hyperchaos is realized by the drive-response relationship in the complex Lorentz-Haken system and its higher-order cascading systems for the first time. Controlling hyperchaos is achieved by the intermittent proportional feedback to all of the drive (master) system variables. The complex Lorentz-Haken system describes the detuned single-mode laser and is taken as a typical example of hyperchaotic synchronization to clarify our ideas and results. The ideas and concepts could be extended to some nonlinear dynamical systems and have prospects for potential applications, for example. to laser, electronics, plasma, cryptography, communication, chemical and biological systems and so on. (8 figs., 2 tabs.)

  2. Mitotic Exit Control as an Evolved Complex System

    Energy Technology Data Exchange (ETDEWEB)

    Bosl, W; Li, R

    2005-04-25

    The exit from mitosis is the last critical decision a cell has to make during a division cycle. A complex regulatory system has evolved to evaluate the success of mitotic events and control this decision. Whereas outstanding genetic work in yeast has led to rapid discovery of a large number of interacting genes involved in the control of mitotic exit, it has also become increasingly difficult to comprehend the logic and mechanistic features embedded in the complex molecular network. Our view is that this difficulty stems in part from the attempt to explain mitotic exit control using concepts from traditional top-down engineering design, and that exciting new results from evolutionary engineering design applied to networks and electronic circuits may lend better insights. We focus on four particularly intriguing features of the mitotic exit control system: the two-stepped release of Cdc14; the self-activating nature of Tem1 GTPase; the spatial sensor associated with the spindle pole body; and the extensive redundancy in the mitotic exit network. We attempt to examine these design features from the perspective of evolutionary design and complex system engineering.

  3. Control of complex networks requires both structure and dynamics

    Science.gov (United States)

    Gates, Alexander J.; Rocha, Luis M.

    2016-01-01

    The study of network structure has uncovered signatures of the organization of complex systems. However, there is also a need to understand how to control them; for example, identifying strategies to revert a diseased cell to a healthy state, or a mature cell to a pluripotent state. Two recent methodologies suggest that the controllability of complex systems can be predicted solely from the graph of interactions between variables, without considering their dynamics: structural controllability and minimum dominating sets. We demonstrate that such structure-only methods fail to characterize controllability when dynamics are introduced. We study Boolean network ensembles of network motifs as well as three models of biochemical regulation: the segment polarity network in Drosophila melanogaster, the cell cycle of budding yeast Saccharomyces cerevisiae, and the floral organ arrangement in Arabidopsis thaliana. We demonstrate that structure-only methods both undershoot and overshoot the number and which sets of critical variables best control the dynamics of these models, highlighting the importance of the actual system dynamics in determining control. Our analysis further shows that the logic of automata transition functions, namely how canalizing they are, plays an important role in the extent to which structure predicts dynamics. PMID:27087469

  4. Control of complex networks requires both structure and dynamics.

    Science.gov (United States)

    Gates, Alexander J; Rocha, Luis M

    2016-01-01

    The study of network structure has uncovered signatures of the organization of complex systems. However, there is also a need to understand how to control them; for example, identifying strategies to revert a diseased cell to a healthy state, or a mature cell to a pluripotent state. Two recent methodologies suggest that the controllability of complex systems can be predicted solely from the graph of interactions between variables, without considering their dynamics: structural controllability and minimum dominating sets. We demonstrate that such structure-only methods fail to characterize controllability when dynamics are introduced. We study Boolean network ensembles of network motifs as well as three models of biochemical regulation: the segment polarity network in Drosophila melanogaster, the cell cycle of budding yeast Saccharomyces cerevisiae, and the floral organ arrangement in Arabidopsis thaliana. We demonstrate that structure-only methods both undershoot and overshoot the number and which sets of critical variables best control the dynamics of these models, highlighting the importance of the actual system dynamics in determining control. Our analysis further shows that the logic of automata transition functions, namely how canalizing they are, plays an important role in the extent to which structure predicts dynamics. PMID:27087469

  5. Active control technique of fractional-order chaotic complex systems

    Science.gov (United States)

    Mahmoud, Gamal M.; Ahmed, Mansour E.; Abed-Elhameed, Tarek M.

    2016-06-01

    Several kinds of synchronization of fractional-order chaotic complex systems are challenging research topics of current interest since they appear in many applications in applied sciences. Our main goal in this paper is to introduce the definition of modified projective combination-combination synchronization (MPCCS) of some fractional-order chaotic complex systems. We show that our systems are chaotic by calculating their Lyapunov exponents. The fractional Lyapunov dimension of the chaotic solutions of these systems is computed. A scheme is introduced to calculate MPCCS of four different (or identical) chaotic complex systems using the active control technique. Special cases of this type, which are projective and anti C-C synchronization, are discussed. Some figures are plotted to show that MPCCS is achieved and its errors approach zero.

  6. Control of complex dynamics and chaos in distributed parameter systems

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarti, S.; Marek, M.; Ray, W.H. [Univ. of Wisconsin, Madison, WI (United States)

    1995-12-31

    This paper discusses a methodology for controlling complex dynamics and chaos in distributed parameter systems. The reaction-diffusion system with Brusselator kinetics, where the torus-doubling or quasi-periodic (two characteristic incommensurate frequencies) route to chaos exists in a defined range of parameter values, is used as an example. Poincare maps are used for characterization of quasi-periodic and chaotic attractors. The dominant modes or topos, which are inherent properties of the system, are identified by means of the Singular Value Decomposition. Tested modal feedback control schemas based on identified dominant spatial modes confirm the possibility of stabilization of simple quasi-periodic trajectories in the complex quasi-periodic or chaotic spatiotemporal patterns.

  7. A phosphorylated pseudokinase complex controls cell wall synthesis in mycobacteria.

    Science.gov (United States)

    Gee, Christine L; Papavinasasundaram, Kadamba G; Blair, Sloane R; Baer, Christina E; Falick, Arnold M; King, David S; Griffin, Jennifer E; Venghatakrishnan, Harene; Zukauskas, Andrew; Wei, Jun-Rong; Dhiman, Rakesh K; Crick, Dean C; Rubin, Eric J; Sassetti, Christopher M; Alber, Tom

    2012-01-24

    Prokaryotic cell wall biosynthesis is coordinated with cell growth and division, but the mechanisms regulating this dynamic process remain obscure. Here, we describe a phosphorylation-dependent regulatory complex that controls peptidoglycan (PG) biosynthesis in Mycobacterium tuberculosis. We found that PknB, a PG-responsive Ser-Thr protein kinase (STPK), initiates complex assembly by phosphorylating a kinase-like domain in the essential PG biosynthetic protein, MviN. This domain was structurally diverged from active kinases and did not mediate phosphotransfer. Threonine phosphorylation of the pseudokinase domain recruited the FhaA protein through its forkhead-associated (FHA) domain. The crystal structure of this phosphorylated pseudokinase-FHA domain complex revealed the basis of FHA domain recognition, which included unexpected contacts distal to the phosphorylated threonine. Conditional degradation of these proteins in mycobacteria demonstrated that MviN was essential for growth and PG biosynthesis and that FhaA regulated these processes at the cell poles and septum. Controlling this spatially localized PG regulatory complex is only one of several cellular roles ascribed to PknB, suggesting that the capacity to coordinate signaling across multiple processes is an important feature conserved between eukaryotic and prokaryotic STPK networks. PMID:22275220

  8. Focus on coherent control of complex quantum systems

    Science.gov (United States)

    Whaley, Birgitta; Milburn, Gerard

    2015-10-01

    The rapid growth of quantum information sciences over the past few decades has fueled a corresponding rise in high profile applications in fields such as metrology, sensors, spintronics, and attosecond dynamics, in addition to quantum information processing. Realizing this potential of today’s quantum science and the novel technologies based on this requires a high degree of coherent control of quantum systems. While early efforts in systematizing methods for high fidelity quantum control focused on isolated or closed quantum systems, recent advances in experimental design, measurement and monitoring, have stimulated both need and interest in the control of complex or large scale quantum systems that may also be coupled to an interactive environment or reservoir. This focus issue brings together new theoretical and experimental work addressing the formulation and implementation of quantum control for a broad range of applications in quantum science and technology today.

  9. Structure-based control of complex networks with nonlinear dynamics

    CERN Document Server

    Zañudo, Jorge G T; Albert, Réka

    2016-01-01

    Given the network of interactions underlying a complex system, what can we learn about controlling such a system solely from its structure? Over a century of research in control theory has given us tools to answer this question, which were widely applied in science and engineering. Yet the current tools do not always consider the inherently nonlinear dynamics of real systems and the naturally occurring system states in their definition of "control", a term whose interpretation varies across disciplines. Here we use a new mathematical framework for structure-based control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This framework provides realizable node overrides that steer a system towards any of its natural long term dynamic behaviors and which are guaranteed to be effective regardless of the dynamic details and parameters of the underlying system. We use this framework on several real networks, compar...

  10. Spatially-controlled complex molecules and their applications

    CERN Document Server

    Chang, Yuan-Pin; Trippel, Sebastian; Küpper, Jochen

    2015-01-01

    The understanding of molecular structure and function is at the very heart of the chemical and molecular sciences. Experiments that allow for the creation of structurally pure samples and the investigation of their molecular dynamics and chemical function have developed tremendeously over the last few decades, although "there's plenty of room at the bottom" for better control as well as further applications. Here, we describe the use of inhomogeneous electric fields for the manipulation of neutral molecules in the gas-phase, \\ie, for the separation of complex molecules according to size, structural isomer, and quantum state. Current applications of these controlled samples are summarized and interesting future applications discussed.

  11. The Similar Structures and Control Problems of Complex Systems

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this paper, the naturally evolving complex systems, such as biotic and social ones, are considered. Focusing on their structures, a feature is noteworthy, i.e., the similarity in structures. The relations between the functions and behaviors of these systems and their similar structures will be studied. Owing to the management of social systems and the course of evolution of biotic systems may be regarded as control processes, the researches will be within the scope of control problems. Moreover, since it is difficult to model for biotic and social systems, it will start with the control problems of complex systems, possessing similar structures, in engineering.The obtained results show that for either linear or nonlinear systems and for a lot of control problemssimilar structures lead to a series of simplifications. In general, the original system may be decomposed into reduced amount of subsystems with lower dimensions and simpler structures. By virtue of such subsystems, the control problems of original system can be solved more simply.At last, it turns round to observe the biotic and social systems and some analyses are given.

  12. Complex-Vector Time-Delay Control of Power Converters

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Loh, P. C.; Tang, Y.;

    2008-01-01

    Precise controlling of current produced by power converters is an important topic that has attracted interests over the last few decades. With the recent proliferation of grid-tied converters where the control of power flow is indirectly governed by the accuracy of current tracking, motivation to...... control. Lastly, for proving its practicality, experimental testing of the scheme is performed digitally using a commercial grid converter with some informative results captured and compared with those of an existing scheme.......Precise controlling of current produced by power converters is an important topic that has attracted interests over the last few decades. With the recent proliferation of grid-tied converters where the control of power flow is indirectly governed by the accuracy of current tracking, motivation to...... develop dynamically fast and accurate current controllers is even more intensive with more features expected to be embedded within a single control module. Believing in its continual importance, this paper contributes by proposing a complex-vector time-delay control scheme that can achieve high tracking...

  13. Nucleic Acid-Peptide Complex Phase Controlled by DNA Hybridization

    Science.gov (United States)

    Vieregg, Jeffrey; Lueckheide, Michael; Leon, Lorraine; Marciel, Amanda; Tirrell, Matthew

    When polyanions and polycations are mixed, counterion release drives formation of polymer-rich complexes that can either be solid (precipitates) or liquid (coacervates) depending on the properties of the polyelectrolytes. These complexes are important in many fields, from encapsulation of industrial polymers to membrane-free segregation of biomolecules such as nucleic acids and proteins. Condensation of long double-stranded DNA has been studied for several decades, but comparatively little attention has been paid to the polyelectrolyte behavior of oligonucleotides. We report here studies of DNA oligonucleotides (10 - 88 nt) complexed with polylysine (10 - 100 aa). Unexpectedly, we find that the phase of the resulting complexes is controlled by the hybridization state of the nucleic acid, with double-stranded DNA forming precipitates and single-stranded DNA forming coacervates. Stability increases with polyelectrolyte length and decreases with solution salt concentration, with complexes of the longer double-stranded polymers undergoing precipitate/coacervate/soluble transitions as ionic strength is increased. Mixing coacervates formed by complementary single-stranded oligonucleotides results in precipitate formation, raising the possibility of stimulus-responsive material design.

  14. CERN Proton Synchrotron Complex High-Level Controls Renovation

    CERN Document Server

    Deghaye, S; Garcia Quintas, D; Gourber-Pace, M; Kruk, G; Kulikova, O; Lezhebokov, V; Pasinelli, S; Peryt, M; Roderick, C; Roux, E; Sobczak, M; Steerenberg, R; Wozniak, J; Zaharieva, Z

    2009-01-01

    After a detailed study of the Proton Synchrotron (PS) complex requirements by experts of CERN controls & operation groups, a proposal to develop a new system, called Injector Controls Architecture (InCA), was presented to and accepted by the management late 2007. Aiming at the homogenisation of the control systems across CERN accelerators, InCA is based on components developed for the Large Hadron Collider (LHC) but also new components required to fulfil operation needs. In 2008, the project was in its elaboration phase and we successfully validated its architecture and critical use-cases during several machine development sessions. After description of the architecture put in place and the components used, this paper describes the planning approach taken combining iterative development phases with deployment in operation for validation sessions.

  15. Complex system modelling and control through intelligent soft computations

    CERN Document Server

    Azar, Ahmad

    2015-01-01

    The book offers a snapshot of the theories and applications of soft computing in the area of complex systems modeling and control. It presents the most important findings discussed during the 5th International Conference on Modelling, Identification and Control, held in Cairo, from August 31-September 2, 2013. The book consists of twenty-nine selected contributions, which have been thoroughly reviewed and extended before their inclusion in the volume. The different chapters, written by active researchers in the field, report on both current theories and important applications of soft-computing. Besides providing the readers with soft-computing fundamentals, and soft-computing based inductive methodologies/algorithms, the book also discusses key industrial soft-computing applications, as well as multidisciplinary solutions developed for a variety of purposes, like windup control, waste management, security issues, biomedical applications and many others. It is a perfect reference guide for graduate students, r...

  16. Improved safety in advanced control complexes, without side effects

    International Nuclear Information System (INIS)

    If we only look for a moment at the world around us, it is obvious that advances in digital electronic equipment and Human-System Interface (HSI) technology are occurring at a phenomenal pace. This is evidenced from our home entertainment systems to the dashboard and computer-based operation of our new cars. Though the nuclear industry has less vigorously embraced these advances, their application is being implemented through individual upgrades to current generation nuclear plants and as plant-wide control complexes for advanced plants. In both venues modem technology possesses widely touted advantages for improving plant availability as well as safety. The well-documented safety benefits of digital Instrumentation and Controls (I ampersand C) include higher reliability resulting from redundancy and fault tolerance, inherent self-test and self-diagnostic capabilities which have replaced error-prone human tasks, resistance to setpoint drift increasing available operating margins, and the ability to run complex, real-time, computer-based algorithms directly supporting an operator's monitoring and control task requirements. 22 refs., 3 figs., 5 tabs

  17. Models Adaptation of Complex Objects Structure Dynamics Control

    Czech Academy of Sciences Publication Activity Database

    Sokolov, B. V.; Zelentsov, V. A.; Brovkina, Olga; Mochalov, V. F.; Potryasaev, S. A.

    Cham: Springer, 2015 - (Šilhavý, R.; Šenkeřík, R.; Komínková-Oplatková, Z.; Prokopová, Z.; Šilhavý, P.), s. 21-33. (Intelligent Systems in Cybernetics and Automation Theory . 348). ISBN 978-3-319-18502-6. ISSN 2194-5357. [Computer Science On-line Conference /4./. Zlín (CZ), 27.04.2015-30.04.2015] Institutional support: RVO:67179843 Keywords : complex technical * organizational system * structure dynamic control * planning and scheduling * parametric and structure adaptation of models Subject RIV: EH - Ecology, Behaviour

  18. Cell division control by the Chromosomal Passenger Complex

    Energy Technology Data Exchange (ETDEWEB)

    Waal, Maike S. van der; Hengeveld, Rutger C.C.; Horst, Armando van der; Lens, Susanne M.A., E-mail: s.m.a.lens@umcutrecht.nl

    2012-07-15

    The Chromosomal Passenger Complex (CPC) consisting of Aurora B kinase, INCENP, Survivin and Borealin, is essential for genomic stability by controlling multiple processes during both nuclear and cytoplasmic division. In mitosis it ensures accurate segregation of the duplicated chromosomes by regulating the mitotic checkpoint, destabilizing incorrectly attached spindle microtubules and by promoting the axial shortening of chromosomal arms in anaphase. During cytokinesis the CPC most likely prevents chromosome damage by imposing an abscission delay when a chromosome bridge connects the two daughter cells. Moreover, by controlling proper cytoplasmic division, the CPC averts tetraploidization. This review describes recent insights on how the CPC is capable of conducting its various functions in the dividing cell to ensure chromosomal stability.

  19. Control of epidemics on complex networks: Effectiveness of delayed isolation

    Science.gov (United States)

    Pereira, Tiago; Young, Lai-Sang

    2015-08-01

    We study isolation as a means to control epidemic outbreaks in complex networks, focusing on the consequences of delays in isolating infected nodes. Our analysis uncovers a tipping point: if infected nodes are isolated before a critical day dc, the disease is effectively controlled, whereas for longer delays the number of infected nodes climbs steeply. We show that dc can be estimated explicitly in terms of network properties and disease parameters, connecting lowered values of dc explicitly to heterogeneity in degree distribution. Our results reveal also that initial delays in the implementation of isolation protocols can have catastrophic consequences in heterogeneous networks. As our study is carried out in a general framework, it has the potential to offer insight and suggest proactive strategies for containing outbreaks of a range of serious infectious diseases.

  20. On Market Economies: How Controllable Constructs Become Complex

    Directory of Open Access Journals (Sweden)

    C-René DOMINIQUE

    2014-11-01

    Full Text Available Since Lėon Walras neoclassical economists hold an inalterable belief in a unique and stable equilibrium for the economic system which however remains to this day unobservable. Yet that belief is the corner stone of other theories such as the ‘Effi-cient Market Hypothesis’ as well as the philosophy of neo-liberalism, whose out-comes are also shown to be flawed by recent events. A modern market economy is obviously an input/output nonlinear controllable construct. However, this paper examines four such models of increasing complexity, including the affine nonline-ar feedback H-control, to show that the ‘data requirement’ precludes all attempts at the empirical verification of the existence of a stable equilibrium. If equilibria of complex nonlinear deterministic systems are most likely unstable, multiple or deterministically chaotic depending on their parameter values and uncertainties, then society should impose limits on the state space and focus on endurable pat-terns thrown-off by such systems.

  1. Backbone of complex networks of corporations: The flow of control

    Science.gov (United States)

    Glattfelder, J. B.; Battiston, S.

    2009-09-01

    We present a methodology to extract the backbone of complex networks based on the weight and direction of links, as well as on nontopological properties of nodes. We show how the methodology can be applied in general to networks in which mass or energy is flowing along the links. In particular, the procedure enables us to address important questions in economics, namely, how control and wealth are structured and concentrated across national markets. We report on the first cross-country investigation of ownership networks, focusing on the stock markets of 48 countries around the world. On the one hand, our analysis confirms results expected on the basis of the literature on corporate control, namely, that in Anglo-Saxon countries control tends to be dispersed among numerous shareholders. On the other hand, it also reveals that in the same countries, control is found to be highly concentrated at the global level, namely, lying in the hands of very few important shareholders. Interestingly, the exact opposite is observed for European countries. These results have previously not been reported as they are not observable without the kind of network analysis developed here.

  2. Complex steroid-peptide-receptor cascade controls insect ecdysis.

    Science.gov (United States)

    Zitnan, D; Kim, Y-J; Zitnanová, I; Roller, L; Adams, M E

    2007-01-01

    Insect ecdysis sequence is composed of pre-ecdysis, ecdysis and post-ecdysis behaviors controlled by a complex cascade of peptide hormones from endocrine Inka cells and neuropeptides in the central nervous system (CNS). Inka cells produce pre-ecdysis and ecdysis triggering hormones (ETH) which activate the ecdysis sequence through receptor-mediated actions on specific neurons in the CNS. Multiple experimental approaches have been used to determine mechanisms of ETH expression and release from Inka cells and its action on the CNS of moths and flies. During the preparatory phase 1-2 days prior to ecdysis, high ecdysteroid levels induce expression of ETH receptors in the CNS and increased ETH production in Inka cells, which coincides with expression of nuclear ecdysone receptor (EcR) and transcription factor cryptocephal (CRC). However, high ecdysteroid levels prevent ETH release from Inka cells. Acquisition of Inka cell competence to release ETH requires decline of ecdysteroid levels and beta-FTZ-F1 expression few hours prior to ecdysis. The behavioral phase is initiated by ETH secretion into the hemolymph, which is controlled by two brain neuropeptides-corazonin and eclosion hormone (EH). Corazonin acts on its receptor in Inka cells to elicit low level ETH secretion and initiation of pre-ecdysis, while EH induces cGMP-mediated ETH depletion and consequent activation of ecdysis. The activation of both behaviors is accomplished by ETH action on central neurons expressing ETH receptors A and B (ETHR-A and B). These neurons produce numerous excitatory or inhibitory neuropeptides which initiate or terminate different phases of the ecdysis sequence. Our data indicate that insect ecdysis is a very complex process characterized by two principal steps: (1) ecdysteroid-induced expression of receptors and transcription factors in the CNS and Inka cells. (2) Release and interaction of Inka cell peptide hormones and multiple central neuropeptides to control consecutive phases of

  3. Control of Future Air Traffic Systems via Complexity Bound Management

    Science.gov (United States)

    Alexandrov, Natalia

    2013-01-01

    The complexity of the present system for managing air traffic has led to "discreteness" in approaches to creating new concepts: new concepts are created as point designs, based on experience, expertise, and creativity of the proposer. Discrete point designs may be highly successful but they are difficult to substantiate in the face of equally strong substantiation of competing concepts, as well as the state of the art in concept evaluation via simulations. Hybrid concepts may present a compromise - the golden middle. Yet a hybrid of sometimes in principle incompatible concepts forms another point design that faces the challenge of substantiation and validation. We are faced with the need to re-design the air transportation system ab initio. This is a daunting task, especially considering the problem of transitioning from the present system to any fundamentally new system. However, design from scratch is also an opportunity to reconsider approaches to new concept development. In this position paper we propose an approach, Optimized Parametric Functional Design, for systematic development of concepts for management and control of airspace systems, based on optimization formulations in terms of required system functions and states. This reasoning framework, realizable in the context of ab initio system design, offers an approach to deriving substantiated airspace management and control concepts. With growing computational power, we hope that the approach will also yield a methodology for actual dynamic control of airspace

  4. Non-equilibrium control of complex solids by nonlinear phononics

    Science.gov (United States)

    Mankowsky, Roman; Först, Michael; Cavalleri, Andrea

    2016-06-01

    We review some recent advances in the use of optical fields at terahertz frequencies to drive the lattice of complex materials. We will focus on the control of low energy collective properties of solids, which emerge on average when a high frequency vibration is driven and a new crystal structure induced. We first discuss the fundamentals of these lattice rearrangements, based on how anharmonic mode coupling transforms an oscillatory motion into a quasi-static deformation of the crystal structure. We then discuss experiments, in which selectively changing a bond angle turns an insulator into a metal, accompanied by changes in charge, orbital and magnetic order. We then address the case of light induced non-equilibrium superconductivity, a mysterious phenomenon observed in some cuprates and molecular materials when certain lattice vibrations are driven. Finally, we show that the dynamics of electronic and magnetic phase transitions in complex-oxide heterostructures follow distinctly new physical pathways in case of the resonant excitation of a substrate vibrational mode.

  5. Understanding and controlling complex states arising from magnetic frustration

    Energy Technology Data Exchange (ETDEWEB)

    Zapf, Vivien [Los Alamos National Laboratory

    2012-06-01

    Much of our national security relies on capabilities made possible by magnetism, in particular the ability to compute and store huge bodies of information as well as to move things and sense the world. Most of these technologies exploit ferromagnetism, i.e. the global parallel alignment of magnetic spins as seen in a bar magnet. Recent advances in computing technologies, such as spintronics and MRAM, take advantage of antiferromagnetism where the magnetic spins alternate from one to the next. In certain crystal structures, however, the spins take on even more complex arrangements. These are often created by frustration, where the interactions between spins cannot be satisfied locally or globally within the material resulting in complex and often non-coplanar spin textures. Frustration also leads to the close proximity of many different magnetic states, which can be selected by small perturbations in parameters like magnetic fields, temperature and pressure. It is this tunability that makes frustrated systems fundamentally interesting and highly desirable for applications. We move beyond frustration in insulators to itinerant systems where the interaction between mobile electrons and the non-coplanar magnetic states lead to quantum magneto-electric amplification. Here a small external field is amplified by many orders of magnitude by non-coplanar frustrated states. This greatly enhances their sensitivity and opens broader fields for applications. Our objective is to pioneer a new direction for condensed matter science at the Laboratory as well as for international community by discovering, understanding and controlling states that emerge from the coupling of itinerant charges to frustrated spin textures.

  6. Hydromorphological control of nutrient cycling in complex river floodplain systems

    Science.gov (United States)

    Hein, T.; Bondar-Kunze, E.; Felkl, M.; Habersack, H.; Mair, M.; Pinay, G.; Tritthart, M.; Welti, N.

    2009-04-01

    Riparian zones and floodplains are key components within river ecosystems controlling nutrient cycling by promoting transformation processes and thus, act as biogeochemical hot spots. The intensity of these processes depends on the exchange conditions (the connectivity) with the main channel and the morphological setting of the water bodies. At the landscape scale, three interrelated principles of hydromorphological dynamics can be formulated regarding the cycling and transfer of carbon and nutrients in large rivers ecosystems: a) The mode of carbon and nutrient delivery affects ecosystem functioning; b) Increasing residence time and contact area impact nutrient transformation; c) Floods and droughts are natural events that strongly influence pathways of carbon and nutrient cycling. These three principles of hydromorphological dynamics control the nutrient uptake and retention and are linked over different temporal and spatial scales. All three factors can be strongly affected by natural disturbances or anthropogenic impacts, through a change in either the water regime or the geomorphologic setting of the river valley. Any change in natural water regimes will affect the biogeochemistry of riparian zones and floodplains as well as their ability to cycle and mitigate nutrient fluxes originating from upstream and/or upslope. Especially these areas have been altered by river regulation and land use changes over the last 200 years leading to the deterioration of the functioning of these compartments within the riverine landscape. The resulting deficits have prompted rehabilitation and restoration measures aiming to increase the spatial heterogeneity, the complexity, of these ecosystems. Yet, a more integrated approach is needed considering the present status of nutrient dynamics and the effects of restoration measures at different scales. The present paper analyses the effects of river side-arm restoration on ecosystem functions within the side-arm and highlights

  7. INTERPOLYELECTROLYTE COMPLEXES AS PROSPECTIVE CARRIERS FOR CONTROLLED DRUG DELIVERY

    OpenAIRE

    Kaur Jasmeet; Harikumar S.L; Kaur Amanpreet

    2012-01-01

    In the current scenario, polymers as carriers have revolutionized the drug delivery system. A more successful approach, to exploit the different properties of polymers in a solitary system is the complexation of polymers to form polyelectrolyte complexes. These complexes circumvent the use of chemical crosslinking agents, thereby reducing the risk of toxicity. The complex formed is generally applied in different dosage forms for the formulation of stable aggregated macromolecules. There are t...

  8. Challenges in Characterizing and Controlling Complex Cellular Systems

    Science.gov (United States)

    Wikswo, John

    2011-03-01

    Multicellular dynamic biological processes such as developmental differentiation, wound repair, disease, aging, and even homeostasis can be represented by trajectories through a phase space whose extent reflects the genetic, post-translational, and metabolic complexity of the process - easily extending to tens of thousands of dimensions. Intra- and inter-cellular sensing and regulatory systems and their nested, redundant, and non-linear feed-forward and feed-back controls create high-dimensioned attractors in this phase space. Metabolism provides free energy to drive non-equilibrium processes and dynamically reconfigure attractors. Studies of single molecules and cells provide only minimalist projections onto a small number of axes. It may be difficult to infer larger-scale emergent behavior from linearized experiments that perform only small amplitude perturbations on a limited number of the dimensions. Complete characterization may succeed for bounded component problems, such as an individual cell cycle or signaling cascade, but larger systems problems will require a coarse-grained approach. Hence a new experimental and analytical framework is needed. Possibly one could utilize high-amplitude, multi-variable driving of the system to infer coarse-grained, effective models, which in turn can be tested by their ability to control systems behavior. Navigation at will between attractors in a high-dimensioned dynamical system will provide not only detailed knowledge of the shape of attractor basins, but also measures of underlying stochastic events such as noise in gene expression or receptor binding and how both affect system stability and robustness. Needed for this are wide-bandwidth methods to sense and actuate large numbers of intracellular and extracellular variables and automatically and rapidly infer dynamic control models. The success of this approach may be determined by how broadly the sensors and actuators can span the full dimensionality of the phase space

  9. Architecture of high reliable control systems using complex software

    International Nuclear Information System (INIS)

    The problems involved by the use of complex softwares in control systems that must insure a very high level of safety are examined. The first part makes a brief description of the prototype of PROSPER system. PROSPER means protection system for nuclear reactor with high performances. It has been installed on a French nuclear power plant at the beginnning of 1987 and has been continually working since that time. This prototype is realized on a multi-processors system. The processors communicate between themselves using interruptions and protected shared memories. On each processor, one or more protection algorithms are implemented. Those algorithms use data coming directly from the plant and, eventually, data computed by the other protection algorithms. Each processor makes its own acquisitions from the process and sends warning messages if some operating anomaly is detected. All algorithms are activated concurrently on an asynchronous way. The results are presented and the safety related problems are detailed. - The second part is about measurements' validation. First, we describe how the sensors' measurements will be used in a protection system. Then, a proposal for a method based on the techniques of artificial intelligence (expert systems and neural networks) is presented. - The last part is about the problems of architectures of systems including hardware and software: the different types of redundancies used till now and a proposition of a multi-processors architecture which uses an operating system that is able to manage several tasks implemented on different processors, which verifies the good operating of each of those tasks and of the related processors and which allows to carry on the operation of the system, even in a degraded manner when a failure has been detected are detailed

  10. How Character Complexity Modulates Eye Movement Control in Chinese Reading

    Science.gov (United States)

    Ma, Guojie; Li, Xingshan

    2015-01-01

    This empirical study examined whether the visual complexities of the first and second characters in two-character words play similar roles in modulating the fixation time and saccade target selection during un-spaced Chinese reading. Consistent with prior research, words with low-complexity characters were fixated for shorter times than words with…

  11. Diagnosis for Control and Decision Support in Complex Systems

    OpenAIRE

    Blanke, Mogens; Hansen, Søren; Blas, Morten Rufus

    2011-01-01

    Diagnosis and, when possible, prognosis of faults are essential for safe and reliable operation. The area of fault diagnosis has emerged over three decades. The majority of studies related to linear systems but real-life systems are complex and nonlinear. The development of methodologies coping with complex and nonlinear systems have matured and even though there are many un-solved problems, methodology and associated tools have become available in the form of theory and software for design. ...

  12. Macrocyclic pacman complexes for secondary coordination sphere control

    OpenAIRE

    Leeland, James William

    2011-01-01

    The work presented in this Thesis describes the design, synthesis and reactivity of a symmetric and various asymmetric Schiff-base macrocycles that are capable of forming a wedge-shaped “Pacman” conformation upon metal binding. Chapter One introduces catalysts for small molecule transformation as well as transition metal complexes of pyrrole-containing macrocycles. Further to this, Pacman systems, including previous work from Love and co-workers, and complexes capable of secondary coordinatio...

  13. Application study of complex control algorithm for regenerative furnace temperature

    Institute of Scientific and Technical Information of China (English)

    Lusheng GE

    2004-01-01

    Altemative switch combustion mode of air and gas is adopted on the two sides of the regenerative furnace, its temperature is in uncontrolled state in the switching process and the switch period is generally 3 ~ 5 min. Thus, the conventional bi-cross limited combustion control method is no longer applicable to the object. This paper makes use of neutral network algorithm to adjust the static operating point. On this basis, fuzzy control strategy is used for the furnace temperature control. The actual application result shows that the control strategy is effective to solve the problem of the combustion control for regenerative furnace.

  14. Novel hybrid adaptive controller for manipulation in complex perturbation environments.

    Directory of Open Access Journals (Sweden)

    Alex M C Smith

    Full Text Available In this paper we present a hybrid control scheme, combining the advantages of task-space and joint-space control. The controller is based on a human-like adaptive design, which minimises both control effort and tracking error. Our novel hybrid adaptive controller has been tested in extensive simulations, in a scenario where a Baxter robot manipulator is affected by external disturbances in the form of interaction with the environment and tool-like end-effector perturbations. The results demonstrated improved performance in the hybrid controller over both of its component parts. In addition, we introduce a novel method for online adaptation of learning parameters, using the fuzzy control formalism to utilise expert knowledge from the experimenter. This mechanism of meta-learning induces further improvement in performance and avoids the need for tuning through trial testing.

  15. Modeling and Rotor Current Control of Doubly-fed Induction Machine with Complex Signal Flow Graphs

    OpenAIRE

    Khambadkone, AM; Datta, Rajib; Ranganathan, VT

    1998-01-01

    Doubly fed induction machine can be used for wind energy generation. The control of rotor currents can facilitate variable speed constant frequency operation at unity power factor. A model based on complex signal flow graph is developed. This leads to a physically insightful control structure of the machine. A rotor current control strategy based on the complex signal flow graph is developed to facilitate fast current control. The paper gives the analysis, design and simulation for rotor curr...

  16. Understanding and Controlling Transitions in Polyelectrolyte Complex Materials

    Science.gov (United States)

    Perry, Sarah; Chang, Li-Wei; Liu, Yalin; Momani, Brian; Velez, Jon; Winter, H. Henning

    Polyelectrolyte complexation can be used in the self-assembly of a wide range of responsive soft materials ranging from dehydrated thin film and bulk solids to dense, polymer-rich liquid complex coacervates, and more complex hierarchical structures such as micelles and hydrogels. This responsivity can include swelling and dissolution, or liquid-to-solid transitions, typically as a function of ionic strength and/or pH. The patterning or presentation of charges and other chemical functionalities represents a powerful strategy for the design and manipulation of this type of responsiveness and the corresponding material properties. We utilize polypeptides and polypeptide derivatives as a model platform for the study of sequence and patterning effects on materials self-assembly. We also utilize rheology to understand the nature of the solid-to-liquid transition that has been observed in some systems. The goal of this systematic investigation of the effects of charge patterning is to elucidate design rules that facilitate the tailored creation of materials based on polyelectrolyte complexation with defined properties for a wide range of applications.

  17. 2706-T Complex Distributed Control System Tag and Setpoint List

    International Nuclear Information System (INIS)

    The 2706-T Distributed Control System (DCS) interfaces with field equipment through analog and digital input and output signals that are terminated at a programmable logic controller (PLC). The Tag names and addresses of the input and output signals are listed in this document as well as setpoint values assigned to fixed inputs

  18. The Disruptive Effects of Pain on Complex Cognitive Performance and Executive Control

    OpenAIRE

    Keogh, Edmund; Moore, David J.; Duggan, Geoffrey B.; Payne, Stephen J; Eccleston, Christopher

    2013-01-01

    Pain interferes and disrupts attention. What is less clear is how pain affects performance on complex tasks, and the strategies used to ensure optimal outcomes. The aim of the current study was to examine the effect of pain on higher-order executive control processes involved in managing complex tasks. Sixty-two adult volunteers (40 female) completed two computer-based tasks: a breakfast making task and a word generation puzzle. Both were complex, involving executive control functions, includ...

  19. Diagnosis for Control and Decision Support in Complex Systems

    DEFF Research Database (Denmark)

    Blanke, Mogens; Hansen, Søren; Blas, Morten Rufus

    2011-01-01

    Diagnosis and, when possible, prognosis of faults are essential for safe and reliable operation. The area of fault diagnosis has emerged over three decades. The majority of studies related to linear systems but real-life systems are complex and nonlinear. The development of methodologies coping w...... are reliable in practise. Yet they are also affordable due to the use of fault-tolerant philosophies and tools that make engineering efforts minimal for their implementation. The paper includes examples for an autonomous aircraft and a baling system for agriculture.......Diagnosis and, when possible, prognosis of faults are essential for safe and reliable operation. The area of fault diagnosis has emerged over three decades. The majority of studies related to linear systems but real-life systems are complex and nonlinear. The development of methodologies coping...... with complex and nonlinear systems have matured and even though there are many un-solved problems, methodology and associated tools have become available in the form of theory and software for design. Genuine industrial cases have also become available. Analysis of system topology, referred to as...

  20. Daytime CLOCK Dephosphorylation Is Controlled by STRIPAK Complexes in Drosophila

    Directory of Open Access Journals (Sweden)

    Simonetta Andreazza

    2015-05-01

    Full Text Available In the Drosophila circadian oscillator, the CLOCK/CYCLE complex activates transcription of period (per and timeless (tim in the evening. PER and TIM proteins then repress CLOCK (CLK activity during the night. The pace of the oscillator depends upon post-translational regulation that affects both positive and negative components of the transcriptional loop. CLK protein is highly phosphorylated and inactive in the morning, whereas hypophosphorylated active forms are present in the evening. How this critical dephosphorylation step is mediated is unclear. We show here that two components of the STRIPAK complex, the CKA regulatory subunit of the PP2A phosphatase and its interacting protein STRIP, promote CLK dephosphorylation during the daytime. In contrast, the WDB regulatory PP2A subunit stabilizes CLK without affecting its phosphorylation state. Inhibition of the PP2A catalytic subunit and CKA downregulation affect daytime CLK similarly, suggesting that STRIPAK complexes are the main PP2A players in producing transcriptionally active hypophosphorylated CLK.

  1. IPAD Paperless Work Control for Test Complex Facilities Management Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project created a pilot version of the software tool work control system to run on a tablet by modifying the existing template and beginning an initial...

  2. Visual servoing and force control fusion for complex insertion tasks

    OpenAIRE

    Pomares Baeza, Jorge; Torres Medina, Fernando; Gil Vázquez, Pablo

    2007-01-01

    Comunicación presentada en el 11th International Conference on Advanced Robotics, June 30-July 3, 2003, University of Coimbra, Portugal To have access to force sensing is indispensable element for applications in which robots interact directly with objects in external settings. The very nature and the limited accuracy of the vision systems used for position control, implies that these types of systems are not adequate for controlling the interaction of the robot with its set...

  3. An Overview of Networked Control of Complex Dynamic Systems

    Directory of Open Access Journals (Sweden)

    Huaicheng Yan

    2014-01-01

    Full Text Available Networked control systems (NCSs are spatially distributed systems for which communication between sensors, actuators, and controllers is supported by a shared communication network. In recent years, NCSs have brought many innovative impacts to control systems. However, grate challenges are also met due to the network-induced imperfection. In this paper, we particularly discuss various typical networked induced issues; namely, time delays, packet losses, disorder, time-varying transmission intervals, competition of multiple nodes accessing networks, and data quantization as well as event-triggered data transmission strategy are surveyed; at the same time, some research topics are also discussed. The common goal of discussion on these topics is to reveal the effect of the communication network on the operation of the networked systems.

  4. Optimal Control and Forecasting of Complex Dynamical Systems

    CERN Document Server

    Grigorenko, Ilya

    2006-01-01

    This important book reviews applications of optimization and optimal control theory to modern problems in physics, nano-science and finance. The theory presented here can be efficiently applied to various problems, such as the determination of the optimal shape of a laser pulse to induce certain excitations in quantum systems, the optimal design of nanostructured materials and devices, or the control of chaotic systems and minimization of the forecast error for a given forecasting model (for example, artificial neural networks). Starting from a brief review of the history of variational calcul

  5. Controlled chiral electrochromism of polyoxometalates incorporated in supramolecular complexes.

    Science.gov (United States)

    Zhang, Bin; Guan, Weiming; Zhang, Simin; Li, Bao; Wu, Lixin

    2016-04-01

    A three-component supramolecular system was constructed by combining host-guest recognition and electrostatic interaction for realization of induced circular dichroism of achiral polyanionic clusters in aqueous solution, while the induced chiral heteropoly blue was built and switched off by controlling the redox of the inorganic component via electrochemistry. PMID:27002653

  6. Realization of a Complex Control & Diagnosis System on Simplified Hardware

    Science.gov (United States)

    Stetter, R.; Swamy Prasad, M.

    2015-11-01

    Energy is an important factor in today's industrial environment. Pump systems account for about 20% of the total industrial electrical energy consumption. Several studies show that with proper monitoring, control and maintenance, the efficiency of pump systems can be increased. Controlling pump systems with intelligent systems can help to reduce a pump's energy consumption by up to one third of its original consumption. The research in this paper was carried out in the scope of a research project which involves modelling and simulation of pump systems. This paper focuses on the future implementation of modelling capabilities in PLCs (programmable logic controllers). The whole project aims to use a pump itself as the sensor rather than introducing external sensors into the system, which would increase the cost considerably. One promising approach for an economic and robust industrial implementation of this intelligence is the use of PLCs. PLCs can be simulated in multiple ways; in this project, Codesys was chosen for several reasons which are explained in this paper. The first part of this paper explains the modelling of a pump itself, the process load of the asynchronous motor with a control system, and the simulation possibilities of the motor in Codesys. The second part describes the simulation and testing of a system realized. The third part elaborates the Codesys system structure and interfacing of the system with external files. The final part consists of comparing the result with an earlier Matlab/SIMULINK model and original test data.

  7. Modeling and adaptive pinning synchronization control for a chaotic-motion motor in complex network

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Darui, E-mail: zdarui@163.com [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an 710049 (China); School of Electrical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Liu, Chongxin; Yan, Bingnan [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an 710049 (China); School of Electrical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2014-01-24

    We introduce a chaos model for a permanent-magnet synchronous motor and construct a coupled chaotic motor in a complex dynamic network using the Newman–Watts small-world network algorithm. We apply adaptive pinning control theory for complex networks to obtain suitable adaptive feedback gain and the number of nodes to be pinned. Nodes of low degree are pinned to realize global asymptotic synchronization in the complex network. The proposed adaptive pinning controller is added to the complex motor network for simulation and verification.

  8. Modeling and adaptive pinning synchronization control for a chaotic-motion motor in complex network

    International Nuclear Information System (INIS)

    We introduce a chaos model for a permanent-magnet synchronous motor and construct a coupled chaotic motor in a complex dynamic network using the Newman–Watts small-world network algorithm. We apply adaptive pinning control theory for complex networks to obtain suitable adaptive feedback gain and the number of nodes to be pinned. Nodes of low degree are pinned to realize global asymptotic synchronization in the complex network. The proposed adaptive pinning controller is added to the complex motor network for simulation and verification.

  9. Development and creation of complex's reserve control panel (RCP)

    International Nuclear Information System (INIS)

    Description of RCP (system of reactor safety relating to 1 category of seismic stability) is sited. It is intended for to bring safety system in action and to control reactor conditions out limits of reactor building. The RCP carries out a control for rods position of reactor emergency protection by independent connection channels, for availability of chain reaction within reactor core, for water level and temperature in reactor vessel, for radiation situation in reactor room, for voltage availability in emergency power supply system. It is situated in separate building, carried away on 50 m from reactor building room, and it is located in incoming mine of ventilation system. Mine design constructions permits to preserve its integrity under earthquake of 9 balls by Msk-64 scale. The RCP system functioning in normal regime is described as well as devices failure in cases of both the normal regime and the reactor accident related with earthquake and other natural calamities

  10. Human as the chief controller in the complex system

    International Nuclear Information System (INIS)

    Due to accuracy of measurement and improvement of control logic, human beings are freed from time consuming and repeated task. When there are situations where the control logic cannot calculate the next state of system, human beings interrupt the system and steer the system manually. The most scope of human factors is focused on this interruption, and economists are concern how to present information cognitively and reliably. Fukushima nuclear accident has considered the role of human beings again. Human beings are forced to do something without proper knowledge, procedure, and process information. Thus post Fukushima actions should include how for human beings to be trained and how to get real time information. Finally because safety culture can determine behaviors of human beings, the method to cultivate safety culture should be considered

  11. Progress on Dissecting and Controlling the Citrus Huanglongbing Complex

    OpenAIRE

    Duan, Yongping; Zhou, Lijuan; Zhang, Muqing; Benyon, Lesley; Armstrong-Vahling, Cheryl; Hoffman, Michele; Hao, Guixia; Zou, Huasong; Doud, Melissa; Ding, Fang; Morgan, Kent

    2014-01-01

    Citrus huanglongbing (HLB) is a century-old and emerging disease that impedes citrus production worldwide. ‘Candidatus Liberibacter asiaticus’ (Las) is the globally prevalent species of HLB bacteria. Here we describe our molecular characterizations of Las, and our newly-developed control methods for citrus HLB. From a genomics standpoint, we revealed Las has a significantly reduced genome (1.26Mb) and unique features adapted to its intracellular life style.  Although the genome is small, Las ...

  12. Defensive complexity and the phylogenetic conservation of immune control

    OpenAIRE

    Chastain, Erick; Antia, Rustom; Bergstrom, Carl T.

    2012-01-01

    One strategy for winning a coevolutionary struggle is to evolve rapidly. Most of the literature on host-pathogen coevolution focuses on this phenomenon, and looks for consequent evidence of coevolutionary arms races. An alternative strategy, less often considered in the literature, is to deter rapid evolutionary change by the opponent. To study how this can be done, we construct an evolutionary game between a controller that must process information, and an adversary that can tamper with this...

  13. Complex conditional control by pigeons in a continuous virtual environment.

    Science.gov (United States)

    Qadri, Muhammad A J; Reid, Sean; Cook, Robert G

    2016-01-01

    We tested two pigeons in a continuously streaming digital environment. Using animation software that constantly presented a dynamic, three-dimensional (3D) environment, the animals were tested with a conditional object identification task. The correct object at a given time depended on the virtual context currently streaming in front of the pigeon. Pigeons were required to accurately peck correct target objects in the environment for food reward, while suppressing any pecks to intermixed distractor objects which delayed the next object's presentation. Experiment 1 established that the pigeons' discrimination of two objects could be controlled by the surface material of the digital terrain. Experiment 2 established that the pigeons' discrimination of four objects could be conjunctively controlled by both the surface material and topography of the streaming environment. These experiments indicate that pigeons can simultaneously process and use at least two context cues from a streaming environment to control their identification behavior of passing objects. These results add to the promise of testing interactive digital environments with animals to advance our understanding of cognition and behavior. PMID:26781058

  14. Control and acquisition software complex for TBTS experiments

    CERN Document Server

    Dubrovskiy, Alexey

    2010-01-01

    The Two-beam Test-stand (TBTS) is a test area in the CLIC Test Facility (CTF3) to demonstrate the high power RF extraction and acceleration at a high accelerating gradient, which are feasibility issues for the Compact Linear Collider (CLIC) project. In order to achieve an efficient data collection, an acquisition and logging software system was developed. All year round these systems store the main parameters such as beam position, beam current, vacuum level, pulse length etc. For predefined events they also gather and store all information about the last several pulses and the machine status. A GUI interface allows from anywhere to plot many logged characteristics at a maximum of 10 minutes delay, to go though all events and to extract any logged data. A control interface configures actions and long-term control procedures for conditioning accelerating structures. The flexible configuration of the logging, the acquisition and the control systems are integrated into the same GUI. After two years operation the...

  15. Data-based fault-tolerant model predictive controller an application to a complex dearomatization process

    OpenAIRE

    Kettunen, Markus

    2010-01-01

    The tightening global competition during the last few decades has been the driving force for the optimisation of industrial plant operations through the use of advanced control methods, such as model predictive control (MPC). As the occurrence of faults in the process measurements and actuators has become more common due to the increase in the complexity of the control systems, the need for fault-tolerant control (FTC) to prevent the degradation of the controller performance, and therefore th...

  16. Control of Complex Systems Using Bayesian Networks and Genetic Algorithm

    CERN Document Server

    Marwala, Tshilidzi

    2007-01-01

    A method based on Bayesian neural networks and genetic algorithm is proposed to control the fermentation process. The relationship between input and output variables is modelled using Bayesian neural network that is trained using hybrid Monte Carlo method. A feedback loop based on genetic algorithm is used to change input variables so that the output variables are as close to the desired target as possible without the loss of confidence level on the prediction that the neural network gives. The proposed procedure is found to reduce the distance between the desired target and measured outputs significantly.

  17. Multi-goal Control of Chaotic Connected Complex Networks

    International Nuclear Information System (INIS)

    Beam transport network (BTN) with small world (SW) (so-called BTN-SW) and Lorenz chaotic connected network with scale-free (SF) are taken as two typical examples, we proposed a global linear coupling and combined with local error feedback methods in sub-networks to realize multi-goal control method of halo and chaos in two networks above. The simulation results show that the methods above is effective for any chaotic connected networks and has a potential of applications in based-halo-chaos secure communication

  18. Bactrocera dorsalis complex and its problem in control

    International Nuclear Information System (INIS)

    Eight species of fifty-two in the Bactrocera dorsalis complex are serious pests in the Asia-Pacific region. Of these, all except one are attracted to methyl eugenol. Four of these pests B. carambolae, B. dorsalis, B. papayae and B. philippinesis are polyphagous species and infest 75, 117, 195 and 18 fruit host species respectively. Common names for B. carambalae and B. papayae (sympatric species) have caused confusion. Both species can interbreed and produce viable offspring; and their natural hybrids have been collected. Bactrocera dorsalis and B. papayae can interbreed readily and produce viable offspring in the laboratory as males produce identical booster sex and aggregation pheromonal components after consuming methyl eugenol. The DNA sequences of one of their respective allelic introns of the actin gene are also identical which suggests that they are not distinct genetic species. Protein bait application and male annihilation techniques have been successful in the management of fruit flies in many cases but they have to compete with natural sources of lures. SIT is amenable for non-methyl engenol species; but for methyl eugenol sensitive species, sterile makes should be allowed to consume methyl eugenol before release to have an equal mating competitiveness with wild males. (author)

  19. Pinning control of complex networked systems synchronization, consensus and flocking of networked systems via pinning

    CERN Document Server

    Su, Housheng

    2013-01-01

    Synchronization, consensus and flocking are ubiquitous requirements in networked systems. Pinning Control of Complex Networked Systems investigates these requirements by using the pinning control strategy, which aims to control the whole dynamical network with huge numbers of nodes by imposing controllers for only a fraction of the nodes. As the direct control of every node in a dynamical network with huge numbers of nodes might be impossible or unnecessary, it’s then very important to use the pinning control strategy for the synchronization of complex dynamical networks. The research on pinning control strategy in consensus and flocking of multi-agent systems can not only help us to better understand the mechanisms of natural collective phenomena, but also benefit applications in mobile sensor/robot networks. This book offers a valuable resource for researchers and engineers working in the fields of control theory and control engineering.   Housheng Su is an Associate Professor at the Department of Contro...

  20. Control of the taeniosis/cysticercosis complex: future developments.

    Science.gov (United States)

    Flisser, Ana; Rodríguez-Canul, Rossanna; Willingham, Arve Lee

    2006-07-31

    Cysticercosis is due to the establishment of the larval stage of the zoonotic cestode parasite Taenia solium. The infection causes substantial human morbidity and mortality, particularly in several Latin American countries and parts of Africa and Asia, as well as economic losses in pig husban dry due to condemnation of infected pork meat. The life cycle of T. solium includes human beings as definitive hosts and pigs as intermediate hosts. Cysticercosis is acquired by the ingestion of eggs released by human tapeworm carriers, who become infected after ingesting pork meat contaminated with cysticerci. Taenia solium transmission has been associated with poverty, lack of sanitary services and practices of rearing backyard pigs with free access to the areas that villagers use as toilets, as well as cultural behaviour. Nonetheless, due to the recent increase of migration and tourism, industrial countries are also reporting cases of human cysticercosis. There are many epidemiological studies that have been conducted mainly in Latin American countries that have evaluated intervention measures for control of cysticercosis including the development and testing of vaccines. Furthermore, the involvement of international agencies and institutions, such as the World Health Organization, the Food and Agriculture Organization and the International Livestock Research Institute, as well as the commitment of policymakers, scientists and field workers, are key means for the sustainable control and, hopefully, eradication of T. solium infections. PMID:16730125

  1. Prediction of Traffic Complexity and Controller Workload in Mixed Equipage NextGen Environments

    Science.gov (United States)

    Lee, Paul U.; Prevot, Thomas

    2012-01-01

    Controller workload is a key factor in limiting en route air traffic capacity. Past efforts to quantify and predict workload have resulted in identifying objective metrics that correlate well with subjective workload ratings during current air traffic control operations. Although these metrics provide a reasonable statistical fit to existing data, they do not provide a good mechanism for estimating controller workload for future air traffic concepts and environments that make different assumptions about automation, enabling technologies, and controller tasks. One such future environment is characterized by en route airspace with a mixture of aircraft equipped with and without Data Communications (Data Comm). In this environment, aircraft with Data Comm will impact controller workload less than aircraft requiring voice communication, altering the close correlation between aircraft count and controller workload that exists in current air traffic operations. This paper outlines a new trajectory-based complexity (TBX) calculation that was presented to controllers during a human-in-the-loop simulation. The results showed that TBX accurately estimated the workload in a mixed Data Comm equipage environment and the resulting complexity values were understood and readily interpreted by the controllers. The complexity was represented as a "modified aircraft account" that weighted different complexity factors and summed them in such a way that the controllers could effectively treat them as aircraft count. The factors were also relatively easy to tune without an extensive data set. The results showed that the TBX approach is well suited for presenting traffic complexity in future air traffic environments.

  2. Redundant integrated flight control/navigation inertial sensor complex

    Science.gov (United States)

    Ebner, R. E.; Mark, J. G.

    1977-01-01

    A redundant strapdown inertial navigation system for integrated flight control/navigation use is described. Design of the system, which consists of four tuned-gimbal gyros, eight accelerometers, and four processors, is discussed, with emphasis on its compact configuration (13 by 13 by 14 in.), based on symmetry properties of an octahedron. A matrix operator for least-squares combination of data from an arbitrary number of two-degree-of-freedom gyros is derived, and general parity equations for error analysis are given. Self-contained detection and isolation of a two-axis gyro failure is considered; system failure probability, which depends on component failure rates and self-correction capacities, is analyzed. Test data, including typical parity equation responses during motion and simulated gyro and accelerometer failures, are also presented.

  3. Chemigation for Control of Black Shank-Root-knot Complex and Weeds in Tobacco

    OpenAIRE

    Johnson, A. W.; Csinos, A.S.; Golden, A. M.; Glaze, N. C.

    1992-01-01

    Tank mixes of a fungicide (metalaxyl) and a nematicide (fenamiphos) with herbicides (isopropalin or pendimethalin) and an insecticide (chlorpyrifos) were applied by soil incorporation or irrigation to control the black shank-root knot complex and weeds on four tobacco cultivars. The disease complex was more severe on cultivars McNair 944, NC-2326, and K-326 than on Speight G-70. The disease complex was reduced (P ≤ 0.05) on all cultivars with the pesticide combinations containing metalaxyl + ...

  4. Multiscale entropy identifies differences in complexity in postural control in women with multiple sclerosis.

    Science.gov (United States)

    Busa, Michael A; Jones, Stephanie L; Hamill, Joseph; van Emmerik, Richard E A

    2016-03-01

    Loss of postural center-of-pressure complexity (COP complexity) has been associated with reduced adaptability that accompanies disease and aging. The aim of this study was to identify if COP complexity is reduced: (1) in those with Multiple Sclerosis (MS) compared to controls; (2) when vision is limited compared to remaining intact; and (3) during more demanding postural conditions compared to quiet standing. Additionally, we explored the relationship between the COP complexity and disease severity, fatigue, cutaneous sensation and central motor drive. Twelve women with MS and 12 age-matched controls were tested under quiet standing and postural maximal lean conditions with normal and limited vision. The key dependent variable was the complexity index (CI) of the center of pressure. We observed a lower CI in the MS group compared to controls in both anterior-posterior (AP) and medio-lateral (ML) directions (p's0.05) was observed, indicating that limiting vision did not impact COP complexity differently in the two groups. Decreased cutaneous sensitivity was associated with lower CI values in the AP direction among those with MS (r(2)=0.57); all other measures did not exhibit significant relationships. The findings reported here suggest that (1) MS is associated with diminished COP complexity under both normal and challenging postures, and (2) complexity is strongly correlated with cutaneous sensitivity, suggesting the unique contribution of impaired somatosensation on postural control deficits in persons with MS. PMID:26979875

  5. Extreme events in multilayer, interdependent complex networks and control

    Science.gov (United States)

    Chen, Yu-Zhong; Huang, Zi-Gang; Zhang, Hai-Feng; Eisenberg, Daniel; Seager, Thomas P.; Lai, Ying-Cheng

    2015-11-01

    We investigate the emergence of extreme events in interdependent networks. We introduce an inter-layer traffic resource competing mechanism to account for the limited capacity associated with distinct network layers. A striking finding is that, when the number of network layers and/or the overlap among the layers are increased, extreme events can emerge in a cascading manner on a global scale. Asymptotically, there are two stable absorption states: a state free of extreme events and a state of full of extreme events, and the transition between them is abrupt. Our results indicate that internal interactions in the multiplex system can yield qualitatively distinct phenomena associated with extreme events that do not occur for independent network layers. An implication is that, e.g., public resource competitions among different service providers can lead to a higher resource requirement than naively expected. We derive an analytical theory to understand the emergence of global-scale extreme events based on the concept of effective betweenness. We also articulate a cost-effective control scheme through increasing the capacity of very few hubs to suppress the cascading process of extreme events so as to protect the entire multi-layer infrastructure against global-scale breakdown.

  6. Pest control of aphids depends on landscape complexity and natural enemy interactions

    OpenAIRE

    Martin, Emily A.; Reineking, Björn; Seo, Bumsuk; Steffan-Dewenter, Ingolf

    2015-01-01

    Aphids are a major concern in agricultural crops worldwide, and control by natural enemies is an essential component of the ecological intensification of agriculture. Although the complexity of agricultural landscapes is known to influence natural enemies of pests, few studies have measured the degree of pest control by different enemy guilds across gradients in landscape complexity. Here, we use multiple natural-enemy exclosures replicated in 18 fields across a gradient in landscape complexi...

  7. Output Feedback and Single-Phase Sliding Mode Control for Complex Interconnected Systems

    OpenAIRE

    Yao-Wen Tsai; Huynh, Van Van

    2015-01-01

    This paper generalized a new sliding mode control (SMC) without reaching phase to solve two important problems in the stability of complex interconnected systems: (1) a decentralized controller that uses only output variables directly and (2) the stability of complex interconnected systems ensured for all time. A new sliding surface is firstly designed to construct a single-phase SMC in which the desired motion is determined from the initial time instant. A new lemma is secondly established f...

  8. Synthesis of Titanium Dioxide Nanocrystals with Controlled Crystal- and Micro-structures from Titanium Complexes

    OpenAIRE

    Makoto Kobayashi; Hideki Kato; Masato Kakihana

    2013-01-01

    Selective synthesis of titanium dioxide (TiO2) polymorphs including anatase, rutile, brookite and TiO2(B) by solvothermal treatment of water-soluble titanium complexes is described with a special focus on their morphological control. The utilization of water-soluble titanium complexes as a raw material allowed us to employ various additives in the synthesis of TiO2. As a result, the selective synthesis of the polymorphs, as well as diverse morphological control, was achieved.

  9. Complexity

    CERN Document Server

    Gershenson, Carlos

    2011-01-01

    The term complexity derives etymologically from the Latin plexus, which means interwoven. Intuitively, this implies that something complex is composed by elements that are difficult to separate. This difficulty arises from the relevant interactions that take place between components. This lack of separability is at odds with the classical scientific method - which has been used since the times of Galileo, Newton, Descartes, and Laplace - and has also influenced philosophy and engineering. In recent decades, the scientific study of complexity and complex systems has proposed a paradigm shift in science and philosophy, proposing novel methods that take into account relevant interactions.

  10. A Probabilistic Approach to Control of Complex Systems and Its Application to Real-Time Pricing

    Directory of Open Access Journals (Sweden)

    Koichi Kobayashi

    2014-01-01

    Full Text Available Control of complex systems is one of the fundamental problems in control theory. In this paper, a control method for complex systems modeled by a probabilistic Boolean network (PBN is studied. A PBN is widely used as a model of complex systems such as gene regulatory networks. For a PBN, the structural control problem is newly formulated. In this problem, a discrete probability distribution appeared in a PBN is controlled by the continuous-valued input. For this problem, an approximate solution method using a matrix-based representation for a PBN is proposed. Then, the problem is approximated by a linear programming problem. Furthermore, the proposed method is applied to design of real-time pricing systems of electricity. Electricity conservation is achieved by appropriately determining the electricity price over time. The effectiveness of the proposed method is presented by a numerical example on real-time pricing systems.

  11. Control of two-photon quantum walk in a complex multimode system by wavefront shaping

    CERN Document Server

    Defienne, Hugo; Walmsley, Ian A; Smith, Brian J; Gigan, Sylvain

    2015-01-01

    Multi-photon interferences in complex multimode structures - quantum walks - are of both funda- mental and technological interest. They rely on the ability to design the complex network where the walk occurs. Here, we demonstrate the control of quantum walks of two indistinguishable photons in a complex linear system - a highly multimode fiber - by means of wavefront shaping techniques. Using the measured transmission matrix of the fiber, we demonstrate the ability to address arbitrary output modes of the two-photon speckle pattern, and simultaneous control of the quantum inter- ferences. This work provides a reconfigurable platform for multi-photon, multimode interference experiments and a route to high-dimensional quantum systems.

  12. Controlling Uncertainty: A Review of Human Behavior in Complex Dynamic Environments

    Science.gov (United States)

    Osman, Magda

    2010-01-01

    Complex dynamic control (CDC) tasks are a type of problem-solving environment used for examining many cognitive activities (e.g., attention, control, decision making, hypothesis testing, implicit learning, memory, monitoring, planning, and problem solving). Because of their popularity, there have been many findings from diverse domains of research…

  13. Architecture of built-in microcontrollers in the U-70 complex control system

    International Nuclear Information System (INIS)

    The distributed system of built-in microcontrollers (BMS) for functional control of supply sources of magnetooptical elements is created within the frames of works on modernization of the U-70 control complex. The BMS architecture and functional diagram of one of them are presented. The microcontrollers operation algorithm is based on the eventuation principle. The BMS basic parameters are presented

  14. Design and implementation of the control system for nuclear plant VVER-1000. Instrumentation (program technical complexes)

    International Nuclear Information System (INIS)

    Program-technical complexes (PTC) are designed as control and protection systems in water-moderated atomic reactors, including emergency and preventive systems, automatic control, unloading, reactor capacity limitation and accelerated preventive protection systems. Utilization of programmable logic integrated circuits from world leading manufacturers makes the complexes simple in structure, compact, with low energy demands and mutually independent for key and supporting functions The results of PTC assessment and implementation in Ukraine are outlined. Opportunities for a future development of RADIJ company in the area of control and protection systems for VVER reactors are also discussed

  15. Chaos synchronization and chaotization of complex chaotic systems in series form by optimal control

    International Nuclear Information System (INIS)

    By the method of quadratic optimum control, a quadratic optimal regulator is used for synchronizing two complex chaotic systems in series form. By this method the least error with less control energy is achieved, and the optimization on both energy and error is realized synthetically. The simulation results of two Quantum-CNN chaos systems in series form prove the effectiveness of this method. Finally, chaotization of the system is given by optimal control.

  16. Coherent operation of detector systems and their readout electronics in a complex experiment control environment

    International Nuclear Information System (INIS)

    With the increasing size and degree of complexity of today's experiments in high energy physics the required amount of work and complexity to integrate a complete subdetector into an experiment control system is often underestimated. We report here on the layered software structure and protocols used by the LHCb experiment to control its detectors and readout boards. The experiment control system of LHCb is based on the commercial SCADA system PVSS II. Readout boards which are outside the radiation area are accessed via embedded credit card sized PCs which are connected to a large local area network. The SPECS protocol is used for control of the front end electronics. Finite state machines are introduced to facilitate the control of a large number of electronic devices and to model the whole experiment at the level of an expert system.

  17. Coherent operation of detector systems and their readout electronics in a complex experiment control environment

    Science.gov (United States)

    Koestner, Stefan

    2009-09-01

    With the increasing size and degree of complexity of today's experiments in high energy physics the required amount of work and complexity to integrate a complete subdetector into an experiment control system is often underestimated. We report here on the layered software structure and protocols used by the LHCb experiment to control its detectors and readout boards. The experiment control system of LHCb is based on the commercial SCADA system PVSS II. Readout boards which are outside the radiation area are accessed via embedded credit card sized PCs which are connected to a large local area network. The SPECS protocol is used for control of the front end electronics. Finite state machines are introduced to facilitate the control of a large number of electronic devices and to model the whole experiment at the level of an expert system.

  18. Control and learning for intelligent mobility of unmanned ground vehicles in complex terrains

    Science.gov (United States)

    Trentini, M.; Beckman, B.; Digney, B.

    2005-05-01

    The Autonomous Intelligent Systems program at Defence R&D Canada-Suffield envisions autonomous systems contributing to decisive operations in the urban battle space. Creating effective intelligence for these systems demands advances in perception, world representation, navigation, and learning. In the land environment, these scientific areas have garnered much attention, while largely ignoring the problem of locomotion in complex terrain. This is a gap in robotics research, where sophisticated algorithms are needed to coordinate and control robotic locomotion in unknown, highly complex environments. Unlike traditional control problems, intuitive and systematic control tools for robotic locomotion do not readily exist thus limiting their practical application. This paper addresses the mobility problem for unmanned ground vehicles, defined here as the autonomous maneuverability of unmanned ground vehicles in unknown, highly complex environments. It discusses the progress and future direction of intelligent mobility research at Defence R&D Canada-Suffield and presents the research tools, topics and plans to address this critical research gap.

  19. Are Complexity Metrics Reliable in Assessing HRV Control in Obese Patients During Sleep?

    Directory of Open Access Journals (Sweden)

    Ramona Cabiddu

    Full Text Available Obesity is associated with cardiovascular mortality. Linear methods, including time domain and frequency domain analysis, are normally applied on the heart rate variability (HRV signal to investigate autonomic cardiovascular control, whose imbalance might promote cardiovascular disease in these patients. However, given the cardiac activity non-linearities, non-linear methods might provide better insight. HRV complexity was hereby analyzed during wakefulness and different sleep stages in healthy and obese subjects. Given the short duration of each sleep stage, complexity measures, normally extracted from long-period signals, needed be calculated on short-term signals. Sample entropy, Lempel-Ziv complexity and detrended fluctuation analysis were evaluated and results showed no significant differences among the values calculated over ten-minute signals and longer durations, confirming the reliability of such analysis when performed on short-term signals. Complexity parameters were extracted from ten-minute signal portions selected during wakefulness and different sleep stages on HRV signals obtained from eighteen obese patients and twenty controls. The obese group presented significantly reduced complexity during light and deep sleep, suggesting a deficiency in the control mechanisms integration during these sleep stages. To our knowledge, this study reports for the first time on how the HRV complexity changes in obesity during wakefulness and sleep. Further investigation is needed to quantify altered HRV impact on cardiovascular mortality in obesity.

  20. Partial control of complex chemical processes I. Control of fluidized catalytic cracker

    International Nuclear Information System (INIS)

    A detailed dynamic model of a fluidized catalytic cracker has been developed that allows evaluation of the impact of different designs, control configurations, catalyst and feed composition and control strategies on the control of a fluid cracker. The present paper deals with the existence and the topology of multiple steady states. It is shown that in some cases five steady states can exist. Further, some of these can be close together in terms of the input operating space. Present trends in operating conditions (higher regenerator temperatures and higher catalyst activities) increase the likelihood that desirable operating conditions are in the regions where such multiplicities occur. It is shown that catalytic combustion promoters can eliminate or reduce this problem. The paper also shows that conventional control structures can lead to input multiplicities and that the choice of additional control variables in the primary matrix should depend on operating conditions

  1. A model to reduce complexity and maintain coherence between Access Control and Transmission Control policies

    OpenAIRE

    Bertrand, Yoann; Blay-Fornarino, Mireille; Boudaoud, Karima; Riveill, Michel

    2016-01-01

    In order to protect resources from unauthorized access and data leakage in companies, security experts and administrators can use mechanisms such as Access Control (AC) and Transmission Control (TC). Both AC and TC are based on policies that are defined, modified and revoked by these experts. However, policy management can be a time-consuming and tiresome task, especially when both mechanisms are used on large sets of users and resources. Moreover, contradictions between AC and TC policies ca...

  2. Microassembly for complex and solid 3D MEMS by 3D Vision-based control.

    OpenAIRE

    Tamadazte, Brahim; Le Fort-Piat, Nadine; Marchand, Eric; Dembélé, Sounkalo

    2009-01-01

    This paper describes the vision-based methods developed for assembly of complex and solid 3D MEMS (micro electromechanical systems) structures. The microassembly process is based on sequential robotic operations such as planar positioning, gripping, orientation in space and insertion tasks. Each of these microassembly tasks is performed using a posebased visual control. To be able to control the microassembly process, a 3D model-based tracker is used. This tracker able to directly provides th...

  3. Computational means of the new control system for the U-70 accelerating complex

    International Nuclear Information System (INIS)

    Computational means of the new control system (CS) of the U-70 accelerating complex are described. The last includes the LU-30 linear accelerator, U-15 booster ring injector, U-70 main accelerator, systems for fast and slow beam extraction. The new integrated CS is based on the standard three-level architecture. Control of the CS network is realized with a special computer, fulfilling also the security functions

  4. Effects of Edge Directions on the Structural Controllability of Complex Networks

    OpenAIRE

    Xiao, Yandong; Lao, Songyang; Hou, Lvlin; Small, Michael; Bai, Liang

    2015-01-01

    Recent advances indicate that assigning or reversing edge direction can significantly improve the structural controllability of complex networks. For directed networks, approaching the optimal structural controllability can be achieved by detecting and reversing certain “inappropriate” edge directions. However, the existence of multiple sets of “inappropriate” edge directions suggests that different edges have different effects on optimal controllability—that is, different combinations of edg...

  5. Source pollution control program at the Camacari Petrochemical Complex: overall and individual improvements

    Energy Technology Data Exchange (ETDEWEB)

    Freire, P.A.; Neto, D.B.; Carvalho, D.M. [CETREL S.A., Camacari, BA (Brazil)

    1993-12-31

    Along with the technical progress experienced by the Camacari Petrochemical Complex in the last few years, new policies, following new worldwide trends, in pollution control and prevention became mandatory. This work describes some of these experiences as well as future perspectives. 3 refs., 2 fig., 13 tabs.

  6. Instructional Control of Cognitive Load in the Design of Complex Learning Environments

    NARCIS (Netherlands)

    Kester, Liesbeth; Paas, Fred; Van Merriënboer, Jeroen

    2010-01-01

    Kester, L., Paas, F., & Van Merriënboer, J. J. G. (2010). Instructional control of cognitive load in the design of complex learning environments. In J. L. Plass, R. Moreno, & Roland Brünken (Eds.), Cognitive Load Theory (pp. 109-130). New York: Cambridge University Press.

  7. Active Learning Strategies and Active Control of Complexity Growth in Naming Games

    OpenAIRE

    Schueller, William; Oudeyer, Pierre-Yves

    2015-01-01

    Naming Games are models of the dynamic formation of lexical conventions in populations of agents. In this work we introduce new Naming Game strategies, using developmental and active learning mechanisms to control the growth of complexity. An information theoretical measure to compare those strategies is introduced, and used to study their impact on the dynamics of the Naming Game.

  8. On application of weak regeneration in simulation of complex inventory control systems

    OpenAIRE

    Peshkova, I.; Santalova, D.

    2012-01-01

    A complex inventory control system is represented as a queuing system with the purpose to estimate steady-state characteristics for total average cost. Stochastic processes describing the behavior of this system and its regenerative structure are investigated. The weak regeneration approach for the system simulation and estimation of characteristics is used.

  9. Proficiency and Linguistic Complexity Influence Speech Motor Control and Performance in Spanish Language Learners

    Science.gov (United States)

    Nip, Ignatius S. B.; Blumenfeld, Henrike K.

    2015-01-01

    Purpose: Second-language (L2) production requires greater cognitive resources to inhibit the native language and to retrieve less robust lexical representations. The current investigation identifies how proficiency and linguistic complexity, specifically syntactic and lexical factors, influence speech motor control and performance. Method: Speech…

  10. Effect of edge pruning on structural controllability and observability of complex networks

    Science.gov (United States)

    Mengiste, Simachew Abebe; Aertsen, Ad; Kumar, Arvind

    2015-12-01

    Controllability and observability of complex systems are vital concepts in many fields of science. The network structure of the system plays a crucial role in determining its controllability and observability. Because most naturally occurring complex systems show dynamic changes in their network connectivity, it is important to understand how perturbations in the connectivity affect the controllability of the system. To this end, we studied the control structure of different types of artificial, social and biological neuronal networks (BNN) as their connections were progressively pruned using four different pruning strategies. We show that the BNNs are more similar to scale-free networks than to small-world networks, when comparing the robustness of their control structure to structural perturbations. We introduce a new graph descriptor, ‘the cardinality curve’, to quantify the robustness of the control structure of a network to progressive edge pruning. Knowing the susceptibility of control structures to different pruning methods could help design strategies to destroy the control structures of dangerous networks such as epidemic networks. On the other hand, it could help make useful networks more resistant to edge attacks.

  11. Quantum control with noisy fields: computational complexity versus sensitivity to noise

    International Nuclear Information System (INIS)

    A closed quantum system is defined as completely controllable if an arbitrary unitary transformation can be executed using the available controls. In practice, control fields are a source of unavoidable noise, which has to be suppressed to retain controllability. Can one design control fields such that the effect of noise is negligible on the time-scale of the transformation? This question is intimately related to the fundamental problem of a connection between the computational complexity of the control problem and the sensitivity of the controlled system to noise. The present study considers a paradigm of control, where the Lie-algebraic structure of the control Hamiltonian is fixed, while the size of the system increases with the dimension of the Hilbert space representation of the algebra. We find two types of control tasks, easy and hard. Easy tasks are characterized by a small variance of the evolving state with respect to the operators of the control operators. They are relatively immune to noise and the control field is easy to find. Hard tasks have a large variance, are sensitive to noise and the control field is hard to find. The influence of noise increases with the size of the system, which is measured by the scaling factor N of the largest weight of the representation. For fixed time and control field the ability to control degrades as O(N) for easy tasks and as O(N2) for hard tasks. As a consequence, even in the most favorable estimate, for large quantum systems, generic noise in the controls dominates for a typical class of target transformations, i.e. complete controllability is destroyed by noise. (paper)

  12. Complex shape product tolerance and accuracy control method for virtual assembly

    Science.gov (United States)

    Ma, Huiping; Jin, Yuanqiang; Zhang, Xiaoguang; Zhou, Hai

    2015-02-01

    The simulation of virtual assembly process for engineering design lacks of accuracy in the software of three-dimension CAD at present. Product modeling technology with tolerance, assembly precision preanalysis technique and precision control method are developed. To solve the problem of lack of precision information transmission in CAD, tolerance mathematical model of Small Displacement Torsor (SDT) is presented, which can bring about technology transfer and establishment of digital control function for geometric elements from the definition, description, specification to the actual inspection and evaluation process. Current tolerance optimization design methods for complex shape product are proposed for optimization of machining technology, effective cost control and assembly quality of the products.

  13. Pinning synchronization of two general complex networks with periodically intermittent control

    Directory of Open Access Journals (Sweden)

    Meng Fanyu

    2015-12-01

    Full Text Available In this paper, the method of periodically pinning intermittent control is introduced to solve the problem of outer synchronization between two complex networks. Based on the Lyapunov stability theory, differential inequality method and adaptive technique, some simple synchronous criteria have been derived analytically. At last, both the theoretical and numerical analysis illustrate the effectiveness of the proposed control methodology. This method not only reduces the conservatism of control gain but also saves the cost of production.These advantages make this method having a large application scope in the real production process.

  14. Partial control of complex systems with application to the Fluidized Catalytic Cracker

    Energy Technology Data Exchange (ETDEWEB)

    Rinard, I.H.; Shinnar, R.

    1996-12-31

    The research deals with the control of complex nonlinear system with a limited number of manipulated variables. In many chemical processes the number of variables that make up the specifications and constraints exceeds the number of manipulated variables available. Furthermore, model information is limited. The goal of this work is to study the design of the control system and the conditions required to achieve adequate control for such cases. A Fluid Catalytic Cracker was chosen to illustrate and test the approach. This paper presents a short overview and summary of the approach and results.

  15. Combined control of fast attitude maneuver and stabilization for large complex spacecraft

    Science.gov (United States)

    Zhang, Yao; Zhang, Jing-Rui

    2013-12-01

    In remote sensing or laser communication space missions, spacecraft need fast maneuver and fast stabilization in order to accomplish agile imaging and attitude tracking tasks. However, fast attitude maneuvers can easily cause elastic deformations and vibrations in flexible appendages of the spacecraft. This paper focuses on this problem and deals with the combined control of fast attitude maneuver and stabilization for large complex spacecraft. The mathematical model of complex spacecraft with flexible appendages and momentum bias actuators on board is presented. Based on the plant model and combined with the feedback controller, modal parameters of the closed-loop system are calculated, and a multiple mode input shaper utilizing the modal information is designed to suppress vibrations. Aiming at reducing vibrations excited by attitude maneuver, a quintic polynomial form rotation path planning is proposed with constraints on the actuators and the angular velocity taken into account. Attitude maneuver simulation results of the control systems with input shaper or path planning in loop are separately analyzed, and based on the analysis, a combined control strategy is presented with both path planning and input shaper in loop. Simulation results show that the combined control strategy satisfies the complex spacecraft's requirement of fast maneuver and stabilization with the actuators' torque limitation satisfied at the same time.

  16. Decentralized adaptive robust controller design for complex system based on partition of unity

    Institute of Scientific and Technical Information of China (English)

    WANG Wenqing; HAN Chongzhao

    2007-01-01

    A new method for designing decentralized adaptive robust controllers was proposed which focuses on a class of more general uncertain complex systems,using the concept of the partition of unity in differential geometry to deal with system uncertainties.In this method the uncertainty of the system to be controlled was normalized firstly,and then the partition of unity that was subordinated to an open covering of state variables compact set was constructed.Subsequently the approximation was realized by using its property that can approximate nonlinear continuous function with arbitrary precision,and then the decentralized adaptive robust controller of complex systems and adaptive laws of approximate parameter estimation were designed.Compared to existing methods,the proposed algorithm requires simpler assumed conditions and no complicated computations.Simulation result shows that the method is valid.

  17. Efficient polarization insensitive complex wavefront control using Huygens' metasurfaces based on dielectric resonant meta-atoms

    CERN Document Server

    Chong, Katie E; Staude, Isabelle; James, Anthony; Dominguez, Jason; Liu, Sheng; Subramania, Ganapathi S; Decker, Manuel; Neshev, Dragomir N; Brener, Igal; Kivshar, Yuri S

    2016-01-01

    Subwavelength-thin metasurfaces have shown great promises for the control of optical wavefronts, thus opening new pathways for the development of efficient flat optics. In particular, Huygens' metasurfaces based on all-dielectric resonant meta-atoms have already shown a huge potential for practical applications with their polarization insensitivity and high transmittance efficiency. Here, we experimentally demonstrate a polarization insensitive holographic Huygens' metasurface based on dielectric resonant meta-atoms capable of complex wavefront control at telecom wavelengths. Our metasurface produces a hologram image in the far-field with 82% transmittance efficiency and 40% imaging efficiency. Such efficient complex wavefront control shows that Huygens' metasurfaces based on resonant dielectric meta-atoms are a big step towards practical applications of metasurfaces in wavefront design related technologies, including computer-generated holograms, ultra-thin optics, security and data storage devices.

  18. Impact of complexity and computer control on errors in radiation therapy.

    Science.gov (United States)

    Fraass, B A

    2012-01-01

    A number of recent publications in both the lay and scientific press have described major errors in patient radiation treatments, and this publicity has galvanised much work to address and mitigate potential safety issues throughout the radiation therapy planning and delivery process. The complexity of modern radiotherapy techniques and equipment, including computer-controlled treatment machines and treatment management systems, as well as sophisticated treatment techniques that involve intensity-modulated radiation therapy, image-guided radiation therapy, stereotactic body radiation therapy, volumetric modulated arc therapy, respiratory gating, and others, leads to concern about safety issues related to that complexity. This article illustrates the relationship between complexity and computer control, and various safety problems and errors that have been reported, and describes studies that address the issue of these modern techniques and whether their complexity does, in fact, result in more errors or safety-related problems. Clinical implications of these results are discussed, as are some of the ways in which the field should respond to the ongoing concerns about errors and complexity in radiation therapy. PMID:23089018

  19. Description and control of dissociation channels in gas-phase protein complexes

    Science.gov (United States)

    Thachuk, Mark; Fegan, Sarah K.; Raheem, Nigare

    2016-08-01

    Using molecular dynamics simulations of a coarse-grained model of the charged apo-hemoglobin protein complex, this work expands upon our initial report [S. K. Fegan and M. Thachuk, J. Am. Soc. Mass Spectrom. 25, 722-728 (2014)] about control of dissociation channels in the gas phase using specially designed charge tags. Employing a charge hopping algorithm and a range of temperatures, a variety of dissociation channels are found for activated gas-phase protein complexes. At low temperatures, a single monomer unfolds and becomes charge enriched. At higher temperatures, two additional channels open: (i) two monomers unfold and charge enrich and (ii) two monomers compete for unfolding with one eventually dominating and the other reattaching to the complex. At even higher temperatures, other more complex dissociation channels open with three or more monomers competing for unfolding. A model charge tag with five sites is specially designed to either attract or exclude charges. By attaching this tag to the N-terminus of specific monomers, the unfolding of those monomers can be decidedly enhanced or suppressed. In other words, using charge tags to direct the motion of charges in a protein complex provides a mechanism for controlling dissociation. This technique could be used in mass spectrometry experiments to direct forces at specific attachment points in a protein complex, and hence increase the diversity of product channels available for quantitative analysis. In turn, this could provide insight into the function of the protein complex in its native biological environment. From a dynamics perspective, this system provides an interesting example of cooperative behaviour involving motions with differing time scales.

  20. A Lean Framework for Production Control in Complex and Constrained Construction Projects

    DEFF Research Database (Denmark)

    Lindhard, Søren Munch; Wandahl, Søren

    2014-01-01

    Production conditions in construction are different than in themanufacturing industry. First of all, construction is rooted in place and conducted as on-site manufacturing. Secondly, every construction project is unique and a one-of-a-kind production, managed by a temporary organization consistin...... in the lean tool Last Planner System of Production Control, a robust construction production control framework has been developed.......Production conditions in construction are different than in themanufacturing industry. First of all, construction is rooted in place and conducted as on-site manufacturing. Secondly, every construction project is unique and a one-of-a-kind production, managed by a temporary organization consisting...... interacting and overlapping activities. This increases uncertainty and make the construction process very difficult to plan and control. Additionally, a lot of unpredictable factors (e.g. climate conditions) affects control, and makes construction even more complex. Production control is an essential part of...

  1. A new yeast poly(A polymerase complex involved in RNA quality control.

    Directory of Open Access Journals (Sweden)

    Stepánka Vanácová

    2005-06-01

    Full Text Available Eukaryotic cells contain several unconventional poly(A polymerases in addition to the canonical enzymes responsible for the synthesis of poly(A tails of nuclear messenger RNA precursors. The yeast protein Trf4p has been implicated in a quality control pathway that leads to the polyadenylation and subsequent exosome-mediated degradation of hypomethylated initiator tRNAMet (tRNAiMet. Here we show that Trf4p is the catalytic subunit of a new poly(A polymerase complex that contains Air1p or Air2p as potential RNA-binding subunits, as well as the putative RNA helicase Mtr4p. Comparison of native tRNAiMet with its in vitro transcribed unmodified counterpart revealed that the unmodified RNA was preferentially polyadenylated by affinity-purified Trf4 complex from yeast, as well as by complexes reconstituted from recombinant components. These results and additional experiments with other tRNA substrates suggested that the Trf4 complex can discriminate between native tRNAs and molecules that are incorrectly folded. Moreover, the polyadenylation activity of the Trf4 complex stimulated the degradation of unmodified tRNAiMet by nuclear exosome fractions in vitro. Degradation was most efficient when coupled to the polyadenylation activity of the Trf4 complex, indicating that the poly(A tails serve as signals for the recruitment of the exosome. This polyadenylation-mediated RNA surveillance resembles the role of polyadenylation in bacterial RNA turnover.

  2. Multi-agent based control of large-scale complex systems employing distributed dynamic inference engine

    Science.gov (United States)

    Zhang, Daili

    Increasing societal demand for automation has led to considerable efforts to control large-scale complex systems, especially in the area of autonomous intelligent control methods. The control system of a large-scale complex system needs to satisfy four system level requirements: robustness, flexibility, reusability, and scalability. Corresponding to the four system level requirements, there arise four major challenges. First, it is difficult to get accurate and complete information. Second, the system may be physically highly distributed. Third, the system evolves very quickly. Fourth, emergent global behaviors of the system can be caused by small disturbances at the component level. The Multi-Agent Based Control (MABC) method as an implementation of distributed intelligent control has been the focus of research since the 1970s, in an effort to solve the above-mentioned problems in controlling large-scale complex systems. However, to the author's best knowledge, all MABC systems for large-scale complex systems with significant uncertainties are problem-specific and thus difficult to extend to other domains or larger systems. This situation is partly due to the control architecture of multiple agents being determined by agent to agent coupling and interaction mechanisms. Therefore, the research objective of this dissertation is to develop a comprehensive, generalized framework for the control system design of general large-scale complex systems with significant uncertainties, with the focus on distributed control architecture design and distributed inference engine design. A Hybrid Multi-Agent Based Control (HyMABC) architecture is proposed by combining hierarchical control architecture and module control architecture with logical replication rings. First, it decomposes a complex system hierarchically; second, it combines the components in the same level as a module, and then designs common interfaces for all of the components in the same module; third, replications

  3. Interactions between default mode and control networks as a function of increasing cognitive reasoning complexity.

    Science.gov (United States)

    Hearne, Luke; Cocchi, Luca; Zalesky, Andrew; Mattingley, Jason B

    2015-07-01

    Successful performance of challenging cognitive tasks depends on a consistent functional segregation of activity within the default-mode network, on the one hand, and control networks encompassing frontoparietal and cingulo-opercular areas on the other. Recent work, however, has suggested that in some cognitive control contexts nodes within the default-mode and control networks may actually cooperate to achieve optimal task performance. Here, we used functional magnetic resonance imaging to examine whether the ability to relate variables while solving a cognitive reasoning problem involves transient increases in connectivity between default-mode and control regions. Participants performed a modified version of the classic Wason selection task, in which the number of variables to be related is systematically varied across trials. As expected, areas within the default-mode network showed a parametric deactivation with increases in relational complexity, compared with neural activity in null trials. Critically, some of these areas also showed enhanced connectivity with task-positive control regions. Specifically, task-based connectivity between the striatum and the angular gyri, and between the thalamus and right temporal pole, increased as a function of relational complexity. These findings challenge the notion that functional segregation between regions within default-mode and control networks invariably support cognitive task performance, and reveal previously unknown roles for the striatum and thalamus in managing network dynamics during cognitive reasoning. PMID:25833189

  4. Pinning-controlled synchronization of complex networks with bounded or unbounded synchronized regions

    Institute of Scientific and Technical Information of China (English)

    Zou Yan-Li; Chen Guan-Rong

    2009-01-01

    This paper studies pinning-controlled synchronization of complex networks with bounded or unbounded synchro nized regions.To study a state-feedback pinning-controlled network with N nodes,it first converts the controlled network to an extended network of N+1 nodes without controls.It is shown that the controlled synchronizability of the given network is determined by the real part of the smallest nonzero eigenvalue of the coupling matrix of its extended network when the synchronized region is unbounded; but it is determined by the ratio of the real parts of the largest and the smallest nonzero eigenvalues of the coupling matrix when the synchronized region is bounded.Both theoretical analysis and numerical simulation show that the portion of controlled nodes has no critical values when the synchronized region is unbounded,but it has a critical value when the synchronized region is bounded.In the former case,therefore,it is possible to control the network to achieve synchronization by pinning only one node.In the latter ease,the network can achieve controlled synchronization only when the portion of controlled nodes is larger than the critical value.

  5. SCIENTIFIC METHODOLOGICAL APPROACHES TO CREATION OF COMPLEX CONTROL SYSTEM MODEL FOR THE STREAMS OF BUILDING WASTE

    Directory of Open Access Journals (Sweden)

    Tskhovrebov Eduard Stanislavovich

    2015-09-01

    Full Text Available In 2011 in Russia a Strategy of Production Development of Construction Materials and Industrial Housing Construction for the period up to 2020 was approved as one of strategic documents in the sphere of construction. In the process of this strategy development all the needs of construction complex were taken into account in all the spheres of economy, including transport system. The strategy also underlined, that the construction industry is a great basis for use and application in secondary economic turnover of dangerous waste from different production branches. This gives possibility to produce construction products of recycled materials and at the same time to solve the problem of environmental protection. The article considers and analyzes scientific methodological approaches to creation of a model of a complex control system for the streams of building waste in frames of organizing uniform ecologically safe and economically effective complex system of waste treatment in country regions.

  6. Rapid Synthesis of Size-controlled Gold Nanoparticles by Complex Intramolecular Photoreduction

    Institute of Scientific and Technical Information of China (English)

    DONG Shou-an; YANG Sheng-chun; TANG Chun

    2007-01-01

    A rapid synthesis of size-controlled gold nanoparticles was proposed. The method is based on the sensitive intramolecular photoreduction reaction of Fe( Ⅲ )-EDTA complex in chloroacetic acid-sodium acetate buffer solution,where Fe(Ⅱ)-EDTA complex generated by photo-promotion acts as a reductant of AuCl4- ions. Gold nanoparticles formed were stabilized by EDTA ligand or other protective agents added. As a result, well-dispersed gold nanoparticles with an average diameter range of 6.7 to 50. 9 nm were obtained. According to the characterizations by the UV spectrum and TEM, the intramolecular charge transfer of the excited states of complex Fe(Ⅲ) -EDTA and the mechanism of forming gold nanoparticles were discussed in detail.

  7. SELF-ADAPTIVE CONTROLS OF A COMPLEX CELLULAR SIGNALING TRANSDUCTION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    LI Hong; ZHOU Zhiyuan; DAI Rongyang; LUO Bo; ZHENG Xiaoli; YANG Wenli; HE Tao; WU Minglu

    2004-01-01

    In cells, the interactions of distinct signaling transduction pathways originating from cross-talkings between signaling molecules give rise to the formation of signaling transduction networks, which contributes to the changes (emergency) of kinetic behaviors of signaling system compared with single molecule or pathway. Depending on the known experimental data, we have constructed a model for complex cellular signaling transduction system, which is derived from signaling transduction of epidermal growth factor receptor in neuron. By the computational simulating methods, the self-adaptive controls of this system have been investigated. We find that this model exhibits a relatively stable selfadaptive system, especially to over-stimulation of agonist, and the amplitude and duration of signaling intermediates in it could be controlled by multiple self-adaptive effects, such as "signal scattering", "positive feedback", "negative feedback" and "B-Raf shunt". Our results provide an approach to understanding the dynamic behaviors of complex biological systems.

  8. Multivariable closed loop control analysis and synthesis for complex flight systems

    Science.gov (United States)

    Schmidt, D. K.

    1981-01-01

    A flight control system analysis and synthesis method is presented that is intended to be especially suitable for application to vehicles exhibiting complex dynamic characteristics. For such vehicles quantitative handling qualities specifications are not usually available. Howver, handling qualities objectives are specifically introduced in this method via the hypothesis of correlation between pilot ratings and the objective function of an optimal control model of the human pilot. Further, since augmentation and pilot operate in parallel, simultaneous determination of the augmentation and pilot model gains is required. Desirable augmented dynamics are obtained for a variety of complex systems and the method is experimentally verified in the case of simple pilot damper gain selection for optimum pitch tracking performance.

  9. Simulation of complex glazing products; from optical data measurements to model based predictive controls

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Christian

    2012-08-01

    Complex glazing systems such as venetian blinds, fritted glass and woven shades require more detailed optical and thermal input data for their components than specular non light-redirecting glazing systems. Various methods for measuring these data sets are described in this paper. These data sets are used in multiple simulation tools to model the thermal and optical properties of complex glazing systems. The output from these tools can be used to generate simplified rating values or as an input to other simulation tools such as whole building annual energy programs, or lighting analysis tools. I also describe some of the challenges of creating a rating system for these products and which factors affect this rating. A potential future direction of simulation and building operations is model based predictive controls, where detailed computer models are run in real-time, receiving data for an actual building and providing control input to building elements such as shades.

  10. Engineering a large application software project: the controls of the CERN PS accelerator complex

    International Nuclear Information System (INIS)

    The CERN PS accelerator complex has been progressively converted to full computer controls without interrupting its full-time operation (more than 6000 hours per year with on average not more than 1% of the total down-time due to controls). The application software amounts to 120 man-years and 450'000 instructions: it compares with other large software projects, also outside the accelerator world: e.g. Skylab's ground support software. This paper outlines the application software structure which takes into account technical requirements and constraints (resulting from the complexity of the process and its operation) and economical and managerial ones. It presents the engineering and management techniques used to promote implementation, testing and commissioning within budget, manpower and time constraints and concludes with experience gained

  11. Controlling collective dynamics in complex, minority-game resource-allocation systems

    CERN Document Server

    Zhang, Ji-Qiang; Huang, Zi-Gang; Huang, Liang; Huang, Tie-Qiao; Lai, Ying-Cheng

    2013-01-01

    Resource allocation takes place in various kinds of real-world complex systems, such as the traffic systems, social services institutions or organizations, or even the ecosystems. The fundamental principle underlying complex resource-allocation dynamics is Boolean interactions associated with minority games, as resources are generally limited and agents tend to choose the least used resource based on available information. A common but harmful dynamical behavior in resource-allocation systems is herding, where there are time intervals during which a large majority of the agents compete for a few resources, leaving many other resources unused. Ac- companying the herd behavior is thus strong fluctuations with time in the number of resources being used. In this paper, we articulate and establish that an intuitive control strategy, namely pinning control, is effective at harnessing the herding dynamics. In particular, by fixing the choices of resources for a few agents while leaving majority of the agents free, h...

  12. Distributed optimization-based control of multi-agent networks in complex environments

    CERN Document Server

    Zhu, Minghui

    2015-01-01

    This book offers a concise and in-depth exposition of specific algorithmic solutions for distributed optimization based control of multi-agent networks and their performance analysis. It synthesizes and analyzes distributed strategies for three collaborative tasks: distributed cooperative optimization, mobile sensor deployment and multi-vehicle formation control. The book integrates miscellaneous ideas and tools from dynamic systems, control theory, graph theory, optimization, game theory and Markov chains to address the particular challenges introduced by such complexities in the environment as topological dynamics, environmental uncertainties, and potential cyber-attack by human adversaries. The book is written for first- or second-year graduate students in a variety of engineering disciplines, including control, robotics, decision-making, optimization and algorithms and with backgrounds in aerospace engineering, computer science, electrical engineering, mechanical engineering and operations research. Resea...

  13. Complex control of physical readiness of youth in higher educational institutions

    Directory of Open Access Journals (Sweden)

    Semenova O.E.

    2010-11-01

    Full Text Available Generalized and analysed experience of computer-integrated estimation of the state of physical preparedness of students and students (of a military school. The dynamics of physical preparedness was probed 18 students. A level and dynamics of physical preparedness of students was probed from data of control tests during 5 years of employments. Selected and described contingent of students on the level of physical preparedness. Possibility and evidentness of the use of method of complex control of level and dynamics of physical preparedness of students is rotined during all period teaching in a military institute.

  14. Fabrication of advanced Bragg gratings with complex apodization profiles by use of the polarization control method

    DEFF Research Database (Denmark)

    Deyerl, Hans-Jürgen; Plougmann, Nikolai; Jensen, Jesper Bo Damm; Floreani, Filip; Sørensen, Henrik Rokkjær; Kristensen, Martin

    2004-01-01

    The polarization control method offers a flexible, robust, and low-cost route for the parallel fabrication of gratings with complex apodization profiles including several discrete phase shifts and chirp. The performance of several test gratings is evaluated in terms of their spectral response and...... compared with theoretical predictions. Short gratings with sidelobe-suppression levels in excess of 32 dB and transmission dips lower than 80 dB have been realized. Finally, most of the devices fabricated by the polarization control method show comparable quality to gratings manufactured by far more...

  15. Finite-time synchronization of complex dynamical networks with multi-links via intermittent controls

    Science.gov (United States)

    Zheng, Mingwen; Li, Lixiang; Peng, Haipeng; Xiao, Jinghua; Yang, Yixian; Zhao, Hui; Ren, Jingfeng

    2016-02-01

    This paper considers finite-time synchronization of complex multi-links dynamical networks with or without internal time delays via intermittent controls. Two simple intermittent feedback controllers are designed to achieve finite-time synchronization between the drive and response system. Some novel and effective finite-time synchronization criteria are derived based on finite-time stability analysis techniques. By constructing suitable Lyapunov functions, we theoretically prove its correctness. Finally, two numerical simulation examples are given to show the effectiveness of proposed method in this paper.

  16. Control protocol: large scale implementation at the CERN PS complex - a first assessment

    Energy Technology Data Exchange (ETDEWEB)

    Abie, H. (CERN, 1211, Geneva 23 (Switzerland)); Benincasa, G. (CERN, 1211, Geneva 23 (Switzerland)); Coudert, G. (CERN, 1211, Geneva 23 (Switzerland)); Davydenko, Y. (CERN, 1211, Geneva 23 (Switzerland)); Dehavay, C. (CERN, 1211, Geneva 23 (Switzerland)); Gavaggio, R. (CERN, 1211, Geneva 23 (Switzerland)); Gelato, G. (CERN, 1211, Geneva 23 (Switzerland)); Heinze, W. (CERN, 1211, Geneva 23 (Switzerland)); Legras, M. (CERN, 1211, Geneva 23 (Switzerland)); Lustig, H. (CERN, 1211, Geneva 23 (Switzerland)); Merard, L. (CERN, 1211, Geneva 23 (Switzerland)); Pearson, T. (CERN, 1211, Geneva 23 (Switzerland)); Strubin, P. (CERN, 1211, Geneva 23 (Switzerland)); Tedesco, J. (CERN, 1211, Geneva 23 (Switzerland))

    1994-12-15

    The Control Protocol is a model-based, uniform access procedure from a control system to accelerator equipment. It was proposed at CERN about 5 years ago and prototypes were developed in the following years. More recently, this procedure has been finalized and implemented at a large scale in the PS Complex. More than 300 pieces of equipment are now using this protocol in normal operation and another 300 are under implementation. These include power converters, vacuum systems, beam instrumentation devices, RF equipment, etc. This paper describes how the single general procedure is applied to the different kinds of equipment. The advantages obtained are also discussed. ((orig.))

  17. Control protocol: large scale implementation at the CERN PS complex - a first assessment

    International Nuclear Information System (INIS)

    The Control Protocol is a model-based, uniform access procedure from a control system to accelerator equipment. It was proposed at CERN about 5 years ago and prototypes were developed in the following years. More recently, this procedure has been finalized and implemented at a large scale in the PS Complex. More than 300 pieces of equipment are now using this protocol in normal operation and another 300 are under implementation. These include power converters, vacuum systems, beam instrumentation devices, RF equipment, etc. This paper describes how the single general procedure is applied to the different kinds of equipment. The advantages obtained are also discussed. ((orig.))

  18. Complexity Theory of Beam Halo-Chaos and Its Control Methods With Prospective Applications

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This article offers an overview and comprehensive survey of the complexity theory of beamhalo-chaos and its control methods with prospective applications. In recent years, there has been growinginterest in proton beams of high power linear accelerator due to its attractive features in possiblebreakthrough applications, such as production of nuclear materials (e.g., tritium, transforming 232Th to233U), transmutation of radioactive wastes, productions of radioactive isotopes for medical use, heavy ion

  19. Complex Event Processing Approach To Automated Monitoring Of Particle Accelerator And Its Control System

    OpenAIRE

    Karol Grzegorczyk; Vito Baggiolini; Krzysztof Zieliński

    2014-01-01

    This article presents the design and implementation of a software component for automated monitoring and diagnostic information analysis of a particle accelerator and its control system. The information that is analyzed can be seen as streams of events. A Complex Event Processing (CEP) approach to event processing was selected. The main advantage of this approach is the ability to continuously query data coming from several streams. The presented software component is based on Esper, the most...

  20. Control of cognition and adaptive behavior by the GLP/G9a epigenetic suppressor complex

    OpenAIRE

    Schaefer, Anne; Sampath, Srihari C.; Intrator, Adam; Min, Alice; Gertler, Tracy S.; Surmeier, D. James; Tarakhovsky, Alexander; Greengard, Paul

    2009-01-01

    The genetic basis of cognition and behavioral adaptation to the environment remains poorly understood. Here we demonstrate that the histone methyltransferase complex GLP/G9a controls cognition and adaptive responses in a region-specific fashion in the adult brain. Using conditional mutagenesis in mice, we show that postnatal, neuron-specific deficiency of GLP/G9a leads to de-repression of numerous non-neuronal and neuron progenitor genes in adult neurons. This transcriptional alteration is as...

  1. Control of electron transport routes through redox-regulated redistribution of respiratory complexes

    OpenAIRE

    Liu, Lu-Ning; Samantha J Bryan; Huang, Fang; Yu, Jianfeng; Nixon, Peter J.; Rich, Peter R.; Mullineaux, Conrad W.

    2012-01-01

    In cyanobacteria, respiratory electron transport takes place in close proximity to photosynthetic electron transport, because the complexes required for both processes are located within the thylakoid membranes. The balance of electron transport routes is crucial for cell physiology, yet the factors that control the predominance of particular pathways are poorly understood. Here we use a combination of tagging with green fluorescent protein and confocal fluorescence microscopy in live cells o...

  2. ASEBA: A Modular Architecture for Event-Based Control of Complex Robots

    OpenAIRE

    Magnenat, Stéphane; Rétornaz, Philippe; Bonani, Michael; Longchamp, Valentin; Mondada, Francesco

    2011-01-01

    We propose ASEA, a modular architecture for event-based control of complex robots. ASEBA runs scripts inside virtual machines on self-contained sensor and actuator nodes. This distributes processing with no loss of versatility and provides several benefits. The closeness to the hardware allows fast reactivity to environmental stimuli. The exploitation of peripheral processing power to filter raw data offloads any central computer and thus allows the integration of a large number of peripheral...

  3. Complex Genetics Control Natural Variation in Arabidopsis thaliana Resistance to Botrytis cinerea

    OpenAIRE

    Rowe, Heather C.; Daniel J Kliebenstein

    2008-01-01

    The genetic architecture of plant defense against microbial pathogens may be influenced by pathogen lifestyle. While plant interactions with biotrophic pathogens are frequently controlled by the action of large-effect resistance genes that follow classic Mendelian inheritance, our study suggests that plant defense against the necrotrophic pathogen Botrytis cinerea is primarily quantitative and genetically complex. Few studies of quantitative resistance to necrotrophic pathogens have used larg...

  4. Complexity Management to design and produce customerspecific hydraulic controls for mobile applications

    OpenAIRE

    Krüßmann, Martin; Tischler, Karin

    2016-01-01

    Complexity management is the key to success for mobile machinery where the variety of customers and applications requires individual solutions. This paper presents the way Bosch Rexroth supports each OEM with hydraulic controls – from specification and conception towards application and production. It gives examples how platforms and processes are optimized according to the customer needs. The demand for flexible, short-term deliveries is met by an agile production with the technologies of In...

  5. GABAA receptor complex function in frontal cortex membranes from control and neurological patients.

    Science.gov (United States)

    Lloyd, G K; Lowenthal, A; Javoy-Agid, F; Constantidinis, J

    1991-05-01

    The functional integrity of the GABAA receptor-benzodiazepine (BZ) recognition site-Cl- ionophore complex was assessed by means of [35S]TBPS (t-butylbicyclophosphorothionate) binding to frontal cortex membranes prepared from frozen postmortem brain tissue taken from control (n = 4), Alzheimer (n = 7), Parkinson (n = 3) and Huntington's chorea (n = 2) patients. Specific [35S]TBPS binding was similar in control, Parkinson's disease and Huntington's chorea brains, but was significantly reduced (78% control, P less than 0.01) in frontal cortex membranes from Alzheimer's patients. The linkage between the BZ recognition sites and the GABAA receptor-linked Cl- ionophore was functionally intact in these membranes as BZ site agonists (zolpidem, alpidem, flunitrazepam and clonazepam) enhanced [35S]TBPS binding under the conditions used (well-washed membranes in the presence of 1.0 M NaCl). Zolpidem (BZ1 selective) exhibited a biphasic enhancement in control membranes whereas the other compounds induced a bell-shaped concentration-response curve. The enhancement of [35S]TBPS binding by alpidem, flunitrazepam and clonazepam was greater in frontal cortex membranes from Alzheimer's patients than in controls whereas it tended to be reduced in membranes from the brains of Huntington's chorea patients. These studies demonstrate the functional integrity of the GABAA receptor macromolecular complex and also the usefulness of [35S]TBPS binding in the study of human postmortem tissue. PMID:1654259

  6. Effects of Edge Directions on the Structural Controllability of Complex Networks.

    Directory of Open Access Journals (Sweden)

    Yandong Xiao

    Full Text Available Recent advances indicate that assigning or reversing edge direction can significantly improve the structural controllability of complex networks. For directed networks, approaching the optimal structural controllability can be achieved by detecting and reversing certain "inappropriate" edge directions. However, the existence of multiple sets of "inappropriate" edge directions suggests that different edges have different effects on optimal controllability-that is, different combinations of edges can be reversed to achieve the same structural controllability. Therefore, we classify edges into three categories based on their direction: critical, redundant and intermittent. We then investigate the effects of changing these edge directions on network controllability, and demonstrate that the existence of more critical edge directions implies not only a lower cost of modifying inappropriate edges but also better controllability. Motivated by this finding, we present a simple edge orientation method aimed at producing more critical edge directions-utilizing only local information-which achieves near optimal controllability. Furthermore, we explore the effects of edge direction on the controllability of several real networks.

  7. Complex Event Processing Approach To Automated Monitoring Of Particle Accelerator And Its Control System

    Directory of Open Access Journals (Sweden)

    Karol Grzegorczyk

    2014-01-01

    Full Text Available This article presents the design and implementation of a software component for automated monitoring and diagnostic information analysis of a particle accelerator and its control system. The information that is analyzed can be seen as streams of events. A Complex Event Processing (CEP approach to event processing was selected. The main advantage of this approach is the ability to continuously query data coming from several streams. The presented software component is based on Esper, the most popular open-source implementation of CEP. As a test bed, the control system of the accelerator complex located at CERN, the European Organization for Nuclear Research, was chosen. The complex includes the Large Hadron Collider, the world’s most powerful accelerator. The main contribution to knowledge is by showing that the CEP approach can successfully address many of the challenges associated with automated monitoring of the accelerator and its control system that were previously unsolved. Test results, performance analysis, and a proposal for further works are also presented.

  8. Investigating the Complexity of Transitioning Separation Assurance Tools into NextGen Air Traffic Control

    Science.gov (United States)

    Gomez, Ashley Nicole; Martin, Lynne Hazel; Homola, Jeffrey; Morey, Susan; Cabrall, Christopher; Mercer, Joey; Prevot, Thomas

    2013-01-01

    In a study, that introduced ground-based separation assurance automation through a series of envisioned transitional phases of concept maturity, it was found that subjective responses to scales of workload, situation awareness, and acceptability in a post run questionnaire revealed as-predicted results for three of the four study conditions but not for the third, Moderate condition. The trend continued for losses of separation (LOS) where the number of LOS events were far greater than expected in the Moderate condition. To offer an account of why the Moderate condition was perceived to be more difficult to manage than predicted, researchers examined the increase in amount and complexity of traffic, increase in communication load, and increased complexities as a result of the simulation's mix of aircraft equipage. Further analysis compared the tools presented through the phases, finding that controllers took advantage of the informational properties of the tools presented but shied away from using their decision support capabilities. Taking into account similar findings from other studies, it is suggested that the Moderate condition represented the first step into a "shared control" environment, which requires the controller to use the automation as a decision making partner rather than just a provider of information. Viewed in this light, the combination of tools offered in the Moderate condition was reviewed and some tradeoffs that may offset the identified complexities were suggested.

  9. Automated complex of radiation control of movement of fissile and other radioactive materials

    International Nuclear Information System (INIS)

    Full text: In the frame of grant FA-A11-F072 automated radiation control complex on the basis of multi-detector system was elaborated. The following problems were solved during the study: system configuration including standards, elemental basis, interfaces, information exchange protocols, signals, power supply units, construction details and so on. The functional schemes of constituent pars and the complex as a whole were elaborated including software algorithms and the construction of radiation monitor. In 2010 the experimental prototype of radiation control complex was manufactured and software for microcontrollers was elaborated. Long time laboratory tests of the system including temperature ones were fulfilled and the scientific technical documentation was prepared. The experimental sample of detection system of fissile and other radioactive materials was installed at Bekabad UZMETKOMBINAT enterprise. Installed system comprises two pillars of radiation portal monitor with 8 gamma detectors, power supply unit, data processing unit, commutation and interface transformation unit, indication and alarm elements, server on IBM PC basis and software. Installed system was officially commissioned in May 2011 at railway scales of enterprise, where the initial radiation control of incoming metal scrap rakes place. From this time up to now a lot of cases of elevated radiation level in the scrap coming from Kyrgyzstan and Kazakhstan were detected by radiation control system, the most frequent cause of alarms being 226Ra radionuclide. In all cases of alarms caused by radioactive materials in contaminated scrap the performers of the present project of INP AS RU conducted additional radiation research and issued expertise conclusions. Thus the radiation control system elaborated and manufactured in INP proved its reliability in detection of radioactive substances and in prevention of radiation contamination of metal products. (author)

  10. You Need to Know: There Is a Causal Relationship between Structural Knowledge and Control Performance in Complex Problem Solving Tasks

    Science.gov (United States)

    Goode, Natassia; Beckmann, Jens F.

    2010-01-01

    This study investigates the relationships between structural knowledge, control performance and fluid intelligence in a complex problem solving (CPS) task. 75 participants received either complete, partial or no information regarding the underlying structure of a complex problem solving task, and controlled the task to reach specific goals.…

  11. Critical Nodes Identification of Power Systems Based on Controllability of Complex Networks

    Directory of Open Access Journals (Sweden)

    Yu-Shuai Li

    2015-09-01

    Full Text Available This paper proposes a new method for assessing the vulnerability of power systems based on the controllability theories of complex networks. A novel controllability index is established, taking into consideration the full controllability of the power systems, for identifying critical nodes. The network controllability model is used to calculate the minimum number of driver nodes (ND, which can solve the computable problems of the controllability of power systems. The proposed approach firstly applies the network controllability theories to research the power systems' vulnerability, which can not only effectively reveal the important nodes but also maintain full control of the power systems. Meanwhile, the method can also overcome the limitation of the hypothesis that the weight of each link or transmission line must be known compared with the existing literature. In addition, the power system is considered as a directed network and the power system model is also redefined. The proposed methodology is then used to identify critical nodes of the IEEE 118 and 300 bus system. The results show that the failure of the critical nodes can clearly increase ND and lead a significant driver node shift. Thus, the rationality and validity are verified.

  12. The alternative complement pathway control protein H binds to immune complexes and serves their detection

    International Nuclear Information System (INIS)

    During solubilization of immune complexes C3b becomes fixed to the immunoglobulin part and serves as a receptor for the alternative complement pathway control protein H. The H-C3b immune complex interaction can be made detectable using 4% polyethyleneglycol to separate free from bound 125I-H. Tetanus toxoid (Te)/anti-Te complexes kept soluble with fresh serum and containing 125 IU of specific antibody bound 18% of 125I-H; when fresh serum was chelated with 10 mM EDTA, 125I-H binding was only 5%. On sucrose density gradients, the H-binding material sedimented in the range of 12 to 30 S. In 36 serum samples from rheumatoid arthritis (RA) patients and in 12 serum samples from patients with systemic lupus erythematosus (SLE), 125I-H binding was significantly elevated to 9.5 +/- 4.7% (mean +/- 1 SD) and 13.3 +/- 5.6%, respectively, while 125I-H binding by 36 normal human sera was 4 +/- 2%. RA samples (17/36, 47%) and SLE samples (9/12, 75%) had H-binding values increased by more than 2 SD above the normal mean. The serum samples were also assessed for conglutinin- and C1q-binding activities; a significant correlation between H and C1q binding was observed (P less than 0.001); there was no correlation between H and conglutinin binding. Although binding to immune complexes through its interaction with C3b, H clearly detects a population of complexes other than conglutinin, thus expanding the possibilities of further characterizing pathological complexes

  13. Discomfort glare with complex fenestration systems and the impact on energy use when using daylighting control

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Sabine; McNeil, Andrew; Lee, Eleanor S.; Kalyanam, Raghuram

    2015-11-03

    Glare is a frequent issue in highly glazed buildings. A modelling approach is presented that uses discomfort glare probability and discomfort glare index as metrics to determine occupants’ behaviour. A glare control algorithm that actuated an interior shade for glare protection based on the predicted perception was implemented in a building simulation program. A reference case with a state-of-the-art base glazing was compared to the same glazing but with five different complex fenestration systems, i.e., exterior shades. The windows with exterior shades showed significant variations in glare frequencies. Energy use intensity in a prototypical office building with daylighting controls was greatly influenced for the systems with frequent glare occurrence. While the base glazing could benefit from glare control, some of the exterior shades showed significantly greater energy use when discomfort glare-based operation of interior shades was considered.

  14. Baseline scheme for polarization preservation and control in the MEIC ion complex

    Energy Technology Data Exchange (ETDEWEB)

    Derbenev, Yaroslav S. [Jefferson Lab, Newport News, VA (United States); Lin, Fanglei [Jefferson Lab, Newport News, VA (United States); Morozov, Vasiliy [Jefferson Lab, Newport News, VA (United States); Zhang, Yuhong [Jefferson Lab, Newport News, VA (United States); Kondratenko, Anatoliy [Science and Technique Laboratory Zaryad, Novosibirsk (Russian Federation); Kondratenko, M. A. [Science and Technique Laboratory Zaryad, Novosibirsk (Russian Federation); Filatov, Yury [MIPT, Dolgoprudny, Moscow (Russian Federation)

    2015-09-01

    The scheme for preservation and control of the ion polarization in the Medium-energy Electron-Ion Collider (MEIC) has been under active development in recent years. The figure-8 configuration of the ion rings provides a unique capability to control the polarization of any ion species including deuterons by means of "weak" solenoids rotating the particle spins by small angles. Insertion of "weak" solenoids into the magnetic lattices of the booster and collider rings solves the problem of polarization preservation during acceleration of the ion beam. Universal 3D spin rotators designed on the basis of "weak" solenoids allow one to obtain any polarization orientation at an interaction point of MEIC. This paper presents the baseline scheme for polarization preservation and control in the MEIC ion complex.

  15. Chitosan green tea polyphenol complex as a released control compound for wound healing

    Institute of Scientific and Technical Information of China (English)

    QIN Yao; WANG Hong-wei; Thirupathi Karuppanapandian; Wook Kim

    2010-01-01

    Objective: In recent years, oxidative stress has been implicated in a variety °enerative pro-cess and diseases, including acute and chronic inflamma-tory conditions such as wound healing.Green tea polyphe-nols have shown anti-oxidant property.The present study discussed the application of chitosan green tea polyphenol complex on the wound healing.Methods: The wound healing effect ofchitosan green tea polyphenol complex was studied in ten-week-old healthy male Sherman rats weighing 150-180 g by two wound models.The rats were randomly chosen and divided into four groups (n=5), administered with distilled water in Group A as con-trol group, epigallocatechin-3-gallate (EGCG) in Group B, chitosan-EGCG complex in Group C and chitosan-green tea polyphenols complex in Group D, respectively.In rats'incision wound model, two straight paravertebral inci-sions were made and skin tensile strength was measured using continuous water flow technology on the 10th day.In rats'excision wound model, wound contraction and pe-riod of epithelization were measured.The polyphenols re-lease from the complex was continuously monitored by an elution technique in aqueous solution at different pH val-ues (pH=4, 5, 6, 7).Results: The treatment groups showed significantly enhanced the breaking strength in incision wound (328±4.5) g and (421±18.5) g compared with control (264±16.7) g.In the excision wound model, the wound contraction percentage in treatment groups was relatively increased during the re-covery period.Respectively, the percentage of wound contraction ranged from 47.60%±2.15% on day 4 to 107.98% ±1.26% on day 16 compared with control group (8.46%±5.42% to 59.80%±4.47%).The complex demonstrated a gradual in-crease in the release rate from the initial stage and slow increase at different pH values.The release rate approxi-mated 0.6-0.7 in the complex and remained stable 6 hours after injury, which may be the end of the release process.Conclusions: In our study, chitosan

  16. Miniaturized Swimming Soft Robot with Complex Movement Actuated and Controlled by Remote Light Signals

    Science.gov (United States)

    Huang, Chaolei; Lv, Jiu-An; Tian, Xiaojun; Wang, Yuechao; Yu, Yanlei; Liu, Jie

    2015-12-01

    Powering and communication with micro robots to enable complex functions is a long-standing challenge as the size of robots continues to shrink. Physical connection of wires or components needed for wireless communication are complex and limited by the size of electronic and energy storage devices, making miniaturization of robots difficult. To explore an alternative solution, we designed and fabricated a micro soft swimming robot with both powering and controlling functions provided by remote light, which does not carry any electronic devices and batteries. In this approach, a polymer film containing azobenzene chromophore which is sensitive to ultra-violet (UV) light works as “motor”, and the UV light and visible light work as “power and signal lines”. Periodically flashing UV light and white light drives the robot flagellum periodically to swing to eventually push forward the robot in the glass tube filled with liquid. The gripper on robot head can be opened or closed by lights to grab and carry the load. This kind of remotely light-driven approach realizes complex driving and controlling of micro robotic structures, making it possible to design and fabricate even smaller robots. It will have great potential among applications in the micro machine and robot fields.

  17. Effect of the Postural Challenge on the Dependence of the Cardiovascular Control Complexity on Age

    Directory of Open Access Journals (Sweden)

    Aparecida M. Catai

    2014-12-01

    Full Text Available Short-term complexity of heart period (HP and systolic arterial pressure (SAP was computed to detect age and gender influences over cardiovascular control in resting supine condition (REST and during standing (STAND. Healthy subjects (n = 110, men = 55 were equally divided into five groups (21–30; 31–40; 41–50; 51–60; and 61–70 years of age. HP and SAP series were recorded for 15 min at REST and during STAND. A normalized complexity index (NCI based on conditional entropy was assessed. At REST we found that both NCIHP and NCISAP decreased with age in the overall population, but only women were responsible for this trend. During STAND we observed that both NCIHP and NCISAP were unrelated to age in the overall population, even when divided by gender. When the variation of NCI in response to STAND (ΔNCI = NCI at REST-NCI during STAND was computed individually, we found that ΔNCIHP progressively decreased with age in the overall population, and women were again responsible for this trend. Conversely, ΔNCISAP was unrelated to age and gender. This study stresses that the complexity of cardiovascular control and its ability to respond to stressors are more importantly lost with age in women than in men.

  18. The disruptive effects of pain on complex cognitive performance and executive control.

    Science.gov (United States)

    Keogh, Edmund; Moore, David J; Duggan, Geoffrey B; Payne, Stephen J; Eccleston, Christopher

    2013-01-01

    Pain interferes and disrupts attention. What is less clear is how pain affects performance on complex tasks, and the strategies used to ensure optimal outcomes. The aim of the current study was to examine the effect of pain on higher-order executive control processes involved in managing complex tasks. Sixty-two adult volunteers (40 female) completed two computer-based tasks: a breakfast making task and a word generation puzzle. Both were complex, involving executive control functions, including goal-directed planning and switching. Half of those recruited performed the tasks under conditions of thermal heat pain, and half with no accompanying pain. Whilst pain did not affect central performance on either task, it did have indirect effects. For the breakfast task, pain resulted in a decreased ability to multitask, with performance decrements found on the secondary task. However, no effects of pain were found on the processes thought to underpin this task. For the word generation puzzle, pain did not affect task performance, but did alter subjective accounts of the processes used to complete the task; pain affected the perceived allocation of time to the task, as well as switching perceptions. Sex differences were also found. When studying higher-order cognitive processes, pain-related interference effects are varied, and may result in subtle or indirect changes in cognition. PMID:24386168

  19. The disruptive effects of pain on complex cognitive performance and executive control.

    Directory of Open Access Journals (Sweden)

    Edmund Keogh

    Full Text Available Pain interferes and disrupts attention. What is less clear is how pain affects performance on complex tasks, and the strategies used to ensure optimal outcomes. The aim of the current study was to examine the effect of pain on higher-order executive control processes involved in managing complex tasks. Sixty-two adult volunteers (40 female completed two computer-based tasks: a breakfast making task and a word generation puzzle. Both were complex, involving executive control functions, including goal-directed planning and switching. Half of those recruited performed the tasks under conditions of thermal heat pain, and half with no accompanying pain. Whilst pain did not affect central performance on either task, it did have indirect effects. For the breakfast task, pain resulted in a decreased ability to multitask, with performance decrements found on the secondary task. However, no effects of pain were found on the processes thought to underpin this task. For the word generation puzzle, pain did not affect task performance, but did alter subjective accounts of the processes used to complete the task; pain affected the perceived allocation of time to the task, as well as switching perceptions. Sex differences were also found. When studying higher-order cognitive processes, pain-related interference effects are varied, and may result in subtle or indirect changes in cognition.

  20. Morphostructure Control Towards the Development of Mahawu Volcanic Complex, North Sulawesi

    Directory of Open Access Journals (Sweden)

    S. Poedjoprajitno

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v7i1.134The studied area, situated in northeastern part of North Sulawesi Arm, is dominantly occupied by the Mahawu, Linau, Tompusu, and Kasurutan volcanic rocks. Using remote sensing data, such as landsat image, black and white panchromatic aerial photograph, and IFSAR image, morphology-origin unit and morphology lineament can be interpreted. Four morphology-origin units, those are Mahawu Volcano Complex, Intra-montane Plain structure, Linau Volcano Complex, and Lacustrine Plain are recognized. Furthermore, morphological lineament pattern was statistically processed to find out the general stress direction in the area to determine the probability of the structural morphology occurrence in the Mahawu Volcano Complex. The result shows that generally the development pattern of volcanic cones are irregular, except the Mahawu Volcano Complex showing a linear pattern. This lineament pattern is interpreted as a NW - SE fault pattern controlling the rise of magma. At least, two tectonic and two eruption periods occurred regularly at different time from the Quaternary age till the present.

  1. Chemical Control for Host-Parasitoid Model within the Parasitism Season and Its Complex Dynamics

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2016-01-01

    Full Text Available In the present paper, we develop a host-parasitoid model with Holling type II functional response function and chemical control, which can be applied at any time of each parasitism season or pest generation, and focus on addressing the importance of the timing of application pesticide during the parasitism season or pest generation in successful pest control. Firstly, the existence and stability of both the host and parasitoid populations extinction equilibrium and parasitoid-free equilibrium have been investigated. Secondly, the effects of key parameters on the threshold conditions have been discussed in more detail, which shows the importance of pesticide application times on the pest control. Thirdly, the complex dynamics including multiple attractors coexistence, chaotic behavior, and initial sensitivity have been studied by using numerical bifurcation analyses. Finally, the uncertainty and sensitivity of all the parameters on the solutions of both the host and parasitoid populations are investigated, which can help us to determine the key parameters in designing the pest control strategy. The present research can help us to further understand the importance of timings of pesticide application in the pest control and to improve the classical chemical control and to make management decisions.

  2. Distributed Recurrent Neural Forward Models with Neural Control for Complex Locomotion in Walking Robots

    DEFF Research Database (Denmark)

    Dasgupta, Sakyasingha; Goldschmidt, Dennis; Wörgötter, Florentin;

    2015-01-01

    Walking animals, like stick insects, cockroaches or ants, demonstrate a fascinating range of locomotive abilities and complex behaviors. The locomotive behaviors can consist of a variety of walking patterns along with adaptation that allow the animals to deal with changes in environmental...... conditions, like uneven terrains, gaps, obstacles etc. Biological study has revealed that such complex behaviors are a result of a combination of biomechanics and neural mechanism thus representing the true nature of embodied interactions. While the biomechanics helps maintain flexibility and sustain a...... here, an artificial bio-inspired walking system which effectively combines biomechanics (in terms of the body and leg structures) with the underlying neural mechanisms. The neural mechanisms consist of (1) central pattern generator based control for generating basic rhythmic patterns and coordinated...

  3. Controlling collective dynamics in complex minority-game resource-allocation systems

    Science.gov (United States)

    Zhang, Ji-Qiang; Huang, Zi-Gang; Dong, Jia-Qi; Huang, Liang; Lai, Ying-Cheng

    2013-05-01

    Resource allocation takes place in various kinds of real-world complex systems, such as traffic systems, social services institutions or organizations, or even ecosystems. The fundamental principle underlying complex resource-allocation dynamics is Boolean interactions associated with minority games, as resources are generally limited and agents tend to choose the least used resource based on available information. A common but harmful dynamical behavior in resource-allocation systems is herding, where there are time intervals during which a large majority of the agents compete for a few resources, leaving many other resources unused. Accompanying the herd behavior is thus strong fluctuations with time in the number of resources being used. In this paper, we articulate and establish that an intuitive control strategy, namely pinning control, is effective at harnessing the herding dynamics. In particular, by fixing the choices of resources for a few agents while leaving the majority of the agents free, herding can be eliminated completely. Our investigation is systematic in that we consider random and targeted pinning and a variety of network topologies, and we carry out a comprehensive analysis in the framework of mean-field theory to understand the working of control. The basic philosophy is then that, when a few agents waive their freedom to choose resources by receiving sufficient incentives, the majority of the agents benefit in that they will make fair, efficient, and effective use of the available resources. Our work represents a basic and general framework to address the fundamental issue of fluctuations in complex dynamical systems with significant applications to social, economical, and political systems.

  4. Algorithms and Complexity Analyses for Control of Singleton Attractors in Boolean Networks

    Directory of Open Access Journals (Sweden)

    Wai-Ki Ching

    2008-09-01

    Full Text Available A Boolean network (BN is a mathematical model of genetic networks. We propose several algorithms for control of singleton attractors in BN. We theoretically estimate the average-case time complexities of the proposed algorithms, and confirm them by computer experiments. The results suggest the importance of gene ordering. Especially, setting internal nodes ahead yields shorter computational time than setting external nodes ahead in various types of algorithms. We also present a heuristic algorithm which does not look for the optimal solution but for the solution whose computational time is shorter than that of the exact algorithms.

  5. Automated experimental complex for research and control of detonation stream at particle spraying

    OpenAIRE

    Eskov, A. V.; Yakovlev, V.I.

    2007-01-01

    The opportunity of application of image input system to PC on the basis of PZS with electronic shutter and exposition time 35,5 mks in structure of complex of optical control of particle spraying detonation stream characteristics on installation «Katun-M» has been shown. The results of inspection of particle speeds by the length of their tracks on image, dynamics of gas fuse formation at the initial moment of stream occurrence on section of installation shaft and root angle of the stream are ...

  6. Failure mechanism and stability control technology of rock surrounding a roadway in complex stress conditions

    Institute of Scientific and Technical Information of China (English)

    Yu Yang; Bai Jianbiao; Chen Ke; Wang Xiangyu; Xiao Tongqiang; Chen Yong

    2011-01-01

    To solve the problem of supporting three downhill coal structures in the Yongan Coal Mine of Shanxi Jincheng,we studied the regular development of stress and plastic zones and characteristics of deformation of rock surrounding roadway groups after a period of roadway driving,mining one side as well as mining both sides,we used FLAC3D for our numerical and theoretical analyses.Field test were carried out,where we revealed the deformation mechanism of roadways and its coal pillars in complex stress conditions.We proposed a roadway stability control technology using backwall grouting with high-water rapid hardening material and combined support with bolt and cable anchoring after mining both sides.Our field practices showed that deformation of rock surrounding roadways can be controlled with this technology.

  7. Humans with chimpanzee-like major histocompatibility complex-specificities control HIV-1 infection

    DEFF Research Database (Denmark)

    Hoof, Ilka; Kesmir, Can; Lund, Ole;

    2008-01-01

    the progression rate to AIDS. Chimpanzees control HIV-1 viral replication and develop a chronic infection without progressing to AIDS. A similar course of disease is observed in human long-term non-progressors. Objective: To investigate if long-term non-progressors and chimpanzees have functional......Background: Major histocompatibility complex (MHC) class I molecules allow immune surveillance by presenting a snapshot of the intracellular state of a cell to circulating cytotoxic T lymphocytes. The MHC class I alleles of an HIV-1 infected individual strongly influence the level of viremia and...... similarities in their MHC class I repertoire. Methods: We compared the specificity of groups of human MHC molecules associated with different levels of viremia in HIV-1 infected individuals with those of chimpanzee. Results and conclusion: We demonstrate that human MHC with control of HIV-1 viral load share...

  8. Future directions in controlling the LAMPF-PSR accelerator complex at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Four interrelated projects are underway whose purpose is to migrate the LAMPF-PSR Accelerator Complex control systems to a system with a common set of hardware and software components. Project goals address problems in performance, maintenance and growth potential. Front-end hardware, operator interface hardware and software, computer systems, network systems and data system software are being simultaneously upgraded as part of these efforts. The efforts are being coordinated to provide for a smooth and timely migration to a client-server model-based data acquisition and control system. An increased use of distributed intelligence at both the front-end and the operator interface is a key element of the projects. (author)

  9. Future directions in controlling the LAMPF-PSR Accelerator Complex at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Four interrelated projects are underway whose purpose is to migrate the LAMPF-PSR Accelerator Complex control systems to a system with a common set of hardware and software components. Project goals address problems in performance, maintenance and growth potential. Front-end hardware, operator interface hardware and software, computer systems, network systems and data system software are being simultaneously upgraded as part of these efforts. The efforts are being coordinated to provide for a smooth and timely migration to a client-sever model-based data acquisition and control system. An increased use of the distributed intelligence at both the front-end and operator interface is a key element of the projects. 2 refs., 2 figs

  10. The CD63-Syntenin-1 Complex Controls Post-Endocytic Trafficking of Oncogenic Human Papillomaviruses.

    Science.gov (United States)

    Gräßel, Linda; Fast, Laura Aline; Scheffer, Konstanze D; Boukhallouk, Fatima; Spoden, Gilles A; Tenzer, Stefan; Boller, Klaus; Bago, Ruzica; Rajesh, Sundaresan; Overduin, Michael; Berditchevski, Fedor; Florin, Luise

    2016-01-01

    Human papillomaviruses enter host cells via a clathrin-independent endocytic pathway involving tetraspanin proteins. However, post-endocytic trafficking required for virus capsid disassembly remains unclear. Here we demonstrate that the early trafficking pathway of internalised HPV particles involves tetraspanin CD63, syntenin-1 and ESCRT-associated adaptor protein ALIX. Following internalisation, viral particles are found in CD63-positive endosomes recruiting syntenin-1, a CD63-interacting adaptor protein. Electron microscopy and immunofluorescence experiments indicate that the CD63-syntenin-1 complex controls delivery of internalised viral particles to multivesicular endosomes. Accordingly, infectivity of high-risk HPV types 16, 18 and 31 as well as disassembly and post-uncoating processing of viral particles was markedly suppressed in CD63 or syntenin-1 depleted cells. Our analyses also present the syntenin-1 interacting protein ALIX as critical for HPV infection and CD63-syntenin-1-ALIX complex formation as a prerequisite for intracellular transport enabling viral capsid disassembly. Thus, our results identify the CD63-syntenin-1-ALIX complex as a key regulatory component in post-endocytic HPV trafficking. PMID:27578500

  11. Formation of oxygen complexes in controlled atmosphere at surface of doped glassy carbon

    Indian Academy of Sciences (India)

    Aleksandra A Perić-Grujić; Tatjana M Vasiljević; Olivera M Nešković; Miomir V Veljković; Zoran V Laušević; Mila D Laušević

    2006-10-01

    The effects of boron and phosphorus incorporation in phenolic resin precursor to the oxidation resistance of glassy carbon have been studied. In order to reveal the nature and composition of the oxygen complexes formed at the surface of doped glassy carbon, under controlled atmosphere, the surface of the samples was cleaned under vacuum up to 1273 K. Specific functional groups, subsequently formed under dry CO2 or O2 atmosphere on the surface of boron-doped and phosphorus-doped glassy carbon samples, were examined using the temperature-programmed desorption method combined with mass spectrometric analysis. Characterization of surface properties of undoped and doped samples has shown that in the presence of either boron or phosphorus heteroatoms, a lower amount of oxygen complexes formed after CO2 exposure, while, typically, higher amount of oxygen complexes formed after O2 exposure. It has been concluded that the surface of undoped glassy carbon has a greater affinity towards CO2, while in the presence of either boron or phosphorus heteroatoms, the glassy carbon surface affinity becomes greater towards O2, under experimental conditions.

  12. Stress- and structure-controlled anisotropy in a region of complex faulting—Yuha Desert, California

    Science.gov (United States)

    Cochran, E. S.; Kroll, K. A.

    2015-08-01

    We examine shear velocity anisotropy in the Yuha Desert, California using aftershocks of the 2010 M7.2 El Mayor-Cucapah earthquake. The Yuha Desert is underlain by a complex network of right- and left-lateral conjugate faults, some of which experienced triggered slip during the El Mayor-Cucapah earthquake. An automated method that implements multiple measurement windows and a range of bandpass filters is used to estimate the fast direction (φ) and delay time (δt) of the split shear waves. We find an average φ oriented approximately north-south suggesting it is primarily controlled by the regional maximum compressive stress direction. However, the spatial variability in φ reveals that the fault structures that underlie the Yuha Desert also influence the measured splitting parameters. We infer that the northeast- and northwest-oriented φ reflect shear fabric subparallel to the conjugate fault structures. We do not observe a simple correlation between δt and hypocentral distance. Instead, the observed spatial variation in δt suggests that near-source variation in anisotropic strength may be equal to or more important than effects local to the station. No temporal variation in splitting parameters is observed during the 70-day period following the main shock. In this region of complex faulting, we observe a spatially variable pattern of anisotropy that is both stress- and structure-controlled. This study suggests that shear fabric can form even along short, discontinuous fault strands with minimal offset.

  13. Streptomyces araujoniae Produces a Multiantibiotic Complex with Ionophoric Properties to Control Botrytis cinerea.

    Science.gov (United States)

    Silva, Leonardo José; Crevelin, Eduardo José; Souza, Wallace Rafael; Moraes, Luiz Alberto Beraldo; Melo, Itamar Soares; Zucchi, Tiago Domingues

    2014-12-01

    A recently described actinomycete species (Streptomyces araujoniae ASBV-1(T)) is effective against many phytopathogenic fungi. In this study, we evaluated the capacity of this species to inhibit Botrytis cinerea development in strawberry pseudofruit, and we identified the chemical structures of its bioactive compounds. An ethyl acetate crude extract (0.1 mg ml(-1)) of ASBV-1(T) fermentation broth completely inhibited fungus growth in strawberry pseudofruit under storage conditions. The crude extract was fractionated by preparative high-performance liquid chromatography; the active fraction was further evaluated by tandem mass spectrometry. ASBV-1(T) produced a multiantibiotic complex with ionophoric properties. This complex contained members of the macrotetralides class (including monactin, dinactin, trinactin, and tetranactin) and the cyclodepsipeptide valinomycin, all of which were active against B. cinerea. Furthermore, the addition of 2 mM MgSO4 and 1 mM ZnSO4 enhanced macrotetralide and valinomycin production, respectively, in the culture broth. These compounds are considered to be the main active molecules that S. araujoniae produces to control B. cinerea. Their low to moderate toxicity to humans and the environment justifies the application of ASBV-1(T) in biological control programs that aim to mitigate the damage caused by this phytopathogen. PMID:24983843

  14. Optimization of belief revision for safety-control of a large-complex plant

    International Nuclear Information System (INIS)

    This paper discusses how beliefs of a decision maker(DM) should be revised or updated for safety control of a large-complex plant. We evaluate the expected value of a loss in the plant which is caused by a safety-control action of the DM. There exist the following two kinds of mechanisms for belief revision: (i) combination rules for basic probability assignment functions, and (ii) updating rules based on the conditioning of belief functions. For each case, we give an optimal rule for minimizing the expected loss in the plant. The following three points are proven: (1) the 'best' rule of belief revision for assuring plant safety does not always minimize the expected loss in the plant, (2) the optimality of a combination rule depends on the 'type' of the safety-control policy (i.e., the safety-preservation type or the fault-warning type), and (3) the optimality of a conditioning rule, on the other hand, is irrespective of the type of the safety-control policy. (author)

  15. Complexity of Ore-controlling Fracture System of Dajishan Tungsten Deposit, China

    Science.gov (United States)

    LIU, Ningqiang; YU, Chongwen

    To understand the complexity of the development and evolution of ore-controlling fracture system in Dajishan tungsten deposit, Quannan County, Jiangxi Province, we collected rock samples in different depth of deposit and carried out experimental work on rock acoustic emission. Results show that the sequence of rock acoustic emission events follows a clear process of occurrence, quiescence, and burst. The onset and development of fracture system has a cascade of avalanches-punctuated equilibrium hierarchic fractal structure, and the breaking process is very discontinuous, the energy released is also discontinuous, and it becomes smaller with the increase of depth, which reflects the development of mineralization. The author applies the theory of complexity to study the ore-controlling fractures of the vein-type tungsten ore deposits in Dajishan. The following conclusions are drawn. The dynamics of the onset and development of fracture system is similar to the ore-forming system. That is, it consists of the self-organization arising from the coupling of random motion, the coherent behavior produced by interaction between subsystems, the realization of cooperative synchronization, the occurrence of critical transition point, and the attainment of self-organized criticality. These result from the coupling and interaction of physical movement of minerals, time, and space. The formation of vein-type tungsten ore deposit in Dajishan is closely related to critical rupture of ore-controlling fracture system and its avalanches-punctuated equilibrium cascade fractal growth, that is, metallogenic model of vein-type tungsten ore deposit in Dajishan follows generalized "five-storeyed type" metallogenic model.

  16. Anticipatory Monitoring and Control of Complex Systems using a Fuzzy based Fusion of Support Vector Regressors

    Energy Technology Data Exchange (ETDEWEB)

    Miltiadis Alamaniotis; Vivek Agarwal

    2014-10-01

    This paper places itself in the realm of anticipatory systems and envisions monitoring and control methods being capable of making predictions over system critical parameters. Anticipatory systems allow intelligent control of complex systems by predicting their future state. In the current work, an intelligent model aimed at implementing anticipatory monitoring and control in energy industry is presented and tested. More particularly, a set of support vector regressors (SVRs) are trained using both historical and observed data. The trained SVRs are used to predict the future value of the system based on current operational system parameter. The predicted values are then inputted to a fuzzy logic based module where the values are fused to obtain a single value, i.e., final system output prediction. The methodology is tested on real turbine degradation datasets. The outcome of the approach presented in this paper highlights the superiority over single support vector regressors. In addition, it is shown that appropriate selection of fuzzy sets and fuzzy rules plays an important role in improving system performance.

  17. A New Method for Controlling Billet Temperature During Isothermal Die Forging of a Complex Superalloy Casing

    Science.gov (United States)

    Lin, Y. C.; Wu, Xian-Yang

    2015-09-01

    Isothermal die forging is one of near net-shape metal-forming technologies. Strict control of billet temperature during isothermal die forging is a guarantee for the excellent properties of final product. In this study, a new method is proposed to accurately control the billet temperature of complex superalloy casing, based on the finite element simulation and response surface methodology (RSM). The proposed method is accomplished by the following two steps. Firstly, the thermal compensation process is designed and optimized to overcome the inevitable heat loss of dies during hot forging. i.e., the layout and opening time of heaters assembled on die sleeves are optimized. Then, the effects of forging speed (the pressing velocity of hydraulic machine) and its changing time on the maximum billet temperature are discussed. Furthermore, the optimized forging speed and its changing time are obtained by RSM. Comparisons between the optimized and conventional die forging processes indicate that the proposed method can effectively control the billet temperature within the optimal forming temperature range. So, the optimized die forging processes can guarantee the high volume fraction of dynamic recrystallization, and restrict the rapid growth of grains in the forged superalloy casing.

  18. AIR POLLUTION INVESTIGATION AND PROVIDING SYSTEM OF CONTROL IN KHORASAN STEEL COMPLEX

    Directory of Open Access Journals (Sweden)

    J. Nouri

    1999-12-01

    Full Text Available The most important environmental pollutant in steel industry is air pollution due to the process of its products. Optimise sitting for this industry, in a great extend will prevent pollutants and emissions. Khorasan Steel Company is located near some populous villages and three rivers. It is necessary to perform an investigation for providing abatement and control of air pollution, in time of planning and manufacturing of control instruments. The manufacturing company has determined air pollution reduction instruments in this site, according to the emission suspended particulate and its climatic conditions. The air pollution reducer's instruments were used back-fither. But, this offer was not agreed by the Department of the Environment of Iran. Perhaps, this disagreement was announced just for another original problem, which was the site selection of plants. This research was on the filtration which has been offered by the manufacturing company, if this selection can improve the future regional air pollution. These figures, of course, were obtained from the present data and plume rise particulate, considering Gausian distribution mode for all the rural population and rivers rounding to the site, up to 5 km. The results showed that the produced particulates were less than permissible limit and the proposed methods will improve the complex air pollution difficulties So, the proposed methods were provided for increasing the control and operating the system for conducting of cyclone before input of particulate to the back-filter.

  19. Dynamic complexities in a pest control model with birth pulse and harvesting

    Science.gov (United States)

    Goel, A.; Gakkhar, S.

    2016-04-01

    In this paper, an impulsive model is discussed for an integrated pest management approach comprising of chemical and mechanical controls. The pesticides and harvesting are used to control the stage-structured pest population. The mature pest give birth to immature pest in pulses at regular intervals. The pest is controlled by spraying chemical pesticides affecting immature as well as mature pest. The harvesting of both immature and mature pest further reduce the pest population. The discrete dynamical system obtained from stroboscopic map is analyzed. The threshold conditions for stability of pest-free state as well as non-trivial period-1 solution is obtained. The effect of pesticide spray timing and harvesting on immature as well as mature pest are shown. Finally, by numerical simulation with MATLAB, the dynamical behaviors of the model is found to be complex. Above the threshold level there is a characteristic sequence of bifurcations leading to chaotic dynamics. Route to chaos is found to be period-doubling. Period halving bifurcations are also observed.

  20. RFID card based access control system with counter for Indus Complex

    International Nuclear Information System (INIS)

    As per norms of the Atomic energy regulatory board (AERB) to operate a facility in round the clock which has a potential of radiation exposure, radiation safety rules are to be followed. Indus -1 and Indus-2 are synchrotron radiation sources which are open for various users round the clock. To monitor the persons inside the defined zone at any given time, a system is setup consisting of RF ID cards and their readers along with dedicated software. Software is developed in Visual Basic and uses UDP network protocol for receiving data from readers installed at various locations and connected to local area network. The paper describes the access control scheme followed in Indus Accelerator Complex. (author)

  1. Advanced design technique of human-machine interfaces for PLC control of complex systems

    Directory of Open Access Journals (Sweden)

    Árpád-István Sütő

    2008-05-01

    Full Text Available Touchscreen operator panels proved to be a convenient succesor for clasical operator panels for implementing human-machine interfaces (HMIs in programmable logic controllers (PLC systems. The paper introduces a new technique for HMIs design in such systems, based on the idea of touchscreens replication. This redundancy allow actions which are not possible within the menus and sub-menus of a single touchscreen. Its strenght is revealed especially in complex systems, where operators can easily be overwhelmed by the huge amount of process information. The technique was applied on a mill tube rolling installation. The results also proved an increase of system security and zero downtime for HMI maintenance activities.

  2. Dancing with Swarms: Utilizing Swarm Intelligence to Build, Investigate, and Control Complex Systems

    Science.gov (United States)

    Jacob, Christian

    We are surrounded by a natural world of massively parallel, decentralized biological "information processing" systems, a world that exhibits fascinating emergent properties in many ways. In fact, our very own bodies are the result of emergent patterns, as the development of any multi-cellular organism is determined by localized interactions among an enormous number of cells, carefully orchestrated by enzymes, signalling proteins and other molecular "agents". What is particularly striking about these highly distributed developmental processes is that a centralized control agency is completely absent. This is also the case for many other biological systems, such as termites which build their nests—without an architect that draws a plan, or brain cells evolving into a complex `mind machine'—without an explicit blueprint of a network layout.

  3. The development of controls for pulse-to-pulse modulation at the Brookhaven AGS complex

    International Nuclear Information System (INIS)

    Operation of the AGS Complex, comprising a 200 MeV Linac, the 1.5 GeV Booster (400 MeV/amu heavy ions) which is under construction, and the AGS, requires service of multiple uses with different beam requirements. Local Linac users, Booster commissioning with protons and heavy ions, and the AGS physics program and accelerator studies must run concurrently in various combinations. A new timing system is being built which will distribute serially encoded events derived from real-time and magnetic field clocks to each accelerator. The master timing of the supercycle will be managed centrally with encoded reset events determining the assigned user for each pulse. Operational aspects of the design of this system will be described, along with the principal control system modifications necessary to implement this mode of operation. 4 refs., 3 figs

  4. FROM MANUFACTURING SCHEDULING TO SUPPLY CHAIN COORDINATION:THE CONTROL OF COMPLEXITY AND UNCERTAINTY

    Institute of Scientific and Technical Information of China (English)

    Peter B. LUH; Weidong FENG

    2003-01-01

    With time-based competition and rapid technology advancements, effective manufacturing scheduling and supply chain coordination are critical to quickly respond to changing market conditions. These problems, however, are difficult in view of inherent complexity and various uncertainties involved. Based on a series of results by the authors, decomposition and coordination by using Lagrangian relaxation is identified in this paper as an effective way to control complexity and uncertainty. A manufacturing scheduling problem is first formulated within the job shop context with uncertain order arrivals, processing times, due dates, and part priorities as a separable optimization problem. A solution methodology that combines Lagrangian relaxation, stochastic dynamic programming, and heuristics is developed. Method improvements to effectively solve large problems are also highlighted. To extend manufacturing scheduling within a factory to coordinate autonomic members across chains of suppliers, a decentralized supply chain model is established in the second half of this paper. By relaxing cross-member constraints, the model is decomposed into member-wise subproblems, and a nested optimization structure is developed based on the job shop scheduling results. Coordination is performed through the iterative updating of cross-member prices without accessing other members' private information or intruding their decision-making authorities, either with or without a coordinator. Two examples are presented to demonstrate the effectiveness of the method. Future prospects to overcome problem inseparability and improve computing efficiency are then discussed.

  5. The Anaphase-Promoting Complex/Cyclosome in Control of Plant Development

    Institute of Scientific and Technical Information of China (English)

    Jefri Heyman; Lieven De Veylder

    2012-01-01

    Temporal controlled degradation of key cell division proteins ensures a correct onset of the different cell cycle phases and exit from the cell division program.In light of the cell cycle,the Anaphase-Promoting Complex/Cyclosome (APC/C) is an important conserved multi-subunit ubiquitin ligase,marking targets for degradation by the 26S proteasome.However,whereas the APC/C has been studied extensively in yeast and mammals,only in the last decade has the plant APC/C started to unveil its secrets.Research results have shown the importance of the APC/C core complex and its activators during gametogenesis,growth,hormone signaling,symbiotic interactions,and endoreduplication onset.In addition,recently,the first plant APC/C inhibitors have been reported,allowing a fine-tuning of APC/C activity during the cell cycle.Together with the identification of the first APC/C targets,a picture emerges of APC/C activity being essential for many different developmental processes.

  6. Stress- and structure-controlled anisotropy in a region of complex faulting—Yuha Desert, California

    Science.gov (United States)

    Cochran, Elizabeth S.; Kroll, Kayla A.

    2015-01-01

    We examine shear velocity anisotropy in the Yuha Desert, California using aftershocks of the 2010 M7.2 El Mayor-Cucapah earthquake. The Yuha Desert is underlain by a complex network of right- and left-lateral conjugate faults, some of which experienced triggered slip during the El Mayor-Cucapah earthquake. An automated method that implements multiple measurement windows and a range of bandpass filters is used to estimate the fast direction (ϕ) and delay time (δt) of the split shear waves. We find an average ϕ oriented approximately north–south suggesting it is primarily controlled by the regional maximum compressive stress direction. However, the spatial variability in ϕ reveals that the fault structures that underlie the Yuha Desert also influence the measured splitting parameters. We infer that the northeast- and northwest-oriented ϕ reflect shear fabric subparallel to the conjugate fault structures. We do not observe a simple correlation between δt and hypocentral distance. Instead, the observed spatial variation in δt suggests that near-source variation in anisotropic strength may be equal to or more important than effects local to the station. No temporal variation in splitting parameters is observed during the 70-day period following the main shock. In this region of complex faulting, we observe a spatially variable pattern of anisotropy that is both stress- and structure-controlled. This study suggests that shear fabric can form even along short, discontinuous fault strands with minimal offset.                   

  7. Patients with Parkinson's Disease Learn to Control Complex Systems via Procedural as Well as Non-Procedural Learning

    Science.gov (United States)

    Osman, Magda; Wilkinson, Leonora; Beigi, Mazda; Castaneda, Cristina Sanchez; Jahanshahi, Marjan

    2008-01-01

    The striatum is considered to mediate some forms of procedural learning. Complex dynamic control (CDC) tasks involve an individual having to make a series of sequential decisions to achieve a specific outcome (e.g. learning to operate and control a car), and they involve procedural learning. The aim of this study was to test the hypothesis that…

  8. Handling Qualities Evaluations of Low Complexity Model Reference Adaptive Controllers for Reduced Pitch and Roll Damping Scenarios

    Science.gov (United States)

    Hanson, Curt; Schaefer, Jacob; Burken, John J.; Johnson, Marcus; Nguyen, Nhan

    2011-01-01

    National Aeronautics and Space Administration (NASA) researchers have conducted a series of flight experiments designed to study the effects of varying levels of adaptive controller complexity on the performance and handling qualities of an aircraft under various simulated failure or damage conditions. A baseline, nonlinear dynamic inversion controller was augmented with three variations of a model reference adaptive control design. The simplest design consisted of a single adaptive parameter in each of the pitch and roll axes computed using a basic gradient-based update law. A second design was built upon the first by increasing the complexity of the update law. The third and most complex design added an additional adaptive parameter to each axis. Flight tests were conducted using NASA s Full-scale Advanced Systems Testbed, a highly modified F-18 aircraft that contains a research flight control system capable of housing advanced flight controls experiments. Each controller was evaluated against a suite of simulated failures and damage ranging from destabilization of the pitch and roll axes to significant coupling between the axes. Two pilots evaluated the three adaptive controllers as well as the non-adaptive baseline controller in a variety of dynamic maneuvers and precision flying tasks designed to uncover potential deficiencies in the handling qualities of the aircraft, and adverse interactions between the pilot and the adaptive controllers. The work was completed as part of the Integrated Resilient Aircraft Control Project under NASA s Aviation Safety Program.

  9. ProjectiveSynchronization of Complex Dynamical Networks with Time-Varying Coupling Strength via Hybrid Feedback Control

    Institute of Scientific and Technical Information of China (English)

    郭晓永; 李俊民

    2011-01-01

    We introduce a hybrid feedback control scheme to design a controller for the projective synchronization of complex dynamical networks with unknown periodically time-varying parameters.A differential-difference mixed parametric learning law and an adaptive learning control law are constructed to ensure the asymptotic convergence of the error in the sense of square error norm.Moreover,numerical simulation results are used to verify the effectiveness of the proposed method.%We introduce a hybrid feedback control scheme to design a controller for the projective synchronization of complex dynamical networks with unknown periodically time-varying parameters. A differential-difference mixed parametric learning law and an adaptive learning control law are constructed to ensure the asymptotic convergence of the error in the sense of square error norm. Moreover, numerical simulation results are used to verify the effectiveness of the proposed method.

  10. Protein complexes and cholesterol in the control of late endosomal dynamicsCholesterol and multi-protein complexes in the control of late endosomal dynamics

    NARCIS (Netherlands)

    Kant, Rik Henricus Nicolaas van der

    2013-01-01

    Late endosomal transport is disrupted in several diseases such as Niemann-Pick type C, ARC syndrome and Alzheimer’s disease. This thesis describes the regulation of late endosomal dynamics by cholesterol and multi-protein complexes. We find that cholesterol acts as a cellular tomtom that steers the

  11. Complexity and Pilot Workload Metrics for the Evaluation of Adaptive Flight Controls on a Full Scale Piloted Aircraft

    Science.gov (United States)

    Hanson, Curt; Schaefer, Jacob; Burken, John J.; Larson, David; Johnson, Marcus

    2014-01-01

    Flight research has shown the effectiveness of adaptive flight controls for improving aircraft safety and performance in the presence of uncertainties. The National Aeronautics and Space Administration's (NASA)'s Integrated Resilient Aircraft Control (IRAC) project designed and conducted a series of flight experiments to study the impact of variations in adaptive controller design complexity on performance and handling qualities. A novel complexity metric was devised to compare the degrees of simplicity achieved in three variations of a model reference adaptive controller (MRAC) for NASA's F-18 (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) Full-Scale Advanced Systems Testbed (Gen-2A) aircraft. The complexity measures of these controllers are also compared to that of an earlier MRAC design for NASA's Intelligent Flight Control System (IFCS) project and flown on a highly modified F-15 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois). Pilot comments during the IRAC research flights pointed to the importance of workload on handling qualities ratings for failure and damage scenarios. Modifications to existing pilot aggressiveness and duty cycle metrics are presented and applied to the IRAC controllers. Finally, while adaptive controllers may alleviate the effects of failures or damage on an aircraft's handling qualities, they also have the potential to introduce annoying changes to the flight dynamics or to the operation of aircraft systems. A nuisance rating scale is presented for the categorization of nuisance side-effects of adaptive controllers.

  12. Models and synchronization of time-delayed complex dynamical networks with multi-links based on adaptive control

    International Nuclear Information System (INIS)

    In this Letter, time-delay has been introduced in to split the networks, upon which a model of complex dynamical networks with multi-links has been constructed. Moreover, based on Lyapunov stability theory and some hypotheses, we achieve synchronization between two complex networks with different structures by designing effective controllers. The validity of the results was proved through numerical simulations of this Letter.

  13. A Straightforward Electrochemical Approach to Imine- and Amine-bisphenolate Metal Complexes with Facile Control Over Metal Oxidation State.

    Science.gov (United States)

    Chapman, Michael R; Henkelis, Susan E; Kapur, Nikil; Nguyen, Bao N; Willans, Charlotte E

    2016-08-01

    Synthetic methods to prepare organometallic and coordination compounds such as Schiff-base complexes are diverse, with the route chosen being dependent upon many factors such as metal-ligand combination and metal oxidation state. In this work we have shown that electrochemical methodology can be employed to synthesize a variety of metal-salen/salan complexes which comprise diverse metal-ligand combinations and oxidation states. Broad application has been demonstrated through the preparation of 34 complexes under mild and ambient conditions. Unprecedented control over metal oxidation state (M(II/III/IV) where M=Fe, Mn) is presented by simple modification of reaction conditions. Along this route, a general protocol-switch is described which allows access to analytically pure Fe(II/III)-salen complexes. Tuning electrochemical potential, selective metalation of a Mn/Ni alloy is also presented which exclusively delivers Mn(II/IV)-salen complexes in high yield. PMID:27547645

  14. Ecological complexity in a coffee agroecosystem: spatial heterogeneity, population persistence and biological control.

    Directory of Open Access Journals (Sweden)

    Heidi Liere

    Full Text Available BACKGROUND: Spatial heterogeneity is essential for the persistence of many inherently unstable systems such as predator-prey and parasitoid-host interactions. Since biological interactions themselves can create heterogeneity in space, the heterogeneity necessary for the persistence of an unstable system could be the result of local interactions involving elements of the unstable system itself. METHODOLOGY/PRINCIPAL FINDINGS: Here we report on a predatory ladybird beetle whose natural history suggests that the beetle requires the patchy distribution of the mutualism between its prey, the green coffee scale, and the arboreal ant, Azteca instabilis. Based on known ecological interactions and the natural history of the system, we constructed a spatially-explicit model and showed that the clustered spatial pattern of ant nests facilitates the persistence of the beetle populations. Furthermore, we show that the dynamics of the beetle consuming the scale insects can cause the clustered distribution of the mutualistic ants in the first place. CONCLUSIONS/SIGNIFICANCE: From a theoretical point of view, our model represents a novel situation in which a predator indirectly causes a spatial pattern of an organism other than its prey, and in doing so facilitates its own persistence. From a practical point of view, it is noteworthy that one of the elements in the system is a persistent pest of coffee, an important world commodity. This pest, we argue, is kept within limits of control through a complex web of ecological interactions that involves the emergent spatial pattern.

  15. ULTRA-LOW COMPLEXITY CONTROL MECHANISMS FOR SENSOR NETWORKS AND ROBOTIC SWARMS

    Directory of Open Access Journals (Sweden)

    Matthias Scheutz

    2013-01-01

    Full Text Available Biologically inspired swarms of autonomous robots have been used successfully in a vari-ety of robotic applications ranging from var-ious kinds of ground-based robots, to un-manned aerial vehicles. Typically, all of these systems use digital communications among swarm agents to implement their behavioral rules (e.g., because they need to exchange in-formation about the location of agents. In this paper, we propose a general control architecture for ultra-low complexity robotic swarms that can be fully implemented in analog hardware and does not require dig-ital communication for any part of the swarm coordination. We demonstrate the versatil-ity and effectiveness of the proposed mech-anisms both in simulations and on a robotic swarm platform for a variety of applications, ranging from area coverage, to target track-ing, target interception or target enclosure, to active exploration and target finding, among others. The proposed system is extremely simple, robust, and scales well. It allows for homogeneous and heterogeneous swarms and has been successfully applied in several phys-ical instantiations.

  16. Balancing Control and Complexity in Field Studies of Neonicotinoids and Honey Bee Health.

    Science.gov (United States)

    Suryanarayanan, Sainath

    2013-01-01

    Amidst ongoing declines in honey bee health, the contributory role of the newer systemic insecticides continues to be intensely debated. Scores of toxicological field experiments, which bee scientists and regulators in the United States have looked to for definitive causal evidence, indicate a lack of support. This paper analyzes the methodological norms that shape the design and interpretation of field toxicological studies. I argue that contemporary field studies of honey bees and pesticides are underpinned by a "control-oriented" approach, which precludes a serious investigation of the indirect and multifactorial ways in which pesticides could drive declines in honey bee health. I trace the historical rise to prominence of this approach in honey bee toxicology to the development of entomology as a science of insecticide development in the United States. Drawing on "complexity-oriented" knowledge practices in ecology, epidemiology, beekeeping and sociology, I suggest an alternative socio-ecological systems approach, which would entail in situ studies that are less concerned with isolating individual factors and more attentive to the interactive and place-based mix of factors affecting honey bee health. PMID:26466800

  17. Control parameter optimal tuning method based on annealing-genetic algorithm for complex electromechanical system

    Institute of Scientific and Technical Information of China (English)

    贺建军; 喻寿益; 钟掘

    2003-01-01

    A new searching algorithm named the annealing-genetic algorithm(AGA) was proposed by skillfully merging GA with SAA. It draws on merits of both GA and SAA ,and offsets their shortcomings. The difference from GA is that AGA takes objective function as adaptability function directly, so it cuts down some unnecessary time expense because of float-point calculation of function conversion. The difference from SAA is that AGA need not execute a very long Markov chain iteration at each point of temperature, so it speeds up the convergence of solution and makes no assumption on the search space,so it is simple and easy to be implemented. It can be applied to a wide class of problems. The optimizing principle and the implementing steps of AGA were expounded. The example of the parameter optimization of a typical complex electromechanical system named temper mill shows that AGA is effective and superior to the conventional GA and SAA. The control system of temper mill optimized by AGA has the optimal performance in the adjustable ranges of its parameters.

  18. Talin-KANK1 interaction controls the recruitment of cortical microtubule stabilizing complexes to focal adhesions

    Science.gov (United States)

    Bouchet, Benjamin P; Gough, Rosemarie E; Ammon, York-Christoph; van de Willige, Dieudonnée; Post, Harm; Jacquemet, Guillaume; Altelaar, AF Maarten; Heck, Albert JR; Goult, Benjamin T; Akhmanova, Anna

    2016-01-01

    The cross-talk between dynamic microtubules and integrin-based adhesions to the extracellular matrix plays a crucial role in cell polarity and migration. Microtubules regulate the turnover of adhesion sites, and, in turn, focal adhesions promote the cortical microtubule capture and stabilization in their vicinity, but the underlying mechanism is unknown. Here, we show that cortical microtubule stabilization sites containing CLASPs, KIF21A, LL5β and liprins are recruited to focal adhesions by the adaptor protein KANK1, which directly interacts with the major adhesion component, talin. Structural studies showed that the conserved KN domain in KANK1 binds to the talin rod domain R7. Perturbation of this interaction, including a single point mutation in talin, which disrupts KANK1 binding but not the talin function in adhesion, abrogates the association of microtubule-stabilizing complexes with focal adhesions. We propose that the talin-KANK1 interaction links the two macromolecular assemblies that control cortical attachment of actin fibers and microtubules. DOI: http://dx.doi.org/10.7554/eLife.18124.001 PMID:27410476

  19. Balancing Control and Complexity in Field Studies of Neonicotinoids and Honey Bee Health

    Directory of Open Access Journals (Sweden)

    Sainath Suryanarayanan

    2013-03-01

    Full Text Available Amidst ongoing declines in honey bee health, the contributory role of the newer systemic insecticides continues to be intensely debated. Scores of toxicological field experiments, which bee scientists and regulators in the United States have looked to for definitive causal evidence, indicate a lack of support. This paper analyzes the methodological norms that shape the design and interpretation of field toxicological studies. I argue that contemporary field studies of honey bees and pesticides are underpinned by a “control-oriented” approach, which precludes a serious investigation of the indirect and multifactorial ways in which pesticides could drive declines in honey bee health. I trace the historical rise to prominence of this approach in honey bee toxicology to the development of entomology as a science of insecticide development in the United States. Drawing on “complexity-oriented” knowledge practices in ecology, epidemiology, beekeeping and sociology, I suggest an alternative socio-ecological systems approach, which would entail in situ studies that are less concerned with isolating individual factors and more attentive to the interactive and place-based mix of factors affecting honey bee health.

  20. Ubiquitin-SUMO circuitry controls activated fanconi anemia ID complex dosage in response to DNA damage.

    Science.gov (United States)

    Gibbs-Seymour, Ian; Oka, Yasuyoshi; Rajendra, Eeson; Weinert, Brian T; Passmore, Lori A; Patel, Ketan J; Olsen, Jesper V; Choudhary, Chunaram; Bekker-Jensen, Simon; Mailand, Niels

    2015-01-01

    We show that central components of the Fanconi anemia (FA) DNA repair pathway, the tumor suppressor proteins FANCI and FANCD2 (the ID complex), are SUMOylated in response to replication fork stalling. The ID complex is SUMOylated in a manner that depends on the ATR kinase, the FA ubiquitin ligase core complex, and the SUMO E3 ligases PIAS1/PIAS4 and is antagonized by the SUMO protease SENP6. SUMOylation of the ID complex drives substrate selectivity by triggering its polyubiquitylation by the SUMO-targeted ubiquitin ligase RNF4 to promote its removal from sites of DNA damage via the DVC1-p97 ubiquitin segregase complex. Deregulation of ID complex SUMOylation compromises cell survival following replication stress. Our results uncover a regulatory role for SUMOylation in the FA pathway, and we propose that ubiquitin-SUMO signaling circuitry is a mechanism that contributes to the balance of activated ID complex dosage at sites of DNA damage. PMID:25557546

  1. Computerized control system of gaseous mixture preparation complex for experimental study of muon catalysis of nuclear synthesis reaction

    International Nuclear Information System (INIS)

    The computerized system for controlling and monitoring the gaseous mixture preparation complex Triton intended for experimental studies on the muon catalysis of the synthesis nuclear reactions in the ternary mixtures of the H/D/T hydrogen isotopes within the wide range of temperatures and pressures is described. The system provides also for controlling and monitoring the target parameters, the gaseous mixture composition control and dosimetric control. Good performance characteristics, high reliability and possibility of fast adaptation of the system for solving new tasks are demonstrated in the course of multiple physical experiments

  2. Various-scale controls of complex subduction dynamics on magmatic-hydrothermal processes in eastern Mediterranean

    Science.gov (United States)

    Menant, Armel; Jolivet, Laurent; Sternai, Pietro; Ducoux, Maxime; Augier, Romain; Rabillard, Aurélien; Gerya, Taras; Guillou-Frottier, Laurent

    2014-05-01

    In subduction environment, magmatic-hydrothermal processes, responsible for the emplacement of magmatic bodies and related mineralization, are strongly controlled by slab dynamics. This 3D dynamics is often complex, resulting notably in spatial evolution through time of mineralization and magmatism types and in fast kinematic changes at the surface. Study at different scales of the distribution of these magmatic and hydrothermal products is useful to better constrain subduction dynamics. This work is focused on the eastern Mediterranean, where the complex dynamics of the Tethyan active margin since the upper Cretaceous is still largely debated. We propose new kinematic reconstructions of the region also showing the distribution of magmatic products and mineralization in space and time. Three main periods have thus been identified with a general southward migration of magmatic and ore bodies. (1) From late Cretaceous to lower Paleocene, calc-alkaline magmatism and porphyry Cu deposits emplaced notably in the Balkans, along a long linear cordillera. (2) From late Paleocene to Eocene, a barren period occurred while the Pelagonian microcontinent was buried within the subduction zone. (3) Since the Oligocene, Au-rich deposits and related K-rich magmatism emplaced in the Rhodopes, the Aegean and western Anatolian extensional domains in response to fast slab retreat and related mantle flow inducing the partial melting of the lithospheric mantle or the base of the upper crust where Au was previously stored. The emplacement at shallow level of this mineralization was largely controlled by large-scale structures that drained the magmatic-hydrothermal fluids. In the Cyclades for instance, field studies show that Au-rich but also base metal-rich ore deposits are syn-extensional and spatially related to large-scale detachment systems (e.g. on Tinos, Mykonos, Serifos islands), which are recognized as subduction-related structures. These results highlight the importance at

  3. A model of human decision making in complex systems and its use for design of system control strategies

    International Nuclear Information System (INIS)

    The paper describes a model of operators' decision making in complex system control, based on studies of event reports and performance in control rooms. This study shows how operators base their decisions on knowledge of system properties at different levels of abstraction depending on their preception of the system's immediate control requirements. These levels correspond to the abstraction hierarchy including system purpose, functions, and physical details, which is generally used to describe a formal design process. In emergency situations the task of the operator is to design a suitabel control strategy for systems recovery, and the control systems designer should provide a man-machine interface, supporting the operator in identification of his task and in communication with the system at the level of abstraction corresponding to the immedite control requirement. A formalized representation of system properties in a multilevel flow model is described to provide a basis for an integrated control system design. (author)

  4. Controlled acrylate insertion regioselectivity in diazaphospholidine- sulfonato palladium(II) complexes

    KAUST Repository

    Wucher, Philipp

    2012-12-24

    Diazaphospholidine-sulfonato Pd(II) complexes [{κ2-P,O-(N- Ar2C2H4N2P)C6H 4SO3}PdMe(L)] 1-L (L = dmso, pyridine, lutidine, or μ-LiCl(solvent); 1a: Ar = Ph, 1b: Ar = 2-MeC6H4, 1c: Ar = 2-MeOC6H4, 1d: Ar = 2,4,6-Me3C 6H2, 1e: Ar = 2,6-iPr2C6H 3, 1f: Ar = 2,6-(p-tolyl)2C6H3) were prepared and structurally characterized. The regioselectivity of methyl acrylate (MA) insertion into the Pd-Me bond is entirely inverted from >93% 1,2-insertion for bulky substituents (1d-f, yielding the insertion products [(P̂O)Pd{κ2-C,O-CH2CHMeC(O)OMe], 12) to the usual electronically controlled 2,1-insertion (>95%) for the less bulky Ar = Ph (1a, yielding the insertion product [(P̂O)Pd{κ2-C,O- CHEtC(O)OMe], 11, and β-H elimination product methyl crotonate). DFT studies underline that this is due to a more favorable insertion transition state (2,1- favored by 12 kJ mol-1 over 1,2- for 1a) vs destabilization of the 2,1-insertion transition state in 1d,e. By contrast, MA insertion into the novel isolated and structurally characterized hydride and deuteride complexes [{κ2-P,O-(N-Ar2C 2H4N2P)C6H4SO 3}PdR(lutidine)] (Ar = 2,6-iPr2C6H3; 9e: R = H, 10e: R = D) occurs 2,1-selectively. This is due to the insertion occurring from the isomer with the P-donor and the olefin in trans arrangement, rather than the insertion into the alkyl from the cis isomer in which the olefin is in proximity to the bulky diazaphospholidine. 1a-f are precursors to active catalysts for ethylene polymerization to highly linear polyethylene with M n up to 35 000 g mol-1. In copolymerization experiments, norbornene was incorporated in up to 6.1 mol % into the polyethylene backbone. © 2012 American Chemical Society.

  5. Complexity-based measures inform tai chi’s impact on standing postural control in older adults with peripheral neuropathy

    OpenAIRE

    Manor, Bradley David; Lipsitz, Lewis Arnold; Wayne, Peter Michael; Peng, Chung-Kang; Li, Li

    2013-01-01

    Background: Tai Chi training enhances physical function and may reduce falls in older adults with and without balance disorders, yet its effect on postural control as quantified by the magnitude or speed of center-of-pressure (COP) excursions beneath the feet is less clear. We hypothesized that COP metrics derived from complex systems theory may better capture the multi-component stimulus that Tai Chi has on the postural control system, as compared with traditional COP measures. Methods: We p...

  6. In vitro lymphocyte proliferation response to therapeutic insulin components. Evidence for genetic control by the human major histocompatibility complex.

    OpenAIRE

    Mann, D L; Mendell, N; Kahn, C R; Johnson, A H; Rosenthal, A

    1983-01-01

    Genes in the major histocompatibility complex of mice and guinea pigs control immunologic responsiveness to insulins from other animal species. In order to determine if similar genetic control exists in man, we have examined lymphocyte proliferation responses to components of therapeutic insulins by employing lymphocytes from diabetic patients that receive insulin. Distinct groups of individuals demonstrated positive lymphocyte proliferative responses to beef insulin, beef and pork insulin, b...

  7. Systemic inflammatory mediators in post-traumatic Complex Regional Pain Syndrome (CRPS I) - longitudinal investigations and differences to control groups

    OpenAIRE

    Schinkel Ch; Scherens A; Köller M; Roellecke G; Muhr G; Maier C

    2009-01-01

    Abstract Objectives The Complex Regional Pain Syndrome I (CRPS I) is a disease that might affect an extremity after trauma or operation. The pathogenesis remains yet unclear. It has clinical signs of severe local inflammation as a result of an exaggerated inflammatory response but neurogenic dysregulation also contributes to it. Some studies investigated the role inflammatory mediators and cytokines; however, few longitudinal studies exist and control groups except healthy controls were not i...

  8. Preparation and evaluation of polyelectrolyte complexes for oral controlled drug delivery

    OpenAIRE

    Srinivas L; Ramana Murthy K

    2010-01-01

    The electrostatic interaction between oppositely charged polyelectrolytes leads to formation of insoluble polyelectrolyte complexes in aqueous medium. The polyelectrolyte complexes formed between a polyacid and a polybase are little affected by the pH variation of the dissolution medium. In the present study attempts were made to prepare polyelectrolyte complexes of polyvinyl pyrrolidone (polybase) and carbopol (polyacid) into which diclofenac sodium is incorporated and studied for its contro...

  9. Factors controlling spatial distribution patterns of biocrusts in a heterogeneous and topographically complex semiarid area

    Science.gov (United States)

    Chamizo, Sonia; Rodríguez-Caballero, Emilio; Roncero, Beatriz; Raúl Román, José; Cantón, Yolanda

    2016-04-01

    Biocrusts are widespread soil components in drylands all over the world. They are known to play key roles in the functioning of these regions by fixing carbon and nitrogen, regulating hydrological processes, and preventing from water and wind erosion, thus reducing the loss of soil resources and increasing soil fertility. The rate and magnitude of services provided by biocrusts greatly depend on their composition and developmental stage. Late-successional biocrusts such as lichens and mosses have higher carbon and nitrogen fixation rates, and confer greater protection against erosion and the loss of sediments and nutrients than early-successional algae and cyanobacteria biocrusts. Knowledge of spatial distribution patterns of different biocrust types and the factors that control their distribution is important to assess ecosystem services provided by biocrusts at large spatial scales and to improve modelling of biogeochemical processes and water and carbon balance in drylands. Some of the factors that condition biocrust cover and composition are incoming solar radiation, terrain attributes, vegetation distribution patterns, microclimatic variables and soil properties such as soil pH, texture, soil organic matter, soil nutrients and gypsum and CaCO3 content. However, the factors that govern biocrust distribution may vary from one site to another depending on site characteristics. In this study, we examined the influence of abiotic attributes on the spatial distribution of biocrust types in a complex heterogeneous badland system (Tabernas, SE Spain) where biocrust cover up to 50% of the soil surface. From the analysis of relationships between terrain attributes and proportional abundance of biocrust types, it was found that topography exerted a main control on the spatial distribution of biocrust types in this area. SW-facing slopes were dominated by physical soil crusts and were practically devoid of vegetation and biocrusts. Biocrusts mainly occupied the pediments

  10. The role of risk analysis in control of complex plant safe operation

    International Nuclear Information System (INIS)

    The problem of risk estimation assessment and control is necessary to be discussed in every decision making level of an activity. Performances of a system, action or technology, by indicating the possible consequences on environment, people or property should be qualitatively assessed. The paper presents methodologies of risk assessment successful applied on isotopic separation plants. The quantitative methodologies presented, use fault tree and event tree to determine the accident states frequency, physical models to analyse the dispersion in atmosphere of dangerous substances. The qualitative methodologies use the fuzzy models for the multicriterial decision making, models based on risk matrix build on the base of combination between the severity and the probability of maximum admissible consequence. These methodologies present the following steps for applying: familiarising with the activity in study, establishing the adequate method of risk assessment, building the model of risk assessment for the activity or objective in study, developing the applications of the proposed model. Applying this methodology to isotopic separation plants have led to: analysis of operation events and establishing of principal types of events potentially dangerous, analysis of human error in these plant operations and operating experience assessment, technical specifications for optimisation by probabilistic safety assessment, reliability analysis and development of reliability and exploitation of events database, post accident events analysis (releases, fires, explosions) and mathematical modelling of dispersion in atmosphere of dangerous substances. The risk concept being complex and with multiple implications, is not the case of a rigid approaching neither of existence of some methods universally valid. Because of these reasons, choosing of the most appropriate method for the risk assessment of an activity, leads to a solution in useful time, of some problems with economic, social

  11. The role of risk analysis in control of complex plants' safety operation

    International Nuclear Information System (INIS)

    The problem of risk estimation, assessment and control is necessary to be discussed at every decision level of an activity. In this way the performances of a system, action or technology are qualitatively assessed by indicating the possible consequences on environmental, people or property. The paper presents methodologies of risk assessment successfully applied on isotopic separation plants. The quantitative methodologies presented use fault tree and event tree to determine the accident states frequency and physical models to analyse the dispersion in atmosphere of dangerous substances. The qualitative methodologies use fuzzy models for the multi-criteria decision making, models based on risk matrix built on the basis of a combination between severity and probability of maximum admissible consequence. These methodologies present the following steps for applying: familiarising with the activity in study, establishing the adequate method of risk assessment, realising of the model of risk assessment for the activity or objective in study, developing of application of the proposed model. Applying this methodology to isotopic separation plants has led to: analysis of operation events and establishing of principal types of events potentially dangerous, analysis of human error in these plants operation and operating experience assessment, technical specifications optimisation by probabilistic safety assessment, reliability analysis and development of reliability and exploitation events database, post accident events analysis (releases, fires, explosions) and mathematical modelling of dispersion in atmosphere of dangerous substances. The risk concept being complex and with multiple implications, it is not the case of a rigid approaching neither of existence of some methods universally valid. Because of these reasons choosing of the most appropriate method for the risk assessment of an activity, leads to solution in due time, of some problems with economic, social

  12. Single conversion audio amplifier and DC-AC converters with high performance and low complexity control scheme

    DEFF Research Database (Denmark)

    Poulsen, Søren; Andersen, Michael Andreas E.

    2004-01-01

    This paper proposes a novel control topology for a mains isolated single conversion audio amplifier and DC-AC converters. The topology is made for use in audio applications, and differs from prior art in terms of significantly reduced distortion as well as lower system complexity. The topology ca...

  13. Advanced Media Control Through Drawing: Using a graphics tablet to control complex audio and video data in a live context

    OpenAIRE

    Gibson, Stephen; Love, Justin

    2011-01-01

    This paper demonstrates the results of the authors’ Wacom tablet MIDI user interface. This application enables users’ drawing actions on a graphics tablet to control audio and video parameters in real-time. The programming affords five degrees (x, y, pressure, x tilt, y tilt) of concurrent control for use in any audio or video software capable of receiving and processing MIDI data. Drawing gesture can therefore form the basis of dynamic control simultaneously in the auditory and visual realms...

  14. A low-dimensional physically based model of hydrologic control of shallow landslinding on complex hillslopes

    NARCIS (Netherlands)

    Talebi, A.; Uijlenhoet, R.; Troch, P.A.

    2008-01-01

    Hillslopes have complex three-dimensional shapes that are characterized by their plan shape, profile curvature of surface and bedrock, and soil depth. To investigate the stability of complex hillslopes (with different slope curvatures and plan shapes), we combine the hillslope-storage Boussinesq (HS

  15. Ubiquitin-SUMO Circuitry Controls Activated Fanconi Anemia ID Complex Dosage in Response to DNA Damage

    DEFF Research Database (Denmark)

    Gibbs-Seymour, Ian; Oka, Yasuyoshi; Rajendra, Eeson;

    2015-01-01

    We show that central components of the Fanconi anemia (FA) DNA repair pathway, the tumor suppressor proteins FANCI and FANCD2 (the ID complex), are SUMOylated in response to replication fork stalling. The ID complex is SUMOylated in a manner that depends on the ATR kinase, the FA ubiquitin ligase...

  16. Complexation with dissolved organic matter and solubility control of heavy metals in sandy soil

    NARCIS (Netherlands)

    Weng, L.; Temminghoff, E.J.M.; Lofts, S.; Tipping, E.; Riemsdijk, van W.H.

    2002-01-01

    The complexation of heavy metals with dissolved organic matter (DOM) in the environment influences the solubility and mobility of these metals. In this paper, we measured the complexation of Cu, Cd, Zn, Ni, and Pb with DOM in the soil solution at pH 3.7-6.1 using a Donnan membrane technique. The res

  17. Model-Based Development and Evaluation of Control for Complex Multi-Domain Systems

    DEFF Research Database (Denmark)

    Nilsson, Rene; Grujic, Ivan

    2016-01-01

    quadrotor Unmanned Aerial Vehicle (UAV) has been constructed and used to develop an attitude controller based on Model Predictive Control (MPC). The MPC controller has been compared to an existing open source Proportional Integral Derivative (PID) attitude controller. This thesis contributes to the...

  18. A Model of Human Decision Making in Complex Systems and its Use for Design of System Control Strategies

    DEFF Research Database (Denmark)

    Rasmussen, Jens; Lind, Morten

    The paper describes a model of operators' decision making in complex system control, based on studies of event reports and performance in control rooms. This study shows how operators base their decisions on knowledge of system properties at different levels of abstraction depending on their...... perception of the system's immediate control requirements. These levels correspond to the abstraction hierarchy including system purpose, functions, and physical details, which is generally used to describe a formal design process. In emergency situations the task of the operator is to design a suitable...

  19. Decentralized Model-Based Event-Triggered Control of Complex Systems

    Czech Academy of Sciences Publication Activity Database

    Bakule, Lubomír; Papík, Martin

    Santiago de Chile : ACCA, 2014, s. 305-310. ISSN 0719-5567. [Congreso de la Asociación Chilena de Control Automático ACCA 2014 /XXI./. Santiago de Chile (CL), 05.11.2014-07.11.2014] R&D Projects: GA ČR GA13-02149S; GA MŠk(CZ) LG12014 Keywords : decentralized control * model-based control * event-triggered control Subject RIV: BC - Control Systems Theory

  20. Fracturing fluid cleanup by controlled release of enzymes from polyelectrolyte complex nanoparticles

    Science.gov (United States)

    Barati Ghahfarokhi, Reza

    Guar-based polymer gels are used in the oil and gas industry to viscosify fluids used in hydraulic fracturing of production wells, in order to reduce leak-off of fluids and pressure, and improve the transport of proppants. After fracturing, the gel and associated filter cake must be degraded to very low viscosities using breakers to recover the hydraulic conductivity of the well. Enzymes are widely used to achieve this but injecting high concentrations of enzyme may result in premature degradation, or failure to gel; denaturation of enzymes at alkaline pH and high temperature conditions can also limit their applicability. In this study, application of polyelectrolyte nanoparticles for entrapping, carrying, releasing and protecting enzymes for fracturing fluids was examined. The objective of this research is to develop nano-sized carriers capable of carrying the enzymes to the filter cake, delaying the release of enzyme and protecting the enzyme against pH and temperature conditions inhospitable to native enzyme. Polyethylenimine-dextran sulfate (PEI-DS) polyelectrolyte complexes (PECs) were used to entrap two enzymes commonly used in the oil industry in order to obtain delayed release and to protect the enzyme from conditions inhospitable to native enzyme. Stability and reproducibility of PEC nanoparticles was assured over time. An activity measurement method was used to measure the entrapment efficiency of enzyme using PEC nanoparticles. This method was confirmed using a concentration measurement method (SDS-PAGE). Entrapment efficiencies of pectinase and a commercial high-temperature enzyme mixture in polyelectrolyte complex nanoparticles were maximized. Degradation, as revealed by reduction in viscoelastic moduli of borate-crosslinked hydroxypropyl guar (HPG) gel by commercial enzyme loaded in polyelectrolyte nanoparticles, was delayed, compared to equivalent systems where the enzyme mixture was not entrapped. This indicates that PEC nanoparticles delay the

  1. Implication of Ccr4-Not complex function in mRNA quality control in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Assenholt, Jannie; Mouaikel, John; Saguez, Cyril;

    2011-01-01

    Production of messenger ribonucleoprotein particles (mRNPs) is subjected to quality control (QC). In Saccharomyces cerevisiae, the RNA exosome and its cofactors are part of the nuclear QC machinery that removes, or stalls, aberrant molecules, thereby ensuring that only correctly formed mRNPs are ......Production of messenger ribonucleoprotein particles (mRNPs) is subjected to quality control (QC). In Saccharomyces cerevisiae, the RNA exosome and its cofactors are part of the nuclear QC machinery that removes, or stalls, aberrant molecules, thereby ensuring that only correctly formed m......RNPs are exported to the cytoplasm. The Ccr4-Not complex, which constitutes the major S. cerevisiae cytoplasmic deadenylase, has recently been implied in nuclear exosome–related processes. Consistent with a possible nuclear function of the complex, the deletion or mutation of Ccr4-Not factors also elicits...... transcription phenotypes. Here we use genetic depletion of the Mft1p protein of the THO transcription/mRNP packaging complex as a model system to link the Ccr4-Not complex to nuclear mRNP QC. We reveal strong genetic interactions between alleles of the Ccr4-Not complex with both the exosomal RRP6 and MFT1 genes...

  2. PBR1 selectively controls biogenesis of photosynthetic complexes by modulating translation of the large chloroplast gene Ycf1 in Arabidopsis.

    Science.gov (United States)

    Yang, Xiao-Fei; Wang, Yu-Ting; Chen, Si-Ting; Li, Ji-Kai; Shen, Hong-Tao; Guo, Fang-Qing

    2016-01-01

    The biogenesis of photosystem I (PSI), cytochrome b 6 f (Cytb 6 f) and NADH dehydrogenase (NDH) complexes relies on the spatially and temporally coordinated expression and translation of both nuclear and chloroplast genes. Here we report the identification of photosystem biogenesis regulator 1 (PBR1), a nuclear-encoded chloroplast RNA-binding protein that regulates the concerted biogenesis of NDH, PSI and Cytb 6 f complexes. We identified Ycf1, one of the two largest chloroplast genome-encoded open reading frames as the direct downstream target protein of PBR1. Biochemical and molecular analyses reveal that PBR1 regulates Ycf1 translation by directly binding to its mRNA. Surprisingly, we further demonstrate that relocation of the chloroplast gene Ycf1 fused with a plastid-transit sequence to the nucleus bypasses the requirement of PBR1 for Ycf1 translation, which sufficiently complements the defects in biogenesis of NDH, PSI and Cytb 6 f complexes in PBR1-deficient plants. Remarkably, the nuclear-encoded PBR1 tightly controls the expression of the chloroplast gene Ycf1 at the translational level, which is sufficient to sustain the coordinated biogenesis of NDH, PSI and Cytb 6 f complexes as a whole. Our findings provide deep insights into better understanding of how a predominant nuclear-encoded factor can act as a migratory mediator and undergoes selective translational regulation of the target plastid gene in controlling biogenesis of photosynthetic complexes. PMID:27462450

  3. Neurochemical architecture of the central complex related to its function in the control of grasshopper acoustic communication.

    Directory of Open Access Journals (Sweden)

    Michael Kunst

    Full Text Available The central complex selects and coordinates the species- and situation-specific song production in acoustically communicating grasshoppers. Control of sound production is mediated by several neurotransmitters and modulators, their receptors and intracellular signaling pathways. It has previously been shown that muscarinic cholinergic excitation in the central complex promotes sound production whereas both GABA and nitric oxide/cyclic GMP signaling suppress its performance. The present immunocytochemical and pharmacological study investigates the question whether GABA and nitric oxide mediate inhibition of sound production independently. Muscarinic ACh receptors are expressed by columnar output neurons of the central complex that innervate the lower division of the central body and terminate in the lateral accessory lobes. GABAergic tangential neurons that innervate the lower division of the central body arborize in close proximity of columnar neurons and thus may directly inhibit these central complex output neurons. A subset of these GABAergic tangential neurons accumulates cyclic GMP following the release of nitric oxide from neurites in the upper division of the central body. While sound production stimulated by muscarine injection into the central complex is suppressed by co-application of sodium nitroprusside, picrotoxin-stimulated singing was not affected by co-application of this nitric oxide donor, indicating that nitric oxide mediated inhibition requires functional GABA signaling. Hence, grasshopper sound production is controlled by processing of information in the lower division of the central body which is subject to modulation by nitric oxide released from neurons in the upper division.

  4. The CHR promoter element controls cell cycle-dependent gene transcription and binds the DREAM and MMB complexes.

    Science.gov (United States)

    Müller, Gerd A; Quaas, Marianne; Schümann, Michael; Krause, Eberhard; Padi, Megha; Fischer, Martin; Litovchick, Larisa; DeCaprio, James A; Engeland, Kurt

    2012-02-01

    Cell cycle-dependent gene expression is often controlled on the transcriptional level. Genes like cyclin B, CDC2 and CDC25C are regulated by cell cycle-dependent element (CDE) and cell cycle genes homology region (CHR) promoter elements mainly through repression in G(0)/G(1). It had been suggested that E2F4 binding to CDE sites is central to transcriptional regulation. However, some promoters are only controlled by a CHR. We identify the DREAM complex binding to the CHR of mouse and human cyclin B2 promoters in G(0). Association of DREAM and cell cycle-dependent regulation is abrogated when the CHR is mutated. Although E2f4 is part of the complex, a CDE is not essential but can enhance binding of DREAM. We show that the CHR element is not only necessary for repression of gene transcription in G(0)/G(1), but also for activation in S, G(2) and M phases. In proliferating cells, the B-myb-containing MMB complex binds the CHR of both promoters independently of the CDE. Bioinformatic analyses identify many genes which contain conserved CHR elements in promoters binding the DREAM complex. With Ube2c as an example from that screen, we show that inverse CHR sites are functional promoter elements that can bind DREAM and MMB. Our findings indicate that the CHR is central to DREAM/MMB-dependent transcriptional control during the cell cycle. PMID:22064854

  5. The CHR promoter element controls cell cycle-dependent gene transcription and binds the DREAM and MMB complexes

    Science.gov (United States)

    Müller, Gerd A.; Quaas, Marianne; Schümann, Michael; Krause, Eberhard; Padi, Megha; Fischer, Martin; Litovchick, Larisa; DeCaprio, James A.; Engeland, Kurt

    2012-01-01

    Cell cycle-dependent gene expression is often controlled on the transcriptional level. Genes like cyclin B, CDC2 and CDC25C are regulated by cell cycle-dependent element (CDE) and cell cycle genes homology region (CHR) promoter elements mainly through repression in G0/G1. It had been suggested that E2F4 binding to CDE sites is central to transcriptional regulation. However, some promoters are only controlled by a CHR. We identify the DREAM complex binding to the CHR of mouse and human cyclin B2 promoters in G0. Association of DREAM and cell cycle-dependent regulation is abrogated when the CHR is mutated. Although E2f4 is part of the complex, a CDE is not essential but can enhance binding of DREAM. We show that the CHR element is not only necessary for repression of gene transcription in G0/G1, but also for activation in S, G2 and M phases. In proliferating cells, the B-myb-containing MMB complex binds the CHR of both promoters independently of the CDE. Bioinformatic analyses identify many genes which contain conserved CHR elements in promoters binding the DREAM complex. With Ube2c as an example from that screen, we show that inverse CHR sites are functional promoter elements that can bind DREAM and MMB. Our findings indicate that the CHR is central to DREAM/MMB-dependent transcriptional control during the cell cycle. PMID:22064854

  6. Impulsive control for synchronizing delayed discrete complex networks with switching topology

    OpenAIRE

    Li, Chaojie; Gao, David Y; Liu, Chao; Chen, Guo

    2013-01-01

    In this paper, global exponential synchronization of a class of discrete delayed complex networks with switching topology has been investigated by using Lyapunov-Ruzimiki method. The impulsive scheme is designed to work at the time instant of switching occurrence. A time-varying delay-dependent criterion for impulsive synchronization is given to ensure the delayed discrete complex networks switching topology tending to a synchronous state. Furthermore, a numerical simulation is given to illus...

  7. Finite size and inner structure controlled by electrostatic screening in globular complexes of proteins and polyelectrolytes

    OpenAIRE

    Gummel, Jérémie; Boué, François; Clemens, Daniel; Cousin, Fabrice

    2010-01-01

    International audience We present an extended structural study of globular complexes made by mixing a positively charge protein (lysozyme) and a negatively charged polyelectrolyte (PSS). We study the influence of all the parameters that may act on the structure of the complexes (charge densities and concentration of the species, partial hydrophobicity of the polyion chain, ionic strength). The structures on a 15 scale range lying from 10Å to 1000Å are measured by SANS. Whatever the conditi...

  8. A Case Study on the Application of a Structured Experimental Method for Optimal Parameter Design of a Complex Control System

    Science.gov (United States)

    Torres-Pomales, Wilfredo

    2015-01-01

    This report documents a case study on the application of Reliability Engineering techniques to achieve an optimal balance between performance and robustness by tuning the functional parameters of a complex non-linear control system. For complex systems with intricate and non-linear patterns of interaction between system components, analytical derivation of a mathematical model of system performance and robustness in terms of functional parameters may not be feasible or cost-effective. The demonstrated approach is simple, structured, effective, repeatable, and cost and time efficient. This general approach is suitable for a wide range of systems.

  9. A strategy for achieving manufacturing statistical process control within a highly complex aerospace environment

    OpenAIRE

    Veira, Adryan; Khan, Khurshid; Farrell, Ian

    2013-01-01

    This paper presents a strategy to achieve process control and overcome the previously mentioned industry constraints by changing the company focus to the process as opposed to the product. The strategy strives to achieve process control by identifying and controlling the process parameters that influence process capability followed by the implementation of a process control framework that marries statistical methods with lean business process and change management principles. The reliability ...

  10. On-line system for control of vacuum pump stations of an accelerating complex

    International Nuclear Information System (INIS)

    On-line system for control of vacuum pump stations of the heavy ion accelerator is described. Block diagram of hardware part of the system is considered and main functions of software are described. ELEKTRONIKA MS-0507 microcomputer is used for control. The developed system of control is oriented to CAMAC, VECTOR standards and it allows to use microcomputer of another type at application of the respective controller

  11. Decentralized H-infinity control of complex systems with delayed feedback

    Czech Academy of Sciences Publication Activity Database

    Bakule, Lubomír; Rehák, Branislav; Papík, Martin

    2016-01-01

    Roč. 67, č. 1 (2016), s. 127-131. ISSN 0005-1098 R&D Projects: GA ČR GA13-02149S Institutional support: RVO:67985556 Keywords : decentralized control * H-infinity control * large-scale systems * Fault-tolerant systems Subject RIV: BC - Control Systems Theory Impact factor: 3.020, year: 2014

  12. Controlled Assembly of Endohedrally-Functionalized Metal-Ligand Supramolecular Complexes

    OpenAIRE

    Johnson, Amber

    2014-01-01

    An area of supramolecular chemistry that has recently been growing in popularity is the synthesis of metal-ligand cages. These are most commonly comprised of organic ligands and transition metal ions. Cage complexes often take the form of geometric polyhedra such as tetrahedra and octahedra, where the ligands act as the edges or faces and the metals serve as the vertices. Because these complexes have a polyhedral design, there is a central cavity in the cage, and this has been exploited for g...

  13. Anion-controlled assembly of metal 3,5-bis(benzimidazol-1-ylmethyl) benzoate complexes: Synthesis, characterization and property

    International Nuclear Information System (INIS)

    Hydrothermal reactions of 3,5-bis(benzimidazol-1-ylmethyl)benzoic acid (HL) with Cd(II), Cu(II) and Zn(II) salts provide eight new metal complexes which were characterized by single crystal and powder X-ray diffraction, IR, elemental and thermogravimetric analyses. Two cadmium frameworks [Cd(L)2]·2H2O (1) and [Cd(L)Cl] (2) have 3D structures with (42.65.83)(42.6) and rtl (4.62)2(42.610.83) topologies, respectively. Structural diversity of four copper complexes [Cu3(L)2]·NO3·0.5H2O (3), [Cu2(HL)2(SO4)]·3.5H2O (4), [Cu(L)(bdc)0.5]·1.5H2O (5) and [Cu2(L)(HL)(Hbdc)] (6) (H2bdc=1,4-benzenedicarboxylic acid) is achieved through the alteration of copper salts and addition of auxiliary ligand. As a result, 3 has a 1D ladder structure, 4 is a discrete dinuclear complex, 5 displays a (3,4)-connected 2-nodal 3-fold interpenetrating framework with (42.6.102.12)(42.6) topology, 6 exhibits a 4-connected uninodal 2D sql (44.62) network. Within the zinc series, ZnCl2 and ZnSO4 were used for the syntheses of [Zn(L)Cl] (7) and [Zn(L)(SO4)0.5]·2H2O (8), respectively. 7 shows a 3-connected uninodal 2D hcb network with (63) topology and 8 is a (3,6)-connected 2-nodal 3D framework with (42.6)2(44.62.88.10) topology. The luminescent properties of the Cd(II) and Zn(II) complexes were investigated. - Graphical abstract: Eight new complexes have been successfully synthesized from the hydrothermal reactions of Cd(II), Cu(II) and Zn(II) salts with 3,5-bis(benzimidazol-1-ylmethyl)benzoic acid. The complexes exhibited anion-controlled structural diversity. - Highlights: • Metal complexes have diverse structures of 1D chains, 2D networks and 3D frameworks. • Anion-controlled assembly of the complexes is reported. • The luminescent properties of the Cd(II) and Zn(II) complexes were investigated

  14. FLS-Based Adaptive Synchronization Control of Complex Dynamical Networks With Nonlinear Couplings and State-Dependent Uncertainties.

    Science.gov (United States)

    Li, Xiao-Jian; Yang, Guang-Hong

    2016-01-01

    This paper is concerned with the problem of synchronization control of complex dynamical networks (CDN) subject to nonlinear couplings and uncertainties. An fuzzy logical system-based adaptive distributed controller is designed to achieve the synchronization. The asymptotic convergence of synchronization errors is analyzed by combining algebraic graph theory and Lyapunov theory. In contrast to the existing results, the proposed synchronization control method is applicable for the CDN with system uncertainties and unknown topology. Especially, the considered uncertainties are allowed to occur in the node local dynamics as well as in the interconnections of different nodes. In addition, it is shown that a unified controller design framework is derived for the CDN with or without coupling delays. Finally, simulations on a Chua's circuit network are provided to validate the effectiveness of the theoretical results. PMID:25720020

  15. The CHR Promoter Element Controls Cell Cycle-Dependent Gene Transcription and Binds the DREAM and MMB Complexes

    OpenAIRE

    Müller, Gerd A.; Quaas, Marianne; Schümann, Michael; Krause, Eberhard; Fischer, Martin; Engeland, Kurt; Padi, Megha; Litovchick, Larisa; DeCaprio, James A.

    2011-01-01

    Cell cycle-dependent gene expression is often controlled on the transcriptional level. Genes like \\(cyclin B, CDC2\\) and \\(CDC25C\\) are regulated by cell cycle-dependent element (CDE) and cell cycle genes homology region (CHR) promoter elements mainly through repression in \\(G_0/G_1\\). It had been suggested that E2F4 binding to CDE sites is central to transcriptional regulation. However, some promoters are only controlled by a CHR. We identify the DREAM complex binding to the CHR of mouse and...

  16. Pore-controlled formation of 0D metal complexes in anionic 3D metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, MW; Bosch, M; Zhou, HC

    2015-01-01

    The host-guest chemistry between a series of anionic MOFs and their trapped counterions was investigated by single crystal XRD. The PCN-514 series contains crystallographically identifiable metal complexes trapped in the pores, where their formation is controlled by the size and shape of the MOF pores. A change in the structure and pore size of PCN-518 indicates that the existence of guest molecules may reciprocally affect the formation of host MOFs.

  17. The Effects of Controlled Release Fertilizer and Conventional Complex Fertilizer on the Photosynthetic Characteristics in Winter Wheat

    OpenAIRE

    Guoqing Li; Liyuan Yan; Jingtian Yang; Yan Shi

    2014-01-01

    The quantity and quality of the fertilizers affected the photosynthetic characteristic of the winter wheat. So, the rationality applied, reduced fertilizers not only can decline pollution for soil and ground water, but also save the cost. The quantity and quality of the fertilizers determine the relationship between the photosynthetic characteristics. Therefore, the different effects about the using of the Controlled Release Fertilizer (CRF) and the Conventional Complex Fertilizer (CCF) on ph...

  18. Implementing a Complex Intervention to Support Personal Recovery: A Qualitative Study Nested within a Cluster Randomised Controlled Trial

    OpenAIRE

    Leamy, Mary; Clarke, Eleanor; Le Boutillier, Clair; Bird, Victoria; Janosik, Monika; Sabas, Kai; Riley, Genevieve; Williams, Julie; Slade, Mike

    2014-01-01

    Objective To investigate staff and trainer perspectives on the barriers and facilitators to implementing a complex intervention to help staff support the recovery of service users with a primary diagnosis of psychosis in community mental health teams. Design Process evaluation nested within a cluster randomised controlled trial (RCT). Participants 28 interviews with mental health care staff, 3 interviews with trainers, 4 focus groups with intervention teams and 28 written trainer reports. Set...

  19. Department of Energy Nuclear Material Protection, Control, and Accounting Program at the Mangyshlak Atomic Energy Complex, Aktau, Republic of Kazakhstan

    International Nuclear Information System (INIS)

    As part of the Cooperative Threat Reduction Nuclear Material Protection, Control, and Accounting (MPC and A) Program, the US Department of Energy and Mangyshlak Atomic Energy Complex (MAEC), Aktau, Republic of Kazakstan have cooperated to enhance existing MAEC MPC and A features at the BN-350 liquid-metal fast-breeder reactor. This paper describes the methodology of the enhancement activities and provides representative examples of the MPC and A augmentation implemented at the MAEC

  20. Rif1 controls DNA replication by directing Protein Phosphatase 1 to reverse Cdc7-mediated phosphorylation of the MCM complex

    OpenAIRE

    Hiraga, Shin-ichiro; Alvino, Gina M.; Chang, FuJung; Lian, Hui-Yong; Sridhar, Akila; Kubota, Takashi; Brewer, Bonita J.; Weinreich, Michael; Raghuraman, M. K.; Donaldson, Anne D.

    2014-01-01

    Recent evidence points to a role for Rif1 (Rap1-interacting factor) in DNA replication and genomic stability; however, the mechanism by which Rif1 functions has remained elusive. Hiraga el al. now report that budding yeast Rif1 controls DNA replication genome-wide and describe how Rif1 opposes Dbf4-dependent kinase (DDK) function by directing Protein Phosphatase 1 (PP1)-mediated dephosphorylation of the MCM complex. PP1 interaction sites are evolutionarily conserved within the Rif1 sequence; ...

  1. Critical Infrastructure Modeling: An Approach to Characterizing Interdependencies of Complex Networks & Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Walsh; Shane Cherry; Lyle Roybal

    2009-05-01

    Critical infrastructure control systems face many challenges entering the 21st century, including natural disasters, cyber attacks, and terrorist attacks. Revolutionary change is required to solve many existing issues, including gaining greater situational awareness and resiliency through embedding modeling and advanced control algorithms in smart sensors and control devices instead of in a central controller. To support design, testing, and component analysis, a flexible simulation and modeling capability is needed. Researchers at Idaho National Laboratory are developing and evaluating such a capability through their CIPRsim modeling and simulation framework.

  2. Seismic response control of a complex structure using multiple MR dampers:experimental investigation

    Institute of Scientific and Technical Information of China (English)

    陈静; 徐幼麟; 瞿伟廉; 吴志伦

    2004-01-01

    This paper presents an experimental investigation on semi-active seismic response control of a multistory building with a podium structure using multiple magnetorheological (MR) dampers manipulated by a logic control algorithm. The experiments are performed in three phases on a seismic simulator with a slender 12-story building model representing a multi-story building and a relatively stiff 3-story building model typifying a podium structure. The first phase of the investigation is to assess control performance of using three MR dampers to link the 3-story building to the 12-story building, in which seismic responses of the controlled two buildings are compared with those of the two buildings without any connection and with rigid connection. The second phase is to investigate reliability of the semi-active control system and robustness of the logic control algorithm when 2 out of 3 MR dampers fail and when the electricity supply to MR dampers is completely stopped. The last phase is to examine sensitivity of semi-active control performance of two buildings to change in ground excitation. The experimental results show that multiple MR dampers with the logic control algorithm can achieve a significant reduction in seismic responses of both buildings. The proposed semi-active control system is of high reliability and good robustness.

  3. Phosphine-ligated dinitrosyl iron complexes for redox-controlled NO release.

    Science.gov (United States)

    Wittkamp, F; Nagel, C; Lauterjung, P; Mallick, B; Schatzschneider, U; Apfel, U-P

    2016-06-21

    Here we present the syntheses and structural, spectroscopic, as well as electrochemical properties of four dinitrosyl iron complexes (DNICs) based on silicon- and carbon-derived di- and tripodal phosphines. Whereas CH3C(CH2PPh2)3 and Ph2Si(CH2PPh2)2 coordinate iron in a η(2) - binding mode, CH3Si(CH2PPh2)3 undergoes cleavage of one Si-C bond to afford [Fe(NO)2(P(CH3)Ph2)2] at elevated temperatures. The complexes were characterized by IR spectroelectrochemistry as well as UV-vis measurements. The oxidized {Fe(NO)2}(9) compounds were obtained by oxidation with (NH4)2[Ce(NO3)6] and their properties evaluated with Mössbauer and IR spectroscopy. Stability experiments on the complexes suggest that they are capable of releasing their NO-ligands in the oxidized {Fe(NO)2}(9) but not in the reduced {Fe(NO)2}(10) form. A detailed DFT analysis is provided in order to understand the electronic configurations and the complexes' ability to release NO. PMID:27241282

  4. Dynamic spatial organization of multi-protein complexes controlling microbial polar organization, chromosome replication, and cytokinesis

    Energy Technology Data Exchange (ETDEWEB)

    McAdams, Harley; Shapiro, Lucille; Horowitz, Mark; Andersen, Gary; Downing, Kenneth; Earnest, Thomas; Ellisman, Mark; Gitai, Zemer; Larabell, Carolyn; Viollier, Patrick

    2012-06-18

    This project was a program to develop high-throughput methods to identify and characterize spatially localized multiprotein complexes in bacterial cells. We applied a multidisciplinary systems engineering approach to the detailed characterization of localized multi-protein structures in vivo a problem that has previously been approached on a fragmented, piecemeal basis.

  5. Distributed Low-Complexity Controller for Wind Power Plant in Derated Operation

    DEFF Research Database (Denmark)

    Biegel, Benjamin; Madjidian, Daria; Spudic, Vedrana; Rantzer, Anders; Stoustrup, Jakob

    We consider a wind power plant of megawatt wind turbines operating in derated mode. When operating in this mode, the wind power plant controller is free to distribute power set-points to the individual turbines, as long as the total power demand is met. In this work, we design a controller that...

  6. Intention-to-Treat Analysis in Partially Nested Randomized Controlled Trials with Real-World Complexity

    Science.gov (United States)

    Schweig, Jonathan David; Pane, John F.

    2016-01-01

    Demands for scientific knowledge of what works in educational policy and practice has driven interest in quantitative investigations of educational outcomes, and randomized controlled trials (RCTs) have proliferated under these conditions. In educational settings, even when individuals are randomized, both experimental and control students are…

  7. The Complex Relationship between Parental Divorce and the Sense of Control

    Science.gov (United States)

    Kim, Joongbaeck; Woo, Hyeyoung

    2011-01-01

    How does parental divorce influence the sense of control in adult offspring? Numerous studies have examined the implications of parental divorce on adult psychological well-being. However, little attention has been paid to the long-term consequences of parental divorce for adult sense of control. Using data from the Survey of Aging, Status, and…

  8. K-nearest-neighbor conditional entropy approach for the assessment of the short-term complexity of cardiovascular control

    International Nuclear Information System (INIS)

    Complexity analysis of short-term cardiovascular control is traditionally performed using entropy-based approaches including corrective terms or strategies to cope with the loss of reliability of conditional distributions with pattern length. This study proposes a new approach aiming at the estimation of conditional entropy (CE) from short data segments (about 250 samples) based on the k-nearest-neighbor technique. The main advantages are: (i) the control of the loss of reliability of the conditional distributions with the pattern length without introducing a priori information; (ii) the assessment of complexity indexes without fixing the pattern length to an arbitrary low value. The approach, referred to as k-nearest-neighbor conditional entropy (KNNCE), was contrasted with corrected approximate entropy (CApEn), sample entropy (SampEn) and corrected CE (CCE), being the most frequently exploited approaches for entropy-based complexity analysis of short cardiovascular series. Complexity indexes were evaluated during the selective pharmacological blockade of the vagal and/or sympathetic branches of the autonomic nervous system. We found that KNNCE was more powerful than CCE in detecting the decrease of complexity of heart period variability imposed by double autonomic blockade. In addition, KNNCE provides indexes indistinguishable from those derived from CApEn and SampEn. Since this result was obtained without using strategies to correct the CE estimate and without fixing the embedding dimension to an arbitrary low value, KNNCE is potentially more valuable than CCE, CApEn and SampEn when the number of past samples most useful to reduce the uncertainty of future behaviors is high and/or variable among conditions and/or groups. (paper)

  9. Hybrid Control of Multi-robot Systems under Complex Temporal Tasks

    OpenAIRE

    Guo, Meng

    2015-01-01

    Autonomous robots like household service robots, self-driving cars and dronesare emerging as important parts of our daily lives in the near future. They need tocomprehend and fulfill complex tasks specified by the users with minimal humanintervention. Also they should be able to handle un-modeled changes and contingentevents in the workspace. More importantly, they shall communicate and collaboratewith each other in an efficient and correct manner. In this thesis, we address theseissues by fo...

  10. SCIENTIFIC METHODOLOGICAL APPROACHES TO CREATION OF COMPLEX CONTROL SYSTEM MODEL FOR THE STREAMS OF BUILDING WASTE

    OpenAIRE

    Tskhovrebov Eduard Stanislavovich; Velichko Evgeniy Georgievich

    2015-01-01

    In 2011 in Russia a Strategy of Production Development of Construction Materials and Industrial Housing Construction for the period up to 2020 was approved as one of strategic documents in the sphere of construction. In the process of this strategy development all the needs of construction complex were taken into account in all the spheres of economy, including transport system. The strategy also underlined, that the construction industry is a great basis for use and application in secondary ...

  11. SUMO-Dependent Relocalization of Eroded Telomeres to Nuclear Pore Complexes Controls Telomere Recombination

    OpenAIRE

    Dmitri Churikov; Ferose Charifi; Nadine Eckert-Boulet; Sonia Silva; Marie-Noelle Simon; Michael Lisby; Vincent Géli

    2016-01-01

    In budding yeast, inactivation of telomerase and ensuing telomere erosion cause relocalization of telomeres to nuclear pore complexes (NPCs). However, neither the mechanism of such relocalization nor its significance are understood. We report that proteins bound to eroded telomeres are recognized by the SUMO (small ubiquitin-like modifier)-targeted ubiquitin ligase (STUbL) Slx5-Slx8 and become increasingly SUMOylated. Recruitment of Slx5-Slx8 to eroded telomeres facilitates telomere relocaliz...

  12. Genetic control of soybean seed isoflavone content: importance of statistical model and epistasis in complex traits

    OpenAIRE

    Gutierrez-Gonzalez, Juan Jose; Wu, Xiaolei; Zhang, Juan; Lee, Jeong-Dong; Ellersieck, Mark; Shannon, J. Grover; Yu, Oliver; Nguyen, Henry T.; Sleper, David A.

    2009-01-01

    A major objective for geneticists is to decipher genetic architecture of traits associated with agronomic importance. However, a majority of such traits are complex, and their genetic dissection has been traditionally hampered not only by the number of minor-effect quantitative trait loci (QTL) but also by genome-wide interacting loci with little or no individual effect. Soybean (Glycine max [L.] Merr.) seed isoflavonoids display a broad range of variation, even in genetically stabilized line...

  13. A stable transcription factor complex nucleated by oligomeric AML1–ETO controls leukaemogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiao-Jian; Wang, Zhanxin; Wang, Lan; Jiang, Yanwen; Kost, Nils; Soong, T. David; Chen, Wei-Yi; Tang, Zhanyun; Nakadai, Tomoyoshi; Elemento, Olivier; Fischle, Wolfgang; Melnick, Ari; Patel, Dinshaw J.; Nimer, Stephen D.; Roeder, Robert G.

    2013-06-30

    Transcription factors are frequently altered in leukaemia through chromosomal translocation, mutation or aberrant expression. AML1–ETO, a fusion protein generated by the t(8;21) translocation in acute myeloid leukaemia, is a transcription factor implicated in both gene repression and activation. AML1–ETO oligomerization, mediated by the NHR2 domain, is critical for leukaemogenesis, making it important to identify co-regulatory factors that ‘read’ the NHR2 oligomerization and contribute to leukaemogenesis. Here we show that, in human leukaemic cells, AML1–ETO resides in and functions through a stable AML1–ETO-containing transcription factor complex (AETFC) that contains several haematopoietic transcription (co)factors. These AETFC components stabilize the complex through multivalent interactions, provide multiple DNA-binding domains for diverse target genes, co-localize genome wide, cooperatively regulate gene expression, and contribute to leukaemogenesis. Within the AETFC complex, AML1–ETO oligomerization is required for a specific interaction between the oligomerized NHR2 domain and a novel NHR2-binding (N2B) motif in E proteins. Crystallographic analysis of the NHR2–N2B complex reveals a unique interaction pattern in which an N2B peptide makes direct contact with side chains of two NHR2 domains as a dimer, providing a novel model of how dimeric/oligomeric transcription factors create a new protein-binding interface through dimerization/oligomerization. Intriguingly, disruption of this interaction by point mutations abrogates AML1–ETO-induced haematopoietic stem/progenitor cell self-renewal and leukaemogenesis. These results reveal new mechanisms of action of AML1–ETO, and provide a potential therapeutic target in t(8;21)-positive acute myeloid leukaemia.

  14. Neodymium(III) Complexation by Amino-Carbohydrates via a Ligand-Controlled Hydrolysis Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Levitskaia, Tatiana G.; Chen, Yongsheng; Fulton, John L.; Sinkov, Sergey I.

    2011-07-28

    Chelation of neodymium-III Nd(III) by D-glucosamine (DGA) and chitosan was investigated in solution at near-physiological pH and ionic strength. This research demonstrates the first example of the lanthanide ion heteroleptic hydroxo-carbohydrate complex in solution. It was demonstrated that DGA and chitosan suppressed formation of polynuclear Nd(III) species at elevated pH.

  15. MET Receptor Tyrosine Kinase Controls Dendritic Complexity, Spine Morphogenesis, and Glutamatergic Synapse Maturation in the Hippocampus

    OpenAIRE

    Qiu, Shenfeng; Lu, Zhongming; Levitt, Pat

    2014-01-01

    The MET receptor tyrosine kinase (RTK), implicated in risk for autism spectrum disorder (ASD) and in functional and structural circuit integrity in humans, is a temporally and spatially regulated receptor enriched in dorsal pallial-derived structures during mouse forebrain development. Here we report that loss or gain of function of MET in vitro or in vivo leads to changes, opposite in nature, in dendritic complexity, spine morphogenesis, and the timing of glutamatergic synapse maturation ont...

  16. Advances in statistical monitoring of complex multivariate processes with applications in industrial process control

    CERN Document Server

    Kruger, Uwe

    2012-01-01

    The development and application of multivariate statistical techniques in process monitoring has gained substantial interest over the past two decades in academia and industry alike.  Initially developed for monitoring and fault diagnosis in complex systems, such techniques have been refined and applied in various engineering areas, for example mechanical and manufacturing, chemical, electrical and electronic, and power engineering.  The recipe for the tremendous interest in multivariate statistical techniques lies in its simplicity and adaptability for developing monitoring applica

  17. Dynamic nonlinear feedback for temperature control of continuous stirred reactor with complex behavior

    OpenAIRE

    Pablo A. López Pérez; Ricardo Aguilar‐López

    2009-01-01

    The main objective of this work is to present an alternative methodology for the design of a class of integral high order slidingmodecontroller applied to a class of continuous chemical reactor with complex behavior for temperature tracking purposes.The proposed design is based on the differential geometry framework, where the named reaching trajectory contains a highorder sliding mode term in order to diminish chattering. Considering that the proposed technique is model based, an observerbas...

  18. Runx-CBFβ complexes control Foxp3 expression in regulatory T cells

    OpenAIRE

    Rudra, Dipayan; Egawa, Takeshi; Chong, Mark M.W.; Treuting, Piper; Dan R. Littman; Rudensky, Alexander Y.

    2009-01-01

    Foxp3 plays an indispensable role in establishing stable transcriptional and functional programs of regulatory T (Treg) cells. Loss of Foxp3 expression in mature Treg cells results in a failure of suppressor function, yet the molecular mechanisms ensuring steady heritable Foxp3 expression in the Treg cell lineage remain unknown. Using Treg cell-specific gene targeting we found that Runx-CBFβ complexes were required for maintenance of Foxp3 mRNA and protein expression in Treg cells. Consequent...

  19. A self organized holonic control for mechatronics complex systems: application to a robotized car park

    OpenAIRE

    Pujo, Patrick; Ounnar, Fouzia; Zanni, Cécilia

    2006-01-01

    International audience In this paper, we describe the two conditions so that a complex system, composed of several mechatronics machines, may be qualified as a mechatronics system. The first condition reflects the aptitude of these machines to work together without the intervention of a central decision system of higher hierarchical level. The second reflects their aptitude to manage their own behavior and to generate the tasks to be carried out in the context of their execution. A self or...

  20. Genetic control of soybean seed isoflavone content: importance of statistical model and epistasis in complex traits.

    Science.gov (United States)

    Gutierrez-Gonzalez, Juan Jose; Wu, Xiaolei; Zhang, Juan; Lee, Jeong-Dong; Ellersieck, Mark; Shannon, J Grover; Yu, Oliver; Nguyen, Henry T; Sleper, David A

    2009-10-01

    A major objective for geneticists is to decipher genetic architecture of traits associated with agronomic importance. However, a majority of such traits are complex, and their genetic dissection has been traditionally hampered not only by the number of minor-effect quantitative trait loci (QTL) but also by genome-wide interacting loci with little or no individual effect. Soybean (Glycine max [L.] Merr.) seed isoflavonoids display a broad range of variation, even in genetically stabilized lines that grow in a fixed environment, because their synthesis and accumulation are affected by many biotic and abiotic factors. Due to this complexity, isoflavone QTL mapping has often produced conflicting results especially with variable growing conditions. Herein, we comparatively mapped soybean seed isoflavones genistein, daidzein, and glycitein by using several of the most commonly used mapping approaches: interval mapping, composite interval mapping, multiple interval mapping and a mixed-model based composite interval mapping. In total, 26 QTLs, including many novel regions, were found bearing additive main effects in a population of RILs derived from the cross between Essex and PI 437654. Our comparative approach demonstrates that statistical mapping methodologies are crucial for QTL discovery in complex traits. Despite a previous understanding of the influence of additive QTL on isoflavone production, the role of epistasis is not well established. Results indicate that epistasis, although largely dependent on the environment, is a very important genetic component underlying seed isoflavone content, and suggest epistasis as a key factor causing the observed phenotypic variability of these traits in diverse environments. PMID:19626310

  1. A Complex Overview of Modeling and Control of the Rotary Single Inverted Pendulum System

    Directory of Open Access Journals (Sweden)

    Slavka Jadlovska

    2013-01-01

    Full Text Available The purpose of this paper is to present an in-depth survey of the rotary single inverted pendulum system from a control engineer's point of view. The scope of the survey includes modeling and open-loop analysis of the system as well as design and verification of balancing and swing up controllers which ensure successful stabilization of the pendulum in the unstable upright equilibrium. All relevant tasks and simulation experiments are conducted using the appropriate function blocks, GUI applications and demonstration schemes from a Simulink block library developed by the authors of the paper. The library is called Inverted Pendula Modeling and Control (IPMaC and offers comprehensive program support for modeling, simulation and control of classical (linear and rotary inverted pendulum systems.

  2. Generalization of mathematical model of reliability of the complex Protection object - control and protection system

    International Nuclear Information System (INIS)

    Different control criteria are often used for system reliability improvement. Nowadays this feature isn't taken into account in analysis of reactor and NPP safety systems as a result of absence of appropriate mathematic models. In the paper it is shown that taking into account mentioned above features allows to obtain more precise values of reliability indices rather than in a case of assumption that different control criteria of protection channels are independent

  3. Complex relations between metacognitive judgment and metacognitive control in self-regulated learning

    OpenAIRE

    Sha, Li

    2008-01-01

    This study explores whether and how the relationship between metacognitive monitoring and metacognitive control in self-regulated learning (SRL) is mediated by personal factors such as motivation, personal epistemology, metacognitive awareness, and other individual difference variables. An eye tracking system was used to accurately capture data pertaining to two aspects of metacognitive processes, monitoring and control, in SRL processes. These data were acquired while participants were engag...

  4. Preferences based Control Design of Complex Fed-batch Cultivation Process

    Directory of Open Access Journals (Sweden)

    Yuri Pavlov

    2009-08-01

    Full Text Available In the paper is presented preferences based control design and stabilization of the growth rate of fed-batch cultivation processes. The control is based on an enlarged Wang-Monod-Yerusalimsky kinetic model. Expected utility theory is one of the approaches for utilization of conceptual information (expert preferences. In the article is discussed utilization of stochastic machine learning procedures for evaluation of expert utilities as criteria for optimization.

  5. A complex overview of modeling and control of the rotary single inverted pendulum system

    OpenAIRE

    Slavka Jadlovska; Jan Sarnovsky

    2013-01-01

    The purpose of this paper is to present an in-depth survey of the rotary single inverted pendulum system from a control engineer's point of view. The scope of the survey includes modeling and open-loop analysis of the system as well as design and verification of balancing and swing up controllers which ensure successful stabilization of the pendulum in the unstable upright equilibrium. All relevant tasks and simulation experiments are conducted using the appropriate function blocks, GUI appli...

  6. METHODS OF COMPLEX OBJECT’S TRANSFER FUNCTION CALCULATION FOR DISTRIBUTED CONTROL SYSTEM

    OpenAIRE

    Alexander V. Martirosyan; Karina V. Martirosyan; Eduard G. Yanukyan

    2014-01-01

    One of the ways of solving the stable operation mode of the mineral water field’s setting problem is the development and implementation of the hydromineral recourses distributed control system. In this article the consideration of the control system’s development on the basis of regulator synthesis approach is offered. The purpose of this study is to present a technique of the distributed regulator synthesis for the mineral water production processâ...

  7. Developing a real-time emulation of multiresolutional control architectures for complex, discrete-event systems

    Energy Technology Data Exchange (ETDEWEB)

    Davis, W.J.; Macro, J.G.; Brook, A.L. [Univ. of Illinois, Urbana, IL (United States)] [and others

    1996-12-31

    This paper first discusses an object-oriented, control architecture and then applies the architecture to produce a real-time software emulator for the Rapid Acquisition of Manufactured Parts (RAMP) flexible manufacturing system (FMS). In specifying the control architecture, the coordinated object is first defined as the primary modeling element. These coordinated objects are then integrated into a Recursive, Object-Oriented Coordination Hierarchy. A new simulation methodology, the Hierarchical Object-Oriented Programmable Logic Simulator, is then employed to model the interactions among the coordinated objects. The final step in implementing the emulator is to distribute the models of the coordinated objects over a network of computers and to synchronize their operation to a real-time clock. The paper then introduces the Hierarchical Subsystem Controller as an intelligent controller for the coordinated object. The proposed approach to intelligent control is then compared to the concept of multiresolutional semiosis that has been developed by Dr. Alex Meystel. Finally, the plans for implementing an intelligent controller for the RAMP FMS are discussed.

  8. Consciência situacional, tomada de decisão e modos de controle cognitivo em ambientes complexos Situation awareness, decision making, and cognitive control in complex environments

    Directory of Open Access Journals (Sweden)

    Éder Henriqson

    2009-01-01

    Full Text Available O presente trabalho tem como objetivo analisar a consciência situacional, os processos de tomada de decisão naturalística e os modos de controle cognitivo utilizados por pilotos de aeronaves em um experimento em simulador de voo. Dessa forma, diferentes situações foram propostas durante a simulação objetivando o estudo da consciência situacional e tomada de decisão dos tripulantes. As ações dos participantes foram investigadas e classificadas de acordo com o modelo de controle cognitivo proposto. Os resultados sugerem que os fatores de complexidade contextual afetam a gestão da dificuldade, influenciando a consciência situacional, a tomada de decisão e os modos de controle cognitivo dos pilotos.This work aims to analyze situation awareness, natural decision-making processes and cognitive control modes used by airplane pilots in a flight simulator experiment. In this way, different situations during flight simulation were considered in order to study the crew's situation awareness and natural decision-making. The participants' actions were investigated and classified according to the cognitive control model proposed. Results suggest that context complexity factors affect difficulty management, influencing situation awareness, decision-making and pilots' cognitive control modes.

  9. Phylogenetics and genetic diversity of the Cotesia flavipes complex of parasitoid wasps (Hymenoptera: Braconidae), biological control agents of lepidopteran stemborers.

    Science.gov (United States)

    Muirhead, Kate A; Murphy, Nicholas P; Sallam, Nader; Donnellan, Stephen C; Austin, Andrew D

    2012-06-01

    The Cotesia flavipes complex of parasitoid wasps (Hymenoptera: Braconidae) are economically important for the biological control of lepidopteran stemboring pests associated with gramineous crops. Some members of the complex successfully parasitize numerous stemborer pest species, however certain geographic populations have demonstrated variation in the range of hosts that they parasitize. In addition, the morphology of the complex is highly conserved and considerable confusion surrounds the identity of species and host-associated biotypes. We generated nucleotide sequence data for two mtDNA genes (COI, 16S) and three anonymous nuclear loci (CfBN, CfCN, CfEN) for the C. flavipes complex. To analyze genetic variation and relationships among populations we used (1) concatenated mtDNA and nDNA data, (2) a nDNA multilocus network approach, and (3) two species tree inference methods, i.e. Bayesian estimation of species trees (BEST) and Bayesian inference of species trees from multilocus data with (*)BEAST. All phylogenetic analyses provide strong support for monophyly of the complex and the presence of at least four species, C. chilonis (from China and Japan), C. sesamiae (from Africa), C. flavipes (originating from the Indo-Asia region but introduced into Africa and the New World), and C. nonagriae (from Australia and Papua New Guinea). Haplotype diversity of geographic populations relates to historical biogeographic barriers and biological control introductions, and reflects previous reports of ecological variation in these species. Strong discordance was found between the mitochondrial and nuclear markers in the Papua New Guinea haplotypes, which may be an outcome of hybridization and introgression of C. flavipes and C. nonagriae. The position of Cotesia flavipes from Japan was not well supported in any analysis and was the sister taxon to C. nonagriae (mtDNA, (*)BEAST), C. flavipes (nDNA) or C. flavipes+C. nonagriae (BEST) and, may represent a cryptic species. The

  10. Integrated digital control and man-machine interface for complex remote handling systems

    International Nuclear Information System (INIS)

    The Advanced Integrated Maintenance System (AIMS) is part of a continuing effort within the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory to develop and extend the capabilities of remote manipulation and maintenance technology. The AIMS is a totally integrated approach to remote handling in hazardous environments. State-of-the-art computer systems connected through a high-speed communication network provide a real-time distributed control system that supports the flexibility and expandability needed for large integrated maintenance applications. A Man-Machine Interface provides high-level human interaction through a powerful color graphics menu-controlled operator console. An auxiliary control system handles the real-time processing needs for a variety of support hardware. A pair of dedicated fiber-optic-linked master/slave computer system control the Advanced Servomanipulator master/slave arms using powerful distributed digital processing methods. The FORTH language was used as a real-time operating and development environment for the entire system, and all of these components are integrated into a control room concept that represents the latest advancements in the development of remote maintenance facilities for hazardous environments

  11. METHODS OF COMPLEX OBJECT'S TRANSFER FUNCTION CALCULATION FOR DISTRIBUTED CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    Alexander V. Martirosyan

    2014-01-01

    Full Text Available One of the ways of solving the stable operation mode of the mineral water field's setting problem is the development and implementation of the hydromineral recourses distributed control system. In this article the consideration of the control system's development on the basis of regulator synthesis approach is offered. The purpose of this study is to present a technique of the distributed regulator synthesis for the mineral water production process' control system. At the beginning of the work, approaches of the management problem solution for concentrated and distributed control systems are considered. The problem definition for object with the distributed parameters, described by the system of the linear differential equations is executed, the description of management object's mathematical model is carried out, entry and boundary conditions are defined. The technique of transfer function definition is shown on a practical example, the model of management is considered by process of mineral water production. It is shown that entrance influence can be presented in the form of Fourier's number, for invariant systems function of an exit will correspond to entrance influence. Transfer function is defined in the form of the set of transfer functions, corresponding to each harmonica of entrance influence. The offered mechanism allows to offer a method of transfer function calculation for each harmonica of entrance influence separately that significantly simplifies process of the analysis of the control system. The main result is the possibility of representation of the system in the form of the set of transfer functions.

  12. The exosome controls alternative splicing by mediating the gene expression and assembly of the spliceosome complex

    OpenAIRE

    Lin Zhang; Yufeng Wan; Guobin Huang; Dongni Wang; Xinyang Yu; Guocun Huang; Jinhu Guo

    2015-01-01

    The exosome is a complex with exoribonuclease activity that regulates RNA surveillance and turnover. The exosome also plays a role in regulating the degradation of precursor mRNAs to maintain the expression of splicing variants. In Neurospora, the silencing of rrp44, which encodes the catalytic subunit of the exosome, changed the expression of a set of spliceosomal snRNA, snRNP genes and SR protein related genes. The knockdown of rrp44 also affected the assembly of the spliceosome. RNA-seq an...

  13. Control and supervision of a complex production process using hybrid systems techniques

    International Nuclear Information System (INIS)

    New processing activities for the decommissioning of the Experimental Breeder Reactor 2 are being carried out at Argonne National Laboratory. The task addressed in this paper is a process to convert metallic sodium to sodium carbonate. The main idea is to characterize this sodium operation as a system that integrates real-time continuous and discrete-event components and then apply hybrid system techniques to design and implement the control and supervisory policies. This paper introduces the research in progress at ANL on this conversion process, the flow of material, and the hybrid control solution

  14. Dynamic control of the lumbopelvic complex; lack of reliability of established test procedures

    DEFF Research Database (Denmark)

    Henriksen, Marius; Lund, Hans; Bliddal, Henning; Danneskiold-Samsøe, Bente

    2007-01-01

    used in order to account for learning effects. Intraclass correlation coefficients were low for the sitting (0.54) and supported standing positions (0.36). In the standing position, a significant difference between test and retest was observed (P = 0.003) and further reliability analysis was therefore...... abandoned. It is concluded that inclinometry is not reliable for measuring the dynamic lumbopelvic control in any of the test positions and prior work utilising inclinometry to evaluate dynamic lumbopelvic control should be interpreted with caution....

  15. Management of complex data flows in the ASDEX Upgrade plasma control system

    International Nuclear Information System (INIS)

    Highlights: ► Control system architectures with data-driven workflows are efficient, flexible and maintainable. ► Signal groups provide coherence of interrelated signals and increase the efficiency of process synchronisation. ► Sample tags indicating sample quality form the fundament of a local event handling strategy. ► A self-organising workflow benefits from sample tags consisting of time stamp and stream activity. - Abstract: Establishing adequate technical and physical boundary conditions for a sustained nuclear fusion reaction is a challenging task. Phased feedback control and monitoring for heating, fuelling and magnetic shaping is mandatory, especially for fusion devices aiming at high performance plasmas. Technical and physical interrelations require close collaboration of many components in sequential as well as in parallel processing flows. Moreover, handling of asynchronous, off-normal events has become a key element of modern plasma performance optimisation and machine protection recipes. The manifoldness of plasma states and events, the variety of plant system operation states and the diversity in diagnostic data sampling rates can hardly be mastered with a rigid control scheme. Rather, an adaptive system topology in combination with sophisticated synchronisation and process scheduling mechanisms is suited for such an environment. Moreover, the system is subject to real-time control constraints: response times must be deterministic and adequately short. Therefore, the experimental tokamak device ASDEX Upgrade employs a discharge control system DCS, whose core has been designed to meet these requirements. In the paper we will compare the scheduling schemes for the parallelised realisation of a control workflow and show the advantage of a data-driven workflow over a managed workflow. The data-driven workflow as used in DCS is based on signals connecting process outputs and inputs. These are implemented as real-time streams of data samples

  16. A protocadherin-cadherin-FLRT3 complex controls cell adhesion and morphogenesis.

    Directory of Open Access Journals (Sweden)

    Xuejun Chen

    Full Text Available BACKGROUND: Paraxial protocadherin (PAPC and fibronectin leucine-rich domain transmembrane protein-3 (FLRT3 are induced by TGFbeta signaling in Xenopus embryos and both regulate morphogenesis by inhibiting C-cadherin mediated cell adhesion. PRINCIPAL FINDINGS: We have investigated the functional and physical relationships between PAPC, FLRT3, and C-cadherin. Although neither PAPC nor FLRT3 are required for each other to regulate C-cadherin adhesion, they do interact functionally and physically, and they form a complex with cadherins. By itself PAPC reduces cell adhesion physiologically to induce cell sorting, while FLRT3 disrupts adhesion excessively to cause cell dissociation. However, when expressed together PAPC limits the cell dissociating and tissue disrupting activity of FLRT3 to make it effective in physiological cell sorting. PAPC counteracts FLRT3 function by inhibiting the recruitment of the GTPase RND1 to the FLRT3 cytoplasmic domain. CONCLUSIONS/SIGNIFICANCE: PAPC and FLRT3 form a functional complex with cadherins and PAPC functions as a molecular "governor" to maintain FLRT3 activity at the optimal level for physiological regulation of C-cadherin adhesion, cell sorting, and morphogenesis.

  17. Structure of a topoisomerase II-DNA-nucleotide complex reveals a new control mechanism for ATPase activity.

    Science.gov (United States)

    Schmidt, Bryan H; Osheroff, Neil; Berger, James M

    2012-11-01

    Type IIA topoisomerases control DNA supercoiling and disentangle chromosomes through a complex ATP-dependent strand-passage mechanism. Although a general framework exists for type IIA topoisomerase function, the architecture of the full-length enzyme has remained undefined. Here we present the structure of a fully catalytic Saccharomyces cerevisiae topoisomerase II homodimer complexed with DNA and a nonhydrolyzable ATP analog. The enzyme adopts a domain-swapped configuration wherein the ATPase domain of one protomer sits atop the nucleolytic region of its partner subunit. This organization produces an unexpected interaction between bound DNA and a conformational transducing element in the ATPase domain, which we show is critical for both DNA-stimulated ATP hydrolysis and global topoisomerase activity. Our data indicate that the ATPase domains pivot about each other to ensure unidirectional strand passage and that this state senses bound DNA to promote ATP turnover and enzyme reset. PMID:23022727

  18. Trim, Control, and Performance Effects in Variable-Complexity High-Speed Civil transport Design

    OpenAIRE

    MacMillin, Peter Edward

    1996-01-01

    Numerous trim, control requirements and mission generalizations have been made to our previous multidisciplinary design methodology for a high speed civil transport. We optimize the design for minimum take off gross weight, including both aerodynamics and structures to find the wing planform and thickness distribution, fuselage shape, engine placement and thrust, using 29 design variables. While adding trim and c...

  19. Fabrication of advanced Bragg gratings with complex apodization profiles by use of the polarization control method

    DEFF Research Database (Denmark)

    Deyerl, Hans-Jürgen; Plougmann, Nikolai; Jensen, Jesper Bo Damm; Floreani, Filip; Sørensen, Henrik Rokkjær; Kristensen, Martin

    2004-01-01

    compared with theoretical predictions. Short gratings with sidelobe-suppression levels in excess of 32 dB and transmission dips lower than 80 dB have been realized. Finally, most of the devices fabricated by the polarization control method show comparable quality to gratings manufactured by far more...

  20. Adaptive Robust Online Constructive Fuzzy Control of a Complex Surface Vehicle System.

    Science.gov (United States)

    Wang, Ning; Er, Meng Joo; Sun, Jing-Chao; Liu, Yan-Cheng

    2016-07-01

    In this paper, a novel adaptive robust online constructive fuzzy control (AR-OCFC) scheme, employing an online constructive fuzzy approximator (OCFA), to deal with tracking surface vehicles with uncertainties and unknown disturbances is proposed. Significant contributions of this paper are as follows: 1) unlike previous self-organizing fuzzy neural networks, the OCFA employs decoupled distance measure to dynamically allocate discriminable and sparse fuzzy sets in each dimension and is able to parsimoniously self-construct high interpretable T-S fuzzy rules; 2) an OCFA-based dominant adaptive controller (DAC) is designed by employing the improved projection-based adaptive laws derived from the Lyapunov synthesis which can guarantee reasonable fuzzy partitions; 3) closed-loop system stability and robustness are ensured by stable cancelation and decoupled adaptive compensation, respectively, thereby contributing to an auxiliary robust controller (ARC); and 4) global asymptotic closed-loop system can be guaranteed by AR-OCFC consisting of DAC and ARC and all signals are bounded. Simulation studies and comprehensive comparisons with state-of-the-arts fixed- and dynamic-structure adaptive control schemes demonstrate superior performance of the AR-OCFC in terms of tracking and approximation accuracy. PMID:26219099

  1. Directed formation of a ferrocenyl-decorated organotin sulfide complex and its controlled degradation.

    Science.gov (United States)

    You, Zhiliang; Dehnen, Stefanie

    2013-11-01

    Attachment of ferrocenyl (Fc) units to an organo-functionalized precursor yielded the Fc-decorated complex [(R(Fc)Sn)4Sn6S10] [1; R(Fc) = CMe2CH2C(Me)═N-N═C(Me)Fc], which shows different ligand dynamics in solution than in the solid state, as confirmed by NMR spectroscopy and by cyclic and differential pulse voltammetry. The addition of different amounts of hydrochloric acid to a solution of 1 produced the derivatives [(R(Fc)SnCl2)2S] (2) and [R(Fc)SnCl3·HCl] (3), the latter of which acts as a precursor to the formation/recovery of 2 or 1, respectively. PMID:24128383

  2. Reverse robotics: Interactive machines for controlling people in a complex laboratory environment

    International Nuclear Information System (INIS)

    The synthesis of carbon-11 radiopharmaceuticals is a bimodal process. Because of the need to handle Curie levels reliably within about one half-life, shielded automata perform a sequence of well-defined microchemical manipulations. But maintaining such machines requires human attention, complex perceptions and decisions accompanied by distractions, unforseen demands and changes of schedule and priority. This exposes the whole process to the chance of serious error and contributes to job stress. A flexible, interactive dialog readily written in an object-oriented language such as Hypertalk can significantly ease this stress and manage the required documentation as well. A bar-code reader that emulates keyboard input helps insure the accuracy of the documentation and provides additional feedback to the program about the actions of the person

  3. Management of complex multi-reservoir water distribution systems using advanced control theoretic tools and techniques

    CERN Document Server

    Chmielowski, Wojciech Z

    2013-01-01

    This study discusses issues of optimal water management in a complex distribution system. The main elements of the water-management system under consideration are retention reservoirs, among which water transfers are possible, and a network of connections between these reservoirs and water treatment plants (WTPs). System operation optimisation involves determining the proper water transport routes and their flow volumes from the retention reservoirs to the WTPs, and the volumes of possible transfers among the reservoirs, taking into account transport-related delays for inflows, outflows and water transfers in the system. Total system operation costs defined by an assumed quality coefficient should be minimal. An analytical solution of the optimisation task so formulated has been obtained as a result of using Pontriagin’s maximum principle with reference to the quality coefficient assumed. Stable start and end conditions in reservoir state trajectories have been assumed. The researchers have taken into accou...

  4. DISC1-dependent Regulation of Mitochondrial Dynamics Controls the Morphogenesis of Complex Neuronal Dendrites.

    Science.gov (United States)

    Norkett, Rosalind; Modi, Souvik; Birsa, Nicol; Atkin, Talia A; Ivankovic, Davor; Pathania, Manav; Trossbach, Svenja V; Korth, Carsten; Hirst, Warren D; Kittler, Josef T

    2016-01-01

    The DISC1 protein is implicated in major mental illnesses including schizophrenia, depression, bipolar disorder, and autism. Aberrant mitochondrial dynamics are also associated with major mental illness. DISC1 plays a role in mitochondrial transport in neuronal axons, but its effects in dendrites have yet to be studied. Further, the mechanisms of this regulation and its role in neuronal development and brain function are poorly understood. Here we have demonstrated that DISC1 couples to the mitochondrial transport and fusion machinery via interaction with the outer mitochondrial membrane GTPase proteins Miro1 and Miro2, the TRAK1 and TRAK2 mitochondrial trafficking adaptors, and the mitochondrial fusion proteins (mitofusins). Using live cell imaging, we show that disruption of the DISC1-Miro-TRAK complex inhibits mitochondrial transport in neurons. We also show that the fusion protein generated from the originally described DISC1 translocation (DISC1-Boymaw) localizes to the mitochondria, where it similarly disrupts mitochondrial dynamics. We also show by super resolution microscopy that DISC1 is localized to endoplasmic reticulum contact sites and that the DISC1-Boymaw fusion protein decreases the endoplasmic reticulum-mitochondria contact area. Moreover, disruption of mitochondrial dynamics by targeting the DISC1-Miro-TRAK complex or upon expression of the DISC1-Boymaw fusion protein impairs the correct development of neuronal dendrites. Thus, DISC1 acts as an important regulator of mitochondrial dynamics in both axons and dendrites to mediate the transport, fusion, and cross-talk of these organelles, and pathological DISC1 isoforms disrupt this critical function leading to abnormal neuronal development. PMID:26553875

  5. DISC1-dependent Regulation of Mitochondrial Dynamics Controls the Morphogenesis of Complex Neuronal Dendrites*

    Science.gov (United States)

    Norkett, Rosalind; Modi, Souvik; Birsa, Nicol; Atkin, Talia A.; Ivankovic, Davor; Pathania, Manav; Trossbach, Svenja V.; Korth, Carsten; Hirst, Warren D.; Kittler, Josef T.

    2016-01-01

    The DISC1 protein is implicated in major mental illnesses including schizophrenia, depression, bipolar disorder, and autism. Aberrant mitochondrial dynamics are also associated with major mental illness. DISC1 plays a role in mitochondrial transport in neuronal axons, but its effects in dendrites have yet to be studied. Further, the mechanisms of this regulation and its role in neuronal development and brain function are poorly understood. Here we have demonstrated that DISC1 couples to the mitochondrial transport and fusion machinery via interaction with the outer mitochondrial membrane GTPase proteins Miro1 and Miro2, the TRAK1 and TRAK2 mitochondrial trafficking adaptors, and the mitochondrial fusion proteins (mitofusins). Using live cell imaging, we show that disruption of the DISC1-Miro-TRAK complex inhibits mitochondrial transport in neurons. We also show that the fusion protein generated from the originally described DISC1 translocation (DISC1-Boymaw) localizes to the mitochondria, where it similarly disrupts mitochondrial dynamics. We also show by super resolution microscopy that DISC1 is localized to endoplasmic reticulum contact sites and that the DISC1-Boymaw fusion protein decreases the endoplasmic reticulum-mitochondria contact area. Moreover, disruption of mitochondrial dynamics by targeting the DISC1-Miro-TRAK complex or upon expression of the DISC1-Boymaw fusion protein impairs the correct development of neuronal dendrites. Thus, DISC1 acts as an important regulator of mitochondrial dynamics in both axons and dendrites to mediate the transport, fusion, and cross-talk of these organelles, and pathological DISC1 isoforms disrupt this critical function leading to abnormal neuronal development. PMID:26553875

  6. Core Transcriptional Regulatory Circuit Controlled by the TAL1 Complex in Human T-cell Acute Lymphoblastic Leukemia

    OpenAIRE

    Sanda, Takaomi; Lawton, Lee N.; Barrasa, M. Inmaculada; Fan, Zi Peng; Kohlhammer, Holger; Gutierrez, Alejandro; Ma, Wenxue; Tatarek, Jessica; Ahn, Yebin; Kelliher, Michelle A.; Jamieson, Catriona H.M.; Staudt, Louis M.; Young, Richard A.; Look, A. Thomas

    2012-01-01

    The oncogenic transcription factor TAL1/SCL is aberrantly expressed in over 40% of cases of human T-cell acute lymphoblastic leukemia (T-ALL), emphasizing its importance in the molecular pathogenesis of T-ALL. Here we identify the core transcriptional regulatory circuit controlled by TAL1 and its regulatory partners HEB, E2A, LMO1/2, GATA3 and RUNX1. We show that TAL1 forms a positive interconnected auto-regulatory loop with GATA3 and RUNX1, and that the TAL1 complex directly activates the MY...

  7. Computational molecular technology towards macroscopic chemical phenomena-molecular control of complex chemical reactions, stereospecificity and aggregate structures

    International Nuclear Information System (INIS)

    A new efficient hybrid Monte Carlo (MC)/molecular dynamics (MD) reaction method with a rare event-driving mechanism is introduced as a practical ‘atomistic’ molecular simulation of large-scale chemically reactive systems. Starting its demonstrative application to the racemization reaction of (R)-2-chlorobutane in N,N-dimethylformamide solution, several other applications are shown from the practical viewpoint of molecular controlling of complex chemical reactions, stereochemistry and aggregate structures. Finally, I would like to mention the future applications of the hybrid MC/MD reaction method

  8. Nuclear pore complex remodeling by p75NTR cleavage controls TGF-β signaling and astrocyte functions

    Science.gov (United States)

    Schachtrup, Christian; Ryu, Jae Kyu; Mammadzada, Könül; Khan, Abdullah S.; Carlton, Peter M.; Perez, Alex; Christian, Frank; Le Moan, Natacha; Vagena, Eirini; Baeza-Raja, Bernat; Rafalski, Victoria; Chan, Justin P.; Nitschke, Roland; Houslay, Miles D.; Ellisman, Mark H.; Wyss-Coray, Tony; Palop, Jorge J.; Akassoglou, Katerina

    2016-01-01

    Astrocytes play critical roles in neuronal activity and inhibition of regeneration. Here we show that the cleaved p75 neurotrophin receptor (p75NTR) is a component of the nuclear pore complex (NPC) required for glial scar formation and reduced gamma oscillations in mice via regulation of TGF-β signaling. The cleaved p75NTR interacts with nucleoporins to promote Smad2 nucleocytoplasmic shuttling. Thus, NPC remodeling by regulated intramembrane cleavage of p75NTR controls astrocyte-neuronal communication in response to profibrotic factors. PMID:26120963

  9. Structure identification of an uncertain network coupled with complex-variable chaotic systems via adaptive impulsive control

    International Nuclear Information System (INIS)

    In this paper, structure identification of an uncertain network coupled with complex-variable chaotic systems is investigated. Both the topological structure and the system parameters can be unknown and need to be identified. Based on impulsive stability theory and the Lyapunov function method, an impulsive control scheme combined with an adaptive strategy is adopted to design effective and universal network estimators. The restriction on the impulsive interval is relaxed by adopting an adaptive strategy. Further, the proposed method can monitor the online switching topology effectively. Several numerical simulations are provided to illustrate the effectiveness of the theoretical results. (general)

  10. Assessment of optimal control mechanism complexity by experimental landscape Hessian analysis: fragmentation of CH2BrI

    International Nuclear Information System (INIS)

    Optimally shaped femtosecond laser pulses can often be effectively identified in adaptive feedback quantum control experiments, but elucidating the underlying control mechanism can be a difficult task requiring significant additional analysis. We introduce landscape Hessian analysis (LHA) as a practical experimental tool to aid in elucidating control mechanism insights. This technique is applied to the dissociative ionization of CH2BrI using shaped fs laser pulses for optimization of the absolute yields of ionic fragments as well as their ratios for the competing processes of breaking the C–Br and C–I bonds. The experimental results suggest that these nominally complex problems can be reduced to a low-dimensional control space with insights into the control mechanisms. While the optimal yield for some fragments is dominated by a non-resonant intensity-driven process, the optimal generation of other fragments maa difficult task requiring significant additionaly be explained by a non-resonant process coupled to few level resonant dynamics. Theoretical analysis and modeling is consistent with the experimental observations. (paper)

  11. L2 norm performance index of synchronization and optimal control synthesis of complex networks

    CERN Document Server

    Liu, Chao; Chen, Guanrong; Huang, Lin

    2007-01-01

    In this paper, the synchronizability problem of dynamical networks is addressed, where better synchronizability means that the network synchronizes faster with lower-overshoot. The L2 norm of the error vector e is taken as a performance index to measure this kind of synchronizability. For the equilibrium synchronization case, it is shown that there is a close relationship between the L2 norm of the error vector e and the H2 norm of the transfer function G of the linearized network about the equilibrium point. Consequently, the effect of the network coupling topology on the H2 norm of the transfer function G is analyzed. Finally, an optimal controller is designed, according to the so-called LQR problem in modern control theory, which can drive the whole network to its equilibrium point and meanwhile minimize the L2 norm of the output of the linearized network.

  12. Complex approach to assurance of information safety of digital control systems for nuclear power plants

    International Nuclear Information System (INIS)

    The paper considers, implemented by the authors within the project of advanced digital controls system for NPP with the reactor VVER-1000, a system of non-authorized access protection (NAP), partially built up on the technology of active audit. The active audit technology is based on response of the system on deviation of current signature of APCS (Automated Process Control System) in nuclear power plant from stable rather than a certain signature of attack. The methodology of the active audit, not giving up classical methods of unauthorized access protection, completes these methods. It enables one to provide functional closeness of static fragments of the information system by use of the logic scheme 'everything is forbidden with the exception of what is allowed', applied to really appeared events in the information system. (authors)

  13. Modular system for the control of complex accelerators using portable software

    International Nuclear Information System (INIS)

    When designing the Mainz Microtron control system, care was taken to achieve an expandable system with long-lived application software. A multi-processor system was built from the beginning. The software is split into modules, according to function and position in hierarchy, which are distributed over the computers. The decoupling which results from modularity eases software development and maintainance. RATFOR was chosen as implementation language. With a message system for communication between the modules, several aims were reached at once: (1) symbolic addressing of the accelerator components throughout the software layers, (2) transparent access to I/O devices (CAMAC) at remote computers, (3) multitasking in FORTRAN (and RATFOR) programs, (4) a separating layer for adaptation to different operating systems - essential points for software portability. The system is in operation since April 1979 for the control of MAMI stage I

  14. Incorporating Daily Flood Control Objectives Into a Monthly Stochastic Dynamic Programing Model for a Hydroelectric Complex

    Science.gov (United States)

    Druce, Donald J.

    1990-01-01

    A monthly stochastic dynamic programing model was recently developed and implemented at British Columbia (B.C.) Hydro to provide decision support for short-term energy exports and, if necessary, for flood control on the Peace River in northern British Columbia. The model establishes the marginal cost of supplying energy from the B.C. Hydro system, as well as a monthly operating policy for the G.M. Shrum and Peace Canyon hydroelectric plants and the Williston Lake storage reservoir. A simulation model capable of following the operating policy then determines the probability of refilling Williston Lake and possible spill rates and volumes. Reservoir inflows are input to both models in daily and monthly formats. The results indicate that flood control can be accommodated without sacrificing significant export revenue.

  15. Outcomes of a randomised controlled trial of a complex genetic counselling intervention to improve family communication.

    Science.gov (United States)

    Hodgson, Jan; Metcalfe, Sylvia; Gaff, Clara; Donath, Susan; Delatycki, Martin B; Winship, Ingrid; Skene, Loane; Aitken, MaryAnne; Halliday, Jane

    2016-03-01

    When an inherited genetic condition is diagnosed in an individual it has implications for other family members. Privacy legislation and ethical considerations can restrict health professionals from communicating directly with other family members, and so it is frequently the responsibility of the first person in a family to receive the diagnosis (the proband) to share this news. Communication of genetic information is challenging and many at-risk family members remain unaware of important information that may be relevant to their or their children's health. We conducted a randomised controlled trial in six public hospitals to assess whether a specifically designed telephone counselling intervention improved family communication about a new genetic diagnosis. Ninety-five probands/parents of probands were recruited from genetics clinics and randomised to the intervention or control group. The primary outcome measure was the difference between the proportion of at-risk relatives who contacted genetics services for information and/or genetic testing. Audit of the family genetic file after 18 months revealed that 25.6% of intervention group relatives compared with 20.9% of control group relatives made contact with genetic services (adjusted odds ratio (OR) 1.30, 95% confidence interval 0.70-2.42, P=0.40). Although no major difference was detected overall between the intervention and control groups, there was more contact in the intervention group where the genetic condition conferred a high risk to offspring (adjusted OR 24.0, 95% confidence interval 3.4-168.5, P=0.001). The increasing sophistication and scope of genetic testing makes it imperative for health professionals to consider additional ways of supporting families in communicating genetic information. PMID:26130486

  16. Organizing corruption controls after a scandal: Regaining legitimacy in complex and changing institutional environments

    OpenAIRE

    Schembera, Stefan; Scherer, Andreas

    2014-01-01

    We study the corruption control strategies at three Multinational companies (MNC) before, during, and after the disclosure of corruption scandals and the initiation of legal procedures. In particular, we want to explore why some MNCs after a corruption scandal exceed regulatory expectations, choose proactive strategies, and influence their environment as institutional entrepreneurs that define best practices and new industry standards. Other companies, by contrast, act in a more incremental a...

  17. Efficient polarization insensitive complex wavefront control using Huygens' metasurfaces based on dielectric resonant meta-atoms

    OpenAIRE

    Chong, Katie E.; Wang, Lei; Staude, Isabelle; James, Anthony; Dominguez, Jason; Liu, Sheng; Subramania, Ganapathi S; Decker, Manuel; Neshev, Dragomir N.; Brener, Igal; Kivshar, Yuri S.

    2016-01-01

    Subwavelength-thin metasurfaces have shown great promises for the control of optical wavefronts, thus opening new pathways for the development of efficient flat optics. In particular, Huygens' metasurfaces based on all-dielectric resonant meta-atoms have already shown a huge potential for practical applications with their polarization insensitivity and high transmittance efficiency. Here, we experimentally demonstrate a polarization insensitive holographic Huygens' metasurface based on dielec...

  18. Anion-controlled assembly of metal 3,5-bis(benzimidazol-1-ylmethyl) benzoate complexes: Synthesis, characterization and property

    Energy Technology Data Exchange (ETDEWEB)

    Kuai, Hai-Wei [Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093 (China); Faculty of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003 (China); Lv, Gao-Chao; Hou, Chao [Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093 (China); Sun, Wei-Yin, E-mail: sunwy@nju.edu.cn [Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093 (China)

    2015-03-15

    Hydrothermal reactions of 3,5-bis(benzimidazol-1-ylmethyl)benzoic acid (HL) with Cd(II), Cu(II) and Zn(II) salts provide eight new metal complexes which were characterized by single crystal and powder X-ray diffraction, IR, elemental and thermogravimetric analyses. Two cadmium frameworks [Cd(L){sub 2}]·2H{sub 2}O (1) and [Cd(L)Cl] (2) have 3D structures with (4{sup 2}.6{sup 5}.8{sup 3})(4{sup 2}.6) and rtl (4.6{sup 2}){sub 2}(4{sup 2}.6{sup 10}.8{sup 3}) topologies, respectively. Structural diversity of four copper complexes [Cu{sub 3}(L){sub 2}]·NO{sub 3}·0.5H{sub 2}O (3), [Cu{sub 2}(HL){sub 2}(SO{sub 4})]·3.5H{sub 2}O (4), [Cu(L)(bdc){sub 0.5}]·1.5H{sub 2}O (5) and [Cu{sub 2}(L)(HL)(Hbdc)] (6) (H{sub 2}bdc=1,4-benzenedicarboxylic acid) is achieved through the alteration of copper salts and addition of auxiliary ligand. As a result, 3 has a 1D ladder structure, 4 is a discrete dinuclear complex, 5 displays a (3,4)-connected 2-nodal 3-fold interpenetrating framework with (4{sup 2}.6.10{sup 2}.12)(4{sup 2}.6) topology, 6 exhibits a 4-connected uninodal 2D sql (4{sup 4}.6{sup 2}) network. Within the zinc series, ZnCl{sub 2} and ZnSO{sub 4} were used for the syntheses of [Zn(L)Cl] (7) and [Zn(L)(SO{sub 4}){sub 0.5}]·2H{sub 2}O (8), respectively. 7 shows a 3-connected uninodal 2D hcb network with (6{sup 3}) topology and 8 is a (3,6)-connected 2-nodal 3D framework with (4{sup 2}.6){sub 2}(4{sup 4}.6{sup 2}.8{sup 8}.10) topology. The luminescent properties of the Cd(II) and Zn(II) complexes were investigated. - Graphical abstract: Eight new complexes have been successfully synthesized from the hydrothermal reactions of Cd(II), Cu(II) and Zn(II) salts with 3,5-bis(benzimidazol-1-ylmethyl)benzoic acid. The complexes exhibited anion-controlled structural diversity. - Highlights: • Metal complexes have diverse structures of 1D chains, 2D networks and 3D frameworks. • Anion-controlled assembly of the complexes is reported. • The luminescent properties of the Cd

  19. Local Ensemble Transform Kalman Filter: a non-stationary control law for complex adaptive optics systems on ELTs

    CERN Document Server

    Gray, Morgan; Rodionov, Sergey; Bertino, Laurent; Bocquet, Marc; Fusco, Thierry

    2013-01-01

    We propose a new algorithm for an adaptive optics system control law which allows to reduce the computational burden in the case of an Extremely Large Telescope (ELT) and to deal with non-stationary behaviors of the turbulence. This approach, using Ensemble Transform Kalman Filter and localizations by domain decomposition is called the local ETKF: the pupil of the telescope is split up into various local domains and calculations for the update estimate of the turbulent phase on each domain are performed independently. This data assimilation scheme enables parallel computation of markedly less data during this update step. This adapts the Kalman Filter to large scale systems with a non-stationary turbulence model when the explicit storage and manipulation of extremely large covariance matrices are impossible. First simulation results are given in order to assess the theoretical analysis and to demonstrate the potentiality of this new control law for complex adaptive optics systems on ELTs.

  20. Practice in development and utilization of program-technical complex (PTK) in in-reactor control systems

    International Nuclear Information System (INIS)

    Experience with the development and utilization of the program-technical complex PTK 'KRUIZ' is analyzed in the paper. A peculiarity of PTK is the orientation on acquisition, processing and diagnostics of signals from in-reactor sensors (thermocouples and SPD). The PTK 'KRUIZ' represents a new generation of tools open for further development, oriented specifically on the use in in-reactor control systems in modernized and built power units of the WWER type. In the PTK 'KRUIZ', methods, models and algorithms proved in nuclear power plants are used accounting for the utilization of up to date technical tools and systematic technical solutions. Experience with the use of basic elements of the PTK 'KRUIZ' at existing WWER reactors including peculiarities of temperature control in nuclear power plants are also dealt within the paper. (Authors)

  1. A newly identified essential complex, Dre2-Tah18, controls mitochondria integrity and cell death after oxidative stress in yeast.

    Directory of Open Access Journals (Sweden)

    Laurence Vernis

    Full Text Available A mutated allele of the essential gene TAH18 was previously identified in our laboratory in a genetic screen for new proteins interacting with the DNA polymerase delta in yeast [1]. The present work shows that Tah18 plays a role in response to oxidative stress. After exposure to lethal doses of H(2O(2, GFP-Tah18 relocalizes to the mitochondria and controls mitochondria integrity and cell death. Dre2, an essential Fe/S cluster protein and homologue of human anti-apoptotic Ciapin1, was identified as a molecular partner of Tah18 in the absence of stress. Moreover, Ciapin1 is able to replace yeast Dre2 in vivo and physically interacts with Tah18. Our results are in favour of an oxidative stress-induced cell death in yeast that involves mitochondria and is controlled by the newly identified Dre2-Tah18 complex.

  2. Using remote substituents to control solution structure and anion binding in lanthanide complexes

    DEFF Research Database (Denmark)

    Tropiano, Manuel; Blackburn, Octavia A.; Tilney, James A.;

    2013-01-01

    of the molecule, at a substantial distance from the binding pocket. Herein, we explore these remote substituent effects and explain the observed behaviour through discussion of the way in which remote substituents can influence and control the global structure of a molecule through their demands upon...... conformational space. Peripheral modifications to a binuclear lanthanide motif derived from α,α'-bis(DO3 Ayl)-m-xylene are shown to result in dramatic changes to the binding constant for isophthalate. In this system, the parent compound displays considerable conformational flexibility, yet can be assumed to bind...

  3. The interaction of stimulus and reinforcer control in complex temporal discrimination.

    OpenAIRE

    Davison, M; McCarthy, D.

    1987-01-01

    Six pigeons were trained in a discrete-trials signal-detection procedure to discriminate between a fixed-duration stimulus (5 s or 20 s) and a set of variable durations ranging from 2.5 s to 57.5 s in steps of 5 s. For each fixed-duration stimulus, the ratio of reinforcer frequencies contingent upon reporting the fixed versus the variable stimulus was systematically manipulated. Detection performance was well controlled by both the stimulus value and the reinforcer ratio. Both the discriminab...

  4. Controlled Ag electroless deposition in bulk structures with complex three-dimensional profiles

    DEFF Research Database (Denmark)

    Malureanu, Radu; Zalkovskij, Maksim; Andryieuski, Andrei;

    2010-01-01

    In this work we show the possibility of controlled deposition of a nanometer-sized silver layer on three-dimensional 3D structures. The deposition takes place in liquid environment, allowing for an easy and fast processing with intrinsically isotropic characteristics. The obtained layers are of...... high uniformity, having an average roughness of about 4 nm. The characterization of the metal deposition is done using both the scanning electron microscopy technique as well as by atomic force microscope measurements. The electroless technique can be easily implemented, providing the effective and...... reliable metal deposition for fabrication of 3D samples in the broad range of plasmonics and photonics applications....

  5. Impact of automation: Measurement of performance, workload and behaviour in a complex control environment.

    Science.gov (United States)

    Balfe, Nora; Sharples, Sarah; Wilson, John R

    2015-03-01

    This paper describes an experiment that was undertaken to compare three levels of automation in rail signalling; a high level in which an automated agent set routes for trains using timetable information, a medium level in which trains were routed along pre-defined paths, and a low level where the operator (signaller) was responsible for the movement of all trains. These levels are described in terms of a Rail Automation Model based on previous automation theory (Parasuraman et al., 2000). Performance, subjective workload, and signaller activity were measured for each level of automation running under both normal operating conditions and abnormal, or disrupted, conditions. The results indicate that perceived workload, during both normal and disrupted phases of the experiment, decreased as the level of automation increased and performance was most consistent (i.e. showed the least variation between participants) with the highest level of automation. The results give a strong case in favour of automation, particularly in terms of demonstrating the potential for automation to reduce workload, but also suggest much benefit can achieved from a mid-level of automation potentially at a lower cost and complexity. PMID:25479974

  6. The dystrophin complex controls bk channel localization and muscle activity in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Hongkyun Kim

    2009-12-01

    Full Text Available Genetic defects in the dystrophin-associated protein complex (DAPC are responsible for a variety of pathological conditions including muscular dystrophy, cardiomyopathy, and vasospasm. Conserved DAPC components from humans to Caenorhabditis elegans suggest a similar molecular function. C. elegans DAPC mutants exhibit a unique locomotory deficit resulting from prolonged muscle excitation and contraction. Here we show that the C. elegans DAPC is essential for proper localization of SLO-1, the large conductance, voltage-, and calcium-dependent potassium (BK channel, which conducts a major outward rectifying current in muscle under the normal physiological condition. Through analysis of mutants with the same phenotype as the DAPC mutants, we identified the novel islo-1 gene that encodes a protein with two predicted transmembrane domains. We demonstrate that ISLO-1 acts as a novel adapter molecule that links the DAPC to SLO-1 in muscle. We show that a defect in either the DAPC or ISLO-1 disrupts normal SLO-1 localization in muscle. Consistent with observations that SLO-1 requires a high calcium concentration for full activation, we find that SLO-1 is localized near L-type calcium channels in muscle, thereby providing a mechanism coupling calcium influx with the outward rectifying current. Our results indicate that the DAPC modulates muscle excitability by localizing the SLO-1 channel to calcium-rich regions of C. elegans muscle.

  7. SUMO-Dependent Relocalization of Eroded Telomeres to Nuclear Pore Complexes Controls Telomere Recombination

    Directory of Open Access Journals (Sweden)

    Dmitri Churikov

    2016-05-01

    Full Text Available In budding yeast, inactivation of telomerase and ensuing telomere erosion cause relocalization of telomeres to nuclear pore complexes (NPCs. However, neither the mechanism of such relocalization nor its significance are understood. We report that proteins bound to eroded telomeres are recognized by the SUMO (small ubiquitin-like modifier-targeted ubiquitin ligase (STUbL Slx5-Slx8 and become increasingly SUMOylated. Recruitment of Slx5-Slx8 to eroded telomeres facilitates telomere relocalization to NPCs and type II telomere recombination, a counterpart of mammalian alternative lengthening of telomeres (ALT. Moreover, artificial tethering of a telomere to a NPC promotes type II telomere recombination but cannot bypass the lack of Slx5-Slx8 in this process. Together, our results indicate that SUMOylation positively contributes to telomere relocalization to the NPC, where poly-SUMOylated proteins that accumulated over time have to be removed. We propose that STUbL-dependent relocalization of telomeres to NPCs constitutes a pathway in which excessively SUMOylated proteins are removed from “congested” intermediates to ensure unconventional recombination.

  8. SUMO-Dependent Relocalization of Eroded Telomeres to Nuclear Pore Complexes Controls Telomere Recombination.

    Science.gov (United States)

    Churikov, Dmitri; Charifi, Ferose; Eckert-Boulet, Nadine; Silva, Sonia; Simon, Marie-Noelle; Lisby, Michael; Géli, Vincent

    2016-05-10

    In budding yeast, inactivation of telomerase and ensuing telomere erosion cause relocalization of telomeres to nuclear pore complexes (NPCs). However, neither the mechanism of such relocalization nor its significance are understood. We report that proteins bound to eroded telomeres are recognized by the SUMO (small ubiquitin-like modifier)-targeted ubiquitin ligase (STUbL) Slx5-Slx8 and become increasingly SUMOylated. Recruitment of Slx5-Slx8 to eroded telomeres facilitates telomere relocalization to NPCs and type II telomere recombination, a counterpart of mammalian alternative lengthening of telomeres (ALT). Moreover, artificial tethering of a telomere to a NPC promotes type II telomere recombination but cannot bypass the lack of Slx5-Slx8 in this process. Together, our results indicate that SUMOylation positively contributes to telomere relocalization to the NPC, where poly-SUMOylated proteins that accumulated over time have to be removed. We propose that STUbL-dependent relocalization of telomeres to NPCs constitutes a pathway in which excessively SUMOylated proteins are removed from "congested" intermediates to ensure unconventional recombination. PMID:27134164

  9. Engineering and control of biological systems: A new way to tackle complex diseases.

    Science.gov (United States)

    Menolascina, Filippo; Siciliano, Velia; di Bernardo, Diego

    2012-07-16

    The ongoing merge between engineering and biology has contributed to the emerging field of synthetic biology. The defining features of this new discipline are abstraction and standardisation of biological parts, decoupling between parts to prevent undesired cross-talking, and the application of quantitative modelling of synthetic genetic circuits in order to guide their design. Most of the efforts in the field of synthetic biology in the last decade have been devoted to the design and development of functional gene circuits in prokaryotes and unicellular eukaryotes. Researchers have used synthetic biology not only to engineer new functions in the cell, but also to build simpler models of endogenous gene regulatory networks to gain knowledge of the "rules" governing their wiring diagram. However, the need for innovative approaches to study and modify complex signalling and regulatory networks in mammalian cells and multicellular organisms has prompted advances of synthetic biology also in these species, thus contributing to develop innovative ways to tackle human diseases. In this work, we will review the latest progress in synthetic biology and the most significant developments achieved so far, both in unicellular and multicellular organisms, with emphasis on human health. PMID:22580058

  10. Ingression Progression Complexes Control Extracellular Matrix Remodelling during Cytokinesis in Budding Yeast

    Science.gov (United States)

    Foltman, Magdalena; Molist, Iago; Arcones, Irene; Sacristan, Carlos; Filali-Mouncef, Yasmina; Roncero, Cesar; Sanchez-Diaz, Alberto

    2016-01-01

    Eukaryotic cells must coordinate contraction of the actomyosin ring at the division site together with ingression of the plasma membrane and remodelling of the extracellular matrix (ECM) to support cytokinesis, but the underlying mechanisms are still poorly understood. In eukaryotes, glycosyltransferases that synthesise ECM polysaccharides are emerging as key factors during cytokinesis. The budding yeast chitin synthase Chs2 makes the primary septum, a special layer of the ECM, which is an essential process during cell division. Here we isolated a group of actomyosin ring components that form complexes together with Chs2 at the cleavage site at the end of the cell cycle, which we named ‘ingression progression complexes’ (IPCs). In addition to type II myosin, the IQGAP protein Iqg1 and Chs2, IPCs contain the F-BAR protein Hof1, and the cytokinesis regulators Inn1 and Cyk3. We describe the molecular mechanism by which chitin synthase is activated by direct association of the C2 domain of Inn1, and the transglutaminase-like domain of Cyk3, with the catalytic domain of Chs2. We used an experimental system to find a previously unanticipated role for the C-terminus of Inn1 in preventing the untimely activation of Chs2 at the cleavage site until Cyk3 releases the block on Chs2 activity during late mitosis. These findings support a model for the co-ordinated regulation of cell division in budding yeast, in which IPCs play a central role. PMID:26891268

  11. Novel Inhibitors Complexed with Glutamate Dehydrogenase: ALLOSTERIC REGULATION BY CONTROL OF PROTEIN DYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ming; Smith, Christopher J.; Walker, Matthew T.; Smith, Thomas J.; (Danforth)

    2009-12-01

    Mammalian glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of L-glutamate to 2-oxoglutarate using NAD(P){sup +} as coenzyme. Unlike its counterparts from other animal kingdoms, mammalian GDH is regulated by a host of ligands. The recently discovered hyperinsulinism/hyperammonemia disorder showed that the loss of allosteric inhibition of GDH by GTP causes excessive secretion of insulin. Subsequent studies demonstrated that wild-type and hyperinsulinemia/hyperammonemia forms of GDH are inhibited by the green tea polyphenols, epigallocatechin gallate and epicatechin gallate. This was followed by high throughput studies that identified more stable inhibitors, including hexachlorophene, GW5074, and bithionol. Shown here are the structures of GDH complexed with these three compounds. Hexachlorophene forms a ring around the internal cavity in GDH through aromatic stacking interactions between the drug and GDH as well as between the drug molecules themselves. In contrast, GW5074 and bithionol both bind as pairs of stacked compounds at hexameric 2-fold axes between the dimers of subunits. The internal core of GDH contracts when the catalytic cleft closes during enzymatic turnover. None of the drugs cause conformational changes in the contact residues, but all bind to key interfaces involved in this contraction process. Therefore, it seems likely that the drugs inhibit enzymatic turnover by inhibiting this transition. Indeed, this expansion/contraction process may play a major role in the inter-subunit communication and allosteric regulation observed in GDH.

  12. Generation of complex motor patterns in american grasshopper via current-controlled thoracic electrical interfacing.

    Science.gov (United States)

    Giampalmo, Susan L; Absher, Benjamin F; Bourne, W Tucker; Steves, Lida E; Vodenski, Vassil V; O'Donnell, Peter M; Erickson, Jonathan C

    2011-01-01

    Micro-air vehicles (MAVs) have attracted attention for their potential application to military applications, environmental sensing, and search and rescue missions. While progress is being made toward fabrication of a completely human-engineered MAV, another promising approach seeks to interface to, and take control of, an insect's nervous system. Cyborg insects take advantage of their innate exquisite loco-motor, navigation, and sensing abilities. Recently, several groups have demonstrated the feasibility of radio-controlled flight in the hawkmoth and beetle via electrical neural interfaces. Here, we report a method for eliciting the "jump" response in the American grasshopper (S. Americana). We found that stimulating the metathoracic T3 ganglion with constant-current square wave pulses with amplitude 186 ± 40 μA and frequency 190 ± 13 Hz reproducibly evoked (≥95% success rate) the desired motor activity in N=3 test subjects. To the best of our knowledge, this is the first report of an insect cyborg with a synchronous neuromuscular system. PMID:22254549

  13. General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis

    Science.gov (United States)

    Niu, Chaojiang; Meng, Jiashen; Wang, Xuanpeng; Han, Chunhua; Yan, Mengyu; Zhao, Kangning; Xu, Xiaoming; Ren, Wenhao; Zhao, Yunlong; Xu, Lin; Zhang, Qingjie; Zhao, Dongyuan; Mai, Liqiang

    2015-06-01

    Nanowires and nanotubes have been the focus of considerable efforts in energy storage and solar energy conversion because of their unique properties. However, owing to the limitations of synthetic methods, most inorganic nanotubes, especially for multi-element oxides and binary-metal oxides, have been rarely fabricated. Here we design a gradient electrospinning and controlled pyrolysis method to synthesize various controllable 1D nanostructures, including mesoporous nanotubes, pea-like nanotubes and continuous nanowires. The key point of this method is the gradient distribution of low-/middle-/high-molecular-weight poly(vinyl alcohol) during the electrospinning process. This simple technique is extended to various inorganic multi-element oxides, binary-metal oxides and single-metal oxides. Among them, Li3V2(PO4)3, Na0.7Fe0.7Mn0.3O2 and Co3O4 mesoporous nanotubes exhibit ultrastable electrochemical performance when used in lithium-ion batteries, sodium-ion batteries and supercapacitors, respectively. We believe that a wide range of new materials available from our composition gradient electrospinning and pyrolysis methodology may lead to further developments in research on 1D systems.

  14. Alkali metal control over N-N cleavage in iron complexes.

    Science.gov (United States)

    Grubel, Katarzyna; Brennessel, William W; Mercado, Brandon Q; Holland, Patrick L

    2014-12-01

    Though N2 cleavage on K-promoted Fe surfaces is important in the large-scale Haber-Bosch process, there is still ambiguity about the number of Fe atoms involved during the N-N cleaving step and the interactions responsible for the promoting ability of K. This work explores a molecular Fe system for N2 reduction, particularly focusing on the differences in the results obtained using different alkali metals as reductants (Na, K, Rb, Cs). The products of these reactions feature new types of Fe-N2 and Fe-nitride cores. Surprisingly, adding more equivalents of reductant to the system gives a product in which the N-N bond is not cleaved, indicating that the reducing power is not the most important factor that determines the extent of N2 activation. On the other hand, the results suggest that the size of the alkali metal cation can control the number of Fe atoms that can approach N2, which in turn controls the ability to achieve N2 cleavage. The accumulated results indicate that cleaving the triple N-N bond to nitrides is facilitated by simultaneous approach of least three low-valent Fe atoms to a single molecule of N2. PMID:25412468

  15. Reduction of structural weight, costs and complexity of a control system in the active vibration reduction of flexible structures

    International Nuclear Information System (INIS)

    This paper concerns the active vibration reduction of a flexible structure with discrete piezoelectric sensors and actuators in collocated pairs bonded to its surface. In this study, a new fitness and objective function is proposed to determine the optimal number of actuators, based on variations in the average closed loop dB gain margin reduction for all of the optimal piezoelectric pairs and on the modes that are required to be attenuated using the optimal linear quadratic control scheme. The aim of this study is to find the minimum number of optimally located sensor/actuator pairs, which can achieve the same vibration reduction as a greater number, in order to reduce the cost, complexity and power requirement of the control system. This optimization was done using a genetic algorithm. The technique may be applied to any lightly damped structure, and is demonstrated here by attenuating the first six vibration modes of a flat cantilever plate. It is shown that two sensor/actuator pairs, located and controlled optimally, give almost the same vibration reduction as ten pairs. These results are validated by comparing the open and closed loop time responses and actuator feedback voltages for various numbers of piezoelectric pairs using the ANSYS finite element package and a proportional differential control scheme. (paper)

  16. Invited review paper: The control of subduction zone structural complexity and geometry on margin segmentation and seismicity

    Science.gov (United States)

    Kopp, H.

    2013-03-01

    Convergent plate boundaries around the globe show a high degree of structural complexity and variability in site-specific geometry and mass flux. The heterogeneity in the structural evolution, the interior regime as well as external architecture of individual margins is reflected in their seismic character, resulting in a segmentation along-strike as well as along-dip. Subduction zones generate more than 80% of global earthquakes above magnitude 8.0, but rupture characteristics are highly individual and linked to margin specific geometrical conditions. Major segments of subduction zones are commonly submerged in deep water and difficult to access at the majority of margins. Marine geophysical techniques, which are able to image the complex structures in these settings with sufficient coherency and depth penetration, have proven crucial to improve our knowledge on the geological framework of the different types of subduction zones. The aim of this review paper is to unravel the structural diversity of convergent margins and between individual subduction zone segments. Field data from different margins around the globe deliver images of the seafloor and subsurface in unprecedented resolution, which show segmentation to be far more complex than previously inferred. Along-strike segmentation results in accretionary segments contiguous to erosive segments along a single margin. Modes of mass transfer must hence be viewed as transient processes dependent on sediment supply and lower plate structure. Along-strike segment boundaries commonly correlate with underthrusting lower plate relief that controls the deep deformation of a subduction zone and the spatial and temporal variations in slip behavior. Examples of underthrusting oceanic basement relief at different stages of subduction elucidate their impact on the inner geometry of the margin. Lower plate heterogeneities occur at subduction zones worldwide and thus pose a common phenomenon, whose role as barriers to

  17. Melanoma susceptibility as a complex trait: genetic variation controls all stages of tumor progression.

    Science.gov (United States)

    Ferguson, B; Ram, R; Handoko, H Y; Mukhopadhyay, P; Muller, H K; Soyer, H P; Morahan, G; Walker, G J

    2015-05-28

    Susceptibility to most common cancers is likely to involve interaction between multiple low risk genetic variants. Although there has been great progress in identifying such variants, their effect on phenotype and the mechanisms by which they contribute to disease remain largely unknown. We have developed a mouse melanoma model harboring two mutant oncogenes implicated in human melanoma, CDK4(R24C) and NRAS(Q61K). In these mice, tumors arise from benign precursor lesions that are a recognized strong risk factor for this neoplasm in humans. To define molecular events involved in the pathway to melanoma, we have for the first time applied the Collaborative Cross (CC) to cancer research. The CC is a powerful resource designed to expedite discovery of genes for complex traits. We characterized melanoma genesis in more than 50 CC strains and observed tremendous variation in all traits, including nevus and melanoma age of onset and multiplicity, anatomical site predilection, time for conversion of nevi to melanoma and metastases. Intriguingly, neonatal ultraviolet radiation exposure exacerbated nevus and melanoma formation in most, but not all CC strain backgrounds, suggesting that genetic variation within the CC will help explain individual sensitivity to sun exposure, the major environmental skin carcinogen. As genetic variation brings about dramatic phenotypic diversity in a single mouse model, melanoma-related endophenotype comparisons provide us with information about mechanisms of carcinogenesis, such as whether melanoma incidence is dependent upon the density of pre-existing nevus cells. Mouse models have been used to examine the functional role of gene mutations in tumorigenesis. This work represents their next phase of development to study how biological variation greatly influences lesion onset and aggressiveness even in the setting of known somatic driver mutations. PMID:25088201

  18. Soft matter strategies for controlling food texture: formation of hydrogel particles by biopolymer complex coacervation

    Science.gov (United States)

    Wu, Bi-cheng; Degner, Brian; McClements, David Julian

    2014-11-01

    Soft matter physics principles can be used to address important problems in the food industry. Starch granules are widely used in foods to create desirable textural attributes, but high levels of digestible starch may pose a risk of diabetes. Consequently, there is a need to find healthier replacements for starch granules. The objective of this research was to create hydrogel particles from protein and dietary fiber with similar dimensions and functional attributes as starch granules. Hydrogel particles were formed by mixing gelatin (0.5 wt%) with pectin (0 to 0.2 wt%) at pH values above the isoelectric point of the gelatin (pH 9, 30 °C). When the pH was adjusted to pH 5, the biopolymer mixture spontaneously formed micron-sized particles due to electrostatic attraction of cationic gelatin with anionic pectin through complex coacervation. Differential interference contrast (DIC) microscopy showed that the hydrogel particles were translucent and spheroid, and that their dimensions were determined by pectin concentration. At 0.01 wt% pectin, hydrogel particles with similar dimensions to swollen starch granules (D3,2 ≈ 23 µm) were formed. The resulting hydrogel suspensions had similar appearances to starch pastes and could be made to have similar textural attributes (yield stress and shear viscosity) by adjusting the effective hydrogel particle concentration. These hydrogel particles may therefore be used to improve the texture of reduced-calorie foods and thereby help tackle obesity and diabetes.

  19. Elucidation of the mechanism of incorporation of insulin in controlled release systems based on complexation polymers.

    Science.gov (United States)

    Morishita, Mariko; Lowman, Anthony M; Takayama, Kozo; Nagai, Tsuneji; Peppas, Nicholas A

    2002-05-17

    The objective of this study was to investigate the insulin incorporation and release properties of poly(methacrylic acid-g-ethylene glycol) P(MAA-g-EG) microparticles as a function of copolymer composition. These microparticles exhibited unique pH-responsive characteristics in which interpolymer complexes were formed in acidic media and dissociated in neutral/basic environments. The microparticles containing equimolar amounts of MAA and PEG were capable of efficient insulin loading using equilibrium partitioning (>90%). Additionally, insulin release from the gel was significantly retarded in acidic media while rapid release occurred under neutral/basic conditions. In contrast, as the amount of MAA of the polymer was increased, the entrapment efficiency of insulin within the gel greatly reduced and the insulin was readily released from the polymer network in the acidic and neutral/basic media. In addition, in order to evaluate the potential application of the microparticles to other drugs, theophylline, vancomycin, fluorescein-isothiocyanate-labeled dextrans (FITC-Ds) with average molecular weights of 4400 (FITC-D-4), 12,000 (FITC-D-10) and 19,500 (FITC-D-20) were utilized as model hydrophilic drugs. The incorporation profiles showed that the uptake of theophylline and vancomycin to the microparticles was lower than that of insulin. Additionally, polymer microparticles loaded with theophylline and vancomycin exhibited pH-sensitive release behavior, however, the oscillatory behavior is less pronounced than those of insulin. The values of drug incorporation ratio showed that the microparticles were capable of incorporating almost 90% of insulin and 15% of vancomycin from solution. On the other hand, the other hydrophilic drugs showed very low incorporation efficiency to the microparticles. These data suggest that gels containing equimolar amounts of MAA:EG have the potential to be used as an oral carrier of peptide drugs, especially for insulin. PMID:11992675

  20. Efficacy and Safety of "URSA Complex" in Subjects with Physical Fatigue: A Multicenter, Randomized, Double-blind,Placebo-controlled Trial

    Institute of Scientific and Technical Information of China (English)

    Kwang-Min Kim; Moon-Jong Kim; Sang-Wook Song; Doo-Yeoun Cho; Kyung-Chae Park; Sung-Won Yang; Young-Sang Kim

    2016-01-01

    Background:Fatigue is a common symptom both in diseases status and in healthy subjects.Various supplements and nutraceuticals for relieving of fatigue have been used.However,there are a few studies to evaluate the efficacy and the safety of the drug for fatigue alleviation,we conducted using URSA Complex to evaluate the efficacy on physical fatigue via score changes in the checklist individual strength (CIS).Methods:The study was designed as a multicenter,randomized,double-blind,placebo-controlled trial,with subjects randomized to one of the two arms,receiving either placebo or URSA Complex administered as identical capsules.The primary efficacy endpoints of this clinical trials are the ratio of improving CIS scores < 76 points in patients at the end (4 weeks).Secondary efficacy variables are as follows one is an improvement of fatigue and the other is an improvement of the liver enzyme.Results:The fatigue recovery rate in who had improved CIS scores of< 76 points were 70.0%,50.9% in the therapy group and placebo group,respectively (P =0.019).The fatigue recovery rate in CIS score was higher in URSA Complex therapy group than placebo group.The difference between therapy group and placebo group was statistically significant at 4 weeks later,but not 2 weeks.Conclusions:Our results provided that the URSA Complex was effective in alleviating physical fatigue.The adverse event frequency in the therapy groups was similar to that in the placebo group.

  1. Accessibility control on copper(II) complexes in mesostructured porous silica obtained by direct synthesis using bidentate organosilane ligands.

    Science.gov (United States)

    Zhou, Wen-Juan; Albela, Belén; Perriat, Pascal; He, Ming-Yuan; Bonneviot, Laurent

    2010-08-17

    The accessibility of metal(II) complexes in 2D hexagonal mesostructured porous silicas obtained by direct synthesis is controlled using an appropriate organosilane ligand. This is exemplified here using copper(II) as a transition metal probe and a neutral or negatively charged ligand: N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, L(A), and, N-salicylaldimine-propylamine-trimethoxysilane, L(B)(-), respectively. L(A) leads to inaccessible complexes located into the pore wall and called "embedded" sites here where silanolate groups from the siliceous network block the access to Cu(II) ions. By contrast, L(B)(-) generates accessible complexes, named "showing-on" sites here. The copper-containing silicas were synthesized with various metal molar ratios (M/SiO(2) = 0.5-3%) in basic media, with cetyltrimethylammonium p-toluenesulfonate (CTATos) as template and with sodium silicate solution as silicon source. A soft template extraction procedure has been developed to preserve the complex integrity of the showing-on copper sites during the treatment. The embedded copper(II) and nickel(II) sites were compared. Materials containing embedded, showing-on, and grafted sites were also compared with regard to pore size, surface polarity, and metal leaching. The material containing showing-on sites was found to be catalytically active for the hydroxylation of phenol into catechol and hydroquinone. Both textural and structural properties of the material and the copper sites were investigated using XRD, TEM, N(2) sorption isotherms, TGA, FT-IR, UV-visible, and EPR spectroscopies. PMID:20695596

  2. Solvent Control of Surface Plasmon-Mediated Chemical Deposition of Au Nanoparticles from Alkylgold Phosphine Complexes.

    Science.gov (United States)

    Muhich, Christopher L; Qiu, Jingjing; Holder, Aaron M; Wu, Yung-Chien; Weimer, Alan W; Wei, Wei David; McElwee-White, Lisa; Musgrave, Charles B

    2015-06-24

    Bottom-up approaches to nanofabrication are of great interest because they can enable structural control while minimizing material waste and fabrication time. One new bottom-up nanofabrication method involves excitation of the surface plasmon resonance (SPR) of a Ag surface to drive deposition of sub-15 nm Au nanoparticles from MeAuPPh3. In this work we used density functional theory to investigate the role of the PPh3 ligands of the Au precursor and the effect of adsorbed solvent on the deposition process, and to elucidate the mechanism of Au nanoparticle deposition. In the absence of solvent, the calculated barrier to MeAuPPh3 dissociation on the bare surface is deposition by the light induced SPR heating of the surface and nearby solution. PMID:26036274

  3. On-line monitoring of a complex non-linear process control system

    International Nuclear Information System (INIS)

    The operation of a nuclear fueled, electric power generating unit, or a steel or chemical plant, is monitored by utilizing decision tree analysis of selected system parameters to generate a representation of the real time system status. Current system status is presented to the operator as conclusory indications, such as verbal statements, representative of system status, or in the form of a visual display of the entire decision tree. In either case, indications of off-normal conditions are accompanied by directions as to appropriate action to be taken, either by the operator or the automatic control system, to steer the system toward more acceptable conditions. In addition, the status indications are prioritized to indicate the seriousness of the off-normal conditions and to direct the sequence of corrective action to be taken when multiple off-normal conditions exist. (author)

  4. Structural control on basaltic dike and sill emplacement, Paiute Ridge mafic intrusion complex, southern Nevada

    International Nuclear Information System (INIS)

    Late Miocene basaltic sills and dikes in the Paiute Ridge area of southern nevada show evidence that their emplacement was structurally controlled. Basaltic dikes in this area formed by dilating pre-existing vertical to steeply E-dipping normal faults. Magma propagation along these faults must have required less energy than the creation of a self-propagated fracture at dike tips and the magma pressure must have been greater than the compressive stress perpendicular to the fault surface. N- to NE-trending en echelon dikes formed locally and are not obviously attached to the three main dikes in the area. The en echelon segments are probably pieces of deeper dikes, which are segmented perhaps as a result of a documented rotation of the regional stresses. Alternatively, changes in orientation of principal stresses in the vicinity of each en echelon dike could have resulted from local loads associated with paleotopographic highs or nearby structures. Sills locally branched off some dikes within 300 m of the paleosurface. These subhorizontal bodies occur consistently in the hanging wall block of the dike-injected faults, and intrude Tertiary tuffs near the Paleozoic-Tertiary contact. The authors suggest that the change in stresses near the earth's surface, the material strength of the tuff and paleozoic rocks, and the Paleozoic bedding dip direction probably controlled the location of sill formation and direction of sill propagation. The two largest sills deflected the overlying tuffs to form lopoliths, indicating that the magma pressure exceeded vertical stresses at that location and that the shallow level and large size of the sills allowed interaction with the free (earth's) surface. 32 refs., 4 figs., 1 tab

  5. Constant speed control for complex cross-section welding using robot based on angle self-test

    Science.gov (United States)

    Xue, Long; Zou, Yong; Huang, Jiqiang; Huang, Junfen; Tao, Xinghua; Hu, Yanfeng

    2014-03-01

    Expandable profile liner(EPL) is a promising new oil well casing cementing technique, and welding is a major EPLs connection technology. Connection of EPL is still in the stage of manual welding so far, automatic welding technology is a hotspot of EPL which is one of the key technologies to be solved. A robot for automatic welding of "8" type EPL is studied. Four quadrants of mathematical equations of the 8-shaped cross-section track of EPL, consisting of multiple arcs, are established. Mechanism program for complex cross-section welding of EPL based on angle detection is proposed according to characteristics of small size, small valleys, and large forming errors, etc. A welding velocity vector control model is established by linkage control of a welding vehicle, a small driven actuator, and a height tracking mechanism. A constant speed control model based on an angle and symmetrical analysis model of rectangular coordinate system for EPL is built. Constraint conditions of constant speed control between each section are analyzed with 4 sections in first quadrant as an example, and cooperation work mechanism of the welding vehicle and the small tracking actuator is established based on pressure detection. The constant speed control model using angle self-test can be used to avoid the need for a precise mathematical model for tracking control and to adapt manufacture and installation deviation of EPL workpiece. The model is able to solve constant speed and trajectory tracking problems of EPL cross-section welding. EPL seams welded by the studied robot are good in appearance, and non-destructive testing(NDT) shows the seams are good in quality with no welding defects. Bulge tests show that the maximum pressure of welded EPL is 35 MPa, which can fulfill expansion performance requirements.

  6. CONTROLLING AS ORGANIZATIONAL AND METHODICAL COMPLEX OF SUPPORT OF MODERNIZATION AND MANAGEMENT IN THE FIELD OF HEALTH CARE

    Directory of Open Access Journals (Sweden)

    Miroshnichenko M. A.

    2015-03-01

    Full Text Available Justification of the need and the prospects of using controlling in the mechanism of management of a versatile medical center is an actual problem now. The concept of the introduction of controlling, as organizational and methodical complex of support of modernization and management in the field of health care is considered. The analysis of the essence, the tasks and the functions of controlling of medical institution, advantage and possibility of application of controlling in the treatment-and-prophylactic establishment (TAPE in system of administration is given. Controlling is capable to have an impact on adoption of administrative decisions at the different levels. Applications in a management system of LPT of controlling will allow carrying out the following kinds of activity: to study the parameters of administration and to define the quality of the purpose of medical activity and indicators estimating their result; to define the activity in specialty; to develop information support of the administration; to coordinate the process of planning at the level of intermedical and interdisciplinary interaction; to predict the work of LPU; to develop the structure of the accounting of activity which is rather detailed with the definition of the expenses of the work of LPU; to have an opportunity to estimate the work of LPU at the municipal level and at the level of the subject of the Russian Federation; to develop the unified assessment of the ways and the indicators allowing to compare the results of the administration at all stages of medical activity; to use offers on the basis of the analysis and the assessment of planned and registration data on medical activity and to be guided by them when making administrative decisions at various levels of management

  7. Quasi-molecular bosonic complexes-a pathway to SQUID with controlled sensitivity

    Science.gov (United States)

    Safavi-Naini, Arghavan; Capogrosso-Sansone, Barbara; Kuklov, Anatoly; Penna, Vittorio

    2016-02-01

    Recent experimental advances in realizing degenerate quantum dipolar gases in optical lattices and the flexibility of experimental setups in attaining various geometries offer the opportunity to explore exotic quantum many-body phases stabilized by anisotropic, long-range dipolar interaction. Moreover, the unprecedented control over the various physical properties of these systems, ranging from the quantum statistics of the particles, to the inter-particle interactions, allow one to engineer novel devices. In this paper, we consider dipolar bosons trapped in a stack of one-dimensional optical lattice layers, previously studied in (Safavi-Naini et al 2014 Phys. Rev. A 90 043604). Building on our prior results, we provide a description of the quantum phases stabilized in this system which include composite superfluids (CSFs), solids, and supercounterfluids, most of which are found to be threshold-less with respect to the dipolar interaction strength. We also demonstrate the effect of enhanced sensitivity to rotations of a SQUID-type device made of two CSF trapped in a ring-shaped optical lattice layer with weak links.

  8. Recent trends on sterile insect technique and area-wide integrated pest management. Economic feasibility, control projects, farmer organization and Bactrocera dorsalis complex control study

    International Nuclear Information System (INIS)

    We have invited professional papers from over the world, including Okinawa, for compilation of recent trends on Sterile Insect Techniques and Area-Wide Integrated Pest Management to further pursue environment friendly pest insects control measures in agricultural production in the Asia-Pacific region. Pest insects such as the tephritid fruit flies have long been and are still today causing serious damage to agricultural products in the Asia-Pacific region and farmers in the region apply such insecticides that are no longer allowed or being subjected to strict usage control in Japan. This, in return, may endanger the health of the very farmers, food safety and the ecosystem itself. The purpose of this report is, therefore, to clarify keys for technology transfer of so called SIT/AWIPM to potential recipients engaged in agricultural production in the region. This report focused on several topics, which make up important parts for the effective Sterile Insect Technique and Area-Wide Integrated Pest Management: economic feasibility; pest insects control projects; farmers' education; research progress in Bactrocera dorsalis complex issues specific to the Asia-Pacific region. The 12 of the papers are indexed individually. (J.P.N.)

  9. Effects of a complex intervention on fall risk in the general practitioner setting: a cluster randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Freiberger E

    2013-08-01

    Full Text Available Ellen Freiberger,1 Wolfgang A Blank,2 Johannes Salb,1 Barbara Geilhof,3 Christian Hentschke,1 Peter Landendoerfer,2 Martin Halle,3 Monika Siegrist31Institute of Sport Science and Sport Universität Erlangen-Nürnberg, Nuremberg, Germany; 2Institute of General Practice, Technische Universität München, Munich, Germany; 3Department of Prevention, Rehabilitation and Sports Medicine, Technische Universität München, Munich, GermanyPurpose: To study the feasibility of first, reaching functionally declined, but still independent older persons at risk of falls through their general practitioner (GP and second, to reduce their physiological and psychological fall risk factors with a complex exercise intervention. We investigated the effects of a 16-week exercise intervention on physiological (function, strength, and balance and psychological (fear of falling outcomes in community-dwelling older persons in comparison with usual care. In addition, we obtained data on adherence of the participants to the exercise program.Methods: Tests on physical and psychological fall risk were conducted at study inclusion, and after the 16-week intervention period in the GP office setting. The 16-week intervention included progressive and challenging balance, gait, and strength exercise as well as changes to behavioral aspects. To account for the hierarchical structure in the chosen study design, with patients nested in GPs and measurements nested in patients, a three-level linear mixed effects model was determined for analysis.Results: In total, 33 GPs recruited 378 participants (75.4% females. The mean age of the participants was 78.1 years (standard deviation 5.9 years. Patients in the intervention group showed an improvement in the Timed-Up-and-Go-test (TUG that was 1.5 seconds greater than that showed by the control group, equivalent to a small to moderate effect. For balance, a relative improvement of 0.8 seconds was accomplished, and anxiety about falls was

  10. Sexual dimorphism in white campion: complex control of carpel number is revealed by Y chromosome deletions

    International Nuclear Information System (INIS)

    Sexual dimorphism in the dioecious plant white campion (Silene latifolia = Melandrium album) is under the control of two main regions on the Y chromosome. One such region, encoding the gynoecium-suppressing function (GSF), is responsible for the arrest of carpel initiation in male flowers. To generate chromosomal deletions, we used pollen irradiation in male plants to produce hermaphroditic mutants (bsx mutants) in which carpel development was restored. The mutants resulted from alterations in at least two GSF chromosomal regions, one autosomal and one located on the distal half of the (p)-arm of the Y chromosome. The two mutations affected carpel development independently, each mutation showing incomplete penetrance and variegation, albeit at significantly different levels. During successive meiotic generations, a progressive increase in penetrance and a reduction in variegation levels were observed and quantified at the level of the Y-linked GSF (GSF-Y). Possible mechanisms are proposed to explain the behavior of the bsx mutations: epigenetic regulation or/and second-site mutation of modifier genes. In addition, studies on the inheritance of the hermaphroditic trait showed that, unlike wild-type Y chromosomes, deleted Y chromosomes can be transmitted through both the male and the female lines. Altogether, these findings bring experimental support, on the one hand, to the existence on the Y chromosome of genic meiotic drive function(s) and, on the other hand, to models that consider that dioecy evolved through multiple mutation events. As such, the GSF is actually a system containing more than one locus and whose primary component is located on the Y chromosome

  11. Evidential theoretic revision of beliefs under a mixed strategy for safety-control of a large-complex plant

    International Nuclear Information System (INIS)

    This paper discusses how beliefs of a decision maker can be revised for the safety control of a large-complex plant via Dempster-Shafer theory. In this paper, we examine the following two methods for belief revision: (i) combination rules for basic probability assignments, and (ii) updating rules based on the conditioning of belief functions. We give, for each case, an optimal rule for minimizing the expected loss caused by actions of a decision maker who adopts a mixed strategy for safety control, where the decision maker's safety-control is probabilistic over policies of the safety-preservation type and the fault-warning type. We clarify the following two points: (1) An optimal rule of combination cannot be determined until the exact time moment of combining information, because the optimality depends on a mixed strategy adopted by the decision maker and information items obtained to be combined. (2) An optimal rule of updating can be specified in advance, irrespective of a decision maker's mixed strategy or information items to be obtained. These two points show an essential difference between the combination rules and the updating rules: The optimal combination rule has a dynamic nature, while the optimal updating rule has a static aspect. (author)

  12. Transverse effects on the nasomaxillary complex one year after rapid maxillary expansion as the only intervention: A controlled study

    Directory of Open Access Journals (Sweden)

    Carolina da Luz Baratieri

    2014-10-01

    Full Text Available The aim of this study was to assess by means of cone-beam computed tomography (CBCT scans the transverse effects on the nasomaxillary complex in patients submitted to rapid maxillary expansion (RME using Haas expander in comparison to untreated individuals. This prospective controlled clinical study assessed 30 subjects (18 boys and 12 girls with mixed dentition and during pubertal growth. The treated group was submitted to RME with Haas expander, retention for six months and a six-month follow-up after removal. The control group matched the treated group in terms of age and sex distribution. CBCT scans were taken at treatment onset and one year after the expander was activated. Maxillary first molars (U6 width, right and left U6 angulation, maxillary alveolar width, maxillary basal width, palatal alveolar width, palatal base width, right and left alveolar angulation, palatal area, nasal base width, nasal cavity width and inferior nasal cavity area on the posterior, middle and anterior coronal slices were measured with Dolphin Imaging Software(r 11.5, except for the first two variables which were performed only on the posterior slice. All transverse dimensions increased significantly (P 0.05. Results suggest that increase of molar, maxillary, palatal and nasal transverse dimensions was stable in comparison to the control group one year after treatment with RME.

  13. Linker-dependent chromogenic control of the emission of polymethylene-vaulted trans-bis(salicylaldiminato)platinum(II) complexes

    International Nuclear Information System (INIS)

    The emission wavelengths of polymethylene-vaulted trans-bis(salicylaldiminato)platinum(II) complexes 1a–f (n=8–13) in a 2-MeTHF glass state at 77 K clearly vary with the length of the linker, such that a very regular hypsochromic shift from yellow to green is observed upon transitioning from octamethylene (1a, n=8) to tridecamethylene (1f, n=13) linkages. This structure-dependent chromism is explained based on DFT and TD-DFT calculations comparing the T1–S0 gaps in optimized 1a, 1c (n=10) and 1e (n=12) structures. - Highlights: • Trans-bis(salicylaldiminato)platinum(II) platform with polymethylene-vaulted structures. • An unprecedented linker-dependent chromogenic control of emission. • A clear mechanistic rationale based on DFT and TD-DFT calculations

  14. Control of Metal Arrays Based on Heterometallics Masquerading in Heterochiral Aggregations of Chiral Clothespin-Shaped Complexes.

    Science.gov (United States)

    Naito, Masaya; Inoue, Ryo; Iida, Masayuki; Kuwajima, Yuuki; Kawamorita, Soichiro; Komiya, Naruyoshi; Naota, Takeshi

    2015-09-01

    Heterometal arrays in molecular aggregations were obtained by the spontaneous and ultrasound-induced gelation of organic liquids containing the chiral, clothespin-shaped trans-bis(salicylaldiminato) d8 transition-metal complexes 1. Heterometallic mixtures of complexes 1 a (Pd) and 1 b (Pt) underwent strict heterochiral aggregation entirely due to the organic shell structure of the clothespin shape, with no effect of the metal cores. This phenomenon provides an unprecedented means of generating highly controlled heterometallic arrangements such as alternating sequences [(+)-Pd(-)-Pt(+)-Pd(-)-Pt⋅⋅⋅] as well as a variety of single metal-enriched arrays (e.g., [(+)-Pt(-)-Pd(+)-Pd(-)-Pd(+)-Pd(-)-Pd⋅⋅⋅] and [(+)-Pd(-)-Pt(+)-Pt(-)-Pt(+)-Pt(-)-Pt⋅⋅⋅]) upon the introduction of an optically active masquerading unit with a different metal core in the heterochiral single-metal sequence. The present method can be applied to form various new aggregates with optically active Pd and Pt units, to allow 1) tuning of the gelation ultrasound sensitivity based on the different hearing abilities of the metal units; 2) aggregation-induced chirality transfer between heterometallic species; and 3) aggregation-induced chirality enhancement. A mechanistic rationale is proposed for these molecular aggregations based on the molecular structures of the units and the morphologies of the aggregates. PMID:26212577

  15. Proteasomal degradation of preemptive quality control (pQC) substrates is mediated by an AIRAPL-p97 complex.

    Science.gov (United States)

    Braunstein, Ilana; Zach, Lolita; Allan, Susanne; Kalies, Kai-Uwe; Stanhill, Ariel

    2015-11-01

    The initial folding of secreted proteins occurs in the ER lumen, which contains specific chaperones and where posttranslational modifications may occur. Therefore lack of translocation, regardless of entry route or protein identity, is a highly toxic event, as the newly synthesized polypeptide is misfolded and can promiscuously interact with cytosolic factors. Mislocalized proteins bearing a signal sequence that did not successfully translocate through the translocon complex are subjected to a preemptive quality control (pQC) pathway and are degraded by the ubiquitin-proteasome system (UPS). In contrast to UPS-mediated, ER-associated degradation, few components involved in pQC have been identified. Here we demonstrate that on specific translocation inhibition, a p97-AIRAPL complex directly binds and regulates the efficient processing of polyubiquitinated pQC substrates by the UPS. We also demonstrate p97's role in pQC processing of preproinsulin in cases of naturally occurring mutations within the signal sequence of insulin. PMID:26337389

  16. A Hybrid Methacrylate-Sodium Carboxymethylcellulose Interpolyelectrolyte Complex: Rheometry and in Silico Disposition for Controlled Drug Release

    Directory of Open Access Journals (Sweden)

    Viness Pillay

    2013-09-01

    Full Text Available The rheological behavioral changes that occurred during the synthesis of an interpolyelectrolyte complex (IPEC of methacrylate copolymer and sodium carboxymethylcellulose were assessed. These changes were compared with the rheological behavior of the individual polymers employing basic viscosity, yield stress, stress sweep, frequency sweep, temperature ramp as well as creep and recovery testing. The rheological studies demonstrated that the end-product of the complexation of low viscous methacrylate copolymer and entangled solution of sodium carboxymethylcellulose generated a polymer, which exhibited a solid-like behavior with a three-dimensional network. Additionally, the rheological profile of the sodium carboxymethylcellulose and methacrylate copolymer with respect to the effect of various concentrations of acetic acid on the synthesis of the IPEC was elucidated using molecular mechanics energy relationships (MMER by exploring the spatial disposition of carboxymethylcellulose and methacrylate copolymer with respect to each other and acetic acid. The computational results corroborated well with the experimental in vitro drug release data. Results have shown that the IPEC may be suitable polymeric material for achieving controlled zero-order drug delivery.

  17. Metal ion-assisted self-assembly of complexes for controlled and sustained release of minocycline for biomedical applications

    International Nuclear Information System (INIS)

    This study reports the development of novel drug delivery complexes self-assembled by divalent metal ion-assisted coacervation for controlled and sustained release of a hydrophilic small drug molecule minocycline hydrochloride (MH). MH is a multifaceted agent that has demonstrated therapeutic effects in infection, inflammation, tumor, as well as cardiovascular, renal, and neurological disorders due to its anti-microbial, anti-inflammatory, and cytoprotective properties. However, the inability to translate the high doses used in experimental animals to tolerable doses in human patients limits its clinical application. Localized delivery can potentially expose the diseased tissue to high concentrations of MH that systemic delivery cannot achieve, while minimizing the side effects from systemic exposure. The strong metal ion binding-assisted interaction enabled high drug entrapment and loading efficiency, and stable long term release for more than 71 d. Released MH demonstrated potent anti-biofilm, anti-inflammatory, and neuroprotective activities. Furthermore, MH release from the complexes is pH-sensitive as the chelation between minocycline and metal ions decreases with pH, allowing ‘smart’ drug release in response to the severity of pathology-induced tissue acidosis. This novel metal ion binding-mediated drug delivery mechanism can potentially be applied to other drugs that have high binding affinity for metal ions and may lead to the development of new delivery systems for a variety of drugs. (paper)

  18. The exon junction complex regulates the splicing of cell polarity gene dlg1 to control Wingless signaling in development

    Science.gov (United States)

    Liu, Min; Li, Yajuan; Liu, Aiguo; Li, Ruifeng; Su, Ying; Du, Juan; Li, Cheng; Zhu, Alan Jian

    2016-01-01

    Wingless (Wg)/Wnt signaling is conserved in all metazoan animals and plays critical roles in development. The Wg/Wnt morphogen reception is essential for signal activation, whose activity is mediated through the receptor complex and a scaffold protein Dishevelled (Dsh). We report here that the exon junction complex (EJC) activity is indispensable for Wg signaling by maintaining an appropriate level of Dsh protein for Wg ligand reception in Drosophila. Transcriptome analyses in Drosophila wing imaginal discs indicate that the EJC controls the splicing of the cell polarity gene discs large 1 (dlg1), whose coding protein directly interacts with Dsh. Genetic and biochemical experiments demonstrate that Dlg1 protein acts independently from its role in cell polarity to protect Dsh protein from lysosomal degradation. More importantly, human orthologous Dlg protein is sufficient to promote Dvl protein stabilization and Wnt signaling activity, thus revealing a conserved regulatory mechanism of Wg/Wnt signaling by Dlg and EJC. DOI: http://dx.doi.org/10.7554/eLife.17200.001 PMID:27536874

  19. Multidimensional complexities of filariasis control in an era of large-scale mass drug administration programmes: a can of worms.

    Science.gov (United States)

    Molyneux, David H; Hopkins, Adrian; Bradley, Mark H; Kelly-Hope, Louise A

    2014-01-01

    The impact of control and elimination programmes by mass drug administration (MDA) targeting onchocerciasis and lymphatic filariasis (LF) in sub-Saharan Africa over the last two decades has resulted in significantly reduced prevalence and intensity of infection, with some areas interrupting transmission. However, given that these infections are often co-endemic and the drugs (either ivermectin alone or combined with albendazole) also impact on soil transmitted helminths (STH), the importance of this, in terms of reaching the global goals has not been assessed. The additional problem posed by Loa loa, where ivermectin cannot be safely administered due to the risk of serious adverse events compounds this situation and has left populations drug naïve and an alternative strategy to eliminate LF is yet to be initiated at scale. Here, we present a series of operational research questions, which must be addressed if the effectiveness of integrated control of filarial and helminth infections is to be understood for the endgame. This is particularly important in the diverse and dynamic epidemiological landscape, which has emerged as a result of the long-term large-scale mass drug administration (or not). There is a need for a more holistic approach to address these questions. Different programmes should examine this increased complexity, given that MDA has multiple impacts, drugs are given over different periods, and programmes have different individual targets. PMID:25128408

  20. The Effects of Controlled Release Fertilizer and Conventional Complex Fertilizer on the Photosynthetic Characteristics in Winter Wheat

    Directory of Open Access Journals (Sweden)

    Guoqing Li

    2014-11-01

    Full Text Available The quantity and quality of the fertilizers affected the photosynthetic characteristic of the winter wheat. So, the rationality applied, reduced fertilizers not only can decline pollution for soil and ground water, but also save the cost. The quantity and quality of the fertilizers determine the relationship between the photosynthetic characteristics. Therefore, the different effects about the using of the Controlled Release Fertilizer (CRF and the Conventional Complex Fertilizer (CCF on photosynthetic characteristics in winter wheat were studied in the open field by pots experiment. The results showed that the SPAD value, photosynthetic rate and stomatal conductance of the treatments of the mixture of the CRF and equivalent CCF applied were higher than that of the treatments of CRF used alone and the control treatment, but the intercellular carbon dioxide concentration of both latter was higher than that of the former. So it can conclude that it was the best way to maintain higher photosynthetic rate in winter wheat by using the amount application and the way of application of fertilizer of T6.

  1. The complex STATes of astrocyte reactivity: How are they controlled by the JAK-STAT3 pathway?

    Science.gov (United States)

    Ceyzériat, Kelly; Abjean, Laurene; Carrillo-de Sauvage, María-Angeles; Ben Haim, Lucile; Escartin, Carole

    2016-08-25

    Astrocytes play multiple important roles in brain physiology. In pathological conditions, they become reactive, which is characterized by morphological changes and upregulation of intermediate filament proteins. Besides these descriptive hallmarks, astrocyte reactivity involves significant transcriptional and functional changes that are far from being fully understood. Most importantly, astrocyte reactivity seems to encompass multiple states, each having a specific influence on surrounding cells and disease progression. These diverse functional states of reactivity must be regulated by subtle signaling networks. Many signaling cascades have been associated with astrocyte reactivity, but among them, the JAK-STAT3 pathway is emerging as a central regulator. In this review, we aim (i) to show that the JAK-STAT3 pathway plays a key role in the control of astrocyte reactivity, (ii) to illustrate that STAT3 is a pleiotropic molecule operating multiple functions in reactive astrocytes, and (iii) to suggest that each specific functional state of reactivity is governed by complex molecular interactions within astrocytes, which converge on STAT3. More research is needed to precisely identify the signaling networks controlling the diverse states of astrocyte reactivity. Only then, we will be able to precisely delineate the therapeutic potential of reactive astrocytes in each neurological disease context. PMID:27241943

  2. Complex Control Chart Interpretation

    Directory of Open Access Journals (Sweden)

    Darja Noskievičová

    2013-05-01

    Electric rules several different sets have been created (Nelson rules, Boeing AQS rules, Trietsch rules. This paper deals with the comparison analysis of these sets of rules, their basic statistical properties and the mistakes accompanying their application using SW support. At the end of this paper some recommendations for the correct application of the runs tests are formulated.

  3. Complex Controls on Groundwater Quality in Growing Mid-sized Cities: A Case Study Focused on Nitrate and Emerging Contaminants

    Science.gov (United States)

    Ohr, C. A.; Godsey, S.; Welhan, J. A.; Larson, D. M.; Lohse, K. A.; Finney, B.; Derryberry, D.

    2015-12-01

    Many regions rely on quality groundwater to support urban growth. Groundwater quality often responds in a complex manner to stressors such as land use change, climate change, or policy decisions. Urban growth patterns in mid-sized cities, especially ones that are growing urban centers in water-limited regions in the western US, control and are controlled by water availability and its quality. We present a case study from southeastern Idaho where urban growth over the past 20 years has included significant ex-urban expansion of houses that rely on septic systems rather than city sewer lines for their wastewater treatment. Septic systems are designed to mitigate some contaminants, but not others. In particular, nitrates and emerging contaminants, such as pharmaceuticals, are not removed by most septic systems. Thus, even well-maintained septic systems at sufficiently high densities can impact down gradient water quality. Here we present patterns of nitrate concentrations over the period from 1985-2015 from the Lower Portneuf River Valley in southeastern Idaho. Concentrations vary from 0.03 to 27.09 nitrate-nitrogen mg/L, with average values increasing significantly over the 30 year time period from 3.15 +/- 0.065 to 3.57 +/- 0.43 mg/L. We examine temporal changes in locations of nitrate hotspots, and present pilot data on emerging contaminants of concern. Initial results suggest that high nitrate levels are generally associated with higher septic densities, but that this pattern is influenced by legacy agricultural uses and strongly controlled by underlying aquifer properties. Future work will include more detailed hydrological modeling to predict changes in hotspot locations under potential climate change scenarios.

  4. Polyelectrolyte Complex Based Interfacial Drug Delivery System with Controlled Loading and Improved Release Performance for Bone Therapeutics

    Directory of Open Access Journals (Sweden)

    David Vehlow

    2016-03-01

    Full Text Available An improved interfacial drug delivery system (DDS based on polyelectrolyte complex (PEC coatings with controlled drug loading and improved release performance was elaborated. The cationic homopolypeptide poly(l-lysine (PLL was complexed with a mixture of two cellulose sulfates (CS of low and high degree of substitution, so that the CS and PLL solution have around equal molar charged units. As drugs the antibiotic rifampicin (RIF and the bisphosphonate risedronate (RIS were integrated. As an important advantage over previous PEC systems this one can be centrifuged, the supernatant discarded, the dense pellet phase (coacervate separated, and again redispersed in fresh water phase. This behavior has three benefits: (i Access to the loading capacity of the drug, since the concentration of the free drug can be measured by spectroscopy; (ii lower initial burst and higher residual amount of drug due to removal of unbound drug and (iii complete adhesive stability due to the removal of polyelectrolytes (PEL excess component. It was found that the pH value and ionic strength strongly affected drug content and release of RIS and RIF. At the clinically relevant implant material (Ti40Nb similar PEC adhesive and drug release properties compared to the model substrate were found. Unloaded PEC coatings at Ti40Nb showed a similar number and morphology of above cultivated human mesenchymal stem cells (hMSC compared to uncoated Ti40Nb and resulted in considerable production of bone mineral. RIS loaded PEC coatings showed similar effects after 24 h but resulted in reduced number and unhealthy appearance of hMSC after 48 h due to cell toxicity of RIS.

  5. Control of linear modes in cylindrical resistive magnetohydrodynamics with a resistive wall, plasma rotation, and complex gain

    International Nuclear Information System (INIS)

    Feedback stabilization of magnetohydrodynamic (MHD) modes in a tokamak is studied in a cylindrical model with a resistive wall, plasma resistivity, viscosity, and toroidal rotation. The control is based on a linear combination of the normal and tangential components of the magnetic field just inside the resistive wall. The feedback includes complex gain, for both the normal and for the tangential components, and it is known that the imaginary part of the feedback for the former is equivalent to plasma rotation [J. M. Finn and L. Chacon, Phys. Plasmas 11, 1866 (2004)]. The work includes (1) analysis with a reduced resistive MHD model for a tokamak with finite β and with stepfunction current density and pressure profiles, and (2) computations with a full compressible visco-resistive MHD model with smooth decreasing profiles of current density and pressure. The equilibria are stable for β = 0 and the marginal stability values βrp,rw rp,iw ip,rw ip,iw (resistive plasma, resistive wall; resistive plasma, ideal wall; ideal plasma, resistive wall; and ideal plasma, ideal wall) are computed for both models. The main results are: (a) imaginary gain with normal sensors or plasma rotation stabilizes below βrp,iw because rotation suppresses the diffusion of flux from the plasma out through the wall and, more surprisingly, (b) rotation or imaginary gain with normal sensors destabilizes above βrp,iw because it prevents the feedback flux from entering the plasma through the resistive wall to form a virtual wall. A method of using complex gain Gi to optimize in the presence of rotation in this regime with β > βrp,iw is presented. The effect of imaginary gain with tangential sensors is more complicated but essentially destabilizes above and below βrp,iw

  6. Control of flowering and cell fate by LIF2, an RNA binding partner of the polycomb complex component LHP1.

    Directory of Open Access Journals (Sweden)

    David Latrasse

    Full Text Available Polycomb Repressive Complexes (PRC modulate the epigenetic status of key cell fate and developmental regulators in eukaryotes. The chromo domain protein like heterochromatin protein1 (LHP1 is a subunit of a plant PRC1-like complex in Arabidopsis thaliana and recognizes histone H3 lysine 27 trimethylation, a silencing epigenetic mark deposited by the PRC2 complex. We have identified and studied an LHP1-Interacting Factor2 (LIF2. LIF2 protein has RNA recognition motifs and belongs to the large hnRNP protein family, which is involved in RNA processing. LIF2 interacts in vivo, in the cell nucleus, with the LHP1 chromo shadow domain. Expression of LIF2 was detected predominantly in vascular and meristematic tissues. Loss-of-function of LIF2 modifies flowering time, floral developmental homeostasis and gynoecium growth determination. lif2 ovaries have indeterminate growth and produce ectopic inflorescences with severely affected flowers showing proliferation of ectopic stigmatic papillae and ovules in short-day conditions. To look at how LIF2 acts relative to LHP1, we conducted transcriptome analyses in lif2 and lhp1 and identified a common set of deregulated genes, which showed significant enrichment in stress-response genes. By comparing expression of LHP1 targets in lif2, lhp1 and lif2 lhp1 mutants we showed that LIF2 can either antagonize or act with LHP1. Interestingly, repression of the FLC floral transcriptional regulator in lif2 mutant is accompanied by an increase in H3K27 trimethylation at the locus, without any change in LHP1 binding, suggesting that LHP1 is targeted independently from LIF2 and that LHP1 binding does not strictly correlate with gene expression. LIF2, involved in cell identity and cell fate decision, may modulate the activity of LHP1 at specific loci, during specific developmental windows or in response to environmental cues that control cell fate determination. These results highlight a novel link between plant RNA

  7. Systemic inflammatory mediators in post-traumatic Complex Regional Pain Syndrome (CRPS I - longitudinal investigations and differences to control groups

    Directory of Open Access Journals (Sweden)

    Schinkel Ch

    2009-03-01

    Full Text Available Abstract Objectives The Complex Regional Pain Syndrome I (CRPS I is a disease that might affect an extremity after trauma or operation. The pathogenesis remains yet unclear. It has clinical signs of severe local inflammation as a result of an exaggerated inflammatory response but neurogenic dysregulation also contributes to it. Some studies investigated the role inflammatory mediators and cytokines; however, few longitudinal studies exist and control groups except healthy controls were not investigated yet. Methods To get further insights into the role of systemic inflammatory mediators in CRPS I, we investigated a variety of pro-, anti-, or neuro-inflammatory mediators such as C-Reactive Protein (CRP, White Blood Cell Count (WBC, Interleukins 4, 6, 8, 10, 11, 12 (p70, Interferon gamma, Tumor-Necrosis-Factor alpha (TNF-α and its soluble Receptors I/II, soluble Selectins (E, L, P, Substance-P (SP, and Calcitonin Gene-Related Peptide (CGRP at different time points in venous blood from patients with acute (AC and chronic (CC CRPS I, patients with forearm fractures (FR, with neuralgia (NE, and from healthy volunteers (C. Results No significant changes for serum parameters investigated in CRPS compared to control groups were found except for CC/C (CGRP p = 0.007, FR/C (CGRP p = 0.048 and AC/CC (IL-12 p = 0.02; TNFRI/II p = 0.01; SP p = 0.049. High interindividual variations were observed. No intra-or interindividual correlation of parameters with clinical course (e.g. chronification or outcome was detectable. Conclusion Although clinically appearing as inflammation in acute stages, local rather than systemic inflammatory responses seem to be relevant in CRPS. Variable results from different studies might be explained by unpredictable intermittent release of mediators from local inflammatory processes into the blood combined with high interindividual variabilities. A clinically relevant difference to various control groups was not notable in this

  8. Biological Control of Pathogens Causing Root Rot Complex in Field Pea Using Clonostachys rosea Strain ACM941.

    Science.gov (United States)

    Xue, Allen G

    2003-03-01

    ABSTRACT Pea root rot complex (PRRC), caused by Alternaria alternata, Aphanomyces euteiches, Fusarium oxysporum f. sp. pisi, F. solani f. sp. pisi, Mycosphaerella pinodes, Pythium spp., Rhizoctonia solani, and Sclerotinia sclerotiorum, is a major yield-limiting factor for field pea production in Canada. A strain of Clonostachys rosea (syn. Gliocladium roseum), ACM941 (ATCC 74447), was identified as a mycoparasite against these pathogens. When grown near the pathogen, ACM941 often was stimulated to produce lateral branches that grew directly toward the pathogen mycelium, typically entwining around the pathogen mycelium. When applied to the seed, ACM941 propagated in the rhizosphere and colonized the seed coat, hypocotyl, and roots as the plant developed and grew. ACM941 significantly reduced the recovery of all fungal pathogens from infected seed, increased in vitro seed germination by 44% and seedling emergence by 22%, and reduced root rot severity by 76%. The effects were similar to those of thiram fungicide, which increased germination and emergence by 33 and 29%, respectively, and reduced root rot severity by 65%. When soil was inoculated with selected PRRC pathogens in a controlled environment, seed treatment with ACM941 significantly increased emergence by 26, 38, 28, 13, and 21% for F. oxysporum f. sp. pisi, F. solani f. sp. pisi, M. pinodes, R. solani, and S. sclerotiorum, respectively. Under field conditions from 1995 to 1997, ACM941 increased emergence by 17, 23, 22, 13, and 18% and yield by 15, 6, 28, 6, and 19% for the five respective pathogens. The seed treatment effects of ACM941 on these PRRC pathogens were greater or statistically equivalent to those achieved with thiram. Results of this study suggest that ACM941 is an effective bioagent in controlling PRRC and is an alternative to existing chemical products. PMID:18944343

  9. Controlling the burst release of amorphous drug-polysaccharide nanoparticle complex via crosslinking of the polysaccharide chains.

    Science.gov (United States)

    Nguyen, Minh-Hiep; Tran, The-Thien; Hadinoto, Kunn

    2016-07-01

    High-payload amorphous drug-polysaccharide nanoparticle complex (or nanoplex in short) represents a new class of supersaturating drug delivery systems intended for bioavailability enhancement of poorly-soluble drugs. Not unlike other nanoscale amorphous formulations, the nanoplex exhibits fast dissolution characterized by a burst drug release pattern. While the burst release is ideal for supersaturation generation in the presence of crystallization inhibitor, it is not as ideal for passive targeting drug delivery applications in which the nanoplex must be delivered by itself. Herein we developed nanoplex exhibiting controlled release via crosslinking of the polysaccharide chains onto which the drug molecules were electrostatically bound to. Curcumin and chitosan were used, respectively, as the drug and polysaccharide models with amine-reactive disuccinimidyl tartrate as the crosslinking agent. The crosslinked nanoplex exhibited improved morphology (i.e. smaller size, more spherical, and higher uniformity) that signified its more condensed structure. A twenty-fold reduction in the initial burst release rate with a threefold reduction in the overall dissolution rate was obtained after crosslinking. The slower dissolution was attributed to the more condensed structure of the crosslinked nanoplex that enhanced its dissociation stability in phosphate buffered saline. The reduction in the dissolution rate was proportional to the degree of crosslinking that was governed by the crosslinker to amine ratio. The crosslinking caused slight reductions in the payload and zeta potential of the nanoplex, but with no adverse effect on the cytotoxicity. This proof-of-concept study successfully demonstrated the use of polysaccharide crosslinking to control the drug release from high-payload amorphous drug nanoplex. PMID:27179586

  10. Complex control of GABA(A) receptor subunit mRNA expression: variation, covariation, and genetic regulation.

    Science.gov (United States)

    Mulligan, Megan K; Wang, Xusheng; Adler, Adrienne L; Mozhui, Khyobeni; Lu, Lu; Williams, Robert W

    2012-01-01

    GABA type-A receptors are essential for fast inhibitory neurotransmission and are critical in brain function. Surprisingly, expression of receptor subunits is highly variable among individuals, but the cause and impact of this fluctuation remains unknown. We have studied sources of variation for all 19 receptor subunits using massive expression data sets collected across multiple brain regions and platforms in mice and humans. Expression of Gabra1, Gabra2, Gabrb2, Gabrb3, and Gabrg2 is highly variable and heritable among the large cohort of BXD strains derived from crosses of fully sequenced parents--C57BL/6J and DBA/2J. Genetic control of these subunits is complex and highly dependent on tissue and mRNA region. Remarkably, this high variation is generally not linked to phenotypic differences. The single exception is Gabrb3, a locus that is linked to anxiety. We identified upstream genetic loci that influence subunit expression, including three unlinked regions of chromosome 5 that modulate the expression of nine subunits in hippocampus, and that are also associated with multiple phenotypes. Candidate genes within these loci include, Naaa, Nos1, and Zkscan1. We confirmed a high level of coexpression for subunits comprising the major channel--Gabra1, Gabrb2, and Gabrg2--and identified conserved members of this expression network in mice and humans. Gucy1a3, Gucy1b3, and Lis1 are novel and conserved associates of multiple subunits that are involved in inhibitory signaling. Finally, proximal and distal regions of the 3' UTRs of single subunits have remarkably independent expression patterns in both species. However, corresponding regions of different subunits often show congruent genetic control and coexpression (proximal-to-proximal or distal-to-distal), even in the absence of sequence homology. Our findings identify novel sources of variation that modulate subunit expression and highlight the extraordinary capacity of biological networks to buffer 4-100 fold

  11. Complex control of GABA(A receptor subunit mRNA expression: variation, covariation, and genetic regulation.

    Directory of Open Access Journals (Sweden)

    Megan K Mulligan

    Full Text Available GABA type-A receptors are essential for fast inhibitory neurotransmission and are critical in brain function. Surprisingly, expression of receptor subunits is highly variable among individuals, but the cause and impact of this fluctuation remains unknown. We have studied sources of variation for all 19 receptor subunits using massive expression data sets collected across multiple brain regions and platforms in mice and humans. Expression of Gabra1, Gabra2, Gabrb2, Gabrb3, and Gabrg2 is highly variable and heritable among the large cohort of BXD strains derived from crosses of fully sequenced parents--C57BL/6J and DBA/2J. Genetic control of these subunits is complex and highly dependent on tissue and mRNA region. Remarkably, this high variation is generally not linked to phenotypic differences. The single exception is Gabrb3, a locus that is linked to anxiety. We identified upstream genetic loci that influence subunit expression, including three unlinked regions of chromosome 5 that modulate the expression of nine subunits in hippocampus, and that are also associated with multiple phenotypes. Candidate genes within these loci include, Naaa, Nos1, and Zkscan1. We confirmed a high level of coexpression for subunits comprising the major channel--Gabra1, Gabrb2, and Gabrg2--and identified conserved members of this expression network in mice and humans. Gucy1a3, Gucy1b3, and Lis1 are novel and conserved associates of multiple subunits that are involved in inhibitory signaling. Finally, proximal and distal regions of the 3' UTRs of single subunits have remarkably independent expression patterns in both species. However, corresponding regions of different subunits often show congruent genetic control and coexpression (proximal-to-proximal or distal-to-distal, even in the absence of sequence homology. Our findings identify novel sources of variation that modulate subunit expression and highlight the extraordinary capacity of biological networks to buffer

  12. Graded motor imagery is effective for long-standing complex regional pain syndrome: a randomised controlled trial.

    Science.gov (United States)

    Moseley, G L

    2004-03-01

    Complex regional pain syndrome type 1 (CRPS1) involves cortical abnormalities similar to those observed in phantom pain and after stroke. In those groups, treatment is aimed at activation of cortical networks that subserve the affected limb, for example mirror therapy. However, mirror therapy is not effective for chronic CRPS1, possibly because movement of the limb evokes intolerable pain. It was hypothesised that preceding mirror therapy with activation of cortical networks without limb movement would reduce pain and swelling in patients with chronic CRPS1. Thirteen chronic CRPS1 patients were randomly allocated to a motor imagery program (MIP) or to ongoing management. The MIP consisted of two weeks each of a hand laterality recognition task, imagined hand movements and mirror therapy. After 12 weeks, the control group was crossed-over to MIP. There was a main effect of treatment group (F(1, 11) = 57, P limb movement is effective for CRPS1 and support the involvement of cortical abnormalities in the development of this disorder. Although the mechanisms of effect of the MIP are not clear, possible explanations are sequential activation of cortical pre-motor and motor networks, or sustained and focussed attention on the affected limb, or both. PMID:15109523

  13. Defect Prediction and Control for Ultra-high-strength Steel Complex Structure in Hot Forming Based on FEM

    Science.gov (United States)

    Shang, Xin; Zhou, Jie; Zhuo, Fang; Luo, Yan; Li, Yang

    2015-06-01

    Cracking is the main defect in ultra-high-strength steel (UHSS) forming products. In order to avoid cracking, either adjusting process parameters or changing die's design is usually applied. However, under the condition of forming parts with unreasonable structure design, it makes little difference through the traditional methods of modifying process parameters. In this paper, true stress-strain curves under different strain rates and temperatures are obtained via the hot tensile tests. Then, the material constitutive model of UHSS is introduced into software CAE; this step is used to analyze and predict defects of UHSS hot forming complex structural parts based on FEM. In addition, simulation results of changed structure (open end) are compared with original structure (closed end). The results have shown that both maximum reduction ratio and stress in all directions are sharply reduced, i.e., the forming quality is improved significantly after changing the end structure. Finally, the prediction and control methods of forming defects are verified to be feasible in actual production.

  14. Iodine-benzene complex as a candidate for a real-time control of a bimolecular reaction. Spectroscopic studies of the properties of the 1:1 complex isolated in solid krypton.

    Science.gov (United States)

    Kiviniemi, Tiina; Hulkko, Eero; Kiljunen, Toni; Pettersson, Mika

    2009-06-01

    The properties of the 1:1 iodine-benzene complex isolated in a solid Kr matrix at low temperatures have been studied using UV-vis absorption, FTIR, resonance Raman, and femtosecond coherent anti-Stokes Raman spectroscopy (fs-CARS). The use of all these techniques on similar samples provides a wide view on the spectroscopic properties of the complex and allows comparison and combination of the results from different methods. The results for the complex cover its structure, the changes in the iodine molecule's vibrational frequencies and electronic absorption spectrum upon complexation, and the dynamics of the complexed I(2) molecule on both ground and excited electronic states. In addition, polarization beats between uncomplexed benzene and iodine molecules are detected in the fs-CARS spectra, showing an amplification of an electronically nonresonant CARS signal by the resonant iodine signal. The possibility of controlling the charge-transfer reaction of the I(2)-Bz complex using the excitation of a well-defined ground-state vibrational wavepacket, according to the Tannor-Rice-Kosloff scheme, is discussed on the basis of the experimental findings. PMID:19425545

  15. Advanced Fabrication Techniques for Precisely Controlled Micro and Nano Scale Environments for Complex Tissue Regeneration and Biomedical Applications

    Science.gov (United States)

    Holmes, Benjamin

    As modern medicine advances, it is still very challenging to cure joint defects due to their poor inherent regenerative capacity, complex stratified architecture, and disparate biomechanical properties. The current clinical standard for catastrophic or late stage joint degradation is a total joint implant, where the damaged joint is completely excised and replaced with a metallic or artificial joint. However, these procedures still only lasts for 10-15 years, and there are hosts of recovery complications which can occur. Thus, these studies have sought to employ advanced biomaterials and scaffold fabricated techniques to effectively regrow joint tissue, instead of merely replacing it with artificial materials. We can hypothesize here that the inclusion of biomimetic and bioactive nanomaterials with highly functional electrospun and 3D printed scaffold can improve physical characteristics (mechanical strength, surface interactions and nanotexture) enhance cellular growth and direct stem cell differentiation for bone, cartilage and vascular growth as well as cancer metastasis modeling. Nanomaterial inclusion and controlled 3D printed features effectively increased nano surface roughness, Young's Modulus and provided effective flow paths for simulated arterial blood. All of the approaches explored proved highly effective for increasing cell growth, as a result of increasing micro-complexity and nanomaterial incorporation. Additionally, chondrogenic and osteogenic differentiation, cell migration, cell to cell interaction and vascular formation were enhanced. Finally, growth-factor(gf)-loaded polymer nanospheres greatly improved vascular cell behavior, and provided a highly bioactive scaffold for mesenchymal stem cell (MSC) and human umbilical vein endothelial cell (HUVEC) co-culture and bone formation. In conclusion, electrospinning and 3D printing when combined effectively with biomimetic and bioactive nanomaterials (i.e. carbon nanomaterials, collagen, nHA, polymer

  16. The Effects of Controlled Release Fertilizer and Conventional Complex Fertilizer on the Dry Matter Accumulation and the Yield in Winter Wheat

    OpenAIRE

    Guoqing Li; Jingtian Yang; Liyuan Yan; Yan Shi

    2013-01-01

    In order to research the use ratio of controlled release fertilizer in winter wheat. So, the experiment about the effects of Controlled Release Fertilizer (CRF) and Conventional Complex Fertilizer (CCF) on the dry matter accumulation and the grain yield in winter wheat has studied with pots in the open field. The results indicated that the CRF improved the proportion of the number of effective tillers to the total number of tillers. And the mixture of the CRF and equivalent CCF have more impr...

  17. Supplementary Motor Complex and Disturbed Motor Control – a Retrospective Clinical and Lesion Analysis of Patients after Anterior Cerebral Artery Stroke

    OpenAIRE

    Brugger, Florian; Galovic, Marian; Weder, Bruno J.; Kägi, Georg

    2015-01-01

    Background Both the supplementary motor complex (SMC), consisting of the supplementary motor area (SMA) proper, the pre-SMA, and the supplementary eye field, and the rostral cingulate cortex are supplied by the anterior cerebral artery (ACA) and are involved in higher motor control. The Bereitschaftspotential (BP) originates from the SMC and reflects cognitive preparation processes before volitional movements. ACA strokes may lead to impaired motor control in the absence of limb weakness a...

  18. Interpolyelectrolyte Complexes of Eudragit® EPO with Hypromellose Acetate Succinate and Eudragit® EPO with Hypromellose Phthalate as Potential Carriers for Oral Controlled Drug Delivery

    OpenAIRE

    Jeganathan, Balamurugan; Prakya, Vijayalakshmi

    2015-01-01

    The objective of this study was to compare a novel controlled release tablet formulation based on interpolyelectrolyte complex (PEC). Interpolymer interactions between the countercharged polymers like Eudragit® EPO (polycation) and hypromellose acetate succinate (polyanion) and Eudragit® EPO and hypromellose phthalate (polyanion) were investigated with a view to their use in per oral controlled release drug delivery systems. The formation of inter-macromolecular ionic bonds between cationic p...

  19. Reservoir-based Online Adaptive Forward Models with Neural Control for Complex Locomotion in a Hexapod Robot

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Dasgupta, Sakyasingha; Goldschmidt, Dennis; Wörgötter, Florentin

    Walking animals show fascinating locomotor abilities and complex behaviors. Biological study has revealed that such complex behaviors is a result of a combination of biomechanics and neural mechanisms. While biomechanics allows for flexibility and a variety of movements, neural mechanisms generat...... environmental conditions. Simulation results show that this bio-inspired approach allows the walking robot to perform complex locomotor abilities including walking on undulated terrains, crossing a large gap, as well as climbing over a high obstacle and a fleet of stairs....

  20. β-cyclodextrin inclusion complexes containing Citrus sinensis (L.) Osbeck essential oil: An alternative to control Aedes aegypti larvae

    Energy Technology Data Exchange (ETDEWEB)

    Galvão, J.G., E-mail: julianaggalvao@gmail.com [Pharmacy Department, Federal University of Sergipe, 49100-000 São Cristóvão, SE (Brazil); Silva, V.F.; Ferreira, S.G. [Pharmacy Department, Federal University of Sergipe, 49100-000 São Cristóvão, SE (Brazil); França, F.R.M. [Chemical Engineering Department, Federal University of Sergipe, 49100-000 São Cristóvão, SE (Brazil); Santos, D.A.; Freitas, L.S.; Alves, P.B. [Chemistry Department, Federal University of Sergipe, 49100-000 São Cristóvão, SE (Brazil); Araújo, A.A.S.; Cavalcanti, S.C.H.; Nunes, R.S. [Pharmacy Department, Federal University of Sergipe, 49100-000 São Cristóvão, SE (Brazil)

    2015-05-20

    Highlights: • Thermal analysis was useful to determine the formation of inclusion complexes by paste and co-precipitation methods. • HS/GC-FID quantitative analysis revealed that the best method of obtaining a CSEO/β-CD complex was the PWE, with the largest inclusion content [78.5%]. • The inclusion complex revealed LC{sub 50} of 23.01 ppm, close to CSEO LC{sub 50} 21.5 ppm. - Abstract: The development of β-cyclodextrin (β-CD) complexes is an interesting way for increasing the aqueous solubility of essential oils. The aim of this study was to prepare inclusion complexes of Citrus sinensis essential oil (CSEO) with β-CD using paste complexation (with and without co-solvent) and co-precipitation methods. Additionally, the physicochemical properties of the inclusion complexes using thermal analysis, X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy were evaluated. Furthermore, CSEO content (%) and solubility of complexes were measured. The biological activity against the Aedes aegypti Linn. larvae was further evaluated. For comparison purposes, a physical mixture between β-CD and CSEO was prepared and evaluated. Thermal analysis clearly indicated the formation of complexes by paste and co-precipitation methods. The headspace/gas chromatography quantitative analysis showed inclusions contents higher than 50%. On the other hand, the product revealed LC{sub 50} of 23.01 ppm, close to CSEO LC{sub 50} 21.5 ppm.

  1. β-cyclodextrin inclusion complexes containing Citrus sinensis (L.) Osbeck essential oil: An alternative to control Aedes aegypti larvae

    International Nuclear Information System (INIS)

    Highlights: • Thermal analysis was useful to determine the formation of inclusion complexes by paste and co-precipitation methods. • HS/GC-FID quantitative analysis revealed that the best method of obtaining a CSEO/β-CD complex was the PWE, with the largest inclusion content [78.5%]. • The inclusion complex revealed LC50 of 23.01 ppm, close to CSEO LC50 21.5 ppm. - Abstract: The development of β-cyclodextrin (β-CD) complexes is an interesting way for increasing the aqueous solubility of essential oils. The aim of this study was to prepare inclusion complexes of Citrus sinensis essential oil (CSEO) with β-CD using paste complexation (with and without co-solvent) and co-precipitation methods. Additionally, the physicochemical properties of the inclusion complexes using thermal analysis, X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy were evaluated. Furthermore, CSEO content (%) and solubility of complexes were measured. The biological activity against the Aedes aegypti Linn. larvae was further evaluated. For comparison purposes, a physical mixture between β-CD and CSEO was prepared and evaluated. Thermal analysis clearly indicated the formation of complexes by paste and co-precipitation methods. The headspace/gas chromatography quantitative analysis showed inclusions contents higher than 50%. On the other hand, the product revealed LC50 of 23.01 ppm, close to CSEO LC50 21.5 ppm

  2. Complex, dynamic combination of physical, chemical and nutritional variables controls spatio-temporal variation of sandy beach community structure.

    Directory of Open Access Journals (Sweden)

    Kelly Ortega Cisneros

    Full Text Available Sandy beach ecological theory states that physical features of the beach control macrobenthic community structure on all but the most dissipative beaches. However, few studies have simultaneously evaluated the relative importance of physical, chemical and biological factors as potential explanatory variables for meso-scale spatio-temporal patterns of intertidal community structure in these systems. Here, we investigate macroinfaunal community structure of a micro-tidal sandy beach that is located on an oligotrophic subtropical coast and is influenced by seasonal estuarine input. We repeatedly sampled biological and environmental variables at a series of beach transects arranged at increasing distances from the estuary mouth. Sampling took place over a period of five months, corresponding with the transition between the dry and wet season. This allowed assessment of biological-physical relationships across chemical and nutritional gradients associated with a range of estuarine inputs. Physical, chemical, and biological response variables, as well as measures of community structure, showed significant spatio-temporal patterns. In general, bivariate relationships between biological and environmental variables were rare and weak. However, multivariate correlation approaches identified a variety of environmental variables (i.e., sampling session, the C∶N ratio of particulate organic matter, dissolved inorganic nutrient concentrations, various size fractions of photopigment concentrations, salinity and, to a lesser extent, beach width and sediment kurtosis that either alone or combined provided significant explanatory power for spatio-temporal patterns of macroinfaunal community structure. Overall, these results showed that the macrobenthic community on Mtunzini Beach was not structured primarily by physical factors, but instead by a complex and dynamic blend of nutritional, chemical and physical drivers. This emphasises the need to recognise ocean

  3. Submarine creeping landslide deformation controlled by the presence of gas hydrates: The Tuaheni Landslide Complex, New Zealand

    Science.gov (United States)

    Gross, Felix; Mountjoy, Joshu; Crutchle, Garethy; Koch, Stephanie; Bialas, Jörg; Pecher, Ingo; Woelz, Susi; Dannowski, Anke; Carey, Jon; Micallef, Aaron; Böttner, Christoph; Huhn, Katrin; Krastel, Sebastian

    2016-04-01

    Methane hydrate occurrence is bound to a finite pressure/temperature window on continental slopes, known as the gas hydrate stability zone (GHSZ). Hydrates within sediment pore spaces and fractures are recognized to act like a cement, increasing shear strength and stabilizing slopes. However, recent studies show that over longer strain periods methane hydrates can undergo ductile deformation. This combination of short term strengthening and longer term ductile behavior is implicated in the development of slow creeping submarine landforms within the GHSZ. In order to study this phenomenon, a new high-resolution seismic 3D volume was acquired at the Tuaheni Landslide Complex (TLC) at the Hikurangi margin offshore the North Island of New Zealand. Parts of TLC have been interpreted as a slow moving landslide controlled by the gas hydrate system. Two hypotheses for its slow deformation related to the presence of methane hydrates have been proposed: i) Hydrofracturing, driven by gas pressure at the base of the GHSZ, allows pressurized fluids to ascend toward the seafloor, thereby weakening the shallow debris and promoting failure. ii) The mixture of methane hydrates and sediment results in a rheology that behaves in a ductile way under sustained loading, resulting in slow deformation comparable to that of terrestrial and extra-terrestrial rock glaciers. The 3D dataset reveals the distribution of gas and the extend of gas hydrate stability within the deformed debris, as well as deformation fabrics like tectonic-style faulting and a prominent basal décollement, known to be a critical element of terrestrial earth-flows and rock glaciers. Observations from 3D data indicate that the TLC represents the type example of a new submarine landform - an active creeping submarine landslide - which is influenced by the presence of gas hydrates. The morphology, internal structure and deformation of the landslide are comparable with terrestrial- and extra-terrestrial earth flows and

  4. Controlling the Direction of the Molecular Axis of Rod-Shaped Binuclear Ruthenium Complexes on Single-Walled Carbon Nanotubes.

    Science.gov (United States)

    Ozawa, Hiroaki; Kosaka, Kazuma; Kita, Tomomi; Yoshikawa, Kai; Haga, Masa-aki

    2016-05-01

    We report the synthesis of a mixed-valence ruthenium complex, bearing pyrene moieties on one side of the ligands as anchor groups. Composites consisting of mixed-valence ruthenium complexes and SWNTs were prepared by noncovalent π-π interactions between the SWNT surface and the pyrene anchors of the Ru complex. In these composites, the long axis of the Ru complexes was aligned in parallel to the principal direction of the SWNT. The optimized conformation of these complexes on the SWNT surface was calculated by molecular mechanics. The composites were examined by UV/Vis absorption and FT-IR spectroscopy, XPS, and SEM analysis. Furthermore, their electrochemical properties were evaluated. Cyclic voltammograms of the composites showed reversible oxidation waves at peak oxidation potentials (Epox ) = 0.86 and 1.08 V versus Fc(+) /Fc, which were assigned to the Ru(II) -Ru(II) /Ru(II) -Ru(III) and the Ru(II) -Ru(III) /Ru(III) -Ru(III) oxidation events of the dinuclear ruthenium complex, respectively. Based on these observations, we concluded that the electrochemical properties and mixed-valence state of the dinuclear ruthenium complexes were preserved upon attachment to the SWNT surface. PMID:27010865

  5. Modeling of Flow, Transport and Controlled Sedimentation Phenomena during Mixing of Salt Solutions in Complex Porous Formations

    Science.gov (United States)

    Skouras, Eugene D.; Jaho, Sofia; Pavlakou, Efstathia I.; Sygouni, Varvara; Petsi, Anastasia; Paraskeva, Christakis A.

    2015-04-01

    The deposition of salts in porous media is a major engineering phenomenon encountered in a plethora of industrial and environmental applications where in some cases is desirable and in other not (oil production, geothermal systems, soil stabilization etc). Systematic approach of these problems requires knowledge of the key mechanisms of precipitating salts within the porous structures, in order to develop new methods to control the process. In this work, the development and the solution of spatiotemporally variable mass balances during salt solution mixing along specific pores were performed. Both analytical models and finite differences CFD models were applied for the study of flow and transport with simultaneous homogeneous and heterogeneous nucleation (by crystal growth on the surface of the pores) in simple geometries, while unstructured finite elements and meshless methods were developed and implemented for spatial discretization, reconstruction, and solution of transport equations and homogeneous / heterogeneous reactions in more complex geometries. At initial stages of this work, critical problem parameters were identified, such as the characteristics of the porosity, the number of dissolved components, etc. The parameters were then used for solving problems which correspond to available experimental data. For each combination of ions and materials, specific data and process characteristics were included: (a) crystal kinetics (nucleation, growth rates or reaction surface rates of crystals, critical suspension concentrations), (b) physico-chemical properties (bulk density, dimensions of generated crystals, ion diffusion coefficients in the solution), (c) operating parameters (macroscopic velocity, flow, or pressure gradient of the solution, ion concentration) (d) microfluidic data (geometry, flow area), (e) porosity data in Darcy description (initial porosity, specific surface area, tortuosity). During the modeling of flow and transport in three

  6. Managing Complexity

    Energy Technology Data Exchange (ETDEWEB)

    Chassin, David P.; Posse, Christian; Malard, Joel M.

    2004-08-01

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today’s most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically-based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This paper explores the state of the art in the use physical analogs for understanding the behavior of some econophysical systems and to deriving stable and robust control strategies for them. In particular we review and discussion applications of some analytic methods based on the thermodynamic metaphor according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood.

  7. Composition of the SAGA complex in plants and its role in controlling gene expression in response to abiotic stresses.

    Directory of Open Access Journals (Sweden)

    Felipe eMoraga

    2015-10-01

    Full Text Available Protein complexes involved in epigenetic regulation of transcription have evolved as molecular strategies to face environmental stress in plants. SAGA (Spt–Ada–Gcn5 Acetyltransferase is a transcriptional co-activator complex that regulates numerous cellular processes through the coordination of multiple post-translational histone modifications, including acetylation, deubiquitination, and chromatin recognition. The diverse functions of the SAGA complex involve distinct modules that are highly conserved between yeast, flies, and mammals. In this review, the composition of the SAGA complex in plants is described and its role in gene expression regulation under stress conditions summarized. Some of these proteins are likely involved in the regulation of the inducible expression of genes under light, cold, drought, salt, and iron stress, although the functions of several of its components remain unknown.

  8. A Hybrid Methacrylate-Sodium Carboxymethylcellulose Interpolyelectrolyte Complex: Rheometry and in Silico Disposition for Controlled Drug Release

    OpenAIRE

    Viness Pillay; Lisa Claire du Toit; Girish Modi; Pradeep Kumar; Ndidi Chinyelu Ngwuluka; Yahya Essop Choonara

    2013-01-01

    The rheological behavioral changes that occurred during the synthesis of an interpolyelectrolyte complex (IPEC) of methacrylate copolymer and sodium carboxymethylcellulose were assessed. These changes were compared with the rheological behavior of the individual polymers employing basic viscosity, yield stress, stress sweep, frequency sweep, temperature ramp as well as creep and recovery testing. The rheological studies demonstrated that the end-product of the complexation of low viscous meth...

  9. Complexation with dissolved organic matter and mobility control of heavy metals in the rhizosphere of hyperaccumulator Sedum alfredii

    International Nuclear Information System (INIS)

    The complexation of Zn, Cd and Pb with dissolved organic matter (DOM) in the rhizosphere of hyperaccumulating ecotype (HE) and a non-hyperaccumulating ecotype (NHE) of Sedum alfredii was measured using resin equilibration method. After the growth of HE S. alfredii, the rhizosphere soil pH was reduced by 0.27–0.33 units, due to enhanced DOM derived from root exudation. For both ecotypes of S. alfredii, the fraction of free metal as a percentage of soluble metal varied from 22.1 to 42.5% for Zn2+, from 8.1 to 15.5% for Cd2+, and from 4.5 to 10.4% for Pb2+. Resin equilibration experiment results indicated that HE–DOM had greater ability to form complexes with Zn, Cd and Pb than NHE–DOM, Visual MINTEQ model gave excellent predictions of the complexation of Zn and Cd by DOM (R2 > 0.97). DOM in the rhizosphere of HE S. alfredii could significantly increase metal mobility through the formation of soluble DOM-metal complexes. -- Highlights: •DOM in the rhizosphere of hyperaccumulator S. alfredii increased significantly. •DOM-complexed species is generally more significant for Pb than for Zn and Cd. •HE–DOM had greater ability to form complexes with Zn, Cd and Pb than NHE–DOM. •Visual MINTEQ model gave excellent predictions of the complexation of Zn and Cd by DOM. •HE–DOM showed greater ability to extract Zn, Cd, and Pb from soils than NHE–DOM. -- DOM in the rhizosphere of hyperaccumulator S. alfredii could significantly increase metal mobility through the formation of soluble DOM–metal complexes

  10. Controlling the size and distribution of copper nanoparticles in double and triple polymer metal complexes by X-ray irradiation

    International Nuclear Information System (INIS)

    Copper nanoparticles were synthesized in double and triple polymer/metal ion complexes of poly(allylamine) (PAlAm)-copper(II), poly(allylamine)-poly(acrylic acid) (PAA)-copper(II) in aqueous solution in the presence of alcohol by irradiation with X-rays. Structural characterization of synthesized PAlAm-Cu, and PAlAm-PAA-Cu nanocomposites was carried out by transmission electron microscopy (TEM) and the radiation-induced reduction was monitored by UV–vis spectroscopy. The electron microscopy studies have demonstrated that the size of Cu nanoclusters is 2–4 nm in triple polymer metal complexes, whereas the double system yields copper nanoparticles with a very wide size distribution. The metal nature of nanoparticles was confirmed by microdiffraction measurements. - Highlights: • Cu nanoparticles were synthesized by radiation-induced reduction of Cu(II) complexed with charged polymers. • Double complexes of Cu(II) and poly(allylamine) yielded particles with wide size distribution. • Irradiation of triple complexes of Cu(II), PAlAm and poly(acrylic acid) resulted with very small and narrow size distribution. • Complexation of Cu(II) with polyelectrolytes has a strong effect on the size and size distribution of Cu nanoparticles

  11. A novel multi-agent decentralized win or learn fast policy hill-climbing with eligibility trace algorithm for smart generation control of interconnected complex power grids

    International Nuclear Information System (INIS)

    Highlights: • Proposing a decentralized smart generation control scheme for the automatic generation control coordination. • A novel multi-agent learning algorithm is developed to resolve stochastic control problems in power systems. • A variable learning rate are introduced base on the framework of stochastic games. • A simulation platform is developed to test the performance of different algorithms. - Abstract: This paper proposes a multi-agent smart generation control scheme for the automatic generation control coordination in interconnected complex power systems. A novel multi-agent decentralized win or learn fast policy hill-climbing with eligibility trace algorithm is developed, which can effectively identify the optimal average policies via a variable learning rate under various operation conditions. Based on control performance standards, the proposed approach is implemented in a flexible multi-agent stochastic dynamic game-based smart generation control simulation platform. Based on the mixed strategy and average policy, it is highly adaptive in stochastic non-Markov environments and large time-delay systems, which can fulfill automatic generation control coordination in interconnected complex power systems in the presence of increasing penetration of decentralized renewable energy. Two case studies on both a two-area load–frequency control power system and the China Southern Power Grid model have been done. Simulation results verify that multi-agent smart generation control scheme based on the proposed approach can obtain optimal average policies thus improve the closed-loop system performances, and can achieve a fast convergence rate with significant robustness compared with other methods

  12. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation

    Science.gov (United States)

    Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon

    2016-04-01

    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors’ knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability.

  13. Controlled ligand distortion and its consequences for structure, symmetry, conformation and spin-state preferences of iron(II) complexes.

    Science.gov (United States)

    Kroll, Nicole; Theilacker, Kolja; Schoknecht, Marc; Baabe, Dirk; Wiedemann, Dennis; Kaupp, Martin; Grohmann, Andreas; Hörner, Gerald

    2015-11-28

    The ligand-field strength in metal complexes of polydentate ligands depends critically on how the ligand backbone places the donor atoms in three-dimensional space. Distortions from regular coordination geometries are often observed. In this work, we study the isolated effect of ligand-sphere distortion by means of two structurally related pentadentate ligands of identical donor set, in the solid state (X-ray diffraction, (57)Fe-Mössbauer spectroscopy), in solution (NMR spectroscopy, UV/Vis spectroscopy, conductometry), and with quantum-chemical methods. Crystal structures of hexacoordinate iron(II) and nickel(II) complexes derived from the cyclic ligand L(1) (6-methyl-6-(pyridin-2-yl)-1,4-bis(pyridin-2-ylmethyl)-1,4-diazepane) and its open-chain congener L(2) (N(1),N(3),2-trimethyl-2-(pyridine-2-yl)-N(1),N(3)-bis(pyridine-2-ylmethyl) propane-1,3-diamine) reveal distinctly different donor set distortions reflecting the differences in ligand topology. Distortion from regular octahedral geometry is minor for complexes of ligand L(2), but becomes significant in the complexes of the cyclic ligand L(1), where trans elongation of Fe-N bonds cannot be compensated by the rigid ligand backbone. This provokes trigonal twisting of the ligand field. This distortion causes the metal ion in complexes of L(1) to experience a significantly weaker ligand field than in the complexes of L(2), which are more regular. The reduced ligand-field strength in complexes of L(1) translates into a marked preference for the electronic high-spin state, the emergence of conformational isomers, and massively enhanced lability with respect to ligand exchange and oxidation of the central ion. Accordingly, oxoiron(IV) species derived from L(1) and L(2) differ in their spectroscopic properties and their chemical reactivity. PMID:26488906

  14. Controlled Radical Polymerisation of Styrene in the Presence of Lithium Molybdate(V) Complexes and Benzylic Halides

    NARCIS (Netherlands)

    Koten, G. van; Brandts, J.A.M.; Geijn, P. van de; Faassen, E.E.H. van; Boersma, J.

    1999-01-01

    The new lithium molybdate(V) complexes [LiMo(NAr){2}(C-N)R] (C-N=C{6}H{4}(CH{2}NMe{2})-2; R=(C-N) (5), Me (6), CH{2}SiMe{3} (7), p-tolyl (8)), have been generated in situ from reaction of the corresponding molybdenum(VI) complexes [Mo(NAr){2}(C-N)R] (C-N=C{6}H{4}(CH{2}NMe{2})-2; R=(C-N) (1), Me (2),

  15. Modeling and Testing of Hydrodynamic Damping Model for a Complex-shaped Remotely-operated Vehicle for Control

    Institute of Scientific and Technical Information of China (English)

    Cheng Chin; Michael Lau

    2012-01-01

    In this paper,numerical modeling and model testing of a complex-shaped remotely-operated vehicle (ROV) were shown.The paper emphasized the systematic modeling of hydrodynamic damping using the computational fluid dynamic software ANSYS-CFXTM on the complex-shaped ROV,a practice that is not commonly applied.For initial design and prototype testing during the developmental stage,small-scale testing using a free-decaying experiment was used to verify the theoretical models obtained from ANSYS-CFXTM.Simulation results are shown to coincide with the experimental tests.The proposed method could determine the hydrodynamic damping coefficients of the ROV.

  16. Spectroscopic evidence for medium controlled hydrogen bond inhibition of resonance delocalization of charge in complexes of tetrabutylammonium fluoride with phenols

    Science.gov (United States)

    Clark, James H.; Cork, David G.; Tinsdale, Julie A.

    Infrared spectra of tetrabutylammonium fluoride complexes of both 4-cyanophenol and methyl-4-hydroxybenzoate but not 3-cyanophenol reveal the presence of two distinct types of hydrogen bond corresponding to charge localized and partially charge delocalized forms. The latter only occur in polar aprotic protophilic solvents at low temperatures. The activation energies for the interconversion of the two forms reflect the relative abilities of the two groups to delocalize charge through resonance. The chemical shifts of the aromatic protons of the complexes are also medium dependent although the precise nature of this medium dependence is less easily understood.

  17. Competition between Decapping Complex Formation and Ubiquitin-Mediated Proteasomal Degradation Controls Human Dcp2 Decapping Activity

    OpenAIRE

    Erickson, Stacy L.; Corpuz, Elizabeth O.; Maloy, Jeffrey P.; Fillman, Christy; Webb, Kristofer; Bennett, Eric J.; Lykke-Andersen, Jens

    2015-01-01

    mRNA decapping is a central step in eukaryotic mRNA decay that simultaneously shuts down translation initiation and activates mRNA degradation. A major complex responsible for decapping consists of the decapping enzyme Dcp2 in association with decapping enhancers. An important question is how the activity and accumulation of Dcp2 are regulated at the cellular level to ensure the specificity and fidelity of the Dcp2 decapping complex. Here, we show that human Dcp2 levels and activity are contr...

  18. Neural responses to a modified Stroop paradigm in patients with complex chronic musculoskeletal pain compared to matched controls: an experimental functional magnetic resonance imaging study

    OpenAIRE

    Taylor, Ann M; Harris, Ashley D; Varnava, Alice; Phillips, Rhiannon; HUghes, Owen; Wilkes, Antony R.; Hall, Judith E; Wise, Richard G.

    2016-01-01

    Background Chronic musculoskeletal pain (CMSKP) is attentionally demanding, complex and multi-factorial; neuroimaging research in the population seen in pain clinics is sparse. A better understanding of the neural activity underlying attentional processes to pain related information compared to healthy controls may help inform diagnosis and management in the future. Methods Blood oxygenation level dependent functional magnetic resonance imaging (BOLD fMRI) compared brain responses in patients...

  19. The crystal structure of the complex of PII and acetylglutamate kinase reveals how PII controls the storage of nitrogen as arginine

    OpenAIRE

    Llácer, José L.; Contreras, Asunción; Forchhammer, Karl; Marco-Marín, Clara; Gil-Ortiz, Fernando; Maldonado, Rafael; Fita, Ignacio; Rubio, Vicente

    2007-01-01

    Photosynthetic organisms can store nitrogen by synthesizing arginine, and, therefore, feedback inhibition of arginine synthesis must be relieved in these organisms when nitrogen is abundant. This relief is accomplished by the binding of the PII signal transduction protein to acetylglutamate kinase (NAGK), the controlling enzyme of arginine synthesis. Here, we describe the crystal structure of the complex between NAGK and PII of Synechococcus elongatus, at 2.75-Å resolution. We prove the physi...

  20. Increasing chlamydia screening tests in general practice: A modi fied Zelen prospective cluster randomised controlled trial evaluating a complex intervention based on the theory of planned behaviour

    OpenAIRE

    McNulty, C A M; Hogan, A.; Ricketts, E.; Wallace, L.; Oliver, I; Campbell, R.; Kalwij, S.; O'Connell, E; Charlett, A.

    2014-01-01

    Objective: To determine if a structured complex intervention increases opportunistic chlamydia screening testing of patients aged 15-24 years attending English general practitioner (GP) practices. Methods: A prospective, Cluster Randomised Controlled Trial with a modified Zelen design involving 160 practices in South West England in 2010. The intervention was based on the Theory of Planned Behaviour (TPB). It comprised of practice-based education with up to two additional contacts to incre...

  1. The food choice at work study: effectiveness of complex workplace dietary interventions on dietary behaviours and diet-related disease risk - study protocol for a clustered controlled trial

    OpenAIRE

    Geaney, Fiona; Scotto Di Marrazzo, Jessica; Kelly, Clare; Fitzgerald, Anthony P.; Harrington, Janas M.; Kirby, Ann; McKenzie, Ken; Greiner, Birgit; Perry, Ivan J

    2013-01-01

    Background Dietary behaviour interventions have the potential to reduce diet-related disease. Ample opportunity exists to implement these interventions in the workplace. The overall aim is to assess the effectiveness and cost-effectiveness of complex dietary interventions focused on environmental dietary modification alone or in combination with nutrition education in large manufacturing workplace settings. Methods/design A clustered controlled trial involving four large multinational manufac...

  2. Controllable assemblies of Cd(II) supramolecular coordination complexes based on a versatile tripyridyltriazole ligand and halide/pseduohalide anions

    Science.gov (United States)

    Wang, Xi; Guo, Wei; Guo, Ya-Mei

    2015-09-01

    Three Cd(II) complexes [Cd(L)(H2O)Cl2]n (1), [Cd(L)(H2O)Br2]n (2), and [Cd(L)I2]2 (3) have been assembled from CdX2 (1, X = Cl; 2, X = Br; 3, X = I) and a tripyridyltriazole ligand 3-(2-pyridyl)-4-(4-pyridyl)-5-(3-pyridyl)-1,2,4-triazole (L). Complexes 1 and 2 are isostructural and exhibit 1-D loop-like chain, while complex 3 has a distinct dimeric macrocyclic motif. Interestingly, another 1-D chain [Cd(L)I(SCN)]n (4) can be achieved when NH4SCN is introduced into the assembled system of 3. Structural analysis of 1-4 illustrates that the halide and thiocyanate anions in these coordination complexes behave as not only the counteranions, but also the structure directing agents. The fluorescent and thermal properties of 1-4 have also been investigated.

  3. DNA Sequence Determinants Controlling Affinity, Stability and Shape of DNA Complexes Bound by the Nucleoid Protein Fis.

    Science.gov (United States)

    Hancock, Stephen P; Stella, Stefano; Cascio, Duilio; Johnson, Reid C

    2016-01-01

    The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequences in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. The affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions. PMID:26959646

  4. Self-Control of Task Difficulty during Training Enhances Motor Learning of a Complex Coincidence-Anticipation Task

    Science.gov (United States)

    Andrieux, Mathieu; Danna, Jeremy; Thon, Bernard

    2012-01-01

    The aim of the present work was to analyze the influence of self-controlled task difficulty on motor learning. Participants had to intercept three targets falling at different velocities by displacing a stylus above a digitizer. Task difficulty corresponded to racquet width. Half the participants (self-control condition) could choose the racquet…

  5. Non-SMC condensin I complex proteins control chromosome segregation and survival of proliferating cells in the zebrafish neural retina

    Directory of Open Access Journals (Sweden)

    Harris William A

    2009-07-01

    Full Text Available Abstract Background The condensation of chromosomes and correct sister chromatid segregation during cell division is an essential feature of all proliferative cells. Structural maintenance of chromosomes (SMC and non-SMC proteins form the condensin I complex and regulate chromosome condensation and segregation during mitosis. However, due to the lack of appropriate mutants, the function of the condensin I complex during vertebrate development has not been described. Results Here, we report the positional cloning and detailed characterization of retinal phenotypes of a zebrafish mutation at the cap-g locus. High resolution live imaging reveals that the progression of mitosis between prometa- to telophase is delayed and that sister chromatid segregation is impaired upon loss of CAP-G. CAP-G associates with chromosomes between prometa- and telophase of the cell cycle. Loss of the interaction partners CAP-H and CAP-D2 causes cytoplasmic mislocalization of CAP-G throughout mitosis. DNA content analysis reveals increased genomic imbalances upon loss of non-SMC condensin I subunits. Within the retina, loss of condensin I function causes increased rates of apoptosis among cells within the proliferative ciliary marginal zone (CMZ whereas postmitotic retinal cells are viable. Inhibition of p53-mediated apoptosis partially rescues cell numbers in cap-g mutant retinae and allows normal layering of retinal cell types without alleviating their aberrant nuclear sizes. Conclusion Our findings indicate that the condensin I complex is particularly important within rapidly amplifying progenitor cell populations to ensure faithful chromosome segregation. In contrast, differentiation of postmitotic retinal cells is not impaired upon polyploidization.

  6. Controlling the Adsorption of Ruthenium Complexes on Carbon Surfaces through Noncovalent Bonding with Pyrene Anchors: An Electrochemical Study.

    Science.gov (United States)

    Kohmoto, Mayuko; Ozawa, Hiroaki; Yang, Li; Hagio, Toshihiro; Matsunaga, Mariko; Haga, Masa-Aki

    2016-05-01

    Surface modifications of carbon nanomaterials, such as graphene or carbon nanotubes, through noncovalent π-π interactions between π-conjugated carbon surfaces and pyrene anchors have received much attention on account of the applications of these materials in organic electronic and sensor devices. Despite the rapidly expanding use of pyrene anchors, little is known about the number of pyrene groups required in order to achieve a stable attachment of molecules on nanocarbon surfaces. So far, systematic studies on such surface modifications through adsorption isotherms and desorption behavior of molecules still remain scarce. In this study, we have investigated the effect of the number of pyrene anchors in redox-active Ru complexes on their adsorption on carbon nanomaterials through noncovalent π-π interactions. The Ru(II/III) couple was used as a redox marker in order to determine the surface coverage on nanocarbon surfaces such as highly oriented pyrolytic graphite (HOPG), single-walled carbon nanotubes (SWCNTs), and multiwalled carbon nanotubes (MWCNTs). The amount of surface coverage as well as the kinetic stability of the Ru complexes was thereby observed to be directly proportional to the number of pyrene groups present in the ligands. The desorption rate from HOPG electrode increased in the order Ru-1 with eight pyrene groups (k = 2.0 × 10(-5) s(-1)) compounds having more than two and/or optimally four pyrene groups revealed a stable adsorption on the nanocarbon surfaces. The heterogeneous electron transfer rate between the Ru complex, Ru-2, and the carbon nanomaterials increased in the order SWCNTs (kET = 1.3 s(-1)) < MWCNTs (ϕ = 5-9 nm) (kET = 4.0 s(-1)) < MWCNTs (ϕ = 110-170 nm) (kET = 14.9 s(-1)) < HOPG (kET = 110 s(-1)). PMID:27065057

  7. pH-controlled self-assembling of meso-tetrakis(4-sulfonatophenyl)porphyrin-chitosan complexes

    Czech Academy of Sciences Publication Activity Database

    Synytsya, A.; Synytsya, Andriy.; Blafková, P.; Ederová, J.; Spěváček, Jiří; Slepička, P.; Král, V.; Volka, K.

    2009-01-01

    Roč. 10, č. 5 (2009), s. 1067-1076. ISSN 1525-7797 R&D Projects: GA ČR GA525/05/0273 Grant ostatní: GA AV ČR(CZ) KAN400480701; GA AV ČR(CZ) KAN200100801; GA AV ČR(CZ) KAN200200651; GA MŠk(CZ) LC06041; GA ČR(CZ) GA203/02/0420 Institutional research plan: CEZ:AV0Z40500505 Keywords : self-assembling * meso-tetrakis(4-sulfonatophenyl) porphyrin -chitosan complex * spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.502, year: 2009

  8. Analysis of the Response of a 600 kW Stall Controlled Wind Turbine in Complex Terrain

    International Nuclear Information System (INIS)

    This work presents a detailed analysis of the operating characteristics of a 600 kW rated power wind turbine installed in complex terrain. The description of the experimental set up and analysis system is included. The relationships between parameters that describe the wind turbine response and the environmental conditions are established via high level statistical analysis, fatigue analysis and analysis in the frequency domain. Dimension less factors are calculated to explain the intrinsic response of the structure before stochastic and deterministic wind conditions, independently from its size and wind intensity. Finally, conclusions are presented regarding the parameters that affect the loading state and power production of the machine. (Author) 12 refs

  9. Arabidopsis COMPASS-like complexes mediate histone H3 lysine-4 trimethylation to control floral transition and plant development.

    Directory of Open Access Journals (Sweden)

    Danhua Jiang

    2011-03-01

    Full Text Available Histone H3 lysine-4 (H3K4 methylation is associated with transcribed genes in eukaryotes. In Drosophila and mammals, both di- and tri-methylation of H3K4 are associated with gene activation. In contrast to animals, in Arabidopsis H3K4 trimethylation, but not mono- or di-methylation of H3K4, has been implicated in transcriptional activation. H3K4 methylation is catalyzed by the H3K4 methyltransferase complexes known as COMPASS or COMPASS-like in yeast and mammals. Here, we report that Arabidopsis homologs of the COMPASS and COMPASS-like complex core components known as Ash2, RbBP5, and WDR5 in humans form a nuclear subcomplex during vegetative and reproductive development, which can associate with multiple putative H3K4 methyltransferases. Loss of function of ARABIDOPSIS Ash2 RELATIVE (ASH2R causes a great decrease in genome-wide H3K4 trimethylation, but not in di- or mono-methylation. Knockdown of ASH2R or the RbBP5 homolog suppresses the expression of a crucial Arabidopsis floral repressor, FLOWERING LOCUS C (FLC, and FLC homologs resulting in accelerated floral transition. ASH2R binds to the chromatin of FLC and FLC homologs in vivo and is required for H3K4 trimethylation, but not for H3K4 dimethylation in these loci; overexpression of ASH2R causes elevated H3K4 trimethylation, but not H3K4 dimethylation, in its target genes FLC and FLC homologs, resulting in activation of these gene expression and consequent late flowering. These results strongly suggest that H3K4 trimethylation in FLC and its homologs can activate their expression, providing concrete evidence that H3K4 trimethylation accumulation can activate eukaryotic gene expression. Furthermore, our findings suggest that there are multiple COMPASS-like complexes in Arabidopsis and that these complexes deposit trimethyl but not di- or mono-methyl H3K4 in target genes to promote their expression, providing a molecular explanation for the observed coupling of H3K4 trimethylation (but not H3

  10. Santa Eulália Plutonic Complex (Southern Portugal): petrology, geochemistry and structural control of a late variscan structure

    OpenAIRE

    Lopes, Luis; Lopes, José Carrilho; Sant'Ovaia, Helena; Nogueira, Pedro; Ribeiro, Maria dos Anjos

    2013-01-01

    The Santa Eulália Plutonic Complex (SEPC) is a 400 km2 late variscan granitic pluton in the SW sector of the Iberian Variscides which cross-cuts the regional NW-SE Upper Proterozoic to Lower Palaeozoic lithological units. From the rim to the core, SEPC shows a medium- to coarse-grained pink granite (G0 group) involving large elongated masses of mafic to intermediate rocks (M group) and a central grey monzonitic granite (G1 group) mainly represented by medium-grained textures. Elemental geo...

  11. Analysis of the Response of a 600 kW Stall Controlled Wind Turbine in Complex Terrain

    Energy Technology Data Exchange (ETDEWEB)

    Cuerva, A.; Bercebal, D.; De la Cruz, S.; Lopez-Diez, S.; Lopez-Roque, V.; Vazquez-Aguado, A.; Marti, I.; Marchante, M.; Navarro, J. [CIEMAT. Madrid (Spain)

    1998-12-31

    This work presents a detailed analysis of the operating characteristics of a 600 kW rated power wind turbine installed in complex terrain. The description of the experimental set up and analysis system is included. The relationships between parameters that describe the wind turbine response and the environmental conditions are established via high level statistical analysis, fatigue analysis and analysis is the frequency domain. Dimensionless factors are calculated to explain the intrinsic response of the structure before stochastic and deterministic wind conditions, independently from its size and wind intensity. Finally, conclusions are presented regarding the parameters that affect the loading state and power production of the machine. (Author) 12 refs.

  12. Ten years of advanced control systems in Brazil's most complex refinery: history and future perspectives; Dez anos de sistemas de controle avancado na refinaria mais complexa do Brasil: historia e perspectivas futuras

    Energy Technology Data Exchange (ETDEWEB)

    Pinotti, Rafael; Wanderley, Alexandre; Areal, Oswaldo Fraga; Romeiro, Murillo Terroso; Caneschi, Jose Ricardo [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    In 1994 Duque de Caxias Refinery implemented its first Multivariable Predictive Controller (MPC), in the Fluid Catalytic Cracking Unit. The software, then licensed under contract by the DMCC company, used the Dynamic Matrix Control (DMC) technique. This enterprise culminated with the development, by PETROBRAS engineers, of a proprietary MPC. Since 1994, other units have been contemplated with MPC and advanced regulatory projects, which have been suffering adaptations in order to keep pace with new control and information systems (DCS, Data Bank). The Integrated Control Center, designed to host units controlled by DCS, was inaugurated in 1998, allowing a simpler monitoring routine of the MPC systems by control engineers, easing the tuning of regulatory control loops, and helping in the implementation of new MPC projects. This work depicts the evolution of advanced control systems at REDUC, and explores future perspectives and challenges in an ever-changing environment, where new units are constantly being added-up to an already very complex net of more than thirty units. (author)

  13. The economic implications of the enteric disease complex and its control by the utilization of pleuromutillins in swine

    Directory of Open Access Journals (Sweden)

    Veturia Ileana Nueleanu

    2007-12-01

    Full Text Available The enteric disease complex may have a great economic impact by decreasing the growth of the animals, the conversion-rate of the fodder and, implicitly, the quality of carcass. That results in low production values, in correlation with low costs of production and decreased profitability. A therapeutic protocol was established, being administered tiamullin in the period of maximum incidence ofthe disease –5 days before and after weaning in pig youth, and the same period of time for the fatten pigs. The average meat production increased with 37.04% in youth pigs and 29.23% in fat pigs, in comparison with the period before the therapy. The profit that was achieved in youth pigs was 95 %, in comparison with the investment (the medication that was 5 %. The value of the investment was 27% in fat pigs, in comparison with the materialized profit of 73 %. The ratio between the total investment values (tiamullin medication and the benefit obtained in posttherapeutic period was 1:3.76, for the enteric disease complex in swine.

  14. Actin related protein complex subunit 1b controls sperm release, barrier integrity and cell division during adult rat spermatogenesis.

    Science.gov (United States)

    Kumar, Anita; Dumasia, Kushaan; Deshpande, Sharvari; Gaonkar, Reshma; Balasinor, N H

    2016-08-01

    Actin remodeling is a vital process for signaling, movement and survival in all cells. In the testes, extensive actin reorganization occurs at spermatid-Sertoli cell junctions during sperm release (spermiation) and at inter Sertoli cell junctions during restructuring of the blood testis barrier (BTB). During spermiation, tubulobulbar complexes (TBCs), rich in branched actin networks, ensure recycling of spermatid-Sertoli cell junctional molecules. Similar recycling occurs during BTB restructuring around the same time as spermiation occurs. Actin related protein 2/3 complex is an essential actin nucleation and branching protein. One of its subunits, Arpc1b, was earlier found to be down-regulated in an estrogen-induced rat model of spermiation failure. Also, Arpc1b was found to be estrogen responsive through estrogen receptor beta in seminiferous tubule culture. Here, knockdown of Arpc1b by siRNA in adult rat testis led to defects in spermiation caused by failure in TBC formation. Knockdown also compromised BTB integrity and caused polarity defects of mature spermatids. Apart from these effects pertaining to Sertoli cells, Arpc1b reduction perturbed ability of germ cells to enter G2/M phase thus hindering cell division. In summary, Arpc1b, an estrogen responsive gene, is a regulator of spermiation, mature spermatid polarity, BTB integrity and cell division during adult spermatogenesis. PMID:27113856

  15. Drosophila Torsin Protein Regulates Motor Control and Stress Sensitivity and Forms a Complex with Fragile-X Mental Retardation Protein

    Science.gov (United States)

    Ahn, Hyo-Min; Koh, Young Ho

    2016-01-01

    We investigated unknown in vivo functions of Torsin by using Drosophila as a model. Downregulation of Drosophila Torsin (DTor) by DTor-specific inhibitory double-stranded RNA (RNAi) induced abnormal locomotor behavior and increased susceptibility to H2O2. In addition, altered expression of DTor significantly increased the numbers of synaptic boutons. One important biochemical consequence of DTor-RNAi expression in fly brains was upregulation of alcohol dehydrogenase (ADH). Altered expression of ADH has also been reported in Drosophila Fragile-X mental retardation protein (DFMRP) mutant flies. Interestingly, expression of DFMRP was altered in DTor mutant flies, and DTor and DFMRP were present in the same protein complexes. In addition, DTor and DFMRP immunoreactivities were partially colocalized in several cellular organelles in larval muscles. Furthermore, there were no significant differences between synaptic morphologies of dfmrp null mutants and dfmrp mutants expressing DTor-RNAi. Taken together, our evidences suggested that DTor and DFMRP might be present in the same signaling pathway regulating synaptic plasticity. In addition, we also found that human Torsin1A and human FMRP were present in the same protein complexes, suggesting that this phenomenon is evolutionarily conserved. PMID:27313903

  16. Complex coacervation of collagen hydrolysate extracted from leather solid wastes and chitosan for controlled release of lavender oil.

    Science.gov (United States)

    Ocak, Buğra

    2012-06-15

    In the world, approximately 600,000 metric tonnes of chromium-containing solid wastes are generated by the leather industry each year. Environmental concerns and escalating landfill costs are becoming increasingly serious problems to the leather industry and seeking solutions to these problems is a prime concern in much research today. In this study, solid collagen-based protein hydrolysate was isolated from chromium-tanned leather wastes and its chemical properties were determined. Microcapsules of collagen hydrolysate (CH) - chitosan (C) crosslinked with glutaraldehyde (GA) containing Lavender oil (LO) were prepared by complex coacervation method. The effects of various processing parameters, including the CH to C ratio, LO content, and GA, on the oil load (%), oil content (%), encapsulation efficiency (%) and release rate of LO from microcapsules were investigated. As the ratio of C present in the CH/C mixture and crosslinking density increased, the release rate of LO from microcapsules slowed down. Optical and scanning electron microscopy images illustrated that the LO microcapsules were spherical in shape. Fourier transform infrared spectroscopy (FTIR) studies confirmed that there was no significant interaction between CH/C complex and LO. PMID:22361107

  17. The complexity of crime network data: a case study of its consequences for crime control and the study of networks.

    Directory of Open Access Journals (Sweden)

    Amir Rostami

    Full Text Available The field of social network analysis has received increasing attention during the past decades and has been used to tackle a variety of research questions, from prevention of sexually transmitted diseases to humanitarian relief operations. In particular, social network analyses are becoming an important component in studies of criminal networks and in criminal intelligence analysis. At the same time, intelligence analyses and assessments have become a vital component of modern approaches in policing, with policy implications for crime prevention, especially in the fight against organized crime. In this study, we have a unique opportunity to examine one specific Swedish street gang with three different datasets. These datasets are the most common information sources in studies of criminal networks: intelligence, surveillance and co-offending data. We use the data sources to build networks, and compare them by computing distance, centrality, and clustering measures. This study shows the complexity factor by which different data sources about the same object of study have a fundamental impact on the results. The same individuals have different importance ranking depending on the dataset and measure. Consequently, the data source plays a vital role in grasping the complexity of the phenomenon under study. Researchers, policy makers, and practitioners should therefore pay greater attention to the biases affecting the sources of the analysis, and be cautious when drawing conclusions based on intelligence assessments and limited network data. This study contributes to strengthening social network analysis as a reliable tool for understanding and analyzing criminality and criminal networks.

  18. Qubit Control Limited by Spin-Lattice Relaxation in a Nuclear Spin-Free Iron(III) Complex.

    Science.gov (United States)

    Zadrozny, Joseph M; Freedman, Danna E

    2015-12-21

    High-spin transition metal complexes are of interest as candidates for quantum information processing owing to the tunability of the pairs of MS levels for use as quantum bits (qubits). Thus, the design of high-spin systems that afford qubits with stable superposition states is of primary importance. Nuclear spins are a potent instigator of superposition instability; thus, we probed the Ph4P(+) salt of the nuclear spin-free complex [Fe(C5O5)3](3-) (1) to see if long-lived superpositions were possible in such a system. Continuous-wave and pulsed electron paramagnetic resonance (EPR) spectroscopic measurements reveal a strong EPR transition at X-band that can be utilized as a qubit. However, at 5 K the coherent lifetime, T2, for this resonance is 721(3) ns and decreases rapidly with increasing temperature. Simultaneously, the spin-lattice relaxation time is extremely short, 11.33(1) μs, at 5 K, and also rapidly decreases with increasing temperature. The coincidence of these two temperature-dependent data sets suggests that T2 in 1 is strongly limited by the short T1. Importantly, these results highlight the need for new design parameters in pursuit of high-spin species with appreciable coherence times. PMID:26650962

  19. Intercalation of Aceclofenac/Sulfobutyl Ether-β-cyclodextrin Complex into Layered Double Hydroxides through Swelling/Restoration Reaction and Its Controlled-Release Properties

    Directory of Open Access Journals (Sweden)

    Shifeng Li

    2014-01-01

    Full Text Available Aceclofenac (AC/sulfobutyl ether-β-cyclodextrin (SBE-β-CD inclusion complex intercalated layered double hydroxides (LDHs composite were prepared by swelling/restoration method. After swelling/restoration, the d-spacing of LDHs is expanded to 2.23 nm, which clearly demonstrates the successful intercalation of AC/SBE-β-CD into LDHs layer. AC/SBE-β-CD inclusion complex in the interlayer has monolayer arrangement based on the d-spacing of LDHs and torus thickness of SBE-β-CD. The AC release performances were also studied in buffer solutions with different pH values. The results show AC/SBE-β-CD intercalated LDHs not only enhance the dissolution profile of AC but also exhibit a controlled-release process, which indicates that the AC/SBE-β-CD-LDHs have a potential application in drug delivery agent.

  20. Speed Isn't Everything: Complex Processing Speed Measures Mask Individual Differences and Developmental Changes in Executive Control

    Science.gov (United States)

    Cepeda, Nicholas J.; Blackwell, Katharine A.; Munakata, Yuko

    2013-01-01

    The rate at which people process information appears to influence many aspects of cognition across the lifespan. However, many commonly accepted measures of "processing speed" may require goal maintenance, manipulation of information in working memory, and decision-making, blurring the distinction between processing speed and executive control and…

  1. Design and characterization of controlled-release edible packaging films prepared with synergistic whey-protein polysaccharide complexes.

    Science.gov (United States)

    Liu, Fei; Jiang, Yanfeng; Du, Bingjian; Chai, Zhi; Jiao, Tong; Zhang, Chunyue; Ren, Fazheng; Leng, Xiaojing

    2013-06-19

    This paper describes an investigation into the properties of a doubly emulsified film incorporated with protein-polysaccharide microcapsules, which serves as a multifunctional food packaging film prepared using common edible materials in place of petroleum--based plastics. The relationships between the microstructural properties and controlled release features of a series of water-in-oil-in-water (W/O/W) microcapsulated edible films prepared in thermodynamically incompatible conditions were analyzed. The hydrophilic riboflavin (V(B2)) nano-droplets (13-50 nm) dispersed in α-tocopherol (V(E)) oil phase were embedded in whey protein-polysaccharide (WPs) microcapsules with a shell thickness of 20-56 nm. These microcapsules were then integrated in 103 μm thick WPs films. Different polysaccharides, including gum arabic (GA), low-methoxyl pectin (LMP), and κ-carrageenan (KCG), exhibited different in vitro synergistic effects on the ability of both films to effect enteric controlled release of both vitamins. GA, which showed a strong emulsifying ability, also showed better control of V(E) than other polysaccharides, and the highly charged KCG showed better control of V(B2) than GA did. PMID:23718814

  2. Patterns of Control over the Teaching-Studying-Learning Process and Classrooms as Complex Dynamic Environments: A Theoretical Framework

    Science.gov (United States)

    Harjunen, Elina

    2012-01-01

    In this theoretical paper the role of power in classroom interactions is examined in terms of a dominance continuum to advance a theoretical framework justifying the emergence of three ways of distributing power when it comes to dealing with the control over the teaching-studying-learning (TSL) "pattern of teacher domination," "pattern of…

  3. Complexity-Based Measures Inform Effects of Tai Chi Training on Standing Postural Control: Cross-Sectional and Randomized Trial Studies.

    Directory of Open Access Journals (Sweden)

    Peter M Wayne

    Full Text Available Diminished control of standing balance, traditionally indicated by greater postural sway magnitude and speed, is associated with falls in older adults. Tai Chi (TC is a multisystem intervention that reduces fall risk, yet its impact on sway measures vary considerably. We hypothesized that TC improves the integrated function of multiple control systems influencing balance, quantifiable by the multi-scale "complexity" of postural sway fluctuations.To evaluate both traditional and complexity-based measures of sway to characterize the short- and potential long-term effects of TC training on postural control and the relationships between sway measures and physical function in healthy older adults.A cross-sectional comparison of standing postural sway in healthy TC-naïve and TC-expert (24.5±12 yrs experience adults. TC-naïve participants then completed a 6-month, two-arm, wait-list randomized clinical trial of TC training. Postural sway was assessed before and after the training during standing on a force-plate with eyes-open (EO and eyes-closed (EC. Anterior-posterior (AP and medio-lateral (ML sway speed, magnitude, and complexity (quantified by multiscale entropy were calculated. Single-legged standing time and Timed-Up-and-Go tests characterized physical function.At baseline, compared to TC-naïve adults (n = 60, age 64.5±7.5 yrs, TC-experts (n = 27, age 62.8±7.5 yrs exhibited greater complexity of sway in the AP EC (P = 0.023, ML EO (P<0.001, and ML EC (P<0.001 conditions. Traditional measures of sway speed and magnitude were not significantly lower among TC-experts. Intention-to-treat analyses indicated no significant effects of short-term TC training; however, increases in AP EC and ML EC complexity amongst those randomized to TC were positively correlated with practice hours (P = 0.044, P = 0.018. Long- and short-term TC training were positively associated with physical function.Multiscale entropy offers a complementary

  4. Highly versatile catalytic hydrogenation of carboxylic and carbonic acid derivatives using a Ru-triphos complex: molecular control over selectivity and substrate scope.

    Science.gov (United States)

    vom Stein, Thorsten; Meuresch, Markus; Limper, Dominik; Schmitz, Marc; Hölscher, Markus; Coetzee, Jacorien; Cole-Hamilton, David J; Klankermayer, Jürgen; Leitner, Walter

    2014-09-24

    The complex [Ru(Triphos)(TMM)] (Triphos = 1,1,1-tris(diphenylphosphinomethyl)ethane, TMM = trimethylene methane) provides an efficient catalytic system for the hydrogenation of a broad range of challenging functionalities encompassing carboxylic esters, amides, carboxylic acids, carbonates, and urea derivatives. The key control factor for this unique substrate scope results from selective activation to generate either the neutral species [Ru(Triphos)(Solvent)H2] or the cationic intermediate [Ru(Triphos)(Solvent)(H)(H2)](+) in the presence of an acid additive. Multinuclear NMR spectroscopic studies demonstrated together with DFT investigations that the neutral species generally provides lower energy pathways for the multistep reduction cascades comprising hydrogen transfer to C═O groups and C-O bond cleavage. Carboxylic esters, lactones, anhydrides, secondary amides, and carboxylic acids were hydrogenated in good to excellent yields under these conditions. The formation of the catalytically inactive complexes [Ru(Triphos)(CO)H2] and [Ru(Triphos)(μ-H)]2 was identified as major deactivation pathways. The former complex results from substrate-dependent decarbonylation and constitutes a major limitation for the substrate scope under the neutral conditions. The deactivation via the carbonyl complex can be suppressed by addition of catalytic amounts of acids comprising non-coordinating anions such as HNTf2 (bis(trifluoromethane)sulfonimide). Although the corresponding cationic cycle shows higher overall barriers of activation, it provides a powerful hydrogenation pathway at elevated temperatures, enabling the selective reduction of primary amides, carbonates, and ureas in high yields. Thus, the complex [Ru(Triphos)(TMM)] provides a unique platform for the rational selection of reaction conditions for the selective hydrogenation of challenging functional groups and opens novel synthetic pathways for the utilization of renewable carbon sources. PMID:25208046

  5. 复杂系统的平行控制理论及应用%Parallel Control Theory of Complex Systems and Applications

    Institute of Scientific and Technical Information of China (English)

    王飞跃; 刘德荣; 熊刚; 程长建; 赵冬斌

    2012-01-01

    首先给出了复杂系统的定义,并对复杂系统的研究现状和存在的问题进行了探讨,认识到没有可用来描述复杂系统的足够精确的模型,基于还原论的现有控制理论和方法难以发挥有效作用.在此基础上,提出了应对这类复杂系统问题的平行控制方法,阐述了其ACP思想、基本原理和优势等.同时对控制理论的发展历史做了简要描述,证明平行控制理论的产生是必然的.并阐述了平行控制理论的核心技术.最后介绍了平行控制系统平台及其在乙烯生产和城市交通中的应用,描述了平行控制理论研究和应用实践的前景与展望.%Definition of complex systems is first given followed by the discussion of the state-of-the-art of complex systems research. Complex systems have no accurate mathematical models, and classical control theories and methods become difficult to deal with. To overcome these problems, parallel control method is proposed, where its ACP concepts and basic principles are introduced, and its advantages are addressed. The development history of control theory is discussed to prove that parallel control theory is the future trend. Core methods of parallel control are also listed and explained. Finally, a parallel control system platform is proposed, and its successful applications to ethylene production system and urban transportation system are summarized. Concluding remarks and future perspectives of the proposed approach are mentioned.

  6. Brittle structures and their role in controlling porosity and permeability in a complex Precambrian crystalline-rock aquifer system in the Colorado Rocky Mountain front range

    Science.gov (United States)

    Caine, J.S.; Tomusiak, S.R.A.

    2003-01-01

    Expansion of the Denver metropolitan area has resulted in substantial residential development in the foothills of the Rocky Mountain Front Range. This type of sub-urban growth, characteristic of much of the semiarid intermountain west, often relies on groundwater from individual domestic wells and is exemplified in the Turkey Creek watershed. The watershed is underlain by complexly deformed and fractured crystalline bedrock in which groundwater resources are poorly understood, and concerns regarding groundwater mining and degradation have arisen. As part of a pilot project to establish quantitative bounds on the groundwater resource, an outcrop-based geologic characterization and numerical modeling study of the brittle structures and their controls on the flow system was initiated. Existing data suggest that ground-water storage, flow, and contaminant transport are primarily controlled by a heterogeneous array of fracture networks. Inspections of well-permit data and field observations led to a conceptual model in which three dominant lithologic groups underlying sparse surface deposits form the aquifer system-metamorphic rocks, a complex array of granitic intrusive rocks, and major brittle fault zones. Pervasive but variable jointing of each lithologic group forms the "background" permeability structure and is an important component of the bulk storage capacity. This "background" is cut by brittle fault zones of varying structural styles and by pegmatite dikes, both with much higher fracture intensities relative to "background" that likely make them spatially complex conduits. Probabilistic, discrete-fracture-network and finite-element modeling was used to estimate porosity and permeability at the outcrop scale using fracture network data collected in the field. The models were conditioned to limited aquifer test and borehole geophysical data and give insight into the relative hydraulic properties between locations and geologic controls on storage and flow

  7. Pancharatnam-Berry phase optical elements for generation and control of complex light: generalized superelliptical q-plates

    Science.gov (United States)

    Piccirillo, Bruno; Kumar, Vijay; Marrucci, Lorenzo; Santamato, E.

    2015-03-01

    We present newly conceived liquid-crystal-based retardation waveplates in which the optic axis distribution has a "superelliptically" symmetric azimuthal structure with a topological charge q superimposed. Such devices, named superelliptical q-plates, act as polarization-to-spatial modes converters that can be used to produce optical beams having peculiar spiral spectra. These spectra reflect the topological charge of the optic axis distribution as well as the symmetry properties of the underlying superellipse. The peculiar capability of q-plates of producing optical modes entangled with respect to spin and orbital angular momentum is here extended to superelliptical q-plates in order to create more complex optical modes structurally inseparable with respect to polarization and spatial degrees of freedom. Such superelliptical modes can play a crucial role in studying polarization singularities or to develop polarization metrology.

  8. Clinical governance in a complex system: insights from cancer control in Montérégie

    Directory of Open Access Journals (Sweden)

    Roy DA

    2008-09-01

    Full Text Available Based on experience acquired through a regional cancercontrol program, this article illustrates how the characteristicsof a complex adaptive system affect the implementationof clinical governance strategies. In such acontext, measures to fight cancer stem from a sharedperspective. They follow simple rules, rely on informationthat is circulating in the system and reflect an incrementalchange strategy that allows for the emergence ofinnovative management procedures and innovation.Some of these innovations are also discussed, e.g. thenurse navigator, joint management, discipline-specificcommunities of practice, the online information exchangetool, performance appraisal, and so on. The approachadopted has supported the mobilization ofclinicians and managers and the application of knowledge,and encouraged the development of new procedureswith a view to enhancing the impact ofintervention on patients and the public.Prat Organ Soins 2008;39(3:227-30

  9. Mathematical Modeling of Complex Reaction Systems for Computer-Aided Control and its Illustration on Atmospheric Chemistry

    Science.gov (United States)

    Amiryan, A.

    2015-12-01

    Modeling of sequential process has its own importance in Atmospheric Chemistry. Numerical calculations which allow to predict separate stages and components of chemical reaction make possible the reaction management, such is the new and perspective direction in chemical researches. Chemical processes basically pass multiple simple stages where various atoms and radicals participate. The complex chain of chemical reactionary systems complicates their research and the research is impossible without new methods of mathematical simulation and high technologies which allow not only to explain results of experiments but also to predict dynamics of processes. A new program package is suggested for solving research problems of chemical kinetics. The program is tested on different illustrative examples on Atmospheric Chemistry and installed in various scientific and educational institutions.

  10. Local Ensemble Transform Kalman Filter: a non stationary control law for complex adaptive optics systems on ELTs

    Science.gov (United States)

    Gray, Morgan; Petit, Cyril; Rodionov, Sergey; Bertino, Laurent; Bocquet, Marc; Fusco, Thierry

    2013-12-01

    We propose a new algorithm for an AO control law which allows to reduce the computation burden in the case of an Extremely Large Telescope and to deal with a non stationary behavior of the atmospheric turbulence. This approach uses Ensemble Transform Kalman Filter (ETKF) and localizations by domains decomposition: the assimilation is split into local domains on the pupil of the telescope and each of the update data assimilation for each domain is performed independently. This kind of assimilation enables parallel computation of much less data during the update stage. This is a Kalman Filter adaptation for large scale systems with a non stationary turbulence when the explicit storage and manipulation of extremely large covariance matrices are impossible. This distributed parallel environment implementation is highlighted and studied in the context of an ELT application. First simulation results are proposed to assess our theoretical analysis and to demonstrate the potentiality of this new approach for an AO control law on ELTs.

  11. An influence of the stepping motor control and friction models on precise positioning of the complex mechanical system

    Science.gov (United States)

    Konowrocki, Robert; Szolc, Tomasz; Pochanke, Andrzej; Pręgowska, Agnieszka

    2016-03-01

    This paper aims to investigate, both experimentally and theoretically, the electromechanical dynamic interaction between a driving stepping motor and a driven laboratory belt-transporter system. A test-rig imitates the operation of a robotic device in the form of a working tool-carrier under translational motion. The object under consideration is equipped with measurement systems, which enable the registration of electrical and mechanical quantities. Analytical considerations are performed by means of a circuit model of the electric motor and a discrete, non-linear model of the mechanical system. Various scenarios of the working tool-carrier motion and positioning by the belt-transporter are measured and simulated; in all cases the electric current control of the driving motor has been applied. The main goal of this study is to investigate the influence of the stepping motor control parameters along with various mechanical friction models on the precise positioning of a laboratory robotic device.

  12. Control of optical bistability and complex dynamics of a nonlinear interferometer / I. N. Agishev, N. A. Ivanova, A. L. Tolstik

    OpenAIRE

    1998-01-01

    Transfer functions and dynamic characteristics of a Fabry-Perot interferometer with a multilevel resonant medium have been studied theoretically under conditions of two-frequency excitation when one of the light beams had no resonator feedback. An incoherent control method, using absorption of an independent light beam by molecules in excited energy states, has been proposed for the bistable and dynamic characteristics of a nonlinear Fabry-Perot interferometer.

  13. Multidimensional complexities of filariasis control in an era of large-scale mass drug administration programmes: a can of worms

    OpenAIRE

    Molyneux, David H.; Hopkins, Adrian; Bradley, Mark H.; Kelly-Hope, Louise A.

    2014-01-01

    The impact of control and elimination programmes by mass drug administration (MDA) targeting onchocerciasis and lymphatic filariasis (LF) in sub-Saharan Africa over the last two decades has resulted in significantly reduced prevalence and intensity of infection, with some areas interrupting transmission. However, given that these infections are often co-endemic and the drugs (either ivermectin alone or combined with albendazole) also impact on soil transmitted helminths (STH), the importance ...

  14. Barriers to and facilitators of implementing complex workplace dietary interventions: process evaluation results of a cluster controlled trial

    OpenAIRE

    Fitzgerald, Sarah; Geaney, Fiona; Kelly, Clare; McHugh, Sheena; Perry, Ivan J

    2016-01-01

    Background Ambiguity exists regarding the effectiveness of workplace dietary interventions. Rigorous process evaluation is vital to understand this uncertainty. This study was conducted as part of the Food Choice at Work trial which assessed the comparative effectiveness of a workplace environmental dietary modification intervention and an educational intervention both alone and in combination versus a control workplace. Effectiveness was assessed in terms of employees’ dietary intakes, nutri...

  15. GPR158/179 regulate G protein signaling by controlling localization and activity of the RGS7 complexes

    OpenAIRE

    Orlandi, Cesare; Posokhova, Ekaterina; Masuho, Ikuo; Ray, Thomas A; Hasan, Nazarul; Gregg, Ronald G; Martemyanov, Kirill A.

    2012-01-01

    The extent and temporal characteristics of G protein–coupled receptor (GPCR) signaling are shaped by the regulator of G protein signaling (RGS) proteins, which promote G protein deactivation. With hundreds of GPCRs and dozens of RGS proteins, compartmentalization plays a key role in establishing signaling specificity. However, the molecular details and mechanisms of this process are poorly understood. In this paper, we report that the R7 group of RGS regulators is controlled by interaction wi...

  16. High Field Optomagnetic (OM) Polarization-Phase Selective (PPS) Monitoring of Structures and Controlling Reaction Agents Mechanisms in Complex Molecular Systems

    Science.gov (United States)

    Rupnik, Kresimir

    2014-03-01

    Using OM techniques, including new high filed 25T Split-Florida magnet at NHMF Laboratory, we have recently observed unusual metal cluster structures and electron transfer patterns in complex molecular systems of biomedical and material science interest. We report here some of the new technological solutions and (many) challenges that face OM and (quantum) control research. Of particular interest is identification of fast (10-100s fs) highly correlated electrons spin and vibrational coupling interpreted using adaptive molecular-photonic interaction models. Our observations question interpretations of previously proposed electron spin structure models and mechanisms and\\ indicate possible new controlling mechanisms through highly selective coupled channels that combine different specific redox and photonic agents. A portion of this work from 2008 to 2013 was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-1157490, and 0654118 and the U.S. Department of Energy.

  17. Re-membering the body: applications of computational neuroscience to the top-down control of regeneration of limbs and other complex organs.

    Science.gov (United States)

    Pezzulo, G; Levin, M

    2015-12-01

    A major goal of regenerative medicine and bioengineering is the regeneration of complex organs, such as limbs, and the capability to create artificial constructs (so-called biobots) with defined morphologies and robust self-repair capabilities. Developmental biology presents remarkable examples of systems that self-assemble and regenerate complex structures toward their correct shape despite significant perturbations. A fundamental challenge is to translate progress in molecular genetics into control of large-scale organismal anatomy, and the field is still searching for an appropriate theoretical paradigm for facilitating control of pattern homeostasis. However, computational neuroscience provides many examples in which cell networks - brains - store memories (e.g., of geometric configurations, rules, and patterns) and coordinate their activity towards proximal and distant goals. In this Perspective, we propose that programming large-scale morphogenesis requires exploiting the information processing by which cellular structures work toward specific shapes. In non-neural cells, as in the brain, bioelectric signaling implements information processing, decision-making, and memory in regulating pattern and its remodeling. Thus, approaches used in computational neuroscience to understand goal-seeking neural systems offer a toolbox of techniques to model and control regenerative pattern formation. Here, we review recent data on developmental bioelectricity as a regulator of patterning, and propose that target morphology could be encoded within tissues as a kind of memory, using the same molecular mechanisms and algorithms so successfully exploited by the brain. We highlight the next steps of an unconventional research program, which may allow top-down control of growth and form for numerous applications in regenerative medicine and synthetic bioengineering. PMID:26571046

  18. Controlling

    OpenAIRE

    Lohnická, Jitka

    2009-01-01

    This thesis deals with the description and analysis of controlling methods in one unnamed company, which is the subsidiary of multinational corporation. Controlling, its function, objectives and controlling methods are theoretically defined in the thesis. The practical part of the thesis is focused on methods of planning in the company, its system of calculations, responsibility centres and reporting.

  19. Microwell hybridization assay for detection of PCR products from Mycobacterium tuberculosis complex and the recombinant Mycobacterium smegmatis strain 1008 used as an internal control.

    Science.gov (United States)

    Kox, L F; Noordhoek, G T; Kunakorn, M; Mulder, S; Sterrenburg, M; Kolk, A H

    1996-01-01

    A microwell hybridization assay was developed for the detection of the PCR products from both Mycobacterium tuberculosis complex bacteria and the recombinant Mycobacterium smegmatis strain 1008 that is used as an internal control to monitor inhibition in the PCR based on the M. tuberculosis complex-specific insertion sequence IS6110. The test is based on specific detection with digoxigenin-labeled oligonucleotide probes of biotinylated PCR products which are captured in a microtiter plate coated with streptavidin. The captured PCR products are hybridized separately with two probes, one specific for the PCR product from IS6110 from M. tuberculosis complex and the other specific for the PCR fragment from the modified IS6110 fragment from the recombinant M. smegmatis 1008. The microwell hybridization assay discriminates perfectly between the two types of amplicon. The amount of PCR product that can be detected by this assay is 10 times less than that which can be detected by agarose gel electrophoresis. The test can be performed in 2 h. It is much faster and less laborious than Southern blot hybridization. Furthermore, the interpretation of results is objective. The assay was used with 172 clinical samples in a routine microbiology laboratory, and the results were in complete agreement with those of agarose gel electrophoresis and Southern blot hybridization. PMID:8862568

  20. The Data Acquisition and Controls Systems (DACS) of the E-Complex at the John C. Stennis Space Center, MS: A General Overview

    Science.gov (United States)

    Hughes, Mark S.; Hebert, Phillip W.; Davis, Dawn M.

    2003-01-01

    The John C. Stennis Space Center (SSC) provides test operations services to a variety of customers including NASA, DoD, commercial enterprises, and others for the development of current next-generation rocket propulsion systems. Many of these test operations services are provided in the E-Complex series of test facilities. The E-Complex is composed of three active test stands (E1, E2, & E3), each with two or more test positions. Each test position is comprised of unique sets of data acquisition and controls hardware and software that record both facility and test article data and safely operate the test facility. The E-Complex data acquisition system (DAS) is actually composed of two separate systems, one for static data and the other for dynamic. The static DAS, otherwise known as the Low-Speed DAS (LSDAS), samples 16 bit data at 250 samples-per-second (SPS), although an aggregate sample rate of 200,000 SPS is possible. The dynamic data acquisition system, otherwise known as the high-speed DAS (HSDAS), samples 16 bit data at 100K SPS with a 45 KHz bandwidth.

  1. Volume profiles for the reversible binding of dioxygen to cobalt(II) complexes. Evidence for a substitution-controlled process

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, M.; Espenson, J.H.; Bakac, A. (Iowa State Univ., Ames, IA (United States)); Eldik, R. van (Univ. of Witten/Herdecke (Germany))

    1994-01-05

    The rate constants for the binding and release of dioxygen from two cobalt(II) macrocycles have been determined in aqueous solution as a function of pressure at 25.0[degrees]C. The products of these reactions are L[sup 1]CoOO[sup 2+] and L[sup 2]CoOO[sup 2+], where L[sup 1] = cyclam and L[sup 2] = hexamethylcyclam. The pressure dependence of the equilibrium constant for the L[sup 2] system was also evaluated, giving [delta]V[degrees] = [minus]22.- [+-] 0.4 mL mol[sup [minus]1]. The binding rate constants have [delta]V* = +0.4 [+-] 0.5 mL mol[sup [minus]1] (L[sup 1]) and [minus]4.7 [+-] 0.3 mL mol[sup [minus]1] (L[sup 2]). The reverse reaction for L[sup 2]CoOO[sup 2+] has [delta]V* = +17.9 [+-] 0.5 mL mol[sup [minus]1]. The volume profile is presented for the L[sup 2] system, from which an interchange mechanism for substitution at Co(II) is proposed. Electron transfer is not significantly advanced at the transition state. The reverse reaction, released of dioxygen from the cobalt(III)-superoxo complex, has a large positive value of [delta]V*, consistent with the electron transfer preceding the partial dissociation of O[sub 2].

  2. Mammalian Target of Rapamycin Complex 2 Controls CD8 T Cell Memory Differentiation in a Foxo1-Dependent Manner.

    Science.gov (United States)

    Zhang, Lianjun; Tschumi, Benjamin O; Lopez-Mejia, Isabel C; Oberle, Susanne G; Meyer, Marten; Samson, Guerric; Rüegg, Markus A; Hall, Michael N; Fajas, Lluis; Zehn, Dietmar; Mach, Jean-Pierre; Donda, Alena; Romero, Pedro

    2016-02-01

    Upon infection, antigen-specific naive CD8 T cells are activated and differentiate into short-lived effector cells (SLECs) and memory precursor cells (MPECs). The underlying signaling pathways remain largely unresolved. We show that Rictor, the core component of mammalian target of rapamycin complex 2 (mTORC2), regulates SLEC and MPEC commitment. Rictor deficiency favors memory formation and increases IL-2 secretion capacity without dampening effector functions. Moreover, mTORC2-deficient memory T cells mount more potent recall responses. Enhanced memory formation in the absence of mTORC2 was associated with Eomes and Tcf-1 upregulation, repression of T-bet, enhanced mitochondrial spare respiratory capacity, and fatty acid oxidation. This transcriptional and metabolic reprogramming is mainly driven by nuclear stabilization of Foxo1. Silencing of Foxo1 reversed the increased MPEC differentiation and IL-2 production and led to an impaired recall response of Rictor KO memory T cells. Therefore, mTORC2 is a critical regulator of CD8 T cell differentiation and may be an important target for immunotherapy interventions. PMID:26804903

  3. A complex between contactin-1 and the protein tyrosine phosphatase PTPRZ controls the development of oligodendrocyte precursor cells

    Energy Technology Data Exchange (ETDEWEB)

    Lamprianou, Smaragda; Chatzopoulou, Elli; Thomas, Jean-Léon; Bouyain, Samuel; Harroch, Sheila (IP-Korea); (UPMC); (UMKC)

    2013-09-23

    The six members of the contactin (CNTN) family of neural cell adhesion molecules are involved in the formation and maintenance of the central nervous system (CNS) and have been linked to mental retardation and neuropsychiatric disorders such as autism. Five of the six CNTNs bind to the homologous receptor protein tyrosine phosphatases gamma (PTPRG) and zeta (PTPRZ), but the biological roles of these interactions remain unclear. We report here the cocrystal structure of the carbonic anhydrase-like domain of PTPRZ bound to tandem Ig repeats of CNTN1 and combine these structural data with binding assays to show that PTPRZ binds specifically to CNTN1 expressed at the surface of oligodendrocyte precursor cells. Furthermore, analyses of glial cell populations in wild-type and PTPRZ-deficient mice show that the binding of PTPRZ to CNTN1 expressed at the surface of oligodendrocyte precursor cells inhibits their proliferation and promotes their development into mature oligodendrocytes. Overall, these results implicate the PTPRZ/CNTN1 complex as a previously unknown modulator of oligodendrogenesis.

  4. Regulatory controls on the hydrogeological characterization of a mixed waste disposal site, Radioactive Waste Management Complex, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Following the detection of chlorinated volatile organic compounds in the groundwater beneath the SDA in the summer of 1987, hydrogeological characterization of the Radioactive Waste Management Complex (RWMC), Idaho National Engineering Laboratory (INEL) was required by the Resource Conservation and Recovery Act (RCRA). The waste site, the Subsurface Disposal Area (SDA), is the subject of a RCRA Corrective Action Program. Regulatory requirements for the Corrective Action Program dictate a phased approach to evaluation of the SDA. In the first phase of the program, the SDA is the subject of a RCRA Facility Investigation (RIF), which will obtain information to fully characterize the physical properties of the site, determine the nature and extent of contamination, and identify pathways for migration of contaminants. If the need for corrective measures is identified during the RIF, a Corrective Measures Study (CMS) will be performed as second phase. Information generated during the RIF will be used to aid in the selection and implementation of appropriate corrective measures to correct the release. Following the CMS, the final phase is the implementation of the selected corrective measures. 4 refs., 1 fig

  5. Flaviviruses in Europe: Complex Circulation Patterns and Their Consequences for the Diagnosis and Control of West Nile Disease

    Directory of Open Access Journals (Sweden)

    Elsa Jourdain

    2013-11-01

    Full Text Available In Europe, many flaviviruses are endemic (West Nile, Usutu, tick-borne encephalitis viruses or occasionally imported (dengue, yellow fever viruses. Due to the temporal and geographical co-circulation of flaviviruses in Europe, flavivirus differentiation by diagnostic tests is crucial in the adaptation of surveillance and control efforts. Serological diagnosis of flavivirus infections is complicated by the antigenic similarities among the Flavivirus genus. Indeed, most flavivirus antibodies are directed against the highly immunogenic envelope protein, which contains both flavivirus cross-reactive and virus-specific epitopes. Serological assay results should thus be interpreted with care and confirmed by comparative neutralization tests using a panel of viruses known to circulate in Europe. However, antibody cross-reactivity could be advantageous in efforts to control emerging flaviviruses because it ensures partial cross-protection. In contrast, it might also facilitate subsequent diseases, through a phenomenon called antibody-dependent enhancement mainly described for dengue virus infections. Here, we review the serological methods commonly used in WNV diagnosis and surveillance in Europe. By examining past and current epidemiological situations in different European countries, we present the challenges involved in interpreting flavivirus serological tests and setting up appropriate surveillance programs; we also address the consequences of flavivirus circulation and vaccination for host immunity.

  6. Role of the multichain IL-2 receptor complex in the control of normal and malignant T-cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Waldmann, T.A.

    1987-11-01

    Antigen-induced activation of resting T-cells induces the synthesis of interleukin-2 (IL-2), as well as the expression of specific cell surface receptors for this lymphokine. There are at least two forms of the cellular receptors for IL-2, one with a very high affinity and the other with a lower affinity. The authors have identified two IL-2 binding peptides, a 55-kd peptide reactive with the anti-Tac monoclonal antibody, and a novel 75-kd non-Tac IL-2 binding peptide. Cell lines bearing either the p55, Tac, or the p75 peptide along manifested low-affinity IL-2 binding, whereas cell lines bearing both peptides manifested both high- and low-affinity receptors. Fusion of cell membranes from low-affinity IL-2 binding cells bearing the Tac peptide alone with membranes from a cell line bearing the p75 peptide alone generates hybrid membranes bearing high-affinity receptors. They propose a multichain model for the high-affinity IL-2 receptor in which both the Tac and the p75 IL-2 binding peptides are associated in a receptor complex. In contrast to resting T-cells, human T-cell lymphotropic virus I-associated adult T-cell leukemia cells constitutively express large numbers of IL-2 receptors. Because IL-2 receptors are present on the malignant T-cells but not on normal resting cells, clinical trials have been initiated in which patients with adult T-cell leukemia are being treated with either unmodified or toxin-conjugated forms of anti-Tac monoclonal antibody directed toward this growth factor receptor. Cross-linking studies were done using (/sup 125/I) IL-2.

  7. Role of the multichain IL-2 receptor complex in the control of normal and malignant T-cell proliferation

    International Nuclear Information System (INIS)

    Antigen-induced activation of resting T-cells induces the synthesis of interleukin-2 (IL-2), as well as the expression of specific cell surface receptors for this lymphokine. There are at least two forms of the cellular receptors for IL-2, one with a very high affinity and the other with a lower affinity. The authors have identified two IL-2 binding peptides, a 55-kd peptide reactive with the anti-Tac monoclonal antibody, and a novel 75-kd non-Tac IL-2 binding peptide. Cell lines bearing either the p55, Tac, or the p75 peptide along manifested low-affinity IL-2 binding, whereas cell lines bearing both peptides manifested both high- and low-affinity receptors. Fusion of cell membranes from low-affinity IL-2 binding cells bearing the Tac peptide alone with membranes from a cell line bearing the p75 peptide alone generates hybrid membranes bearing high-affinity receptors. They propose a multichain model for the high-affinity IL-2 receptor in which both the Tac and the p75 IL-2 binding peptides are associated in a receptor complex. In contrast to resting T-cells, human T-cell lymphotropic virus I-associated adult T-cell leukemia cells constitutively express large numbers of IL-2 receptors. Because IL-2 receptors are present on the malignant T-cells but not on normal resting cells, clinical trials have been initiated in which patients with adult T-cell leukemia are being treated with either unmodified or toxin-conjugated forms of anti-Tac monoclonal antibody directed toward this growth factor receptor. Cross-linking studies were done using [125I] IL-2

  8. Genesis of supported carbon-coated Co nanoparticles with controlled magnetic properties, prepared by decomposition of chelate complexes

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Konstantin; Beaunier, Patricia; Che, Michel; Marceau, Eric, E-mail: eric.marceau@upmc.fr [Laboratoire de Reactivite de Surface (UMR 7197, CNRS), UPMC (Universite Pierre et Marie Curie) (France); Li Yanling [CNRS (France)

    2011-05-15

    Following procedures formerly developed for the preparation of supported heterogeneous catalysts, carbon-coated cobalt nanoparticles dispersed on porous alumina have been prepared by impregnation of {gamma}-Al{sub 2}O{sub 3} with (NH{sub 4}){sub 2}[Co(EDTA)] and thermal decomposition in inert atmosphere. Below 350 Degree-Sign C, Co(II) ions are complexed in a hexa-coordinated way by the EDTA ligand. The thermal treatment at 400-900 Degree-Sign C leads to the EDTA ligand decomposition and recovering of the support porosity, initially clogged by the impregnated salt. According to X-ray absorption spectroscopy, and due to in situ redox reactions between the organic ligand and Co(II), both oxidic and metallic cobalt phases are formed. Characterisation by transmission electron microscopy, X-ray diffraction and magnetic measurements reveals that an increase in the treatment temperature leads to an increase of the degree of cobalt reduction as well as to a growth of the cobalt metal particles. As a consequence, the samples prepared at 400-700 Degree-Sign C exhibit superparamagnetism and a saturation magnetisation of 1.7-6.5 emu g{sup -1} at room temperature, whilst the sample prepared at 900 Degree-Sign C has a weak coercivity (0.1 kOe) and a saturation magnetisation of 12 emu g{sup -1}. Metal particles are homogeneously dispersed on the support and appear to be protected by carbon; its elimination by a heating in H{sub 2} at 400 Degree-Sign C is demonstrated to cause sintering of the metal particles. The route investigated here can be of interest for obtaining porous magnetic adsorbents or carriers with high magnetic moments and low coercivities, in which the magnetic nanoparticles are protected from chemical aggression and sintering by their coating.

  9. Obtaining strong ferromagnetism in diluted Gd-doped ZnO thin films through controlled Gd-defect complexes

    KAUST Repository

    Roqan, Iman S.

    2015-02-21

    We demonstrate the fabrication of reproducible long-range ferromagnetism (FM) in highly crystalline GdxZn1-xO thin films by controlling the defects. Films are grown on lattice-matched substrates by pulsed laser deposition at low oxygen pressures (≤25 mTorr) and low Gd concentrations (x ≤ 0.009). These films feature strong FM (10 μB per Gd atom) at room temperature. While films deposited at higher oxygen pressure do not exhibit FM, FM is recovered by post-annealing these films under vacuum. These findings reveal the contribution of oxygen deficiency defects to the long-range FM. We demonstrate the possible FM mechanisms, which are confirmed by density functional theory study, and show that Gd dopants are essential for establishing FM that is induced by intrinsic defects in these films.

  10. Controls on the temporal and spatial variability of soil moisture in a mountainous landscape: the signature of snow and complex terrain

    Directory of Open Access Journals (Sweden)

    J. P. McNamara

    2009-07-01

    Full Text Available The controls on the spatial distribution of soil moisture include static and dynamic variables. The superposition of static and dynamic controls can lead to different soil moisture patterns for a given catchment during wetting, draining, and drying periods. These relationships can be further complicated in snow-dominated mountain regions where soil water input by precipitation is largely dictated by the spatial variability of snow accumulation and melt. In this study, we assess controls on spatial and temporal soil moisture variability in a small (0.02 km2, snow-dominated, semi-arid catchment by evaluating spatial correlations between soil moisture and site characteristics through different hydrologic seasons. We assess the relative importance of snow with respect to other catchment properties on the spatial variability of soil moisture and track the temporal persistence of those controls. Spatial distribution of snow, distance from divide, soil texture, and soil depth exerted significant control on the spatial variability of moisture content throughout most of the hydrologic year. These relationships were strongest during the wettest period and degraded during the dry period. As the catchment cycled through wet and dry periods, the relative spatial variability of soil moisture tended to remain unchanged. We suggest that the static properties in complex terrain (slope, aspect, soils impose first order controls on the spatial variability of snow and resulting soil moisture patterns, and that the interaction of dynamic (timing of water input and static influences propagate that relative constant spatial variability through most of the hydrologic year. The results demonstrate that snow exerts significant influence on how water is retained within mid-elevation semi-arid catchments and suggest that reductions in annual snowpacks associated with changing climate regimes may strongly influence spatial and temporal soil moisture patterns and

  11. Controls on the temporal and spatial variability of soil moisture in a mountainous landscape: the signatures of snow and complex terrain

    Directory of Open Access Journals (Sweden)

    C. J. Williams

    2008-07-01

    Full Text Available The controls on the spatial distribution of soil moisture include static and dynamic variables. The superposition of static and dynamic controls can lead to different soil moisture patterns for a given catchment during wetting, draining, and drying periods. These relationships can be further complicated in snow-dominated mountain regions where soil water input by precipitation is largely dictated by the spatial variability of snow accumulation and melt. In this study, we assess controls on spatial and temporal soil moisture variability in a small (0.02 km2, snow-dominated, semi-arid catchment by evaluating spatial correlations between soil moisture and site characteristics through different hydrologic seasons. We assess the relative importance of snow with respect to other catchment properties on the spatial variability of soil moisture and track the temporal persistence of those controls. Spatial distribution of snow, distance from divide, soil texture, and soil depth exerted significant control on the spatial variability of moisture content throughout most of the hydrologic year. These relationships were strongest during the wettest period and degraded during the dry period. As the catchment cycled through wet and dry periods, the relative spatial variability of soil moisture tended to remain unchanged. We suggest that the static properties in complex terrain (slope, aspect, soils impose first order controls on the spatial variability of snow and consequent soil moisture, and that the interaction of dynamic (timing of water input and static properties propagate that relative constant spatial variability through the hydrologic year. The results demonstrate snow exerts significant influence on how water is retained within mid-elevation semi-arid catchments throughout the year and infer that reductions in annual snowpacks associated with changing climate regimes may strongly influence spatial and temporal soil moisture patterns and

  12. Análise do planejamento e controle da produção sob a ótica da Teoria da Complexidade Analysys of the production planning and control under the view of the Complexity Theory

    Directory of Open Access Journals (Sweden)

    Fernando Augusto Ferreira Dutra

    2007-08-01

    Full Text Available Neste trabalho buscou-se analisar o sistema de planejamento e controle da produção (PCP das empresas a partir dos preceitos da Teoria da Complexidade. Esta Teoria sugere que as organizações e seus sistemas sejam vistos como sistemas complexos adaptativos (SCAs, sistemas cuja propriedade básica é a capacidade de ajustar seu comportamento em função das alterações ambientais. Um estudo de caso foi aplicado a duas empresas, no intuito de evidenciar aspectos típicos de SCAs presentes nos sistemas de PCP das mesmas. Os resultados evidenciaram que as implicações da Complexidade estão presentes na rotina de trabalho do PCP das empresas, sendo que foi possível identificar casos em que os preceitos da Teoria contribuíram na solução de problemas emergentes na rotina do PCP. No entanto, estas características podem ser mais desenvolvidas para que o sistema possa responder mais ativamente às alterações que acontecem em seu meio.In this work the production planning and control (PPC system of the organizations is analyzed under the concepts of the Complexity Theory. This theory suggests that the systems must be observed as complex adaptive systems (CASs. These kinds of systems have as basic property the ability to adjust their behavior to deal with new situations on their environment. A case study was applied to two organizations, looking forward to identify typical aspects of CASs on the PPC systems of the organizations. The results showed that the Complexity Theory implications are present in the routines of production planning and control of the organizations It was possible to identify situations where the Complexity aspects helped to solve problems on the PPC. However, the Complexity aspects can be more developed on the PPC systems. In this way, these systems can answer faster the changes that happen on their environment.

  13. Coral reefs in an urban embayment in Hawaii: a complex case history controlled by natural and anthropogenic stress

    Science.gov (United States)

    Grigg, R. W.

    1995-11-01

    The effects of natural and anthropogenic stress need to be separated before coral reef ecosystems can be effectively managed. In this paper, a 25 year case history of coral reefs in an urban embayment (Mamala Bay) off Honolulu, Hawaii is described and differences between natural and man-induced stress are distinguished. Mamala Bay is a 30 km long shallow coastal bay bordering the southern (leeward) shore of Oahu and the city of Honolulu in the Hawaiian Islands. During the last 25 years, this area has been hit by two magnitude 5 hurricane events (winds > 240 km/h) generating waves in excess of 7.5 m. Also during this period, two large sewer outfalls have discharged up to 90 million gallons per day (mgd) or (360 × 106 L/day) of point source pollution into the bay. Initially the discharge was raw sewage, but since 1977 it has received advanced primary treatment. Non-point source run-off from the Honolulu watershed also enters the bay on a daily basis. The results of the study show that discharge of raw sewage had a serious but highly localized impact on shallow (˜10 m) reef corals in the bay prior to 1977. After 1977, when treatment was upgraded to the advanced primary level and outfalls were extended to deep water (> 65 m), impacts to reef corals were no longer significant. No measurable effects of either point or non-point source pollution on coral calcification, growth, species composition, diversity or community structure related to pollution can now be detected. Conversely the effects of hurricane waves in 1982 and 1992 together caused major physical destruction to the reefs. In 1982, average coral cover of well-developed offshore reefs dropped from 60-75% to 5-15%. Only massive species in high relief areas survived. Today, recovery is occurring, and notwithstanding major future disturbance events, long-term biological processes should eventually return the coral ecosystems to a more mature successional stage. This case history illustrates the complex nature of

  14. Area-wide integrated pest control operation in Thailand: Two interacting closely related species, Bactrocera dorsalis sensu stricto and Bactrocera correcta, with potential of species complexity

    International Nuclear Information System (INIS)

    Full text: Since 1987, we have set up a pilot project initially for the control of the Oriental fruit fly (OFF), Bactrocera dorsalis (Handel), and recently also for control of the Guava fruit fly (GFF), Bactrocera correcta. In doing so, we integrated the SIT with other monitoring and control methods in the Rajburi province (south) as well as recently in Phichit province (north). These two area-wide control programmes are operated with different management schemes integrating various stakeholders such as crop growers, local field operators, producers of the sterile insects, politicians, activists, reporters, exporters, scientific experts, and researchers from academies and research institutes. Regular feed back information systems of the field monitoring have been set-up with geographical positioning system (GPS) with the support of IAEA. Thus, most trapping sites and infested fruits collection sites from both the control areas have been geo-referenced and have become valuable resources for the population dynamic studies regarding the effectiveness of the area-wide control programme. Recent research is investigating the impact of the presence of two different but conceivably interacting closely related species, B. dorsalis and B. correcta, which are sympatric polyphagous species with highly overlapping commodity host ranges. However, their degree of host preferences is somewhat different. Crop growers and area-wide control experts require that our effective area-wide control programme needs to be tailored so that population suppression for both species is achieved. Besides, there were several (unpublished) reports indirectly suggesting mating interactions between the two species. This presentation reports initial analysis of mating tests between these two fruit fly species, comparison of their natural history, and the demographic data from our area-wide control areas and from general agricultural areas. We also addressed the use of established molecular genetic

  15. Análise do PCP pelas lentes da complexidade Production planning and control analyzed from a complexity point of view

    Directory of Open Access Journals (Sweden)

    Simone Sehnem

    2006-12-01

    Full Text Available Este artigo apresenta uma análise do sistema de Planejamento e Controle da Produção (PCP de uma empresa agroindustrial avícola, pelas lentes da teoria da complexidade. O método adotado buscou verificar como as atividades de planejamento estratégico da produção, planejamento da produção, programação e controle são realizadas em um ambiente complexo. Trata-se de um estudo de caso de caráter qualitativo, que fez uso das técnicas de coleta de dados, entrevista e observação. A análise inovadora adotada permitiu o vislumbre de um processo no qual ocorrem interações, adaptações, aprendizado e coevolução. Foi possível evidenciar que, via de regra, são adotadas ações de single loop e feedback negativo, o que indica o emprego, majoritariamente, de um receituário linear e seqüencial. Ademais, autonomia, auto-organização, double loop e feedbacks positivos foram manifestados tão-somente em situações peculiares.A poultry farm was analyzed using the Complexity Theory to understand strategic activities of production, production planning, programming and control carried out in this complex environment. A qualitative case study made use of information collecting, interview and observation techniques. The innovative analysis adopted disclosed how interaction, adjustment, learning and group development took place. Single loop and negative feedback actions were usual for a predominantly linear and sequential approach. Further, autonomy, self-organization, double loop and positive feedback were also noted but only in exceptional situations.

  16. Control of natural transformation in salivarius Streptococci through specific degradation of σX by the MecA-ClpCP protease complex.

    Science.gov (United States)

    Wahl, Astrid; Servais, Florence; Drucbert, Anne-Sophie; Foulon, Catherine; Fontaine, Laetitia; Hols, Pascal

    2014-08-01

    Competence for natural DNA transformation is a tightly controlled developmental process in streptococci. In mutans and salivarius species, the abundance of the central competence regulator σ(X) is regulated at two levels: transcriptional, by the ComRS signaling system via the σ(X)/ComX/SigX-inducing peptide (XIP), and posttranscriptional, by the adaptor protein MecA and its associated Clp ATPase, ClpC. In this study, we further investigated the mechanism and function of the MecA-ClpC control system in the salivarius species Streptococcus thermophilus. Using in vitro approaches, we showed that MecA specifically interacts with both σ(X) and ClpC, suggesting the formation of a ternary σ(X)-MecA-ClpC complex. Moreover, we demonstrated that MecA ultimately targets σ(X) for its degradation by the ClpCP protease in an ATP-dependent manner. We also identify a short sequence (18 amino acids) in the N-terminal domain of σ(X) as essential for the interaction with MecA and subsequent σ(X) degradation. Finally, increased transformability of a MecA-deficient strain in the presence of subinducing XIP concentrations suggests that the MecA-ClpCP proteolytic complex acts as an additional locking device to prevent competence under inappropriate conditions. A model of the interplay between ComRS and MecA-ClpCP in the control of σ(X) activity is proposed. PMID:24837292

  17. PL-DA-PS: A hardware architecture and software toolbox for neurophysiology requiring complex visual stimuli and online behavioral control

    Directory of Open Access Journals (Sweden)

    Kyler M. Eastman

    2012-01-01

    Full Text Available Neurophysiological studies in awake, behaving primates (both human and nonhuman primates have focused with increasing scrutiny on the temporal relationship between neural signals and behaviors. Consequently, laboratories are often faced with the problem of developing experimental equipment that can support data recording with high temporal precision and also be flexible enough to accommodate a wide variety of experimental paradigms. To this end, we have developed an architecture that integrates several modern pieces of equipment, but still grants experimenters a high degree of flexibility. Our hardware architecture and software tools take advantage of three popular and powerful technologies: the PLexon apparatus for neurophysiological recordings (Plexon, Inc., Dallas TX, a DAtapixx box (Vpixx Technologies, Saint-Bruno, QC, Canada for analog, digital, and video signal input-output control, and the PSychtoolbox MATLAB toolbox for stimulus generation (Brainard, 1997. The PL-DA-PS (“Platypus” system is designed to support the study of the visual systems of awake, behaving primates during multi-electrode neurophysiological recordings, but can be easily applied to other related domains. Despite its wide range of capabilities and support for cutting-edge video displays and neural recording systems, the PLDAPS system is simple enough for someone with basic MATLAB programming skills to design their own experiments.

  18. Sorption and coprecipitation of copper to ferrihydrite and humic acid organomineral complexes and controls on copper availability.

    Science.gov (United States)

    Seda, Neila N; Koenigsmark, Faye; Vadas, Timothy M

    2016-03-01

    Coprecipitation of Fe oxide and organic matter in redox dynamic sediments controls the net retention and form of Cu in the solid precipitates. In this study, coprecipitation and sorption of Cu with organomineral precipitation solids formed at different Fe:organic carbon (OC) ratios were compared for net Cu removal and extractability. As more humic acid was present during precipitation of Fe, TEM images indicated smaller Fe oxide particles formed within an organic matrix as expected. In coprecipitation reactions, as the ratio of Fe:OC decreased, more Cu was removed from solution at pH 5.5 and below. However, in sorption reactions, there was an inhibition of Cu removal at low OC concentrations. As the pH increased from 5.5 to 7 and as solution phase OC concentration increased, more Cu remained dissolved in both coprecipitation and sorption reactions. The addition of Ca(2+), glycine, histidine and citric acid or lowering the pH resulted in more extractable Cu from the coprecipitation compared with the sorption reactions. The variations in Cu extraction were likely due to a combination of a more amorphous structure in CPT products, and the relative abundance of available Fe oxide or OC binding sites. This has implications for the assumption of additivity in binding phases and for researchers conducting binding or exposure experiments. PMID:26766365

  19. Enzyme inhibitor studies reveal complex control of methyl-D-erythritol 4-phosphate (MEP pathway enzyme expression in Catharanthus roseus.

    Directory of Open Access Journals (Sweden)

    Mei Han

    Full Text Available In Catharanthus roseus, the monoterpene moiety exerts a strong flux control for monoterpene indole alkaloid (MIA formation. Monoterpene synthesis depends on the methyl-D-erythritol 4-phosphate (MEP pathway. Here, we have explored the regulation of this pathway in response to developmental and environmental cues and in response to specific enzyme inhibitors. For the MEP pathway entry enzyme 1-deoxy-D-xylulose 5-phosphate synthase (DXS, a new (type I DXS isoform, CrDXS1, has been cloned, which, in contrast to previous reports on type II CrDXS, was not transcriptionally activated by the transcription factor ORCA3. Regulation of the MEP pathway in response to metabolic perturbations has been explored using the enzyme inhibitors clomazone (precursor of 5-ketochlomazone, inhibitor of DXS and fosmidomycin (inhibitor of deoxyxylulose 5-phosphate reductoisomerase (DXR, respectively. Young leaves of non-flowering plants were exposed to both inhibitors, adopting a non-invasive in vivo technique. Transcripts and proteins of DXS (3 isoforms, DXR, and hydroxymethylbutenyl diphosphate synthase (HDS were monitored, and protein stability was followed in isolated chloroplasts. Transcripts for DXS1 were repressed by both inhibitors, whereas transcripts for DXS2A&B, DXR and HDS increased after clomazone treatment but were barely affected by fosmidomycin treatment. DXS protein accumulated in response to both inhibitors, whereas DXR and HDS proteins were less affected. Fosmidomycin-induced accumulation of DXS protein indicated substantial posttranscriptional regulation. Furthermore, fosmidomycin effectively protected DXR against degradation in planta and in isolated chloroplasts. Thus our results suggest that DXR protein stability may be affected by substrate binding. In summary, the present results provide novel insight into the regulation of DXS expression in C. roseus in response to MEP-pathway perturbation.

  20. Enzyme Inhibitor Studies Reveal Complex Control of Methyl-D-Erythritol 4-Phosphate (MEP) Pathway Enzyme Expression in Catharanthus roseus

    Science.gov (United States)

    Han, Mei; Heppel, Simon C.; Su, Tao; Bogs, Jochen; Zu, Yuangang; An, Zhigang; Rausch, Thomas

    2013-01-01

    In Catharanthus roseus, the monoterpene moiety exerts a strong flux control for monoterpene indole alkaloid (MIA) formation. Monoterpene synthesis depends on the methyl-D-erythritol 4-phosphate (MEP) pathway. Here, we have explored the regulation of this pathway in response to developmental and environmental cues and in response to specific enzyme inhibitors. For the MEP pathway entry enzyme 1-deoxy-D-xylulose 5-phosphate synthase (DXS), a new (type I) DXS isoform, CrDXS1, has been cloned, which, in contrast to previous reports on type II CrDXS, was not transcriptionally activated by the transcription factor ORCA3. Regulation of the MEP pathway in response to metabolic perturbations has been explored using the enzyme inhibitors clomazone (precursor of 5-ketochlomazone, inhibitor of DXS) and fosmidomycin (inhibitor of deoxyxylulose 5-phosphate reductoisomerase (DXR)), respectively. Young leaves of non-flowering plants were exposed to both inhibitors, adopting a non-invasive in vivo technique. Transcripts and proteins of DXS (3 isoforms), DXR, and hydroxymethylbutenyl diphosphate synthase (HDS) were monitored, and protein stability was followed in isolated chloroplasts. Transcripts for DXS1 were repressed by both inhibitors, whereas transcripts for DXS2A&B, DXR and HDS increased after clomazone treatment but were barely affected by fosmidomycin treatment. DXS protein accumulated in response to both inhibitors, whereas DXR and HDS proteins were less affected. Fosmidomycin-induced accumulation of DXS protein indicated substantial posttranscriptional regulation. Furthermore, fosmidomycin effectively protected DXR against degradation in planta and in isolated chloroplasts. Thus our results suggest that DXR protein stability may be affected by substrate binding. In summary, the present results provide novel insight into the regulation of DXS expression in C. roseus in response to MEP-pathway perturbation. PMID:23650515