WorldWideScience

Sample records for apical dendritic spines

  1. Dendritic spine density of prefrontal layer 6 pyramidal neurons in relation to apical dendrite sculpting by nicotinic acetylcholine receptors

    Directory of Open Access Journals (Sweden)

    Lily eKang

    2015-10-01

    Full Text Available Prefrontal layer 6 (L6 pyramidal neurons play an important role in the adult control of attention, facilitated by their strong activation by nicotinic acetylcholine receptors. These neurons in mouse association cortex are distinctive morphologically when compared to L6 neurons in primary cortical regions. Roughly equal proportions of the prefrontal L6 neurons have apical dendrites that are long (reaching to the pial surface versus short (terminating in the deep layers, as in primary cortical regions. This distinct prefrontal morphological pattern is established in the post-juvenile period and appears dependent on nicotinic receptors. Here, we examine dendritic spine densities in these two subgroups of prefrontal L6 pyramidal neurons under control conditions as well as after perturbation of nicotinic acetylcholine receptors. In control mice, the long neurons have significantly greater apical and basal dendritic spine density compared to the short neurons. Furthermore, manipulations of nicotinic receptors (chrna5 deletion or chronic developmental nicotine exposure have distinct effects on these two subgroups of L6 neurons: apical spine density is significantly reduced in long neurons, and basal spine density is significantly increased in short neurons. These changes appear dependent on the α5 nicotinic subunit encoded by chrna5. Overall, the two subgroups of prefrontal L6 neurons appear positioned to integrate information either across cortex (long neurons or within the deep layers (short neurons, and nicotinic perturbations differently alter spine density within each subgroup. Such changes have ramifications for adult executive function and possibly also for the morphological vulnerability of prefrontal cortex to subsequent stress exposure.

  2. Signaling in dendritic spines and spine microdomains

    OpenAIRE

    2012-01-01

    The specialized morphology of dendritic spines creates an isolated compartment that allows for localized biochemical signaling. Recent studies have revealed complexity in the function of the spine head as a signaling domain and indicate that (1) the spine is functionally subdivided into multiple independent microdomains and (2) not all biochemical signals are equally compartmentalized within the spine. Here we review these findings as well as the developments in fluorescence microscopy that a...

  3. Microtubules in Dendritic Spine Development

    OpenAIRE

    2008-01-01

    It is generally believed that only the actin cytoskeleton resides in dendritic spines and controls spine morphology and plasticity. Here we report that microtubules (MTs) are present in spines and that shRNA knockdown of the MT-plus end binding protein EB3 significantly reduces spine formation. Furthermore, stabilization and inhibition of MTs by low doses of taxol and nocodazole enhance and impair spine formation elicited by BDNF, respectively. Therefore, MTs play an important role in the con...

  4. Electrical advantages of dendritic spines.

    Directory of Open Access Journals (Sweden)

    Allan T Gulledge

    Full Text Available Many neurons receive excitatory glutamatergic input almost exclusively onto dendritic spines. In the absence of spines, the amplitudes and kinetics of excitatory postsynaptic potentials (EPSPs at the site of synaptic input are highly variable and depend on dendritic location. We hypothesized that dendritic spines standardize the local geometry at the site of synaptic input, thereby reducing location-dependent variability of local EPSP properties. We tested this hypothesis using computational models of simplified and morphologically realistic spiny neurons that allow direct comparison of EPSPs generated on spine heads with EPSPs generated on dendritic shafts at the same dendritic locations. In all morphologies tested, spines greatly reduced location-dependent variability of local EPSP amplitude and kinetics, while having minimal impact on EPSPs measured at the soma. Spine-dependent standardization of local EPSP properties persisted across a range of physiologically relevant spine neck resistances, and in models with variable neck resistances. By reducing the variability of local EPSPs, spines standardized synaptic activation of NMDA receptors and voltage-gated calcium channels. Furthermore, spines enhanced activation of NMDA receptors and facilitated the generation of NMDA spikes and axonal action potentials in response to synaptic input. Finally, we show that dynamic regulation of spine neck geometry can preserve local EPSP properties following plasticity-driven changes in synaptic strength, but is inefficient in modifying the amplitude of EPSPs in other cellular compartments. These observations suggest that one function of dendritic spines is to standardize local EPSP properties throughout the dendritic tree, thereby allowing neurons to use similar voltage-sensitive postsynaptic mechanisms at all dendritic locations.

  5. Lipid dynamics at dendritic spines.

    Science.gov (United States)

    Dotti, Carlos Gerardo; Esteban, Jose Antonio; Ledesma, María Dolores

    2014-01-01

    Dynamic changes in the structure and composition of the membrane protrusions forming dendritic spines underlie memory and learning processes. In recent years a great effort has been made to characterize in detail the protein machinery that controls spine plasticity. However, we know much less about the involvement of lipids, despite being major membrane components and structure determinants. Moreover, protein complexes that regulate spine plasticity depend on specific interactions with membrane lipids for proper function and accurate intracellular signaling. In this review we gather information available on the lipid composition at dendritic spine membranes and on its dynamics. We pay particular attention to the influence that spine lipid dynamism has on glutamate receptors, which are key regulators of synaptic plasticity.

  6. Architecture of apical dendrites in the murine neocortex: dual apical dendritic systems.

    Science.gov (United States)

    Escobar, M I; Pimienta, H; Caviness, V S; Jacobson, M; Crandall, J E; Kosik, K S

    1986-04-01

    A monoclonal antibody (5F9) against microtubule-associated protein 2 is a selective and sensitive marker for neocortical dendrites in the mouse. The marker stains all dendrites. It affords a particularly comprehensive picture of the patterns of arrangements of apical dendrites which are most intensely stained with this antibody. Dual systems of apical dendrites arise from the polymorphic neurons of layer VI, on the one hand, and the pyramidal neurons of layers II-V, on the other. Terminal arborization of the former is concentrated principally at the interface of layers V and IV, while that of the latter is in the molecular layer. Apical dendrites of both systems are grouped into fascicles. In supragranular layers and in upper layer VI-lower layer V, where apical dendrites are most abundant, the fascicles coalesce into septa. These generate a honeycomb-like pattern, subdividing these cortical levels into columnar spaces of approximately 20-40 micron diameter. At the level of layer IV, where the number of apical dendrites is greatly reduced, the fascicles are isolated bundles. These bundles have the form of circular, elliptical or rectangular columns in the primary somatosensory, temporal and frontal regions, respectively. Those in the barrel field are preferentially concentrated in the sides of barrels and the interbarrel septa. The configurations of the dendritic fascicles, particularly the midcortical bundles, may conform to the spatial configuration of investing axons of interneurons.

  7. BDNF over-expression increases olfactory bulb granule cell dendritic spine density in vivo.

    Science.gov (United States)

    McDole, B; Isgor, C; Pare, C; Guthrie, K

    2015-09-24

    Olfactory bulb granule cells (GCs) are axon-less, inhibitory interneurons that regulate the activity of the excitatory output neurons, the mitral and tufted cells, through reciprocal dendrodendritic synapses located on GC spines. These contacts are established in the distal apical dendritic compartment, while GC basal dendrites and more proximal apical segments bear spines that receive glutamatergic inputs from the olfactory cortices. This synaptic connectivity is vital to olfactory circuit function and is remodeled during development, and in response to changes in sensory activity and lifelong GC neurogenesis. Manipulations that alter levels of the neurotrophin brain-derived neurotrophic factor (BDNF) in vivo have significant effects on dendritic spine morphology, maintenance and activity-dependent plasticity for a variety of CNS neurons, yet little is known regarding BDNF effects on bulb GC spine maturation or maintenance. Here we show that, in vivo, sustained bulbar over-expression of BDNF in transgenic mice produces a marked increase in GC spine density that includes an increase in mature spines on their apical dendrites. Morphometric analysis demonstrated that changes in spine density were most notable in the distal and proximal apical domains, indicating that multiple excitatory inputs are potentially modified by BDNF. Our results indicate that increased levels of endogenous BDNF can promote the maturation and/or maintenance of dendritic spines on GCs, suggesting a role for this factor in modulating GC functional connectivity within adult olfactory circuitry.

  8. Contextual Learning Induces Dendritic Spine Clustering in Retrosplenial Cortex

    Directory of Open Access Journals (Sweden)

    Adam C Frank

    2014-03-01

    Full Text Available Molecular and electrophysiological studies find convergent evidence suggesting that plasticity within a dendritic tree is not randomly dispersed, but rather clustered into functional groups. Further, results from in silico neuronal modeling show that clustered plasticity is able to increase storage capacity 45 times compared to dispersed plasticity. Recent in vivo work utilizing chronic 2-photon microscopy tested the clustering hypothesis and showed that repetitive motor learning is able to induce clustered addition of new dendritic spines on apical dendrites of L5 neurons in primary motor cortex; moreover, clustered spines were found to be more stable than non-clustered spines, suggesting a physiological role for spine clustering. To further test this hypothesis we used in vivo 2-photon imaging in Thy1-YFP-H mice to chronically examine dendritic spine dynamics in retrosplenial cortex (RSC during spatial learning. RSC is a key component of an extended spatial learning and memory circuit that includes hippocampus and entorhinal cortex. Importantly, RSC is known from both lesion and immediate early gene studies to be critically involved in spatial learning and more specifically in contextual fear conditioning. We utilized a modified contextual fear conditioning protocol wherein animals received a mild foot shock each day for five days; this protocol induces gradual increases in context freezing over several days before the animals reach a behavioral plateau. We coupled behavioral training with four separate in vivo imaging sessions, two before training begins, one early in training, and a final session after training is complete. This allowed us to image spine dynamics before training as well as early in learning and after animals had reached behavioral asymptote. We find that this contextual learning protocol induces a statistically significant increase in the formation of clusters of new dendritic spines in trained animals when compared to home

  9. Learning rules and persistence of dendritic spines.

    Science.gov (United States)

    Kasai, Haruo; Hayama, Tatsuya; Ishikawa, Motoko; Watanabe, Satoshi; Yagishita, Sho; Noguchi, Jun

    2010-07-01

    Structural plasticity of dendritic spines underlies learning, memory and cognition in the cerebral cortex. We here summarize fifteen rules of spine structural plasticity, or 'spine learning rules.' Together, they suggest how the spontaneous generation, selection and strengthening (SGSS) of spines represents the physical basis for learning and memory. This SGSS mechanism is consistent with Hebb's learning rule but suggests new relations between synaptic plasticity and memory. We describe the cellular and molecular bases of the spine learning rules, such as the persistence of spine structures and the fundamental role of actin, which polymerizes to form a 'memory gel' required for the selection and strengthening of spine synapses. We also discuss the possible link between transcriptional and translational regulation of structural plasticity. The SGSS mechanism and spine learning rules elucidate the integral nature of synaptic plasticity in neuronal network operations within the actual brain tissue.

  10. Age-Based Comparison of Human Dendritic Spine Structure Using Complete Three-Dimensional Reconstructions

    Science.gov (United States)

    Benavides-Piccione, Ruth; Fernaud-Espinosa, Isabel; Robles, Victor; Yuste, Rafael; DeFelipe, Javier

    2013-01-01

    Dendritic spines of pyramidal neurons are targets of most excitatory synapses in the cerebral cortex. Recent evidence suggests that the morphology of the dendritic spine could determine its synaptic strength and learning rules. However, unfortunately, there are scant data available regarding the detailed morphology of these structures for the human cerebral cortex. In the present study, we analyzed over 8900 individual dendritic spines that were completely 3D reconstructed along the length of apical and basal dendrites of layer III pyramidal neurons in the cingulate cortex of 2 male humans (aged 40 and 85 years old), using intracellular injections of Lucifer Yellow in fixed tissue. We assembled a large, quantitative database, which revealed a major reduction in spine densities in the aged case. Specifically, small and short spines of basal dendrites and long spines of apical dendrites were lost, regardless of the distance from the soma. Given the age difference between the cases, our results suggest selective alterations in spines with aging in humans and indicate that the spine volume and length are regulated by different biological mechanisms. PMID:22710613

  11. Actin remodeling and polymerization forces control dendritic spine morphology

    OpenAIRE

    2015-01-01

    Dendritic spines are small membranous structures that protrude from the neuronal dendrite. Each spine contains a synaptic contact site that may connect its parent dendrite to the axons of neighboring neurons. Dendritic spines are markedly distinct in shape and size, and certain types of stimulation prompt spines to evolve, in fairly predictable fashion, from thin nascent morphologies to the mushroom-like shapes associated with mature spines. This striking progression is coincident with the (r...

  12. Polarity Determinants in Dendritic Spine Development and Plasticity.

    Science.gov (United States)

    Zhang, Huaye

    2016-01-01

    The asymmetric distribution of various proteins and RNAs is essential for all stages of animal development, and establishment and maintenance of this cellular polarity are regulated by a group of conserved polarity determinants. Studies over the last 10 years highlight important functions for polarity proteins, including apical-basal polarity and planar cell polarity regulators, in dendritic spine development and plasticity. Remarkably, many of the conserved polarity machineries function in similar manners in the context of spine development as they do in epithelial morphogenesis. Interestingly, some polarity proteins also utilize neuronal-specific mechanisms. Although many questions remain unanswered in our understanding of how polarity proteins regulate spine development and plasticity, current and future research will undoubtedly shed more light on how this conserved group of proteins orchestrates different pathways to shape the neuronal circuitry.

  13. Polarity Determinants in Dendritic Spine Development and Plasticity

    Directory of Open Access Journals (Sweden)

    Huaye Zhang

    2016-01-01

    Full Text Available The asymmetric distribution of various proteins and RNAs is essential for all stages of animal development, and establishment and maintenance of this cellular polarity are regulated by a group of conserved polarity determinants. Studies over the last 10 years highlight important functions for polarity proteins, including apical-basal polarity and planar cell polarity regulators, in dendritic spine development and plasticity. Remarkably, many of the conserved polarity machineries function in similar manners in the context of spine development as they do in epithelial morphogenesis. Interestingly, some polarity proteins also utilize neuronal-specific mechanisms. Although many questions remain unanswered in our understanding of how polarity proteins regulate spine development and plasticity, current and future research will undoubtedly shed more light on how this conserved group of proteins orchestrates different pathways to shape the neuronal circuitry.

  14. Dendritic spine detection using curvilinear structure detector and LDA classifier.

    Science.gov (United States)

    Zhang, Yong; Zhou, Xiaobo; Witt, Rochelle M; Sabatini, Bernardo L; Adjeroh, Donald; Wong, Stephen T C

    2007-06-01

    Dendritic spines are small, bulbous cellular compartments that carry synapses. Biologists have been studying the biochemical pathways by examining the morphological and statistical changes of the dendritic spines at the intracellular level. In this paper a novel approach is presented for automated detection of dendritic spines in neuron images. The dendritic spines are recognized as small objects of variable shape attached or detached to multiple dendritic backbones in the 2D projection of the image stack along the optical direction. We extend the curvilinear structure detector to extract the boundaries as well as the centerlines for the dendritic backbones and spines. We further build a classifier using Linear Discriminate Analysis (LDA) to classify the attached spines into valid and invalid types to improve the accuracy of the spine detection. We evaluate the proposed approach by comparing with the manual results in terms of backbone length, spine number, spine length, and spine density.

  15. The spine problem: finding a function for dendritic spines.

    Science.gov (United States)

    Malanowski, Sarah; Craver, Carl F

    2014-01-01

    Why do neurons have dendritic spines? This question-the heart of what Yuste calls "the spine problem"-presupposes that why-questions of this sort have scientific answers: that empirical findings can favor or count against claims about why neurons have spines. Here we show how such questions can receive empirical answers. We construe such why-questions as questions about how spines make a difference to the behavior of some mechanism that we take to be significant. Why-questions are driven fundamentally by the effort to understand how some item, such as the dendritic spine, is situated in the causal structure of the world (the causal nexus). They ask for a filter on that busy world that allows us to see a part's individual contribution to a mechanism, independent of everything else going on. So understood, answers to why-questions can be assessed by testing the claims these answers make about the causal structure of a mechanism. We distinguish four ways of making a difference to a mechanism (necessary, modulatory, component, background condition), and we sketch their evidential requirements. One consequence of our analysis is that there are many spine problems and that any given spine problem might have many acceptable answers.

  16. The spine problem: Finding a function for dendritic spines

    Directory of Open Access Journals (Sweden)

    Sarah eMalanowski

    2014-09-01

    Full Text Available Why do neurons have dendritic spines? This question— the heart of what Yuste calls the spine problem— presupposes that why-questions of this sort have scientific answers: that empirical findings can favor or count against claims about why neurons have spines. Here we show how such questions can receive empirical answers. We construe such why-questions as questions about how spines make a difference to the behavior of some mechanism that we take to be significant. Why-questions are driven fundamentally by the effort to understand how some item, such as the dendritic spine, is situated in the causal structure of the world (the causal nexus. They ask for a filter on that busy world that allows us to see a part’s individual contribution to a mechanism, independent of everything else going on. So understood, answers to why-questions can be assessed by testing the claims these answers make about the causal structure of a mechanism. We distinguish four ways of making a difference to a mechanism (necessary, modulatory, component, background condition, and we sketch their evidential requirements. One consequence of our analysis is that there are many spine problems and that any given spine problem might have many acceptable answers.

  17. Fine structure of synapses on dendritic spines

    Directory of Open Access Journals (Sweden)

    Michael eFrotscher

    2014-09-01

    Full Text Available Camillo Golgi’s Reazione Nera led to the discovery of dendritic spines, small appendages originating from dendritic shafts. With the advent of electron microscopy (EM they were identified as sites of synaptic contact. Later it was found that changes in synaptic strength were associated with changes in the shape of dendritic spines. While live-cell imaging was advantageous in monitoring the time course of such changes in spine structure, EM is still the best method for the simultaneous visualization of all cellular components, including actual synaptic contacts, at high resolution. Immunogold labeling for EM reveals the precise localization of molecules in relation to synaptic structures. Previous EM studies of spines and synapses were performed in tissue subjected to aldehyde fixation and dehydration in ethanol, which is associated with protein denaturation and tissue shrinkage. It has remained an issue to what extent fine structural details are preserved when subjecting the tissue to these procedures. In the present review, we report recent studies on the fine structure of spines and synapses using high-pressure freezing (HPF, which avoids protein denaturation by aldehydes and results in an excellent preservation of ultrastructural detail. In these studies, HPF was used to monitor subtle fine-structural changes in spine shape associated with chemically induced long-term potentiation (cLTP at identified hippocampal mossy fiber synapses. Changes in spine shape result from reorganization of the actin cytoskeleton. We report that cLTP was associated with decreased immunogold labeling for phosphorylated cofilin (p-cofilin, an actin-depolymerizing protein. Phosphorylation of cofilin renders it unable to depolymerize F-actin, which stabilizes the actin cytoskeleton. Decreased levels of p-cofilin, in turn, suggest increased actin turnover, possibly underlying the changes in spine shape associated with cLTP. The findings reviewed here establish HPF as

  18. Cranial irradiation alters dendritic spine density and morphology in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Ayanabha Chakraborti

    Full Text Available Therapeutic irradiation of the brain is a common treatment modality for brain tumors, but can lead to impairment of cognitive function. Dendritic spines are sites of excitatory synaptic transmission and changes in spine structure and number are thought to represent a morphological correlate of altered brain functions associated with hippocampal dependent learning and memory. To gain some insight into the temporal and sub region specific cellular changes in the hippocampus following brain irradiation, we investigated the effects of 10 Gy cranial irradiation on dendritic spines in young adult mice. One week or 1 month post irradiation, changes in spine density and morphology in dentate gyrus (DG granule and CA1 pyramidal neurons were quantified using Golgi staining. Our results showed that in the DG, there were significant reductions in spine density at both 1 week (11.9% and 1 month (26.9% after irradiation. In contrast, in the basal dendrites of CA1 pyramidal neurons, irradiation resulted in a significant reduction (18.7% in spine density only at 1 week post irradiation. Analysis of spine morphology showed that irradiation led to significant decreases in the proportion of mushroom spines at both time points in the DG as well as CA1 basal dendrites. The proportions of stubby spines were significantly increased in both the areas at 1 month post irradiation. Irradiation did not alter spine density in the CA1 apical dendrites, but there were significant changes in the proportion of thin and mushroom spines at both time points post irradiation. Although the mechanisms involved are not clear, these findings are the first to show that brain irradiation of young adult animals leads to alterations in dendritic spine density and morphology in the hippocampus in a time dependent and region specific manner.

  19. Barriers in the brain: resolving dendritic spine morphology and compartmentalization

    OpenAIRE

    2014-01-01

    Dendritic spines are micron-sized protrusions that harbor the majority of excitatory synapses in the central nervous system. The head of the spine is connected to the dendritic shaft by a 50–400 nm thin membrane tube, called the spine neck, which has been hypothesized to confine biochemical and electric signals within the spine compartment. Such compartmentalization could minimize interspinal crosstalk and thereby support spine-specific synapse plasticity. However, to what extent compartmenta...

  20. Barriers in the brain : resolving dendritic spine morphology and compartmentalization

    NARCIS (Netherlands)

    Adrian, Max; Kusters, Remy; Wierenga, Corette J; Storm, Cornelis; Hoogenraad, Casper C; Kapitein, Lukas C

    2014-01-01

    Dendritic spines are micron-sized protrusions that harbor the majority of excitatory synapses in the central nervous system. The head of the spine is connected to the dendritic shaft by a 50-400 nm thin membrane tube, called the spine neck, which has been hypothesized to confine biochemical and elec

  1. GABA-A receptor inhibition of local calcium signaling in spines and dendrites.

    Science.gov (United States)

    Marlin, Joseph J; Carter, Adam G

    2014-11-26

    Cortical interneurons activate GABA-A receptors to rapidly control electrical and biochemical signaling at pyramidal neurons. Different populations of interneurons are known to uniquely target the soma and dendrites of pyramidal neurons. However, the ability of these interneurons to inhibit Ca(2+) signaling at spines and dendrites is largely unexplored. Here we use whole-cell recordings, two-photon microscopy, GABA uncaging and optogenetics to study dendritic inhibition at layer 5 (L5) pyramidal neurons in slices of mouse PFC. We first show that GABA-A receptors strongly inhibit action potential (AP)-evoked Ca(2+) signals at both spines and dendrites. We find robust inhibition over tens of milliseconds that spreads along the dendritic branch. However, we observe no difference in the amount of inhibition at neighboring spines and dendrites. We then examine the influence of interneurons expressing parvalbumin (PV), somatostatin (SOM), or 5HT3a receptors. We determine that these populations of interneurons make unique contacts onto the apical and basal dendrites of L5 pyramidal neurons. We also show that SOM and 5HT3a but not PV interneurons potently inhibit AP Ca(2+) signals via GABA-A receptors at both spines and dendrites. These findings reveal how multiple interneurons regulate local Ca(2+) signaling in pyramidal neurons, with implications for cortical function and disease.

  2. Actin Remodeling and Polymerization Forces Control Dendritic Spine Morphology

    CERN Document Server

    Miermans, Karsten; Storm, Cornelis; Hoogenraad, Casper

    2015-01-01

    Dendritic spines are small membranous structures that protrude from the neuronal dendrite. Each spine contains a synaptic contact site that may connect its parent dendrite to the axons of neighboring neurons. Dendritic spines are markedly distinct in shape and size, and certain types of stimulation prompt spines to evolve, in fairly predictable fashion, from thin nascent morphologies to the mushroom-like shapes associated with mature spines. This striking progression is coincident with the (re)configuration of the neuronal network during early development, learning and memory formation, and has been conjectured to be part of the machinery that encodes these processes at the scale of individual neuronal connections. It is well established that the structural plasticity of spines is strongly dependent upon the actin cytoskeleton inside the spine. A general framework that details the precise role of actin in directing the transitions between the various spine shapes is lacking. We address this issue, and present...

  3. Biphasic synaptic Ca influx arising from compartmentalized electrical signals in dendritic spines.

    Directory of Open Access Journals (Sweden)

    Brenda L Bloodgood

    2009-09-01

    Full Text Available Excitatory synapses on mammalian principal neurons are typically formed onto dendritic spines, which consist of a bulbous head separated from the parent dendrite by a thin neck. Although activation of voltage-gated channels in the spine and stimulus-evoked constriction of the spine neck can influence synaptic signals, the contribution of electrical filtering by the spine neck to basal synaptic transmission is largely unknown. Here we use spine and dendrite calcium (Ca imaging combined with 2-photon laser photolysis of caged glutamate to assess the impact of electrical filtering imposed by the spine morphology on synaptic Ca transients. We find that in apical spines of CA1 hippocampal neurons, the spine neck creates a barrier to the propagation of current, which causes a voltage drop and results in spatially inhomogeneous activation of voltage-gated Ca channels (VGCCs on a micron length scale. Furthermore, AMPA and NMDA-type glutamate receptors (AMPARs and NMDARs, respectively that are colocalized on individual spine heads interact to produce two kinetically and mechanistically distinct phases of synaptically evoked Ca influx. Rapid depolarization of the spine triggers a brief and large Ca current whose amplitude is regulated in a graded manner by the number of open AMPARs and whose duration is terminated by the opening of small conductance Ca-activated potassium (SK channels. A slower phase of Ca influx is independent of AMPAR opening and is determined by the number of open NMDARs and the post-stimulus potential in the spine. Biphasic synaptic Ca influx only occurs when AMPARs and NMDARs are coactive within an individual spine. These results demonstrate that the morphology of dendritic spines endows associated synapses with specialized modes of signaling and permits the graded and independent control of multiple phases of synaptic Ca influx.

  4. Dendritic spine actin dynamics in neuronal maturation and synaptic plasticity.

    Science.gov (United States)

    Hlushchenko, Iryna; Koskinen, Mikko; Hotulainen, Pirta

    2016-09-01

    The majority of the postsynaptic terminals of excitatory synapses in the central nervous system exist on small bulbous structures on dendrites known as dendritic spines. The actin cytoskeleton is a structural element underlying the proper development and morphology of dendritic spines. Synaptic activity patterns rapidly change actin dynamics, leading to morphological changes in dendritic spines. In this mini-review, we will discuss recent findings on neuronal maturation and synaptic plasticity-induced changes in the dendritic spine actin cytoskeleton. We propose that actin dynamics in dendritic spines decrease through actin filament crosslinking during neuronal maturation. In long-term potentiation, we evaluate the model of fast breakdown of actin filaments through severing and rebuilding through polymerization and later stabilization through crosslinking. We will discuss the role of Ca(2+) in long-term depression, and suggest that actin filaments are dissolved through actin filament severing. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Neural Cell Adhesion Molecule NrCAM Regulates Semaphorin 3F-Induced Dendritic Spine Remodeling

    Science.gov (United States)

    Demyanenko, Galina P.; Mohan, Vishwa; Zhang, Xuying; Brennaman, Leann H.; Dharbal, Katherine E.S.; Tran, Tracy S.; Manis, Paul B.

    2014-01-01

    Neuron-glial related cell adhesion molecule (NrCAM) is a regulator of axon growth and repellent guidance, and has been implicated in autism spectrum disorders. Here a novel postsynaptic role for NrCAM in Semaphorin3F (Sema3F)-induced dendritic spine remodeling was identified in pyramidal neurons of the primary visual cortex (V1). NrCAM localized to dendritic spines of star pyramidal cells in postnatal V1, where it was coexpressed with Sema3F. NrCAM deletion in mice resulted in elevated spine densities on apical dendrites of star pyramidal cells at both postnatal and adult stages, and electron microscopy revealed increased numbers of asymmetric synapses in layer 4 of V1. Whole-cell recordings in cortical slices from NrCAM-null mice revealed increased frequency of mEPSCs in star pyramidal neurons. Recombinant Sema3F-Fc protein induced spine retraction on apical dendrites of wild-type, but not NrCAM-null cortical neurons in culture, while re-expression of NrCAM rescued the spine retraction response. NrCAM formed a complex in brain with Sema3F receptor subunits Neuropilin-2 (Npn-2) and PlexinA3 (PlexA3) through an Npn-2-binding sequence (TARNER) in the extracellular Ig1 domain. A trans heterozygous genetic interaction test demonstrated that Sema3F and NrCAM pathways interacted in vivo to regulate spine density in star pyramidal neurons. These findings reveal NrCAM as a novel postnatal regulator of dendritic spine density in cortical pyramidal neurons, and an integral component of the Sema3F receptor complex. The results implicate NrCAM as a contributor to excitatory/inhibitory balance in neocortical circuits. PMID:25143608

  6. Decreased dendritic spine density and abnormal spine morphology in Fyn knockout mice

    OpenAIRE

    2011-01-01

    Fyn is a Src-family tyrosine kinase that affects long term potentiation (LTP), synapse formation, and learning and memory. Fyn is also implicated in dendritic spine formation both in vitro and in vivo. However, whether Fyn’s regulation of dendritic spine formation is brain-region specific and age-dependent is unknown. In the present study, we systematically examined whether Fyn altered dendritic spine density and morphology in the cortex and hippocampus and if these effects were age-dependent...

  7. Differentiation of apical and basal dendrites in pyramidal cells and granule cells in dissociated hippocampal cultures.

    Science.gov (United States)

    Wu, You Kure; Fujishima, Kazuto; Kengaku, Mineko

    2015-01-01

    Hippocampal pyramidal cells and dentate granule cells develop morphologically distinct dendritic arbors, yet also share some common features. Both cell types form a long apical dendrite which extends from the apex of the cell soma, while short basal dendrites are developed only in pyramidal cells. Using quantitative morphometric analyses of mouse hippocampal cultures, we evaluated the differences in dendritic arborization patterns between pyramidal and granule cells. Furthermore, we observed and described the final apical dendrite determination during dendritic polarization by time-lapse imaging. Pyramidal and granule cells in culture exhibited similar dendritic patterns with a single principal dendrite and several minor dendrites so that the cell types were not readily distinguished by appearance. While basal dendrites in granule cells are normally degraded by adulthood in vivo, cultured granule cells retained their minor dendrites. Asymmetric growth of a single principal dendrite harboring the Golgi was observed in both cell types soon after the onset of dendritic growth. Time-lapse imaging revealed that up until the second week in culture, final principal dendrite designation was not stabilized, but was frequently replaced by other minor dendrites. Before dendritic polarity was stabilized, the Golgi moved dynamically within the soma and was repeatedly repositioned at newly emerging principal dendrites. Our results suggest that polarized growth of the apical dendrite is regulated by cell intrinsic programs, while regression of basal dendrites requires cue(s) from the extracellular environment in the dentate gyrus. The apical dendrite designation is determined from among multiple growing dendrites of young developing neurons.

  8. Cold-induced exodus of postsynaptic proteins from dendritic spines.

    Science.gov (United States)

    Cheng, Hui-Hsuan; Huang, Zu-Han; Lin, Wei-Hsiang; Chow, Wei-Yuan; Chang, Yen-Chung

    2009-02-01

    Dendritic spines are small protrusions on neuronal dendrites and the major target of the excitatory inputs in mammalian brains. Cultured neurons and brain slices are important tools in studying the biochemical and cellular properties of dendritic spines. During the processes of immunocytochemical studies of neurons and the preparation of brain slices, neurons were often kept at temperatures lower than 37 degrees C for varied lengths of time. This study sought to investigate whether and how cold treatment would affect the protein composition of dendritic spines. The results indicated that upon cold treatment four postsynaptic proteins, namely, alpha,beta-tubulins, calcium, calmodulin-dependent protein kinase IIalpha, and cytoplasmic dynein heavy chain and microtubule-associated protein 2, but not PSD-95 or AMPA receptors, exited from the majority of dendritic spines of cultured rat hippocampal neurons in a Gd(3+)-sensitive manner. The cold-induced exit of tubulins from dendritic spines was further found to be an energy-dependent process involving the activation of Gd(3+)-sensitive calcium channels and ryanodine receptors. The results thus indicate that changes in temperature, calcium concentration, and energy supply of the medium surrounding neurons would affect the protein composition of the dendritic spines and conceivably the protein composition of the subcellular organizations, such as the postsynaptic density, in the cytoplasm of dendritic spines.

  9. Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity

    NARCIS (Netherlands)

    Jaworski, J.; Kapitein, L.C.; Montenegro Gouveia, S.; Dortland, B.R.; Wulf, P.S.; Grigoriev, I.; Camera, P.; Spangler, S.A.; Di Stefano, P.; Demmers, J.; Krugers, H.; Defilippi, P.; Akhmanova, A.; Hoogenraad, C.C.

    2009-01-01

    Dendritic spines are the major sites of excitatory synaptic input, and their morphological changes have been linked to learning and memory processes. Here, we report that growing microtubule plus ends decorated by the microtubule tip-tracking protein EB3 enter spines and can modulate spine morpholog

  10. Sexual experience enhances cognitive flexibility and dendritic spine density in the medial prefrontal cortex.

    Science.gov (United States)

    Glasper, Erica R; LaMarca, Elizabeth A; Bocarsly, Miriam E; Fasolino, Maria; Opendak, Maya; Gould, Elizabeth

    2015-11-01

    The medial prefrontal cortex is important for cognitive flexibility, a capability that is affected by environmental conditions and specific experiences. Aversive experience, such as chronic restraint stress, is known to impair performance on a task of cognitive flexibility, specifically attentional set-shifting, in rats. Concomitant with this performance decrement, chronic stress reduces the number of dendritic spines on pyramidal neurons in the medial prefrontal cortex. No previous studies have examined whether a rewarding experience, namely mating, affects cognitive flexibility and dendritic spines in the medial prefrontal cortex of male rats. To test this possibility, we exposed adult male rats to sexual receptive females once daily for one week, assessed attentional set-shifting performance, and then analyzed their brains for changes in dendritic spines. We found that sexual experience improved performance on extradimensional set-shifting, which is known to require the medial prefrontal cortex. Additionally, we observed increased dendritic spine density on apical and basal dendrites of pyramidal neurons in the medial prefrontal cortex, but not the orbitofrontal cortex, after sexual experience. We also found that sexual experience enhanced dendritic spine density on granule neurons of the dentate gyrus. The ventral hippocampus sends a direct projection to the medial prefrontal cortex, raising the possibility that experience-dependent changes in the hippocampus are necessary for alterations in medial prefrontal cortex structure and function. As a first attempt at investigating this, we inactivated the ventral hippocampus with the GABA agonist muscimol, after each daily bout of sexual experience to observe whether the beneficial effects on cognitive flexibility were abolished. Contrary to our hypothesis, blocking hippocampal activity after sexual experience had no impact on enhanced cognitive flexibility. Taken together, these findings indicate that sexual

  11. Motherhood and the hormones of pregnancy modify concentrations of hippocampal neuronal dendritic spines.

    Science.gov (United States)

    Kinsley, Craig H; Trainer, Regina; Stafisso-Sandoz, Graciela; Quadros, Princy; Marcus, Lori Keyser; Hearon, Christa; Meyer, Elizabeth Ann Amory; Hester, Naomi; Morgan, Melissa; Kozub, Frederick J; Lambert, Kelly G

    2006-02-01

    Short-term fluctuations in steroid hormones such as estradiol (E2) and progesterone (P) can affect the concentration of hippocampal dendritic spines in adult, cycling nulliparous female rats. Pregnancy is characterized by a significantly longer duration of substantially elevated E2 and P compared to the estrous cycle. Thus, even greater changes than those reported during estrus may be evident. In two experiments, we examined the extent to which reproductive and hormonal state altered the concentration of apical neuronal dendritic spines of the CA1 region of the hippocampus in the following age-matched groups (N's = 7-10/group) of rats: in Exp. 1., CA1 dendritic spine density was examined in nulliparous diestrus (DES), proestrus (PRO), and estrus (ES) females, and late-pregnant (LP) (day 21) and lactating (day 5-6; LACT) females. In Exp. 2, the effects on spine density of a regimen mimicking pregnancy (and that stimulates maternal behavior) were examined, using ovariectomized, no hormone-exposed (OVX-minus) vs. sequential P&E(2)-treated (OVX + P&E2) groups. For both experiments, brains were removed, Golgi-Cox-stained and the most lateral tertiary branches of the apical dendrite of completely-stained hippocampal CA1 pyramidal neurons were traced with oil-immersion at x 1600 and dendritic spine density (# spines/10 micro dendritic segment) recorded. In Exp. 1, spine density was increased in LP and LACT females (which were not different) compared to the other virgin groups, including PRO females, who had more spines than DES and ES. In Exp. 2, OVX + P&E2 displayed significantly more dendritic spines per 10 micro than OVX-minus females (and had numbers that were similar to those of LP and LACT from Exp. 1). Pregnancy and its attendant hormonal fluctuations, therefore, may alter hippocampal neurons that regulate some non-pup-directed components of maternal behavior (e.g., nest building) or behaviors that support maternal behavior (e.g., foraging, associative memory).

  12. Paradoxical signaling regulates structural plasticity in dendritic spines

    OpenAIRE

    2016-01-01

    Transient spine enlargement (3- to 5-min timescale) is an important event associated with the structural plasticity of dendritic spines. Many of the molecular mechanisms associated with transient spine enlargement have been identified experimentally. Here, we use a systems biology approach to construct a mathematical model of biochemical signaling and actin-mediated transient spine expansion in response to calcium influx caused by NMDA receptor activation. We have identified that a key featur...

  13. Dendritic spine changes associated with normal aging.

    Science.gov (United States)

    Dickstein, D L; Weaver, C M; Luebke, J I; Hof, P R

    2013-10-22

    Given the rapid rate of population aging and the increased incidence of cognitive decline and neurodegenerative diseases with advanced age, it is important to ascertain the determinants that result in cognitive impairment. It is also important to note that much of the aged population exhibit 'successful' cognitive aging, in which cognitive impairment is minimal. One main goal of normal aging studies is to distinguish the neural changes that occur in unsuccessful (functionally impaired) subjects from those of successful (functionally unimpaired) subjects. In this review, we present some of the structural adaptations that neurons and spines undergo throughout normal aging and discuss their likely contributions to electrophysiological properties and cognition. Structural changes of neurons and dendritic spines during aging, and the functional consequences of such changes, remain poorly understood. Elucidating the structural and functional synaptic age-related changes that lead to cognitive impairment may lead to the development of drug treatments that can restore or protect neural circuits and mediate cognition and successful aging.

  14. Barriers in the brain: resolving dendritic spine morphology and compartmentalization.

    Science.gov (United States)

    Adrian, Max; Kusters, Remy; Wierenga, Corette J; Storm, Cornelis; Hoogenraad, Casper C; Kapitein, Lukas C

    2014-01-01

    Dendritic spines are micron-sized protrusions that harbor the majority of excitatory synapses in the central nervous system. The head of the spine is connected to the dendritic shaft by a 50-400 nm thin membrane tube, called the spine neck, which has been hypothesized to confine biochemical and electric signals within the spine compartment. Such compartmentalization could minimize interspinal crosstalk and thereby support spine-specific synapse plasticity. However, to what extent compartmentalization is governed by spine morphology, and in particular the diameter of the spine neck, has remained unresolved. Here, we review recent advances in tool development - both experimental and theoretical - that facilitate studying the role of the spine neck in compartmentalization. Special emphasis is given to recent advances in microscopy methods and quantitative modeling applications as we discuss compartmentalization of biochemical signals, membrane receptors and electrical signals in spines. Multidisciplinary approaches should help to answer how dendritic spine architecture affects the cellular and molecular processes required for synapse maintenance and modulation.

  15. Barriers in the Brain: Resolving Dendritic Spine Morphology and Compartmentalization

    Directory of Open Access Journals (Sweden)

    Max eAdrian

    2014-12-01

    Full Text Available Dendritic spines are micron-sized protrusions that harbor the majority of excitatory synapses in the central nervous system. The head of the spine is connected to the dendritic shaft by a 50-400 nm thin membrane tube, called the spine neck, which has been hypothesized to confine biochemical and electric signals within the spine compartment. Such compartmentalization could minimize interspinal crosstalk and thereby support spine-specific synapse plasticity. However, to what extent compartmentalization is governed by spine morphology, and in particular the diameter of the spine neck, has remained unresolved. Here, we review recent advances in tool development - both experimental and theoretical - that facilitate studying the role of the spine neck in compartmentalization. Special emphasis is given to recent advances in microscopy methods and quantitative modeling applications as we discuss compartmentalization of biochemical signals, membrane receptors and electrical signals in spines. Multidisciplinary approaches should help to answer how dendritic spine architecture affects the cellular and molecular processes required for synapse maintenance and modulation.

  16. Differentiation of apical and basal dendrites in pyramidal cells and granule cells in dissociated hippocampal cultures.

    Directory of Open Access Journals (Sweden)

    You Kure Wu

    Full Text Available Hippocampal pyramidal cells and dentate granule cells develop morphologically distinct dendritic arbors, yet also share some common features. Both cell types form a long apical dendrite which extends from the apex of the cell soma, while short basal dendrites are developed only in pyramidal cells. Using quantitative morphometric analyses of mouse hippocampal cultures, we evaluated the differences in dendritic arborization patterns between pyramidal and granule cells. Furthermore, we observed and described the final apical dendrite determination during dendritic polarization by time-lapse imaging. Pyramidal and granule cells in culture exhibited similar dendritic patterns with a single principal dendrite and several minor dendrites so that the cell types were not readily distinguished by appearance. While basal dendrites in granule cells are normally degraded by adulthood in vivo, cultured granule cells retained their minor dendrites. Asymmetric growth of a single principal dendrite harboring the Golgi was observed in both cell types soon after the onset of dendritic growth. Time-lapse imaging revealed that up until the second week in culture, final principal dendrite designation was not stabilized, but was frequently replaced by other minor dendrites. Before dendritic polarity was stabilized, the Golgi moved dynamically within the soma and was repeatedly repositioned at newly emerging principal dendrites. Our results suggest that polarized growth of the apical dendrite is regulated by cell intrinsic programs, while regression of basal dendrites requires cue(s from the extracellular environment in the dentate gyrus. The apical dendrite designation is determined from among multiple growing dendrites of young developing neurons.

  17. MIM-Induced Membrane Bending Promotes Dendritic Spine Initiation.

    Science.gov (United States)

    Saarikangas, Juha; Kourdougli, Nazim; Senju, Yosuke; Chazal, Genevieve; Segerstråle, Mikael; Minkeviciene, Rimante; Kuurne, Jaakko; Mattila, Pieta K; Garrett, Lillian; Hölter, Sabine M; Becker, Lore; Racz, Ildikó; Hans, Wolfgang; Klopstock, Thomas; Wurst, Wolfgang; Zimmer, Andreas; Fuchs, Helmut; Gailus-Durner, Valérie; Hrabě de Angelis, Martin; von Ossowski, Lotta; Taira, Tomi; Lappalainen, Pekka; Rivera, Claudio; Hotulainen, Pirta

    2015-06-22

    Proper morphogenesis of neuronal dendritic spines is essential for the formation of functional synaptic networks. However, it is not known how spines are initiated. Here, we identify the inverse-BAR (I-BAR) protein MIM/MTSS1 as a nucleator of dendritic spines. MIM accumulated to future spine initiation sites in a PIP2-dependent manner and deformed the plasma membrane outward into a proto-protrusion via its I-BAR domain. Unexpectedly, the initial protrusion formation did not involve actin polymerization. However, PIP2-dependent activation of Arp2/3-mediated actin assembly was required for protrusion elongation. Overexpression of MIM increased the density of dendritic protrusions and suppressed spine maturation. In contrast, MIM deficiency led to decreased density of dendritic protrusions and larger spine heads. Moreover, MIM-deficient mice displayed altered glutamatergic synaptic transmission and compatible behavioral defects. Collectively, our data identify an important morphogenetic pathway, which initiates spine protrusions by coupling phosphoinositide signaling, direct membrane bending, and actin assembly to ensure proper synaptogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Dendritic Spines in Depression: What We Learned from Animal Models

    Directory of Open Access Journals (Sweden)

    Hui Qiao

    2016-01-01

    Full Text Available Depression, a severe psychiatric disorder, has been studied for decades, but the underlying mechanisms still remain largely unknown. Depression is closely associated with alterations in dendritic spine morphology and spine density. Therefore, understanding dendritic spines is vital for uncovering the mechanisms underlying depression. Several chronic stress models, including chronic restraint stress (CRS, chronic unpredictable mild stress (CUMS, and chronic social defeat stress (CSDS, have been used to recapitulate depression-like behaviors in rodents and study the underlying mechanisms. In comparison with CRS, CUMS overcomes the stress habituation and has been widely used to model depression-like behaviors. CSDS is one of the most frequently used models for depression, but it is limited to the study of male mice. Generally, chronic stress causes dendritic atrophy and spine loss in the neurons of the hippocampus and prefrontal cortex. Meanwhile, neurons of the amygdala and nucleus accumbens exhibit an increase in spine density. These alterations induced by chronic stress are often accompanied by depression-like behaviors. However, the underlying mechanisms are poorly understood. This review summarizes our current understanding of the chronic stress-induced remodeling of dendritic spines in the hippocampus, prefrontal cortex, orbitofrontal cortex, amygdala, and nucleus accumbens and also discusses the putative underlying mechanisms.

  19. Computational Approach to Dendritic Spine Taxonomy and Shape Transition Analysis

    Science.gov (United States)

    Bokota, Grzegorz; Magnowska, Marta; Kuśmierczyk, Tomasz; Łukasik, Michał; Roszkowska, Matylda; Plewczynski, Dariusz

    2016-01-01

    The common approach in morphological analysis of dendritic spines of mammalian neuronal cells is to categorize spines into subpopulations based on whether they are stubby, mushroom, thin, or filopodia shaped. The corresponding cellular models of synaptic plasticity, long-term potentiation, and long-term depression associate the synaptic strength with either spine enlargement or spine shrinkage. Although a variety of automatic spine segmentation and feature extraction methods were developed recently, no approaches allowing for an automatic and unbiased distinction between dendritic spine subpopulations and detailed computational models of spine behavior exist. We propose an automatic and statistically based method for the unsupervised construction of spine shape taxonomy based on arbitrary features. The taxonomy is then utilized in the newly introduced computational model of behavior, which relies on transitions between shapes. Models of different populations are compared using supplied bootstrap-based statistical tests. We compared two populations of spines at two time points. The first population was stimulated with long-term potentiation, and the other in the resting state was used as a control. The comparison of shape transition characteristics allowed us to identify the differences between population behaviors. Although some extreme changes were observed in the stimulated population, statistically significant differences were found only when whole models were compared. The source code of our software is freely available for non-commercial use1. Contact: d.plewczynski@cent.uw.edu.pl. PMID:28066226

  20. Neuroelectric Tuning of Cortical Oscillations by Apical Dendrites in Loop Circuits

    Directory of Open Access Journals (Sweden)

    David LaBerge

    2017-06-01

    Full Text Available Bundles of relatively long apical dendrites dominate the neurons that make up the thickness of the cerebral cortex. It is proposed that a major function of the apical dendrite is to produce sustained oscillations at a specific frequency that can serve as a common timing unit for the processing of information in circuits connected to that apical dendrite. Many layer 5 and 6 pyramidal neurons are connected to thalamic neurons in loop circuits. A model of the apical dendrites of these pyramidal neurons has been used to simulate the electric activity of the apical dendrite. The results of that simulation demonstrated that subthreshold electric pulses in these apical dendrites can be tuned to specific frequencies and also can be fine-tuned to narrow bandwidths of less than one Hertz (1 Hz. Synchronous pulse outputs from the circuit loops containing apical dendrites can tune subthreshold membrane oscillations of neurons they contact. When the pulse outputs are finely tuned, they function as a local “clock,” which enables the contacted neurons to synchronously communicate with each other. Thus, a shared tuning frequency can select neurons for membership in a circuit. Unlike layer 6 apical dendrites, layer 5 apical dendrites can produce burst firing in many of their neurons, which increases the amplitude of signals in the neurons they contact. This difference in amplitude of signals serves as basis of selecting a sub-circuit for specialized processing (e.g., sustained attention within the typically larger layer 6-based circuit. After examining the sustaining of oscillations in loop circuits and the processing of spikes in network circuits, we propose that cortical functioning can be globally viewed as two systems: a loop system and a network system. The loop system oscillations influence the network system’s timing and amplitude of pulse signals, both of which can select circuits that are momentarily dominant in cortical activity.

  1. Correlated memory defects and hippocampal dendritic spine loss after acute stress involve corticotropin-releasing hormone signaling.

    Science.gov (United States)

    Chen, Yuncai; Rex, Christopher S; Rice, Courtney J; Dubé, Céline M; Gall, Christine M; Lynch, Gary; Baram, Tallie Z

    2010-07-20

    Stress affects the hippocampus, a brain region crucial for memory. In rodents, acute stress may reduce density of dendritic spines, the location of postsynaptic elements of excitatory synapses, and impair long-term potentiation and memory. Steroid stress hormones and neurotransmitters have been implicated in the underlying mechanisms, but the role of corticotropin-releasing hormone (CRH), a hypothalamic hormone also released during stress within hippocampus, has not been elucidated. In addition, the causal relationship of spine loss and memory defects after acute stress is unclear. We used transgenic mice that expressed YFP in hippocampal neurons and found that a 5-h stress resulted in profound loss of learning and memory. This deficit was associated with selective disruption of long-term potentiation and of dendritic spine integrity in commissural/associational pathways of hippocampal area CA3. The degree of memory deficit in individual mice correlated significantly with the reduced density of area CA3 apical dendritic spines in the same mice. Moreover, administration of the CRH receptor type 1 (CRFR(1)) blocker NBI 30775 directly into the brain prevented the stress-induced spine loss and restored the stress-impaired cognitive functions. We conclude that acute, hours-long stress impairs learning and memory via mechanisms that disrupt the integrity of hippocampal dendritic spines. In addition, establishing the contribution of hippocampal CRH-CRFR(1) signaling to these processes highlights the complexity of the orchestrated mechanisms by which stress impacts hippocampal structure and function.

  2. Hippocampal Dendritic Spines Are Segregated Depending on Their Actin Polymerization

    Directory of Open Access Journals (Sweden)

    Nuria Domínguez-Iturza

    2016-01-01

    Full Text Available Dendritic spines are mushroom-shaped protrusions of the postsynaptic membrane. Spines receive the majority of glutamatergic synaptic inputs. Their morphology, dynamics, and density have been related to synaptic plasticity and learning. The main determinant of spine shape is filamentous actin. Using FRAP, we have reexamined the actin dynamics of individual spines from pyramidal hippocampal neurons, both in cultures and in hippocampal organotypic slices. Our results indicate that, in cultures, the actin mobile fraction is independently regulated at the individual spine level, and mobile fraction values do not correlate with either age or distance from the soma. The most significant factor regulating actin mobile fraction was the presence of astrocytes in the culture substrate. Spines from neurons growing in the virtual absence of astrocytes have a more stable actin cytoskeleton, while spines from neurons growing in close contact with astrocytes show a more dynamic cytoskeleton. According to their recovery time, spines were distributed into two populations with slower and faster recovery times, while spines from slice cultures were grouped into one population. Finally, employing fast lineal acquisition protocols, we confirmed the existence of loci with high polymerization rates within the spine.

  3. Dendritic spine morphology and dynamics in health and disease

    Directory of Open Access Journals (Sweden)

    Lee S

    2015-06-01

    Full Text Available Stacey Lee,1 Huaye Zhang,2 Donna J Webb1,3,4 1Department of Biological Sciences, Vanderbilt University, Nashville, TN, 2Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 3Department of Cancer Biology, 4Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA Abstract: Dendritic spines are actin-rich structures that form the postsynaptic terminals of excitatory synapses in the brain. The development and plasticity of spines are essential for cognitive processes, such as learning and memory, and defects in their density, morphology, and size underlie a number of neurological disorders. In this review, we discuss the contribution and regulation of the actin cytoskeleton in spine formation and plasticity as well as learning and memory. We also highlight the role of key receptors and intracellular signaling pathways in modulating the development and morphology of spines and cognitive function. Moreover, we provide insight into spine/synapse defects associated with several neurological disorders and the molecular mechanisms that underlie these spine defects. Keywords: dendritic spines, synapses, synaptic plasticity, actin cytoskeleton, glutamate receptors, neurological disorders

  4. A novel approach for three dimensional dendrite spine segmentation and classification

    Science.gov (United States)

    He, Tiancheng; Xue, Zhong; Wong, Stephen T. C.

    2012-02-01

    Dendritic spines are small, bulbous cellular compartments that carry synapses. Biologists have been studying the biochemical and genetic pathways by examining the morphological changes of the dendritic spines at the intracellular level. Automatic dendritic spine detection from high resolution microscopic images is an important step for such morphological studies. In this paper, a novel approach to automated dendritic spine detection is proposed based on a nonlinear degeneration model. Dendritic spines are recognized as small objects with variable shapes attached to dendritic backbones. We explore the problem of dendritic spine detection from a different angle, i.e., the nonlinear degeneration equation (NDE) is utilized to enhance the morphological differences between the dendrite and spines. Using NDE, we simulated degeneration for dendritic spine detection. Based on the morphological features, the shrinking rate on dendrite pixels is different from that on spines, so that spines can be detected and segmented after degeneration simulation. Then, to separate spines into different types, Gaussian curvatures were employed, and the biomimetic pattern recognition theory was applied for spine classification. In the experiments, we compared quantitatively the spine detection accuracy with previous methods, and the results showed the accuracy and superiority of our methods.

  5. Increased proximal bifurcation of CA1 pyramidal apical dendrites in sema3A mutant mice.

    Science.gov (United States)

    Nakamura, Fumio; Ugajin, Kozue; Yamashita, Naoya; Okada, Takako; Uchida, Yutaka; Taniguchi, Masahiko; Ohshima, Toshio; Goshima, Yoshio

    2009-10-10

    Semaphorin-3A (Sema3A) is an attractive guidance molecule for cortical apical dendrites. To elucidate the role of Sema3A in hippocampal dendritic formation, we examined the Sema3A expression pattern in the perinatal hippocampal formation and analyzed hippocampal dendrites of the brains from young adult sema3A mutant mice. Sema3A protein was predominantly expressed in the hippocampal plate and the inner marginal zone at the initial period of apical dendritic growth. Neuropilin-1 and plexin-A, the receptor components for Sema3A, were also localized in the same regions. The Golgi impregnation method revealed that in wildtype mice more than 90% of hippocampal CA1 pyramidal neurons extended a single trunk or apical trunks bifurcated in stratum radiatum. Seven percent of the pyramidal neurons showed proximal bifurcation of apical trunks in stratum pyramidale or at the border of the stratum pyramidale and stratum radiatum. In sema3A mutant mice, proximally bifurcated apical dendrites were increased to 32%, while the single apical dendritic pyramidal neurons were decreased. We designate this phenotype in sema3A mutant mice as "proximal bifurcation." In the dissociated culture system, approximately half of the hippocampal neurons from wildtype mice resembled pyramidal neurons, which possess a long, thick, and tapered dendrite. In contrast, only 30% of the neurons from sema3A mutants exhibited pyramidal-like morphology. Proximal bifurcation of CA1 pyramidal neurons was also increased in the mutant mice of p35, an activator of cyclin-dependent kinase 5 (Cdk5). Thus, Sema3A may facilitate the initial growth of CA1 apical dendrites via the activation of p35/Cdk5, which may in turn signal hippocampal development.

  6. Cholinergic modulation differs between basal and apical dendritic excitation of hippocampal CA1 pyramidal cells.

    Science.gov (United States)

    Leung, L Stan; Péloquin, Pascal

    2010-08-01

    We hypothesize that endogenous cholinergic modulation of dendritic processing of hippocampal CA1 is layer specific, and it specifically enhances spike output resulting from basal as compared with the apical dendritic excitation. Laminar profiles of evoked field potentials were recorded in the CA1 area of urethane-anesthetized rats using multichannel silicon probes and analyzed as current source density. High-frequency stimulation of the pontis oralis (PnO) attenuated the midapical more than the basal or distal apical dendritic excitatory sink. Population spike (PS) and excitatory sink-PS potentiation resulting from basal dendritic excitation were facilitated, while the PS evoked by apical dendritic stimulation was attenuated by PnO stimulation. Perfusion of cholinergic agonist carbachol onto hippocampal slices in vitro also attenuated the apical more than the basal dendritic excitatory postsynaptic potentials. Excitatory sink attenuation and PS changes after PnO stimulation were blocked by systemic or local scopolamine and by intracerebroventricular (icv) M1 receptor antagonist pirenzepine but not by icv M2 receptor antagonist AFDX-116 or nicotinic antagonists. However, a hippocampal theta rhythm activated by PnO stimulation was blocked by systemic but not by local scopolamine. We conclude that endogenous acetylcholine mediates a stronger presynaptic inhibition of the midapical than basal and distal apical excitation mainly through M1 receptors.

  7. Combined role of seizure-induced dendritic morphology alterations and spine loss in newborn granule cells with mossy fiber sprouting on the hyperexcitability of a computer model of the dentate gyrus.

    Science.gov (United States)

    Tejada, Julian; Garcia-Cairasco, Norberto; Roque, Antonio C

    2014-05-01

    Temporal lobe epilepsy strongly affects hippocampal dentate gyrus granule cells morphology. These cells exhibit seizure-induced anatomical alterations including mossy fiber sprouting, changes in the apical and basal dendritic tree and suffer substantial dendritic spine loss. The effect of some of these changes on the hyperexcitability of the dentate gyrus has been widely studied. For example, mossy fiber sprouting increases the excitability of the circuit while dendritic spine loss may have the opposite effect. However, the effect of the interplay of these different morphological alterations on the hyperexcitability of the dentate gyrus is still unknown. Here we adapted an existing computational model of the dentate gyrus by replacing the reduced granule cell models with morphologically detailed models coming from three-dimensional reconstructions of mature cells. The model simulates a network with 10% of the mossy fiber sprouting observed in the pilocarpine (PILO) model of epilepsy. Different fractions of the mature granule cell models were replaced by morphologically reconstructed models of newborn dentate granule cells from animals with PILO-induced Status Epilepticus, which have apical dendritic alterations and spine loss, and control animals, which do not have these alterations. This complex arrangement of cells and processes allowed us to study the combined effect of mossy fiber sprouting, altered apical dendritic tree and dendritic spine loss in newborn granule cells on the excitability of the dentate gyrus model. Our simulations suggest that alterations in the apical dendritic tree and dendritic spine loss in newborn granule cells have opposing effects on the excitability of the dentate gyrus after Status Epilepticus. Apical dendritic alterations potentiate the increase of excitability provoked by mossy fiber sprouting while spine loss curtails this increase.

  8. Combined role of seizure-induced dendritic morphology alterations and spine loss in newborn granule cells with mossy fiber sprouting on the hyperexcitability of a computer model of the dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Julian Tejada

    2014-05-01

    Full Text Available Temporal lobe epilepsy strongly affects hippocampal dentate gyrus granule cells morphology. These cells exhibit seizure-induced anatomical alterations including mossy fiber sprouting, changes in the apical and basal dendritic tree and suffer substantial dendritic spine loss. The effect of some of these changes on the hyperexcitability of the dentate gyrus has been widely studied. For example, mossy fiber sprouting increases the excitability of the circuit while dendritic spine loss may have the opposite effect. However, the effect of the interplay of these different morphological alterations on the hyperexcitability of the dentate gyrus is still unknown. Here we adapted an existing computational model of the dentate gyrus by replacing the reduced granule cell models with morphologically detailed models coming from three-dimensional reconstructions of mature cells. The model simulates a network with 10% of the mossy fiber sprouting observed in the pilocarpine (PILO model of epilepsy. Different fractions of the mature granule cell models were replaced by morphologically reconstructed models of newborn dentate granule cells from animals with PILO-induced Status Epilepticus, which have apical dendritic alterations and spine loss, and control animals, which do not have these alterations. This complex arrangement of cells and processes allowed us to study the combined effect of mossy fiber sprouting, altered apical dendritic tree and dendritic spine loss in newborn granule cells on the excitability of the dentate gyrus model. Our simulations suggest that alterations in the apical dendritic tree and dendritic spine loss in newborn granule cells have opposing effects on the excitability of the dentate gyrus after Status Epilepticus. Apical dendritic alterations potentiate the increase of excitability provoked by mossy fiber sprouting while spine loss curtails this increase.

  9. Effects of ketamine and midazolam on morphology of dendritic spines in hippocampal CA1 region of neonatal mice

    Institute of Scientific and Technical Information of China (English)

    TAN Hong; REN Rong-rong; XIONG Zhi-qi; WANG Ying-wei

    2009-01-01

    Background It is a common phenomenon that children experience multiple general anesthesias in clinical practice, which raises the question whether repeated exposure to general anesthetics would interfere with the development of the central nervous system of children. The present study was designed to evaluate the effects of repeated treatment with ketamine or midazolam on postnatal dendrite development by examining the morphology of the dendritic spines of the pyramidal neurons in the hippocampal CA1 region in mice.Methods The transgenic green fluorescent protein-M line (GFP-M) mice were used in this study. Ketamine (100 mg/kg), midazolam (50 mg/kg) or saline (10 ml/kg) was administered intraperitoneally once a day on consecutive days from postnatal day 8 (P8) to postnatal day 12 (P12). At postnatal day 13 (P13) and postnatal day 30 (P30), the density and length of the apical dendritic spines of the pyramidal neurons in the hippocampal CA1 region were examined under a confocal microscope.Results At P13, for both the ketamine group and the midazolam group, the dendritic spines were found with a comparatively lower density and longer average length than in the control group. At P30, no significant difference in the density or average length of dendritic spines was found between the anesthetic group and control group.Conclusions This study indicated that repeated exposure to ketamine or midazolam in neonatal mice impaired dendritic spine maturation immediately afterwards, but this influence seemed to disappear during further postnatal development.

  10. Regional Regulation of Purkinje Cell Dendritic Spines by Integrins and Eph/Ephrins.

    Science.gov (United States)

    Heintz, Tristan G; Eva, Richard; Fawcett, James W

    2016-01-01

    Climbing fibres and parallel fibres compete for dendritic space on Purkinje cells in the cerebellum. Normally, climbing fibres populate the proximal dendrites, where they suppress the multiple small spines typical of parallel fibres, leading to their replacement by the few large spines that contact climbing fibres. Previous work has shown that ephrins acting via EphA4 are a signal for this change in spine type and density. We have used an in vitro culture model in which to investigate the ephrin effect on Purkinje cell dendritic spines and the role of integrins in these changes. We found that integrins α3, α5 and β4 are present in many of the dendritic spines of cultured Purkinje cells. pFAK, the main downstream signalling molecule from integrins, has a similar distribution, although the intenstity of pFAK staining and the percentage of pFAK+ spines was consistently higher in the proximal dendrites. Activating integrins with Mg2+ led to an increase in the intensity of pFAK staining and an increase in the proportion of pFAK+ spines in both the proximal and distal dendrites, but no change in spine length, density or morphology. Blocking integrin binding with an RGD-containing peptide led to a reduction in spine length, with more stubby spines on both proximal and distal dendrites. Treatment of the cultures with ephrinA3-Fc chimera suppressed dendritic spines specifically on the proximal dendrites and there was also a decrease of pFAK in spines on this domain. This effect was blocked by simultaneous activation of integrins with Mn2+. We conclude that Eph/ephrin signaling regulates proximal dendritic spines in Purkinje cells by inactivating integrin downstream signalling.

  11. Layer 4 pyramidal neurons exhibit robust dendritic spine plasticity in vivo after input deprivation.

    Science.gov (United States)

    Miquelajauregui, Amaya; Kribakaran, Sahana; Mostany, Ricardo; Badaloni, Aurora; Consalez, G Giacomo; Portera-Cailliau, Carlos

    2015-05-06

    Pyramidal neurons in layers 2/3 and 5 of primary somatosensory cortex (S1) exhibit somewhat modest synaptic plasticity after whisker input deprivation. Whether neurons involved at earlier steps of sensory processing show more or less plasticity has not yet been examined. Here, we used longitudinal in vivo two-photon microscopy to investigate dendritic spine dynamics in apical tufts of GFP-expressing layer 4 (L4) pyramidal neurons of the vibrissal (barrel) S1 after unilateral whisker trimming. First, we characterize the molecular, anatomical, and electrophysiological properties of identified L4 neurons in Ebf2-Cre transgenic mice. Next, we show that input deprivation results in a substantial (∼50%) increase in the rate of dendritic spine loss, acutely (4-8 d) after whisker trimming. This robust synaptic plasticity in L4 suggests that primary thalamic recipient pyramidal neurons in S1 may be particularly sensitive to changes in sensory experience. Ebf2-Cre mice thus provide a useful tool for future assessment of initial steps of sensory processing in S1.

  12. Apical dendrite degeneration, a novel cellular pathology for Betz cells in ALS

    Science.gov (United States)

    Genç, Barış; Jara, Javier H.; Lagrimas, Amiko K. B.; Pytel, Peter; Roos, Raymond P.; Mesulam, M. Marsel; Geula, Changiz; Bigio, Eileen H.; Özdinler, P. Hande

    2017-01-01

    Apical dendrites of Betz cells are important sites for the integration of cortical input, however their health has not been fully assessed in ALS patients. We investigated the primary motor cortices isolated from post-mortem normal control subjects, patients with familial ALS (fALS), sporadic ALS (sALS), ALS with frontotemporal dementia (FTD-ALS), and Alzheimer’s disease (AD), and found profound apical dendrite degeneration of Betz cells in both fALS and sALS, as well as FTD-ALS patients. In contrast, Betz cells of AD patients and normal controls retain cellular integrity in the motor cortex, and CA1 pyramidal neurons show abnormalities predominantly within their soma, rather than the apical dendrite. In line with extensive vacuolation and cytoarchitectural disintegration, the numbers of synapses were also significantly reduced only in ALS patients. Our findings indicate apical dendrite degeneration as a novel cellular pathology that distinguishes ALS and further support the importance of cortical dysfunction for disease pathology. PMID:28165465

  13. Activity-based anorexia has differential effects on apical dendritic branching in dorsal and ventral hippocampal CA1.

    Science.gov (United States)

    Chowdhury, Tara G; Barbarich-Marsteller, Nicole C; Chan, Thomas E; Aoki, Chiye

    2014-11-01

    Anorexia nervosa (AN) is an eating disorder to which adolescent females are particularly vulnerable. Like AN, activity-based anorexia (ABA), a rodent model of AN, results in elevation of stress hormones and has genetic links to anxiety disorders. The hippocampus plays a key role in the regulation of anxiety and responds with structural changes to hormones and stress, suggesting that it may play a role in AN. The hippocampus of ABA animals exhibits increased brain-derived neurotrophic factor and increased GABA receptor expression, but the structural effects of ABA have not been studied. We used Golgi staining of neurons to determine whether ABA in female rats during adolescence results in structural changes to the apical dendrites in hippocampal CA1 and contrasted to the effects of food restriction (FR) and exercise (EX), the environmental factors used to induce ABA. In the dorsal hippocampus, which preferentially mediates spatial learning and cognition, cells of ABA animals had less total dendritic length and fewer dendritic branches in stratum radiatum (SR) than in control (CON). In the ventral hippocampus, which preferentially mediates anxiety, ABA evoked more branching in SR than CON. In both dorsal and ventral regions, the main effect of exercise was localized to the SR while the main effect of food restriction occurred in the stratum lacunosum-moleculare. Taken together with data on spine density, these results indicate that ABA elicits pathway-specific changes in the hippocampus that may underlie the increased anxiety and reduced behavioral flexibility observed in ABA.

  14. Frequency-dependent signal processing in apical dendrites of hippocampal CA1 pyramidal cells.

    Science.gov (United States)

    Watanabe, H; Tsubokawa, H; Tsukada, M; Aihara, T

    2014-10-10

    Depending on an animal's behavioral state, hippocampal CA1 pyramidal cells receive distinct patterns of excitatory and inhibitory synaptic inputs. The time-dependent changes in the frequencies of these inputs and the nonuniform distribution of voltage-gated channels lead to dynamic fluctuations in membrane conductance. In this study, using a whole-cell patch-clamp method, we attempted to record and analyze the frequency dependencies of membrane responsiveness in Wistar rat hippocampal CA1 pyramidal cells following noise current injection directly into dendrites and somata under pharmacological blockade of all synaptic inputs. To estimate the frequency-dependent properties of membrane potential, membrane impedance was determined from the voltage response divided by the input current in the frequency domain. The cell membrane of most neurons showed low-pass filtering properties in all regions. In particular, the properties were strongly expressed in the somata or proximal dendrites. Moreover, the data revealed nonuniform distribution of dendritic impedance, which was high in the intermediate segment of the apical dendritic shaft (∼220-260μm from the soma). The low-pass filtering properties in the apical dendrites were more enhanced by membrane depolarization than those in the somata. Coherence spectral analysis revealed high coherence between the input signal and the output voltage response in the theta-gamma frequency range, and large lags emerged in the distal dendrites in the gamma frequency range. Our results suggest that apical dendrites of hippocampal CA1 pyramidal cells integrate synaptic inputs according to the frequency components of the input signal along the dendritic segments receiving the inputs.

  15. Synaptic Basis for Cross-modal Plasticity: Enhanced Supragranular Dendritic Spine Density in Anterior Ectosylvian Auditory Cortex of the Early Deaf Cat.

    Science.gov (United States)

    Clemo, H Ruth; Lomber, Stephen G; Meredith, M Alex

    2016-04-01

    In the cat, the auditory field of the anterior ectosylvian sulcus (FAES) is sensitive to auditory cues and its deactivation leads to orienting deficits toward acoustic, but not visual, stimuli. However, in early deaf cats, FAES activity shifts to the visual modality and its deactivation blocks orienting toward visual stimuli. Thus, as in other auditory cortices, hearing loss leads to cross-modal plasticity in the FAES. However, the synaptic basis for cross-modal plasticity is unknown. Therefore, the present study examined the effect of early deafness on the density, distribution, and size of dendritic spines in the FAES. Young cats were ototoxically deafened and raised until adulthood when they (and hearing controls) were euthanized, the cortex stained using Golgi-Cox, and FAES neurons examined using light microscopy. FAES dendritic spine density averaged 0.85 spines/μm in hearing animals, but was significantly higher (0.95 spines/μm) in the early deaf. Size distributions and increased spine density were evident specifically on apical dendrites of supragranular neurons. In separate tracer experiments, cross-modal cortical projections were shown to terminate predominantly within the supragranular layers of the FAES. This distributional correspondence between projection terminals and dendritic spine changes indicates that cross-modal plasticity is synaptically based within the supragranular layers of the early deaf FAES. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Chronic Ethanol During Adolescence Impacts Corticolimbic Dendritic Spines and Behavior.

    Science.gov (United States)

    Jury, Nicholas J; Pollack, Gabrielle A; Ward, Meredith J; Bezek, Jessica L; Ng, Alexandra J; Pinard, Courtney R; Bergstrom, Hadley C; Holmes, Andrew

    2017-07-01

    Risk for alcohol use disorders (AUDs) in adulthood is linked to alcohol drinking during adolescence, but understanding of the neural and behavioral consequences of alcohol exposure during adolescence remains incomplete. Here, we examined the neurobehavioral impact of adolescent chronic intermittent EtOH (CIE) vapor exposure in mice. C57BL/6J-background Thy1-EGFP mice were CIE-exposed during adolescence or adulthood and examined, as adults, for alterations in the density and morphology of dendritic spines in infralimbic (IL) cortex, prelimbic (PL) cortex, and basolateral amygdala (BLA). In parallel, adolescent- and adult-exposed C57BL/6J mice were tested as adults for 2-bottle EtOH drinking, sensitivity to EtOH intoxication (loss of righting reflex [LORR]), blood EtOH clearance, and measures of operant responding for food reward. CIE during adolescence decreased IL neuronal spine density and increased the head width of relatively wide-head IL and BLA spines, whereas CIE decreased head width of relatively narrow-head BLA spines. Adolescents had higher EtOH consumption prior to CIE than adults, while CIE during adulthood, but not adolescence, increased EtOH consumption relative to pre-CIE baseline. CIE produced a tolerance-like decrease in LORR sensitivity to EtOH challenge, irrespective of the age at which mice received CIE exposure. Mice exposed to CIE during adolescence, but not adulthood, required more sessions than AIR controls to reliably respond for food reward on a fixed-ratio (FR) 1, but not subsequent FR3, reinforcement schedule. On a progressive ratio reinforcement schedule, break point responding was higher in the adolescent- than the adult-exposed mice, regardless of CIE. Finally, footshock punishment markedly suppressed responding for reward in all groups. Exposure to CIE during adolescence altered dendritic spine density and morphology in IL and BLA neurons, in parallel with a limited set of behavioral alterations. Together, these data add to growing

  17. Cellular source-specific effects of apolipoprotein (apo) E4 on dendrite arborization and dendritic spine development.

    Science.gov (United States)

    Jain, Sachi; Yoon, Seo Yeon; Leung, Laura; Knoferle, Johanna; Huang, Yadong

    2013-01-01

    Apolipoprotein (apo) E4 is the leading genetic risk factor for Alzheimer's disease (AD), and it has a gene dose-dependent effect on the risk and age of onset of AD. Although apoE4 is primarily produced by astrocytes in the brain, neurons can also produce apoE4 under stress conditions. ApoE4 is known to inhibit neurite outgrowth and spine development in vitro and in vivo, but the potential influence of apoE4's cellular source on dendritic arborization and spine development has not yet been investigated. In this study, we report impairments in dendritic arborization and a loss of spines, especially thin (learning) and mushroom (memory) spines, in the hippocampus and entorhinal cortex of 19-21-month-old female neuron-specific-enolase (NSE)-apoE4 and apoE4-knockin (KI) mice compared to their respective apoE3-expressing counterparts. In general, NSE-apoE4 mice had more severe and widespread deficits in dendritic arborization as well as spine density and morphology than apoE4-KI mice. The loss of dendritic spines, especially mushroom spines, occurred in NSE-apoE4 mice as early as 7-8 months of age. In contrast, glial fibrillary acidic protein (GFAP)-apoE4 mice, which express apoE4 solely in astrocytes, did not have impairments in their dendrite arborization or spine density and morphology compared to GFAP-apoE3 mice at both ages. These results indicate that the effects of apoE4 on dendrite arborization, spine density, and spine morphology depend critically on its cellular source, with neuronal apoE4 having more detrimental effects than astrocytic apoE4.

  18. Cellular source-specific effects of apolipoprotein (apo E4 on dendrite arborization and dendritic spine development.

    Directory of Open Access Journals (Sweden)

    Sachi Jain

    Full Text Available Apolipoprotein (apo E4 is the leading genetic risk factor for Alzheimer's disease (AD, and it has a gene dose-dependent effect on the risk and age of onset of AD. Although apoE4 is primarily produced by astrocytes in the brain, neurons can also produce apoE4 under stress conditions. ApoE4 is known to inhibit neurite outgrowth and spine development in vitro and in vivo, but the potential influence of apoE4's cellular source on dendritic arborization and spine development has not yet been investigated. In this study, we report impairments in dendritic arborization and a loss of spines, especially thin (learning and mushroom (memory spines, in the hippocampus and entorhinal cortex of 19-21-month-old female neuron-specific-enolase (NSE-apoE4 and apoE4-knockin (KI mice compared to their respective apoE3-expressing counterparts. In general, NSE-apoE4 mice had more severe and widespread deficits in dendritic arborization as well as spine density and morphology than apoE4-KI mice. The loss of dendritic spines, especially mushroom spines, occurred in NSE-apoE4 mice as early as 7-8 months of age. In contrast, glial fibrillary acidic protein (GFAP-apoE4 mice, which express apoE4 solely in astrocytes, did not have impairments in their dendrite arborization or spine density and morphology compared to GFAP-apoE3 mice at both ages. These results indicate that the effects of apoE4 on dendrite arborization, spine density, and spine morphology depend critically on its cellular source, with neuronal apoE4 having more detrimental effects than astrocytic apoE4.

  19. Study of protein and RNA in dendritic spines using multi-isotope imaging mass spectrometry (MIMS).

    Science.gov (United States)

    Brismar, H; Aperia, A; Westin, L; Moy, J; Wang, M; Guillermier, C; Poczatek, C; Lechene, C

    2014-11-01

    The classical view of neuronal protein synthesis is that proteins are made in the cell body and then transported to their functional sites in the dendrites and the dendritic spines. Indirect evidence, however, suggests that protein synthesis can directly occur in the distal dendrites, far from the cell body. We are developing protocols for dual labeling of RNA and proteins using (15)N-uridine and (18)O- or (13)C-leucine pulse chase in cultured neurons to identify and localize both protein synthesis and fate of newly synthesized proteins. Pilot experiments show discrete localization of both RNA and newly synthesized proteins in dendrites, close to dendritic spines. We have for the first time directly imaged and measured the production of proteins at the subcellular level in the neuronal dendrites, close to the functional sites, the dendritic spines. This will open a powerful way to study neural growth and synapse plasticity in health and disease.

  20. Fractal dimension of apical dendritic arborization differs in the superficial and the deep pyramidal neurons of the rat cerebral neocortex.

    Science.gov (United States)

    Puškaš, Nela; Zaletel, Ivan; Stefanović, Bratislav D; Ristanović, Dušan

    2015-03-04

    Pyramidal neurons of the mammalian cerebral cortex have specific structure and pattern of organization that involves the presence of apical dendrite. Morphology of the apical dendrite is well-known, but quantification of its complexity still remains open. Fractal analysis has proved to be a valuable method for analyzing the complexity of dendrite morphology. The aim of this study was to establish the fractal dimension of apical dendrite arborization of pyramidal neurons in distinct neocortical laminae by using the modified box-counting method. A total of thirty, Golgi impregnated neurons from the rat brain were analyzed: 15 superficial (cell bodies located within lamina II-III), and 15 deep pyramidal neurons (cell bodies situated within lamina V-VI). Analysis of topological parameters of apical dendrite arborization showed no statistical differences except in total dendritic length (p=0.02), indicating considerable homogeneity between the two groups of neurons. On the other hand, average fractal dimension of apical dendrite was 1.33±0.06 for the superficial and 1.24±0.04 for the deep cortical neurons, showing statistically significant difference between these two groups (pfractal dimension values, apical dendrites of the superficial pyramidal neurons tend to show higher structural complexity compared to the deep ones.

  1. Cortical regulation of dopamine depletion-induced dendritic spine loss in striatal medium spiny neurons.

    Science.gov (United States)

    Neely, M D; Schmidt, D E; Deutch, A Y

    2007-10-26

    The proximate cause of Parkinson's disease is striatal dopamine depletion. Although no overt toxicity to striatal neurons has been reported in Parkinson's disease, one of the consequences of striatal dopamine loss is a decrease in the number of dendritic spines on striatal medium spiny neurons (MSNs). Dendrites of these neurons receive cortical glutamatergic inputs onto the dendritic spine head and dopaminergic inputs from the substantia nigra onto the spine neck. This synaptic arrangement suggests that dopamine gates corticostriatal glutamatergic drive onto spines. Using triple organotypic slice cultures composed of ventral mesencephalon, striatum, and cortex of the neonatal rat, we examined the role of the cortex in dopamine depletion-induced dendritic spine loss in MSNs. The striatal dopamine innervation was lesioned by treatment of the cultures with the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium (MPP+) or by removing the mesencephalon. Both MPP+ and mesencephalic ablation decreased MSN dendritic spine density. Analysis of spine morphology revealed that thin spines were preferentially lost after dopamine depletion. Removal of the cortex completely prevented dopamine depletion-induced spine loss. These data indicate that the dendritic remodeling of MSNs seen in parkinsonism occurs secondary to increases in corticostriatal glutamatergic drive, and suggest that modulation of cortical activity may be a useful therapeutic strategy in Parkinson's disease.

  2. Activity-dependent dendritic spine neck changes are correlated with synaptic strength.

    Science.gov (United States)

    Araya, Roberto; Vogels, Tim P; Yuste, Rafael

    2014-07-15

    Most excitatory inputs in the mammalian brain are made on dendritic spines, rather than on dendritic shafts. Spines compartmentalize calcium, and this biochemical isolation can underlie input-specific synaptic plasticity, providing a raison d'etre for spines. However, recent results indicate that the spine can experience a membrane potential different from that in the parent dendrite, as though the spine neck electrically isolated the spine. Here we use two-photon calcium imaging of mouse neocortical pyramidal neurons to analyze the correlation between the morphologies of spines activated under minimal synaptic stimulation and the excitatory postsynaptic potentials they generate. We find that excitatory postsynaptic potential amplitudes are inversely correlated with spine neck lengths. Furthermore, a spike timing-dependent plasticity protocol, in which two-photon glutamate uncaging over a spine is paired with postsynaptic spikes, produces rapid shrinkage of the spine neck and concomitant increases in the amplitude of the evoked spine potentials. Using numerical simulations, we explore the parameter regimes for the spine neck resistance and synaptic conductance changes necessary to explain our observations. Our data, directly correlating synaptic and morphological plasticity, imply that long-necked spines have small or negligible somatic voltage contributions, but that, upon synaptic stimulation paired with postsynaptic activity, they can shorten their necks and increase synaptic efficacy, thus changing the input/output gain of pyramidal neurons.

  3. Spines slow down dendritic chloride diffusion and affect short-term ionic plasticity of GABAergic inhibition

    Science.gov (United States)

    Mohapatra, Namrata; Tønnesen, Jan; Vlachos, Andreas; Kuner, Thomas; Deller, Thomas; Nägerl, U. Valentin; Santamaria, Fidel; Jedlicka, Peter

    2016-03-01

    Cl- plays a crucial role in neuronal function and synaptic inhibition. However, the impact of neuronal morphology on the diffusion and redistribution of intracellular Cl- is not well understood. The role of spines in Cl- diffusion along dendritic trees has not been addressed so far. Because measuring fast and spatially restricted Cl- changes within dendrites is not yet technically possible, we used computational approaches to predict the effects of spines on Cl- dynamics in morphologically complex dendrites. In all morphologies tested, including dendrites imaged by super-resolution STED microscopy in live brain tissue, spines slowed down longitudinal Cl- diffusion along dendrites. This effect was robust and could be observed in both deterministic as well as stochastic simulations. Cl- extrusion altered Cl- diffusion to a much lesser extent than the presence of spines. The spine-dependent slowing of Cl- diffusion affected the amount and spatial spread of changes in the GABA reversal potential thereby altering homosynaptic as well as heterosynaptic short-term ionic plasticity at GABAergic synapses in dendrites. Altogether, our results suggest a fundamental role of dendritic spines in shaping Cl- diffusion, which could be of relevance in the context of pathological conditions where spine densities and neural excitability are perturbed.

  4. ApoE receptor 2 regulates synapse and dendritic spine formation.

    Directory of Open Access Journals (Sweden)

    Sonya B Dumanis

    Full Text Available BACKGROUND: Apolipoprotein E receptor 2 (ApoEr2 is a postsynaptic protein involved in long-term potentiation (LTP, learning, and memory through unknown mechanisms. We examined the biological effects of ApoEr2 on synapse and dendritic spine formation-processes critical for learning and memory. METHODOLOGY/PRINCIPAL FINDINGS: In a heterologous co-culture synapse assay, overexpression of ApoEr2 in COS7 cells significantly increased colocalization with synaptophysin in primary hippocampal neurons, suggesting that ApoEr2 promotes interaction with presynaptic structures. In primary neuronal cultures, overexpression of ApoEr2 increased dendritic spine density. Consistent with our in vitro findings, ApoEr2 knockout mice had decreased dendritic spine density in cortical layers II/III at 1 month of age. We also tested whether the interaction between ApoEr2 and its cytoplasmic adaptor proteins, specifically X11α and PSD-95, affected synapse and dendritic spine formation. X11α decreased cell surface levels of ApoEr2 along with synapse and dendritic spine density. In contrast, PSD-95 increased cell surface levels of ApoEr2 as well as synapse and dendritic spine density. CONCLUSIONS/SIGNIFICANCE: These results suggest that ApoEr2 plays important roles in structure and function of CNS synapses and dendritic spines, and that these roles are modulated by cytoplasmic adaptor proteins X11α and PSD-95.

  5. Molecular architecture of synaptic actin cytoskeleton in hippocampal neurons reveals a mechanism of dendritic spine morphogenesis.

    Science.gov (United States)

    Korobova, Farida; Svitkina, Tatyana

    2010-01-01

    Excitatory synapses in the brain play key roles in learning and memory. The formation and functions of postsynaptic mushroom-shaped structures, dendritic spines, and possibly of presynaptic terminals, rely on actin cytoskeleton remodeling. However, the cytoskeletal architecture of synapses remains unknown hindering the understanding of synapse morphogenesis. Using platinum replica electron microscopy, we characterized the cytoskeletal organization and molecular composition of dendritic spines, their precursors, dendritic filopodia, and presynaptic boutons. A branched actin filament network containing Arp2/3 complex and capping protein was a dominant feature of spine heads and presynaptic boutons. Surprisingly, the spine necks and bases, as well as dendritic filopodia, also contained a network, rather than a bundle, of branched and linear actin filaments that was immunopositive for Arp2/3 complex, capping protein, and myosin II, but not fascin. Thus, a tight actin filament bundle is not necessary for structural support of elongated filopodia-like protrusions. Dynamically, dendritic filopodia emerged from densities in the dendritic shaft, which by electron microscopy contained branched actin network associated with dendritic microtubules. We propose that dendritic spine morphogenesis begins from an actin patch elongating into a dendritic filopodium, which tip subsequently expands via Arp2/3 complex-dependent nucleation and which length is modulated by myosin II-dependent contractility.

  6. Biophysical model of the role of actin remodeling on dendritic spine morphology

    Science.gov (United States)

    Miermans, C. A.; Kusters, R. P. T.; Hoogenraad, C. C.; Storm, C.

    2017-01-01

    Dendritic spines are small membranous structures that protrude from the neuronal dendrite. Each spine contains a synaptic contact site that may connect its parent dendrite to the axons of neighboring neurons. Dendritic spines are markedly distinct in shape and size, and certain types of stimulation prompt spines to evolve, in fairly predictable fashion, from thin nascent morphologies to the mushroom-like shapes associated with mature spines. It is well established that the remodeling of spines is strongly dependent upon the actin cytoskeleton inside the spine. A general framework that details the precise role of actin in directing the transitions between the various spine shapes is lacking. We address this issue, and present a quantitative, model-based scenario for spine plasticity validated using realistic and physiologically relevant parameters. Our model points to a crucial role for the actin cytoskeleton. In the early stages of spine formation, the interplay between the elastic properties of the spine membrane and the protrusive forces generated in the actin cytoskeleton propels the incipient spine. In the maturation stage, actin remodeling in the form of the combined dynamics of branched and bundled actin is required to form mature, mushroom-like spines. Importantly, our model shows that constricting the spine-neck aids in the stabilization of mature spines, thus pointing to a role in stabilization and maintenance for additional factors such as ring-like F-actin structures. Taken together, our model provides unique insights into the fundamental role of actin remodeling and polymerization forces during spine formation and maturation. PMID:28158194

  7. Hippocampal Dendritic Spines Modifications Induced by Perinatal Asphyxia

    Directory of Open Access Journals (Sweden)

    G. E. Saraceno

    2012-01-01

    Full Text Available Perinatal asphyxia (PA affects the synaptic function and morphological organization. In previous works, we have shown neuronal and synaptic changes in rat neostriatum subjected to hypoxia leading to long-term ubi-protein accumulation. Since F-actin is highly concentrated in dendritic spines, modifications in its organization could be related with alterations induced by hypoxia in the central nervous system (CNS. In the present study, we investigate the effects of PA on the actin cytoskeleton of hippocampal postsynaptic densities (PSD in 4-month-old rats. PSD showed an increment in their thickness and in the level of ubiquitination. Correlative fluorescence-electron microscopy photooxidation showed a decrease in the number of F-actin-stained spines in hippocampal excitatory synapses subjected to PA. Although Western Blot analysis also showed a slight decrease in β-actin in PSD in PA animals, the difference was not significant. Taken together, this data suggests that long-term actin cytoskeleton might have role in PSD alterations which would be a spread phenomenon induced by PA.

  8. MeCP2 mutation results in compartment-specific reductions in dendritic branching and spine density in layer 5 motor cortical neurons of YFP-H mice.

    Directory of Open Access Journals (Sweden)

    David P Stuss

    Full Text Available Rett Syndrome (RTT is a neurodevelopmental disorder predominantly caused by mutations in the X-linked gene MECP2. A primary feature of the syndrome is the impaired maturation and maintenance of excitatory synapses in the central nervous system (CNS. Different RTT mouse models have shown that particular Mecp2 mutations have highly variable effects on neuronal architecture. Distinguishing MeCP2 mutant cellular phenotypes therefore demands analysis of specific mutations in well-defined neuronal subpopulations. We examined a transgenically labeled subset of cortical neurons in YFP-H mice crossed with the Mecp2(tm1.1Jae mutant line. YFP(+ Layer 5 pyramidal neurons in the motor cortex of wildtype and hemizygous mutant male mice were examined for differences in dendrite morphology and spine density. Total basal dendritic length was decreased by 18.6% due to both shorter dendrites and reduced branching proximal to the soma. Tangential dendrite lengths in the apical tuft were reduced by up to 26.6%. Spine density was reduced by 47.4% in the apical tuft and 54.5% in secondary apical dendrites, but remained unaffected in primary apical and proximal basal dendrites. We also found that MeCP2 mutation reduced the number of YFP(+ cells in YFP-H mice by up to 72% in various cortical regions without affecting the intensity of YFP expression in individual cells. Our results support the view that the effects of MeCP2 mutation are highly context-dependent and cannot be generalized across mutation types and cell populations.

  9. Imaging dendritic spines of rat primary hippocampal neurons using structured illumination microscopy.

    Science.gov (United States)

    Schouten, Marijn; De Luca, Giulia M R; Alatriste González, Diana K; de Jong, Babette E; Timmermans, Wendy; Xiong, Hui; Krugers, Harm; Manders, Erik M M; Fitzsimons, Carlos P

    2014-05-04

    Dendritic spines are protrusions emerging from the dendrite of a neuron and represent the primary postsynaptic targets of excitatory inputs in the brain. Technological advances have identified these structures as key elements in neuron connectivity and synaptic plasticity. The quantitative analysis of spine morphology using light microscopy remains an essential problem due to technical limitations associated with light's intrinsic refraction limit. Dendritic spines can be readily identified by confocal laser-scanning fluorescence microscopy. However, measuring subtle changes in the shape and size of spines is difficult because spine dimensions other than length are usually smaller than conventional optical resolution fixed by light microscopy's theoretical resolution limit of 200 nm. Several recently developed super resolution techniques have been used to image cellular structures smaller than the 200 nm, including dendritic spines. These techniques are based on classical far-field operations and therefore allow the use of existing sample preparation methods and to image beyond the surface of a specimen. Described here is a working protocol to apply super resolution structured illumination microscopy (SIM) to the imaging of dendritic spines in primary hippocampal neuron cultures. Possible applications of SIM overlap with those of confocal microscopy. However, the two techniques present different applicability. SIM offers higher effective lateral resolution, while confocal microscopy, due to the usage of a physical pinhole, achieves resolution improvement at the expense of removal of out of focus light. In this protocol, primary neurons are cultured on glass coverslips using a standard protocol, transfected with DNA plasmids encoding fluorescent proteins and imaged using SIM. The whole protocol described herein takes approximately 2 weeks, because dendritic spines are imaged after 16-17 days in vitro, when dendritic development is optimal. After completion of the

  10. The dendritic spines of interneurons are dynamic structures influenced by PSA-NCAM expression.

    Science.gov (United States)

    Guirado, Ramon; Perez-Rando, Marta; Sanchez-Matarredona, David; Castillo-Gómez, Esther; Liberia, Teresa; Rovira-Esteban, Laura; Varea, Emilio; Crespo, Carlos; Blasco-Ibáñez, José Miguel; Nacher, Juan

    2014-11-01

    Excitatory neurons undergo dendritic spine remodeling in response to different stimuli. However, there is scarce information about this type of plasticity in interneurons. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) is a good candidate to mediate this plasticity as it participates in neuronal remodeling and is expressed by some mature cortical interneurons, which have reduced dendritic arborization, spine density, and synaptic input. To study the connectivity of the dendritic spines of interneurons and the influence of PSA-NCAM on their dynamics, we have analyzed these structures in a subpopulation of fluorescent spiny interneurons in the hippocampus of glutamic acid decarboxylase-enhanced green fluorescent protein transgenic mice. Our results show that these spines receive excitatory synapses. The depletion of PSA in vivo using the enzyme Endo-Neuraminidase-N (Endo-N) increases spine density when analyzed 2 days after, but decreases it 7 days after. The dendritic spine turnover was also analyzed in real time using organotypic hippocampal cultures: 24 h after the addition of EndoN, we observed an increase in the apparition rate of spines. These results indicate that dendritic spines are important structures in the control of the synaptic input of hippocampal interneurons and suggest that PSA-NCAM is relevant in the regulation of their morphology and connectivity.

  11. Isoflurane reversibly destabilizes hippocampal dendritic spines by an actin-dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Jimcy Platholi

    Full Text Available General anesthetics produce a reversible coma-like state through modulation of excitatory and inhibitory synaptic transmission. Recent evidence suggests that anesthetic exposure can also lead to sustained cognitive dysfunction. However, the subcellular effects of anesthetics on the structure of established synapses are not known. We investigated effects of the widely used volatile anesthetic isoflurane on the structural stability of hippocampal dendritic spines, a postsynaptic structure critical to excitatory synaptic transmission in learning and memory. Exposure to clinical concentrations of isoflurane induced rapid and non-uniform shrinkage and loss of dendritic spines in mature cultured rat hippocampal neurons. Spine shrinkage was associated with a reduction in spine F-actin concentration. Spine loss was prevented by either jasplakinolide or cytochalasin D, drugs that prevent F-actin disassembly. Isoflurane-induced spine shrinkage and loss were reversible upon isoflurane elimination. Thus, isoflurane destabilizes spine F-actin, resulting in changes to dendritic spine morphology and number. These findings support an actin-based mechanism for isoflurane-induced alterations of synaptic structure in the hippocampus. These reversible alterations in dendritic spine structure have important implications for acute anesthetic effects on excitatory synaptic transmission and synaptic stability in the hippocampus, a locus for anesthetic-induced amnesia, and have important implications for anesthetic effects on synaptic plasticity.

  12. Dopamine Induces LTP Differentially in Apical and Basal Dendrites through BDNF and Voltage-Dependent Calcium Channels

    Science.gov (United States)

    Navakkode, Sheeja; Sajikumar, Sreedharan; Korte, Martin; Soong, Tuck Wah

    2012-01-01

    The dopaminergic modulation of long-term potentiation (LTP) has been studied well, but the mechanism by which dopamine induces LTP (DA-LTP) in CA1 pyramidal neurons is unknown. Here, we report that DA-LTP in basal dendrites is dependent while in apical dendrites it is independent of activation of L-type voltage-gated calcium channels (VDCC).…

  13. Dopamine Induces LTP Differentially in Apical and Basal Dendrites through BDNF and Voltage-Dependent Calcium Channels

    Science.gov (United States)

    Navakkode, Sheeja; Sajikumar, Sreedharan; Korte, Martin; Soong, Tuck Wah

    2012-01-01

    The dopaminergic modulation of long-term potentiation (LTP) has been studied well, but the mechanism by which dopamine induces LTP (DA-LTP) in CA1 pyramidal neurons is unknown. Here, we report that DA-LTP in basal dendrites is dependent while in apical dendrites it is independent of activation of L-type voltage-gated calcium channels (VDCC).…

  14. Electrotonic signals along intracellular membranes may interconnect dendritic spines and nucleus.

    Directory of Open Access Journals (Sweden)

    Isaac Shemer

    2008-03-01

    Full Text Available Synapses on dendritic spines of pyramidal neurons show a remarkable ability to induce phosphorylation of transcription factors at the nuclear level with a short latency, incompatible with a diffusion process from the dendritic spines to the nucleus. To account for these findings, we formulated a novel extension of the classical cable theory by considering the fact that the endoplasmic reticulum (ER is an effective charge separator, forming an intrinsic compartment that extends from the spine to the nuclear membrane. We use realistic parameters to show that an electrotonic signal may be transmitted along the ER from the dendritic spines to the nucleus. We found that this type of signal transduction can additionally account for the remarkable ability of the cell nucleus to differentiate between depolarizing synaptic signals that originate from the dendritic spines and back-propagating action potentials. This study considers a novel computational role for dendritic spines, and sheds new light on how spines and ER may jointly create an additional level of processing within the single neuron.

  15. Steady-state dynamics and experience-dependent plasticity of dendritic spines of layer 4/5a pyramidal neurons in somatosensory cortex

    Directory of Open Access Journals (Sweden)

    Amaya Miquelajauregui

    2014-04-01

    Full Text Available The steady state dynamics and experience-dependent plasticity of dendritic spines of layer (L 2/3 and L5B cortical pyramidal neurons have recently been assessed using in vivo two-photon microscopy (Trachtenberg et al., 2002; Zuo et al., 2005; Holtmaat et al., 2006. In contrast, not much is known about spine dynamics in L4/5a neurons, regarded as direct recipients of thalamocortical input (Constantinople and Bruno, 2013. In the adult mouse somatosensory cortex (SCx, the transcription factor Ebf2 is enriched in excitatory neurons of L4/5a, including pyramidal neurons. We assessed the molecular and electrophysiological properties of these neurons as well as the morphology of their apical tufts (Scholl analysis and cortical outputs (optogenetics within the SCx. To test the hypothesis that L4/5a pyramidal neurons play an important role in sensory processing (given their key laminar position; soma depth ~450-480 µm, we successfully labeled them in Ebf2-Cre mice with EGFP by expressing recombinant rAAV vectors in utero. Using longitudinal in vivo two-photon microscopy through a craniotomy (Mostany and Portera-Cailliau, 2008, we repeatedly imaged spines in apical dendritic tufts of L4/5a neurons under basal conditions and after sensory deprivation. Under steady-state conditions in adults, the morphology of the apical tufts and the mean spine density were stable at 0.39 ± 0.05 spines/μm (comparable to L5B, Mostany et al., 2011. Interestingly, spine elimination increases 4-8 days after sensory deprivation, probably due to input loss. This suggests that Ebf2+ L4/5a neurons could be involved in early steps of processing of thalamocortical information.

  16. GABAB receptors modulate NMDA receptor calcium signals in dendritic spines.

    Science.gov (United States)

    Chalifoux, Jason R; Carter, Adam G

    2010-04-15

    Metabotropic GABA(B) receptors play a fundamental role in modulating the excitability of neurons and circuits throughout the brain. These receptors influence synaptic transmission by inhibiting presynaptic release or activating postsynaptic potassium channels. However, their ability to directly influence different types of postsynaptic glutamate receptors remains unresolved. Here we examine GABA(B) receptor modulation in layer 2/3 pyramidal neurons from the mouse prefrontal cortex. We use two-photon laser-scanning microscopy to study synaptic modulation at individual dendritic spines. Using two-photon optical quantal analysis, we first demonstrate robust presynaptic modulation of multivesicular release at single synapses. Using two-photon glutamate uncaging, we then reveal that GABA(B) receptors strongly inhibit NMDA receptor calcium signals. This postsynaptic modulation occurs via the PKA pathway and does not affect synaptic currents mediated by AMPA or NMDA receptors. This form of GABA(B) receptor modulation has widespread implications for the control of calcium-dependent neuronal function.

  17. BDNF pro-peptide regulates dendritic spines via caspase-3.

    Science.gov (United States)

    Guo, J; Ji, Y; Ding, Y; Jiang, W; Sun, Y; Lu, B; Nagappan, G

    2016-06-16

    The precursor of brain-derived neurotrophic factor (BDNF) (proBDNF) is enzymatically cleaved, by either intracellular (furin/PC1) or extracellular proteases (tPA/plasmin/MMP), to generate mature BDNF (mBDNF) and its pro-peptide (BDNF pro-peptide). Little is known about the function of BDNF pro-peptide. We have developed an antibody that specifically detects cleaved BDNF pro-peptide, but not proBDNF or mBDNF. Neuronal depolarization elicited a marked increase in extracellular BDNF pro-peptide, suggesting activity-dependent regulation of its extracellular levels. Exposure of BDNF pro-peptide to mature hippocampal neurons in culture dramatically reduced dendritic spine density. This effect was mediated by caspase-3, as revealed by studies with pharmacological inhibitors and genetic knockdown. BDNF pro-peptide also increased the number of 'elongated' mitochondria and cytosolic cytochrome c, suggesting the involvement of mitochondrial-caspase-3 pathway. These results, along with BDNF pro-peptide effects recently reported on growth cones and long-term depression (LTD), suggest that BDNF pro-peptide is a negative regulator of neuronal structure and function.

  18. Rapid Golgi analysis method for efficient and unbiased classification of dendritic spines.

    Directory of Open Access Journals (Sweden)

    W Christopher Risher

    Full Text Available Dendritic spines are the primary recipients of excitatory synaptic input in the brain. Spine morphology provides important information on the functional state of ongoing synaptic transmission. One of the most commonly used methods to visualize spines is Golgi-Cox staining, which is appealing both due to ease of sample preparation and wide applicability to multiple species including humans. However, the classification of spines is a time-consuming and often expensive task that yields widely varying results between individuals. Here, we present a novel approach to this analysis technique that uses the unique geometry of different spine shapes to categorize spines on a purely objective basis. This rapid Golgi spine analysis method successfully conveyed the maturational shift in spine types during development in the mouse primary visual cortex. This approach, built upon freely available software, can be utilized by researchers studying a broad range of synaptic connectivity phenotypes in both development and disease.

  19. Large and Small Dendritic Spines Serve Different Interacting Functions in Hippocampal Synaptic Plasticity and Homeostasis

    Directory of Open Access Journals (Sweden)

    Joshua J. W. Paulin

    2016-01-01

    Full Text Available The laying down of memory requires strong stimulation resulting in specific changes in synaptic strength and corresponding changes in size of dendritic spines. Strong stimuli can also be pathological, causing a homeostatic response, depressing and shrinking the synapse to prevent damage from too much Ca2+ influx. But do all types of dendritic spines serve both of these apparently opposite functions? Using confocal microscopy in organotypic slices from mice expressing green fluorescent protein in hippocampal neurones, the size of individual spines along sections of dendrite has been tracked in response to application of tetraethylammonium. This strong stimulus would be expected to cause both a protective homeostatic response and long-term potentiation. We report separation of these functions, with spines of different sizes reacting differently to the same strong stimulus. The immediate shrinkage of large spines suggests a homeostatic protective response during the period of potential danger. In CA1, long-lasting growth of small spines subsequently occurs consolidating long-term potentiation but only after the large spines return to their original size. In contrast, small spines do not change in dentate gyrus where potentiation does not occur. The separation in time of these changes allows clear functional differentiation of spines of different sizes.

  20. Activity-dependent accumulation of calcium in Purkinje cell dendritic spines.

    OpenAIRE

    Andrews, S.B.; Leapman, R D; Landis, D M; Reese, T S

    1988-01-01

    The calcium content of synapses of parallel fibers on Purkinje cell dendritic spines was determined by electron probe x-ray microanalysis of freeze-dried cryosections from directly frozen slices of mouse cerebellar cortex. In fresh slices frozen within 20-30 sec of excision, calcium concentrations ranging from 0.8 to 18.6 mmol/kg of dry weight were measured in cisterns of smooth endoplasmic reticulum within Purkinje cell dendritic spines. The average calcium content of spine cisterns in rapid...

  1. VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation.

    Science.gov (United States)

    Shih, Yu-Tzu; Hsueh, Yi-Ping

    2016-03-17

    Imbalanced protein homeostasis, such as excessive protein synthesis and protein aggregation, is a pathogenic hallmark of a range of neurological disorders. Here, using expression of mutant proteins, a knockdown approach and disease mutation knockin mice, we show that VCP (valosin-containing protein), together with its cofactor P47 and the endoplasmic reticulum (ER) morphology regulator ATL1 (Atlastin-1), regulates tubular ER formation and influences the efficiency of protein synthesis to control dendritic spine formation in neurons. Strengthening the significance of protein synthesis in dendritic spinogenesis, the translation blocker cyclohexamide and the mTOR inhibitor rapamycin reduce dendritic spine density, while a leucine supplement that increases protein synthesis ameliorates the dendritic spine defects caused by Vcp and Atl1 deficiencies. Because VCP and ATL1 are the causative genes of several neurodegenerative and neurodevelopmental disorders, we suggest that impaired ER formation and inefficient protein synthesis are significant in the pathogenesis of multiple neurological disorders.

  2. Brain-derived neurotrophic factor mediates estradiol-induced dendritic spine formation in hippocampal neurons.

    Science.gov (United States)

    Murphy, D D; Cole, N B; Segal, M

    1998-09-15

    Dendritic spines are of major importance in information processing and memory formation in central neurons. Estradiol has been shown to induce an increase of dendritic spine density on hippocampal neurons in vivo and in vitro. The neurotrophin brain-derived neurotrophic factor (BDNF) recently has been implicated in neuronal maturation, plasticity, and regulation of GABAergic interneurons. We now demonstrate that estradiol down-regulates BDNF in cultured hippocampal neurons to 40% of control values within 24 hr of exposure. This, in turn, decreases inhibition and increases excitatory tone in pyramidal neurons, leading to a 2-fold increase in dendritic spine density. Exogenous BDNF blocks the effects of estradiol on spine formation, and BDNF depletion with a selective antisense oligonucleotide mimics the effects of estradiol. Addition of BDNF antibodies also increases spine density, and diazepam, which facilitates GABAergic neurotransmission, blocks estradiol-induced spine formation. These observations demonstrate a functional link between estradiol, BDNF as a potent regulator of GABAergic interneurons, and activity-dependent formation of dendritic spines in hippocampal neurons.

  3. Automated 4D analysis of dendritic spine morphology: applications to stimulus-induced spine remodeling and pharmacological rescue in a disease model

    Directory of Open Access Journals (Sweden)

    Swanger Sharon A

    2011-10-01

    Full Text Available Abstract Uncovering the mechanisms that regulate dendritic spine morphology has been limited, in part, by the lack of efficient and unbiased methods for analyzing spines. Here, we describe an automated 3D spine morphometry method and its application to spine remodeling in live neurons and spine abnormalities in a disease model. We anticipate that this approach will advance studies of synapse structure and function in brain development, plasticity, and disease.

  4. Automated 4D analysis of dendritic spine morphology: applications to stimulus-induced spine remodeling and pharmacological rescue in a disease model

    OpenAIRE

    2011-01-01

    Abstract Uncovering the mechanisms that regulate dendritic spine morphology has been limited, in part, by the lack of efficient and unbiased methods for analyzing spines. Here, we describe an automated 3D spine morphometry method and its application to spine remodeling in live neurons and spine abnormalities in a disease model. We anticipate that this approach will advance studies of synapse structure and function in brain development, plasticity, and disease.

  5. The BDNF effects on dendritic spines of mature hippocampal neurons depend on neuronal activity

    Directory of Open Access Journals (Sweden)

    Yves eKellner

    2014-03-01

    Full Text Available The fine tuning of neural networks during development and learning relies upon both functional and structural plastic processes. Changes in the number as well as in the size and shape of dendritic spines are associated to long-term activity-dependent synaptic plasticity. However, the molecular mechanisms translating functional into structural changes are still largely unknown. In this context, neurotrophins, like Brain-Derived Neurotrophic Factor (BDNF, are among promising candidates. Specifically BDNF-TrkB receptor signaling is crucial for activity-dependent strengthening of synapses in different brain regions. BDNF application has been shown to positively modulate dendritic and spine architecture in cortical and hippocampal neurons as well as structural plasticity in vitro. However, a global BDNF deprivation throughout the central nervous system (CNS resulted in very mild structural alterations of dendritic spines, questioning the relevance of the endogenous BDNF signaling in modulating the development and the mature structure of neurons in vivo. Here we show that a loss-of-function approach, blocking BDNF results in a significant reduction in dendritic spine density, associated with an increase in spine length and a decrease in head width. These changes are associated with a decrease in F-actin levels within spine heads. On the other hand, a gain-of-function approach, applying exogenous BDNF, could not reproduce the increase in spine density or the changes in spine morphology previously described. Taken together, we show here that the effects exerted by BDNF on the dendritic architecture of hippocampal neurons are dependent on the neuron’s maturation stage. Indeed, in mature hippocampal neurons in vitro as shown in vivo BDNF is specifically required for the activity-dependent maintenance of the mature spine phenotype.

  6. Shape-induced asymmetric diffusion in dendritic spines allows efficient synaptic AMPA receptor trapping.

    Science.gov (United States)

    Kusters, Remy; Kapitein, Lukas C; Hoogenraad, Casper C; Storm, Cornelis

    2013-12-17

    Dendritic spines are the primary postsynaptic sites of excitatory neurotransmission in the brain. They exhibit a remarkable morphological variety, ranging from thin protrusions, to stubby shapes, to bulbous mushroom shapes. The remodeling of spines is thought to regulate the strength of the synaptic connection, which depends vitally on the number and the spatial distribution of AMPA-type glutamate receptors (AMPARs). We present numerical and analytical analyses demonstrating that this shape strongly affects AMPAR diffusion. We report a pronounced suppression of the receptor exit rate out of spines with decreasing neck radius. Thus, mushroomlike spines become highly effective at retaining receptors in the spine head. Moreover, we show that the postsynaptic density further enhances receptor trapping, particularly in mushroomlike spines local exocytosis in the spine head, in contrast to release at the base, provides rapid and specific regulatory control of AMPAR concentration at synapses.

  7. Thalamic input to distal apical dendrites in neocortical layer 1 is massive and highly convergent.

    Science.gov (United States)

    Rubio-Garrido, Pablo; Pérez-de-Manzo, Flor; Porrero, César; Galazo, Maria J; Clascá, Francisco

    2009-10-01

    Input to apical dendritic tufts is now deemed crucial for associative learning, attention, and similar "feedback" interactions in the cerebral cortex. Excitatory input to apical tufts in neocortical layer 1 has been traditionally assumed to be predominantly cortical, as thalamic pathways directed to this layer were regarded relatively scant and diffuse. However, the sensitive tracing methods used in the present study show that, throughout the rat neocortex, large numbers (mean approximately 4500/mm(2)) of thalamocortical neurons converge in layer 1 and that this convergence gives rise to a very high local density of thalamic terminals. Moreover, we show that the layer 1-projecting neurons are present in large numbers in most, but not all, motor, association, limbic, and sensory nuclei of the rodent thalamus. Some layer 1-projecting axons branch to innervate large swaths of the cerebral hemisphere, whereas others arborize within only a single cortical area. Present data imply that realistic modeling of cortical circuitry should factor in a dense axonal canopy carrying highly convergent thalamocortical input to pyramidal cell apical tufts. In addition, they are consistent with the notion that layer 1-projecting axons may be a robust anatomical substrate for extensive "feedback" interactions between cortical areas via the thalamus.

  8. Extracellular matrix control of dendritic spine and synapse structure and plasticity in adulthood

    Directory of Open Access Journals (Sweden)

    Aaron D Levy

    2014-10-01

    Full Text Available Dendritic spines are the receptive contacts at most excitatory synapses in the central nervous system. Spines are dynamic in the developing brain, changing shape as they mature as well as appearing and disappearing as they make and break connections. Spines become much more stable in adulthood, and spine structure must be actively maintained to support established circuit function. At the same time, adult spines must retain some plasticity so their structure can be modified by activity and experience. As such, the regulation of spine stability and remodeling in the adult animal is critical for normal function, and disruption of these processes is associated with a variety of late onset diseases including schizophrenia and Alzheimer’s disease. The extracellular matrix (ECM, composed of a meshwork of proteins and proteoglycans, is a critical regulator of spine and synapse stability and plasticity. While the role of ECM receptors in spine regulation has been extensively studied, considerably less research has focused directly on the role of specific ECM ligands. Here, we review the evidence for a role of several brain ECM ligands and remodeling proteases in the regulation of dendritic spine and synapse formation, plasticity, and stability in adults.

  9. Travelling waves in a model of quasi-active dendrites with active spines

    Science.gov (United States)

    Timofeeva, Y.

    2010-05-01

    Dendrites, the major components of neurons, have many different types of branching structures and are involved in receiving and integrating thousands of synaptic inputs from other neurons. Dendritic spines with excitable channels can be present in large densities on the dendrites of many cells. The recently proposed Spike-Diffuse-Spike (SDS) model that is described by a system of point hot-spots (with an integrate-and-fire process) embedded throughout a passive tree has been shown to provide a reasonable caricature of a dendritic tree with supra-threshold dynamics. Interestingly, real dendrites equipped with voltage-gated ion channels can exhibit not only supra-threshold responses, but also sub-threshold dynamics. This sub-threshold resonant-like oscillatory behaviour has already been shown to be adequately described by a quasi-active membrane. In this paper we introduce a mathematical model of a branched dendritic tree based upon a generalisation of the SDS model where the active spines are assumed to be distributed along a quasi-active dendritic structure. We demonstrate how solitary and periodic travelling wave solutions can be constructed for both continuous and discrete spine distributions. In both cases the speed of such waves is calculated as a function of system parameters. We also illustrate that the model can be naturally generalised to an arbitrary branched dendritic geometry whilst remaining computationally simple. The spatio-temporal patterns of neuronal activity are shown to be significantly influenced by the properties of the quasi-active membrane. Active (sub- and supra-threshold) properties of dendrites are known to vary considerably among cell types and animal species, and this theoretical framework can be used in studying the combined role of complex dendritic morphologies and active conductances in rich neuronal dynamics.

  10. Dendritic spine classification using shape and appearance features based on two-photon microscopy.

    Science.gov (United States)

    Ghani, Muhammad Usman; Mesadi, Fitsum; Kanık, Sümeyra Demir; Argunşah, Ali Özgür; Hobbiss, Anna Felicity; Israely, Inbal; Ünay, Devrim; Taşdizen, Tolga; Çetin, Müjdat

    2017-03-01

    Neuronal morphology and function are highly coupled. In particular, dendritic spine morphology is strongly governed by the incoming neuronal activity. The first step towards understanding the structure-function relationships is to classify spine shapes into the main spine types suggested in the literature. Due to the lack of reliable automated analysis tools, classification is mostly performed manually, which is a time-intensive task and prone to subjectivity. We propose an automated method to classify dendritic spines using shape and appearance features based on challenging two-photon laser scanning microscopy (2PLSM) data. Disjunctive Normal Shape Models (DNSM) is a recently proposed parametric shape representation. We perform segmentation of spine images by applying DNSM and use the resulting representation as shape features. Furthermore, we use Histogram of oriented gradients (HOG) to extract appearance features. In this context, we propose a kernel density estimation (KDE) based framework for dendritic spine classification, which uses these shape and appearance features. Our shape and appearance features based approach combined with Neural Network (NN) correctly classifies 87.06% of spines on a dataset of 456 spines. Our proposed method outperforms standard morphological feature based approaches. Our KDE based framework also enables neuroscientists to analyze the separability of spine shape classes in the likelihood ratio space, which leads to further insights about nature of the spine shape analysis problem. Results validate that performance of our proposed approach is comparable to a human expert. It also enable neuroscientists to study shape statistics in the likelihood ratio space. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Pathogenic SYNGAP1 mutations impair cognitive development by disrupting the maturation of dendritic spine synapses

    Science.gov (United States)

    Clement, James P.; Aceti, Massimiliano; Creson, Thomas K.; Ozkan, Emin D.; Shi, Yulin; Reish, Nicholas J.; Almonte, Antoine G.; Miller, Brooke H.; Wiltgen, Brian J.; Miller, Courtney A.; Xu, Xiangmin; Rumbaugh, Gavin

    2012-01-01

    SUMMARY Mutations that cause Intellectual Disability (ID) and Autism Spectrum Disorder (ASD) are commonly found in genes that encode for synaptic proteins. However, it remains unclear how mutations that disrupt synapse function impact intellectual ability. In the SYNGAP1 mouse model of ID/ASD, we found that dendritic spine synapses develop prematurely during the early postnatal period. Premature spine maturation dramatically enhanced excitability in the developing hippocampus, which corresponded with the emergence of behavioral abnormalities. Inducing SYNGAP1 mutations after critical developmental windows closed had minimal impact on spine synapse function, while repairing these pathogenic mutations in adulthood did not improve behavior and cognition. These data demonstrate that SynGAP protein acts as a critical developmental repressor of neural excitability that promotes the development of life-long cognitive abilities. We propose that the pace of dendritic spine synapse maturation in early life is a critical determinant of normal intellectual development. PMID:23141534

  12. Pathogenic SYNGAP1 mutations impair cognitive development by disrupting maturation of dendritic spine synapses.

    Science.gov (United States)

    Clement, James P; Aceti, Massimiliano; Creson, Thomas K; Ozkan, Emin D; Shi, Yulin; Reish, Nicholas J; Almonte, Antoine G; Miller, Brooke H; Wiltgen, Brian J; Miller, Courtney A; Xu, Xiangmin; Rumbaugh, Gavin

    2012-11-09

    Mutations that cause intellectual disability (ID) and autism spectrum disorder (ASD) are commonly found in genes that encode for synaptic proteins. However, it remains unclear how mutations that disrupt synapse function impact intellectual ability. In the SYNGAP1 mouse model of ID/ASD, we found that dendritic spine synapses develop prematurely during the early postnatal period. Premature spine maturation dramatically enhanced excitability in the developing hippocampus, which corresponded with the emergence of behavioral abnormalities. Inducing SYNGAP1 mutations after critical developmental windows closed had minimal impact on spine synapse function, whereas repairing these pathogenic mutations in adulthood did not improve behavior and cognition. These data demonstrate that SynGAP protein acts as a critical developmental repressor of neural excitability that promotes the development of life-long cognitive abilities. We propose that the pace of dendritic spine synapse maturation in early life is a critical determinant of normal intellectual development. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. The Oxygen Sensor PHD2 Controls Dendritic Spines and Synapses via Modification of Filamin A

    Directory of Open Access Journals (Sweden)

    Inmaculada Segura

    2016-03-01

    Full Text Available Neuronal function is highly sensitive to changes in oxygen levels, but how hypoxia affects dendritic spine formation and synaptogenesis is unknown. Here we report that hypoxia, chemical inhibition of the oxygen-sensing prolyl hydroxylase domain proteins (PHDs, and silencing of Phd2 induce immature filopodium-like dendritic protrusions, promote spine regression, reduce synaptic density, and decrease the frequency of spontaneous action potentials independently of HIF signaling. We identified the actin cross-linker filamin A (FLNA as a target of PHD2 mediating these effects. In normoxia, PHD2 hydroxylates the proline residues P2309 and P2316 in FLNA, leading to von Hippel-Lindau (VHL-mediated ubiquitination and proteasomal degradation. In hypoxia, PHD2 inactivation rapidly upregulates FLNA protein levels because of blockage of its proteasomal degradation. FLNA upregulation induces more immature spines, whereas Flna silencing rescues the immature spine phenotype induced by PHD2 inhibition.

  14. Protective effects of gastrodine on dendritic spines in kainic acid-injured neurons

    Institute of Scientific and Technical Information of China (English)

    Yangfei Ji; Boai Zhang; Yanjie Jia; Guifang Sun; Yu Liu; Tao Peng; Yanru Liu; Xingrong Ma

    2011-01-01

    EphB2 affects neuronal cells by altering the dendritic spines. The present study analyzed the neuroprotective effects of gastrodine by measuring EphB2 expression in rat neural cells cultured in vitro and injured by kainic acid. Gastrodine (12.5, 25, and 50 mg/L) improved morphology in kainic acid-injured neurons, reduced lactate dehydrogenase leakage, decreased neuronal apoptosis, and increased EphB2 expression in neuronal cells. A moderate dose of 25 mg/L gastrodine resulted in the most significant effects. These results suggested that gastrodine suppressed the neurotoxic effects of excitatory amino acids and provided neuroprotection by remodeling neuronal dendritic spines.

  15. Fluorescence imaging of dendritic spines of Golgi-Cox-stained neurons using brightening background

    Science.gov (United States)

    Ai, Min; Xiong, Hanqing; Yang, Tao; Shang, Zhenhua; Chen, Muqing; Liu, Xiuli; Zeng, Shaoqun

    2015-01-01

    We report a novel fluorescence imaging approach to imaging nonfluorescence-labeled biological tissue samples. The method was demonstrated by imaging neurons in Golgi-Cox-stained and epoxy-resin-embedded samples through the excitation of the background fluorescence of the specimens. The dark neurons stood out clearly against background fluorescence in the images, enabling the tracing of a single dendritic spine using both confocal and wide-field fluorescence microscopy. The results suggest that the reported fluorescence imaging method would provide an effective alternative solution to image nonfluorescence-labeled samples, and it allows tracing the dendritic spine structure of neurons.

  16. Control of Dendritic Spine Morphological and Functional Plasticity by Small GTPases

    Directory of Open Access Journals (Sweden)

    Kevin M. Woolfrey

    2016-01-01

    Full Text Available Structural plasticity of excitatory synapses is a vital component of neuronal development, synaptic plasticity, and behaviour. Abnormal development or regulation of excitatory synapses has also been strongly implicated in many neurodevelopmental, psychiatric, and neurodegenerative disorders. In the mammalian forebrain, the majority of excitatory synapses are located on dendritic spines, specialized dendritic protrusions that are enriched in actin. Research over recent years has begun to unravel the complexities involved in the regulation of dendritic spine structure. The small GTPase family of proteins have emerged as key regulators of structural plasticity, linking extracellular signals with the modulation of dendritic spines, which potentially underlies their ability to influence cognition. Here we review a number of studies that examine how small GTPases are activated and regulated in neurons and furthermore how they can impact actin dynamics, and thus dendritic spine morphology. Elucidating this signalling process is critical for furthering our understanding of the basic mechanisms by which information is encoded in neural circuits but may also provide insight into novel targets for the development of effective therapies to treat cognitive dysfunction seen in a range of neurological disorders.

  17. Effects of lead exposure on dendrite and spine development in hippocampal dentate gyrus areas of rats.

    Science.gov (United States)

    Hu, Fan; Ge, Meng-Meng; Chen, Wei-Heng

    2016-03-01

    Lead exposure has been implicated in the impairment of synaptic plasticity in the hippocampal dentate gyrus (DG) areas of rats. However, whether the degradation of physiological properties is based on the morphological alteration of granule neurons in DG areas remains elusive. Here, we examined the dendritic branch extension and spine formation of granule neurons after lead exposure during development in rats. Dendritic morphology was studied using Golgi-Cox stain method, which was followed by Sholl analysis at postnatal days 14 and 21. Our results indicated that, for both ages, lead exposure significantly decreased the total dendritic length and spine density of granule neurons in the DG of the rat hippocampus. Further branch order analysis revealed that the decrease of dendritic length was observed only at the second branch order. Moreover, there were obvious deficits in the proportion and size of mushroom-type spines. These deficits in spine formation and maturity were accompanied by a decrease in Arc/Arg3.1 expression. Our present findings are the first to show that developmental lead exposure disturbs branch and spine formation in hippocampal DG areas. Arc/Arg3.1 may have a critical role in the disruption of neuronal morphology and synaptic plasticity in lead-exposed rats. © 2016 Wiley Periodicals, Inc.

  18. Emerging Roles of Filopodia and Dendritic Spines in Motoneuron Plasticity during Development and Disease

    Directory of Open Access Journals (Sweden)

    Refik Kanjhan

    2016-01-01

    Full Text Available Motoneurons develop extensive dendritic trees for receiving excitatory and inhibitory synaptic inputs to perform a variety of complex motor tasks. At birth, the somatodendritic domains of mouse hypoglossal and lumbar motoneurons have dense filopodia and spines. Consistent with Vaughn’s synaptotropic hypothesis, we propose a developmental unified-hybrid model implicating filopodia in motoneuron spinogenesis/synaptogenesis and dendritic growth and branching critical for circuit formation and synaptic plasticity at embryonic/prenatal/neonatal period. Filopodia density decreases and spine density initially increases until postnatal day 15 (P15 and then decreases by P30. Spine distribution shifts towards the distal dendrites, and spines become shorter (stubby, coinciding with decreases in frequency and increases in amplitude of excitatory postsynaptic currents with maturation. In transgenic mice, either overexpressing the mutated human Cu/Zn-superoxide dismutase (hSOD1G93A gene or deficient in GABAergic/glycinergic synaptic transmission (gephyrin, GAD-67, or VGAT gene knockout, hypoglossal motoneurons develop excitatory glutamatergic synaptic hyperactivity. Functional synaptic hyperactivity is associated with increased dendritic growth, branching, and increased spine and filopodia density, involving actin-based cytoskeletal and structural remodelling. Energy-dependent ionic pumps that maintain intracellular sodium/calcium homeostasis are chronically challenged by activity and selectively overwhelmed by hyperactivity which eventually causes sustained membrane depolarization leading to excitotoxicity, activating microglia to phagocytose degenerating neurons under neuropathological conditions.

  19. Aluminum chloride induces neuroinflammation, loss of neuronal dendritic spine and cognition impairment in developing rat.

    Science.gov (United States)

    Cao, Zheng; Yang, Xu; Zhang, Haiyang; Wang, Haoran; Huang, Wanyue; Xu, Feibo; Zhuang, Cuicui; Wang, Xiaoguang; Li, Yanfei

    2016-05-01

    Aluminum (Al) is present in the daily life of humans, and the incidence of Al contamination increased in recent years. Long-term excessive Al intake induces neuroinflammation and cognition impairment. Neuroinflammation alter density of dendritic spine, which, in turn, influence cognition function. However, it is unknown whether increased neuroinflammation is associated with altered density of dendritic spine in Al-treated rats. In the present study, AlCl3 was orally administrated to rat at 50, 150 and 450 mg/kg for 90d. We examined the effects of AlCl3 on the cognition function, density of dendritic spine in hippocampus of CA1 and DG region and the mRNA levels of IL-1β, IL-6, TNF-α, MHC II, CX3CL1 and BNDF in developing rat. These results showed exposure to AlCl3 lead to increased mRNA levels of IL-1β, IL-6, TNF-α and MCH II, decreased mRNA levels of CX3CL1 and BDNF, decreased density of dendritic spine and impaired learning and memory in developing rat. Our results suggest AlCl3 can induce neuroinflammation that may result in loss of spine, and thereby leads to learning and memory deficits.

  20. The phospholipid-binding protein SESTD1 negatively regulates dendritic spine density by interfering with Rac1-Trio8 signaling pathway

    OpenAIRE

    Cheng-Che Lee; Chiung-Chun Huang; Kuei-Sen Hsu

    2015-01-01

    Dendritic spines are actin-rich protrusions from neuronal dendrites that harbor the majority of excitatory synapses. The balance of spine formation and retraction may influence dendritic integrity. While knowledge of the molecular mechanisms that promote dendritic spine formation has accumulated, little is known about the factors that limit spine formation. Here, we show that SESTD1, a phospholipid-binding protein containing a lipid-binding SEC14-like domain and two spectrin-repeat cytoskelet...

  1. Association of N-cadherin levels and downstream effectors of Rho GTPases with dendritic spine loss induced by chronic stress in rat hippocampal neurons.

    Science.gov (United States)

    Castañeda, Patricia; Muñoz, Mauricio; García-Rojo, Gonzalo; Ulloa, José L; Bravo, Javier A; Márquez, Ruth; García-Pérez, M Alexandra; Arancibia, Damaris; Araneda, Karina; Rojas, Paulina S; Mondaca-Ruff, David; Díaz-Véliz, Gabriela; Mora, Sergio; Aliaga, Esteban; Fiedler, Jenny L

    2015-10-01

    Chronic stress promotes cognitive impairment and dendritic spine loss in hippocampal neurons. In this animal model of depression, spine loss probably involves a weakening of the interaction between pre- and postsynaptic cell adhesion molecules, such as N-cadherin, followed by disruption of the cytoskeleton. N-cadherin, in concert with catenin, stabilizes the cytoskeleton through Rho-family GTPases. Via their effector LIM kinase (LIMK), RhoA and ras-related C3 botulinum toxin substrate 1 (RAC) GTPases phosphorylate and inhibit cofilin, an actin-depolymerizing molecule, favoring spine growth. Additionally, RhoA, through Rho kinase (ROCK), inactivates myosin phosphatase through phosphorylation of the myosin-binding subunit (MYPT1), producing actomyosin contraction and probable spine loss. Some micro-RNAs negatively control the translation of specific mRNAs involved in Rho GTPase signaling. For example, miR-138 indirectly activates RhoA, and miR-134 reduces LIMK1 levels, resulting in spine shrinkage; in contrast, miR-132 activates RAC1, promoting spine formation. We evaluated whether N-cadherin/β-catenin and Rho signaling is sensitive to chronic restraint stress. Stressed rats exhibit anhedonia, impaired associative learning, and immobility in the forced swim test and reduction in N-cadherin levels but not β-catenin in the hippocampus. We observed a reduction in spine number in the apical dendrites of CA1 pyramidal neurons, with no effect on the levels of miR-132 or miR-134. Although the stress did not modify the RAC-LIMK-cofilin signaling pathway, we observed increased phospho-MYPT1 levels, probably mediated by RhoA-ROCK activation. Furthermore, chronic stress raises the levels of miR-138 in accordance with the observed activation of the RhoA-ROCK pathway. Our findings suggest that a dysregulation of RhoA-ROCK activity by chronic stress could potentially underlie spine loss in hippocampal neurons. © 2015 Wiley Periodicals, Inc.

  2. Enlarged dendritic spines and pronounced neophobia in mice lacking the PSD protein RICH2

    OpenAIRE

    Sarowar, Tasnuva; Grabrucker, Stefanie; Föhr, Karl; Mangus, Katharina; Eckert, Matti; Bockmann, Juergen; Boeckers, Tobias M.; Andreas M. Grabrucker

    2016-01-01

    Background The majority of neurons within the central nervous system receive their excitatory inputs via small, actin-rich protrusions called dendritic spines. Spines can undergo rapid morphological alterations according to synaptic activity. This mechanism is implicated in learning and memory formation as it is ultimately altering the number and distribution of receptors and proteins at the post-synaptic membrane, thereby regulating synaptic input. The Rho-family GTPases play an important ro...

  3. Cell-Autonomous Regulation of Dendritic Spine Density by PirB

    Science.gov (United States)

    2016-01-01

    Synapse density on cortical pyramidal neurons is modulated by experience. This process is highest during developmental critical periods, when mechanisms of synaptic plasticity are fully engaged. In mouse visual cortex, the critical period for ocular dominance (OD) plasticity coincides with the developmental pruning of synapses. At this time, mice lacking paired Ig-like receptor B (PirB) have excess numbers of dendritic spines on L5 neurons; these spines persist and are thought to underlie the juvenile-like OD plasticity observed in adulthood. Here we examine whether PirB is required specifically in excitatory neurons to exert its effect on dendritic spine and synapse density during the critical period. In mice with a conditional allele of PirB (PirBfl/fl), PirB was deleted only from L2/3 cortical pyramidal neurons in vivo by timed in utero electroporation of Cre recombinase. Sparse mosaic expression of Cre produced neurons lacking PirB in a sea of wild-type neurons and glia. These neurons had significantly elevated dendritic spine density, as well as increased frequency of miniature EPSCs, suggesting that they receive a greater number of synaptic inputs relative to Cre– neighbors. The effect of cell-specific PirB deletion on dendritic spine density was not accompanied by changes in dendritic branching complexity or axonal bouton density. Together, results imply a neuron-specific, cell-autonomous action of PirB on synaptic density in L2/3 pyramidal cells of visual cortex. Moreover, they are consistent with the idea that PirB functions normally to corepress spine density and synaptic plasticity, thereby maintaining headroom for cells to encode ongoing experience-dependent structural change throughout life.

  4. Phosphorylation of CRMP2 by Cdk5 Regulates Dendritic Spine Development of Cortical Neuron in the Mouse Hippocampus

    Directory of Open Access Journals (Sweden)

    Xiaohua Jin

    2016-01-01

    Full Text Available Proper density and morphology of dendritic spines are important for higher brain functions such as learning and memory. However, our knowledge about molecular mechanisms that regulate the development and maintenance of dendritic spines is limited. We recently reported that cyclin-dependent kinase 5 (Cdk5 is required for the development and maintenance of dendritic spines of cortical neurons in the mouse brain. Previous in vitro studies have suggested the involvement of Cdk5 substrates in the formation of dendritic spines; however, their role in spine development has not been tested in vivo. Here, we demonstrate that Cdk5 phosphorylates collapsin response mediator protein 2 (CRMP2 in the dendritic spines of cultured hippocampal neurons and in vivo in the mouse brain. When we eliminated CRMP2 phosphorylation in CRMP2KI/KI mice, the densities of dendritic spines significantly decreased in hippocampal CA1 pyramidal neurons in the mouse brain. These results indicate that phosphorylation of CRMP2 by Cdk5 is important for dendritic spine development in cortical neurons in the mouse hippocampus.

  5. Reduced hippocampal dendritic spine density and BDNF expression following acute postnatal exposure to di(2-ethylhexyl phthalate in male Long Evans rats.

    Directory of Open Access Journals (Sweden)

    Catherine A Smith

    Full Text Available Early developmental exposure to di(2-ethylhexyl phthalate (DEHP has been linked to a variety of neurodevelopmental changes, particularly in rodents. The primary goal of this work was to establish whether acute postnatal exposure to a low dose of DEHP would alter hippocampal dendritic morphology and BDNF and caspase-3 mRNA expression in male and female Long Evans rats. Treatment with DEHP in male rats led to a reduction in spine density on basal and apical dendrites of neurons in the CA3 dorsal hippocampal region compared to vehicle-treated male controls. Dorsal hippocampal BDNF mRNA expression was also down-regulated in male rats exposed to DEHP. No differences in hippocampal spine density or BDNF mRNA expression were observed in female rats treated with DEHP compared to controls. DEHP treatment did not affect hippocampal caspase-3 mRNA expression in male or female rats. These results suggest a gender-specific vulnerability to early developmental DEHP exposure in male rats whereby postnatal DEHP exposure may interfere with normal synaptogenesis and connectivity in the hippocampus. Decreased expression of BDNF mRNA may represent a molecular mechanism underlying the reduction in dendritic spine density observed in hippocampal CA3 neurons. These findings provide initial evidence for a link between developmental exposure to DEHP, reduced levels of BDNF and hippocampal atrophy in male rats.

  6. Reduced hippocampal dendritic spine density and BDNF expression following acute postnatal exposure to di(2-ethylhexyl) phthalate in male Long Evans rats.

    Science.gov (United States)

    Smith, Catherine A; Holahan, Matthew R

    2014-01-01

    Early developmental exposure to di(2-ethylhexyl) phthalate (DEHP) has been linked to a variety of neurodevelopmental changes, particularly in rodents. The primary goal of this work was to establish whether acute postnatal exposure to a low dose of DEHP would alter hippocampal dendritic morphology and BDNF and caspase-3 mRNA expression in male and female Long Evans rats. Treatment with DEHP in male rats led to a reduction in spine density on basal and apical dendrites of neurons in the CA3 dorsal hippocampal region compared to vehicle-treated male controls. Dorsal hippocampal BDNF mRNA expression was also down-regulated in male rats exposed to DEHP. No differences in hippocampal spine density or BDNF mRNA expression were observed in female rats treated with DEHP compared to controls. DEHP treatment did not affect hippocampal caspase-3 mRNA expression in male or female rats. These results suggest a gender-specific vulnerability to early developmental DEHP exposure in male rats whereby postnatal DEHP exposure may interfere with normal synaptogenesis and connectivity in the hippocampus. Decreased expression of BDNF mRNA may represent a molecular mechanism underlying the reduction in dendritic spine density observed in hippocampal CA3 neurons. These findings provide initial evidence for a link between developmental exposure to DEHP, reduced levels of BDNF and hippocampal atrophy in male rats.

  7. Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images.

    Directory of Open Access Journals (Sweden)

    Alfredo Rodriguez

    Full Text Available A fundamental challenge in understanding how dendritic spine morphology controls learning and memory has been quantifying three-dimensional (3D spine shapes with sufficient precision to distinguish morphologic types, and sufficient throughput for robust statistical analysis. The necessity to analyze large volumetric data sets accurately, efficiently, and in true 3D has been a major bottleneck in deriving reliable relationships between altered neuronal function and changes in spine morphology. We introduce a novel system for automated detection, shape analysis and classification of dendritic spines from laser scanning microscopy (LSM images that directly addresses these limitations. The system is more accurate, and at least an order of magnitude faster, than existing technologies. By operating fully in 3D the algorithm resolves spines that are undetectable with standard two-dimensional (2D tools. Adaptive local thresholding, voxel clustering and Rayburst Sampling generate a profile of diameter estimates used to classify spines into morphologic types, while minimizing optical smear and quantization artifacts. The technique opens new horizons on the objective evaluation of spine changes with synaptic plasticity, normal development and aging, and with neurodegenerative disorders that impair cognitive function.

  8. Nogo-A controls structural plasticity at dendritic spines by rapidly modulating actin dynamics

    NARCIS (Netherlands)

    Kellner, Yves; Fricke, Steffen; Kramer, Stella; Iobbi, Cristina; Wierenga, Corette J; Schwab, Martin E; Korte, Martin; Zagrebelsky, Marta

    Nogo-A and its receptors have been shown to control synaptic plasticity, including negatively regulating long-term potentiation (LTP) in the cortex and hippocampus at a fast time scale and restraining experience-dependent turnover of dendritic spines over days. However, the molecular mechanisms and

  9. Conditional self-discrimination enhances dendritic spine number and dendritic length at prefrontal cortex and hippocampal neurons of rats.

    Science.gov (United States)

    Penagos-Corzo, Julio C; Bonilla, Andrea; Rodríguez-Moreno, Antonio; Flores, Gonzalo; Negrete-Díaz, José V

    2015-11-01

    We studied conditional self-discrimination (CSD) in rats and compared the neuronal cytoarchitecture of untrained animals and rats that were trained in self-discrimination. For this purpose, we used thirty 10-week-old male rats were randomized into three groups: one control group and two conditioning groups: a comparison group (associative learning) and an experimental group (self-discrimination). At the end of the conditioning process, the experimental group managed to discriminate their own state of thirst. After the conditioning process, dendritic morphological changes in the pyramidal neurons of the prefrontal cortex and CA1 region of the dorsal hippocampus were evaluated using Golgi-Cox stain method and then analyzed by the Sholl method. Differences were found in total dendritic length and spine density. Animals trained in self-discrimination showed an increase in the dendritic length and the number of dendritic spines of neurons of the prefrontal cortex and CA1 region of the dorsal hippocampus. Our data suggest that conditional self-discrimination improves the connectivity of the prefrontal cortex and dorsal CA1, which has implications for memory and learning processes.

  10. Stress and trauma: BDNF control of dendritic-spine formation and regression.

    Science.gov (United States)

    Bennett, M R; Lagopoulos, J

    2014-01-01

    Chronic restraint stress leads to increases in brain derived neurotrophic factor (BDNF) mRNA and protein in some regions of the brain, e.g. the basal lateral amygdala (BLA) but decreases in other regions such as the CA3 region of the hippocampus and dendritic spine density increases or decreases in line with these changes in BDNF. Given the powerful influence that BDNF has on dendritic spine growth, these observations suggest that the fundamental reason for the direction and extent of changes in dendritic spine density in a particular region of the brain under stress is due to the changes in BDNF there. The most likely cause of these changes is provided by the stress initiated release of steroids, which readily enter neurons and alter gene expression, for example that of BDNF. Of particular interest is how glucocorticoids and mineralocorticoids tend to have opposite effects on BDNF gene expression offering the possibility that differences in the distribution of their receptors and of their downstream effects might provide a basis for the differential transcription of the BDNF genes. Alternatively, differences in the extent of methylation and acetylation in the epigenetic control of BDNF transcription are possible in different parts of the brain following stress. Although present evidence points to changes in BDNF transcription being the major causal agent for the changes in spine density in different parts of the brain following stress, steroids have significant effects on downstream pathways from the TrkB receptor once it is acted upon by BDNF, including those that modulate the density of dendritic spines. Finally, although glucocorticoids play a canonical role in determining BDNF modulation of dendritic spines, recent studies have shown a role for corticotrophin releasing factor (CRF) in this regard. There is considerable improvement in the extent of changes in spine size and density in rodents with forebrain specific knockout of CRF receptor 1 (CRFR1) even when

  11. Increased levels of acidic calponin during dendritic spine plasticity after pilocarpine-induced seizures.

    Science.gov (United States)

    Ferhat, Lotfi; Esclapez, Monique; Represa, Alfonso; Fattoum, Abdellatif; Shirao, Tomoaki; Ben-Ari, Yezekiel

    2003-01-01

    We have previously shown that, in HEK 293 cells, overexpression of acidic calponin, an actin-binding protein, induces remodeling of actin filaments, leading to a change in cell morphology. In addition, this protein is found in dendritic spines of adult hippocampal neurons. We hypothesized that this protein plays a role in regulating actin-based filaments during dendritic spine plasticity. To assess this hypothesis, the pilocarpine model of temporal lobe epilepsy was selected because an important reorganization of the glutamatergic network, which includes an aberrant sprouting of granule cell axons, neo-synaptogenesis, and dendritic spine remodeling, is well established in the dentate gyrus. This reorganization begins after the initial period of status epilepticus after pilocarpine injection, during the silent period when animals display a normal behavior, and reaches a plateau at the chronic stage when the animals have developed spontaneous recurrent seizures. Our data show that the intensity of immunolabeling for acidic calponin was clearly increased in the inner one-third of the molecular layer of the dentate gyrus, the site of mossy fiber sprouting, and neo-synaptogenesis, at 1 and 2 weeks after pilocarpine injection (silent period) when the reorganization was taking place. In contrast, in chronic pilocarpine-treated animals, when the reorganization was established, the levels of labeling for acidic calponin in the inner molecular layer were similar to those observed in control rats. In addition, double immunostaining studies suggested that the increase in acidic calponin levels occurred within the dendritic spines. Altogether, these results are consistent with an involvement of acidic calponin in dendritic spine plasticity.

  12. Ovarian steroids increase PSD-95 expression and dendritic spines in the dorsal raphe of ovariectomized macaques.

    Science.gov (United States)

    Rivera, Heidi M; Bethea, Cynthia L

    2013-12-01

    Estradiol (E) and progesterone (P) promote spinogenesis in several brain areas. Intracellular signaling cascades that promote spinogenesis involve RhoGTPases, glutamate signaling and synapse assembly. We found that in serotonin neurons, E ± P administration increases (a) gene and protein expression of RhoGTPases, (b) gene expression of glutamate receptors, and (c) gene expression of pivotal synapse assembly proteins. Therefore, in this study we determined whether structural changes in dendritic spines in the dorsal raphe follow the observed changes in gene and protein expression. Dendritic spines were examined with immunogold silver staining of a spine marker protein, postsynaptic density-95 (PSD-95) and with Golgi staining. In the PSD-95 study, adult Ovx monkeys received placebo, E, P, or E + P for 1 month (n = 3/group). Sections were immunostained for PSD-95 and the number of PSD-95-positive puncta was determined with stereology. E, P, and E + P treatment significantly increased the total number of PSD-95-positive puncta (ANOVA, P = 0.04). In the golgi study, adult Ovx monkeys received placebo, E or E + P for 1 month (n = 3-4) and the midbrain was golgi-stained. A total of 80 neurons were analyzed with Neurolucida software. There was a significant difference in spine density that depended on branch order (two-way ANOVA). E + P treatment significantly increased spine density in higher-order (3°-5°) dendritic branches relative to Ovx group (Bonferroni, P PSD-95, but not actual spines, suggests either a sampling or time lag issue. Increased spinogenesis on serotonin dendrites would facilitate excitatory glutamatergic input and, in turn, increase serotonin neurotransmission throughout the brain. Copyright © 2013 Wiley Periodicals, Inc.

  13. Divergent Roles of p75NTR and Trk Receptors in BDNF's Effects on Dendritic Spine Density and Morphology

    Directory of Open Access Journals (Sweden)

    Christopher A. Chapleau

    2012-01-01

    Full Text Available Activation of TrkB receptors by brain-derived neurotrophic factor (BDNF followed by MAPK/ERK signaling increases dendritic spine density and the proportion of mature spines in hippocampal CA1 pyramidal neurons. Considering the opposing actions of p75NTR and Trk receptors in several BDNF actions on CNS neurons, we tested whether these receptors also have divergent actions on dendritic spine density and morphology. A function-blocking anti-p75NTR antibody (REX did not affect spine density by itself but it prevented BDNF’s effect on spine density. Intriguingly, REX by itself increased the proportion of immature spines and prevented BDNF's effect on spine morphology. In contrast, the Trk receptor inhibitor k-252a increased spine density by itself, and prevented BDNF from further increasing spine density. However, most of the spines in k-252a-treated slices were of the immature type. These effects of k-252a on spine density and morphology required neuronal activity because they were prevented by TTX. These divergent BDNF actions on spine density and morphology are reminiscent of opposing functional signaling by p75NTR and Trk receptors and reveal an unexpected level of complexity in the consequences of BDNF signaling on dendritic morphology.

  14. In Vivo Study of Dynamics and Stability of Dendritic Spines on Olfactory Bulb Interneurons in Xenopus laevis Tadpoles.

    Directory of Open Access Journals (Sweden)

    Yu-Bin Huang

    Full Text Available Dendritic spines undergo continuous remodeling during development of the nervous system. Their stability is essential for maintaining a functional neuronal circuit. Spine dynamics and stability of cortical excitatory pyramidal neurons have been explored extensively in mammalian animal models. However, little is known about spiny interneurons in non-mammalian vertebrate models. In the present study, neuronal morphology was visualized by single-cell electroporation. Spiny neurons were surveyed in the Xenopus tadpole brain and observed to be widely distributed in the olfactory bulb and telencephalon. DsRed- or PSD95-GFP-expressing spiny interneurons in the olfactory bulb were selected for in vivo time-lapse imaging. Dendritic protrusions were classified as filopodia, thin, stubby, or mushroom spines based on morphology. Dendritic spines on the interneurons were highly dynamic, especially the filopodia and thin spines. The stubby and mushroom spines were relatively more stable, although their stability significantly decreased with longer observation intervals. The 4 spine types exhibited diverse preferences during morphological transitions from one spine type to others. Sensory deprivation induced by severing the olfactory nerve to block the input of mitral/tufted cells had no significant effects on interneuron spine stability. Hence, a new model was established in Xenopus laevis tadpoles to explore dendritic spine dynamics in vivo.

  15. NAC1 regulates the recruitment of the proteasome complex into dendritic spines.

    Science.gov (United States)

    Shen, Haowei; Korutla, Laxminarayana; Champtiaux, Nicholas; Toda, Shigenobu; LaLumiere, Ryan; Vallone, Joseph; Klugmann, Matthias; Blendy, Julie A; Mackler, Scott A; Kalivas, Peter W

    2007-08-15

    Coordinated proteolysis of synaptic proteins is required for synaptic plasticity, but a mechanism for recruiting the ubiquitin-proteasome system (UPS) into dendritic spines is not known. NAC1 is a cocaine-regulated transcriptional protein that was found to complex with proteins in the UPS, including cullins and Mov34. NAC1 and the proteasome were cotranslocated from the nucleus into dendritic spines in cortical neurons in response to proteasome inhibition or disinhibiting synaptic activity with bicuculline. Bicuculline also produced a progressive accumulation of the proteasome and NAC1 in the postsynaptic density. Recruitment of the proteasome into dendrites and postsynaptic density by bicuculline was prevented in neurons from mice harboring an NAC1 gene deletion or in neurons transfected with mutated NAC1 lacking the proteasome binding domain. These experiments show that NAC1 modulates the translocation of the UPS from the nucleus into dendritic spines, thereby suggesting a potential missing link in the recruitment of necessary proteolysis machinery for synaptic remodeling.

  16. The Gαo Activator Mastoparan-7 Promotes Dendritic Spine Formation in Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Valerie T. Ramírez

    2016-01-01

    Full Text Available Mastoparan-7 (Mas-7, an analogue of the peptide mastoparan, which is derived from wasp venom, is a direct activator of Pertussis toxin- (PTX- sensitive G proteins. Mas-7 produces several biological effects in different cell types; however, little is known about how Mas-7 influences mature hippocampal neurons. We examined the specific role of Mas-7 in the development of dendritic spines, the sites of excitatory synaptic contact that are crucial for synaptic plasticity. We report here that exposure of hippocampal neurons to a low dose of Mas-7 increases dendritic spine density and spine head width in a time-dependent manner. Additionally, Mas-7 enhances postsynaptic density protein-95 (PSD-95 clustering in neurites and activates Gαo signaling, increasing the intracellular Ca2+ concentration. To define the role of signaling intermediates, we measured the levels of phosphorylated protein kinase C (PKC, c-Jun N-terminal kinase (JNK, and calcium-calmodulin dependent protein kinase IIα (CaMKIIα after Mas-7 treatment and determined that CaMKII activation is necessary for the Mas-7-dependent increase in dendritic spine density. Our results demonstrate a critical role for Gαo subunit signaling in the regulation of synapse formation.

  17. The Gαo Activator Mastoparan-7 Promotes Dendritic Spine Formation in Hippocampal Neurons

    Science.gov (United States)

    Ramírez, Valerie T.; Ramos-Fernández, Eva; Inestrosa, Nibaldo C.

    2016-01-01

    Mastoparan-7 (Mas-7), an analogue of the peptide mastoparan, which is derived from wasp venom, is a direct activator of Pertussis toxin- (PTX-) sensitive G proteins. Mas-7 produces several biological effects in different cell types; however, little is known about how Mas-7 influences mature hippocampal neurons. We examined the specific role of Mas-7 in the development of dendritic spines, the sites of excitatory synaptic contact that are crucial for synaptic plasticity. We report here that exposure of hippocampal neurons to a low dose of Mas-7 increases dendritic spine density and spine head width in a time-dependent manner. Additionally, Mas-7 enhances postsynaptic density protein-95 (PSD-95) clustering in neurites and activates Gαo signaling, increasing the intracellular Ca2+ concentration. To define the role of signaling intermediates, we measured the levels of phosphorylated protein kinase C (PKC), c-Jun N-terminal kinase (JNK), and calcium-calmodulin dependent protein kinase IIα (CaMKIIα) after Mas-7 treatment and determined that CaMKII activation is necessary for the Mas-7-dependent increase in dendritic spine density. Our results demonstrate a critical role for Gαo subunit signaling in the regulation of synapse formation. PMID:26881110

  18. Divergent Roles of p75NTR and Trk Receptors in BDNF's Effects on Dendritic Spine Density and Morphology

    OpenAIRE

    2012-01-01

    Activation of TrkB receptors by brain-derived neurotrophic factor (BDNF) followed by MAPK/ERK signaling increases dendritic spine density and the proportion of mature spines in hippocampal CA1 pyramidal neurons. Considering the opposing actions of p75NTR and Trk receptors in several BDNF actions on CNS neurons, we tested whether these receptors also have divergent actions on dendritic spine density and morphology. A function-blocking anti-p75NTR antibody (REX) did not affect spine density by ...

  19. Myosin IIb activity and phosphorylation status determines dendritic spine and post-synaptic density morphology.

    Directory of Open Access Journals (Sweden)

    Jennifer L Hodges

    Full Text Available Dendritic spines in hippocampal neurons mature from a filopodia-like precursor into a mushroom-shape with an enlarged post-synaptic density (PSD and serve as the primary post-synaptic location of the excitatory neurotransmission that underlies learning and memory. Using myosin II regulatory mutants, inhibitors, and knockdowns, we show that non-muscle myosin IIB (MIIB activity determines where spines form and whether they persist as filopodia-like spine precursors or mature into a mushroom-shape. MIIB also determines PSD size, morphology, and placement in the spine. Local inactivation of MIIB leads to the formation of filopodia-like spine protrusions from the dendritic shaft. However, di-phosphorylation of the regulatory light chain on residues Thr18 and Ser19 by Rho kinase is required for spine maturation. Inhibition of MIIB activity or a mono-phosphomimetic mutant of RLC similarly prevented maturation even in the presence of NMDA receptor activation. Expression of an actin cross-linking, non-contractile mutant, MIIB R709C, showed that maturation into a mushroom-shape requires contractile activity. Loss of MIIB also leads to an elongated PSD morphology that is no longer restricted to the spine tip; whereas increased MIIB activity, specifically through RLC-T18, S19 di-phosphorylation, increases PSD area. These observations support a model whereby myosin II inactivation forms filopodia-like protrusions that only mature once NMDA receptor activation increases RLC di-phosphorylation to stimulate MIIB contractility, resulting in mushroom-shaped spines with an enlarged PSD.

  20. Vortioxetine promotes early changes in dendritic morphology compared to fluoxetine in rat hippocampus.

    Science.gov (United States)

    Chen, Fenghua; du Jardin, Kristian Gaarn; Waller, Jessica A; Sanchez, Connie; Nyengaard, Jens R; Wegener, Gregers

    2016-02-01

    Preclinical studies reveal that the multimodal antidepressant vortioxetine enhances long-term potentiation and dendritic branching compared to a selective serotonin reuptake inhibitor (SSRI). In the present study, we investigated vortioxetine׳s effects on spines and dendritic morphology in rat hippocampus at two time points compared to the SSRI, fluoxetine. Rats were dosed for 1 and 4 weeks with vortioxetine and fluoxetine at doses relevant for antidepressant activity. Dendritic morphology of pyramidal neurons (i.e., dendritic length, dendritic branch, spine number and density, and Sholl analysis) was examined in Golgi-stained sections from hippocampal CA1. After 1 week of treatment, vortioxetine significantly increased spine number (apical and basal dendrites), spine density (only basal), dendritic length (only apical), and dendritic branch number (apical and basal), whereas fluoxetine had no effect. After 4 weeks of treatment, vortioxetine significantly increased all measures of dendritic spine morphology as did fluoxetine except for spine density of basal dendrites. The number of intersections in the apical and basal dendrites was also significantly increased for both treatments after 4 weeks compared to control. In addition, 4 weeks of vortioxetine treatment, but not fluoxetine, promoted a decrease in spine neck length. In conclusion, 1-week vortioxetine treatment induced changes in spine number and density and dendritic morphology, whereas an equivalent dose of fluoxetine had no effects. Decreased spine neck length following 4-week vortioxetine treatment suggests a transition to mature spine morphology. This implies that vortioxetine׳s effects on spine and dendritic morphology are mediated by mechanisms that go beyond serotonin reuptake inhibition.

  1. Associative Pavlovian conditioning leads to an increase in spinophilin-immunoreactive dendritic spines in the lateral amygdala.

    Science.gov (United States)

    Radley, Jason J; Johnson, Luke R; Janssen, William G M; Martino, Jeremiah; Lamprecht, Raphael; Hof, Patrick R; LeDoux, Joseph E; Morrison, John H

    2006-08-01

    Changes in dendritic spine number and shape are believed to reflect structural plasticity consequent to learning. Previous studies have strongly suggested that the dorsal subnucleus of the lateral amygdala is an important site of physiological plasticity in Pavlovian fear conditioning. In the present study, we examined the effect of auditory fear conditioning on dendritic spine numbers in the dorsal subnucleus of the lateral amygdala using an immunolabelling procedure to visualize the spine-associated protein spinophilin. Associatively conditioned rats that received paired tone and shock presentations had 35% more total spinophilin-immunoreactive spines than animals that had unpaired stimulation, consistent with the idea that changes in the number of dendritic spines occur during learning and account in part for memory.

  2. Essential Role for Vav GEFs in Brain-derived Neurotrophic Factor (BDNF)-induced Dendritic Spine Growth and Synapse Plasticity

    OpenAIRE

    Hale, Carly F.; Dietz, Karen C.; Varela, Juan A.; Wood, Cody B.; Zirlin, Benjamin C.; Leah S. Leverich; Greene, Robert W.; Cowan, Christopher W.

    2011-01-01

    Brain-derived neurotrophic factor (BDNF) and its cognate receptor, TrkB, regulate a wide range of cellular processes, including dendritic spine formation and functional synapse plasticity. However, the signaling mechanisms that link BDNF-activated TrkB to F-actin remodeling enzymes and dendritic spine morphological plasticity remain poorly understood. We report here that BDNF/TrkB signaling in neurons activates the Vav family of Rac/RhoA guanine nucleotide exchange factors (GEFs) through a no...

  3. IRSp53/BAIAP2 in dendritic spine development, NMDA receptor regulation, and psychiatric disorders.

    Science.gov (United States)

    Kang, Jaeseung; Park, Haram; Kim, Eunjoon

    2016-01-01

    IRSp53 (also known as BAIAP2) is a multi-domain scaffolding and adaptor protein that has been implicated in the regulation of membrane and actin dynamics at subcellular structures, including filopodia and lamellipodia. Accumulating evidence indicates that IRSp53 is an abundant component of the postsynaptic density at excitatory synapses and an important regulator of actin-rich dendritic spines. In addition, IRSp53 has been implicated in diverse psychiatric disorders, including autism spectrum disorders, schizophrenia, and attention deficit/hyperactivity disorder. Mice lacking IRSp53 display enhanced NMDA (N-methyl-d-aspartate) receptor function accompanied by social and cognitive deficits, which are reversed by pharmacological suppression of NMDA receptor function. These results suggest the hypothesis that defective actin/membrane modulation in IRSp53-deficient dendritic spines may lead to social and cognitive deficits through NMDA receptor dysfunction. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'.

  4. WIP modulates dendritic spine actin cytoskeleton by transcriptional control of lipid metabolic enzymes.

    Science.gov (United States)

    Franco-Villanueva, Ana; Fernández-López, Estefanía; Gabandé-Rodríguez, Enrique; Bañón-Rodríguez, Inmaculada; Esteban, Jose Antonio; Antón, Inés M; Ledesma, María Dolores

    2014-08-15

    We identify Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP) as a novel component of neuronal synapses whose absence increases dendritic spine size and filamentous actin levels in an N-WASP/Arp2/3-independent, RhoA/ROCK/profilinIIa-dependent manner. These effects depend on the reduction of membrane sphingomyelin (SM) due to transcriptional upregulation of neutral sphingomyelinase (NSM) through active RhoA; this enhances RhoA binding to the membrane, raft partitioning and activation in steady state but prevents RhoA changes in response to stimulus. Inhibition of NSM or SM addition reverses RhoA, filamentous actin and functional anomalies in synapses lacking WIP. Our findings characterize WIP as a link between membrane lipid composition and actin cytoskeleton at dendritic spines. They also contribute to explain cognitive deficits shared by individuals bearing mutations in the region assigned to the gene encoding for WIP.

  5. Npas4 Regulates Mdm2 and thus Dcx in Experience-Dependent Dendritic Spine Development of Newborn Olfactory Bulb Interneurons

    Directory of Open Access Journals (Sweden)

    Sei-ichi Yoshihara

    2014-08-01

    Full Text Available Sensory experience regulates the development of various brain structures, including the cortex, hippocampus, and olfactory bulb (OB. Little is known about how sensory experience regulates the dendritic spine development of OB interneurons, such as granule cells (GCs, although it is well studied in mitral/tufted cells. Here, we identify a transcription factor, Npas4, which is expressed in OB GCs immediately after sensory input and is required for dendritic spine formation. Npas4 overexpression in OB GCs increases dendritic spine density, even under sensory deprivation, and rescues reduction of dendrite spine density in the Npas4 knockout OB. Furthermore, loss of Npas4 upregulates expression of the E3-ubiquitin ligase Mdm2, which ubiquitinates a microtubule-associated protein Dcx. This leads to reduction in the dendritic spine density of OB GCs. Together, these findings suggest that Npas4 regulates Mdm2 expression to ubiquitinate and degrade Dcx during dendritic spine development in newborn OB GCs after sensory experience.

  6. Actin-Dependent Alterations of Dendritic Spine Morphology in Shankopathies

    Science.gov (United States)

    Sarowar, Tasnuva

    2016-01-01

    Shank proteins (Shank1, Shank2, and Shank3) act as scaffolding molecules in the postsynaptic density of many excitatory neurons. Mutations in SHANK genes, in particular SHANK2 and SHANK3, lead to autism spectrum disorders (ASD) in both human and mouse models. Shank3 proteins are made of several domains—the Shank/ProSAP N-terminal (SPN) domain, ankyrin repeats, SH3 domain, PDZ domain, a proline-rich region, and the sterile alpha motif (SAM) domain. Via various binding partners of these domains, Shank3 is able to bind and interact with a wide range of proteins including modulators of small GTPases such as RICH2, a RhoGAP protein, and βPIX, a RhoGEF protein for Rac1 and Cdc42, actin binding proteins and actin modulators. Dysregulation of all isoforms of Shank proteins, but especially Shank3, leads to alterations in spine morphogenesis, shape, and activity of the synapse via altering actin dynamics. Therefore, here, we highlight the role of Shank proteins as modulators of small GTPases and, ultimately, actin dynamics, as found in multiple in vitro and in vivo models. The failure to mediate this regulatory role might present a shared mechanism in the pathophysiology of autism-associated mutations, which leads to dysregulation of spine morphogenesis and synaptic signaling.

  7. The establishment of GABAergic and glutamatergic synapses on CA1 pyramidal neurons is sequential and correlates with the development of the apical dendrite.

    Science.gov (United States)

    Tyzio, R; Represa, A; Jorquera, I; Ben-Ari, Y; Gozlan, H; Aniksztejn, L

    1999-12-01

    We have performed a morphofunctional analysis of CA1 pyramidal neurons at birth to examine the sequence of formation of GABAergic and glutamatergic postsynaptic currents (PSCs) and to determine their relation to the dendritic arborization of pyramidal neurons. We report that at birth pyramidal neurons are heterogeneous. Three stages of development can be identified: (1) the majority of the neurons (80%) have small somata, an anlage of apical dendrite, and neither spontaneous nor evoked PSCs; (2) 10% of the neurons have a small apical dendrite restricted to the stratum radiatum and PSCs mediated only by GABA(A) receptors; and (3) 10% of the neurons have an apical dendrite that reaches the stratum lacunosum moleculare and PSCs mediated both by GABA(A) and glutamate receptors. These three groups of pyramidal neurons can be differentiated by their capacitance (C(m) = 17.9 +/- 0.8; 30.2 +/- 1.6; 43.2 +/- 3.0 pF, respectively). At birth, the synaptic markers synapsin-1 and synaptophysin labeling are present in dendritic layers but not in the stratum pyramidale, suggesting that GABAergic peridendritic synapses are established before perisomatic ones. The present observations demonstrate that GABAergic and glutamatergic synapses are established sequentially with GABAergic synapses being established first most likely on the apical dendrites of the principal neurons. We propose that different sets of conditions are required for the establishment of functional GABA and glutamate synapses, the latter necessitating more developed neurons that have apical dendrites that reach the lacunosum moleculare region.

  8. Nanoscale elucidation of Na,K-ATPase isoforms in dendritic spines

    CERN Document Server

    Liebmann, Thomas; Aperia, Anita; Brismar, Hjalmar

    2013-01-01

    The dimensions of neuronal synapses suggest that optical super-resolution imaging methods are necessary for thorough investigation of protein distributions and interactions. Nanoscopic evaluation of neuronal samples has presented practical hurdles, but advancing methods are making synaptic protein topology and quantification measurements feasible. This work explores the application of Photoactivated Localization Microscopy (PALM) pointilistic super-resolution imaging for investigation of the membrane bound sodium pump, the Na,K-ATPase, in matured neurons. Two isoforms of the sodium pump (ATP1a1 and ATP1a3) were studied in cultured neurons using the PALM-compatible fluorescent proteins PAGFP and mEos. Nanoscopic imaging reveals a compartmentalized distribution of sodium pumps in dendritic spines. Several nanoclusters of pumps are typically found in the spine head and relatively few in the spine neck. The density of sodium pumps was estimated from a quantification of detected single molecules to 600-800 pump co...

  9. The Planar Cell Polarity Transmembrane Protein Vangl2 Promotes Dendrite, Spine and Glutamatergic Synapse Formation in the Mammalian Forebrain.

    Science.gov (United States)

    Okerlund, Nathan D; Stanley, Robert E; Cheyette, Benjamin N R

    2016-07-01

    The transmembrane protein Vangl2, a key regulator of the Wnt/planar cell polarity (PCP) pathway, is involved in dendrite arbor elaboration, dendritic spine formation and glutamatergic synapse formation in mammalian central nervous system neurons. Cultured forebrain neurons from Vangl2 knockout mice have simpler dendrite arbors, fewer total spines, less mature spines and fewer glutamatergic synapse inputs on their dendrites than control neurons. Neurons from mice heterozygous for a semidominant Vangl2 mutation have similar but not identical phenotypes, and these phenotypes are also observed in Golgi-stained brain tissue from adult mutant mice. Given increasing evidence linking psychiatric pathophysiology to these subneuronal sites and structures, our findings underscore the relevance of core PCP proteins including Vangl2 to the underlying biology of major mental illnesses and their treatment.

  10. Intrinsic Ca2+-dependent theta oscillations in apical dendrites of hippocampal CA1 pyramidal cells in vitro.

    Science.gov (United States)

    Hansen, Allan Kjeldsen; Nedergaard, Steen; Andreasen, Mogens

    2014-08-01

    Behavior-associated theta-frequency oscillation in the hippocampal network involves a patterned activation of place cells in the CA1, which can be accounted for by a somatic-dendritic interference model predicting the existence of an intrinsic dendritic oscillator. Here we describe an intrinsic oscillatory mechanism in apical dendrites of in vitro CA1 pyramidal cells, which is induced by suprathreshold depolarization and consists of rhythmic firing of slow spikes in the theta-frequency band. The incidence of slow spiking (29%) increased to 78% and 100% in the presence of the β-adrenergic agonist isoproterenol (2 μM) or 4-aminopyridine (2 mM), respectively. Prior depolarization facilitated the induction of slow spiking. Applied electrical field polarization revealed a distal dendritic origin of slow spikes. The oscillations were largely insensitive to tetrodotoxin, but blocked by nimodipine (10 μM), indicating that they depend on activation of L-type Ca2+ channels. Antagonists of T-, R-, N-, and P/Q-type Ca2+ channels had no detectable effect. The slow spike dimension and frequency was sensitive to 4-aminopyridine (0.1-2 mM) and TEA (10 mM), suggesting the contribution from voltage-dependent K+ channels to the oscillation mechanism. α-Dendrotoxin (10 μM), stromatoxin (2 μM), iberiotoxin (0.2 μM), apamin (0.5 μM), linorpidine (30 μM), and ZD7288 (20 μM) were without effect. Oscillations induced by sine-wave current injection or theta-burst synaptic stimulation were voltage-dependently attenuated by nimodipine, indicating an amplifying function of L-type Ca2+ channels on imposed signals. These results show that the apical dendrites have intrinsic oscillatory properties capable of generating rhythmic voltage fluctuations in the theta-frequency band.

  11. The influence of phospho-tau on dendritic spines of cortical pyramidal neurons in patients with Alzheimer’s disease

    Science.gov (United States)

    Merino-Serrais, Paula; Benavides-Piccione, Ruth; Blazquez-Llorca, Lidia; Kastanauskaite, Asta; Rábano, Alberto; Avila, Jesús

    2013-01-01

    The dendritic spines on pyramidal cells represent the main postsynaptic elements of cortical excitatory synapses and they are fundamental structures in memory, learning and cognition. In the present study, we used intracellular injections of Lucifer yellow in fixed tissue to analyse over 19 500 dendritic spines that were completely reconstructed in three dimensions along the length of the basal dendrites of pyramidal neurons in the parahippocampal cortex and CA1 of patients with Alzheimer’s disease. Following intracellular injection, sections were immunostained for anti-Lucifer yellow and with tau monoclonal antibodies AT8 and PHF-1, which recognize tau phosphorylated at Ser202/Thr205 and at Ser396/404, respectively. We observed that the diffuse accumulation of phospho-tau in a putative pre-tangle state did not induce changes in the dendrites of pyramidal neurons, whereas the presence of tau aggregates forming intraneuronal neurofibrillary tangles was associated with progressive alteration of dendritic spines (loss of dendritic spines and changes in their morphology) and dendrite atrophy, depending on the degree of tangle development. Thus, the presence of phospho-tau in neurons does not necessarily mean that they suffer severe and irreversible effects as thought previously but rather, the characteristic cognitive impairment in Alzheimer’s disease is likely to depend on the relative number of neurons that have well developed tangles. PMID:23715095

  12. LTP promotes a selective long-term stabilization and clustering of dendritic spines.

    Directory of Open Access Journals (Sweden)

    Mathias De Roo

    2008-09-01

    Full Text Available Dendritic spines are the main postsynaptic site of excitatory contacts between neurons in the central nervous system. On cortical neurons, spines undergo a continuous turnover regulated by development and sensory activity. However, the functional implications of this synaptic remodeling for network properties remain currently unknown. Using repetitive confocal imaging on hippocampal organotypic cultures, we find that learning-related patterns of activity that induce long-term potentiation act as a selection mechanism for the stabilization and localization of spines. Through a lasting N-methyl-D-aspartate receptor and protein synthesis-dependent increase in protrusion growth and turnover, induction of plasticity promotes a pruning and replacement of nonactivated spines by new ones together with a selective stabilization of activated synapses. Furthermore, most newly formed spines preferentially grow in close proximity to activated synapses and become functional within 24 h, leading to a clustering of functional synapses. Our results indicate that synaptic remodeling associated with induction of long-term potentiation favors the selection of inputs showing spatiotemporal interactions on a given neuron.

  13. Reelin Regulates the Maturation of Dendritic Spines, Synaptogenesis and Glial Ensheathment of Newborn Granule Cells

    Science.gov (United States)

    Bosch, Carles; Masachs, Nuria; Exposito-Alonso, David; Martínez, Albert; Teixeira, Cátia M.; Fernaud, Isabel; Pujadas, Lluís; Ulloa, Fausto; Comella, Joan X.; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo

    2016-01-01

    The Reelin pathway is essential for both neural migration and for the development and maturation of synaptic connections. However, its role in adult synaptic formation and remodeling is still being investigated. Here, we investigated the impact of the Reelin/Dab1 pathway on the synaptogenesis of newborn granule cells (GCs) in the young-adult mouse hippocampus. We show that neither Reelin overexpression nor the inactivation of its intracellular adapter, Dab1, substantially alters dendritic spine numbers in these neurons. In contrast, 3D-electron microscopy (focused ion beam milling/scanning electron microscope) revealed that dysregulation of the Reelin/Dab1 pathway leads to both transient and permanent changes in the types and morphology of dendritic spines, mainly altering mushroom, filopodial, and branched GC spines. We also found that the Reelin/Dab1 pathway controls synaptic configuration of presynaptic boutons in the dentate gyrus, with its dysregulation leading to a substantial decrease in multi-synaptic bouton innervation. Lastly, we show that the Reelin/Dab1 pathway controls astroglial ensheathment of synapses. Thus, the Reelin pathway is a key regulator of adult-generated GC integration, by controlling dendritic spine types and shapes, their synaptic innervation patterns, and glial ensheathment. These findings may help to better understanding of hippocampal circuit alterations in neurological disorders in which the Reelin pathway is implicated. Significance Statement The extracellular protein Reelin has an important role in neurological diseases, including epilepsy, Alzheimer's disease and psychiatric diseases, targeting hippocampal circuits. Here we address the role of Reelin in the development of synaptic contacts in adult-generated granule cells (GCs), a neuronal population that is crucial for learning and memory and implicated in neurological and psychiatric diseases. We found that the Reelin pathway controls the shapes, sizes, and types of dendritic

  14. The internal architecture of dendritic spines revealed by super-resolution imaging: What did we learn so far?

    Energy Technology Data Exchange (ETDEWEB)

    MacGillavry, Harold D., E-mail: h.d.macgillavry@uu.nl; Hoogenraad, Casper C., E-mail: c.hoogenraad@uu.nl

    2015-07-15

    The molecular architecture of dendritic spines defines the efficiency of signal transmission across excitatory synapses. It is therefore critical to understand the mechanisms that control the dynamic localization of the molecular constituents within spines. However, because of the small scale at which most processes within spines take place, conventional light microscopy techniques are not adequate to provide the necessary level of resolution. Recently, super-resolution imaging techniques have overcome the classical barrier imposed by the diffraction of light, and can now resolve the localization and dynamic behavior of proteins within small compartments with nanometer precision, revolutionizing the study of dendritic spine architecture. Here, we highlight exciting new findings from recent super-resolution studies on neuronal spines, and discuss how these studies revealed important new insights into how protein complexes are assembled and how their dynamic behavior shapes the efficiency of synaptic transmission.

  15. Neuronal actin dynamics, spine density and neuronal dendritic complexity are regulated by CAP2

    Directory of Open Access Journals (Sweden)

    Atul Kumar

    2016-07-01

    Full Text Available Actin remodeling is crucial for dendritic spine development, morphology and density. CAP2 is a regulator of actin dynamics through sequestering G-actin and severing F-actin. In a mouse model, ablation of CAP2 leads to cardiovascular defects and delayed wound healing. This report investigates the role of CAP2 in the brain using Cap2gt/gt mice. Dendritic complexity, the number and morphology of dendritic spines were altered in Cap2gt/gt with increased number of excitatory synapse. This was accompanied by increased F-actin content and F-actin accumulation in cultured Cap2gt/gt neurons. Moreover, reduced surface GluA1 was observed in mutant neurons under basal condition and after induction of chemical LTP. Additionally, we show an interaction between CAP2 and n-cofilin, presumably mediated through the C-terminal domain of CAP2 and dependent on cofilin ser3 phosphorylation. In vivo, the consequences of this interaction were altered phosphorylated cofilin levels and formation of cofilin aggregates in the neurons. Thus, our studies identify a novel role of CAP2 in neuronal development and neuronal actin dynamics.

  16. Dendritic BDNF synthesis is required for late-phase spine maturation and recovery of cortical responses following sensory deprivation.

    Science.gov (United States)

    Kaneko, Megumi; Xie, Yuxiang; An, Juan Ji; Stryker, Michael P; Xu, Baoji

    2012-04-04

    Sensory experience in early postnatal life shapes neuronal connections in the brain. Here we report that the local synthesis of brain-derived neurotrophic factor (BDNF) in dendrites plays an important role in this process. We found that dendritic spines of layer 2/3 pyramidal neurons of the visual cortex in mutant mice lacking dendritic Bdnf mRNA and thus local BDNF synthesis were normal at 3 weeks of age, but thinner, longer, and more closely spaced (morphological features of immaturity) at 4 months of age than in wild-type (WT) littermates. Layer 2/3 of the visual cortex in these mutant animals also had fewer GABAergic presynaptic terminals at both ages. The overall size and shape of dendritic arbors were, however, similar in mutant and WT mice at both ages. By using optical imaging of intrinsic signals and single-unit recordings, we found that mutant animals failed to recover cortical responsiveness following monocular deprivation (MD) during the critical period, although they displayed normally the competitive loss of responsiveness to an eye briefly deprived of vision. Furthermore, MD still induced a loss of responsiveness to the closed eye in adult mutant mice, but not in adult WT mice. These results indicate that dendritic BDNF synthesis is required for spine pruning, late-phase spine maturation, and recovery of cortical responsiveness following sensory deprivation. They also suggest that maturation of dendritic spines is required for the maintenance of cortical responsiveness following sensory deprivation in adulthood.

  17. Cyclin-Dependent Kinase 5 Regulates Dendritic Spine Formation and Maintenance of Cortical Neuron in the Mouse Brain.

    Science.gov (United States)

    Mita, Naoki; He, Xiaojuan; Sasamoto, Kodai; Mishiba, Tomohide; Ohshima, Toshio

    2016-03-01

    Cyclin-dependent kinase 5 (Cdk5) activity is dependent on its association with 1 of 2 neuron-specific activators, p35 or p39. Cdk5 and its activators play an important role in brain development as well as higher functions like synaptic plasticity, learning, and memory. Reduction in p35 was reported in postmortem schizophrenia brain, in which reduced dendritic spine density was observed. Previous in vitro experiments have shown that Cdk5 is involved in dendritic spine formation, although in vivo evidence is limited. We examined dendritic spine formation in inducible-p35 conditional knockout (p35 cKO); p39 KO mice. When we deleted the p35 gene either during early postnatal days or at adult stage, we observed reduced spine densities of layer V neurons in the cerebral cortex and CA1 pyramidal neurons in the hippocampus. We further generated CA1-specific p35 conditional knockout (CA1-p35 cKO) mice and also CA1-p35 cKO; p39 KO mice in which have specific deletion of p35 in the CA1 region of hippocampus. We found a greater reduction in spine densities in CA1 pyramidal neurons in CA1-p35 cKO; p39 KO mice than in CA1-p35 cKO mice. These results indicate that dendritic spine formation and neuronal maintenance are dependent on Cdk5 activity.

  18. Centella asiatica attenuates Aβ-induced neurodegenerative spine loss and dendritic simplification.

    Science.gov (United States)

    Gray, Nora E; Zweig, Jonathan A; Murchison, Charles; Caruso, Maya; Matthews, Donald G; Kawamoto, Colleen; Harris, Christopher J; Quinn, Joseph F; Soumyanath, Amala

    2017-04-12

    The medicinal plant Centella asiatica has long been used to improve memory and cognitive function. We have previously shown that a water extract from the plant (CAW) is neuroprotective against the deleterious cognitive effects of amyloid-β (Aβ) exposure in a mouse model of Alzheimer's disease, and improves learning and memory in healthy aged mice as well. This study explores the physiological underpinnings of those effects by examining how CAW, as well as chemical compounds found within the extract, modulate synaptic health in Aβ-exposed neurons. Hippocampal neurons from amyloid precursor protein over-expressing Tg2576 mice and their wild-type (WT) littermates were used to investigate the effect of CAW and various compounds found within the extract on Aβ-induced dendritic simplification and synaptic loss. CAW enhanced arborization and spine densities in WT neurons and prevented the diminished outgrowth of dendrites and loss of spines caused by Aβ exposure in Tg2576 neurons. Triterpene compounds present in CAW were found to similarly improve arborization although they did not affect spine density. In contrast caffeoylquinic acid (CQA) compounds from CAW were able to modulate both of these endpoints, although there was specificity as to which CQAs mediated which effect. These data suggest that CAW, and several of the compounds found therein, can improve dendritic arborization and synaptic differentiation in the context of Aβ exposure which may underlie the cognitive improvement observed in response to the extract in vivo. Additionally, since CAW, and its constituent compounds, also improved these endpoints in WT neurons, these results may point to a broader therapeutic utility of the extract beyond Alzheimer's disease.

  19. A Postsynaptic Role for Short-Term Neuronal Facilitation in Dendritic Spines

    Science.gov (United States)

    Yang, Sunggu; Santos, Mariton D.; Tang, Cha-Min; Kim, Jae Geun; Yang, Sungchil

    2016-01-01

    Synaptic plasticity is a fundamental component of information processing in the brain. Presynaptic facilitation in response to repetitive stimuli, often referred to as paired-pulse facilitation (PPF), is a dominant form of short-term synaptic plasticity. Recently, an additional cellular mechanism for short-term facilitation, short-term postsynaptic plasticity (STPP), has been proposed. While a dendritic mechanism was described in hippocampus, its expression has not yet been demonstrated at the levels of the spine. Furthermore, it is unknown whether the mechanism can be expressed in other brain regions, such as sensory cortex. Here, we demonstrated that a postsynaptic response can be facilitated by prior spine excitation in both hippocampal and cortical neurons, using 3D digital holography and two-photon calcium imaging. The coordinated action of pre- and post-synaptic plasticity may provide a more thorough account of information processing in the brain.

  20. The F-BAR Protein Rapostlin Regulates Dendritic Spine Formation in Hippocampal Neurons*

    Science.gov (United States)

    Wakita, Yohei; Kakimoto, Tetsuhiro; Katoh, Hironori; Negishi, Manabu

    2011-01-01

    Pombe Cdc15 homology proteins, characterized by Fer/CIP4 homology Bin-Amphiphysin-Rvs/extended Fer/CIP4 homology (F-BAR/EFC) domains with membrane invaginating property, play critical roles in a variety of membrane reorganization processes. Among them, Rapostlin/formin-binding protein 17 (FBP17) has attracted increasing attention as a critical coordinator of endocytosis. Here we found that Rapostlin was expressed in the developing rat brain, including the hippocampus, in late developmental stages when accelerated dendritic spine formation and maturation occur. In primary cultured rat hippocampal neurons, knockdown of Rapostlin by shRNA or overexpression of Rapostlin-QQ, an F-BAR domain mutant of Rapostlin that has no ability to induce membrane invagination, led to a significant decrease in spine density. Expression of shRNA-resistant wild-type Rapostlin effectively restored spine density in Rapostlin knockdown neurons, whereas expression of Rapostlin deletion mutants lacking the protein kinase C-related kinase homology region 1 (HR1) or Src homology 3 (SH3) domain did not. In addition, knockdown of Rapostlin or overexpression of Rapostlin-QQ reduced the uptake of transferrin in hippocampal neurons. Knockdown of Rnd2, which binds to the HR1 domain of Rapostlin, also reduced spine density and the transferrin uptake. These results suggest that Rapostlin and Rnd2 cooperatively regulate spine density. Indeed, Rnd2 enhanced the Rapostlin-induced tubular membrane invagination. We conclude that the F-BAR protein Rapostlin, whose activity is regulated by Rnd2, plays a key role in spine formation through the regulation of membrane dynamics. PMID:21768103

  1. Simultaneous analysis of dendritic spine density, morphology and excitatory glutamate receptors during neuron maturation in vitro by quantitative immunocytochemistry.

    Science.gov (United States)

    Nwabuisi-Heath, Evelyn; LaDu, Mary Jo; Yu, Chunjiang

    2012-06-15

    Alterations in the density and morphology of dendritic spines are characteristic of multiple cognitive disorders. Elucidating the molecular mechanisms underlying spine alterations are facilitated by the use of experimental and analytical methods that permit concurrent evaluation of changes in spine density, morphology and composition. Here, an automated and quantitative immunocytochemical method for the simultaneous analysis of changes in the density and morphology of spines and excitatory glutamate receptors was established to analyze neuron maturation, in vitro. In neurons of long-term neuron-glia co-cultures, spine density as measured by drebrin cluster fluorescence, increased from DIV (days in vitro)10 to DIV18 (formation phase), remained stable from DIV18 to DIV21 (maintenance phase), and decreased from DIV21 to DIV26 (loss phase). The densities of spine-localized NMDAR and AMPAR clusters followed a similar trend. Spine head sizes as measured by the fluorescence intensities of drebrin clusters increased from DIV10 to DIV21 and decreased from DIV21 to DIV26. Changes in the densities of NR1-only, GluR2-only, and NR1+GluR2 spines were measured by the colocalizations of NR1 and GluR2 clusters with drebrin clusters. The densities of NR1-only spines remained stable from the maintenance to the loss phases, while GluR2-only and NR1+GluR2 spines decreased during the loss phase, thus suggesting GluR2 loss as a proximal molecular event that may underlie spine alterations during neuron maturation. This study demonstrates a sensitive and quantitative immunocytochemical method for the concurrent analysis of changes in spine density, morphology and composition, a valuable tool for determining molecular events involved in dendritic spine alterations. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. ApoE4 delays dendritic spine formation during neuron development and accelerates loss of mature spines in vitro

    Directory of Open Access Journals (Sweden)

    Evelyn Nwabuisi‑Heath

    2014-01-01

    Full Text Available The ε4 allele of the gene that encodes apolipoprotein E (APOE4 is the greatest genetic risk factor for Alzheimer's disease (AD, while APOE2 reduces AD risk, compared to APOE3. The mechanism(s underlying the effects of APOE on AD pathology remains unclear. In vivo, dendritic spine density is lower in APOE4-targeted replacement (APOE-TR mice compared with APOE2- and APOE3-TR mice. To investigate whether this apoE4-induced decrease in spine density results from alterations in the formation or the loss of dendritic spines, the effects of neuron age and apoE isoform on the total number and subclasses of spines were examined in long-term wild-type neurons co-cultured with glia from APOE2-, APOE3- and APOE4-TR mice. Dendritic spine density and maturation were evaluated by immunocytochemistry via the presence of drebrin (an actin-binding protein with GluN1 (NMDA receptor subunit and GluA2 (AMPA receptor subunit clusters. ApoE isoform effects were analyzed via a method previously established that identifies phases of spine formation (day-in-vitro, DIV10–18, maintenance (DIV18–21 and loss (DIV21–26. In the formation phase, apoE4 delayed total spine formation. During the maintenance phase, the density of GluN1+GluA2 spines did not change with apoE2, while the density of these spines decreased with apoE4 compared to apoE3, primarily due to the loss of GluA2 in spines. During the loss phase, total spine density was lower in neurons with apoE4 compared to apoE3. Thus, apoE4 delays total spine formation and may induce early synaptic dysfunction via impaired regulation of GluA2 in spines.

  3. Three-dimensional Quantification of Dendritic Spines from Pyramidal Neurons Derived from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Gouder, Laura; Tinevez, Jean-Yves; Goubran-Botros, Hany; Benchoua, Alexandra; Bourgeron, Thomas; Cloëz-Tayarani, Isabelle

    2015-10-10

    Dendritic spines are small protrusions that correspond to the post-synaptic compartments of excitatory synapses in the central nervous system. They are distributed along the dendrites. Their morphology is largely dependent on neuronal activity, and they are dynamic. Dendritic spines express glutamatergic receptors (AMPA and NMDA receptors) on their surface and at the levels of postsynaptic densities. Each spine allows the neuron to control its state and local activity independently. Spine morphologies have been extensively studied in glutamatergic pyramidal cells of the brain cortex, using both in vivo approaches and neuronal cultures obtained from rodent tissues. Neuropathological conditions can be associated to altered spine induction and maturation, as shown in rodent cultured neurons and one-dimensional quantitative analysis (1). The present study describes a protocol for the 3D quantitative analysis of spine morphologies using human cortical neurons derived from neural stem cells (late cortical progenitors). These cells were initially obtained from induced pluripotent stem cells. This protocol allows the analysis of spine morphologies at different culture periods, and with possible comparison between induced pluripotent stem cells obtained from control individuals with those obtained from patients with psychiatric diseases.

  4. Alterations to dendritic spine morphology, but not dendrite patterning, of cortical projection neurons in Tc1 and Ts1Rhr mouse models of Down syndrome.

    Directory of Open Access Journals (Sweden)

    Matilda A Haas

    Full Text Available Down Syndrome (DS is a highly prevalent developmental disorder, affecting 1/700 births. Intellectual disability, which affects learning and memory, is present in all cases and is reflected by below average IQ. We sought to determine whether defective morphology and connectivity in neurons of the cerebral cortex may underlie the cognitive deficits that have been described in two mouse models of DS, the Tc1 and Ts1Rhr mouse lines. We utilised in utero electroporation to label a cohort of future upper layer projection neurons in the cerebral cortex of developing mouse embryos with GFP, and then examined neuronal positioning and morphology in early adulthood, which revealed no alterations in cortical layer position or morphology in either Tc1 or Ts1Rhr mouse cortex. The number of dendrites, as well as dendrite length and branching was normal in both DS models, compared with wildtype controls. The sites of projection neuron synaptic inputs, dendritic spines, were analysed in Tc1 and Ts1Rhr cortex at three weeks and three months after birth, and significant changes in spine morphology were observed in both mouse lines. Ts1Rhr mice had significantly fewer thin spines at three weeks of age. At three months of age Tc1 mice had significantly fewer mushroom spines--the morphology associated with established synaptic inputs and learning and memory. The decrease in mushroom spines was accompanied by a significant increase in the number of stubby spines. This data suggests that dendritic spine abnormalities may be a more important contributor to cognitive deficits in DS models, rather than overall neuronal architecture defects.

  5. Splice variants of the CaV1.3 L-type calcium channel regulate dendritic spine morphology

    Science.gov (United States)

    Stanika, Ruslan; Campiglio, Marta; Pinggera, Alexandra; Lee, Amy; Striessnig, Jörg; Flucher, Bernhard E.; Obermair, Gerald J.

    2016-01-01

    Dendritic spines are the postsynaptic compartments of glutamatergic synapses in the brain. Their number and shape are subject to change in synaptic plasticity and neurological disorders including autism spectrum disorders and Parkinson’s disease. The L-type calcium channel CaV1.3 constitutes an important calcium entry pathway implicated in the regulation of spine morphology. Here we investigated the importance of full-length CaV1.3L and two C-terminally truncated splice variants (CaV1.342A and CaV1.343S) and their modulation by densin-180 and shank1b for the morphology of dendritic spines of cultured hippocampal neurons. Live-cell immunofluorescence and super-resolution microscopy of epitope-tagged CaV1.3L revealed its localization at the base-, neck-, and head-region of dendritic spines. Expression of the short splice variants or deletion of the C-terminal PDZ-binding motif in CaV1.3L induced aberrant dendritic spine elongation. Similar morphological alterations were induced by co-expression of densin-180 or shank1b with CaV1.3L and correlated with increased CaV1.3 currents and dendritic calcium signals in transfected neurons. Together, our findings suggest a key role of CaV1.3 in regulating dendritic spine structure. Under physiological conditions it may contribute to the structural plasticity of glutamatergic synapses. Conversely, altered regulation of CaV1.3 channels may provide an important mechanism in the development of postsynaptic aberrations associated with neurodegenerative disorders. PMID:27708393

  6. Matrix metalloproteinases regulate the formation of dendritic spine head protrusions during chemically induced long-term potentiation.

    Directory of Open Access Journals (Sweden)

    Zsuzsanna Szepesi

    Full Text Available Dendritic spines are are small membranous protrusions that extend from neuronal dendrites and harbor the majority of excitatory synapses. Increasing evidence has shown that matrix metalloproteinases (MMPs, a family of extracellularly acting and Zn(2+-dependent endopeptidases, are able to rapidly modulate dendritic spine morphology. Spine head protrusions (SHPs are filopodia-like processes that extend from the dendritic spine head, representing a form of postsynaptic structural remodeling in response to altered neuronal activity. Herein, we show that chemically induced long-term potentiation (cLTP in dissociated hippocampal cultures upregulates MMP-9 activity that controls the formation of SHPs. Blocking of MMPs activity or microtubule dynamics abolishes the emergence of SHPs. In addition, autoactive recombinant MMP-9, promotes the formation of SHPs in organotypic hippocampal slices. Furthermore, spines with SHPs gained postsynaptic α-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid (AMPA receptors upon cLTP and the synaptic delivery of AMPA receptors was controlled by MMPs. The present results strongly imply that MMP-9 is functionally involved in the formation of SHPs and the control of postsynaptic receptor distribution upon cLTP.

  7. Fluorescent labeling of dendritic spines in cell cultures with the carbocyanine dye "DiI"

    Directory of Open Access Journals (Sweden)

    Connie eCheng

    2014-05-01

    Full Text Available Analyzing cell morphology is a key component to understand neuronal function. Several staining techniques have been developed to facilitate the morphological analysis of neurons, including the use of fluorescent markers, such as DiI (1,1’-dioctadecyl-3,3,3’,3’-tetramethylindocarbocyanine perchlorate. DiI is a carbocyanine membrane dye that exhibits enhanced fluorescence upon insertion of its lipophilic hydrocarbon chains into the lipid membrane of cells. The high photostability and prominent fluorescence of the dye serves as an effective means of illuminating cellular architecture in individual neurons, including detailed dendritic arborizations and spines in cell culture and tissue sections. Here, we specifically optimized a simple and reliable method to fluorescently label and visualize dissociated hippocampal neurons using DiI and high-resolution confocal microscopic imaging. With high efficacy, this method accurately labels neuronal and synaptic morphology to permit quantitative analysis of dendritic spines. Accurate imaging techniques of these fine neuronal specializations are vital to the study of their morphology and can help delineate structure-function relationships in the central nervous system.

  8. Immune System in the Brain: A Modulatory Role on Dendritic Spine Morphophysiology?

    Directory of Open Access Journals (Sweden)

    Oscar Kurt Bitzer-Quintero

    2012-01-01

    Full Text Available The central nervous system is closely linked to the immune system at several levels. The brain parenchyma is separated from the periphery by the blood brain barrier, which under normal conditions prevents the entry of mediators such as activated leukocytes, antibodies, complement factors, and cytokines. The myeloid cell lineage plays a crucial role in the development of immune responses at the central level, and it comprises two main subtypes: (1 resident microglia, distributed throughout the brain parenchyma; (2 perivascular macrophages located in the brain capillaries of the basal lamina and the choroid plexus. In addition, astrocytes, oligodendrocytes, endothelial cells, and, to a lesser extent, neurons are implicated in the immune response in the central nervous system. By modulating synaptogenesis, microglia are most specifically involved in restoring neuronal connectivity following injury. These cells release immune mediators, such as cytokines, that modulate synaptic transmission and that alter the morphology of dendritic spines during the inflammatory process following injury. Thus, the expression and release of immune mediators in the brain parenchyma are closely linked to plastic morphophysiological changes in neuronal dendritic spines. Based on these observations, it has been proposed that these immune mediators are also implicated in learning and memory processes.

  9. Letrozole Potentiates Mitochondrial and Dendritic Spine Impairments Induced by β Amyloid

    Directory of Open Access Journals (Sweden)

    P. K.-Y. Chang

    2013-01-01

    Full Text Available Reduced estrogens, either through aging or postsurgery breast cancer treatment with the oral nonsteroidal aromatase inhibitor letrozole, are linked with declined cognitive abilities. However, a direct link between letrozole and neuronal deficits induced by pathogenic insults associated with aging such as beta amyloid (Aβ1–42 has not been established. The objective of this study was to determine if letrozole aggravates synaptic deficits concurrent with Aβ1–42 insult. We examined the effects of letrozole and oligomeric Aβ1–42 treatment in dissociated and organotypic hippocampal slice cultures. Changes in glial cell morphology, neuronal mitochondria, and synaptic structures upon letrozole treatment were monitored by confocal microscopy, as they were shown to be affected by Aβ1–42 oligomers. Oligomeric Aβ1–42 or letrozole alone caused decreases in mitochondrial volume, dendritic spine density, synaptophysin (synaptic marker, and the postsynaptic protein, synaptopodin. Here, we demonstrated that mitochondrial and synaptic structural deficits were exacerbated when letrozole therapy was combined with Aβ1–42 treatment. Our novel findings suggest that letrozole may increase neuronal susceptibility to pathological insults, such as oligomeric Aβ1–42 in Alzheimer’s disease (AD. These changes in dendritic spine number, synaptic protein expression, and mitochondrial morphology may, in part, explain the increased prevalence of cognitive decline associated with aromatase inhibitor use.

  10. Control of Ca2+ Influx and Calmodulin Activation by SK-Channels in Dendritic Spines.

    Directory of Open Access Journals (Sweden)

    Thom Griffith

    2016-05-01

    Full Text Available The key trigger for Hebbian synaptic plasticity is influx of Ca2+ into postsynaptic dendritic spines. The magnitude of [Ca2+] increase caused by NMDA-receptor (NMDAR and voltage-gated Ca2+ -channel (VGCC activation is thought to determine both the amplitude and direction of synaptic plasticity by differential activation of Ca2+ -sensitive enzymes such as calmodulin. Ca2+ influx is negatively regulated by Ca2+ -activated K+ channels (SK-channels which are in turn inhibited by neuromodulators such as acetylcholine. However, the precise mechanisms by which SK-channels control the induction of synaptic plasticity remain unclear. Using a 3-dimensional model of Ca2+ and calmodulin dynamics within an idealised, but biophysically-plausible, dendritic spine, we show that SK-channels regulate calmodulin activation specifically during neuron-firing patterns associated with induction of spike timing-dependent plasticity. SK-channel activation and the subsequent reduction in Ca2+ influx through NMDARs and L-type VGCCs results in an order of magnitude decrease in calmodulin (CaM activation, providing a mechanism for the effective gating of synaptic plasticity induction. This provides a common mechanism for the regulation of synaptic plasticity by neuromodulators.

  11. Single-Molecule Discrimination within Dendritic Spines of Discrete Perisynaptic Sites of Actin Filament Assembly Driving Postsynaptic Reorganization

    Science.gov (United States)

    Blanpied, Thomas A.

    2013-03-01

    In the brain, the strength of synaptic transmission between neurons is principally set by the organization of proteins within the receptive, postsynaptic cell. Synaptic strength at an individual site of contact can remain remarkably stable for months or years. However, it also can undergo diverse forms of plasticity which change the strength at that contact independent of changes to neighboring synapses. Such activity-triggered neural plasticity underlies memory storage and cognitive development, and is disrupted in pathological physiology such as addiction and schizophrenia. Much of the short-term regulation of synaptic plasticity occurs within the postsynaptic cell, in small subcompartments surrounding the synaptic contact. Biochemical subcompartmentalization necessary for synapse-specific plasticity is achieved in part by segregation of synapses to micron-sized protrusions from the cell called dendritic spines. Dendritic spines are heavily enriched in the actin cytoskeleton, and regulation of actin polymerization within dendritic spines controls both basal synaptic strength and many forms of synaptic plasticity. However, understanding the mechanism of this control has been difficult because the submicron dimensions of spines limit examination of actin dynamics in the spine interior by conventional confocal microscopy. To overcome this, we developed single-molecule tracking photoactivated localization microscopy (smtPALM) to measure the movement of individual actin molecules within living spines. This revealed inward actin flow from broad areas of the spine plasma membrane, as well as a dense central core of heterogeneous filament orientation. The velocity of single actin molecules along filaments was elevated in discrete regions within the spine, notably near the postsynaptic density but surprisingly not at the endocytic zone which is involved in some forms of plasticity. We conclude that actin polymerization is initiated at many well-separated foci within

  12. ERK1/2 Activation Is Necessary for BDNF to Increase Dendritic Spine Density in Hippocampal CA1 Pyramidal Neurons

    Science.gov (United States)

    Alonso, Mariana; Medina, Jorge H.; Pozzo-Miller, Lucas

    2004-01-01

    Brain-derived neurotrophic factor (BDNF) is a potent modulator of synaptic transmission and plasticity in the CNS, acting both pre- and postsynaptically. We demonstrated recently that BDNF/TrkB signaling increases dendritic spine density in hippocampal CA1 pyramidal neurons. Here, we tested whether activation of the prominent ERK (MAPK) signaling…

  13. A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis

    DEFF Research Database (Denmark)

    Siegel, Gabriele; Obernosterer, Gregor; Fiore, Roberto

    2009-01-01

    The microRNA pathway has been implicated in the regulation of synaptic protein synthesis and ultimately in dendritic spine morphogenesis, a phenomenon associated with long-lasting forms of memory. However, the particular microRNAs (miRNAs) involved are largely unknown. Here we identify specific m...

  14. The role of heparan sulfate deficiency in autistic phenotype: potential involvement of Slit/Robo/srGAPs-mediated dendritic spine formation.

    Science.gov (United States)

    Pérez, Christine; Sawmiller, Darrell; Tan, Jun

    2016-04-18

    Autism Spectrum Disorders (ASD) are the second most common developmental cause of disability in the United States. ASDs are accompanied with substantial economic and emotional cost. The brains of ASD patients have marked structural abnormalities, in the form of increased dendritic spines and decreased long distance connections. These structural differences may be due to deficiencies in Heparin Sulfate (HS), a proteoglycan involved in a variety of neurodevelopmental processes. Of particular interest is its role in the Slit/Robo pathway. The Slit/Robo pathway is known to be involved in the regulation of axonal guidance and dendritic spine formation. HS mediates the Slit/Robo interaction; without its presence Slit's repulsive activity is abrogated. Slit/Robo regulates dendritic spine formation through its interaction with srGAPs (slit-robo GTPase Activating Proteins), which leads to downstream signaling, actin cytoskeleton depolymerization and dendritic spine collapse. Through interference with this pathway, HS deficiency can lead to excess spine formation.

  15. Asymptotic analysis of the narrow escape problem in dendritic spine shaped domain: three dimensions

    Science.gov (United States)

    Li, Xiaofei; Lee, Hyundae; Wang, Yuliang

    2017-08-01

    This paper deals with the three-dimensional narrow escape problem in a dendritic spine shaped domain, which is composed of a relatively big head and a thin neck. The narrow escape problem is to compute the mean first passage time of Brownian particles traveling from inside the head to the end of the neck. The original model is to solve a mixed Dirichlet-Neumann boundary value problem for the Poisson equation in the composite domain, and is computationally challenging. In this paper we seek to transfer the original problem to a mixed Robin-Neumann boundary value problem by dropping the thin neck part, and rigorously derive the asymptotic expansion of the mean first passage time with high order terms. This study is a nontrivial three-dimensional generalization of the work in Li (2014 J. Phys. A: Math. Theor. 47 505202), where a two-dimensional analogue domain is considered.

  16. Dopamine facilitates dendritic spine formation by cultured striatal medium spiny neurons through both D1 and D2 dopamine receptors.

    Science.gov (United States)

    Fasano, Caroline; Bourque, Marie-Josée; Lapointe, Gabriel; Leo, Damiana; Thibault, Dominic; Haber, Michael; Kortleven, Christian; Desgroseillers, Luc; Murai, Keith K; Trudeau, Louis-Éric

    2013-04-01

    Variations of dopamine (DA) levels induced by drugs of abuse or in the context of Parkinson's disease modulate the number of dendritic spines in medium spiny neurons (MSNs) of the striatum, showing that DA plays a major role in the structural plasticity of MSNs. However, little is presently known regarding early spine development in MSNs occurring before the arrival of cortical inputs and in particular about the role of DA and D1 (D1R) and D2 (D2R) DA receptors. A cell culture model reconstituting early cellular interactions between MSNs, intrinsic cholinergic interneurons and DA neurons was used to study the role of DA in spine formation. After 5 or 10 days in vitro, the presence of DA neurons increased the number of immature spine-like protrusions. In MSN monocultures, chronic activation of D1R or D2R also increased the number of spines and spinophilin expression in MSNs, suggesting a direct role for these receptors. In DA-MSN cocultures, chronic blockade of D1R or D2R reduced the number of dendritic spines. Interestingly, the combined activation or blockade of both D1R and D2R failed to elicit more extensive spine formation, suggesting that both receptors act through a mechanism that is not additive. Finally, we found increased ionotropic glutamate receptor responsiveness and miniature excitatory postsynaptic current (EPSC) frequency in DA-MSN co-cultures, in parallel with a higher number of spines containing PSD-95, suggesting that the newly formed spines present functional post-synaptic machinery preparing the MSNs to receive additional glutamatergic contacts. These results represent a first step in the understanding of how dopamine neurons promote the structural plasticity of MSNs during the development of basal ganglia circuits.

  17. Altered sensory experience exacerbates stable dendritic spine and synapse loss in a mouse model of Huntington's disease.

    Science.gov (United States)

    Murmu, Reena Prity; Li, Wen; Szepesi, Zsuzsanna; Li, Jia-Yi

    2015-01-07

    A key question in Huntington's disease (HD) is what underlies the early cognitive deficits that precede the motor symptoms and the characteristic neuronal death observed in HD. The mechanisms underlying cognitive symptoms in HD remain unknown. Postmortem HD brain and animal model studies demonstrate pathologies in dendritic spines and abnormal synaptic plasticity before motor symptoms and neurodegeneration. Experience-dependent synaptic plasticity caused by mechanisms such as LTP or novel sensory experience potentiates synaptic strength, enhances new dendritic spine formation and stabilization, and may contribute to normal cognitive processes, such as learning and memory. We have previously reported that under baseline conditions (without any sensory manipulation) neuronal circuitry in HD (R6/2 mouse model) was highly unstable, which led to a progressive loss of persistent spines in these mice, and that mutant huntingtin was directly involved in the process. Here, we investigated whether pathological processes of HD interfere with the normal experience-dependent plasticity of dendritic spines in the R6/2 model. Six weeks of two-photon in vivo imaging before and after whisker trimming revealed that sensory deprivation exacerbates loss of persistent-type, stable spines in R6/2 mice compared with wild-type littermates. In addition, sensory deprivation leads to impaired transformation of newly generated spines into persistent spines in R6/2 mice. As a consequence, reduced synaptic density and decreased PSD-95 protein levels are evident in their barrel cortical neurons. These data suggest that mutant huntingtin is implicated in maladaptive synaptic plasticity, which could be one of the plausible mechanisms underlying early cognitive deficits in HD.

  18. Calmodulin activation by calcium transients in the postsynaptic density of dendritic spines.

    Directory of Open Access Journals (Sweden)

    Daniel X Keller

    Full Text Available The entry of calcium into dendritic spines can trigger a sequence of biochemical reactions that begins with the activation of calmodulin (CaM and ends with long-term changes to synaptic strengths. The degree of activation of CaM can depend on highly local elevations in the concentration of calcium and the duration of transient increases in calcium concentration. Accurate measurement of these local changes in calcium is difficult because the spaces are so small and the numbers of molecules are so low. We have therefore developed a Monte Carlo model of intracellular calcium dynamics within the spine that included calcium binding proteins, calcium transporters and ion channels activated by voltage and glutamate binding. The model reproduced optical recordings using calcium indicator dyes and showed that without the dye the free intracellular calcium concentration transient was much higher than predicted from the fluorescent signal. Excitatory postsynaptic potentials induced large, long-lasting calcium gradients across the postsynaptic density, which activated CaM. When glutamate was released at the synapse 10 ms before an action potential occurred, simulating activity patterns that strengthen hippocampal synapses, the calcium gradient and activation of CaM in the postsynaptic density were much greater than when the order was reversed, a condition that decreases synaptic strengths, suggesting a possible mechanism underlying the induction of long-term changes in synaptic strength. The spatial and temporal mechanisms for selectivity in CaM activation demonstrated here could be used in other signaling pathways.

  19. Heterogeneous nuclear ribonucleoprotein k interacts with Abi-1 at postsynaptic sites and modulates dendritic spine morphology.

    Directory of Open Access Journals (Sweden)

    Christian Proepper

    Full Text Available BACKGROUND: Abelson-interacting protein 1 (Abi-1 plays an important role for dendritic branching and synapse formation in the central nervous system. It is localized at the postsynaptic density (PSD and rapidly translocates to the nucleus upon synaptic stimulation. At PSDs Abi-1 is in a complex with several other proteins including WASP/WAVE or cortactin thereby regulating the actin cytoskeleton via the Arp 2/3 complex. PRINCIPAL FINDINGS: We identified heterogeneous nuclear ribonucleoprotein K (hnRNPK, a 65 kDa ssDNA/RNA-binding-protein that is involved in multiple intracellular signaling cascades, as a binding partner of Abi-1 at postsynaptic sites. The interaction with the Abi-1 SH3 domain is mediated by the hnRNPK-interaction (KI domain. We further show that during brain development, hnRNPK expression becomes more and more restricted to granule cells of the cerebellum and hippocampal neurons where it localizes in the cell nucleus as well as in the spine/dendritic compartment. The downregulation of hnRNPK in cultured hippocampal neurons by RNAi results in an enlarged dendritic tree and a significant increase in filopodia formation. This is accompanied by a decrease in the number of mature synapses. Both effects therefore mimic the neuronal morphology after downregulation of Abi-1 mRNA in neurons. CONCLUSIONS: Our findings demonstrate a novel interplay between hnRNPK and Abi-1 in the nucleus and at synaptic sites and show obvious similarities regarding both protein knockdown phenotypes. This indicates that hnRNPK and Abi-1 act synergistic in a multiprotein complex that regulates the crucial balance between filopodia formation and synaptic maturation in neurons.

  20. Voltage-sensitive dye recording from axons, dendrites and dendritic spines of individual neurons in brain slices.

    Science.gov (United States)

    Popovic, Marko; Gao, Xin; Zecevic, Dejan

    2012-11-29

    phototoxic effects (4, 6, 12, 13). At present, we take advantage of the superb brightness and stability of a laser light source at near-optimal wavelength to maximize the sensitivity of the V(m)-imaging technique. The current sensitivity permits multiple site optical recordings of V(m) transients from all parts of a neuron, including axons and axon collaterals, terminal dendritic branches, and individual dendritic spines. The acquired information on signal interactions can be analyzed quantitatively as well as directly visualized in the form of a movie.

  1. Calcineurin inhibition with FK506 ameliorates dendritic spine density deficits in plaque-bearing Alzheimer model mice.

    Science.gov (United States)

    Rozkalne, Anete; Hyman, Bradley T; Spires-Jones, Tara L

    2011-03-01

    Synapse loss is the strongest correlate of cognitive decline in Alzheimer's disease, and synapses are an attractive therapeutic target due to their plastic nature that allows for potential recovery with intervention. We have previously demonstrated in transgenic mice that form senile plaques that dendrites surrounding plaques become dystrophic and lose postsynaptic dendritic spines. Furthermore, we found strong evidence that plaque-associated dendritic changes are mediated by calcineurin, a calcium-dependent phosphatase involved in cell signaling, using in vitro models and genetically encoded inhibitors in mouse models. In this study, we pharmacologically inhibited calcineurin with FK506 treatment to test the hypothesis that calcineurin inhibition will allow recovery of plaque-associated synapse loss. We found that in plaque bearing transgenic mice, short term (1 week) FK506 treatment results in an amelioration of dendritic spine loss. We also observe an effect on spine morphology in wild-type mice with FK506 treatment. These data show that systemic FK506 administration, and hence calcineurin inhibition, may be neuroprotective for amyloid beta induced synaptic alterations.

  2. The Endosome Localized Arf-GAP AGAP1 Modulates Dendritic Spine Morphology Downstream of the Neurodevelopmental Disorder Factor Dysbindin

    Science.gov (United States)

    Arnold, Miranda; Cross, Rebecca; Singleton, Kaela S.; Zlatic, Stephanie; Chapleau, Christopher; Mullin, Ariana P.; Rolle, Isaiah; Moore, Carlene C.; Theibert, Anne; Pozzo-Miller, Lucas; Faundez, Victor; Larimore, Jennifer

    2016-01-01

    AGAP1 is an Arf1 GTPase activating protein that interacts with the vesicle-associated protein complexes adaptor protein 3 (AP-3) and Biogenesis of Lysosome Related Organelles Complex-1 (BLOC-1). Overexpression of AGAP1 in non-neuronal cells results in an accumulation of endosomal cargoes, which suggests a role in endosome-dependent traffic. In addition, AGAP1 is a candidate susceptibility gene for two neurodevelopmental disorders, autism spectrum disorder (ASD) and schizophrenia (SZ); yet its localization and function in neurons have not been described. Here, we describe that AGAP1 localizes to axons, dendrites, dendritic spines and synapses, colocalizing preferentially with markers of early and recycling endosomes. Functional studies reveal overexpression and down-regulation of AGAP1 affects both neuronal endosomal trafficking and dendritic spine morphology, supporting a role for AGAP1 in the recycling endosomal trafficking involved in their morphogenesis. Finally, we determined the sensitivity of AGAP1 expression to mutations in the DTNBP1 gene, which is associated with neurodevelopmental disorder, and found that AGAP1 mRNA and protein levels are selectively reduced in the null allele of the mouse ortholog of DTNBP1. We postulate that endosomal trafficking contributes to the pathogenesis of neurodevelopmental disorders affecting dendritic spine morphology, and thus excitatory synapse structure and function. PMID:27713690

  3. The Endosome Localized Arf-GAP AGAP1 Modulates Dendritic Spine Morphology Downstream of the Neurodevelopmental Disorder Factor Dysbindin

    Directory of Open Access Journals (Sweden)

    Miranda Arnold

    2016-09-01

    Full Text Available AGAP1 is an Arf1 GTPase activating protein that interacts with the vesicle-associated protein complexes adaptor protein 3 (AP-3 and Biogenesis of Lysosome Related Organelles Complex-1 (BLOC-1. Overexpression of AGAP1 in non-neuronal cells results in an accumulation of endosomal cargoes, which suggests a role in endosome-dependent traffic. In addition, AGAP1 is a candidate susceptibility gene for two neurodevelopmental disorders, autism spectrum disorder (ASD and schizophrenia (SZ; yet its localization and function in neurons have not been described. Here, we describe that AGAP1 localizes to axons, dendrites, dendritic spines, and synapses, colocalizing preferentially with markers of early and recycling endosomes. Functional studies reveal overexpression and down-regulation of AGAP1 affects both neuronal endosomal trafficking and dendritic spine morphology, supporting a role for AGAP1 in the recycling endosomal trafficking involved in their morphogenesis. Finally, we determined the sensitivity of AGAP1 expression to mutations in the DTNBP1 gene, which is associated with neurodevelopmental disorder, and found that AGAP1 mRNA and protein levels are selectively reduced in the null allele of the mouse orthologue of DTNBP1. We postulate that endosomal trafficking contributes to the pathogenesis of neurodevelopmental disorders affecting dendritic spine morphology, and thus excitatory synapse structure and function.

  4. Spatial and Working Memory Is Linked to Spine Density and Mushroom Spines.

    Directory of Open Access Journals (Sweden)

    Rasha Refaat Mahmmoud

    Full Text Available Changes in synaptic structure and efficacy including dendritic spine number and morphology have been shown to underlie neuronal activity and size. Moreover, the shapes of individual dendritic spines were proposed to correlate with their capacity for structural change. Spine numbers and morphology were reported to parallel memory formation in the rat using a water maze but, so far, there is no information on spine counts or shape in the radial arm maze (RAM, a frequently used paradigm for the evaluation of complex memory formation in the rodent.24 male Sprague-Dawley rats were divided into three groups, 8 were trained, 8 remained untrained in the RAM and 8 rats served as cage controls. Dendritic spine numbers and individual spine forms were counted in CA1, CA3 areas and dentate gyrus of hippocampus using a DIL dye method with subsequent quantification by the Neuronstudio software and the image J program.Working memory errors (WME and latency in the RAM were decreased along the training period indicating that animals performed the task. Total spine density was significantly increased following training in the RAM as compared to untrained rats and cage controls. The number of mushroom spines was significantly increased in the trained as compared to untrained and cage controls. Negative significant correlations between spine density and WME were observed in CA1 basal dendrites and in CA3 apical and basal dendrites. In addition, there was a significant negative correlation between spine density and latency in CA3 basal dendrites.The study shows that spine numbers are significantly increased in the trained group, an observation that may suggest the use of this method representing a morphological parameter for memory formation studies in the RAM. Herein, correlations between WME and latency in the RAM and spine density revealed a link between spine numbers and performance in the RAM.

  5. RuBi-Glutamate: Two-photon and visible-light photoactivation of neurons and dendritic spines

    Directory of Open Access Journals (Sweden)

    Elodie Fino

    2009-05-01

    Full Text Available We describe neurobiological applications of RuBi-Glutamate, a novel caged-glutamate compound based on ruthenium photochemistry. RuBi-Glutamate can be excited with visible wavelengths and releases glutamate after one- or two-photon excitation. It has high quantum efficiency and can be used at low concentrations, partly avoiding the blockade of GABAergic transmission present with other caged compounds. Two-photon uncaging of RuBi-glutamate has a high spatial resolution and generates excitatory responses in individual dendritic spines with physiological kinetics. With laser beam multiplexing, RuBi-Glutamate uncaging can also be used to depolarize and fire pyramidal neurons with single-cell resolution. RuBi-Glutamate therefore enables the photo-activation of neuronal dendrites and circuits with visible or two-photon light sources, achieving single spine, or single cell, precision.

  6. RuBi-Glutamate: Two-Photon and Visible-Light Photoactivation of Neurons and Dendritic spines.

    Science.gov (United States)

    Fino, Elodie; Araya, Roberto; Peterka, Darcy S; Salierno, Marcelo; Etchenique, Roberto; Yuste, Rafael

    2009-01-01

    We describe neurobiological applications of RuBi-Glutamate, a novel caged-glutamate compound based on ruthenium photochemistry. RuBi-Glutamate can be excited with visible wavelengths and releases glutamate after one- or two-photon excitation. It has high quantum efficiency and can be used at low concentrations, partly avoiding the blockade of GABAergic transmission present with other caged compounds. Two-photon uncaging of RuBi-Glutamate has a high spatial resolution and generates excitatory responses in individual dendritic spines with physiological kinetics. With laser beam multiplexing, two-photon RuBi-Glutamate uncaging can also be used to depolarize and fire pyramidal neurons with single-cell resolution. RuBi-Glutamate therefore enables the photoactivation of neuronal dendrites and circuits with visible or two-photon light sources, achieving single cell, or even single spine, precision.

  7. βIII Spectrin Is Necessary for Formation of the Constricted Neck of Dendritic Spines and Regulation of Synaptic Activity in Neurons.

    Science.gov (United States)

    Efimova, Nadia; Korobova, Farida; Stankewich, Michael C; Moberly, Andrew H; Stolz, Donna B; Wang, Junling; Kashina, Anna; Ma, Minghong; Svitkina, Tatyana

    2017-07-05

    Dendritic spines are postsynaptic structures in neurons often having a mushroom-like shape. Physiological significance and cytoskeletal mechanisms that maintain this shape are poorly understood. The spectrin-based membrane skeleton maintains the biconcave shape of erythrocytes, but whether spectrins also determine the shape of nonerythroid cells is less clear. We show that βIII spectrin in hippocampal and cortical neurons from rodent embryos of both sexes is distributed throughout the somatodendritic compartment but is particularly enriched in the neck and base of dendritic spines and largely absent from spine heads. Electron microscopy revealed that βIII spectrin forms a detergent-resistant cytoskeletal network at these sites. Knockdown of βIII spectrin results in a significant decrease in the density of dendritic spines. Surprisingly, the density of presynaptic terminals is not affected by βIII spectrin knockdown. However, instead of making normal spiny synapses, the presynaptic structures in βIII spectrin-depleted neurons make shaft synapses that exhibit increased amplitudes of miniature EPSCs indicative of excessive postsynaptic excitation. Thus, βIII spectrin is necessary for formation of the constricted shape of the spine neck, which in turn controls communication between the synapse and the parent dendrite to prevent excessive excitation. Notably, mutations of SPTNB2 encoding βIII spectrin are associated with neurodegenerative syndromes, spinocerebellar ataxia Type 5, and spectrin-associated autosomal recessive cerebellar ataxia Type 1, but molecular mechanisms linking βIII spectrin functions to neuronal pathologies remain unresolved. Our data suggest that spinocerebellar ataxia Type 5 and spectrin-associated autosomal recessive cerebellar ataxia Type 1 pathology likely arises from poorly controlled synaptic activity that leads to excitotoxicity and neurodegeneration.SIGNIFICANCE STATEMENT Dendritic spines are small protrusions from neuronal

  8. GSK-3β Overexpression Alters the Dendritic Spines of Developmentally Generated Granule Neurons in the Mouse Hippocampal Dentate Gyrus

    Science.gov (United States)

    Pallas-Bazarra, Noemí; Kastanauskaite, Asta; Avila, Jesús; DeFelipe, Javier; Llorens-Martín, María

    2017-01-01

    The dentate gyrus (DG) plays a crucial role in hippocampal-related memory. The most abundant cellular type in the DG, namely granule neurons, are developmentally generated around postnatal day P6 in mice. Moreover, a unique feature of the DG is the occurrence of adult hippocampal neurogenesis, a process that gives rise to newborn granule neurons throughout life. Adult-born and developmentally generated granule neurons share some maturational aspects but differ in others, such as in their positioning within the granule cell layer. Adult hippocampal neurogenesis encompasses a series of plastic changes that modify the function of the hippocampal trisynaptic network. In this regard, it is known that glycogen synthase kinase 3β (GSK-3β) regulates both synaptic plasticity and memory. By using a transgenic mouse overexpressing GSK-3β in hippocampal neurons, we previously demonstrated that the overexpression of this kinase has deleterious effects on the maturation of newborn granule neurons. In the present study, we addressed the effects of GSK-3β overexpression on the morphology and number of dendritic spines of developmentally generated granule neurons. To this end, we performed intracellular injections of Lucifer Yellow in developmentally generated granule neurons of wild-type and GSK-3β-overexpressing mice and analyzed the number and morphologies of dendritic spines (namely, stubby, thin and mushroom). GSK-3β overexpression led to a general reduction in the number of dendritic spines. In addition, it caused a slight reduction in the percentage, head diameter and length of thin spines, whereas the head diameter of mushroom spines was increased. PMID:28344548

  9. miR-132 Regulates Dendritic Spine Structure by Direct Targeting of Matrix Metalloproteinase 9 mRNA.

    Science.gov (United States)

    Jasińska, Magdalena; Miłek, Jacek; Cymerman, Iwona A; Łęski, Szymon; Kaczmarek, Leszek; Dziembowska, Magdalena

    2016-09-01

    Mir-132 is a neuronal activity-regulated microRNA that controls the morphology of dendritic spines and neuronal transmission. Similar activities have recently been attributed to matrix metalloproteinase-9 (MMP-9), an extrasynaptic protease. In the present study, we provide evidence that miR-132 directly regulates MMP-9 mRNA in neurons to modulate synaptic plasticity. With the use of luciferase reporter system, we show that miR-132 binds to the 3'UTR of MMP-9 mRNA to regulate its expression in neurons. The overexpression of miR-132 in neurons reduces the level of endogenous MMP-9 protein secretion. In synaptoneurosomes, metabotropic glutamate receptor (mGluR)-induced signaling stimulates the dissociation of miR-132 from polyribosomal fractions and shifts it towards the messenger ribonucleoprotein (mRNP)-containing fraction. Furthermore, we demonstrate that the overexpression of miR-132 in the cultured hippocampal neurons from Fmr1 KO mice that have increased synaptic MMP-9 level provokes enlargement of the dendritic spine heads, a process previously implicated in enhanced synaptic plasticity. We propose that activity-dependent miR-132 regulates structural plasticity of dendritic spines through matrix metalloproteinase 9.

  10. A simple rule for dendritic spine and axonal bouton formation can account for cortical reorganization after focal retinal lesions.

    Directory of Open Access Journals (Sweden)

    Markus Butz

    Full Text Available Lasting alterations in sensory input trigger massive structural and functional adaptations in cortical networks. The principles governing these experience-dependent changes are, however, poorly understood. Here, we examine whether a simple rule based on the neurons' need for homeostasis in electrical activity may serve as driving force for cortical reorganization. According to this rule, a neuron creates new spines and boutons when its level of electrical activity is below a homeostatic set-point and decreases the number of spines and boutons when its activity exceeds this set-point. In addition, neurons need a minimum level of activity to form spines and boutons. Spine and bouton formation depends solely on the neuron's own activity level, and synapses are formed by merging spines and boutons independently of activity. Using a novel computational model, we show that this simple growth rule produces neuron and network changes as observed in the visual cortex after focal retinal lesions. In the model, as in the cortex, the turnover of dendritic spines was increased strongest in the center of the lesion projection zone, while axonal boutons displayed a marked overshoot followed by pruning. Moreover, the decrease in external input was compensated for by the formation of new horizontal connections, which caused a retinotopic remapping. Homeostatic regulation may provide a unifying framework for understanding cortical reorganization, including network repair in degenerative diseases or following focal stroke.

  11. Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons.

    Science.gov (United States)

    Magee, J C; Johnston, D

    1995-08-15

    1. We have used dendrite-attached patch-clamp techniques to record single Na+ and Ca2+ channel activity from the apical dendrites (up to 350 microns away from soma) of CA1 pyramidal neurons in rat hippocampal slices (ages: 2-8 weeks). 2. Na+ channels were found in every patch examined (range: 2 to > 20 channels per patch). Channel openings, which had a slope conductance of 15 +/- 0.3 pS (mean +/- S.E.M.), began with test commands to around -50 mV and consisted of both early transient channel activity and also later occurring prolonged openings of 5-15 ms. All Na+ channel activity was suppressed by inclusion of TTX (1 microM) in the recording pipette. 3. Ca2+ channel activity was recorded in about 80% of the patches examined (range: 1 to > 10 channels per patch). Several types of channel behaviour were observed in these patches. Single channel recordings in 110 mM BaCl2, revealed an approximately 10 pS channel of small unitary current amplitude (-0.5 pA at -20 mV). These channels began activating at relatively hyperpolarized potentials (-50 mV) and ensemble averages of this low voltage-activated (LVA) channel activity showed rapid inactivation. 4. A somewhat heterogeneous population of high voltage-activated, moderate conductance (HVAm; approximately 17 pS), Ca2+ channel activity was also encountered. These channels exhibited a relatively large unitary amplitude (-0.8 pA at 0 mV) and ensemble averages demonstrated moderate inactivation. The HVAm population of channels could be tentatively subdivided into two separate groups based upon mean channel open times. 5. Less frequently, HVA, large conductance (27 pS) Ca2+ channel activity (HVA1) was also observed. This large unitary amplitude (-1.5 pA at 0 mV) channel activity began with steps to approximately 0 mV and ensemble averages did not show any time-dependent inactivation. The dihydropyridine Ca2+ channel agonist Bay K 8644 (0.5 or 1 microM) was found to characteristically prolong these channel openings. 6. omega

  12. Calsyntenin-1 regulates targeting of dendritic NMDA receptors and dendritic spine maturation in CA1 hippocampal pyramidal cells during postnatal development.

    Science.gov (United States)

    Ster, Jeanne; Steuble, Martin; Orlando, Clara; Diep, Tu-My; Akhmedov, Alexander; Raineteau, Olivier; Pernet, Vincent; Sonderegger, Peter; Gerber, Urs

    2014-06-25

    Calsyntenin-1 is a transmembrane cargo-docking protein important for kinesin-1-mediated fast transport of membrane-bound organelles that exhibits peak expression levels at postnatal day 7. However, its neuronal function during postnatal development remains unknown. We generated a knock-out mouse to characterize calsyntenin-1 function in juvenile mice. In the absence of calsyntenin-1, synaptic transmission was depressed. To address the mechanism, evoked EPSPs were analyzed revealing a greater proportion of synaptic GluN2B subunit-containing receptors typical for less mature synapses. This imbalance was due to a disruption in calsyntenin-1-mediated dendritic transport of NMDA receptor subunits. As a consequence of increased expression of GluN2B subunits, NMDA receptor-dependent LTP was enhanced at Schaffer collateral-CA1 pyramidal cell synapses. Interestingly, these defects were accompanied by a decrease in dendritic arborization and increased proportions of immature filopodia-like dendritic protrusions at the expense of thin-type dendritic spines in CA1 pyramidal cells. Thus, these results highlight a key role for calsyntenin-1 in the transport of NMDA receptors to synaptic targets, which is necessary for the maturation of neuronal circuits during early development.

  13. Apical cap

    Energy Technology Data Exchange (ETDEWEB)

    McLoud, T.C.; Isler, R.J.; Novelline, R.A.; Putman, C.E.; Simeone, J.; Stark, P.

    1981-08-01

    Apical caps, either unilateral or bilateral, are a common feature of advancing age and are usually the result of subpleural scarring unassociated with other diseases. Pancoast (superior sulcus) tumors are a well recognized cause of unilateral asymmetric apical density. Other lesions arising in the lung, pleura, or extrapleural space may produce unilateral or bilateral apical caps. These include: (1) inflammatory: tuberculosis and extrapleural abscesses extending from the neck; (2) post radiation fibrosis after mantle therapy for Hodgkin disease or supraclavicular radiation in the treatment of breast carcinoma; (3) neoplasm: lymphoma extending from the neck or mediastinum, superior sulcus bronchogenic carcinoma, and metastases; (4) traumatic: extrapleural dissection of blood from a ruptured aorta, fractures of the ribs or spine, or hemorrhage due to subclavian line placement; (5) vascular: coarctation of the aorta with dilated collaterals over the apex, fistula between the subclavian artery and vein; and (6) miscellaneous: mediastinal lipomatosis with subcostal fat extending over the apices.

  14. Effects of Chronic Dopamine D2R Agonist Treatment and Polysialic Acid Depletion on Dendritic Spine Density and Excitatory Neurotransmission in the mPFC of Adult Rats

    Directory of Open Access Journals (Sweden)

    Esther Castillo-Gómez

    2016-01-01

    Full Text Available Dopamine D2 receptors (D2R in the medial prefrontal cortex (mPFC are key players in the etiology and therapeutics of schizophrenia. The overactivation of these receptors contributes to mPFC dysfunction. Chronic treatment with D2R agonists modifies the expression of molecules implicated in neuronal structural plasticity, synaptic function, and inhibitory neurotransmission, which are also altered in schizophrenia. These changes are dependent on the expression of the polysialylated form of the neural cell adhesion molecule (PSA-NCAM, a plasticity-related molecule, but nothing is known about the effects of D2R and PSA-NCAM on excitatory neurotransmission and the structure of mPFC pyramidal neurons, two additional features affected in schizophrenia. To evaluate these parameters, we have chronically treated adult rats with PPHT (a D2R agonist after enzymatic removal of PSA with Endo-N. Both treatments decreased spine density in apical dendrites of pyramidal neurons without affecting their inhibitory innervation. Endo-N also reduced the expression of vesicular glutamate transporter-1. These results indicate that D2R and PSA-NCAM are important players in the regulation of the structural plasticity of mPFC excitatory neurons. This is relevant to our understanding of the neurobiological basis of schizophrenia, in which structural alterations of pyramidal neurons and altered expression of D2R and PSA-NCAM have been found.

  15. KIS, a kinase associated with microtubule regulators, enhances translation of AMPA receptors and stimulates dendritic spine remodeling.

    Science.gov (United States)

    Pedraza, Neus; Ortiz, Raúl; Cornadó, Alba; Llobet, Artur; Aldea, Martí; Gallego, Carme

    2014-10-15

    Local regulation of protein synthesis allows a neuron to rapidly alter the proteome in response to synaptic signals, an essential mechanism in synaptic plasticity that is altered in many neurological diseases. Synthesis of many synaptic proteins is under local control and much of this regulation occurs through structures termed RNA granules. KIS is a protein kinase that associates with stathmin, a modulator of the tubulin cytoskeleton. Furthermore, KIS is found in RNA granules and stimulates translation driven by the β-actin 3'UTR in neurites. Here we explore the physiological and molecular mechanisms underlying the action of KIS on hippocampal synaptic plasticity in mice. KIS downregulation compromises spine development, alters actin dynamics, and reduces postsynaptic responsiveness. The absence of KIS results in a significant decrease of protein levels of PSD-95, a postsynaptic scaffolding protein, and the AMPAR subunits GluR1 and GluR2 in a CPEB3-dependent manner. Underlying its role in spine maturation, KIS is able to suppress the spine developmental defects caused by CPEB3 overexpression. Moreover, either by direct or indirect mechanisms, KIS counteracts the inhibitory activity of CPEB3 on the GluR2 3'UTR at both mRNA translation and polyadenylation levels. Our study provides insights into the mechanisms that mediate dendritic spine morphogenesis and functional synaptic maturation, and suggests KIS as a link regulating spine cytoskeleton and postsynaptic activity in memory formation.

  16. Chronic Lead Exposure and Mixed Factors of Gender×Age×Brain Regions Interactions on Dendrite Growth, Spine Maturity and NDR Kinase.

    Directory of Open Access Journals (Sweden)

    Yang Du

    Full Text Available NDR1/2 kinase is essential in dendrite morphology and spine formation, which is regulated by cellular Ca2+. Lead (Pb is a potent blocker of L-type calcium channel and our recent work showed Pb exposure impairs dendritic spine outgrowth in hippocampal neurons in rats. But the sensitivity of Pb-induced spine maturity with mixed factors (gender×age×brain regions remains unknown. This study aimed to systematically investigate the effect of Pb exposure on spine maturity in rat brain with three factors (gender×age×brain regions, as well as the NDR1/2 kinase expression. Sprague-Dawley rats were exposed to Pb from parturition to postnatal day 30, 60, 90, respectively. Golgi-Cox staining was used to examine spine maturity. Western blot assay was applied to measure protein expression and real-time fluorescence quantitative PCR assay was used to examine mRNA levels. The results showed chronic Pb exposure significantly decreased dendritic length and impaired spine maturity in both rat hippocampus and medial prefrontal cortex. The impairment of dendritic length induced by Pb exposure tended to adolescence > adulthood, hippocampus > medial prefrontal cortex and female > male. Pb exposure induced significant damage in spine maturity during adolescence and early adult while little damage during adult in male rat brain and female medial prefrontal cortex. Besides, there was sustained impairment from adolescence to adulthood in female hippocampus. Interestingly, impairment of spine maturity followed by Pb exposure was correlated with NDR1/2 kinase. The reduction of NDR1/2 kinase protein expression after Pb exposure was similar to the result of spine maturity. In addition, NDR2 and their substrate Rabin3 mRNA levels were significantly decreased by Pb exposure in developmental rat brain. Taken together, Pb exposure impaired dendrite growth and maturity which was subject to gender×age×brain regions effects and related to NDR1/2 signal expression.

  17. Super-resolution 2-photon microscopy reveals that the morphology of each dendritic spine correlates with diffusive but not synaptic properties

    Directory of Open Access Journals (Sweden)

    Kevin eTakasaki

    2014-05-01

    Full Text Available The structure of dendritic spines suggests a specialized function in compartmentalizing synaptic signals near active synapses. Indeed, theoretical and experimental analyses indicate that the diffusive resistance of the spine neck is sufficient to effectively compartmentalize some signaling molecules in a spine for the duration of their activated lifetime. Here we describe the application of 2-photon microscopy combined with stimulated emission depletion (STED-2P to the biophysical study of the relationship between synaptic signals and spine morphology, demonstrating the utility of combining STED-2P with modern optical and electrophysiological techniques. Morphological determinants of fluorescence recovery time were identified and evaluated within the context of a simple compartmental model describing diffusive transfer between spine and dendrite. Correlations between the neck geometry and the amplitude of synapse potentials and calcium transients evoked by 2-photon glutamate uncaging were also investigated.

  18. Pharmacological reversion of sphingomyelin-induced dendritic spine anomalies in a Niemann Pick disease type A mouse model.

    Science.gov (United States)

    Arroyo, Ana I; Camoletto, Paola G; Morando, Laura; Sassoe-Pognetto, Marco; Giustetto, Maurizio; Van Veldhoven, Paul P; Schuchman, Edward H; Ledesma, Maria D

    2014-03-01

    Understanding the role of lipids in synapses and the aberrant molecular mechanisms causing the cognitive deficits that characterize most lipidosis is necessary to develop therapies for these diseases. Here we describe sphingomyelin (SM) as a key modulator of the dendritic spine actin cytoskeleton. We show that increased SM levels in neurons of acid sphingomyelinase knock out mice (ASMko), which mimic Niemann Pick disease type A (NPA), result in reduced spine number and size and low levels of filamentous actin. Mechanistically, SM accumulation decreases the levels of metabotropic glutamate receptors type I (mGluR1/5) at the synaptic membrane impairing membrane attachment and activity of RhoA and its effectors ROCK and ProfilinIIa. Pharmacological enhancement of the neutral sphingomyelinase rescues the aberrant molecular and morphological phenotypes in vitro and in vivo and improves motor and memory deficits in ASMko mice. Altogether, these data demonstrate the influence of SM and its catabolic enzymes in dendritic spine physiology and contribute to our understanding of the cognitive deficits of NPA patients, opening new perspectives for therapeutic interventions.

  19. Pharmacological reversion of sphingomyelin-induced dendritic spine anomalies in a Niemann Pick disease type A mouse model

    Science.gov (United States)

    Arroyo, Ana I; Camoletto, Paola G; Morando, Laura; Sassoe-Pognetto, Marco; Giustetto, Maurizio; Van Veldhoven, Paul P; Schuchman, Edward H; Ledesma, Maria D

    2014-01-01

    Understanding the role of lipids in synapses and the aberrant molecular mechanisms causing the cognitive deficits that characterize most lipidosis is necessary to develop therapies for these diseases. Here we describe sphingomyelin (SM) as a key modulator of the dendritic spine actin cytoskeleton. We show that increased SM levels in neurons of acid sphingomyelinase knock out mice (ASMko), which mimic Niemann Pick disease type A (NPA), result in reduced spine number and size and low levels of filamentous actin. Mechanistically, SM accumulation decreases the levels of metabotropic glutamate receptors type I (mGluR1/5) at the synaptic membrane impairing membrane attachment and activity of RhoA and its effectors ROCK and ProfilinIIa. Pharmacological enhancement of the neutral sphingomyelinase rescues the aberrant molecular and morphological phenotypes in vitro and in vivo and improves motor and memory deficits in ASMko mice. Altogether, these data demonstrate the influence of SM and its catabolic enzymes in dendritic spine physiology and contribute to our understanding of the cognitive deficits of NPA patients, opening new perspectives for therapeutic interventions. Subject Categories Genetics, Gene Therapy & Genetic Disease; Neuroscience PMID:24448491

  20. Morphogenesis and Regulation of Bergmann Glial Processes During Purkinje Cell Dendritic Spine Ensheathment and Synaptogenesis

    Institute of Scientific and Technical Information of China (English)

    JOCELYN J. LIPPMAN; TAMAR LORDKIPANIDZE; MARGARET E. BUELL; SUNG OK YOON; ANNA DUNAEVSKY

    2008-01-01

    星形胶质细胞在突触形成中发挥重要作用,但星形胶质细胞突起如何在发育过程中与突触结构相联系还不是很清楚.本文分析在小脑突触发生过程中Bergmann胶质细胞(BG)突起生长的类型.本文发现在这个过程中,BG突起向外生长与树突棘增多的包被作用相关.此外,双光子时间分辩显像显示BG突起是高度动态的,在棘包被过程中突起趋于稳定.虽然突触活力依赖于肌动蛋白的聚合作用,但细胞骨架调节器Ratl和RhoG的活动在胶质细胞突起的动力或密度上并未发挥作用,而是对于保持突起长度起关键性作用.本文扩展这个发现,探查突起形态和包被之间的关系,发现缩短的突起导致棘覆盖的减少.本文进一步发现在BG表达dn-Racl和低水平突触包被的区域,显示突触数量的增加.这些分析提示BG突起如何生长并包围突触结构,阐明BG突起结构对突触包被适当发育的重要性,并提示包被在突触形成中的作用.%Astrocytes have an important role in synaptic formation and function but how astrocytic processes be-come associated with synaptic structures during development is not well understood. Here we analyzed the pattern of growth of the processes extending off the main Bergmann glial (BG) shafts during synaptogenesis in the cerebellum.We found that during this period, BG process outgrowth was correlated with increased ensheathment of dendritic spines. Inaddition, two-photon time-lapse imaging revealed that BG processes were highly dynamic, and processes became more stable as the period of spine ensheathment progressed. While process motility was dependent on actin polymerization, activity of cytoskeletal regulators Racl and RhoG did not play a role in glial process dynamics or density, but was critical for maintaining process length. We extended this finding to probe the relationship between process morphology and ensheathment, finding that shortened processes result

  1. Drebrin depletion alters neurotransmitter receptor levels in protein complexes, dendritic spine morphogenesis and memory-related synaptic plasticity in the mouse hippocampus.

    Science.gov (United States)

    Jung, Gangsoo; Kim, Eun-Jung; Cicvaric, Ana; Sase, Sunetra; Gröger, Marion; Höger, Harald; Sialana, Fernando Jayson; Berger, Johannes; Monje, Francisco J; Lubec, Gert

    2015-07-01

    Drebrin an actin-bundling key regulator of dendritic spine genesis and morphology, has been recently proposed as a regulator of hippocampal glutamatergic activity which is critical for memory formation and maintenance. Here, we examined the effects of genetic deletion of drebrin on dendritic spine and on the level of complexes containing major brain receptors. To this end, homozygous and heterozygous drebrin knockout mice generated in our laboratory and related wild-type control animals were studied. Level of protein complexes containing dopamine receptor D1/dopamine receptor D2, 5-hydroxytryptamine receptor 1A (5-HT1(A)R), and 5-hydroxytryptamine receptor 7 (5-HT7R) were significantly reduced in hippocampus of drebrin knockout mice whereas no significant changes were detected for GluR1, 2, and 3 and NR1 as examined by native gel-based immunoblotting. Drebrin depletion also altered dendritic spine formation, morphology, and reduced levels of dopamine receptor D1 in dendritic spines as evaluated using immunohistochemistry/confocal microscopy. Electrophysiological studies further showed significant reduction in memory-related hippocampal synaptic plasticity upon drebrin depletion. These findings provide unprecedented experimental support for a role of drebrin in the regulation of memory-related synaptic plasticity and neurotransmitter receptor signaling, offer relevant information regarding the interpretation of previous studies and help in the design of future studies on dendritic spines. © 2015 International Society for Neurochemistry.

  2. The therapeutic effect of memantine through the stimulation of synapse formation and dendritic spine maturation in autism and fragile X syndrome.

    Directory of Open Access Journals (Sweden)

    Hongen Wei

    Full Text Available Although the pathogenic mechanisms that underlie autism are not well understood, there is evidence showing that metabotropic and ionotropic glutamate receptors are hyper-stimulated and the GABAergic system is hypo-stimulated in autism. Memantine is an uncompetitive antagonist of NMDA receptors and is widely prescribed for treatment of Alzheimer's disease treatment. Recently, it has been shown to improve language function, social behavior, and self-stimulatory behaviors of some autistic subjects. However the mechanism by which memantine exerts its effect remains to be elucidated. In this study, we used cultured cerebellar granule cells (CGCs from Fmr1 knockout (KO mice, a mouse model for fragile X syndrome (FXS and syndromic autism, to examine the effects of memantine on dendritic spine development and synapse formation. Our results show that the maturation of dendritic spines is delayed in Fmr1-KO CGCs. We also detected reduced excitatory synapse formation in Fmr1-KO CGCs. Memantine treatment of Fmr1-KO CGCs promoted cell adhesion properties. Memantine also stimulated the development of mushroom-shaped mature dendritic spines and restored dendritic spine to normal levels in Fmr1-KO CGCs. Furthermore, we demonstrated that memantine treatment promoted synapse formation and restored the excitatory synapses to a normal range in Fmr1-KO CGCs. These findings suggest that memantine may exert its therapeutic capacity through a stimulatory effect on dendritic spine maturation and excitatory synapse formation, as well as promoting adhesion of CGCs.

  3. FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons.

    Science.gov (United States)

    Bosch, Carles; Martínez, Albert; Masachs, Nuria; Teixeira, Cátia M; Fernaud, Isabel; Ulloa, Fausto; Pérez-Martínez, Esther; Lois, Carlos; Comella, Joan X; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo

    2015-01-01

    The fine analysis of synaptic contacts is usually performed using transmission electron microscopy (TEM) and its combination with neuronal labeling techniques. However, the complex 3D architecture of neuronal samples calls for their reconstruction from serial sections. Here we show that focused ion beam/scanning electron microscopy (FIB/SEM) allows efficient, complete, and automatic 3D reconstruction of identified dendrites, including their spines and synapses, from GFP/DAB-labeled neurons, with a resolution comparable to that of TEM. We applied this technology to analyze the synaptogenesis of labeled adult-generated granule cells (GCs) in mice. 3D reconstruction of dendritic spines in GCs aged 3-4 and 8-9 weeks revealed two different stages of dendritic spine development and unexpected features of synapse formation, including vacant and branched dendritic spines and presynaptic terminals establishing synapses with up to 10 dendritic spines. Given the reliability, efficiency, and high resolution of FIB/SEM technology and the wide use of DAB in conventional EM, we consider FIB/SEM fundamental for the detailed characterization of identified synaptic contacts in neurons in a high-throughput manner.

  4. FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons

    Science.gov (United States)

    Bosch, Carles; Martínez, Albert; Masachs, Nuria; Teixeira, Cátia M.; Fernaud, Isabel; Ulloa, Fausto; Pérez-Martínez, Esther; Lois, Carlos; Comella, Joan X.; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo

    2015-01-01

    The fine analysis of synaptic contacts is usually performed using transmission electron microscopy (TEM) and its combination with neuronal labeling techniques. However, the complex 3D architecture of neuronal samples calls for their reconstruction from serial sections. Here we show that focused ion beam/scanning electron microscopy (FIB/SEM) allows efficient, complete, and automatic 3D reconstruction of identified dendrites, including their spines and synapses, from GFP/DAB-labeled neurons, with a resolution comparable to that of TEM. We applied this technology to analyze the synaptogenesis of labeled adult-generated granule cells (GCs) in mice. 3D reconstruction of dendritic spines in GCs aged 3–4 and 8–9 weeks revealed two different stages of dendritic spine development and unexpected features of synapse formation, including vacant and branched dendritic spines and presynaptic terminals establishing synapses with up to 10 dendritic spines. Given the reliability, efficiency, and high resolution of FIB/SEM technology and the wide use of DAB in conventional EM, we consider FIB/SEM fundamental for the detailed characterization of identified synaptic contacts in neurons in a high-throughput manner. PMID:26052271

  5. Essential role for vav Guanine nucleotide exchange factors in brain-derived neurotrophic factor-induced dendritic spine growth and synapse plasticity.

    Science.gov (United States)

    Hale, Carly F; Dietz, Karen C; Varela, Juan A; Wood, Cody B; Zirlin, Benjamin C; Leverich, Leah S; Greene, Robert W; Cowan, Christopher W

    2011-08-31

    Brain-derived neurotrophic factor (BDNF) and its cognate receptor, TrkB, regulate a wide range of cellular processes, including dendritic spine formation and functional synapse plasticity. However, the signaling mechanisms that link BDNF-activated TrkB to F-actin remodeling enzymes and dendritic spine morphological plasticity remain poorly understood. We report here that BDNF/TrkB signaling in neurons activates the Vav family of Rac/RhoA guanine nucleotide exchange factors through a novel TrkB-dependent mechanism. We find that Vav is required for BDNF-stimulated Rac-GTP production in cortical and hippocampal neurons. Vav is partially enriched at excitatory synapses in the postnatal hippocampus but does not appear to be required for normal dendritic spine density. Rather, we observe significant reductions in both BDNF-induced, rapid, dendritic spine head growth and in CA3-CA1 theta burst-stimulated long-term potentiation in Vav-deficient mouse hippocampal slices, suggesting that Vav-dependent regulation of dendritic spine morphological plasticity facilitates normal functional synapse plasticity.

  6. Myosin II ATPase activity mediates the long-term potentiation-induced exodus of stable F-actin bound by drebrin A from dendritic spines.

    Directory of Open Access Journals (Sweden)

    Toshiyuki Mizui

    Full Text Available The neuronal actin-binding protein drebrin A forms a stable structure with F-actin in dendritic spines. NMDA receptor activation causes an exodus of F-actin bound by drebrin A (DA-actin from dendritic spines, suggesting a pivotal role for DA-actin exodus in synaptic plasticity. We quantitatively assessed the extent of DA-actin localization to spines using the spine-dendrite ratio of drebrin A in cultured hippocampal neurons, and found that (1 chemical long-term potentiation (LTP stimulation induces rapid DA-actin exodus and subsequent DA-actin re-entry in dendritic spines, (2 Ca(2+ influx through NMDA receptors regulates the exodus and the basal accumulation of DA-actin, and (3 the DA-actin exodus is blocked by myosin II ATPase inhibitor, but is not blocked by myosin light chain kinase (MLCK or Rho-associated kinase (ROCK inhibitors. These results indicate that myosin II mediates the interaction between NMDA receptor activation and DA-actin exodus in LTP induction. Furthermore, myosin II seems to be activated by a rapid actin-linked mechanism rather than slow MLC phosphorylation. Thus the myosin-II mediated DA-actin exodus might be an initial event in LTP induction, triggering actin polymerization and spine enlargement.

  7. Myosin II ATPase activity mediates the long-term potentiation-induced exodus of stable F-actin bound by drebrin A from dendritic spines.

    Science.gov (United States)

    Mizui, Toshiyuki; Sekino, Yuko; Yamazaki, Hiroyuki; Ishizuka, Yuta; Takahashi, Hideto; Kojima, Nobuhiko; Kojima, Masami; Shirao, Tomoaki

    2014-01-01

    The neuronal actin-binding protein drebrin A forms a stable structure with F-actin in dendritic spines. NMDA receptor activation causes an exodus of F-actin bound by drebrin A (DA-actin) from dendritic spines, suggesting a pivotal role for DA-actin exodus in synaptic plasticity. We quantitatively assessed the extent of DA-actin localization to spines using the spine-dendrite ratio of drebrin A in cultured hippocampal neurons, and found that (1) chemical long-term potentiation (LTP) stimulation induces rapid DA-actin exodus and subsequent DA-actin re-entry in dendritic spines, (2) Ca(2+) influx through NMDA receptors regulates the exodus and the basal accumulation of DA-actin, and (3) the DA-actin exodus is blocked by myosin II ATPase inhibitor, but is not blocked by myosin light chain kinase (MLCK) or Rho-associated kinase (ROCK) inhibitors. These results indicate that myosin II mediates the interaction between NMDA receptor activation and DA-actin exodus in LTP induction. Furthermore, myosin II seems to be activated by a rapid actin-linked mechanism rather than slow MLC phosphorylation. Thus the myosin-II mediated DA-actin exodus might be an initial event in LTP induction, triggering actin polymerization and spine enlargement.

  8. Deletion of KIBRA, protein expressed in kidney and brain, increases filopodial-like long dendritic spines in neocortical and hippocampal neurons in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Anja eBlanque

    2015-02-01

    Full Text Available Spines are small protrusions arising from dendrites that receive most excitatory synaptic input in the brain. Dendritic spines represent dynamic structures that undergo activity-dependent adaptations, for example, during synaptic plasticity. Alterations of spine morphology, changes of spine type ratios or density have consequently been found in paradigms of learning and memory, and accompany many neuropsychiatric disorders. Polymorphisms in the gene encoding KIBRA, a protein present in kidney and brain, are linked to memory performance and cognition in humans and mouse models. Deletion of KIBRA impairs long-term synaptic plasticity and postsynaptic receptor recycling but no information is available on the morphology of dendritic spines in null-mutant mice. Here, we directly examine the role of KIBRA in spinous synapses using knockout mice. Since KIBRA is normally highly expressed in neocortex and hippocampus at juvenile age, we analyze synapse morphology in intact tissue and in neuronal cultures from these brain regions. Quantification of different dendritic spine types in Golgi-impregnated sections and in transfected neurons coherently reveal a robust increase of filopodial-like long protrusions in the absence of KIBRA. While distribution of pre- and postsynaptic marker proteins, overall synapse ultrastructure and density of asymmetric contacts were remarkably normal, electron microscopy additionally uncovered less perforated synapses and spinules in knockout neurons. Thus, our results indicate that KIBRA is involved in the maintenance of normal ratios of spinous synapses, and may thus provide a structural correlate of altered cognitive functions when this memory-associated molecule is mutated.

  9. Deletion of KIBRA, protein expressed in kidney and brain, increases filopodial-like long dendritic spines in neocortical and hippocampal neurons in vivo and in vitro

    Science.gov (United States)

    Blanque, Anja; Repetto, Daniele; Rohlmann, Astrid; Brockhaus, Johannes; Duning, Kerstin; Pavenstädt, Hermann; Wolff, Ilka; Missler, Markus

    2015-01-01

    Spines are small protrusions arising from dendrites that receive most excitatory synaptic input in the brain. Dendritic spines represent dynamic structures that undergo activity-dependent adaptations, for example, during synaptic plasticity. Alterations of spine morphology, changes of spine type ratios or density have consequently been found in paradigms of learning and memory, and accompany many neuropsychiatric disorders. Polymorphisms in the gene encoding KIBRA, a protein present in kidney and brain, are linked to memory performance and cognition in humans and mouse models. Deletion of KIBRA impairs long-term synaptic plasticity and postsynaptic receptor recycling but no information is available on the morphology of dendritic spines in null-mutant mice. Here, we directly examine the role of KIBRA in spinous synapses using knockout mice. Since KIBRA is normally highly expressed in neocortex and hippocampus at juvenile age, we analyze synapse morphology in intact tissue and in neuronal cultures from these brain regions. Quantification of different dendritic spine types in Golgi-impregnated sections and in transfected neurons coherently reveal a robust increase of filopodial-like long protrusions in the absence of KIBRA. While distribution of pre- and postsynaptic marker proteins, overall synapse ultrastructure and density of asymmetric contacts were remarkably normal, electron microscopy additionally uncovered less perforated synapses and spinules in knockout neurons. Thus, our results indicate that KIBRA is involved in the maintenance of normal ratios of spinous synapses, and may thus provide a structural correlate of altered cognitive functions when this memory-associated molecule is mutated. PMID:25750616

  10. Modulation of dendritic spine development and plasticity by BDNF and vesicular trafficking: fundamental roles in neurodevelopmental disorders associated with mental retardation and autism.

    Science.gov (United States)

    Chapleau, Christopher A; Larimore, Jennifer L; Theibert, Anne; Pozzo-Miller, Lucas

    2009-09-01

    The process of axonal and dendritic development establishes the synaptic circuitry of the central nervous system (CNS) and is the result of interactions between intrinsic molecular factors and the external environment. One growth factor that has a compelling function in neuronal development is the neurotrophin brain-derived neurotrophic factor (BDNF). BDNF participates in axonal and dendritic differentiation during embryonic stages of neuronal development, as well as in the formation and maturation of dendritic spines during postnatal development. Recent studies have also implicated vesicular trafficking of BDNF via secretory vesicles, and both secretory and endosomal trafficking of vesicles containing synaptic proteins, such as neurotransmitter and neurotrophin receptors, in the regulation of axonal and dendritic differentiation, and in dendritic spine morphogenesis. Several genes that are either mutated or deregulated in neurodevelopmental disorders associated with mental retardation have now been identified, and several mouse models of these disorders have been generated and characterized. Interestingly, abnormalities in dendritic and synaptic structure are consistently observed in human neurodevelopmental disorders associated with mental retardation, and in mouse models of these disorders as well. Abnormalities in dendritic and synaptic differentiation are thought to underlie altered synaptic function and network connectivity, thus contributing to the clinical outcome. Here, we review the roles of BDNF and vesicular trafficking in axonal and dendritic differentiation in the context of dendritic and axonal morphological impairments commonly observed in neurodevelopmental disorders associated with mental retardation.

  11. Serotonin 5-HT7 receptor increases the density of dendritic spines and facilitates synaptogenesis in forebrain neurons.

    Science.gov (United States)

    Speranza, Luisa; Labus, Josephine; Volpicelli, Floriana; Guseva, Daria; Lacivita, Enza; Leopoldo, Marcello; Bellenchi, Gian Carlo; di Porzio, Umberto; Bijata, Monika; Perrone-Capano, Carla; Ponimaskin, Evgeni

    2017-06-01

    Precise control of dendritic spine density and synapse formation is critical for normal and pathological brain functions. Therefore, signaling pathways influencing dendrite outgrowth and remodeling remain a subject of extensive investigations. Here, we report that prolonged activation of the serotonin 5-HT7 receptor (5-HT7R) with selective agonist LP-211 promotes formation of dendritic spines and facilitates synaptogenesis in postnatal cortical and striatal neurons. Critical role of 5-HT7R in neuronal morphogenesis was confirmed by analysis of neurons isolated from 5-HT7R-deficient mice and by pharmacological inactivation of the receptor. Acute activation of 5-HT7R results in pronounced neurite elongation in postnatal striatal and cortical neurons, thus extending previous data on the morphogenic role of 5-HT7R in embryonic and hippocampal neurons. We also observed decreased number of spines in neurons with either genetically (i.e. 5-HT7R-knock-out) or pharmacologically (i.e. antagonist treatment) blocked 5-HT7R, suggesting that constitutive 5-HT7R activity is critically involved in the spinogenesis. Moreover, cyclin-dependent kinase 5 and small GTPase Cdc42 were identified as important downstream effectors mediating morphogenic effects of 5-HT7R in neurons. Altogether, our data suggest that the 5-HT7R-mediated structural reorganization during the postnatal development might have a crucial role for the development and plasticity of forebrain areas such as cortex and striatum, and thereby can be implicated in regulation of the higher cognitive functions. Read the Editorial Highlight for this article on page 644. © 2017 International Society for Neurochemistry.

  12. Protracted dendritic growth in the typically developing human amygdala and increased spine density in young ASD brains.

    Science.gov (United States)

    Weir, R K; Bauman, M D; Jacobs, B; Schumann, C M

    2017-09-20

    The amygdala is a medial temporal lobe structure implicated in social and emotional regulation. In typical development (TD), the amygdala continues to increase volumetrically throughout childhood and into adulthood, while other brain structures are stable or decreasing in volume. In autism spectrum disorder (ASD), the amygdala undergoes rapid early growth, making it volumetrically larger in children with ASD compared to TD children. Here we explore: 1) if dendritic arborization in the amygdala follows the pattern of protracted growth in TD and early overgrowth in ASD and 2), if spine density in the amygdala in ASD cases differs from TD from youth to adulthood. The amygdala from 32 postmortem human brains (7-46 years of age) was stained using a Golgi-Kopsch impregnation. Ten principal neurons per case were selected in the lateral nucleus and traced using Neurolucida software in their entirety. We found that both ASD and TD individuals show a similar pattern of increasing dendritic length with age well into adulthood. However, spine density is i) greater in young ASD cases compared to age-matched TD controls (ASD age into adulthood, a phenomenon not found in typical development. Therefore, by adulthood, there is no observable difference in spine density in the amygdala between ASD and TD age-matched adults (≥18 years old). Our findings highlight the unique growth trajectory of the amygdala and suggest that spine density may contribute to aberrant development and function of the amygdala in children with ASD. This article is protected by copyright. All rights reserved. © 2017 Wiley Periodicals, Inc.

  13. Dendritic Spines and Development: Towards a Unifying Model of Spinogenesis—A Present Day Review of Cajal's Histological Slides and Drawings

    Directory of Open Access Journals (Sweden)

    Pablo García-López

    2010-01-01

    Full Text Available Dendritic spines receive the majority of excitatory connections in the central nervous system, and, thus, they are key structures in the regulation of neural activity. Hence, the cellular and molecular mechanisms underlying their generation and plasticity, both during development and in adulthood, are a matter of fundamental and practical interest. Indeed, a better understanding of these mechanisms should provide clues to the development of novel clinical therapies. Here, we present original results obtained from high-quality images of Cajal's histological preparations, stored at the Cajal Museum (Instituto Cajal, CSIC, obtained using extended focus imaging, three-dimensional reconstruction, and rendering. Based on the data available in the literature regarding the formation of dendritic spines during development and our results, we propose a unifying model for dendritic spine development.

  14. Dendritic spines and development: towards a unifying model of spinogenesis--a present day review of Cajal's histological slides and drawings.

    Science.gov (United States)

    García-López, Pablo; García-Marín, Virginia; Freire, Miguel

    2010-01-01

    Dendritic spines receive the majority of excitatory connections in the central nervous system, and, thus, they are key structures in the regulation of neural activity. Hence, the cellular and molecular mechanisms underlying their generation and plasticity, both during development and in adulthood, are a matter of fundamental and practical interest. Indeed, a better understanding of these mechanisms should provide clues to the development of novel clinical therapies. Here, we present original results obtained from high-quality images of Cajal's histological preparations, stored at the Cajal Museum (Instituto Cajal, CSIC), obtained using extended focus imaging, three-dimensional reconstruction, and rendering. Based on the data available in the literature regarding the formation of dendritic spines during development and our results, we propose a unifying model for dendritic spine development.

  15. FGF-2 deficiency causes dysregulation of Arhgef6 and downstream targets in the cerebral cortex accompanied by altered neurite outgrowth and dendritic spine morphology.

    Science.gov (United States)

    Baum, Philip; Vogt, Miriam A; Gass, Peter; Unsicker, Klaus; von Bohlen und Halbach, Oliver

    2016-05-01

    Fibroblast growth factor 2 (FGF-2) is an abundant growth factor in the brain and exerts multiple functions on neural cells ranging from cell division, cell fate determination to differentiation. However, many details of the molecular mechanisms underlying the diverse functions of FGF-2 are poorly understood. In a comparative microarray analysis of motor sensory cortex (MSC) tissue of adult knockout (FGF-2(-/-)) and control (FGF-2(+/+)) mice, we found a substantial number of regulated genes, which are implicated in cytoskeletal machinery dynamics. Specifically, we found a prominent downregulation of Arhgef6. Arhgef6 mRNA was significantly reduced in the FGF-2(-/-) cortex, and Arhgef6 protein virtually absent, while RhoA protein levels were massively increased and Cdc42 protein levels were reduced. Since Arhgef6 is localized to dendritic spines, we next analyzed dendritic spines of adult FGF2(-/-) and control mouse cortices. Spine densities were significantly increased, whereas mean length of spines on dendrites of layer V of MSC neurons in adult FGF-2(-/-) mice was significantly decreased as compared to respective controls. Furthermore, neurite length in dissociated cortical cultures from E18 FGF-2(-/-) mice was significantly reduced at DIV7 as compared to wildtype neurons. Despite the fact that altered neuronal morphology and alterations in dendritic spines were observed, FGF-2(-/-) mice behave relatively unsuspicious in several behavioral tasks. However, FGF-2(-/-) mice exhibited decreased thermal pain sensitivity in the hotplate-test.

  16. Extracerebellar role for Cerebellin1: modulation of dendritic spine density and synapses in striatal medium spiny neurons.

    Science.gov (United States)

    Kusnoor, S V; Parris, J; Muly, E C; Morgan, J I; Deutch, A Y

    2010-07-01

    Cerebellin1 (Cbln1) is a secreted glycoprotein that was originally isolated from the cerebellum and subsequently found to regulate synaptic development and stability. Cbln1 has a heterogeneous distribution in brain, but the only site in which it has been shown to have central effects is the cerebellar cortex, where loss of Cbln1 causes a reduction in granule cell-Purkinje cell synapses. Neurons of the thalamic parafascicular nucleus (PF), which provide glutamatergic projections to the striatum, also express high levels of Cbln1. We first examined Cbln1 in thalamostriatal neurons and then determined if cbln1 knockout mice exhibit structural deficits in striatal neurons. Virtually all PF neurons express Cbln1-immunoreactivity (-ir). In contrast, only rare Cbln1-ir neurons are present in the central medial complex, the other thalamic region that projects heavily to the dorsal striatum. In the striatum Cbln1-ir processes are apposed to medium spiny neuron (MSN) dendrites; ultrastructural studies revealed that Cbln1-ir axon terminals form axodendritic synapses with MSNs. Tract-tracing studies found that all PF cells retrogradely labeled from the striatum express Cbln1-ir. We then examined the dendritic structure of Golgi-impregnated MSNs in adult cbln1 knockout mice. MSN dendritic spine density was markedly increased in cbln1(-/-) mice relative to wildtype littermates, but total dendritic length was unchanged. Ultrastructural examination revealed an increase in the density of MSN axospinous synapses in cbln1(-/-) mice, with no change in postsynaptic density length. Thus, Cbln1 determines the dendritic structure of striatal MSNs, with effects distinct from those seen in the cerebellum.

  17. ABI2-deficient mice exhibit defective cell migration, aberrant dendritic spine morphogenesis, and deficits in learning and memory.

    Science.gov (United States)

    Grove, Matthew; Demyanenko, Galina; Echarri, Asier; Zipfel, Patricia A; Quiroz, Marisol E; Rodriguiz, Ramona M; Playford, Martin; Martensen, Shelby A; Robinson, Matthew R; Wetsel, William C; Maness, Patricia F; Pendergast, Ann Marie

    2004-12-01

    The Abl-interactor (Abi) family of adaptor proteins has been linked to signaling pathways involving the Abl tyrosine kinases and the Rac GTPase. Abi proteins localize to sites of actin polymerization in protrusive membrane structures and regulate actin dynamics in vitro. Here we demonstrate that Abi2 modulates cell morphogenesis and migration in vivo. Homozygous deletion of murine abi2 produced abnormal phenotypes in the eye and brain, the tissues with the highest Abi2 expression. In the absence of Abi2, secondary lens fiber orientation and migration were defective in the eye, without detectable defects in proliferation, differentiation, or apoptosis. These phenotypes were consistent with the localization of Abi2 at adherens junctions in the developing lens and at nascent epithelial cell adherens junctions in vitro. Downregulation of Abi expression by RNA interference impaired adherens junction formation and correlated with downregulation of the Wave actin-nucleation promoting factor. Loss of Abi2 also resulted in cell migration defects in the neocortex and hippocampus, abnormal dendritic spine morphology and density, and severe deficits in short- and long-term memory. These findings support a role for Abi2 in the regulation of cytoskeletal dynamics at adherens junctions and dendritic spines, which is critical for intercellular connectivity, cell morphogenesis, and cognitive functions.

  18. Nearest neighbor analysis of dopamine D1 receptors and Na(+)-K(+)-ATPases in dendritic spines dissected by STED microscopy.

    Science.gov (United States)

    Blom, Hans; Rönnlund, Daniel; Scott, Lena; Spicarova, Zuzana; Rantanen, Ville; Widengren, Jerker; Aperia, Anita; Brismar, Hjalmar

    2012-02-01

    Protein localization in dendritic spines is the focus of intense investigations within neuroscience. Applications of super-resolution microscopy to dissect nanoscale protein distributions, as shown in this work with dual-color STED, generate spatial correlation coefficients having quite small values. This means that colocalization analysis to some extent looses part of its correlative impact. In this study we thus introduced nearest neighbor analysis to quantify the spatial relations between two important proteins in neurons, the dopamine D1 receptor and Na(+),K(+)-ATPase. The analysis gave new information on how dense the D1 receptor and Na(+),K(+)-ATPase constituting nanoclusters are located both with respect to the homogenous (self to same) and the heterogeneous (same to other) topology. The STED dissected nanoscale topologies provide evidence for both a joint as well as a separated confinement of the D1 receptor and the Na(+),K(+)-ATPase in the postsynaptic areas of dendritic spines. This confined topology may have implications for generation of local sodium gradients and for structural and functional interactions modulating slow synaptic transmission processes. Copyright © 2011 Wiley Periodicals, Inc.

  19. Spatial training preserves associative memory capacity with augmentation of dendrite ramification and spine generation in Tg2576 mice.

    Science.gov (United States)

    Jiang, Xia; Chai, Gao-Shang; Wang, Zhi-Hao; Hu, Yu; Li, Xiao-Guang; Ma, Zhi-Wei; Wang, Qun; Wang, Jian-Zhi; Liu, Gong-Ping

    2015-03-30

    Alzheimer's disease (AD) is the most common neurodegenerative disorder and there is currently no efficient cure for this devastating disease. Cognitive stimulation can delay memory loss during aging and in patients with mild cognitive impairment. In 3 × Tg-AD mice, training decreased the neuropathologies with transient amelioration of memory decline. However, the neurobiological mechanisms underlying the learning-improved memory capacity are poorly understood. Here, we found in Tg2576 mice spatial training in Morris water maze (MWM) remarkably improved the subsequent associative memory acquisition detected by contextual fear conditioning. We also found that spatial training enhanced long term potentiation, dendrite ramification and spine generation in hippocampal dentate gyrus (DG) and CA1 neurons at 24 h after the training. In the molecular level, the MWM training remarkably activated calcium/calmodulin-dependent protein kinase II (CaMKII) with elevation of glutamate AMPA receptor GluA1 subunit (GluA1), postsynaptic density protein 93 (PSD93) and postsynaptic density protein 95 (PSD95) in the hippocampus. Finally, the training also significantly ameliorated AD-like tau and amyloid pathologies. We conclude that spatial training in MWM preserves associative memory capacity in Tg2576 mice, and the mechanisms involve augmentation of dendrite ramification and spine generation in hippocampus.

  20. Super resolution microscopy is poised to reveal new insights into the formation and maturation of dendritic spines [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Cristina M. Robinson

    2016-06-01

    Full Text Available Dendritic spines and synapses are critical for neuronal communication, and they are perturbed in many neurological disorders; however, the study of these structures in living cells has been hindered by their small size. Super resolution microscopy, unlike conventional light microscopy, is diffraction unlimited and thus is well suited for imaging small structures, such as dendritic spines and synapses. Super resolution microscopy has already revealed important new information about spine and synapse morphology, actin remodeling, and nanodomain composition in both healthy cells and diseased states. In this review, we highlight the advancements in probes that make super resolution more amenable to live-cell imaging of spines and synapses. We also discuss recent data obtained by super resolution microscopy that has advanced our knowledge of dendritic spine and synapse structure, organization, and dynamics in both healthy and diseased contexts. Finally, we propose a series of critical questions for understanding spine and synapse formation and maturation that super resolution microscopy is poised to answer.

  1. Plastic changes to dendritic spines on layer V pyramidal neurons are involved in the rectifying role of the prefrontal cortex during the fast period of motor learning.

    Science.gov (United States)

    González-Tapia, David; Martínez-Torres, Nestor I; Hernández-González, Marisela; Guevara, Miguel Angel; González-Burgos, Ignacio

    2016-02-01

    The prefrontal cortex participates in the rectification of information related to motor activity that favors motor learning. Dendritic spine plasticity is involved in the modifications of motor patterns that underlie both motor activity and motor learning. To study this association in more detail, adult male rats were trained over six days in an acrobatic motor learning paradigm and they were subjected to a behavioral evaluation on each day of training. Also, a Golgi-based morphological study was carried out to determine the spine density and the proportion of the different spine types. In the learning paradigm, the number of errors diminished as motor training progressed. Concomitantly, spine density increased on days 1 and 3 of training, particularly reflecting an increase in the proportion of thin (day 1), stubby (day 1) and branched (days 1, 2 and 5) spines. Conversely, mushroom spines were less prevalent than in the control rats on days 5 and 6, as were stubby spines on day 6, together suggesting that this plasticity might enhance motor learning. The increase in stubby spines on day 1 suggests a regulation of excitability related to the changes in synaptic input to the prefrontal cortex. The plasticity to thin spines observed during the first 3 days of training could be related to the active rectification induced by the information relayed to the prefrontal cortex -as the behavioral findings indeed showed-, which in turn could be linked to the lower proportion of mushroom and stubby spines seen in the last days of training.

  2. Increased dendritic spine density and tau expression are associated with individual differences in steroidal regulation of male sexual behavior.

    Directory of Open Access Journals (Sweden)

    Pranay Bharadwaj

    Full Text Available Male sexual behavior (MSB is modulated by gonadal steroids, yet this relationship is highly variable across species and between individuals. A significant percentage (~30% of B6D2F1 hybrid male mice demonstrate MSB after long-term orchidectomy (herein after referred to as "maters", providing an opportunity to examine the mechanisms that underlie individual differences in steroidal regulation of MSB. Use of gene expression arrays comparing maters and non-maters has provided a first pass look at the genetic underpinnings of steroid-independent MSB. Surprisingly, of the ~500 genes in the medial preoptic area (MPOA that differed between maters and non-maters, no steroid hormone or receptor genes were differentially expressed between the two groups. Interestingly, best known for their association with Alzheimer's disease, amyloid precursor protein (APP and the microtubule-associated protein tau (MAPT were elevated in maters. Increased levels of their protein products (APP and tau in their non-pathological states have been implicated in cell survival, neuroprotection, and supporting synaptic integrity. Here we tested transgenic mice that overexpress tau and found facilitated mounting and intromission behavior after long-term orchidectomy relative to littermate controls. In addition, levels of synaptophysin and spinophilin, proteins generally enriched in synapses and dendritic spines respectively, were elevated in the MPOA of maters. Dendritic morphology was also assessed in Golgi-impregnated brains of orchidectomized B6D2F1 males, and hybrid maters exhibited greater dendritic spine density in MPOA neurons. In sum, we show for the first time that retention of MSB in the absence of steroids is correlated with morphological differences in neurons.

  3. Sustained expression of brain-derived neurotrophic factor is required for maintenance of dendritic spines and normal behavior.

    Science.gov (United States)

    Vigers, A J; Amin, D S; Talley-Farnham, T; Gorski, J A; Xu, B; Jones, K R

    2012-06-14

    Brain-derived neurotrophic factor (BDNF) plays important roles in the development, maintenance, and plasticity of the mammalian forebrain. These functions include regulation of neuronal maturation and survival, axonal and dendritic arborization, synaptic efficacy, and modulation of complex behaviors including depression and spatial learning. Although analysis of mutant mice has helped establish essential developmental functions for BDNF, its requirement in the adult is less well documented. We have studied late-onset forebrain-specific BDNF knockout (CaMK-BDNF(KO)) mice, in which BDNF is lost primarily from the cortex and hippocampus in early adulthood, well after BDNF expression has begun in these structures. We found that although CaMK-BDNF(KO) mice grew at a normal rate and can survive more than a year, they had smaller brains than wild-type siblings. The CaMK-BDNF(KO) mice had generally normal behavior in tests for ataxia and anxiety, but displayed reduced spatial learning ability in the Morris water task and increased depression in the Porsolt swim test. These behavioral deficits were very similar to those we previously described in an early-onset forebrain-specific BDNF knockout. To identify an anatomical correlate of the abnormal behavior, we quantified dendritic spines in cortical neurons. The spine density of CaMK-BDNF(KO) mice was normal at P35, but by P84, there was a 30% reduction in spine density. The strong similarities we find between early- and late-onset BDNF knockouts suggest that BDNF signaling is required continuously in the CNS for the maintenance of some forebrain circuitry also affected by developmental BDNF depletion.

  4. Protein kinase Mζ is essential for the induction and maintenance of dopamine-induced long-term potentiation in apical CA1 dendrites

    Science.gov (United States)

    Navakkode, Sheeja; Sajikumar, Sreedharan; Sacktor, Todd Charlton; Frey, Julietta U.

    2010-01-01

    Dopaminergic D1/D5-receptor-mediated processes are important for certain forms of memory as well as for a cellular model of memory, hippocampal long-term potentiation (LTP) in the CA1 region of the hippocampus. D1/D5-receptor function is required for the induction of the protein synthesis-dependent maintenance of CA1-LTP (L-LTP) through activation of the cAMP/PKA-pathway. In earlier studies we had reported a synergistic interaction of D1/D5-receptor function and N-methyl-D-aspartate (NMDA)-receptors for L-LTP. Furthermore, we have found the requirement of the atypical protein kinase C isoform, protein kinase Mζ (PKMζ) for conventional electrically induced L-LTP, in which PKMζ has been identified as a LTP-specific plasticity-related protein (PRP) in apical CA1-dendrites. Here, we investigated whether the dopaminergic pathway activates PKMζ. We found that application of dopamine (DA) evokes a protein synthesis-dependent LTP that requires synergistic NMDA-receptor activation and protein synthesis in apical CA1-dendrites. We identified PKMζ as a DA-induced PRP, which exerted its action at activated synaptic inputs by processes of synaptic tagging. PMID:21084457

  5. Human synaptic plasticity gene expression profile and dendritic spine density changes in HIV-infected human CNS cells: role in HIV-associated neurocognitive disorders (HAND.

    Directory of Open Access Journals (Sweden)

    Venkata Subba Rao Atluri

    Full Text Available HIV-associated neurocognitive disorders (HAND is characterized by development of cognitive, behavioral and motor abnormalities, and occur in approximately 50% of HIV infected individuals. Our current understanding of HAND emanates mainly from HIV-1 subtype B (clade B, which is prevalent in USA and Western countries. However very little information is available on neuropathogenesis of HIV-1 subtype C (clade C that exists in Sub-Saharan Africa and Asia. Therefore, studies to identify specific neuropathogenic mechanisms associated with HAND are worth pursuing to dissect the mechanisms underlying this modulation and to prevent HAND particularly in clade B infection. In this study, we have investigated 84 key human synaptic plasticity genes differential expression profile in clade B and clade C infected primary human astrocytes by using RT(2 Profile PCR Array human Synaptic Plasticity kit. Among these, 31 and 21 synaptic genes were significantly (≥3 fold down-regulated and 5 genes were significantly (≥3 fold up-regulated in clade B and clade C infected cells, respectively compared to the uninfected control astrocytes. In flow-cytometry analysis, down-regulation of postsynaptic density and dendrite spine morphology regulatory proteins (ARC, NMDAR1 and GRM1 was confirmed in both clade B and C infected primary human astrocytes and SK-N-MC neuroblastoma cells. Further, spine density and dendrite morphology changes by confocal microscopic analysis indicates significantly decreased spine density, loss of spines and decreased dendrite diameter, total dendrite and spine area in clade B infected SK-N-MC neuroblastoma cells compared to uninfected and clade C infected cells. We have also observed that, in clade B infected astrocytes, induction of apoptosis was significantly higher than in the clade C infected astrocytes. In conclusion, this study suggests that down-regulation of synaptic plasticity genes, decreased dendritic spine density and induction of

  6. Stabilization of dendritic spine clusters and hyperactive Ras-MAPK signaling predict enhanced motor learning in an autistic savant mouse model

    Directory of Open Access Journals (Sweden)

    Ryan Thomas Ash

    2014-03-01

    Full Text Available That both prominent behavioral inflexibility and exceptional learning abilities are seen occasionally in autistic patients is a mystery. We hypothesize that these altered patterns of learning and memory can arise from a pathological imbalance between the stability and plasticity of internal neural representations. We evaluated this hypothesis in the mouse model of MECP2 duplication syndrome, which demonstrates enhanced motor learning, stereotyped behaviors, and social avoidance. Learning-associated structural plasticity was measured in the motor cortex of MECP2 duplication mice by 2-photon imaging (Fig. 1A. An increased stabilization rate of learning-associated dendritic spines was observed in mutants, and this correlated with rotarod performance. Analysis of the spatial distribution of stabilized spines revealed that the mutant’s increased spine stabilization was due to a specific increase in the stability of spines jointly formed in ~9-micron clusters. Clustered spine stabilization but not isolated spine stabilization predicted enhanced motor performance in MECP2 duplication mice (Fig. 1B. Biochemical assays of Ras-MAPK and mTOR pathway activation demonstrated profound hyperphosphorylation of MAPK in the motor cortex of MECP2 duplication mice with motor training (Fig. 1C. Taken together these data suggest that a pathological bias towards hyperstability of learning-associated dendritic spine clusters driven by hyperactive Ras-MAPK signaling could contribute to neurobehavioral phenotypes in this form of syndromic autism.

  7. Elimination of dendritic spines with long-term memory is specific to active circuits.

    Science.gov (United States)

    Sanders, Jeff; Cowansage, Kiriana; Baumgärtel, Karsten; Mayford, Mark

    2012-09-05

    Structural changes in brain circuits active during learning are thought to be important for long-term memory storage. If these changes support long-term information storage, they might be expected to be present at distant time points after learning, as well as to be specific to the circuit activated with learning, and sensitive to the contingencies of the behavioral paradigm. Here, we show such changes in the hippocampus as a result of contextual fear conditioning. There were significantly fewer spines specifically on active neurons of fear-conditioned mice. This spine loss did not occur in homecage mice or in mice exposed to the training context alone. Mice exposed to unpaired shocks showed a generalized reduction in spines. These learning-related changes in spine density could reflect a direct mechanism of encoding or alternately could reflect a compensatory adaptation to previously described enhancement in transmission due to glutamate receptor insertion.

  8. Endocytosis following dopamine D2 receptor activation is critical for neuronal activity and dendritic spine formation via Rabex-5/PDGFRβ signaling in striatopallidal medium spiny neurons.

    Science.gov (United States)

    Shioda, N; Yabuki, Y; Wang, Y; Uchigashima, M; Hikida, T; Sasaoka, T; Mori, H; Watanabe, M; Sasahara, M; Fukunaga, K

    2016-12-06

    Aberrant dopamine D2 receptor (D2R) activity is associated with neuropsychiatric disorders, making those receptors targets for antipsychotic drugs. Here, we report that novel signaling through the intracellularly localized D2R long isoform (D2LR) elicits extracellular signal-regulated kinase (ERK) activation and dendritic spine formation through Rabex-5/platelet-derived growth factor receptor-β (PDGFRβ)-mediated endocytosis in mouse striatum. We found that D2LR directly binds to and activates Rabex-5, promoting early-endosome formation. Endosomes containing D2LR and PDGFRβ are then transported to the Golgi apparatus, where those complexes trigger Gαi3-mediated ERK signaling. Loss of intracellular D2LR-mediated ERK activation decreased neuronal activity and dendritic spine density in striatopallidal medium spiny neurons (MSNs). In addition, dendritic spine density in striatopallidal MSNs significantly increased following treatment of striatal slices from wild-type mice with quinpirole, a D2R agonist, but those changes were lacking in D2LR knockout mice. Moreover, intracellular D2LR signaling mediated effects of a typical antipsychotic drug, haloperidol, in inducing catalepsy behavior. Taken together, intracellular D2LR signaling through Rabex-5/PDGFRβ is critical for ERK activation, dendritic spine formation and neuronal activity in striatopallidal MSNs of mice.Molecular Psychiatry advance online publication, 6 December 2016; doi:10.1038/mp.2016.200.

  9. Chronic caffeine consumption prevents cognitive decline from young to middle age in rats, and is associated with increased length, branching, and spine density of basal dendrites in CA1 hippocampal neurons.

    Science.gov (United States)

    Vila-Luna, S; Cabrera-Isidoro, S; Vila-Luna, L; Juárez-Díaz, I; Bata-García, J L; Alvarez-Cervera, F J; Zapata-Vázquez, R E; Arankowsky-Sandoval, G; Heredia-López, F; Flores, G; Góngora-Alfaro, J L

    2012-01-27

    the basal but not the apical dendrites of CA1 pyramidal neurons from rats chronically treated with caffeine, in comparison with their age- and littermate-matched controls. Altogether, the present findings strengthen the epidemiological observations suggesting that prolonged caffeine intake prevents the cognitive decline associated with aging, and open the possibility that this process could be mediated by promoting the growth of dendrites and spines in neurons of the adult mammalian brain.

  10. Fluoxetine induces input-specific hippocampal dendritic spine remodeling along the septotemporal axis in adulthood and middle age.

    Science.gov (United States)

    McAvoy, Kathleen; Russo, Craig; Kim, Shannen; Rankin, Genelle; Sahay, Amar

    2015-11-01

    Fluoxetine, a selective serotonin-reuptake inhibitor (SSRI), is known to induce structural rearrangements and changes in synaptic transmission in hippocampal circuitry. In the adult hippocampus, structural changes include neurogenesis, dendritic, and axonal plasticity of pyramidal and dentate granule neurons, and dedifferentiation of dentate granule neurons. However, much less is known about how chronic fluoxetine affects these processes along the septotemporal axis and during the aging process. Importantly, studies documenting the effects of fluoxetine on density and distribution of spines along different dendritic segments of dentate granule neurons and CA1 pyramidal neurons along the septotemporal axis of hippocampus in adulthood and during aging are conspicuously absent. Here, we use a transgenic mouse line in which mature dentate granule neurons and CA1 pyramidal neurons are genetically labeled with green fluorescent protein (GFP) to investigate the effects of chronic fluoxetine treatment (18 mg/kg/day) on input-specific spine remodeling and mossy fiber structural plasticity in the dorsal and ventral hippocampus in adulthood and middle age. In addition, we examine levels of adult hippocampal neurogenesis, maturation state of dentate granule neurons, neuronal activity, and glutamic acid decarboxylase-67 expression in response to chronic fluoxetine in adulthood and middle age. Our studies reveal that while chronic fluoxetine fails to augment adult hippocampal neurogenesis in middle age, the middle-aged hippocampus retains high sensitivity to changes in the dentate gyrus (DG) such as dematuration, hypoactivation, and increased glutamic acid decarboxylase 67 (GAD67) expression. Interestingly, the middle-aged hippocampus shows greater sensitivity to fluoxetine-induced input-specific synaptic remodeling than the hippocampus in adulthood with the stratum-oriens of CA1 exhibiting heightened structural plasticity. The input-specific changes and circuit

  11. Postsynaptic density 95 (PSD-95) serine 561 phosphorylation regulates a conformational switch and bidirectional dendritic spine structural plasticity.

    Science.gov (United States)

    Wu, Qian; Sun, Miao; Bernard, Laura P; Zhang, Huaye

    2017-09-29

    Postsynaptic density 95 (PSD-95) is a major synaptic scaffolding protein that plays a key role in bidirectional synaptic plasticity, which is a process important for learning and memory. It is known that PSD-95 shows increased dynamics upon induction of plasticity. However, the underlying structural and functional changes in PSD-95 that mediate its role in plasticity remain unclear. Here we show that phosphorylation of PSD-95 at Ser-561 in its guanylate kinase (GK) domain, which is mediated by the partitioning-defective 1 (Par1) kinases, regulates a conformational switch and is important for bidirectional plasticity. Using a fluorescence resonance energy transfer (FRET) biosensor, we show that a phosphomimetic mutation of Ser-561 promotes an intramolecular interaction between GK and the nearby Src homology 3 (SH3) domain, leading to a closed conformation, whereas a non-phosphorylatable S561A mutation or inhibition of Par1 kinase activity decreases SH3-GK interaction, causing PSD-95 to adopt an open conformation. In addition, S561A mutation facilitates the interaction between PSD-95 and its binding partners. Fluorescence recovery after photobleaching imaging reveals that the S561A mutant shows increased stability, whereas the phosphomimetic S561D mutation increases PSD-95 dynamics at the synapse. Moreover, molecular replacement of endogenous PSD-95 with the S561A mutant blocks dendritic spine structural plasticity during chemical long-term potentiation and long-term depression. Endogenous Ser-561 phosphorylation is induced by synaptic NMDA receptor activation, and the SH3-GK domains exhibit a Ser-561 phosphorylation-dependent switch to a closed conformation during synaptic plasticity. Our results provide novel mechanistic insight into the regulation of PSD-95 in dendritic spine structural plasticity through phosphorylation-mediated regulation of protein dynamics and conformation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Homer2 deletion alters dendritic spine morphology but not alcohol-associated adaptations in GluN2B-containing NMDA receptors in the nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Natalie S McGuier

    2015-02-01

    Full Text Available Repeated exposure to ethanol followed by withdrawal leads to the alterations in glutamatergic signaling and impaired synaptic plasticity in the nucleus accumbens (NAc in both clinical and preclinical models of ethanol exposure. Homer2 is a member of a family of postsynaptic density (PSD scaffolding proteins that functions in part to cluster NMDA signaling complexes in the PSD, and has been shown to be critically important for plasticity in multiple models of drug and alcohol abuse. Here we used Homer2 KO mice and a chronic intermittent intraperitoneal (IP ethanol injection model to investigate a potential role for the protein in ethanol-induced adaptations in dendritic spine morphology and PSD protein expression. While deletion of Homer2 was associated with increased density of long spines on medium spiny neurons of the NAc core of saline treated mice, ethanol exposure had no effect on dendritic spine morphology in either wild-type (WT or Homer2 KO mice. Western blot analysis of tissue samples from the NAc enriched for PSD proteins revealed a main effect of ethanol treatment on the expression of GluN2B, but there was no effect of genotype or treatment on the expression other glutamate receptor subunits or PSD95. These data indicate that the global deletion of Homer2 leads to aberrant regulation of dendritic spine morphology in the NAc core that is associated with an increased density of long, thin spines. Unexpectedly, intermittent IP ethanol did not affect spine morphology in either WT or KO mice. Together these data implicate Homer2 in the formation of long, thin spines and further supports its role in neuronal structure.

  13. Autism-associated Dyrk1a truncation mutants impair neuronal dendritic and spine growth and interfere with postnatal cortical development.

    Science.gov (United States)

    Dang, T; Duan, W Y; Yu, B; Tong, D L; Cheng, C; Zhang, Y F; Wu, W; Ye, K; Zhang, W X; Wu, M; Wu, B B; An, Y; Qiu, Z L; Wu, B L

    2017-02-07

    Autism is a prevailing neurodevelopmental disorder with a large genetic/genomic component. Recently, the dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1 A (DYRK1A) gene was implicated as a risk factor for autism spectrum disorder (ASD). We identified five DYRK1A variants in ASD patients and found that the dose of DYRK1A protein has a crucial role in various aspects of postnatal neural development. Dyrk1a loss of function and gain of function led to defects in dendritic growth, dendritic spine development and radial migration during cortical development. Importantly, two autism-associated truncations, R205X and E239X, were shown to be Dyrk1a loss-of-function mutants. Studies of the truncated Dyrk1a mutants may provide new insights into the role of Dyrk1a in brain development, as well as the role of Dyrk1a loss of function in the pathophysiology of autism.Molecular Psychiatry advance online publication, 7 February 2017; doi:10.1038/mp.2016.253.

  14. MiR-130a regulates neurite outgrowth and dendritic spine density by targeting MeCP2

    Directory of Open Access Journals (Sweden)

    Yunjia Zhang

    2016-06-01

    Full Text Available ABSTRACT MicroRNAs (miRNAs are critical for both development and function of the central nervous system. Significant evidence suggests that abnormal expression of miRNAs is associated with neurodevelopmental disorders. MeCP2 protein is an epigenetic regulator repressing or activating gene transcription by binding to methylated DNA. Both loss-of-function and gain-of-function mutations in the MECP2 gene lead to neurodevelopmental disorders such as Rett syndrome, autism and MECP2 duplication syndrome. In this study, we demonstrate that miR-130a inhibits neurite outgrowth and reduces dendritic spine density as well as dendritic complexity. Bioinformatics analyses, cell cultures and biochemical experiments indicate that miR-130a targets MECP2 and down-regulates MeCP2 protein expression. Furthermore, expression of the wild-type MeCP2, but not a loss-of-function mutant, rescues the miR-130a-induced phenotype. Our study uncovers the MECP2 gene as a previous unknown target for miR-130a, supporting that miR-130a may play a role in neurodevelopment by regulating MeCP2. Together with data from other groups, our work suggests that a feedback regulatory mechanism involving both miR-130a and MeCP2 may serve to ensure their appropriate expression and function in neural development.

  15. Palmitoylation-dependent CDKL5–PSD-95 interaction regulates synaptic targeting of CDKL5 and dendritic spine development

    Science.gov (United States)

    Zhu, Yong-Chuan; Li, Dan; Wang, Lu; Lu, Bin; Zheng, Jing; Zhao, Shi-Lin; Zeng, Rong; Xiong, Zhi-Qi

    2013-01-01

    The X-linked gene cyclin-dependent kinase-like 5 (CDKL5) is mutated in severe neurodevelopmental disorders, including some forms of atypical Rett syndrome, but the function and regulation of CDKL5 protein in neurons remain to be elucidated. Here, we show that CDKL5 binds to the scaffolding protein postsynaptic density (PSD)-95, and that this binding promotes the targeting of CDKL5 to excitatory synapses. Interestingly, this binding is not constitutive, but governed by palmitate cycling on PSD-95. Furthermore, pathogenic mutations that truncate the C-terminal tail of CDKL5 diminish its binding to PSD-95 and synaptic accumulation. Importantly, down-regulation of CDKL5 by RNA interference (RNAi) or interference with the CDKL5–PSD-95 interaction inhibits dendritic spine formation and growth. These results demonstrate a critical role of the palmitoylation-dependent CDKL5–PSD-95 interaction in localizing CDKL5 to synapses for normal spine development and suggest that disruption of this interaction by pathogenic mutations may be implicated in the pathogenesis of CDKL5-related disorders. PMID:23671101

  16. Reelin Supplementation Enhances Cognitive Ability, Synaptic Plasticity, and Dendritic Spine Density

    Science.gov (United States)

    Rogers, Justin T.; Rusiana, Ian; Trotter, Justin; Zhao, Lisa; Donaldson, Erika; Pak, Daniel T.S.; Babus, Lenard W.; Peters, Melinda; Banko, Jessica L.; Chavis, Pascale; Rebeck, G. William; Hoe, Hyang-Sook; Weeber, Edwin J.

    2011-01-01

    Apolipoprotein receptors belong to an evolutionarily conserved surface receptor family that has intimate roles in the modulation of synaptic plasticity and is necessary for proper hippocampal-dependent memory formation. The known lipoprotein receptor ligand Reelin is important for normal synaptic plasticity, dendritic morphology, and cognitive…

  17. Growth of dendritic spines and its synapses in pyramidal neurons of visual cortex in mice%小鼠视皮质锥体神经元树突棘和突触的发育

    Institute of Scientific and Technical Information of China (English)

    赵凯冰; 崔占军; 陈文静; 牛艳丽

    2012-01-01

    目的:通过观察小鼠视皮质锥体神经元正常发育过程中树突棘的形态变化,研究树突棘与突触的发生及其可塑性的关系.方法:利用DiI散射方法标记小鼠视皮质锥体神经元树突棘,使用共聚焦显微镜对其进行观察分析;同时利用透射电子显微镜技术,对树突棘的超微结构进行分析.结果:树突棘的形态大小及其密度随发育而变化;成熟树突棘内部存在滑面内质网与棘器;树突棘参与了大部分突触后成分的构成.结论:树突棘的发育过程与突触的形成以及突触可塑性密切相关.%Objective:To explore the relationship among the synaptogenesis, synaptic plasticity and dendritic spines by observing the morphological changes of dendritic spines of pyramidal neurons in the visual cortex of mice during development Methods: The dendritic spines of the pyramidal neurons of mouse visual cortex were labeled with Dil and observed under a confocal microscope. The ultrastructures of dendritic spines were observed by means of transmission electron microscopy. Results:The morphology and density of dendritic spines were changing with mouse growth in response to neuronal activity. The smooth endoplasmic reticulum and spine apparatus were detectable in matured dendritic spines. And, dendritic spines offered most parts of the postsynaptic element. Conclusion :These findings suggest that dendritic spines be close related synaptogenesis and synaptic plasticity.

  18. Dendritic spine shape classification from two-photon microscopy images (Dendritik diken şekillerinin iki foton mikroskopi görüntüleri kullanılarak sınıflandırılması)

    OpenAIRE

    2015-01-01

    Functional properties of a neuron are coupled with its morphology, particularly the morphology of dendritic spines. Spine volume has been used as the primary morphological parameter in order the characterize the structure and function coupling. However, this reductionist approach neglects the rich shape repertoire of dendritic spines. First step to incorporate spine shape information into functional coupling is classifying main spine shapes that were proposed in the literature. Due to the lac...

  19. Synaptic function for the Nogo-66 receptor NgR1: regulation of dendritic spine morphology and activity-dependent synaptic strength.

    Science.gov (United States)

    Lee, Hakjoo; Raiker, Stephen J; Venkatesh, Karthik; Geary, Rebecca; Robak, Laurie A; Zhang, Yu; Yeh, Hermes H; Shrager, Peter; Giger, Roman J

    2008-03-12

    In the mature nervous system, changes in synaptic strength correlate with changes in neuronal structure. Members of the Nogo-66 receptor family have been implicated in regulating neuronal morphology. Nogo-66 receptor 1 (NgR1) supports binding of the myelin inhibitors Nogo-A, MAG (myelin-associated glycoprotein), and OMgp (oligodendrocyte myelin glycoprotein), and is important for growth cone collapse in response to acutely presented inhibitors in vitro. After injury to the corticospinal tract, NgR1 limits axon collateral sprouting but is not important for blocking long-distance regenerative growth in vivo. Here, we report on a novel interaction between NgR1 and select members of the fibroblast growth factor (FGF) family. FGF1 and FGF2 bind directly and with high affinity to NgR1 but not to NgR2 or NgR3. In primary cortical neurons, ectopic NgR1 inhibits FGF2-elicited axonal branching. Loss of NgR1 results in altered spine morphologies along apical dendrites of hippocampal CA1 neurons in vivo. Analysis of synaptosomal fractions revealed that NgR1 is enriched synaptically in the hippocampus. Physiological studies at Schaffer collateral-CA1 synapses uncovered a synaptic function for NgR1. Loss of NgR1 leads to FGF2-dependent enhancement of long-term potentiation (LTP) without altering basal synaptic transmission or short-term plasticity. NgR1 and FGF receptor 1 (FGFR1) are colocalized to synapses, and mechanistic studies revealed that FGFR kinase activity is necessary for FGF2-elicited enhancement of hippocampal LTP in NgR1 mutants. In addition, loss of NgR1 attenuates long-term depression of synaptic transmission at Schaffer collateral-CA1 synapses. Together, our findings establish that physiological NgR1 signaling regulates activity-dependent synaptic strength and uncover neuronal NgR1 as a regulator of synaptic plasticity.

  20. Hyperforin modulates dendritic spine morphology in hippocampal pyramidal neurons by activating Ca(2+) -permeable TRPC6 channels.

    Science.gov (United States)

    Leuner, Kristina; Li, Wei; Amaral, Michelle D; Rudolph, Stephanie; Calfa, Gaston; Schuwald, Anita M; Harteneck, Christian; Inoue, Takafumi; Pozzo-Miller, Lucas

    2013-01-01

    The standardized extract of the St. John's wort plant (Hypericum perforatum) is commonly used to treat mild to moderate depression. Its active constituent is hyperforin, a phloroglucinol derivative that reduces the reuptake of serotonin and norepinephrine by increasing intracellular Na(+) concentration through the activation of nonselective cationic TRPC6 channels. TRPC6 channels are also Ca(2+) -permeable, resulting in intracellular Ca(2+) elevations. Indeed, hyperforin activates TRPC6-mediated currents and Ca(2+) transients in rat PC12 cells, which induce their differentiation, mimicking the neurotrophic effect of nerve growth factor. Here, we show that hyperforin modulates dendritic spine morphology in CA1 and CA3 pyramidal neurons of hippocampal slice cultures through the activation of TRPC6 channels. Hyperforin also evoked intracellular Ca(2+) transients and depolarizing inward currents sensitive to the TRPC channel blocker La(3+) , thus resembling the actions of the neurotrophin brain-derived neurotrophic factor (BDNF) in hippocampal pyramidal neurons. These results suggest that the antidepressant actions of St. John's wort are mediated by a mechanism similar to that engaged by BDNF.

  1. Impaired spatial memory and altered dendritic spine morphology in angiotensin II type 2 receptor-deficient mice.

    Science.gov (United States)

    Maul, Björn; von Bohlen und Halbach, Oliver; Becker, Axel; Sterner-Kock, Anja; Voigt, Jörg-Peter; Siems, Wolf-Eberhard; Grecksch, Gisela; Walther, Thomas

    2008-05-01

    Mental retardation is the most frequent cause of serious handicap in children and young adults. Mutations in the human angiotensin II type 2 receptor (AT2) have been implicated in X-linked forms of mental retardation. We here demonstrate that mice lacking the AT2 receptor gene are significantly impaired in their performance in a spatial memory task and in a one-way active avoidance task. As no difference was observed between the genotypes in fear conditioning, the detected deficit in spatial memory may not relate to fear. Notably, receptor knockout mice showed increased motility in an activity meter and elevated plus maze. Importantly, these mice are characterized by abnormal dendritic spine morphology and length, both features also found to be associated with some cases of mental retardation. These findings suggest a crucial role of AT2 in normal brain function and that dysfunction of the receptor has impact on brain development and ultrastructural morphology with distinct consequences on learning and memory.

  2. Unique somato-dendritic distribution pattern of Kv4.2 channels on hippocampal CA1 pyramidal cells.

    Science.gov (United States)

    Kerti, Katalin; Lorincz, Andrea; Nusser, Zoltan

    2012-01-01

    A-type K(+) current (I(A)) plays a critical role in controlling the excitability of pyramidal cell (PC) dendrites. In vitro dendritic patch-pipette recordings have demonstrated a prominent, sixfold increase in I(A) density along the main apical dendrites of rat hippocampal CA1 PCs. In these cells, I(A) is mediated by Kv4.2 subunits, whose precise subcellular distribution and densities in small-diameter oblique dendrites and dendritic spines are still unknown. Here we examined the densities of the Kv4.2 subunit in 13 axo-somato-dendritic compartments of CA1 PCs using a highly sensitive, high-resolution quantitative immunogold localization method (sodium dodecyl sulphate-digested freeze-fracture replica-labelling). Only an approximately 70% increase in Kv4.2 immunogold density was observed along the proximo-distal axis of main apical dendrites in the stratum radiatum with a slight decrease in density in stratum lacunosum-moleculare. A similar pattern was detected for all dendritic compartments, including main apical dendrites, small-diameter oblique dendrites and dendritic spines. The specificity of the somato-dendritic labelling was confirmed in Kv4.2(-/-) tissue. No specific immunolabelling for the Kv4.2 subunit was found in SNAP-25-containing presynaptic axons. Our results demonstrate a novel distribution pattern of a voltage-gated ion channel along the somato-dendritic surface of CA1 PCs, and suggest that the increase in the I(A) along the proximo-distal axis of PC dendrites cannot be solely explained by a corresponding increase in Kv4.2 channel number.

  3. FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons

    Directory of Open Access Journals (Sweden)

    Carles eBosch

    2015-05-01

    Full Text Available The fine analysis of synaptic contacts is usually performed using transmission electron microscopy (TEM and its combination with neuronal labeling techniques. However, the complex 3D architecture of neuronal samples calls for their reconstruction from serial sections. Here we show that focused ion beam/scanning electron microscopy (FIB/SEM allows efficient, complete, and automatic 3D reconstruction of identified dendrites, including their spines and synapses, from GFP/DAB-labeled neurons, with a resolution comparable to that of TEM. We applied this technology to analyze the synaptogenesis of labeled adult-generated granule cells (GCs in mice. 3D reconstruction of spines in GCs aged 3–4 and 8–9 weeks revealed two different stages of spine development and unexpected features of synapse formation, including vacant and branched spines and presynaptic terminals establishing synapses with up to 10 spines. Given the reliability, efficiency, and high resolution of FIB/SEM technology and the wide use of DAB in conventional EM, we consider FIB/SEM fundamental for the detailed characterization of identified synaptic contacts in neurons in a high-throughput manner.

  4. A mouse model of visual perceptual learning reveals alterations in neuronal coding and dendritic spine density in the visual cortex

    Directory of Open Access Journals (Sweden)

    Yan eWang

    2016-03-01

    Full Text Available Visual perceptual learning (VPL can improve spatial vision in normally sighted and visually impaired individuals. Although previous studies of humans and large animals have explored the neural basis of VPL, elucidation of the underlying cellular and molecular mechanisms remains a challenge. Owing to the advantages of molecular genetic and optogenetic manipulations, the mouse is a promising model for providing a mechanistic understanding of VPL. Here, we thoroughly evaluated the effects and properties of VPL on spatial vision in C57BL/6J mice using a two-alternative, forced-choice visual water task. Briefly, the mice underwent prolonged training at near the individual threshold of contrast or spatial frequency (SF for pattern discrimination or visual detection for 35 consecutive days. Following training, the contrast-threshold trained mice showed an 87% improvement in contrast sensitivity (CS and a 55% gain in visual acuity (VA. Similarly, the SF-threshold trained mice exhibited comparable and long-lasting improvements in VA and significant gains in CS over a wide range of SFs. Furthermore, learning largely transferred across eyes and stimulus orientations. Interestingly, learning could transfer from a pattern discrimination task to a visual detection task, but not vice versa. We validated that this VPL fully restored VA in adult amblyopic mice and old mice. Taken together, these data indicate that mice, as a species, exhibit reliable VPL. Intrinsic signal optical imaging revealed that mice with perceptual training had higher cut-off SFs in primary visual cortex (V1 than those without perceptual training. Moreover, perceptual training induced an increase in the dendritic spine density in layer 2/3 pyramidal neurons of V1. These results indicated functional and structural alterations in V1 during VPL. Overall, our VPL mouse model will provide a platform for investigating the neurobiological basis of VPL.

  5. Autometallographic (AMG) technique used for enhancement of the Golgi-Cox staining gives good contrast andhigh resolution of dendrites and spines

    DEFF Research Database (Denmark)

    Orlowski, Dariusz

    Despite the existence of many newer staining methods, Golgi staining still remains the primary method forvisualization of the dendrites and spines. The black deposit in the Golgi-Cox impregnated cells is a Mercuricsulphide, therefore autometallographic (AMG) technique which is used...... for visualization of the metals and metalsulphides/selenides in tissue may be used to enhance the Golgi-Cox staining. We demonstrated accordingly thatuse of AMG enhancement method on the Golgi-Cox staining gives good contrast and high resolution of dendritesand spines. Moreover, this method is cheaper and more...... flexible than conventional enhancement proceduresperformed with commercial photographic developers. The staining procedure is thoroughly described and wedemonstrate with qualitative and quantitative data, how Golgi-Cox immersion time and different AMGenhancement length may influence the staining...

  6. The formation of recent and remote memory is associated with time-dependent formation of dendritic spines in the hippocampus and anterior cingulate cortex.

    Science.gov (United States)

    Restivo, Leonardo; Vetere, Gisella; Bontempi, Bruno; Ammassari-Teule, Martine

    2009-06-24

    Although hippocampal-cortical interactions are crucial for the formation of enduring declarative memories, synaptic events that govern long-term memory storage remain mostly unclear. We present evidence that neuronal structural changes, i.e., dendritic spine growth, develop sequentially in the hippocampus and anterior cingulate cortex (aCC) during the formation of recent and remote contextual fear memory. We found that mice placed in a conditioning chamber for one 7 min conditioning session and exposed to five footshocks (duration, 2 s; intensity, 0.7 mA; interstimulus interval, 60 s) delivered through the grid floor exhibited robust fear response when returned to the experimental context 24 h or 36 d after the conditioning. We then observed that their fear response at the recent, but not the remote, time point was associated with an increase in spine density on hippocampal neurons, whereas an inverse temporal pattern of spine density changes occurred on aCC neurons. At each time point, hippocampal or aCC structural alterations were achieved even in the absence of recent or remote memory tests, thus suggesting that they were not driven by retrieval processes. Furthermore, ibotenic lesions of the hippocampus impaired remote memory and prevented dendritic spine growth on aCC neurons when they were performed immediately after the conditioning, whereas they were ineffective when performed 24 d later. These findings reveal that gradual structural changes modifying connectivity in hippocampal-cortical networks underlie the formation and expression of remote memory, and that the hippocampus plays a crucial but time-limited role in driving structural plasticity in the cortex.

  7. Single-cell genetic expression of mutant GABAA receptors causing Human genetic epilepsy alters dendritic spine and GABAergic bouton formation in a mutation-specific manner

    Directory of Open Access Journals (Sweden)

    Pamela eLachance-Touchette

    2014-10-01

    Full Text Available Mutations in genes encoding for GABAA receptor subunits is a well-established cause of genetic generalized epilepsy. GABA neurotransmission is implicated in several developmental processes including neurite outgrowth and synapse formation. Alteration in excitatory/inhibitory synaptic activities plays a critical role in epilepsy, thus here we investigated whether mutations in α1 subunit of GABAA receptor may affect dendritic spine and GABAergic bouton formation. In particular, we examined the effects of three mutations of the GABRA1 gene (D219N, A322D and K353delins18X that were found in a cohort of families with genetic generalized epilepsy. We used a novel single-cell genetic approach, by preparing cortical organotypic cultures from GABRA1flox/flox mice and simultaneously inactivating endogenous GABRA1 and transfecting mutant α1 subunits in single glutamatergic pyramidal cells and basket GABAergic interneurons by biolistic transfection. We found that GABRA1-/- GABAergic cells showed reduced innervation field, which was rescued by co-expressing α1-A322D and α1-WT but not α1-D219N. We further found that the expression of the most severe GABRA1 missense mutation (α1-A322D induced a striking increase of spine density in pyramidal cells along with an increase in the number of mushroom-like spines. In addition, α1-A322D expression in GABAergic cells slightly increased perisomatic bouton density, whereas other mutations did not alter bouton formation. All together, these results suggest that the effects of different GABAAR mutations on GABAergic bouton and dendritic spine formation are specific to the mutation and cannot be always explained by a simple loss-of-function gene model. The use of single cell genetic manipulation in organotypic cultures may provide a better understanding of the specific and distinct neural circuit alterations caused by different GABAA receptor subunit mutations and will help define the pathophysiology of genetic

  8. Aberrant calcium/calmodulin-dependent protein kinase II (CaMKII) activity is associated with abnormal dendritic spine morphology in the ATRX mutant mouse brain.

    Science.gov (United States)

    Shioda, Norifumi; Beppu, Hideyuki; Fukuda, Takaichi; Li, En; Kitajima, Isao; Fukunaga, Kohji

    2011-01-05

    In humans, mutations in the gene encoding ATRX, a chromatin remodeling protein of the sucrose-nonfermenting 2 family, cause several mental retardation disorders, including α-thalassemia X-linked mental retardation syndrome. We generated ATRX mutant mice lacking exon 2 (ATRX(ΔE2) mice), a mutation that mimics exon 2 mutations seen in human patients and associated with milder forms of retardation. ATRX(ΔE2) mice exhibited abnormal dendritic spine formation in the medial prefrontal cortex (mPFC). Consistent with other mouse models of mental retardation, ATRX(ΔE2) mice exhibited longer and thinner dendritic spines compared with wild-type mice without changes in spine number. Interestingly, aberrant increased calcium/calmodulin-dependent protein kinase II (CaMKII) activity was observed in the mPFC of ATRX(ΔE2) mice. Increased CaMKII autophosphorylation and activity were associated with increased phosphorylation of the Rac1-guanine nucleotide exchange factors (GEFs) T-cell lymphoma invasion and metastasis 1 (Tiam1) and kalirin-7, known substrates of CaMKII. We confirmed increased phosphorylation of p21-activated kinases (PAKs) in mPFC extracts. Furthermore, reduced protein expression and activity of protein phosphatase 1 (PP1) was evident in the mPFC of ATRX(ΔE2) mice. In cultured cortical neurons, PP1 inhibition by okadaic acid increased CaMKII-dependent Tiam1 and kalirin-7 phosphorylation. Together, our data strongly suggest that aberrant CaMKII activation likely mediates abnormal spine formation in the mPFC. Such morphological changes plus elevated Rac1-GEF/PAK signaling seen in ATRX(ΔE2) mice may contribute to mental retardation syndromes seen in human patients.

  9. K-Cl Cotransporter 2–mediated Cl− Extrusion Determines Developmental Stage–dependent Impact of Propofol Anesthesia on Dendritic Spines

    KAUST Repository

    Puskarjov, Martin

    2017-03-16

    Background: General anesthetics potentiating γ-aminobutyric acid (GABA)-mediated signaling are known to induce a persistent decrement in excitatory synapse number in the cerebral cortex when applied during early postnatal development, while an opposite action is produced at later stages. Here, the authors test the hypothesis that the effect of general anesthetics on synaptogenesis depends upon the efficacy of GABA receptor type A (GABA A)-mediated inhibition controlled by the developmental up-regulation of the potassium-chloride (K-Cl) cotransporter 2 (KCC2). Methods: In utero electroporation of KCC2 was used to prematurely increase the efficacy of (GABA A)-mediated inhibition in layer 2/3 pyramidal neurons in the immature rat somatosensory cortex. Parallel experiments with expression of the inward-rectifier potassium channel Kir2.1 were done to reduce intrinsic neuronal excitability. The effects of these genetic manipulations (n = 3 to 4 animals per experimental group) were evaluated using iontophoretic injection of Lucifer Yellow (n = 8 to 12 cells per animal). The total number of spines analyzed per group ranged between 907 and 3,371. Results: The authors found a robust effect of the developmental up-regulation of KCC2-mediated Cl - transport on the age-dependent action of propofol on dendritic spines. Premature expression of KCC2, unlike expression of a transport-inactive KCC2 variant, prevented a propofol-induced decrease in spine density. In line with a reduction in neuronal excitability, the above result was qualitatively replicated by overexpression of Kir2.1. Conclusions: The KCC2-dependent developmental increase in the efficacy of GABA A -mediated inhibition is a major determinant of the age-dependent actions of propofol on dendritic spinogenesis.

  10. Differential emotional experience induces elevated spine densities on basal dendrites of pyramidal neurons in the anterior cingulate cortex of Octodon degus.

    Science.gov (United States)

    Helmeke, C; Poeggel, G; Braun, K

    2001-01-01

    It appears likely that, in analogy to the synaptic development of sensory and motor cortices, which critically depends on sensory or motor stimulation (Rosenzweig and Bennett, 1996), the synaptic development of limbic cortical regions are modulated by early postnatal cognitive and emotional experiences. The very first postnatal experience, which takes place in a confined and stable familial environment, is the interaction of the newborn individual with the parents and siblings (Gray, 1958). The aim of this quantitative morphological study was to analyze the impact of different degrees of juvenile emotional experience on the synaptic development in a limbic cortical area, the dorsal anterior cingulate cortex, a region which is involved in the perception and regulation of emotions. We study the precocious trumpet-tailed rat (Octodon degus) as the animal model, because, like human babies, this species is born with functional visual and acoustic systems and the pups are therefore capable of detecting even subtle environmental changes immediately after birth (Reynolds and Wright, 1979; Poeggel and Braun, 1996; Braun et al., 2000; Ovtscharoff and Braun, 2001). The results demonstrate that already a subtle disturbance of the familial environment such as handling induced significantly elevated spine densities on the basal dendrites of layer III cortical pyramidal neurons. More severe disturbances of the emotional environment, such as periodic parental deprivation with or without subsequent chronic social isolation, resulted in an elevation of spine densities of similar magnitude as seen after handling and in addition, altered spine densities confined to specific dendritic segments were observed in these groups. These observations unveil the remarkable sensitivity of the dorsal anterior cingulate cortex towards environmental influences and behavioral experiences during phases of postnatal development. The behavioral consequences of these experience-induced synaptic changes

  11. Developmental expression profiles of axon guidance signaling and the immune system in the marmoset cortex: potential molecular mechanisms of pruning of dendritic spines during primate synapse formation in late infancy and prepuberty (I).

    Science.gov (United States)

    Sasaki, Tetsuya; Oga, Tomofumi; Nakagaki, Keiko; Sakai, Kazuhisa; Sumida, Kayo; Hoshino, Kohei; Miyawaki, Izuru; Saito, Koichi; Suto, Fumikazu; Ichinohe, Noritaka

    2014-02-14

    The synapse number and the related dendritic spine number in the cerebral cortex of primates shows a rapid increase after birth. Depending on the brain region and species, the number of synapses reaches a peak before adulthood, and pruning takes place after this peak (overshoot-type synaptic formation). Human mental disorders, such as autism and schizophrenia, are hypothesized to be a result of either too weak or excessive pruning after the peak is reached. Thus, it is important to study the molecular mechanisms underlying overshoot-type synaptic formation, particularly the pruning phase. To examine the molecular mechanisms, we used common marmosets (Callithrix jacchus). Microarray analysis of the marmoset cortex was performed in the ventrolateral prefrontal, inferior temporal, and primary visual cortices, where changes in the number of dendritic spines have been observed. The spine number of all the brain regions above showed a peak at 3 months (3 M) after birth and gradually decreased (e.g., at 6 M and in adults). In this study, we focused on genes that showed differential expression between ages of 3 M and 6 M and on the differences whose fold change (FC) was greater than 1.2. The selected genes were subjected to canonical pathway analysis, and in this study, we describe axon guidance signaling, which had high plausibility. The results showed a large number of genes belonging to subsystems within the axon guidance signaling pathway, macrophages/immune system, glutamate system, and others. We divided the data and discussion of these results into 2 papers, and this is the first paper, which deals with the axon guidance signaling and macrophage/immune system. Other systems will be described in the next paper. Many components of subsystems within the axon guidance signaling underwent changes in gene expression from 3 M to 6 M so that the synapse/dendritic spine number would decrease at 6 M. Thus, axon guidance signaling probably contributes to the decrease in

  12. Vitamin B1-deficient mice show impairment of hippocampus-dependent memory formation and loss of hippocampal neurons and dendritic spines: potential microendophenotypes of Wernicke–Korsakoff syndrome

    Science.gov (United States)

    Inaba, Hiroyoshi; Kishimoto, Takuya; Oishi, Satoru; Nagata, Kan; Hasegawa, Shunsuke; Watanabe, Tamae; Kida, Satoshi

    2016-01-01

    Patients with severe Wernicke–Korsakoff syndrome (WKS) associated with vitamin B1 (thiamine) deficiency (TD) show enduring impairment of memory formation. The mechanisms of memory impairment induced by TD remain unknown. Here, we show that hippocampal degeneration is a potential microendophenotype (an endophenotype of brain disease at the cellular and synaptic levels) of WKS in pyrithiamine-induced thiamine deficiency (PTD) mice, a rodent model of WKS. PTD mice show deficits in the hippocampus-dependent memory formation, although they show normal hippocampus-independent memory. Similarly with WKS, impairments in memory formation did not recover even at 6 months after treatment with PTD. Importantly, PTD mice exhibit a decrease in neurons in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus and reduced density of wide dendritic spines in the DG. Our findings suggest that TD induces hippocampal degeneration, including the loss of neurons and spines, thereby leading to enduring impairment of hippocampus-dependent memory formation. PMID:27576603

  13. DIXDC1 contributes to psychiatric susceptibility by regulating dendritic spine and glutamatergic synapse density via GSK3 and Wnt/β-catenin signaling.

    Science.gov (United States)

    Martin, P-M; Stanley, R E; Ross, A P; Freitas, A E; Moyer, C E; Brumback, A C; Iafrati, J; Stapornwongkul, K S; Dominguez, S; Kivimäe, S; Mulligan, K A; Pirooznia, M; McCombie, W R; Potash, J B; Zandi, P P; Purcell, S M; Sanders, S J; Zuo, Y; Sohal, V S; Cheyette, B N R

    2016-10-18

    Mice lacking DIX domain containing-1 (DIXDC1), an intracellular Wnt/β-catenin signal pathway protein, have abnormal measures of anxiety, depression and social behavior. Pyramidal neurons in these animals' brains have reduced dendritic spines and glutamatergic synapses. Treatment with lithium or a glycogen synthase kinase-3 (GSK3) inhibitor corrects behavioral and neurodevelopmental phenotypes in these animals. Analysis of DIXDC1 in over 9000 cases of autism, bipolar disorder and schizophrenia reveals higher rates of rare inherited sequence-disrupting single-nucleotide variants (SNVs) in these individuals compared with psychiatrically unaffected controls. Many of these SNVs alter Wnt/β-catenin signaling activity of the neurally predominant DIXDC1 isoform; a subset that hyperactivate this pathway cause dominant neurodevelopmental effects. We propose that rare missense SNVs in DIXDC1 contribute to psychiatric pathogenesis by reducing spine and glutamatergic synapse density downstream of GSK3 in the Wnt/β-catenin pathway.Molecular Psychiatry advance online publication, 18 October 2016; doi:10.1038/mp.2016.184.

  14. Vitamin B1-deficient mice show impairment of hippocampus-dependent memory formation and loss of hippocampal neurons and dendritic spines: potential microendophenotypes of Wernicke-Korsakoff syndrome.

    Science.gov (United States)

    Inaba, Hiroyoshi; Kishimoto, Takuya; Oishi, Satoru; Nagata, Kan; Hasegawa, Shunsuke; Watanabe, Tamae; Kida, Satoshi

    2016-12-01

    Patients with severe Wernicke-Korsakoff syndrome (WKS) associated with vitamin B1 (thiamine) deficiency (TD) show enduring impairment of memory formation. The mechanisms of memory impairment induced by TD remain unknown. Here, we show that hippocampal degeneration is a potential microendophenotype (an endophenotype of brain disease at the cellular and synaptic levels) of WKS in pyrithiamine-induced thiamine deficiency (PTD) mice, a rodent model of WKS. PTD mice show deficits in the hippocampus-dependent memory formation, although they show normal hippocampus-independent memory. Similarly with WKS, impairments in memory formation did not recover even at 6 months after treatment with PTD. Importantly, PTD mice exhibit a decrease in neurons in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus and reduced density of wide dendritic spines in the DG. Our findings suggest that TD induces hippocampal degeneration, including the loss of neurons and spines, thereby leading to enduring impairment of hippocampus-dependent memory formation.

  15. 小鼠海马CA1区锥体神经元树突棘的发育%Dendritic spine development of mouse hippocampal CA1 pyramidal neurons

    Institute of Scientific and Technical Information of China (English)

    刘畅; 范文娟; 程维杰; 左曙光; 邓锦波

    2012-01-01

    Objective To investigate the developmental characteristics of dendritic spines in mouse hippocampal CA1 pyramidal neurons by analysing the spine density and morphological changes. Methods Fifty mice were collected at postnatal days ( P ) 0, 5, 10, 20 and 30, 10 mice for each age. Dil diolistic labeling with gene gun was performed to observe dendritic spines development in mouse hippocampal CA1 pyramidal neurons. High quality labeled neurons were examined and photographed under a confocal microscope, whereas the ultrastructure of spines was observed under a transmission electron microscope. Results Dendritic spines changed their morphology and density with mouse development in response to neuronal activity. The smooth endoplasmic reticulum and spine apparatus in dendritic spines of hippocampal CA1 were observed with electron microscopy analysis, which might be involved in the regulation of plasticity at individual synapses. Conclusion The development of dendritic spines may be closely related to synaptogenesis and the formation of synaptic plasticity.%目的 对小鼠海马CA1区锥体神经元正常发育中树突棘密度及各种形态变化进行分析测定,为深入研究突触发生及突触可塑性提供直接的形态学依据.方法 分别取出生后0、5、10、20及30d 5个年龄段的C57BL/6小鼠各10只,采用基因枪对小鼠海马CA1区锥体神经元树突棘进行亲脂性荧光染料DiI标记,通过激光共焦显微镜对其进行观察分析;同时利用透射电镜技术对树突棘的超微结构进行分析.结果 树突棘的形态、大小及其密度随小鼠发育而变化,成熟树突棘内部存在滑面内质网与棘器,可能参与了突触后膜结合蛋白及其转运体的合成.结论 树突棘的发育过程与突触连接的形成以及突触可塑性密切相关.

  16. Up-regulation of Ras/Raf/ERK1/2 signaling in the spinal cord impairs neural cell migration, neurogenesis, synapse formation, and dendritic spine development

    Institute of Scientific and Technical Information of China (English)

    CAO Fu-jiang; ZHANG Xu; LIU Tao; LI Xia-wen; Mazar Malik; FENG Shi-qing

    2013-01-01

    Background The Ras/Raf/ERK1/2 signaling pathway controls many cellular responses such as cell proliferation,migration,differentiation,and death.In the nervous system,emerging evidence also points to a death-promoting role for ERK1/2 in both in vitro and in vivo models of neuronal death.To further investigate how Ras/Raf/ERK1/2 up-regulation may lead to the development of spinal cord injury,we developed a cellular model of Raf/ERK up-regulation by overexpressing c-Raf in cultured spinal cord neurons (SCNs) and dorsal root ganglions (DRGs).Methods DRGs and SCNs were prepared from C57BL/6J mouse pups.DRGs or SCNs were infected with Ad-Raf-1 or Ad-Null adenovirus alone.Cell adhesion assay and cell migration assay were investigated,Dil labeling was employed to examine the effect of the up-regulation of Ras/Raf/ERK1/2 signaling on the dendritic formation of spinal neurons.We used the TO-PRO-3 staining to examine the apoptotic effect of c-Raf on DRGs or SCNs.The effect on the synapse formation of neurons was measured by using immunofluorescence.Results We found that Raf/ERK up-regulation stimulates the migration of both SCNs and DRGs,and impairs the formation of excitatory synapses in SCNs.In addition,we found that Raf/ERK up-regulation inhibits the development of mature dendritic spines in SCNs.Investigating the possible mechanisms through which Raf/ERK up-regulation affects the excitatory synapse formation and dendritic spine development,we discovered that Raf/ERK up-regulation suppresses the development and maturation of SCNs.Conclusion The up-regulation of the Raf/ERK signaling pathway may contribute to the pathogenesis of spinal cord injury through both its impairment of the SCN development and causing neural circuit imbalances.

  17. Dendritic morphology of hippocampal and amygdalar neurons in adolescent mice is resilient to genetic differences in stress reactivity.

    Science.gov (United States)

    Pillai, Anup G; de Jong, Danielle; Kanatsou, Sofia; Krugers, Harm; Knapman, Alana; Heinzmann, Jan-Michael; Holsboer, Florian; Landgraf, Rainer; Joëls, Marian; Touma, Chadi

    2012-01-01

    Many studies have shown that chronic stress or corticosterone over-exposure in rodents leads to extensive dendritic remodeling, particularly of principal neurons in the CA3 hippocampal area and the basolateral amygdala. We here investigated to what extent genetic predisposition of mice to high versus low stress reactivity, achieved through selective breeding of CD-1 mice, is also associated with structural plasticity in Golgi-stained neurons. Earlier, it was shown that the highly stress reactive (HR) compared to the intermediate (IR) and low (LR) stress reactive mice line presents a phenotype, with respect to neuroendocrine parameters, sleep architecture, emotional behavior and cognition, that recapitulates some of the features observed in patients suffering from major depression. In late adolescent males of the HR, IR, and LR mouse lines, we observed no significant differences in total dendritic length, number of branch points and branch tips, summated tip order, number of primary dendrites or dendritic complexity of either CA3 pyramidal neurons (apical as well as basal dendrites) or principal neurons in the basolateral amygdala. Apical dendrites of CA1 pyramidal neurons were also unaffected by the differences in stress reactivity of the animals; marginally higher length and complexity of the basal dendrites were found in LR compared to IR but not HR mice. In the same CA1 pyramidal neurons, spine density of distal apical tertiary dendrites was significantly higher in LR compared to IR or HR animals. We tentatively conclude that the dendritic complexity of principal hippocampal and amygdala neurons is remarkably stable in the light of a genetic predisposition to high versus low stress reactivity, while spine density seems more plastic. The latter possibly contributes to the behavioral phenotype of LR versus HR animals.

  18. Post-synaptic density-95 (PSD-95) binding capacity of G-protein-coupled receptor 30 (GPR30), an estrogen receptor that can be identified in hippocampal dendritic spines.

    Science.gov (United States)

    Akama, Keith T; Thompson, Louisa I; Milner, Teresa A; McEwen, Bruce S

    2013-03-01

    The estrogen 17β-estradiol (E2) modulates dendritic spine plasticity in the cornu ammonis 1 (CA1) region of the hippocampus, and GPR30 (G-protein coupled estrogen receptor 1 (GPER1)) is an estrogen-sensitive G-protein-coupled receptor (GPCR) that is expressed in the mammalian brain and in specific subregions that are responsive to E2, including the hippocampus. The subcellular localization of hippocampal GPR30, however, remains unclear. Here, we demonstrate that GPR30 immunoreactivity is detected in dendritic spines of rat CA1 hippocampal neurons in vivo and that GPR30 protein can be found in rat brain synaptosomes. GPR30 immunoreactivity is identified at the post-synaptic density (PSD) and in the adjacent peri-synaptic zone, and GPR30 can associate with the spine scaffolding protein PSD-95 both in vitro and in vivo. This PSD-95 binding capacity of GPR30 is specific and determined by the receptor C-terminal tail that is both necessary and sufficient for PSD-95 interaction. The interaction with PSD-95 functions to increase GPR30 protein levels residing at the plasma membrane surface. GPR30 associates with the N-terminal tandem pair of PDZ domains in PSD-95, suggesting that PSD-95 may be involved in clustering GPR30 with other receptors in the hippocampus. We demonstrate that GPR30 has the potential to associate with additional post-synaptic GPCRs, including the membrane progestin receptor, the corticotropin releasing hormone receptor, and the 5HT1a serotonin receptor. These data demonstrate that GPR30 is well positioned in the dendritic spine compartment to integrate E2 sensitivity directly onto multiple inputs on synaptic activity and might begin to provide a molecular explanation as to how E2 modulates dendritic spine plasticity.

  19. Post-synaptic Density-95 (PSD-95) Binding Capacity of G-protein-coupled Receptor 30 (GPR30), an Estrogen Receptor That Can Be Identified in Hippocampal Dendritic Spines*

    Science.gov (United States)

    Akama, Keith T.; Thompson, Louisa I.; Milner, Teresa A.; McEwen, Bruce S.

    2013-01-01

    The estrogen 17β-estradiol (E2) modulates dendritic spine plasticity in the cornu ammonis 1 (CA1) region of the hippocampus, and GPR30 (G-protein coupled estrogen receptor 1 (GPER1)) is an estrogen-sensitive G-protein-coupled receptor (GPCR) that is expressed in the mammalian brain and in specific subregions that are responsive to E2, including the hippocampus. The subcellular localization of hippocampal GPR30, however, remains unclear. Here, we demonstrate that GPR30 immunoreactivity is detected in dendritic spines of rat CA1 hippocampal neurons in vivo and that GPR30 protein can be found in rat brain synaptosomes. GPR30 immunoreactivity is identified at the post-synaptic density (PSD) and in the adjacent peri-synaptic zone, and GPR30 can associate with the spine scaffolding protein PSD-95 both in vitro and in vivo. This PSD-95 binding capacity of GPR30 is specific and determined by the receptor C-terminal tail that is both necessary and sufficient for PSD-95 interaction. The interaction with PSD-95 functions to increase GPR30 protein levels residing at the plasma membrane surface. GPR30 associates with the N-terminal tandem pair of PDZ domains in PSD-95, suggesting that PSD-95 may be involved in clustering GPR30 with other receptors in the hippocampus. We demonstrate that GPR30 has the potential to associate with additional post-synaptic GPCRs, including the membrane progestin receptor, the corticotropin releasing hormone receptor, and the 5HT1a serotonin receptor. These data demonstrate that GPR30 is well positioned in the dendritic spine compartment to integrate E2 sensitivity directly onto multiple inputs on synaptic activity and might begin to provide a molecular explanation as to how E2 modulates dendritic spine plasticity. PMID:23300088

  20. Stress during development alters dendritic morphology in the nucleus accumbens and prefrontal cortex.

    Science.gov (United States)

    Muhammad, A; Carroll, C; Kolb, B

    2012-08-02

    The long-term effects of stress during development have been well characterized. However, the effects of developmental stress on the underlying neurological mechanisms related to the reward system are not well understood. The present report studied the long term effects of stress during development on the structural plasticity in the cortical and subcortical regions. Rats exposed to stress during embryonic development (prenatal stress; PS) or soon after birth (maternal separation; MS) were studied for structural alteration at the neuronal level in the nucleus accumbens (NAc), orbital frontal cortex (OFC), and medial prefrontal cortex (mPFC). The findings show that stress during development increased dendritic branching, length, and spine density in the NAc, and subregions of the PFC. PS experience increased dendritic branching and length in the mPFC apical and basilar dendrites. In contrast, a PS-associated decrease in dendritic branching and length was observed in the basilar branches of the OFC. MS resulted in an increase in dendritic growth and spine density in the subregions of the PFC. The effect of PS on neuroanatomy was more robust than MS despite the shorter duration and intensity. The altered dendritic growth and spine density associated with stress during development could have potential impact on NAc and PFC related behaviors.

  1. Effect of Memory Recall on the Morphology of Dendritic Spines in Mice%记忆提取对小鼠树突棘的形态学影响

    Institute of Scientific and Technical Information of China (English)

    张晓光; 薛张纲

    2012-01-01

    目的:观察Morris 水迷宫位置回想测试对树突棘的形态学影响.方法:12只6~7个月龄雄性绿色荧光蛋白转基因小鼠在接受Morris水迷宫定位航行训练至空间记忆形成后,将其随机分为位置回想测试组(n=6)和对照组(n=6).观察2组小鼠树突棘分布密度的改变.结果:位置回想测试组小鼠树突棘密度为1.69(1.47~2.00)个/μm(18个细胞,65个树突节段,3 034个树突棘);对照组小鼠树突棘密度为1.33(1.04~1.55)个/μm(18个细胞,66个树突节段,2 723个树突棘).位置回想测试组小鼠海马CA1区锥体细胞树突棘的密度显著大于对照组小鼠.结论:记忆提取可以增加小鼠海马CA1区锥体细胞树突棘的密度,提示记忆提取过程可能伴有兴奋性突触的数量增加.%Objective:To investigate the effect of memory recall on the morphology of dendritic spines in green fluorescent pro-tcin(GFP) transgenic mice. Methods: Twelve male GFP transgenic mice received spacial navigation training in Morris water maze until they met the memory formation criteria. Then the mice were randomly allocated to cither the place recall test group (re = 6) or the control group(? = 6). Morphology of dendritic spines was observed through laser confocal microscopy. Densities of dendritic spines were compared between the two groups. Results: The density of dendritic spines in the test group was 1. 69 (1. 47 - 2. 00)spincs/jLim(18 cells,65 dendritic segments,3 034 spines) and the density of dendritic spines in the control group was 1.33 (1. 04 ~ 1. 55)spincs/jLim(18 cells,66 dendritic segments, 2 723 spines). The density of dentritic spines in the test group was greater than that in the control group (P<0. 05). Conclusions: Memory recall process can increase the density of dendritic spines in pyramidal cells in the hippocampus Cal region of mice, which indicates that memory recall process may be accompanied by formation of new excitatory synapses.

  2. Inhibition of the Motor Protein Eg5/Kinesin-5 in Amyloid β-Mediated Impairment of Hippocampal Long-Term Potentiation and Dendritic Spine Loss.

    Science.gov (United States)

    Freund, Ronald K; Gibson, Emily S; Potter, Huntington; Dell'Acqua, Mark L

    2016-05-01

    Alzheimer's disease (AD) is characterized by neurofibrillary tangles, amyloid plaques, and neurodegeneration. However, this pathology is preceded by increased soluble amyloid beta (Aβ) 1-42 oligomers that interfere with the glutamatergic synaptic plasticity required for learning and memory, includingN-methyl-d-aspartate receptor (NMDAR)-dependent long-term potentiation (LTP). In particular, soluble Aβ(1-42) acutely inhibits LTP and chronically causes synapse loss. Many mechanisms have been proposed for Aβ-induced synaptic dysfunction, but we recently found that Aβ(1-42) inhibits the microtubule motor protein Eg5/kinesin-5. Here we compared the impacts of Aβ(1-42) and monastrol, a small-molecule Eg5 inhibitor, on LTP in hippocampal slices and synapse loss in neuronal cultures. Acute (20-minute) treatment with monastrol, like Aβ, completely inhibited LTP at doses >100 nM. In addition, 1 nM Aβ(1-42) or 50 nM monastrol inhibited LTP #x223c;50%, and when applied together caused complete LTP inhibition. At concentrations that impaired LTP, neither Aβ(1-42) nor monastrol inhibited NMDAR synaptic responses until #x223c;60 minutes, when only #x223c;25% inhibition was seen for monastrol, indicating that NMDAR inhibition was not responsible for LTP inhibition by either agent when applied for only 20 minutes. Finally, 48 hours of treatment with either 0.5-1.0μM Aβ(1-42) or 1-5μM monastrol reduced the dendritic spine/synapse density in hippocampal cultures up to a maximum of #x223c;40%, and when applied together at maximal concentrations, no additional spine loss resulted. Thus, monastrol can mimic and in some cases occlude the impact of Aβon LTP and synapse loss, suggesting that Aβinduces acute and chronic synaptic dysfunction in part through inhibiting Eg5.

  3. In-vivo administration of clozapine affects behaviour but does not reverse dendritic spine deficits in the 14-3-3ζ KO mouse model of schizophrenia-like disorders.

    Science.gov (United States)

    Jaehne, Emily J; Ramshaw, Hayley; Xu, Xiangjun; Saleh, Eiman; Clark, Scott R; Schubert, Klaus Oliver; Lopez, Angel; Schwarz, Quenten; Baune, Bernhard T

    2015-11-01

    Clozapine is an atypical antipsychotic drug used in the treatment of schizophrenia, which has been shown to reverse behavioural and dendritic spine deficits in mice. It has recently been shown that deficiency of 14-3-3ζ has an association with schizophrenia, and that a mouse model lacking this protein displays several schizophrenia-like behavioural deficits. To test the effect of clozapine in this mouse model, 14-3-3ζ KO mice were administered clozapine (5mg/kg) for two weeks prior to being analysed in a test battery of cognition, anxiety, and despair (depression-like) behaviours. Following behavioural testing brain samples were collected for analysis of specific anatomical defects and dendritic spine formation. We found that clozapine reduced despair behaviour of 14-3-3ζ KO mice in the forced swim test (FST) and altered the behaviour of wild types and 14-3-3ζ KO mice in the Y-maze task. In contrast, clozapine had no effects on hippocampal laminar defects or decreased dendritic spine density observed in 14-3-3ζ KO mice. Our results suggest that clozapine may have beneficial effects on clinical behaviours associated with deficiencies in the 14-3-3ζ molecular pathway, despite having no effects on morphological defects. These findings may provide mechanistic insight to the action of this drug.

  4. The "addicted" spine.

    Science.gov (United States)

    Spiga, Saturnino; Mulas, Giovanna; Piras, Francesca; Diana, Marco

    2014-01-01

    Units of dendritic branches called dendritic spines represent more than simply decorative appendages of the neuron and actively participate in integrative functions of "spinous" nerve cells thereby contributing to the general phenomenon of synaptic plasticity. In animal models of drug addiction, spines are profoundly affected by treatments with drugs of abuse and represent important sub cellular markers which interfere deeply into the physiology of the neuron thereby providing an example of the burgeoning and rapidly increasing interest in "structural plasticity". Medium Spiny Neurons (MSNs) of the Nucleus Accumbens (Nacc) show a reduced number of dendritic spines and a decrease in TH-positive terminals upon withdrawal from opiates, cannabinoids and alcohol. The reduction is localized "strictly" to second order dendritic branches where dopamine (DA)-containing terminals, impinging upon spines, make synaptic contacts. In addition, long-thin spines seems preferentially affected raising the possibility that cellular learning of these neurons may be selectively hampered. These findings suggest that dendritic spines are affected by drugs widely abused by humans and provide yet another example of drug-induced aberrant neural plasticity with marked reflections on the physiology of synapses, system structural organization, and neuronal circuitry remodeling.

  5. Research progress of morphological remodeling of neuronal dendritic spine induced by early stress%早期应激诱导神经元树突棘形态结构重塑研究进展

    Institute of Scientific and Technical Information of China (English)

    何云; 杨群; 许本柯

    2015-01-01

    生长发育早期,促肾上腺皮质激素释放因子(CRF)可导致海马神经元突触功能发生改变,神经元树突棘形态结构重塑,最终损害海马记忆功能。CRFR1受体广泛存在于海马神经元树突棘头部突触后致密物(PSD)上,CRF 与 CRFR1受体结合,可通过 G 蛋白偶联受体介导的信号转导调控神经元突触相关功能,此外还可通过激活 RhoA-confilin 网络信号导致神经元树突棘形态结构发生改变。该文就树突棘形态结构、分子组成及相关调节蛋白以及 CRF 与海马相应功能区神经元树突棘作用等内容作一综述。%During the early stage of growth and development,corticotropin releasing factors (CRF) can alter the function of synapse of hippocampal neurons,remodel the morphology of neuronal dendritic spine and eventually damage the memory function of hippocampus.CRFR1 receptor is widely distributed in the posts-ynaptic dense materials (PSD)of dendritic spine head of hippocampal neurons.Binding of CRF and CRFR1 receptors not only could regulate the function of neuronal synapse via G-protein coupling receptor-mediated sig-naling transduction,but also cause morphological variations of neuronal dendritic spine through activating RhoA-confilin signaling network.This paper summarized the morphology,molecular composition and related regulatory proteins of dendritic spine and the effect of CRF upon neuronal dendritic spine in the corresponding domain of hippocampus,etc.

  6. Acute melatonin treatment alters dendritic morphology and circadian clock gene expression in the hippocampus of Siberian hamsters.

    Science.gov (United States)

    Ikeno, Tomoko; Nelson, Randy J

    2015-02-01

    In the hippocampus of Siberian hamsters, dendritic length and dendritic complexity increase in the CA1 region whereas dendritic spine density decreases in the dentate gyrus region at night. However, the underlying mechanism of the diurnal rhythmicity in hippocampal neuronal remodeling is unknown. In mammals, most daily rhythms in physiology and behaviors are regulated by a network of circadian clocks. The central clock, located in the hypothalamus, controls melatonin secretion at night and melatonin modifies peripheral clocks by altering expression of circadian clock genes. In this study, we examined the effects of acute melatonin treatment on the circadian clock system as well as on morphological changes of hippocampal neurons. Male Siberian hamsters were injected with melatonin in the afternoon; 4 h later, mRNA levels of hypothalamic and hippocampal circadian clock genes and hippocampal neuron dendritic morphology were assessed. In the hypothalamus, melatonin treatment did not alter Period1 and Bmal1 expression. However, melatonin treatment increased both Period1 and Bmal1 expression in the hippocampus, suggesting that melatonin affected molecular oscillations in the hippocampus. Melatonin treatment also induced rapid remodeling of hippocampal neurons; melatonin increased apical dendritic length and dendritic complexity in the CA1 region and reduced the dendritic spine density in the dentate gyrus region. These data suggest that structural changes in hippocampal neurons are regulated by a circadian clock and that melatonin functions as a nighttime signal to coordinate the diurnal rhythm in neuronal remodeling.

  7. Inhibition of the Ras/Raf/ERK1/2 Signaling Pathway Restores Cultured Spinal Cord-Injured Neuronal Migration, Adhesion, and Dendritic Spine Development.

    Science.gov (United States)

    Xu, Dongdong; Cao, Fujiang; Sun, Shiwei; Liu, Tao; Feng, Shiqing

    2016-08-01

    The Ras/Raf/ERK1/2 signaling pathway plays an important role in central and peripheral neurons in functions such as dendritic arborization, neuronal polarity, and axon assembly. However, emerging evidence also shows that up-regulation of this signaling pathway may lead to the development of spinal cord injury. The present study aimed to determine the effects of Ras/Raf/ERK1/2 signaling pathway inhibition on properties of spinal cord-injured neurons. First, neurons from spinal cord-injured C57BL/6 J mouse pups and sham-operated C57BL/6 J mouse pups were harvested. Then, immunofluorescence, western blotting, cell adhesion and cell migration assays, and DiI labeling were employed to investigate the effect of Ras/Raf/ERK1/2 signaling pathway inhibition on spinal cord-injured neurons. Immunofluorescence results of synapse formation indicated that the experimental spinal cord injury model was successfully established. Western blot results identified upregulated Erk phosphorylation in the spinal cord-injured neurons, and also showed that U0126 inhibited phosphorylation of Erk, which is a downstream kinase in the Ras/Raf signaling pathway. Additionally, cell migration and adhesion was significantly increased in the spinal cord-injured neurons. DiI labeling results also showed an increased formation of mature spines after inhibition of Ras/Raf/ERK1/2 signaling. Taken together, these results suggested that the Ras/Raf/ERK1/2 signaling pathway could serve as an effective treatment target for spinal cord injury.

  8. The “addicted” spine

    OpenAIRE

    Saturnino eSpiga; Giovanna eMulas; Francesca ePiras; Marco eDiana

    2014-01-01

    Units of dendritic branches called dendritic spines represent more than simply decorative appendages of the neuron and actively participate in integrative functions of “spinous” nerve cells thereby contributing to the general phenomenon of synaptic plasticity. In animal models of drug addiction, spines are profoundly affected by treatments with drugs of abuse and represent important sub cellular markers which interfere deeply into the physiology of the neuron thereby providing an example of t...

  9. Chronic stress alters the dendritic morphology of callosal neurons and the acute glutamate stress response in the rat medial prefrontal cortex.

    Science.gov (United States)

    Luczynski, Pauline; Moquin, Luc; Gratton, Alain

    2015-01-01

    We have previously reported that interhemispheric regulation of medial prefrontal cortex (PFC)-mediated stress responses is subserved by glutamate (GLU)- containing callosal neurons. Evidence of chronic stress-induced dendritic and spine atrophy among PFC pyramidal neurons led us to examine how chronic restraint stress (CRS) might alter the apical dendritic morphology of callosal neurons and the acute GLU stress responses in the left versus right PFC. Morphometric analyses of retrogradely labeled, dye-filled PFC callosal neurons revealed hemisphere-specific CRS-induced dendritic retraction; whereas significant dendritic atrophy occurred primarily within the distal arbor of left PFC neurons, it was observed within both the proximal and distal arbor of right PFC neurons. Overall, CRS also significantly reduced spine densities in both hemispheres with the greatest loss occurring among left PFC neurons, mostly at the distal extent of the arbor. While much of the overall decrease in dendritic spine density was accounted by the loss of thin spines, the density of mushroom-shaped spines, despite being fewer in number, was halved. Using microdialysis we found that, compared to controls, basal PFC GLU levels were significantly reduced in both hemispheres of CRS animals and that their GLU response to 30 min of tail-pinch stress was significantly prolonged in the left, but not the right PFC. Together, these findings show that a history of chronic stress alters the dendritic morphology and spine density of PFC callosal neurons and suggest a mechanism by which this might disrupt the interhemispheric regulation of PFC-mediated responses to subsequent stressors.

  10. Rpph1 Upregulates CDC42 Expression and Promotes Hippocampal Neuron Dendritic Spine Formation by Competing with miR-330-5p

    Science.gov (United States)

    Cai, Yifei; Sun, Ziling; Jia, Huizhen; Luo, Hongxue; Ye, Xiaoyang; Wu, Qi; Xiong, Yi; Zhang, Wei; Wan, Jun

    2017-01-01

    Alzheimer’s disease (AD) is a heterogeneous neurodegenerative disease. Recent studies employing microRNA-seq and genome-wide sequencing have identified some non-coding RNAs that are influentially involved in AD pathogenesis. Non-coding RNAs can compete with other endogenous RNAs by microRNA response elements (MREs) and manipulate biological processes, such as tumorigenesis. However, only a few non-coding RNAs have been reported in the pathogenesis of AD. In this study, we constructed the first competing endogenous RNA (ceRNA) network leveraging whole transcriptome sequencing and a previously studied microRNA-seq of APPswe/PS1ΔE9 transgenic mice. The underlying mechanisms for the involvement of ceRNA in AD were validated using the Dual Luciferase Reporter Assay, detection of transcription levels by quantitative RT-PCR and translation levels by Western blotting, and morphological examination in primary cultured neurons. In the ceRNA network, four lncRNAs (C030034L19Rik, Rpph1, A830012C17Rik, and Gm15477) and five miRNAs (miR-182-5p, miR-330-5p, miR-326-3p, miR-132-3p, and miR-484) are enriched in nine pathways and an AD-related gene pool. Among them, Ribonuclease P RNA component H1 (Rpph1) is upregulated in the cortex of APPswe/PS1ΔE9 mice compared to wild type controls. Rpph1 binds to miR326-3p/miR-330-5p and causes the release of their downstream target Cdc42, which leads to CDC42 upregulation. This effect was disrupted upon mutation of the MRE on Rpph1. Moreover, overexpression of Rpph1 increased dendritic spine density in primary cultured hippocampal pyramidal neurons, whereas knocking down of Rpph1 had the reverse effect. In conclusion, Rpph1 modulates CDC42 expression level in a ceRNA-dependent manner, which may represent a compensatory mechanism in the early stage of the AD pathogenesis. PMID:28223918

  11. Chronic oestradiol reduces the dendritic spine density of KNDy (kisspeptin/neurokinin B/dynorphin) neurones in the arcuate nucleus of ovariectomised Tac2-enhanced green fluorescent protein transgenic mice.

    Science.gov (United States)

    Cholanian, M; Krajewski-Hall, S J; McMullen, N T; Rance, N E

    2015-04-01

    Neurones in the arcuate nucleus that express neurokinin B (NKB), kisspeptin and dynorphin (KNDy) play an important role in the reproductive axis. Oestradiol modulates the gene expression and somatic size of these neurones, although there is limited information available about whether their dendritic structure, a correlate of cellular plasticity, is altered by oestrogens. In the present study, we investigated the morphology of KNDy neurones by filling fluorescent neurones in the arcuate nucleus of Tac2-enhanced green fluorescent protein (EGFP) transgenic mice with biocytin. Filled neurones from ovariectomised (OVX) or OVX plus 17β-oestradiol (E2)-treated mice were visualised with anti-biotin immunohistochemistry and reconstructed in three dimensions with computer-assisted microscopy. KNDy neurones exhibited two primary dendrites, each with a few branches confined to the arcuate nucleus. Quantitative analysis revealed that E2 treatment of OVX mice decreased the cell size and dendritic spine density of KNDy neurones. The axons of KNDy neurones originated from the cell body or proximal dendrite and gave rise to local branches that appeared to terminate within the arcuate nucleus. Numerous terminal boutons were also visualised within the ependymal layer of the third ventricle adjacent to the arcuate nucleus. Axonal branches also projected to the adjacent median eminence and exited the arcuate nucleus. Confocal microscopy revealed close apposition of EGFP and gonadotrophin-releasing hormone-immunoreactive fibres within the median eminence and confirmed the presence of KNDy axon terminals in the ependymal layer of the third ventricle. The axonal branching pattern of KNDy neurones suggests that a single KNDy neurone could influence multiple arcuate neurones, tanycytes in the wall of the third ventricle, axon terminals in the median eminence and numerous areas outside of the arcuate nucleus. In parallel with its inhibitory effects on electrical excitability, E2 treatment

  12. A cell adhesion molecule mimetic, FGL peptide, induces alterations in synapse and dendritic spine structure in the dentate gyrus of aged rats: a three-dimensional ultrastructural study

    DEFF Research Database (Denmark)

    Popov, Victor I; Medvedev, Nikolay I; Kraev, Igor V

    2008-01-01

    100 serial ultrathin sections. FGL affected neither hippocampal volume nor spine or synaptic density in the middle molecular layer of the dentate gyrus. However, it increased the ratio of mushroom to thin spines, number of multivesicular bodies and also increased the frequency of appearance of coated...

  13. The ‘addicted’ spine.

    Directory of Open Access Journals (Sweden)

    Saturnino eSpiga

    2014-10-01

    Full Text Available Units of dendritic branches called dendritic spines represent more than simply decorative appendages of the neuron and actively participate in integrative functions of ‘spinous’ nerve cells thereby contributing to the general phenomenon of synaptic plasticity. In animal models of drug addiction, spines are profoundly affected by treatments with drugs of abuse and represent important sub cellular markers which interfere deeply into the physiology of the neuron thereby providing an example of the burgeoning and rapidly increasing interest in ‘structural plasticity.’Medium Spiny Neurons of the Nucleus Accumbens show a reduced number of dendritic spines and a decrease in TH-positive terminals upon withdrawal from opiates, cannabinoids and alcohol. The reduction is localized ‘strictly’ to second order dendritic branches where, dopamine-containing terminals impinging upon spines, make synaptic contacts. In addition, long-thin spines seems preferentially affected raising the possibility that cellular learning of these neurons may be selectively hampered. These findings suggest that dendritic spines are affected by drugs widely abused by humans and provide yet another example of drug-induced aberrant neural plasticity with marked reflections on the physiology of synapses, system structural organization, and neuronal circuitry remodeling.

  14. Effects of lead exposure during pregnancy and lactation on hippocampal neuron dendritic spines in rat%孕期及哺乳期铅暴露对大鼠海马神经元树突棘的影响

    Institute of Scientific and Technical Information of China (English)

    陈彦菲; 赵再华; 沈学锋; 郑刚; 骆文静; 陈景元

    2013-01-01

    Objective:To observe the effect of lead exposure in pregnant rats on capability of learning and memory and its potential mechanism in their filial generation.Methods:Lead exposure of pregnant rats was performed by drinking water with 0.02% dissolving lead acetate,and pure water was offered to pregnant rats in control group.Blood lead level was measured in whole filial generation on day 21 postnatal.The capability of learning and memory was detected with Morris Water Maze.The morphology and number change of dendritic spine of CA1 and DG neurons in hippocampus was performed with Golgi staining.Results:The blood lead level of baby rats at age of 21 days in control and exposed group was 0.96 ±0.17 μg/dl and 31.75 ± 4.83 μg/dl respectively (P < 0.01).Lead exposure increased the escape latency and decreased the time which the rats stayed in the target quadrant,compared with control group (P <0.0l).The dendritic spine of pyramidal neuron in CA1 and granular cell in DG are predominantly mushroom or slender shape,which changed to coarse staple shape in lead exposure group.Moreover,the density of dendritic spine was significantly decreased in exposure group.Conclusion:Lead exposure in pregnancy affect the capability of learning and memory of filial generation that was associated with the morphological change and the decreased density of dendritic spine of neurons.%目的:研究孕期铅暴露对子代大鼠学习记忆功能的影响及其可能的分子机制.方法:通过饮用0.02%醋酸铅水溶液建立大鼠孕期染铅模型,正常饮水为对照组,21 d新生鼠为研究对象,各组12只.检测血铅,利用Morris水迷宫分析系统检测大鼠的学习记忆能力,通过高尔基(Golgi)染色方法观察海马CA1及DG区神经元树突棘的形态和数量的变化.结果:铅暴露组P21新生鼠血铅为31.75±4.83 μg/dl,显著高于对照组P21新生鼠(0.96 ±0.17 μg/dl,P<0.01);铅暴露组子代大鼠在定位航行实验中的上台潜伏

  15. Dendritic pathology and spinal loss in the visual cortex in Alzheimer's disease: a Golgi study in pathology.

    Science.gov (United States)

    Mavroudis, Ioannis A; Fotiou, Dimitrios F; Manani, Marina G; Njaou, Samuel N; Frangou, Domna; Costa, Vasiliki G; Baloyannis, Stavros J

    2011-07-01

    Alzheimer's disease is a neurodegenerative disorder characterized by progressive decline in memory, loss of professional skills, impairment of judgement and behavior, and decline in social performances. In terms of neuropathology, the morphological hallmarks of the disease are the accumulation of alpha-beta peptide and the neurofibrillary degeneration, associated with synaptic alterations, involving mostly the dendritic spines. This study is based on the morphological analysis of 10 brains, 5 of which were obtained from patients who suffered from Alzheimer's disease and 5 from nondemented senile individuals used as control group. The segments taken in major from the occipital lobe were studied with the use of Golgi method, as well as Gallyas' and Bielschowski' s staining methods. In most of the pyramidal cells in the affected brains, there seems to be important spine loss and extensive dendrite pathology. Apical dendrites are distorted and tortuous. Horizontal dendritic arborization is severely decreased leading to an amputated, bell-shaped cell soma. Senile plaques have been often revealed, and neurofibrillary changes have also been noticed.

  16. Modification of dendritic development.

    Science.gov (United States)

    Feria-Velasco, Alfredo; del Angel, Alma Rosa; Gonzalez-Burgos, Ignacio

    2002-01-01

    Since 1890 Ramón y Cajal strongly defended the theory that dendrites and their processes and spines had a function of not just nutrient transport to the cell body, but they had an important conductive role in neural impulse transmission. He extensively discussed and supported this theory in the Volume 1 of his extraordinary book Textura del Sistema Nervioso del Hombre y de los Vertebrados. Also, Don Santiago significantly contributed to a detailed description of the various neural components of the hippocampus and cerebral cortex during development. Extensive investigation has been done in the last Century related to the functional role of these complex brain regions, and their association with learning, memory and some limbic functions. Likewise, the organization and expression of neuropsychological qualities such as memory, exploratory behavior and spatial orientation, among others, depend on the integrity and adequate functional activity of the cerebral cortex and hippocampus. It is known that brain serotonin synthesis and release depend directly and proportionally on the availability of its precursor, tryptophan (TRY). By using a chronic TRY restriction model in rats, we studied their place learning ability in correlation with the dendritic spine density of pyramidal neurons in field CA1 of the hippocampus during postnatal development. We have also reported alterations in the maturation pattern of the ability for spontaneous alternation and task performance evaluating short-term memory, as well as adverse effects on the density of dendritic spines of hippocampal CA1 field pyramidal neurons and on the dendritic arborization and the number of dendritic spines of pyramidal neurons from the third layer of the prefrontal cortex using the same model of TRY restriction. The findings obtained in these studies employing a modified Golgi method, can be interpreted as a trans-synaptic plastic response due to understimulation of serotoninergic receptors located in the

  17. Regulation of Cajal-Retzius cell on the apical dendrite growth of pyramidal cell and himppocampal lamination%Cajal-Retzius细胞调节锥体细胞顶树突发育及海马片层化的形成

    Institute of Scientific and Technical Information of China (English)

    邹建玲; 刘青颖; 吴萍; 邓锦波

    2011-01-01

    目的 探讨Cajal-Retzius(CR)细胞与海马锥体细胞顶树突发育以及海马片层化形成的关系.方法 利用DiI示踪法标记槽通路和穿通通路,并采用微管蛋白(tubulin)、神经元核抗原(NeuN)和Reelin免疫荧光染色法,对120例小鼠苔藓纤维的发生、锥体细胞顶树突的生长以及海马分子层Reelin阳性的CR细胞分布进行观察.结果 槽通路和穿通通路由内嗅皮质发出,分布于槽区和海马分子层,在槽区和海马本部分子层存在大量Reelin阳性细胞,提示Reelin阳性的神经细胞可能参与神经纤维的寻径.随着小鼠的发育,海马锥体细胞顶树突逐步生长,并向分子层伸入,构成海马内分子层;内分子层逐渐增宽,占据了光辉层和放射层.而外分子层(腔隙分子层)内含丰富的穿通纤维,其位置与 Reelin阳性的CR细胞所在部位极为一致,提示两者有密切关系.结论 Reelin阳性的CR细胞对槽通路、穿通通路的神经纤维寻径起着指导作用.此外,CR细胞的分布和发育特点提示,CR细胞对锥体细胞顶树突发育、海马片层化和区域化的形成起重要作用.%Objective In order to understand how Cajal-Retzius cells are involved in the regulation to the apical dendrite growth of pyramidal cell and hippocampal lamination. Methods With Dil tracing, the, alvear path and perforant path were visualized in 120 mice at various ages. The apical dendrite growth of pyramidal cells, the histogenesis of mossy fibers and the distribution of Reelin positive cells were studied with tubulin, neuronal nuclei and reelin immunofluorescent labeling. Results Alvear path and perforant path were started from entorhinal cortex, and they distributed in alveus and molecular layer of hippocampus. There were numerous Reelin positive cells in the alvear area and hippocampal molecular layer, suggesting those reelin positive cells were involved in the path-finding. With age increasing, the apical dendrites of pyramidal

  18. Spine neck plasticity regulates compartmentalization of synapses.

    Science.gov (United States)

    Tønnesen, Jan; Katona, Gergely; Rózsa, Balázs; Nägerl, U Valentin

    2014-05-01

    Dendritic spines have been proposed to transform synaptic signals through chemical and electrical compartmentalization. However, the quantitative contribution of spine morphology to synapse compartmentalization and its dynamic regulation are still poorly understood. We used time-lapse super-resolution stimulated emission depletion (STED) imaging in combination with fluorescence recovery after photobleaching (FRAP) measurements, two-photon glutamate uncaging, electrophysiology and simulations to investigate the dynamic link between nanoscale anatomy and compartmentalization in live spines of CA1 neurons in mouse brain slices. We report a diversity of spine morphologies that argues against common categorization schemes and establish a close link between compartmentalization and spine morphology, wherein spine neck width is the most critical morphological parameter. We demonstrate that spine necks are plastic structures that become wider and shorter after long-term potentiation. These morphological changes are predicted to lead to a substantial drop in spine head excitatory postsynaptic potential (EPSP) while preserving overall biochemical compartmentalization.

  19. Distinct axo-somato-dendritic distributions of three potassium channels in CA1 hippocampal pyramidal cells.

    Science.gov (United States)

    Kirizs, Tekla; Kerti-Szigeti, Katalin; Lorincz, Andrea; Nusser, Zoltan

    2014-06-01

    Potassium channels comprise the most diverse family of ion channels and play critical roles in a large variety of physiological and pathological processes. In addition to their molecular diversity, variations in their distributions and densities on the axo-somato-dendritic surface of neurons are key parameters in determining their functional impact. Despite extensive electrophysiological and anatomical investigations, the exact location and densities of most K(+) channels in small subcellular compartments are still unknown. Here we aimed at providing a quantitative surface map of two delayed-rectifier (Kv1.1 and Kv2.1) and one G-protein-gated inwardly rectifying (Kir3.2) K(+) channel subunits on hippocampal CA1 pyramidal cells (PCs). Freeze-fracture replica immunogold labelling was employed to determine the relative densities of these K(+) channel subunits in 18 axo-somato-dendritic compartments. Significant densities of the Kv1.1 subunit were detected on axon initial segments (AISs) and axon terminals, with an approximately eight-fold lower density in the latter compartment. The Kv2.1 subunit was found in somatic, proximal dendritic and AIS plasma membranes at approximately the same densities. This subunit has a non-uniform plasma membrane distribution; Kv2.1 clusters are frequently adjacent to, but never overlap with, GABAergic synapses. A quasi-linear increase in the Kir3.2 subunit density along the dendrites of PCs was detected, showing no significant difference between apical dendritic shafts, oblique dendrites or dendritic spines at the same distance from the soma. Our results demonstrate that each subunit has a unique cell-surface distribution pattern, and predict their differential involvement in synaptic integration and output generation at distinct subcellular compartments.

  20. Layer 5 Pyramidal Neurons' Dendritic Remodeling and Increased Microglial Density in Primary Motor Cortex in a Murine Model of Facial Paralysis.

    Science.gov (United States)

    Urrego, Diana; Troncoso, Julieta; Múnera, Alejandro

    2015-01-01

    This work was aimed at characterizing structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with microglial density induced by facial nerve lesion using a murine facial paralysis model. Adult transgenic mice, expressing green fluorescent protein in microglia and yellow fluorescent protein in projecting neurons, were submitted to either unilateral section of the facial nerve or sham surgery. Injured animals were sacrificed either 1 or 3 weeks after surgery. Two-photon excitation microscopy was then used for evaluating both layer 5 pyramidal neurons and microglia in vibrissal primary motor cortex (vM1). It was found that facial nerve lesion induced long-lasting changes in the dendritic morphology of vM1 layer 5 pyramidal neurons and in their surrounding microglia. Dendritic arborization of the pyramidal cells underwent overall shrinkage. Apical dendrites suffered transient shortening while basal dendrites displayed sustained shortening. Moreover, dendrites suffered transient spine pruning. Significantly higher microglial cell density was found surrounding vM1 layer 5 pyramidal neurons after facial nerve lesion with morphological bias towards the activated phenotype. These results suggest that facial nerve lesions elicit active dendrite remodeling due to pyramidal neuron and microglia interaction, which could be the pathophysiological underpinning of some neuropathic motor sequelae in humans.

  1. Layer 5 Pyramidal Neurons’ Dendritic Remodeling and Increased Microglial Density in Primary Motor Cortex in a Murine Model of Facial Paralysis

    Directory of Open Access Journals (Sweden)

    Diana Urrego

    2015-01-01

    Full Text Available This work was aimed at characterizing structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with microglial density induced by facial nerve lesion using a murine facial paralysis model. Adult transgenic mice, expressing green fluorescent protein in microglia and yellow fluorescent protein in projecting neurons, were submitted to either unilateral section of the facial nerve or sham surgery. Injured animals were sacrificed either 1 or 3weeks after surgery. Two-photon excitation microscopy was then used for evaluating both layer 5 pyramidal neurons and microglia in vibrissal primary motor cortex (vM1. It was found that facial nerve lesion induced long-lasting changes in the dendritic morphology of vM1 layer 5 pyramidal neurons and in their surrounding microglia. Dendritic arborization of the pyramidal cells underwent overall shrinkage. Apical dendrites suffered transient shortening while basal dendrites displayed sustained shortening. Moreover, dendrites suffered transient spine pruning. Significantly higher microglial cell density was found surrounding vM1 layer 5 pyramidal neurons after facial nerve lesion with morphological bias towards the activated phenotype. These results suggest that facial nerve lesions elicit active dendrite remodeling due to pyramidal neuron and microglia interaction, which could be the pathophysiological underpinning of some neuropathic motor sequelae in humans.

  2. Expression of gp120 in mice evokes anxiety behavior: co-occurrence with increased dendritic spines and brain-derived neurotrophic factor in the amygdala

    Science.gov (United States)

    Bachis, Alessia; Forcelli, Patrick; Masliah, Eliezer; Campbell, Lee; Mocchetti, Italo

    2016-01-01

    Human immunodeficiency virus type 1 (HIV) infection of the brain produces cognitive and motor disorders. In addition, HIV positive individuals exhibit behavioral alterations, such as apathy, and a decrease in spontaneity or emotional responses, typically seen in anxiety disorders. Anxiety can lead to psychological stress, which has been shown to influence HIV disease progression. These considerations underscore the importance of determining if anxiety in HIV is purely psychosocial, or if by contrast, there are the molecular cascades associated directly with HIV infection that may mediate anxiety. The present study had two goals: 1) to determine if chronic exposure to viral proteins would induce anxiety-like behavior in an animal model and 2) to determine if this exposure results in anatomical abnormalities that could explain increased anxiety. We have used gp120 transgenic mice, which display behavior and molecular deficiencies similar to HIV positive subjects with cognitive and motor impairments. In comparison to wild type mice, 6 months old gp120 transgenic mice demonstrated an anxiety like behavior measured by open field, light/dark transition task, and prepulse inhibition tests. Moreover, gp120 transgenic mice have an increased number of spines in the amygdala, as well as higher levels of brain-derived neurotrophic factor and tissue plasminogen activator when compared to age-matched wild type. Our data support the hypothesis that HIV, through gp120, may cause structural changes in the amygdala that lead to maladaptive responses to anxiety. PMID:26845379

  3. Dendritic morphology, synaptic transmission, and activity of mature granule cells born following pilocarpine-induced status epilepticus in the rat

    Directory of Open Access Journals (Sweden)

    Fei eGao

    2015-10-01

    Full Text Available To understand the potential role of enhanced hippocampal neurogenesis after pilocarpine-induced status epilepticus (SE in the development of epilepsy, we quantitatively analyzed the geometry of apical dendrites, synaptic transmission, and activation levels of normotopically distributed mature newborn granule cells in the rat.SE in male Sprague-Dawley rats lasting for more than 2 hours was induced by an intraperitoneal injection of pilocarpine. The complexity, spine density, miniature post-synaptic currents, and activity-regulated cytoskeleton-associated protein (Arc expression of granule cells born five days after SE were studied at least 10 weeks after CAG-GFP retroviral vector-mediated labeling.Mature granule cells born after SE had dendritic complexity similar to that of granule cells born naturally, but with denser mushroom-like spines in dendritic segments located in the outer molecular layer. Miniature inhibitory post-synaptic currents (mIPSCs were similar between the controls and rats subjected to SE; however, smaller miniature excitatory post-synaptic current (mEPSC amplitude with a trend toward less frequent was found in mature granule cells born after SE. After maturation, granule cells born after SE did not show denser Arc expression in the resting condition or after being activated by transient seizure activity than vicinal GFP-unlabeled granule cells.Thus our results suggest that normotopic granule cells born after pilocarpine-induced SE are no more active when mature than age-matched, naturally born granule cells.

  4. The transfection of BDNF to dopamine neurons potentiates the effect of dopamine D3 receptor agonist recovering the striatal innervation, dendritic spines and motor behavior in an aged rat model of Parkinson's disease.

    Science.gov (United States)

    Razgado-Hernandez, Luis F; Espadas-Alvarez, Armando J; Reyna-Velazquez, Patricia; Sierra-Sanchez, Arturo; Anaya-Martinez, Veronica; Jimenez-Estrada, Ismael; Bannon, Michael J; Martinez-Fong, Daniel; Aceves-Ruiz, Jorge

    2015-01-01

    The progressive degeneration of the dopamine neurons of the pars compacta of substantia nigra and the consequent loss of the dopamine innervation of the striatum leads to the impairment of motor behavior in Parkinson's disease. Accordingly, an efficient therapy of the disease should protect and regenerate the dopamine neurons of the substantia nigra and the dopamine innervation of the striatum. Nigral neurons express Brain Derived Neurotropic Factor (BDNF) and dopamine D3 receptors, both of which protect the dopamine neurons. The chronic activation of dopamine D3 receptors by their agonists, in addition, restores, in part, the dopamine innervation of the striatum. Here we explored whether the over-expression of BDNF by dopamine neurons potentiates the effect of the activation of D3 receptors restoring nigrostriatal innervation. Twelve-month old Wistar rats were unilaterally injected with 6-hydroxydopamine into the striatum. Five months later, rats were treated with the D3 agonist 7-hydroxy-N,N-di-n-propy1-2-aminotetralin (7-OH-DPAT) administered i.p. during 4½ months via osmotic pumps and the BDNF gene transfection into nigral cells using the neurotensin-polyplex nanovector (a non-viral transfection) that selectively transfect the dopamine neurons via the high-affinity neurotensin receptor expressed by these neurons. Two months after the withdrawal of 7-OH-DPAT when rats were aged (24 months old), immunohistochemistry assays were made. The over-expression of BDNF in rats receiving the D3 agonist normalized gait and motor coordination; in addition, it eliminated the muscle rigidity produced by the loss of dopamine. The recovery of motor behavior was associated with the recovery of the nigral neurons, the dopamine innervation of the striatum and of the number of dendritic spines of the striatal neurons. Thus, the over-expression of BDNF in dopamine neurons associated with the chronic activation of the D3 receptors appears to be a promising strategy for restoring

  5. Dendritic Cell

    OpenAIRE

    Sevda Söker

    2005-01-01

    Dendritic cells, a member of family of antigen presenting cells, are most effective cells in the primary immune response. Dendritic cells originated from dendron, in mean of tree in the Greek, because of their long and elaborate cytoplasmic branching processes. Dendritic cells constitute approximately 0.1 to 1 percent of the blood’s mononuclear cell. Dendritic cells are widely distributed, and specialized for antigen capture and T cell stimulation. In this article, structures and functions of...

  6. Selective Loss of Smaller Spines in Schizophrenia.

    Science.gov (United States)

    MacDonald, Matthew L; Alhassan, Jamil; Newman, Jason T; Richard, Michelle; Gu, Hong; Kelly, Ryan M; Sampson, Alan R; Fish, Kenneth N; Penzes, Peter; Wills, Zachary P; Lewis, David A; Sweet, Robert A

    2017-06-01

    Decreased density of dendritic spines in adult schizophrenia subjects has been hypothesized to result from increased pruning of excess synapses in adolescence. In vivo imaging studies have confirmed that synaptic pruning is largely driven by the loss of large or mature synapses. Thus, increased pruning throughout adolescence would likely result in a deficit of large spines in adulthood. Here, the authors examined the density and volume of dendritic spines in deep layer 3 of the auditory cortex of 20 schizophrenia and 20 matched comparison subjects as well as aberrant voltage-gated calcium channel subunit protein expression linked to spine loss. Primary auditory cortex deep layer 3 spine density and volume was assessed in 20 pairs of schizophrenia and matched comparison subjects in an initial and replication cohort (12 and eight pairs) by immunohistochemistry-confocal microscopy. Targeted mass spectrometry was used to quantify postsynaptic density and voltage-gated calcium channel protein expression. The effect of increased voltage-gated calcium channel subunit protein expression on spine density and volume was assessed in primary rat neuronal culture. Only the smallest spines are lost in deep layer 3 of the primary auditory cortex in subjects with schizophrenia, while larger spines are retained. Levels of the tryptic peptide ALFDFLK, found in the schizophrenia risk gene CACNB4, are inversely correlated with the density of smaller, but not larger, spines in schizophrenia subjects. Consistent with this observation, CACNB4 overexpression resulted in a lower density of smaller spines in primary neuronal cultures. These findings require a rethinking of the overpruning hypothesis, demonstrate a link between small spine loss and a schizophrenia risk gene, and should spur more in-depth investigations of the mechanisms that govern new or small spine generation and stabilization under normal conditions as well as how this process is impaired in schizophrenia.

  7. The transfection of BDNF to dopamine neurons potentiates the effect of dopamine D3 receptor agonist recovering the striatal innervation, dendritic spines and motor behavior in an aged rat model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Luis F Razgado-Hernandez

    Full Text Available The progressive degeneration of the dopamine neurons of the pars compacta of substantia nigra and the consequent loss of the dopamine innervation of the striatum leads to the impairment of motor behavior in Parkinson's disease. Accordingly, an efficient therapy of the disease should protect and regenerate the dopamine neurons of the substantia nigra and the dopamine innervation of the striatum. Nigral neurons express Brain Derived Neurotropic Factor (BDNF and dopamine D3 receptors, both of which protect the dopamine neurons. The chronic activation of dopamine D3 receptors by their agonists, in addition, restores, in part, the dopamine innervation of the striatum. Here we explored whether the over-expression of BDNF by dopamine neurons potentiates the effect of the activation of D3 receptors restoring nigrostriatal innervation. Twelve-month old Wistar rats were unilaterally injected with 6-hydroxydopamine into the striatum. Five months later, rats were treated with the D3 agonist 7-hydroxy-N,N-di-n-propy1-2-aminotetralin (7-OH-DPAT administered i.p. during 4½ months via osmotic pumps and the BDNF gene transfection into nigral cells using the neurotensin-polyplex nanovector (a non-viral transfection that selectively transfect the dopamine neurons via the high-affinity neurotensin receptor expressed by these neurons. Two months after the withdrawal of 7-OH-DPAT when rats were aged (24 months old, immunohistochemistry assays were made. The over-expression of BDNF in rats receiving the D3 agonist normalized gait and motor coordination; in addition, it eliminated the muscle rigidity produced by the loss of dopamine. The recovery of motor behavior was associated with the recovery of the nigral neurons, the dopamine innervation of the striatum and of the number of dendritic spines of the striatal neurons. Thus, the over-expression of BDNF in dopamine neurons associated with the chronic activation of the D3 receptors appears to be a promising strategy

  8. The Transfection of BDNF to Dopamine Neurons Potentiates the Effect of Dopamine D3 Receptor Agonist Recovering the Striatal Innervation, Dendritic Spines and Motor Behavior in an Aged Rat Model of Parkinson’s Disease

    Science.gov (United States)

    Razgado-Hernandez, Luis F.; Espadas-Alvarez, Armando J.; Reyna-Velazquez, Patricia; Sierra-Sanchez, Arturo; Anaya-Martinez, Veronica; Jimenez-Estrada, Ismael; Bannon, Michael J.; Martinez-Fong, Daniel; Aceves-Ruiz, Jorge

    2015-01-01

    The progressive degeneration of the dopamine neurons of the pars compacta of substantia nigra and the consequent loss of the dopamine innervation of the striatum leads to the impairment of motor behavior in Parkinson’s disease. Accordingly, an efficient therapy of the disease should protect and regenerate the dopamine neurons of the substantia nigra and the dopamine innervation of the striatum. Nigral neurons express Brain Derived Neurotropic Factor (BDNF) and dopamine D3 receptors, both of which protect the dopamine neurons. The chronic activation of dopamine D3 receptors by their agonists, in addition, restores, in part, the dopamine innervation of the striatum. Here we explored whether the over-expression of BDNF by dopamine neurons potentiates the effect of the activation of D3 receptors restoring nigrostriatal innervation. Twelve-month old Wistar rats were unilaterally injected with 6-hydroxydopamine into the striatum. Five months later, rats were treated with the D3 agonist 7-hydroxy-N,N-di-n-propy1-2-aminotetralin (7-OH-DPAT) administered i.p. during 4½ months via osmotic pumps and the BDNF gene transfection into nigral cells using the neurotensin-polyplex nanovector (a non-viral transfection) that selectively transfect the dopamine neurons via the high-affinity neurotensin receptor expressed by these neurons. Two months after the withdrawal of 7-OH-DPAT when rats were aged (24 months old), immunohistochemistry assays were made. The over-expression of BDNF in rats receiving the D3 agonist normalized gait and motor coordination; in addition, it eliminated the muscle rigidity produced by the loss of dopamine. The recovery of motor behavior was associated with the recovery of the nigral neurons, the dopamine innervation of the striatum and of the number of dendritic spines of the striatal neurons. Thus, the over-expression of BDNF in dopamine neurons associated with the chronic activation of the D3 receptors appears to be a promising strategy for restoring

  9. Left ventricular apical diseases.

    Science.gov (United States)

    Cisneros, Silvia; Duarte, Ricardo; Fernandez-Perez, Gabriel C; Castellon, Daniel; Calatayud, Julia; Lecumberri, Iñigo; Larrazabal, Eneritz; Ruiz, Berta Irene

    2011-08-01

    There are many disorders that may involve the left ventricular (LV) apex; however, they are sometimes difficult to differentiate. In this setting cardiac imaging methods can provide the clue to obtaining the diagnosis. The purpose of this review is to illustrate the spectrum of diseases that most frequently affect the apex of the LV including Tako-Tsubo cardiomyopathy, LV aneurysms and pseudoaneurysms, apical diverticula, apical ventricular remodelling, apical hypertrophic cardiomyopathy, LV non-compaction, arrhythmogenic right ventricular dysplasia with LV involvement and LV false tendons, with an emphasis on the diagnostic criteria and imaging features. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13244-011-0091-6) contains supplementary material, which is available to authorized users.

  10. EPO对Aβ1-42所致AD样大鼠皮层神经元树突棘的影响∗%Effects of EPO on Cortical Neuron Dendritic Spines of AD Rats Induced by Aβ1-42

    Institute of Scientific and Technical Information of China (English)

    李宜培; 尚俊杰; 王黎

    2015-01-01

    目的:探讨erythropoietin( EPO)对Aβ1-42所致AD样大鼠记忆能力和皮层神经元树突棘的影响及作用机制。方法雄性Wistar大鼠48只随机分为4组:生理盐水组、模型组、EPO治疗组和脑复康阳性对照组,每组12只。其中生理盐水组双侧海马注射生理盐水各5μL,其余3组大鼠双侧海马注射凝聚态β-淀粉样蛋白( Aβ)各5μL造模。 EPO治疗组和脑复康阳性对照组从造模手术当天开始腹腔注射EPO(5000 IU/kg,隔日一次)和脑复康(40 mg/kg,每日一次)。术后第10天Morris水迷宫法检测各组大鼠空间定向学习和记忆能力;利用高尔基染色、连续震荡切片和人工计数的方法,分析各组大鼠皮质神经元树突棘量的改变情况。结果与生理盐水组、EPO治疗组及脑复康组相比,模型组水迷宫测试潜伏期延长,差异均有统计学意义(P0.05)。结论 EPO可以减轻Aβ1-42对大鼠皮质神经元树突棘的破坏,提高大鼠认知能力。%Objective To investigate effects of erythropoietin(EPO)on Alzheimer rat’s memory a-bility and cortical neuron dendritic spines. Method Fourty eight rats complied with learned standard, were randomly divided into four groups(n=12):normal sodium group,model group, EPO treated group and piracetam treatment group. 5 uL normal sodium was injected into bilateral hippocampuses of normal sodium group. 5 uL condensed Aβwas injected into bilateral hippocampuses of other 3 groups. EPO trea-ted groups were injected with 5 000 IU · kg-1 EPO once every other day, piracetam treatment groups were injected with 40 mg·kg-1 piracetam every day since the day of model operation. At the 10th day af-ter operation, space orientation and memory of rats were assayed by Morris water maze. Analysis of each group rats cortex nerve in yuan to change the amount of dendritic spines useing of golg, continuous turbu-lence slicing and manual counting method. Results Compared with normal sodium group,EPO treated

  11. 慢性脑缺血大鼠海马CA1区锥体细胞树突形态及树突棘密度的变化%Changes of dendritic morphology and spine density in hippocampal CA1 pyramidal cells of chronic cerebral ischemic rats

    Institute of Scientific and Technical Information of China (English)

    贾贺; 张博爱; 刘宇; 张小敏; 姬亚杰; 李星; 刘荣丽

    2012-01-01

    目的:研究慢性脑缺血大鼠海马CA1区锥体细胞树突形态及树突棘密度的变化.方法:对大鼠进行双侧颈总动脉永久性结扎(2VO)制备慢性脑缺血模型,分别于2周、4周、8周通过Morris水迷宫对各组大鼠进行行为学评价,筛选造模成功大鼠,进行Golgi染色,光镜下观察海马CA1区锥体细胞树突的分支、长度及树突棘密度的变化.结果:与对照组相比,4周、8周模型组树突的分支及长度显著减少(P<0.01),各周模型组树突棘的密度均有显著减少(P<0.01);模型组内随着缺血时间延长,树突的分支及长度、树突棘密度均显著减少(P<0.05).结论:慢性脑缺血可导致海马CA1区锥体细胞树突及树突棘损伤性变化,从而构成进展性认知功能障碍的病理生理学基础.%AIM:To investigate the changes of dendritic morphology and spine density in hippocampal CA1 pyramidal cells of the chronic cerebral ischemic rats. METHODS:The model of chronic cerebral ischemia was established by permanent occlusion of the bilateral common carotid arteries ( 2VO ) in rats. Two weeks, 4 weeks or 8 weeks later, the behavior of the rats in each group was evaluated through the Morris water maze to select the successful modeling, and the brains were collected for processing Golgi staining. The changes in dendritic branch and length, and spine density in hippocampal CA1 pyramidal cells were observed under optical microscope. RESULTS: Compared with sham - operated group, dendritic branch and length in model group was significantly reduced in 4 -week group and 8 -week group ( P <0. 01 ), and spine density in model group were significantly reduced in 2 -week, 4 -week and 8 -week groups ( P <0. 01 ). With prolonged ischemia, dendritic branch and length, and spine density in model group were all significantly reduced ( P < 0. 05 ). CONCLUSION: Chronic cerebral ischemia leads to traumatic changes in dendrites and spines in hippocampal CA1 pyramidal cells, which

  12. Probing synaptic function in dendrites with calcium imaging.

    Science.gov (United States)

    Siegel, Friederike; Lohmann, Christian

    2013-04-01

    Calcium imaging has become a widely used technique to probe neuronal activity on the cellular and subcellular levels. In contrast to standard electrophysiological methods, calcium imaging resolves sub- and suprathreshold activation patterns in structures as small as fine dendritic branches and spines. This review highlights recent findings gained on the subcellular level using calcium imaging, with special emphasis on synaptic transmission and plasticity in individual spines. Since imaging allows monitoring activity across populations of synapses, it has recently been adopted to investigate how dendrites integrate information from many synapses. Future experiments, ideally carried out in vivo, will reveal how the dendritic tree integrates and computes afferent signals. For example, it is now possible to directly test the concept that dendritic inputs are clustered and that single dendrites or dendritic stretches act as independent computational units.

  13. [Apical endodontic surgery].

    Science.gov (United States)

    Lindeboom, J A

    2004-04-01

    If (a revision of) a conventional endodontic treatment is not possible or not successful, apical endodontic surgery can be indicated. The contemporary indications, the better retrograde preparation techniques with ultrasonic retro-tips, and the better visualisation of the operation area with an operation microscope can lead to higher success percentages. Moreover, the current developments in the field of compatible filling materials are promising. Also the application of lasers is promising, but has still to prove its clinical usefulness.

  14. Dendritic planarity of Purkinje cells is independent of Reelin signaling.

    Science.gov (United States)

    Kim, Jinkyung; Park, Tae-Ju; Kwon, Namseop; Lee, Dongmyeong; Kim, Seunghwan; Kohmura, Yoshiki; Ishikawa, Tetsuya; Kim, Kyong-Tai; Curran, Tom; Je, Jung Ho

    2015-07-01

    The dendritic planarity of Purkinje cells is critical for cerebellar circuit formation. In the absence of Crk and CrkL, the Reelin pathway does not function resulting in partial Purkinje cell migration and defective dendritogenesis. However, the relationships among Purkinje cell migration, dendritic development and Reelin signaling have not been clearly delineated. Here, we use synchrotron X-ray microscopy to obtain 3-D images of Golgi-stained Purkinje cell dendrites. Purkinje cells that failed to migrate completely exhibited conical dendrites with abnormal 3-D arborization and reduced dendritic complexity. Furthermore, their spines were fewer in number with a distorted morphology. In contrast, Purkinje cells that migrated successfully displayed planar dendritic and spine morphologies similar to normal cells, despite reduced dendritic complexity. These results indicate that, during cerebellar formation, Purkinje cells migrate into an environment that supports development of dendritic planarity and spine formation. While Reelin signaling is important for the migration process, it does not make a direct major contribution to dendrite formation.

  15. Differential gating of dendritic spikes by compartmentalized inhibition

    Directory of Open Access Journals (Sweden)

    Katharina Anna Wilmes

    2014-03-01

    Full Text Available Different types of local inhibitory interneurons innervate different dendritic sites of pyramidal neurons in cortex and hippocampus (Klausberger 2009. What could be the functional role of compartmentalized inhibition? Pyramidal cell dendrites support different forms of active signal propagation, which are important not only for dendritic and neuronal signal processing (Smith et al. 2013, but also for synaptic plasticity. While back-propagating action potentials signal post-synaptic activity to synapses in apical oblique and basal dendrites (Markram et al. 1997, Cho et al. 2006, calcium spikes cause plasticity of distal apical tuft synapses (Golding et al. 2002. Suspiciously, the associated regions of the dendrite are targeted by different interneuron populations. Parvalbumin-positive interneurons typically target the proximal dendritic and somatic parts of the neuron, while somatostatin-positive interneurons target the apical dendrite. The matching compartmentalization in terms of dendritic spikes and inhibitory control suggests that inhibition could differentially regulate different dendritic spikes and thereby introduce a compartment-specific modulation of synaptic plasticity. We evaluate this hypothesis in a biophysical multi-compartment model of a pyramidal neuron, receiving shunting inhibition at different locations on the dendrite. The model shows that, first, inhibition can gate dendritic spikes in an all-or-none manner. Second, spatially selective inhibition can individually suppress back-propagating action potentials and calcium spikes, thereby allowing a compartment-specific switch for synaptic plasticity. In our model, proximal inhibition on the apical dendrite eliminated both the back-propagating action potential and the calcium spike, thus influencing plasticity in the whole apical dendrite. Distal apical inhibition could selectively affect calcium spikes and thus distal plasticity, without suppressing back­propagation of action

  16. Abceso apical agudo

    OpenAIRE

    Jara Ortiz, M.; López, M.; Gómez Viglino, L.; Maydana, N.; Hervit, M.; Bertola, N.

    2015-01-01

    En casos de urgencia, muchas veces debemos poner a prueba distintos elementos de diagnóstico para encontrar la mejor respuesta posible. En este caso se reporta un absceso apical agudo en la zona palatina del sector 1, que, de acuerdo al test de vitalidad pulpar y correcta interpretación radiográfica se localiza la pieza causal N° 1.8.Asistió a la consulta un paciente masculino 30 años de edad, dolor a la masticación, edema y tumefacción, en zona palatina comprendida en piezas 1.5; 1.6; 1.7 y ...

  17. Two cases of apical ballooning syndrome masking apical hypertrophic cardiomyopathy.

    Science.gov (United States)

    Roy, Ranjini Raina; Hakim, Fayaz A; Hurst, R Todd; Simper, David; Appleton, Christopher P

    2014-04-01

    Apical akinesis and dilation in the absence of obstructive coronary artery disease is a typical feature of stress-induced (takotsubo) cardiomyopathy, whereas apical hypertrophy is seen in apical-variant hypertrophic cardiomyopathy. We report the cases of 2 patients who presented with takotsubo cardiomyopathy and were subsequently found to have apical-variant hypertrophic cardiomyopathy, after the apical ballooning from the takotsubo cardiomyopathy had resolved. The first patient, a 43-year-old woman with a history of alcohol abuse, presented with shortness of breath, electrocardiographic and echocardiographic features consistent with takotsubo cardiomyopathy, and no significant coronary artery disease. An echocardiogram 2 weeks later revealed a normal left ventricular ejection fraction and newly apparent apical hypertrophy. The 2nd patient, a 70-year-old woman with pancreatitis, presented with chest pain, apical akinesis, and a left ventricular ejection fraction of 0.39, consistent with takotsubo cardiomyopathy. One month later, her left ventricular ejection fraction was normal; however, hypertrophy of the left ventricular apex was newly noted. To our knowledge, these are the first reported cases in which apical-variant hypertrophic cardiomyopathy was masked by apical ballooning from stress-induced cardiomyopathy.

  18. Non-Markovian Model for Transport and Reactions of Particles in Spiny Dendrites

    Science.gov (United States)

    Fedotov, Sergei; Méndez, Vicenç

    2008-11-01

    Motivated by the experiments [Santamaria , Neuron 52, 635 (2006)NERNET0896-627310.1016/j.neuron.2006.10.025] that indicated the possibility of subdiffusive transport of molecules along dendrites of cerebellar Purkinje cells, we develop a mesoscopic model for transport and chemical reactions of particles in spiny dendrites. The communication between spines and a parent dendrite is described by a non-Markovian random process and, as a result, the overall movement of particles can be subdiffusive. A system of integrodifferential equations is derived for the particles densities in dendrites and spines. This system involves the spine-dendrite interaction term which describes the memory effects and nonlocality in space. We consider the impact of power-law waiting time distributions on the transport of biochemical signals and mechanism of the accumulation of plasticity-inducing signals inside spines.

  19. Tau Deletion Prevents Stress-Induced Dendritic Atrophy in Prefrontal Cortex: Role of Synaptic Mitochondria.

    Science.gov (United States)

    Lopes, Sofia; Teplytska, Larysa; Vaz-Silva, Joao; Dioli, Chrysoula; Trindade, Rita; Morais, Monica; Webhofer, Christian; Maccarrone, Giuseppina; Almeida, Osborne F X; Turck, Christoph W; Sousa, Nuno; Sotiropoulos, Ioannis; Filiou, Michaela D

    2016-04-12

    Tau protein in dendrites and synapses has been recently implicated in synaptic degeneration and neuronal malfunction. Chronic stress, a well-known inducer of neuronal/synaptic atrophy, triggers hyperphosphorylation of Tau protein and cognitive deficits. However, the cause-effect relationship between these events remains to be established. To test the involvement of Tau in stress-induced impairments of cognition, we investigated the impact of stress on cognitive behavior, neuronal structure, and the synaptic proteome in the prefrontal cortex (PFC) of Tau knock-out (Tau-KO) and wild-type (WT) mice. Whereas exposure to chronic stress resulted in atrophy of apical dendrites and spine loss in PFC neurons as well as significant impairments in working memory in WT mice, such changes were absent in Tau-KO animals. Quantitative proteomic analysis of PFC synaptosomal fractions, combined with transmission electron microscopy analysis, suggested a prominent role for mitochondria in the regulation of the effects of stress. Specifically, chronically stressed animals exhibit Tau-dependent alterations in the levels of proteins involved in mitochondrial transport and oxidative phosphorylation as well as in the synaptic localization of mitochondria in PFC. These findings provide evidence for a causal role of Tau in mediating stress-elicited neuronal atrophy and cognitive impairment and indicate that Tau may exert its effects through synaptic mitochondria.

  20. Dendritic ion channelopathy in acquired epilepsy

    Science.gov (United States)

    Poolos, Nicholas P.; Johnston, Daniel

    2012-01-01

    Summary Ion channel dysfunction or “channelopathy” is a proven cause of epilepsy in the relatively uncommon genetic epilepsies with Mendelian inheritance. But numerous examples of acquired channelopathy in experimental animal models of epilepsy following brain injury have also been demonstrated. Our understanding of channelopathy has grown due to advances in electrophysiology techniques that have allowed the study of ion channels in the dendrites of pyramidal neurons in cortex and hippocampus. The apical dendrites of pyramidal neurons comprise the vast majority of neuronal surface membrane area, and thus the majority of the neuronal ion channel population. Investigation of dendritic ion channels has demonstrated remarkable plasticity in ion channel localization and biophysical properties in epilepsy, many of which produce hyperexcitability and may contribute to the development and maintenance of the epileptic state. Here we review recent advances in dendritic physiology and cell biology, and their relevance to epilepsy. PMID:23216577

  1. Dendritic ion channelopathy in acquired epilepsy.

    Science.gov (United States)

    Poolos, Nicholas P; Johnston, Daniel

    2012-12-01

    Ion channel dysfunction or "channelopathy" is a proven cause of epilepsy in the relatively uncommon genetic epilepsies with Mendelian inheritance. But numerous examples of acquired channelopathy in experimental animal models of epilepsy following brain injury have also been demonstrated. Our understanding of channelopathy has grown due to advances in electrophysiology techniques that have allowed the study of ion channels in the dendrites of pyramidal neurons in cortex and hippocampus. The apical dendrites of pyramidal neurons comprise the vast majority of neuronal surface membrane area, and thus the majority of the neuronal ion channel population. Investigation of dendritic ion channels has demonstrated remarkable plasticity in ion channel localization and biophysical properties in epilepsy, many of which produce hyperexcitability and may contribute to the development and maintenance of the epileptic state. Herein we review recent advances in dendritic physiology and cell biology, and their relevance to epilepsy. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.

  2. Loss of PSD-95 enrichment is not a prerequisite for spine retraction.

    Science.gov (United States)

    Woods, Georgia F; Oh, Won Chan; Boudewyn, Lauren C; Mikula, Sarah K; Zito, Karen

    2011-08-24

    Changes in neuronal structure are thought to underlie long-term behavioral modifications associated with learning and memory. In particular, considerable evidence implicates the destabilization and retraction of dendritic spines along with the loss of spine synapses as an important cellular mechanism for refining brain circuits, yet the molecular mechanisms regulating spine elimination remain ill-defined. The postsynaptic density protein, PSD-95, is highly enriched in dendritic spines and has been associated with spine stability. Because spines with low levels of PSD-95 are more dynamic, and the recruitment of PSD-95 to nascent spines has been associated with spine stabilization, we hypothesized that loss of PSD-95 enrichment would be a prerequisite for spine retraction. To test this hypothesis, we used dual-color time-lapse two-photon microscopy to monitor rat hippocampal pyramidal neurons cotransfected with PSD-95-GFP and DsRed-Express, and we analyzed the relationship between PSD-95-GFP enrichment and spine morphological changes. Consistent with our hypothesis, we found that the majority of spines that retracted were relatively unenriched for PSD-95-GFP. However, in the subset of PSD-95-GFP-enriched spines that retracted, spine shrinkage and loss of PSD-95-GFP were tightly coupled, suggesting that loss of PSD-95-GFP enrichment did not precede spine retraction. Moreover, we found that, in some instances, spine retraction resulted in a significant enrichment of PSD-95-GFP on the dendritic shaft. Our data support a model of spine retraction in which loss of PSD-95 enrichment is not required prior to the destabilization of spines.

  3. [Inflammatory dendritic cells].

    Science.gov (United States)

    Segura, Elodie; Amigorena, Sebastian

    2014-01-01

    Dendritic cells are a rare and heterogeneous population of professional antigen-presenting cells. Several murine dendritic cell subpopulations have been identified that differ in their phenotype and functional properties. In the steady state, committed dendritic cell precursors differentiate into lymphoid organ-resident dendritic cells and migratory tissue dendritic cells. During inflammation appears an additional dendritic cell subpopulation that has been termed « inflammatory dendritic cells ». Inflammatory dendritic cells differentiate in situ from monocytes recruited to the site of inflammation. Here, we discuss how mouse inflammatory dendritic cells differ from macrophages and from other dendritic cell populations. Finally, we review recent work on human inflammatory dendritic cells.

  4. Spine calcium transients induced by synaptically-evoked action potentials can predict synapse location and establish synaptic democracy.

    Directory of Open Access Journals (Sweden)

    David C Sterratt

    Full Text Available CA1 pyramidal neurons receive hundreds of synaptic inputs at different distances from the soma. Distance-dependent synaptic scaling enables distal and proximal synapses to influence the somatic membrane equally, a phenomenon called "synaptic democracy". How this is established is unclear. The backpropagating action potential (BAP is hypothesised to provide distance-dependent information to synapses, allowing synaptic strengths to scale accordingly. Experimental measurements show that a BAP evoked by current injection at the soma causes calcium currents in the apical shaft whose amplitudes decay with distance from the soma. However, in vivo action potentials are not induced by somatic current injection but by synaptic inputs along the dendrites, which creates a different excitable state of the dendrites. Due to technical limitations, it is not possible to study experimentally whether distance information can also be provided by synaptically-evoked BAPs. Therefore we adapted a realistic morphological and electrophysiological model to measure BAP-induced voltage and calcium signals in spines after Schaffer collateral synapse stimulation. We show that peak calcium concentration is highly correlated with soma-synapse distance under a number of physiologically-realistic suprathreshold stimulation regimes and for a range of dendritic morphologies. Peak calcium levels also predicted the attenuation of the EPSP across the dendritic tree. Furthermore, we show that peak calcium can be used to set up a synaptic democracy in a homeostatic manner, whereby synapses regulate their synaptic strength on the basis of the difference between peak calcium and a uniform target value. We conclude that information derived from synaptically-generated BAPs can indicate synapse location and can subsequently be utilised to implement a synaptic democracy.

  5. Spine Calcium Transients Induced by Synaptically-Evoked Action Potentials Can Predict Synapse Location and Establish Synaptic Democracy

    Science.gov (United States)

    Meredith, Rhiannon M.; van Ooyen, Arjen

    2012-01-01

    CA1 pyramidal neurons receive hundreds of synaptic inputs at different distances from the soma. Distance-dependent synaptic scaling enables distal and proximal synapses to influence the somatic membrane equally, a phenomenon called “synaptic democracy”. How this is established is unclear. The backpropagating action potential (BAP) is hypothesised to provide distance-dependent information to synapses, allowing synaptic strengths to scale accordingly. Experimental measurements show that a BAP evoked by current injection at the soma causes calcium currents in the apical shaft whose amplitudes decay with distance from the soma. However, in vivo action potentials are not induced by somatic current injection but by synaptic inputs along the dendrites, which creates a different excitable state of the dendrites. Due to technical limitations, it is not possible to study experimentally whether distance information can also be provided by synaptically-evoked BAPs. Therefore we adapted a realistic morphological and electrophysiological model to measure BAP-induced voltage and calcium signals in spines after Schaffer collateral synapse stimulation. We show that peak calcium concentration is highly correlated with soma-synapse distance under a number of physiologically-realistic suprathreshold stimulation regimes and for a range of dendritic morphologies. Peak calcium levels also predicted the attenuation of the EPSP across the dendritic tree. Furthermore, we show that peak calcium can be used to set up a synaptic democracy in a homeostatic manner, whereby synapses regulate their synaptic strength on the basis of the difference between peak calcium and a uniform target value. We conclude that information derived from synaptically-generated BAPs can indicate synapse location and can subsequently be utilised to implement a synaptic democracy. PMID:22719238

  6. Laparoscopic Spine Surgery

    Science.gov (United States)

    ... Exhibit Opportunities Sponsorship Opportunities Log In Laparoscopic Spine Surgery Patient Information from SAGES Download PDF Find a SAGES Surgeon Laparoscopic Spine Surgery Your spine surgeon has determined that you need ...

  7. Lumbar spine CT scan

    Science.gov (United States)

    CAT scan - lumbar spine; Computed axial tomography scan - lumbar spine; Computed tomography scan - lumbar spine; CT - lower back ... your breath for short periods of time. The scan should take only 10 to 15 minutes.

  8. Dendritic potassium channels in hippocampal pyramidal neurons.

    Science.gov (United States)

    Johnston, D; Hoffman, D A; Magee, J C; Poolos, N P; Watanabe, S; Colbert, C M; Migliore, M

    2000-05-15

    Potassium channels located in the dendrites of hippocampal CA1 pyramidal neurons control the shape and amplitude of back-propagating action potentials, the amplitude of excitatory postsynaptic potentials and dendritic excitability. Non-uniform gradients in the distribution of potassium channels in the dendrites make the dendritic electrical properties markedly different from those found in the soma. For example, the influence of a fast, calcium-dependent potassium current on action potential repolarization is progressively reduced in the first 150 micrometer of the apical dendrites, so that action potentials recorded farther than 200 micrometer from the soma have no fast after-hyperpolarization and are wider than those in the soma. The peak amplitude of back-propagating action potentials is also progressively reduced in the dendrites because of the increasing density of a transient potassium channel with distance from the soma. The activation of this channel can be reduced by the activity of a number of protein kinases as well as by prior depolarization. The depolarization from excitatory postsynaptic potentials (EPSPs) can inactivate these A-type K+ channels and thus lead to an increase in the amplitude of dendritic action potentials, provided the EPSP and the action potentials occur within the appropriate time window. This time window could be in the order of 15 ms and may play a role in long-term potentiation induced by pairing EPSPs and back-propagating action potentials.

  9. The relationship between PSD-95 clustering and spine stability in vivo.

    Science.gov (United States)

    Cane, Michele; Maco, Bohumil; Knott, Graham; Holtmaat, Anthony

    2014-02-05

    The appearance and disappearance of dendritic spines, accompanied by synapse formation and elimination may underlie the experience-dependent reorganization of cortical circuits. The exact temporal relationship between spine and synapse formation in vivo remains unclear, as does the extent to which synapse formation enhances the stability of newly formed spines and whether transient spines produce synapses. We used in utero electroporation of DsRedExpress- and eGFP-tagged postsynaptic density protein 95 (PSD-95) to investigate the relationship between spine and PSD stability in mouse neocortical L2/3 pyramidal cells in vivo. Similar to previous studies, spines and synapses appeared and disappeared, even in naive animals. Cytosolic spine volumes and PSD-95-eGFP levels in spines covaried over time, suggesting that the strength of many individual synapses continuously changes in the adult neocortex. The minority of newly formed spines acquired PSD-95-eGFP puncta. Spines that failed to acquire a PSD rarely survived for more than a day. Although PSD-95-eGFP accumulation was associated with increased spine lifetimes, most new spines with a PSD did not convert into persistent spines. This indicates that transient spines may serve to produce short-lived synaptic contacts. Persistent spines that were destined to disappear showed, on average, reduced PSD-95-eGFP levels well before the actual pruning event. Altogether, our data indicate that the PSD size relates to spine stability in vivo.

  10. Long term delivery of pulsed magnetic fields does not improve learning or alter dendritic spine density in the mouse hippocampus [v1; ref status: indexed, http://f1000r.es/1o7

    Directory of Open Access Journals (Sweden)

    Matthew Sykes

    2013-09-01

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS is thought to facilitate brain plasticity. However, few studies address anatomical changes following rTMS in relation to behaviour. We delivered 5 weeks of daily pulsed rTMS stimulation to ephrin-A2-/- and wildtype mice (n=10 per genotype undergoing a visual learning task and analysed learning performance, as well as spine density, in the dentate gyrus molecular and CA1 pyramidal cell layers in Golgi-stained brain sections. We found that neither learning behaviour, nor hippocampal spine density was affected by long term rTMS. Our negative results highlight the lack of deleterious side effects in normal subjects and are consistent with previous studies suggesting that rTMS has a bigger effect on abnormal or injured brain substrates than on normal/control structures.

  11. Dendritic bundles, minicolumns, columns, and cortical output units

    Directory of Open Access Journals (Sweden)

    Giorgio Innocenti

    2010-03-01

    Full Text Available The search for the fundamental building block of the cerebral cortex has highlighted three structures, perpendicular to the cortical surface: i columns of neurons with radially invariant response properties, e.g., receptive field position, sensory modality, stimulus orientation or direction, frequency tuning etc. ii minicolumns of radially aligned cell bodies and iii bundles, constituted by the apical dendrites of pyramidal neurons with cell bodies in different layers. The latter were described in detail, and sometimes quantitatively, in several species and areas. It was recently suggested that the dendritic bundles consist of apical dendrites belonging to neurons projecting their axons to specific targets. We review the concept above and suggest that another structural and computational unit of cerebral cortex is the cortical output unit (COU, i.e. an assembly of bundles of apical dendrites and their parent cell bodies including each of the outputs to distant cortical or subcortical structures, of a given cortical locus (area or part of an area. This somato-dendritic assembly receives inputs some of which are common to the whole assembly and determine its radially invariant response properties, others are specific to one or more dendritic bundles, and determine the specific response signature of neurons in the different cortical layers and projecting to different targets.

  12. Bidirectional shift in the cornu ammonis 3 pyramidal dendritic organization following brief stress

    NARCIS (Netherlands)

    Kole, MHP; Costoli, T; Koolhaas, JM; Fuchs, E

    2004-01-01

    The negative impact of chronic stress at the structure of apical dendrite branches of cornu ammonis 3 (CA3) pyramidal neurons is well established. However, there is no information available on the CA3 dendritic organization related to short-lasting stress, which suffices to produce longterm habituat

  13. CREB Regulates Experience-Dependent Spine Formation and Enlargement in Mouse Barrel Cortex

    Directory of Open Access Journals (Sweden)

    Annabella Pignataro

    2015-01-01

    Full Text Available Experience modifies synaptic connectivity through processes that involve dendritic spine rearrangements in neuronal circuits. Although cAMP response element binding protein (CREB has a key function in spines changes, its role in activity-dependent rearrangements in brain regions of rodents interacting with the surrounding environment has received little attention so far. Here we studied the effects of vibrissae trimming, a widely used model of sensory deprivation-induced cortical plasticity, on processes associated with dendritic spine rearrangements in the barrel cortex of a transgenic mouse model of CREB downregulation (mCREB mice. We found that sensory deprivation through prolonged whisker trimming leads to an increased number of thin spines in the layer V of related barrel cortex (Contra in wild type but not mCREB mice. In the barrel field controlling spared whiskers (Ipsi, the same trimming protocol results in a CREB-dependent enlargement of dendritic spines. Last, we demonstrated that CREB regulates structural rearrangements of synapses that associate with dynamic changes of dendritic spines. Our findings suggest that CREB plays a key role in dendritic spine dynamics and synaptic circuits rearrangements that account for new brain connectivity in response to changes in the environment.

  14. Investigating sub-spine actin dynamics in rat hippocampal neurons with super-resolution optical imaging.

    Directory of Open Access Journals (Sweden)

    Vedakumar Tatavarty

    Full Text Available Morphological changes in dendritic spines represent an important mechanism for synaptic plasticity which is postulated to underlie the vital cognitive phenomena of learning and memory. These morphological changes are driven by the dynamic actin cytoskeleton that is present in dendritic spines. The study of actin dynamics in these spines traditionally has been hindered by the small size of the spine. In this study, we utilize a photo-activation localization microscopy (PALM-based single-molecule tracking technique to analyze F-actin movements with approximately 30-nm resolution in cultured hippocampal neurons. We were able to observe the kinematic (physical motion of actin filaments, i.e., retrograde flow and kinetic (F-actin turn-over dynamics of F-actin at the single-filament level in dendritic spines. We found that F-actin in dendritic spines exhibits highly heterogeneous kinematic dynamics at the individual filament level, with simultaneous actin flows in both retrograde and anterograde directions. At the ensemble level, movements of filaments integrate into a net retrograde flow of approximately 138 nm/min. These results suggest a weakly polarized F-actin network that consists of mostly short filaments in dendritic spines.

  15. Nerve Conduction Through Dendrites via Proton Hopping.

    Science.gov (United States)

    Kier, Lemont B

    2017-01-01

    In our previous studies of nerve conduction conducted by proton hopping, we have considered the axon, soma, synapse and the nodes of Ranvier. The role of proton hopping described the passage of information through each of these units of a typical nerve system. The synapse projects information from the axon to the dendrite and their associated spines. We have invoked the passage of protons via a hopping mechanism to illustrate the continuum of the impulse through the system, via the soma following the dendrites. This is proposed to be a continuum invoked by the proton hopping method. With the proposal of the activity through the dendrites, via proton hopping, a complete model of the nerve function is invoked. At each step to the way, a water pathway is present and is invoked in the proposed model as the carrier of the message via proton hopping. The importance of the dendrites is evident by the presence of a vast number of spines, each possessing the possibility to carry unique messages through the nervous system. With this model of the role of dendrites, functioning with the presence of proton hopping, a complete model of the nerve system is presented. The validity of this model will be available for further studies and models to assess it's validity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Colgajo de reposición apical Apically positioned flap

    Directory of Open Access Journals (Sweden)

    L. Pérez-Salcedo

    2011-08-01

    Full Text Available Se describe la técnica del colgajo de reposición apical desde el primer autor, Nabers en 1954, así como las modificaciones realizadas por Ariaudo y Tyrrel en 1957 y Friedman en 1962. También se presenta un caso clínico donde se describen los diferentes pasos de la cirugía de reposición apical. Por último, se hace una revisión evaluando la eficacia del colgajo de reposición apical en el tratamiento de la periodontitis.This paper describes the technique apically positioned flap since the first author Nabers in 1954 and also the modifications performed by Ariaudo and Tyrrell in 1957 and Friedman in 1962. Also a clinical case is presented where it can be observed the different steps of the apically positioned flap in clinical pictures. Afterwards some papers in which the efficacy of the apically positioned flap in the treatment of periodontitis are evaluated and described.

  17. Three-Dimensional Analysis of Spiny Dendrites Using Straightening and Unrolling Transforms

    Science.gov (United States)

    Morales, Juan; Benavides-Piccione, Ruth; Pastor, Luis; Yuste, Rafael; DeFelipe, Javier

    2014-01-01

    Current understanding of the synaptic organization of the brain depends to a large extent on knowledge about the synaptic inputs to the neurons. Indeed, the dendritic surfaces of pyramidal cells (the most common neuron in the cerebral cortex) are covered by thin protrusions named dendritic spines. These represent the targets of most excitatory synapses in the cerebral cortex and therefore, dendritic spines prove critical in learning, memory and cognition. This paper presents a new method that facilitates the analysis of the 3D structure of spine insertions in dendrites, providing insight on spine distribution patterns. This method is based both on the implementation of straightening and unrolling transformations to move the analysis process to a planar, unfolded arrangement, and on the design of DISPINE, an interactive environment that supports the visual analysis of 3D patterns. PMID:22644869

  18. Effect of Associative Learning on Memory Spine Formation in Mouse Barrel Cortex

    Directory of Open Access Journals (Sweden)

    Malgorzata Jasinska

    2016-01-01

    Full Text Available Associative fear learning, in which stimulation of whiskers is paired with mild electric shock to the tail, modifies the barrel cortex, the functional representation of sensory receptors involved in the conditioning, by inducing formation of new inhibitory synapses on single-synapse spines of the cognate barrel hollows and thus producing double-synapse spines. In the barrel cortex of conditioned, pseudoconditioned, and untreated mice, we analyzed the number and morphological features of dendritic spines at various maturation and stability levels: sER-free spines, spines containing smooth endoplasmic reticulum (sER, and spines containing spine apparatus. Using stereological analysis of serial sections examined by transmission electron microscopy, we found that the density of double-synapse spines containing spine apparatus was significantly increased in the conditioned mice. Learning also induced enhancement of the postsynaptic density area of inhibitory synapses as well as increase in the number of polyribosomes in such spines. In single-synapse spines, the effects of conditioning were less pronounced and included increase in the number of polyribosomes in sER-free spines. The results suggest that fear learning differentially affects single- and double-synapse spines in the barrel cortex: it promotes maturation and stabilization of double-synapse spines, which might possibly contribute to permanent memory formation, and upregulates protein synthesis in single-synapse spines.

  19. Reaction-subdiffusion front propagation in a comblike model of spiny dendrites

    Science.gov (United States)

    Iomin, A.; Méndez, V.

    2013-07-01

    Fractional reaction-diffusion equations are derived by exploiting the geometrical similarities between a comb structure and a spiny dendrite. In the framework of the obtained equations, two scenarios of reaction transport in spiny dendrites are explored, where both a linear reaction in spines and nonlinear Fisher-Kolmogorov-Petrovskii-Piskunov reactions along dendrites are considered. In the framework of fractional subdiffusive comb model, we develop a Hamilton-Jacobi approach to estimate the overall velocity of the reaction front propagation. One of the main effects observed is the failure of the front propagation for both scenarios due to either the reaction inside the spines or the interaction of the reaction with the spines. In the first case the spines are the source of reactions, while in the latter case, the spines are a source of a damping mechanism.

  20. High-fat diet induces learning and memory impairments and hippocampal dendritic spine density in rats%高脂饮食致学习记忆损伤大鼠的海马神经元树突棘改变

    Institute of Scientific and Technical Information of China (English)

    王志强; 王庆松; 范进; 王建; 李余霞; 段丹

    2015-01-01

    目的 探索高脂饮食对大鼠学习记忆功能、海马神经元数量、树突形态的影响.方法 雄性成年SD大鼠24只,随机数字表法分为高脂饮食组(n=12)和对照组(n=12),高脂饮食组的大鼠喂食12周的高脂饲料,对照组喂食标准动物饲料.通过Morris水迷宫及物体辨别实验等评估大鼠学习记忆功能,旷场实验评估运动功能及焦虑样症状,高尔基染色检测海马神经元树突棘密度的改变,尼氏染色观察海马神经元数量及病理学变化.结果 高脂饮食导致大鼠空间学习能力受损,表现为逃避潜伏期[第1~5天:(38.50±9.70)s、(20.08±7.35)s、(19.96±10.56)s、(22.75±12.51)s、(14.56±4.82)s],明显长于对照组[第1~5天:(33.61±12.41)s、(14.25±7.89)s、(15.06±7.59)s、(5.53±2.81)s、(4.70±1.58)s];空间记忆能力受损,表现为到达原平台潜伏期[(30.46±21.43)s]长于对照组[(5.18±1.33)s];工作记忆能力受损,表现为逃避潜伏期明显长于对照组(P<0.05);物体辨别记忆受损,表现为辨别指数低于对照组[(0.67±0.12)vs(0.81±0.08)],差异具有统计学意义(P=0.038);未出现焦虑样症状(均P>0.05);海马神经元数量、树突棘密度均低于对照组[分别为(209.73±24.29)个/mm vs(262.2±18.94)个/mm,(17.9±2.84)个/20μm vs (21.93±2.56)个/20μm],差异具有统计学意义(P<0.05).结论 高脂饮食的摄入可以导致大鼠学习记忆功能下降,同时损伤大鼠海马神经元数量及树突棘密度.%Objective To explore the influence of high fat diet on learning and memory,as well as the alteration of the number of neurons and morphology of dendritic spines in rat hippocampi.Methods 24 male adult SD rats were randomly assigned to high fat diet group or control group.The rats were fed with high-fat diet or standaM laboratory rodent chow diet for 12 weeks.Learning and memory were tested by Morris water maze and object recognition tests, and mood and motor ability were tested by open

  1. Free energy and dendritic self-organisation

    Directory of Open Access Journals (Sweden)

    Stefan J Kiebel

    2011-10-01

    Full Text Available In this paper, we pursue recent observations that, through selective dendritic filtering, single neurons respond to specific sequences of presynaptic inputs. We try to provide a principled and mechanistic account of this selectivity by applying the free energy principle to a dendrite that is immersed in its neuropil or environment. We assume that neurons self-organize to minimise a free energy bound on the self-information or surprise of presynaptic inputs that are sampled. We model this as a selective pruning of dendritic spines that are expressed on a dendritic branch. This pruning occurs when the optimized postsynaptic gain falls below a threshold. Crucially, postsynaptic gain is itself optimized with respect to free energy. Pruning suppresses free energy as the dendrite selects presynaptic signals that conform to its expectations, specified by a generative model implicit in its intracellular kinetics. Not only does this provide a principled account of how neurons organize and selectively sample the myriad of potential presynaptic inputs they are exposed to, but it also connects the optimization of elemental neuronal (dendritic processing to generic (surprise or evidence-based schemes in statistics and machine learning, such as Bayesian model selection and automatic relevance determination.

  2. Environmental enrichment reveals effects of genotype on hippocampal spine morphologies in the mouse model of Fragile X Syndrome.

    Science.gov (United States)

    Lauterborn, Julie C; Jafari, Matiar; Babayan, Alex H; Gall, Christine M

    2015-02-01

    Fragile X Syndrome (FXS) and the Fmr1 knockout (KO) mouse model of this disorder exhibit abnormal dendritic spines in neocortex, but the degree of spine disturbances in hippocampus is not clear. The present studies tested if the mutation influences dendritic branching and spine measures for CA1 pyramidal cells in Fmr1 KO and wild-type (WT) mice provided standard or enriched environment (EE) housing. Automated measures from 3D reconstructions of green fluorescent protein (GFP)-labeled cells showed that spine head volumes were ∼ 40% lower in KOs when compared with WTs in both housing conditions. With standard housing, average spine length was greater in KOs versus WTs but there was no genotype difference in dendritic branching, numbers of spines, or spine length distribution. However, with EE rearing, significant effects of genotype emerged including greater dendritic branching in WTs, greater spine density in KOs, and greater numbers of short thin spines in KOs when compared with WTs. Thus, EE rearing revealed greater effects of the Fmr1 mutation on hippocampal pyramidal cell morphology than was evident with standard housing, suggesting that environmental enrichment allows for fuller appreciation of the impact of the mutation and better representation of abnormalities likely to be present in human FXS.

  3. 产前慢性应激对子代大鼠学习记忆和海马神经元树突棘的影响%Influence of pregnant rats' prenatal chronic stress on hippocampal dendritic spines and the function of learning and memory in their offsprings

    Institute of Scientific and Technical Information of China (English)

    陶玺宬; 吴德; 唐久来; 周自云; 朱静; 徐文成

    2015-01-01

    Objective To study the influence of pregnant rats' prenatal chronic stress (PS) on learning and memory of their offspring rats and its possible molecular mechanisms.Methods Pregnant females were individually restrained for 45 min 3 times a day during pregnancy from day 14 to day 21.Control pregnant females were left undisturbed in their home cages.The rat offsprings were randomly assigned to PS group or control group.Males and females were kept for the study separately.The learning and memory of the developing rat offspring in the Morris water maze were examined.The basal levels of corticosterone (COR) and adreno-cortico-tropic-hormone (ACTH) were analyzed by using radioimmunoassay.The Golgi-Cox impregnation technique was used to compare density and morphology of the CA1 hippocampal dendritic spines.Results The escape latency (EL) to find the platform in the control group was significantly less than that in the PS group in female rat offspring (F =4.533,P < 0.05),and the difference was statistically significant on the 5th day (t =2.788,P < 0.01).EL to find the platform in the control group was significantly less than that in the PS group in male rat offspring (F =6.101,P <0.05),and the difference was statistically significant on the second day (t =3.051,P < 0.01).In the space exploration experiments of the water maze,the retention time observed for the control group and the PS group in the goal quadrant was similar(P > 0.05).The basal levels of the serum COR in the PS group were higher than those in the control group of female rat offspring(t =3.658,P < 0.01) and the basal levels of the serum ACTH in the PS group were higher than those in the control group of male rat offsprings(t =2.319,P < 0.05).A simplified pattern was observed in the CA1 hippocampal dendritic spines in the PS group,showing a less extent of dendritic arborization and the density was significantly lower than that in the control group(t =-3.072,P < 0.01).Conclusions Altered

  4. SpineLab: tool for three-dimensional reconstruction of neuronal cell morphology

    Science.gov (United States)

    Jungblut, Daniel; Vlachos, Andreas; Schuldt, Gerlind; Zahn, Nadine; Deller, Thomas; Wittum, Gabriel

    2012-07-01

    SpineLab is a software tool developed for reconstructing neuronal feature skeletons from three-dimensional single- or multi-photon image stacks. These images often suffer from limited resolution and a low signal-to-noise ratio, making the extraction of morphometric information difficult. To overcome this limitation, we have developed a software tool that offers the possibility to create feature skeletons in various modes--automatically as well as with manual interaction. We have named this novel tool SpineLab. In a first step, an investigator adjusts a set of parameters for automatic analysis in an interactive manner, i.e., with online visual feedback, followed by a second step, in which the neuronal feature skeleton can be modified by hand. We validate the ability of SpineLab to reconstruct the entire dendritic tree of identified GFP-expressing neurons and evaluate the accuracy of dendritic spine detection. We report that SpineLab is capable of significantly facilitating the reconstruction of dendrites and spines. Moreover, the automatic approach appears sufficient to detect spine density changes in time-lapse imaging experiments. Taken together, we conclude that SpineLab is an ideal software tool for partially automatic reconstruction of neural cell morphology.

  5. H2对大鼠全脑缺血再灌注损伤后海马CA1区神经元及树突棘的保护作用%Protective effect of hydrogen gas on neurons and dendritic spines of hippocampus CA1 region in rats after global cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    谭永星; 袁楠楠; 夏裕宁; 张鑫磊; 梁维; 魏佑震

    2016-01-01

    Objective To explore the protective effect of in-taking high concentration hydrogen gas on neurons and dendritic spines in hippocampus CA1 region of rats after globe cerebral ischemia/reperfusion (I/R) injury and its mechanism.Methods Four-vessel occlusion (4VO) was used to establish the models of global cerebral I/R injury in rats.One hundred and twenty healthy male Sprague-Dawley rats were randomly divided into 3 groups using a random number table:sham-operated group (inhaled 67% N2 and 67% O2,n=40),model group (inhaled 67% N2 and 67% O2 during reperfusion,n=40),and treatment group (inhaled 67% H2 and 67% O2 during reperfusion,n=40).After 72 h,5 and 9 d reperfusion,neuron-specific nuclear (NeuN) protein expression in the pyramidal neurons of the hippocampal CA1 region was detected with immumohistochemical staining and the positive cells were counted.And the contents of superoxide dismutase (SOD) and malondialdehyde (MDA) in serum were tested with colorimetry.Water maze test was used to measure the spatial orientation and memory function and Golgi staining to detect the number of dendritic spines in neurons 9 d after reperfusion.Results (1) Immunohistochemical staining of NeuN results showed that as compared with those in the model group,the neurons ofhippocampus CA1 region were significantly closer to normal with relatively intact structure,and the number of positive neurons was significantly increased in the treatment group 72 h,5 d,and 9 d after reperfusion (P<0.05).With the reperfusion time being prolonged,the number of NeuN stained positive neurons at different time points of reperfusion in model group was gradually decreased (P<0.05),and the numeric of the NeuN stained positive neurons at different time points of reperfusion in treatment group was slightly declined without significant difference (P>0.05).(2) The serum SOD activity in the treatment group was significantly higher than that in the model group and sham-operated group (P<0

  6. Muscarinic regulation of Kenyon cell dendritic arborizations in adult worker honey bees.

    Science.gov (United States)

    Dobrin, Scott E; Herlihy, J Daniel; Robinson, Gene E; Fahrbach, Susan E

    2011-09-01

    The experience of foraging under natural conditions increases the volume of mushroom body neuropil in worker honey bees. A comparable increase in neuropil volume results from treatment of worker honey bees with pilocarpine, an agonist for muscarinic-type cholinergic receptors. A component of the neuropil growth induced by foraging experience is growth of dendrites in the collar region of the calyces. We show here, via analysis of Golgi-impregnated collar Kenyon cells with wedge arborizations, that significant increases in standard measures of dendritic complexity were also found in worker honey bees treated with pilocarpine. This result suggests that signaling via muscarinic-type receptors promotes the increase in Kenyon cell dendritic complexity associated with foraging. Treatment of worker honey bees with scopolamine, a muscarinic inhibitor, inhibited some aspects of dendritic growth. Spine density on the Kenyon cell dendrites varied with sampling location, with the distal portion of the dendritic field having greater total spine density than either the proximal or medial section. This observation may be functionally significant because of the stratified organization of projections from visual centers to the dendritic arborizations of the collar Kenyon cells. Pilocarpine treatment had no effect on the distribution of spines on dendrites of the collar Kenyon cells.

  7. Function of root apical meristem

    OpenAIRE

    Benešová, Šárka

    2013-01-01

    A root apical meristem is the only source of cells for all tissues in the root. The root growth relies on its function. Regulation of a cell division frequency and cell differentiation affects organization and function of the differentiated tissues and the proper meristem function. If the cell differentiation overbalances the cell proliferation, the meristem exhaustion occurs and the root growth irreversibly terminates. This thesis describes existing knowledge about regulation of the primary ...

  8. Channelopathies and dendritic dysfunction in fragile X syndrome.

    Science.gov (United States)

    Brager, Darrin H; Johnston, Daniel

    2014-04-01

    Dendritic spine abnormalities and the metabotropic glutamate receptor theory put the focus squarely on synapses and protein synthesis as the cellular locus of fragile X syndrome. Synapses however, are only partly responsible for information processing in neuronal networks. Neurotransmitter triggered excitatory postsynaptic potentials (EPSPs) are shaped and integrated by dendritic voltage-gated ion channels. These EPSPs, and in some cases the resultant dendritic spikes, are further modified by dendritic voltage-gated ion channels as they propagate to the soma. If the resultant somatic depolarization is large enough, action potential(s) will be triggered and propagate both orthodromically down the axon, where it may trigger neurotransmitter release, and antidromically back into the dendritic tree, where it can activate and modify dendritic voltage-gated and receptor activated ion channels. Several channelopathies, both soma-dendritic (L-type calcium channels, Slack potassium channels, h-channels, A-type potassium channels) and axo-somatic (BK channels and delayed rectifier potassium channels) were identified in the fmr1-/y mouse model of fragile X syndrome. Pathological function of these channels will strongly influence the excitability of individual neurons as well as overall network function. In this chapter we discuss the role of voltage-gated ion channels in neuronal processing and describe how identified channelopathies in models of fragile X syndrome may play a role in dendritic pathophysiology. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Dendritic branching of olfactory bulb mitral and tufted cells: regulation by TrkB.

    Directory of Open Access Journals (Sweden)

    Fumiaki Imamura

    Full Text Available BACKGROUND: Projection neurons of mammalian olfactory bulb (OB, mitral and tufted cells, have dendrites whose morphologies are specifically differentiated for efficient odor information processing. The apical dendrite extends radially and arborizes in single glomerulus where it receives primary input from olfactory sensory neurons that express the same odor receptor. The lateral dendrites extend horizontally in the external plexiform layer and make reciprocal dendrodendritic synapses with granule cells, which moderate mitral/tufted cell activity. The molecular mechanisms regulating dendritic development of mitral/tufted cells is one of the unsolved important problems in the olfactory system. Here, we focused on TrkB receptors to test the hypothesis that neurotrophin-mediate mechanisms contributed to dendritic differentiation of OB mitral/tufted cells. PRINCIPAL FINDINGS: With immunohistochemical analysis, we found that the TrkB neurotrophin receptor is expressed by both apical and lateral dendrites of mitral/tufted cells and that expression is evident during the early postnatal days when these dendrites exhibit their most robust growth and differentiation. To examine the effect of TrkB activation on mitral/tufted cell dendritic development, we cultured OB neurons. When BDNF or NT4 were introduced into the cultures, there was a significant increase in the number of primary neurites and branching points among the mitral/tufted cells. Moreover, BDNF facilitated filopodial extension along the neurites of mitral/tufted cells. SIGNIFICANCE: In this report, we show for the first time that TrkB activation stimulates the dendritic branching of mitral/tufted cells in developing OB. This suggests that arborization of the apical dendrite in a glomerulus is under the tight regulation of TrkB activation.

  10. Three-dimensional imaging of the spine using the EOS system: is it reliable? A comparative study using computed tomography imaging

    DEFF Research Database (Denmark)

    Al-Aubaidi, Z.; Lebel, D.; Oudjhane, K.

    2013-01-01

    The aim of this study was to evaluate the precision of three-dimensional geometry compared with computed tomography (CT) images. This retrospective study included patients who had undergone both imaging of the spine using the EOS imaging system and CT scanning of the spine. The apical vertebral o...

  11. Multiplanner spine computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H. K.; Jeon, H. J.; Hong, K. C.; Chung, K. B.; Suh, W. H. [Korea University College of Medicine, Seoul (Korea, Republic of)

    1983-06-15

    The computed tomography is useful in evaluation of bony structures and adjacent soft tissues of the spine. Recently, the multiplanar spine CT scan is highly superior than usual axial scan, because of easily demonstrable longitudinal dimension, level of spine and spinal canal. We evaluated 62 cases of spine CT, whom complains of spinal symptoms, from July, 1982 to January, 1983. The results were as follows: 1. The sex distribution of cases were 45 male and 17 female, ages were from 15 years to 76 years, and sites were 15 cervical spine, 7 thoracic spine, 42 lumbar spine and 21 sacral spine. 2. Sixty two cases of the CT diagnosis were reviewed and shows 19 cases of herniated intervertebral disc, 7 cases of spine fracture, 5 cases of degenerative disease, 4 cases of metastatic cancer, 2 cases of posterior longitudinal ligament ossification, 1 case of cord injury and 24 cases of normal. 3. The CT findings of herniated intervertebral disc were protruding disc, obliteration of anterior epidural fat, with or without indentation of dural sac and calcification within posterior disc margin. In cases of trauma, the multiplanar spine CT scan detects more specific extension of the fracture sites, and it is able to demonstrate relationship between fracture fragment and spinal cord, therefore operability can be decided. In case of posterior longitudinal ligament ossification, it is easy to demonstrate linear high density along posterior margin of vertebral bodies on sagittal reconstruction scan. 4. The computed tomography is diagnostic in detection of spinal disease. However, multiplanar spine CT is more diagnostic than axial computed tomography such as detecting the longitudinal dimension and demonstration of spinal canal.

  12. Spine pruning drives antipsychotic-sensitive locomotion via circuit control of striatal dopamine.

    Science.gov (United States)

    Kim, Il Hwan; Rossi, Mark A; Aryal, Dipendra K; Racz, Bence; Kim, Namsoo; Uezu, Akiyoshi; Wang, Fan; Wetsel, William C; Weinberg, Richard J; Yin, Henry; Soderling, Scott H

    2015-06-01

    Psychiatric and neurodevelopmental disorders may arise from anomalies in long-range neuronal connectivity downstream of pathologies in dendritic spines. However, the mechanisms that may link spine pathology to circuit abnormalities relevant to atypical behavior remain unknown. Using a mouse model to conditionally disrupt a critical regulator of the dendritic spine cytoskeleton, the actin-related protein 2/3 complex (Arp2/3), we report here a molecular mechanism that unexpectedly reveals the inter-relationship of progressive spine pruning, elevated frontal cortical excitation of pyramidal neurons and striatal hyperdopaminergia in a cortical-to-midbrain circuit abnormality. The main symptomatic manifestations of this circuit abnormality are psychomotor agitation and stereotypical behaviors, which are relieved by antipsychotics. Moreover, this antipsychotic-responsive locomotion can be mimicked in wild-type mice by optogenetic activation of this circuit. Collectively these results reveal molecular and neural-circuit mechanisms, illustrating how diverse pathologies may converge to drive behaviors relevant to psychiatric disorders.

  13. Osteoporosis and Your Spine

    Science.gov (United States)

    ... Store Shopping Cart Home › Patients › Fractures/Fall Prevention › Exercise/Safe Movement › Osteoporosis and Your Spine Osteoporosis and Your Spine Your ... osteoporosis experts. Become a Member ... Patients ... Prevention Exercise/Safe Movement Safe Movement & Exercise Videos Communication with ...

  14. Traumatic thoracolumbar spine fractures

    NARCIS (Netherlands)

    J. Siebenga (Jan)

    2013-01-01

    textabstractTraumatic spinal fractures have the lowest functional outcomes and the lowest rates of return to work after injury of all major organ systems.1 This thesis will cover traumatic thoracolumbar spine fractures and not osteoporotic spine fractures because of the difference in fracture

  15. Diversity of thalamorecipient spine morphology in cat visual cortex and its implication for synaptic plasticity.

    Science.gov (United States)

    da Costa, Nuno Maçarico

    2013-06-15

    A feature of spine synapses is the existence of a neck connecting the synapse on the spine head to the dendritic shaft. As with a cable, spine neck resistance (R(neck)) increases with increasing neck length and is inversely proportional to the cross-sectional area of the neck. A synaptic current entering a spine with a high R(neck) will lead to greater local depolarization in the spine head than would a similar input applied to a spine with a lower R(neck). This could make spines with high R(neck) more sensitive to plastic changes since voltage sensitive conductances, such as N-methyl-D-aspartic acid (NMDA) channels can be more easily activated. This hypothesis was tested using serial section electron microscopic reconstructions of thalamocortical spine synapses and spine necks located on spiny stellate cells and corticothalamic cells from area 17 of cats. Thalamic axons and corticothalamic neurons were labeled by injections of the tracer biotinylated dextran amine (BDA) in the dorsal lateral geniculate nucleus (dLGN) of anesthetized cats and spiny stellates were filled intracellularly in vivo with horseradish peroxidase. Twenty-eight labeled spines that formed synapses with dLGN boutons were collected from three spiny stellate and four corticothalamic cells and reconstructed in 3D from serial electron micrographs. Spine length, spine diameter, and the area of the postsynaptic density were measured from the 3D reconstructions and R(neck) of the spine was estimated. No correlation was found between the postsynaptic density size and the estimated spine R(neck). This suggests that forms of plasticity that lead to larger synapses are independent of spine neck resistance.

  16. Age-Related Deficits in Spatial Memory and Hippocampal Spines in Virgin, Female Fischer 344 Rats

    Directory of Open Access Journals (Sweden)

    Victoria N. Luine

    2011-01-01

    Full Text Available Effects of aging on memory and brain morphology were examined in aged, 21-month-old, and young, 4-month-old, Fischer 344 female rats. Spatial memory was assessed using the object placement task, and dendritic spine density was determined on pyramidal neurons in the hippocampus following Golgi impregnation. Consistent with previous studies, aged females showed poorer object placement performance than young subjects. Young subjects significantly discriminated the location of objects with a 1.5-hour intertrial delay while aged subjects did not. Spine density of basal dendrites on CA1 pyramidal cells was 16% lower in the aged subjects as compared to the young subjects. No differences in spine density were found between young and aged subjects in basal dendrites of CA1 or in either dendritic field of CA3 pyramidal neurons. Thus, decreased hippocampal CA1 dendritic spine density in aged rats may contribute to poorer spatial memory as compared to young rats. The possibility that the neuroplastic changes observed in this study may pertain only to female subjects having had a specific set of life experiences is discussed. Different factors, such as reproductive status, diet, and handling may contribute to neuroplasticity of the brain during aging; however, this view requires further examination.

  17. Isothermal Dendritic Growth Experiment - PVA Dendrites

    Science.gov (United States)

    1997-01-01

    The Isothermal Dendritic Growth Experiment (IDGE), flown on three Space Shuttle missions, is yielding new insights into virtually all industrially relevant metal and alloy forming operations. IDGE used transparent organic liquids that form dendrites (treelike structures) similar to those inside metal alloys. Comparing Earth-based and space-based dendrite growth velocity, tip size and shape provides a better understanding of the fundamentals of dentritic growth, including gravity's effects. Shalowgraphic images of pivalic acid (PVA) dendrites forming from the melt show the subtle but distinct effects of gravity-driven heat convection on dentritic growth. In orbit, the dendrite grows as its latent heat is liberated by heat conduction. This yields a blunt dendrite tip. On Earth, heat is carried away by both conduction and gravity-driven convection. This yields a sharper dendrite tip. In addition, under terrestrial conditions, the sidebranches growing in the direction of gravity are augmented as gravity helps carry heat out of the way of the growing sidebranches as opposed to microgravity conditions where no augmentation takes place. IDGE was developed by Rensselaer Polytechnic Institute and NASA/Glenn Research Center. Advanced follow-on experiments are being developed for flight on the International Space Station. Photo Credit: NASA/Glenn Research Center

  18. Thoracic spine pain

    Directory of Open Access Journals (Sweden)

    Aleksey Ivanovich Isaikin

    2013-01-01

    Full Text Available Thoracic spine pain, or thoracalgia, is one of the common reasons for seeking for medical advice. The epidemiology and semiotics of pain in the thoracic spine unlike in those in the cervical and lumbar spine have not been inadequately studied. The causes of thoracic spine pain are varied: diseases of the cardiovascular, gastrointestinal, pulmonary, and renal systems, injuries to the musculoskeletal structures of the cervical and thoracic portions, which require a thorough differential diagnosis. Facet, costotransverse, and costovertebral joint injuries and myofascial syndrome are the most common causes of musculoskeletal (nonspecific pain in the thoracic spine. True radicular pain is rarely encountered. Traditionally, treatment for thoracalgia includes a combination of non-drug and drug therapies. The cyclooxygenase 2 inhibitor meloxicam (movalis may be the drug of choice in the treatment of musculoskeletal pain.

  19. Low dose prenatal ethanol exposure induces anxiety-like behaviour and alters dendritic morphology in the basolateral amygdala of rat offspring.

    Directory of Open Access Journals (Sweden)

    Carlie L Cullen

    Full Text Available Prenatal exposure to high levels of alcohol is strongly associated with poor cognitive outcomes particularly in relation to learning and memory. It is also becoming more evident that anxiety disorders and anxiety-like behaviour can be associated with prenatal alcohol exposure. This study used a rat model to determine if prenatal exposure to a relatively small amount of alcohol would result in anxiety-like behaviour and to determine if this was associated with morphological changes in the basolateral amygdala. Pregnant Sprague Dawley rats were fed a liquid diet containing either no alcohol (Control or 6% (vol/vol ethanol (EtOH throughout gestation. Male and Female offspring underwent behavioural testing at 8 months (Adult or 15 months (Aged of age. Rats were perfusion fixed and brains were collected at the end of behavioural testing for morphological analysis of pyramidal neuron number and dendritic morphology within the basolateral amygdala. EtOH exposed offspring displayed anxiety-like behaviour in the elevated plus maze, holeboard and emergence tests. Although sexually dimorphic behaviour was apparent, sex did not impact anxiety-like behaviour induced by prenatal alcohol exposure. This increase in anxiety - like behaviour could not be attributed to a change in pyramidal cell number within the BLA but rather was associated with an increase in dendritic spines along the apical dendrite which is indicative of an increase in synaptic connectivity and activity within these neurons. This study is the first to link increases in anxiety like behaviour to structural changes within the basolateral amygdala in a model of prenatal ethanol exposure. In addition, this study has shown that exposure to even a relatively small amount of alcohol during development leads to long term alterations in anxiety-like behaviour.

  20. CREB regulates spine density of lateral amygdala neurons: implications for memory allocation

    Directory of Open Access Journals (Sweden)

    Derya eSargin

    2013-12-01

    Full Text Available Neurons may compete against one another for integration into a memory trace. Specifically, neurons in the lateral nucleus of the amygdala with relatively higher levels of CREB seem to be preferentially allocated to a fear memory trace, while neurons with relatively decreased CREB function seem to be excluded from a fear memory trace. CREB is a ubiquitous transcription factor that modulates many diverse cellular processes, raising the question as to which of these CREB-mediated processes underlie memory allocation. CREB is implicated in modulating dendritic spine number and morphology. As dendritic spines are intimately involved in memory formation, we investigated whether manipulations of CREB function alter spine number or morphology of neurons at the time of fear conditioning. We used viral vectors to manipulate CREB function in the lateral amygdala principal neurons in mice maintained in their homecages. At the time that fear conditioning normally occurs, we observed that neurons with high levels of CREB had more dendritic spines, while neurons with low CREB function had relatively fewer spines compared to control neurons. These results suggest that the modulation of spine density provides a potential mechanism for preferential allocation of a subset of neurons to the memory trace.

  1. DIXDC1 Phosphorylation and Control of Dendritic Morphology Are Impaired by Rare Genetic Variants

    Directory of Open Access Journals (Sweden)

    Vickie Kwan

    2016-11-01

    Full Text Available The development of neural connectivity is essential for brain function, and disruption of this process is associated with autism spectrum disorders (ASDs. DIX domain containing 1 (DIXDC1 has previously been implicated in neurodevelopmental disorders, but its role in postnatal brain function remains unknown. Using a knockout mouse model, we determined that DIXDC1 is a regulator of excitatory neuron dendrite development and synapse function in the cortex. We discovered that MARK1, previously linked to ASDs, phosphorylates DIXDC1 to regulate dendrite and spine development through modulation of the cytoskeletal network in an isoform-specific manner. Finally, rare missense variants in DIXDC1 were identified in ASD patient cohorts via genetic sequencing. Interestingly, the variants inhibit DIXDC1 isoform 1 phosphorylation, causing impairment to dendrite and spine growth. These data reveal that DIXDC1 is a regulator of cortical dendrite and synaptic development and provide mechanistic insight into morphological defects associated with neurodevelopmental disorders.

  2. Free dendritic growth

    Science.gov (United States)

    Glicksman, M. E.

    1984-01-01

    Free dendritic growth refers to the unconstrained development of crystals within a supercooled melt, which is the classical 'dendrite problem'. Great strides have been taken in recent years in both the theoretical understanding of dendritic growth and its experimental status. The development of this field will be sketched, showing that transport theory and interfacial thermodynamics (capillarity theory) were sufficient ingredients to develop a truly predictive model of dendrite formation. The convenient, but incorrect, notion of 'maximum velocity' was used for many years to estimate the behavior of dendritic transformations until supplanted by modern dynamic stability theory. The proper combinations of transport theory and morphological stability seem to able to predict the salient aspects of dendritic growth, especially in the neighborhood of the tip. The overall development of cast microstructures, such as equiaxed zone formation, rapidly solidified microstructures, etc., also seems to contain additional non-deterministic features which lie outside the current theories discussed here.

  3. Corticotropin-releasing factor and urocortin regulate spine and synapse formation : structural basis for stress-induced neuronal remodeling and pathology

    NARCIS (Netherlands)

    Gounko, N. V.; Swinny, J. D.; Kalicharan, D.; Jafari, S.; Corteen, N.; Seifi, M.; Bakels, R.; van der Want, J. J. L.

    2013-01-01

    Dendritic spines are important sites of excitatory neurotransmission in the brain with their function determined by their structure and molecular content. Alterations in spine number, morphology and receptor content are a hallmark of many psychiatric disorders, most notably those because of stress.

  4. Dendritic polyurea polymers.

    Science.gov (United States)

    Tuerp, David; Bruchmann, Bernd

    2015-01-01

    Dendritic polymers, subsuming dendrimers as well as hyperbranched or highly branched polymers are well established in the field of polymer chemistry. This review article focuses on urea based dendritic polymers and summarizes their synthetic routes through both isocyanate and isocyanate-free processes. Furthermore, this article highlights applications where dendritic polyureas show their specific chemical and physical potential. For these purposes scientific publications as well as patent literature are investigated to generate a comprehensive overview on this topic.

  5. Effects of decreased inhibition on synaptic plasticity and dendritic morphology in the juvenile prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Xanthippi Konstantoudaki

    2014-03-01

    , we tested whether synaptic plasticity properties of intra-cortical layer II synapses are affected. In adult control mice, tetanic stimulation results in long-term potentiation that lasts at least 50 min (Konstantoudaki et al, 2013. In control mice of the age tested in this study (PD 20-30, LTP could not be induced with the same stimulation. However, we find that Rac1 KO mice do express long-term potentiation. We next studied the dendritic morphology of layer II neurons in the prefrontal cortex, in an effort to identify the mechanism by which Rac1 KO mice exhibit LTP, while the control mice of the same age do not. For this, we stained mouse brains of Rac1 KO and Rac1 heterozygous mice with the Golgi-Cox method. We analyzed the number of secondary apical dendrites, their thickness, as well as the number of spines. We find that the dendrites of pyramidal neurons of Rac1 KO mice have decreased thickness and increased number of spines compared to pyramidal neurons from Rac1 heterozygous mice. These findings could also provide a mechanistic explanation for the presence of LTP in Rac1 KO mice. In conclusion, we find that decreased inhibition during development alters the morphological and functional characteristics of pyramidal neurons in layer II prefrontal cortex of mice. These alterations could provide a cellular substrate for emotional and cognitive dysfunctions present in these mice (Konstantoudaki et al, 2012.

  6. BDNF pro-peptide regulates dendritic spines via caspase-3

    OpenAIRE

    Guo, J.; Ji, Y.; Y. Ding; Jiang, W.; Sun, Y.; B. Lu; Nagappan, G

    2016-01-01

    The precursor of brain-derived neurotrophic factor (BDNF) (proBDNF) is enzymatically cleaved, by either intracellular (furin/PC1) or extracellular proteases (tPA/plasmin/MMP), to generate mature BDNF (mBDNF) and its pro-peptide (BDNF pro-peptide). Little is known about the function of BDNF pro-peptide. We have developed an antibody that specifically detects cleaved BDNF pro-peptide, but not proBDNF or mBDNF. Neuronal depolarization elicited a marked increase in extracellular BDNF pro-peptide,...

  7. Dendritic Spine Morphology: The Role of Micro tubules and Endosomes

    NARCIS (Netherlands)

    B.R. Dortland (Bjorn)

    2009-01-01

    markdownabstract__Abstract__ In Ancient Egypt, the function of the brain was regarded as not much more than cranial stuffing. The brain was regularly removed in preparation for mummification since the heart was assumed to be the organ of intelligence. Over the next five thousand years, this view wa

  8. Regulation of the Ras Pathway by Neurofibromin in Dendritic Spines

    OpenAIRE

    Oliveira, Ana Isabel Ferreira Martins de

    2012-01-01

    Tese de doutoramento em Biologia, na especialidade de Biologia Celular, apresentada à Faculdade de Ciências da Universidade de Coimbra Diversas evidências experimentais têm sugerido que a plasticidade sináptica desempenha um papel importante na formação de memórias e na aprendizagem. A via de sinalização da Ras é um elemento importante em muitas formas de plasticidade sináptica, incluindo a potenciação sináptica de longa duração (LTP) e a morfogénese das espículas dendríticas. Em consonânc...

  9. Computational reconstitution of spine calcium transients from individual proteins

    Directory of Open Access Journals (Sweden)

    Thomas Matthew Bartol

    2015-10-01

    Full Text Available We have built a stochastic model in the program MCell that simulates Ca2+ transients in spines from the principal molecular components believed to control Ca2+ entry and exit. Proteins, with their kinetic models, are located within two segments of dendrites containing 88 intact spines, centered in a fully reconstructed 5 x 5 x 6 µm cube of hippocampal neuropil. Protein components include AMPA- and NMDA-type glutamate receptors, L- and R-type voltage-dependent Ca2+ channels, Na+/Ca2+ exchangers, plasma membrane Ca2+ ATPases, smooth endoplasmic reticulum Ca2+ ATPases, immobile Ca2+ buffers, and calbindin. Kinetic models for each protein were taken from published studies of the isolated proteins in vitro. For simulation of electrical stimuli, the time course of voltage changes in the dendritic spine was generated with the desired stimulus in the program NEURON. Voltage-dependent parameters were then continuously re-adjusted during simulations in MCell to reproduce the effects of the stimulus. Nine parameters of the model were optimized within realistic experimental limits by a process that compared results of simulations to published data. We find that simulations in the optimized model reproduce the timing and amplitude of Ca2+ transients measured experimentally in intact neurons. Thus, we demonstrate that the characteristics of individual isolated proteins determined in vitro can accurately reproduce the dynamics of experimentally measured Ca2+ transients in spines. The model will provide a test bed for exploring the roles of additional proteins that regulate Ca2+ influx into spines and for studying the behavior of protein targets in the spine that are regulated by Ca2+ influx.

  10. North American Spine Society

    Science.gov (United States)

    ... Advertise Press Room Press Releases Resources Find a Spokesperson In the News More Member Resources Blog NASS ... 3671 PRESS ROOM Press Releases Resources Find a Spokesperson In The News Blog NASS on Spine EXPLORE ...

  11. Cervical spine CT scan

    Science.gov (United States)

    ... defects of the cervical spine Bone problems Fracture Osteoarthritis Disc herniation Risks Risks of CT scans include: ... Ma, MD, Assistant Professor, Chief, Sports Medicine and Shoulder Service, UCSF Department of Orthopaedic Surgery, San Francisco, ...

  12. Long lasting protein synthesis- and activity-dependent spine shrinkage and elimination after synaptic depression.

    Directory of Open Access Journals (Sweden)

    Yazmín Ramiro-Cortés

    Full Text Available Neuronal circuits modify their response to synaptic inputs in an experience-dependent fashion. Increases in synaptic weights are accompanied by structural modifications, and activity dependent, long lasting growth of dendritic spines requires new protein synthesis. When multiple spines are potentiated within a dendritic domain, they show dynamic structural plasticity changes, indicating that spines can undergo bidirectional physical modifications. However, it is unclear whether protein synthesis dependent synaptic depression leads to long lasting structural changes. Here, we investigate the structural correlates of protein synthesis dependent long-term depression (LTD mediated by metabotropic glutamate receptors (mGluRs through two-photon imaging of dendritic spines on hippocampal pyramidal neurons. We find that induction of mGluR-LTD leads to robust and long lasting spine shrinkage and elimination that lasts for up to 24 hours. These effects depend on signaling through group I mGluRs, require protein synthesis, and activity. These data reveal a mechanism for long lasting remodeling of synaptic inputs, and offer potential insights into mental retardation.

  13. Function of the spine.

    Science.gov (United States)

    Gracovetsky, S

    1986-07-01

    In spite of the considerable effort which has been invested in attempts to understand the mechanism of human spines, substantial controversy remains, particularly in connection with assumptions which have to be made by those engaged in biological modelling. The hypothesis presented here is that the living joint has stress sensors driving a feedback mechanism, an arrangement which could react to imposed loads by modifying muscular action in such a way as to minimize stress at the joints and therefore the risk of injury. A theory of this kind gives an image of the spine not in terms of a spatial picture, as would a CAT scan, but in terms of stresses, forces and moments acting at the intervertebral joints. Calculations show that the erectores spinae alone cannot support more than about 50 kg; there must be some other mechanism to explain man's ability substantially to exceed that load. It is suggested that the interaction between the erectores spinae and the abdominals are of fundamental importance in the function of the spine; how they are co-ordinated during the lifting of weights is examined in detail. The theory resulting from this hypothesis is used to relate spinal injury and an injured subject's posture and behaviour. A mathematical formulation permits an objective evaluation of the spine, and a procedure for determining an automatic diagnosis of lumbar spine disabilities is proposed.

  14. Inherited cortical HCN1 channel loss amplifies dendritic calcium electrogenesis and burst firing in a rat absence epilepsy model.

    Science.gov (United States)

    Kole, Maarten H P; Bräuer, Anja U; Stuart, Greg J

    2007-01-15

    While idiopathic generalized epilepsies are thought to evolve from temporal highly synchronized oscillations between thalamic and cortical networks, their cellular basis remains poorly understood. Here we show in a genetic rat model of absence epilepsy (WAG/Rij) that a rapid decline in expression of hyperpolarization-activated cyclic-nucleotide gated (HCN1) channels (I(h)) precedes the onset of seizures, suggesting that the loss of HCN1 channel expression is inherited rather than acquired. Loss of HCN1 occurs primarily in the apical dendrites of layer 5 pyramidal neurons in the cortex, leading to a spatially uniform 2-fold reduction in dendritic HCN current throughout the entire somato-dendritic axis. Dual whole-cell recordings from the soma and apical dendrites demonstrate that loss of HCN1 increases somato-dendritic coupling and significantly reduces the frequency threshold for generation of dendritic Ca2+ spikes by backpropagating action potentials. As a result of increased dendritic Ca2+ electrogenesis a large population of WAG/Rij layer 5 neurons showed intrinsic high-frequency burst firing. Using morphologically realistic models of layer 5 pyramidal neurons from control Wistar and WAG/Rij animals we show that the experimentally observed loss of dendritic I(h) recruits dendritic Ca2+ channels to amplify action potential-triggered dendritic Ca2+ spikes and increase burst firing. Thus, loss of function of dendritic HCN1 channels in layer 5 pyramidal neurons provides a somato-dendritic mechanism for increasing the synchronization of cortical output, and is therefore likely to play an important role in the generation of absence seizures.

  15. Effects of GSM 1800 MHz on dendritic development of cultured hippo-campal neurons

    Institute of Scientific and Technical Information of China (English)

    Wei NING; Shu-jun XU; Huai CHIANG; Zheng-ping XU; Su-ya ZHOU; Wei YANG; Jian-hong LUO

    2007-01-01

    Aim: To evaluate the effects of global system for mobile communications (GSM)1800 MHz microwaves on dendritic filopodia, dendritic arborization, and spine maturation during development in cultured hippocampal neurons in rats. Methods: The cultured hippocampal neurons were exposed to GSM 1800 MHz microwaves with 2.4 and 0.8 W/kg, respectively, for 15 min each day from 6 days in vitro (DIV6) to DIV14. The subtle structures of dendrites were displayed by transfection with farnesylated enhanced green fluorescent protein (F-GFP) and GFP-actin on DIV5 into the hippocampal neurons. Results: There was a significant decrease in the density and mobility of dendritic filopodia at DIV8 and in the density of mature spines at DIV14 in the neurons exposed to GSM 1800 MHz microwaves with 2.4 W/kg. In addition, the average length of dendrites per neuron at DIV10 and DIV14 was decreased, while the dendritic arborization was unaltered in these neurons. However, there were no significant changes found in the neurons ex- posed to the GSM 1800 MHz microwaves with 0.8 W/kg. Conclusion: These data indicate that the chronic exposure to 2.4 W/kg GSM 1800 MHz micro- waves during the early developmental stage may affect dendritic development and the formation of excitatory synapses of hippocampal neurons in culture.

  16. Spiny Neurons of Amygdala, Striatum and Cortex Use Dendritic Plateau Potentials to Detect Network UP States

    Directory of Open Access Journals (Sweden)

    Katerina D Oikonomou

    2014-09-01

    Full Text Available Spiny neurons of amygdala, striatum, and cerebral cortex share four interesting features: [1] they are the most abundant cell type within their respective brain area, [2] covered by thousands of thorny protrusions (dendritic spines, [3] possess high levels of dendritic NMDA conductances, and [4] experience sustained somatic depolarizations in vivo and in vitro (UP states. In all spiny neurons of the forebrain, adequate glutamatergic inputs generate dendritic plateau potentials (dendritic UP states characterized by (i fast rise, (ii plateau phase lasting several hundred milliseconds and (iii abrupt decline at the end of the plateau phase. The dendritic plateau potential propagates towards the cell body decrementally to induce a long-lasting (longer than 100 ms, most often 200 – 800 ms steady depolarization (~20 mV amplitude, which resembles a neuronal UP state. Based on voltage-sensitive dye imaging, the plateau depolarization in the soma is precisely time-locked to the regenerative plateau potential taking place in the dendrite. The somatic plateau rises after the onset of the dendritic voltage transient and collapses with the breakdown of the dendritic plateau depolarization. We hypothesize that neuronal UP states in vivo reflect the occurrence of dendritic plateau potentials (dendritic UP states. We propose that the somatic voltage waveform during a neuronal UP state is determined by dendritic plateau potentials. A mammalian spiny neuron uses dendritic plateau potentials to detect and transform coherent network activity into a ubiquitous neuronal UP state. The biophysical properties of dendritic plateau potentials allow neurons to quickly attune to the ongoing network activity, as well as secure the stable amplitudes of successive UP states.

  17. Mechanisms of calcium influx into hippocampal spines: heterogeneity among spines, coincidence detection by NMDA receptors, and optical quantal analysis.

    Science.gov (United States)

    Yuste, R; Majewska, A; Cash, S S; Denk, W

    1999-03-15

    Dendritic spines receive most excitatory inputs in the vertebrate brain, but their function is still poorly understood. Using two-photon calcium imaging of CA1 pyramidal neurons in rat hippocampal slices, we investigated the mechanisms by which calcium enters into individual spines in the stratum radiatum. We find three different pathways for calcium influx: high-threshold voltage-sensitive calcium channels, NMDA receptors, and an APV-resistant influx consistent with calcium-permeable AMPA or kainate receptors. These pathways vary among different populations of spines and are engaged under different stimulation conditions, with peak calcium concentrations reaching >10 microM. Furthermore, as a result of the biophysical properties of the NMDA receptor, the calcium dynamics of spines are exquisitely sensitive to the temporal coincidence of the input and output of the neuron. Our results confirm that individual spines are chemical compartments that can perform coincidence detection. Finally, we demonstrate that functional studies and optical quantal analysis of single, identified synapses is feasible in mammalian CNS neurons in brain slices.

  18. SpineData

    DEFF Research Database (Denmark)

    Kent, Peter; Kongsted, Alice; Jensen, Tue Secher;

    2015-01-01

    % with mid-back pain, and 15% with neck pain. Collectively, across the body regions and measurement time points, there are approximately 1,980 patient-related variables in the database across a broad range of biopsychosocial factors. To date, 36 research projects have used data from the SpineData registry......, including collaborations with researchers from Denmark, Australia, the United Kingdom, and Brazil. Conclusion: We described the aims, development, structure, and content of the SpineData registry, and what is known about any attrition bias and cluster effects in the data. For epidemiology research...

  19. A Comparative Study of Apical Healing of Open Apices Using MTA and Ca(OH2 Apical Plugs in Cats

    Directory of Open Access Journals (Sweden)

    M. H. Zarrabi

    2005-06-01

    Full Text Available Statement of problem: Endodontic treatment of necrotic teeth with open apices is a challenge. After ruling out surgery as a treatment scheme and introduction of the multivisit apexification which in turn had its disadvantages, apical plug seems to be a suitable substitute treatment plan for such cases. Apical plug makes the treatment through formation of a barrier against the obturating material in a single visit.Purpose: The purpose of this study was to compare histologically the periapical healing using MTA and calcium hydroxide apical plugs after intervals of 4 and 12 weeks in cats.Materials and Methods: In this clinical trial study 64 canines of 16 healthy and mature cats were divided into 3 groups after a periapical lesion formation by over instrumentation in the apical area with files up to no.120. The first group included 24 teeth on which MTA apical plug was applied. The second group included 24 teeth on which Ca (OH 2 apical plug was applied. In both groups the canals were filled with gutta percha and sealer. The third group included 16 control teeth whose canals were left empty after instrumentation and debridement. The access cavities of all teeth were sealed with varnish and amalgam and the vital perfusion of cats was performed in 4 and 12 week intervals. Statistical analysis was established by χ2 and independence test.Results: After 4 weeks, periapical healing in the first group was 90%, in the second group 80% and in the third group, it was only 12.5 %. After 12 weeks, periapical healing occurred in 100% of the MTA group, while it was 57.1% in the second and 40%in the third group .Generally, in the study of histological parameters of healing, no statistical significant difference was observed between the 2 experimental groups,although the MTA group results were much better than the Ca (OH 2 group especially at 12 weeks.Conclusion: The use of MTA apical plug is more effective than Ca (OH 2 in treatment of necrotic teeth with open

  20. Functional properties of granule cells with hilar basal dendrites in the epileptic dentate gyrus.

    Science.gov (United States)

    Kelly, Tony; Beck, Heinz

    2017-01-01

    The maturation of adult-born granule cells and their functional integration into the network is thought to play a key role in the proper functioning of the dentate gyrus. In temporal lobe epilepsy, adult-born granule cells in the dentate gyrus develop abnormally and possess a hilar basal dendrite (HBD). Although morphological studies have shown that these HBDs have synapses, little is known about the functional properties of these HBDs or the intrinsic and network properties of the granule cells that possess these aberrant dendrites. We performed patch-clamp recordings of granule cells within the granule cell layer "normotopic" from sham-control and status epilepticus (SE) animals. Normotopic granule cells from SE animals possessed an HBD (SE(+) HBD(+) cells) or not (SE(+) HBD(-) cells). Apical and basal dendrites were stimulated using multiphoton uncaging of glutamate. Two-photon Ca(2+) imaging was used to measure Ca(2+) transients associated with back-propagating action potentials (bAPs). Near-synchronous synaptic input integrated linearly in apical dendrites from sham-control animals and was not significantly different in apical dendrites of SE(+) HBD(-) cells. The majority of HBDs integrated input linearly, similar to apical dendrites. However, 2 of 11 HBDs were capable of supralinear integration mediated by a dendritic spike. Furthermore, the bAP-evoked Ca(2+) transients were relatively well maintained along HBDs, compared with apical dendrites. This further suggests an enhanced electrogenesis in HBDs. In addition, the output of granule cells from epileptic tissue was enhanced, with both SE(+) HBD(-) and SE(+) HBD(+) cells displaying increased high-frequency (>100 Hz) burst-firing. Finally, both SE(+) HBD(-) and SE(+) HBD(+) cells received recurrent excitatory input that was capable of generating APs, especially in the absence of feedback inhibition. Taken together, these data suggest that the enhanced excitability of HBDs combined with the altered intrinsic

  1. Beyond the spine

    DEFF Research Database (Denmark)

    Donovan, James; Cassidy, J David; Cancelliere, Carol;

    2015-01-01

    Over the past two decades, clinical research within the chiropractic profession has focused on the spine and spinal conditions, specifically neck and low back pain. However, there is now a small group of chiropractors with clinical research training that are shifting their focus away from...

  2. Stochasticity in Ca2+ increase in spines enables robust and sensitive information coding.

    Directory of Open Access Journals (Sweden)

    Takuya Koumura

    Full Text Available A dendritic spine is a very small structure (∼0.1 µm3 of a neuron that processes input timing information. Why are spines so small? Here, we provide functional reasons; the size of spines is optimal for information coding. Spines code input timing information by the probability of Ca2+ increases, which makes robust and sensitive information coding possible. We created a stochastic simulation model of input timing-dependent Ca2+ increases in a cerebellar Purkinje cell's spine. Spines used probability coding of Ca2+ increases rather than amplitude coding for input timing detection via stochastic facilitation by utilizing the small number of molecules in a spine volume, where information per volume appeared optimal. Probability coding of Ca2+ increases in a spine volume was more robust against input fluctuation and more sensitive to input numbers than amplitude coding of Ca2+ increases in a cell volume. Thus, stochasticity is a strategy by which neurons robustly and sensitively code information.

  3. Targeted pruning of a neuron’s dendritic tree via femtosecond laser dendrotomy

    Science.gov (United States)

    Go, Mary Ann; Choy, Julian Min Chiang; Colibaba, Alexandru Serban; Redman, Stephen; Bachor, Hans-A.; Stricker, Christian; Daria, Vincent Ricardo

    2016-01-01

    Neurons are classified according to action potential firing in response to current injection. While such firing patterns are shaped by the composition and distribution of ion channels, modelling studies suggest that the geometry of dendritic branches also influences temporal firing patterns. Verifying this link is crucial to understanding how neurons transform their inputs to output but has so far been technically challenging. Here, we investigate branching-dependent firing by pruning the dendritic tree of pyramidal neurons. We use a focused ultrafast laser to achieve highly localized and minimally invasive cutting of dendrites, thus keeping the rest of the dendritic tree intact and the neuron functional. We verify successful dendrotomy via two-photon uncaging of neurotransmitters before and after dendrotomy at sites around the cut region and via biocytin staining. Our results show that significantly altering the dendritic arborisation, such as by severing the apical trunk, enhances excitability in layer V cortical pyramidal neurons as predicted by simulations. This method may be applied to the analysis of specific relationships between dendritic structure and neuronal function. The capacity to dynamically manipulate dendritic topology or isolate inputs from various dendritic domains can provide a fresh perspective on the roles they play in shaping neuronal output.

  4. Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites

    Science.gov (United States)

    Golding, Nace L; Mickus, Timothy J; Katz, Yael; Kath, William L; Spruston, Nelson

    2005-01-01

    We performed simultaneous patch-electrode recordings from the soma and apical dendrite of CA1 pyramidal neurons in hippocampal slices, in order to determine the degree of voltage attenuation along CA1 dendrites. Fifty per cent attenuation of steady-state somatic voltage changes occurred at a distance of 238 μm from the soma in control and 409 μm after blocking the hyperpolarization-activated (H) conductance. The morphology of three neurons was reconstructed and used to generate computer models, which were adjusted to fit the somatic and dendritic voltage responses. These models identify several factors contributing to the voltage attenuation along CA1 dendrites, including high axial cytoplasmic resistivity, low membrane resistivity, and large H conductance. In most cells the resting membrane conductances, including the H conductances, were larger in the dendrites than the soma. Simulations suggest that synaptic potentials attenuate enormously as they propagate from the dendrite to the soma, with greater than 100-fold attenuation for synapses on many small, distal dendrites. A prediction of this powerful EPSP attenuation is that distal synaptic inputs are likely only to be effective in the presence of conductance scaling, dendritic excitability, or both. PMID:16002454

  5. Apical root resorption in orthodontically treated adults.

    Science.gov (United States)

    Baumrind, S; Korn, E L; Boyd, R L

    1996-09-01

    This study analyzed the relationship in orthodontically treated adults between upper central incisor displacement measured on lateral cephalograms and apical root resorption measured on anterior periapical x-ray films. A multiple linear regression examined incisor displacements in four directions (retraction, advancement, intrusion, and extrusion) as independent variables, attempting to account for observed differences in the dependent variable, resorption. Mean apical resorption was 1.36 mm (sd +/- 1.46, n = 73). Mean horizontal displacement of the apex was -0.83 mm (sd +/- 1.74, n = 67); mean vertical displacement was 0.19 mm (sd +/- 1.48, n = 67). The regression coefficients for the intercept and for retraction were highly significant; those for extrusion, intrusion, and advancement were not. At the 95% confidence level, an average of 0.99 mm (se = +/- 0.34) of resorption was implied in the absence of root displacement and an average of 0.49 mm (se = +/- 0.14) of resorption was implied per millimeter of retraction. R2 for all four directional displacement variables (DDVs) taken together was only 0.20, which implied that only a relatively small portion of the observed apical resorption could be accounted for by tooth displacement alone. In a secondary set of univariate analyses, the associations between apical resorption and each of 14 additional treatment-related variables were examined. Only Gender, Elapsed Time, and Total Apical Displacement displayed statistically significant associations with apical resorption. Additional multiple regressions were then performed in which the data for each of these three statistically significant variables were considered separately, with the data for the four directional displacement variables. The addition of information on Elapsed Time or Total Apical Displacement did not explain a significant additional portion of the variability in apical resorption. On the other hand, the addition of information on Gender to the

  6. Optimization principles of dendritic structure

    Directory of Open Access Journals (Sweden)

    Borst Alexander

    2007-06-01

    Full Text Available Abstract Background Dendrites are the most conspicuous feature of neurons. However, the principles determining their structure are poorly understood. By employing cable theory and, for the first time, graph theory, we describe dendritic anatomy solely on the basis of optimizing synaptic efficacy with minimal resources. Results We show that dendritic branching topology can be well described by minimizing the path length from the neuron's dendritic root to each of its synaptic inputs while constraining the total length of wiring. Tapering of diameter toward the dendrite tip – a feature of many neurons – optimizes charge transfer from all dendritic synapses to the dendritic root while housekeeping the amount of dendrite volume. As an example, we show how dendrites of fly neurons can be closely reconstructed based on these two principles alone.

  7. Microbiology and Treatment of Acute Apical Abscesses

    Science.gov (United States)

    Rôças, Isabela N.

    2013-01-01

    SUMMARY Acute apical abscess is the most common form of dental abscess and is caused by infection of the root canal of the tooth. It is usually localized intraorally, but in some cases the apical abscess may spread and result in severe complications or even mortality. The reasons why dental root canal infections can become symptomatic and evolve to severe spreading and sometimes life-threatening abscesses remain elusive. Studies using culture and advanced molecular microbiology methods for microbial identification in apical abscesses have demonstrated a multispecies community conspicuously dominated by anaerobic bacteria. Species/phylotypes commonly found in these infections belong to the genera Fusobacterium, Parvimonas, Prevotella, Porphyromonas, Dialister, Streptococcus, and Treponema. Advances in DNA sequencing technologies and computational biology have substantially enhanced the knowledge of the microbiota associated with acute apical abscesses and shed some light on the etiopathogeny of this disease. Species richness and abundance and the resulting network of interactions among community members may affect the collective pathogenicity and contribute to the development of acute infections. Disease modifiers, including transient or permanent host-related factors, may also influence the development and severity of acute abscesses. This review focuses on the current evidence about the etiology and treatment of acute apical abscesses and how the process is influenced by host-related factors and proposes future directions in research, diagnosis, and therapeutic approaches to deal with this disease. PMID:23554416

  8. Apical domain polarization localizes actin-myosin activity to drive ratchet-like apical constriction.

    Science.gov (United States)

    Mason, Frank M; Tworoger, Michael; Martin, Adam C

    2013-08-01

    Apical constriction promotes epithelia folding, which changes tissue architecture. During Drosophila gastrulation, mesoderm cells exhibit repeated contractile pulses that are stabilized such that cells apically constrict like a ratchet. The transcription factor Twist is required to stabilize cell shape. However, it is unknown how Twist spatially coordinates downstream signals to prevent cell relaxation. We find that during constriction, Rho-associated kinase (Rok) is polarized to the middle of the apical domain (medioapical cortex), separate from adherens junctions. Rok recruits or stabilizes medioapical myosin II (Myo-II), which contracts dynamic medioapical actin cables. The formin Diaphanous mediates apical actin assembly to suppress medioapical E-cadherin localization and form stable connections between the medioapical contractile network and adherens junctions. Twist is not required for apical Rok recruitment, but instead polarizes Rok medioapically. Therefore, Twist establishes radial cell polarity of Rok/Myo-II and E-cadherin and promotes medioapical actin assembly in mesoderm cells to stabilize cell shape fluctuations.

  9. The Downside of Right Ventricular Apical Pacing

    Directory of Open Access Journals (Sweden)

    Andrew Brenyo, MD

    2012-05-01

    Full Text Available The right ventricular (RV apex has been the standard pacing site since the development of implantable pacemaker technology. Although RV pacing was initially only utilized for the treatment of severe bradyarrhythmias usually due to complete heart block, today the indications for and implantation of RV pacing devices is dramatically larger. Recently, the adverse effects of chronic RV apical pacing have been described including an increased risk of heart failure and death. This review details the detrimental effects of RV apical pacing and their shared hemodynamic pathophysiology. In particular, the role of RV apical pacing induced ventricular dyssynchrony is highlighted with a specific focus on differential outcome based upon QRS morphology at implant.

  10. Preferential control of basal dendritic protrusions by EphB2.

    Directory of Open Access Journals (Sweden)

    Matthew S Kayser

    Full Text Available The flow of information between neurons in many neural circuits is controlled by a highly specialized site of cell-cell contact known as a synapse. A number of molecules have been identified that are involved in central nervous system synapse development, but knowledge is limited regarding whether these cues direct organization of specific synapse types or on particular regions of individual neurons. Glutamate is the primary excitatory neurotransmitter in the brain, and the majority of glutamatergic synapses occur on mushroom-shaped protrusions called dendritic spines. Changes in the morphology of these structures are associated with long-lasting modulation of synaptic strength thought to underlie learning and memory, and can be abnormal in neuropsychiatric disease. Here, we use rat cortical slice cultures to examine how a previously-described synaptogenic molecule, the EphB2 receptor tyrosine kinase, regulates dendritic protrusion morphology in specific regions of the dendritic arbor in cortical pyramidal neurons. We find that alterations in EphB2 signaling can bidirectionally control protrusion length, and knockdown of EphB2 expression levels reduces the number of dendritic spines and filopodia. Expression of wild-type or dominant negative EphB2 reveals that EphB2 preferentially regulates dendritic protrusion structure in basal dendrites. Our findings suggest that EphB2 may act to specify synapse formation in a particular subcellular region of cortical pyramidal neurons.

  11. RAB-10 Regulates Dendritic Branching by Balancing Dendritic Transport.

    Directory of Open Access Journals (Sweden)

    Caitlin A Taylor

    2015-12-01

    Full Text Available The construction of a large dendritic arbor requires robust growth and the precise delivery of membrane and protein cargoes to specific subcellular regions of the developing dendrite. How the microtubule-based vesicular trafficking and sorting systems are regulated to distribute these dendritic development factors throughout the dendrite is not well understood. Here we identify the small GTPase RAB-10 and the exocyst complex as critical regulators of dendrite morphogenesis and patterning in the C. elegans sensory neuron PVD. In rab-10 mutants, PVD dendritic branches are reduced in the posterior region of the cell but are excessive in the distal anterior region of the cell. We also demonstrate that the dendritic branch distribution within PVD depends on the balance between the molecular motors kinesin-1/UNC-116 and dynein, and we propose that RAB-10 regulates dendrite morphology by balancing the activity of these motors to appropriately distribute branching factors, including the transmembrane receptor DMA-1.

  12. Dendritic geometry shapes neuronal cAMP signalling to the nucleus.

    Science.gov (United States)

    Li, Lu; Gervasi, Nicolas; Girault, Jean-Antoine

    2015-02-18

    Neurons have complex dendritic trees, receiving numerous inputs at various distances from the cell body. Yet the rules of molecular signal propagation from dendrites to nuclei are unknown. DARPP-32 is a phosphorylation-regulated signalling hub in striatal output neurons. We combine diffusion-reaction modelling and live imaging to investigate cAMP-activated DARPP-32 signalling to the nucleus. The model predicts maximal effects on the nucleus of cAMP production in secondary dendrites, due to segmental decrease of dendrite diameter. Variations in branching, perikaryon size or spines have less pronounced effects. Biosensor kinase activity measurement following cAMP or dopamine uncaging confirms these predictions. Histone 3 phosphorylation, regulated by this pathway, is best stimulated by cAMP released in secondary-like dendrites. Thus, unexpectedly, the efficacy of diffusion-based signalling from dendrites to nucleus is not inversely proportional to the distance. We suggest a general mechanism by which dendritic geometry counterbalances the effect of dendritic distance for signalling to the nucleus.

  13. The Flatness of Bifurcations in 3D Dendritic Trees: An Optimal Design.

    Science.gov (United States)

    van Pelt, Jaap; Uylings, Harry B M

    2011-01-01

    The geometry of natural branching systems generally reflects functional optimization. A common property is that their bifurcations are planar and that daughter segments do not turn back in the direction of the parent segment. The present study investigates whether this also applies to bifurcations in 3D dendritic arborizations. This question was earlier addressed in a first study of flatness of 3D dendritic bifurcations by Uylings and Smit (1975), who used the apex angle of the right circular cone as flatness measure. The present study was inspired by recent renewed interest in this measure. Because we encountered ourselves shortcomings of this cone angle measure, the search for an optimal measure for flatness of 3D bifurcation was the second aim of our study. Therefore, a number of measures has been developed in order to quantify flatness and orientation properties of spatial bifurcations. All these measures have been expressed mathematically in terms of the three bifurcation angles between the three pairs of segments in the bifurcation. The flatness measures have been applied and evaluated to bifurcations in rat cortical pyramidal cell basal and apical dendritic trees, and to random spatial bifurcations. Dendritic and random bifurcations show significant different flatness measure distributions, supporting the conclusion that dendritic bifurcations are significantly more flat than random bifurcations. Basal dendritic bifurcations also show the property that their parent segments are generally aligned oppositely to the bisector of the angle between their daughter segments, resulting in "symmetrical" configurations. Such geometries may arise when during neuronal development the segments at a newly formed bifurcation are subjected to elastic tensions, which force the bifurcation into an equilibrium planar shape. Apical bifurcations, however, have parent segments oppositely aligned with one of the daughter segments. These geometries arise in the case of side

  14. THORACIC SPINE FRACTURES

    Institute of Scientific and Technical Information of China (English)

    戴力扬

    2001-01-01

    Objective. To investigate the unique characteristics and treatment of thoracic spine fractures.Methods. Severty-seven patients with thoracic spine fractures were retrospectively reviewed. Of these, therewere 37 compressior fractures, 34 fracture-dislocations, 3 burst fractures and 3 burst-dislocations. Twenty-six pa-tients had a complete lesion of the spinal cord, 14 sustained a neurologically incomplete injury, and 37 wereneurologically intact. Fifty-three patients were treated nonoperatively and 24 treated operatively.Results. All patients were followed up for 2 ~ 15 years. None of the 26 patients with a complete lesion recov-ered any significant function. Of 37 neurologically intact patients, 13 had local pain although all of them re-mained normal function. Two of 14 patients with incomplete paraplegia returned to normal, 7 recovered some func-tion and 5 did not recovered.Conclusions. E ecause of the unique anatomy and biomechanics of the thoracic spine, the classification common-ly applied to thoracolumbar fractures is not suitable for thoracic fractures. Fusion and instrumentation are indicat-ed when the fractures are unstable, while patients with incomplete lesion of the spinal cord may be the candidatesfor supplemented decompression.

  15. Rendering the Topological Spines

    Energy Technology Data Exchange (ETDEWEB)

    Nieves-Rivera, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-05

    Many tools to analyze and represent high dimensional data already exits yet most of them are not flexible, informative and intuitive enough to help the scientists make the corresponding analysis and predictions, understand the structure and complexity of scientific data, get a complete picture of it and explore a greater number of hypotheses. With this in mind, N-Dimensional Data Analysis and Visualization (ND²AV) is being developed to serve as an interactive visual analysis platform with the purpose of coupling together a number of these existing tools that range from statistics, machine learning, and data mining, with new techniques, in particular with new visualization approaches. My task is to create the rendering and implementation of a new concept called topological spines in order to extend ND²AV's scope. Other existing visualization tools create a representation preserving either the topological properties or the structural (geometric) ones because it is challenging to preserve them both simultaneously. Overcoming such challenge by creating a balance in between them, the topological spines are introduced as a new approach that aims to preserve them both. Its render using OpenGL and C++ and is currently being tested to further on be implemented on ND²AV. In this paper I will present what are the Topological Spines and how they are rendered.

  16. Moderate traumatic brain injury causes acute dendritic and synaptic degeneration in the hippocampal dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    Full Text Available Hippocampal injury-associated learning and memory deficits are frequent hallmarks of brain trauma and are the most enduring and devastating consequences following traumatic brain injury (TBI. Several reports, including our recent paper, showed that TBI brought on by a moderate level of controlled cortical impact (CCI induces immature newborn neuron death in the hippocampal dentate gyrus. In contrast, the majority of mature neurons are spared. Less research has been focused on these spared neurons, which may also be injured or compromised by TBI. Here we examined the dendrite morphologies, dendritic spines, and synaptic structures using a genetic approach in combination with immunohistochemistry and Golgi staining. We found that although most of the mature granular neurons were spared following TBI at a moderate level of impact, they exhibited dramatic dendritic beading and fragmentation, decreased number of dendritic branches, and a lower density of dendritic spines, particularly the mushroom-shaped mature spines. Further studies showed that the density of synapses in the molecular layer of the hippocampal dentate gyrus was significantly reduced. The electrophysiological activity of neurons was impaired as well. These results indicate that TBI not only induces cell death in immature granular neurons, it also causes significant dendritic and synaptic degeneration in pathohistology. TBI also impairs the function of the spared mature granular neurons in the hippocampal dentate gyrus. These observations point to a potential anatomic substrate to explain, in part, the development of posttraumatic memory deficits. They also indicate that dendritic damage in the hippocampal dentate gyrus may serve as a therapeutic target following TBI.

  17. Active properties of neuronal dendrites.

    Science.gov (United States)

    Johnston, D; Magee, J C; Colbert, C M; Cristie, B R

    1996-01-01

    Dendrites of neurons in the central nervous system are the principal sites for excitatory synaptic input. Although little is known about their function, two disparate perspectives have arisen to describe the activity patterns inherent to these diverse tree-like structures. Dendrites are thus considered either passive or active in their role in integrating synaptic inputs. This review follows the history of dendritic research from before the turn of the century to the present, with a primary focus on the hippocampus. A number of recent techniques, including high-speed fluorescence imaging and dendritic patch clamping, have provided new information and perspectives about the active properties of dendrites. The results support previous notions about the dendritic propagation of action potentials and also indicate which types of voltage-gated sodium and calcium channels are expressed and functionally active in dendrites. Possible roles for the active properties of dendrites in synaptic plasticity and integration are also discussed.

  18. Cell division activity during apical hook development

    NARCIS (Netherlands)

    Raz, V.; Koornneef, M.

    2001-01-01

    Growth during plant development is predominantly governed by the combined activities of cell division and cell elongation. The relative contribution of both activities controls the growth of a tissue. A fast change in growth is exhibited at the apical hypocotyl of etiolated seedlings where cells

  19. Cell division activity during apical hook development

    NARCIS (Netherlands)

    Raz, V.; Koornneef, M.

    2001-01-01

    Growth during plant development is predominantly governed by the combined activities of cell division and cell elongation. The relative contribution of both activities controls the growth of a tissue. A fast change in growth is exhibited at the apical hypocotyl of etiolated seedlings where cells gro

  20. Isothermal Dendritic Growth Experiment Video

    Science.gov (United States)

    1997-01-01

    This video, captured during the Isothermal Dendritic Growth Experiment (IDGE) flown on STS-87 as a part of the fourth United States Microgravity payload, shows the growth of a dendrite, and the surface solidification that occurred on the front and back windows of the growth chamber. Dendrites are tiny, tree like structures that form as metals solidify.

  1. α-Actinin-2 mediates spine morphology and assembly of the post-synaptic density in hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Jennifer L Hodges

    Full Text Available Dendritic spines are micron-sized protrusions that constitute the primary post-synaptic sites of excitatory neurotransmission in the brain. Spines mature from a filopodia-like protrusion into a mushroom-shaped morphology with a post-synaptic density (PSD at its tip. Modulation of the actin cytoskeleton drives these morphological changes as well as the spine dynamics that underlie learning and memory. Several PSD molecules respond to glutamate receptor activation and relay signals to the underlying actin cytoskeleton to regulate the structural changes in spine and PSD morphology. α-Actinin-2 is an actin filament cross-linker, which localizes to dendritic spines, enriched within the post-synaptic density, and implicated in actin organization. We show that loss of α-actinin-2 in rat hippocampal neurons creates an increased density of immature, filopodia-like protrusions that fail to mature into a mushroom-shaped spine during development. α-Actinin-2 knockdown also prevents the recruitment and stabilization of the PSD in the spine, resulting in failure of synapse formation, and an inability to structurally respond to chemical stimulation of the N-methyl-D-aspartate (NMDA-type glutamate receptor. The Ca2+-insensitive EF-hand motif in α-actinin-2 is necessary for the molecule's function in regulating spine morphology and PSD assembly, since exchanging it for the similar but Ca2+-sensitive domain from α-actinin-4, another α-actinin isoform, inhibits its function. Furthermore, when the Ca2+-insensitive domain from α-actinin-2 is inserted into α-actinin-4 and expressed in neurons, it creates mature spines. These observations support a model whereby α-actinin-2, partially through its Ca2+-insensitive EF-hand motif, nucleates PSD formation via F-actin organization and modulates spine maturation to mediate synaptogenesis.

  2. Neuromechanical control of the spine

    OpenAIRE

    Hodges, Paul

    2003-01-01

    Control of the spine is complex. The spine is inherently unstable and dependent on the contribution of muscles. Yet there is considerable redundancy in the motor system with many muscles that act on the trunk. This is further complicated by the indirect effects of trunk muscle contraction on the spine, such as increased intraabdominal pressure (IAP), and the multiple functions that must be performed by the trunk muscles such as respiration, in addition to control and movemen...

  3. Normal apical pleural tenting: CT findings

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Dong Wook; Yoon, Yup; Jeong, Yu Mee; Park, Joo Chul; Cho, Kyu Seok; Ahn, Hee Kyung; Lee, Won Kyu [Kyunghee Univ. College of Medicine, Seoul (Korea, Republic of)

    1996-07-01

    To define the anatomy of apical pleural tenting commonly seen in computed tomography(CT) of the upper posterior thorax. Chest CTs of 393 patients with no pleural disease clinically and radiographically were analyzed. GE-9800 Quick and Toshiba-900S were used, employing the usual contrast enhanced CT technique. CT findings of focal pleural tenting on the inner side of the upper posterior thorax(apical pleural tenting) were evalvated and analysed in terms of location and shape. The CT findings were compared with the gross findings of the inner aspect of the posterior cadaveric thorax. Apical pleural tenting was formed by the upper border of the subcostal muscle. It's incidence was 44%(n=171), with bilaterality in 29%(n=49), and unilaterality in 71% of cases(n=122). This tenting was most frequently found between the third rib and the fourth intercostal space(81%), and seen in the outer third(42%) or central third(41%) part of the posterior costal pleura. In fifteen cases(7%), it was directed obliquely and had changed its location from the inner to the central or the central to the outer part. The shapes of the tenting were classified as follows:type 1(convex inner border with sharp apex, 62%); type 2(convex inner border with broad apex, 23%);type 3(undulated contour of apex, 13%);and type 4(two-spike apices, 1%). Apical pleura tenting is a normal CT finding probably demonstrated by the upper border of the subcostal muscle. Misdiagnosis of pleural disease can be avoided by recognition of the location and type of this tenting.

  4. An occult cervical spine fracture.

    Science.gov (United States)

    Khosla, R

    1997-12-01

    A 16-year-old athlete developed neck pain after being dropped on his head with his neck flexed while recreationally wrestling. Initial cervical spine radiographs were negative, but he continued to have neck and arm pain, especially after heading a wet soccer ball. Two months after the initial injury, he had a positive Spurling test; cervical spine CT then revealed a parasagittal linear fracture through the body of C-7. The patient avoided contact and collision activities and had no further physical problems. For patients who suffer cervical spine trauma, adequate visualization of the cervical spine can help prevent catastrophic outcomes.

  5. Type I TARPs promote dendritic growth of early postnatal neocortical pyramidal cells in organotypic cultures.

    Science.gov (United States)

    Hamad, Mohammad I K; Jack, Alexander; Klatt, Oliver; Lorkowski, Markus; Strasdeit, Tobias; Kott, Sabine; Sager, Charlotte; Hollmann, Michael; Wahle, Petra

    2014-04-01

    The ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazole propionate glutamate receptors (AMPARs) have been implicated in the establishment of dendritic architecture. The transmembrane AMPA receptor regulatory proteins (TARPs) regulate AMPAR function and trafficking into synaptic membranes. In the current study, we employ type I and type II TARPs to modulate expression levels and function of endogenous AMPARs and investigate in organotypic cultures (OTCs) of rat occipital cortex whether this influences neuronal differentiation. Our results show that in early development [5-10 days in vitro (DIV)] only the type I TARP γ-8 promotes pyramidal cell dendritic growth by increasing spontaneous calcium amplitude and GluA2/3 expression in soma and dendrites. Later in development (10-15 DIV), the type I TARPs γ-2, γ-3 and γ-8 promote dendritic growth, whereas γ-4 reduced dendritic growth. The type II TARPs failed to alter dendritic morphology. The TARP-induced dendritic growth was restricted to the apical dendrites of pyramidal cells and it did not affect interneurons. Moreover, we studied the effects of short hairpin RNA-induced knockdown of endogenous γ-8 and showed a reduction of dendritic complexity and amplitudes of spontaneous calcium transients. In addition, the cytoplasmic tail (CT) of γ-8 was required for dendritic growth. Single-cell calcium imaging showed that the γ-8 CT domain increases amplitude but not frequency of calcium transients, suggesting a regulatory mechanism involving the γ-8 CT domain in the postsynaptic compartment. Indeed, the effect of γ-8 overexpression was reversed by APV, indicating a contribution of NMDA receptors. Our results suggest that selected type I TARPs influence activity-dependent dendritogenesis of immature pyramidal neurons.

  6. Dendritic Arborization Patterns of Small Juxtaglomerular Cell Subtypes within the Rodent Olfactory Bulb

    Science.gov (United States)

    Bywalez, Wolfgang G.; Ona-Jodar, Tiffany; Lukas, Michael; Ninkovic, Jovica; Egger, Veronica

    2017-01-01

    Within the glomerular layer of the rodent olfactory bulb, numerous subtypes of local interneurons contribute to early processing of incoming sensory information. Here we have investigated dopaminergic and other small local juxtaglomerular cells in rats and mice and characterized their dendritic arborization pattern with respect to individual glomeruli by fluorescent labeling via patching and reconstruction of dendrites and glomerular contours from two-photon imaging data. Dopaminergic neurons were identified in a transgenic mouse line where the expression of dopamine transporter (DAT) was labeled with GFP. Among the DAT+ cells we found a small short-axon cell (SAC) subtype featuring hitherto undescribed dendritic specializations. These densely ramifying structures clasped mostly around somata of other juxtaglomerular neurons, which were also small, non-dopaminergic and to a large extent non-GABAergic. Clasping SACs were observed also in wild-type mice and juvenile rats. In DAT+ SAC dendrites, single backpropagating action potentials evoked robust calcium entry throughout both clasping and non-clasping compartments. Besides clasping SACs, most other small neurons either corresponded to the classical periglomerular cell type (PGCs), which was never DAT+, or were undersized cells with a small dendritic tree and low excitability. Aside from the presence of clasps in SAC dendrites, many descriptors of dendritic morphology such as the number of dendrites and the extent of branching were not significantly different between clasping SACs and PGCs. However, a detailed morphometric analysis in relation to glomerular contours revealed that the dendrites of clasping SACs arborized mostly in the juxtaglomerular space and never entered more than one glomerulus (if at all), whereas most PGC dendrites were restricted to their parent glomerulus, similar to the apical tufts of mitral cells. These complementary arborization patterns might underlie a highly complementary functional

  7. Microbiome in the Apical Root Canal System of Teeth with Post-Treatment Apical Periodontitis

    Science.gov (United States)

    Siqueira, José F.; Antunes, Henrique S.; Rôças, Isabela N.; Rachid, Caio T. C. C.

    2016-01-01

    Introduction Bacteria present in the apical root canal system are directly involved with the pathogenesis of post-treatment apical periodontitis. This study used a next-generation sequencing approach to identify the bacterial taxa occurring in cryopulverized apical root samples from root canal-treated teeth with post-treatment disease. Methods Apical root specimens obtained during periradicular surgery of ten adequately treated teeth with persistent apical periodontitis were cryogenically ground. DNA was extracted from the powder and the microbiome was characterized on the basis of the V4 hypervariable region of the 16S rRNA gene by using paired-end sequencing on Illumina MiSeq device. Results All samples were positive for the presence of bacterial DNA. Bacterial taxa were mapped to 11 phyla and 103 genera composed by 538 distinct operational taxonomic units (OTUs) at 3% of dissimilarity. Over 85% of the sequences belonged to 4 phyla: Proteobacteria, Firmicutes, Fusobacteria and Actinobacteria. In general, these 4 phyla accounted for approximately 80% of the distinct OTUs found in the apical root samples. Proteobacteria was the most abundant phylum in 6/10 samples. Fourteen genera had representatives identified in all cases. Overall, the genera Fusobacterium and Pseudomonas were the most dominant. Enterococcus was found in 4 cases, always in relatively low abundance. Conclusions This study showed a highly complex bacterial community in the apical root canal system of adequately treated teeth with persistent apical periodontitis. This suggests that this disease is characterized by multispecies bacterial communities and has a heterogeneous etiology, because the community composition largely varied from case to case. PMID:27689802

  8. Apical domain polarization localizes actin-myosin activity to drive ratchet-like apical constriction

    OpenAIRE

    Mason, Frank M.; Tworoger, Michael; Martin, Adam C.

    2013-01-01

    Apical constriction promotes epithelia folding, which changes tissue architecture. During Drosophila gastrulation, mesoderm cells exhibit repeated contractile pulses that are stabilized such that cells apically constrict like a ratchet. The transcription factor Twist is required to stabilize cell shape, however it is unknown how Twist spatially coordinates downstream signals to prevent cell relaxation. We find that during constriction, Rho-associated kinase (Rok) is polarized to the middle of...

  9. Long term delivery of pulsed magnetic fields does not alter visual discrimination learning or dendritic spine density in the mouse CA1 pyramidal or dentate gyrus neurons [v2; ref status: indexed, http://f1000r.es/2gk

    Directory of Open Access Journals (Sweden)

    Matthew Sykes

    2013-12-01

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS is thought to facilitate brain plasticity. However, few studies address anatomical changes following rTMS in relation to behaviour. We delivered 5 weeks of daily pulsed rTMS stimulation to adult ephrin-A2-/- and wildtype (C57BI/6j mice (n=10 per genotype undergoing a visual learning task and analysed learning performance, as well as spine density, in the dentate gyrus molecular and CA1 pyramidal cell layers in Golgi-stained brain sections. We found that neither learning behaviour, nor hippocampal spine density was affected by long term rTMS. Our negative results highlight the lack of deleterious side effects in normal subjects and are consistent with previous studies suggesting that rTMS has a bigger effect on abnormal or injured brain substrates than on normal/control structures.

  10. Transport Processes in Dendritic Crystallization

    Science.gov (United States)

    Glicksman, M. E.

    1984-01-01

    Free dentritic growth refers to the unconstrained development of crystals within a supercooled melt, which is the classical dendrite problem. The development of theoretical understanding of dendritic growth and its experimental status is sketched showing that transport theory and interfacial thermodynamics (capillarity theory) are insufficient ingredients to develop a truly predictive model of dendrite formation. The convenient, but incorrect, notion of maximum velocity was used for many years to estimate the behavior of dendritic transformations until supplanted by modern dynamic stability theory. The proper combinations of transport theory and morphological stability seem to be able to predict the salient aspects of dendritic growth, especially in the neighborhood of the tip.

  11. Differential localization of delta glutamate receptors in the rat cerebellum: coexpression with AMPA receptors in parallel fiber-spine synapses and absence from climbing fiber-spine synapses.

    Science.gov (United States)

    Landsend, A S; Amiry-Moghaddam, M; Matsubara, A; Bergersen, L; Usami, S; Wenthold, R J; Ottersen, O P

    1997-01-15

    The delta 2 glutamate receptors are prominently expressed in Purkinje cells and are thought to play a key role in the induction of cerebellar long-term depression. The synaptic and subsynaptic localization of delta receptors in rat cerebellar cortex was investigated with sensitive and high-resolution immunogold procedures. After postembedding incubation with an antibody raised to a C-terminal peptide of delta 2, high gold particle densities occurred in all parallel fiber synapses with Purkinje cell dendritic spines, whereas other synapses were consistently devoid of labeling. Among the types of immunonegative synapse were climbing fiber synapses with spines and parallel fiber synapses with dendritic stems of interneurons. At the parallel fiber-spine synapse, gold particles signaling delta receptors were restricted to the postsynaptic specialization. By the use of double labeling with two different gold particle sizes, it was shown that delta and AMPA GluR2/3 receptors were colocalized along the entire extent of the postsynaptic specialization without forming separate domains. The distribution of gold particles representing delta receptors was consistent with a cytoplasmic localization of the C terminus and an absence of a significant presynaptic pool of receptor molecules. The present data suggest that the delta 2 receptors are targeted selectively to a subset of Purkinje cell spines and that they are coexpressed with ionotropic receptors in the postsynaptic specialization. This arrangement could allow for a direct interaction between the two classes of receptor.

  12. A Case of Persistent Apical Ballooning Complicated by Apical Thrombus in Takotsubo Cardiomyopathy of Systemic Lupus Erythematosus Patient

    National Research Council Canada - National Science Library

    Shim, In Kyoung; Kim, Bong-Joon; Kim, Hyunsu; Lee, Jae-Woo; Cha, Tae-Joon; Heo, Jung Ho

    2013-01-01

    .... The prognosis is favorable with the normalization of wall motion abnormalities within weeks. We report a case of persistent apical ballooning complicated by an apical thrombus in Takotsubo cardiomyopathy of systemic lupus erythematous patient...

  13. Dendritic Target Region-Specific Formation of Synapses Between Excitatory Layer 4 Neurons and Layer 6 Pyramidal Cells.

    Science.gov (United States)

    Qi, Guanxiao; Feldmeyer, Dirk

    2016-04-01

    Excitatory connections between neocortical layer 4 (L4) and L6 are part of the corticothalamic feedback microcircuitry. Here we studied the intracortical element of this feedback loop, the L4 spiny neuron-to-L6 pyramidal cell connection. We found that the distribution of synapses onto both putative corticothalamic (CT) and corticocortical (CC) L6 pyramidal cells (PCs) depends on the presynaptic L4 neuron type but is independent of the postsynaptic L6 PC type. L4 spiny stellate cells establish synapses on distal apical tuft dendrites of L6 PCs and elicit slow unitary excitatory postsynaptic potentials (uEPSPs) in L6 somata. In contrast, the majority of L4 star pyramidal neurons target basal and proximal apical oblique dendrites of L6 PCs and show fast uEPSPs. Compartmental modeling suggests that the slow uEPSP time course is primarily the result of dendritic filtering. This suggests that the dendritic target specificity of the 2 L4 spiny neuron types is due to their different axonal projection patterns across cortical layers. The preferential dendritic targeting by different L4 neuron types may facilitate the generation of dendritic Ca(2+) or Na(+) action potentials in L6 PCs; this could play a role in synaptic gain modulation in the corticothalamic pathway.

  14. Type III apical transportation of root canal

    Directory of Open Access Journals (Sweden)

    Shiv P Mantri

    2012-01-01

    Full Text Available Procedural accidents leading to complications such as canal transportation have been ascribed to inapt cleaning and shaping concepts. Canal transportation is an undesirable deviation from the natural canal path. Herewith a case of apical transportation of root canal resulting in endodontic retreatment failure and its management is presented. A healthy 21-year-old young male presented discomfort and swelling associated with painful endodontically retreated maxillary incisor. Radiograph revealed periradicular radiolucency involving underfilled 11 and overfilled 12. Insufficiently obturated 11 exhibited apical transportation of canal. This type III transportation was treated by periradicular surgery and repair using white mineral trioxide aggregate (MTA. Comfortable asymptomatic patient presented uneventful healing at third and fourth month recall visits. A decrease in the size of radiolucency in radiograph supported the clinical finding. In the present case, MTA is useful in repairing the transportation defect. The result of these procedures is predictable and successful.

  15. Mitochondrial fission protein Drp1 regulates mitochondrial transport and dendritic arborization in cerebellar Purkinje cells.

    Science.gov (United States)

    Fukumitsu, Kansai; Hatsukano, Tetsu; Yoshimura, Azumi; Heuser, John; Fujishima, Kazuto; Kengaku, Mineko

    2016-03-01

    Mitochondria dynamically change their shape by repeated fission and fusion in response to physiological and pathological conditions. Recent studies have uncovered significant roles of mitochondrial fission and fusion in neuronal functions, such as neurotransmission and spine formation. However, the contribution of mitochondrial fission to the development of dendrites remains controversial. We analyzed the function of the mitochondrial fission GTPase Drp1 in dendritic arborization in cerebellar Purkinje cells. Overexpression of a dominant-negative mutant of Drp1 in postmitotic Purkinje cells enlarged and clustered mitochondria, which failed to exit from the soma into the dendrites. The emerging dendrites lacking mitochondrial transport remained short and unstable in culture and in vivo. The dominant-negative Drp1 affected neither the basal respiratory function of mitochondria nor the survival of Purkinje cells. Enhanced ATP supply by creatine treatment, but not reduced ROS production by antioxidant treatment, restored the hypomorphic dendrites caused by inhibition of Drp1 function. Collectively, our results suggest that Drp1 is required for dendritic distribution of mitochondria and thereby regulates energy supply in growing dendritic branches in developing Purkinje cells.

  16. Anterior cingulate pyramidal neurons display altered dendritic branching in depressed suicides.

    Science.gov (United States)

    Hercher, Christa; Canetti, Lilian; Turecki, Gustavo; Mechawar, Naguib

    2010-04-01

    It is hypothesized that mood disorders are accompanied by altered wiring and plasticity in key limbic brain regions such as the anterior cingulate cortex (ACC). To test this hypothesis at the cellular level, we analyzed basilar dendritic arborizations extended by layer VI pyramidal neurons in silver-impregnated postmortem ACC samples from well-characterized depressed suicide subjects (n=12) and matched sudden-death controls (n=7). One cm(3) tissue blocks were stained using a Golgi preparation, cut on a microtome, and mounted on slides. Basilar dendritic arbors from 195 neurons were reconstructed, and the number, length, and diameter of branches were determined at each branch order. The size and number of spines borne by these branches were also assessed. Third-order branches were significantly reduced in number (24% fewer; p=0.00262) in depressed suicides compared to controls. The size and average length of these branches, as well as their number of spines/length were unaltered. On average, for each pyramidal neuron analyzed in depressed subjects, the fewer third-order branches resulted in a significant reduction in branch length (28% shorter; p=0.00976) at this branch order. These results provide the first evidence of altered cortical dendritic branching in mood disorders. Given that proximal dendritic branches grow during perinatal development, and that they are generally less plastic at maturity than distal segments, we speculate that these differences in dendritic branching may reflect a biological predisposition to depression and suicide.

  17. Dendritic development of hippocampal CA1 pyramidal cells in a neonatal hypoxia-ischemia injury model.

    Science.gov (United States)

    Zhao, Yan Dong; Ou, Shan; Cheng, Sai Yu; Xiao, Zhi; He, Wen Juan; Zhang, Jin Hai; Ruan, Huai Zhen

    2013-09-01

    It is believed that neonatal hypoxia-ischemia (HI) brain injury causes neuron loss and brain functional defects. However, the effect of HI brain injury on dendritic development of the remaining pyramidal cells of the hippocampus and the reaction of contralateral hippocampal neurons require further studies. The Morris water maze and Golgi-Cox staining were used to evaluate the learning and memory and dendritic morphology of pyramidal cells. The results of Golgi-Cox staining showed CA1 pyramidal neurons of HI injury models with fewer bifurcations and shorter dendrite length than the naive control group. The density of dendritic spines of hippocampal CA1 pyramidal neurons was significantly lower in the HI brain injury group than in controls. With respect to hippocampal function, the HI brain injury group presented cognitive deficits in the reference memory task and probe trail. In the HI group, the pyramidal cells of left hippocampus that did not experienced ischemia but did experience hypoxia had more complex dendrites and higher density of spine than the HI injury side and control. The functional implementation of injured hippocampus might depend mainly on the hypertrophy of contralateral hippocampus after HI brain injury. Corticosterone can partially prevent the hippocampal pyramidal cells from HI injury and reduce the difference of the bilateral hippocampus pyramidal cells, but there was no improvement in learning and memory.

  18. Degenerative disease of the spine.

    Science.gov (United States)

    Gallucci, Massimo; Limbucci, Nicola; Paonessa, Amalia; Splendiani, Alessandra

    2007-02-01

    Degenerative disease of the spine is a definition that includes a wide spectrum of degenerative abnormalities. Degeneration involves bony structures and the intervertebral disk, although many aspects of spine degeneration are strictly linked because the main common pathogenic factor is identified in chronic overload. During life the spine undergoes continuous changes as a response to physiologic axial load. These age-related changes are similar to pathologic degenerative changes and are a common asymptomatic finding in adults and elderly persons. A mild degree of degenerative changes is paraphysiologic and should be considered pathologic only if abnormalities determine symptoms. Imaging allows complete evaluation of static and dynamic factors related to degenerative disease of the spine and is useful in diagnosing the different aspects of spine degeneration.

  19. Micromechanics of Sea Urchin spines.

    Directory of Open Access Journals (Sweden)

    Naomi Tsafnat

    Full Text Available The endoskeletal structure of the Sea Urchin, Centrostephanus rodgersii, has numerous long spines whose known functions include locomotion, sensing, and protection against predators. These spines have a remarkable internal microstructure and are made of single-crystal calcite. A finite-element model of the spine's unique porous structure, based on micro-computed tomography (microCT and incorporating anisotropic material properties, was developed to study its response to mechanical loading. Simulations show that high stress concentrations occur at certain points in the spine's architecture; brittle cracking would likely initiate in these regions. These analyses demonstrate that the organization of single-crystal calcite in the unique, intricate morphology of the sea urchin spine results in a strong, stiff and lightweight structure that enhances its strength despite the brittleness of its constituent material.

  20. Baastrup's disease: The kissing spine.

    Science.gov (United States)

    Singla, Amit; Shankar, Vivek; Mittal, Samarth; Agarwal, Abhinav; Garg, Bhavuk

    2014-02-16

    A 67-year-old male presented with a gradually progressive low back pain of 2 years duration. The patient was leading a retired life and there was no history of chronic fever or significant trauma. There was no radiation of pain or any features suggestive of claudication. There was no history of any comorbidity. The pain was aggravated with extension of the spine and relieved with flexion. There was no swelling or neurological deficit, but muscle spasm was present. Radiographs of the spine revealed degenerative changes in the lumbosacral spine, along with articulation of spinous processes at in lumbar spine at all levels level suggestive of Baastrup's disease, commonly known as "kissing spine". Routine blood investigations were within normal limits. The patient was managed conservatively. He was given a week's course of analgesics and muscle relaxants and then started on spinal flexion exercises, with significant improvement being noted at 6 months follow up.

  1. Evaluation of three instrumentation techniques at the precision of apical stop and apical sealing of obturation

    Science.gov (United States)

    GENÇ, Özgür; ALAÇAM, Tayfun; KAYAOGLU, Guven

    2011-01-01

    Objective The aim of this study was to investigate the ability of two NiTi rotary apical preparation techniques used with an electronic apex locator-integrated endodontic motor and a manual technique to create an apical stop at a predetermined level (0.5 mm short of the apical foramen) in teeth with disrupted apical constriction, and to evaluate microleakage following obturation in such prepared teeth. Material and Methods: 85 intact human mandibular permanent incisors with single root canal were accessed and the apical constriction was disrupted using a #25 K-file. The teeth were embedded in alginate and instrumented to #40 using rotary Lightspeed or S-Apex techniques or stainless-steel K-files. Distance between the apical foramen and the created apical stop was measured to an accuracy of 0.01 mm. In another set of instrumented teeth, root canals were obturated using gutta-percha and sealer, and leakage was tested at 1 week and 3 months using a fluid filtration device. Results All techniques performed slightly short of the predetermined level. Closest preparation to the predetermined level was with the manual technique and the farthest was with S-Apex. A significant difference was found between the performances of these two techniques (p<0.05). Lightspeed ranked in between. Leakage was similar for all techniques at either period. However, all groups leaked significantly more at 3 months compared to 1 week (p<0.05). Conclusions Despite statistically significant differences found among the techniques, deviations from the predetermined level were small and clinically acceptable for all techniques. Leakage following obturation was comparable in all groups. PMID:21655774

  2. Evaluation of three instrumentation techniques at the precision of apical stop and apical sealing of obturation

    Directory of Open Access Journals (Sweden)

    Özgür Genç

    2011-08-01

    Full Text Available OBJECTIVE: The aim of this study was to investigate the ability of two NiTi rotary apical preparation techniques used with an electronic apex locator-integrated endodontic motor and a manual technique to create an apical stop at a predetermined level (0.5 mm short of the apical foramen in teeth with disrupted apical constriction, and to evaluate microleakage following obturation in such prepared teeth. MATERIAL AND METHODS: 85 intact human mandibular permanent incisors with single root canal were accessed and the apical constriction was disrupted using a #25 K-file. The teeth were embedded in alginate and instrumented to #40 using rotary Lightspeed or S-Apex techniques or stainless-steel K-files. Distance between the apical foramen and the created apical stop was measured to an accuracy of 0.01 mm. In another set of instrumented teeth, root canals were obturated using gutta-percha and sealer, and leakage was tested at 1 week and 3 months using a fluid filtration device. RESULTS: All techniques performed slightly short of the predetermined level. Closest preparation to the predetermined level was with the manual technique and the farthest was with S-Apex. A significant difference was found between the performances of these two techniques (p<0.05. Lightspeed ranked in between. Leakage was similar for all techniques at either period. However, all groups leaked significantly more at 3 months compared to 1 week (p<0.05. CONCLUSIONS: Despite statistically significant differences found among the techniques, deviations from the predetermined level were small and clinically acceptable for all techniques. Leakage following obturation was comparable in all groups.

  3. Auxin at the shoot apical meristem

    OpenAIRE

    Vernoux, Teva; Besnard, Fabrice; Traas, Jan

    2010-01-01

    Plants continuously generate new tissues and organs through the activity of populations of undifferentiated stem cells, called meristems. Here, we discuss the so-called shoot apical meristem (SAM), which generates all the aerial parts of the plant. It has been known for many years that auxin plays a central role in the functioning of this meristem. Auxin is not homogeneously distributed at the SAM and it is thought that this distribution is interpreted in terms of differential gene expression...

  4. Pathogenesis of Apical Periodontitis: a Literature Review

    OpenAIRE

    2012-01-01

    ABSTRACT Objectives This review article discusses the host response in apical periodontitis with the main focus on cytokines, produced under this pathological condition and contributing to the degradation of periradicular tissues. The pace of research in this field has greatly accelerated in the last decade. Here we provide an analysis of studies published in this area during this period. Material and methods Literature was selected through a search of PubMed electronic database. The keywords...

  5. Fractures of the cervical spine

    Directory of Open Access Journals (Sweden)

    Raphael Martus Marcon

    2013-11-01

    Full Text Available OBJECTIVES: The aim of this study was to review the literature on cervical spine fractures. METHODS: The literature on the diagnosis, classification, and treatment of lower and upper cervical fractures and dislocations was reviewed. RESULTS: Fractures of the cervical spine may be present in polytraumatized patients and should be suspected in patients complaining of neck pain. These fractures are more common in men approximately 30 years of age and are most often caused by automobile accidents. The cervical spine is divided into the upper cervical spine (occiput-C2 and the lower cervical spine (C3-C7, according to anatomical differences. Fractures in the upper cervical spine include fractures of the occipital condyle and the atlas, atlanto-axial dislocations, fractures of the odontoid process, and hangman's fractures in the C2 segment. These fractures are characterized based on specific classifications. In the lower cervical spine, fractures follow the same pattern as in other segments of the spine; currently, the most widely used classification is the SLIC (Subaxial Injury Classification, which predicts the prognosis of an injury based on morphology, the integrity of the disc-ligamentous complex, and the patient's neurological status. It is important to correctly classify the fracture to ensure appropriate treatment. Nerve or spinal cord injuries, pseudarthrosis or malunion, and postoperative infection are the main complications of cervical spine fractures. CONCLUSIONS: Fractures of the cervical spine are potentially serious and devastating if not properly treated. Achieving the correct diagnosis and classification of a lesion is the first step toward identifying the most appropriate treatment, which can be either surgical or conservative.

  6. Fractures of the cervical spine

    Science.gov (United States)

    Marcon, Raphael Martus; Cristante, Alexandre Fogaça; Teixeira, William Jacobsen; Narasaki, Douglas Kenji; Oliveira, Reginaldo Perilo; de Barros Filho, Tarcísio Eloy Pessoa

    2013-01-01

    OBJECTIVES: The aim of this study was to review the literature on cervical spine fractures. METHODS: The literature on the diagnosis, classification, and treatment of lower and upper cervical fractures and dislocations was reviewed. RESULTS: Fractures of the cervical spine may be present in polytraumatized patients and should be suspected in patients complaining of neck pain. These fractures are more common in men approximately 30 years of age and are most often caused by automobile accidents. The cervical spine is divided into the upper cervical spine (occiput-C2) and the lower cervical spine (C3-C7), according to anatomical differences. Fractures in the upper cervical spine include fractures of the occipital condyle and the atlas, atlanto-axial dislocations, fractures of the odontoid process, and hangman's fractures in the C2 segment. These fractures are characterized based on specific classifications. In the lower cervical spine, fractures follow the same pattern as in other segments of the spine; currently, the most widely used classification is the SLIC (Subaxial Injury Classification), which predicts the prognosis of an injury based on morphology, the integrity of the disc-ligamentous complex, and the patient's neurological status. It is important to correctly classify the fracture to ensure appropriate treatment. Nerve or spinal cord injuries, pseudarthrosis or malunion, and postoperative infection are the main complications of cervical spine fractures. CONCLUSIONS: Fractures of the cervical spine are potentially serious and devastating if not properly treated. Achieving the correct diagnosis and classification of a lesion is the first step toward identifying the most appropriate treatment, which can be either surgical or conservative. PMID:24270959

  7. Shoot Apical Meristem Organization in Several Philippine Species of Selaginella

    Directory of Open Access Journals (Sweden)

    Prescillano Zamora

    1993-06-01

    Full Text Available This paper reports for the first time the occurrence of two types of shoot apical meristem organization on the main and lateral shoots of eight Philippine species of Selaginella: (1 shoot apical meristem with a single lenticular apical cell in S. cupressina and S. delicatula and (a shoot apical meristem with a row of several prominent prismatic apical cells in the lateral plane in S. jagorii, S. halconensis, S. involvens (S. polyura, S. peltata, S. flagellifera (S. biformis, S. nummularia, S. aristata, and S. philippina (endemic.

  8. Acute physiological stress promotes clustering of synaptic markers and alters spine morphology in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Veronica Sebastian

    Full Text Available GluA2-containing AMPA receptors and their association with protein kinase M zeta (PKMζ and post-synaptic density-95 (PSD-95 are important for learning, memory and synaptic plasticity processes. Here we investigated these synaptic markers in the context of an acute 1h platform stress, which can disrupt spatial memory retrieval for a short-term memory on the object placement task and long-term memory retrieval on a well-learned radial arm maze task. Acute stress increased serum corticosterone and elevated the expression of synaptic PKMζ while decreasing synaptic GluA2. Using co-immunoprecipitation, we found that this stressor promotes the clustering of GluA2, PKMζ and PSD-95, which is consistent with effects reported from overexpression of PKMζ in cell culture. Because PKMζ overexpression has also been shown to induce spine maturation in culture, we examined how stress impacts synaptic markers within changing spines across various hippocampal subfields. To achieve this, we employed a new technique combining Golgi staining and immmunohistochemistry to perform 3D reconstruction of tertiary dendrites, which can be analyzed for differences in spine types and the colocalization of synaptic markers within these spines. In CA1, stress increased the densities of long-thin and mushroom spines and the colocalization of GluA2/PSD-95 within these spines. Conversely, in CA3, stress decreased the densities of filopodia and stubby spines, with a concomitant reduction in the colocalization of GluA2/PSD-95 within these spines. In the outer molecular layer (OML of the dentate gyrus (DG, stress increased both stubby and long-thin spines, together with greater GluA2/PSD-95 colocalization. These data reflect the rapid effects of stress on inducing morphological changes within specific hippocampal subfields, highlighting a potential mechanism by which stress can modulate memory consolidation and retrieval.

  9. A role for sodium and chloride in kainic acid-induced beading of inhibitory interneuron dendrites.

    Science.gov (United States)

    Al-Noori, S; Swann, J W

    2000-01-01

    Excitotoxic injury of the dendrites of inhibitory interneurons could lead to decreases in their synaptic activation and explain subsequent local circuit hyperexcitability and epilepsy. A hallmark of dendrotoxicity, at least in principal neurons of the hippocampus and cortex, is focal or varicose swellings of dendritic arbors. In experiments reported here, transient (1h) exposure of hippocampal explant cultures to kainic acid produced marked focal swellings of the dendrites of parvalbumin-immunoreactive pyramidal basket cells in a highly reproducible and dose-dependent manner. At 5mM kainic acid, more than half of the immunopositive apical dendrites in area CA(1) had a beaded appearance. However, the somal volumes of these cells were unaltered by the same treatment. The presence of focal swellings was reversible with kainate washout and was not accompanied by interneuronal cell death. In contrast, exposure to much higher concentrations (300mM) of kainic acid resulted in the total loss of parvalbumin-positive interneurons from explants. Surprisingly, kainic acid-induced dendritic beading does not appear to be mediated by extracellular calcium. Beading was unaltered in the presence of N-methyl-D-aspartate receptor antagonists, the L-type calcium channel antagonist, nimodipine, cadmium, or by removing extracellular calcium. However, blockade of voltage-gated sodium channels by either tetrodotoxin or lidocaine abolished dendritic beading, while the activation of existing voltage-gated sodium channels by veratridine mimicked the kainic acid-induced dendritic beading. Finally, the removal of extracellular chloride prevented the kainic acid-induced dendritic beading.Thus, we suggest that the movement of Na(+) and Cl(-), rather than Ca(2+), into cells underlies the focal swellings of interneuron dendrites in hippocampus.

  10. Olfactory Bulb Deep Short-Axon Cells Mediate Widespread Inhibition of Tufted Cell Apical Dendrites.

    Science.gov (United States)

    Burton, Shawn D; LaRocca, Greg; Liu, Annie; Cheetham, Claire E J; Urban, Nathaniel N

    2017-02-01

    In the main olfactory bulb (MOB), the first station of sensory processing in the olfactory system, GABAergic interneuron signaling shapes principal neuron activity to regulate olfaction. However, a lack of known selective markers for MOB interneurons has strongly impeded cell-type-selective investigation of interneuron function. Here, we identify the first selective marker of glomerular layer-projecting deep short-axon cells (GL-dSACs) and investigate systematically the structure, abundance, intrinsic physiology, feedforward sensory input, neuromodulation, synaptic output, and functional role of GL-dSACs in the mouse MOB circuit. GL-dSACs are located in the internal plexiform layer, where they integrate centrifugal cholinergic input with highly convergent feedforward sensory input. GL-dSAC axons arborize extensively across the glomerular layer to provide highly divergent yet selective output onto interneurons and principal tufted cells. GL-dSACs are thus capable of shifting the balance of principal tufted versus mitral cell activity across large expanses of the MOB in response to diverse sensory and top-down neuromodulatory input. The identification of cell-type-selective molecular markers has fostered tremendous insight into how distinct interneurons shape sensory processing and behavior. In the main olfactory bulb (MOB), inhibitory circuits regulate the activity of principal cells precisely to drive olfactory-guided behavior. However, selective markers for MOB interneurons remain largely unknown, limiting mechanistic understanding of olfaction. Here, we identify the first selective marker of a novel population of deep short-axon cell interneurons with superficial axonal projections to the sensory input layer of the MOB. Using this marker, together with immunohistochemistry, acute slice electrophysiology, and optogenetic circuit mapping, we reveal that this novel interneuron population integrates centrifugal cholinergic input with broadly tuned feedforward sensory input to modulate principal cell activity selectively. Copyright © 2017 the authors 0270-6474/17/371117-22$15.00/0.

  11. Spine injuries in dancers.

    Science.gov (United States)

    Gottschlich, Laura M; Young, Craig C

    2011-01-01

    Care of a dancer calls for a unique balance between athlete and artist. The physician must familiarize himself or herself with dance terminology, common moves, correct technique, and dancer's mentality. The goal is to work intimately with the dancer to care for the injury and, if possible, continue to participate in portions of dance class to limit anxiety and increase compliance to treatment. The spine is the second most injured area of the body in dancers, and many issues stem from poor technique and muscle imbalance. This often leads to hyperlordosis, spondylolysis, spondylolisthesis, lumbar facet sprain, discogenic back pain, and muscle spasm and piriformis syndrome. This article reviews these causes of low back pain with a focus on dance-related presentation and treatment issues.

  12. Physiopathology of Spine Metastasis

    Directory of Open Access Journals (Sweden)

    Giulio Maccauro

    2011-01-01

    Full Text Available The metastasis is the spread of cancer from one part of the body to another. Two-thirds of patients with cancer will develop bone metastasis. Breast, prostate and lung cancer are responsible for more than 80% of cases of metastatic bone disease. The spine is the most common site of bone metastasis. A spinal metastasis may cause pain, instability and neurological injuries. The diffusion through Batson venous system is the principal process of spinal metastasis, but the dissemination is possible also through arterial and lymphatic system or by contiguity. Once cancer cells have invaded the bone, they produce growth factors that stimulate osteoblastic or osteolytic activity resulting in bone remodeling with release of other growth factors that lead to a vicious cycle of bone destruction and growth of local tumour.

  13. Anatomical variations of the anterior atlanto-dental joint and relations to the apical and alar ligaments in a geriatric population.

    Science.gov (United States)

    Rustagi, Tarush; Iwanaga, Joe; Sardi, Juan P; Alonso, Fernando; Oskouian, Rod J; Tubbs, R Shane

    2017-08-17

    Degenerative changes in the upper cervical spine may be age related degeneration or a pathological process such as rheumatoid arthritis. However, to our knowledge, the relationship between the apical and alar ligaments and these anomalies has not been discussed. We present anatomical variations of the anterior atlanto-dental joint observed during cadaveric dissection of adult craniovertebral junctions, the relationship with the alar and apical ligaments and discuss possible origins and clinical implications. The upper cervical spine including part of the occiput was dissected from cadavers whose mean age at death was 78.9 years-old. The anterior atlanto-dental joint and apical and alar ligaments were observed and any atypical findings were noted. In eleven specimens, seven had a dens corona, three had an os odontoideum and one had a dens aureola, which arose from the upper part of the anterior arch of the atlas. Only four specimens had an apical ligament. The possible etiologies and the clinical applications of these craniovertebral anomalies in a geriatric population should be appreciated by the clinician treating patients with disease in this area or interpreting imaging in the region. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Minimal Apical Enlargement for Penetration of Irrigants to the Apical Third of Root Canal System: A Scanning Electron Microscope Study

    Science.gov (United States)

    Srikanth, P; Krishna, Amaravadi Gopi; Srinivas, Siva; Reddy, E Sujayeendranatha; Battu, Someshwar; Aravelli, Swathi

    2015-01-01

    Background: The aim of this study was to determine minimal apical enlargement for irrigant penetration into apical third of root canal system using scanning electron microscope (SEM). Materials and Methods: Distobuccal canals of 40 freshly extracted human maxillary first molar teeth were instrumented using crown-down technique. The teeth were divided into four test groups according to size of their master apical file (MAF) (#20, #25, #30, #35 0.06% taper), and two control groups. After final irrigation, removal of debris and smear layer from the apical third of root canals was determined under a SEM. Data was analyzed using Kruskal–Wallis and Mann–Whitney tests. Results: Smear layer removal in apical third for MAF size #30 was comparable with that of the control group (size #40). Conclusion: Minimal apical enlargement for penetration of irrigants to the apical third of root canal system is #30 size. PMID:26124608

  15. Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle.

    Science.gov (United States)

    Larkum, Matthew E; Nevian, Thomas; Sandler, Maya; Polsky, Alon; Schiller, Jackie

    2009-08-07

    Tuft dendrites are the main target for feedback inputs innervating neocortical layer 5 pyramidal neurons, but their properties remain obscure. We report the existence of N-methyl-D-aspartate (NMDA) spikes in the fine distal tuft dendrites that otherwise did not support the initiation of calcium spikes. Both direct measurements and computer simulations showed that NMDA spikes are the dominant mechanism by which distal synaptic input leads to firing of the neuron and provide the substrate for complex parallel processing of top-down input arriving at the tuft. These data lead to a new unifying view of integration in pyramidal neurons in which all fine dendrites, basal and tuft, integrate inputs locally through the recruitment of NMDA receptor channels relative to the fixed apical calcium and axosomatic sodium integration points.

  16. [Cervical spine instability in the surgical patient].

    Science.gov (United States)

    Barbeito, A; Guerri-Guttenberg, R A

    2014-03-01

    Many congenital and acquired diseases, including trauma, may result in cervical spine instability. Given that airway management is closely related to the movement of the cervical spine, it is important that the anesthesiologist has detailed knowledge of the anatomy, the mechanisms of cervical spine instability, and of the effects that the different airway maneuvers have on the cervical spine. We first review the normal anatomy and biomechanics of the cervical spine in the context of airway management and the concept of cervical spine instability. In the second part, we review the protocols for the management of cervical spine instability in trauma victims and some of the airway management options for these patients.

  17. Multimodality imaging in apical hypertrophic cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    Rosario; Parisi; Francesca; Mirabella; Gioel; Gabrio; Secco; Rossella; Fattori

    2014-01-01

    Apical hypertrophic cardiomyopathy(AHCM) is a relatively rare morphologic variant of HCM in which the hypertrophy of myocardium is localized to the left ventricular apex. Symptoms of AHCM might vary from none to others mimic coronary artery disease including acute coronary syndrome, thus resulting in inappropriate hospitalization. Transthoracic echocardiography is the firstline imaging technique for the diagnosis of hypertrophic cardiomyopathies. However, when the hypertrophy of the myocardium is localized in the ventricular apex might results in missed diagnosis. Aim of this paper is to review the different imaging techniques used for the diagnosis of AHCM and their role in the detection and comprehension of this uncommon disease.

  18. NMDA Receptors Regulate the Structural Plasticity of Spines and Axonal Boutons in Hippocampal Interneurons

    Directory of Open Access Journals (Sweden)

    Marta Perez-Rando

    2017-06-01

    Full Text Available N-methyl-D-aspartate receptors (NMDARs are present in both pyramidal neurons and interneurons of the hippocampus. These receptors play an important role in the adult structural plasticity of excitatory neurons, but their impact on the remodeling of interneurons is unknown. Among hippocampal interneurons, somatostatin-expressing cells located in the stratum oriens are of special interest because of their functional importance and structural characteristics: they display dendritic spines, which change density in response to different stimuli. In order to understand the role of NMDARs on the structural plasticity of these interneurons, we have injected acutely MK-801, an NMDAR antagonist, to adult mice which constitutively express enhanced green fluorescent protein (EGFP in these cells. We have behaviorally tested the animals, confirming effects of the drug on locomotion and anxiety-related behaviors. NMDARs were expressed in the somata and dendritic spines of somatostatin-expressing interneurons. Twenty-four hours after the injection, the density of spines did not vary, but we found a significant increase in the density of their en passant boutons (EPB. We have also used entorhino-hippocampal organotypic cultures to study these interneurons in real-time. There was a rapid decrease in the apparition rate of spines after MK-801 administration, which persisted for 24 h and returned to basal levels afterwards. A similar reversible decrease was detected in spine density. Our results show that both spines and axons of interneurons can undergo remodeling and highlight NMDARs as regulators of this plasticity. These results are specially relevant given the importance of all these players on hippocampal physiology and the etiopathology of certain psychiatric disorders.

  19. Typhoid spine - A case report

    Directory of Open Access Journals (Sweden)

    Rajesh P

    2004-01-01

    Full Text Available A case of Salmonella typhi isolated from L4-L5 spine is reported here. The causative organism was not suspected preoperatively. The patient responded favourably to surgical drainage and appropriate antibiotic therapy.

  20. Conditional Knockout of Breast Carcinoma Amplified Sequence 2 (BCAS2) in Mouse Forebrain Causes Dendritic Malformation via β-catenin

    Science.gov (United States)

    Huang, Chu-Wei; Chen, Yi-Wen; Lin, Yi-Rou; Chen, Po-Han; Chou, Meng-Hsuan; Lee, Li-Jen; Wang, Pei-Yu; Wu, June-Tai; Tsao, Yeou-Ping; Chen, Show-Li

    2016-01-01

    Breast carcinoma amplified sequence 2 (BCAS2) is a core component of the hPrP19 complex that controls RNA splicing. Here, we performed an exon array assay and showed that β-catenin is a target of BCAS2 splicing regulation. The regulation of dendrite growth and morphology by β-catenin is well documented. Therefore, we generated conditional knockout (cKO) mice to eliminate the BCAS2 expression in the forebrain to investigate the role of BCAS2 in dendrite growth. BCAS2 cKO mice showed a microcephaly-like phenotype with a reduced volume in the dentate gyrus (DG) and low levels of learning and memory, as evaluated using Morris water maze analysis and passive avoidance, respectively. Golgi staining revealed shorter dendrites, less dendritic complexity and decreased spine density in the DG of BCAS2 cKO mice. Moreover, the cKO mice displayed a short dendrite length in newborn neurons labeled by DCX, a marker of immature neurons, and BrdU incorporation. To further examine the mechanism underlying BCAS2-mediated dendritic malformation, we overexpressed β-catenin in BCAS2-depleted primary neurons and found that the dendritic growth was restored. In summary, BCAS2 is an upstream regulator of β-catenin gene expression and plays a role in dendrite growth at least partly through β-catenin. PMID:27713508

  1. Phase field modeling of dendrite growth

    Institute of Scientific and Technical Information of China (English)

    Yutuo ZHANG; Chengzhi WANG; Dianzhong LI; Yiyi LI

    2009-01-01

    Single dendrite and multi-dendrite growth for A1-2 mol pct Si alloy during isothermal solidification are simulated by phase field method. In the case of single equiaxed dendrite growth, the secondary and the necking phenomenon can be observed. For multi-dendrite growth, there exists the competitive growth among the dendrites dur-ing solidification. As solidification proceeds, growing and coarsening of the primary arms occurs, together with the branching and coarsening of the secondary arms.When the diffusion fields of dendrite tips come into contact with those of the branches growing from the neighboring dendrites, the dendrites stop growing and being to ripen and thicken.

  2. Radiology illustrated. Spine

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Heung Sik; Lee, Joon Woo [Seoul National Univ. Bundang Hospital, Seongnam, Kyonggi-do (Korea, Republic of). Dept. of Radiology; Kwon, Jong Won [Samsung Medical Center, Seoul (Korea, Republic of). Dept. of Radiology

    2014-04-01

    Offers a practical approach to image interpretation for spinal disorders. Includes numerous high-quality radiographic images and schematic illustrations. Will serve as a self-learning book covering daily routine cases from the basic to the advanced. Radiology Illustrated: Spine is an up-to-date, superbly illustrated reference in the style of a teaching file that has been designed specifically to be of value in clinical practice. Common, critical, and rare but distinctive spinal disorders are described succinctly with the aid of images highlighting important features and informative schematic illustrations. The first part of the book, on common spinal disorders, is for radiology residents and other clinicians who are embarking on the interpretation of spinal images. A range of key disorders are then presented, including infectious spondylitis, cervical trauma, spinal cord disorders, spinal tumors, congenital disorders, uncommon degenerative disorders, inflammatory arthritides, and vascular malformations. The third part is devoted to rare but clinically significant spinal disorders with characteristic imaging features, and the book closes by presenting practical tips that will assist in the interpretation of confusing cases.

  3. The postsurgical spine.

    Science.gov (United States)

    Santos Armentia, E; Prada González, R; Silva Priegue, N

    2016-04-01

    Failed back surgery syndrome is the persistence or reappearance of pain after surgery on the spine. This term encompasses both mechanical and nonmechanical causes. Imaging techniques are essential in postoperative follow-up and in the evaluation of potential complications responsible for failed back surgery syndrome. This review aims to familiarize radiologists with normal postoperative changes and to help them identify the pathological imaging findings that reflect failed back surgery syndrome. To interpret the imaging findings, it is necessary to know the type of surgery performed in each case and the time elapsed since the intervention. In techniques used to fuse the vertebrae, it is essential to evaluate the degree of bone fusion, the material used (both its position and its integrity), the bone over which it lies, the interface between the implant and bone, and the vertebral segments that are adjacent to metal implants. In decompressive techniques it is important to know what changes can be expected after the intervention and to be able to distinguish them from peridural fibrosis and the recurrence of a hernia. It is also crucial to know the imaging findings for postoperative infections. Other complications are also reviewed, including arachnoiditis, postoperative fluid collections, and changes in the soft tissues adjacent to the surgical site.

  4. Postoperative spine; Postoperative Wirbelsaeule

    Energy Technology Data Exchange (ETDEWEB)

    Schlaeger, R. [Universitaetsspital Basel, Neurologische Klinik und Poliklinik, Basel (Switzerland); Lieb, J.M. [Universitaetsspital Basel, Klinik fuer Radiologie und Nuklearmedizin, Basel (Switzerland); Shariat, K. [Neurochirurgie Koeln-Merheim, Koeln (Germany); Ahlhelm, F.J. [Kantonsspital Baden AG, Abteilung Neuroradiologie, Institut fuer Radiologie, Baden (Switzerland)

    2014-11-15

    Approximately 15-30 % of surgical procedures involving the lumbar spine are associated with complications that require further diagnostic work-up. The choice of imaging modality for postoperative complications depends on the extent, pattern and temporal evolution of the postoperative neurological signs and symptoms as well as on the preoperative clinical status, the surgical procedure itself and the underlying pathology. The interpretation of imaging findings, in particular the distinction between postoperative complications and normally expected nonspecific postoperative imaging alterations can be challenging and requires the integration of clinical neurological information and the results of laboratory tests. The combination of different imaging techniques might help in cases of equivocal imaging results. (orig.) [German] Etwa 15-30 % der operativen Eingriffe im Bereich der lumbalen Wirbelsaeule verlaufen nicht komplikationsfrei und erfordern weiterfuehrende Abklaerungen. Die Auswahl des bildgebenden Verfahrens im Rahmen postoperativer Komplikationen haengt dabei wesentlich von der zeitlichen Entwicklung, dem Ausmass und Verteilungsmuster der neuaufgetretenen klinisch-neurologischen bzw. orthopaedischen Symptome sowie von den Ausfaellen vor dem Eingriff, der zugrundeliegenden Pathologie und der Lokalisation und Art des Eingriffs ab. Die Interpretation der bildgebenden Befunde, insbesondere die Abgrenzung postoperativer Komplikationen von natuerlicherweise zu erwartenden postoperativen Veraenderungen kann dabei eine Herausforderung darstellen. Bei unklaren Befunden kann ergaenzend zur eingehend klinisch-neurologischen und laborchemischen Bestandsaufnahme auch der kombinierte Einsatz mehrerer bildgebender Modalitaeten diagnostisch weiterhelfen. (orig.)

  5. Postoperative Spine Infections

    Science.gov (United States)

    Evangelisti, Gisberto; Andreani, Lorenzo; Girardi, Federico; Darren, Lebl; Sama, Andrew; Lisanti, Michele

    2015-01-01

    Postoperative spinal wound infection is a potentially devastating complication after operative spinal procedures. Despite the utilization of perioperative prophylactic antibiotics in recent years and improvements in surgical technique and postoperative care, wound infection continues to compromise patients’ outcome after spinal surgery. In the modern era of pending health care reform with increasing financial constraints, the financial burden of post-operative spinal infections also deserves consideration. The aim of our work is to give to the reader an updated review of the latest achievements in prevention, risk factors, diagnosis, microbiology and treatment of postoperative spinal wound infections. A review of the scientific literature was carried out using electronic medical databases Pubmed, Google Scholar, Web of Science and Scopus for the years 1973-2012 to obtain access to all publications involving the incidence, risk factors, prevention, diagnosis, treatment of postoperative spinal wound infections. We initially identified 119 studies; of these 60 were selected. Despite all the measures intended to reduce the incidence of surgical site infections in spine surgery, these remain a common and potentially dangerous complication. PMID:26605028

  6. Low-level laser therapy promotes dendrite growth via upregulating brain-derived neurotrophic factor expression

    Science.gov (United States)

    Meng, Chengbo; He, Zhiyong; Xing, Da

    2014-09-01

    Downregulation of brain-derived neurotrophic factor (BDNF) in the hippocampus occurs early in the progression of Alzheimer's disease (AD). Since BDNF plays a critical role in neuronal survival and dendrite growth, BDNF upregulation may contribute to rescue dendrite atrophy and cell loss in AD. Low-level laser therapy (LLLT) has been demonstrated to regulate neuronal function both in vitro and in vivo. In the present study, we found that LLLT rescued neurons loss and dendritic atrophy via the increase of both BDNF mRNA and protein expression. In addition, dendrite growth was improved after LLLT, characterized by upregulation of PSD95 expression, and the increase in length, branching, and spine density of dendrites in hippocampal neurons. Together, these studies suggest that upregulation of BDNF with LLLT can ameliorate Aβ-induced neurons loss and dendritic atrophy, thus identifying a novel pathway by which LLLT protects against Aβ-induced neurotoxicity. Our research may provide a feasible therapeutic approach to control the progression of Alzheimer's disease.

  7. The Role of the Neurofibromin-Syndecan-Cask Complex in the Regulation of Synlaptic RAS-MAPK Signaling and Denoritic Spine Plasticity

    Science.gov (United States)

    2007-02-01

    dendritic spine remodeling using both DG- CA3 explants and CA1/3 slice cultures. With the DG explants, we showed that Nf1+/- also displayed some subtle...or Akt, or treated with upstream activator, BDNF ( Kumar et al., 2005). These novel exciting observations should have important implications for

  8. Micro-CT Analysis of Spine Architecture in a Mouse Model of Scoliosis

    Directory of Open Access Journals (Sweden)

    Chan eGao

    2015-03-01

    Full Text Available Objective: Mice homozygous for targeted deletion of the gene encoding fibroblast growth factor receptor 3 (FGFR3-/- develop kyphoscoliosis by two months of age. The first objective of this study was to use high resolution X-ray to characterize curve progression in vivo and micro CT to quantify spine architecture ex vivo in FGFR3-/- mice. The second objective was to determine if slow release of the bone anabolic peptide parathyroid hormone related protein (PTHrP 1-34 from a pellet placed adjacent to the thoracic spine could inhibit progressive kyphoscoliosis. Materials and Methods: Pellets loaded with placebo or PTHrP 1-34 were implanted adjacent to the thoracic spine of one month old FGFR3-/- mice obtained from in house breeding. X rays were captured at monthly intervals up to four months to quantify curve progression using the Cobb method. High resolution post-mortem scans of FGFR3-/- and FGFR3+/+ spines, from C5/6 to L4/5 were captured to evaluate the 3D structure, rotation and micro-architecture of the affected vertebrae. Un-decalcified histology was performed on the apical and adjacent vertebrae of FGFR3-/- spines, and the corresponding vertebrae from FGFR3+/+ spines. Results: The mean Cobb angle was significantly greater at all ages in FGFR3-/- mice compared with wild type mice and appeared to stabilize around skeletal maturity at four months. 3D reconstructions of the thoracic spine of four month old FGFR3-/- mice treated with PTHrP 1-34 revealed correction of left/right asymmetry, vertebral rotation and lateral displacement compared with mice treated with placebo. Histologic analysis of the apical vertebrae confirmed correction of the asymmetry in PTHrP 1-34 treated mice, in the absence of any change in bone volume, and a significant reduction in the wedging of intervertebral discs (IVD seen in placebo treated mice. Conclusion: Local treatment of the thoracic spine of juvenile FGFR3-/- mice with a bone anabolic agent inhibited progression

  9. Adiponectin Exerts Neurotrophic Effects on Dendritic Arborization, Spinogenesis, and Neurogenesis of the Dentate Gyrus of Male Mice.

    Science.gov (United States)

    Zhang, Di; Wang, Xuezhen; Lu, Xin-Yun

    2016-07-01

    The hippocampus, a brain region critical for learning, memory and emotional processing, maintains its capacity to undergo structural plasticity throughout life. Hippocampal structural plasticity can be modulated by a number of intrinsic and extrinsic factors. This study investigated the effects of adiponectin, an adipocyte-derived hormone, on dendritic growth, arborization, and spinogenesis in mature granule neurons of the hippocampal dentate gyrus generated during embryonic (early-born) or early postnatal (late-born) stages. We found that adiponectin deficiency reduced dendritic length, branching and spine density of granule neurons. The reduction was more evident in early-born granule neurons than in late-born granule neurons. Intracerebroventricular infusion of adiponectin for 1 week increased of dendritic spines and arbor complexity in late-born granule neurons. Moreover, adiponectin deficiency decreased the production of adult-born new granule neurons through suppressing neural progenitor cell proliferation and differentiation, whereas intracerebroventricular adiponectin infusion increased the proliferation of neural progenitor cells in adult dentate gyrus. These results suggest that adiponectin plays an important role in dendritic spine remodeling and neurogenesis in the dentate gyrus.

  10. Single-Molecule Imaging of PSD-95 mRNA Translation in Dendrites and Its Dysregulation in a Mouse Model of Fragile X Syndrome.

    Science.gov (United States)

    Ifrim, Marius F; Williams, Kathryn R; Bassell, Gary J

    2015-05-06

    Fragile X syndrome (FXS) is caused by the loss of the fragile X mental retardation protein (FMRP), an RNA binding protein that regulates translation of numerous target mRNAs, some of which are dendritically localized. Our previous biochemical studies using synaptoneurosomes demonstrate a role for FMRP and miR-125a in regulating the translation of PSD-95 mRNA. However, the local translation of PSD-95 mRNA within dendrites and spines, as well as the roles of FMRP or miR-125a, have not been directly studied. Herein, local synthesis of a Venus-PSD-95 fusion protein was directly visualized in dendrites and spines using single-molecule imaging of a diffusion-restricted Venus-PSD-95 reporter under control of the PSD-95 3'UTR. The basal translation rates of Venus-PSD-95 mRNA was increased in cultured hippocampal neurons from Fmr1 KO mice compared with WT neurons, which correlated with a transient elevation of endogenous PSD-95 within dendrites. Following mGluR stimulation with (S)-3,5-dihydroxyphenylglycine, the rate of Venus-PSD-95 mRNA translation increased rapidly in dendrites of WT hippocampal neurons, but not in those of Fmr1 KO neurons or when the binding site of miR125a, previously shown to bind PSD-95 3'UTR, was mutated. This study provides direct support for the hypothesis that local translation within dendrites and spines is dysregulated in FXS. Impairments in the regulated local synthesis of PSD-95, a critical regulator of synaptic structure and function, may affect the spatiotemporal control of PSD-95 levels and affect dendritic spine development and synaptic plasticity in FXS. Copyright © 2015 the authors 0270-6474/15/357116-15$15.00/0.

  11. Hippocampal Neurogenesis and Dendritic Plasticity Support Running-Improved Spatial Learning and Depression-Like Behaviour in Stressed Rats

    Science.gov (United States)

    Tong, Jian-Bin; Wong, Richard; Ching, Yick-Pang; Qiu, Guang; Tang, Siu-Wa; Lee, Tatia M. C.; So, Kwok-Fai

    2011-01-01

    Exercise promotes hippocampal neurogenesis and dendritic plasticity while stress shows the opposite effects, suggesting a possible mechanism for exercise to counteract stress. Changes in hippocampal neurogenesis and dendritic modification occur simultaneously in rats with stress or exercise; however, it is unclear whether neurogenesis or dendritic remodeling has a greater impact on mediating the effect of exercise on stress since they have been separately examined. Here we examined hippocampal cell proliferation in runners treated with different doses (low: 30 mg/kg; moderate: 40 mg/kg; high: 50 mg/kg) of corticosterone (CORT) for 14 days. Water maze task and forced swim tests were applied to assess hippocampal-dependent learning and depression-like behaviour respectively the day after the treatment. Repeated CORT treatment resulted in a graded increase in depression-like behaviour and impaired spatial learning that is associated with decreased hippocampal cell proliferation and BDNF levels. Running reversed these effects in rats treated with low or moderate, but not high doses of CORT. Using 40 mg/kg CORT-treated rats, we further studied the role of neurogenesis and dendritic remodeling in mediating the effects of exercise on stress. Co-labelling with BrdU (thymidine analog) /doublecortin (immature neuronal marker) showed that running increased neuronal differentiation in vehicle- and CORT-treated rats. Running also increased dendritic length and spine density in CA3 pyramidal neurons in 40 mg/kg CORT-treated rats. Ablation of neurogenesis with Ara-c infusion diminished the effect of running on restoring spatial learning and decreasing depression-like behaviour in 40 mg/kg CORT-treated animals in spite of dendritic and spine enhancement. but not normal runners with enhanced dendritic length. The results indicate that both restored hippocampal neurogenesis and dendritic remodelling within the hippocampus are essential for running to counteract stress. PMID:21935393

  12. Hippocampal neurogenesis and dendritic plasticity support running-improved spatial learning and depression-like behaviour in stressed rats.

    Directory of Open Access Journals (Sweden)

    Suk-Yu Yau

    Full Text Available Exercise promotes hippocampal neurogenesis and dendritic plasticity while stress shows the opposite effects, suggesting a possible mechanism for exercise to counteract stress. Changes in hippocampal neurogenesis and dendritic modification occur simultaneously in rats with stress or exercise; however, it is unclear whether neurogenesis or dendritic remodeling has a greater impact on mediating the effect of exercise on stress since they have been separately examined. Here we examined hippocampal cell proliferation in runners treated with different doses (low: 30 mg/kg; moderate: 40 mg/kg; high: 50 mg/kg of corticosterone (CORT for 14 days. Water maze task and forced swim tests were applied to assess hippocampal-dependent learning and depression-like behaviour respectively the day after the treatment. Repeated CORT treatment resulted in a graded increase in depression-like behaviour and impaired spatial learning that is associated with decreased hippocampal cell proliferation and BDNF levels. Running reversed these effects in rats treated with low or moderate, but not high doses of CORT. Using 40 mg/kg CORT-treated rats, we further studied the role of neurogenesis and dendritic remodeling in mediating the effects of exercise on stress. Co-labelling with BrdU (thymidine analog /doublecortin (immature neuronal marker showed that running increased neuronal differentiation in vehicle- and CORT-treated rats. Running also increased dendritic length and spine density in CA3 pyramidal neurons in 40 mg/kg CORT-treated rats. Ablation of neurogenesis with Ara-c infusion diminished the effect of running on restoring spatial learning and decreasing depression-like behaviour in 40 mg/kg CORT-treated animals in spite of dendritic and spine enhancement. but not normal runners with enhanced dendritic length. The results indicate that both restored hippocampal neurogenesis and dendritic remodelling within the hippocampus are essential for running to counteract

  13. Apical-dominant particle swarm optimization

    Institute of Scientific and Technical Information of China (English)

    Zhihua Cui; Xingjuan Cai; Jianchao Zeng; Guoji Sun

    2008-01-01

    Particle swarm optimization (PSO) is a new stochastic population-based search methodology by simulating the animal social behaviors such as birds flocking and fish schooling.Many improvements have been proposed within the framework of this biological assumption.However,in this paper,the search pattern of PSO is used to model the branch growth process of natural plants.It provides a different poten-tial manner from artificial plant.To illustrate the effectiveness of this new model,apical dominance phenomenon is introduced to construct a novel variant by emphasizing the influence of the phototaxis.In this improvement,the population is divided into three different kinds of buds associated with their performances.Furthermore,a mutation strategy is applied to enhance the ability escaping from a local optimum.Sim-ulation results demonstrate good performance of the new method when solving high-dimensional multi-modal problems.

  14. Robotic systems in spine surgery.

    Science.gov (United States)

    Onen, Mehmet Resid; Naderi, Sait

    2014-01-01

    Surgical robotic systems have been available for almost twenty years. The first surgical robotic systems were designed as supportive systems for laparoscopic approaches in general surgery (the first procedure was a cholecystectomy in 1987). The da Vinci Robotic System is the most common system used for robotic surgery today. This system is widely used in urology, gynecology and other surgical disciplines, and recently there have been initial reports of its use in spine surgery, for transoral access and anterior approaches for lumbar inter-body fusion interventions. SpineAssist, which is widely used in spine surgery, and Renaissance Robotic Systems, which are considered the next generation of robotic systems, are now FDA approved. These robotic systems are designed for use as guidance systems in spine instrumentation, cement augmentations and biopsies. The aim is to increase surgical accuracy while reducing the intra-operative exposure to harmful radiation to the patient and operating team personnel during the intervention. We offer a review of the published literature related to the use of robotic systems in spine surgery and provide information on using robotic systems.

  15. ICAM-5 affects spine maturation by regulation of NMDA receptor binding to α-actinin

    Directory of Open Access Journals (Sweden)

    Lin Ning

    2015-01-01

    Full Text Available ICAM-5 is a negative regulator of dendritic spine maturation and facilitates the formation of filopodia. Its absence results in improved memory functions, but the mechanisms have remained poorly understood. Activation of NMDA receptors induces ICAM-5 ectodomain cleavage through a matrix metalloproteinase (MMP-dependent pathway, which promotes spine maturation and synapse formation. Here, we report a novel, ICAM-5-dependent mechanism underlying spine maturation by regulating the dynamics and synaptic distribution of α-actinin. We found that GluN1 and ICAM-5 partially compete for the binding to α-actinin; deletion of the cytoplasmic tail of ICAM-5 or ablation of the gene resulted in increased association of GluN1 with α-actinin, whereas internalization of ICAM-5 peptide perturbed the GluN1/α-actinin interaction. NMDA treatment decreased α-actinin binding to ICAM-5, and increased the binding to GluN1. Proper synaptic distribution of α-actinin requires the ICAM-5 cytoplasmic domain, without which α-actinin tended to accumulate in filopodia, leading to F-actin reorganization. The results indicate that ICAM-5 retards spine maturation by preventing reorganization of the actin cytoskeleton, but NMDA receptor activation is sufficient to relieve the brake and promote the maturation of spines.

  16. Apical Hypertrophic Cardiomyopathy in Association with PulmonaryArtery Hypertension

    Directory of Open Access Journals (Sweden)

    Mehdi Peighambari

    2012-09-01

    Full Text Available Apical Hypertrophic Cardiomyopathy is an uncommon condition constituting 1% -2% of the cases with Hypertrophic Cardiomyopathy (HCM diagnosis. We interestingly report two patients with apical hypertrophic cardiomyopathy in association with significant pulmonary artery hypertension without any other underlying reason for pulmonary hypertension. The patients were assessed by echocardiography, cardiac catheterization and pulmonary function parameters study.

  17. Reversible transient apical ballooning syndrome with coronary lesions

    Institute of Scientific and Technical Information of China (English)

    Yunshan Cao; Min Zhang; Xiang Li; Ping Xie; Lynn Cronin

    2009-01-01

    Transient apical ballooning syndrome(Tako-Tsubo syndrome or ampulla cardiomyopathy) occurs predominantly in women over 60 years of age with a history of recent physical or psychological stress. We present a case of a male patient with reversible transient apical ballooning syndrome with significant coronary lesions and other ECG changes that did not explain the clinical symptoms.

  18. Apical Ballooning Syndrome: A Complication of Dual Chamber Pacemaker Implantation

    Science.gov (United States)

    Abu Sham'a, Raed A. H; Asher, Elad; Luria, David; Berger, Michael; Glikson, Michael

    2009-01-01

    Apical ballooning is a cardiac syndrome (Takotsubo Cardiomyopathy) described as a typical form of acute transient left ventricular dysfunction. While its onset has often been associated with emotionally or physically stressful situations, it has an overall favorable prognosis. We describe here a case of transient apical ballooning following permanent pacemaker implantation. PMID:19652736

  19. Apical entry channels in calcium-transporting epithelia.

    Science.gov (United States)

    Peng, Ji-Bin; Brown, Edward M; Hediger, Matthias A

    2003-08-01

    The identification of the apical calcium channels CaT1 and ECaC revealed the key molecular mechanisms underlying apical calcium entry in calcium-transporting epithelia. These channels are regulated directly or indirectly by vitamin D and dietary calcium and undergo feedback control by intracellular calcium, suggesting their rate-limiting roles in transcellular calcium transport.

  20. Dendrite Injury Triggers DLK-Independent Regeneration

    Directory of Open Access Journals (Sweden)

    Michelle C. Stone

    2014-01-01

    Full Text Available Axon injury triggers regeneration through activation of a conserved kinase cascade, which includes the dual leucine zipper kinase (DLK. Although dendrites are damaged during stroke, traumatic brain injury, and seizure, it is not known whether mature neurons monitor dendrite injury and initiate regeneration. We probed the response to dendrite damage using model Drosophila neurons. Two larval neuron types regrew dendrites in distinct ways after all dendrites were removed. Dendrite regeneration was also triggered by injury in adults. Next, we tested whether dendrite injury was initiated with the same machinery as axon injury. Surprisingly, DLK, JNK, and fos were dispensable for dendrite regeneration. Moreover, this MAP kinase pathway was not activated by injury to dendrites. Thus, neurons respond to dendrite damage and initiate regeneration without using the conserved DLK cascade that triggers axon regeneration.

  1. Multiplanar CT of the spine

    Energy Technology Data Exchange (ETDEWEB)

    Rothman, S.L.G.; Glenn, W.V. Jr.

    1986-01-01

    This is an illustrated text on computed tomography (CT) of the lumbar spine with an emphasis on the role and value of multiplanar imaging for helping determine diagnoses. The book has adequate discussion of scanning techniques for the different regions, interpretations of various abnormalities, degenerative disk disease, and different diagnoses. There is a 50-page chapter on detailed sectional anatomy of the spine and useful chapters on the postoperative spine and the planning and performing of spinal surgery with CT multiplanar reconstruction. There are comprehensive chapters on spinal tumors and trauma. The final two chapters of the book are devoted to CT image processing using digital networks and CT applications of medical computer graphics.

  2. Extensive spinal epidural abscess treated with "apical laminectomies" and irrigation of the epidural space: report of 2 cases.

    Science.gov (United States)

    Abd-El-Barr, Muhammad M; Bi, Wenya Linda; Bahluyen, Biji; Rodriguez, Samuel T; Groff, Michael W; Chi, John H

    2015-03-01

    Spinal epidural abscess (SEA) is a rare but often devastating infection of the epidural space around the spinal cord. When an SEA is widespread, extensive decompression with laminectomy is often impossible, as it may subject the patient to very long operative times, extensive blood loss, and mechanical instability. A technique called "skip laminectomy" has been described in the literature, in which laminectomies are performed at the rostral and caudal ends of an abscess that spans 3-5 levels and a Fogarty catheter is used to mechanically drain the abscess, much like in an embolectomy. In this report of 2 patients, the authors present a modification of this technique, which they call "apical laminectomies" to allow for irrigation and drainage of an extensive SEA spanning the entire length of the vertebral column (C1-2 to L5-S1). Two patients presented with cervico-thoraco-lumbar SEA. Laminectomies were performed at the natural apices of the spine, namely, at the midcervical, midthoracic, and midlumbar spine levels. Next, a pediatric feeding tube was inserted in the epidural space from the thoracic laminectomies up toward the cervical laminectomy site and down toward the lumbar laminectomy site, and saline antibiotics were used to irrigate the SEA. Both patients underwent this procedure with no adverse effects. Their SEAs resolved both clinically and radiologically. Neither patient suffered from mechanical instability at 1 year after treatment. For patients who present with extensive SEAs, apical laminectomies seem to allow for surgical cure of the infectious burden and do not subject the patient to extended operating room time, an increased risk of blood loss, and the risk of mechanical instability.

  3. Early developmental bisphenol-A exposure sex-independently impairs spatial memory by remodeling hippocampal dendritic architecture and synaptic transmission in rats.

    Science.gov (United States)

    Liu, Zhi-Hua; Ding, Jin-Jun; Yang, Qian-Qian; Song, Hua-Zeng; Chen, Xiang-Tao; Xu, Yi; Xiao, Gui-Ran; Wang, Hui-Li

    2016-08-31

    Bisphenol-A (BPA, 4, 4'-isopropylidene-2-diphenol), a synthetic xenoestrogen that widely used in the production of polycarbonate plastics, has been reported to impair hippocampal development and function. Our previous study has shown that BPA exposure impairs Sprague-Dawley (SD) male hippocampal dendritic spine outgrowth. In this study, the sex-effect of chronic BPA exposure on spatial memory in SD male and female rats and the related synaptic mechanism were further investigated. We found that chronic BPA exposure impaired spatial memory in both SD male and female rats, suggesting a dysfunction of hippocampus without gender-specific effect. Further investigation indicated that BPA exposure causes significant impairment of dendrite and spine structure, manifested as decreased dendritic complexity, dendritic spine density and percentage of mushroom shaped spines in hippocampal CA1 and dentate gyrus (DG) neurons. Furthermore, a significant reduction in Arc expression was detected upon BPA exposure. Strikingly, BPA exposure significantly increased the mIPSC amplitude without altering the mEPSC amplitude or frequency, accompanied by increased GABAARβ2/3 on postsynaptic membrane in cultured CA1 neurons. In summary, our study indicated that Arc, together with the increased surface GABAARβ2/3, contributed to BPA induced spatial memory deficits, providing a novel molecular basis for BPA achieved brain impairment.

  4. Early developmental bisphenol-A exposure sex-independently impairs spatial memory by remodeling hippocampal dendritic architecture and synaptic transmission in rats

    Science.gov (United States)

    Liu, Zhi-Hua; Ding, Jin-Jun; Yang, Qian-Qian; Song, Hua-Zeng; Chen, Xiang-Tao; Xu, Yi; Xiao, Gui-Ran; Wang, Hui-Li

    2016-08-01

    Bisphenol-A (BPA, 4, 4‧-isopropylidene-2-diphenol), a synthetic xenoestrogen that widely used in the production of polycarbonate plastics, has been reported to impair hippocampal development and function. Our previous study has shown that BPA exposure impairs Sprague-Dawley (SD) male hippocampal dendritic spine outgrowth. In this study, the sex-effect of chronic BPA exposure on spatial memory in SD male and female rats and the related synaptic mechanism were further investigated. We found that chronic BPA exposure impaired spatial memory in both SD male and female rats, suggesting a dysfunction of hippocampus without gender-specific effect. Further investigation indicated that BPA exposure causes significant impairment of dendrite and spine structure, manifested as decreased dendritic complexity, dendritic spine density and percentage of mushroom shaped spines in hippocampal CA1 and dentate gyrus (DG) neurons. Furthermore, a significant reduction in Arc expression was detected upon BPA exposure. Strikingly, BPA exposure significantly increased the mIPSC amplitude without altering the mEPSC amplitude or frequency, accompanied by increased GABAARβ2/3 on postsynaptic membrane in cultured CA1 neurons. In summary, our study indicated that Arc, together with the increased surface GABAARβ2/3, contributed to BPA induced spatial memory deficits, providing a novel molecular basis for BPA achieved brain impairment.

  5. Degenerative disorders of the spine

    Energy Technology Data Exchange (ETDEWEB)

    Gallucci, Massimo; Puglielli, Edoardo; Splendiani, Alessandra [University of L' Aquila, Department of Radiology, L' Aquila (Italy); Pistoia, Francesca; Spacca, Giorgio [S. Salvatore Hospital, Department of Neuroscience, L' Aquila (Italy)

    2005-03-01

    Patients with back pain and degenerative disorders of the spine have a significant impact on health care costs. Some authors estimate that up to 80% of all adults experience back pain at some point in their lives. Disk herniation represents one of the most frequent causes. Nevertheless, other degenerative diseases have to be considered. In this paper, pathology and imaging of degenerative spine diseases will be discussed, starting from pathophysiology of normal age-related changes of the intervertebral disk and vertebral body. (orig.)

  6. Rhythmic dendritic Ca2+ oscillations in thalamocortical neurons during slow non-REM sleep-related activity in vitro.

    Science.gov (United States)

    Errington, Adam C; Hughes, Stuart W; Crunelli, Vincenzo

    2012-08-15

    The distribution of T-type Ca2+ channels along the entire somatodendritic axis of sensory thalamocortical (TC) neurons permits regenerative propagation of low threshold spikes (LTS) accompanied by global dendritic Ca2+ influx. Furthermore, T-type Ca2+ channels play an integral role in low frequency oscillatory activity (dynamics of T-type Ca2+ channel-dependent dendritic Ca2+ signalling during slow sleep-associated oscillations remains unknown. Here we demonstrate using patch clamp recording and two-photon Ca2+ imaging of dendrites from cat TC neurons undergoing spontaneous slow oscillatory activity that somatically recorded δ (1–4 Hz) and slow (<1 Hz) oscillations are associated with rhythmic and sustained global oscillations in dendritic Ca2+. In addition, our data reveal the presence of LTS-dependent Ca2+ transients (Δ[Ca2+]) in dendritic spine-like structures on proximal TC neuron dendrites during slow (<1 Hz) oscillations whose amplitudes are similar to those observed in the dendritic shaft. We find that the amplitude of oscillation associated Δ[Ca2+] do not vary significantly with distance from the soma whereas the decay time constant (τdecay) of Δ[Ca2+] decreases significantly in more distal dendrites. Furthermore, τdecay of dendritic Δ[Ca2+] increases significantly as oscillation frequency decreases from δ to slow frequencies where pronounced depolarised UP states are observed. Such rhythmic dendritic Ca2+ entry in TC neurons during sleep-related firing patterns could be an important factor in maintaining the oscillatory activity and associated biochemical signalling processes, such as synaptic downscaling, that occur in non-REM sleep.

  7. Antagomirs targeting microRNA-134 increase hippocampal pyramidal neuron spine volume in vivo and protect against pilocarpine-induced status epilepticus.

    Science.gov (United States)

    Jimenez-Mateos, Eva M; Engel, Tobias; Merino-Serrais, Paula; Fernaud-Espinosa, Isabel; Rodriguez-Alvarez, Natalia; Reynolds, James; Reschke, Cristina R; Conroy, Ronan M; McKiernan, Ross C; deFelipe, Javier; Henshall, David C

    2015-07-01

    Emerging data support roles for microRNA (miRNA) in the pathogenesis of various neurologic disorders including epilepsy. MicroRNA-134 (miR-134) is enriched in dendrites of hippocampal neurons, where it negatively regulates spine volume. Recent work identified upregulation of miR-134 in experimental and human epilepsy. Targeting miR-134 in vivo using antagomirs had potent anticonvulsant effects against kainic acid-induced seizures and was associated with a reduction in dendritic spine number. In the present study, we measured dendritic spine volume in mice injected with miR-134-targeting antagomirs and tested effects of the antagomirs on status epilepticus triggered by the cholinergic agonist pilocarpine. Morphometric analysis of over 6,400 dendritic spines in Lucifer yellow-injected CA3 pyramidal neurons revealed increased spine volume in mice given antagomirs compared to controls that received a scrambled sequence. Treatment of mice with miR-134 antagomirs did not alter performance in a behavioral test (novel object location). Status epilepticus induced by pilocarpine was associated with upregulation of miR-134 within the hippocampus of mice. Pretreatment of mice with miR-134 antagomirs reduced the proportion of animals that developed status epilepticus following pilocarpine and increased animal survival. In antagomir-treated mice that did develop status epilepticus, seizure onset was delayed and total seizure power was reduced. These studies provide in vivo evidence that miR-134 regulates spine volume in the hippocampus and validation of the seizure-suppressive effects of miR-134 antagomirs in a model with a different triggering mechanism, indicating broad conservation of anticonvulsant effects.

  8. Efficacy of Biodentine as an Apical Plug in Nonvital Permanent Teeth with Open Apices: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Mehmet Bani

    2015-01-01

    Full Text Available The aim of this study was to evaluate the apical microleakage of Biodentine and MTA orthograde apical plugs and to compare the effect of thickness of these biomaterials on their sealing ability. A total of eighty maxillary anterior teeth were used. The apices were removed by cutting with a diamond disc (Jota, Germany 2 mm from the apical root end in an attempt to standardize the working length of all specimens to 15 ± 1 mm. Both materials were placed in 1–4 mm thickness as apical plugs root canal. Root canal leakage was evaluated by the fluid filtration technique. One-way ANOVA was used in order to determine normality of dispersal distribution of parameters; thereafter, results were analyzed by Kolmogorov-Smirnov test. Overall, between microleakage values of MTA and Biodentine regardless of apical plug thickness, no difference was observed. In terms of plug thickness, a statistically significant difference was observed between the subgroups of MTA and Biodentine (p<0.05. The apical sealing ability of Biodentine was comparable to MTA at any apical plug thickness.

  9. Optimal Current Transfer in Dendrites

    Science.gov (United States)

    Bird, Alex D.

    2016-01-01

    Integration of synaptic currents across an extensive dendritic tree is a prerequisite for computation in the brain. Dendritic tapering away from the soma has been suggested to both equalise contributions from synapses at different locations and maximise the current transfer to the soma. To find out how this is achieved precisely, an analytical solution for the current transfer in dendrites with arbitrary taper is required. We derive here an asymptotic approximation that accurately matches results from numerical simulations. From this we then determine the diameter profile that maximises the current transfer to the soma. We find a simple quadratic form that matches diameters obtained experimentally, indicating a fundamental architectural principle of the brain that links dendritic diameters to signal transmission. PMID:27145441

  10. Postnatal Dendritic Growth and Spinogenesis of Layer-V Pyramidal Cells Differ between Visual, Inferotemporal, and Prefrontal Cortex of the Macaque Monkey

    Science.gov (United States)

    Oga, Tomofumi; Elston, Guy N.; Fujita, Ichiro

    2017-01-01

    Pyramidal cells in the primate cerebral cortex, particularly those in layer III, exhibit regional variation in both the time course and magnitude of postnatal growth and pruning of dendrites and spines. Less is known about the development of pyramidal cell dendrites and spines in other cortical layers. Here we studied dendritic morphology of layer-V pyramidal cells in primary visual cortex (V1, sensory), cytoarchitectonic area TE in the inferotemporal cortex (sensory association), and granular prefrontal cortex (Walker's area 12, executive) of macaque monkeys at the ages of 2 days, 3 weeks, 3.5 months, and 4.5 years. We found that changes in the basal dendritic field area of pyramidal cells were different across the three areas. In V1, field size became smaller over time (largest at 2 days, half that size at 4.5 years), in TE it did not change, and in area 12 it became larger over time (smallest at 2 days, 1.5 times greater at 4.5 years). In V1 and TE, the total number of branch points in the basal dendritic trees was similar between 2 days and 4.5 years, while in area 12 the number was greater in the adult monkeys than in the younger ones. Spine density peaked at 3 weeks and declined in all areas by adulthood, with V1 exhibiting a faster decline than area TE or area 12. Estimates of the total number of spines in the dendritic trees revealed that following the onset of visual experience, pyramidal cells in V1 lose more spines than they grow, whereas those in TE and area 12 grow more spines than they lose during the same period. These data provide further evidence that the process of synaptic refinement in cortical pyramidal cells differs not only according to time, but also location within the cortex. Furthermore, given the previous finding that layer-III pyramidal cells in all these areas exhibit the highest density and total number of spines at 3.5 months, the current results indicate that pyramidal cells in layers III and V develop spines at different rates.

  11. Calcium-activated potassium conductances contribute to action potential repolarization at the soma but not the dendrites of hippocampal CA1 pyramidal neurons.

    Science.gov (United States)

    Poolos, N P; Johnston, D

    1999-07-01

    Evidence is accumulating that voltage-gated channels are distributed nonuniformly throughout neurons and that this nonuniformity underlies regional differences in excitability within the single neuron. Previous reports have shown that Ca2+, Na+, A-type K+, and hyperpolarization-activated, mixed cation conductances have varying distributions in hippocampal CA1 pyramidal neurons, with significantly different densities in the apical dendrites compared with the soma. Another important channel mediates the large-conductance Ca2+-activated K+ current (IC), which is responsible in part for repolarization of the action potential (AP) and generation of the afterhyperpolarization that follows the AP recorded at the soma. We have investigated whether this current is activated by APs retrogradely propagating in the dendrites of hippocampal pyramidal neurons using whole-cell dendritic patch-clamp recording techniques. We found no IC activation by back-propagating APs in distal dendritic recordings. Dendritic APs activated IC only in the proximal dendrites, and this activation decayed within the first 100-150 micrometer of distance from the soma. The decay of IC in the proximal dendrites occurred despite AP amplitude, plus presumably AP-induced Ca2+ influx, that was comparable with that at the soma. Thus we conclude that IC activation by action potentials is nonuniform in the hippocampal pyramidal neuron, which may represent a further example of regional differences in neuronal excitability that are determined by the nonuniform distribution of voltage-gated channels in dendrites.

  12. Calcium Transients in Dendrites of Neocortical Neurons Evoked by Single Subthreshold Excitatory Postsynaptic Potentials via Low-Voltage-Activated Calcium Channels

    Science.gov (United States)

    Markram, Henry; Sakmann, Bert

    1994-05-01

    Simultaneous recordings of membrane voltage and concentration of intracellular Ca2+ ([Ca2+]_i) were made in apical dendrites of layer 5 pyramidal cells of rat neocortex after filling dendrites with the fluorescent Ca2+ indicator Calcium Green-1. Subthreshold excitatory postsynaptic potentials (EPSPs), mediated by the activation of glutamate receptor channels, caused a brief increase in dendritic [Ca2+]_i. This rise in dendritic [Ca2+]_i was mediated by the opening of low-voltage-activated Ca2+ channels in the dendritic membrane. The results provide direct evidence that dendrites do not function as passive cables even at low-frequency synaptic activity; rather, a single subthreshold EPSP changes the dendritic membrane conductance by opening Ca2+ channels and generating a [Ca2+]_i transient that may propagate towards the soma. The activation of these Ca2+ channels at a low-voltage threshold is likely to influence the way in which dendritic EPSPs contribute to the electrical activity of the neuron.

  13. The Isothermal Dendritic Growth Experiment

    Science.gov (United States)

    Glicksman, M. E.; Koss, M. B.; Malarik, D. C.

    1998-01-01

    The growth of dendrites is one of the commonly observed forms of solidification encountered when metals and alloys freeze under low thermal gradients, as occurs in most casting and welding processes. In engineering alloys, the details of the dendritic morphology directly relates to important material responses and properties. Of more generic interest, dendritic growth is also an archetypical problem in morphogenesis, where a complex pattern evolves from simple starting conditions. Thus, the physical understanding and mathematical description of how dendritic patterns emerge during the growth process are of interest to both scientists and engineers. The Isothermal Dendritic Growth Experiment (IDGE) is a basic science experiment designed to measure, for a fundamental test of theory, the kinetics and morphology of dendritic growth without complications induced by gravity-driven convection. The IDGE, a collaboration between Rensselaer Polytechnic Institute, in Troy NY, and NASA's Lewis Research Center (LeRC) was developed over a ten year period from a ground-based research program into a space flight experiment. Important to the success of this flight experiment was provision of in situ near-real-time teleoperations during the spaceflight experiment.

  14. Vitamin D and spine surgery

    Science.gov (United States)

    Mabey, Thomas; Singhatanadgige, Weerasak; Yingsakmongkol, Wicharn; Limthongkul, Worawat; Honsawek, Sittisak

    2016-01-01

    Vitamin D is crucial for musculoskeletal health, maintenance, and function. Vitamin D insufficiency is common among patients undergoing spine surgery and the ideal vitamin D level for spine surgery has yet to be investigated. There is a high prevalence of hypovitaminosis D in patients with musculoskeletal pain regardless of surgical intervention. With the frequency and costs of spine surgery increasing, it is imperative that efforts are continued to reduce the impact on patients and healthcare services. Studies into vitamin D and its associations with orthopaedic surgery have yielded alarming findings with regards to the prevalence of vitamin D deficiency. Importantly, altered vitamin D status also contributes to a wide range of disease conditions. Therefore, future investigations are still essential for better understanding the relationship between vitamin D and spine surgery outcomes. Whilst further research is required to fully elucidate the extent of the effects of hypovitaminosis D has on surgical outcomes, it is strongly advisable to reduce the impacts by appropriate vitamin D supplementation of deficient and at-risk patients. PMID:27900269

  15. Cervical spine movement during intubation

    Directory of Open Access Journals (Sweden)

    Amlan Swain

    2017-01-01

    Full Text Available There have been growing concerns following documented instances of neurological deterioration in patients with cervical spine injury as a result of intubation. A significant body of evidence has since evolved with the primary objective of ascertaining the safest way of securing the endotracheal tube in patients with suspected and proven cervical injury. The search for a mode of intubation producing the least movement at the cervical spine is an ongoing process and is limited by logistic and ethical issues. The ensuing review is an attempt to review available evidence on cervical movements during intubation and to comprehensively outline the movement at the cervical spine with a wide plethora of intubation aids. Literature search was sourced from digital libraries including PubMed, Medline and Google Scholar in addition to the standard textbooks of Anaesthesiology. The keywords used in literature search included 'cervical spine motion,' 'neurological deterioration,' 'intubation biomechanics,' 'direct laryngoscopy,' 'flexible fibreoptic intubation,' 'video laryngoscopes' and 'craniocervical motion.' The scientific information in this review is expected to assist neuroanaesthesiologists for planning airway management in patients with neurological injury as well as to direct further research into this topic which has significant clinical and patient safety implications.

  16. Magnetic resonance of the spine

    Energy Technology Data Exchange (ETDEWEB)

    Enzmann, D.R.; De La Paz, R.L.; Rubin, J.R.

    1990-01-01

    This book contains 12 chapters. Three chapters discuss principles of cerebrospinal fluid flow, spinal imaging techniques, and the physical basis and anatomic correlates of signal intensity in the spine. There are chapters on normal anatomy, congenital anomalies, trauma, tumors, infection, demyelinating disease, degenerative disease, vascular conditions, and syringomyelia.

  17. Spine Injuries in Child Abuse.

    Science.gov (United States)

    Jauregui, Julio J; Perfetti, Dean C; Cautela, Frank S; Frumberg, David B; Naziri, Qais; Paulino, Carl B

    2016-09-22

    Although rare, spinal injuries associated with abuse can have potentially devastating implications in the pediatric population. We analyzed the association of pediatric spine injury in abused children and determined the anatomic level of the spine affected, while also focusing on patient demographics, length of stay, and total hospital charges compared with spine patients without a diagnosis of abuse. A retrospective review of the Kids' Inpatient Database was conducted from 2000 to 2012 to identify pediatric patients (below 18 y) who sustained vertebral column fractures or spinal cord injuries. Patients with a documented diagnosis of abuse were identified using ICD-9-CM diagnosis codes. Our statistical models consisted of multivariate linear regressions that were adjusted for age, race, and sex. There were 22,192 pediatric patients with a diagnosis of spinal cord or vertebral column injury during the study period, 116 (0.5%) of whom also had a documented diagnosis of abuse. The most common type of abuse was physical (75.9%). Compared with nonabused patients, abused patients were more likely to be below 2 years of age (OR=133.4; 95% CI, 89.5-198.8), female (OR=1.67; 95% CI, 1.16-2.41), and nonwhite (black: OR=3.86; 95% CI, 2.31-6.45; Hispanic: OR=2.86; 95% CI, 1.68-4.86; other: OR=2.33; 95% CI, 1.11-4.86). Abused patients also presented with an increased risk of thoracic (OR=2.57; 95% CI, 1.67-3.97) and lumbar (OR=1.67; 95% CI, 1.03-2.72) vertebral column fractures and had a multivariate-adjusted mean length of stay that was 62.2% longer (P<0.001) and mean total charges that were 52.9% higher (P<0.001) compared with nonabused patients. Furthermore, 19.7% of all pediatric spine patients under 2 years of age admitted during the study period belonged to the abused cohort. Spine injuries are rare but can be found in the pediatric population. With an additional documented diagnosis of abuse, these injuries affect younger patients in the thoracolumbar region of the spine

  18. Large variability in synaptic N-methyl-D-aspartate receptor density on interneurons and a comparison with pyramidal-cell spines in the rat hippocampus.

    Science.gov (United States)

    Nyíri, G; Stephenson, F A; Freund, T F; Somogyi, P

    2003-01-01

    Pyramidal cells receive input from several types of GABA-releasing interneurons and innervate them reciprocally. Glutamatergic activation of interneurons involves both alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) type glutamate receptors expressed in type I synapses, mostly on their dendritic shafts. On average, the synaptic AMPA receptor content is several times higher on interneurons than in the spines of pyramidal cells. To compare the NMDA receptor content of synapses, we used a quantitative postembedding immunogold technique on serial electron microscopic sections, and analysed the synapses on interneuron dendrites and pyramidal cell spines in the CA1 area. Because all NMDA receptors contain the obligatory NR1 subunit, receptor localisation was carried out using antibodies recognising all splice variants of the NR1 subunit. Four populations of synapse were examined: i). on spines of pyramidal cells in stratum (str.) radiatum and str. oriens; ii). on parvalbumin-positive interneuronal dendritic shafts in str. radiatum; iii). on randomly found dendritic shafts in str. oriens and iv). on somatostatin-positive interneuronal dendritic shafts and somata in str. oriens. On average, the size of the synapses on spines was about half of those on interneurons. The four populations of synapse significantly differed in labelling for the NR1 subunit. The median density of NR1 subunit labelling was highest on pyramidal cell spines. It was lowest in the synapses on parvalbumin-positive dendrites in str. radiatum, where more than half of these synapses were immunonegative. In str. oriens, synapses on interneurons had a high variability of receptor content; some dendrites were similar to those in str. radiatum, including the proximal synapses of somatostatin-positive cells, whereas others had immunoreactivity for the NR1 subunit similar to or higher than synapses on pyramidal cell spines. These results show that synaptic NMDA

  19. The impact of development and sensory deprivation on dendritic protrusions in the mouse barrel cortex.

    Science.gov (United States)

    Chen, Chia-Chien; Bajnath, Adesh; Brumberg, Joshua C

    2015-06-01

    Dendritic protrusions (spines and filopodia) are structural indicators of synapses that have been linked to neuronal learning and memory through their morphological alterations induced by development and experienced-dependent activities. Although previous studies have demonstrated that depriving sensory experience leads to structural changes in neocortical organization, the more subtle effects on dendritic protrusions remain unclear, mostly due to focus on only one specific cell type and/or age of manipulation. Here, we show that sensory deprivation induced by whisker trimming influences the dendritic protrusions of basilar dendrites located in thalamocortical recipient lamina (IV and VI) of the mouse barrel cortex in a layer-specific manner. Following 1 month of whisker trimming after birth, the density of dendritic protrusions increased in layer IV, but decreased in layer VI. Whisker regrowth for 1 month returned protrusion densities to comparable level of age-matched controls in layer VI, but not in layer IV. In adults, chronic sensory deprivation led to an increase in protrusion densities in layer IV, but not in layer VI. In addition, chronic pharmacological blockade of N-methyl-d-aspartate receptors (NMDARs) increased protrusion density in both layers IV and VI, which returned to the control level after 1 month of drug withdrawal. Our data reveal that different cortical layers respond to chronic sensory deprivation in different ways, with more pronounced effects during developmental critical periods than adulthood. We also show that chronically blocking NMDARs activity during developmental critical period also influences the protrusion density and morphology in the cerebral cortex.

  20. Maxillary first premolars: I. Morphology of the apical constriction

    Institute of Scientific and Technical Information of China (English)

    Daming Wu; Younong Wu; Ming Hu

    2009-01-01

    Objective: To investigated the apical constriction morphology of maxillary first premolars in the Chinese population. Methods: Eighty recently extracted human maxillary first premolars from a native Chinese population were used. The number and shape of apical constrictions were recorded under a dental operating microscope (DOM) at 12.5X2.5 magnification. After access preparation, a new K-file was inserted into the canal until the tip of the file was just seen at the apical constriction under the DOM. The teeth with files in the canals were X-rayed from a mesiodistal direction using a direct digital radiography (DDR) system, and the distance between the file tip and the center of radiographic apex was directly measured from the computer screen using DDR measurement software. Results: The percentage of teeth with an apical constriction was 78.5% (102/130). The most common apical constriction shapes were oval (55.9%) and round (35.3%). The mean distance between the apical constriction and the anatomical tip of the root was 0.61 mm, and 84.3% (86/102) were within 1 mm. Conclusion: The most common shape of an apical constriction was oval or round, and the distance to the apex was mostly within 1 mm, indicating that root canal therapy should stop 1 mm from the radiographic apex.

  1. Virus interaction with the apical junctional complex.

    Science.gov (United States)

    Gonzalez-Mariscal, Lorenza; Garay, Erika; Lechuga, Susana

    2009-01-01

    In order to infect pathogens must breach the epithelial barriers that separate the organism from the external environment or that cover the internal cavities and ducts of the body. Epithelia seal the passage through the paracellular pathway with the apical junctional complex integrated by tight and adherens junctions. In this review we describe how viruses like coxsackie, swine vesicular disease virus, adenovirus, reovirus, feline calcivirus, herpes viruses 1 and 2, pseudorabies, bovine herpes virus 1, poliovirus and hepatitis C use as cellular receptors integral proteins present at the AJC of epithelial cells. Interaction with these proteins contributes in a significant manner in defining the particular tropism of each virus. Besides these proteins, viruses exhibit a wide range of cellular co-receptors among which proteins present in the basolateral cell surface like integrins are often found. Therefore targeting proteins of the AJC constitutes a strategy that might allow viruses to bypass the physical barrier that blocks their access to receptors expressed on the basolateral surface of epithelial cells.

  2. Auxin at the Shoot Apical Meristem

    Science.gov (United States)

    Vernoux, Teva; Besnard, Fabrice; Traas, Jan

    2010-01-01

    Plants continuously generate new tissues and organs through the activity of populations of undifferentiated stem cells, called meristems. Here, we discuss the so-called shoot apical meristem (SAM), which generates all the aerial parts of the plant. It has been known for many years that auxin plays a central role in the functioning of this meristem. Auxin is not homogeneously distributed at the SAM and it is thought that this distribution is interpreted in terms of differential gene expression and patterned growth. In this context, auxin transporters of the PIN and AUX families, creating auxin maxima and minima, are crucial regulators. However, auxin transport is not the only factor involved. Auxin biosynthesis genes also show specific, patterned activities, and local auxin synthesis appears to be essential for meristem function as well. In addition, auxin perception and signal transduction defining the competence of cells to react to auxin, add further complexity to the issue. To unravel this intricate signaling network at the SAM, systems biology approaches, involving not only molecular genetics but also live imaging and computational modeling, have become increasingly important. PMID:20452945

  3. Male Spine Motion During Coitus

    Science.gov (United States)

    Sidorkewicz, Natalie

    2014-01-01

    Study Design. Repeated measures design. Objective. To describe male spine movement and posture characteristics during coitus and compare these characteristics across 5 common coital positions. Summary of Background Data. Exacerbation of pain during coitus due to coital movements and positions is a prevalent issue reported by low back pain patients. A biomechanical analysis of spine movements and postures during coitus has never been conducted. Methods. Ten healthy males and females engaged in coitus in the following preselected positions and variations: QUADRUPED, MISSIONARY, and SIDELYING. An optoelectronic motion capture system was used to measure 3-dimensional lumbar spine angles that were normalized to upright standing. To determine whether each coital position had distinct spine kinematic profiles, separate univariate general linear models, followed by Tukey's honestly significant difference post hoc analysis were used. The presentation of coital positions was randomized. Results. Both variations of QUADRUPED, mQUAD1 and mQUAD2, were found to have a significantly higher cycle speed than mSIDE (P = 0.043 and P = 0.034, respectively), mMISS1 (P = 0.003 and P = 0.002, respectively), and mMISS2 (P = 0.001 and P spine movement varied depending on the coital position; however, across all positions, the majority of the range of motion used was in flexion. Based on range of motion, the least-to-most recommended positions for a male flexion-intolerant patient are mSIDE, mMISS2, mQUAD2, mMISS1, and mQUAD1. Conclusion. Initial recommendations—which include specific coital positions to avoid, movement strategies, and role of the partner—were developed for male patients whose low back pain is exacerbated by specific motions and postures. Level of Evidence: N/A PMID:25208042

  4. Effects of unilateral and bilateral training in a reaching task on dendritic branching of neurons in the rat motor-sensory forelimb cortex.

    Science.gov (United States)

    Greenough, W T; Larson, J R; Withers, G S

    1985-09-01

    Effects of motor training on a neocortical nerve cell population involved in performance of the motor task were assessed by measuring Layer V pyramidal neuron apical dendritic branching in motor-sensory forelimb cortex of rats trained to reach into a tube for food. Rats were trained to reach with the forepaw they preferred to use (group PRAC), the nonpreferred forepaw (REV), both forepaws (ALT), or neither forepaw (CONT). Across groups, hemispheres opposite trained forepaws had larger apical dendritic fields, in terms of total dendritic length, number of oblique branches from the apical shaft, and length of terminal branches. Similar, although somewhat less consistent, effects were seen when results were analyzed for between- (CONT vs ALT) and within-subject comparisons (trained vs nontrained hemispheres of REV and PRAC). This finding is compatible with the hypothesis that altered dendritic patterns, with associated synapses, are involved in storage of information from the training experience. The within-subject effects mitigate suggestions that these differences arise from generally acting hormonal or metabolic consequences of the training experience, although the possibility that these effects result from neural activity per se and are unrelated to information storage cannot be excluded.

  5. Bony change of apical lesion healing process using fractal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Min; Park, Hyok; Jeong, Ho Gul; Kim, Kee Deog; Park, Chang Seo [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2005-06-15

    To investigate the change of bone healing process after endodontic treatment of the tooth with an apical lesion by fractal analysis. Radiographic images of 35 teeth from 33 patients taken on first diagnosis, 6 months, and 1 year after endodontic treatment were selected. Radiographic images were taken by JUPITER computerized Dental X-ray System. Fractal dimensions were calculated three times at each area by Scion Image PC program. Rectangular region of interest (30 x 30) were selected at apical lesion and normal apex of each image. The fractal dimension at apical lesion of first diagnosis (L{sub 0}) is 0.940 {+-} 0.361 and that of normal area (N{sub 0}) is 1.186 {+-} 0.727 (p<0.05). Fractal dimension at apical lesion of 6 months after endodontic treatment (L{sub 1}) is 1.076 {+-} 0.069 and that of normal area (N{sub 1}) is 1.192 {+-} 0.055 (p<0.05). Fractal dimension at apical lesion of 1 year after endodontic treatment (L{sub 2}) is 1.163 {+-} 0.074 and that of normal area (N{sub 2}) is 1.225 {+-} 0.079 (p<0.05). After endodontic treatment, the fractal dimensions at each apical lesions depending on time showed statistically significant difference. And there are statistically significant different between normal area and apical lesion on first diagnosis, 6 months after, 1 year after. But the differences were grow smaller as time flows. The evaluation of the prognosis after the endodontic treatment of the apical lesion was estimated by bone regeneration in apical region. Fractal analysis was attempted to overcome the limit of subjective reading, and as a result the change of the bone during the healing process was able to be detected objectively and quantitatively.

  6. A Simulation Study on the Effects of Dendritic Morphology on Layer V Prefontal Pyramidal Cell Firing Behavior

    Directory of Open Access Journals (Sweden)

    Maria ePsarrou

    2014-09-01

    Full Text Available Pyramidal cells, the most abundant neurons in neocortex, exhibit significant structural variability across different brain areas and layers in different species. Moreover, in response to a somatic step current, these cells display a range of firing behaviors, the most common being (1 repetitive action potentials (Regular Spiking - RS, and (2 an initial cluster of 2-5 action potentials with short ISIs followed by single spikes (Intrinsic Bursting - IB. A correlation between firing behavior and dendritic morphology has recently been reported. In this work we use computational modeling to investigate quantitatively the effects of the basal dendritic tree morphology on the firing behavior of 112 three-dimensional reconstructions of layer V PFC rat pyramidal cells. Particularly, we focus on how different morphological (diameter, total length, volume and branch number and passive (Mean Electrotonic Path length features of basal dendritic trees shape somatic firing when the spatial distribution of ionic mechanisms in the basal dendritic trees is uniform or non-uniform. Our results suggest that total length, volume and branch number are the best morphological parameters to discriminate the cells as RS or IB, regardless of the distribution of ionic mechanisms in basal trees. The discriminatory power of total length, volume and branch number remains high in the presence of different apical dendrites. These results suggest that morphological variations in the basal dendritic trees of layer V pyramidal neurons in the PFC influence their firing patterns in a predictive manner and may in turn influence the information processing capabilities of these neurons.

  7. Imaging of cervical spine injuries of childhood

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, Geetika; El-Khoury, Georges Y. [University of Iowa Hospitals and Clinics, Department of Radiology, 3951 JPP, Iowa, IA (United States)

    2007-06-15

    Cervical spine injuries of children, though rare, have a high morbidity and mortality. The pediatric cervical spine is anatomically and biomechanically different from that of adults. Hence, the type, level and outcome of cervical spine injuries in children are different from those seen in adults. Normal developmental variants seen in children can make evaluation of the pediatric cervical spine challenging. This article reviews the epidemiology of pediatric cervical spine trauma, normal variants seen in children and specific injuries that are more common in the pediatric population. We also propose an evidence-based imaging protocol to avoid unnecessary imaging studies and minimize radiation exposure in children. (orig.)

  8. Cervical spine in Treacher Collins syndrome.

    Science.gov (United States)

    Pun, Amy Hoi-Ying; Clark, Bruce Eric; David, David John; Anderson, Peter John

    2012-05-01

    Treacher Collins syndrome is a congenital syndrome with characteristic craniofacial malformations, which are well described in the literature. However, the presence of cervical spine dysmorphology in this syndrome has been minimally described. This study reviews cervical spine radiographs of 40 patients with Treacher Collins syndrome. In this sample, 7 of 40 patients displayed cervical spine anomalies, with 3 of these patients displaying multiple cervical spine anomalies. The patterns of spinal anomalies were variable, suggesting that the underlying genetic mutation has variable expressivity in cervical spine development as it does elsewhere in the craniofacial skeleton.

  9. Spine formation pattern of adult-born neurons is differentially modulated by the induction timing and location of hippocampal plasticity.

    Directory of Open Access Journals (Sweden)

    Noriaki Ohkawa

    Full Text Available In the adult hippocampus dentate gyrus (DG, newly born neurons are functionally integrated into existing circuits and play important roles in hippocampus-dependent memory. However, it remains unclear how neural plasticity regulates the integration pattern of new neurons into preexisting circuits. Because dendritic spines are major postsynaptic sites for excitatory inputs, spines of new neurons were visualized by retrovirus-mediated labeling to evaluate integration. Long-term potentiation (LTP was induced at 12, 16, or 21 days postinfection (dpi, at which time new neurons have no, few, or many spines, respectively. The spine expression patterns were investigated at one or two weeks after LTP induction. Induction at 12 dpi increased later spinogenesis, although the new neurons at 12 dpi didn't respond to the stimulus for LTP induction. Induction at 21 dpi transiently mediated spine enlargement. Surprisingly, LTP induction at 16 dpi reduced the spine density of new neurons. All LTP-mediated changes specifically appeared within the LTP-induced layer. Therefore, neural plasticity differentially regulates the integration of new neurons into the activated circuit, dependent on their developmental stage. Consequently, new neurons at different developmental stages may play distinct roles in processing the acquired information by modulating the connectivity of activated circuits via their integration.

  10. Midazolam and Atropine Alter Theta Oscillations in the Hippocampal CA1 Region by Modulating Both the Somatic and Distal Dendritic Dipoles

    Science.gov (United States)

    Balakrishnan, Shilpashree; Pearce, Robert A.

    2014-01-01

    Theta (4-12 Hz) oscillations in the hippocampus play an important role in learning and memory. They are altered by a wide variety of drugs that impair memory, and these effects may underlie or contribute to drug-induced amnesia. However, the network mechanisms linking drug actions with changes in memory formation remain poorly defined. Here, we used a multisite linear electrode array to measure local field potentials simultaneously across the CA1 layers of the hippocampus during active exploration, and employed current source density analysis and computational modeling to investigate how midazolam and atropine – two amnestic drugs that are used clinically and experimentally – change the relative timing and strength of the drivers of θ-oscillations. We found that two dipoles are present, with active inputs that are centered at the soma and the distal apical dendrite and passive return pathways that overlap in the mid-apical dendrite. Both drugs shifted the position of the phase reversal in the local field potential that occurred in the mid-apical dendritic region, but in opposite directions, by changing the strength of the dendritic pole, without altering the somatic pole or relative timing. Computational modeling showed that this constellation of changes, as well as an additional effect on a variably present mid-apical pole, could be produced by simultaneous changes in the active somatic and distal dendritic inputs. These network-level changes, produced by two amnestic drugs that target different types of receptors, may thus serve as a common basis for impaired memory encoding. PMID:24862458

  11. Sensory deprivation differentially impacts the dendritic development of pyramidal versus non-pyramidal neurons in layer 6 of mouse barrel cortex.

    Science.gov (United States)

    Chen, Chia-Chien; Tam, Danny; Brumberg, Joshua C

    2012-04-01

    Early postnatal sensory experience can have profound impacts on the structure and function of cortical circuits affecting behavior. Using the mouse whisker-to-barrel system we chronically deprived animals of normal sensory experience by bilaterally trimming their whiskers every other day from birth for the first postnatal month. Brain tissue was then processed for Golgi staining and neurons in layer 6 of barrel cortex were reconstructed in three dimensions. Dendritic and somatic parameters were compared between sensory-deprived and normal sensory experience groups. Results demonstrated that layer 6 non-pyramidal neurons in the chronically deprived group showed an expansion of their dendritic arbors. The pyramidal cells responded to sensory deprivation with increased somatic size and basilar dendritic arborization but overall decreased apical dendritic parameters. In sum, sensory deprivation impacted on the neuronal architecture of pyramidal and non-pyramidal neurons in layer 6, which may provide a substrate for observed physiological and behavioral changes resulting from whisker trimming.

  12. Efficacy of Biodentine as an Apical Plug in Nonvital Permanent Teeth with Open Apices: An In Vitro Study.

    Science.gov (United States)

    Bani, Mehmet; Sungurtekin-Ekçi, Elif; Odabaş, Mesut Enes

    2015-01-01

    The aim of this study was to evaluate the apical microleakage of Biodentine and MTA orthograde apical plugs and to compare the effect of thickness of these biomaterials on their sealing ability. A total of eighty maxillary anterior teeth were used. The apices were removed by cutting with a diamond disc (Jota, Germany) 2 mm from the apical root end in an attempt to standardize the working length of all specimens to 15 ± 1 mm. Both materials were placed in 1-4 mm thickness as apical plugs root canal. Root canal leakage was evaluated by the fluid filtration technique. One-way ANOVA was used in order to determine normality of dispersal distribution of parameters; thereafter, results were analyzed by Kolmogorov-Smirnov test. Overall, between microleakage values of MTA and Biodentine regardless of apical plug thickness, no difference was observed. In terms of plug thickness, a statistically significant difference was observed between the subgroups of MTA and Biodentine (p Biodentine was comparable to MTA at any apical plug thickness.

  13. A dendritic organization of lateral amygdala neurons in fear susceptible and resistant mice.

    Science.gov (United States)

    Castro-Gomes, Vitor; Bergstrom, Hadley C; McGuire, Jennifer L; Parker, Clarissa C; Coyner, Jennifer; Landeira-Fernandez, J; Ursano, Robert J; Palmer, Abraham A; Johnson, Luke R

    2016-01-01

    Subtle differences in neuronal microanatomy may be coded in individuals with genetic susceptibility for neuropsychiatric disorders. Genetic susceptibility is a significant risk factor in the development of anxiety disorders, including post-traumatic stress disorder (PTSD). Pavlovian fear conditioning has been proposed to model key aspects of PTSD. According to this theory, PTSD begins with the formation of a traumatic memory which connects relevant environmental stimuli to significant threats to life. The lateral amygdala (LA) is considered to be a key network hub for the establishment of Pavlovian fear conditioning. Substantial research has also linked the LA to PTSD. Here we used a genetic mouse model of fear susceptibility (F-S) and resistance (F-R) to investigate the dendritic and spine structure of principal neurons located in the LA. F-S and F-R lines were bi-directionally selected based on divergent levels of contextual and cued conditioned freezing in response to fear-evoking footshocks. We examined LA principal neuron dendritic and spine morphology in the offspring of experimentally