WorldWideScience

Sample records for aphid myzus persicae

  1. National Plant Diagnostic Network, Taxonomic training videos: Aphids under the microscope - Myzus persicae

    Science.gov (United States)

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides provides training to identify the green peach aphid, Myzus persicae, using a compound microscope and an electronic identification key called “LUCID.” The video demonstrates key morphological structures t...

  2. Arabidopsis thaliana - Myzus persicae interaction: shaping the understanding of plant defense against phloem-feeding aphids

    Directory of Open Access Journals (Sweden)

    Joe eLouis

    2013-07-01

    Full Text Available The phloem provides a unique niche for several organisms. Aphids are a large group of Hemipteran insects that utilize stylets present in their mouthparts to pierce sieve elements and drink large volumes of phloem sap. In addition, many aphids also vector viral diseases. Myzus persicae, commonly known as the green peach aphid (GPA, is an important pest of a large variety of plants that includes Arabidopsis thaliana. This review summarizes recent studies that have exploited the compatible interaction between Arabidopsis and GPA to understand the molecular and physiological mechanisms utilized by plants to control aphid infestation, as well as genes and mechanisms that contribute to susceptibility. In addition, recent efforts to identify aphid-delivered elicitors of plant defenses and novel aphid salivary components that facilitate infestation are also discussed.

  3. Microsatellite marker analysis of peach-potato aphids (Myzus persicae, Homoptera: Aphididae) from Scottish suction traps.

    Science.gov (United States)

    Malloch, G; Highet, F; Kasprowicz, L; Pickup, J; Neilson, R; Fenton, B

    2006-12-01

    The peach-potato aphid Myzus persicae (Sulzer) is an important vector of plant viruses. A network of suction traps collects aerial samples of this aphid in order to monitor and help predict its spatial distribution and likely impact on virus transmission in crops. A suction trap catch is thought to be a good representation of the total aphid pool. Sensitive molecular markers have been developed that determine the genetic composition of the M. persicae population. In Scotland, UK, these were applied to field collections revealing a limited number of clones. Molecular markers are less successful when applied to specimens that have been preserved in an ethanol-based trap fluid designed to preserve morphology. An assessment of different DNA extraction and PCR techniques is presented and the most efficient are used to analyse M. persicae specimens caught in the Dundee suction trap in 2001, a year when exceptionally high numbers were caught. The results reveal that the majority of the M. persicae caught belonged to two highly insecticide resistant clones. In addition, it was possible to compare the relative frequencies of genotypes caught in the trap with those collected at insecticide treated and untreated field sites in the vicinity. These results indicate that, in addition to suction trap data, the ability to sample field sites provides valuable early warning data which have implications for pest control and virus management strategies.

  4. The evolution of insecticide resistance in the peach potato aphid, Myzus persicae.

    Science.gov (United States)

    Bass, Chris; Puinean, Alin M; Zimmer, Christoph T; Denholm, Ian; Field, Linda M; Foster, Stephen P; Gutbrod, Oliver; Nauen, Ralf; Slater, Russell; Williamson, Martin S

    2014-08-01

    The peach potato aphid, Myzus persicae is a globally distributed crop pest with a host range of over 400 species including many economically important crop plants. The intensive use of insecticides to control this species over many years has led to populations that are now resistant to several classes of insecticide. Work spanning over 40 years has shown that M. persicae has a remarkable ability to evolve mechanisms that avoid or overcome the toxic effect of insecticides with at least seven independent mechanisms of resistance described in this species to date. The array of novel resistance mechanisms, including several 'first examples', that have evolved in this species represents an important case study for the evolution of insecticide resistance and also rapid adaptive change in insects more generally. In this review we summarise the biochemical and molecular mechanisms underlying resistance in M. persicae and the insights study of this topic has provided on how resistance evolves, the selectivity of insecticides, and the link between resistance and host plant adaptation. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Impact of fertilization and granular insecticides on the incidence of tobacco aphid, myzus persicae (sulz)

    International Nuclear Information System (INIS)

    Razaq, A.; Hussain, N.; Khalil, S.K.; Alamzeb

    1989-01-01

    Field studies were conducted on the control of tobacco aphid, Myzus persicase (Sulz) with four granular insecticides, viz, Furadan 3% G, Diazinon 5% g, Thiodan 5% g and Larsban 5% g, with and without NPK fertilization. The aphid population was significantly higher in the fertilized plots compared to the non-fertilized ones. All the four insecticides significantly reduced the aphids density compared to the check. Furada 3% gave best results for the control of this pest. (author)

  6. Varietals resistance and susceptibility in mustard (brassica campestris l.) genotypes against aphid myzus persicae (sulzer) (homoptera: aphididae)

    International Nuclear Information System (INIS)

    Sarwar, M.; Ahmad, N.; Khan, G.Z.; Tofique, M.

    2009-01-01

    The exploitation of resistant cultivars is an imperative, simple, practical and flexible way to cope with insect pests incidence. Thirty genotypes of mustard (Brassica campestris L.) were tested for their resistance and susceptibility to aphid Myzus persicae (Sulzer) exposed under natural field conditions. Data on pest tolerance of genotypes were judged by quantitative traits such as number of aphids on each infested plant and mean dry weight of seeds per genotype. Studies observed the discrepancy in overall rates of pest invasion and seed yield contained by trailed mustard genotypes. Agati sarson (P), S-9-S-97-100/45 and S-9-S-97-100/45 were the least damaged genotypes showing their moderate resistance. Amongst other genotypes, MM-I/01-5, MM-I285 and MM-I/01-6 were the most damaged showing oversensitive response. Although the majority of genotypes were found vulnerable to pest, Agati sarson (P) and S-9-S-97-100/45 due to their lowest hypersensitive response toward aphid contamination and increased pods yield could be used for the development of essential resistance in mustard plant. A marked mode of damage inflicted by aphid on the crop was noticed and the abiotic factors contributing variations in aphid infestation levels during both growing seasons were determined. Knowledge about the host plant resistance investigated can facilitate growers to choose the most appropriate cultivars as pest control strategy. (author)

  7. Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae.

    Science.gov (United States)

    Puinean, Alin M; Foster, Stephen P; Oliphant, Linda; Denholm, Ian; Field, Linda M; Millar, Neil S; Williamson, Martin S; Bass, Chris

    2010-06-24

    The aphid Myzus persicae is a globally significant crop pest that has evolved high levels of resistance to almost all classes of insecticide. To date, the neonicotinoids, an economically important class of insecticides that target nicotinic acetylcholine receptors (nAChRs), have remained an effective control measure; however, recent reports of resistance in M. persicae represent a threat to the long-term efficacy of this chemical class. In this study, the mechanisms underlying resistance to the neonicotinoid insecticides were investigated using biological, biochemical, and genomic approaches. Bioassays on a resistant M. persicae clone (5191A) suggested that P450-mediated detoxification plays a primary role in resistance, although additional mechanism(s) may also contribute. Microarray analysis, using an array populated with probes corresponding to all known detoxification genes in M. persicae, revealed constitutive over-expression (22-fold) of a single P450 gene (CYP6CY3); and quantitative PCR showed that the over-expression is due, at least in part, to gene amplification. This is the first report of a P450 gene amplification event associated with insecticide resistance in an agriculturally important insect pest. The microarray analysis also showed over-expression of several gene sequences that encode cuticular proteins (2-16-fold), and artificial feeding assays and in vivo penetration assays using radiolabeled insecticide provided direct evidence of a role for reduced cuticular penetration in neonicotinoid resistance. Conversely, receptor radioligand binding studies and nucleotide sequencing of nAChR subunit genes suggest that target-site changes are unlikely to contribute to resistance to neonicotinoid insecticides in M. persicae.

  8. Changes in the free amino acid composition of Capsicum annuum (pepper) leaves in response to Myzus persicae (green peach aphid) infestation. A comparison with water stress.

    Science.gov (United States)

    Florencio-Ortiz, Victoria; Sellés-Marchart, Susana; Zubcoff-Vallejo, José; Jander, Georg; Casas, José L

    2018-01-01

    Amino acids play a central role in aphid-plant interactions. They are essential components of plant primary metabolism, function as precursors for the synthesis of defense-related specialized metabolites, and are major growth-limiting nutrients for aphids. To quantify changes in the free amino acid content of pepper (Capsicum annuum L.) leaves in response to green peach aphid (Myzus persicae Sulzer) feeding, plants were infested with a low (20 aphids/plant) or a high (200 aphids/plant) aphid density in time-course experiments ranging from 3 hours to 7 days. A parallel experiment was conducted with pepper plants that had been subjected to water stress. Factor Analysis of Mixed Data revealed a significant interaction of time x density in the free amino acid response of aphid-infested leaves. At low aphid density, M. persicae did not trigger a strong response in pepper leaves. Conversely, at high density, a large increase in total free amino acid content was observed and specific amino acids peaked at different times post-infestation. Comparing aphid-infested with water-stressed plants, most of the observed differences were quantitative. In particular, proline and hydroxyproline accumulated dramatically in response to water stress, but not in response to aphid infestation. Some additional differences and commonalities between the two stress treatments are discussed.

  9. Mutation of a nicotinic acetylcholine receptor β subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae

    Directory of Open Access Journals (Sweden)

    Field Linda M

    2011-05-01

    Full Text Available Abstract Background Myzus persicae is a globally important aphid pest with a history of developing resistance to insecticides. Unusually, neonicotinoids have remained highly effective as control agents despite nearly two decades of steadily increasing use. In this study, a clone of M. persicae collected from southern France was found, for the first time, to exhibit sufficiently strong resistance to result in loss of the field effectiveness of neonicotinoids. Results Bioassays, metabolism and gene expression studies implied the presence of two resistance mechanisms in the resistant clone, one based on enhanced detoxification by cytochrome P450 monooxygenases, and another unaffected by a synergist that inhibits detoxifying enzymes. Binding of radiolabeled imidacloprid (a neonicotinoid to whole body membrane preparations showed that the high affinity [3H]-imidacloprid binding site present in susceptible M. persicae is lost in the resistant clone and the remaining lower affinity site is altered compared to susceptible clones. This confers a significant overall reduction in binding affinity to the neonicotinoid target: the nicotinic acetylcholine receptor (nAChR. Comparison of the nucleotide sequence of six nAChR subunit (Mpα1-5 and Mpβ1 genes from resistant and susceptible aphid clones revealed a single point mutation in the loop D region of the nAChR β1 subunit of the resistant clone, causing an arginine to threonine substitution (R81T. Conclusion Previous studies have shown that the amino acid at this position within loop D is a key determinant of neonicotinoid binding to nAChRs and this amino acid change confers a vertebrate-like character to the insect nAChR receptor and results in reduced sensitivity to neonicotinoids. The discovery of the mutation at this position and its association with the reduced affinity of the nAChR for imidacloprid is the first example of field-evolved target-site resistance to neonicotinoid insecticides and also

  10. Transmission of Turnip yellows virus by Myzus persicae Is Reduced by Feeding Aphids on Double-Stranded RNA Targeting the Ephrin Receptor Protein

    Directory of Open Access Journals (Sweden)

    Michaël Mulot

    2018-03-01

    Full Text Available Aphid-transmitted plant viruses are a threat for major crops causing massive economic loss worldwide. Members in the Luteoviridae family are transmitted by aphids in a circulative and non-replicative mode. Virions are acquired by aphids when ingesting sap from infected plants and are transported through the gut and the accessory salivary gland (ASG cells by a transcytosis mechanism relying on virus-specific receptors largely unknown. Once released into the salivary canal, virions are inoculated to plants, together with saliva, during a subsequent feeding. In this paper, we bring in vivo evidence that the membrane-bound Ephrin receptor (Eph is a novel aphid protein involved in the transmission of the Turnip yellows virus (TuYV, Polerovirus genus, Luteoviridae family by Myzus persicae. The minor capsid protein of TuYV, essential for aphid transmission, was able to bind the external domain of Eph in yeast. Feeding M. persicae on in planta- or in vitro-synthesized dsRNA targeting Eph-mRNA (dsRNAEph did not affect aphid feeding behavior but reduced accumulation of TuYV genomes in the aphid's body. Consequently, TuYV transmission efficiency by the dsRNAEph-treated aphids was reproducibly inhibited and we brought evidence that Eph is likely involved in intestinal uptake of the virion. The inhibition of virus uptake after dsRNAEph acquisition was also observed for two other poleroviruses transmitted by M. persicae, suggesting a broader role of Eph in polerovirus transmission. Finally, dsRNAEph acquisition by aphids did not affect nymph production. These results pave the way toward an ecologically safe alternative of insecticide treatments that are used to lower aphid populations and reduce polerovirus damages.

  11. Transmission of Turnip yellows virus by Myzus persicae Is Reduced by Feeding Aphids on Double-Stranded RNA Targeting the Ephrin Receptor Protein.

    Science.gov (United States)

    Mulot, Michaël; Monsion, Baptiste; Boissinot, Sylvaine; Rastegar, Maryam; Meyer, Sophie; Bochet, Nicole; Brault, Véronique

    2018-01-01

    Aphid-transmitted plant viruses are a threat for major crops causing massive economic loss worldwide. Members in the Luteoviridae family are transmitted by aphids in a circulative and non-replicative mode. Virions are acquired by aphids when ingesting sap from infected plants and are transported through the gut and the accessory salivary gland (ASG) cells by a transcytosis mechanism relying on virus-specific receptors largely unknown. Once released into the salivary canal, virions are inoculated to plants, together with saliva, during a subsequent feeding. In this paper, we bring in vivo evidence that the membrane-bound Ephrin receptor (Eph) is a novel aphid protein involved in the transmission of the Turnip yellows virus (TuYV, Polerovirus genus, Luteoviridae family) by Myzus persicae . The minor capsid protein of TuYV, essential for aphid transmission, was able to bind the external domain of Eph in yeast. Feeding M. persicae on in planta - or in vitro -synthesized dsRNA targeting Eph -mRNA (dsRNA Eph ) did not affect aphid feeding behavior but reduced accumulation of TuYV genomes in the aphid's body. Consequently, TuYV transmission efficiency by the dsRNA Eph -treated aphids was reproducibly inhibited and we brought evidence that Eph is likely involved in intestinal uptake of the virion. The inhibition of virus uptake after dsRNA Eph acquisition was also observed for two other poleroviruses transmitted by M. persicae , suggesting a broader role of Eph in polerovirus transmission. Finally, dsRNA Eph acquisition by aphids did not affect nymph production. These results pave the way toward an ecologically safe alternative of insecticide treatments that are used to lower aphid populations and reduce polerovirus damages.

  12. Plant extracts in the control of aphids Brevicoryne brassicae (L. and Myzus persicae (SulzerExtratos vegetais no controle dos afídeos Brevicoryne brassicae (L. e Myzus persicae (Sulzer

    Directory of Open Access Journals (Sweden)

    Rafael Reginato Ávila

    2011-07-01

    Full Text Available Were accomplished the effect of plant extracts of clove basil (Ocimum gratissimum L., horsetail (Equisetum hyemale L., coriander (Coriandrum sativum L. and tobacco (Nicotiana tabacum L. on Brevicoryne brassicae (L., 1758 and Myzus persicae (Sulzer, 1776 aphids in cabbage Brassica oleracea (L.. The treatments consisted of plant extracts prepared fresh and dry (concentrations of 2.5; 5.0; and 10% and the controls insecticide acephate and water. These solutions were sprayed on cabbage discs placed on agar in Petri dishes, containing twenty adult aphids. In sequence, the Petri dishes were sealed with plastic film and this procedure was repeated for the two aphid species studied. The assessment of the number of live nymphs and adults occurred at 1, 12, 24, and 72 hours after installation. The extracts of coriander and tobacco prepared in a concentration of 10% showed toxic effects similar to the organophosphate insecticide acephate, on adults and nymphs of the aphids Brevicoryne brassicae and Myzus persicae. Coriander revealed a promising alternative that deserves detailed studies regarding the performance of its active ingredients and dosage determination in order to provide a safe herbal product to control insects.Avaliou-se o efeito de extratos vegetais de alfavaca-cravo (Ocimum gratissimum L., cavalinha (Equisetum hyemale L., coentro (Coriandrum sativum L. e fumo (Nicotiana tabacum L. sobre os pulgões Brevicoryne brassicae (L., 1758 e Myzus persicae (Sulzer, 1776 em couve Brassica oleracea (L.. Os tratamentos consistiram de extratos vegetais preparados a fresco e seco (nas concentrações de 2,5; 5,0 e 10%, do padrão inseticida acefato e de água. As soluções assim obtidas foram pulverizadas em discos de couve colocados sobre agar em placas de Petri, contendo vinte pulgões adultos. Na sequência, as placas de Petri foram vedadas com filme plástico transparente, sendo este procedimento repetido para as duas espécies de afídeos. A avalia

  13. Rice-straw mulch reduces the green peach aphid, Myzus persicae (Hemiptera: Aphididae populations on kale, Brassica oleracea var. acephala (Brassicaceae plants.

    Directory of Open Access Journals (Sweden)

    Reinildes Silva-Filho

    Full Text Available Organic mulches, like peel and rice-straw, besides other materials affect the UV and temperature, which cause a reduction in the aphid arrival. The aim was to evaluate the effect of covering the soil with straw on the populations of the green peach aphid, Myzus persicae on the kale, Brassica oleracea var. acephala plants. The first experiment evaluated the direct effect of the rice-straw mulch and the second its indirect effect on aphid immigration, testing the plant characteristics that could lead to the landing preference of this insect. The third experiment evaluated the direct effect of the mulch on the aphid population. In the second and third experiments, four plants, each in a 14 L polyethylene pot with holes at the bottom, were used in areas with and without soil mulching. These pots were changed between areas, after seven days, to evaluate the effects of this change on the arrival of the winged aphids to the plants. Each plant was covered with anti-aphid gauze and inoculated with one winged M. persicae. Winged and apterous adults of this insect were counted per plant after 15 days. The temperature increased in the mulched plots to a maximum of 21-36°C and to 18-32°C in the plots with or without soil covering, respectively. Plant growth reduced the numbers of the winged aphids landing before and after they were moved to the bare soil plots. The nutrient content was similar in plants in both the mulched and no mulched plots. The population growth of M. persicae was higher in the control than in the mulched plots. This was partially due to temperatures close to 30°C in these plots and changes in the plant physiology. The soil mulching with rice-straw decreased the M. persicae landing, increased the plot temperatures and improved the vegetative growth of the kale plants.

  14. Rice-straw mulch reduces the green peach aphid, Myzus persicae (Hemiptera: Aphididae) populations on kale, Brassica oleracea var. acephala (Brassicaceae) plants.

    Science.gov (United States)

    Silva-Filho, Reinildes; Santos, Ricardo Henrique Silva; Tavares, Wagner de Souza; Leite, Germano Leão Demolin; Wilcken, Carlos Frederico; Serrão, José Eduardo; Zanuncio, José Cola

    2014-01-01

    Organic mulches, like peel and rice-straw, besides other materials affect the UV and temperature, which cause a reduction in the aphid arrival. The aim was to evaluate the effect of covering the soil with straw on the populations of the green peach aphid, Myzus persicae on the kale, Brassica oleracea var. acephala plants. The first experiment evaluated the direct effect of the rice-straw mulch and the second its indirect effect on aphid immigration, testing the plant characteristics that could lead to the landing preference of this insect. The third experiment evaluated the direct effect of the mulch on the aphid population. In the second and third experiments, four plants, each in a 14 L polyethylene pot with holes at the bottom, were used in areas with and without soil mulching. These pots were changed between areas, after seven days, to evaluate the effects of this change on the arrival of the winged aphids to the plants. Each plant was covered with anti-aphid gauze and inoculated with one winged M. persicae. Winged and apterous adults of this insect were counted per plant after 15 days. The temperature increased in the mulched plots to a maximum of 21-36°C and to 18-32°C in the plots with or without soil covering, respectively. Plant growth reduced the numbers of the winged aphids landing before and after they were moved to the bare soil plots. The nutrient content was similar in plants in both the mulched and no mulched plots. The population growth of M. persicae was higher in the control than in the mulched plots. This was partially due to temperatures close to 30°C in these plots and changes in the plant physiology. The soil mulching with rice-straw decreased the M. persicae landing, increased the plot temperatures and improved the vegetative growth of the kale plants.

  15. Infestation of potato (Solanum tuberosum L.) by the peach-potato aphid (Myzus persicae Sulzer) alters cellular redox status and is influenced by ascorbate.

    Science.gov (United States)

    Kerchev, Pavel I; Fenton, Brian; Foyer, Christine H; Hancock, Robert D

    2012-02-01

    The peach-potato aphid (Myzus persicae Sulzer) is a major pest of potato (Solanum tuberosum L.) but the molecular characterization of this interaction particularly with regard to oxidants and antioxidants remains to be undertaken. Aphid colonies reared on potato leaves containing high ascorbate were twice the size of those grown on leaves with low ascorbate. Infestation-dependent decreases in the abundance of key transcripts such as chloroplastic FeSOD, peroxisomal catalase 2, PR1 and JAZ1 preceded detectable leaf H(2)O(2) or polyphenol accumulation. The leaf glutathione pool was increased 48 h after infestation, but the amount of ascorbate was unchanged. The ascorbate/dehydroacorbate (DHA) ratio was lower at 48 h but the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) was unchanged. While DHA reductase and GSSG reductase activities were unaffected by aphid feeding, non-specific peroxidase activities were enhanced 48 h following aphid infestation. Brown ethanol-insoluble deposits were observed close to leaf veins following aphid infestation. Taken together, the results demonstrate that high ascorbate favours aphid colony expansion and that perturbations in the leaf antioxidant system are intrinsic to the potato leaf response to aphids. Moreover, these changes together with the induction of hormone-related transcripts precede the deposition of defence-associated oxidized polyphenols along the stylet track. © 2011 Blackwell Publishing Ltd.

  16. Rack-1, GAPDH3, and actin: proteins of Myzus persicae potentially involved in the transcytosis of beet western yellows virus particles in the aphid

    International Nuclear Information System (INIS)

    Seddas, Pascale; Boissinot, Sylvaine; Strub, Jean-Marc; Dorsselaer, Alain van; Regenmortel, Marc H.V. van; Pattus, Franc

    2004-01-01

    Beet western yellows virus (BWYV) is a Polerovirus that relies on the aphid Myzus persicae for its transmission, in a persistent-circulative mode. To be transmitted, the virus must cross the midgut and the accessory salivary glands (ASG) epithelial barriers in a transcytosis mechanism where vector receptors interact with virions. In this paper, we report in vitro interaction experiments between BWYV and aphid components. Using the M. persicae clone from Colmar, we showed that a set of aphid polypeptides, separated by SDS-PAGE or 2D electrophoresis (2DE), can bind in vitro to purified wild type or mutant particles. Using subcellular fractionation, we showed that the 65-kDa polypeptide identified as symbionin is a soluble protein whereas the other polypeptides seem to be associated more or less strongly to the membrane. We hypothesize that three polypeptides, identified by mass spectrometry as Rack-1, GAPDH3, and actin, may be involved in the epithelial transcytosis of virus particles in the aphid vector

  17. Aphid (Myzus persicae) feeding on the parasitic plant dodder (Cuscuta australis) activates defense responses in both the parasite and soybean host.

    Science.gov (United States)

    Zhuang, Huifu; Li, Juan; Song, Juan; Hettenhausen, Christian; Schuman, Meredith C; Sun, Guiling; Zhang, Cuiping; Li, Jing; Song, Dunlun; Wu, Jianqiang

    2018-06-01

    Dodders (Cuscuta spp.) are shoot holoparasites, whose haustoria penetrate host tissues to enable fusion between the parasite and host vascular systems, allowing Cuscuta to extract water, nutrients and other molecules from hosts. Aphids are piercing-sucking herbivores that use specialized stylets to feed on phloem sap. Aphids are known to feed on Cuscuta, but how Cuscuta and its host plant respond to aphids attacking the parasite was unknown. Phytohormone quantification, transcriptomic analysis and bioassays were performed to determine the responses of Cuscuta australis and its soybean (Glycine max) hosts to the feeding of green peach aphid (GPA; Myzus persicae) on C. australis. Decreased salicylic acid levels and 172 differentially expressed genes (DEGs) were found in GPA-attacked C. australis, and the soybean hosts exhibited increased jasmonic acid contents and 1015 DEGs, including > 100 transcription factor genes. Importantly, GPA feeding on C. australis increased the resistance of the soybean host to subsequent feeding by the leafworm Spodoptera litura and soybean aphid Aphis glycines, resulting in 21% decreased leafworm mass and 41% reduced aphid survival rate. These data strongly suggest that GPA feeding on Cuscuta induces a systemic signal, which is translocated to hosts and activates defense against herbivores. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  18. Differences in the Detoxification Metabolism between Two clonal Lineages of the Aphid Myzus persicae (Sulzer (Hemiptera: Aphididae Reared on Tobacco (Nicotiana tabacum L. Diferencias en el Metabolismo de Detoxificación entre dos Linajes Clonales del Áfido Myzus persicae (Sulzer (Hemiptera: Aphididae creados sobre tabaco (Nicotiana tabacum L.

    Directory of Open Access Journals (Sweden)

    Marco A Cabrera-Brandt

    2010-12-01

    Full Text Available Myzus persicae (Sulzer is a highly polyphagous aphid species, with a subspecies (M. persicae nicotianae well adapted to tobacco (Nicotiana tabacum L.. We evaluated the effect of this host plant on the aphid performance and detoxification enzymes, in order to test the participation of xenobiotic metabolism on the ability of this aphid to overcome the tobacco chemical defences. Two genotypes, one corresponding to the only M. persicae nicotianae genotype reported in Chile on tobacco, and one genotype belonging to M. persicae sensu stricto were reared on tobacco and pepper (Capsicum annuum L., respectively. M. persicae nicotianae showed a significantly higher intrinsic rate of increase (r m on pepper than on tobacco, and M. persicae s.s. performed similarly, but with no reproduction at all on tobacco. In order to evaluate the effect of tobacco on detoxification enzymes, esterases, glutathione S-transferases (GST and cytochrome P-450 monooxygenases (MO were determined in both selected aphid genotypes after 12, 24, 36, 48 and 72 h of rearing on tobacco and pepper. M. persicae nicotianae exhibited the higher total esterase activities when reared on tobacco than on pepper after 48 h of rearing, while the activities of GST and MO did not show any significant difference between host-plants and duration of treatment. For M. persicae s.s., no significant differences were observed among host-plants for the studied enzymes. These results suggest a participation of the esterases, on the ability of this M. persicae nicotianae to overcome the tobacco defences.Myzus persicae (Sulzer es un áfido polífago que incluye a Myzus persicae nicotianae, una subespecie altamente adaptada sobre tabaco (Nicotiana tabacum L.. Evaluamos el efecto del tabaco sobre el desempeño biológico y sobre determinadas enzimas de detoxificación en áfidos, para estudiar su participación en la capacidad de M. persicae nicotianae de superar las defensas químicas del tabaco. Dos

  19. Infection of potato plants with potato leafroll virus changes attraction and feeding behaviour of Myzus persicae

    NARCIS (Netherlands)

    Alvarez, A.E.; Garzo, E.; Verbeek, M.; Vosman, B.; Dicke, M.; Tjallingii, W.F.

    2007-01-01

    Potato leafroll virus (PLRV; genus Polerovirus, family Luteoviridae) is a persistently transmitted circulative virus that depends on aphids for spreading. The primary vector of PLRV is the aphid Myzus persicae (Sulzer) (Homoptera: Aphididae). Solanum tuberosum L. potato cv. Kardal (Solanaceae) has a

  20. New use of broomcorn millets for production of granular cultures of aphid-pathogenic fungus Pandora neoaphidis for high sporulation potential and infectivity to Myzus persicae.

    Science.gov (United States)

    Hua, Li; Feng, Ming-Guang

    2003-10-24

    Glutinous broomcorn millets from the crop Panicum miliaceum were first used as substrate to produce granular cultures of Pandora neoaphidis, an obligate fungal pathogen specific to aphids. Carrying a water content of 36.5% after being steamed in a regular autoclaving procedure, millet grains of each 15 g (dry weight) in a 100-ml flask were mixed with 3 ml modified Sabouraud dextrose broth containing half a mashed colony of P. neoaphidis grown on egg yolk milk agar and then incubated at 20 degrees C and a light/dark cycle of 12 h/12 h for 21 days. Based on individually monitoring conidial production potential of 20 millet grains sampled from an arbitrarily taken flask at 3-day intervals, the millet cultures incubated for 6-15 days were capable of producing 16.8-23.4 x 10(4) conidia per millet grain with conidial ejection lasting for up to 6 days. The cultured millet grains individually produced significantly more conidia than apterous adults of Myzus persicae killed by P. neoaphidis (8.4 x 10(4) conidia per cadaver) and sporulated twice longer. The modeling of time-dose-mortality data from bioassays on M. persicae apterae exposed to conidial showers from the cultured millet grains and the mycelial mats produced in liquid culture resulted in similar estimates of LC(50) (millets: 21.4, 7.3, and 4.9 conidia mm(-2) on days 5-7 after exposure; mycelial mats: 22.1, 10.6, and 7.7 conidia mm(-2)) although the LT(50) estimated at a given conidial concentration was slightly smaller for the millet cultures than for the mycelial mats. This indicates that the millet grains cultured with P. neoaphidis produced conidia as infective as or slightly more infective to M. persicae than those from the mycelial mats. Based on the sporulation potential, infectivity, and ease and cost of the millet cultures, the method developed in this study highly improved in vitro cultures of P. neoaphidis and may adapt to culturing other entomophthoralean fungi for microbial control of insect pests.

  1. The site of potato leafroll virus multiplication in its vector, Myzus persicae : an anatomical study

    NARCIS (Netherlands)

    Ponsen, M.B.

    1972-01-01

    In search of the site of PLRV multiplication in its vector a detailed study was made of the anatomy of the aphid, Myzus persicae SULZ. The findings are summarized in the following lines:

    Alimentary canal

    The most anterior part of

  2. Use of electrical penetration graphs (EPG) and quantitative PCR to evaluate the relationship between feeding behaviour and Pandora neoaphidis infection levels in green peach aphid, Myzus persicae.

    Science.gov (United States)

    Chen, Chun; Ye, Sudan; Hu, Huajun; Xue, Chengmei; Yu, Xiaoping

    2018-01-01

    A real-time qPCR method was developed, validated, and used to quantity the fungal pathogen, P. neoaphidis, within aphids at different times during infection; colonization rate fitted the Gompertz model well (R 2  = 0.9356). Feeding behaviour of P. neoaphidis-infected and uninfected M. persicae were investigated, for the first time, using DC-electrical penetration graphs (DC-EPG) that characterized the waveforms made during different aphid stylet probing periods corresponding to epidermis penetration, salivation and ingestion. In the 6 h following the 12-h incubation period (to achieve infection), there were significant differences in the number of events of Np (non-probing) and C (stylet pathway) between infected and uninfected aphids. However, the difference between total duration of Np and C were not significantly different between infected and uninfected aphids. There were no significant differences in the number of events or total duration of E1 (phloem salivation) or E2 (phloem ingestion) between infected and uninfected aphids. There were significant differences in mean number of events and total duration of the pd waveform (intracellular punctures) in infected and uninfected aphids. In the 16 h prior to death, the same differences in behaviour were observed but they were even more obvious. Furthermore, the total duration time of E2 was significantly greater in uninfected aphids than infected aphids, a change that had not been observed in the first 6 h observation period. In conclusion, qPCR quantification demonstrated 'molecular' colonization levels throughout infection, and EPG data analysis during the two periods (during early infection and then during late infection just prior to death) demonstrated the actual physical effects of fungal infection on feeding behaviour of M. persicae; this has the potential to decrease the aphid's capacity of transmission and dispersal. These studies increase our understanding of the interaction between P

  3. Uso de cuatro extractos organicos para el control del pulgon verde (Myzus persicae Sulz) (ING)

    OpenAIRE

    Rodríguez Navas, Hernán; Blanco, Fabio A.

    2016-01-01

    Extracts of leaves and stems of Neurolaena lobata; leaves, stems and fruits of Momordica charantia, wood of Quassia amara and seeds of Annona muricata, were tested regarding their effectiveness for control of green peach aphid (Myzus persicae). In a first stage, groups of 10 individuals of M. persicae were placed inside petri dishes together with a small and slight piece of synthetic cloth soaked with either substance extracted. Several concentrations were used. After two hours; more than 50%...

  4. Relative degree of susceptibility and resistance of different brassica campestris l. genotypes against aphid myzus persicae- a field investigation

    International Nuclear Information System (INIS)

    Sarwar, M.

    2013-01-01

    Field evaluation of twenty three Brassica campestris L. genotypes was conducted for aphid (Homoptera: Aphididae) resistance during 2008 crop season. The parameters used to assess tolerance of germplasm lines included pest population during growth season and grain yield at crop maturity. Aphids showed obvious preferences for all of the germplasm investigated; however, the evaluation for resistance to pest identified several genotypes with variable potential for tolerance and sensitivity. Estimated grain yield also varied significantly due to variable pest intensity noted, and seemed to be more appropriately dependent on the pest population conditions at the experimental site. Among the germplasm, the estimation obtained regarding both the parameters sorted out MM-II/02-3 and MM-I285 genotypes as most tolerant due to less pest infestation and damage. Peak infestations by aphid caused severe crop fatalities on S-9-S-97-0.75+75/55 and S-9-1006/95 genotypes, affecting the seed weight and resulting an immense reduction in grain Brassica genotypes appeared to be governed by means of varietals characteristics of diverse germplasms. The result of resistance test conducted under field environment is an effective and consistent approach in the practical selection of crop lines resistant or partially resistant to pests for use in future breeding programs. (author)

  5. CONTROLE QUÍMICO DO PULGÃO VERDE (Myzus persicae Sulzer, 1776 E DA VAQUINHA (Diabrotica speciosa Germ., 1824 NA CULTURA DO TOMATE RASTEIRO CHEMICAL CONTROL OF THE GREEN PEACH APHID (Myzus persicae, SULZER AND TOMATO LEAF BEETLE (Diabrotica speciosa, GERMAR IN TOMATO PLANTS

    Directory of Open Access Journals (Sweden)

    Danilo Couto

    2007-09-01

    Full Text Available

    O efeito de cinco inseticidas aplicados no tomateiro (Lycopersicum sculentum Mill, visando ao controle do pulgão verde, Myzus persicae SULZER e de vaquinha, Diabrotica speciosa GERM, foi testado em um experimento realizado na área experimental do Departamento de Horticultura da Escota de Agronomia da Universidade Federal de Goiás, no período de maio a setembro de 1994. Os tratamentos foram aplicados via pulverização e constaram de Bulldock 125 SC (dosagem de 100 ml/ 100 1 de água; Bulldock 50 CE (25 e 30 ml/100 l de água; Tamaron BR (100 ml/ 100 l de água; Orthene 750 BR (100 ml/ l00 1 de água e Folidol 600 (100 ml/l00 1 de água; e ainda uma testemunha (sem inseticida. Os resultados obtidos mostraram que todos os tratamentos foram eficientes no controle de M. persicae até sete dias após a aplicação. Aos 14 dias após a aplicação, o Bulldock 50 CE na dosagem de 25 ml/ 100 l de água e o Folidol 600 a 100 ml/ 100 l de água não apresentaram eficiência satisfatória. Com relação à D. speciosa, todos esses produtos foram igualmente eficientes até sete dias após aplicação.

    PALAVRAS-CHAVE: Myzus persicae; diabrotica speciosa; tomateiro; controle químico.

    A trial to control the green peach aphid myzus persicae and tomato leaf beetle Diabrotica speciosa was carried out in Goi

  6. Harpin-induced expression and transgenic overexpression of the phloem protein gene AtPP2-A1 in Arabidopsis repress phloem feeding of the green peach aphid Myzus persicae.

    Science.gov (United States)

    Zhang, Chunling; Shi, Haojie; Chen, Lei; Wang, Xiaomeng; Lü, Beibei; Zhang, Shuping; Liang, Yuan; Liu, Ruoxue; Qian, Jun; Sun, Weiwei; You, Zhenzhen; Dong, Hansong

    2011-01-13

    Treatment of plants with HrpNEa, a protein of harpin group produced by Gram-negative plant pathogenic bacteria, induces plant resistance to insect herbivores, including the green peach aphid Myzus persicae, a generalist phloem-feeding insect. Under attacks by phloem-feeding insects, plants defend themselves using the phloem-based defense mechanism, which is supposed to involve the phloem protein 2 (PP2), one of the most abundant proteins in the phloem sap. The purpose of this study was to obtain genetic evidence for the function of the Arabidopsis thaliana (Arabidopsis) PP2-encoding gene AtPP2-A1 in resistance to M. persicae when the plant was treated with HrpNEa and after the plant was transformed with AtPP2-A1. The electrical penetration graph technique was used to visualize the phloem-feeding activities of apterous agamic M. persicae females on leaves of Arabidopsis plants treated with HrpNEa and an inactive protein control, respectively. A repression of phloem feeding was induced by HrpNEa in wild-type (WT) Arabidopsis but not in atpp2-a1/E/142, the plant mutant that had a defect in the AtPP2-A1 gene, the most HrpNEa-responsive of 30 AtPP2 genes. In WT rather than atpp2-a1/E/142, the deterrent effect of HrpNEa treatment on the phloem-feeding activity accompanied an enhancement of AtPP2-A1 expression. In PP2OETAt (AtPP2-A1-overexpression transgenic Arabidopsis thaliana) plants, abundant amounts of the AtPP2-A1 gene transcript were detected in different organs, including leaves, stems, calyces, and petals. All these organs had a deterrent effect on the phloem-feeding activity compared with the same organs of the transgenic control plant. When a large-scale aphid population was monitored for 24 hours, there was a significant decrease in the number of aphids that colonized leaves of HrpNEa-treated WT and PP2OETAt plants, respectively, compared with control plants. The repression in phloem-feeding activities of M. persicae as a result of AtPP2-A1 overexpression, and

  7. Abscisic acid deficiency increases defence responses against Myzus persicae in Arabidopsis.

    Science.gov (United States)

    Hillwig, Melissa S; Chiozza, Mariana; Casteel, Clare L; Lau, Siau Ting; Hohenstein, Jessica; Hernández, Enrique; Jander, Georg; MacIntosh, Gustavo C

    2016-02-01

    Comparison of Arabidopsis thaliana (Arabidopsis) gene expression induced by Myzus persicae (green peach aphid) feeding, aphid saliva infiltration and abscisic acid (ABA) treatment showed a significant positive correlation. In particular, ABA-regulated genes are over-represented among genes that are induced by M. persicae saliva infiltration into Arabidopsis leaves. This suggests that the induction of ABA-related gene expression could be an important component of the Arabidopsis-aphid interaction. Consistent with this hypothesis, M. persicae populations induced ABA production in wild-type plants. Furthermore, aphid populations were smaller on Arabidopsis aba1-1 mutants, which cannot synthesize ABA, and showed a significant preference for wild-type plants compared with the mutant. Total free amino acids, which play an important role in aphid nutrition, were not altered in the aba1-1 mutant line, but the levels of isoleucine (Ile) and tryptophan (Trp) were differentially affected by aphids in wild-type and mutant plants. Recently, indole glucosinolates have been shown to promote aphid resistance in Arabidopsis. In this study, 4-methoxyindol-3-ylmethylglucosinolate was more abundant in the aba1-1 mutant than in wild-type Arabidopsis, suggesting that the induction of ABA signals that decrease the accumulation of defence compounds may be beneficial for aphids. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  8. Can invasions occur without change? A comparison of G-matrices and selection in the peach-potato aphid, Myzus persicae

    Science.gov (United States)

    Bacigalupe, Leonardo D; Barrientos, Karin; Beckerman, Andrew P; Carter, Mauricio J; Figueroa, Christian C; Foster, Stephen P; Moore, Allen J; Silva, Andrea X; Nespolo, Roberto F

    2013-01-01

    Most evolutionary research on biological invasions has focused on changes seen between the native and invaded range for a particular species. However, it is likely that species that live in human-modified habitats in their native range might have evolved specific adaptations to those environments, which increase the likelihood of establishment and spread in similar human-altered environments. From a quantitative genetic perspective, this hypothesis suggests that both native and introduced populations should reside at or near the same adaptive peak. Therefore, we should observe no overall changes in the G (genetic variance–covariance) matrices between native and introduced ranges, and stabilizing selection on fitness-related traits in all populations. We tested these predictions comparing three populations of the worldwide pest Myzus persicae from the Middle East (native range) and the UK and Chile (separately introduced ranges). In general, our results provide mixed support for this idea, but further comparisons of other species are needed. In particular, we found that there has been some limited evolution in the studied traits, with the Middle East population differing from the UK and Chilean populations. This was reflected in the structure of the G-matrices, in which Chile differed from both UK and Middle East populations. Furthermore, the amount of genetic variation was massively reduced in Chile in comparison with UK and Middle East populations. Finally, we found no detectable selection on any trait in the three populations, but clones from the introduced ranges started to reproduce later, were smaller, had smaller offspring, and had lower reproductive fitness than clones from the native range. PMID:24455140

  9. Harpin-induced expression and transgenic overexpression of the phloem protein gene AtPP2-A1 in Arabidopsis repress phloem feeding of the green peach aphid Myzus persicae

    Directory of Open Access Journals (Sweden)

    Sun Weiwei

    2011-01-01

    Full Text Available Abstract Background Treatment of plants with HrpNEa, a protein of harpin group produced by Gram-negative plant pathogenic bacteria, induces plant resistance to insect herbivores, including the green peach aphid Myzus persicae, a generalist phloem-feeding insect. Under attacks by phloem-feeding insects, plants defend themselves using the phloem-based defense mechanism, which is supposed to involve the phloem protein 2 (PP2, one of the most abundant proteins in the phloem sap. The purpose of this study was to obtain genetic evidence for the function of the Arabidopsis thaliana (Arabidopsis PP2-encoding gene AtPP2-A1 in resistance to M. persicae when the plant was treated with HrpNEa and after the plant was transformed with AtPP2-A1. Results The electrical penetration graph technique was used to visualize the phloem-feeding activities of apterous agamic M. persicae females on leaves of Arabidopsis plants treated with HrpNEa and an inactive protein control, respectively. A repression of phloem feeding was induced by HrpNEa in wild-type (WT Arabidopsis but not in atpp2-a1/E/142, the plant mutant that had a defect in the AtPP2-A1 gene, the most HrpNEa-responsive of 30 AtPP2 genes. In WT rather than atpp2-a1/E/142, the deterrent effect of HrpNEa treatment on the phloem-feeding activity accompanied an enhancement of AtPP2-A1 expression. In PP2OETAt (AtPP2-A1-overexpression transgenic Arabidopsis thaliana plants, abundant amounts of the AtPP2-A1 gene transcript were detected in different organs, including leaves, stems, calyces, and petals. All these organs had a deterrent effect on the phloem-feeding activity compared with the same organs of the transgenic control plant. When a large-scale aphid population was monitored for 24 hours, there was a significant decrease in the number of aphids that colonized leaves of HrpNEa-treated WT and PP2OETAt plants, respectively, compared with control plants. Conclusions The repression in phloem-feeding activities of

  10. Concentration-mortality responses of Myzus persicae and natural enemies to selected insecticides.

    Science.gov (United States)

    Bacci, Leandro; Rosado, Jander F; Picanço, Marcelo C; Pereira, Eliseu J G; Silva, Gerson A; Martins, Júlio C

    2012-01-01

    The toxicity of six insecticides was determined for the peach-potato aphid, Myzus persicae (Hemiptera: Aphididae), and some of its natural enemies - the predatory beetles Cycloneda sanguinea (Coccinellidae) and Acanthinus sp. (Anthicidae), and the wasp parasitoid Diaeretiella rapae (Aphidiidae). Natural enemies from these groups are important natural biological control agents in a number of agroecosystems, and insecticides potentially safe to these non-target organisms should be identified using standardized tests. Thus, concentration-mortality bioassays were carried out with both the aphid and its natural enemies to assess the toxicity and selectivity of acephate, deltamethrin, dimethoate, methamidophos, methyl parathion, and pirimicarb. The latter insecticide was highly selective to all natural enemies tested, and its LC(90) for M. persicae was 14-fold lower than the field rate recommended for control of the aphid in brassica crops. Methyl parathion also showed selectivity to C. sanguinea and Acanthinus sp., but not to D. rapae. Acephate was the least potent insecticide against M. persicae and was equally or more toxic to the natural enemies relative to the aphid. Pirimicarb and methyl parathion were efficient against M. persicae and selective in favor of two of the natural enemies tested. Acanthinus sp. and C. sanguinea were more tolerant to the insecticides than was the parasitoid D. rapae. This study shows that there are selective insecticides that may be compatible with conservation of natural enemies in brassica crops, which is important practical information to improve integrated pest management systems in these crops.

  11. Entomopathogenic Fungi as Dual Control Agents against Both the Pest Myzus persicae and Phytopathogen Botrytis cinerea.

    Science.gov (United States)

    Yun, Hwi-Geon; Kim, Dong-Jun; Gwak, Won-Seok; Shin, Tae-Young; Woo, Soo-Dong

    2017-09-01

    The green peach aphid ( Myzus persicae ), a plant pest, and gray mold disease, caused by Botrytis cinerea , affect vegetables and fruit crops all over the world. To control this aphid and mold, farmers typically rely on the use of chemical insecticides or fungicides. However, intensive use of these chemicals over many years has led to the development of resistance. To overcome this problem, there is a need to develop alternative control methods to suppress populations of this plant pest and pathogen. Recently, potential roles have been demonstrated for entomopathogenic fungi in endophytism, phytopathogen antagonism, plant growth promotion, and rhizosphere colonization. Here, the antifungal activities of selected fungi with high virulence against green peach aphids were tested to explore their potential for the dual control of B. cinerea and M. persicae . Antifungal activities against B. cinerea were evaluated by dual culture assays using both aerial conidia and cultural filtrates of entomopathogenic fungi. Two fungal isolates, Beauveria bassiana SD15 and Metarhizium anisopliae SD3, were identified as having both virulence against aphids and antifungal activity. The virulence of these isolates against aphids was further tested using cultural filtrates, blastospores, and aerial conidia. The most virulence was observed in the simultaneous treatment with blastospores and cultural filtrate. These results suggest that the two fungal isolates selected in this study could be used effectively for the dual control of green peach aphids and gray mold for crop protection.

  12. Parasitism rate of Myzus persicae (Sulzer by Diaeretiella rapae (McIntosh in the presence of an alternative, resistant host

    Directory of Open Access Journals (Sweden)

    Samira Evangelista Ferreira

    Full Text Available ABSTRACT The aphids Lipaphis pseudobrassicae (Davis and Myzus persicae (Sulzer (Hemiptera: Aphididae are important Brassicaceae pests, occurring worldwide and causing significant damage to crops. Interspecific variations in the resistance to natural enemies can potentially impact the interaction among aphid populations. Here we evaluated the hypothesis of associational resistance by determining if the presence of resistant aphids (L. pseudobrassicae reduces the rate of parasitism by Diaeretiella rapae (McIntosh on non-resistant aphids (M. persicae. The experiment was conducted using collard green plants infested with M. persicae and L. pseudobrassicae either resistant or susceptible to D. rapae. The percentage of parasitism by D. rapae was greater on L. pseudobrassicae in the susceptible than in the resistant treatment, but parasitism rates on M. persicae did not differ between the treatments. There was no difference in average growth rate between M. persicae and susceptible L. pseudobrassicae populations, but resistant L. pseudobrassicae had greater growth rate than M. persicae. These results suggest that over a short period of time the presence of resistant L. pseudobrassicae does not affect the rate of parasitism by D. rapae on M. persicae.

  13. Shallot aphids, Myzus ascalonicus, in strawberry

    DEFF Research Database (Denmark)

    Enkegaard, Annie; Sigsgaard, Lene; Kristensen, Kristian

    2013-01-01

    The parasitization capacity of 3 parasitoids and the predation capacity of 3 predators towards the shallot aphid, Myzus ascalonicus Doncaster (Homoptera: Aphididae), on strawberry, Fragaria x ananassa Duchesne (Rosales: Rosaceae) cv. Honeoye, were examined in laboratory experiments. In Petri dish...... other parasitoid-induced causes. However, the host feeding rate was reduced to only 1.2 ± 0.8%, and no significant parasitization mortality was observed on strawberry plants, suggesting that host plants interfered with A. abdominalis activity. This parasitoid does not, therefore, seem to be suited...... to either inoculative or inundative biocontrol of shallot aphids in strawberry. The three predators studied were the green lacewing, Chrysoperla carnea Steph. (Neuroptera: Chrysopi-dae), the two-spotted lady beetle, Adalia bipunctata L. (Coleoptera: Coccinellidae), and the gall midge Aphidoletes aphidimyza...

  14. Use of silicon as inductor of the resistance in potato to Myzus persicae (Sulzer) (Hemiptera: Aphididae)

    International Nuclear Information System (INIS)

    Gomes, Flavia B.; Moraes, Jair C.; Antunes, Cristiana; Santos, Custodio D. dos

    2008-01-01

    The aphid Myzus persicae (Sulzer) is an important pest of potato and causes direct harm, due to the quantity of sap extracted and for being vector of important phytovirus. This work was carried out to evaluate the action of silicon as a resistance inducer of potato to M. persicae. Four treatments were tried: foliar fertilization with silicon acid at 1%; soil fertilization with 250 ml silicic acid solution at 1%; foliar fertilization with silicon acid at 1% + soil fertilization with 250 ml silicic acid solution at 1%; and a control. The treatments were applied thirty days after the explants emergence. Fifteen days after the application of the treatments, feeding preference and some biological aspects of the aphids were evaluated. After, the content of tannins and lignin present in the leaves and the activity of the enzymes peroxidase and phenylalanine ammonia-lyase were also determined. The silicon fertilization did not affect the preference of the aphids; however it reduced fecundity and the rate of population growth of the insects. The lignin percentage increased in the leaves of plants fertilized with silicon via soil and/or foliar and the percentage of tannins increased only in the leaves fertilized via soil plus foliar. The silicon acted as a resistance inducer to M. persicae in potato. (author)

  15. Effects of light and the regulatory B-subunit composition of protein phosphatase 2A on the susceptibility of Arabidopsis thaliana to aphid (Myzus persicae) infestation.

    Science.gov (United States)

    Rasool, Brwa; Karpinska, Barbara; Konert, Grzegorz; Durian, Guido; Denessiouk, Konstantin; Kangasjärvi, Saijaliisa; Foyer, Christine H

    2014-01-01

    The interactions between biotic and abiotic stress signaling pathways are complex and poorly understood but protein kinase/phosphatase cascades are potentially important components. Aphid fecundity and susceptibility to Pseudomonas syringae infection were determined in the low light-grown Arabidopsis thaliana wild type and in mutant lines defective in either the protein phosphatase (PP)2A regulatory subunit B'γ (gamma; pp2a-b'γ) or B'ζ (zeta; pp2a-b'ζ1-1 and pp2a-b'ζ 1-2) and in gamma zeta double mutants (pp2a-b'γζ) lacking both subunits. All the mutants except for pp2a-b'ζ 1-1 had significantly lower leaf areas than the wild type. Susceptibility to P. syringae was similar in all genotypes. In contrast, aphid fecundity was significantly decreased in the pp2a-b'γ mutant relative to the wild type but not in the pp2a-b'γζ double mutant. A high light pre-treatment, which led to a significant increase in rosette growth in all mutant lines but not in the wild type, led to a significant decrease in aphid fecundity in all genotypes. The high light pre-treatment abolished the differences in aphid resistance observed in the pp2a-b'γ mutant relative to the wild type. The light and CO2 response curves for photosynthesis were changed in response to the high light pre-treatment, but the high light effects were similar in all genotypes. These data demonstrate that a pre-exposure to high light and the composition of B-subunits on the trimeric PP2A holoenzymes are important in regulating plant resistance to aphids. The functional specificity for the individual regulatory B-subunits may therefore limit aphid colonization, depending on the prevailing abiotic stress environment.

  16. Effects of light and the regulatory Beta subunit composition of protein phosphatase 2A on the susceptibility of Arabidopsis thaliana to aphid (Myzus persicae infestation

    Directory of Open Access Journals (Sweden)

    Brwa eRasool

    2014-08-01

    Full Text Available The interactions between biotic and abiotic stress signalling pathways are complex and poorly understood but protein kinase/phosphatase cascades are potentially important components. Aphid fecundity and susceptibility to Pseudomonas syringae infection were determined in the low light-grown Arabidopsis thaliana wild type and in mutant lines defective in either the protein phosphatase (PP2A regulatory subunit B’γ (gamma; pp2a-b’γ or B’ζ (zeta; pp2a-b’ζ1-1 and pp2a-b’ζ1-2 and in gamma zeta double mutants (pp2a-b’γζ lacking both subunits. All the mutants except for pp2a-b’ζ1-1 had significantly lower leaf areas than the wild type. Susceptibility to P. syringae was similar in all genotypes. In contrast, aphid fecundity was significantly decreased in the pp2a-b’γ mutant relative to the wild type but not in the pp2a-b’γζ double mutant. A high light pre-treatment, which led to a significant increase in rosette growth in all mutant lines but not in the wild type, led to a significant decrease in aphid fecundity in all genotypes. The high light pre-treatment abolished the differences in aphid resistance observed in the pp2a-b’γ mutant relative to the wild type. The light and CO2 response curves for photosynthesis were changed in response to the high light pre-treatment, but the high light effects were similar in all genotypes. These data demonstrate that a pre-exposure to high light and the composition of subunits on the trimeric PP2A holoenzymes are important in regulating plant resistance to aphids. The functional specificity for the individual regulatory B-subunits may therefore limit aphid colonisation, depending on the prevailing abiotic stress environment.

  17. Karyotype rearrangements and telomere analysis in Myzus persicae (Hemiptera, Aphididae) strains collected on Lavandula sp. plants

    Science.gov (United States)

    Mandrioli, Mauro; Zanasi, Federica; Manicardi, Gian Carlo

    2014-01-01

    Abstract Karyotype analysis of nine strains of the peach-potato aphid Myzus persicae (Sulzer, 1776), collected on Lavandula sp. plants, evidenced showed that five of them had a standard 2n = 12 karyotype, one possessed a fragmentation of the X chromosome occurring at the telomere opposite to the NOR-bearing one and three strains had a chromosome number 2n = 11 due to a non-reciprocal translocation of an autosome A3 onto an A1 chromosome. Interestingly, the terminal portion of the autosome A1 involved in the translocation was the same in all the three strains, as evidenced by FISH with the histone cluster as a probe. The study of telomeres in the Myzus persicae strain with the X fission evidenced that telomerase synthesised de novo telomeres at the breakpoints resulting in the stabilization of the chromosomal fragments. Lastly, despite the presence of a conserved telomerase, aphid genome is devoid of genes coding for shelterin, a complex of proteins involved in telomere functioning frequently reported as conserved in eukaryotes. The absence of this complex, also confirmed in the genome of other arthropods, suggests that the shift in the sequence of the telomeric repeats has been accompanied by other changes in the telomere components in arthropods in respect to other metazoans. PMID:25610541

  18. Proteomic analysis of Arabidopsis thaliana (L.) Heynh responses to a generalist sucking pest (Myzus persicae Sulzer).

    Science.gov (United States)

    Truong, D-H; Bauwens, J; Delaplace, P; Mazzucchelli, G; Lognay, G; Francis, F

    2015-11-01

    Herbivorous insects can cause severe cellular changes to plant foliage following infestations, depending on feeding behaviour. Here, a proteomic study was conducted to investigate the influence of green peach aphid (Myzus persicae Sulzer) as a polyphagous pest on the defence response of Arabidopsis thaliana (L.) Heynh after aphid colony establishment on the host plant (3 days). Analysis of about 574 protein spots on 2-DE gels revealed 31 differentially expressed protein spots. Twenty out of these 31 differential proteins were selected for analysis by mass spectrometry. In 12 of the 20 analysed spots, we identified seven and nine proteins using MALDI-TOF-MS and LC-ESI-MS/MS, respectively. Of the analysed spots, 25% contain two proteins. Different metabolic pathways were modulated in Arabidopsis leaves according to aphid feeding: most corresponded to carbohydrate, amino acid and energy metabolism, photosynthesis, defence response and translation. This paper has established a survey of early alterations induced in the proteome of Arabidopsis by M. persicae aphids. It provides valuable insights into the complex responses of plants to biological stress, particularly for herbivorous insects with sucking feeding behaviour. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  19. The Occurrence of Two Species of Entomophthorales (Entomophthoromycota, Pathogens of Sitobion avenae and Myzus persicae (Hemiptera: Aphididae, in Tunisia

    Directory of Open Access Journals (Sweden)

    Ibtissem Ben Fekih

    2013-01-01

    Full Text Available The natural occurrence of entomophthoralean fungi pathogenic towards aphids on cereal and potato crops was investigated in the years 2009, 2010, and 2011. Infected aphids were sampled in three bioclimatic zones in Tunisia (Beja, Cap bon, and Kairouan and fungal species were determined based on morphological characters such as shape, size, and number of nuclei in the primary conidia. Polymerase Chain Reaction (PCR on the internal transcribed spacer 1 region (ITS1 was used to verify morphological determination. Both methods gave consistent results and we documented for the first time the natural occurrence of two fungal species from the order Entomophthorales (phylum Entomophthoromycota, Pandora neoaphidis and Entomophthora planchoniana. Both fungi were recorded on the aphid species Sitobion avenae and Myzus persicae on barley ears and potato leaves, respectively. Moreover, natural mixed infections by both species (P. neoaphidis and E. planchoniana were documented on the target aphids. This investigation provides basic information of entomopathogenic fungi infecting economically important aphids in Tunisia.

  20. The occurrence of two species of Entomophthorales (Entomophthoromycota), pathogens of Sitobion avenae and Myzus persicae (Hemiptera: Aphididae), in Tunisia.

    Science.gov (United States)

    Ben Fekih, Ibtissem; Boukhris-Bouhachem, Sonia; Eilenberg, Jørgen; Allagui, Mohamed Bechir; Jensen, Annette Bruun

    2013-01-01

    The natural occurrence of entomophthoralean fungi pathogenic towards aphids on cereal and potato crops was investigated in the years 2009, 2010, and 2011. Infected aphids were sampled in three bioclimatic zones in Tunisia (Beja, Cap bon, and Kairouan) and fungal species were determined based on morphological characters such as shape, size, and number of nuclei in the primary conidia. Polymerase Chain Reaction (PCR) on the internal transcribed spacer 1 region (ITS1) was used to verify morphological determination. Both methods gave consistent results and we documented for the first time the natural occurrence of two fungal species from the order Entomophthorales (phylum Entomophthoromycota), Pandora neoaphidis and Entomophthora planchoniana. Both fungi were recorded on the aphid species Sitobion avenae and Myzus persicae on barley ears and potato leaves, respectively. Moreover, natural mixed infections by both species (P. neoaphidis and E. planchoniana) were documented on the target aphids. This investigation provides basic information of entomopathogenic fungi infecting economically important aphids in Tunisia.

  1. Susceptibility of Australian Myzus persicae (Hemiptera: Aphididae) to Three Recently Registered Insecticides: Spirotetramat, Cyantraniliprole, and Sulfoxaflor.

    Science.gov (United States)

    de Little, Siobhan C; Umina, Paul A

    2017-08-01

    The green peach aphid, Myzus persicae (Sulzer), is a significant agricultural pest that has developed resistance to a large number of insecticides globally. Within Australia, resistance has previously been confirmed for multiple chemical groups, including pyrethroids, carbamates, organophosphates, and neonicotinoids. In this study, we use leaf-dip and topical bioassays to investigate susceptibility and potential cross-resistance of 12 field-collected populations of Australian M. persicae to three recently registered insecticides: sulfoxaflor, spirotetramat, and cyantraniliprole. Despite all 12 populations carrying known resistance mechanisms to carbamates, organophosphates, and pyrethroids, and two populations also exhibiting low-level metabolic resistance to neonicotinoids, we found little evidence of variation in susceptibility to sulfoxafor, spirotetramat, or cyantraniliprole. This provides further evidence that cross-resistance to spirotetramat, cyantraniliprole, and sulfoxaflor in M. persicae is not conferred by the commonly occurring resistance mechanisms MACE, super-kdr, amplification of the E4 esterase gene, or enhanced expression and copy number of the P450 gene, CYP6CY3. Importantly, this study also established toxicity baseline data that will be important for future monitoring of insecticide responses of M. persicae from both broadacre and horticultural crops. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. [Effects of Beauveria bassiana on Myzus persicae and its two predaceous natural enemies].

    Science.gov (United States)

    Zhu, Hong; Luo, Xu-mei; Song, Jin-xin; Fan, Mei-zhen; Li, Zeng-zhi

    2011-09-01

    A Beauveria bassiana strain Bb21 was isolated from naturally infected green peach aphid Myzus persicae (Hemiptera: Aphididae). The effects of the strain on M. persicae and its two predaceous natural enemies Chrysoperla carnea (Neuroptera: Chrysopidae) and Harmonia axyridis (Coleoptera: Coccinellidae) were investigated under laboratory conditions. Bb21 had strong pathogenicity to M. persicae, with the LD50 of 97 conidia x mm(-2) (45-191, 95% confidence interval), but was less pathogenic to the second instar nymph of C. carnea, with the LD50 of 1089 conidia x mm(-2). The LD50 for C. carnea was 10.2 times higher than that for M. persicae. The pathogenicity of Bb21 to H. axyridis was very weak, with a low infection rate of 13% even at a high concentration 5 x 10(8) conidia x mL(-1). The Bb21 at low conidia concentration had less effect on the developmental period and fecundity of the two predaceous natural enemies. However, when applied at the high concentration 5 x 10(8) spores x mL(-1), Bb21 shortened the larval stage of H. axyridis averagely by 1.4 d and decreased the adult emergence rate and fecundity by 33% and 14%, respectively, and shortened the larval stage of C. carnea averagely by 0.7 d and decreased the adult emergence rate and fecundity by 24% and 11%, respectively. Since the LD50 for green peach aphid was much lower than that for the two predaceous natural enemies, and had very low effect on the adult emergence rate and fecundity of the two predators at the concentration recommended for field spray, Bb21 could be applied as a biocontrol agent of M. persicae in the integrated management of pernicious organisms.

  3. Direct and indirect impacts of infestation of tomato plant by Myzus persicae (Hemiptera: Aphididae on Bemisia tabaci (Hemiptera: Aleyrodidae.

    Directory of Open Access Journals (Sweden)

    Xiao-Ling Tan

    Full Text Available The impacts of infestation by the green peach aphid (Myzus persicae on sweetpotato whitefly (Bemisia tabaci settling on tomato were determined in seven separate experiments with whole plants and with detached leaves through manipulation of four factors: durations of aphid infestation, density of aphids, intervals between aphid removal after different durations of infestation and the time of whitefly release, and leaf positions on the plants. The results demonstrated that B. tabaci preferred to settle on the plant leaves that had not been infested by aphids when they had a choice. The plant leaves on which aphids were still present (direct effect had fewer whiteflies than those previously infested by aphids (indirect effect. The whiteflies were able to settle on the plant which aphids had previously infested, and also could settle on leaves with aphids if no uninfested plants were available. Tests of direct factors revealed that duration of aphid infestation had a stronger effect on whitefly landing preference than aphid density; whitefly preference was the least when 20 aphids fed on the leaves for 72 h. Tests of indirect effects revealed that the major factor that affected whitefly preference for a host plant was the interval between the time of aphid removal after infestation and the time of whitefly release. The importance of the four factors that affected the induced plant defense against whiteflies can be arranged in the following order: time intervals between aphid removal and whitefly release > durations of aphid infestation > density of aphids > leaf positions on the plants. In conclusion, the density of aphid infestation and time for which they were feeding influenced the production of induced compounds by tomatoes, the whitefly responses to the plants, and reduced interspecific competition.

  4. A review on the complexity of insect-plant interactions under varying levels of resources and host resistance: the case of Myzus persicae-Prunus persica

    Directory of Open Access Journals (Sweden)

    Verdugo, JA.

    2016-01-01

    Full Text Available Introduction. Insect-plant interactions are affected directly or indirectly by stress factors. The effect of environmental resource availability on insect-plant interactions is here reviewed. Subsequently, the analysis focuses on aphid-host plant interactions, particularly in the system composed by the green peach aphid Myzus persicae and its primary host plant Prunus persica. Literature. Plant defenses arise in two ways: resistance and tolerance, both are affected by abiotic factors. The information gathered from studies (n = 29 on plant-aphid interactions addressing the reduction in water availability on plant resistance, showed that in 41,4% of the studies, drought stress elicits lower resistance, while 34.5%, 20.1% and 3.4%, showed higher, no change and conditional effects on plant resistance, respectively. Conclusions. Water stress elicits mixed effects on plant resistance to aphids. However, the literature review also suggests that cultural practices play a role in the fate of the peach-aphid interactions, whereas the development of predictive models aimed to assist crop-pest management systems still requires more basic information. Aphid responses to plant defenses under stressed conditions are still largely unexplored.

  5. Uso de cuatro extractos organicos para el control del pulgon verde (Myzus persicae Sulz (ING

    Directory of Open Access Journals (Sweden)

    Hernán Rodríguez Navas

    2016-03-01

    Full Text Available Extracts of leaves and stems of Neurolaena lobata; leaves, stems and fruits of Momordica charantia, wood of Quassia amara and seeds of Annona muricata, were tested regarding their effectiveness for control of green peach aphid (Myzus persicae. In a first stage, groups of 10 individuals of M. persicae were placed inside petri dishes together with a small and slight piece of synthetic cloth soaked with either substance extracted. Several concentrations were used. After two hours; more than 50% of the individuals had been killed in every petri dish, which allowed all extracts to pass on to the second stage. The second stage consisted of two experiments. The first one was done in spring at a greenhouse day temperature of 10°C,  using only the first three substances, each of them diluted 1:100. The second one was conducted in Summer at about 25°C with the four substances. Distilled water acted as a control in both experiments. Tobacco plants (Nicotiana tabacum infested with M. persicae were sprayed with the solutions and survivors counted 24 and 72 hours later. In the first experiment Q amara  and M. charantia had 78% and 77% effectiveness respectively, which were statiscally (P< 0.05 higher than that of N. lobata  (63%. In the second experiment, because of the warmer weather, they improved their performance, specially N. lobata (98%. This and A. muricata were found statistically (P< 0.05 higher than the others.

  6. Use of silicon as inductor of the resistance in potato to Myzus persicae (Sulzer) (Hemiptera: Aphididae); Uso de silicio como indutor de resistencia em batata a Myzus persicae (Sulzer) (Hemiptera: Aphididae)

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Flavia B.; Moraes, Jair C.; Antunes, Cristiana [Universidade Federal de Lavras, MG (Brazil). Dept. de Entomologia; Santos, Custodio D. dos [Universidade Federal de Lavras, MG (Brazil). Dept. de Quimica

    2008-03-15

    The aphid Myzus persicae (Sulzer) is an important pest of potato and causes direct harm, due to the quantity of sap extracted and for being vector of important phytovirus. This work was carried out to evaluate the action of silicon as a resistance inducer of potato to M. persicae. Four treatments were tried: foliar fertilization with silicon acid at 1%; soil fertilization with 250 ml silicic acid solution at 1%; foliar fertilization with silicon acid at 1% + soil fertilization with 250 ml silicic acid solution at 1%; and a control. The treatments were applied thirty days after the explants emergence. Fifteen days after the application of the treatments, feeding preference and some biological aspects of the aphids were evaluated. After, the content of tannins and lignin present in the leaves and the activity of the enzymes peroxidase and phenylalanine ammonia-lyase were also determined. The silicon fertilization did not affect the preference of the aphids; however it reduced fecundity and the rate of population growth of the insects. The lignin percentage increased in the leaves of plants fertilized with silicon via soil and/or foliar and the percentage of tannins increased only in the leaves fertilized via soil plus foliar. The silicon acted as a resistance inducer to M. persicae in potato. (author)

  7. Plant Essential Oils Synergize and Antagonize Toxicity of Different Conventional Insecticides against Myzus persicae (Hemiptera: Aphididae)

    Science.gov (United States)

    Faraone, Nicoletta; Hillier, N. Kirk; Cutler, G. Christopher

    2015-01-01

    Plant-derived products can play an important role in pest management programs. Essential oils from Lavandula angustifolia (lavender) and Thymus vulgaris (thyme) and their main constituents, linalool and thymol, respectively, were evaluated for insecticidal activity and synergistic action in combination with insecticides against green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). The essential oils and their main constituents exerted similar insecticidal activity when aphids were exposed by direct sprays, but were non-toxic by exposure to treated leaf discs. In synergism experiments, the toxicity of imidacloprid was synergized 16- to 20-fold by L. angustifolia and T. vulgaris essential oils, but far less synergism occurred with linalool and thymol, indicating that secondary constituents of the oils were probably responsible for the observed synergism. In contrast to results with imidacloprid, the insecticidal activity of spirotetramat was antagonized by L. angustifolia and T. vulgaris essential oils, and linalool and thymol. Our results demonstrate the potential of plant essential oils as synergists of insecticides, but show that antagonistic action against certain insecticides may occur. PMID:26010088

  8. Avaliação de inseticidas no controle de Myzus persicae (sulz. (homoptera: aphididae na cultura da alface Evaluation of insecticides to control Myzus persicae (Sulz (Homoptera: Aphididae on lettuce crop

    Directory of Open Access Journals (Sweden)

    Jeferson Zagonel

    2002-09-01

    Full Text Available Foi avaliada a eficiência de inseticidas no controle de Myzus persicae (Sulz. na cultura da alface, cv. Verônica, em experimento conduzido na UEPG, em 1999. Usou-se delineamento experimental de blocos ao acaso com seis tratamentos e quatro repetições. Os tratamentos constaram de thiamethoxam nas doses de 50; 75 e 100 g i.a./ha; imidacloprid na dose de 140 g i.a./ha; pymetrozine na dose de 150 g i.a./ha e testemunha sem pulverização. Os tratamentos foram aplicados nas mudas em bandejas, um dia antes do transplantio. Avaliou-se a fitotoxicidade, o número de pulgões por planta, a porcentagem de plantas com pulgões e a eficiência dos inseticidas. O thiamethoxam nas doses de 50; 75 e 100 g i.a./ha foi eficiente no controle de M. persicae durante todo o ciclo, mostrando eficiência igual ou superior a 98,6%, similar ao imidacloprid. O pymetrozine apresentou eficiência no controle de M. persicae até 21 dias após o transplante das mudas. Os inseticidas não causaram efeitos fitotóxicos nas plantas de alface; além disso, houve produção de plantas com maior massa fresca em relação à testemunha.A field trial was carried out at Universidade Estadual de Ponta Grossa, State of Paraná, Brazil, in 1999, to evaluate the efficiency of insecticides in controlling Myzus persicae (Sulz on lettuce cv. Veronica. The experimental design was of completely randomized blocks with six treatments and four replications. The treatments consisted of thiamethoxam (50; 75 and 100 g i.a/ha imidacloprid (140 g i.a/ha; pymetrozine (150 g i.a/ha and control. The treatments were applied to seedlings grown in polyestyrene trays one day before the transplanting. The fitotoxicity, the number of aphids/plant, the percentage of plants with aphids and the efficiency of the insecticides were evaluated. Thiamethoxan at doses of 50; 75 and 100 g i.a/ha was efficient to control M. persicae from transplanting till 43 days after showing equal or higher efficiency than 98

  9. Elevated CO2 impacts bell pepper growth with consequences to Myzus persicae life history, feeding behaviour and virus transmission ability.

    Science.gov (United States)

    Dáder, Beatriz; Fereres, Alberto; Moreno, Aránzazu; Trębicki, Piotr

    2016-01-08

    Increasing atmospheric carbon dioxide (CO2) impacts plant growth and metabolism. Indirectly, the performance and feeding of insects is affected by plant nutritional quality and resistance traits. Life history and feeding behaviour of Myzus persicae were studied on pepper plants under ambient (aCO2, 400 ppm) or elevated CO2 (eCO2, 650 ppm), as well as the direct impact on plant growth and leaf chemistry. Plant parameters were significantly altered by eCO2 with a negative impact on aphid's life history. Their pre-reproductive period was 11% longer and fecundity decreased by 37%. Peppers fixed significantly less nitrogen, which explains the poor aphid performance. Plants were taller and had higher biomass and canopy temperature. There was decreased aphid salivation into sieve elements, but no differences in phloem ingestion, indicating that the diminished fitness could be due to poorer tissue quality and unfavourable C:N balance, and that eCO2 was not a factor impeding feeding. Aphid ability to transmit Cucumber mosaic virus (CMV) was studied by exposing source and receptor plants to ambient (427 ppm) or elevated (612 ppm) CO2 before or after virus inoculation. A two-fold decrease on transmission was observed when receptor plants were exposed to eCO2 before aphid inoculation when compared to aCO2.

  10. Dynamics of Membrane Potential Variation and Gene Expression Induced by Spodoptera littoralis, Myzus persicae, and Pseudomonas syringae in Arabidopsis

    Science.gov (United States)

    Bricchi, Irene; Bertea, Cinzia M.; Occhipinti, Andrea; Paponov, Ivan A.; Maffei, Massimo E.

    2012-01-01

    Background Biotic stress induced by various herbivores and pathogens invokes plant responses involving different defense mechanisms. However, we do not know whether different biotic stresses share a common response or which signaling pathways are involved in responses to different biotic stresses. We investigated the common and specific responses of Arabidopsis thaliana to three biotic stress agents: Spodoptera littoralis, Myzus persicae, and the pathogen Pseudomonas syringae. Methodology/Principal Findings We used electrophysiology to determine the plasma membrane potential (Vm) and we performed a gene microarray transcriptome analysis on Arabidopsis upon either herbivory or bacterial infection. Vm depolarization was induced by insect attack; however, the response was much more rapid to S. littoralis (30 min −2 h) than to M. persicae (4–6 h). M. persicae differentially regulated almost 10-fold more genes than by S. littoralis with an opposite regulation. M. persicae modulated genes involved in flavonoid, fatty acid, hormone, drug transport and chitin metabolism. S. littoralis regulated responses to heat, transcription and ion transport. The latest Vm depolarization (16 h) was found for P. syringae. The pathogen regulated responses to salicylate, jasmonate and to microorganisms. Despite this late response, the number of genes differentially regulated by P. syringae was closer to those regulated by S. littoralis than by M. persicae. Conclusions/Significance Arabidopsis plasma membranes respond with a Vm depolarization at times depending on the nature of biotic attack which allow setting a time point for comparative genome-wide analysis. A clear relationship between Vm depolarization and gene expression was found. At Vm depolarization timing, M. persicae regulates a wider array of Arabidopsis genes with a clear and distinct regulation than S. littoralis. An almost completely opposite regulation was observed between the aphid and the pathogen, with the former

  11. The effectiveness of Penicillium sp. mixed with silica nanoparticles in controlling Myzus persicae

    Science.gov (United States)

    Hersanti, Hidayat, Syarif; Susanto, Agus; Virgiawan, Regi; Joni, I. Made

    2018-02-01

    Myzus persicae is one of the major potato plant pests, and also a vector of potato viruses. This pest may cause low quality as well as quantity of potato production. Entomopathogenic fungi can be used to control M. persicae. Penicillium sp. and has been reported as pathogenic to many insect pests. However, it was not that effective in controlling M. persicae. To increase its effectiveness, it can be mixed with plant micro nutrients such as silica, which also protects plants from biotic stress. This experiment was aimed to study the effect of applications of the mixture of Penicillium sp.+ nanosilica in various concentrations on the mortality of M. persicae. There were 8 treatments i.e., applications of single Penicillium sp, single nanosilica 1, 3, and 5 %, and the mixture of Penicillium sp.+ nanosilica 1, 3, and 5 %, and a control (without Penicillium sp.and nanosilica). Each cabbage plant grown in the greenhouse was infested with 20 Penicillium sp. instar II-III, and sprayed according to the treatments. Mortality of M. persicae was assessed after five days of application. The results showed that application of the mixture of Penicillium sp.106spora/ml+nanosilica 5%, and single nanosilica 5% increased the mortality of M. persicae. The mortalities were 37.5%, and 32.5% respectively, compared with 12.5% mortality on the treatment of single Penicillium sp.

  12. Ability of Aphis gossypii and Myzus persicae to Transmit Cucumber mosaic virus in Single and Mixed Infection with Two Potyviruses to Zucchini Squash Eficiência dos afídeos Aphis gossypii e Myzus persicae na transmissão do Cucumber mosaic virus em infecção simples e mista com dois Potyvirus para abobrinha de moita

    Directory of Open Access Journals (Sweden)

    Zayame Vegette Pinto

    2008-06-01

    Full Text Available The main objective of this work was to investigate the ability of Aphis gossypii and Myzus persicae to transmit Cucumber mosaic virus (CMV singly and mixed with two potyviruses (Papaya ringspot virus - type W, PRSV-W and Zucchini yellow mosaic virus, ZYMV, to zucchini squash plants (Cucurbita pepo. The results showed that the potyviruses in general were more efficiently transmitted by both species of aphids as compared to CMV. The transmission of PRSV-W, ZYMV and CMV separately was more efficient than in mixture.O objetivo desse trabalho foi estudar a eficiência de Aphis gossypii e Myzus persicae na transmissão do vírus do mosaico do pepino (Cucumber mosaic virus, CMV, isoladamente e em mistura com duas espécies de potyvirus (Vírus do mosaico do mamoeiro = Papaya ringspot virus - type W, PRSV-W e Vírus do mosaico amarelo da abobrinha = Zucchini yellow mosaic virus, ZYMV, para planta-testes de abobrinha de moita (Cucurbita pepo. Os dois potyvirus em geral foram transmitidos com mais eficiência pelas duas espécies de afídeos do que o CMV. A transmissão do PRSV-W, ZYMV e CMV, separadamente, foi mais eficiente do que em mistura.

  13. Constitutive activation of jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae.

    Science.gov (United States)

    Ellis, Christine; Karafyllidis, Ioannis; Turner, John G

    2002-10-01

    In Arabidopsis spp., the jasmonate (JA) response pathway generally is required for defenses against necrotrophic pathogens and chewing insects, while the salicylic acid (SA) response pathway is generally required for specific, resistance (R) gene-mediated defenses against both biotrophic and necrotrophic pathogens. For example, SA-dependent defenses are required for resistance to the biotrophic fungal pathogen Erysiphe cichoracearum UCSC1 and the bacterial pathogen Pseudomonas syringae pv. maculicola, and also are expressed during response to the green peach aphid Myzus persicae. However, recent evidence indicates that the expression of JA-dependent defenses also may confer resistance to E. cichoracearum. To confirm and to extend this observation, we have compared the disease and pest resistance of wild-type Arabidopsis plants with that of the mutants coil, which is insensitive to JA, and cev1, which has constitutive JA signaling. Measurements of the colonization of these plants by E. cichoracearum, P. syringae pv. maculicola, and M. persicae indicated that activation of the JA signal pathway enhanced resistance, and was associated with the activation of JA-dependent defense genes and the suppression of SA-dependent defense genes. We conclude that JA and SA induce alternative defense pathways that can confer resistance to the same pathogens and pests.

  14. Effect of an alternate weed host, hairy nightshade, Solanum sarrachoides, on the biology of the two most important potato leafroll virus (Luteoviridae: Polerovirus) vectors, Myzus persicae and Macrosiphum euphorbiae (Aphididae: Homoptera).

    Science.gov (United States)

    Srinivasan, Rajagopalbabu; Alvarez, Juan M; Bosque-Pérez, Nilsa A; Eigenbrode, Sanford D; Novy, Richard G

    2008-04-01

    Hairy nightshade, Solanum sarrachoides (Sendtner), is a ubiquitous weed in potato agro-ecosystems and nonagricultural lands of southeastern Idaho and the Pacific Northwest. This weed increases the complexity of the Potato leafroll virus (PLRV) (Luteoviridae: Polervirus)-potato pathosystem by serving as aphid and virus reservoir. Previous field studies showed higher densities of green peach aphid, Myzus persicae (Sulzer), and potato aphid, Macrosiphum euphorbiae (Thomas), the two most important vectors of PLRV, on S. sarrachoides compared with potato plants in the same fields. Some of the S. sarrachoides plants sampled in these surveys tested positive for PLRV. Viral infections can alter the physiology of plant hosts and aphid performance on such plants. To understand better the potential effects of S. sarrachoides on the PLRV-potato-aphid pathosystem, the life histories of M. persicae and M. euphorbiae were compared on virus-free and PLRV-infected S. sarrachoides and potato. Individual nymphs of each aphid species were held in clip cages on plants from each treatment to monitor their development, survival, and reproductive output. Nymphal survival for both aphids across plant species was higher on S. sarrachoides than on potato, and, within plant species, it was higher on PLRV-infected plants than on noninfected plants. With a few exceptions, similar patterns occurred for fecundity, reproductive periods, adult longevity, and intrinsic rate of increase. The enhanced performance of aphids on S. sarrachoides and on PLRV-infected plants could alter the vector population dynamics and thus the PLRV-disease epidemiology in fields infested with this weed.

  15. Metabolite profiling reveals a specific response in tomato to predaceous Chrysoperla carnea larvae and herbivore(s-predator interactions with the generalist pests Tetranychus urticae and Myzus persicae

    Directory of Open Access Journals (Sweden)

    Audrey Errard

    2016-08-01

    Full Text Available The spider mite Tetranychus urticae Koch and the aphid Myzus persicae (Sulzer both infest a number of economically significant crops, including tomato (Solanum lycopersicum. Although used for decades to control pests, the impact of green lacewing larvae Chrysoperla carnea (Stephens on plant biochemistry was not investigated. Here we used profiling methods and targeted analyses to explore the impact of the predator and herbivore(s-predator interactions on tomato biochemistry. Each pest and pest-predator combination induced a characteristic metabolite signature in the leaf and the fruit thus, the plant exhibited a systemic response. The treatments had a stronger impact on non-volatile metabolites including abscisic acid and amino acids in the leaves in comparison with the fruits. In contrast, the various biotic factors had a greater impact on the carotenoids in the fruits. We identified volatiles such as myrcene and α-terpinene which were induced by pest-predator interactions but not by single species, and we demonstrated the involvement of the phytohormone abscisic acid in tritrophic interactions for the first time. More importantly, C. carnea larvae alone impacted the plant metabolome, but the predator did not appear to elicit particular defense pathways on its own. Since the presence of both C. carnea larvae and pest individuals elicited volatiles which were shown to contribute to plant defense, C. carnea larvae could therefore contribute to the reduction of pest infestation, not only by its preying activity, but also by priming responses to generalist herbivores such as T. urticae and M. persicae. On the other hand, the use of C. carnea larvae alone did not impact carotenoids thus, was not prejudicial to the fruit quality. The present piece of research highlights the specific impact of predator and tritrophic interactions with green lacewing larvae, spider mites and aphids on different components of the tomato primary and secondary metabolism

  16. Two-sex Life Table of Oenopia conglobata cantaminata (Mentries Feed on Myzus persicae (Sulzer and Agonoscena pistacia Burkhardt and Lauterer under Laboratory Condition

    Directory of Open Access Journals (Sweden)

    B. Mokhtari

    2016-06-01

    Full Text Available Introduction: Aphids are very successful insects of the superfamily Aphidoidea with the highest number of species are found in temperate regions. One of the most important aphid, is Myzus persicae, known as the green peach aphid or the peach-potato aphid, is a small green aphid. It is the most significant aphid pest of peach trees, causing decreased growth, shriveling of the leaves and the death of various tissues. It is also hazardous because it acts as a vector for the transport of plant viruses, such as potato virus Y and potato leafroll virus to members of the nightshade/potato family Solanaceae, and various mosaic viruses to many other food crops. The green peach aphid is found worldwide, although it is less tolerant of colder climates and overwinters through its eggs, laid in trees of the genus Prunus. The aphid also benefits from the presence of greenhouses in these areas The common pistachio psylla, Agonoscena pistaciae Burckhardt and Lauterer (Hemiptera: Psylloidea, is now the most destructive insect pest of cultivated pistachio trees (Pistacia vera Linnaeus in Iran This pest occurs throughout the pistachio plantation region of the country and causes severe reductions in pistachio yields. these pests are controlled almost exclusively by pesticides; however, environmental contamination and resistance by A. pistaciae and M.persica to insecticides has lead to considerable efforts to understand the potential of biocontrol agents for the common pistachio psylla and green peach aphid control. Coccinellids have been widely used in biological control for over a century and are considered to be important natural enemies of pest species, especially whitefly, aphids, mealy bugs, scales and mites. Lady beetles belong to the order beetles (Coleoptera are the Coccinellidae family. To achieve a successful biological control program, it is necessary to characterize the growth, stage structure, fecundity, and predation rate of the pest’s predators

  17. Effect Of Intercropping System On Green Peach Aphid Dinamics On Organic Farming Of Potato In Karo Highland

    OpenAIRE

    Lamria Sidauruk; Darma Bakti; Retna Astuti Kuswardani; Chairani Hanum

    2015-01-01

    Abstract Green peach aphid Myzus persicae Sulzer represents one of the major pest affecting decreased production which found in different potato fields in Karo Highland. This study was conducted to determine the population dynamics of Myzus persicae Sulzer on potato cropping system. The experiment was laid out in split plot design with main plot are farming system such as conventional farming semi organic farming and organic farming. The sub plot are intercropping system consist of potato mon...

  18. Behavioral evidence for local reduction of aphid-induced resistance

    NARCIS (Netherlands)

    Prado, E.; Tjallingii, W.F.

    2007-01-01

    Twenty-five aphids of three different species, Brevicoryne brassicae L, Myzus persicae Schulzer, and Rhopalosiphum padi L(Hemiptera: Aphididae) were each allowed to infest leaves of a young plant of their respective host plant species for 4 days, except that the oldest expanded leaf (the `systemic¿

  19. Evaluación de extractos cetónicos de paraíso, eucalipto y ricino sobre Myzus persicae (Homoptera: Aphididae)

    OpenAIRE

    Carrizo, Paola; Pelicano, Alicia; Caffarini, Patricia

    2004-01-01

    En el cultivo de pimiento, Myzus persicae es una plaga cuyo manejo se basa en el uso de agroquímicos de síntesis. Una alternativa de menor impacto ambiental para su control es la aplicación de extractos naturales. El objetivo del trabajo fue evaluar el efecto de extractos provenientes de Melia azedarach, Eucalyptus globulus y Ricinus communis sobre este pulgón. Se escogió la técnica del film residual en papel de filtro, manteniendo los individuos sobre hojas de pimiento ornamental. Se uti...

  20. Response of Green Peach Aphids and Other Arthropods to Garlic Intercropped with Tobacco

    NARCIS (Netherlands)

    Lai, R.; You, M.; Lotz, L.A.P.; Vasseur, L.

    2011-01-01

    The green peach aphid, Myzus persicae (Sulzer), is an insect pest that causes extensive damage to tobacco (Nicotiana tabacum L.) in China. Field trials were conducted in 2008 and 2009 at Longyan in the Fujian Province (China) to evaluate the effects of garlic (Allium sativum L.) as a deterrent to

  1. Phenotypic plasticity of Myzus persicae (Hemíptera: Aphididae raised on Brassica oleracea L. var. acephala (kale and Raphanus sativus L. (radish

    Directory of Open Access Journals (Sweden)

    Peppe Fernanda Borja

    2003-01-01

    Full Text Available The study of variability generated by phenotypic plasticity is crucial for predicting evolutionary patterns in insect-plant systems. Given sufficient variation for plasticity, host race formation can be favored and maintained, even simpatrically. The plasticity of size and performance (assessed by the lifetime fitness index r m of six clones of Myzus persicae was tested, with replicates allowed to develop on two hosts, kale (Brassica oleracea var. acephala and radish (Raphanus sativus. The clones showed significant variability in their plasticity. Reaction norms varied through generations and negative genetic correlation, although not significant, tend to increase with the duration of host use. The lack of plasticity in lifetime fitness among generalist clones occurred as an after-effect of the highly plastic determinants. Significant morphological plasticity in host used was observed, but no variation in the plastic responses (GxE interaction was detected. Strong selection for a larger size occurred among individuals reared on radish, the most unfavorable host. Morphological plasticity in general body size (in a multivariate sense was not linear related to fitness plasticity. These observations suggest that a high potential for the evolution of host divergence favors host race formation.

  2. Parasitization of commercially available parasitoid species against the lettuce aphid, Nasonovia ribisnigri (Hemiptera: Aphididae).

    Science.gov (United States)

    Shrestha, G; Skovgård, H; Enkegaard, A

    2014-12-01

    The lettuce aphid, Nasonovia ribisnigri (Mosley), is an economically important pest of lettuce worldwide. Little documentation exists for the control efficacy of aphid parasitoids against N. ribisnigri. This laboratory study evaluated three commercially available parasitoid species: Aphidius colemani (Viereck), Lysiphlebus testaceipes (Cresson), and Aphelinus abdominalis (Dalman) for their mortality impact on N. ribisnigri. The green peach aphid Myzus persicae (Sulzer) was included as a reference aphid. The study showed that A. abdominalis successfully parasitized 39 and 13% of the offered N. ribisnigri and M. persicae, respectively, within a 24-h exposure period. In contrast, none of the lettuce aphids exposed to Ap. colemani or L. testaceipes were successfully parasitized, whereas 60 and 3.5% of M. persicae, respectively, were successfully parasitized within a 6-h exposure period. Lettuce aphid mortality due to incomplete parasitization was 26 and 31% when exposed to Ap. colemani and L. testaceipes, respectively, with corresponding values for M. persicae being 5 and 10%, respectively. Mortality as a result of incomplete parasitization when aphids were exposed to A. abdominalis was low for both aphid species. The total mortality inflicted by A. abdominalis within a 24-h exposure period was 51% for the lettuce aphids and significantly less (19%) for green peach aphids. In contrast, Ap. colemani inflicted a higher mortality in M. persicae (65%) compared with N. ribisnigri (26%) within a 6-h exposure period. L. testaceipes caused a greater mortality in N. ribisnigri as compared with M. persicae. This study concludes that A. abdominalis has the potential to be used against N. ribisnigri in inoculative biocontrol programs as compared with the other parasitoid species based on successful parasitization.

  3. Characterization of Arabidopsis Transcriptional Responses to Different Aphid Species Reveals Genes that Contribute to Host Susceptibility and Non-host Resistance

    Science.gov (United States)

    Jaouannet, Maëlle; Morris, Jenny A.; Hedley, Peter E.; Bos, Jorunn I. B.

    2015-01-01

    Aphids are economically important pests that display exceptional variation in host range. The determinants of diverse aphid host ranges are not well understood, but it is likely that molecular interactions are involved. With significant progress being made towards understanding host responses upon aphid attack, the mechanisms underlying non-host resistance remain to be elucidated. Here, we investigated and compared Arabidopsis thaliana host and non-host responses to aphids at the transcriptional level using three different aphid species, Myzus persicae, Myzus cerasi and Rhopalosiphum pisum. Gene expression analyses revealed a high level of overlap in the overall gene expression changes during the host and non-host interactions with regards to the sets of genes differentially expressed and the direction of expression changes. Despite this overlap in transcriptional responses across interactions, there was a stronger repression of genes involved in metabolism and oxidative responses specifically during the host interaction with M. persicae. In addition, we identified a set of genes with opposite gene expression patterns during the host versus non-host interactions. Aphid performance assays on Arabidopsis mutants that were selected based on our transcriptome analyses identified novel genes contributing to host susceptibility, host defences during interactions with M. persicae as well to non-host resistance against R. padi. Understanding how plants respond to aphid species that differ in their ability to infest plant species, and identifying the genes and signaling pathways involved, is essential for the development of novel and durable aphid control in crop plants. PMID:25993686

  4. Host Plant-Herbivore-Predator Interactions in Chrysoperla carnea (Neuroptera: Chrysopidae) and Myzus persicae (Homoptera: Aphididae) on Four Plant Species Under Laboratory Conditions.

    Science.gov (United States)

    Farrokhi, Milad; Gharekhani, Gholamhossein; Iranipour, Shahzad; Hassanpour, Mahdi

    2017-12-05

    The common green lacewing, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae), is a well-known biocontrol agent. The current study examined host plant-herbivore-predator interactions with C. carnea and Myzus persicae on four host plants (peach, almond, pepper, and potato). The experiments were carried out at 25 ± 1°C and 65 ± 5% RH at a photoperiod of 16:8 (L:D) h). Duration of the preadult growth period, adult longevity, fecundity, and population growth parameters were analyzed based on the age-stage, two-sex life table theory. The shortest and longest preadult developmental times of the predator were observed on the peach and potato, respectively. The highest and lowest predation rate, oviposition period, and male and female longevity of predator were also observed on the peach and potato, respectively. The lowest intrinsic rate of increase (r) and finite rate of increase (λ) were observed on the potato (0.1087 and 1.11 d-1, respectively) and the highest on the peach (0.1460 and 1.15 d-1, respectively). The maximum and minimum mean generation times (T) were 41.84 and 35.59 d in the potato and peach, respectively. Overall, peach was found to be a more appropriate host than the other host plants for development and predation fitness of C. carnea. These findings reveal that information on tritrophic interactions and subsequent life table evaluation of natural enemies improves integrated pest management programs. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  5. A Genetic Survey of Pyrethroid Insecticide Resistance in Aphids in New Brunswick, Canada, with Particular Emphasis on Aphids as Vectors of Potato virus Y.

    Science.gov (United States)

    MacKenzie, Tyler D B; Arju, Irin; Poirier, René; Singh, Mathuresh

    2018-05-28

    Aphids are viral vectors in potatoes, most importantly of Potato virus Y (PVY), and insecticides are frequently used to reduce viral spread during the crop season. Aphids collected from the potato belt of New Brunswick, Canada, in 2015 and 2016 were surveyed for known and novel mutations in the Na-channel (para) gene, coding for the target of synthetic pyrethroid insecticides. Specific genetic mutations known to confer resistance (kdr and skdr) were found in great abundance in Myzus persicae (Sulzer) (Hemiptera: Aphididae), which rose from 76% in 2015 to 96% in 2016. Aphids other than M. persicae showed lower frequency of resistance. In 2015, 3% of individuals contained the resistance mutation skdr, rising to 13% in 2016 (of 45 species). Several novel resistance mutations or mutations not before reported in aphids were identified in this gene target. One of these mutations, I936V, is known to confer pyrethroid resistance in another unrelated insect, and three others occur immediately adjacent and prompt similar chemical shifts in the primary protein structure, to previously characterized mutations associated with pyrethroid resistance. Most novel mutations were found in species other than M. persicae or others currently tracked individually by the provincial aphid monitoring program, which were determined by cytochrome C oxidase I (cox1) sequencing. Through our cox1 DNA barcoding survey, at least 45 species of aphids were discovered in NB potato fields in 2015 and 2016, many of which are known carriers of PVY.

  6. Aphid Transmission of the Ontario Isolate of Plum Pox Virus.

    Science.gov (United States)

    Lowery, D Thomas; Vickers, Patricia M; Bittner, Lori A; Stobbs, Lorne W; Foottit, Robert G

    2015-10-01

    Utilization of timed virus acquisition access probes in studies of plum pox virus (PPV) transmission by aphids demonstrated that endemic species transmitted the virus readily from plum, Prunus domestica (L.) Batsch; peach, P. persica (L.); or dwarf flowering almond, P. glandulosa Thunberg., to peach seedlings. The green peach aphid, Myzus persicae (Sulzer), was shown to be the most efficient vector. Acquisition of virus by green peach aphids from infected peach leaves resulted in 18-28% infected peach seedlings, while aphids previously fed on infected leaves of plum transferred virus to 36% of peach seedlings. Although the spirea aphid, Aphis spiraecola (Patch), was a less efficient vector than M. persicae it is perhaps more important for the spread of PPV due to its greater abundance and occurrence earlier in the season when peach trees are thought to be more susceptible to infection. Virus transmission rates varied depending on the virus source and healthy test plant species. In contrast to many previous studies, aphid inoculation of the experimental host Nicotiana benthamiana Domin occurred at a low rate, never exceeding 4%. Acquisition of PPV by M. persicae from infected peach fruit was greatly reduced compared with acquisition from leaves. The results of this research indicate that the Ontario isolate of PPV-D is readily transmissible by aphids to peach and natural spread of the virus needs to be considered in future management or eradication programs. © Her Majesty in Right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada. Published by Oxford University Press on behalf of Entomological Society of America.

  7. AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling.

    Science.gov (United States)

    Kloth, Karen J; Wiegers, Gerrie L; Busscher-Lange, Jacqueline; van Haarst, Jan C; Kruijer, Willem; Bouwmeester, Harro J; Dicke, Marcel; Jongsma, Maarten A

    2016-05-01

    Aphids induce many transcriptional perturbations in their host plants, but the signalling cascades responsible and the effects on plant resistance are largely unknown. Through a genome-wide association (GWA) mapping study in Arabidopsis thaliana, we identified WRKY22 as a candidate gene associated with feeding behaviour of the green peach aphid, Myzus persicae The transcription factor WRKY22 is known to be involved in pathogen-triggered immunity, and WRKY22 gene expression has been shown to be induced by aphids. Assessment of aphid population development and feeding behaviour on knockout mutants and overexpression lines showed that WRKY22 increases susceptibility to M. persicae via a mesophyll-located mechanism. mRNA sequencing analysis of aphid-infested wrky22 knockout plants revealed the up-regulation of genes involved in salicylic acid (SA) signalling and down-regulation of genes involved in plant growth and cell-wall loosening. In addition, mechanostimulation of knockout plants by clip cages up-regulated jasmonic acid (JA)-responsive genes, resulting in substantial negative JA-SA crosstalk. Based on this and previous studies, WRKY22 is considered to modulate the interplay between the SA and JA pathways in response to a wide range of biotic and abiotic stimuli. Its induction by aphids and its role in suppressing SA and JA signalling make WRKY22 a potential target for aphids to manipulate host plant defences. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. Comparative Analysis of RNAi-Based Methods to Down-Regulate Expression of Two Genes Expressed at Different Levels in Myzus persicae

    Directory of Open Access Journals (Sweden)

    Michaël Mulot

    2016-11-01

    Full Text Available With the increasing availability of aphid genomic data, it is necessary to develop robust functional validation methods to evaluate the role of specific aphid genes. This work represents the first study in which five different techniques, all based on RNA interference and on oral acquisition of double-stranded RNA (dsRNA, were developed to silence two genes, ALY and Eph, potentially involved in polerovirus transmission by aphids. Efficient silencing of only Eph transcripts, which are less abundant than those of ALY, could be achieved by feeding aphids on transgenic Arabidopsis thaliana expressing an RNA hairpin targeting Eph, on Nicotiana benthamiana infected with a Tobacco rattle virus (TRV-Eph recombinant virus, or on in vitro-synthesized Eph-targeting dsRNA. These experiments showed that the silencing efficiency may differ greatly between genes and that aphid gut cells seem to be preferentially affected by the silencing mechanism after oral acquisition of dsRNA. In addition, the use of plants infected with recombinant TRV proved to be a promising technique to silence aphid genes as it does not require plant transformation. This work highlights the need to pursue development of innovative strategies to reproducibly achieve reduction of expression of aphid genes.

  9. Ecological effects of aphid abundance, genotypic variation, and contemporary evolution on plants.

    Science.gov (United States)

    Turley, Nash E; Johnson, Marc T J

    2015-07-01

    Genetic variation and contemporary evolution within populations can shape the strength and nature of species interactions, but the relative importance of these forces compared to other ecological factors is unclear. We conducted a field experiment testing the effects of genotypic variation, abundance, and presence/absence of green peach aphids (Myzus persicae) on the growth, leaf nitrogen, and carbon of two plant species (Brassica napus and Solanum nigrum). Aphid genotype affected B. napus but not S. nigrum biomass explaining 20 and 7% of the total variation, respectively. Averaging across both plant species, the presence/absence of aphids had a 1.6× larger effect size (Cohen's d) than aphid genotype, and aphid abundance had the strongest negative effects on plant biomass explaining 29% of the total variation. On B. napus, aphid genotypes had different effects on leaf nitrogen depending on their abundance. Aphids did not influence leaf nitrogen in S. nigrum nor leaf carbon in either species. We conducted a second experiment in the field to test whether contemporary evolution could affect plant performance. Aphid populations evolved in as little as five generations, but the rate and direction of this evolution did not consistently vary between plant species. On one host species (B. napus), faster evolving populations had greater negative effects on host plant biomass, with aphid evolutionary rate explaining 23% of the variation in host plant biomass. Together, these results show that genetic variation and evolution in an insect herbivore can play important roles in shaping host plant ecology.

  10. Spatial and Temporal Dynamics of Aphids (Hemiptera: Aphididae) in the Columbia Basin and Northeastern Oregon.

    Science.gov (United States)

    Klein, Mathew L; Rondon, Silvia I; Walenta, Darrin L; Zeb, Qamar; Murphy, Alexzandra F

    2017-08-01

    Aphid species, such as the potato aphid, Macrosiphum euphorbiae Thomas, and the green peach aphid, Myzus persicae Sulzer, are routinely considered the most important pests of potatoes. Potato aphid, green peach aphid, and more recently, other aphids such as the bird cherry-oat aphid Rhopalosiphum padi L. have been identified as vectors of multiple plant pathogenic viruses in potatoes. Since 2006, an area-wide trapping network consisting of ∼60 sites was developed through collaboration between researchers, extension faculty, and stakeholders, to monitor aphid populations in the Columbia Basin of Oregon (Umatilla and Morrow counties) and in northeastern Oregon (Union and Baker counties). Over a 9-yr period (2006 to 2014), aphid specimens were collected weekly using yellow bucket traps and specimens were then identified and counted to determine population levels during the growing season (May-September). Thus, aphid population data were compiled and subjected to spatial and temporal distribution analysis. Weather data, obtained from an established network of weather stations located in the monitoring areas, were used in a nonparametric multiplicative regression analysis to determine which abiotic variables may impact aphid populations. Weather conditions were characterized using confidence intervals (CIs) established based on weather data from 1999 to 2005 for each environmental variable. Aphid populations were found to have a heterogeneous distribution in most years; a few sites had high aphid populations while low numbers were observed at most sites; aphids were also found to correlate with several abiotic variables, namely, elevation, previous season temperature, and previous season dew point. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Effect Of Intercropping System On Green Peach Aphid Dinamics On Organic Farming Of Potato In Karo Highland

    Directory of Open Access Journals (Sweden)

    Lamria Sidauruk

    2015-08-01

    Full Text Available Abstract Green peach aphid Myzus persicae Sulzer represents one of the major pest affecting decreased production which found in different potato fields in Karo Highland. This study was conducted to determine the population dynamics of Myzus persicae Sulzer on potato cropping system. The experiment was laid out in split plot design with main plot are farming system such as conventional farming semi organic farming and organic farming. The sub plot are intercropping system consist of potato monoculture potato with cabbage potato with mustard potato with celery potato with cabbage and mustard potato with cabbage and celery potato with mustard and celery potato with cabbage mustard and celery. Research carried out for two planting season. The first at May-August and the second at September-December. The results showed that M. persicae was consistently at different densities in different intercropping system on potato. The aphid was first recorded at three week until planting. The kind of intercroppingculture plants significantly reduced the number of aphid at two planting season. Intercropping system decrease population of M. persicae at potato. At 9 weeks after planting the decreased are respectively at intercropping potato with mustard 3.97 aphidleaf potato with cabbage and mustard 4.43 aphidleaf and potato with celery 4.45 aphidleaf. At 11 weeks after planting the decreased are respectively at intercropping potato with mustard 2.99 aphid per leaf potato with cabbage 3.10 aphidleaf and potato with cabbage and mustard 3.60 aphidleaf. At 7 weeks after planting the highest population of natural enemies Braconid wasp was found on intercropping potato with cabbage2.62 braconid waspplant and at 9 weeks was found on intercropping potato with cabbage mustard and celery 2.38 braconid waspplant. The highest population of Coccinellidae found on intercropping potato with cabbage mustard and celery 1.80plant at 11 weeks after planting.

  12. Estimation of the number of aphids carrying Citrus tristeza virus that visit adult citrus trees.

    Science.gov (United States)

    Marroquín, Carlos; Olmos, Antonio; Teresa Gorris, María; Bertolini, Edson; Carmen Martínez, M; Carbonell, Emilio A; Hermoso de Mendoza, Alfonso; Cambra, Mariano

    2004-03-01

    Aphid species were counted on citrus trees in orchards in Valencia, Spain, in the spring and autumn of 1997, 1998 and 1999. Moericke yellow water traps, the 'sticky shoot' method and counts of established colonies were used in extensive surveys in which 29,502 aphids were recorded and identified. Aphis spiraecola and Aphis gossypii were the most abundant aphid species. The numbers of aphid species landing on mature trees of grapefruit, sweet orange, lemon and clementine and satsuma mandarins, were estimated by counting the numbers of young shoots/tree and aphids trapped on sticky shoots. The proportions of the different aphid species captured were: A. gossypii (53%), A. spiraecola (32%), Toxoptera aurantii (11%), Myzus persicae (1%), Aphis craccivora (1%) and other species (2%). Clementine was the most visited species with 266,700 aphids landing/tree in spring 2000, followed by lemon (147,000), sweet orange (129,150), grapefruit (103,200), and satsuma (92,400). The numbers and relative percentages of aphids carrying Citrus tristeza virus (CTV) were assessed by nested RT-PCR in single closed tubes and analysed by extraction of RNA-CTV targets from trapped aphids. An average of 37,190 CTV-carrying aphids visited each tree in spring 2000 (29 per shoot). The percentage detection of viral RNA in the aphid species that landed were 27% for A. gossypii, 23% for A. spiraecola and 19% for T. aurantii. This high incidence of aphids carrying CTV is consistent with the high prevalence and rapid spread of CTV in sweet orange, clementine, and satsuma mandarins in recent years in the region. The infection rate was proportional to the number of aphids landing/tree.

  13. The Nerium oleander aphid Aphis nerii is tolerant to a local isolate of Aphid lethal paralysis virus (ALPV).

    Science.gov (United States)

    Dombrovsky, Aviv; Luria, Neta

    2013-04-01

    In a survey that was conducted during the year 2011, a local strain of Aphid lethal paralysis virus (ALPV) was identified and isolated from a wild population of Aphis nerii aphids living on Nerium oleander plants located in northern Israel. The new strain was tentatively named (ALPV-An). RNA extracted from the viral particles allowed the amplification and determination of the complete genome sequence. The virus genome is comprised of 9835 nucleotides. In a BLAST search analysis, the ALPV-An sequence showed 89 % nucleotide sequence identity with the whole genome of a South African ALPV and 96 and 94 % amino acid sequence identity with the ORF1 and ORF2 of that strain, respectively. In preliminary experiments, spray-applied, purified ALPV virions were highly pathogenic to the green peach aphid Myzus persicae; 95 % mortality was recorded 4 days post-infection. These preliminary results demonstrate the potential of ALPV for use as a biologic agent for some aphid control. Surprisingly, no visible ALPV pathogenic effects, such as morphological changes or paralysis, were observed in the A. nerii aphids infected with ALPV-An. The absence of clear ALPV symptoms in A. nerii led to the formulation of two hypotheses, which were partially examined in this study. The first hypothesis suggest that A. nerii is resistant or tolerant of ALPV, while the second hypothesis propose that ALPV-An may be a mild strain of ALPV. Currently, our results is in favor with the first hypothesis since ALPV-An is cryptic in A. nerii aphids and can be lethal for M. persicae aphids.

  14. Activity of aphids associated with lettuce and broccoli in Spain and their efficiency as vectors of Lettuce mosaic virus.

    Science.gov (United States)

    Nebreda, M; Moreno, A; Pérez, N; Palacios, I; Seco-Fernández, V; Fereres, A

    2004-03-01

    This research sought to identify the aphid virus vector species associated with lettuce and broccoli crops in Spain, and to determine their population dynamics and ability to transmit Lettuce mosaic virus (LMV). Green tile traps and Moericke yellow water-pan traps were used to monitor aphid flights during the spring and autumn growing seasons of 2001. Aphid species feeding on lettuce were counted weekly. The transmission efficiencies of LMV were determined for the aphid species caught most frequently. The Moericke traps generally caught more aphid species than the tile trap, but the latter was the most suitable to estimate flight activity of species involved in virus spread. Spring aphid catches indicated that the main aphid species landing on lettuce in the regions of Madrid and Murcia was Hyperomyzus lactucae, but Brachycaudus helichrysi was also abundant in both regions. In broccoli in the Navarra region, the most abundant species in spring were Aphis fabae, B. helichrysi and H. lactucae. In autumn-sown crops, the main species landing on lettuce in the Madrid region were Hyadaphis coriandri and Aphis spiraecola. In Murcia, A. spiraecola and Myzus persicae were the most abundant, while in Navarra, Therioaphis trifolii, and various Aphis spp. were the most numerous landing on broccoli. The main aphid species colonising lettuce was Nasonovia ribisnigri, but other less abundant colonising species were Aulacorthum solani and Macrosiphum euphorbiae. The most efficient vectors of LMV were M. persicae, Aphis gossypii and M. euphorbiae, while A. fabae and H. lactucae transmitted with low efficiency, and Rhopalosiphum padi and N. ribisnigri did not transmit. Occurrence of LMV epidemics in central Spain in relation to aphid flights and the role of weeds as virus reservoirs is discussed.

  15. High-throughput phenotyping of plant resistance to aphids by automated video tracking.

    Science.gov (United States)

    Kloth, Karen J; Ten Broeke, Cindy Jm; Thoen, Manus Pm; Hanhart-van den Brink, Marianne; Wiegers, Gerrie L; Krips, Olga E; Noldus, Lucas Pjj; Dicke, Marcel; Jongsma, Maarten A

    2015-01-01

    Piercing-sucking insects are major vectors of plant viruses causing significant yield losses in crops. Functional genomics of plant resistance to these insects would greatly benefit from the availability of high-throughput, quantitative phenotyping methods. We have developed an automated video tracking platform that quantifies aphid feeding behaviour on leaf discs to assess the level of plant resistance. Through the analysis of aphid movement, the start and duration of plant penetrations by aphids were estimated. As a case study, video tracking confirmed the near-complete resistance of lettuce cultivar 'Corbana' against Nasonovia ribisnigri (Mosely), biotype Nr:0, and revealed quantitative resistance in Arabidopsis accession Co-2 against Myzus persicae (Sulzer). The video tracking platform was benchmarked against Electrical Penetration Graph (EPG) recordings and aphid population development assays. The use of leaf discs instead of intact plants reduced the intensity of the resistance effect in video tracking, but sufficiently replicated experiments resulted in similar conclusions as EPG recordings and aphid population assays. One video tracking platform could screen 100 samples in parallel. Automated video tracking can be used to screen large plant populations for resistance to aphids and other piercing-sucking insects.

  16. The Potato Aphid Salivary Effector Me47 Is a Glutathione-S-Transferase Involved in Modifying Plant Responses to Aphid Infestation.

    Science.gov (United States)

    Kettles, Graeme J; Kaloshian, Isgouhi

    2016-01-01

    Polyphagous aphid pests cause considerable economic damage to crop plants, primarily through the depletion of photoassimilates and transfer of viruses. The potato aphid (Macrosiphum euphorbiae) is a notable pest of solanaceous crops, however, the molecular mechanisms that underpin the ability to colonize these hosts are unknown. It has recently been demonstrated that like other aphid species, M. euphorbiae injects a battery of salivary proteins into host plants during feeding. It is speculated that these proteins function in a manner analagous to secreted effectors from phytopathogenic bacteria, fungi and oomycetes. Here, we describe a novel aphid effector (Me47) which was identified from the potato aphid salivary secretome as a putative glutathione-S-transferase (GST). Expression of Me47 in Nicotiana benthamiana enhanced reproductive performance of green peach aphid (Myzus persicae). Similarly, delivery of Me47 into leaves of tomato (Solanum lycopersicum) by Pseudomonas spp. enhanced potato aphid fecundity. In contrast, delivery of Me47 into Arabidopsis thaliana reduced GPA reproductive performance, indicating that Me47 impacts the outcome of plant-aphid interactions differently depending on the host species. Delivery of Me47 by the non-pathogenic Pseudomonas fluorescens revealed that Me47 protein or activity triggers defense gene transcriptional upregulation in tomato but not Arabidopsis. Recombinant Me47 was purified and demonstrated to have GST activity against two specific isothiocyanates (ITCs), compounds implicated in herbivore defense. Whilst GSTs have previously been associated with development of aphid resistance to synthetic insecticides, the findings described here highlight a novel function as both an elicitor and suppressor of plant defense when delivered into host tissues.

  17. The potato aphid salivary effector Me47 is a glutathione-S-transferase involved in modifying plant responses to aphid infestation

    Directory of Open Access Journals (Sweden)

    Graeme James Kettles

    2016-08-01

    Full Text Available Polyphagous aphid pests cause considerable economic damage to crop plants, primarily through the depletion of photoassimilates and transfer of viruses. The potato aphid (Macrosiphum euphorbiae is a notable pest of solanaceous crops, however the molecular mechanisms that underpin the ability to colonize these hosts are unknown. It has recently been demonstrated that like other aphid species, M. euphorbiae injects a battery of salivary proteins into host plants during feeding. It is speculated that these proteins function in a manner analagous to secreted effectors from phytopathogenic bacteria, fungi and oomycetes. Here we describe a novel aphid effector (Me47 which was identified from the potato aphid salivary secretome as a putative glutathione-S-transferase (GST. Expression of Me47 in Nicotiana benthamiana enhanced reproductive performance of green peach aphid (Myzus persicae. Similarly, delivery of Me47 into leaves of tomato (Solanum lycopersicum by Pseudomonas spp. enhanced potato aphid fecundity. In contrast, delivery of Me47 into Arabidopsis thaliana reduced GPA reproductive performance, indicating that Me47 impacts the outcome of plant-aphid interactions differently depending on the host species. Delivery of Me47 by the non-pathogenic Pseudomonas fluorescens revealed that Me47 protein or activity triggers defense gene transcriptional upregulation in tomato but not Arabidopsis. Recombinant Me47 was purified and demonstrated to have GST activity against two specific isothiocyanates (ITCs, compounds implicated in herbivore defense. Whilst GSTs have previously been associated with development of aphid resistance to synthetic insecticides, the findings described here highlight a novel function as both an elicitor and suppressor of plant defense when delivered into host tissues.

  18. Asociaciones áfido-parasitoide (Hemiptera: Aphididae; Hymenoptera: Braconidae, Aphidiinae en cultivos hortícolas orgánicos en Los Cardales, Buenos Aires, Argentina Aphid-parasitoid associations (Hemiptera: Aphididae; Hymenoptera: Braconidae, Aphidiinae on organic vegetable crops in Los Cardales, Buenos Aires, Argentina

    Directory of Open Access Journals (Sweden)

    Andrea V. Andorno

    2007-07-01

    Full Text Available Diez especies de áfidos (Hemiptera: Aphididae se hallaron parasitados por siete especies de parasitoides (Hymenoptera: Braconidae, Aphidiinae en cultivos hortícolas orgánicos. Myzus persicae (Sulzer fue el áfido más frecuentemente encontrado sobre una amplia variedad de cultivos, y con mayor diversidad de parasitoides asociados. Aphidius colemani Viereck fue el afidiino más usual, que ataca varias especies de áfidos. Ocho asociaciones tritróficas, involucrando Aphidius matricariae Haliday, han sido registradas por primera vez para la Argentina.Ten aphid species (Hemiptera: Aphididae were found parasitized by seven aphid parasitoid species (Hymenoptera: Braconidae, Aphidiinae on organic vegetable crops. Myzus persicae (Sulzer was the most frequent aphid found on a wide variety of crops, with the largest parasitoid diversity associated. Aphidius colemani Viereck was the most frequent aphidiine attacking several species of aphids. Eight tritrophic associations involving Aphidius matricariae Haliday are reported for the first time for Argentina.

  19. A Plant-Feeding Nematode Indirectly Increases the Fitness of an Aphid

    Directory of Open Access Journals (Sweden)

    Grace A. Hoysted

    2017-11-01

    Full Text Available Plants suffer multiple, simultaneous assaults from above and below ground. In the laboratory, pests and/or pathogen attack are commonly studied on an individual basis. The molecular response of the plant to attack from multiple organisms and the interaction of different defense pathways is unclear. The inducible systemic responses of the potato (Solanum tuberosum L. host plant were analyzed to characterize the plant-mediated indirect interactions between a sedentary, endoparasitic nematode (Globodera pallida, and a phloem-sucking herbivore (Myzus persicae. The reproductive success of M. persicae was greater on potato plants pre-infected with G. pallida compared to control plants. Salicylic acid (SA increased systemically in the leaves of potato plants following nematode and aphid infection singly with a corresponding increase in expression of SA-mediated marker genes. An increase in jasmonic acid associated with aphid infection was suppressed when plants were co-infected with nematodes. Our data suggests a positive, asymmetric interaction between a sedentary endoparasitic nematode and a sap-sucking insect. The systemic response of the potato plant following infection with G. pallida indirectly influences the performance of M. persicae. This work reveals additional secondary benefits of controlling individual crop pests.

  20. Feeding of Whitefly on Tobacco Decreases Aphid Performance via Increased Salicylate Signaling.

    Directory of Open Access Journals (Sweden)

    Haipeng Zhao

    Full Text Available The feeding of Bemisia tabaci nymphs trigger the SA pathway in some plant species. A previous study showed that B. tabaci nymphs induced defense against aphids (Myzus persicae in tobacco. However, the mechanism underlying this defense response is not well understood.Here, the effect of activating the SA signaling pathway in tobacco plants through B. tabaci nymph infestation on subsequent M. persicae colonization is investigated. Performance assays showed that B. tabaci nymphs pre-infestation significantly reduced M. persicae survival and fecundity systemically in wild-type (WT but not salicylate-deficient (NahG plants compared with respective control. However, pre-infestation had no obvious local effects on subsequent M. persicae in either WT or NahG tobacco. SA quantification results indicated that the highest accumulation of SA was induced by B. tabaci nymphs in WT plants after 15 days of infestation. These levels were 8.45- and 6.14-fold higher in the local and systemic leaves, respectively, than in controls. Meanwhile, no significant changes of SA levels were detected in NahG plants. Further, biochemical analysis of defense enzymes polyphenol oxidase (PPO, peroxidase (POD, β-1,3-glucanase, and chitinase demonstrated that B. tabaci nymph infestation increased these enzymes' activity locally and systemically in WT plants, and there was more chitinase and β-1, 3-glucanase activity systemically than locally, which was opposite to the changing trends of PPO. However, B. tabaci nymph infestation caused no obvious increase in enzyme activity in any NahG plants except POD.In conclusion, these results underscore the important role that induction of the SA signaling pathway by B. tabaci nymphs plays in defeating aphids. It also indicates that the activity of β-1, 3-glucanase and chitinase may be positively correlated with resistance to aphids.

  1. Trophic transfer of soil arsenate and associated toxic effects in a plant-aphid-parasitoid system

    Science.gov (United States)

    Lee, Y. S.; Wee, J.; Lee, M.; Hong, J.; Cho, K.

    2017-12-01

    Terrestrial toxic effects of soil arsenic were studied using a model system consisting of soil which artificially treated with arsenic, Capsicum annum,Myzus persicae and Aphidus colemani. We investigated the transfer of arsenic in a soil-plant-aphid system and toxic effect of elevated arsenic through a plant-aphid-parasitoid system. To remove the effect of poor plant growth on aphid performance, test concentrations which have a no effect on health plant growth were selected. Arsenic concentration of growth medium, plant tissues (root, stem, leaf) aphids were measured to observe the arsenic transfer. Correlation matrix was made with arsenic in growth medium which extracted with three extractants (aquaregia, 0.01 M CaCl2 and deionized water), arsenic in plant tissues and plant performance. Toxic effects of elevated arsenic concentrations on each species were investigated at population level. Studied plant performances were dry weight of each tissue, elongation of roots and stems, area of leaves, chlorophyll content of leaves, protein content of leaves and sugar content of leaves. Mean development time, fecundity and honeydew excretion of the aphids and host choice capacity and parasitism success of the parasitoids were examined. In addition, enzyme activities of the plants and the aphids against reactive oxygen species (ROS) induced by arsenic stress were also investigated. The results suggest that arsenic concentration in plant tissues and aphids were elevated with increased concentration of arsenic in soil. Decreased fecundity and honeydew excretion of aphids were observed and decreased eclosion rate of parasitoids were observed with increased arsenic treatment in growth medium. The results showed low concentration of arsenic in soil can transfer through food chain and can impact on higher trophic level species.

  2. Non-pathogenic rhizobacteria interfere with the attraction of parasitoids to aphid-induced plant volatiles via jasmonic acid signalling.

    Science.gov (United States)

    Pineda, Ana; Soler, Roxina; Weldegergis, Berhane T; Shimwela, Mpoki M; VAN Loon, Joop J A; Dicke, Marcel

    2013-02-01

    Beneficial soil-borne microbes, such as mycorrhizal fungi or rhizobacteria, can affect the interactions of plants with aboveground insects at several trophic levels. While the mechanisms of interactions with herbivorous insects, that is, the second trophic level, are starting to be understood, it remains unknown how plants mediate the interactions between soil microbes and carnivorous insects, that is, the third trophic level. Using Arabidopsis thaliana Col-0 and the aphid Myzus persicae, we evaluate here the underlying mechanisms involved in the plant-mediated interaction between the non-pathogenic rhizobacterium Pseudomonas fluorescens and the parasitoid Diaeretiella rapae, by combining ecological, chemical and molecular approaches. Rhizobacterial colonization modifies the composition of the blend of herbivore-induced plant volatiles. The volatile blend from rhizobacteria-treated aphid-infested plants is less attractive to an aphid parasitoid, in terms of both olfactory preference behaviour and oviposition, than the volatile blend from aphid-infested plants without rhizobacteria. Importantly, the effect of rhizobacteria on both the emission of herbivore-induced volatiles and parasitoid response to aphid-infested plants is lost in an Arabidopsis mutant (aos/dde2-2) that is impaired in jasmonic acid production. By modifying the blend of herbivore-induced plant volatiles that depend on the jasmonic acid-signalling pathway, root-colonizing microbes interfere with the attraction of parasitoids of leaf herbivores. © 2012 Blackwell Publishing Ltd.

  3. Glucosinolates from Host Plants Influence Growth of the Parasitic Plant Cuscuta gronovii and Its Susceptibility to Aphid Feeding.

    Science.gov (United States)

    Smith, Jason D; Woldemariam, Melkamu G; Mescher, Mark C; Jander, Georg; De Moraes, Consuelo M

    2016-09-01

    Parasitic plants acquire diverse secondary metabolites from their hosts, including defense compounds that target insect herbivores. However, the ecological implications of this phenomenon, including the potential enhancement of parasite defenses, remain largely unexplored. We studied the translocation of glucosinolates from the brassicaceous host plant Arabidopsis (Arabidopsis thaliana) into parasitic dodder vines (Convolvulaceae; Cuscuta gronovii) and its effects on the parasite itself and on dodder-aphid interactions. Aliphatic and indole glucosinolates reached concentrations in parasite tissues higher than those observed in corresponding host tissues. Dodder growth was enhanced on cyp79B2 cyp79B3 hosts (without indole glucosinolates) but inhibited on atr1D hosts (with elevated indole glucosinolates) relative to wild-type hosts, which responded to parasitism with localized elevation of indole and aliphatic glucosinolates. These findings implicate indole glucosinolates in defense against parasitic plants. Rates of settling and survival on dodder vines by pea aphids (Acyrthosiphon pisum) were reduced significantly when dodder parasitized glucosinolate-producing hosts (wild type and atr1D) compared with glucosinolate-free hosts (cyp79B2 cyp79B3 myb28 myb29). However, settling and survival of green peach aphids (Myzus persicae) were not affected. M. persicae population growth was actually reduced on dodder parasitizing glucosinolate-free hosts compared with wild-type or atr1D hosts, even though stems of the former contain less glucosinolates and more amino acids. Strikingly, this effect was reversed when the aphids fed directly upon Arabidopsis, which indicates an interactive effect of parasite and host genotype on M. persicae that stems from host effects on dodder. Thus, our findings indicate that glucosinolates may have both direct and indirect effects on dodder-feeding herbivores. © 2016 American Society of Plant Biologists. All rights reserved.

  4. Glucosinolates from Host Plants Influence Growth of the Parasitic Plant Cuscuta gronovii and Its Susceptibility to Aphid Feeding1[OPEN

    Science.gov (United States)

    2016-01-01

    Parasitic plants acquire diverse secondary metabolites from their hosts, including defense compounds that target insect herbivores. However, the ecological implications of this phenomenon, including the potential enhancement of parasite defenses, remain largely unexplored. We studied the translocation of glucosinolates from the brassicaceous host plant Arabidopsis (Arabidopsis thaliana) into parasitic dodder vines (Convolvulaceae; Cuscuta gronovii) and its effects on the parasite itself and on dodder-aphid interactions. Aliphatic and indole glucosinolates reached concentrations in parasite tissues higher than those observed in corresponding host tissues. Dodder growth was enhanced on cyp79B2 cyp79B3 hosts (without indole glucosinolates) but inhibited on atr1D hosts (with elevated indole glucosinolates) relative to wild-type hosts, which responded to parasitism with localized elevation of indole and aliphatic glucosinolates. These findings implicate indole glucosinolates in defense against parasitic plants. Rates of settling and survival on dodder vines by pea aphids (Acyrthosiphon pisum) were reduced significantly when dodder parasitized glucosinolate-producing hosts (wild type and atr1D) compared with glucosinolate-free hosts (cyp79B2 cyp79B3 myb28 myb29). However, settling and survival of green peach aphids (Myzus persicae) were not affected. M. persicae population growth was actually reduced on dodder parasitizing glucosinolate-free hosts compared with wild-type or atr1D hosts, even though stems of the former contain less glucosinolates and more amino acids. Strikingly, this effect was reversed when the aphids fed directly upon Arabidopsis, which indicates an interactive effect of parasite and host genotype on M. persicae that stems from host effects on dodder. Thus, our findings indicate that glucosinolates may have both direct and indirect effects on dodder-feeding herbivores. PMID:27482077

  5. Trade-Off Between Fitness Gain and Cost Determines Profitability of a Peach Aphid Parasitoid.

    Science.gov (United States)

    Khatri, Diwas; He, Xiong Z; Wang, Qiao

    2016-08-01

    Aphidius colemani (Viereck) (Hymenoptera: Aphidiidae) is commercially produced and utilized for biological control of peach aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae) on greenhouse crops in many countries. To provide knowledge for the evaluation of parasitoid-host interactions and development of effective mass rearing programs, we investigated how and why host age or size affected fitness gain in A. colemani We show that the parasitoid was significantly more likely to encounter larger hosts and that an encounter almost always triggered an attack attempt. However, the attack attempt did not proportionally translate into oviposition because larger aphids had greater ability to defend themselves and the parasitoid spent more time in handling larger aphids. The host age at parasitization had no effect on emergence rates and sex ratio of parasitoid progeny, suggesting that pupae and larvae have similar survival rate in hosts of different ages and/or the parasitoid females do not adjust sex allocation based on host size. When parasitizing mid-aged hosts, the parasitoid gained maximum fitness for their progeny in developmental period, body size, and parasitism. Taking all findings together, we suggest that parasitizing mid-aged green peach aphid nymphs is most profitable for A. colemani. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Interplay of Plasma Membrane and Vacuolar Ion Channels, Together with BAK1, Elicits Rapid Cytosolic Calcium Elevations in Arabidopsis during Aphid Feeding[OPEN

    Science.gov (United States)

    Vincent, Thomas R.; Avramova, Marieta; Canham, James; Higgins, Peter; Bilkey, Natasha; Mugford, Sam T.; Pitino, Marco; Toyota, Masatsugu

    2017-01-01

    A transient rise in cytosolic calcium ion concentration is one of the main signals used by plants in perception of their environment. The role of calcium in the detection of abiotic stress is well documented; however, its role during biotic interactions remains unclear. Here, we use a fluorescent calcium biosensor (GCaMP3) in combination with the green peach aphid (Myzus persicae) as a tool to study Arabidopsis thaliana calcium dynamics in vivo and in real time during a live biotic interaction. We demonstrate rapid and highly localized plant calcium elevations around the feeding sites of M. persicae, and by monitoring aphid feeding behavior electrophysiologically, we demonstrate that these elevations correlate with aphid probing of epidermal and mesophyll cells. Furthermore, we dissect the molecular mechanisms involved, showing that interplay between the plant defense coreceptor BRASSINOSTEROID INSENSITIVE-ASSOCIATED KINASE1 (BAK1), the plasma membrane ion channels GLUTAMATE RECEPTOR-LIKE 3.3 and 3.6 (GLR3.3 and GLR3.6), and the vacuolar ion channel TWO-PORE CHANNEL1 (TPC1) mediate these calcium elevations. Consequently, we identify a link between plant perception of biotic threats by BAK1, cellular calcium entry mediated by GLRs, and intracellular calcium release by TPC1 during a biologically relevant interaction. PMID:28559475

  7. Effects of root herbivory by nematodes on the performance and preference of a leaf-infesting generalist aphid depend on nitrate fertilization.

    Science.gov (United States)

    Kutyniok, Magdalene; Persicke, Marcus; Müller, Caroline

    2014-02-01

    The performance and behavior of herbivores is strongly affected by the quality of their host plants, which is determined by various environmental conditions. We investigated the performance and preference of the polyphagous shoot-infesting aphid Myzus persicae on the host-plant Arabidopsis thaliana in a two-factorial design in which nitrate fertilization was varied by 33 %, and the root-infesting cyst-nematode Heterodera schachtii was present or absent. Aphid performance was influenced by these abiotic and biotic factors in an interactive way. Nematode presence decreased aphid performance when nitrate levels were low, whereas nematode infestation did not influence aphid performance under higher nitrate fertilization. Aphids followed the "mother knows best" principle when given a choice, settling preferentially on those plants on which they performed best. Hence, they preferred nematode-free over nematode-infested plants in the low fertilization treatment but host choice was not affected by nematodes under higher nitrate fertilization. The amino acid composition of the phloem exudates was significantly influenced by fertilization but also by the interaction of the two treatments. Various glucosinolates in the leaves, which provide an estimate of phloem glucosinolates, were not affected by the individual treatments but by the combination of fertilization and herbivory. These changes in primary and secondary metabolites may be decisive for the herbivore responses. Our data demonstrate that abiotic and biotic factors can interactively affect herbivores, adding a layer of complexity to plant-mediated herbivore interactions.

  8. Experimental test of an eco-evolutionary dynamic feedback loop between evolution and population density in the green peach aphid.

    Science.gov (United States)

    Turcotte, Martin M; Reznick, David N; Daniel Hare, J

    2013-05-01

    An eco-evolutionary feedback loop is defined as the reciprocal impacts of ecology on evolutionary dynamics and evolution on ecological dynamics on contemporary timescales. We experimentally tested for an eco-evolutionary feedback loop in the green peach aphid, Myzus persicae, by manipulating initial densities and evolution. We found strong evidence that initial aphid density alters the rate and direction of evolution, as measured by changes in genotype frequencies through time. We also found that evolution of aphids within only 16 days, or approximately three generations, alters the rate of population growth and predicts density compared to nonevolving controls. The impact of evolution on population dynamics also depended on density. In one evolution treatment, evolution accelerated population growth by up to 10.3% at high initial density or reduced it by up to 6.4% at low initial density. The impact of evolution on population growth was as strong as or stronger than that caused by a threefold change in intraspecific density. We found that, taken together, ecological condition, here intraspecific density, alters evolutionary dynamics, which in turn alter concurrent population growth rate (ecological dynamics) in an eco-evolutionary feedback loop. Our results suggest that ignoring evolution in studies predicting population dynamics might lead us to over- or underestimate population density and that we cannot predict the evolutionary outcome within aphid populations without considering population size.

  9. Expression of an (E-β-farnesene synthase gene from Asian peppermint in tobacco affected aphid infestation

    Directory of Open Access Journals (Sweden)

    Xiudao Yu

    2013-10-01

    Full Text Available Aphids are major agricultural pests that cause significant yield losses in crop plants each year. (E-β-farnesene (EβF is the main or only component of an alarm pheromone involved in chemical communication within aphid species and particularly in the avoidance of predation. EβF also occurs in the essential oil of some plant species, and is catalyzed by EβF synthase. By using oligonucleotide primers designed from the known sequence of an EβF synthase gene from black peppermint (Mentha × piperita, two cDNA sequences, MaβFS1 and MaβFS2, were isolated from Asian peppermint (Mentha asiatica. Expression pattern analysis showed that the MaβFS1 gene exhibited higher expression in flowers than in roots, stems and leaves at the transcriptional level. Overexpression of MaβFS1 in tobacco plants resulted in emission of pure EβF ranging from 2.62 to 4.85 ng d− 1 g− 1 of fresh tissue. Tritrophic interactions involving peach aphids (Myzus persicae, and predatory lacewing (Chrysopa septempunctata larvae demonstrated that transgenic tobacco expressing MaβFS1 had lower aphid infestation. This result suggested that the EβF synthase gene from Asian peppermint could be a good candidate for genetic engineering of agriculturally important crop plants.

  10. Disruption of Ethylene Responses by Turnip mosaic virus Mediates Suppression of Plant Defense against the Green Peach Aphid Vector.

    Science.gov (United States)

    Casteel, Clare L; De Alwis, Manori; Bak, Aurélie; Dong, Haili; Whitham, Steven A; Jander, Georg

    2015-09-01

    Plants employ diverse responses mediated by phytohormones to defend themselves against pathogens and herbivores. Adapted pathogens and herbivores often manipulate these responses to their benefit. Previously, we demonstrated that Turnip mosaic virus (TuMV) infection suppresses callose deposition, an important plant defense induced in response to feeding by its aphid vector, the green peach aphid (Myzus persicae), and increases aphid fecundity compared with uninfected control plants. Further, we determined that production of a single TuMV protein, Nuclear Inclusion a-Protease (NIa-Pro) domain, was responsible for changes in host plant physiology and increased green peach aphid reproduction. To characterize the underlying molecular mechanisms of this phenomenon, we examined the role of three phytohormone signaling pathways, jasmonic acid, salicylic acid, and ethylene (ET), in TuMV-infected Arabidopsis (Arabidopsis thaliana), with or without aphid herbivory. Experiments with Arabidopsis mutants ethylene insensitive2 and ethylene response1, and chemical inhibitors of ET synthesis and perception (aminoethoxyvinyl-glycine and 1-methylcyclopropene, respectively), show that the ET signaling pathway is required for TuMV-mediated suppression of Arabidopsis resistance to the green peach aphid. Additionally, transgenic expression of NIa-Pro in Arabidopsis alters ET responses and suppresses aphid-induced callose formation in an ET-dependent manner. Thus, disruption of ET responses in plants is an additional function of NIa-Pro, a highly conserved potyvirus protein. Virus-induced changes in ET responses may mediate vector-plant interactions more broadly and thus represent a conserved mechanism for increasing transmission by insect vectors across generations. © 2015 American Society of Plant Biologists. All Rights Reserved.

  11. Does multigenerational exposure to hormetic concentrations of imidacloprid precondition aphids for increased insecticide tolerance?

    Science.gov (United States)

    Rix, Rachel R; Cutler, G Christopher

    2018-02-01

    Hormetic preconditioning, whereby exposure to mild stress primes an organism to better tolerate subsequent stress, is well documented. It is unknown if exposure to hormetic concentrations of insecticide can trans-generationally prime insects to better tolerate insecticide exposure, or whether exposure to hormetic concentrations of insecticide can induce mutations in genes responsible for insecticide resistance. Using the aphid Myzus persicae (Sulzer) and the insecticide imidacloprid as a model, we examined if exposure to mildly toxic and hormetic concentrations of imidacloprid reduced aphid susceptibility to insecticides across four generations, and whether such exposures induced mutations in the imidacloprid binding site in post-synaptic nicotinic acetylcholine receptors. Chronic, multigenerational exposure of aphids to hormetic concentrations of imidacloprid primed offspring to better survive exposure to certain concentrations of imidacloprid, but not exposure to spirotetramat, an insecticide with a different mode of action. Exposure to hormetic and mildly toxic concentrations of imidacloprid did not result in mutations in any of the examined nicotinic acetylcholine receptor subunits. Our findings demonstrate that exposure to hormetic concentrations of insecticide can prime insects to better withstand subsequent chemical stress, but this is dependent upon the insecticide exposure scenario, and may be subtle over generations. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Resting spore formation of aphid-pathogenic fungus Pandora nouryi depends on the concentration of infective inoculum.

    Science.gov (United States)

    Huang, Zhi-Hong; Feng, Ming-Guang

    2008-07-01

    Resting spore formation of some aphid-pathogenic Entomophthorales is important for the seasonal pattern of their prevalence and survival but this process is poorly understood. To explore the possible mechanism involved in the process, Pandora nouryi (obligate aphid pathogen) interacted with green peach aphid Myzus persicae on cabbage leaves under favourable conditions. Host nymphs showered with primary conidia of an isolate (LC(50): 0.9-6.7 conidia mm(-2) 4-7 days post shower) from air captures in the low-latitude plateau of China produced resting spores (azygospores), primary conidia or both spore types. Surprisingly, the proportion of mycosed cadavers forming resting spores (P(CFRS)) increased sharply within the concentrations (C) of 28-240 conidia mm(-2), retained high levels at 240-1760, but was zero or extremely low at 0.3-16. The P(CFRS)-C relationship fit well the logistic equation P(CFRS) = 0.6774/[1 + exp(3.1229-0.0270C)] (r(2) = 0.975). This clarified for the first time the dependence of in vivo resting spore formation of P. nouryi upon the concentration of infective inoculum. A hypothesis is thus proposed that some sort of biochemical signals may exist in the host-pathogen interaction so that the fungal pathogen perceives the signals for prompt response to forthcoming host-density changes by either producing conidia for infecting available hosts or forming resting spores for surviving host absence in situ.

  13. Opportunism of Conidiobolus obscurus stems from depression of infection in situ to progeny colonies of host alatae as disseminators of the aphid-pathogenic fungus.

    Science.gov (United States)

    Zhang, Guo-Zhong; Feng, Ming-Guang; Chen, Chun; Ying, Sheng-Hua

    2007-04-01

    Conidiobolus (Entomophthorales: Ancylistaceae) includes common aphid pathogens but causes sporadic mycosis worldwide. This epizootiological opportunism was explored herein by examining the potential of mycosis transmission in the progeny colonies of 513 Myzus persicae alates as disseminators of C. obscurus often infecting aphids. The alates exposed to spore showers were flown for 2.05 (0.01-8.95) km on flight mills and then reared individually on cabbage at 20-23 degrees C for 14 day colonization. All truly infected alates were mycosed within 6 days and averagely left 3.9 (0-15) nymphs while those uninfected produced 11.6 (0-35) nymphs during the same period. Secondary and tertiary infections occurred only in 16.2% and 4.8% of the progeny colonies of the mycosed alates respectively, due to c. 60% of the cadavers forming resting spores. Most of the contagious infections appeared on days 4-8 after colonization and no more occurred from day 11 onwards. Trends of colony sizes (last-day averaging 51.5 aphids) and mycosis transmission (sixth-day maximum 6.3%) fit well to logistic (r2 = 0.99) and Gompertz growth models (r2 = 0.91) respectively. The results confirm that the opportunism of C. obscurus stems from depression of contagious infection after dissemination by host alates and suggest that it be overwhelmed by the prevalence of other non-resting fungal species.

  14. CONTROLE QUÍMICO DOS PULG��ES Mysus persicae E Brevicoryne brassicae NA CULTURA DA COUVE-FLOR COM INSETICIDAS APLICADOS NA FORMA DE ESGUICHO CHEMICAL CONTROL OF APHIDS Mizus persicae AND Brevicoryne brassicae ON CAULIFLOWER WITH INSECTICIDES APPLIED IN TRANSPLANT HOLES

    Directory of Open Access Journals (Sweden)

    Selby Pereira dos Santos

    2007-09-01

    ções aos 7 e 14 dias após a última aplicação. Confidor 700 GRDA e 200 SC controlaram eficientemente os pulgões M. persicae e B. brassicae sobre a couve-flor, nas menores dosagens, sendo superiores ao Tamaron Br no controle de B. Brassicae.

    PALAVRAS-CHAVE: Insecta; inseticidas; Mysus persicae; Brevicoryne brassicae; couve-flor.

    The chemical control of the aphids Mysus

  15. Laboratory evaluation of temperature effects on the germination and growth of entomopathogenic fungi and on their pathogenicity to two aphid species.

    Science.gov (United States)

    Yeo, Helen; Pell, Judith K; Alderson, Peter G; Clark, Suzanne J; Pye, Barry J

    2003-02-01

    As part of an approach to select potential mycoinsecticides for aphid biocontrol, we investigated the effects of temperature on the growth, germination and pathogenicity of some hyphomycete fungi. Commercially available mycoinsecticides (based on Beauveria bassiana (Balsamo) Vuillemin and Verticillium lecanii (Zimmermann) Viegas) and other isolates of B bassiana, V lecanii, Metarhizium anisopliae (Metschnikoff) Sorokin and Paecilomyces fumosoroseus (Wize) Brown & Smith were evaluated. The rate of in vitro conidial germination of all isolates was slower at 10 and 15 degrees C than at 20 and 25 degrees C. Similarly, in vitro growth of most isolates was adversely affected at 10 and 15 degrees C. The greatest reduction at 10 degrees C in rates of conidial germination and colony growth, compared with other temperatures, was for M anisopliae isolates. Germination of V lecanii (isolate HRI 1.72) was fastest at 10 degrees C compared with the other fungi. It was also the most pathogenic of three isolates tested against Aphis fabae Scopoli and Myzus persicae Sulzer at 10, 18 and 23 degrees C. Generally, A fabae was more susceptible than M persicae to infection by the fungal isolates tested. A significant interaction between aphid species and temperature indicated that the pathogenic nature of an isolate was dependent not only on the target aphid species but also the temperature conditions of the bioassay. The series of studies, detailed above, allowed a temperature profile to be formed for the different isolates. Verticillium lecanii isolate HRI 1.72 (commercialised as Vertalec) was the most promising isolate selected from results of the series of experiments. Temperature profiles in conjunction with infectivity assays can be useful in selecting appropriate isolates for a particular thermal environment.

  16. Both heavy metal-amendment of soil and aphid-infestation increase Cd and Zn concentrations in phloem exudates of a metal-hyperaccumulating plant.

    Science.gov (United States)

    Stolpe, Clemens; Giehren, Franziska; Krämer, Ute; Müller, Caroline

    2017-07-01

    Plants that are able to hyperaccumulate heavy metals show increased concentrations of these metals in their leaf tissue. However, little is known about the concentrations of heavy metals and of organic defence metabolites in the phloem sap of these plants in response to either heavy metal-amendment of the soil or biotic challenges such as aphid-infestation. In this study, we investigated the effects of heavy metal-exposure and of aphid-infestation on phloem exudate composition of the metal hyperaccumulator species Arabidopsis halleri L. O'Kane & Al-Shehbaz (Brassicaceae). The concentrations of elements and of organic defence compounds, namely glucosinolates, were measured in phloem exudates of young and old (mature) leaves of plants challenged either by amendment of the soil with cadmium and zinc and/or by an infestation with the generalist aphid Myzus persicae. Metal-amendment of the soil led to increased concentrations of Cd and Zn, but also of two other elements and one indole glucosinolate, in phloem exudates. This enhanced defence in the phloem sap of heavy metal-hyperaccumulating plants can thus potentially act as effective protection against aphids, as predicted by the elemental defence hypothesis. Aphid-infestation also caused enhanced Cd and Zn concentrations in phloem exudates. This result provides first evidence that metal-hyperaccumulating plants can increase heavy metal concentrations tissue-specifically in response to an attack by phloem-sucking herbivores. Overall, the concentrations of most elements, including the heavy metals, and glucosinolates were higher in phloem exudates of young leaves than in those of old leaves. This defence distribution highlights that the optimal defence theory, which predicts more valuable tissue to be better defended, is applicable for both inorganic and organic defences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Induction of Systemic Resistance against Aphids by Endophytic Bacillus velezensis YC7010 via Expressing PHYTOALEXIN DEFICIENT4 in Arabidopsis.

    Science.gov (United States)

    Rashid, Md Harun-Or-; Khan, Ajmal; Hossain, Mohammad T; Chung, Young R

    2017-01-01

    Aphids are the most destructive insect pests. They suck the sap and transmit plant viruses, causing widespread yield loss of many crops. A multifunctional endophytic bacterial strain Bacillus velezensis YC7010 has been found to induce systemic resistance against bacterial and fungal pathogens of rice. However, its activity against insects attack and underlying cellular and molecular defense mechanisms are not elucidated yet. Here, we show that root drenching of Arabidopsis seedlings with B. velezensis YC7010 can induce systemic resistance against green peach aphid (GPA), Myzus persicae . Treatment of bacterial suspension of B. velezensis YC7010 at 2 × 10 7 CFU/ml to Arabidopsis rhizosphere induced higher accumulation of hydrogen peroxide, cell death, and callose deposition in leaves compared to untreated plants at 6 days after infestation of GPA. Salicylic acid, jasmonic acid, ethylene, and abscisic acid were not required to confer defense against GPA in Arabidopsis plants treated by B. velezensis YC7010. Bacterial treatment with B. velezensis YC7010 significantly reduced settling, feeding and reproduction of GPA on Arabidopsis leaves via strongly expressing senescence-promoting gene PHYTOALEXIN DEFICIENT4 ( PAD4 ) while suppressing BOTRYTIS-INDUCED KINASE1 ( BIK1 ). These results indicate that B. velezensis YC7010-induced systemic resistance to the GPA is a hypersensitive response mainly dependent on higher expression of PAD4 with suppression of BIK1 , resulting in more accumulation of hydrogen peroxide, cell death, and callose deposition in Arabidopsis .

  18. Induction of Systemic Resistance against Aphids by Endophytic Bacillus velezensis YC7010 via Expressing PHYTOALEXIN DEFICIENT4 in Arabidopsis

    Science.gov (United States)

    Rashid, Md. Harun-Or-; Khan, Ajmal; Hossain, Mohammad T.; Chung, Young R.

    2017-01-01

    Aphids are the most destructive insect pests. They suck the sap and transmit plant viruses, causing widespread yield loss of many crops. A multifunctional endophytic bacterial strain Bacillus velezensis YC7010 has been found to induce systemic resistance against bacterial and fungal pathogens of rice. However, its activity against insects attack and underlying cellular and molecular defense mechanisms are not elucidated yet. Here, we show that root drenching of Arabidopsis seedlings with B. velezensis YC7010 can induce systemic resistance against green peach aphid (GPA), Myzus persicae. Treatment of bacterial suspension of B. velezensis YC7010 at 2 × 107 CFU/ml to Arabidopsis rhizosphere induced higher accumulation of hydrogen peroxide, cell death, and callose deposition in leaves compared to untreated plants at 6 days after infestation of GPA. Salicylic acid, jasmonic acid, ethylene, and abscisic acid were not required to confer defense against GPA in Arabidopsis plants treated by B. velezensis YC7010. Bacterial treatment with B. velezensis YC7010 significantly reduced settling, feeding and reproduction of GPA on Arabidopsis leaves via strongly expressing senescence-promoting gene PHYTOALEXIN DEFICIENT4 (PAD4) while suppressing BOTRYTIS-INDUCED KINASE1 (BIK1). These results indicate that B. velezensis YC7010-induced systemic resistance to the GPA is a hypersensitive response mainly dependent on higher expression of PAD4 with suppression of BIK1, resulting in more accumulation of hydrogen peroxide, cell death, and callose deposition in Arabidopsis. PMID:28261260

  19. Transgenerational shifts in reproduction hormesis in green peach aphid exposed to low concentrations of imidacloprid.

    Directory of Open Access Journals (Sweden)

    Murali-Mohan Ayyanath

    Full Text Available Hormesis is a biphasic phenomenon that in toxicology is characterized by low-dose stimulation and high-dose inhibition. It has been observed in a wide range of organisms in response to many chemical stressors, including insects exposed to pesticides, with potential repercussions for agriculture and pest management. To address questions related to the nature of the dose-response and potential consequences on biological fitness, we examined transgenerational hormesis in the green peach aphid, Myzus persicae, when exposed to sublethal concentrations of the insecticide imidacloprid. A hormetic response in the form of increased reproduction was consistently observed and a model previously developed to test for hormesis adequately fit some of our data. However, the nature of the dose-response differed within and across generations depending upon the duration and mode of exposure. Decreased reproduction in intermediate generations confirmed that fitness tradeoffs were a consequence of the hormetic response. However, recovery to levels of reproduction equal to that of controls in subsequent generations and significantly greater total reproduction after four generations suggested that biological fitness was increased by exposure to low concentrations of the insecticide, even when insects were continuously exposed to the stressor. This was especially evident in a greenhouse experiment where the instantaneous rate of population increase almost doubled and total aphid production more than quadrupled when aphids were exposed to potato plants systemically treated with low amounts of imidacloprid. Our results show that although fitness tradeoffs do occur with hormetic responses, this does not necessarily compromise overall biological fitness.

  20. Pre-infestation of Tomato Plants by Aphids Modulates Transmission-Acquisition Relationship among Whiteflies, Tomato Yellow Leaf Curl Virus (TYLCV and Plants

    Directory of Open Access Journals (Sweden)

    Xiao L. Tan

    2017-09-01

    Full Text Available Herbivory defense systems in plants are largely regulated by jasmonate-(JA and salicylate-(SA signaling pathways. Such defense mechanisms may impact insect feeding dynamic, may also affect the transmission-acquisition relationship among virus, plants and vectoring insects. In the context of the tomato – whitefly – Tomato Yellow Leaf Curl Virus (TYLCV biological model, we tested the impact of pre-infesting plants with a non-vector insect (aphid Myzus persicae on feeding dynamics of a vector insect (whitefly Bemisia tabaci as well as virus transmission-acquisition. We showed that an aphid herbivory period of 0–48 h led to a transient systemic increase of virus concentration in the host plant (root, stem, and leaf, with the same pattern observed in whiteflies feeding on aphid-infested plants. We used real-time quantitative PCR to study the expression of key genes of the SA- and JA-signaling pathways, as well as electrical penetration graph (EPG to characterize the impact of aphid pre-infestation on whitefly feeding during TYLCV transmission (whitefly to tomato and acquisition (tomato to whitefly. The impact of the duration of aphid pre-infestation (0, 24, or 48 h on phloem feeding by whitefly (E2 during the transmission phase was similar to that of global whitefly feeding behavior (E1, E2 and probing duration during the acquisition phase. In addition, we observed that a longer phase of aphid pre-infestation prior to virus transmission by whitefly led to the up-regulation and down-regulation of SA- and JA-signaling pathway genes, respectively. These results demonstrated a significant impact of aphid pre-infestation on the tomato – whitefly – TYLCV system. Transmission and acquisition of TYLCV was positively correlated with feeding activity of B. tabaci, and both were mediated by the SA- and JA-pathways. TYLCV concentration during the transmission phases was modulated by up- and down-regulation of SA- and JA-pathways, respectively. The two

  1. Pathogenic fungi and parasitoids of aphids present in air captures of migratory alates in the low-latitude plateau of Yunnan, China.

    Science.gov (United States)

    Huang, Zhi-Hong; Feng, Ming-Guang; Chen, Xue-Xin; Liu, Shu-Sheng

    2008-10-01

    To survey fungal pathogens and parasitoids of aphids in the low-latitude plateau of Yunnan, southwest China, 3,553 migratory alates of Brevicoryne brassicae, Lipaphis erysimi, and Myzus persicae were attracted to a yellow-plus-plant trap from air during a full-year period and individually reared on cabbage leaves for 7-14 d at 18-22 degrees C and L:D 12:12. Among the trapped alates, 19.2% were killed by 10 species of aphid-pathogenic fungi after survival of 2.3 d (range, 1-7 d). Another 2.8% were mummified by the wasps Aphidius gifuensis, Diaeretella rapae, Ephedrus plagiator, and Aphelinus mali after survival of 4.9 d (range, 1-11 d). Most of the mycosed alates (77.8%) died from Entomophthorales predominated by Pandora neoaphidis (42.7%) and Zoophthora radicans (14.5%), followed by P. nouryi, Neozygites fresenii, Conidiobiolus spp., Entomophthora planchoniana, and Z. aphidis in decreasing frequencies. A mitosporic fungus, Lecanicillium lecanii, was found frequently in L. erysimi alates trapped in rainy season. However, B. brassicae alates captured in dry season were infected or parasitized very occasionally. The predeath fecundity of the infected or parasitized alates warranted successful colonization on plants, although greatly reduced, and was well shown by the fitted probability for a given fecundity per capita and the increasing mean size of their progeny colonies. Contagious transmission of the alate-borne mycosis in most of the colonies caused high progeny mortalities within 14 d. The results highlight for the first time the diversity of aphid pathogens and the spread of both pathogens and parasitoids with host dispersal flight in the low-latitude plateau.

  2. Two odorant-binding proteins mediate the behavioural response of aphids to the alarm pheromone (E-ß-farnesene and structural analogues.

    Directory of Open Access Journals (Sweden)

    Yu Feng Sun

    Full Text Available Aphids are agricultural pests of great economical interest. Alternatives to insecticides, using semiochemicals, are of difficult applications. In fact, sex pheromones are of little use as aphids reproduce partenogenetically most of the time. Besides, the alarm pheromone, (E-ß-farnesene for a great number of species, is difficult to synthesize and unstable in the environment. The search for novel semiochemicals to be used in population control can be efficiently approached through the study of the olfactory system at the biochemical level. Recently odorant-binding proteins (OBPs have been shown to play a central role in olfactory recognition, thus becoming the target of choice for designing new semiochemicals.To address the question of how the alarm message is recognised at the level of OBPs, we have tested 29 compounds, including (E-ß-farnesene, in binding assays with 6 recombinant proteins and in behaviour experiments. We have found that good repellents bind OBP3 and/or OBP7, while non repellents present different spectra of binding. These results have been verified with two species of aphids, Acyrthosiphon pisum and Myzus persicae, both using (E-ß-farnesene as the alarm pheromone.Our results represent further support to the idea (so far convincingly demonstrated only in Drosophila that OBPs are involved in decoding the chemical information of odorants and pheromones, and for the first time provide such evidence in other insect species and using wild-type insects. Moreover, the data offer guidelines and protocols for the discovery of potential alarm pheromones, using ligand-binding assays as a preliminary screening before subjecting selected compounds to behaviour tests.

  3. METABOLIC ENGINEERING OF RAFFINOSE-FAMILY OLIGOSACCHARIDES IN THE PHLOEM REVEALS ALTERATIONS IN CARBON PARTITIONING AND ENHANCES RESISTANCE TO GREEN PEACH APHID

    Directory of Open Access Journals (Sweden)

    Te eCao

    2013-07-01

    Full Text Available Many plants employ energized loading strategies to accumulate osmotically-active solutes into the phloem of source organs to accentuate the hydrostatic pressure gradients that drive the flow of water, nutrients and signals from source to sinks. Proton-coupled symport of sugars from the apoplasm into the phloem symplasm is the best studied phloem-loading mechanism. As an alternative, numerous species use a polymer trapping mechanism to load through symplasm: sucrose enters the phloem through specialized plasmodesmata and is converted to raffinose-family oligosaccharides (RFOs which accumulate because of their larger size. In this study, metabolic engineering was used to generate RFOs at the inception of the translocation stream of Arabidopsis thaliana, which loads from the apoplasm and transports predominantly sucrose, and the fate of the sugars throughout the plant determined. Three genes, GALACTINOL SYNTHASE, RAFFINOSE SYNTHASE and STACHYOSE SYNTHASE, were expressed from promoters specific to the companion cells of minor veins. Two transgenic lines homozygous for all three genes (GRS63 and GRS47 were selected for further analysis. Three-week-old plants of both lines had RFO levels approaching 50% of total soluble sugar. RFOs were also identified in exudates from excised leaves of transgenic plants whereas levels were negligible in exudates from wild type (WT leaves. Differences in starch accumulation between WT and GRS63 and GRS47 lines were not observed. Similarly, there were no differences in vegetative growth between WT and engineered plants, but the latter flowered slightly earlier. Finally, since the sugar composition of the translocation stream appeared altered, we tested for an impact on green peach aphid (Myzus persicae Sulzer feeding. When given a choice between WT and transgenic plants, green peach aphids preferred settling on the WT plants. Furthermore, green peach aphid fecundity was lower on the transgenic plants compared to the WT

  4. An Aphid Effector Targets Trafficking Protein VPS52 in a Host-Specific Manner to Promote Virulence1[OPEN

    Science.gov (United States)

    2017-01-01

    Plant- and animal-feeding insects secrete saliva inside their hosts, containing effectors, which may promote nutrient release and suppress immunity. Although for plant pathogenic microbes it is well established that effectors target host proteins to modulate host cell processes and promote disease, the host cell targets of herbivorous insects remain elusive. Here, we show that the existing plant pathogenic microbe effector paradigm can be extended to herbivorous insects in that effector-target interactions inside host cells modify critical host processes to promote plant susceptibility. We showed that the effector Mp1 from Myzus persicae associates with the host Vacuolar Protein Sorting Associated Protein52 (VPS52). Using natural variants, we provide a strong link between effector virulence activity and association with VPS52, and show that the association is highly specific to M. persicae-host interactions. Also, coexpression of Mp1, but not Mp1-like variants, specifically with host VPS52s resulted in effector relocalization to vesicle-like structures that associate with prevacuolar compartments. We show that high VPS52 levels negatively impact virulence, and that aphids are able to reduce VPS52 levels during infestation, indicating that VPS52 is an important virulence target. Our work is an important step forward in understanding, at the molecular level, how a major agricultural pest promotes susceptibility during infestation of crop plants. We give evidence that an herbivorous insect employs effectors that interact with host proteins as part of an effective virulence strategy, and that these effectors likely function in a species-specific manner. PMID:28100451

  5. An Aphid Effector Targets Trafficking Protein VPS52 in a Host-Specific Manner to Promote Virulence.

    Science.gov (United States)

    Rodriguez, Patricia A; Escudero-Martinez, Carmen; Bos, Jorunn I B

    2017-03-01

    Plant- and animal-feeding insects secrete saliva inside their hosts, containing effectors, which may promote nutrient release and suppress immunity. Although for plant pathogenic microbes it is well established that effectors target host proteins to modulate host cell processes and promote disease, the host cell targets of herbivorous insects remain elusive. Here, we show that the existing plant pathogenic microbe effector paradigm can be extended to herbivorous insects in that effector-target interactions inside host cells modify critical host processes to promote plant susceptibility. We showed that the effector Mp1 from Myzus persicae associates with the host Vacuolar Protein Sorting Associated Protein52 (VPS52). Using natural variants, we provide a strong link between effector virulence activity and association with VPS52, and show that the association is highly specific to M persicae -host interactions. Also, coexpression of Mp1, but not Mp1-like variants, specifically with host VPS52s resulted in effector relocalization to vesicle-like structures that associate with prevacuolar compartments. We show that high VPS52 levels negatively impact virulence, and that aphids are able to reduce VPS52 levels during infestation, indicating that VPS52 is an important virulence target. Our work is an important step forward in understanding, at the molecular level, how a major agricultural pest promotes susceptibility during infestation of crop plants. We give evidence that an herbivorous insect employs effectors that interact with host proteins as part of an effective virulence strategy, and that these effectors likely function in a species-specific manner. © 2017 American Society of Plant Biologists. All Rights Reserved.

  6. Toxic and Repellent effecto of Harmal (Peganum harmala L. Acetonic Extract on Several Aphids and Tribolium castaneum (Herbst Efecto Tóxico y Repelente del Extracto Acetónico de Harmal (Peganum harmala L. sobre varias especies de Áfidos y Tribolium castaneum (Herbst

    Directory of Open Access Journals (Sweden)

    Elham Salari

    2012-03-01

    Full Text Available To reduce the dependence on the sometimes unwise use of synthetic pesticides in fruit and vegetable plantations, the toxicity and repellence of Peganum harmala L. (Zygophyllaceae acetonic seed extract was assayed against several insect pests. For contact toxicity, 3- to 4-d-old individuals of Aphis fabae Scopoli, A. gossypii Glover, A. nerii Boyer de Fonscolombe, and Myzus persicae (Sulzer were included, as well as 1- to 7-d-old adult Tribolium castaneum (Herbst. Repellent effect experiments were conducted on adult, 1- to 2- and 3- to 4-d old M.persicae individuals. At 60 mg mL4, the topical bioassay mortality percentage was significantly higher in A. gossypii than in A. fabae and A. nerii after 12-72 h. Mortality of the treatments on M.persicae was 87.1% and 90.0% after 24 and 48 h, respectively, and significantly higher than A. fabae and A. nerii during this period. At 60 mg mL-1, the mortality of T. castaneum was much lower than that of the aphid species. The highest repellent index (over 72% was observed on 1- to 2-d-old M. persicae individuals.Para reducir la dependencia de los pesticidas sintéticos en plantaciones frutales y hortalizas, se realizó un ensayo para medir la toxicidad y repelencia de un extracto acetónico obtenido a partir de semillas de Peganum harmala L. (Zygophyllaceae contra diferentes especies de plagas. Para evaluar la toxicidad del extracto al contacto con los insectos, se incluyeron individuos de 3-4 d de edad de Aphis fabae Scopoli, Aphis gossypii Glover, Aphis nerii Boyer de Fonscolombe, y Myzus persicae (Sulzer, así como adultos 1-7 d de edad de Tribolium castaneum (Herbst. Experimentos para medir el efecto repelente se llevaron a cabo con individuos de 1-2 y 3-4 d de edad de M. persicae. En los resultados de los bioensayos tópicos el porcentaje de mortalidad fue significativamente mayor en la especie A. gossypii que en A. fabae y A. nerii, después de 12-72 h con una concentración de 60 mg mL-1. La mortalidad

  7. WHIRLY1 Functions in the Control of Responses to Nitrogen Deficiency But Not Aphid Infestation in Barley.

    Science.gov (United States)

    Comadira, Gloria; Rasool, Brwa; Kaprinska, Barbara; García, Belén Márquez; Morris, Jennifer; Verrall, Susan R; Bayer, Micha; Hedley, Peter E; Hancock, Robert D; Foyer, Christine H

    2015-07-01

    WHIRLY1 is largely targeted to plastids, where it is a major constituent of the nucleoids. To explore WHIRLY1 functions in barley (Hordeum vulgare), RNA interference-knockdown lines (W1-1, W1-7, and W1-9) that have very low levels of HvWHIRLY1 transcripts were characterized in plants grown under optimal and stress conditions. The WHIRLY1-1 (W1-1), W1-7, and W1-9 plants were phenotypically similar to the wild type but produced fewer tillers and seeds. Photosynthesis rates were similar in all lines, but W1-1, W1-7, and W1-9 leaves had significantly more chlorophyll and less sucrose than the wild type. Transcripts encoding specific subsets of chloroplast-localized proteins, such as ribosomal proteins, subunits of the RNA polymerase, and thylakoid nicotinamide adenine dinucleotide (reduced) and cytochrome b6/f complexes, were much more abundant in the W1-7 leaves than the wild type. Although susceptibility of aphid (Myzus persicae) infestation was similar in all lines, the WHIRLY1-deficient plants showed altered responses to nitrogen deficiency, maintaining higher photosynthetic CO2 assimilation rates than the wild type under limiting nitrogen. Although all lines showed globally similar low nitrogen-dependent changes in transcripts and metabolites, the increased abundance of FAR-RED IMPAIRED RESPONSE1-like transcripts in nitrogen-deficient W1-7 leaves infers that WHIRLY1 has a role in communication between plastid and nuclear genes encoding photosynthetic proteins during abiotic stress. © 2015 American Society of Plant Biologists. All Rights Reserved.

  8. Release of Hormones from Conjugates: Chloroplast Expression of β-Glucosidase Results in Elevated Phytohormone Levels Associated with Significant Increase in Biomass and Protection from Aphids or Whiteflies Conferred by Sucrose Esters1[C][OA

    Science.gov (United States)

    Jin, Shuangxia; Kanagaraj, Anderson; Verma, Dheeraj; Lange, Theo; Daniell, Henry

    2011-01-01

    Transplastomic tobacco (Nicotiana tabacum) plants expressing β-glucosidase (Bgl-1) show modified development. They flower 1 month earlier with an increase in biomass (1.9-fold), height (1.5-fold), and leaf area (1.6-fold) than untransformed plants. Trichome density on the upper and lower leaf surfaces of BGL-1 plants increase by 10- and 7-fold, respectively, harboring 5-fold more glandular trichomes (as determined by rhodamine B staining), suggesting that BGL-1 lines produce more sugar esters than control plants. Gibberellin (GA) levels were investigated because it is a known regulator of flowering time, plant height, and trichome development. Both GA1 and GA4 levels are 2-fold higher in BGL-1 leaves than in untransformed plants but do not increase in other organs. In addition, elevated levels of other plant hormones, including zeatin and indole-3-acetic acid, are observed in BGL-1 lines. Protoplasts from BGL-1 lines divide and form calli without exogenous hormones. Cell division in protoplasts is enhanced 7-fold in the presence of exogenously applied zeatin-O-glucoside conjugate, indicating the release of active hormones from their conjugates. Whitefly (Bemisia tabaci) and aphid (Myzus persicae) populations in control plants are 18 and 15 times higher than in transplastomic lines, respectively. Lethal dose to kill 50% of the test population values of 26.3 and 39.2 μg per whitefly and 23.1 and 35.2 μg per aphid for BGL-1 and untransformed control exudates, respectively, confirm the enhanced toxicity of transplastomic exudates. These data indicate that increase in sugar ester levels in BGL-1 lines might function as an effective biopesticide. This study provides a novel strategy for designing plants for enhanced biomass production and insect control by releasing plant hormones or sugar esters from their conjugates stored within their chloroplasts. PMID:21068365

  9. Release of hormones from conjugates: chloroplast expression of β-glucosidase results in elevated phytohormone levels associated with significant increase in biomass and protection from aphids or whiteflies conferred by sucrose esters.

    Science.gov (United States)

    Jin, Shuangxia; Kanagaraj, Anderson; Verma, Dheeraj; Lange, Theo; Daniell, Henry

    2011-01-01

    Transplastomic tobacco (Nicotiana tabacum) plants expressing β-glucosidase (Bgl-1) show modified development. They flower 1 month earlier with an increase in biomass (1.9-fold), height (1.5-fold), and leaf area (1.6-fold) than untransformed plants. Trichome density on the upper and lower leaf surfaces of BGL-1 plants increase by 10- and 7-fold, respectively, harboring 5-fold more glandular trichomes (as determined by rhodamine B staining), suggesting that BGL-1 lines produce more sugar esters than control plants. Gibberellin (GA) levels were investigated because it is a known regulator of flowering time, plant height, and trichome development. Both GA(1) and GA(4) levels are 2-fold higher in BGL-1 leaves than in untransformed plants but do not increase in other organs. In addition, elevated levels of other plant hormones, including zeatin and indole-3-acetic acid, are observed in BGL-1 lines. Protoplasts from BGL-1 lines divide and form calli without exogenous hormones. Cell division in protoplasts is enhanced 7-fold in the presence of exogenously applied zeatin-O-glucoside conjugate, indicating the release of active hormones from their conjugates. Whitefly (Bemisia tabaci) and aphid (Myzus persicae) populations in control plants are 18 and 15 times higher than in transplastomic lines, respectively. Lethal dose to kill 50% of the test population values of 26.3 and 39.2 μg per whitefly and 23.1 and 35.2 μg per aphid for BGL-1 and untransformed control exudates, respectively, confirm the enhanced toxicity of transplastomic exudates. These data indicate that increase in sugar ester levels in BGL-1 lines might function as an effective biopesticide. This study provides a novel strategy for designing plants for enhanced biomass production and insect control by releasing plant hormones or sugar esters from their conjugates stored within their chloroplasts.

  10. Quality of different aphids as hosts of the parasitoid Lysiphlebus testaceipes (Cresson) (Hymenoptera: Braconidae, Aphidiinae); Qualidade de diferentes especies de pulgoes como hospedeiros do parasitoide Lysiphlebus testaceipes (Cresson) (Hymenoptera: Braconidae, Aphidiinae)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Robson J.; Bueno, Vanda H.P. [Universidade Federal de Lavras, MG (Brazil). Dept. de Entomologia]. E-mail: vhpbueno@ufla.br; Sampaio, Marcus V.[Universidade Federal de Uberlandia (UFU), MG (Brazil). Inst. de Ciencias Agrarias]. E-mail: mvsampaio@iciag.ufu.br

    2008-03-15

    Lysiphlebus testaceipes (Cresson) has a broad aphid host range; however the quality of these preys may interfere in its biological feature. This study aimed to evaluate the quality of three Macrosiphini, Brevicoryne brassicae (L.), Lipaphis erysimi (Kaltenbach) and Myzus persicae (Sulzer), and three Aphidini Schizaphis graminum (Rondani) Rhopalosiphum maidis (Fitch) and Aphis gossypii Glover as hosts to L. testaceipes and to determine the relation possible of host preference, of size and quality of the host. The tests were carried out in climatic chamber at 25 {+-} 1 deg C, RH 70 {+-} 10% and 12h photophase. The parasitoid did not oviposite in B. brassicae and L. erysimi, while the other species were nutritionally suitable to the parasitoid. L. testaceipes showed preference for aphids from tribe Aphidini and these hosts presented better quality to the parasitoid when compared to Macrosiphini. Interactions among size, preference and quality between the Aphidini were found. L. testaceipes showed preference (parasitism rate 76.7%) for R. maidis, the bigger host (hind tibia with 0.281 mm). This host provided bigger size (hind tibia with 0.49 mm) and higher emergence rate (95.6%) to the parasitoid when compared to A. gossypii (parasitism rate of 55.7%). Also the smaller host A. gossypii (0.266 mm) provided smaller size hind tibia (0.45 mm) and higher mortality of the parasitoid (emergence rate 72.1%). However, the development time was shorter and the longevity was higher in A. gossypii (6.3 and 5.4 days, respectively) when compared to the host R. maidis (6.7 and 3.8 days, respectively), and not been related to host size. (author)

  11. De verspreiding van virusziekten van de aardappel (Solanum tuberosum L.) door insekten

    NARCIS (Netherlands)

    Elze, D.L.

    1927-01-01

    The object was to study the relation between virus and the transmitting insect, especially the aphids Myzus persicae Sulz., Myzus pseudosolani Theob., Macrosiphum solanifold Ashm., Aphis rhamni Fonsc. and Aphis fabae Scop. The diseases studied were leafroll, common mosaic (virus A), crinckle (virus

  12. Repellency and toxicity of three Impatients species (Balsaminaceae) extracts on Myzus persicae Sulzer (Homoptera: Aphididae)

    Czech Academy of Sciences Publication Activity Database

    Pavela, R.; Vrchotová, Naděžda; Šerá, Božena

    2009-01-01

    Roč. 2009, - (2009), s. 48-51 ISSN 0974-391X R&D Projects: GA MZe(CZ) QH72117 Institutional research plan: CEZ:AV0Z60870520 Keywords : Impatiens * repellency * toxicity Subject RIV: EH - Ecology, Behaviour

  13. Presence of the aphid, Chaetosiphon fragaefolii, on strawberry in Argentina.

    Science.gov (United States)

    Cédola, Claudia; Grecob, Nancy

    2010-01-01

    Seasonal abundance of the strawberry aphid complex under different agronomic practices in the outskirts of La Plata, Argentina was studied on strawberry, Fragaria x ananassa Duchesne (Rosales: Rosaceae). Aphid densities were low in strawberry fields in which insecticides and fungicides were used. In addition to Aphis gossypii, Aphis fabae, Mysus persicae and Macrosiphum euphorbiae, the aphid, Chaetosiphon fragaefolii (Cockerell) (Homoptera: Aphididae), was recorded for the first time in this horticultural area. Life history and some demographic parameters were calculated for C. fragaefolii. The mean duration of nymphal stages was 10.44 days, the oviposition period was 11.8 days, and the mean number of nymph/female/day was 2.4 +/- 0.3. Demographic parameters analyzed included the net reproductive rate R(o) = 14.55 +/- 0.096 nymph/female, generation time T=16.91 +/- 0.035 days, and the intrinsic rate of increase r(m) = 0.158 +/- (0.004). No parasites were found associated with C. fragaefolli. The pathogenic fungus, Entomophthora planchoniana Cornu (Zygomycetes: Entomophthorales) was the main mortality factor. Although aphids are not the main pests in strawberry fields, C. fragaefolii can be a serious problem because it can transmit several virus diseases of strawberry. Greater knowledge of life history traits and mortality factors of this species is needed in order to design appropriate control strategies.

  14. Ants defend aphids against lethal disease

    Science.gov (United States)

    Nielsen, Charlotte; Agrawal, Anurag A.; Hajek, Ann E.

    2010-01-01

    Social insects defend their own colonies and some species also protect their mutualist partners. In mutualisms with aphids, ants typically feed on honeydew produced by aphids and, in turn guard and shelter aphid colonies from insect natural enemies. Here we report that Formica podzolica ants tending milkweed aphids, Aphis asclepiadis, protect aphid colonies from lethal fungal infections caused by an obligate aphid pathogen, Pandora neoaphidis. In field experiments, bodies of fungal-killed aphids were quickly removed from ant-tended aphid colonies. Ant workers were also able to detect infective conidia on the cuticle of living aphids and responded by either removing or grooming these aphids. Our results extend the long-standing view of ants as mutualists and protectors of aphids by demonstrating focused sanitizing and quarantining behaviour that may lead to reduced disease transmission in aphid colonies. PMID:19923138

  15. Sugarcane Aphid in Sorghum

    Science.gov (United States)

    Evers, Logan

    2018-01-01

    This article is intended for readers in the production agriculture industry who deal with grain sorghum throughout the growing season. This publication will discuss the impacts of the sugarcane aphid in various crops and the ways to manage and identify them as they continue to advance north.

  16. IPM of specialty crops and community gardens in north Florida

    Science.gov (United States)

    Insect pests post serious challenges to specialty crops (vegetables, fruits and nut crops) and community gardens in North Florida. The major vegetable pests include silverleaf whitefly, Bemisia argentifolii; the green peach aphid, Myzus persicae; southeastern green stinkbug, Nezara viridula; brown s...

  17. Volatile communication in plant-aphid interactions.

    Science.gov (United States)

    de Vos, Martin; Jander, Georg

    2010-08-01

    Volatile communication plays an important role in mediating the interactions between plants, aphids, and other organisms in the environment. In response to aphid infestation, many plants initiate indirect defenses through the release of volatiles that attract ladybugs, parasitoid wasps, and other aphid-consuming predators. Aphid-induced volatile release in the model plant Arabidopsis thaliana requires the jasmonate signaling pathway. Volatile release is also induced by infection with aphid-transmitted viruses. Consistent with mathematical models of optimal transmission, viruses that are acquired rapidly by aphids induce volatile release to attract migratory aphids, but discourage long-term aphid feeding. Although the ecology of these interactions is well-studied, further research is needed to identify the molecular basis of aphid-induced and virus-induced changes in plant volatile release. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Seletividade de inseticidas a predadores de pulgões Selectivity of insecticides to predators of aphids

    Directory of Open Access Journals (Sweden)

    Marcos Rafael Gusmão

    2000-07-01

    Full Text Available Estudou-se a seletividade dos inseticidas cipermetrina, diclorvós, diazinon, etion, fenitrotion, malation, metamidofós, paration metílico, permetrina, pirimicarbe e vamidation para adultos dos predadores Cycloneda sanguinea (L. e Eriopis connexa (Germ.(Coleoptera: Coccinellidae. Folhas de tomateiro foram imersas em caldas inseticidas nas doses utilizadas para o controle dos pulgões Myzus persicae (Sulzer e Macrosiphum euphorbiae (Thomas em tomateiro e também na metade das doses recomendadas. Os fatores em estudo foram os inseticidas, as doses, as espécies de predadores e o sexo para C. sanguinea. Vamidation e o pirimicarbe foram os inseticidas mais seletivos a C. sanguinea seguidos do etion e diclorvós (3,2; 6,7; 49,7 e 52,5% de mortalidade, respectivamente. Para E. connexa o pirimicarbe foi o mais seletivo seguido pelo etion e cipermetrina (1,96; 71,28 e 81,92% de mortalidade, respectivamente. Os machos de C. sanguinea foram mais tolerantes que as fêmeas ao etion (33 e 66,5% de mortalidade e permetrina (61 e 100% de mortalidade, respectivamente. A toxicidade da permetrina a E. connexa e do etion às fêmeas de C. sanguinea foi menor quando estes inseticidas foram aplicados em subdose (74,4 e 25% de mortalidade, respectivamente do que quando estes foram aplicados na dose recomendada (100 e 66,5% de mortalidade, respectivamente para o controle de pulgões no tomateiro.The selectivity of cypermethrin, dichlorvos, diazinon, ethion, fenitrothion, matathion, methamidophos, methyl parathion, permethrin, pirimicarb, and vamidathion to adults of Cycloneda sanguinea (L. and Eriopis connexa (Germ. (Coleoptera: Coccinellidae was studied. Tomato leaves were submerged in insecticide solution at recommended rate for controlling Myzus persicae (Sulzer and Macrosiphum euphorbiae (Thomas in tomatoes. The effect of insecticides, doses, predator species, and sex of C. Sanguinea in insecticide selectivity was evaluated. Pirimicarb and vamidathion were the

  19. Plant immunity in plant–aphid interactions

    Science.gov (United States)

    Jaouannet, Maëlle; Rodriguez, Patricia A.; Lenoir, Camille J. G.; MacLeod, Ruari; Escudero-Martinez, Carmen; Bos, Jorunn I.B.

    2014-01-01

    Aphids are economically important pests that cause extensive feeding damage and transmit viruses. While some species have a broad host range and cause damage to a variety of crops, others are restricted to only closely related plant species. While probing and feeding aphids secrete saliva, containing effectors, into their hosts to manipulate host cell processes and promote infestation. Aphid effector discovery studies pointed out parallels between infection and infestation strategies of plant pathogens and aphids. Interestingly, resistance to some aphid species is known to involve plant resistance proteins with a typical NB-LRR domain structure. Whether these resistance proteins indeed recognize aphid effectors to trigger ETI remains to be elucidated. In addition, it was recently shown that unknown aphid derived elicitors can initiate reactive oxygen species (ROS) production and callose deposition and that these responses were dependent on BAK1 (BRASSINOSTERIOD INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1) which is a key component of the plant immune system. In addition, BAK-1 contributes to non-host resistance to aphids pointing to another parallel between plant-pathogen and – aphid interactions. Understanding the role of plant immunity and non-host resistance to aphids is essential to generate durable and sustainable aphid control strategies. Although insect behavior plays a role in host selection and non-host resistance, an important observation is that aphids interact with non-host plants by probing the leaf surface, but are unable to feed or establish colonization. Therefore, we hypothesize that aphids interact with non-host plants at the molecular level, but are potentially not successful in suppressing plant defenses and/or releasing nutrients. PMID:25520727

  20. Arsenic Removal from Aqueous Solutions by Salvadora persica Stem Ash

    Directory of Open Access Journals (Sweden)

    Ferdos Kord Mostafapour

    2013-01-01

    Full Text Available Arsenic is a naturally occurring metalloid, which is widely distributed in nature and is regarded as the largest mass poisoning in history. In the present study, the adsorption potential of Salvadora persica (S. persica stem ash in a batch system for the removal of As(V from aqueous solutions was investigated. Isotherm studies were carried out to evaluate the effect of contact time (20–240 min, pH (2–11, initial arsenic concentration (50–500 μg/L, and adsorbent dose on sorption efficiency. Maximum removal efficiency of 98.33% and 99.32% was obtained at pH 6, adsorbent dosage 3.5 g/L, initial As(V concentration 500 μg/L, and contact time 80 and 60 min for S. persica stem ash at 300 °C and 500 °C, respectively. Also, the adsorption equilibriums were analyzed by the Langmuir and Freundlich isotherm models. Such equilibriums showed that the adsorption data was well fitted with the Freundlich isotherm model for S. persica stem ash at both 300 °C and 500 °C (R2=0.8983 and 0.9274, resp.. According to achieved results, it was defined that S. persica stem ash can be used effectively for As(V removal from the aqueous environment.

  1. Ontwikkeling en demonstratie van een geintegreerd bestrijdingssysteem voor de rode luis Myzus nicotianae

    NARCIS (Netherlands)

    Dijken, van M.J.

    1998-01-01

    De geïntegreerde plaagbestrijding van de paprikateelt onder glas, wordt sinds 1993 verstoord door de opkomst van de rode luis, Myzus nicotianae. Deze luis is namelijk resistent tegen het selectieve chemische correctiemiddel pirimicarb en een effectieve biologische bestrijding was onvoldoende

  2. Altruistic defence behaviours in aphids

    Directory of Open Access Journals (Sweden)

    Brodeur Jacques

    2010-01-01

    Full Text Available Abstract Background Altruistic anti-predatory behaviours pose an evolutionary problem because they are costly to the actor and beneficial to the recipients. Altruistic behaviours can evolve through indirect fitness benefits when directed toward kin. The altruistic nature of anti-predatory behaviours is often difficult to establish because the actor can obtain direct fitness benefits, or the behaviour could result from selfish coercion by others, especially in eusocial animals. Non-eusocial parthenogenetically reproducing aphids form colonies of clone-mates, which are ideal to test the altruistic nature of anti-predatory defence behaviours. Many aphids release cornicle secretions when attacked by natural enemies such as parasitoids. These secretions contain an alarm pheromone that alerts neighbours (clone-mates of danger, thereby providing indirect fitness benefits to the actor. However, contact with cornicle secretions also hampers an attacker and could provide direct fitness to the actor. Results We tested the hypothesis that cornicle secretions are altruistic by assessing direct and indirect fitness consequences of smearing cornicle secretions onto an attacker, and by manipulating the number of clone-mates that could benefit from the behaviour. We observed parasitoids, Aphidius rhopalosiphi, foraging singly in patches of the cereal aphid Sitobion avenae of varied patch size (2, 6, and 12 aphids. Aphids that smeared parasitoids did not benefit from a reduced probability of parasitism, or increase the parasitoids' handling time. Smeared parasitoids, however, spent proportionately more time grooming and less time foraging, which resulted in a decreased host-encounter and oviposition rate within the host patch. In addition, individual smearing rate increased with the number of clone-mates in the colony. Conclusions Cornicle secretions of aphids were altruistic against parasitoids, as they provided no direct fitness benefits to secretion

  3. Aphid alarm pheromone as a cue for ants to locate aphid partners.

    Directory of Open Access Journals (Sweden)

    François J Verheggen

    Full Text Available The mutualistic relationships that occur between myrmecophilous aphids and ants are based on the rich food supply that honeydew represents for ants and on the protection they provide against aphid natural enemies. While aphid predators and parasitoids actively forage for oviposition sites by using aphid semiochemicals, scouts of aphid-tending ant species would also benefit from locating honeydew resources by orienting toward aphid pheromone sources. The present study aims to provide additional information on the use of Aphis fabae alarm pheromone, i.e. (E-β-farnesene (EβF, by ant scouts. The perception and behavioral impact of EβF on Lasius niger were investigated using electroantennography and two bio-assays measuring their attraction and orientation towards aphid semiochemicals. Pronounced electrical depolarizations were observed from L. niger scout antennae to stimulations of A. fabae alarm pheromone, while other sesquiterpenes elicited weak or no responses. L. niger scouts were significantly attracted toward EβF in a four-arm olfactometer, as well as in an two-choice bioassay. These laboratory results suggest for the first time that low amounts of aphid alarm pheromone can be used by L. niger scouts as a cue indicating the presence of aphid colonies and could therefore mediate the aphid-ant partnership in the field.

  4. Haemangiosarcoma in a captive Asiatic lion ( Panthera leo persica ...

    African Journals Online (AJOL)

    A 2.7-year-old male captive Asiatic lion (Panthera leo persica) died unexpectedly without preceding symptoms. Gross necropsy revealed liver and lung tumours, which proved to be haemangiosarcomas by histopathology. Some of the liver tumours were ruptured, leading to massive intra-abdominal haemorrhage and death.

  5. Spruce aphid (Elatobium abietinum Walker) (Hemiptera: Aphididae) [Chapter XXIV

    Science.gov (United States)

    Ann M. Lynch

    2014-01-01

    Elatobium abietinum Walker is a spruce-feeding aphid that in Europe is referred to as the green spruce aphid (Day et al., 1998a) (Fig. 1). However, in North America E. abietinum is known simply as the spruce aphid, while the common name "green spruce aphid" refers to a different species, Cinara fornacula Hottes (Hemiptera: Aphididae) (http://www.entsoc.org/...

  6. Ant Larval Demand Reduces Aphid Colony Growth Rates in an Ant-Aphid Interaction

    Directory of Open Access Journals (Sweden)

    James M. Cook

    2012-02-01

    Full Text Available Ants often form mutualistic interactions with aphids, soliciting honeydew in return for protective services. Under certain circumstances, however, ants will prey upon aphids. In addition, in the presence of ants aphids may increase the quantity or quality of honeydew produced, which is costly. Through these mechanisms, ant attendance can reduce aphid colony growth rates. However, it is unknown whether demand from within the ant colony can affect the ant-aphid interaction. In a factorial experiment, we tested whether the presence of larvae in Lasius niger ant colonies affected the growth rate of Aphis fabae colonies. Other explanatory variables tested were the origin of ant colonies (two separate colonies were used and previous diet (sugar only or sugar and protein. We found that the presence of larvae in the ant colony significantly reduced the growth rate of aphid colonies. Previous diet and colony origin did not affect aphid colony growth rates. Our results suggest that ant colonies balance the flow of two separate resources from aphid colonies- renewable sugars or a protein-rich meal, depending on demand from ant larvae within the nest. Aphid payoffs from the ant-aphid interaction may change on a seasonal basis, as the demand from larvae within the ant colony waxes and wanes.

  7. Study of drimane sesquiterpenoids from the Persicaria genus and zigiberene from Callitropsis noorkatensis and their effect on the feeding behaviour of Myzus persicae and Bemisia tabaci

    NARCIS (Netherlands)

    Prota, N.

    2015-01-01

    Summary

    Whitefly is an insect pest that has systematically spread into colder latitudes for the past two decades and it poses a serious threat to crops, mainly due to the viruses for which it acts as a vector. As the application of synthetic pesticides is often less effective due to

  8. Facultative symbiont infections affect aphid reproduction.

    Science.gov (United States)

    Simon, Jean-Christophe; Boutin, Sébastien; Tsuchida, Tsutomu; Koga, Ryuichi; Le Gallic, Jean-François; Frantz, Adrien; Outreman, Yannick; Fukatsu, Takema

    2011-01-01

    Some bacterial symbionts alter their hosts reproduction through various mechanisms that enhance their transmission in the host population. In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum harbors several facultative symbionts influencing several aspects of host ecology. Aphids reproduce by cyclical parthenogenesis whereby clonal and sexual reproduction alternate within the annual life cycle. Many species, including the pea aphid, also show variation in their reproductive mode at the population level, with some lineages reproducing by cyclical parthenogenesis and others by permanent parthenogenesis. While the role of facultative symbionts has been well studied during the parthenogenetic phase of their aphid hosts, very little is known on their possible influence during the sexual phase. Here we investigated whether facultative symbionts modulate the capacity to produce sexual forms in various genetic backgrounds of the pea aphid with controlled symbiont composition and also in different aphid genotypes from natural populations with previously characterized infection status and reproductive mode. We found that most facultative symbionts exhibited detrimental effects on their hosts fitness under sex-inducing conditions in comparison with the reference lines. We also showed that the loss of sexual phase in permanently parthenogenetic lineages of A. pisum was not explained by facultative symbionts. Finally, we demonstrated that Spiroplasma infection annihilated the production of males in the host progeny by inducing a male-killing phenotype, an unexpected result for organisms such as aphids that reproduce primarily through clonal reproduction.

  9. Facultative symbiont infections affect aphid reproduction.

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Simon

    Full Text Available Some bacterial symbionts alter their hosts reproduction through various mechanisms that enhance their transmission in the host population. In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum harbors several facultative symbionts influencing several aspects of host ecology. Aphids reproduce by cyclical parthenogenesis whereby clonal and sexual reproduction alternate within the annual life cycle. Many species, including the pea aphid, also show variation in their reproductive mode at the population level, with some lineages reproducing by cyclical parthenogenesis and others by permanent parthenogenesis. While the role of facultative symbionts has been well studied during the parthenogenetic phase of their aphid hosts, very little is known on their possible influence during the sexual phase. Here we investigated whether facultative symbionts modulate the capacity to produce sexual forms in various genetic backgrounds of the pea aphid with controlled symbiont composition and also in different aphid genotypes from natural populations with previously characterized infection status and reproductive mode. We found that most facultative symbionts exhibited detrimental effects on their hosts fitness under sex-inducing conditions in comparison with the reference lines. We also showed that the loss of sexual phase in permanently parthenogenetic lineages of A. pisum was not explained by facultative symbionts. Finally, we demonstrated that Spiroplasma infection annihilated the production of males in the host progeny by inducing a male-killing phenotype, an unexpected result for organisms such as aphids that reproduce primarily through clonal reproduction.

  10. Antioxidant capacity of chewing stick miswak Salvadora persica

    OpenAIRE

    Mohamed, Saleh A; Khan, Jalaluddin A

    2013-01-01

    Background Chewing stick (miswak Salvadora persica L.) is an effective tool for oral hygiene. It possessed various biological properties including significant antibacterial and anti-fungal effects. In the present study, we evaluated the antioxidant compounds in miswak. Method Miswak root was extracted with 80% methanol. Methanol extract as antioxidant was evaluated by using DPPH, ABTS and phosphomolybdenum complex assays and analysis by GC-MS. Peroxidase, catalase and polyphenoloxidase assays...

  11. Plant-aphid interactions: molecular and ecological perspectives.

    Science.gov (United States)

    Goggin, Fiona L

    2007-08-01

    Many aphids are major agricultural pests because of their unparalleled reproductive capacity and their ability to manipulate host plant physiology. Aphid population growth and its impact on plant fitness are strongly influenced by interactions with other organisms, including plant pathogens, endophytes, aphid endosymbionts, predators, parasitoids, ants, and other herbivores. Numerous molecular and genomic resources have recently been developed to identify sources of aphid resistance in plants, as well as potentially novel targets for control in aphids. Moreover, the same model systems that are used to explore direct molecular interactions between plants and aphids can be utilized to study the ecological context in which they occur.

  12. New genus and species of the extinct aphid family Szelegiewicziidae and their implications for aphid evolution

    DEFF Research Database (Denmark)

    Wegierek, Piotr; Zyła, Dagmara Maria; Homan, Agnieszka

    2017-01-01

    of the extinct groups. The extinct aphid family Szelegiewicziidae is supposed to be one of the oviparous lineages in aphid evolution. New material from the rock fossil deposits of Shar Teg (Upper Jurassic of Mongolia), Baissa (Lower Cretaceous of Siberia-Russia), and Burmese amber (Upper Cretaceous of Myanmar...

  13. AphID (Lucid key) http://AphID.AphidNet.org

    Science.gov (United States)

    This peer-reviewed web site concentrates on the 66 adult alate and apterous aphids that are the world's most cosmopolitan and polyphagous species. The site includes fact sheets about the various aphids species, a glossary of terms helpful to the student, hundreds of photographs and illustrations, a...

  14. Whitefly and aphid inducible promoters from Arabidopsis thaliana L.

    Indian Academy of Sciences (India)

    Aphids, whitefly, inducible promoter, sap sucking insects, biotic stress. Whitefly and aphid ..... pathway related genes in cotton plants (Dubey et al. 2013). ... and coordination of work, data analysis and interpretation, and revised the article.

  15. PRODUCT NEEM AZAL T/S - BROAD-SPECTRUM PHYPOPESTICIDE FOR CONTROL OF PESTS ON VEGETABLE CROPS

    Directory of Open Access Journals (Sweden)

    Vinelina Yankova

    2016-09-01

    Full Text Available Experiments for determination of the effectiveness of product Neem Azal T/S (a. i. azadirachtin were conducted at a concentration of 0,3% against some major pests in vegetable crops grown in greenhouses at the Maritsa Vegetable Crops research Institute, Plovdiv during the period 2010-2016. It was established very good insecticidal and acaricidal action of phytopesticide against: cotton aphid (Aphis gossypii Glov.; green peach aphid (Myzus persicae Sulz.; western flower trips (Frankliniella occidentalis Perg.; cotton bollworm (Helicoverpa armigera Hubn.; tomato borer (Tuta absoluta Meyrick and two-spotted spider mite (Tetranichus urticae Koch.. This product is a successful alternative to using chemical insecticides and acaricides.

  16. Loss of aphid transmissibility of plum pox virus isolates

    NARCIS (Netherlands)

    Kamenova, I.; Lohuis, H.; Peters, D.

    2002-01-01

    The aphid transmissibility of seven Plum pox virus (PPV) isolates and the amino acid sequences of their coat proteins were analysed Two aphid transmissible isolates PPV-A and PPV-P contained the DAG amino triplet, while DAL or NAG replaced this triplet in the coat proteins of non-aphid transmissible

  17. Root-lesion nematodes suppress cabbage aphid population development by reducing aphid daily reproduction

    Directory of Open Access Journals (Sweden)

    W. H. Gera eHol

    2016-02-01

    Full Text Available Empirical studies have shown that belowground feeding herbivores can affect the performance of aboveground herbivores in different ways. Often the critical life-history parameters underlying the observed performance effects remain unexplored. In order to better understand the cause for the observed effects on aboveground herbivores, these ecological mechanisms must be better understood. In this study we combined empirical experiments with a modelling approach to analyse the effect of two root feeding endoparasitic nematodes with different feeding strategies on the population growth of the aboveground feeding specialist aphid Brevicoryne brassicae on Brassica nigra. The aim was to test whether emerging differences in life history characteristics (days until reproduction, daily reproduction would be sufficient to explain observed differences in aphid population development on plants with and without two species of nematodes. Aphid numbers were lower on plants with Pratylenchus penetrans in comparison to aphid numbers on plants with Meloidogyne spp. A dedicated experiment showed that aphid daily reproduction was lower on plants with P. penetrans (3.08 offspring per female per day in comparison to both uninfested plants and plants with Meloidogyne spp. (3.50 offspring per female per day. The species-specific reduction of aphid reproduction appeared independent of changes in amino acids, soluble sugars or the glucosinolate sinigrin in the phloem. An individual-based model revealed that relatively small differences in reproduction rate per female were sufficient to yield a similar difference in aphid populations as was found in the empirical experiments.

  18. Responses of Russian Wheat Aphid (Homoptera: Aphididae) to Aphid Alarm Pheromone

    OpenAIRE

    Shah, P. A.; Pickett, J. A.; Vandenberg, J. D.

    2017-01-01

    In a series of laboratory tests, Russian wheat aphids, Diuraphis noxia (Mordvilko), responded to synthetic aphid alarm pheromone, (E)-β-farnesene, by removing stylets and leaving feeding sites or by crawling out of test arenas. Late instars and adults were more responsive than early instars. In dose-response assays, EC50 estimates ranged from 0.94 to 8.95 mg/ml among 3 experiments. In arenas, D. noxia also responded to the proximity of cornicle-damaged nymphs of either the green peach aphid, ...

  19. Improvement of wheat for resistance to Russian Wheat Aphid

    International Nuclear Information System (INIS)

    Kinyua, M.; Malinga, J.N.; Wanyama, J.; Karanja, L.; Njau, P.; Leo, T.; Alomba, E.

    2001-01-01

    Breeding for resistance against Russian wheat aphid in Kenya is reported. Results of six of the lines were found to have high to moderate resistance to Russian wheat aphid. Popular lines were susceptible in the greenhouse when subjected to aphid pressure but showed moderate susceptibility when screened under field conditions, indicating that in years or location with low aphid pressure farmers may still get a crop. However in areas of high aphid pressure or bad years they may lose their crop. Consequently, developing resistant/torerant varieties is urgent

  20. Partial aphid resistance in lettuce negatively affects parasitoids.

    Science.gov (United States)

    Lanteigne, Marie-Eve; Brodeur, Jacques; Jenni, Sylvie; Boivin, Guy

    2014-10-01

    This study investigated the effects of partial plant resistance on the lettuce aphid Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae), a major pest of cultivated lettuce (Lactuca sativa L.), and one of its parasitoids, Aphidius ervi Haliday (Hymenoptera: Braconidae). Aphids were reared on susceptible (L. sativa variety Estival; S) or partially resistant (Lactuca serriola L. PI 491093; PR) lettuce, and next parasitized by A. ervi females. Fitness proxies were measured for both aphids and parasitoids. Developmental time to adult stage took longer for alate and apterous aphids (an average of 3.5 and 1.5 additional days, respectively) on PR than on S lettuce, and fecundity of alate aphids reared on PR lettuce was reduced by 37.8% relative to those reared on S lettuce. Size (tibia length) and weight of aphids reared on PR lettuce were lower than for aphids reared on S lettuce from the third and second instar onward, respectively. Parasitism of aphids reared on PR plants resulted in lower parasitoid offspring emergence (-49.9%), lower adult female (-30.3%) and male (-27.5%) weight, smaller adult female (-17.5%) and male (-11.9%) size, and lower female fecundity (37.8% fewer eggs) than when parasitoids developed from aphids reared on S plants. Our results demonstrate that partial aphid resistance in lettuce negatively affects both the second and third trophic levels. Host plant resistance in cultivated lettuce may therefore create an ecological sink for aphid parasitoids.

  1. Ants farm subterranean aphids mostly in single clone groups

    DEFF Research Database (Denmark)

    Ivens, Aniek B.F.; Kronauer, Daniel Jan Christoph; Pen, Ido

    2012-01-01

    mutualisms have been studied in sufficient genetic detail to address these issues, so we decided to characterize symbiont diversity in the complex mutualism between multiple root aphid species and Lasius flavus ants. After showing elsewhere that three of these aphid species have low dispersal and mostly...... if not exclusively asexual reproduction, we here investigate aphid diversity within and between ant nest mounds. Results The three focal species (Geoica utricularia, Forda marginata and Tetraneura ulmi) had considerable clonal diversity at the population level. Yet more than half of the ant mounds contained just....... The ants appear to eat most of the early instar aphids, so that adult aphids are unlikely to face limited phloem resources and scramble competition with other aphids. We suggest that such culling of carbohydrate-providing symbionts for protein ingestion may maintain maximal host yield per aphid while also...

  2. Otostegia persica extraction on healing process of burn wounds

    Directory of Open Access Journals (Sweden)

    Amin Ganjali

    2013-06-01

    Full Text Available PURPOSE: To investigate if the methanolic extract of the Otostegia persica can accelerating healing process of burn wound because of its anti-inflammatory and antioxidant effects. METHODS:Forty eight male Wistar rats were randomized into three study groups of 16 rats each. Burn wounds were created on dorsal part of shaved rats using a metal rod. In group I the burn wound was left without any treatment. Group was treated with topical silver sulfadiazine pomade. In group III, ointment containing the OP extract was administered. Skin biopsies were harvested from burn area on the 3rd, 5th, 14th and 21st days after burn and examined histologically. RESULTS: Re-epithelialization in the control group and in group II was lower than in group III. Re-epithelialization in groups II and III was significantly different from that in the control group. On the 5th day of the experiment, we assessed lower inflammation in the burn area compared to control group. This means that the inflammation was suppressed by methanolic extract of OP. From day 5 to 14; the fibroblast proliferation peaked and was associated with increased collagen accumulation. It was obvious that angiogenesis improved more in the groups II and III, which facilitated re-epithelialisation. CONCLUSION:Methanolic extract of Otostegia persica exhibited significant healing activity when topically applied on rats. OP is an effective treatment for saving the burn site.

  3. Wide dispersal of aphid-pathogenic Entomophthorales among aphids relies upon migratory alates.

    Science.gov (United States)

    Feng, Ming-Guang; Chen, Chun; Chen, Bin

    2004-05-01

    Entomophthoralean mycoses are of general importance in the natural control of aphids, but mechanisms involved in their dissemination are poorly understood. Despite several possible means of fungal survival, the dispersal of the mycoses in aphids has never been related to the flight of their migratory alates that are able to locate suitable host plants. In this study, aphid-pathogenic fungi proved to be widely disseminated among various aphids by their alates through migratory flight based on the following findings. First, up to 36.6% of the 7139 migratory alates (including nine species of vegetable or cereal aphids) trapped from air > 30 m above the ground in three provinces of China were found bearing eight species of fungal pathogens. Of those, six were aphid-specific Entomophthorales dominated in individual cases by Pandora neoaphidis, which occurs globally but has no resting spores discovered to date. Secondly, infected alates were confirmed to be able to fly for hours, to initiate colonies on plants after flight and to transmit fungal infection to their offspring in a laboratory experiment, in which 238 Sitobion avenae alates were individually flown in a computer-monitoring flight mill system after exposure to a spore shower of P. neoaphidis and then allowed to colonize host plants.

  4. First report of Pandora neoaphidis resting spore formation in vivo in aphid hosts under field conditions

    Science.gov (United States)

    The entomopathogenic fungus PANDORA NEOAPHIDIS is a recognized pathogen of aphids, causing natural epizootics in aphid populations, and interacts favorably with aphid predators and parasitoids. Survival of entomophthoralean fungi in periods of unsuitable weather conditions or lack of appropriate hos...

  5. Effects of Alchemilla mollis and Alchemilla persica on the wound healing process

    Directory of Open Access Journals (Sweden)

    Burçin Ergene Öz

    2016-09-01

    Full Text Available Alchemilla mollis, is used in traditional medicine for the treatment of wounds and excessive menstruation. Aqueous methanol extracts of A. mollis and A. persica were evaluated for wound healing acivity by using linear incision and circular excision wound models along with hydroxyproline estimation and histopathological analysis. Anti-inflammatory effect was determined according to Whittle method. The extracts prepared from the aerial parts of A. mollis and A. persica exerted significant wound healing activity with the tensile strength values of 39.3% and 33.3%, respectively, and with the contraction values of 51.4% and 43.5%, respectively. Hydroxyproline estimation and histopathological analysis also confirmed the results. The extracts of A. mollis and A. persica showed significant anti-inflammatory activity with the values of 30.6% and 26.6% respectively. These results showed that A. mollis and A. persica possess significant wound healing and anti-inflammatory activities.

  6. Aphid parasitoids (Hymenoptera, Braconidae, Aphidiinae) from Thailand

    Czech Academy of Sciences Publication Activity Database

    Starý, Petr; Rakhshani, E.; Tomanović, Ž.; Kavallieratos, N. G.; Sharkey, M.

    -, č. 2498 (2010), s. 47-52 ISSN 1175-5326 Grant - others:Ministry of Science of the Republic of Serbia(CS) 143006B; U. S. National Science Foundation(US) DEB 0542864 Institutional research plan: CEZ:AV0Z50070508 Keywords : aphids * parasitoids * biodiversity Subject RIV: EG - Zoology Impact factor: 0.853, year: 2010

  7. Relationships of Lower Invertebrates Aphid Ecology

    African Journals Online (AJOL)

    or even males for a single species of the about 4(XX) described thus far. Nonetheless, Professor ... the aphid armoury is dispersal, an adaptation related to total habitat quality and ... It also considers predator - prey interactions and the possible ...

  8. The Occurrence of the Cicada Cicadatra persica on Apple Trees, Malus domestica, in Erneh, Syria

    Science.gov (United States)

    Dardar, Marah A.; Belal, Hamzeh M.R.; Basheer, Abedlnabi M.

    2013-01-01

    An infestation of Cicadatra persica KirKaldy (Hemiptera: Cicadidae) on apple trees, Malus domestica Borkhausen (Rosales: Rosaceae), was reported for the first time in the apple fruit orchards of Erneh, Syria. Nymphs, adults, exuvia, and exit holes in the soil were observed. The species was identified as C. persica based on morphological characters. Some biological observations and an acoustic analysis of the male's songs were also achieved. PMID:23909877

  9. A Case of Canine Borreliosis in Iran Caused by Borrelia persica

    OpenAIRE

    Shirani, Darush; Rakhshanpoor, Alaleh; Cutler, Sally J.; Ghazinezhad, Behnaz; Naddaf, Saied Reza

    2016-01-01

    Tick-borne relapsing fever is an endemic disease in Iran, with most cases attributed to infection by B. persica, which is transmitted by Ornithodoros tholozani soft ticks. Here, we report spirochetemia in blood of a puppy residing in Tehran, Iran. The causative species was identified by use of highly discriminative IGS sequencing; the 489 bp IGS sequence obtained in our study showed 99% identity (100% coverage) when compared with Borrelia persica sequences derived from clinical cases or from ...

  10. Aphid egg protection by ants: a novel aspect of the mutualism between the tree-feeding aphid Stomaphis hirukawai and its attendant ant Lasius productus

    Science.gov (United States)

    Matsuura, Kenji; Yashiro, Toshihisa

    2006-10-01

    Aphids often form mutualistic associations with ants, in which the aphids provide the ants with honeydew and the ants defend the aphids from predators. In this paper, we report aphid egg protection by ants as a novel aspect of the deeply interdependent relationship between a tree-feeding aphid and its attendant ant. The ant Lasius productus harbours oviparous females, males, and eggs of the hinoki cypress-feeding aphid Stomaphis hirukawai in its nests in winter. We investigated the behaviour of ants kept with aphid eggs in petri dishes to examine whether the ants recognise the aphid eggs and tend them or only provide a refuge for the aphids. Workers carried almost all of the aphid eggs into the nest within 24 h. The ants indiscriminately tended aphid eggs collected from their own colonies and those from other ant colonies. The ants cleaned the eggs and piled them up in the nest, and egg tending by ants dramatically increased aphid egg survival rates. Starving the ants showed no significant effect on aphid egg survivorship. Without ants, aphid eggs were rapidly killed by fungi. These results suggested that grooming by the ants protected the aphid eggs, at least, against pathogenic fungi. This hygienic service afforded by the ants seems indispensable for egg survival of these aphids in an environment rich in potentially pathogenic microorganisms.

  11. A peptide that binds the pea aphid gut impedes entry of Pea enation mosaic virus into the aphid hemocoel

    International Nuclear Information System (INIS)

    Liu Sijun; Sivakumar, S.; Sparks, Wendy O.; Miller, W. Allen; Bonning, Bryony C.

    2010-01-01

    Development of ways to block virus transmission by aphids could lead to novel and broad-spectrum means of controlling plant viruses. Viruses in the Luteoviridae enhanced are obligately transmitted by aphids in a persistent manner that requires virion accumulation in the aphid hemocoel. To enter the hemocoel, the virion must bind and traverse the aphid gut epithelium. By screening a phage display library, we identified a 12-residue gut binding peptide (GBP3.1) that binds to the midgut and hindgut of the pea aphid Acyrthosiphon pisum. Binding was confirmed by labeling the aphid gut with a GBP3.1-green fluorescent protein fusion. GBP3.1 reduced uptake of Pea enation mosaic virus (Luteoviridae) from the pea aphid gut into the hemocoel. GBP3.1 also bound to the gut epithelia of the green peach aphid and the soybean aphid. These results suggest a novel strategy for inhibiting plant virus transmission by at least three major aphid pest species.

  12. Evolutionary ecology of the interactions between aphids and their parasitoids.

    Science.gov (United States)

    Le Ralec, Anne; Anselme, Caroline; Outreman, Yannick; Poirié, Marylène; van Baaren, Joan; Le Lann, Cécile; van Alphen, Jacques J-M

    2010-01-01

    Many organisms, including entomopathogenous fungi, predators or parasites, use aphids as ressources. Parasites of aphids are mostly endoparasitoid insects, i.e. insects which lay eggs inside the body of an other insect which will die as a result of their development. In this article, we review the consequences of the numerous pecularities of aphid biology and ecology for their endoparasitoids, notably the Aphidiinae (Hymenoptera: Braconidae). We first examine the various mechanisms used by aphids for defence against these enemies. We then explore the strategies used by aphidiine parasitoids to exploit their aphid hosts. Finally, we consider the responses of both aphids and parasitoids to ecological constraints induced by seasonal cycles and to environmental variations linked to host plants and climate. The fundamental and applied interest of studying these organisms is discussed. Copyright 2010 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  13. Aphid reproductive investment in response to mortality risks

    Science.gov (United States)

    2010-01-01

    Background Aphids are striking in their prodigious reproductive capacity and reliance on microbial endosymbionts, which provision their hosts with necessary amino acids and provide protection against parasites and heat stress. Perhaps as a result of this bacterial dependence, aphids have limited immune function that may leave them vulnerable to bacterial pathogens. An alternative, non-immunological response that may be available to infected aphids is to increase reproduction, thereby ameliorating fitness loss from infection. Such a response would reduce the need to mount a potentially energetically costly immune response, and would parallel that of other hosts that alter life-history traits when there is a risk of infection. Here we examined whether pea aphids (Acyrthosiphon pisum) respond to immunological challenges by increasing reproduction. As a comparison to the response to the internal cue of risk elicited by immunological challenge, we also exposed pea aphids to an external cue of risk - the aphid alarm pheromone (E)-β-farnesene (EBF), which is released in the presence of predators. For each challenge, we also examined whether the presence of symbionts modified the host response, as maintaining host fitness in the face of challenge would benefit both the host and its dependent bacteria. Results We found that aphids stabbed abdominally with a sterile needle had reduced fecundity relative to control aphids but that aphids stabbed with a needle bearing heat-killed bacteria had reproduction intermediate, and statistically indistinguishable, to the aphids stabbed with a sterile needle and the controls. Aphids with different species of facultative symbiotic bacteria had different reproductive patterns overall, but symbionts in general did not alter aphid reproduction in response to bacterial exposure. However, in response to exposure to alarm pheromone, aphids with Hamiltonella defensa or Serratia symbiotica symbiotic infections increased reproduction but those

  14. Seasonal Abundance of Aphids and Aphidophagous Insects in Pecan

    Directory of Open Access Journals (Sweden)

    Ghulam Abbas

    2012-12-01

    Full Text Available Seasonal occurrence of aphids and aphidophagous insects was monitored for six years (2006–2011 from full leaf expansion in May to leaf fall in October in “Desirable” variety pecan trees that were not treated with insecticides. Aphid outbreaks occurred two times per season, once in the spring and again in the late summer. Yellow pecan and blackmargined aphids exceeded the recommended treatment thresholds one time and black pecan aphids exceeded the recommended treatment levels three times over the six seasons. Increases in aphidophagous insect abundance coincided with aphid outbreaks in five of the six seasons. Among aphidophagous insects Harmonia axyridis and Olla v-nigrum were frequently collected in both the tree canopy and at the ground level, whereas, Coccinella septempunctata, Hippodamia convergens were rarely found in the tree canopy and commonly found at the ground level. Green lacewing abundance was higher in the ground level than in the tree canopy. Brown lacewings were more abundant in the tree canopy than at the ground level. Dolichopodid and syrphid fly abundance, at the ground level increased during peak aphid abundance in the tree canopy. Application of an aqueous solution of fermenting molasses to the pecan foliage during an aphid outbreak significantly increased the abundance of ladybeetles and lacewings and significantly reduced the abundance of yellow pecan, blackmargined and black pecan aphids.

  15. Seasonal Abundance of Aphids and Aphidophagous Insects in Pecan

    Science.gov (United States)

    Dutcher, James D.; Karar, Haider; Abbas, Ghulam

    2012-01-01

    Seasonal occurrence of aphids and aphidophagous insects was monitored for six years (2006–2011) from full leaf expansion in May to leaf fall in October in “Desirable” variety pecan trees that were not treated with insecticides. Aphid outbreaks occurred two times per season, once in the spring and again in the late summer. Yellow pecan and blackmargined aphids exceeded the recommended treatment thresholds one time and black pecan aphids exceeded the recommended treatment levels three times over the six seasons. Increases in aphidophagous insect abundance coincided with aphid outbreaks in five of the six seasons. Among aphidophagous insects Harmonia axyridis and Olla v-nigrum were frequently collected in both the tree canopy and at the ground level, whereas, Coccinella septempunctata, Hippodamia convergens were rarely found in the tree canopy and commonly found at the ground level. Green lacewing abundance was higher in the ground level than in the tree canopy. Brown lacewings were more abundant in the tree canopy than at the ground level. Dolichopodid and syrphid fly abundance, at the ground level increased during peak aphid abundance in the tree canopy. Application of an aqueous solution of fermenting molasses to the pecan foliage during an aphid outbreak significantly increased the abundance of ladybeetles and lacewings and significantly reduced the abundance of yellow pecan, blackmargined and black pecan aphids. PMID:26466738

  16. Do aphid colonies amplify their emission of alarm pheromone?

    Science.gov (United States)

    Hatano, Eduardo; Kunert, Grit; Bartram, Stefan; Boland, Wilhelm; Gershenzon, Jonathan; Weisser, Wolfgang W

    2008-09-01

    When aphids are attacked by natural enemies, they emit alarm pheromone to alert conspecifics. For most aphids tested, (E)-beta-farnesene (EBF) is the main, or only, constituent of the alarm pheromone. In response to alarm pheromone, alerted aphids drop off the plant, walk away, or attempt to elude predators. However, under natural conditions, EBF concentration might be low due to the low amounts emitted, to rapid air movement, or to oxidative degradation. To ensure that conspecifics are warned, aphids might conceivably amplify the alarm signal by emitting EBF in response to EBF emitted by other aphids. To examine whether such amplification occurs, we synthesized deuterated EBF (DEBF), which allowed us to differentiate between applied and aphid-derived chemical. Colonies of Acyrthosiphon pisum were treated with DEBF, and headspace volatiles were collected and analyzed for evidence of aphid-derived EBF. No aphid-derived EBF was detected, suggesting that amplification of the alarm signal does not occur. We discuss the disadvantages of alarm signal reinforcement.

  17. New aphid (Aphidoidea) records for the Netherlands (1984-2005)

    NARCIS (Netherlands)

    Piron, P.G.M.

    2009-01-01

    Presented are 18 species.of aphids in combination with their food-plants found in The Netherlands from 1984 to 2005 not earlier described here. Among these are well-known species that are caught with the high suction trap andlor MOERICKE yellow water traps and aphids new for The Netherlands. The

  18. The resistance of lettuce to the aphid Nasonovia ribisnigri

    NARCIS (Netherlands)

    Helden, van M.

    1995-01-01

    The resistance of lettuce to the aphid Nasonovia ribisnigri is based on a single, dominant gene, the Nr-gene. On the resistant plant aphids died within a few days, without any honeydew production. Transfer-experiments with a short stay on a resistant plant followed by a

  19. Elevated atmospheric carbon dioxide concentrations promote ant tending of aphids.

    Science.gov (United States)

    Kremer, Jenni M M; Nooten, Sabine S; Cook, James M; Ryalls, James M W; Barton, Craig V M; Johnson, Scott N

    2018-04-27

    Animal mutualisms, which involve beneficial interactions between individuals of different species, are common in nature. Insect-insect mutualism, for example, is widely regarded as a keystone ecological interaction. Some mutualisms are anticipated to be modified by climate change, but the focus has largely been on plant-microbe and plant-animal mutualisms rather than those between animals. Ant-aphid mutualisms, whereby ants tend aphids to harvest their honeydew excretions and, in return, provide protection for the aphids, are widespread. The mutualism is heavily influenced by the quality and quantity of honeydew produced by aphids, which is directly affected by host plant quality. As predicted increases in concentrations of atmospheric carbon dioxide (eCO 2 ) are widely reported to affect plant nutritional chemistry, this may also alter honeydew quality and hence the nature of ant-aphid mutualisms. Using glasshouse chambers and field-based open-top chambers, we determined the effect of eCO 2 on the growth and nutritional quality (foliar amino acids) of lucerne (Medicago sativa). We determined how cowpea aphid (Aphis craccivora) populations and honeydew production were impacted when feeding on such plants and how this affected the tending behaviour of ants (Iridomyrmex sp.). eCO 2 stimulated plant growth but decreased concentrations of foliar amino acids by 29% and 14% on aphid-infested plants and aphid-free plants, respectively. Despite the deterioration in host plant quality under eCO 2 , aphids maintained performance and populations were unchanged by eCO 2 . Aphids induced higher concentrations of amino acids (glutamine, asparagine, glutamic acid and aspartic acid) important for endosymbiont-mediated synthesis of essential amino acids. Aphids feeding under eCO 2 also produced over three times more honeydew than aphids feeding under ambient CO 2 , suggesting they were imbibing more phloem sap at eCO 2 . The frequency of ant tending of aphids more than doubled in

  20. Chlorotic feeding injury by the black pecan aphid (hemiptera: aphididae) to pecan foliage promotes aphid settling and nymphal development.

    Science.gov (United States)

    Cottrell, Ted E; Wood, Bruce W; Ni, Xinzhi

    2009-04-01

    The nature of the interaction between the black pecan aphid, Melanocallis caryaefoliae (Davis) (Hemiptera: Aphididae), and the chlorosis it causes to foliage of its pecan [Carya illinoinensis (Wangenh.) K. Koch)] host is poorly understood. Laboratory experiments were conducted on the settling behavior of the black pecan aphid, when provided chlorotic pecan leaf discs resulting from previous black pecan aphid feeding and nonchlorotic leaf discs, under a normal photoperiod and constant dark. Additionally, aphid development from the first instar to the adult stage was examined when nymphs were either allowed to feed on the same leaf disc or moved daily to a new, nondamaged, same age leaf disc. After 24 h, a significantly higher percentage of black pecan aphids settled on chlorotic than on nonchlorotic leaf discs, regardless of photoperiod. When starting from the first instar, nymphs that were prevented from inducing leaf chlorosis by moving daily to new, same-age leaf discs took approximately 5 d longer to complete development, had a shorter body length, and had higher mortality than when aphids remained on the same leaf disc. These results show that black pecan aphid-induced leaf chlorosis plays an important role in the interaction of the black pecan aphid with its pecan host.

  1. Parasitic wasp responses to symbiont-based defense in aphids

    Directory of Open Access Journals (Sweden)

    Oliver Kerry M

    2012-02-01

    Full Text Available Abstract Background Recent findings indicate that several insect lineages receive protection against particular natural enemies through infection with heritable symbionts, but little is yet known about whether enemies are able to discriminate and respond to symbiont-based defense. The pea aphid, Acyrthosiphon pisum, receives protection against the parasitic wasp, Aphidius ervi, when infected with the bacterial symbiont Hamiltonella defensa and its associated bacteriophage APSE (Acyrthosiphon pisum secondary endosymbiont. Internally developing parasitoid wasps, such as A. ervi, use maternal and embryonic factors to create an environment suitable for developing wasps. If more than one parasitoid egg is deposited into a single aphid host (superparasitism, then additional complements of these factors may contribute to the successful development of the single parasitoid that emerges. Results We performed experiments to determine if superparasitism is a tactic allowing wasps to overcome symbiont-mediated defense. We found that the deposition of two eggs into symbiont-protected aphids significantly increased rates of successful parasitism relative to singly parasitized aphids. We then conducted behavioral assays to determine whether A. ervi selectively superparasitizes H. defensa-infected aphids. In choice tests, we found that A. ervi tends to deposit a single egg in uninfected aphids, but two or more eggs in H. defensa-infected aphids, indicating that oviposition choices may be largely determined by infection status. Finally, we identified differences in the quantity of the trans-β-farnesene, the major component of aphid alarm pheromone, between H. defensa-infected and uninfected aphids, which may form the basis for discrimination. Conclusions Here we show that the parasitic wasp A. ervi discriminates among symbiont-infected and uninfected aphids, and changes its oviposition behavior in a way that increases the likelihood of overcoming symbiont

  2. Spotted alfalfa aphid, Therioaphis trifolii (Monell) (Hemiptera: Aphididae): Pest on alfalfa in Serbia

    OpenAIRE

    Jovičić, Ivana; Radonjić, Anđa; Petrović-Obradović, Olivera

    2017-01-01

    Spotted alfalfa aphid Therioaphis trifolii (Monell) (Hemiptera, Aphididae) is one of the most important alfalfa pest on the world. Also, it is the most abundant alfalfa aphid in Serbia. This aphid cause damage to alfalfa directly by feeding and indirectly by vectoring plant-pathogenic viruses. Some notes of morphology, host plants, damage, biology, vector role and distribution of spotted alfalfa aphid are given. Abundance of this aphid on alfalfa, influence of climates changes on its abundanc...

  3. Multiple cues for winged morph production in an aphid metacommunity.

    Directory of Open Access Journals (Sweden)

    Mohsen Mehrparvar

    Full Text Available Environmental factors can lead individuals down different developmental pathways giving rise to distinct phenotypes (phenotypic plasticity. The production of winged or unwinged morphs in aphids is an example of two alternative developmental pathways. Dispersal is paramount in aphids that often have a metapopulation structure, where local subpopulations frequently go extinct, such as the specialized aphids on tansy (Tanacetum vulgare. We conducted various experiments to further understand the cues involved in the production of winged dispersal morphs by the two dominant species of the tansy aphid metacommunity, Metopeurum fuscoviride and Macrosiphoniella tanacetaria. We found that the ant-tended M. fuscoviride produced winged individuals predominantly at the beginning of the season while the untended M. tanacetaria produced winged individuals throughout the season. Winged mothers of both species produced winged offspring, although in both species winged offspring were mainly produced by unwinged females. Crowding and the presence of predators, effects already known to influence wing production in other aphid species, increased the percentage of winged offspring in M. tanacetaria, but not in M. fuscoviride. We find there are also other factors (i.e. temporal effects inducing the production of winged offspring for natural aphid populations. Our results show that the responses of each aphid species are due to multiple wing induction cues.

  4. Aphid Identification and Counting Based on Smartphone and Machine Vision

    Directory of Open Access Journals (Sweden)

    Suo Xuesong

    2017-01-01

    Full Text Available Exact enumeration of aphids before the aphids outbreak can provide basis for precision spray. This paper designs counting software that can be run on smartphones for real-time enumeration of aphids. As a first step of the method used in this paper, images of the yellow sticky board that is aiming to catch insects are segmented from complex background by using GrabCut method; then the images will be normalized by perspective transformation method. The second step is the pretreatment on the images; images of aphids will be segmented by using OSTU threshold method after the effect of random illumination is eliminated by single image difference method. The last step of the method is aphids’ recognition and counting according to area feature of aphids after extracting contours of aphids by contour detection method. At last, the result of the experiment proves that the effect of random illumination can be effectively eliminated by using single image difference method. The counting accuracy in greenhouse is above 95%, while it can reach 92.5% outside. Thus, it can be seen that the counting software designed in this paper can realize exact enumeration of aphids under complicated illumination which can be used widely. The design method proposed in this paper can provide basis for precision spray according to its effective detection insects.

  5. Antioxidant capacity of chewing stick miswak Salvadora persica.

    Science.gov (United States)

    Mohamed, Saleh A; Khan, Jalaluddin A

    2013-02-21

    Chewing stick (miswak Salvadora persica L.) is an effective tool for oral hygiene. It possessed various biological properties including significant antibacterial and anti-fungal effects. In the present study, we evaluated the antioxidant compounds in miswak. Miswak root was extracted with 80% methanol. Methanol extract as antioxidant was evaluated by using DPPH, ABTS and phosphomolybdenum complex assays and analysis by GC-MS. Peroxidase, catalase and polyphenoloxidase assays were performed for crude extract of miswak root. The methanol extract of miswak contained the highest amount of crude extract among the various solvent extracts. The methanol extract showed a concentration dependent scavenging of DPPH and ABTS radicals with IC50 values 4.8 and 1.6 μg crude extract, respectively. The total antioxidant activities, based on the reduction of molybdenum (VI) to molybdenum (V), increased with increasing crude extract content. The correlation coefficients (R2) between total crude extract and DPPH, ABTS scavenging activities and the formation of phosphomolybdenum complex were 0.97, 0.99 and 0.95, respectively. The GC-MS analysis showed that the methanol extract doesn't contain phenolic and flavonoid compounds or under detected limit. After silylation of methanol extract, three compounds namely 2-furancarboxaldehyde-5-(hydroxymethyl), furan-2-carboxylic acid-3-methyl- trimethylsilyl ester and D-erythro-pentofuranose-2-deoxy-1,3,5-tris-O-(trimethylsilyl) were identified by GC-MS analysis. These furan derivatives as they contain hydroxyl groups could be possessed antioxidant activities. The antioxidant enzymes were also detected in the miswak extract with high level of peroxidase and low level of catalase and polyphenoloxidase. The synergistic actions of antioxidant compounds and antioxidant enzymes make miswak is a good chewing stick for oral hygiene and food purposes.

  6. Role of the aphid species and their feeding locations in parasitization behavior of Aphelinus abdominalis, a parasitoid of the lettuce aphid Nasonovia ribisnigri

    OpenAIRE

    Shrestha, Govinda; Skovg?rd, Henrik; Reddy, Gadi V. P.; Steenberg, Tove; Enkegaard, Annie

    2017-01-01

    Aphid species feeding on lettuce occupy distinct feeding sites: the lettuce aphid Nasonovia ribisnigri prefers to feed on heart leaves, whereas the potato aphid Macrosiphum euphorbiae feeds only on outer leaves. The aphid parasitoid Aphelinus abdominalis, known to be able to regulate M. euphorbiae on many crops, has recently been indicated as a promising biocontrol candidate also for use against N. ribisnigri, a major pest of lettuce. This study therefore examined A. abdominalis parasitizatio...

  7. Social aggregation in pea aphids: experiment and random walk modeling.

    Directory of Open Access Journals (Sweden)

    Christa Nilsen

    Full Text Available From bird flocks to fish schools and ungulate herds to insect swarms, social biological aggregations are found across the natural world. An ongoing challenge in the mathematical modeling of aggregations is to strengthen the connection between models and biological data by quantifying the rules that individuals follow. We model aggregation of the pea aphid, Acyrthosiphon pisum. Specifically, we conduct experiments to track the motion of aphids walking in a featureless circular arena in order to deduce individual-level rules. We observe that each aphid transitions stochastically between a moving and a stationary state. Moving aphids follow a correlated random walk. The probabilities of motion state transitions, as well as the random walk parameters, depend strongly on distance to an aphid's nearest neighbor. For large nearest neighbor distances, when an aphid is essentially isolated, its motion is ballistic with aphids moving faster, turning less, and being less likely to stop. In contrast, for short nearest neighbor distances, aphids move more slowly, turn more, and are more likely to become stationary; this behavior constitutes an aggregation mechanism. From the experimental data, we estimate the state transition probabilities and correlated random walk parameters as a function of nearest neighbor distance. With the individual-level model established, we assess whether it reproduces the macroscopic patterns of movement at the group level. To do so, we consider three distributions, namely distance to nearest neighbor, angle to nearest neighbor, and percentage of population moving at any given time. For each of these three distributions, we compare our experimental data to the output of numerical simulations of our nearest neighbor model, and of a control model in which aphids do not interact socially. Our stochastic, social nearest neighbor model reproduces salient features of the experimental data that are not captured by the control.

  8. Escherichia coli K-12 pathogenicity in the pea aphid, Acyrthosiphon pisum, reveals reduced antibacterial defense in aphids.

    Science.gov (United States)

    Altincicek, Boran; Ter Braak, Bas; Laughton, Alice M; Udekwu, Klas I; Gerardo, Nicole M

    2011-10-01

    To better understand the molecular basis underlying aphid immune tolerance to beneficial bacteria and immune defense to pathogenic bacteria, we characterized how the pea aphid Acyrthosiphon pisum responds to Escherichia coli K-12 infections. E. coli bacteria, usually cleared in the hemolymph of other insect species, were capable of growing exponentially and killing aphids within a few days. Red fluorescence protein expressing E. coli K-12 laboratory strain multiplied in the aphid hemolymph as well as in the digestive tract, resulting in death of infected aphids. Selected gene deletion mutants of the E. coli K-12 predicted to have reduced virulence during systemic infections showed no difference in either replication or killing rate when compared to the wild type E. coli strain. Of note, however, the XL1-Blue E. coli K-12 strain exhibited a significant lag phase before multiplying and killing aphids. This bacterial strain has recently been shown to be more sensitive to oxidative stress than other E. coli K-12 strains, revealing a potential role for reactive oxygen species-mediated defenses in the otherwise reduced aphid immune system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. For the Aphid fauna in the territory of Yenisei river basin. Communication 1. Aphids on coniferous plants

    Directory of Open Access Journals (Sweden)

    A. V. Gurov

    2016-02-01

    Full Text Available The paper reports on new and previously not well-known data on insufficiently studied fauna of aphids living on coniferous trees in Central Siberia of the basin of Yenisei river. This region is the extensive transect of latitudinal geographic zones from semi-desert in the South to the arctic deserts in the North. That is why this region is very peculiar. This is the reason for insufficient study of regional entomological fauna. Aphids (Homoptera: Aphidoideaare a very taxonomically and ecologically heterogeneous group of insects. The aphids living on conifer trees are notstudied completely on the territory of Yenisei basin. Due to this, the studying of not well-known and economicallyimportant aphids is actual. For example, the insufficient study of regional aphids is confirmed by the fact, that duringthree weeks only of the work for INTAS-94-0930 Project two new aphid species were found and described on thisterritory. Also, the new species of family Mindaridae, which was described in Mongolia in 1980, was found in Siberiafor the first time. These finds indicate the real possibility to describe an interesting conifer aphid complex in the absolutely unstudied forested territory between Angara and Lower Tunguska rivers. Geographical location, dates ofcollection and feeding preferences of different species are described. A general review of Yenisei basin Siberian aphidfauna is suggested for the first time ever.

  10. Molecular identification and biological characterization of a new potyvirus in lettuce.

    Science.gov (United States)

    Ciuffo, Marina; Mammella, Marco; Vallino, Marta; Caciagli, Piero; Turina, Massimo

    2016-09-01

    A potyvirus causing necrosis and leaf distortion on lettuce was found in the Lazio region of Italy. Host range analysis showed its ability to infect only Chenopodium quinoa and C. amaranticolor in addition to some lettuce cultivars. The virus could be transmitted by aphids of the species Myzus persicae. The complete 9829-nt genome was characterized. BLAST analysis of sequence of the complete encoded polyprotein showed that the most closely related virus is asparagus virus 1, with 52 % amino acid sequence identity. These results suggest that this virus should be considered a member of a new species in the genus Potyvirus.

  11. The Green Lacewing, Chrysoperla carnea: Preference between Lettuce Aphids, Nasonovia ribisnigri, and Western Flower Thrips, Frankliniella occidentalis

    OpenAIRE

    Shrestha, Govinda; Enkegaard, Annie

    2013-01-01

    This study investigated the prey preference of 3rd instar green lacewing, Chrysoperla carnea Stephens (Neuroptera: Chrysopidae), between western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), and lettuce aphids, Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae) in laboratory experiments at 25 ? 1? C and 70 ? 5% RH with five prey ratios (10 aphids:80 thrips, 25 aphids:65 thrips, 45 aphids:45 thrips, 65 aphids:25 thrips, and 80 aphids:10 thrips). Third instar...

  12. Molecular characterization of peach [Prunus persica (L.) Batsch] germplasm in the United States using microsatellite markers

    Science.gov (United States)

    Peach [Prunus persica (L.) Batsch] is an important medicinal fruit with immense health benefits and antioxidant activity. In this study, microsatellite markers were used as DNA fingerprinting tools for the identification and characterization of peach germplasm in the United States. Eleven microsatel...

  13. Influence of Salvadora persica (miswak) extract on physical and antimicrobial properties of glass ionomer cement

    NARCIS (Netherlands)

    El-Tatari, A.; de Soet, J.J.; de Gee, A.J.; Abou Shelib, M.; van Amerongen, W.E.

    2011-01-01

    AIM: To investigate physical and antimicrobial properties of Glass Ionomer Cement (GIC) combined with Salvadora Persica Extract (SPE). METHODS: SPE was added to GIC (Fuji IX) in concentrations of 1%, 2% and 4% w/w. The compressive strength and diametral tensile strength were measured at 1 h, 24 h

  14. Antimicrobial Efficacy of Salvadora persica Extracts on a Monospecies Biofilm on Orthodontic Brackets In Vitro.

    Science.gov (United States)

    Halawany, Hassan S; Abraham, Nimmi B; Siddiqui, Yunus M; Balto, Hanan A; Jacob, Vimal

    2016-01-01

    The oral cavity is a rich ecosystem with a plethora of microorganisms, and different components of fixed orthodontic appliances may contribute to a shift in the balance of oral ecology. The purpose of this study was to investigate the antimicrobial potential of hexane and ethanol extracts of Salvadora persica on a monospecies biofilm model established on orthodontic brackets in vitro. Streptococcus mutans biofilm was formed on mini diamond orthodontic brackets following three days of anaerobic incubation at 37˚C. The bacterial cell viability of this biofilm was measured after their exposure to saline, hexane extract of S. persica, ethanol extract of S. persica and 0.2% chlorhexidine using 3-(4, 5-dimethylthiazol- 2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphophenyl)-2H-tetrazolium (MTS) assay. On half of the brackets, the colony forming units (CFU) were counted. Both experiments were performed in triplicate. The absorbance values obtained from the MTS reduction assay after exposure to the different test agents showed a decline in the bacterial cell viability of the S. mutans biofilm as follows: chlorhexidine (+)0.05). The CFU counts of S. mutans obtained from chlorhexidine exposure were lower than from hexane and ethanol extracts. S. persica extracts were found to have antimicrobial effects on S. mutans biofilm established in vitro on orthodontic brackets suggestive of its potential use as an oral antimicrobial agent for orthodontic patients.

  15. Effect of Intercropping Collard with Beans or Onions on Aphid ...

    African Journals Online (AJOL)

    chemical sprays, which has tended to result in pest resistance and pollution to the environment, This ... effects of intercropping and nitrogen fertilization on aphid population on collard and the yield ... :h~ cultivation and sale of collard (Brassica.

  16. Biological control of tortricids and aphids in strawberries

    DEFF Research Database (Denmark)

    Sigsgaard, Lene; Enkegaard, Annie; Eilenberg, Jørgen

    Cropping practice and biological control can contribute to reduced pesticide use in strawberries. Organic strawberries are less attacked by strawberry tortricid and buckwheat flower strips can augment its natural enemies. Against shallot aphid the two-spot ladybird is promising....

  17. Antiviral activity of Quercus persica L.: High efficacy and low toxicity

    Directory of Open Access Journals (Sweden)

    Ali Karimi

    2013-01-01

    Full Text Available Background: Drug-resistant strain of Herpes simplex virus type 1 (HSV-I has increased the interest in the use of natural substances. Aims: This study was aimed to determine minimum inhibitory concentration of hydroalchoholic extract of a traditionally used herbal plant, Quercus persica L., on HSV-1 replication on baby hamster kidney (BHK cells. Setting: The study was conducted in Shahrekord University of Medical Sciences, Iran. Design: This was an experimental study. Materials and Methods: BHK cells were grown in monolayer culture with Dulbecco′s modified Eagle′s medium (DMEM supplemented with 5% fetal calf serum and plated onto 48-well culture plates. Fifty percent cytotoxic concentration (CC50% of Q. persica L. on BHK cells was determined. Subsequently, 50% inhibitory concentration (IC50% of the extract on replication of HSV-1 both in interacellular and exteracellular cases was assessed. Statistical Analysis: Statistic Probit model was used for statistical analysis. The dose-dependent effect of antiviral activity of the extracts was determined by linear regression. Results: Q. persica L. had no cytotoxic effect on this cell line. There was significant relationship between the concentration of the extract and cell death (P<0.01. IC50s of Q. persica L. on HSV-1, before and after attachment to BHK cells were 1.02 and 0.257 μg/mL, respectively. There was significant relationship between the concentration of this extract and inhibition of cytopathic effect (CPE (P<0.05. Antioxidant capacity of the extract was 67.5%. Conclusions: The hydroalchoholic extract of Q. persica L. is potentially an appropriate and promising anti herpetic herbal medicine.

  18. New genus and species of the extinct aphid family Szelegiewicziidae and their implications for aphid evolution.

    Science.gov (United States)

    Wegierek, Piotr; Żyła, Dagmara; Homan, Agnieszka; Cai, Chenyang; Huang, Diying

    2017-10-24

    Recently, we are witnessing an increased appreciation for the importance of the fossil record in phylogenetics and testing various evolutionary hypotheses. However, this approach brings many challenges, especially for such a complex group as aphids and requires a thorough morphological analysis of the extinct groups. The extinct aphid family Szelegiewicziidae is supposed to be one of the oviparous lineages in aphid evolution. New material from the rock fossil deposits of Shar Teg (Upper Jurassic of Mongolia), Baissa (Lower Cretaceous of Siberia-Russia), and Burmese amber (Upper Cretaceous of Myanmar) allowed us to undertake a more detailed examination of the morphological features and carry out an analysis of the taxonomical composition and evolution of the family. This led us to the conclusion that evolution of the body plan and wing structure was similar in different, often not closely related groups, probably as a result of convergence. Additionally, we present a description of a new genus and two species (Tinaphis mongolica Żyła &Wegierek, sp. nov., and Feroorbis burmensis Wegierek & Huang, gen. et sp. nov.) that belong to this family.

  19. New genus and species of the extinct aphid family Szelegiewicziidae and their implications for aphid evolution

    Science.gov (United States)

    Wegierek, Piotr; Żyła, Dagmara; Homan, Agnieszka; Cai, Chenyang; Huang, Diying

    2017-12-01

    Recently, we are witnessing an increased appreciation for the importance of the fossil record in phylogenetics and testing various evolutionary hypotheses. However, this approach brings many challenges, especially for such a complex group as aphids and requires a thorough morphological analysis of the extinct groups. The extinct aphid family Szelegiewicziidae is supposed to be one of the oviparous lineages in aphid evolution. New material from the rock fossil deposits of Shar Teg (Upper Jurassic of Mongolia), Baissa (Lower Cretaceous of Siberia-Russia), and Burmese amber (Upper Cretaceous of Myanmar) allowed us to undertake a more detailed examination of the morphological features and carry out an analysis of the taxonomical composition and evolution of the family. This led us to the conclusion that evolution of the body plan and wing structure was similar in different, often not closely related groups, probably as a result of convergence. Additionally, we present a description of a new genus and two species ( Tinaphis mongolica Żyła &Wegierek, sp. nov., and Feroorbis burmensis Wegierek & Huang, gen. et sp. nov.) that belong to this family.

  20. Do Aphids Alter Leaf Surface Temperature Patterns During Early Infestation?

    Directory of Open Access Journals (Sweden)

    Thomas Cahon

    2018-03-01

    Full Text Available Arthropods at the surface of plants live in particular microclimatic conditions that can differ from atmospheric conditions. The temperature of plant leaves can deviate from air temperature, and leaf temperature influences the eco-physiology of small insects. The activity of insects feeding on leaf tissues, may, however, induce changes in leaf surface temperatures, but this effect was only rarely demonstrated. Using thermography analysis of leaf surfaces under controlled environmental conditions, we quantified the impact of presence of apple green aphids on the temperature distribution of apple leaves during early infestation. Aphids induced a slight change in leaf surface temperature patterns after only three days of infestation, mostly due to the effect of aphids on the maximal temperature that can be found at the leaf surface. Aphids may induce stomatal closure, leading to a lower transpiration rate. This effect was local since aphids modified the configuration of the temperature distribution over leaf surfaces. Aphids were positioned at temperatures near the maximal leaf surface temperatures, thus potentially experiencing the thermal changes. The feedback effect of feeding activity by insects on their host plant can be important and should be quantified to better predict the response of phytophagous insects to environmental changes.

  1. Overexpression of Nictaba-Like Lectin Genes from Glycine max Confers Tolerance towards Pseudomonas syringae Infection, Aphid Infestation and Salt Stress in Transgenic Arabidopsis Plants

    Directory of Open Access Journals (Sweden)

    Sofie Van Holle

    2016-10-01

    Full Text Available Plants have evolved a sophisticated immune system that allows them to recognize invading pathogens by specialized receptors. Carbohydrate-binding proteins or lectins are part of this immune system and especially the lectins that reside in the nucleocytoplasmic compartment are known to be implicated in biotic and abiotic stress responses. The class of Nictaba-like lectins (NLL groups all proteins with homology to the tobacco (Nicotiana tabacum lectin, known as a stress-inducible lectin. Here we focus on two Nictaba homologs from soybean (Glycine max, referred to as GmNLL1 and GmNLL2. Confocal laser scanning microscopy of fusion constructs with the green fluorescent protein either transiently expressed in Nicotiana benthamiana leaves or stably transformed in tobacco BY-2 suspension cells revealed a nucleocytoplasmic localization for the GmNLLs under study. RT-qPCR analysis of the transcript levels for the Nictaba-like lectins in soybean demonstrated that the genes are expressed in several tissues throughout the development of the plant. Furthermore, it was shown that salt treatment, Phytophthora sojae infection and Aphis glycines infestation trigger the expression of particular NLL genes. Stress experiments with Arabidopsis lines overexpressing the NLLs from soybean yielded an enhanced tolerance of the plant towards bacterial infection (Pseudomonas syringae, insect infestation (Myzus persicae and salinity. Our data showed a better performance of the transgenic lines compared to wild type plants, indicating that the NLLs from soybean are implicated in the stress response. These data can help to further elucidate the physiological importance of the Nictaba-like lectins from soybean, which can ultimately lead to the design of crop plants with a better tolerance to changing environmental conditions.

  2. Characteristics of Watermelon Mosaic Virus Transmission Occurring in Korean Ginseng

    Directory of Open Access Journals (Sweden)

    Seung-Kook Choi

    2014-09-01

    Full Text Available Korean ginseng (Panax ginseng is the most popular herb for medical purpose in Korea. Recently, viral diseases from Korean ginseng showing various degrees of severe mottling, variegation and mosaic symptoms have caused quantity losses of Korean ginseng in a large number of farms. Watermelon mosaic virus (named WMVgin was identified as a causal agent for the disease of Korean ginseng. Interestingly, WMV-gin failed to infect both Korean ginseng plant and susceptible host species including cucurbitaceous plants by mechanical inoculation. However, WMV-gin could successfully infect Korean ginseng by transmission of two aphid species (Myzus persicae and Aphis gossypii. It is likely that transmission of WMV-gin was done by both the aphid species during feeding behavior of the two aphid species on Korean ginseng, though the aphids dislike feeding in Korea ginseng. Similarly, a strain of WMV (WMV-wm isolated from watermelon was transmitted successfully to Korean ginseng plant by the two aphid species, but not by mechanical inoculations. Transmission assays using M. persicae and A. gossypii clearly showed both WMV-gin and WMV-wm were not transmitted from infected Korean ginseng plant to cucurbit species that are good host species for WMV. These results suggest WMV disease occurring in Korean ginseng plant can be controlled by ecological approaches.

  3. Preparing soft-bodied arthropods for microscope examination: Aphids (Insecta: Hemiptera: Aphididae)

    Science.gov (United States)

    Proper identification of aphids (Hemiptera: Aphididae) require preparation of the specimen on a microscope slide. This training video provides visual instruction on how to prepare aphid specimens on microscope slides for examination and indentification. Steps ranging from collection, specimen clear...

  4. Agronomy of strip intercropping broccoli with alyssum for biological control of aphids

    Science.gov (United States)

    Organic broccoli growers in California typically control aphids by intercropping broccoli with strips of alyssum (Lobularia maritima (L.) Desv.) which attracts hoverflies (Diptera: Syrphidae) that are important predators of aphids. A three year study with transplanted organic broccoli in Salinas, ...

  5. Bioactivity-guided fractionation identifies amygdalin as a potent neurotrophic agent from herbal medicine Semen Persicae extract.

    Science.gov (United States)

    Yang, Chuanbin; Zhao, Jia; Cheng, Yuanyuan; Li, Xuechen; Rong, Jianhui

    2014-01-01

    Herbal medicine Semen Persicae is widely used to treat blood stasis in Chinese medicine and other oriental folk medicines. Although little is known about the effects of Semen Persicae and its active compounds on neuron differentiation, our pilot study showed that Semen Persicae extract promoted neurite outgrowth in rat dopaminergic PC12 cells. In the present study, we developed a bioactivity-guided fractionation procedure for the characterization of the neurotrophic activity of Semen Persicae extract. The resultant fractions were assayed for neurite outgrowth in PC12 cells based on microscopic assessment. Through liquid-liquid extraction and reverse phase HPLC separation, a botanical glycoside amygdalin was isolated as the active compound responsible for the neurotrophic activity of Semen Persicae extract. Moreover, we found that amygdalin rapidly induced the activation of extracellular-signal-regulated kinase 1/2 (ERK1/2). A specific ERK1/2 inhibitor PD98059 attenuated the stimulatory effect of amygdalin on neurite outgrowth. Taken together, amygdalin was identified as a potent neurotrophic agent from Semen Persicae extract through a bioactivity-guided fractional procedure. The neurotrophic activity of amygdalin may be mediated by the activation of ERK1/2 pathway.

  6. Bioactivity-Guided Fractionation Identifies Amygdalin as a Potent Neurotrophic Agent from Herbal Medicine Semen Persicae Extract

    Directory of Open Access Journals (Sweden)

    Chuanbin Yang

    2014-01-01

    Full Text Available Herbal medicine Semen Persicae is widely used to treat blood stasis in Chinese medicine and other oriental folk medicines. Although little is known about the effects of Semen Persicae and its active compounds on neuron differentiation, our pilot study showed that Semen Persicae extract promoted neurite outgrowth in rat dopaminergic PC12 cells. In the present study, we developed a bioactivity-guided fractionation procedure for the characterization of the neurotrophic activity of Semen Persicae extract. The resultant fractions were assayed for neurite outgrowth in PC12 cells based on microscopic assessment. Through liquid-liquid extraction and reverse phase HPLC separation, a botanical glycoside amygdalin was isolated as the active compound responsible for the neurotrophic activity of Semen Persicae extract. Moreover, we found that amygdalin rapidly induced the activation of extracellular-signal-regulated kinase 1/2 (ERK1/2. A specific ERK1/2 inhibitor PD98059 attenuated the stimulatory effect of amygdalin on neurite outgrowth. Taken together, amygdalin was identified as a potent neurotrophic agent from Semen Persicae extract through a bioactivity-guided fractional procedure. The neurotrophic activity of amygdalin may be mediated by the activation of ERK1/2 pathway.

  7. Comparing the effects of chlorhexidine and persica on alveolar bone healing following tooth extraction in rats, a randomised controlled trial.

    Science.gov (United States)

    Dorri, Mojtaba; Shahrabi, Shokufeh; Navabazam, Alireza

    2012-02-01

    Chlorhexidine is broadly prescribed by clinicians for treating extraction socket wounds; however, studies have reported adverse effects for chlorhexidine. Persica, a herbal antibacterial agent, could be an alternative for chlorhexidine. The aim of this randomised controlled trial was to investigate the effects of persica and chlorhexidine on alveolar bone healing following tooth extraction in rats. Eighteen Wistar rats were randomly allocated to three study groups: 0.2% chlorhexidine, 10% persica and controls (tap water). The rats were mouth-rinsed for 14 days. On day 8, the mandibular right first molars of all the rats were extracted. On day 21, the rats were euthanized and histological slides of their extraction sockets were prepared. The amount of new bone formation and the number of inflammatory cells in the extraction socket for each rat were recorded. Data were analysed using linear regression and Mann-Whitney tests. There was no significant difference between the control group and the intervention groups in terms of new bone formation and inflammatory cell count. The mean new bone formation was significantly higher in the persica group than in the chlorhexidine group. There was a significant association between new bone formation and inflammatory cell count in the entire sample. In conclusion, there were no significant differences between rinsing with tap water and rinsing with 0.2% chlorhexidine and 10% persica in enhancing extraction socket wound healing in rats. Extraction socket wound healing in rats was better enhanced with 10% persica than 0.2% chlorhexidine.

  8. Borrelia persica infection in dogs and cats: clinical manifestations, clinicopathological findings and genetic characterization.

    Science.gov (United States)

    Baneth, Gad; Nachum-Biala, Yaarit; Halperin, Tamar; Hershko, Yizhak; Kleinerman, Gabriela; Anug, Yigal; Abdeen, Ziad; Lavy, Eran; Aroch, Itamar; Straubinger, Reinhard K

    2016-05-10

    Relapsing fever (RF) is an acute infectious disease caused by arthropod-borne spirochetes of the genus Borrelia. The disease is characterized by recurrent episodes of fever that concur with spirochetemia. The RF borrelioses include louse-borne RF caused by Borrelia recurrentis and tick-borne endemic RF transmitted by argasid soft ticks and caused by several Borrelia spp. such as B. crocidurae, B. coriaceae, B. duttoni, B. hermsii, B. hispanica and B. persica. Human infection with B. persica is transmitted by the soft tick Ornithodoros tholozani and has been reported from Iran, Israel, Egypt, India, and Central Asia. During 2003-2015, five cats and five dogs from northern, central and southern Israel were presented for veterinary care and detected with borrelia spirochetemia by blood smear microscopy. The causative infective agent in these animals was identified and characterized by PCR from blood and sequencing of parts of the flagellin (flab), 16S rRNA and glycerophosphodiester phosphodiestrase (GlpQ) genes. All animals were infected with B. persica genetically identical to the causative agent of human RF. Phylogenetic analysis indicated that DNA sequences from these pet carnivores clustered together with B. persica genotypes I and II from humans and O. tholozani ticks and distinctly from other RF Borrelia spp. The main clinical findings in cats included lethargy, anorexia, anemia in 5/5 cats and thrombocytopenia in 4/5. All dogs were lethargic and anorectic, 4/5 were febrile and anemic and 3/5 were thrombocytopenic. Three dogs were co-infected with Babesia spp. The animals were all treated with antibiotics and the survival rate of both dogs and cats was 80 %. The cat and dog that succumbed to disease died one day after the initiation of antibiotic treatment, while survival in the others was followed by the rapid disappearance of spirochetemia. This is the first report of disease due to B. persica infection in cats and the first case series in dogs. Infection was

  9. Cereal aphid colony turnover and persistence in winter wheat.

    Directory of Open Access Journals (Sweden)

    Linton Winder

    Full Text Available An understanding of spatial and temporal processes in agricultural ecosystems provides a basis for rational decision-making with regards to the management and husbandry of crops, supporting the implementation of integrated farming strategies. In this study we investigated the spatial and temporal distribution of aphid pests (Sitobion avenae and Metopolophium dirhodum within winter wheat fields. Using an intensive sampling programme we investigated distributions at both the small (single shoot and large (field scales. Within two fields, a grid with 82 locations was established (area 120 m by 168 m. At each location, 25 shoots were individually marked and aphid counts by observation conducted on 21 and 22 occasions as the crop matured, resulting in 43,050 and 45,100 counts being conducted in the two fields respectively. We quantified field scale spatial distributions, demonstrating that spatial pattern generally emerged, with temporal stability being both species- and field- dependent. We then measured turnover of colonies at the small (individual shoot and large (field scales by comparing consecutive pairs of sampling occasions. Four turnover categories were defined: Empty (no aphids recorded on either occasion; Colonised (aphids recorded on the second occasion but not the first; Extinction (aphids recorded on the first occasion but not the second; Stable (aphids recorded on both occasions. At the field scale, population stability soon established, but, at the small scale there was a consistently high proportion of unoccupied shoots with considerable colonisation and extinction and low stability. The redistribution of aphids within the crop at the local scale is a vulnerability which could be used to disrupt population development--by mediating exposure to ground-active natural enemies and by incurring a metabolic cost caused by the physiological demands to re-establish on a nearby host plant.

  10. National Plant Diagnostic Network, Taxonomic training videos: Aphids under the microscope - overview

    Science.gov (United States)

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This training video provides provides an overview of general aphid morphology by using a compound microscope. The narrator discusses and highlights structures on the aphid that are important to make a species identification....

  11. Variable isotopic compositions of host plant populations preclude assessment of aphid overwintering sites

    Science.gov (United States)

    Soybean aphid (Aphis glycines Matsumura) is a pest of soybean in the northern Midwest whose migratory patterns have been difficult to quantify. Improved knowledge of soybean aphid overwintering sites could facilitate the development of control efforts with exponential impacts on aphid densities on a...

  12. Terpenoid biosynthesis in Arabidopsis attacked by caterpillars and aphids: effects of aphid density on the attraction of a caterpillar parasitoid.

    Science.gov (United States)

    Kroes, Anneke; Weldegergis, Berhane T; Cappai, Francesco; Dicke, Marcel; van Loon, Joop J A

    2017-12-01

    One of the responses of plants to insect attack is the production of volatile organic compounds that mediate indirect defence of plants by attracting natural enemies of the attacking herbivores. Herbivore-induced plant volatiles (HIPVs) include terpenoids that play key roles in the attraction of natural enemies. Crosstalk between phytohormonal signalling pathways is well known to affect the regulation of plant defences, including the emission of HIPVs. Thus, simultaneous feeding on the same plant by caterpillars and aphids, can affect the attraction of parasitoids by the plant compared to single insect attack. The role of aphid density in the regulation of HIPV emission by plants under dual attack has not been studied previously. Here, we investigated the attraction of Diadegma semiclausum, a parasitoid of the Diamondback moth Plutella xylostella, to volatiles emitted by Arabidopsis thaliana plants, simultaneously attacked by host caterpillars, and by the non-host aphid Brevicoryne brassicae. Our study shows that the effect of aphid infestation on parasitoid attraction is influenced by the density of the aphids. Biosynthesis and emission of (E,E)-α-farnesene could be linked to the observed preference of D. semiclausum parasitoids for the HIPV blend emitted by plants dually infested by caterpillars and aphids at a high density compared to dually infested plants with a low aphid density. Parasitoids such as D. semiclausum are important enemies of herbivorous insects and a better understanding of how plants express indirect defence mechanisms in response to multiple insect attack will provide important knowledge on plant-herbivore-parasitoid interactions under multiple stress conditions.

  13. Particle film affects black pecan aphid (Homoptera: Aphididae) on pecan.

    Science.gov (United States)

    Cottrell, Ted E; Wood, Bruce W; Reilly, Charles C

    2002-08-01

    Three species of aphids attack pecan foliage, Carya illinoensis (Wang.) K. Koch, and cause economic damage. We tested a kaolin-based particle film against one of these aphid species, black pecan aphid, Melanocallis caryaefoliae (Davis). Effect of particle film on host selection, adult mortality, and production of nymphs by M. caryaefoliae was tested on seedling pecans in the laboratory. Fewer M. caryaefoliae adults selected treated foliage compared with untreated foliage. A higher percentage of adults that did select treated foliage were recovered from upper leaf surfaces compared with the percentage of adults recovered from upper leaf surfaces of untreated leaves. Observations with a microscope revealed an accumulation of particle film on aphid body parts, especially on tarsi, and strongly suggests that aphid mobility was restricted. Adult mortality was higher on treated foliage and led to an overall decrease in production of nymphs on those seedlings. In addition, we measured spectral properties of treated seedling pecan foliage. Light reflectance by treated foliage was increased and absorptance decreased compared with control foliage whereas transmittance of light through control and particle film-treated leaves was similar. We did not detect any phytotoxic effect on pecan due to application of particle film.

  14. Differential divergences of obligately insect-pathogenic Entomophthora species from fly and aphid hosts.

    Science.gov (United States)

    Jensen, Annette Bruun; Eilenberg, Jørgen; López Lastra, Claudia

    2009-11-01

    Three DNA regions (ITS 1, LSU rRNA and GPD) of isolates from the insect-pathogenic fungus genus Entomophthora originating from different fly (Diptera) and aphid (Hemiptera) host taxa were sequenced. The results documented a large genetic diversity among the fly-pathogenic Entomophthora and only minor differences among aphid-pathogenic Entomophthora. The evolutionary time of divergence of the fly and the aphid host taxa included cannot account for this difference. The host-driven divergence of Entomophthora, therefore, has been much greater in flies than in aphids. Host-range differences or a recent host shift to aphid are possible explanations.

  15. Antidotal effects of varthemia persica DC extract in organophosphate poisoning or warfare agents by measuring whole blood acetylcholinesterase

    International Nuclear Information System (INIS)

    Kalantari, H.; Siahapoosh, A.; Farsani, K. M.

    2009-01-01

    The organophosphates (ORPs) or war fare agents toxicity results from inhibition of acetylcholinesterase (AchE). phosphylation of the active serin of AchE leads to accumulation of acetylcholine in synaptic clefts leading to generalized cholinergic over-stimulation. Standard treatment of ORP poisoning includes a muscarinic antagonist such as Atropine, and acetylcholinesterase reactivator (oxime). Presently, oximes like abidoxime and pralidoxime are approved as antidotes against ORP poisoning but are considered to be rather ineffective against certain ORP. Like Soman. In this study, the protective effect of Varthemia persica DC extract on acetylcholinesterase was examined in rats. Animals in weight range of 200-225 g were divided in 8 groups. The negative control group received only 0.4 ml normal saline, reference group, received ethylparaoxone in dose of 50 percent of LD50, positive control group, received ethylparaoxone (50% LD50) and one minute later 50 mol of pralidoxime. Test group 1: received ethylparaoxone and one minute later single dose of methanolic extract of Varthemia persica (250 mg/kg), Test Group 2: daily received methanolic extract of V.persica (250 mg/kg) in six days and one minute after last dose of extract, ethylparaoxone (50% LD50) were injected, Test Group 3: received ethylparaoxone (50% LD50) and then six doses of methanolic extract of V.persica (250 mg/kg) in six continuous days. Test Group 4: received ethylparaoxone and then single dose of dichloromethane extract of V.persica (250 mg/kg). Test Group 5: received ethylparaoxone and one minute later single high dose of methanolic extract of V.persica (1000 mg/kg). Then blood withdrawn and acetylcholinesterase activity was measured according to modified Ellman's method. Only in groups which received extract of V. persica before and after injection of ethylparaoxone, the mean of acetylcholinesterase activity was significantly different with reference group (p 0.05) but no significant difference with

  16. Endogenous hormones response to cytokinins with regard to organogenesis in explants of peach (Prunus persica L. Batsch) cultivars and rootstocks (P. persica × Prunus dulcis).

    Science.gov (United States)

    Pérez-Jiménez, Margarita; Cantero-Navarro, Elena; Pérez-Alfocea, Francisco; Cos-Terrer, José

    2014-11-01

    Organogenesis in peach (Prunus persica L. Batsch) and peach rootstocks (P. persica × Prunus dulcis) has been achieved and the action of the regeneration medium on 7 phytohormones, zeatin (Z), zeatin riboside (ZR), indole-3-acetic acid (IAA), abscisic acid (ABA), ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), salicylic acid (SA), and jasmonic acid (JA), has been studied using High performance liquid chromatography - mass spectrometry (HPLC-MS/MS). Three scion peach cultivars, 'UFO-3', 'Flariba' and 'Alice Bigi', and the peach × almond rootstocks 'Garnem' and 'GF677' were cultured in two different media, Murashige and Skoog supplemented with plant growth regulators (PGRs) (regeneration medium) and without PGRs (control medium), in order to study the effects of the media and/or genotypes in the endogenous hormones content and their role in organogenesis. The highest regeneration rate was obtained with the peach × almond rootstocks and showed a lower content of Z, IAA, ABA, ACC and JA. Only Z, ZR and IAA were affected by the action of the culture media. This study shows which hormones are external PGRs-dependent and what is the weight of the genotype and hormones in peach organogenesis that provide an avenue to manipulate in vitro organogenesis in peach. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Orally Delivered Scorpion Antimicrobial Peptides Exhibit Activity against Pea Aphid (Acyrthosiphon pisum) and Its Bacterial Symbionts.

    Science.gov (United States)

    Luna-Ramirez, Karen; Skaljac, Marisa; Grotmann, Jens; Kirfel, Phillipp; Vilcinskas, Andreas

    2017-08-24

    Aphids are severe agricultural pests that damage crops by feeding on phloem sap and vectoring plant pathogens. Chemical insecticides provide an important aphid control strategy, but alternative and sustainable control measures are required to avoid rapidly emerging resistance, environmental contamination, and the risk to humans and beneficial organisms. Aphids are dependent on bacterial symbionts, which enable them to survive on phloem sap lacking essential nutrients, as well as conferring environmental stress tolerance and resistance to parasites. The evolution of aphids has been accompanied by the loss of many immunity-related genes, such as those encoding antibacterial peptides, which are prevalent in other insects, probably because any harm to the bacterial symbionts would inevitably affect the aphids themselves. This suggests that antimicrobial peptides (AMPs) could replace or at least complement conventional insecticides for aphid control. We fed the pea aphids ( Acyrthosiphon pisum ) with AMPs from the venom glands of scorpions. The AMPs reduced aphid survival, delayed their reproduction, displayed in vitro activity against aphid bacterial symbionts, and reduced the number of symbionts in vivo. Remarkably, we found that some of the scorpion AMPs compromised the aphid bacteriome, a specialized organ that harbours bacterial symbionts. Our data suggest that scorpion AMPs holds the potential to be developed as bio-insecticides, and are promising candidates for the engineering of aphid-resistant crops.

  18. Orally Delivered Scorpion Antimicrobial Peptides Exhibit Activity against Pea Aphid (Acyrthosiphon pisum and Its Bacterial Symbionts

    Directory of Open Access Journals (Sweden)

    Karen Luna-Ramirez

    2017-08-01

    Full Text Available Aphids are severe agricultural pests that damage crops by feeding on phloem sap and vectoring plant pathogens. Chemical insecticides provide an important aphid control strategy, but alternative and sustainable control measures are required to avoid rapidly emerging resistance, environmental contamination, and the risk to humans and beneficial organisms. Aphids are dependent on bacterial symbionts, which enable them to survive on phloem sap lacking essential nutrients, as well as conferring environmental stress tolerance and resistance to parasites. The evolution of aphids has been accompanied by the loss of many immunity-related genes, such as those encoding antibacterial peptides, which are prevalent in other insects, probably because any harm to the bacterial symbionts would inevitably affect the aphids themselves. This suggests that antimicrobial peptides (AMPs could replace or at least complement conventional insecticides for aphid control. We fed the pea aphids (Acyrthosiphon pisum with AMPs from the venom glands of scorpions. The AMPs reduced aphid survival, delayed their reproduction, displayed in vitro activity against aphid bacterial symbionts, and reduced the number of symbionts in vivo. Remarkably, we found that some of the scorpion AMPs compromised the aphid bacteriome, a specialized organ that harbours bacterial symbionts. Our data suggest that scorpion AMPs holds the potential to be developed as bio-insecticides, and are promising candidates for the engineering of aphid-resistant crops.

  19. Stem nematode counteracts plant resistance of aphids in alfalfa, Medicago sativa.

    Science.gov (United States)

    Ramirez, Ricardo A; Spears, Lori R

    2014-10-01

    Plants are exploited by a diverse community of insect herbivores and phytopathogens that interact indirectly through plant-mediated interactions. Generally, plants are thought to respond to insects and pathogens through different defensive signaling pathways. As plants are selected for resistance to one phytophagous organism type (insect vs. pathogen) in managed systems, it is not clear how this selection may affect community interactions. This study examined the effect of nematode-resistant varieties on aphid (Acyrthosiphon pisum) suppression, and then determined how infection by the stem nematode, Ditylenchus dipsaci, mediated ecological effects on aphids and on plant defense proteins. Four alfalfa (Medicago sativa) varieties were selected with resistance to nematodes only (+,-), aphids only (-,+), nematodes and aphids (+,+), and susceptibility to nematodes and aphids (-,-). Field and greenhouse experiments were conducted to isolate the effect of nematode infection and aphid abundance on each variety. We found that varieties resistant to nematode, regardless of aphid resistance, had the lowest aphid counts, suggesting possible cross-resistance. Aphid abundance, however, increased when plants were exposed to nematodes. Resistant varieties were associated with elevated saponins but these compounds were not affected by insect or pathogen feeding. Concentrations of peroxidases and trypsin inhibitors, however, were increased in nematode resistant varieties when exposed to nematodes and aphids, respectively. The patterns of plant defense were variable, and a combination of resistance traits and changes in nutrient availability may drive positive interactions between nematodes and aphids aboveground.

  20. Unrelated facultative endosymbionts protect aphids against a fungal pathogen.

    Science.gov (United States)

    Łukasik, Piotr; van Asch, Margriet; Guo, Huifang; Ferrari, Julia; Godfray, H Charles J

    2013-02-01

    The importance of microbial facultative endosymbionts to insects is increasingly being recognized, but our understanding of how the fitness effects of infection are distributed across symbiont taxa is limited. In the pea aphid, some of the seven known species of facultative symbionts influence their host's resistance to natural enemies, including parasitoid wasps and a pathogenic fungus. Here we show that protection against this entomopathogen, Pandora neoaphidis, can be conferred by strains of four distantly related symbionts (in the genera Regiella, Rickettsia, Rickettsiella and Spiroplasma). They reduce mortality and also decrease fungal sporulation on dead aphids which may help protect nearby genetically identical insects. Pea aphids thus obtain protection from natural enemies through association with a wider range of microbial associates than has previously been thought. Providing resistance against natural enemies appears to be a particularly common way for facultative endosymbionts to increase in frequency within host populations. © 2012 Blackwell Publishing Ltd/CNRS.

  1. Ant tending influences soldier production in a social aphid.

    Science.gov (United States)

    Shingleton, A W; Foster, W A

    2000-09-22

    The aphid Pseudoregma sundanica (Van der Goot) (Homoptera: Aphididae) has two defence strategies. It is obligatorily tended by various species of ant and also produces sterile soldiers. We investigated how they allocate their investment in these two strategies. We measured the size, number of soldiers, number and species of tending ant, and number and species of predators in P. sundanica populations. We found that the level of ant tending correlated negatively with soldier investment in P. sundanica. The species of tending ant also influenced soldier investment. We excluded ants from aphid populations and recorded changes in population size and structure over four weeks. Ant exclusion led to population decline and extinction. At the same time, surviving populations showed a significant increase in soldier investment. The data demonstrate that social aphids can adjust their investment in soldiers in direct response to environmental change.

  2. The Potato Aphid Salivary Effector Me47 Is a Glutathione-S-Transferase Involved in Modifying Plant Responses to Aphid Infestation

    OpenAIRE

    Kettles, Graeme J.; Kaloshian, Isgouhi

    2016-01-01

    Polyphagous aphid pests cause considerable economic damage to crop plants, primarily through the depletion of photoassimilates and transfer of viruses. The potato aphid (Macrosiphum euphorbiae) is a notable pest of solanaceous crops, however, the molecular mechanisms that underpin the ability to colonize these hosts are unknown. It has recently been demonstrated that like other aphid species, M. euphorbiae injects a battery of salivary proteins into host plants during feeding. It is speculate...

  3. Antibacterial efficacy of Salvadora persica as a cleansing teeth towards Streptococcus mutans and Lactobacilli colonies

    Directory of Open Access Journals (Sweden)

    Erlina Sih Mahanani

    2012-12-01

    Full Text Available Background: Salvadora persica is a traditional chewing stick for cleaning teeth that it is known Siwak. Several studies have demonstrated the antimicrobial effects of Salvadora persica. Purpose: This study was aimed to examine the effectiveness of Salvadora persica in several modified preparation against the salivary Streptoccocus mutans and Lactobacilli. Methods: A single-blind, randomized clinical trial study with crossover design was used. The study comprised of 5 groups, per group consisted of 14 healthy dental students who had good oral hygiene. Each participant was given 5 intervention to clean their teeth using, electric toothbrush modified with siwak, electric toothbrush with siwak toothpaste (colgate kayu sugi toothpaste, electric toothbrush with general toothpaste (colgate total toothpaste, original siwak chewing stick and normal saline. The wash out periode each intervention was 3 days. Patients’ saliva was used to quantify the levels of Streptococcus mutans and Lactobacilli using caries risk test (CRT kit from Vivadent. Results: The results showed that there was a reduction in Streptococcus mutans and Lactobacilli risk score after cleansing different intervention except electric toothbrush modified with siwak. However, there was no significant difference for Streptococcus mutans (p=0.158 and Lactobacilli (p=0.396 risk score reduction when comparison was done between the groups. Conclusion: The original siwak chewing stick has antimicrobial effects similar to toothbrushing with general toothpaste and salvadora persica toothpaste. However, electric toothbrush modified with siwak has no effect on microbial reduction.Latar belakang: Salvadora persica adalah pembersih gigi tradisional yang lebih dikenal dengan sebutan Siwak. Beberapa penelitian menunjukkan bahwa Salvadora persica memiliki daya antibakteri. Tujuan: Penelitian ini bertujuan untuk mengetahui efektivitas Salvadora persica dalam berbagai bentuk sediaan untuk membersihkan

  4. Synthesis and biological activity of pyridazine amides, hydrazones and hydrazides.

    Science.gov (United States)

    Buysse, Ann M; Yap, Maurice Ch; Hunter, Ricky; Babcock, Jonathan; Huang, Xinpei

    2017-04-01

    Optimization studies on compounds initially designed to be herbicides led to the discovery of a series of [6-(3-pyridyl)pyridazin-3-yl]amides exhibiting aphicidal properties. Systematic modifications of the amide moiety as well as the pyridine and pyridazine rings were carried out to determine if these changes could improve insecticidal potency. Structure-activity relationship (SAR) studies showed that changes to the pyridine and pyridazine rings generally resulted in a significant loss of insecticidal potency against green peach aphids [Myzus persicae (Sulzer)] and cotton aphids [(Aphis gossypii (Glover)]. However, replacement of the amide moiety with hydrazines, hydrazones, or hydrazides appeared to be tolerated, with small aliphatic substituents being especially potent. A series of aphicidal [6-(3-pyridyl)pyridazin-3-yl]amides were discovered as a result of random screening of compounds that were intially investigated as herbicides. Follow-up studies of the structure-activity relationship of these [6-(3-pyridyl)pyridazin-3-yl]amides showed that biosteric replacement of the amide moiety was widely tolerated suggesting that further opportunities for exploitation may exist for this new area of insecticidal chemistry. Insecticidal efficacy from the original hit, compound 1, to the efficacy of compound 14 produced greater than 10-fold potency improvement against Aphis gossypii and greater than 14-fold potency improvement against Myzus persicae. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Inventory and assessment of foliar natural enemies of the soybean aphid (Hemiptera: Aphididae) in South Dakota.

    Science.gov (United States)

    Hesler, Louis S

    2014-06-01

    Soybean aphid (Aphis glycines Matsumura) (Hemiptera: Aphididae) is a major pest of soybean in northern production regions of North America, and insecticides have been the primary management approach while alternative methods are developed. Knowledge of arthropod natural enemies and their impact on soybean aphid is critical for developing biological control as a management tool. Soybean is a major field crop in South Dakota, but information about its natural enemies and their impact on soybean aphid is lacking. Thus, this study was conducted in field plots in eastern South Dakota during July and August of 2004 and 2005 to characterize foliar-dwelling, arthropod natural enemies of soybean aphid, and it used exclusion techniques to determine impact of natural enemies and ants (Hymenoptera: Formicidae) on soybean aphid densities. In open field plots, weekly soybean aphid densities reached a plateau of several hundred aphids per plant in 2004, and peaked at roughly 400 aphids per plant in 2005. Despite these densities, a relatively high frequency of aphid-infested plants lacked arthropod natural enemies. Lady beetles (Coleoptera: Coccinellidae) were most abundant, peaking at 90 and 52% of all natural enemies sampled in respective years, and Harmonia axyridis Pallas was the most abundant lady beetle. Green lacewings (Neuroptera: Chrysopidae) were abundant in 2005, due mainly to large numbers of their eggs. Abundances of arachnids and coccinellid larvae correlated with soybean aphid densities each year, and chrysopid egg abundance was correlated with aphid density in 2005. Three-week cage treatments of artificially infested soybean plants in 2004 showed that noncaged plants had fewer soybean aphids than caged plants, but abundance of soybean aphid did not differ among open cages and ones that provided partial or total exclusion of natural enemies. In 2005, plants within open cages had fewer soybean aphids than those within cages that excluded natural enemies, and aphid

  6. First report of Pandora neoaphidis resting spore formation in vivo in aphid hosts

    DEFF Research Database (Denmark)

    Clara Scorsetti, Ana; Jensen, Annette Bruun; Lopez Lastra, Claudia

    2012-01-01

    The entomopathogenic fungus Pandora neoaphidis is a recognized pathogen of aphids, causes natural epizootics in aphid populations, and interacts and competes with aphid predators and parasitoids. Survival of entomophthoralean fungi in periods of unsuitable weather conditions or lack of appropriat...

  7. A Rapid and Efficient Method for Purifying High Quality Total RNA from Peaches (Prunus persica for Functional Genomics Analyses

    Directory of Open Access Journals (Sweden)

    LEE MEISEL

    2005-01-01

    Full Text Available Prunus persica has been proposed as a genomic model for deciduous trees and the Rosaceae family. Optimized protocols for RNA isolation are necessary to further advance studies in this model species such that functional genomics analyses may be performed. Here we present an optimized protocol to rapidly and efficiently purify high quality total RNA from peach fruits (Prunus persica. Isolating high-quality RNA from fruit tissue is often difficult due to large quantities of polysaccharides and polyphenolic compounds that accumulate in this tissue and co-purify with the RNA. Here we demonstrate that a modified version of the method used to isolate RNA from pine trees and the woody plant Cinnamomun tenuipilum is ideal for isolating high quality RNA from the fruits of Prunus persica. This RNA may be used for many functional genomic based experiments such as RT-PCR and the construction of large-insert cDNA libraries.

  8. A highly infective plant-associated bacterium influences reproductive rates in pea aphids.

    Science.gov (United States)

    Hendry, Tory A; Clark, Kelley J; Baltrus, David A

    2016-02-01

    Pea aphids, Acyrthosiphon pisum, have the potential to increase reproduction as a defence against pathogens, though how frequently this occurs or how infection with live pathogens influences this response is not well understood. Here we determine the minimum infective dose of an environmentally common bacterium and possible aphid pathogen, Pseudomonas syringae, to determine the likelihood of pathogenic effects to pea aphids. Additionally, we used P. syringae infection to investigate how live pathogens may alter reproductive rates. We found that oral bacterial exposure decreased subsequent survival of aphids in a dose-dependent manner and we estimate that ingestion of less than 10 bacterial cells is sufficient to increase aphid mortality. Pathogen dose was positively related to aphid reproduction. Aphids exposed to low bacterial doses showed decreased, although statistically indistinguishable, fecundity compared to controls. Aphids exposed to high doses reproduced significantly more than low dose treatments and also more, but not significantly so, than controls. These results are consistent with previous studies suggesting that pea aphids may use fecundity compensation as a response to pathogens. Consequently, even low levels of exposure to a common plant-associated bacterium may therefore have significant effects on pea aphid survival and reproduction.

  9. Aphid facultative symbionts reduce survival of the predatory lady beetle Hippodamia convergens

    Science.gov (United States)

    2014-01-01

    Background Non-essential facultative endosymbionts can provide their hosts with protection from parasites, pathogens, and predators. For example, two facultative bacterial symbionts of the pea aphid (Acyrthosiphon pisum), Serratia symbiotica and Hamiltonella defensa, protect their hosts from parasitism by two species of parasitoid wasp. Previous studies have not explored whether facultative symbionts also play a defensive role against predation in this system. We tested whether feeding on aphids harboring different facultative symbionts affected the fitness of an aphid predator, the lady beetle Hippodamia convergens. Results While these aphid faculative symbionts did not deter lady beetle feeding, they did decrease survival of lady beetle larvae. Lady beetle larvae fed a diet of aphids with facultative symbionts had significantly reduced survival from egg hatching to pupation and therefore had reduced survival to adult emergence. Additionally, lady beetle adults fed aphids with facultative symbionts were significantly heavier than those fed facultative symbiont-free aphids, though development time was not significantly different. Conclusions Aphids reproduce clonally and are often found in large groups. Thus, aphid symbionts, by reducing the fitness of the aphid predator H. convergens, may indirectly defend their hosts’ clonal descendants against predation. These findings highlight the often far-reaching effects that symbionts can have in ecological systems. PMID:24555501

  10. A highly infective plant-associated bacterium influences reproductive rates in pea aphids

    Science.gov (United States)

    Hendry, Tory A.; Clark, Kelley J.; Baltrus, David A.

    2016-01-01

    Pea aphids, Acyrthosiphon pisum, have the potential to increase reproduction as a defence against pathogens, though how frequently this occurs or how infection with live pathogens influences this response is not well understood. Here we determine the minimum infective dose of an environmentally common bacterium and possible aphid pathogen, Pseudomonas syringae, to determine the likelihood of pathogenic effects to pea aphids. Additionally, we used P. syringae infection to investigate how live pathogens may alter reproductive rates. We found that oral bacterial exposure decreased subsequent survival of aphids in a dose-dependent manner and we estimate that ingestion of less than 10 bacterial cells is sufficient to increase aphid mortality. Pathogen dose was positively related to aphid reproduction. Aphids exposed to low bacterial doses showed decreased, although statistically indistinguishable, fecundity compared to controls. Aphids exposed to high doses reproduced significantly more than low dose treatments and also more, but not significantly so, than controls. These results are consistent with previous studies suggesting that pea aphids may use fecundity compensation as a response to pathogens. Consequently, even low levels of exposure to a common plant-associated bacterium may therefore have significant effects on pea aphid survival and reproduction. PMID:26998321

  11. Application of plant growth regulators mitigates chlorotic foliar injury by the black pecan aphid (Hemiptera: Aphididae).

    Science.gov (United States)

    Cottrell, Ted E; Wood, Bruce W; Ni, Xinzhi

    2010-11-01

    Black pecan aphid, Melanocallis caryaefoliae (Davis) (Hemiptera: Aphididae), feeding elicits localized chlorotic injury to pecan foliage [Carya illinoinensis (Wangenh.) K Koch] and apparent acceleration of leaf senescence and defoliation. The ability of certain plant growth regulators (PGRs) (forchlorfenuron, gibberellic acid and aviglycine) to prevent M. caryaefoliae from triggering pecan leaf chlorosis and senescence-like processes was evaluated on two dates in both 2006 and 2007. Treatments were applied to orchard foliage and used in laboratory leaf-disc bioassays to assess possible reduction in aphid-elicited chlorosis and concomitant effects on aphid mortality and development. Foliage pretreated with forchlorfenuron + gibberellic acid prior to being challenged with aphids resulted in significantly less aphid-elicited chlorosis than did control or aviglycine-treated leaf discs. No PGR affected aphid mortality; however, development time was increased by forchlorfenuron + gibberellic acid in 2006 and by aviglycine + gibberellic acid on one date in 2007. Certain PGRs possess the potential for usage on pecan to protect foliar canopies from M. caryaefoliae via changes in the susceptibility of the host leaf to senescence-like factors being introduced by feeding aphids. This protective effect on host foliage and the associated suppressive effect on development of feeding aphids might also be relevant to pest management programs on other aphid-crop systems in which aphid-elicited chlorosis and senescence-like processes can limit profitability. Published 2010 by John Wiley & Sons, Ltd.

  12. Transgenic plants expressing the coat protein gene of cowpea aphid ...

    African Journals Online (AJOL)

    Cowpea aphid-borne mosaic virus (CABMV) is a potyvirus that infects cowpea causing significant yield reduction. However, there is no durable natural resistance to the virus within the crop and genetic engineering for virus resistance was not possible because of a lack of an efficient, reliable and reproducible cowpea ...

  13. Predator efficiency reconsidered for a ladybird-aphid system

    Czech Academy of Sciences Publication Activity Database

    Kindlmann, Pavel; Yasuda, H.; Kajita, Y.; Sato, S.; Dixon, Anthony F. G.

    2015-01-01

    Roč. 3, mar (2015), s. 27 ISSN 2296-701X R&D Projects: GA MŠk(CZ) LO1415; GA ČR GB14-36098G Institutional support: RVO:67179843 Keywords : biological control * generation time ratio * population dynamics * predator-prey systems * ladybirds * aphids Subject RIV: EH - Ecology, Behaviour

  14. Local predators attack exotic aphid Brachycaudus divaricatae in Lithuania

    Czech Academy of Sciences Publication Activity Database

    Danilov, J.; Rakauskas, R.; Havelka, Jan; Starý, Petr

    2016-01-01

    Roč. 69, č. 2 (2016), s. 263-269 ISSN 1721-8861 Institutional support: RVO:60077344 Keywords : Prunus * Aphids * Brachycaudus divaricatae Subject RIV: EH - Ecology, Behaviour Impact factor: 1.051, year: 2016 http://www.bulletinofinsectology.org/pdfarticles/vol69-2016-263-269danilov.pdf

  15. Is the response of aphids to alarm pheromone stable?

    Czech Academy of Sciences Publication Activity Database

    Thieme, T.; Dixon, Anthony F. G.

    2015-01-01

    Roč. 139, č. 10 (2015), s. 741-746 ISSN 0931-2048 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : (E)-β-farnesene * dropping response * habituation * Leguminosae * pea aphid Subject RIV: EH - Ecology, Behaviour Impact factor: 1.517, year: 2015

  16. Ecdysone signaling underlies the pea aphid transgenerational wing polyphenism.

    Science.gov (United States)

    Vellichirammal, Neetha Nanoth; Gupta, Purba; Hall, Tannice A; Brisson, Jennifer A

    2017-02-07

    The wing polyphenism of pea aphids is a compelling laboratory model with which to study the molecular mechanisms underlying phenotypic plasticity. In this polyphenism, environmental stressors such as high aphid density cause asexual, viviparous adult female aphids to alter the developmental fate of their embryos from wingless to winged morphs. This polyphenism is transgenerational, in that the pea aphid mother experiences the environmental signals, but it is her offspring that are affected. Previous research suggested that the steroid hormone ecdysone may play a role in this polyphenism. Here, we analyzed ecdysone-related gene expression patterns and found that they were consistent with a down-regulation of the ecdysone pathway being involved in the production of winged offspring. We therefore predicted that reduced ecdysone signaling would result in more winged offspring. Experimental injections of ecdysone or its analog resulted in a decreased production of winged offspring. Conversely, interfering with ecdysone signaling using an ecdysone receptor antagonist or knocking down the ecdysone receptor gene with RNAi resulted in an increased production of winged offspring. Our results are therefore consistent with the idea that ecdysone plays a causative role in the regulation of the proportion of winged offspring produced in response to crowding in this polyphenism. Our results also show that an environmentally regulated maternal hormone can mediate phenotype production in the next generation, as well as provide significant insight into the molecular mechanisms underlying the functioning of transgenerational phenotypic plasticity.

  17. Trichoderma harzianum enhances tomato indirect defense against aphids.

    Science.gov (United States)

    Coppola, Mariangela; Cascone, Pasquale; Chiusano, Maria Luisa; Colantuono, Chiara; Lorito, Matteo; Pennacchio, Francesco; Rao, Rosa; Woo, Sheridan Lois; Guerrieri, Emilio; Digilio, Maria Cristina

    2017-12-01

    Many fungal root symbionts of the genus Trichoderma are well-known for their beneficial effects on agronomic performance and protection against plant pathogens; moreover, they may enhance protection from insect pests, by triggering plant resistance mechanisms. Defense barriers against insects are induced by the activation of metabolic pathways involved in the production of defense-related plant compounds, either directly active against herbivore insects, or exerting an indirect effect, by increasing the attraction of herbivore natural enemies. In a model system composed of the tomato plant, the aphid Macrosiphum euphorbiae and the parasitoid Aphidius ervi, plant metabolic changes induced by Trichoderma harzianum and their effects on higher trophic levels have been assessed. T. harzianum T22 treatments induce a primed state that upon aphid attacks leads to an increased attraction of aphid parasitoids, mediated by the enhanced production of volatile organic compounds (VOCs) that are known to induce Aphidius ervi flight. Transcriptome sequencing of T22-treated plants infested by aphids showed a remarkable upregulation of genes involved in terpenoids biosynthesis and salicylic acid pathway, which are consistent with the observed flight response of A. ervi and the VOC bouquet profile underlying this behavioral response. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  18. Short Communication: Occurrence of the pea aphid, Acyrthosiphon ...

    African Journals Online (AJOL)

    The occurrence of pea aphid, Acyrthosiphon pisum (Harris) (Homoptera: Aphididae), on wild annual and perennial leguminous plants was studied at two locations (Adet and Wondata) in West Gojam, Ethiopia in 1999/2000 seasons. Annual and perennial leguminous wild or volunteer plants encountered in the study areas ...

  19. Resistance source to cowpea aphid (Aphis craccivora Koch) in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-18

    Jul 18, 2008 ... The present study evaluated the resistance of 7 varieties of the broad bean Vicia faba L. to cowpea aphid, Aphis craccivora Koch, 1854. These landraces from the region of Biskra (in the south of Algeria) were selected in an initial field trial and subjected to further testing in the greenhouse. Landrace V51.

  20. Recent characterization of cowpea aphid-borne mosaic virus ...

    African Journals Online (AJOL)

    Woodiness disease is the most important disorder of passion fruit worldwide. The causal agent in Brazil is the Cowpea aphid-borne mosaic virus (CABMV), and despite the economic relevance of passion fruit for agriculture there have been recently very few studies about this virus in Brazil and worldwide. This work reveals ...

  1. Benzyl isothiocyanate, a major component from the roots of Salvadora persica is highly active against Gram-negative bacteria.

    Directory of Open Access Journals (Sweden)

    Abier Sofrata

    Full Text Available Plants produce a number of antimicrobial substances and the roots of the shrub Salvadora persica have been demonstrated to possess antimicrobial activity. Sticks from the roots of S. persica, Miswak sticks, have been used for centuries as a traditional method of cleaning teeth. Diverging reports on the chemical nature and antimicrobial repertoire of the chewing sticks from S. persica led us to explore its antibacterial properties against a panel of pathogenic or commensal bacteria and to identify the antibacterial component/s by methodical chemical characterization. S. persica root essential oil was prepared by steam distillation and solid-phase microextraction was used to sample volatiles released from fresh root. The active compound was identified by gas chromatography-mass spectrometry and antibacterial assays. The antibacterial compound was isolated using medium-pressure liquid chromatography. Transmission electron microscopy was used to visualize the effect on bacterial cells. The main antibacterial component of both S. persica root extracts and volatiles was benzyl isothiocyanate. Root extracts as well as commercial synthetic benzyl isothiocyanate exhibited rapid and strong bactericidal effect against oral pathogens involved in periodontal disease as well as against other Gram-negative bacteria, while Gram-positive bacteria mainly displayed growth inhibition or remained unaffected. The short exposure needed to obtain bactericidal effect implies that the chewing sticks and the essential oil may have a specific role in treatment of periodontal disease in reducing Gram-negative periodontal pathogens. Our results indicate the need for further investigation into the mechanism of the specific killing of Gram-negative bacteria by S. persica root stick extracts and its active component benzyl isothiocyanate.

  2. An in vivo evaluation of antimicrobial effects of Persica herbal mouthwash on Candida albicans and Enterococcus faecalis

    Directory of Open Access Journals (Sweden)

    Leila Shafiei Bafti

    2013-11-01

    Full Text Available BACKGROUND AND AIM: Due to their antimicrobial and dental plaque control activity, mouthwashes lead to an improvement in oral health. Although chemical mouthwashes have demonstrated the greatest antimicrobial and anti-inflammatory effects, their usage has been limited because of their numerous side effects. This study was conducted in vivo to determine the antibacterial and antifungal effects of Persica herbal mouthwash containing Salvadore persica, mint, and yarrow in comparison with a placebo. METHODS: In this experimental, single-blind study, 80 dentistry students, who were eager to participate in the study, were randomly allocated into two groups of forty. One group was given Persica while the other group received a placebo. They were asked to apply the mouthwash twice a day for four weeks. The participants were unaware of the mouthwash type. Saliva sampling was conducted in all cases before and after mouthwash application and the samples were dispatched to a laboratory for microbial culture (Sabouraud and Clark-Kenner media culture. After two weeks, the washout times in groups were swapped with each other and the sampling was conducted just like before. Finally, the data were analyzed using independent and paired t-test. P values of less than 0.05 were considered significant. RESULTS: The mean age of participants was 23.20 ± 4.14. Persica mouthwash significantly decreased the count of Candida albicans (1.43 ± 0.15 to 0.8 ± 0.35 (P < 0.001 and Enterococcus faecalis (0.93 ± 1.76 to 0.71 ± 2.10 (P = 0.008. CONCLUSION: The statistical tests revealed that applying Persica mouthwash would result in a significant decrease in the Candida albicans and Enterococcus faecalis count. Regarding the significant and desirable effect of Persica on Candida albicans and Enterococcus faecalis, and its herbal origin, its application could be suggested to reduce oral microbes and infections from fungi and enterococci.

  3. Extraordinary proliferation of microorganisms in aposymbiotic pea aphids, Acyrthosiphon pisum.

    Science.gov (United States)

    Nakabachi, Atsushi; Ishikawa, Hajime; Kudo, Toshiaki

    2003-03-01

    Aposymbiotic pea aphids, which were deprived of their intracellular symbiotic bacterium, Buchnera, exhibit growth retardation and no fecundity. High performance liquid chromatographic (HPLC) analysis revealed that these aposymbiotic aphids, when reared on broad bean plants, accumulated a large amount of histamine. To assess the possibility of extraordinary proliferation of microorganisms other than Buchnera, we enumerated eubacteria and fungi in aphids using the real-time quantitative PCR method that targets genes encoding small-subunit rRNAs. The result showed that these microorganisms were extremely abundant in the aposymbiotic aphids reared on plants. Microbial communities in aposymbiotic aphids were further profiled by phylogenetic analysis of small-subunit rDNAs. Of 172 nonchimeric sequences of fungal 18S rDNAs, 138 (80.2%) belonged to the phylum Ascomycota. Among them, 21 clustered within a monophyletic group consisting of insect-pathogenic fungi and yeast-like symbionts of homopteran insects. Thirty-one (18.0%), two (1.2%), and one (0.6%) clones were clustered within the Basidiomycota, Zygomycota, and Oomycota, respectively. Of 167 nonchimeric sequences of eubacterial 16S rDNAs, 84 (50.3%) belonged to the gamma-subdivision of Proteobacteria to which most primary endosymbionts of insects and prolific histamine producers belong. Forty (24.0%), 25 (15.0%), 10 (6.0%), and five (3.0%) clones were clustered within alpha-Proteobacteria, Cytophaga-Flavobacterium-Bacteroides (CFB) group, Actinobacteria, and beta-Proteobacteria, respectively. Three had no phylogenetic association with known taxonomic divisions. None of the sequences studied in this study coincided exactly with those deposited in GenBank.

  4. Biological activity of various extracts and phenolic content of Micromeria persica and M. hedgei

    Directory of Open Access Journals (Sweden)

    A. Sonboli

    2015-07-01

    Full Text Available Background and objectives: Lamiaceae members have long been used in Iranian Traditional Medicine (ITM for their various medicinal properties. The main objective of this study was to evaluate the antioxidant capacity and antimicrobial activity as well as the total phenolic content (TPC of the various extracts and fractions of two Iranian endemic Micromeria (M. persica and M. hedgei. Methods: Plant materials were extracted with methanol by maceration for 24 h. Then, the methanol extract (ME was further fractionated to obtain the chloroform (M-C and water (M-W fractions. The antimicrobial activity was investigated against seven Gram-positive and -negative bacteria and three fungi. Antioxidant activity was evaluated by DPPH method and the data were compared with their total phenolic contents. Results: The nonpolar sub fractions (M-C of both plants were active against pathogens especially Staphylococcus epidermidis and Bacillus subtilis with equal MIC values of3.75 and 7.5 mg/mL, respectively. Antioxidant activity evaluation showed that the polar fractions of both Micromeria species were stronger than nonpolar fractions, while the more considerable effect was observed for the water soluble fraction of the extract for M. hedgei with IC50 value of 59.1 µg/mL in comparison to M. persica (IC50 = 76.3 µg/mL. The highest gallic acid equivalent (GAE total phenolic contents was found to be 263.5 ± 1.5 and 256.3 ± 3.1 mg/g dry weight for M-W extracts of M. hedgei and M. persica, respectively. Conclusion: The results indicated that the two species might be suggested as new potential sources of natural antioxidant and antimicrobial agents.

  5. Field and laboratory evaluations of soybean lines against soybean aphid (Hemiptera: Aphididae).

    Science.gov (United States)

    Hesler, Louis S; Prischmann, Deirdre A; Dashiell, Kenton E

    2012-04-01

    The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a major pest of soybean, Glycine max (L.). Merr., that significantly reduces yield in northern production areas of North America. Insecticides are widely used to control soybean aphid outbreaks, but efforts are underway to develop host plant resistance as an effective alternative management strategy. Here, previously identified resistant lines were evaluated in laboratory tests against field-collected populations of soybean aphid and in field-plot tests over 2 yr in South Dakota. Six lines previously identified with resistance to soybean aphid--Jackson, Dowling, K1639, Cobb, Palmetto and Sennari--were resistant in this study, but relatively high aphid counts on Tie-feng 8 in field plots contrasted with its previously reported resistance. Bhart-PI 165989 showed resistance in one of two laboratory tests, but it had relatively large aphid infestations in both years of field tests. Intermediate levels of soybean aphid occurred in field plots on lines previously shown to have strong (Sugao Zairai, PI 230977, and D75-10169) or moderate resistance to soybean aphid (G93-9223, Bragg, Braxton, and Tracy-M). Sugao Zairai also failed to have a significant proportion of resistant plants in two laboratory tests against aphids field-collected in 2008, but it was resistant in laboratory tests with aphids collected in 2002, 2005, and 2006. Overall, results showed that lines with Rag (i.e., Jackson) or Rag1 gene (i.e., Dowling) had low aphid numbers, whereas lines with Rag2 (i.e., Sugao Zairai, Sennari) had mixed results. Collectively, responses of soybean aphid populations in laboratory and field tests in 2008 resembled a virulence pattern reported previously for biotype 3 soybean aphids, but virulence in soybean aphid populations was variable and dynamic over years of the study. These results, coupled with previous reports of biotypes virulent to Rag1, suggest that deployment of lines with a single aphid

  6. Role of the aphid species and their feeding locations in parasitization behavior of Aphelinus abdominalis, a parasitoid of the lettuce aphid Nasonovia ribisnigri.

    Science.gov (United States)

    Shrestha, Govinda; Skovgård, Henrik; Reddy, Gadi V P; Steenberg, Tove; Enkegaard, Annie

    2017-01-01

    Aphid species feeding on lettuce occupy distinct feeding sites: the lettuce aphid Nasonovia ribisnigri prefers to feed on heart leaves, whereas the potato aphid Macrosiphum euphorbiae feeds only on outer leaves. The aphid parasitoid Aphelinus abdominalis, known to be able to regulate M. euphorbiae on many crops, has recently been indicated as a promising biocontrol candidate also for use against N. ribisnigri, a major pest of lettuce. This study therefore examined A. abdominalis parasitization preference between N. ribisnigri and M. euphorbiae and its ability to parasitize aphids feeding on different parts of lettuce plants. In addition, life history traits of A. abdominalis on these aphid species were investigated. In no-choice laboratory experiments on leaf discs and 24 h exposure, A. abdominalis successfully parasitized 54% and 60% of the offered N. ribisnigri and M. euphorbiae, respectively, with no significant difference. In the corresponding choice experiment, however, A. abdominalis had a tendency for a significantly higher preference for M. euphorbiae (38%) compared to N. ribisnigri (30%). Growth chamber experiments on whole plants demonstrated that A. abdominalis was able to parasitize aphids, regardless of their feeding locations on lettuce plants. However, aphid feeding behavior had a significant effect on the parasitization rate. A. abdominalis parasitized significantly higher percentages of M. euphorbiae or N. ribisnigri when aphids were exposed separately to parasitoids on whole lettuce plants as compared with N. ribisnigri exposed only on heart leaf. A significant preference of A. abdominalis for M. euphorbiae compared to N. ribisnigri was also observed in the growth chamber choice experiment. A high percentage of adult emergence (> 84%) and female-biased sex ratio (> 83%) were found irrespective of the aphid species.

  7. Role of the aphid species and their feeding locations in parasitization behavior of Aphelinus abdominalis, a parasitoid of the lettuce aphid Nasonovia ribisnigri.

    Directory of Open Access Journals (Sweden)

    Govinda Shrestha

    Full Text Available Aphid species feeding on lettuce occupy distinct feeding sites: the lettuce aphid Nasonovia ribisnigri prefers to feed on heart leaves, whereas the potato aphid Macrosiphum euphorbiae feeds only on outer leaves. The aphid parasitoid Aphelinus abdominalis, known to be able to regulate M. euphorbiae on many crops, has recently been indicated as a promising biocontrol candidate also for use against N. ribisnigri, a major pest of lettuce. This study therefore examined A. abdominalis parasitization preference between N. ribisnigri and M. euphorbiae and its ability to parasitize aphids feeding on different parts of lettuce plants. In addition, life history traits of A. abdominalis on these aphid species were investigated. In no-choice laboratory experiments on leaf discs and 24 h exposure, A. abdominalis successfully parasitized 54% and 60% of the offered N. ribisnigri and M. euphorbiae, respectively, with no significant difference. In the corresponding choice experiment, however, A. abdominalis had a tendency for a significantly higher preference for M. euphorbiae (38% compared to N. ribisnigri (30%. Growth chamber experiments on whole plants demonstrated that A. abdominalis was able to parasitize aphids, regardless of their feeding locations on lettuce plants. However, aphid feeding behavior had a significant effect on the parasitization rate. A. abdominalis parasitized significantly higher percentages of M. euphorbiae or N. ribisnigri when aphids were exposed separately to parasitoids on whole lettuce plants as compared with N. ribisnigri exposed only on heart leaf. A significant preference of A. abdominalis for M. euphorbiae compared to N. ribisnigri was also observed in the growth chamber choice experiment. A high percentage of adult emergence (> 84% and female-biased sex ratio (> 83% were found irrespective of the aphid species.

  8. Role of the aphid species and their feeding locations in parasitization behavior of Aphelinus abdominalis, a parasitoid of the lettuce aphid Nasonovia ribisnigri

    Science.gov (United States)

    Shrestha, Govinda; Skovgård, Henrik; Reddy, Gadi V. P.; Steenberg, Tove; Enkegaard, Annie

    2017-01-01

    Aphid species feeding on lettuce occupy distinct feeding sites: the lettuce aphid Nasonovia ribisnigri prefers to feed on heart leaves, whereas the potato aphid Macrosiphum euphorbiae feeds only on outer leaves. The aphid parasitoid Aphelinus abdominalis, known to be able to regulate M. euphorbiae on many crops, has recently been indicated as a promising biocontrol candidate also for use against N. ribisnigri, a major pest of lettuce. This study therefore examined A. abdominalis parasitization preference between N. ribisnigri and M. euphorbiae and its ability to parasitize aphids feeding on different parts of lettuce plants. In addition, life history traits of A. abdominalis on these aphid species were investigated. In no-choice laboratory experiments on leaf discs and 24 h exposure, A. abdominalis successfully parasitized 54% and 60% of the offered N. ribisnigri and M. euphorbiae, respectively, with no significant difference. In the corresponding choice experiment, however, A. abdominalis had a tendency for a significantly higher preference for M. euphorbiae (38%) compared to N. ribisnigri (30%). Growth chamber experiments on whole plants demonstrated that A. abdominalis was able to parasitize aphids, regardless of their feeding locations on lettuce plants. However, aphid feeding behavior had a significant effect on the parasitization rate. A. abdominalis parasitized significantly higher percentages of M. euphorbiae or N. ribisnigri when aphids were exposed separately to parasitoids on whole lettuce plants as compared with N. ribisnigri exposed only on heart leaf. A significant preference of A. abdominalis for M. euphorbiae compared to N. ribisnigri was also observed in the growth chamber choice experiment. A high percentage of adult emergence (> 84%) and female-biased sex ratio (> 83%) were found irrespective of the aphid species. PMID:28854232

  9. Peroxiredoxin 1 protects the pea aphid Acyrthosiphon pisum from oxidative stress induced by Micrococcus luteus infection.

    Science.gov (United States)

    Zhang, Yongdong; Lu, Zhiqiang

    2015-05-01

    Reactive oxygen species (ROSs) are generated in organisms in response to infections caused by invading microbes. However, excessive ROSs will inflict oxidative damage on the host. Peroxiredoxins (Prxs) are antioxidative enzymes that may eliminate ROSs efficiently. In this study, ApPrx1 from the pea aphid Acyrthosiphon pisum was cloned, and its function was investigated in vitro and in vivo. In the presence of DTT, recombinant ApPrx1 protein from Escherichia coli showed antioxidative activity by eliminating H2O2 effectively. The H2O2 levels were significantly higher in Micrococcus luteus-infected aphids than in uninfected aphids, and ApPrx1 expression was remarkably up-regulated when the aphids were infected with M. luteus or injected with H2O2. When ApPrx1 expression was reduced by dsRNA injection, the survival of the aphids decreased significantly after M. luteus infection. Knockdown of ApPrx1 decreased M. luteus loads inside the aphids 48h post-infection. While under infection conditions, the H2O2 levels were much higher in ApPrx1 knockdown aphids than in dsGFP-injected aphids, indicating that the decreased survival of the aphids was caused by increased oxidative stress. Taken together, our results reveal that ApPrx1 plays a protective role in oxidative stress caused by bacterial infection. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Aphid Infestation Increases Fusarium langsethiae and T-2 and HT-2 Mycotoxins in Wheat

    Science.gov (United States)

    Drakulic, Jassy; Ajigboye, Olubukola; Swarup, Ranjan; Bruce, Toby

    2016-01-01

    ABSTRACT Fusarium langsethiae is a fungal pathogen of cereal crops that is an increasing problem in northern Europe, but much of its epidemiology is poorly understood. The species produces the mycotoxins T-2 and HT-2, which are highly toxic. It was hypothesized that grain aphids, Sitobion avenae, may transmit F. langsethiae inoculum between wheat plants, and a series of transmission experiments and volatile chemical analyses was performed to test this. Manual translocation of aphids from inoculated to uninfected hosts resulted in pathogen DNA accumulation in hosts. However, the free movement of wingless aphids from infected to healthy plants did not. The addition of winged aphids reared on F. langsethiae-inoculated wheat seedlings to wheat plants also did not achieve successful pathogen transfer. While our data suggested that aphid transmission of the pathogen was not very efficient, we observed an increase in disease when aphids were present. After seedling inoculation, an increase in pathogen DNA accumulation in seedling leaves was observed upon treatment with aphids. Furthermore, the presence of aphids on wheat plants with F. langsethiae-inoculated ears not only led to a rise in the amount of F. langsethiae DNA in infected grain but also to an increase in the concentrations of T-2 and HT-2 toxins, with more than 3-fold higher toxin levels than diseased plants without aphids. This work highlights that aphids increase the susceptibility of wheat host plants to F. langsethiae and that aphid infestation is a risk factor for accumulating increased levels of T-2 and HT-2 in wheat products. IMPORTANCE Fusarium langsethiae is shown here to cause increased contamination levels of grain with toxins produced by fungus when aphids share the host plant. This effect has also recently been demonstrated with Fusarium graminearum, yet the two fungal species show stark differences in their effect on aphid populations. In both cases, aphids improve the ability of the pathogens to

  11. Proteomic investigation of aphid honeydew reveals an unexpected diversity of proteins.

    Directory of Open Access Journals (Sweden)

    Ahmed Sabri

    Full Text Available Aphids feed on the phloem sap of plants, and are the most common honeydew-producing insects. While aphid honeydew is primarily considered to comprise sugars and amino acids, its protein diversity has yet to be documented. Here, we report on the investigation of the honeydew proteome from the pea aphid Acyrthosiphon pisum. Using a two-Dimensional Differential in-Gel Electrophoresis (2D-Dige approach, more than 140 spots were isolated, demonstrating that aphid honeydew also represents a diverse source of proteins. About 66% of the isolated spots were identified through mass spectrometry analysis, revealing that the protein diversity of aphid honeydew originates from several organisms (i.e. the host aphid and its microbiota, including endosymbiotic bacteria and gut flora. Interestingly, our experiments also allowed to identify some proteins like chaperonin, GroEL and Dnak chaperones, elongation factor Tu (EF-Tu, and flagellin that might act as mediators in the plant-aphid interaction. In addition to providing the first aphid honeydew proteome analysis, we propose to reconsider the importance of this substance, mainly acknowledged to be a waste product, from the aphid ecology perspective.

  12. Bacteria may contribute to distant species recognition in ant-aphid mutualistic relationships.

    Science.gov (United States)

    Fischer, Christophe Y; Detrain, Claire; Thonart, Philippe; Haubruge, Eric; Francis, Frédéric; Verheggen, François J; Lognay, Georges C

    2017-04-01

    Mutualistic interactions between ant and aphid species have been the subject of considerable historical and contemporary investigations, the primary benefits being cleaning and protection for the aphids and carbohydrate-rich honeydew for the ants. Questions remained, however, as to the volatile semiochemical factor influencing this relationship. A recent study highlighted the role of bacterial honeydew volatile compounds in ant attraction. Here, ant's ability to distantly discriminate 2 aphid species was investigated based on bacterial honeydew semiochemicals emissions using a two-way olfactometer. Both the mutualistic aphid Aphis fabae L. and the nonmyrmecophilous aphid Acyrthosiphon pisum Harris were found to be attractive for the ant Lasius niger L. The level of attraction was similar in both assays (control vs. one of the aphid species). However, when given a choice between these 2 aphid species, ants showed a significant preference for Aphis fabae. Honeydew volatiles, mostly from bacterial origins, are known to be a key element in ant attraction. Using the same olfactometry protocol, the relative attractiveness of volatiles emitted by honeydews collected from each aphid species and by bacteria isolated from each honeydew was investigated. Again, ants significantly preferred volatiles released by Aphis fabae honeydew and bacteria. This information suggests that microbial honeydew volatiles enable ants to distantly discriminate aphid species. These results strengthen the interest of studying the occurrence and potential impact of microorganisms in insect symbioses. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  13. Influences of pea morphology and interacting factors on pea aphid (Homoptera: Aphididae) reproduction.

    Science.gov (United States)

    Buchman, N; Cuddington, K

    2009-08-01

    It has been claimed that plant architecture can alter aphid reproductive rates, but the mechanism driving this effect has not been identified. We studied interactions between plant architecture, aphid density, environmental conditions, and nutrient availability on the reproduction of pea aphids [Acyrthosiphon pisum (Harris)] using four near-isogenic peas (Pisum sativum L.) that differ in morphology. Manipulations of aphid density (1, 5, and 10 adults per plant) allowed us to examine any effects of plant morphology on crowding and consequently reproduction. Pea morphology per se did not alter pea aphid crowding, as measured by mean nearest neighbor distance, and there was no effect on reproduction. In addition, reproduction increased with increasing adult density, indicating positive density dependence. In a separate experiment, peas were fertilized to determine whether differences between nutrient availability of the four different morphologies might drive any observed differences in aphid reproduction. Although plant nitrogen content was altered by fertilization treatments, this did not have an impact on aphid reproduction. Greenhouse experiments, however, suggested that pea morphology can interact with environmental conditions to reduce aphid reproduction under some conditions. We conclude that plant morphology only influences aphid reproduction when environmental conditions are less than optimal.

  14. THE ROLE OF BACTERIAL SYMBIONTS IN AMINO ACID COMPOSITION OF BLACK BEAN APHIDS

    Institute of Scientific and Technical Information of China (English)

    MingGan; De-ChengDing; Xue-xiaMiao

    2003-01-01

    To evaluate the role of bacterial symbionts ( Buchnera spp. ) in the black bean aphids ( Aphis craccivora Koch), the aphids were treated with the antibiotic, rifampicin, to eliminate their intracellular symbiotic bacteria. Analysis of protein and amino acid concentration in 7-day-old of aposymbiotic aphids showed that the total protein content per mg fresh weight was significantly reduced by 29 %, but free amino acid titers were increased by 17% . The ratio of the essential amino acids was in general only around 20% essential amino acids in phloem sap of broad bean, whereas it was 44% and 37% in symbiotic and aposymbiotic aphids, respectively,suggesting that the composition of the free amino acids was unbalanced. For example, the essential amino acid,threonine represented 21. 6% of essential amino acids in symbiotic aphids, but it was only 16.7% in aposymbiotic aphids. Likewise, two nonessential amino acids, tyrosine and serine, represented 8.9% and 5.6% of total amino acids in symbiontic aphids, respectively, but they enhanced to 21.1% and 13.6% in aposymbiotic aphids. It seems likely that the elevated free amino acid concentration in aposymbiotic aphids was caused by the limited protein anabolism as the result of the unbalanced amino acid composition.

  15. EFFICACY OF IMIDACLOPRID (CONFIDOR 200 SL AGAINST APHIDS INFESTING WHEAT CROP

    Directory of Open Access Journals (Sweden)

    N Joshi

    2010-02-01

    Full Text Available Imidacloprid (Confidor 200 SL was evaluated either alone or with a fungicide (Tilt 0.01% against wheat aphids. There were seven different treatments, including an untreated control. All the treatments were replicated three times in a similar field environment. Population of wheat aphids was recorded on randomly selected five plants in each plot at different intervals, both before and after the spraying. Confidor 200 SL @ 400 ml/ha treatment was found most effective against wheat aphids. However, mixing of Confidor 200 SL @ 100 ml/ha with Tilt @ 0.01 %, was found significantly least effective for wheat aphids control.

  16. Aphid secondary symbionts do not affect prey attractiveness to two species of predatory lady beetles.

    Directory of Open Access Journals (Sweden)

    Jennifer L Kovacs

    Full Text Available Heritable symbionts have been found to mediate interactions between host species and their natural enemies in a variety of organisms. Aphids, their facultative symbionts, and their potential fitness effects have been particularly well-studied. For example, the aphid facultative symbiont Regiella can protect its host from infection from a fungal pathogen, and aphids with Hamiltonella are less likely to be parasitized by parasitic wasps. Recent work has also found there to be negative fitness effects for the larvae of two species of aphidophagous lady beetles that consumed aphids with facultative symbionts. In both species, larvae that consumed aphids with secondary symbionts were significantly less likely to survive to adulthood. In this study we tested whether adult Harmonia axyridis and Hippodamia convergens lady beetles avoided aphids with symbionts in a series of choice experiments. Adults of both lady beetle species were as likely to choose aphids with symbionts as those without, despite the potential negative fitness effects associated with consuming aphids with facultative symbionts. This may suggest that under natural conditions aphid secondary symbionts are not a significant source of selection for predatory lady beetles.

  17. Coexistence of three specialist aphids on common milkweed, Asclepias syriaca.

    Science.gov (United States)

    Smith, R A; Mooney, K A; Agrawal, A A

    2008-08-01

    Coexistence of host-specific herbivores on plants is believed to be governed by interspecific interactions, but few empirical studies have systematically unraveled these dynamics. We investigated the role of several factors in promoting coexistence among the aphids Aphis nerii, Aphis asclepiadis, and Myzocallis asclepiadis that all specialize on common milkweed (Asclepias syriaca). Competitive exclusion is thought to occur when interspecific competition is stronger than intraspecific competition. Consequently, we investigated whether predators, mutualists, or resource quality affected the strength of intra- vs. interspecific competition among aphids in factorial manipulations of competition with exposure to predation, ants, and variable plant genotypes in three separate experiments. In the predation x competition experiment, predators reduced aphid per capita growth by 66%, but the strength of intra- and interspecific competition did not depend on predators. In the ants x competition experiment, ants reduced per capita growth of A. nerii and M. asclepiadis (neither of which were mutualists with ants) by approximately one-half. In so doing, ants ameliorated the negative effects of these competitors on ant-tended A. asclepiadis by two-thirds, representing a novel benefit of ant-aphid mutualism. Nevertheless, ants alone did not explain the persistence of competitively inferior A. asclepiadis as, even in the presence of ants, interspecific competition remained stronger than intraspecific competition. In the plant genotype x competition experiment, both A. asclepiadis and M. asclepiadis were competitively inferior to A. nerii, with the strength of interspecific competition exceeding that of intraspecific competition by 83% and 23%, respectively. Yet these effects differed among milkweed genotypes, and there were one or more plant genotypes for each aphid species where coexistence was predicted. A synthesis of our results shows that predators play little or no role in

  18. NDVI to Detect Sugarcane Aphid Injury to Grain Sorghum.

    Science.gov (United States)

    Elliott, N C; Backoulou, G F; Brewer, M J; Giles, K L

    2015-06-01

    Multispectral remote sensing has potential to provide quick and inexpensive information on sugarcane aphid, Melanaphis sacchari (Zehntner), pest status in sorghum fields. We describe a study conducted to determine if injury caused by sugarcane aphid to sorghum plants in fields of grain sorghum could be detected using multispectral remote sensing from a fixed wing aircraft. A study was conducted in commercial grain sorghum fields in the Texas Gulf Coast region in June 2014. Twenty-six commercial grain sorghum fields were selected and rated for the level of injury to sorghum plants in the field caused by sugarcane aphid. Plant growth stage ranged from 5.0 (watery ripe) to 7.0 (hard dough) among fields; and plant injury rating from sugarcane aphid ranged from 1.0 (little or no injury) to 4.0 (>40% of plants displaying injury) among fields. The normalized differenced vegetation index (NDVI) is calculated from light reflectance in the red and near-infrared wavelength bands in multispectral imagery and is a common index of plant stress. High NDVI indicates low levels of stress and low NDVI indicates high stress. NDVI ranged from -0.07 to 0.26 among fields. The correlation between NDVI and plant injury rating was negative and significant, as was the correlation between NDVI and plant growth stage. The negative correlation of NDVI with injury rating indicated that plant stress increased with increasing plant injury. Reduced NDVI with increasing plant growth probably resulted from reduced photosynthetic activity in more mature plants. The correlation between plant injury rating and plant growth stage was positive and significant indicating that plant injury from sugarcane aphid increased as plants matured. The partial correlation of NDVI with plant injury rating was negative and significant indicating that NDVI decreased with increasing plant injury after adjusting for its association with plant growth stage. We demonstrated that remotely sensed imagery acquired from grain

  19. A case of canine borreliosis in Iran caused by Borrelia persica.

    Science.gov (United States)

    Shirani, Darush; Rakhshanpoor, Alaleh; Cutler, Sally Jane; Ghazinezhad, Behnaz; Naddaf, Saied Reza

    2016-04-01

    Tick-borne relapsing fever is an endemic disease in Iran, with most cases attributed to infection by Borrelia persica, which is transmitted by Ornithodoros tholozani soft ticks. Here, we report spirochetemia in blood of a puppy residing in Tehran, Iran. The causative species was identified by use of highly discriminative IGS sequencing; the 489 bp IGS sequence obtained in our study showed 99% identity (100% coverage) when compared with B. persica sequences derived from clinical cases or from O. tholozani ticks. Our IGS sequence also showed 99% similarity over 414 bp (85% coverage) with a strain from a domestic dog, and 96% over 328 bp (69% coverage) with a strain from a domestic cat. Pet-keeping in cosmopolitan cities like Tehran has become increasingly popular in recent years. Animals are often transported into the city in cages or cardboard boxes that might also harbor minute tick larvae and/or early stages of the nymphs bringing them into the urban environment. This may pose a threat to household members who buy and keep these puppies and as a result may come into close contact with infected ticks. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. A new ester coumarin from Ferula Persica wild, indigenous to Iran.

    Science.gov (United States)

    Razavi, Seyed Mehdi; Janani, Mehrnoush

    2015-01-01

    Ferula persica wild (Apiaceae) is a perennial herb indigenous to Iran. It has been used in folk medicine for treatment of diabetes, lowering of blood pressure and for antispasmodic, carminative, laxative and expectorant effects in central Iran. Dried ground roots of F. persica (150 g) were extracted sequentially with n-hexane, dichloromethane and methanol (MeOH), 500 ml each, using a Soxhlet apparatus. The n-hexane extract of the roots (3 g) was subjected to vacuum liquid chromatography on silica gel, eluting with solvent mixtures of increasing polarity: 100% n-hexane-ethyl acetate (EtOAc), to yield a number of fractions, Fraction 4 (80% EtOAc in n-hexane) was further analysed by preparative TLC (mobile phase was 12% acetone in chloroform) to yield a coumarin ester (10.1 mg, Rf = 0.31, blue florescent). The structure of the isolated compound was elucidated by spectroscopic means. The compound is 7-O-(4,8,12 -trihydroxy-4,8,12-trimethyl-tridecanoyl)-coumarin, named, ferulone C as a new natural product.

  1. Richness and epiphytic mosses cover variation on ironwood trees (Parrotia persica Pojark trunks

    Directory of Open Access Journals (Sweden)

    Seyedeh Rahimeh Yavarynik

    2016-06-01

    Full Text Available This research was conducted to determination and assess changes in richness and cover of epiphytic mosses on ironwood trees(Parrotia persica Pojark trunks along trunk elevation and slope aspect gradients, in lowland and protected forest of Natural Resource College of Tarbiat Modares University (Parts of western limit of Noor forest reserved. To do this, a number of 20 individual of ironwood trees with a diamerter higher than 40 cm were selected randomly in the study area. A rectangle with 40*30 cm in two geographical directions (Northern and Southern, in 4 height classes (from 0 to 160cm on the trunks was sampled and related characteristics were recorded. Results of floristic study showed that presence of 17 epiphytic mosses species and the endemic species Palamocladium euchloron among the species with highest presence and Brachytheciaceae family with 7 species were the most important taxa and family in the forest. Richness and cover percentage of epiphytic mosses had the highest averages in northern and lower parts of the trees trunk, this could be due to higher moisture in northern direction and lower parts of the trunk. Result of the study, well clarified the changes of distribution and abundance of the most important forest elements in relationship changes of geographical situation of Parrotia persica trunks.

  2. Green Approach for the Effective Reduction of Graphene Oxide Using Salvadora persica L. Root (Miswak) Extract

    Science.gov (United States)

    Khan, Mujeeb; Al-Marri, Abdulhadi H.; Khan, Merajuddin; Shaik, Mohammed Rafi; Mohri, Nils; Adil, Syed Farooq; Kuniyil, Mufsir; Alkhathlan, Hamad Z.; Al-Warthan, Abdulrahman; Tremel, Wolfgang; Tahir, Muhammad Nawaz; Siddiqui, Mohammed Rafiq H.

    2015-07-01

    Recently, green reduction of graphene oxide (GRO) using various natural materials, including plant extracts, has drawn significant attention among the scientific community. These methods are sustainable, low cost, and are more environmentally friendly than other standard methods of reduction. Herein, we report a facile and eco-friendly method for the bioreduction of GRO using Salvadora persica L. ( S. persica L.) roots (miswak) extract as a bioreductant. The as-prepared highly reduced graphene oxide (SP-HRG) was characterized using powder X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photoelectron (XPS) spectroscopy, and transmission electron microscopy (TEM). Various results have confirmed that the biomolecules present in the root extract of miswak not only act as a bioreductant but also functionalize the surface of SP-HRG by acting as a capping ligand to stabilize it in water and other solvents. The dispersion quality of SP-HRG in deionized water was investigated in detail by preparing different samples of SP-HRG with increasing concentration of root extract. Furthermore, the dispersibility of SP-HRG was also compared with chemically reduced graphene oxide (CRG). The developed eco-friendly method for the reduction of GRO could provide a better substitute for a large-scale production of dispersant-free graphene and graphene-based materials for various applications in both technological and biological fields such as electronics, nanomedicine, and bionic materials.

  3. Anatomy of Phyllodina persica (Bivalvia: Tellinidae, and its first occurrence in southeastern Brazilian waters

    Directory of Open Access Journals (Sweden)

    Rodrigo Cesar Marques

    2013-01-01

    Full Text Available This study presents a detailed anatomy of a rare Western Atlantic tellin, Phyllodina persica, under a comparative scenario. Some characters are shared with other tellinids such as the large hemipalps compared to gills; gills with outer demibranch with a single lamella absent from the pericardial region; the type-V stomach associated with the style sac conjoined with the proximal intestine, and distal intestine presenting a dorsal and ventral group of loops, separated by the transverse muscle. The stomach presents a laterally enlarged typhlosole, although shallow, without flange in the margins. This feature is not found in other tellinid species. Another noteworthy feature in the stomach is the aperture of both caeca, which are larger than the left pouch aperture, and as wide as the style sac aperture. Furthermore, there is an interesting small process in the anterior hinge, and a pair of oblique protractor muscles placed posteriorly to the anterior foot retractor muscle, being a new type of intrinsic muscle described in bivalves. In addition to anatomy, this study presents the southernmost record of P. persica, expanding its distribution to the southeastern region of Brazil.

  4. Chemical composition and antibacterial properties of essential oil and fatty acids of different parts of Ligularia persica Boiss.

    Science.gov (United States)

    Mohadjerani, Maryam; Hosseinzadeh, Rahman; Hosseini, Maryam

    2016-01-01

    The objective of this research was to investigate the chemical composition and antibacterial activities of the fatty acids and essential oil from various parts of Ligularia persica Boiss (L. persica) growing wild in north of Iran. Essential oils were extracted by using Clevenger-type apparatus. Antibacterial activity was tested on two Gram-positive and two Gram-negative bacteria by using micro dilution method. GC and GC∕MS analysis of the oils resulted in detection of 94%, 96%, 93%, 99% of the total essential oil of flowers, stems, roots and leaves, respectively. The main components of flowers oil were cis-ocimene (15.4%), β-myrcene (4.4%), β-ocimene (3.9%), and γ-terpinene (5.0%). The major constituents of stems oil were β-phellandrene (5.4%), β-cymene (7.0%), valencene (3.9%). The main compounds of root oil were fukinanolid (17.0%), α-phellandrene (11.5%) and Β-selinene (5.0%) and in the case of leaves oil were cis-ocimene (4.8%), β-ocimene (4.9%), and linolenic acid methyl ester (4.7%). An analysis by GC-FID and GC-MS on the fatty-acid composition of the different parts of L. persica showed that major components were linoleic acid (11.3-31.6%), linolenic acid (4.7-21.8%) and palmitic acid (7.2-23.2%). Saturated fatty acids were found in lower amounts than unsaturated ones. The least minimum inhibition concentration (MIC) of the L. persica was 7.16 μg/ml against Pseudomonas aeruginosa. Our study indicated that the essential oil from L. persica stems and flowers showed high inhibitory effect on the Gram negative bacteria. The results also showed that fatty acids from the stems and leaves contained a high amount of poly-unsaturated fatty acids (PUFAs).

  5. Indian Bt cotton varieties do not affect the performance of cotton aphids.

    Directory of Open Access Journals (Sweden)

    Nora C Lawo

    Full Text Available Cotton varieties expressing Cry proteins derived from the soil bacterium Bacillus thuringiensis (Bt are grown worldwide for the management of pest Lepidoptera. To prevent non-target pest outbreaks and to retain the biological control function provided by predators and parasitoids, the potential risk that Bt crops may pose to non-target arthropods is addressed prior to their commercialization. Aphids play an important role in agricultural systems since they serve as prey or host to a number of predators and parasitoids and their honeydew is an important energy source for several arthropods. To explore possible indirect effects of Bt crops we here examined the impact of Bt cotton on aphids and their honeydew. In climate chambers we assessed the performance of cotton aphids, Aphis gossypii Glover (Hemiptera: Aphididae when grown on three Indian Bt (Cry1Ac cotton varieties (MECH 12, MECH 162, MECH 184 and their non-transformed near isolines. Furthermore, we examined whether aphids pick up the Bt protein and analyzed the sugar composition of aphid honeydew to evaluate its suitability for honeydew-feeders. Plant transformation did not have any influence on aphid performance. However, some variation was observed among the three cotton varieties which might partly be explained by the variation in trichome density. None of the aphid samples contained Bt protein. As a consequence, natural enemies that feed on aphids are not exposed to the Cry protein. A significant difference in the sugar composition of aphid honeydew was detected among cotton varieties as well as between transformed and non-transformed plants. However, it is questionable if this variation is of ecological relevance, especially as honeydew is not the only sugar source parasitoids feed on in cotton fields. Our study allows the conclusion that Bt cotton poses a negligible risk for aphid antagonists and that aphids should remain under natural control in Bt cotton fields.

  6. Plant genetic variation mediates an indirect ecological effect between belowground earthworms and aboveground aphids.

    Science.gov (United States)

    Singh, Akanksha; Braun, Julia; Decker, Emilia; Hans, Sarah; Wagner, Agnes; Weisser, Wolfgang W; Zytynska, Sharon E

    2014-10-21

    Interactions between aboveground and belowground terrestrial communities are often mediated by plants, with soil organisms interacting via the roots and aboveground organisms via the shoots and leaves. Many studies now show that plant genetics can drive changes in the structure of both above and belowground communities; however, the role of plant genetic variation in mediating aboveground-belowground interactions is still unclear. We used an earthworm-plant-aphid model system with two aphid species (Aphis fabae and Acyrthosiphon pisum) to test the effect of host-plant (Vicia faba) genetic variation on the indirect interaction between the belowground earthworms (Eisenia veneta) on the aboveground aphid populations. Our data shows that host-plant variety mediated an indirect ecological effect of earthworms on generalist black bean aphids (A. fabae), with earthworms increasing aphid growth rate in three plant varieties but decreasing it in another variety. We found no effect of earthworms on the second aphid species, the pea aphid (A. pisum), and no effect of competition between the aphid species. Plant biomass was increased when earthworms were present, and decreased when A. pisum was feeding on the plant (mediated by plant variety). Although A. fabae aphids were influenced by the plants and worms, they did not, in turn, alter plant biomass. Previous work has shown inconsistent effects of earthworms on aphids, but we suggest these differences could be explained by plant genetic variation and variation among aphid species. This study demonstrates that the outcome of belowground-aboveground interactions can be mediated by genetic variation in the host-plant, but depends on the identity of the species involved.

  7. Alfalfa Leaf Curl Virus: an Aphid-Transmitted Geminivirus.

    Science.gov (United States)

    Roumagnac, Philippe; Granier, Martine; Bernardo, Pauline; Deshoux, Maëlle; Ferdinand, Romain; Galzi, Serge; Fernandez, Emmanuel; Julian, Charlotte; Abt, Isabelle; Filloux, Denis; Mesléard, François; Varsani, Arvind; Blanc, Stéphane; Martin, Darren P; Peterschmitt, Michel

    2015-09-01

    The family Geminiviridae comprises seven genera differentiated by genome organization, sequence similarity, and insect vector. Capulavirus, an eighth genus, has been proposed to accommodate two newly discovered highly divergent geminiviruses that presently have no known vector. Alfalfa leaf curl virus, identified here as a third capulavirus, is shown to be transmitted by Aphis craccivora. This is the first report of an aphid-transmitted geminivirus. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Scaling up population dynamic processes in a ladybird–aphid

    Czech Academy of Sciences Publication Activity Database

    Houdková, Kateřina; Kindlmann, Pavel

    2006-01-01

    Roč. 48, - (2006), s. 323-332 ISSN 1438-3896 R&D Projects: GA ČR(CZ) GEDIV/06/E013; GA MŠk(CZ) LC06073; GA AV ČR(CZ) IAA6087301; GA ČR(CZ) GD206/03/H034 Keywords : Aphids * Egg window * Ladybirds * Metapopulation * Model * Population dynamics Subject RIV: EH - Ecology, Behaviour Impact factor: 1.534, year: 2006

  9. The effect of co-infestation by conspecific and heterospecific aphids on the feeding behaviour of Nasonovia ribisnigri on resistant and susceptible lettuce cultivars

    NARCIS (Netherlands)

    Broeke, ten Cindy J.M.; Dicke, Marcel; Loon, van Joop J.A.

    2017-01-01

    Aphid saliva can suppress the blocking of sieve elements, a reaction that plants employ to inhibit aphid feeding, but aphid saliva can also elicit plant defence responses. Such plant responses might affect interactions between different aphid species and intraspecifically, e.g. among different

  10. Transcriptional Responses in root and leaf of Prunus persica Under Drought Stress Using RNA Sequencing

    Directory of Open Access Journals (Sweden)

    Najla Ksouri

    2016-11-01

    Full Text Available Prunus persica L. Batch, or peach, is one of the most important crops and it is widely established in irrigated arid and semi-arid regions. However, due to variations in the climate and the increased aridity, drought has become a major constraint, causing crop losses worldwide. The use of drought-tolerant rootstocks in modern fruit production appears to be a useful method of alleviating water deficit problems. However, the transcriptomic variation and the major molecular mechanisms that underlie the adaptation of drought-tolerant rootstocks to water shortage remain unclear. Hence, in this study, high-throughput sequencing (RNA-seq was performed to assess the transcriptomic changes and the key genes involved in the response to drought in root tissues (GF677 rootstock and leaf tissues (graft, var. Catherina subjected to 16 days of drought stress. In total, 12 RNA libraries were constructed and sequenced. This generated a total of 315M raw reads from both tissues, which allowed the assembly of 22,079 and 17,854 genes associated with the root and leaf tissues, respectively. Subsets of 500 differentially expressed genes (DEGs in roots and 236 in leaves were identified and functionally annotated with 56 gene ontology (GO terms and 99 metabolic pathways, which were mostly associated with aminobenzoate degradation and phenylpropanoid biosynthesis. The GO analysis highlighted the biological functions that were exclusive to the root tissue, such as locomotion, hormone metabolic process, and detection of stimulus, indicating the stress-buffering role of the GF677 rootstock. Furthermore, the complex regulatory network involved in the drought response was revealed, involving proteins that are associated with signaling transduction, transcription and hormone regulation, redox homeostasis, and frontline barriers. We identified two poorly characterized genes in P. persica: growth-regulating factor 5 (GRF5, which may be involved in cellular expansion, and AtHB12

  11. National Plant Diagnostic Network, Taxonomic training videos: Aphids under the microscope - Aphis gossypii

    Science.gov (United States)

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides provides training to identify the cotton aphid, Aphis gossypii, using a compound microscope and an electronic identification key called “LUCID.” The video demonstrates key morphological structures that ca...

  12. National Plant Diagnostic Network, Taxonomic training videos: Aphids under the microscope - Cerataphis brasiliensis

    Science.gov (United States)

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides provides training to identify the palm aphid, Cerataphis brasiliensis, using a compound microscope and an electronic identification key called “LUCID.” The video demonstrates key morphological structures...

  13. Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean.

    Directory of Open Access Journals (Sweden)

    Charles Kanobe

    Full Text Available The soybean aphid (Aphis glycines Matsumura is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of "metabolic hijacking" by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor.

  14. Plant resistance in sorghums to the sugarcane aphid Melanaphis sacchari (Hemiptera: Aphididae)

    Science.gov (United States)

    We evaluated ten sorghum lines that were near or in commercial release with the intent of identifying phenotypic expression of host-plant resistance to the sugarcane aphid. Two of the ten entries OL2042 and SP7715 expressed a high degree of resistance to the sugarcane aphid with damage ratings <3.0...

  15. Reproduction and dispersal in an ant-associated root aphid community

    NARCIS (Netherlands)

    Ivens, A. B. F.; Kronauer, D. J. C.; Pen, I.; Weissing, F. J.; Boomsma, J. J.

    Clonal organisms with occasional sex are important for our general understanding of the costs and benefits that maintain sexual reproduction. Cyclically parthenogenetic aphids are highly variable in their frequency of sexual reproduction. However, studies have mostly focused on free-living aphids

  16. The molecular basis of the interactions between luteoviruses and their aphid vectors

    NARCIS (Netherlands)

    Hogenhout, S.A.

    1999-01-01

    Luteoviruses essentially replicate in the phloem tissue and are transmitted from plant to plant by aphids in a circulative, persistent manner. Virus particles are acquired when aphids feed on phloem sap. Particles are then transported from the midgut or hindgut into the haemolymph and from

  17. Inheritance patterns of secondary symbionts during sexual reproduction of pea aphid biotypes.

    Science.gov (United States)

    Peccoud, Jean; Bonhomme, Joël; Mahéo, Frédérique; de la Huerta, Manon; Cosson, Olivier; Simon, Jean-Christophe

    2014-06-01

    Herbivorous insects frequently harbor bacterial symbionts that affect their ecology and evolution. Aphids host the obligatory endosymbiont Buchnera, which is required for reproduction, together with facultative symbionts whose frequencies vary across aphid populations. These maternally transmitted secondary symbionts have been particularly studied in the pea aphid, Acyrthosiphon pisum, which harbors at least 8 distinct bacterial species (not counting Buchnera) having environmentally dependent effects on host fitness. In particular, these symbiont species are associated with pea aphid populations feeding on specific plants. Although they are maternally inherited, these bacteria are occasionally transferred across insect lineages. One mechanism of such nonmaternal transfer is paternal transmission to the progeny during sexual reproduction. To date, transmission of secondary symbionts during sexual reproduction of aphids has been investigated in only a handful of aphid lineages and 3 symbiont species. To better characterize this process, we investigated inheritance patterns of 7 symbiont species during sexual reproduction of pea aphids through a crossing experiment involving 49 clones belonging to 9 host-specialized biotypes, and 117 crosses. Symbiont species in the progeny were detected with diagnostic qualitative PCR at the fundatrix stage hatching from eggs and in later parthenogenetic generations. We found no confirmed case of paternal transmission of symbionts to the progeny, and we observed that maternal transmission of a particular symbiont species (Serratia symbiotica) was quite inefficient. We discuss these observations in respect to the ecology of the pea aphid. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  18. Association mapping of aphid resistance in USDA cowpea (Vigna unguiculata L. Walp.) core collection using SNPs

    Science.gov (United States)

    Cowpea aphid (CPA; Aphis craccivora) is a destructive insect pest of cowpea, as well as other legume crops including alfalfa, beans, chickpea, lentils, lupins and peanuts. The utilization of aphid resistance in cowpea breeding is one of the most efficient and environmental friendly methods to contro...

  19. Variable Isotopic Compositions of Host Plant Populations Preclude Assessment of Aphid Overwintering Sites

    Directory of Open Access Journals (Sweden)

    Michael S. Crossley

    2017-12-01

    Full Text Available Soybean aphid (Aphis glycines Matsumura is a pest of soybean in the northern Midwest whose migratory patterns have been difficult to quantify. Improved knowledge of soybean aphid overwintering sites could facilitate the development of control efforts with exponential impacts on aphid densities on a regional scale. In this preliminary study, we explored the utility of variation in stable isotopes of carbon and nitrogen to distinguish soybean aphid overwintering origins. We compared variation in bulk 13C and 15N content in buckthorn (Rhamnus cathartica L. and soybean aphids in Wisconsin, among known overwintering locations in the northern Midwest. Specifically, we looked for associations between buckthorn and environmental variables that could aid in identifying overwintering habitats. We detected significant evidence of correlation between the bulk 13C and 15N signals of soybean aphids and buckthorn, despite high variability in stable isotope composition within and among buckthorn plants. Further, the 15N signal in buckthorn varied predictably with soil composition. However, lack of sufficient differentiation of geographic areas along axes of isotopic and environmental variation appears to preclude the use of carbon and nitrogen isotopic signals as effective predictors of likely aphid overwintering sites. These preliminary data suggest the need for future work that can further account for variability in 13C and 15N within/among buckthorn plants, and that explores the utility of other stable isotopes in assessing likely aphid overwintering sites.

  20. The Effects of Aphid Traits on Parasitoid Host Use and Specialist Advantage

    Science.gov (United States)

    Gagic, Vesna; Petrović-Obradović, Olivera; Fründ, Jochen; Kavallieratos, Nickolas G.; Athanassiou, Christos G.; Starý, Petr; Tomanović, Željko

    2016-01-01

    Specialization is a central concept in ecology and one of the fundamental properties of parasitoids. Highly specialized parasitoids tend to be more efficient in host-use compared to generalized parasitoids, presumably owing to the trade-off between host range and host-use efficiency. However, it remains unknown how parasitoid host specificity and host-use depends on host traits related to susceptibility to parasitoid attack. To address this question, we used data from a 13-year survey of interactions among 142 aphid and 75 parasitoid species in nine European countries. We found that only aphid traits related to local resource characteristics seem to influence the trade-off between host-range and efficiency: more specialized parasitoids had an apparent advantage (higher abundance on shared hosts) on aphids with sparse colonies, ant-attendance and without concealment, and this was more evident when host relatedness was included in calculation of parasitoid specificity. More traits influenced average assemblage specialization, which was highest in aphids that are monophagous, monoecious, large, highly mobile (easily drop from a plant), without myrmecophily, habitat specialists, inhabit non-agricultural habitats and have sparse colonies. Differences in aphid wax production did not influence parasitoid host specificity and host-use. Our study is the first step in identifying host traits important for aphid parasitoid host specificity and host-use and improves our understanding of bottom-up effects of aphid traits on aphid-parasitoid food web structure. PMID:27309729

  1. Herbivory by a Phloem-feeding insect inhibits floral volatile production.

    Directory of Open Access Journals (Sweden)

    Martin Pareja

    Full Text Available There is extensive knowledge on the effects of insect herbivory on volatile emission from vegetative tissue, but little is known about its impact on floral volatiles. We show that herbivory by phloem-feeding aphids inhibits floral volatile emission in white mustard Sinapis alba measured by gas chromatographic analysis of headspace volatiles. The effect of the Brassica specialist aphid Lipaphis erysimi was stronger than the generalist aphid Myzus persicae and feeding by chewing larvae of the moth Plutella xylostella caused no reduction in floral volatile emission. Field observations showed no effect of L. erysimi-mediated floral volatile emission on the total number of flower visits by pollinators. Olfactory bioassays suggested that although two aphid natural enemies could detect aphid inhibition of floral volatiles, their olfactory orientation to infested plants was not disrupted. This is the first demonstration that phloem-feeding herbivory can affect floral volatile emission, and that the outcome of interaction between herbivory and floral chemistry may differ depending on the herbivore's feeding mode and degree of specialisation. The findings provide new insights into interactions between insect herbivores and plant chemistry.

  2. Herbivory by a Phloem-feeding insect inhibits floral volatile production.

    Science.gov (United States)

    Pareja, Martin; Qvarfordt, Erika; Webster, Ben; Mayon, Patrick; Pickett, John; Birkett, Michael; Glinwood, Robert

    2012-01-01

    There is extensive knowledge on the effects of insect herbivory on volatile emission from vegetative tissue, but little is known about its impact on floral volatiles. We show that herbivory by phloem-feeding aphids inhibits floral volatile emission in white mustard Sinapis alba measured by gas chromatographic analysis of headspace volatiles. The effect of the Brassica specialist aphid Lipaphis erysimi was stronger than the generalist aphid Myzus persicae and feeding by chewing larvae of the moth Plutella xylostella caused no reduction in floral volatile emission. Field observations showed no effect of L. erysimi-mediated floral volatile emission on the total number of flower visits by pollinators. Olfactory bioassays suggested that although two aphid natural enemies could detect aphid inhibition of floral volatiles, their olfactory orientation to infested plants was not disrupted. This is the first demonstration that phloem-feeding herbivory can affect floral volatile emission, and that the outcome of interaction between herbivory and floral chemistry may differ depending on the herbivore's feeding mode and degree of specialisation. The findings provide new insights into interactions between insect herbivores and plant chemistry.

  3. Plant domestication slows pest evolution.

    Science.gov (United States)

    Turcotte, Martin M; Lochab, Amaneet K; Turley, Nash E; Johnson, Marc T J

    2015-09-01

    Agricultural practices such as breeding resistant varieties and pesticide use can cause rapid evolution of pest species, but it remains unknown how plant domestication itself impacts pest contemporary evolution. Using experimental evolution on a comparative phylogenetic scale, we compared the evolutionary dynamics of a globally important economic pest - the green peach aphid (Myzus persicae) - growing on 34 plant taxa, represented by 17 crop species and their wild relatives. Domestication slowed aphid evolution by 13.5%, maintained 10.4% greater aphid genotypic diversity and 5.6% higher genotypic richness. The direction of evolution (i.e. which genotypes increased in frequency) differed among independent domestication events but was correlated with specific plant traits. Individual-based simulation models suggested that domestication affects aphid evolution directly by reducing the strength of selection and indirectly by increasing aphid density and thus weakening genetic drift. Our results suggest that phenotypic changes during domestication can alter pest evolutionary dynamics. © 2015 John Wiley & Sons Ltd/CNRS.

  4. Hairy nightshade as a potential Potato leafroll virus (Luteoviridae: Polerovirus) inoculum source in Pacific Northwest potato ecosystems.

    Science.gov (United States)

    Srinivasan, R; Alvarez, J M

    2008-09-01

    Hairy nightshade, Solanum sarrachoides, is a solanaceous weed found abundantly in Pacific Northwest potato ecosystems. It serves as a reservoir for one of the important potato viruses, Potato leafroll virus (PLRV) (Luteoviridae: Polerovirus), and its most important vector, the green peach aphid, Myzus persicae (Homoptera: Aphididae). Laboratory research indicated an increased green peach aphid settling and performance on S. sarrachoides than on potato. It also revealed that green peach aphids transmitted PLRV more efficiently from S. sarrachoides to potato than from potato to potato. To test the efficiency of S. sarrachoides as an inoculum source in the field, a two season (2004 and 2005) trial was conducted at Kimberly, Idaho. Two inoculum sources, PLRV-infected potato and PLRV-infected S. sarrachoides, were compared in this trial. Green peach aphid density and temporal and spatial PLRV spread were monitored at weekly intervals. Higher densities of green peach aphids were observed on plots with S. sarrachoides and inoculum sources (PLRV-infected S. sarrachoides and potato) than on plots without S. sarrachoides and inoculum sources. PLRV infection in plots with PLRV-infected S. sarrachoides was similar to or slightly higher than in plots with PLRV-infected potato as an inoculum source. Temporal and spatial PLRV spread was similar in plots with either inoculum source. Thus, S. sarrachoides is as efficient as or a better PLRV inoculum source than potato.

  5. First survey on ecological host range of aphid pathogenic fungi (Phylum Entomophthoromycota) in Tunisia

    DEFF Research Database (Denmark)

    Ben Fekih, Ibtissem; Boukhris-Bouhachem, Sonia; Allagui, Mohamed Bechir

    2015-01-01

    Summary. The natural occurrence of fungal pathogens of aphids and their ecological host range was investigated in Tunisia from 2009 to 2012. The survey focused on aphid infesting different crops and weeds and included 10 different aphid species. Samples were collected from eight agricultural crops...... (Entomophthorales: Ancylistaceae) and Neozygites fresenii (Neozygitales: Neozygitaceae). The occurrence of entomophthoralean fungi depended on the sampling area, the bioclimatic zone, and aphid species. P. neoaphidis and E. planchoniana were the predominant pathogens infecting a wide range of aphid species whereas...... sites belonging to three different bioclimatic zones. Four pathogens from the phylum Entomophthoromycota were found to occur naturally in Tunisian ecosystems: Pandora neoaphidis (Entomophthorales: Entomophthoraceae), Entomophthora planchoniana (Entomophthorales: Entomophthoraceae), Conidiobolus obscurus...

  6. The genetics of indirect ecological effects - plant parasites and aphid herbivores

    Directory of Open Access Journals (Sweden)

    Jennifer K Rowntree

    2014-04-01

    Full Text Available When parasitic plants and aphid herbivores share a host, both direct and indirect ecological effects (IEEs can influence evolutionary processes. We used a hemiparasitic plant (Rhinanthus minor, a grass host (Hordeum vulgare and a cereal aphid (Sitobion avenae to investigate the genetics of IEEs between the aphid and the parasitic plant, and looked to see how these might affect or be influenced by the genetic diversity of the host plants. Survival of R. minor depended on the parasite’s population of origin, the genotypes of the aphids sharing the host and the genetic diversity in the host plant community. Hence the indirect effects of the aphids on the parasitic plants depended on the genetic environment of the system. Here, we show that genetic variation can be important in determining the outcome of IEEs. Therefore, IEEs have the potential to influence evolutionary processes and the continuity of species interactions over time.

  7. Spectral Detection of Soybean Aphid (Hemiptera: Aphididae) and Confounding Insecticide Effects in Soybean

    Science.gov (United States)

    Alves, Tavvs Micael

    Soybean aphid, Aphis glycines (Hemiptera: Aphididae) is the primary insect pest of soybean in the northcentral United States. Soybean aphid may cause stunted plants, leaf discoloration, plant death, and decrease soybean yield by 40%. Sampling plans have been developed for supporting soybean aphid management. However, growers' perception about time involved in direct insect counts has been contributing to a lower adoption of traditional pest scouting methods and may be associated with the use of prophylactic insecticide applications in soybean. Remote sensing of plant spectral (light-derived) responses to soybean aphid feeding is a promising alternative to estimate injury without direct insect counts and, thus, increase adoption and efficiency of scouting programs. This research explored the use of remote sensing of soybean reflectance for detection of soybean aphids and showed that foliar insecticides may have implications for subsequent use of soybean spectral reflectance for pest detection. (Abstract shortened by ProQuest.).

  8. Predatory behavior of Pseudodorus clavatus (Diptera, Syrphidae on aphids tended by ants

    Directory of Open Access Journals (Sweden)

    Alexandra Bächtold

    2013-12-01

    Full Text Available Predatory behavior of Pseudodorus clavatus (Diptera, Syrphidae on aphids tended by ants. In this study, we examined the interactions between myrmecophilous aphids, their ant-guards and a predatory syrphid species, Pseudodorus clavatus (F.. Larvae of this predator were found in the colonies of three aphid species: Aphis gossypii, A. spiraecola and Toxoptera sp., which were tended by eight ant species, especially Camponotus. Hoverfly larvae managed to infiltrate the aphid colonies and consume nymphs. Predator larvae exhibited inconspicuous movements and were not detected by ants which were commonly observed touching and antennating the larvae they come into contact. These results suggest that behavioral and chemical cues are involved in the infiltration and on the successful predation of syrphids upon aphids.

  9. Chemical composition and antibacterial activity of the essential oil the leaf of Nepeta persica

    Directory of Open Access Journals (Sweden)

    Soraya AKHSHI

    2014-11-01

    Full Text Available The essential oil from the leaf of Nepeta persica Boiss, analyzed by gas chromatography (GC and gas chromatography (GC/mass spectrometry (MS, were shown to contain 4aα, 7α, 7aβ-nepetalactone (49.46% and 4aα, 7α, 7aα-nepetalactone (14.18%. The other main constituents were n-octane (13.10%, n-decane (3.67% and germacrene-D (2.04%. Antibacterial activities of the leaf oil were evaluated using the micro-dilution broth method. Inhibitory effects on Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhi and Enterococcus faecalis were recorded. The leaf oil has difference activities against the test microorganisms. The antibacterial property of the essential oil might be ascribed to their high content of nepetalactone isomers.

  10. Experimental study of 『PERSICAE SEMEN』 on the blood injected by Endotoxin in rats

    Directory of Open Access Journals (Sweden)

    Chang-Keun

    2005-06-01

    Full Text Available This study was performed to investigate the effects of 「Persicae Semen」(PS on the blood injected by Endotoxin in rats. The blood was induced by Endotoxin injection into the caudal vein of rats and PS group taken a measurement of RBC, Hb, Hct, Platelet, WBC, ESR, CRP. The results were obtained as follows: 1. RBC, Hb, Hct, Platelet, WBC were increased with statistical significance at PS group as compared with those of the control group. 2. ESR, CRP were decreased with statistical significance at PS group as compared with those of the control group. It is concluded that PS group has significant effects on the blood injected by Endotoxin in rats. Therefore, PS group seems to be applicable to the diseases related to Endotoxin in clinics.

  11. Methyl salicylate attracts natural enemies and reduces populations of soybean aphids (Hemiptera: Aphididae) in soybean agroecosystems.

    Science.gov (United States)

    Mallinger, Rachel E; Hogg, David B; Gratton, Claudio

    2011-02-01

    Methyl salicylate, an herbivore-induced plant volatile, has been shown to attract natural enemies and affect herbivore behavior. In this study, methyl salicylate was examined for its attractiveness to natural enemies of the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), and for its direct effects on soybean aphid population growth rates. Methyl salicylate lures were deployed in plots within organic soybean [Glycine max (L.) Merr.] fields. Sticky card traps adjacent to and 1.5 m from the lure measured the relative abundance of natural enemies, and soybean aphid populations were monitored within treated and untreated plots. In addition, exclusion cage studies were conducted to determine methyl salicylate's effect on soybean aphid population growth rates in the absence of natural enemies. Significantly greater numbers of syrphid flies (Diptera: Syrphidae) and green lacewings (Neuroptera: Chrysopidae) were caught on traps adjacent to the methyl salicylate lure, but no differences in abundance were found at traps 1.5 m from the lure. Furthermore, abundance of soybean aphids was significantly lower in methyl salicylate-treated plots. In exclusion cage studies, soybean aphid numbers were significantly reduced on treated soybean plants when all plants were open to natural enemies. When plants were caged, however, soybean aphid numbers and population growth rates did not differ between treated and untreated plants suggesting no effect of methyl salicylate on soybean aphid reproduction and implicating the role of natural enemies in depressing aphid populations. Although aphid populations were reduced locally around methyl salicylate lures, larger scale studies are needed to assess the technology at the whole-field scale.

  12. Role of Glyco-Persica® in Targeting Diabetes Type 2: an Integrative Approach

    Directory of Open Access Journals (Sweden)

    Dashtdar Mehrab

    2013-12-01

    Full Text Available Objectives: The objective of this study was to examine how an integrated approach to type 2 diabetes mellitus treatment could improve glycemic control and immune-potentiating activities adherent to oral hypoglycemic agents along with a botanical compound, among primary care patients. Methods: In this study, we used the self-control and the group-control methods. Candidates meeting the trial conditions were selected from among volunteers who had taken the test substance for 45 days. During the trial, all groups were on a controlled diet; neither were the original medications nor their dosages changed. Results: The results showed that the botanical compound (Glyco-Persica® significantly reduced the main clinical symptoms in diabetes type 2. In the treatment group, 36 of 52 patients (69.23% and in the control group 10 of 52 patients (19.23% showed reduced symptoms, and this difference was statistically significant (P < 0.05. The fasting blood sugar in the treatment group after treatment compared with that before treatment and with that in the control group after treatment was statistically different (P < 0.05. The post-prandial glucose in the treatment group after treatment was significantly different from that before treatment and from that in the control group after treatment (P < 0.05; the post-prandial blood sugar in the treatment group was reduced by 8.98%. Conclusions: The results revealed that the botanical compound (Glyco-Persica® has significant hypoglycemic properties which affect main clinical symptoms in diabetes type 2. Body weight, blood pressure, heart rate, routine blood, stool and urine tests showed no meaningful negative changes after the course of treatment. There was no significant adverse reaction during the trial.

  13. The effect of co-infestation by conspecific and heterospecific aphids on the feeding behaviour of Nasonovia ribisnigri on resistant and susceptible lettuce cultivars

    OpenAIRE

    Broeke, ten, Cindy J.M.; Dicke, Marcel; Loon, van, Joop J.A.

    2017-01-01

    Aphid saliva can suppress the blocking of sieve elements, a reaction that plants employ to inhibit aphid feeding, but aphid saliva can also elicit plant defence responses. Such plant responses might affect interactions between different aphid species and intraspecifically, e.g. among different biotypes. The objectives of our study were to investigate if feeding behaviour and performance of two biotypes of the lettuce aphid Nasonovia ribisnigri are affected by (1) feeding by the other biotype ...

  14. The green lacewing, Chrysoperla carnea: preference between lettuce aphids, Nasonovia ribisnigri, and Western flower thrips, Frankliniella occidentalis.

    Science.gov (United States)

    Shrestha, Govinda; Enkegaard, Annie

    2013-01-01

    This study investigated the prey preference of 3(rd) instar green lacewing, Chrysoperla carnea Stephens (Neuroptera: Chrysopidae), between western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), and lettuce aphids, Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae) in laboratory experiments at 25 ± 1° C and 70 ± 5% RH with five prey ratios (10 aphids:80 thrips, 25 aphids:65 thrips, 45 aphids:45 thrips, 65 aphids:25 thrips, and 80 aphids:10 thrips). Third instar C. carnea larvae readily preyed upon both thrips and aphids, with thrips mortality varying between 40 and 90%, and aphid mortality between 52 and 98%. Chrysoperla carnea had a significant preference for N. ribisnigri at two ratios (10 aphids:80 thrips, 65 aphids:25 thrips), but no preference for either prey at the other ratios. There was no significant linear relationship between preference index and prey ratio, but a significant intercept of the linear regression indicated an overall preference of C. carnea for aphids with a value of 0.651 ± 0.054. The possible implications of these findings for control of N. ribisnigri and F. occidentalis by C. carnea are discussed.

  15. Survey of aphid population in a yellow passion fruit crop and its relationship on the spread Cowpea aphid-borne mosaic virus in a subtropical region of Brazil.

    Science.gov (United States)

    Garcêz, Renata Maia; Chaves, Alexandre Levi Rodrigues; Eiras, Marcelo; Meletti, Laura Maria Molina; de Azevedo Filho, Joaquim Adelino; da Silva, Leonardo Assis; Colariccio, Addolorata

    2015-01-01

    Passion fruit woodiness may be caused by Cowpea aphid-borne mosaic virus (CABMV) and is currently the major passion fruit disease in Brazil. To assess the virus-vector-host interactions, a newly introduced golden passion fruit plantation located in eastern region of São Paulo State, Brazil, was monitored. Dissemination of CABMV was determined analyzing golden passion fruit plants monthly for 18 months by PTA-ELISA. Seasonality and aphid fauna diversity was determined by identification of the captured species using yellow sticky, yellow water-pan and green tile traps. Population composition of the aphid species was determined using the descriptive index of occurrence, dominance and general classification and overlap of species in the R program. Analyses of species grouping afforded to recognize 14 aphid species. The genus Aphis represented 55.42 % of the species captured. Aphid species formed two distinct clusters, one of which was characterized by the diversity of polyphagous species that presented high potential to spread CABMV. The low abundance and diversity of aphid species did not interfere negatively in the CABMV epidemiology. The genus Aphis, particularly Aphis fabae/solanella and A. gossypii, was crucial in the spread of CABMV in passion fruit orchards in the eastern State of São Paulo.

  16. Comparison of Electric Toothbrush, Persica and Chlorhexidine Mouthwashes on Reduction of Gingival Enlargement in Orthodontic Patients: A Randomised Clinical Trial.

    Science.gov (United States)

    Farhadian, Nasrin; Bidgoli, Mohsen; Jafari, Farhad; Mahmoudzadeh, Majid; Yaghobi, Mahdi; Miresmaeili, Amirfarhang

    2015-01-01

    To compare the efficacy of chlorhexidine, Persica mouthwash and electric toothbrushes in improving gingival enlargement in patients with fixed orthodontic appliances. Seventy-two orthodontic patients with at least two sites of gingival enlargement were randomly allocated into four equal groups: 1) manual toothbrush; 2) electric toothbrush; 3) manual toothbrush+Persica mouthwash; 4) manual toothbrush+chlorhexidine mouthwash. All participants were instructed to brush their teeth at least twice a day. The subjects in groups 3 and 4 were instructed to use Persica or chlorhexidine according to the respective manufacturer's instructions. Bleeding on probing (BOP) index, gingival index (GI), O'Leary's plaque index (PI) and constructed hyperplastic index (HI) of all the subjects were measured in a blind manner at the start of the study and 2 weeks later. Changes of indices in the entire oral cavity and individual affected teeth were analysed with SPSS 16 using chi-square, ANOVA, ANCOVA, LSD and the paired t-test. In the entire oral cavity, there was a statistically significant improvement in indices in all the groups except for HI, which significantly improved only in group 4 (p=0.001). Data of individual teeth with hyperplastic gingiva showed significant reduction of all the variables except for HI in group 1 (p=0.08). No significant differences were found between groups 1 and 2 or between groups 3 and 4. The efficacy of Persica was similar to that of chlorhexidine in improving gingival conditions. None of the treatment modalities could reduce gingival enlargement to the clinically acceptable level of health.

  17. Differential expression of superoxide dismutase genes in aphid-stressed maize (Zea mays L.) seedlings.

    Science.gov (United States)

    Sytykiewicz, Hubert

    2014-01-01

    The aim of this study was to compare the expression patterns of superoxide dismutase genes (sod2, sod3.4, sod9 and sodB) in seedling leaves of the Zea mays L. Tasty Sweet (susceptible) and Ambrozja (relatively resistant) cultivars infested with one of two hemipteran species, namely monophagous Sitobion avenae F. (grain aphid) or oligophagous Rhopalosiphum padi L. (bird cherry-oat aphid). Secondarily, aphid-elicited alternations in the antioxidative capacity towards DPPH (1,1-diphenyl-2-picrylhydrazyl) radical in insect-stressed plants were evaluated. Comprehensive comparison of expression profiles of the four sod genes showed that both insect species evoked significant upregulation of three genes sod2, sod3.4 and sod9). However, aphid infestation affected non-significant fluctuations in expression of sodB gene in seedlings of both maize genotypes. The highest levels of transcript accumulation occurred at 8 h (sod2 and sod3.4) or 24 h (sod9) post-infestation, and aphid-induced changes in the expression of sod genes were more dramatic in the Ambrozja cultivar than in the Tasty Sweet variety. Furthermore, bird cherry-oat aphid colonization had a more substantial impact on levels of DPPH radical scavenging activity in infested host seedlings than grain aphid colonization. Additionally, Ambrozja plants infested by either hemipteran species showed markedly lower antioxidative capacity compared with attacked Tasty Sweet plants.

  18. Aphids of the genus Diuraphis caught by Johnson suction trap in Poznań, Poland

    Directory of Open Access Journals (Sweden)

    Strażyński Przemysław

    2016-12-01

    Full Text Available In 1973-2011 in Poznań, aphid catches were carried out using Johnson’s suction trap. Since then the suction trap located at the Institute of Plant Protection - National Research Institute in Poznań has continuously recorded the daily and seasonal dynamics of aphid flights. The collected results has been used to establish one of the largest databases of this type in Europe. The data also allow tracking changes in aphid biodiversity under the changing climatic conditions. Three aphid species of Diuraphis spp. were identified: D. muehlei (Börner, 1950 - in 1974, D. bromicola (Hille Ris Lambers, 1959 - in 1988, D. noxia (Kurdjumov, 1913 - in 2003 as a result of systematic and long-term aphid collections. The occurrence of D. noxia presents a particular risk to cereal crops in Poland. This expansive aphid species that originates from Asia and the Mediterranean is a vector of Barley yellow dwarf viruses (BYDV, and has become one of the most important pest of wheat and barley in the world. Changes in climatic conditions that have been observed in recent years in Poland such as hot summer, long and warm autumn, mild winter seem to be optimal for occurrence and development of aphid species from warmer parts of Europe.

  19. Plant genotype shapes ant-aphid interactions: implications for community structure and indirect plant defense.

    Science.gov (United States)

    Mooney, Kailen A; Agrawal, Anurag A

    2008-06-01

    Little is known about the mechanisms by which plant genotype shapes arthropod community structure. In a field experiment, we measured the effects of milkweed (Asclepias syriaca) genotype and ants on milkweed arthropods. Populations of the ant-tended aphid Aphis asclepiadis and the untended aphid Myzocallis asclepiadis varied eight- to 18-fold among milkweed genotypes, depending on aphid species and whether ants were present. There was no milkweed effect on predatory arthropods. Ants increased Aphis abundance 59%, decreased Myzocallis abundance 52%, and decreased predator abundance 56%. Milkweed genotype indirectly influenced ants via direct effects on Aphis and Myzocallis abundance. Milkweed genotype also modified ant-aphid interactions, influencing the number of ants attracted per Aphis and Myzocallis. While ant effects on Myzocallis were consistently negative, effects on Aphis ranged from antagonistic to mutualistic among milkweed genotypes. As a consequence of milkweed effects on ant-aphid interactions, ant abundance varied 13-fold among milkweed genotypes, and monarch caterpillar survival was negatively correlated with genetic variation in ant abundance. We speculate that heritable variation in milkweed phloem sap drives these effects on aphids, ants, and caterpillars. In summary, milkweed exerts genetic control over the interactions between aphids and an ant that provides defense against foliage-feeding caterpillars.

  20. Differential Expression of Superoxide Dismutase Genes in Aphid-Stressed Maize (Zea mays L.) Seedlings

    Science.gov (United States)

    Sytykiewicz, Hubert

    2014-01-01

    The aim of this study was to compare the expression patterns of superoxide dismutase genes (sod2, sod3.4, sod9 and sodB) in seedling leaves of the Zea mays L. Tasty Sweet (susceptible) and Ambrozja (relatively resistant) cultivars infested with one of two hemipteran species, namely monophagous Sitobion avenae F. (grain aphid) or oligophagous Rhopalosiphum padi L. (bird cherry-oat aphid). Secondarily, aphid-elicited alternations in the antioxidative capacity towards DPPH (1,1-diphenyl-2-picrylhydrazyl) radical in insect-stressed plants were evaluated. Comprehensive comparison of expression profiles of the four sod genes showed that both insect species evoked significant upregulation of three genes sod2, sod3.4 and sod9). However, aphid infestation affected non-significant fluctuations in expression of sodB gene in seedlings of both maize genotypes. The highest levels of transcript accumulation occurred at 8 h (sod2 and sod3.4) or 24 h (sod9) post-infestation, and aphid-induced changes in the expression of sod genes were more dramatic in the Ambrozja cultivar than in the Tasty Sweet variety. Furthermore, bird cherry-oat aphid colonization had a more substantial impact on levels of DPPH radical scavenging activity in infested host seedlings than grain aphid colonization. Additionally, Ambrozja plants infested by either hemipteran species showed markedly lower antioxidative capacity compared with attacked Tasty Sweet plants. PMID:24722734

  1. Redox Control of Aphid Resistance through Altered Cell Wall Composition and Nutritional Quality.

    Science.gov (United States)

    Rasool, Brwa; McGowan, Jack; Pastok, Daria; Marcus, Sue E; Morris, Jenny A; Verrall, Susan R; Hedley, Peter E; Hancock, Robert D; Foyer, Christine H

    2017-09-01

    The mechanisms underpinning plant perception of phloem-feeding insects, particularly aphids, remain poorly characterized. Therefore, the role of apoplastic redox state in controlling aphid infestation was explored using transgenic tobacco ( Nicotiana tabacum ) plants that have either high (PAO) or low (TAO) ascorbate oxidase (AO) activities relative to the wild type. Only a small number of leaf transcripts and metabolites were changed in response to genotype, and cell wall composition was largely unaffected. Aphid fecundity was decreased significantly in TAO plants compared with other lines. Leaf sugar levels were increased and maximum extractable AO activities were decreased in response to aphids in all genotypes. Transcripts encoding the Respiratory Burst Oxidase Homolog F, signaling components involved in ethylene and other hormone-mediated pathways, photosynthetic electron transport components, sugar, amino acid, and cell wall metabolism, were increased significantly in the TAO plants in response to aphid perception relative to other lines. The levels of galactosylated xyloglucan were decreased significantly in response to aphid feeding in all the lines, the effect being the least in the TAO plants. Similarly, all lines exhibited increases in tightly bound (1→4)-β-galactan. Taken together, these findings identify AO-dependent mechanisms that limit aphid infestation. © 2017 American Society of Plant Biologists. All Rights Reserved.

  2. Yield response of brassica varieties/strains in relation to mustard aphid lipaphis erysimi (Kalt.)

    International Nuclear Information System (INIS)

    Shahzad, M.A.; Bukhari, S.A.H.

    2009-01-01

    Nine brassica varieties/advanced lines were tested to find out the varietal comparison against mustard aphid Lipaphis erysimi (kalt.) in relation to aphid population. average number of branches/plant, average number of grains per pod and grain yield (kg/ha) during 2004-2006. Minimum aphid population was observed on promising cultivar P-20 during both years 2004-2005-06 which were 2005-06 which were 31 and 23 aphid/30 cm of apical inflorescence from randomly selected five plants respectively. This promising strain also proved significantly the highest yielder and gave 1633 kg. grains/ha (2004,05) and 817.5 kg grains/ha (2005-06) followed by SP-36 which showed aphid population 36 and 32.5 aphid/30 cm inflorescence having yield 1373 and 780 kg grains/ha during the both periods respectively under report. The other parameters viz. Average number of branches per plant and average no. of grains/pod remained non significant as far as aphid effect is concerned. (author)

  3. Yield response of brassica varieties/strains in relation to mustard aphid lipaphis erysimi (kalt.)

    International Nuclear Information System (INIS)

    Shahzad, M.A.; Bukhari, S.A.H.; Tariq, H.

    2010-01-01

    Nine brassica varieties/advanced lines were tested to find out the varietal comparison against mustard aphid Lipaphis erysimi (kalt.) in relation to aphid population, average number of branches/plant, average number of grains per pod and grain yield (kg/ha) during 2004-2006. Minimum aphid population was observed on promising cultivar P-20 during both years 2004-2005 and 2005-06 which were 3.l and 23 aphid/30 cm of apical inflorescence from randomly selected five plants respectively. This promising strain also proved significantly the highest yielder and gave 1633 kg. grains/ha (2004-05) and 8 17.5 kg grains/ha (2005-06) followed by SP-36 which showed aphid population 36 and 32.5 aphid/30 cm inflorescence having yield 1373 and 780 kg grains/ha during the both periods respectively under report. The other parameters viz. Average number of branches per plant and average no. of grains/pod remained nonsignificant as far as aphid effect is concerned. (author)

  4. Indirect effect of a transgenic wheat on aphids through enhanced powdery mildew resistance.

    Science.gov (United States)

    von Burg, Simone; Álvarez-Alfageme, Fernando; Romeis, Jörg

    2012-01-01

    In agricultural ecosystems, arthropod herbivores and fungal pathogens are likely to colonise the same plant and may therefore affect each other directly or indirectly. The fungus that causes powdery mildew (Blumeria graminis tritici) and cereal aphids are important pests of wheat but interactions between them have seldom been investigated. We studied the effects of powdery mildew of wheat on two cereal aphid species, Metopolophium dirhodum and Rhopalosiphum padi. We hypothesized that aphid number and size will be smaller on powdery mildew-infected plants than on non-infected plants. In a first experiment we used six commercially available wheat varieties whereas in the second experiment we used a genetically modified (GM) mildew-resistant wheat line and its non-transgenic sister line. Because the two lines differed only in the presence of the transgene and in powdery mildew resistance, experiment 2 avoided the confounding effect of variety. In both experiments, the number of M. dirhodum but not of R. padi was reduced by powdery mildew infection. Transgenic mildew-resistant lines therefore harboured bigger aphid populations than the non-transgenic lines. For both aphid species individual size was mostly influenced by aphid number. Our results indicate that plants that are protected from a particular pest (powdery mildew) became more favourable for another pest (aphids).

  5. Indirect effect of a transgenic wheat on aphids through enhanced powdery mildew resistance.

    Directory of Open Access Journals (Sweden)

    Simone von Burg

    Full Text Available In agricultural ecosystems, arthropod herbivores and fungal pathogens are likely to colonise the same plant and may therefore affect each other directly or indirectly. The fungus that causes powdery mildew (Blumeria graminis tritici and cereal aphids are important pests of wheat but interactions between them have seldom been investigated. We studied the effects of powdery mildew of wheat on two cereal aphid species, Metopolophium dirhodum and Rhopalosiphum padi. We hypothesized that aphid number and size will be smaller on powdery mildew-infected plants than on non-infected plants. In a first experiment we used six commercially available wheat varieties whereas in the second experiment we used a genetically modified (GM mildew-resistant wheat line and its non-transgenic sister line. Because the two lines differed only in the presence of the transgene and in powdery mildew resistance, experiment 2 avoided the confounding effect of variety. In both experiments, the number of M. dirhodum but not of R. padi was reduced by powdery mildew infection. Transgenic mildew-resistant lines therefore harboured bigger aphid populations than the non-transgenic lines. For both aphid species individual size was mostly influenced by aphid number. Our results indicate that plants that are protected from a particular pest (powdery mildew became more favourable for another pest (aphids.

  6. Expression of Pinellia pedatisecta Lectin Gene in Transgenic Wheat Enhances Resistance to Wheat Aphids

    Directory of Open Access Journals (Sweden)

    Xiaoliang Duan

    2018-03-01

    Full Text Available Wheat aphids are major pests during the seed filling stage of wheat. Plant lectins are toxic to sap-sucking pests such as wheat aphids. In this study, Pinellia pedatisecta agglutinin (ppa, a gene encoding mannose binding lectin, was cloned, and it shared 92.69% nucleotide similarity and 94% amino acid similarity with Pinellia ternata agglutinin (pta. The ppa gene, driven by the constitutive and phloem-specific ribulose bisphosphate carboxylase small subunit gene (rbcs promoter in pBAC-rbcs-ppa expression vector, was transferred into the wheat cultivar Baofeng104 (BF104 by particle bombardment transformation. Fifty-four T0 transgenic plants were generated. The inheritance and expression of the ppa gene were confirmed by PCR and RT-PCR analysis respectively, and seven homozygous transgenic lines were obtained. An aphid bioassay on detached leaf segments revealed that seven ppa transgenic wheat lines had lower aphid growth rates and higher inhibition rates than BF104. Furthermore, two-year aphid bioassays in isolated fields showed that aphid numbers per tiller of transgenic lines were significantly decreased, compared with wild type BF104. Therefore, ppa could be a strong biotechnological candidate to produce aphid-resistant wheat.

  7. Aphid wing induction and ecological costs of alarm pheromone emission under field conditions.

    Directory of Open Access Journals (Sweden)

    Eduardo Hatano

    2010-06-01

    Full Text Available The pea aphid, Acyrthosiphon pisum Harris, (Homoptera: Aphididae releases the volatile sesquiterpene (E-beta-farnesene (EBF when attacked by a predator, triggering escape responses in the aphid colony. Recently, it was shown that this alarm pheromone also mediates the production of the winged dispersal morph under laboratory conditions. The present work tested the wing-inducing effect of EBF under field conditions. Aphid colonies were exposed to two treatments (control and EBF and tested in two different environmental conditions (field and laboratory. As in previous experiments aphids produced higher proportion of winged morphs among their offspring when exposed to EBF in the laboratory but even under field conditions the proportion of winged offspring was higher after EBF application (6.84+/-0.98% compared to the hexane control (1.54+/-0.25%. In the field, the proportion of adult aphids found on the plant at the end of the experiment was lower in the EBF treatment (58.1+/-5.5% than in the control (66.9+/-4.6%, in contrast to the climate chamber test where the numbers of adult aphids found on the plant at the end of the experiment were, in both treatments, similar to the numbers put on the plant initially. Our results show that the role of EBF in aphid wing induction is also apparent under field conditions and they may indicate a potential cost of EBF emission. They also emphasize the importance of investigating the ecological role of induced defences under field conditions.

  8. A magical biological insecticide extracted from seeds of Millettia pachyarpa to kill cabbage aphids

    Science.gov (United States)

    Lin, Tianxing; Gong, Mingfu; Guan, Qinlan

    2018-04-01

    Millettia pachycarpa Benth is a perennial climbing shrub belonging to the genus Millettia, as it is widely used in traditional practices like agricultural pesticides, blood tonics, fish poison, and treatments for cancer and infertility. The crude extract of the seeds of M. pachycarpa had insecticidal activity on cabbage aphids. The conventional extract approach with three kinds of organic solvents: methanol, ethanol, and acetone was used for extracting of crude extract of seeds of M. pachycarpa. The leaf immersion method in a petri dish was used to measure contact activity on cabbage aphids. The field measurement method in a cabbage field was used to measure the control effect. The result indicated that the average mortality rate of cabbage aphids reached 91.3 percent under the action of crude extract of the seeds of M. pachycarpa, indicating that contacting activity against cabbage aphid was strong. After the crude extract was sprayed for 2 days, the proofread control effect of 1000 μg / mL ethanol crude extract against cabbage aphid was 85.0 percent. After 7 days of spraying, this number increased to 92.2 percent. The study concluded that crude extract of the seeds of M. pachyarpa extracted with methanol, ethanol, acetone had demonstrable contact activity against cabbage aphid and 1000 μg / mL ethanol crude extract had significant control effect against the larvae of cabbage aphid.

  9. Antioxidant capacity and fatty acid profile of Centaurea kotschyi (Boiss. and Heldr.) Hayek var. persica (Boiss.) Wagenitz from Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Zengin, G.; Guler, G.O.; Cakmak, Y.S.; Aktumseka, A.

    2011-07-01

    The antioxidant capacity of the methanolic extract and the fatty acid composition of C. kotschyi var. persica were investigated. Six different chemical methods were used to determine the antioxidant capacity. The fatty acid composition was analyzed using gas chromatography. The IC50 value of the extract was determined as 37.09 ig/ml (in the DPPH assay). In the {beta}carotene/linoleic acid system, the extract exhibited 65.22% inhibition against linoleic acid oxidation. The amount of total phenolic content and total antioxidant capacity were detected as 36.52 mg gallic acid equivalent (GAE)/g and 74.93 mg ascorbic acid equivalent (AE)/g, respectively. The major fatty acid in the composition of C. kotschyi var. persica was found to be C 18:3 u3 ({beta}-linolenic acid) by GC analysis. The results presented here indicate that C. kotschyi var. persica possess strong antioxidant properties. Therefore, the species can be used as a natural additive in food, cosmetic and pharmaceutical industries. (Author).

  10. Novel male-biased expression in paralogs of the aphid slimfast nutrient amino acid transporter expansion

    Directory of Open Access Journals (Sweden)

    Nathanson Lubov

    2011-09-01

    Full Text Available Abstract Background A major goal of molecular evolutionary biology is to understand the fate and consequences of duplicated genes. In this context, aphids are intriguing because the newly sequenced pea aphid genome harbors an extraordinary number of lineage-specific gene duplications relative to other insect genomes. Though many of their duplicated genes may be involved in their complex life cycle, duplications in nutrient amino acid transporters appear to be associated rather with their essential amino acid poor diet and the intracellular symbiosis aphids rely on to compensate for dietary deficits. Past work has shown that some duplicated amino acid transporters are highly expressed in the specialized cells housing the symbionts, including a paralog of an aphid-specific expansion homologous to the Drosophila gene slimfast. Previous data provide evidence that these bacteriocyte-expressed transporters mediate amino acid exchange between aphids and their symbionts. Results We report that some nutrient amino acid transporters show male-biased expression. Male-biased expression characterizes three paralogs in the aphid-specific slimfast expansion, and the male-biased expression is conserved across two aphid species for at least two paralogs. One of the male-biased paralogs has additionally experienced an accelerated rate of non-synonymous substitutions. Conclusions This is the first study to document male-biased slimfast expression. Our data suggest that the male-biased aphid slimfast paralogs diverged from their ancestral function to fill a functional role in males. Furthermore, our results provide evidence that members of the slimfast expansion are maintained in the aphid genome not only for the previously hypothesized role in mediating amino acid exchange between the symbiotic partners, but also for sex-specific roles.

  11. Differential Life History Trait Associations of Aphids with Nonpersistent Viruses in Cucurbits.

    Science.gov (United States)

    Angelella, G M; Egel, D S; Holland, J D; Nemacheck, J A; Williams, C E; Kaplan, I

    2015-06-01

    The diversity of vectors and fleeting nature of virus acquisition and transmission renders nonpersistent viruses a challenge to manage. We assessed the importance of noncolonizing versus colonizing vectors with a 2-yr survey of aphids and nonpersistent viruses on commercial pumpkin farms. We quantified aphid alightment using pan traps, while testing leaf samples with multiplex RT-PCR targeting cucumber mosaic virus (CMV), zucchini yellow mosaic virus (ZYMV), watermelon mosaic virus (WMV), and papaya ringspot virus (PRSV). Overall, we identified 53 aphid species (3,899 individuals), from which the melon aphid, Aphis gossypii Glover, a pumpkin-colonizing species, predominated (76 and 37% of samples in 2010 and 2011, respectively). CMV and ZYMV were not detected, but WMV and PRSV were prevalent, both regionally (WMV: 28/29 fields, PRSV: 21/29 fields) and within fields (infection rates = 69 and 55% for WMV in 2010 and 2011; 28 and 25% for PRSV in 2010 and 2011). However, early-season samples showed extremely low infection levels, suggesting cucurbit viruses are not seed-transmitted and implicating aphid activity as a causal factor driving virus spread. Interestingly, neither noncolonizer and colonizer alightment nor total aphid alightment were good predictors of virus presence, but community analyses revealed species-specific relationships. For example, cowpea aphid (Aphis craccivora Koch) and spotted alfalfa aphid (Therioaphis trifolii Monell f. maculata) were associated with PRSV infection, whereas the oleander aphid (Aphis nerii Bover de Fonscolombe) was associated with WMV spread within fields. These outcomes highlight the need for tailored management plans targeting key vectors of nonpersistent viruses in agricultural systems. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Aphid parasitoid (Hymenoptera:Braconidae: Aphidiinae) in wetland habitats in western Palearctic: key and associated aphid parasitoid guilds

    Czech Academy of Sciences Publication Activity Database

    Tomanović, Ž.; Starý, Petr; Kavallieratos, N. G.; Gagić, V.; Plećaš, M.; Janković, M.; Rakhshani, E.; Ćetković, A.; Petrović, A.

    2012-01-01

    Roč. 48, 1-2 (2012), s. 189-198 ISSN 0037-9271 Grant - others:The Ministry of Science and Technological Development of the Republic of Serbia(RS) 043001 Institutional research plan: CEZ:AV0Z50070508 Keywords : aphid parasitoids * tritrophic interactions * wetlands Subject RIV: EH - Ecology, Behaviour Impact factor: 0.529, year: 2012 http://zoologie.umh.ac.be/asef/pdf/2012_48_01_02/full/Tomanovic_et_al_2012_ASEF_48_1_2_189_198_full.pdf

  13. Exploring the nitrogen ingestion of aphids--a new method using electrical penetration graph and (15N labelling.

    Directory of Open Access Journals (Sweden)

    Franziska Kuhlmann

    Full Text Available Studying plant-aphid interactions is challenging as aphid feeding is a complex process hidden in the plant tissue. Here we propose a combination of two well established methods to study nutrient acquisition by aphids focusing on the uptake of isotopically labelled nitrogen ((15N. We combined the Electrical Penetration Graph (EPG technique that allows detailed recording of aphid feeding behaviour and stable isotope ratio mass spectrometry (IRMS to precisely measure the uptake of nitrogen. Bird cherry-oat aphids Rhopalosiphum padi L. (Hemiptera, Aphididae fed for 24 h on barley plants (Hordeum vulgare L., cultivar Lina, Poaceae that were cultivated with a (15N enriched nutrient solution. The time aphids fed in the phloem was strongly positive correlated with their (15N uptake. All other single behavioural phases were not correlated with (15N enrichment in the aphids, which corroborates their classification as non-feeding EPG phases. In addition, phloem-feeding and (15N enrichment of aphids was divided into two groups. One group spent only short time in the phloem phase and was unsuccessful in nitrogen acquisition, while the other group displayed longer phloem-feeding phases and was successful in nitrogen acquisition. This suggests that several factors such as the right feeding site, time span of feeding and individual conditions play a role for the aphids to acquire nutrients successfully. The power of this combination of methods for studying plant-aphid interactions is discussed.

  14. Spatial Distribution and Sampling Plans With Fixed Level of Precision for Citrus Aphids (Hom., Aphididae) on Two Orange Species.

    Science.gov (United States)

    Kafeshani, Farzaneh Alizadeh; Rajabpour, Ali; Aghajanzadeh, Sirous; Gholamian, Esmaeil; Farkhari, Mohammad

    2018-04-02

    Aphis spiraecola Patch, Aphis gossypii Glover, and Toxoptera aurantii Boyer de Fonscolombe are three important aphid pests of citrus orchards. In this study, spatial distributions of the aphids on two orange species, Satsuma mandarin and Thomson navel, were evaluated using Taylor's power law and Iwao's patchiness. In addition, a fixed-precision sequential sampling plant was developed for each species on the host plant by Green's model at precision levels of 0.25 and 0.1. The results revealed that spatial distribution parameters and therefore the sampling plan were significantly different according to aphid and host plant species. Taylor's power law provides a better fit for the data than Iwao's patchiness regression. Except T. aurantii on Thomson navel orange, spatial distribution patterns of the aphids were aggregative on both citrus. T. aurantii had regular dispersion pattern on Thomson navel orange. Optimum sample size of the aphids varied from 30-2061 and 1-1622 shoots on Satsuma mandarin and Thomson navel orange based on aphid species and desired precision level. Calculated stop lines of the aphid species on Satsuma mandarin and Thomson navel orange ranged from 0.48 to 19 and 0.19 to 80.4 aphids per 24 shoots according to aphid species and desired precision level. The performance of the sampling plan was validated by resampling analysis using resampling for validation of sampling plans (RVSP) software. This sampling program is useful for IPM program of the aphids in citrus orchards.

  15. Aphid-parasitoid community structure on genetically modified wheat.

    Science.gov (United States)

    von Burg, Simone; van Veen, Frank J F; Álvarez-Alfageme, Fernando; Romeis, Jörg

    2011-06-23

    Since the introduction of genetically modified (GM) plants, one of the main concerns has been their potential effect on non-target insects. Many studies have looked at GM plant effects on single non-target herbivore species or on simple herbivore-natural enemy food chains. Agro-ecosystems, however, are characterized by numerous insect species which are involved in complex interactions, forming food webs. In this study, we looked at transgenic disease-resistant wheat (Triticum aestivum) and its effect on aphid-parasitoid food webs. We hypothesized that the GM of the wheat lines directly or indirectly affect aphids and that these effects cascade up to change the structure of the associated food webs. Over 2 years, we studied different experimental wheat lines under semi-field conditions. We constructed quantitative food webs to compare their properties on GM lines with the properties on corresponding non-transgenic controls. We found significant effects of the different wheat lines on insect community structure up to the fourth trophic level. However, the observed effects were inconsistent between study years and the variation between wheat varieties was as big as between GM plants and their controls. This suggests that the impact of our powdery mildew-resistant GM wheat plants on food web structure may be negligible and potential ecological effects on non-target insects limited.

  16. Plant-derived differences in the composition of aphid honeydew and their effects on colonies of aphid-tending ants

    Science.gov (United States)

    Pringle, Elizabeth G; Novo, Alexandria; Ableson, Ian; Barbehenn, Raymond V; Vannette, Rachel L

    2014-01-01

    In plant–ant–hemipteran interactions, ants visit plants to consume the honeydew produced by phloem-feeding hemipterans. If genetically based differences in plant phloem chemistry change the chemical composition of hemipteran honeydew, then the plant's genetic constitution could have indirect effects on ants via the hemipterans. If such effects change ant behavior, they could feed back to affect the plant itself. We compared the chemical composition of honeydews produced by Aphis nerii aphid clones on two milkweed congeners, Asclepias curassavica and Asclepias incarnata, and we measured the responses of experimental Linepithema humile ant colonies to these honeydews. The compositions of secondary metabolites, sugars, and amino acids differed significantly in the honeydews from the two plant species. Ant colonies feeding on honeydew derived from A. incarnata recruited in higher numbers to artificial diet, maintained higher queen and worker dry weight, and sustained marginally more workers than ants feeding on honeydew derived from A. curassavica. Ants feeding on honeydew from A. incarnata were also more exploratory in behavioral assays than ants feeding from A. curassavica. Despite performing better when feeding on the A. incarnata honeydew, ant workers marginally preferred honeydew from A. curassavica to honeydew from A. incarnata when given a choice. Our results demonstrate that plant congeners can exert strong indirect effects on ant colonies by means of plant-species-specific differences in aphid honeydew chemistry. Moreover, these effects changed ant behavior and thus could feed back to affect plant performance in the field. PMID:25505534

  17. All 37 Mitochondrial Genes of Aphid Aphis craccivora Obtained from Transcriptome Sequencing: Implications for the Evolution of Aphids.

    Directory of Open Access Journals (Sweden)

    Nan Song

    Full Text Available The availability of mitochondrial genome data for Aphididae, one of the economically important insect pest families, in public databases is limited. The advent of next generation sequencing technology provides the potential to generate mitochondrial genome data for many species timely and cost-effectively. In this report, we used transcriptome sequencing technology to determine all the 37 mitochondrial genes of the cowpea aphid, Aphis craccivora. This method avoids the necessity of finding suitable primers for long PCRs or primer-walking amplicons, and is proved to be effective in obtaining the whole set of mitochondrial gene data for insects with difficulty in sequencing mitochondrial genome by PCR-based strategies. Phylogenetic analyses of aphid mitochondrial genome data show clustering based on tribe level, and strongly support the monophyly of the family Aphididae. Within the monophyletic Aphidini, three samples from Aphis grouped together. In another major clade of Aphididae, Pterocomma pilosum was recovered as a potential sister-group of Cavariella salicicola, as part of Macrosiphini.

  18. Kaolin particle films suppress many apple pests, disrupt natural enemies and promote woolly apple aphid

    NARCIS (Netherlands)

    Markó, V.; Blommers, L.H.M.; Bogya, S.; Helsen, H.H.M.

    2008-01-01

    Multiple applications of hydrophobic kaolin particle film in apple orchards suppressed numbers of blossom weevil (Anthonomus pomorum), brown leaf weevil (Phyllobius oblongus), attelabid weevil (Caenorhinus pauxillus), leafhoppers (Empoasca vitis and Zygina flammigera) and green apple aphid (Aphis

  19. The Polerovirus Minor Capsid Protein Determines Vector Specificity and Intestinal Tropism in the Aphid

    Science.gov (United States)

    Brault, Véronique; Périgon, Sophie; Reinbold, Catherine; Erdinger, Monique; Scheidecker, Danièle; Herrbach, Etienne; Richards, Ken; Ziegler-Graff, Véronique

    2005-01-01

    Aphid transmission of poleroviruses is highly specific, but the viral determinants governing this specificity are unknown. We used a gene exchange strategy between two poleroviruses with different vectors, Beet western yellows virus (BWYV) and Cucurbit aphid-borne yellows virus (CABYV), to analyze the role of the major and minor capsid proteins in vector specificity. Virus recombinants obtained by exchanging the sequence of the readthrough domain (RTD) between the two viruses replicated in plant protoplasts and in whole plants. The hybrid readthrough protein of chimeric viruses was incorporated into virions. Aphid transmission experiments using infected plants or purified virions revealed that vector specificity is driven by the nature of the RTD. BWYV and CABYV have specific intestinal sites in the vectors for endocytosis: the midgut for BWYV and both midgut and hindgut for CABYV. Localization of hybrid virions in aphids by transmission electron microscopy revealed that gut tropism is also determined by the viral origin of the RTD. PMID:16014930

  20. Russian wheat aphid, Diuraphis noxia in the Czech Republic – cause of the significant population decrease

    Czech Academy of Sciences Publication Activity Database

    Havelka, Jan; Žurovcová, Martina; Rychlý, S.; Starý, Petr

    2014-01-01

    Roč. 138, č. 4 (2014), s. 273-280 ISSN 0931-2048 R&D Projects: GA ČR GA522/09/1940 Institutional support: RVO:60077344 Keywords : alien aphid species * anholocyclic populations * aphids overwintering mortality Subject RIV: EH - Ecology, Behaviour Impact factor: 1.650, year: 2014 http://onlinelibrary.wiley.com/doi/10.1111/jen.12068/pdf

  1. Winter treatments against the woolly apple aphid (Eriosoma lanigerum): products and timing of applications

    OpenAIRE

    Kelderer, Markus; Lardschneider, Ewald; Casera, Claudio

    2008-01-01

    In organic apple growing the woolly apple aphid (Eriosoma lanigerum) is still an unsolved problem. Various approaches to use beneficial insects were not really effective. Only winter treatments with mineral oils showed partial and fluctuating success. In 2006 and 2007 field trials were carried out to evaluate the efficacy of winter treatments to control woolly apple aphids. The efficacy of several products (different mineral oils, lime sulphur, and lime sulphur + mineral oil) w...

  2. Expression of Pinellia pedatisecta Lectin Gene in Transgenic Wheat Enhances Resistance to Wheat Aphids

    OpenAIRE

    Xiaoliang Duan; Qiling Hou; Guoyu Liu; Xiaomeng Pang; Zhenli Niu; Xiao Wang; Yufeng Zhang; Baoyun Li; Rongqi Liang

    2018-01-01

    Wheat aphids are major pests during the seed filling stage of wheat. Plant lectins are toxic to sap-sucking pests such as wheat aphids. In this study, Pinellia pedatisecta agglutinin (ppa), a gene encoding mannose binding lectin, was cloned, and it shared 92.69% nucleotide similarity and 94% amino acid similarity with Pinellia ternata agglutinin (pta). The ppa gene, driven by the constitutive and phloem-specific ribulose bisphosphate carboxylase small subunit gene (rbcs) promoter in pBAC-rbcs...

  3. Investigations of a Possible Chemical Effect of Salvadora persica Chewing Sticks

    Directory of Open Access Journals (Sweden)

    Reham Albabtain

    2017-01-01

    Full Text Available Salvadora persica is commonly used chewing sticks in many parts of the world as an oral hygiene tool. This study measured the amount of benzyl isothiocyanate (BITC released into the mouth and assessed its retention time in saliva. The study also tested if the released amount of BITC could potentially be antibacterial or cytotoxic. Twelve subjects brushed their teeth with fresh Miswak once, twice, and four times. The amount of BITC in the saliva and in the used brushes was quantified using gas chromatography-mass spectrometry. The antibacterial effect of BITC and Miswak essential oil (MEO was tested against Haemophilus influenzae, Aggregatibacter actinomycetemcomitans, and Porphyromonas gingivalis. The cytotoxic effect on gingival fibroblasts and keratinocytes was tested using MTT. The highest amount of the active compounds was detected in saliva after using the Miswak tip for once and immediately. It significantly decreased when the Miswak tip was used more than once and thus after 10 min. The growth of the tested bacteria was inhibited by MEO and BITC in a dose dependent manner, P. gingivalis being the most sensitive. MTT assay showed that BITC and MEO were cytotoxic towards gingival fibroblasts while oral keratinocytes showed resistance. This study suggests that the Miswak tip should be cut before each use to ensure the maximum effect.

  4. Effects of Different Treatments on Seed Germination Improvement of Calotropis persica

    Directory of Open Access Journals (Sweden)

    Asghar Farajollahi

    2014-01-01

    Full Text Available The purpose of this study was to investigate the effects of different treatments on seed germination in the desert plant species Calotropis persica (Gand.. This species is known to have long time for seed germination considering arid region condition and short time of access moist. An experiment was performed with 13 treatments and 4 replications in a completely randomized design. Treatments included KNO3 with concentrations of 0.1, 0.2, and 0.3 percent, immersion in hot water for five min, acetylsalicylic acid 100, 200, and 300 mg L−1, ethereal sulfuric acid (60% for 5 and 10 min, thiourea with concentrations of 0.1% and 0.3%, and prechilling for 10 days. Tap water was used as the control. Our findings indicate that KNO3 0.1% and 100 mg L−1 acetylsalicylic acid were the most effective treatments for improvement of seed germination properties in this species. In a comparison of the two mentioned treatment, KNO3 0.1% treatments is the best.

  5. Effects of Salvadora persica Extract on the Hematological and Biochemical Alterations against Immobilization-Induced Rats

    Science.gov (United States)

    Ramadan, Kholoud S.; Alshamrani, Salha A.

    2015-01-01

    A total of 24 rats were divided into 4 groups: control, stress, extract alone, and stress + extract (n = 6 each), for total 21 days of treatment. The immobilization stress was induced in rats by putting them in 20 cm × 7 cm plastic tubes for 2 h/day for 21 days. Rats were postorally treated with Salvadora persica at a dose of 900 mg/kg body weight via intragastric intubations. At the end of the test period, hematological and biochemical parameters were determined in blood and serum samples with determination of vital organs weights. The vital organ weights were not significantly affected in stressed rats as compared to control rats. Compared to the control group, the stress treated group showed significances in several hematological parameters, including decreases in WBC, RBC, and PLT counts. Furthermore, in comparison to the control group, the stress group showed significantly increased blood glucose, serum total cholesterol, LDL-cholesterol, and triacylglycerols levels and decreased HDL-cholesterol level. The hematological and biochemical parameters in the stress + extract treated group were approximately similar to control group. The SP extract restored the changes observed following stress treatment. PMID:26221565

  6. Foliar aphid feeding recruits rhizosphere bacteria and primes plant immunity against pathogenic and non-pathogenic bacteria in pepper.

    Science.gov (United States)

    Lee, Boyoung; Lee, Soohyun; Ryu, Choong-Min

    2012-07-01

    Plants modulate defence signalling networks in response to different biotic stresses. The present study evaluated the effect of a phloem-sucking aphid on plant defence mechanisms in pepper (Capsicum annuum) during subsequent pathogen attacks on leaves and rhizosphere bacteria on roots. Plants were pretreated with aphids and/or the chemical trigger benzothiadiazol (BTH) 7 d before being challenged with two pathogenic bacteria, Xanthomonas axonopodis pv. vesicatoria (Xav) as a compatible pathogen and X. axonopodis pv. glycines (Xag) as an incompatible (non-host) pathogen. Disease severity was noticeably lower in aphid- and BTH + aphid-treated plants than in controls. Although treatment with BTH or aphids alone did not affect the hypersensitive response (HR) against Xag strain 8ra, the combination treatment had a synergistic effect on the HR. The aphid population was reduced by BTH pretreatment and by combination treatment with BTH and bacterial pathogens in a synergistic manner. Analysis of the expression of the defence-related genes Capsicum annum pathogenesis-related gene 9 (CaPR9), chitinase 2 (CaCHI2), SAR8·2 and Lipoxygenase1 (CaLOX1) revealed that aphid infestation resulted in the priming of the systemic defence responses against compatible and incompatible pathogens. Conversely, pre-challenge with the compatible pathogen Xav on pepper leaves significantly reduced aphid numbers. Aphid infestation increased the population of the beneficial Bacillus subtilis GB03 but reduced that of the pathogenic Ralstonia solanacearum SL1931. The expression of defence-related genes in the root and leaf after aphid feeding indicated that the above-ground aphid infestation elicited salicylic acid and jasmonic acid signalling throughout the whole plant. The findings of this study show that aphid feeding elicits plant resistance responses and attracts beneficial bacterial populations to help the plant cope with subsequent pathogen attacks.

  7. Cucumber Plants Baited with Methyl Salicylate Accelerates Scymnus (Pullus) sodalis (Coleoptera: Coccinellidae) Visiting to Reduce Cotton Aphid (Hemiptera: Aphididae) Infestation.

    Science.gov (United States)

    Dong, Y J; Hwang, S Y

    2017-10-01

    The cotton aphid, Aphis gossypii (Glover) (Hemiptera: Aphididae), is a major pest of many crops worldwide and a major cucumber plant pest in Taiwan. Because cotton aphids rapidly develop insecticide resistance and because of the insecticide residue problem, a safe and sustainable method is required to replace conventional chemical control methods. Methyl salicylate (MeSA), a herbivore-induced plant volatile, has been shown to affect aphids' behavior and attract the natural enemies of aphids for reducing their population. Therefore, this study examined the direct effects of MeSA on cotton aphids' settling preference, population development, and attractiveness to natural enemies. The efficiency of using MeSA and the commercial insecticide pymetrozine for reducing the cotton aphid population in laboratory and outdoor cucumber plant pot was also examined. The results showed no difference in winged aphids' settling preference and population development between the MeSA and blank treatments. Cucumber plants infested with cotton aphids and baited with 0.1% or 10% MeSA contained significantly higher numbers of the natural enemy of cotton aphids, namely Scymnus (Pullus) sodalis (Weise) (Coleoptera: Coccinellidae), and MeSA-treated cucumber plants contained a lower number of aphids. Significantly lower cotton aphid numbers were found on cucumber plants within a 10-m range of MeSA application. In addition, fruit yield showed no difference between the MeSA and pymetrozine treatments. According to our findings, 0.1% MeSA application can replace insecticides as a cotton aphid control tool. However, large-scale experiments are necessary to confirm its efficiency and related conservation biological control strategies before further use. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Expression profiling of selected glutathione transferase genes in Zea mays (L.) seedlings infested with cereal aphids.

    Science.gov (United States)

    Sytykiewicz, Hubert; Chrzanowski, Grzegorz; Czerniewicz, Paweł; Sprawka, Iwona; Łukasik, Iwona; Goławska, Sylwia; Sempruch, Cezary

    2014-01-01

    The purpose of this report was to evaluate the expression patterns of selected glutathione transferase genes (gst1, gst18, gst23 and gst24) in the tissues of two maize (Zea mays L.) varieties (relatively resistant Ambrozja and susceptible Tasty Sweet) that were colonized with oligophagous bird cherry-oat aphid (Rhopalosiphum padi L.) or monophagous grain aphid (Sitobion avenae L.). Simultaneously, insect-triggered generation of superoxide anion radicals (O2•-) in infested Z. mays plants was monitored. Quantified parameters were measured at 1, 2, 4, 8, 24, 48 and 72 h post-initial aphid infestation (hpi) in relation to the non-infested control seedlings. Significant increases in gst transcript amounts were recorded in aphid-stressed plants in comparison to the control seedlings. Maximal enhancement in the expression of the gst genes in aphid-attacked maize plants was found at 8 hpi (gst23) or 24 hpi (gst1, gst18 and gst24) compared to the control. Investigated Z. mays cultivars formed excessive superoxide anion radicals in response to insect treatments, and the highest overproduction of O2•- was noted 4 or 8 h after infestation, depending on the aphid treatment and maize genotype. Importantly, the Ambrozja variety could be characterized as having more profound increments in the levels of gst transcript abundance and O2•- generation in comparison with the Tasty Sweet genotype.

  9. [An example of research on biological control: Entomophthora fungi pathogenic for aphids].

    Science.gov (United States)

    Latgé, J P; Remaudière, G; Papierok, B

    1978-01-01

    The results obtained in 15 years of research on the Entomophthorales pathogen of aphids showed the importance of the action of these fungi in the regulation of natural aphid populations and their possible use in agriculture as a biological control agent. Recent ecological studies on natural populations of aphids established the seasonal variation of the different fungal species and the diverse degrees of specificity between the species or groups of species of aphid and the various species of Entomophthora. The study of populations dynamics of an aphid species on a cultivated plant permitted the determination of the way a certain number of biotic and abiotic factors, such as temperature, humidity, thresholds of the insect population and of the infecting fungus lead to an epizootic development. If the air propagation of the disease by conidia is understood for a long time, the role of the soil as a reservoir for the infecting fungus has been demonstrated recently. Under favourable climatic conditions, the use of industrially produced resistant resting spores would allow the regulation of aphid populations in nature.

  10. Expression Profiling of Selected Glutathione Transferase Genes in Zea mays (L.) Seedlings Infested with Cereal Aphids

    Science.gov (United States)

    Sytykiewicz, Hubert; Chrzanowski, Grzegorz; Czerniewicz, Paweł; Sprawka, Iwona; Łukasik, Iwona; Goławska, Sylwia; Sempruch, Cezary

    2014-01-01

    The purpose of this report was to evaluate the expression patterns of selected glutathione transferase genes (gst1, gst18, gst23 and gst24) in the tissues of two maize (Zea mays L.) varieties (relatively resistant Ambrozja and susceptible Tasty Sweet) that were colonized with oligophagous bird cherry-oat aphid (Rhopalosiphum padi L.) or monophagous grain aphid (Sitobion avenae L.). Simultaneously, insect-triggered generation of superoxide anion radicals (O2 •−) in infested Z. mays plants was monitored. Quantified parameters were measured at 1, 2, 4, 8, 24, 48 and 72 h post-initial aphid infestation (hpi) in relation to the non-infested control seedlings. Significant increases in gst transcript amounts were recorded in aphid-stressed plants in comparison to the control seedlings. Maximal enhancement in the expression of the gst genes in aphid-attacked maize plants was found at 8 hpi (gst23) or 24 hpi (gst1, gst18 and gst24) compared to the control. Investigated Z. mays cultivars formed excessive superoxide anion radicals in response to insect treatments, and the highest overproduction of O2 •− was noted 4 or 8 h after infestation, depending on the aphid treatment and maize genotype. Importantly, the Ambrozja variety could be characterized as having more profound increments in the levels of gst transcript abundance and O2 •− generation in comparison with the Tasty Sweet genotype. PMID:25365518

  11. Foliar methyl salicylate emissions indicate prolonged aphid infestation on silver birch and black alder.

    Science.gov (United States)

    Blande, James D; Korjus, Minna; Holopainen, Jarmo K

    2010-03-01

    It is well documented that when plants are damaged by insects they respond by emitting a range of volatile organic compounds (VOCs). While there have been numerous reports concerning VOCs induced by chewing herbivores, there are relatively few studies detailing the VOCs induced by aphid feeding. The effects of aphid feeding on VOCs emitted by boreal forest trees have been particularly neglected. Herbivore-induced VOCs have relevance to direct and indirect plant defence and atmospheric chemistry. In this study, we analysed the VOCs emitted by Betula pendula (Roth) and Alnus glutinosa (L.) (Gaertn.) infested by specialist aphid species under laboratory conditions. We also complemented this by collecting VOCs from leaf beetle-damaged saplings under field conditions. In addition to induction of some inducible terpenes, we detected substantial aphid-induced emissions of methyl salicylate (MeSA) in both B. pendula and A. glutinosa. MeSA emission intensity depended on the length of aphid infestation. Feeding by beetles induced emission of (E)-DMNT in both tree species and (E)-beta-ocimene in A. glutinosa but had no effect on MeSA emissions. MeSA has been shown to have aphid-repellent qualities and has been shown recently to have impact on formation of secondary organic aerosols in the atmosphere. We discuss our results in relation to these two phenomena.

  12. Assessment of patch quality by aphidophagous ladybirds: laboratory study on the minimum density of aphids required for oviposition

    Directory of Open Access Journals (Sweden)

    B. C. Das

    2011-12-01

    Full Text Available Many studies indicate that there is a density of aphids below which ladybirds are unlikely to lay eggs. This is adaptive as theory indicates that a certain minimum population density of aphids is required if hatchling larvae are to survive. The responses of gravid females of the two spot ladybird, Adalia bipunctata (L. (Coleoptera: Coccinellidae, recorded over a period of an hour, to colonies of 5 and 50 pea aphids on bean plants and similar plants each previously infested with the same number of aphids for 48 hours were determined. Proportionally more of the ladybirds on plants with 50 aphids or that were previously infested with the same number of aphids for 48 hours laid eggs and larger clusters of eggs, and were less active than those on plants that were infested with or had previously been infested with five aphids. That is, gravid females showed similar oviposition and activity responses to aphid abundance and different levels of honeydew contamination. This indicates that honeydew contamination may be an important cue used by ladybirds when locating and assessing the abundance of prey in aphid colonies.

  13. Effect of ant attendance by Monomorium minimum (Buckley) (Hymenoptera: Formicidae) on predation and parasitism of the soybean aphid Aphis glycines Matsumura (Hemiptera: Aphididae).

    Science.gov (United States)

    Herbert, John J; Horn, David J

    2008-10-01

    Ant attendance is known to affect the population dynamics of aphids and may increase or decrease aphid populations through stimulation, predation, or protection. In this study, we performed a series of laboratory experiments to examine the effects of ant attendance on populations of the soybean aphid Aphis glycines. Aphid colonies were exposed to the predators Harmonia axyridis (Coccinellidae) and Orius insidiosus (Anthocoridae) and a parasitoid Aphidius colemani (Aphidiidae) in the presence and absence of attending Monomorium minimum (Formicidae). We also tested for direct effects of ant attendance in the absence of natural enemies. Ants attending soybean aphid populations were observed harassing or killing O. insidiosus and H. axyridis. Attendance interfered with both predator species, resulting in reduced predation and an increase in aphid numbers up to 10-fold in the presence of ants. Ants were not observed directly interfering with the parasitoid A. colemani, but the number of parasitized aphids was higher in aphid colonies that were left unattended by ants.

  14. Remediation of saline soils contaminated with crude oil using the halophyte Salicornia persica in conjunction with hydrocarbon-degrading bacteria.

    Science.gov (United States)

    Ebadi, Ali; Khoshkholgh Sima, Nayer Azam; Olamaee, Mohsen; Hashemi, Maryam; Ghorbani Nasrabadi, Reza

    2018-05-08

    The negative impact of salinity on plant growth and the survival of rhizosphere biota complicates the application of bioremediation to crude oil-contaminated saline soils. Here, a comparison was made between the remedial effect of treating the soil with Pseudomonas aeruginosa, a salinity tolerant hydrocarbon-degrading consortium in conjunction with either the halophyte Salicornia persica or the non-halophyte Festuca arundinacea. The effect of the various treatments on salinized soils was measured by assessing the extent of total petroleum hydrocarbon (TPH) degradation, the soil's dehydrogenase activity, the abundance of the bacteria and the level of phytotoxicity as measured by a bioassay. When a non-salinized soil was assessed after a treatment period of 120 days, the ranking for effectiveness with respect to TPH removal was F. arundinacea > P. aeruginosa > S. persica > no treatment control, while in the presence of salinity, the ranking changed to S. persica > P. aeruginosa > F. arundinacea > no treatment control. Combining the planting of S. persica or F. arundinacea with P. aeruginosa inoculation ("bioaugmentation") boosted the degradation of TPH up to 5-17%. Analyses of the residual oil contamination revealed that long chain alkanes (above C20) were particularly strongly degraded following the bioaugmentation treatments. The induced increase in dehydrogenase activity and the abundance of the bacteria (3.5 and 10 fold respectively) achieved in the bioaugmentation/S. persica treatment resulted in 46-76% reduction in soil phytotoxicity in a saline soil. The indication was that bioaugmentation of halophyte can help to mitigate the adverse effects on the effectiveness of bioremediation in a crude oil-contaminated saline soil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Intercropping System for Protection the Potato Plant from Insect Infestation

    Directory of Open Access Journals (Sweden)

    Aziza Sharaby

    2015-06-01

    Full Text Available The use of intercropping system provides an option for insect control for organic farmers that are limited in their chemical use. Additionally, intercropping systems can be attractive to conventional growers as a cost-effective insect control solution. A study was carried out for two seasons 2011-2012 and 2012-2013 to evaluate the effect of intercropping of potato (Solanum tuberosum L. with onion (Allium cepa L. on whitefly (Bemicia tabasi Gennadius and aphids’ Myzus persicae Sulz. and Aphis gossypii Glover infestation in potato fields. Results indicated that intercropping significantly reduced potato plant infestation with whitefly by 42.7, 51.3% while it was 62.69% reduction with aphids during the two successive winter seasons than when potato plants were cultivated alone. Therefore, intercropping could be recommended as a protection method of reducing pest population in the fields.

  16. Effectiveness of electron irradiation as a quarantine treatment of cut flowers

    International Nuclear Information System (INIS)

    Hayashi, T.; Todoriki, S.; Nakakita, H.; Dohino, T.; Tanabe, K.

    1999-01-01

    The effects of electron beams on spider mite (Tetranychus urticae) and flour beetle (Tribolium freemani) were slightly smaller than those of gamma-rays. 'Soft-electrons' (low-energy electrons) at an energy of 170 keV inactivated eggs, larvae, pupae, and adults of the flour beetle. Electron beams at doses up to 400 Gy killed or sterilized all the pests for cut flowers tested; spider mite (Tetranychus urticae), mealybug (Pseudococcus comstocki), leaf miner (Liriomyza trifolii), thrips (Thrips palmi, Thrips tabaci), cutworm (Spodoptera litura), and aphid (Myzus persicae). Carnation, alstromeria, gladiolus, tulip, statice, stock, dendrobium, prairie gentian, oncidium, campanula, gloriosa, fern, gypsophila, freesia, lobelia, triteleia, and gerbera were resistant to radiation, while chrysanthemum, rose, lily, calla, antherium, sweet pea, and iris were sensitive. Radiation-induced deterioration of chrysanthemum could be prevented by post-irradiation treatment with commercial preservative solutions or sugar solutions. (author)

  17. SAR studies directed toward the pyridine moiety of the sap-feeding insecticide sulfoxaflor (Isoclast™ active).

    Science.gov (United States)

    Loso, Michael R; Benko, Zoltan; Buysse, Ann; Johnson, Timothy C; Nugent, Benjamin M; Rogers, Richard B; Sparks, Thomas C; Wang, Nick X; Watson, Gerald B; Zhu, Yuanming

    2016-02-01

    Sap-feeding insect pests constitute a major insect pest complex that includes a range of aphids, whiteflies, planthoppers and other insect species. Sulfoxaflor (Isoclast™ active), a new sulfoximine class insecticide, targets sap-feeding insect pests including those resistant to many other classes of insecticides. A structure activity relationship (SAR) investigation of the sulfoximine insecticides revealed the importance of a 3-pyridyl ring and a methyl substituent on the methylene bridge linking the pyridine and the sulfoximine moiety to achieving strong Myzus persicae activity. A more in depth QSAR investigation of pyridine ring substituents revealed a strong correlation with the calculated logoctanol/water partition coefficient (SlogP). Model development resulted in a highly predictive model for a set of 18 sulfoximines including sulfoxaflor. The model is consistent with and helps explain the highly optimized pyridine substitution pattern for sulfoxaflor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Genome wide identification of chilling responsive microRNAs in Prunus persica

    Directory of Open Access Journals (Sweden)

    Barakat Abdelali

    2012-09-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are small RNAs (sRNAs approximately 21 nucleotides in length that negatively control gene expression by cleaving or inhibiting the translation of target gene transcripts. Within this context, miRNAs and siRNAs are coming to the forefront as molecular mediators of gene regulation in plant responses to annual temperature cycling and cold stress. For this reason, we chose to identify and characterize the conserved and non-conserved miRNA component of peach (Prunus persica (L. Batsch focusing our efforts on both the recently released whole genome sequence of peach and sRNA transcriptome sequences from two tissues representing non-dormant leaves and dormant leaf buds. Conserved and non-conserved miRNAs, and their targets were identified. These sRNA resources were used to identify cold-responsive miRNAs whose gene targets co-localize with previously described QTLs for chilling requirement (CR. Results Analysis of 21 million peach sRNA reads allowed us to identify 157 and 230 conserved and non-conserved miRNA sequences. Among the non-conserved miRNAs, we identified 205 that seem to be specific to peach. Comparative genome analysis between peach and Arabidopsis showed that conserved miRNA families, with the exception of miR5021, are similar in size. Sixteen of these conserved miRNA families are deeply rooted in land plant phylogeny as they are present in mosses and/or lycophytes. Within the other conserved miRNA families, five families (miR1446, miR473, miR479, miR3629, and miR3627 were reported only in tree species (Populustrichocarpa, Citrus trifolia, and Prunus persica. Expression analysis identified several up-regulated or down-regulated miRNAs in winter buds versus young leaves. A search of the peach proteome allowed the prediction of target genes for most of the conserved miRNAs and a large fraction of non-conserved miRNAs. A fraction of predicted targets in peach have not been previously reported in other

  19. Molecular cloning, identification, and chromosomal localization of two MADS box genes in peach (Prunus persica).

    Science.gov (United States)

    Zhang, Lin; Xu, Yong; Ma, Rongcai

    2008-06-01

    MADS box proteins play an important role in floral development. To find genes involved in the floral transition of Prunus species, cDNAs for two MADS box genes, PpMADS1 and PpMADS10, were cloned using degenerate primers and 5'- and 3'-RACE based on the sequence database of P. persica and P. dulcis. The full length of PpMADS1 cDNA is 1,071 bp containing an open reading frame (ORF) of 717 bp and coding for a polypeptide of 238 amino acid residues. The full length of PpMADS10 cDNA is 937 bp containing an ORF of 633 bp and coding for a polypeptide of 210 amino acid residues. Sequence comparison revealed that PpMADS1 and PpMADS10 were highly homologous to genes AP1 and PI in Arabidopsis, respectively. Phylogenetic analysis indicated that PpMADS1 belongs to the euAP1 clade of class A, and PpMADS10 is a member of GLO/PI clade of class B. RT-PCR analysis showed that PpMADS1 was expressed in sepal, petal, carpel, and fruit, which was slightly different from the expression pattern of AP1; PpMADS10 was expressed in petal and stamen, which shared the same expression pattern as PI. Using selective mapping strategy, PpMADS1 was assigned onto the Bin1:50 on the G1 linkage group between the markers MCO44 and TSA2, and PpMADS10 onto the Bin1:73 on the same linkage group between the markers Lap-1 and FGA8. Our results provided the basis for further dissection of the two MADS box gene function.

  20. Caracterización de cultivares de duraznero (Prunus persica (L. Batsch. por resistencia a heladas

    Directory of Open Access Journals (Sweden)

    Javier Emilio Chaar

    2015-07-01

    Full Text Available Las heladas primaverales son una de las principales limitantes de la producción de frutales de clima templado. Dentro de una misma especie existe variabilidad en resistencia frente al daño en órganos florales ocasionado por temperaturas bajo cero durante la salida del reposo invernal. En cinco cultivares de duraznero (Prunus persica (L. Batsch. y uno de nectarino se evaluó el daño ocasionado por heladas y se determinaron la fecha de plena floración y la densidad de floración. Adicionalmente se determinó la temperatura letal media (TL50 de las yemas florales en el estado de flor abierta, mediante descensos térmicos controlados en laboratorio. Los cultivares (cv de duraznero Maria Bianca y Summer Pearl presentaron las mayores densidades de flores sanas por cm de ramo, luego de la ocurrencia de temperaturas bajo cero en campo. La resistencia a heladas en campo se relacionó principalmente con la elevada densidad de floración, en combinación, en algunos casos, con floración tardía. La floración tardía por sí sola no resultó una característica de resistencia; por tanto, para la elección de cultivares de duraznero con menor riesgo de daño por temperaturas bajo cero es importante tener en cuenta más de una variable relacionada con los órganos reproductivos

  1. Genetic dissection of Sharka disease tolerance in peach (P. persica L. Batsch).

    Science.gov (United States)

    Cirilli, Marco; Rossini, Laura; Geuna, Filippo; Palmisano, Francesco; Minafra, Angelantonio; Castrignanò, Tiziana; Gattolin, Stefano; Ciacciulli, Angelo; Babini, Anna Rosa; Liverani, Alessandro; Bassi, Daniele

    2017-11-03

    Plum pox virus (PPV), agent of Sharka disease, is the most important quarantine pathogen of peach (P. persica L. Batsch). Extensive evaluation of peach germplasm has highlighted the lack of resistant sources, while suggesting the presence of a quantitative disease resistance, expressed as reduction in the intensity of symptoms. Unravelling the genetic architecture of peach response to PPV infection is essential for pyramiding resistant genes and for developing more tolerant varieties. For this purpose, a genome-wide association (GWA) approach was applied in a panel of accessions phenotyped for virus susceptibility and genotyped with the IPSC peach 9 K SNP Array, and coupled with an high-coverage resequencing of the tolerant accession 'Kamarat'. Genome-wide association identified three highly significant associated loci on chromosome 2 and 3, accounting for most of the reduction in PPV-M susceptibility within the analysed peach population. The exploration of associated intervals through whole-genome comparison of the tolerant accession 'Kamarat' and other susceptible accessions, including the PPV-resistant wild-related species P. davidiana, allow the identification of allelic variants in promising candidate genes, including an RTM2-like gene already characterized in A. thaliana. The present study is the first effort to identify genetic factors involved in Sharka disease in peach germplasm through a GWA approach. We provide evidence of the presence of quantitative resistant loci in a collection of peach accessions, identifying major loci and highly informative SNPs that could be useful for marker assisted selection. These results could serve as reference bases for future research aimed at the comprehension of genetic mechanism regulating the complex peach-PPV interaction.

  2. Molecular systematics of aphids (Homoptera: Aphididae): new insights from the long-wavelength opsin gene.

    Science.gov (United States)

    Ortiz-Rivas, Benjamín; Moya, Andrés; Martínez-Torres, David

    2004-01-01

    Viviparous aphids (Aphididae) constitute a monophyletic group within the Homoptera with more than 4000 extant species worldwide but higher diversity in temperate regions. Several aspects of their biology account for attention paid to this group of insects. Their plant-sap-sucking way of feeding with many species transmitting viruses to crop plants has important implications on crop management strategies. Cyclical parthenogenesis associated in many groups to host alternation and elaborate polyphenisms is of special interests for evolutionists. Finally, the ancient association of most aphid species with intracellular endosymbiotic bacteria (Buchnera sp.) has also received much attention from evolutionists interested in mechanisms involved in the symbiotic process. Knowing the phylogenetic relationships among major aphid taxa is of special interest to evolutionists interested in the above issues. However, until recently, molecular approaches to aphid phylogeny were absent and discussions on the evolution of aphid life-cycles and on evolutionary aspects of their symbiotic association with Buchnera were framed by morphology-based phylogenies. Recently, two reports using molecular approaches attempted to address the yet unresolved phylogeny of Aphididae with limited although somehow different conclusions. In the present report we study the utility of the long-wave opsin gene in resolving phylogenetic relationships among seven subfamilies within the Aphididae. Our results corroborate some previously proposed relationships and suggest a revision of some others. In particular, our data support grouping the analysed aphid species into three main clades, being the subfamily Lachninae one of them, which contradicts its generally accepted sistership relationship with the subfamily Aphidinae. Moreover, our data also suggest a basal position of Lachninae which has implications on current discussions about the ancestrality of conifer-feeding in modern aphids.

  3. The phytopathogen Dickeya dadantii (Erwinia chrysanthemi 3937) is a pathogen of the pea aphid.

    Science.gov (United States)

    Grenier, Anne-Marie; Duport, Gabrielle; Pagès, Sylvie; Condemine, Guy; Rahbé, Yvan

    2006-03-01

    Dickeya dadantii (Erwinia chrysanthemi) is a phytopathogenic bacterium causing soft rot diseases on many crops. The sequencing of its genome identified four genes encoding homologues of the Cyt family of insecticidal toxins from Bacillus thuringiensis, which are not present in the close relative Pectobacterium carotovorum subsp. atrosepticum. The pathogenicity of D. dadantii was tested on the pea aphid Acyrthosiphon pisum, and the bacterium was shown to be highly virulent for this insect, either by septic injury or by oral infection. The lethal inoculum dose was calculated to be as low as 10 ingested bacterial cells. A D. dadantii mutant with the four cytotoxin genes deleted showed a reduced per os virulence for A. pisum, highlighting the potential role of at least one of these genes in pathogenicity. Since only one bacterial pathogen of aphids has been previously described (Erwinia aphidicola), other species from the same bacterial group were tested. The pathogenic trait for aphids was shown to be widespread, albeit variable, within the phytopathogens, with no link to phylogenetic positioning in the Enterobacteriaceae. Previously characterized gut symbionts from thrips (Erwinia/Pantoea group) were also highly pathogenic to the aphid, whereas the potent entomopathogen Photorhabdus luminescens was not. D. dadantii is not a generalist insect pathogen, since it has low pathogenicity for three other insect species (Drosophila melanogaster, Sitophilus oryzae, and Spodoptera littoralis). D. dadantii was one of the most virulent aphid pathogens in our screening, and it was active on most aphid instars, except for the first one, probably due to anatomical filtering. The observed difference in virulence toward apterous and winged aphids may have an ecological impact, and this deserves specific attention in future research.

  4. Pest control of aphids depends on landscape complexity and natural enemy interactions.

    Science.gov (United States)

    Martin, Emily A; Reineking, Björn; Seo, Bumsuk; Steffan-Dewenter, Ingolf

    2015-01-01

    Aphids are a major concern in agricultural crops worldwide, and control by natural enemies is an essential component of the ecological intensification of agriculture. Although the complexity of agricultural landscapes is known to influence natural enemies of pests, few studies have measured the degree of pest control by different enemy guilds across gradients in landscape complexity. Here, we use multiple natural-enemy exclosures replicated in 18 fields across a gradient in landscape complexity to investigate (1) the strength of natural pest control across landscapes, measured as the difference between pest pressure in the presence and in the absence of natural enemies; (2) the differential contributions of natural enemy guilds to pest control, and the nature of their interactions across landscapes. We show that natural pest control of aphids increased up to six-fold from simple to complex landscapes. In the absence of pest control, aphid population growth was higher in complex than simple landscapes, but was reduced by natural enemies to similar growth rates across all landscapes. The effects of enemy guilds were landscape-dependent. Particularly in complex landscapes, total pest control was supplied by the combined contribution of flying insects and ground-dwellers. Birds had little overall impact on aphid control. Despite evidence for intraguild predation of flying insects by ground-dwellers and birds, the overall effect of enemy guilds on aphid control was complementary. Understanding pest control services at large spatial scales is critical to increase the success of ecological intensification schemes. Our results suggest that, where aphids are the main pest of concern, interactions between natural enemies are largely complementary and lead to a strongly positive effect of landscape complexity on pest control. Increasing the availability of seminatural habitats in agricultural landscapes may thus benefit not only natural enemies, but also the effectiveness of

  5. Seasonal phenology and species composition of the aphid fauna in a northern crop production area.

    Directory of Open Access Journals (Sweden)

    Sascha M Kirchner

    Full Text Available BACKGROUND: The species diversity of aphids and seasonal timing of their flight activity can have significant impacts on crop production, as aphid species differ in their ability to transmit plant viruses and flight timing affects virus epidemiology. The aim of the study was to characterise the species composition and phenology of aphid fauna in Finland in one of the northernmost intensive crop production areas of the world (latitude 64°. METHODOLOGY/PRINCIPAL FINDINGS: Flight activity was monitored in four growing seasons (2007-010 using yellow pan traps (YPTs placed in 4-8 seed potato fields and a Rothamsted suction trap. A total of 58,528 winged aphids were obtained, identified to 83 taxa based on morphology, and 34 species were additionally characterised by DNA barcoding. Seasonal flight activity patterns analysed based on YPT catch fell into three main phenology clusters. Monoecious taxa showed early or middle-season flight activity and belonged to species living on shrubs/trees or herbaceous plants, respectively. Heteroecious taxa occurred over the entire potato growing season (ca. 90 days. Abundance of aphids followed a clear 3-year cycle based on suction trap data covering a decade. Rhopalosiphum padi occurring at the end of the potato growing season was the most abundant species. The flight activity of Aphis fabae, the main vector of Potato virus Y in the region, and Aphis gossypii peaked in the beginning of potato growing season. CONCLUSIONS/SIGNIFICANCE: Detailed information was obtained on phenology of a large number aphid species, of which many are agriculturally important pests acting as vectors of plant viruses. Aphis gossypii is known as a pest in greenhouses, but our study shows that it occurs also in the field, even far in the north. The novel information on aphid phenology and ecology has wide implications for prospective pest management, particularly in light of climate change.

  6. Preference and life history traits of Aphelinus abdominalis (Hymenoptera: Aphelinidae) when offered different development stages of the lettuce aphid Nasonovia ribisnigri (Hemiptera: Aphididae)

    DEFF Research Database (Denmark)

    Shrestha, Govinda; Skovgård, Henrik; Steenberg, Tove

    2015-01-01

    stages of the lettuce aphid were exposed for parasitism compared with older developmental stages. This pattern was supported in the choice experiment where significantly more 2nd instar lettuce aphids were parasitised than alatoid 4th instars, with Manly’s preference index (mean ± SE) for the former...... %) were found across all host stages of the lettuce aphid....

  7. Ultrastructure of compatible and incompatible interactions in phloem sieve elements during the stylet penetration by cotton aphids in melon

    NARCIS (Netherlands)

    Garzo, E.; Fernández-Pascual, Mercedes; Morcillo, Cesar; Fereres, Alberto; Gómez-Guillamón, M.L.; Tjallingii, W.F.

    2017-01-01

    Resistance of the melon line TGR-1551 to the aphid Aphis gossypii is based on preventing aphids from ingesting phloem sap. In electrical penetration graphs (EPGs), this resistance has been characterized with A. gossypii showing unusually long phloem salivation periods (waveform E1) mostly

  8. Virus-induced gene silencing of WRKY53 and an inducible phenylalanine ammonia-lyase in wheat reduces aphid resistance

    Science.gov (United States)

    Although several wheat genes differentially expressed during the Russian wheat aphid resistance response have recently been identified, their requirement for and specific role in resistance remain unclear. Progress in wheat-aphid interaction research is hampered by inadequate collections of mutant g...

  9. Temperature dependent functional response of Diaeretiella rapae (Hymenoptera: Aphidiidae) to the cabbage aphid, Brevicoryne brassicae (Hemiptera: Aphididae)

    DEFF Research Database (Denmark)

    Moayeri, Hamid R. S.; Madadi, Hossein; Pouraskari, Hossein

    2013-01-01

    Diaeretiella rapae MacIntosh (Hymenoptera: Aphidiidae) is one of the most common and successful parasitoids of the cabbage aphid. The functional response of D. rapae towards cabbage aphids was examined in laboratory studies at three constant temperatures, 17°C, 25°C and 30°C. D. rapae exhibited a...

  10. Invertebrate communities in spring wheat and the identification of cereal aphid predators through molecular gut content analysis

    Science.gov (United States)

    Cereal aphid complexes are responsible for reducing wheat production worldwide; however, management against these species is rare in North America. Generalist predators may contribute to reducing cereal aphid numbers and preventing significant damage to crops. A two-year survey identifying the arth...

  11. The price of protection: a defensive endosymbiont impairs nymph growth in the bird cherry-oat aphid, Rhopalosiphum padi.

    Science.gov (United States)

    Leybourne, Daniel J; Bos, Jorunn I B; Valentine, Tracy A; Karley, Alison J

    2018-05-24

    Bacterial endosymbionts have enabled aphids to adapt to a range of stressors, but their effects in many aphid species remain to be established. The bird cherry-oat aphid, Rhopalosiphum padi (Linnaeus), is an important pest of cereals worldwide and has been reported to form symbiotic associations with Serratia symbiotica and Sitobion miscanthi L-type Symbiont endobacteria, although the resulting aphid phenotype has not been described. This study presents the first report of R. padi infection with the facultative bacterial endosymbiont Hamiltonella defensa. Individuals of R. padi were sampled from populations in Eastern Scotland, UK, and shown to represent seven R. padi genotypes based on the size of polymorphic microsatellite markers; two of these genotypes harboured H. defensa. In parasitism assays, survival of H. defensa-infected nymphs following attack by the parasitoid wasp Aphidius colemani (Viereck) was five-fold higher than for uninfected nymphs. Aphid genotype was a major determinant of aphid performance on two Hordeum species, a modern cultivar of barley H. vulgaris and a wild relative H. spontaneum, although aphids infected with H. defensa showed 16% lower nymph mass gain on the partially-resistant wild relative compared with uninfected individuals. These findings suggest that deploying resistance traits in barley will favour the fittest R. padi genotypes, but symbiont-infected individuals will be favoured when parasitoids are abundant, although these aphids will not achieve optimal performance on a poor quality host plant. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Resistance to lettuce aphid (Nasonovia ribisnigri) biotype 0 in wild lettuce accessions PI 491093 and PI 274378

    Science.gov (United States)

    Lettuce aphid, Nasonovia ribisnigri Mosley (Homoptera : Aphididae), is a major insect pest of lettuce, Lactuca sativa L, in many commercial lettuce productions areas around the world. Resistance to lettuce aphid was first reported in Lactuca virosa L. accession IVT 280 and characterized as complete,...

  13. 77 FR 46373 - Field Release of Aphelinus glycinis for the Biological Control of the Soybean Aphid in the...

    Science.gov (United States)

    2012-08-03

    ... Inspection Service [Docket No APHIS-2012-0061] Field Release of Aphelinus glycinis for the Biological Control... for the biological control of the soybean aphid, Aphis glycines, in the continental United States. We... glycinis for the Biological Control of the Soybean Aphid in the Continental United States'' (March 2012...

  14. Genetics coupled to quantitative intact proteomics links heritable aphid and endosymbiont protein isoform expression to polerovirus transmission

    Science.gov (United States)

    Yellow dwarf viruses in the family Luteoviridae, such as Cereal yellow dwarf virus-RPV (CYDV-RPV), are vectored by aphids and cause the most economically important virus disease of cereal crops worldwide. The identification of aphid proteins mediating virus transmission will better define transmiss...

  15. Resistance to a new biotype of the lettuce aphid Nasonovia ribisnigri in Lactuca virosa accession IVT280

    NARCIS (Netherlands)

    Broeke, ten C.J.M.; Dicke, M.; Loon, van J.J.A.

    2013-01-01

    Host plant resistance is an effective protection strategy to control aphids in many crops. However, the evolution of insensitive aphid biotypes necessitates the search for new resistance sources. Wild relatives of crop plants can be important sources for resistance genes to be introgressed into new

  16. Role of syrphid larvae and other predators in suppressing aphid infestations in organic lettuce on California's Central Coast.

    Science.gov (United States)

    Smith, Hugh A; Chaney, William E; Bensen, Tiffany A

    2008-10-01

    Organic lettuce, Lactuca sativa L., growers on the Central Coast of California rely on conservation biological control to manage Nasonovia ribisnigri Mosley (Hemiptera: Aphididae) and other aphid pests of lettuce. In 2006, we carried out five replicated field trials to determine the importance of syrphid larvae in the suppression of N. ribisnigri and other aphids infesting organic romaine lettuce. We used Entrust, a spinosad-based insecticide approved for use on organic farms, to suppress syrphid larvae in aphid-infested romaine. Romaine treated with Entrust was unmarketable at harvest because of aphid infestation, whereas insecticide-free romaine was marketable. Syrphid larvae composed 85% or more of total predators in most trials, and they were the only predators consistently recovered from romaine that was infested with aphids early and largely aphid-free by harvest. The species mix of nonsyrphid predators varied from site to site. Applications of Entrust suppressed nonsyrphid predators in two trials, and so was an imperfect tool for selectively suppressing syrphid larvae. The relative importance of syrphid larvae and other predators in the conservation biological control of aphids in organic romaine is discussed. We conclude that syrphid larvae are primarily responsible for the suppression of aphids in organic romaine on California's Central Coast.

  17. Modulation of legume defense signaling pathways by native and non-native pea aphid clones

    Directory of Open Access Journals (Sweden)

    Carlos Sanchez-Arcos

    2016-12-01

    Full Text Available The pea aphid (Acyrthosiphon pisum is a complex of at least 15 genetically different host races that are native to specific legume plants, but can all develop on the universal host plant Vicia faba. Despite much research it is still unclear why pea aphid host races (biotypes are able to colonize their native hosts while other host races are not. All aphids penetrate the plant and salivate into plant cells when they test plant suitability. Thus plants might react differently to the various pea aphid host races. To find out whether legume species vary in their defense responses to different pea aphid host races, we measured the amounts of salicylic acid (SA, the jasmonic acid-isoleucine conjugate (JA-Ile, other jasmonate precursors and derivatives, and abscisic acid (ABA in four different species (Medicago sativa, Trifolium pratense, Pisum sativum, V. faba after infestation by native and non-native pea aphid clones of various host races. Additionally, we assessed the performance of the clones on the four plant species. On M. sativa and T. pratense, non-native clones that were barely able to survive or reproduce, triggered a strong SA and JA-Ile response, whereas infestation with native clones led to lower levels of both phytohormones. On P. sativum, non-native clones, which survived or reproduced to a certain extent, induced fluctuating SA and JA-Ile levels, whereas the native clone triggered only a weak SA and JA-Ile response. On the universal host V. faba all aphid clones triggered only low SA levels initially, but induced clone-specific patterns of SA and JA-Ile later on. The levels of the active JA-Ile conjugate and of the other JA-pathway metabolites measured showed in many cases similar patterns, suggesting that the reduction in JA signaling was due to an effect upstream of OPDA. ABA levels were downregulated in all aphid clone-plant combinations and were therefore probably not decisive factors for aphid-plant compatibility. Our results

  18. Wound Healing Potential of Chlorogenic Acid and Myricetin-3-O-β-Rhamnoside Isolated from Parrotia persica

    Directory of Open Access Journals (Sweden)

    Sara E. Moghadam

    2017-09-01

    Full Text Available Wound healing is a complex physiological process that is controlled by a well-orchestrated cascade of interdependent biochemical and cellular events, which has spurred the development of therapeutics that simultaneously target these active cellular constituents. We assessed the potential of Parrotia persica (Hamamelidaceae in wound repair by analyzing the regenerative effects of its two main phenolic compounds, myricetin-3-O-β-rhamnoside and chlorogenic acid. To accomplish this, we performed phytochemical profiling and characterized the chemical structure of pure compounds isolated from P. persica, followed by an analysis of the biological effects of myricetin-3-O-β-rhamnoside and chlorogenic acid on three cell types, including keratinocytes, fibroblasts, and endothelial cells. Myricetin-3-O-β-rhamnoside and chlorogenic acid exhibited complementary pro-healing properties. The percentage of keratinocyte wound closure as measured by a scratch assay was four fold faster in the presence of 10 µg/mL chlorogenic acid, as compared to the negative control. On the other hand, myricetin-3-O-β-rhamnoside at 10 µg/mL was more effective in promoting fibroblast migration, demonstrating a two-fold higher rate of closure compared to the negative control group. Both compounds enhanced the capillary-like tube formation of endothelial cells in an in vitro angiogenesis assay. Our results altogether delineate the potential to synergistically accelerate the fibroblastic and remodelling phases of wound repair by administering appropriate amounts of myricetin-3-O-β-rhamnoside and chlorogenic acid.

  19. Towards further understanding on the antioxidative activities of Prunus persica fruit: A comparative study with four different fractions

    Science.gov (United States)

    Dhingra, Naveen; Sharma, Rajesh; Kar, Anand

    2014-11-01

    In the present study we have evaluated the antioxidant activities of different fractions (hexane, ethyl acetate, n-butanol and aqueous fractions) of Prunus persica fruit. For extraction simple warring blender method was employed and total phenolic and flavonoid contents were correlated with different antioxidant activities (total antioxidant, 2,2-diphenyl-1-picrylhydrazyl (DPPH), H2O2 scavenging, superoxide radical scavenging, iron chelating and their reducing power properties). Different in vitro antioxidant studies showed that ethyl acetate and n-butanol fractions had the maximum activities that were well correlated with total phenolic and flavonoid contents. Maximum yield (25.14 ± 2.2%) was obtained in its aqueous fraction. Both ethyl acetate and n-butanol fractions showed significant inhibitory effects on different antioxidant activities. A significantly high correlation coefficient existed between total antioxidant activities and with total phenolic as well as total flavonoid contents. It appears that ethyl acetate and n-butanol fractions of P. persica may serve as new potential sources of natural antioxidants and could be of therapeutic use in treating several diseases.

  20. Proteomic Analysis of Aphid-Resistant and -Sensitive Rose (Rosa Hybrida) Cultivars at Two Developmental Stages.

    Science.gov (United States)

    Muneer, Sowbiya; Jeong, Hai Kyoung; Park, Yoo Gyeong; Jeong, Byoung Ryong

    2018-05-25

    The rose is one the most commercially grown and costly ornamental plants because of its aesthetic beauty and aroma. A large number of pests attack its buds, flowers, leaves, and stem at every growing stage due to its high sugar content. The most common pest on roses are aphids which are considered to be the major cause for product loss. Aphid infestations lead to major changes in rose plants, such as large and irregular holes in petals, intact leaves and devouring tissues. It is hypothesized that different cut rose cultivars would have different levels of sensitivity or resistance to aphids, since different levels of infestation are observed in commercially cut rose production greenhouses. The present work compared four cut rose cultivars which were bred in Korea and were either resistant or sensitive to aphid infestation at different flower developmental stages. An integrative study was conducted using comprehensive proteome analyses. Proteins related to ubiquitin metabolism and the stress response were differentially expressed due to aphid infestation. The regulations and possible functions of identified proteins are presented in detail. The differential expressions of the identified proteins were validated by immunoblotting and blue native page. In addition, total sugar and carbohydrate content were also observed.

  1. Transcriptomic and proteomic analyses of seasonal photoperiodism in the pea aphid

    Directory of Open Access Journals (Sweden)

    Gauthier J-P

    2009-09-01

    Full Text Available Abstract Background Aphid adaptation to harsh winter conditions is illustrated by an alternation of their reproductive mode. Aphids detect photoperiod shortening by sensing the length of the night and switch from viviparous parthenogenesis in spring and summer, to oviparous sexual reproduction in autumn. The photoperiodic signal is transduced from the head to the reproductive tract to change the fate of the future oocytes from mitotic diploid embryogenesis to haploid formation of gametes. This process takes place in three consecutive generations due to viviparous parthenogenesis. To understand the molecular basis of the switch in the reproductive mode, transcriptomic and proteomic approaches were used to detect significantly regulated transcripts and polypeptides in the heads of the pea aphid Acyrthosiphon pisum. Results The transcriptomic profiles of the heads of the first generation were slightly affected by photoperiod shortening. This suggests that trans-generation signalling between the grand-mothers and the viviparous embryos they contain is not essential. By analogy, many of the genes and some of the proteins regulated in the heads of the second generation are implicated in visual functions, photoreception and cuticle structure. The modification of the cuticle could be accompanied by a down-regulation of the N-β-alanyldopamine pathway and desclerotization. In Drosophila, modification of the insulin pathway could cause a decrease of juvenile hormones in short-day reared aphids. Conclusion This work led to the construction of hypotheses for photoperiodic regulation of the switch of the reproductive mode in aphids.

  2. Unravelling mycorrhiza-induced wheat susceptibility to the English grain aphid Sitobion avenae

    Science.gov (United States)

    Simon, Amma L.; Wellham, Peter A. D.; Aradottir, Gudbjorg I.; Gange, Alan C.

    2017-04-01

    Arbuscular mycorrhizal (AM) fungi are root symbionts that can increase or decrease aphid growth rates and reproduction, but the reason by which this happens is unknown. To investigate the underlying mechanisms of this interaction, we examined the effect of AM fungi on the English Grain aphid (Sitobion avenae) development, reproduction, attraction, settlement and feeding behaviour on two naturally susceptible varieties Triticum aestivum (L.) variety Solstice and T. monococcum MDR037, and two naturally resistant lines, T. monococcum MDR045 and MDR049. Mycorrhizal colonisation increased the attractiveness of T. aestivum var. Solstice to aphids, but there was no effect on aphid development on this variety. Using the Electrical Penetration Graph (EPG) technique, we found that mycorrhizal colonisation increased aphid phloem feeding on T. monococcum MDR037 and MDR045, colonisation also increased growth rate and reproductive success of S. avenae on these varieties. Mycorrhizas increased vascular bundle size, demonstrating that these fungi can influence plant anatomy. We discuss if and how this could be related to an enhanced success rate in phloem feeding in two varieties. Overall, we present and discuss how mycorrhizal fungi can affect the feeding behaviour of S. avenae in wheat, inducing susceptibility in a resistant variety.

  3. Sublethal and hormesis effects of imidacloprid on the soybean aphid Aphis glycines.

    Science.gov (United States)

    Qu, Yanyan; Xiao, Da; Li, Jinyu; Chen, Zhou; Biondi, Antonio; Desneux, Nicolas; Gao, Xiwu; Song, Dunlun

    2015-04-01

    The soybean aphid, Aphis glycines Matsumura, is a major pest in soybean crop. Current management of this pest relies mainly on insecticides applications, and the neonicotinoid imidacloprid has been proposed as an effective insecticide to control A. glycines in soybean field. Imidacloprid at lethal concentrations not only exerts acute toxicity to A. glycines, but also cause various biological changes when aphids are chronically exposed to lower concentrations. In this study, we assessed the effects of a low-lethal (0.20 mg L(-1)) and two sublethal (0.05 and 0.10 mg L(-1)) imidacloprid concentrations on various A. glycines life history traits. Aphid exposure to 0.20 mg L(-1) imidacloprid caused slower juvenile development, shorter reproductive period, and reduced adult longevity, fecundity and total lifespan. Stimulatory effects, i.e. hormesis, on reproduction and immature development duration were observed in aphids exposed to the lower sublethal imidacloprid concentrations. Consequently, the net reproduction rate (R 0) was significantly higher than in the control aphids. These findings stress the importance of the actual imidacloprid concentration in its toxicological properties on A. glycines. Therefore, our results would be useful for assessing the overall effects of imidacloprid on A. glycines and for optimizing integrated pest management programs targeting this pest.

  4. Predation determines different selective pressure on pea aphid host races in a complex agricultural mosaic.

    Directory of Open Access Journals (Sweden)

    Adalbert Balog

    Full Text Available Field assessments were conducted to examine the interplay between host plant and predation in complex agricultural mosaic on pea aphid clover and alfalfa races. In one experiment, we examined the relative fitness on clover race (CR and alfalfa race (AR pea aphids on broad bean, red clover and alfalfa alone. But because clover is typically grown in a more complex agricultural mosaic with alfalfa and broad bean, a second experiment was conducted to assess the fitness consequences under predation in a more complex agricultural field setting that also included potential apparent competition with AR pea aphids. In a third experiment we tested for the effect of differential host race density on the fitness of the other host race mediated by a predator effect. CR pea aphids always had fitness losses when on broad bean (had lower fitness on broad bean relative to red clover and fitness benefits when on red clover (higher fitness on red clover relative to broad bean, whether or not in apparent competition with alfalfa race aphids on bean and alfalfa. AR suffered fitness loss on both alfalfa and bean in apparent competition with CR on clover. Therefore we can conclude that the predation rate between host races was highly asymmetrical. The complexity of the agricultural mosaic thus can influence prey selection by predators on different host plants. These may have evolutionary consequences through context dependent fitness benefits on particular host plants.

  5. Gene expression profiles responses to aphid feeding in chrysanthemum (Chrysanthemum morifolium).

    Science.gov (United States)

    Xia, Xiaolong; Shao, Yafeng; Jiang, Jiafu; Ren, Liping; Chen, Fadi; Fang, Weimin; Guan, Zhiyong; Chen, Sumei

    2014-12-02

    Chrysanthemum is an important ornamental plant all over the world. It is easily attacked by aphid, Macrosiphoniella sanbourni. The molecular mechanisms of plant defense responses to aphid are only partially understood. Here, we investigate the gene expression changes in response to aphid feeding in chrysanthemum leaf by RNA-Seq technology. Three libraries were generated from pooled leaf tissues of Chrysanthemum morifolium 'nannongxunzhang' that were collected at different time points with (Y) or without (CK) aphid infestations and mock puncture treatment (Z), and sequenced using an Illumina HiSeqTM 2000 platform. A total of 7,363,292, 7,215,860 and 7,319,841 clean reads were obtained in library CK, Y and Z, respectively. The proportion of clean reads was >97.29% in each library. Approximately 76.35% of the clean reads were mapped to a reference gene database including all known chrysanthemum unigene sequences. 1,157, 527 and 340 differentially expressed genes (DEGs) were identified in the comparison of CK-VS-Y, CK-VS-Z and Z-VS-Y, respectively. These DEGs were involved in phytohormone signaling, cell wall biosynthesis, photosynthesis, reactive oxygen species (ROS) pathway and transcription factor regulatory networks, and so on. Changes in gene expression induced by aphid feeding are shown to be multifaceted. There are various forms of crosstalk between different pathways those genes belonging to, which would allow plants to fine-tune its defense responses.

  6. Antioxidant effect of aqueous extract of four plants with therapeutic potential on gynecological diseases; Semen persicae, Leonurus cardiaca, Hedyotis diffusa, and Curcuma zedoaria.

    Science.gov (United States)

    Ji, Shaojian; Fattahi, Amir; Raffel, Nathalie; Hoffmann, Inge; Beckmann, Matthias W; Dittrich, Ralf; Schrauder, Michael

    2017-11-25

    Little information is available concerning antioxidant effects of plant teas (water boiled) which are used more commonly in traditional Chinese medicine than other extracts. Thus, we addressed this issue by evaluating the ability of teas from four different plants with therapeutic potential on gynecological diseases. The aqueous extracts of Semen persicae, Leonurus cardiaca, Hedyotis diffusa, and Curcuma zedoaria rhizome were prepared and then their effects on copper-induced low-density lipoprotein cholesterol (LDL-C) oxidation were evaluated by spectrophotometric method. Density gradient ultracentrifugation method was recruited to isolate LDL-C from healthy individuals. Our results showed that adding 10, 20, and 30 µl S. persicae could increase the lag phase duration of LDL-C oxidation compared with control reaction 12, 21, and 33%, respectively. The most effective delay (87%) was observed when 30 µl H. diffusa was added to the reaction. In cases of L. cardiaca and C. zedoaria, we found no significant influence on the lag phase duration (p > 0.05). Moreover, our findings about starting point of the decomposition phase were almost in parallel with the lag phase results, as 30 µl of S. persicae or H. diffusa teas could significantly increase the initiation time of decomposition (p < 0.05). In conclusion our results showed that both S. persicae and H. diffusa teas and not L. cardiaca and C. zedoaria could have medicinal therapeutic effects partly through direct oxidation prevention.

  7. Divided infraorbital foramen in the lion (Panthera leo): its implications for colonisation history, population bottlenecks, and conservation of the Asian lion (P. l. persica)

    NARCIS (Netherlands)

    Yamaguchi, N.; Kitchener, A.C.; Driscoll, C.A.; Macdonald, D.W.

    2009-01-01

    A divided infraorbital foramen is an important morphological feature in lion taxonomy and has previously been considered to occur only in the Asian lion, Panthera leo persica. Based on an examination of 498 lion skulls from museum collections in Europe and southern Africa, we report for the first

  8. Investigation of the aroma of commercial peach (Prunus persica L. Batsch) types by Proton Transfer Reaction-Mass Spectrometry (PTR-MS) and sensory analysis

    NARCIS (Netherlands)

    Cardoso Ferreira Pinhancos de Bianchi, Tiago; Weesepoel, Yannick; Koot, Alex; Iglesias, Ignasi; Eduardo, Iban; Gratacós-Cubarsí, Marta; Guerrero, Luis; Hortós, Maria; Ruth, van Saskia

    2017-01-01

    The aim of this study was to investigate the aroma and sensory profiles of various types of peaches (Prunus persica L. Batsch.). Forty-three commercial cultivars comprising peaches, flat peaches, nectarines, and canning peaches (pavías) were grown over two consecutive harvest years. Fruits were

  9. Soil microbial species loss affects plant biomass and survival of an introduced bacterial strain, but not inducible plant defences.

    Science.gov (United States)

    Kurm, Viola; van der Putten, Wim H; Pineda, Ana; Hol, W H Gera

    2018-02-12

    Plant growth-promoting rhizobacteria (PGPR) strains can influence plant-insect interactions. However, little is known about the effect of changes in the soil bacterial community in general and especially the loss of rare soil microbes on these interactions. Here, the influence of rare soil microbe reduction on induced systemic resistance (ISR) in a wild ecotype of Arabidopsis thaliana against the aphid Myzus persicae was investigated. To create a gradient of microbial abundances, soil was inoculated with a serial dilution of a microbial community and responses of Arabidopsis plants that originated from the same site as the soil microbes were tested. Plant biomass, transcription of genes involved in plant defences, and insect performance were measured. In addition, the effects of the PGPR strain Pseudomonas fluorescens SS101 on plant and insect performance were tested under the influence of the various soil dilution treatments. Plant biomass showed a hump-shaped relationship with soil microbial community dilution, independent of aphid or Pseudomonas treatments. Both aphid infestation and inoculation with Pseudomonas reduced plant biomass, and led to downregulation of PR1 (salicylic acid-responsive gene) and CYP79B3 (involved in synthesis of glucosinolates). Aphid performance and gene transcription were unaffected by soil dilution. Neither the loss of rare microbial species, as caused by soil dilution, nor Pseudomonas affect the resistance of A. thaliana against M. persicae. However, both Pseudomonas survival and plant biomass respond to rare species loss. Thus, loss of rare soil microbial species can have a significant impact on both above- and below-ground organisms. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Laboratory and semi-field evaluation of Beauveria bassiana (Ascomycota: Hypocreales) against the lettuce aphid, Nasonovia ribisnigri (Hemiptera: Aphididae)

    DEFF Research Database (Denmark)

    Shrestha, Govinda; Enkegaard, Annie; Steenberg, Tove

    2015-01-01

    The lettuce aphid, Nasonovia ribisnigri (Mosley), is an economically important pest of lettuce worldwide. The entomopathogenic fungus Beauveria bassiana strain GHA has recently been reported as a potential biocontrol candidate for use against the lettuce aphid. This study provides information...... on the mortality inflicted by B. bassiana when applied against different life stages of the lettuce aphid under laboratory conditions and how fungus infection affects the aphid fecundity. In addition, temporal changes in persistence of fungus inoculum applied to foliage of young lettuce plants under semi......-field conditions was analysed. Immature life stages were generally the least susceptible to fungal infection and the susceptibility of all stages was dose-dependent, with the highest mortality occurring at the highest dose. B. bassiana significantly affected the rate of nymph production by the lettuce aphid...

  11. Identification of top-down forces regulating cotton aphid population growth in transgenic Bt cotton in central China.

    Directory of Open Access Journals (Sweden)

    Peng Han

    Full Text Available The cotton aphid Aphis gossypii Glover is the main aphid pest in cotton fields in the Yangtze River Valley Cotton-planting Zone (YRZ in central China. Various natural enemies may attack the cotton aphid in Bt cotton fields but no studies have identified potential specific top-down forces that could help manage this pest in the YRZ in China. In order to identify possibilities for managing the cotton aphid, we monitored cotton aphid population dynamics and identified the effect of natural enemies on cotton aphid population growth using various exclusion cages in transgenic Cry1Ac (Bt+CpTI (Cowpea trypsin inhibitor cotton field in 2011. The aphid population growth in the open field (control was significantly lower than those protected or restricted from exposure to natural enemies in the various exclusion cage types tested. The ladybird predator Propylaea japonica Thunberg represented 65% of Coccinellidae predators, and other predators consisted mainly of syrphids (2.1% and spiders (1.5%. The aphid parasitoids Aphidiines represented 76.7% of the total count of the natural enemy guild (mainly Lysiphlebia japonica Ashmead and Binodoxys indicus Subba Rao & Sharma. Our results showed that P. japonica can effectively delay the establishment and subsequent population growth of aphids during the cotton growing season. Aphidiines could also reduce aphid density although their impact may be shadowed by the presence of coccinellids in the open field (likely both owing to resource competition and intraguild predation. The implications of these results are discussed in a framework of the compatibility of transgenic crops and top-down forces exerted by natural enemy guild.

  12. Mites fluctuation population on peach tree (Prunus persica (L. Batsch and in associated plants

    Directory of Open Access Journals (Sweden)

    Carla Rosana Eichelberger

    2011-09-01

    Full Text Available Despite the importance of peach (Prunus persica (L. Batsch in Rio Grande do Sul, little is known about mites fluctuation population considered important to this crop. The objective of this study was to know the population diversity and fluctuation of mite species associated with Premier and Eldorado varieties in Roca Sales and Venâncio Aires counties, Rio Grande do Sul. The study was conducted from July 2008 to June 2009 when 15 plants were randomly chosen in each area. The plants were divided in quadrants and from each one a branch was chosen from which three leaves were removed: one collected in the apical region, another in the medium and the other in the basal region, totalizing 180 leaves/area. Five of the most abundant associated plants were collected monthly in enough amounts for the screening under the stereoscopic microscope during an hour. A total of 1,124 mites were found belonging to 14 families and 28 species. Tetranychus ludeni Zacher, 1913, Panonychus ulmi (Koch, 1836 and Mononychellus planki (McGregor, 1950 were the most abundant phytophagous mites, whereas Typhlodromalus aripo Deleon, 1967 and Phytoseiulus macropilis (Banks, 1904 the most common predatory mites. The period of one hour under stereoscopic microscope was enough to get a representative sample. In both places evaluated the ecologic indices were low, but little higherin Premier (H' 0.56; EqJ: 0.43 when compared to Eldorado (H' 0.53; EqJ 0.40. In Premier constant species were not observed and accessory only Brevipalpus phoenicis (Geijskes, 1939, T. ludeni and T. aripo. Higher abundance was observed in December and January and bigger amount in April. Already in Eldorado, T. ludeni and P. ulmi were constants. Greater abundance was observed in November and December, whereas grater richness in December and January. In both orchards were not found mites in buds. Tetranychus ludeni is the most abundant phytophagous mites with outbreak population in November, December and

  13. The Endosymbiont Arsenophonus Is Widespread in Soybean Aphid, Aphis glycines, but Does Not Provide Protection from Parasitoids or a Fungal Pathogen

    Science.gov (United States)

    Wulff, Jason A.; Buckman, Karrie A.; Wu, Kongming; Heimpel, George E.; White, Jennifer A.

    2013-01-01

    Aphids commonly harbor bacterial facultative symbionts that have a variety of effects upon their aphid hosts, including defense against hymenopteran parasitoids and fungal pathogens. The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is infected with the symbiont Arsenophonus sp., which has an unknown role in its aphid host. Our research goals were to document the infection frequency and diversity of the symbiont in field-collected soybean aphids, and to determine whether Arsenophonus is defending soybean aphid against natural enemies. We performed diagnostic PCR and sequenced four Arsenophonus genes in soybean aphids from their native and introduced range to estimate infection frequency and genetic diversity, and found that Arsenophonus infection is highly prevalent and genetically uniform. To evaluate the defensive role of Arsenophonus, we cured two aphid genotypes of their natural Arsenophonus infection through ampicillin microinjection, resulting in infected and uninfected isolines within the same genetic background. These isolines were subjected to parasitoid assays using a recently introduced biological control agent, Binodoxys communis [Braconidae], a naturally recruited parasitoid, Aphelinus certus [Aphelinidae], and a commercially available biological control agent, Aphidius colemani [Braconidae]. We also assayed the effect of the common aphid fungal pathogen, Pandora neoaphidis (Remaudiere & Hennebert) Humber (Entomophthorales: Entomophthoraceae), on the same aphid isolines. We did not find differences in successful parasitism for any of the parasitoid species, nor did we find differences in P. neoaphidis infection between our treatments. Our conclusion is that Arsenophonus does not defend its soybean aphid host against these major parasitoid and fungal natural enemies. PMID:23614027

  14. Potential candidates for biological control of the black bean aphid Aphis fabae in Serbia

    Directory of Open Access Journals (Sweden)

    Stanković, S.S.

    2015-09-01

    Full Text Available The black bean aphid is widely spread aphid species in the Palaearctic, known to attack over 1150 plant species. Because some of the host plants are of great agricultural interest, Aphis fabae represent a very important pest. We assembled all data concerning the presence of this pest and connected it in tritrophic associations. In the period of 24 years investigation on the territory of Serbia it has been recorded in 107 trophic associations. In total there are 145 findings of A. fabae parasitized by 19 taxa of Aphidiinae (Brackonidae from seven genera. The most suitable biocontrol agents for the black bean aphid are Lysiphlebus fabarum, Binodoxys angelicae, Lipolesis gracilis and the introduced species Lysiphlebus testaceipes.

  15. Reproduction and dispersal in an ant-associated root aphid community

    DEFF Research Database (Denmark)

    Ivens, A.B.F.; Kronauer, Daniel Jan Christoph; Pen, I.

    2012-01-01

    viscosity is high and winged aphids rare, consistent with infrequent horizontal transmission between ant host colonies. The absence of the primary host shrub (Pistacia) may explain the absence of sex in three of the studied species, but elm trees (Ulmus) that are primary hosts of the fourth species (T...... above ground, whereas dispersal constraints and dependence on ant-tending may differentially affect the costs and benefits of sex in subterranean aphids. Here, we studied reproductive mode and dispersal in a community of root aphids that are obligately associated with the ant Lasius flavus. We assessed...... the genetic population structure of four species (Geoica utricularia, Tetraneura ulmi, Forda marginata and Forda formicaria) in a Dutch population and found that all species reproduce predominantly if not exclusively asexually, so that populations consist of multiple clonal lineages. We show that population...

  16. Wheat Nitrogen Fertilisation Effects on the Performance of the Cereal Aphid Metopolophium dirhodum

    Directory of Open Access Journals (Sweden)

    Alan F. J. Gash

    2012-02-01

    Full Text Available The effects of five rates of nitrogen fertiliser applications on the performance of the cereal aphid Metopolophium dirhodum on winter wheat, within the range of rates recommended for UK crops, were investigated over two seasons in field-grown crops and also on plants grown in the glasshouse. Longevity was unaffected by the level of fertilisation, but aphid intrinsic rate of increase and fecundity increased with each level applied. In the second field season, when a higher upper limit was used, many of these increases were significant. A previously unreported finding for this species was that there was a significant decrease in fecundity for the highest rate of fertilisation. Results for the glasshouse-reared aphids followed a similar pattern to those in the field, and overall they underline recent reports in the literature of the negative effects of high nutrient concentrations on the performance of herbivorous insects. The underlying reasons for these are discussed.

  17. Host Plant Volatiles and the Sexual Reproduction of the Potato Aphid, Macrosiphum euphorbiae

    Directory of Open Access Journals (Sweden)

    Jessica Hurley

    2014-10-01

    Full Text Available In late summer, heteroecious aphids, such as the potato aphid, Macrosiphum euphorbiae, move from their secondary summer host plants to primary host plants, where the sexual oviparae mate and lay diapausing eggs. We tested the hypothesis that volatiles of the primary host, Rosa rugosa, would attract the gynoparae, the parthenogenetic alate morph that produce oviparae, as well as the alate males foraging for suitable mates. In wind tunnel assays, both gynoparae and males oriented towards and reached rose cuttings significantly more often than other odour sources, including potato, a major secondary host. The response of males was as high to rose cuttings alone as to potato with a calling virgin oviparous female. These findings are discussed within the seasonal ecology of host alternating aphids.

  18. Field evaluation of Bt cotton crop impact on nontarget pests: cotton aphid and boll weevil.

    Science.gov (United States)

    Sujii, E R; Togni, P H B; de A Ribeiro, P; de A Bernardes, T; Milane, P V G N; Paula, D P; Pires, C S S; Fontes, E M G

    2013-02-01

    Bt cotton plants expressing Cry1Ac protein have high specificity for the control of lepidopteran larvae. However, studies conducted in several countries have shown these plants have a differential impact on nontarget herbivores. The aim of this study was to compare the colonization rates and population abundance of the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae) and the boll weevil, Anthonomus grandis Boheman (Coleoptera: Curculionidae), in plots of Bt (Nuopal) and non-Bt cotton (Delta Opal) in an experimental field in Brasilia, DF, Brazil. No difference was observed in the preference and colonization by winged aphids to plants from the two treatments. There was no significant difference in abundance of wingless aphids or in the production of winged aphids between treatments. Apparently, the parameters that control factors such as fecundity, survival, and dispersal were similar on both Bt and non-Bt plants. Monitoring of plants for coccinellids, a specialist predator of aphids, and ants that act on the dispersal of aphids among plants showed no significant difference between Bt and non-Bt plants, supporting the inference above. Regarding the effect on boll weevil, there was also no significant difference between treatments in the total number of fruiting structures attacked in each plot, the percentage of fruiting structures attacked per plant or on the number of weevils emerging from fruits with boll weevil damage from egg-laying, when damaged fruit samples were held in the laboratory. Based on these results, we conclude that there is no impact of Bt cotton crop expressing Cry1Ac on the nontarget herbivores tested under field conditions.

  19. Aphid thermal tolerance is governed by a point mutation in bacterial symbionts.

    Directory of Open Access Journals (Sweden)

    Helen E Dunbar

    2007-05-01

    Full Text Available Symbiosis is a ubiquitous phenomenon generating biological complexity, affecting adaptation, and expanding ecological capabilities. However, symbionts, which can be subject to genetic limitations such as clonality and genomic degradation, also impose constraints on hosts. A model of obligate symbiosis is that between aphids and the bacterium Buchnera aphidicola, which supplies essential nutrients. We report a mutation in Buchnera of the aphid Acyrthosiphon pisum that recurs in laboratory lines and occurs in field populations. This single nucleotide deletion affects a homopolymeric run within the heat-shock transcriptional promoter for ibpA, encoding a small heat-shock protein. This Buchnera mutation virtually eliminates the transcriptional response of ibpA to heat stress and lowers its expression even at cool or moderate temperatures. Furthermore, this symbiont mutation dramatically affects host fitness in a manner dependent on thermal environment. Following a short heat exposure as juveniles, aphids bearing short-allele symbionts produced few or no progeny and contained almost no Buchnera, in contrast to aphids bearing symbionts without the deletion. Conversely, under constant cool conditions, aphids containing symbionts with the short allele reproduced earlier and maintained higher reproductive rates. The short allele has appreciable frequencies in field populations (up to 20%, further supporting the view that lowering of ibpA expression improves host fitness under some conditions. This recurring Buchnera mutation governs thermal tolerance of aphid hosts. Other cases in which symbiont microevolution has a major effect on host ecological tolerance are likely to be widespread because of the high mutation rates of symbiotic bacteria and their crucial roles in host metabolism and development.

  20. Expression of the Galanthus nivalis agglutinin (GNA) gene in transgenic potato plants confers resistance to aphids.

    Science.gov (United States)

    Mi, Xiaoxiao; Liu, Xue; Yan, Haolu; Liang, Lina; Zhou, Xiangyan; Yang, Jiangwei; Si, Huaijun; Zhang, Ning

    2017-01-01

    Aphids, the largest group of sap-sucking pests, cause significant yield losses in agricultural crops worldwide every year. The massive use of pesticides to combat this pest causes severe damage to the environment, putting in risk the human health. In this study, transgenic potato plants expressing Galanthus nivalis agglutinin (GNA) gene were developed using CaMV 35S and ST-LS1 promoters generating six transgenic lines (35S1-35S3 and ST1-ST3 corresponding to the first and second promoter, respectively). Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that the GNA gene was expressed in leaves, stems and roots of transgenic plants under the control of the CaMV 35S promoter, while it was only expressed in leaves and stems under the control of the ST-LS1 promoter. The levels of aphid mortality after 5 days of the inoculation in the assessed transgenic lines ranged from 20 to 53.3%. The range of the aphid population in transgenic plants 15 days after inoculation was between 17.0±1.43 (ST2) and 36.6±0.99 (35S3) aphids per plant, which corresponds to 24.9-53.5% of the aphid population in non-transformed plants. The results of our study suggest that GNA expressed in transgenic potato plants confers a potential tolerance to aphid attack, which appears to be an alternative against the use of pesticides in the future. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  1. Polyphyly of the extinct family Oviparosiphidae and its implications for inferring aphid evolution (Hemiptera, Sternorrhyncha.

    Directory of Open Access Journals (Sweden)

    Dagmara Żyła

    Full Text Available Aphidoidea, the so-called "true aphids" are one of the most challenging groups in terms of solving the phylogenetic relationships. Morphology-based analyses were strongly affected by widespread homoplasy, while the molecular-based attempts struggled with the lack of sufficient phylogenetic signal. Despite significant improvements, the higher classification still remains unresolved and rather controversial. However, the use of the fossil record, one of the most valuable sources of information, was mainly limited to calibration of a phylogenetic tree, without a direct inclusion into the analysis. The extinct family Oviparosiphidae has long been considered as the common ancestor of all recent Aphidoidea and it was used as a calibration point in several analyses, but it has been never analyzed in a phylogenetic context. The family has been treated as a monophyletic group purely based on the simultaneous presence of two abdominal structures, ovipositor and siphunculi. However, it has been shown recently that at least one more extinct lineage, present at the same time, was characterized by the same features. For these reasons, we performed a maximum parsimony analysis using morphological data for extinct aphid taxa to prove the monophyly of Oviparosiphidae. Our analysis shows that the presumed ancestor lineage of recent aphids is a polyphyletic group. Our results support the hypothesis of an early Mesozoic rapid radiation of aphids, which led to several different lineages characterized by both ovipositor and siphunculi. The results indicate the necessity of examining the other extinct families, and shows that the diversity of aphids before the Cretaceous Terrestrial Revolution (KTR was higher than expected. Even though there is not enough data to perform a formal analysis, fossils seem to suggest a significant impact of the KTR on aphid diversification. Additionally, we have made a redescription of two genera and description of a new species

  2. Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata.

    Science.gov (United States)

    Zhu, Junwei; Park, Kye-Chung

    2005-08-01

    Induced volatiles provide a signal to foraging predatory insects about the location of their prey. In Iowa, early in the growing season of soybean, Glycine max, many predacious seven-spotted lady beetles, Coccinella septempunctata, were observed on plants with heavy infestations of soybean aphid, Aphis glycines. We studied whether the attraction of this beetle is caused by the release of specific volatile compounds of soybean plants infested by aphids. Volatile compounds emitted by soybean plants infested by aphids were compared with those of undamaged, uninfested, and artificially damaged plants. Gas chromatography-mass spectrometry analyses revealed consistent differences in the profiles of volatile compounds between aphid-infested soybean plants and undamaged ones. Significantly more methyl salicylate was released from infested plants at both the V1 and V2 plant growth stages. However, release patterns of two other induced plant volatiles, (D)-limonene and (E,E)-alpha-farnesene, differed between the two plant growth stages. Gas chromatographic-electroantennographic detection of volatile extracts from infested soybean plants showed that methyl salicylate elicited significant electrophysiological responses in C. septempunctata. In field tests, traps baited with methyl salicylate were highly attractive to adult C. septempunctata, whereas 2-phenylethanol was most attractive to the lacewing Chrysoperla carnea and syrphid flies. Another common lady beetle, the multicolored Asian lady beetle, Harmonia axyridis, showed no preference for the compounds. These results indicate that C. septempunctata may use methyl salicylate as the olfactory cue for prey location. We also tested the attractiveness of some selected soybean volatiles to alate soybean aphids in the field, and results showed that traps baited with benzaldehyde caught significantly higher numbers of aphids.

  3. Establishment of Lipolexis oregmae (Hymenoptera: Aphidiidae) in a classical biological control program directed against the brown citrus aphid (Homoptera: Aphididae) in Florida

    International Nuclear Information System (INIS)

    Persad, A.B.; Hoy, M.A.; Ru Nguyen

    2007-01-01

    The parasitoid Lipolexis oregmae Gahan (introduced as L. scutellaris Mackauer) was imported from Guam, evaluated in quarantine, mass reared, and released into citrus groves in Florida in a classical biological control program directed against the brown citrus aphid, Toxoptera citricida Kirkaldy. Releases of 20,200, 12,100, and 1,260 adults of L. oregmae were made throughout Florida during 2000, 2001, and 2002, respectively. To determine if L. oregmae had successfully established, surveys were conducted throughout the state beginning in the summer of 2001 and continuing through the summer of 2003. Parasitism during 2001 and 2002 was evaluated by holding brown citrus aphids in the laboratory until parasitoid adults emerged. Lipolexis oregmae was found in 10 sites in 7 counties and 4 sites in 3 counties with parasitism rates ranging from 0.7 to 3.3% in 2001 and 2002, respectively. Laboratory tests indicated that high rates of mortality occurred if field-collected parasitized aphids were held in plastic bags, so a molecular assay was used that allowed immature L. oregmae to be detected within aphid hosts immediately after collection. The molecular assay was used in 2003 with the brown citrus aphids and with other aphid species collected from citrus, weeds, and vegetables near former release sites; immatures of L. oregmae were detected in black citrus aphids, cowpea aphids, spirea aphids, and melon aphids, as well as in the brown citrus aphid, in 4 of 8 counties sampled, with parasitism ranging from 2.0 to 12.9%, indicating that L. oregmae is established and widely distributed. Samples taken in Polk County during Oct 2005 indicated that L. oregmae has persisted. The ability of L. oregmae to parasitize other aphid species on citrus, and aphids on other host plants, enhances the ability of L. oregmae to persist when brown citrus aphid populations are low. (author) [es

  4. Macrosiphoniella remaudierei, a new species of aphid on Helichrysum in Iran (Hemiptera, Aphididae).

    Science.gov (United States)

    Barbagallo, Sebastiano; Nieto Nafría, Juan M

    2016-01-01

    A new species of aphid, belonging to the genus Macrosiphoniella Del Guercio, 1911, is described using three samples collected in Iran on Helichrysum armenium (Asteraceae, Inuleae) by the late Prof. G. Remaudière. Both apterous and alate viviparous females of the new taxon, Macrosiphoniella remaudierei sp. n. , are described and compared to corresponding morphs of the closely allied Macrosiphoniella aetnensis and to other congeneric aphid species on Helichrysum in the Palaearctic region. Type specimens are now stored in the Muséum national d'Histoire naturelle in Paris.

  5. Macrosiphoniella remaudierei, a new species of aphid on Helichrysum in Iran (Hemiptera, Aphididae

    Directory of Open Access Journals (Sweden)

    Sebastiano Barbagallo

    2017-01-01

    Full Text Available A new species of aphid, belonging to the genus Macrosiphoniella Del Guercio, 1911, is described using three samples collected in Iran on Helichrysum armenium (Asteraceae, Inuleae by the late Prof. G. Remaudière. Both apterous and alate viviparous females of the new taxon, M. remaudierei sp. n., are described and compared to corresponding morphs of the closely allied M. aetnensis and to other congeneric aphid species on Helichrysum in the Palaearctic region. Type specimens are now stored in the Muséum national d’Histoire naturelle in Paris.

  6. New invasive species of aphids (Hemiptera, Aphididae in Serbia and Montenegro

    Directory of Open Access Journals (Sweden)

    Petrović-Obradović Olivera

    2010-01-01

    Full Text Available Three new invasive species of aphids have been found in Serbia: Chaitophorus populifolli Essig, Myzocallis walshii (Monell and Trichosiphonaphis polygonifoliae (Shinji and two have been found in Montenegro: Aphis illinoisensis Shimer and Tinocallis kahawaluokalani (Kirkaldy. A. illinoisensis is a pest of the grapevine, T. polygonifoliae, feeds on a decorative shrub (Lonicera and the other three feed on trees (Populus, Quercus and Lagerostroemia. Three of the species are American aphids and two are of Asian origin. Their morphology, illustrated by original drawings and data on the biology and distribution are given. .

  7. Antioxidant capacity and fatty acid profile of Centaurea kotschyi (Boiss. & Heldr. Hayek var. persica (Boiss. Wagenitz from Turkey

    Directory of Open Access Journals (Sweden)

    Aktumsek, Abdurrahman

    2011-03-01

    Full Text Available The antioxidant capacity of the methanolic extract and the fatty acid composition of C. kotschyi var. persica were investigated. Six different chemical methods were used to determine the antioxidant capacity. The fatty acid composition was analyzed using gas chromatography. The IC50 value of the extract was determined as 37.09 μg/ml (in the DPPH assay. In the β-carotene/linoleic acid system, the extract exhibited 65.22% inhibition against linoleic acid oxidation. The amount of total phenolic content and total antioxidant capacity were detected as 36.52 mg gallic acid equivalent (GAE/g and 74.93 mg ascorbic acid equivalent (AE/g, respectively. The major fatty acid in the composition of C. kotschyi var. persica was found to be C 18:3 ω3 (α-linolenic acid by GC analysis. The results presented here indicate that C. kotschyi var. persica possess strong antioxidant properties. Therefore, the species can be used as a natural additive in food, cosmetic and pharmaceutical industries.La capacidad antioxidante de extractos metanólicos y composición de ácidos grasos de C. kotschyi var. pérsica fueron investigados. Seis métodos químicos diferentes fueron realizados para la determinación de la capacidad antioxidante. La composición de ácidos grasos fue analizada por cromatografía de gases. Los valores de IC50 de los extractos fueron 37.09 μg/ml (en el ensayo con DPPH. En el sistema β-carotene/ácido linoleico, el extracto mostró un 65.22% de inhibición frente a la oxidación del ácido linoleico. La cantidad total de contenido fenólico y capacidad antioxidante total fueron 36.52 mg equivalentes de ácido gallico (GAE/g y 74.93 mg equivalentes de ácido ascórbico (AE/g, respectivamente. El principal ácidos graso encontrado, por análisis de CG, en C. kotschyi var. pérsica fue el C 18:3 ω3 (ácido α-linolenico. Los resultados presentados aquí indican que C. kotschyi var. pérsica posee unas fuertes propiedades antioxidantes. Adem

  8. Bacterial symbionts, Buchnera, and starvation on wing dimorphism in English grain aphid, Sitobion avenae (F. (Homoptera: Aphididae

    Directory of Open Access Journals (Sweden)

    Fangmei eZhang

    2015-05-01

    Full Text Available Wing dimorphism in aphids can be affected by multiple cues, including both biotic (nutrition, crowding, interspecific interactions, the presence of natural enemies, maternal and transgenerational effects, and alarm pheromone and abiotic factors (temperature, humidity, and photoperiod. The majority of the phloem-feeding aphids carry Buchnera, an obligate symbiotic proteobacteria. Buchnera has a highly reduced genome size, but encode key enzymes in the tryptophan biosynthetic pathway and is crucial for nutritional balance, development and reproduction in aphids. In this study, we investigated the impact of two nutritional-based biotic factors, symbionts and starvation, on the wing dimorphism in the English grain aphid, Sitobion avenae, a devastating insect pest of cereal crops (e.g., wheat worldwide. Elimination of Buchnera using the antibiotic rifampicin significantly reduced the formation of winged morphs, body mass and fecundity in S. avenae. Furthermore, the absence of this primary endosymbiont may disrupt the nutrient acquisition in aphids and alter transgenerational phenotypic expression. Similarly, both survival rate and the formation of winged morphs were substantially reduced after neonatal (< 24h old offspring were starved for a period of time. The combined results shed light on the impact of two nutritional-based biotic factors on the phenotypic plasticity in aphids. A better understanding of the wing dimorphism in aphids will provide the theoretical basis for the prediction and integrated management of these phloem-feeding insect pests.

  9. Synergy between chemical and biological control in the IPM of currant-lettuce aphid (Nasonovia ribisnigri) in Canterbury, New Zealand.

    Science.gov (United States)

    Fagan, L L; McLachlan, A; Till, C M; Walker, M K

    2010-04-01

    Field trials were conducted at four Canterbury, New Zealand locations in 2005-06 to determine if the synergistic effects of biological control by natural enemies and standard drenching techniques controlled lettuce aphid populations throughout the entire growing season. Chemical usage significantly lowered aphid densities in the outer, wrapper and heart leaves compared to control plants at most times. However, in mid-summer, natural enemies, such as the brown lacewing (Micromus tasmaniae), 11-spotted ladybird beetle (Coccinella undecimpunctata) and small hoverfly larvae (Melanostoma fasciatum), were more than sufficient to control lettuce aphids without the use of insecticides. Drenching, in addition to natural enemy attack, appears to be required in early spring and late summer to maintain very low levels of lettuce aphid. Given the potential for imidacloprid resistance to develop, it may be advisable to restrict drenches to these key periods in order to allow populations of natural enemies to maintain control of prey populations. We recommend industry support the validation of action thresholds across different regions within New Zealand and focus on the seasonal biology of predators to assist growers with the sustainable long-term control of lettuce aphids. The inclusion of additional data into an economic model to compare pest damage with predator loading would be useful for growers in managing aphid problems. These results will assist in the continued improvement and development of a sustainable IPM strategy for lettuce aphids in New Zealand and elsewhere.

  10. Modification of Cry4Aa toward Improved Toxin Processing in the Gut of the Pea Aphid, Acyrthosiphon pisum.

    Directory of Open Access Journals (Sweden)

    Michael A Rausch

    Full Text Available Aphids are sap-sucking insects (order: Hemiptera that cause extensive damage to a wide range of agricultural crops. Our goal was to optimize a naturally occurring insecticidal crystalline (Cry toxins produced by the soil-dwelling bacterium Bacillus thuringiensis for use against the pea aphid, Acyrthosiphon pisum. On the basis that activation of the Cry4Aa toxin is a rate-limiting factor contributing to the relatively low aphicidal activity of this toxin, we introduced cathepsin L and cathepsin B cleavage sites into Cry4Aa for rapid activation in the aphid gut environment. Incubation of modified Cry4Aa and aphid proteases in vitro demonstrated enhanced processing of the toxin into the active form for some of the modified constructs relative to non-modified Cry4Aa. Aphids fed artificial diet with toxin at a final concentration of 125 μg/ml showed enhanced mortality after two days for one of the four modified constructs. Although only modest toxin improvement was achieved by use of this strategy, such specific toxin modifications designed to overcome factors that limit aphid toxicity could be applied toward managing aphid populations via transgenic plant resistance.

  11. The impacts of climate change and belowground herbivory on aphids via primary metabolites

    Science.gov (United States)

    Ryalls, James M. W.

    Global climate and atmospheric change (summarised as climate change for brevity) may alter patterns of crop damage by insect herbivores, but little is known about how multiple climate change factors, acting in tandem, shape such interactions. Crucially, the specific plant-mediated mechanisms underpinning these effects remain largely unknown. Moreover, research into the effects of climate change on leguminous plant species, which have the ability to fix atmospheric nitrogen (N2) via their association with root nodule-dwelling rhizobial bacteria, and their associated insect herbivores, is surprisingly scarce considering their increasing importance in terrestrial ecosystems worldwide. Using a model legume, lucerne, otherwise known as alfalfa, Medicago sativa (Fabaceae), and a model pest species, the pea aphid, Acyrthosiphon pisum (Hemiptera: Aphididae), this work addresses how predicted changes in carbon dioxide (CO2) concentrations, temperature and rainfall patterns as well as interactions with other organisms, including the root-feeding weevil Sitona discoideus (Coleoptera: Curculionidae), might shape legume-feeding aphid populations in the future. Recent literature on the impacts of climate change on aphids and the biology and trophic interactions of lucerne aphids specifically were synthesised in chapters one and two, respectively. These chapters highlighted the importance of the interactions between multiple abiotic and biotic variables in shaping aphid population dynamics. Empirical research chapters three to six, using up to five lucerne genotypes (i.e. cultivars) in glasshouse and field experiments, addressed how A. pisum responded to the isolated and combined effects of climate change and root herbivory. In particular, chapter three determined the effects of elevated temperatures (eT) and elevated atmospheric CO2 concentrations (eCO2) on root-feeding S. discoideus larvae and their interaction with A. pisum. Chapter four addressed whether the effects of eT, e

  12. Dynamic Maize Responses to Aphid Feeding Are Revealed by a Time Series of Transcriptomic and Metabolomic Assays1[OPEN

    Science.gov (United States)

    Tzin, Vered; Fernandez-Pozo, Noe; Richter, Annett; Schmelz, Eric A.; Schoettner, Matthias; Schäfer, Martin; Ahern, Kevin R.; Meihls, Lisa N.; Kaur, Harleen; Huffaker, Alisa; Mori, Naoki; Degenhardt, Joerg; Mueller, Lukas A.; Jander, Georg

    2015-01-01

    As a response to insect attack, maize (Zea mays) has inducible defenses that involve large changes in gene expression and metabolism. Piercing/sucking insects such as corn leaf aphid (Rhopalosiphum maidis) cause direct damage by acquiring phloem nutrients as well as indirect damage through the transmission of plant viruses. To elucidate the metabolic processes and gene expression changes involved in maize responses to aphid attack, leaves of inbred line B73 were infested with corn leaf aphids for 2 to 96 h. Analysis of infested maize leaves showed two distinct response phases, with the most significant transcriptional and metabolic changes occurring in the first few hours after the initiation of aphid feeding. After 4 d, both gene expression and metabolite profiles of aphid-infested maize reverted to being more similar to those of control plants. Although there was a predominant effect of salicylic acid regulation, gene expression changes also indicated prolonged induction of oxylipins, although not necessarily jasmonic acid, in aphid-infested maize. The role of specific metabolic pathways was confirmed using Dissociator transposon insertions in maize inbred line W22. Mutations in three benzoxazinoid biosynthesis genes, Bx1, Bx2, and Bx6, increased aphid reproduction. In contrast, progeny production was greatly decreased by a transposon insertion in the single W22 homolog of the previously uncharacterized B73 terpene synthases TPS2 and TPS3. Together, these results show that maize leaves shift to implementation of physical and chemical defenses within hours after the initiation of aphid feeding and that the production of specific metabolites can have major effects in maize-aphid interactions. PMID:26378100

  13. Lethal and Sublethal Effects of Mineral Oil on Potato Pests.

    Science.gov (United States)

    Galimberti, Andrew; Alyokhin, Andrei

    2018-05-28

    Mineral oil is a product used to reduce Potato Virus Y transmission in potato fields. However, there is little information available about other effects that oil may have on insect pests of potato. To better understand how mineral oil affects potato pests, we performed a series of experiments testing the effects of oil on mortality, behavior, and development of potato aphids, Macrosiphum euphorbiae (Thomas) (Hemiptera: Aphididae), green peach aphids, Myzus persicae (Sulzer) (Hemiptera: Aphididae), and Colorado potato beetles, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). All three species showed negative behavioral responses to oil-treated potato foliage. Oil treatment also increased aphid mortality. Colorado potato beetle mortality was not affected, but developing on oil-treated potato plants resulted in prolonged development and smaller adults. Additionally, oil acted synergistically with the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Clavicipitaceae); Colorado potato beetle larvae were killed more rapidly when sprayed with both products compared with when sprayed with B. bassiana alone. Based on these results, mineral oil has the potential for expanded use in potato IPM programs.

  14. Two Volatile Organic Compounds Trigger Plant Self-Defense against a Bacterial Pathogen and a Sucking Insect in Cucumber under Open Field Conditions

    Directory of Open Access Journals (Sweden)

    Choong-Min Ryu

    2013-05-01

    Full Text Available Systemic acquired resistance (SAR is a plant self-defense mechanism against a broad-range of pathogens and insect pests. Among chemical SAR triggers, plant and bacterial volatiles are promising candidates for use in pest management, as these volatiles are highly effective, inexpensive, and can be employed at relatively low concentrations compared with agrochemicals. However, such volatiles have some drawbacks, including the high evaporation rate of these compounds after application in the open field, their negative effects on plant growth, and their inconsistent levels of effectiveness. Here, we demonstrate the effectiveness of volatile organic compound (VOC-mediated induced resistance against both the bacterial angular leaf spot pathogen, Pseudononas syringae pv. lachrymans, and the sucking insect aphid, Myzus persicae, in the open field. Using the VOCs 3-pentanol and 2-butanone where fruit yields increased gave unexpectedly, a significant increase in the number of ladybird beetles, Coccinella septempunctata, a natural enemy of aphids. The defense-related gene CsLOX was induced by VOC treatment, indicating that triggering the oxylipin pathway in response to the emission of green leaf volatiles can recruit the natural enemy of aphids. These results demonstrate that VOCs may help prevent plant disease and insect damage by eliciting induced resistance, even in open fields.

  15. Testing competing measures of profitability for mobile resources.

    Science.gov (United States)

    Barrette, Maryse; Wu, Gi-Mick; Brodeur, Jacques; Giraldeau, Luc-Alain; Boivin, Guy

    2009-01-01

    Optimal diet theory often fails to predict a forager's diet choice when prey are mobile. Because they escape or defend themselves, mobile prey are likely to increase the forager's handling time, thereby decreasing its fitness gain rate. Many animals have been shown to select their prey so as to maximize either their fitness gain or their fitness gain rate. However, no study has yet compared directly these two measures of profitability by generating testable predictions about the choice of the forager. Under laboratory conditions, we compared these two measures of profitability, using the aphid parasitoid Aphidius colemani and its host, Myzus persicae. Fitness gain was calculated for parasitoids developing in each host instar by measuring life-history traits such as developmental time, sex ratio and fecundity. Fitness gain rate was estimated by dividing fitness gain by handling time, the time required to subdue the host. Fourth instar aphids provided the best fitness gain to parasitoids, whereas second instar aphids were the most profitable in terms of fitness gain rate. Host choice tests showed that A. colemani females preferred second instar hosts, suggesting that their decision maximizes fitness gain rate over fitness gain. Our results indicate that fitness gain rate is a reliable predictor of animal's choice for foragers exploiting resources that impose additional time cost due to their mobility.

  16. Divergence of host range and biological properties between natural isolate and full-length infectious cDNA clone of the Beet mild yellowing virus 2ITB.

    Science.gov (United States)

    Klein, Elodie; Brault, Véronique; Klein, Delphine; Weyens, Guy; Lefèbvre, Marc; Ziegler-Graff, Véronique; Gilmer, David

    2014-01-01

    Plant infection by poleroviruses is restricted to phloem tissues, preventing any classical leaf rub inoculation with viral RNA or virions. Efficient virus inoculation to plants is achieved by viruliferous aphids that acquire the virus by feeding on infected plants. The use of promoter-driven infectious cDNA is an alternative means to infect plants and allows reverse genetic studies to be performed. Using Beet mild yellowing virus isolate 2ITB (BMYV-2ITB), we produced a full-length infectious cDNA clone of the virus (named BMYV-EK) placed under the control of the T7 RNA polymerase and the Cauliflower mosaic virus 35S promoters. Infectivity of the engineered BMYV-EK virus was assayed in different plant species and compared with that of the original virus. We showed that in vitro- or in planta-derived transcripts were infectious in protoplasts and in whole plants. Importantly, the natural aphid vector Myzus persicae efficiently transmitted the viral progeny produced in infected plants. By comparing agroinoculation and aphid infection in a host range assay, we showed that the engineered BMYV-EK virus displayed a similar host range to BMYV-2ITB, except for Nicotiana benthamiana, which proved to be resistant to systemic infection with BMYV-EK. Finally, both the BMYV-EK P0 and the full-length clone were able to strongly interfere with post-transcriptional gene silencing. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  17. Green synthesis of nitrogen-doped graphitic carbon sheets with use of Prunus persica for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Atchudan, Raji, E-mail: atchudanr@yu.ac.kr [School of Chemical Engineering, Yeungnam University, Gyeongsan 38541 (Korea, Republic of); Edison, Thomas Nesakumar Jebakumar Immanuel [School of Chemical Engineering, Yeungnam University, Gyeongsan 38541 (Korea, Republic of); Perumal, Suguna [Department of Applied Chemistry, Kyungpook National University, Daegu 41566 (Korea, Republic of); Lee, Yong Rok, E-mail: yrlee@yu.ac.kr [School of Chemical Engineering, Yeungnam University, Gyeongsan 38541 (Korea, Republic of)

    2017-01-30

    Highlights: • N-GCSs was synthesized from the unripe Prunus persica by direct hydrothermal method. • The resulting N-GCSs-2 exhibit an excellent graphitization with 9.33% of nitrogen. • N-GCSs-2 provide high C{sub s} of 176 F g{sup −1} at current density of 0.1 A g{sup −1} in 1 M H{sub 2}SO{sub 4}. • N-GCSs-2 have high capacitance retention and 20% capacity growth after 2000 cycles. • First time, N-GCSs resulted from peach via green route for flexible supercapacitors. - Abstract: Nitrogen-doped graphitic carbon sheets (N-GCSs) were prepared from the extract of unripe Prunus persica fruit by a direct hydrothermal method. The synthesized N-GCSs were examined by high resolution transmission electron microscopy (HRTEM), nitrogen adsorption-desorption isotherms, X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FT-IR) spectroscopy. HRTEM showed that the synthesized carbon sheets were graphitic with lattice fringes and an inter-layer distance of 0.36 nm. Doping with the nitrogen moiety present over the synthesized GCSs was confirmed by XPS, FT-IR spectroscopy, and energy dispersive X-ray spectroscopy elemental mapping. The fruit extract associated with hydrothermal-carbonization method is economical and eco-friendly with a single step process. The resulting carbon sheets could be modified and are promising candidates for nano-electronic applications, including supercapacitors. The synthesized N-GCSs-2 provided a high specific capacitance of 176 F g{sup −1} at a current density of 0.1 A g{sup −1}. This electrode material has excellent cyclic stability, even after 2000 cycles of charge-discharge at a current density of 0.5 A g{sup −1}.

  18. Parasitoids (Hymenoptera: Braconidae: Aphidiinae) attacking aphids feeding on solanaceae and cucurbitaceae crops in Southeastern Europe: Aphidiine-aphid-plant associations and key

    Czech Academy of Sciences Publication Activity Database

    Kavallieratos, N. G.; Tomanović, Ž.; Starý, Petr; Žikić, V.; Petrović-Obradović, O.

    2010-01-01

    Roč. 103, č. 2 (2010), s. 153-164 ISSN 0013-8746 R&D Projects: GA AV ČR IBS5007102 Grant - others:The Ministry of Science and Environment Protection(CS) 143006B Institutional research plan: CEZ:AV0Z50070508 Keywords : Aphidiinae * aphids * Solanaceae Subject RIV: EH - Ecology, Behaviour Impact factor: 1.031, year: 2010

  19. Evidence for an Invasive Aphid “Superclone”: Extremely Low Genetic Diversity in Oleander Aphid (Aphis nerii) Populations in the Southern United States

    Science.gov (United States)

    Harrison, John Scott; Mondor, Edward B.

    2011-01-01

    Background The importance of genetic diversity in successful biological invasions is unclear. In animals, but not necessarily plants, increased genetic diversity is generally associated with successful colonization and establishment of novel habitats. The Oleander aphid, Aphis nerii, though native to the Mediterranean region, is an invasive pest species throughout much of the world. Feeding primarily on Oleander (Nerium oleander) and Milkweed (Asclepias spp.) under natural conditions, these plants are unlikely to support aphid populations year round in the southern US. The objective of this study was to describe the genetic variation within and among US populations of A. nerii, during extinction/recolonization events, to better understand the population ecology of this invasive species. Methodology/Principal Findings We used five microsatellite markers to assess genetic diversity over a two year period within and among three aphid populations separated by small (100 km) and large (3,700 km) geographic distances on two host plant species. Here we provide evidence for A. nerii “superclones”. Genotypic variation was absent in all populations (i.e., each population consisted of a single multilocus genotype (MLG) or “clone”) and the genetic composition of only one population completely changed across years. There was no evidence of sexual reproduction or host races on different plant species. Conclusions/Significance Aphis nerii is a well established invasive species despite having extremely low genetic diversity. As this aphid appears to be obligatorily asexual, it may share more similarities with clonally reproducing invasive plants, than with other animals. Patterns of temporal and geographic genetic variation, viewed in the context of its population dynamics, have important implications for the management of invasive pests and the evolutionary biology of asexual species. PMID:21408073

  20. Evidence for an invasive aphid "superclone": extremely low genetic diversity in Oleander aphid (Aphis nerii populations in the southern United States.

    Directory of Open Access Journals (Sweden)

    John Scott Harrison

    2011-03-01

    Full Text Available The importance of genetic diversity in successful biological invasions is unclear. In animals, but not necessarily plants, increased genetic diversity is generally associated with successful colonization and establishment of novel habitats. The Oleander aphid, Aphis nerii, though native to the Mediterranean region, is an invasive pest species throughout much of the world. Feeding primarily on Oleander (Nerium oleander and Milkweed (Asclepias spp. under natural conditions, these plants are unlikely to support aphid populations year round in the southern US. The objective of this study was to describe the genetic variation within and among US populations of A. nerii, during extinction/recolonization events, to better understand the population ecology of this invasive species.We used five microsatellite markers to assess genetic diversity over a two year period within and among three aphid populations separated by small (100 km and large (3,700 km geographic distances on two host plant species. Here we provide evidence for A. nerii "superclones". Genotypic variation was absent in all populations (i.e., each population consisted of a single multilocus genotype (MLG or "clone" and the genetic composition of only one population completely changed across years. There was no evidence of sexual reproduction or host races on different plant species.Aphis nerii is a well established invasive species despite having extremely low genetic diversity. As this aphid appears to be obligatorily asexual, it may share more similarities with clonally reproducing invasive plants, than with other animals. Patterns of temporal and geographic genetic variation, viewed in the context of its population dynamics, have important implications for the management of invasive pests and the evolutionary biology of asexual species.

  1. Neozygites osornensis sp. nov., a fungal species causing mortality to the cypress aphid Cinara cupressi in Chile.

    Science.gov (United States)

    Retamal, Cristian Montalva; Barta, Marek; Pérez, Eladio Rojas; Flores, Eduardo Valenzuela

    2013-01-01

    An entomophthoralean fungus causing epizootics in populations of the cypress aphid, Cinara cupressi Buckton, in Chile is described as a new species, Neozygites osornensis Montalva et Barta. The aphid pathogen is described based on morphological characters. An exhaustive description, illustrations and a comparison with closely related species are provided. The fungus differs from similar Neozygites species by smaller hyphal bodies, nuclei, primary conidia, capilliconidia and capilliphores and by noticeably different shape of capilliconidia. A key to aphid-pathogenic species of Neozygites is also included.

  2. Ants farm subterranean aphids mostly in single clone groups - an example of prudent husbandry for carbohydrates and proteins?

    Directory of Open Access Journals (Sweden)

    Ivens Aniek BF

    2012-07-01

    Full Text Available Abstract Background Mutualistic interactions are wide-spread but the mechanisms underlying their evolutionary stability and ecological dynamics remain poorly understood. Cultivation mutualisms in which hosts consume symbionts occur in phylogenetically diverse groups, but often have symbiont monocultures for each host. This is consistent with the prediction that symbionts should avoid coexistence with other strains so that host services continue to benefit relatives, but it is less clear whether hosts should always favor monocultures and what mechanisms they might have to manipulate symbiont diversity. Few mutualisms have been studied in sufficient genetic detail to address these issues, so we decided to characterize symbiont diversity in the complex mutualism between multiple root aphid species and Lasius flavus ants. After showing elsewhere that three of these aphid species have low dispersal and mostly if not exclusively asexual reproduction, we here investigate aphid diversity within and between ant nest mounds. Results The three focal species (Geoica utricularia, Forda marginata and Tetraneura ulmi had considerable clonal diversity at the population level. Yet more than half of the ant mounds contained just a single aphid species, a significantly higher percentage than expected from a random distribution. Over 60% of these single-species mounds had a single aphid clone, and clones tended to persist across subsequent years. Whenever multiple species/clones co-occurred in the same mound, they were spatially separated with more than 95% of the aphid chambers containing individuals of a single clone. Conclusions L. flavus “husbandry” is characterized by low aphid “livestock” diversity per colony, especially at the nest-chamber level, but it lacks the exclusive monocultures known from other cultivation mutualisms. The ants appear to eat most of the early instar aphids, so that adult aphids are unlikely to face limited phloem resources and

  3. Genetics Coupled to Quantitative Intact Proteomics Links Heritable Aphid and Endosymbiont Protein Expression to Circulative Polerovirus Transmission▿ †

    Science.gov (United States)

    Cilia, M.; Tamborindeguy, C.; Fish, T.; Howe, K.; Thannhauser, T. W.; Gray, S.

    2011-01-01

    Yellow dwarf viruses in the family Luteoviridae, which are the causal agents of yellow dwarf disease in cereal crops, are each transmitted most efficiently by different species of aphids in a circulative manner that requires the virus to interact with a multitude of aphid proteins. Aphid proteins differentially expressed in F2 Schizaphis graminum genotypes segregating for the ability to transmit Cereal yellow dwarf virus-RPV (CYDV-RPV) were identified using two-dimensional difference gel electrophoresis (DIGE) coupled to either matrix-assisted laser desorption ionization-tandem mass spectrometry or online nanoscale liquid chromatography coupled to electrospray tandem mass spectrometry. A total of 50 protein spots, containing aphid proteins and proteins from the aphid's obligate and maternally inherited bacterial endosymbiont, Buchnera, were identified as differentially expressed between transmission-competent and refractive aphids. Surprisingly, in virus transmission-competent F2 genotypes, the isoelectric points of the Buchnera proteins did not match those in the maternal Buchnera proteome as expected, but instead they aligned with the Buchnera proteome of the transmission-competent paternal parent. Among the aphid proteins identified, many were involved in energy metabolism, membrane trafficking, lipid signaling, and the cytoskeleton. At least eight aphid proteins were expressed as heritable, isoelectric point isoform pairs, one derived from each parental lineage. In the F2 genotypes, the expression of aphid protein isoforms derived from the competent parental lineage aligned with the virus transmission phenotype with high precision. Thus, these isoforms are candidate biomarkers for CYDV-RPV transmission in S. graminum. Our combined genetic and DIGE approach also made it possible to predict where several of the proteins may be expressed in refractive aphids with different barriers to transmission. Twelve proteins were predicted to act in the hindgut of the aphid

  4. Genetics coupled to quantitative intact proteomics links heritable aphid and endosymbiont protein expression to circulative polerovirus transmission.

    Science.gov (United States)

    Cilia, M; Tamborindeguy, C; Fish, T; Howe, K; Thannhauser, T W; Gray, S

    2011-03-01

    Yellow dwarf viruses in the family Luteoviridae, which are the causal agents of yellow dwarf disease in cereal crops, are each transmitted most efficiently by different species of aphids in a circulative manner that requires the virus to interact with a multitude of aphid proteins. Aphid proteins differentially expressed in F2 Schizaphis graminum genotypes segregating for the ability to transmit Cereal yellow dwarf virus-RPV (CYDV-RPV) were identified using two-dimensional difference gel electrophoresis (DIGE) coupled to either matrix-assisted laser desorption ionization-tandem mass spectrometry or online nanoscale liquid chromatography coupled to electrospray tandem mass spectrometry. A total of 50 protein spots, containing aphid proteins and proteins from the aphid's obligate and maternally inherited bacterial endosymbiont, Buchnera, were identified as differentially expressed between transmission-competent and refractive aphids. Surprisingly, in virus transmission-competent F2 genotypes, the isoelectric points of the Buchnera proteins did not match those in the maternal Buchnera proteome as expected, but instead they aligned with the Buchnera proteome of the transmission-competent paternal parent. Among the aphid proteins identified, many were involved in energy metabolism, membrane trafficking, lipid signaling, and the cytoskeleton. At least eight aphid proteins were expressed as heritable, isoelectric point isoform pairs, one derived from each parental lineage. In the F2 genotypes, the expression of aphid protein isoforms derived from the competent parental lineage aligned with the virus transmission phenotype with high precision. Thus, these isoforms are candidate biomarkers for CYDV-RPV transmission in S. graminum. Our combined genetic and DIGE approach also made it possible to predict where several of the proteins may be expressed in refractive aphids with different barriers to transmission. Twelve proteins were predicted to act in the hindgut of the aphid

  5. How the use of nitrogen fertiliser may switch plant suitability for aphids: the case of Miscanthus, a promising biomass crop, and the aphid pest Rhopalosiphum maidis.

    Science.gov (United States)

    Bogaert, Florent; Chesnais, Quentin; Catterou, Manuella; Rambaud, Caroline; Doury, Géraldine; Ameline, Arnaud

    2017-08-01

    The use of nitrogen fertiliser in agrosystems can alter plant nitrogen and consequently improve nutrient availability for herbivores, potentially leading to better performance for herbivores and higher pest pressure in the field. We compared, in laboratory conditions, the effects of nitrogen fertilisation on a promising biomass crop, Miscanthus × giganteus, and its parents M. sinensis and M. sacchariflorus. The plant-mediated effects were compared on the second trophic level, the green corn leaf aphid Rhopalosiphum maidis. Results showed that the biomass and leaf C:N ratio of M. sinensis plants treated with nitrogen fertiliser were significantly greater than those of non-treated plants. As regards M. × giganteus and M. sacchariflorus, the only reported change was a significantly smaller leaf C:N ratio for treated M. sacchariflorus compared with non-treated plants. Surprisingly, nitrogen fertilisation had opposite effects on plant-herbivore interactions. Following nitrogen treatments, M. sinensis was less suitable in terms of intrinsic rate of increase for R. maidis, the feeding behaviour of which was negatively affected, while M. sacchariflorus and M. × giganteus exhibited greater suitability in terms of aphid weight. Nitrogen fertilisation had contrasting effects on the three species of Miscanthus plants. These effects cascaded up to the second trophic level, R. maidis aphid pests, either through a modification of their weight or demographic parameters. The implications of these results were discussed in the context of agricultural sustainability and intensive production practices. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Tools for evaluating Lipolexis oregmae (Hymenoptera: Aphidiidae) in the field: Effects of host aphid and host plant on mummy location and color plus improved methods for obtaining adults

    International Nuclear Information System (INIS)

    Singh, R.; Hoy, M.A.

    2007-01-01

    Lipolexis oregmae Gahan was introduced into Florida in a classical biological control program directed against the brown citrus aphid, Toxoptera citricida (Kirkaldy), on citrus. Prior to evaluating distribution, host range, and potential nontarget effects of L. oregmae in Florida, we evaluated the role of other potential host aphids and host plants on mummy production and location. Under laboratory conditions, this parasitoid produced the most progeny on the target pest, the brown citrus aphid on citrus. This parasitoid, unlike the majority of aphidiids, did not produce mummies on any of the host plants tested when reared in black citrus aphid T. aurantii (Boyer de Fonscolombe) on grapefruit, spirea aphid Aphis spiraecola Patch on grapefruit and pittosporum, cowpea aphid A. craccivora Koch on grapefruit and cowpeas, or melon aphid A. gossypii Glover on grapefruit and cucumber. Thus, sampling for L. oregmae mummies of these host aphids and host plants must involve holding foliage in the laboratory until mummies are produced. This parasitoid requires high relative humidity to produce adults because no adults emerged when mummies were held in gelatin capsules, but high rates of emergence were observed when mummies were held on 1.5% agar plates. In addition, we compared the color of 6 aphid hosts and the color of mummies produced by L. oregmae when reared in them to determine if color of mummies could be used to identify L. oregmae . Mummy color varied between aphid hosts and tested host plants, and is not a useful tool for identifying L. oregmae for nontarget effects. (author) [es

  7. Aphid parasitoids sampled by Malaise traps in the National parks of Thailand (Hymenoptera, Braconidae, Aphidiinae)

    Czech Academy of Sciences Publication Activity Database

    Starý, Petr; Sharkey, M.; Hutacharern, C.

    2008-01-01

    Roč. 41, 1-2 (2008), s. 37-43 ISSN 0049-3589 Grant - others:Framework of Research Funded by the NSF grant(US) DEB 0542864 Institutional research plan: CEZ:AV0Z50070508 Keywords : aphids * parasitoids * biodiversity Subject RIV: EH - Ecology, Behaviour

  8. Parasitoids and hyperparasitoids (Hymenoptera) on aphids (Hemiptera) infesting citrus in east Mediterranean region of Turkey

    Czech Academy of Sciences Publication Activity Database

    Satar, S.; Satar, G.; Karacaoglu, M.; Uygun, N.; Kavallieratos, N. G.; Starý, Petr; Athanassiou, CH. G.

    2014-01-01

    Roč. 14, article no. 178 (2014) ISSN 1536-2442 Grant - others:Turkish Scientific and Technical Research Council(TR) 105-0-581 Institutional support: RVO:60077344 Keywords : citrus * aphid * Aphidiinae Subject RIV: EH - Ecology, Behaviour Impact factor: 1.025, year: 2014 http://jinsectscience.oxfordjournals.org/content/jis/14/1/178.full.pdf

  9. Establishment and maintenance of aphid endosymbionts after horizontal transfer is dependent on host genotype

    Czech Academy of Sciences Publication Activity Database

    Parker, B. J.; McLean, A. H. C.; Hrček, Jan; Gerardo, N. M.; Godfray, H. C. J.

    2017-01-01

    Roč. 13, č. 5 (2017), č. článku 20170016. ISSN 1744-9561 Institutional support: RVO:60077344 Keywords : endosymbionts * horizontal transfer * pea aphid Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 3.089, year: 2016 http://rsbl.royalsocietypublishing.org/content/13/5/20170016.long

  10. Secretome of fungus-infected aphids documents high pathogen activity and weak host response

    DEFF Research Database (Denmark)

    Grell, Morten Nedergaard; Jensen, Annette Bruun; Olsen, Peter B.

    2011-01-01

    Discovery of novel secretome proteins contributes to the understanding of host-pathogen interactions. Here we report a rich diversity of secreted proteins from the interaction between grain aphids (host, insect order Hemiptera) and fungi of the order Entomophthorales (insect pathogens), made...

  11. Characterisation and cross-amplification of polymorphic microsatellite loci in ant-associated root-aphids

    DEFF Research Database (Denmark)

    Ivens, A.B.F.; Kronauer, Daniel Jan Christoph; Boomsma, J.J.

    2011-01-01

    Twenty-six polymorphic microsatellite loci were developed for four species of ant-associated root-aphids: Geoica utricularia, Forda marginata, Tetraneura ulmi and Anoecia corni. We found up to 9 alleles per locus, with an average of 4.8. We also report polymorphic cross-amplification of eleven of...

  12. Role of Pea Enation Mosaic Virus Coat Protein in the Host Plant and Aphid Vector

    Directory of Open Access Journals (Sweden)

    Juliette Doumayrou

    2016-11-01

    Full Text Available Understanding the molecular mechanisms involved in plant virus–vector interactions is essential for the development of effective control measures for aphid-vectored epidemic plant diseases. The coat proteins (CP are the main component of the viral capsids, and they are implicated in practically every stage of the viral infection cycle. Pea enation mosaic virus 1 (PEMV1, Enamovirus, Luteoviridae and Pea enation mosaic virus 2 (PEMV2, Umbravirus, Tombusviridae are two RNA viruses in an obligate symbiosis causing the pea enation mosaic disease. Sixteen mutant viruses were generated with mutations in different domains of the CP to evaluate the role of specific amino acids in viral replication, virion assembly, long-distance movement in Pisum sativum, and aphid transmission. Twelve mutant viruses were unable to assemble but were able to replicate in inoculated leaves, move long-distance, and express the CP in newly infected leaves. Four mutant viruses produced virions, but three were not transmissible by the pea aphid, Acyrthosiphon pisum. Three-dimensional modeling of the PEMV CP, combined with biological assays for virion assembly and aphid transmission, allowed for a model of the assembly of PEMV coat protein subunits.

  13. Role of Pea Enation Mosaic Virus Coat Protein in the Host Plant and Aphid Vector.

    Science.gov (United States)

    Doumayrou, Juliette; Sheber, Melissa; Bonning, Bryony C; Miller, W Allen

    2016-11-18

    Understanding the molecular mechanisms involved in plant virus-vector interactions is essential for the development of effective control measures for aphid-vectored epidemic plant diseases. The coat proteins (CP) are the main component of the viral capsids, and they are implicated in practically every stage of the viral infection cycle. Pea enation mosaic virus 1 (PEMV1, Enamovirus , Luteoviridae ) and Pea enation mosaic virus 2 (PEMV2, Umbravirus , Tombusviridae ) are two RNA viruses in an obligate symbiosis causing the pea enation mosaic disease. Sixteen mutant viruses were generated with mutations in different domains of the CP to evaluate the role of specific amino acids in viral replication, virion assembly, long-distance movement in Pisum sativum , and aphid transmission. Twelve mutant viruses were unable to assemble but were able to replicate in inoculated leaves, move long-distance, and express the CP in newly infected leaves. Four mutant viruses produced virions, but three were not transmissible by the pea aphid, Acyrthosiphon pisum . Three-dimensional modeling of the PEMV CP, combined with biological assays for virion assembly and aphid transmission, allowed for a model of the assembly of PEMV coat protein subunits.

  14. Phenotypic plasticity in the response of aphids to host plant quality

    Czech Academy of Sciences Publication Activity Database

    Thieme, T.; Truberg, B.; Dixon, Anthony F. G.

    2014-01-01

    Roč. 4, č. 2 (2014), s. 92-96 ISSN 1805-0174 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : lupin * alkaloids * aphids * Macrosiphum albifrons * biological performance Subject RIV: EH - Ecology, Behaviour

  15. Fauna and associations of aphid parasitoids in an up-dated farmland area (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Starý, Petr; Havelka, Jan

    2008-01-01

    Roč. 61, č. 2 (2008), s. 251-276 ISSN 1721-8861 R&D Projects: GA AV ČR IAA600960705 Institutional research plan: CEZ:AV0Z50070508 Keywords : aphids * Hymenoptera * Braconidae Subject RIV: EH - Ecology, Behaviour Impact factor: 0.153, year: 2008

  16. The effects of aphid traits on parasitoids host use and specialist advantage

    Czech Academy of Sciences Publication Activity Database

    Gagic, V.; Petrović-Obradović, O.; Fründ, J.; Kavallieratos, N. G.; Athanassiou, C. G.; Starý, Petr; Tomanović, Ž.

    2016-01-01

    Roč. 11, č. 6 (2016), č. článku e0157674. E-ISSN 1932-6203 Institutional support: RVO:60077344 Keywords : aphid * parasitoid species * European countries Subject RIV: EH - Ecology, Behaviour Impact factor: 2.806, year: 2016 http://journals.plos.org/plosone/article/asset?id=10.1371%2Fjournal.pone.0157674.PDF

  17. No choice but to find resistance to soybean aphid biotype 4

    Science.gov (United States)

    Host plant resistance in soybean [Glycine max (L.) Merr] utilizes its natural defenses to limit soybean aphid (Aphis glycines Matsamura, SBA) injury, reducing insecticide reliance. Specific genes called Rag or Resistance to Aphis glycines are unfavorable to SBA and may suppress their development and...

  18. Tissue location of resistance in apple to the rosy apple aphid established by electrical penetration graphs

    NARCIS (Netherlands)

    Marchetti, E.; Civolani, S.; Leis, M.; Chicca, M.; Tjallingii, W.F.; Pasqualini, E.; Baroni, P.

    2009-01-01

    A study of the constitutive resistance of the apple cultivar Florina, Malus domestica Borkh. (Rosaceae), to the rosy apple aphid, Dysaphis plantaginea (Passerini) (Homoptera Aphididae), was performed for the first time by the electrical penetration graph (DC-EPG) system, using the susceptible apple

  19. Prey foraging movements by Hippodamia convergens in wheat are influenced by hunger and aphids

    Science.gov (United States)

    We investigated foraging movements by adult female convergent lady beetles, Hippodamia convergens Guerin-Meneville, on English grain aphids, Sitobion avenae L., on wheat, Triticum aestivum L., growing in 1.8 x 1.8 m plantings in a greenhouse with a soil floor. The wheat was planted to simulate whea...

  20. Vitex agnus castus and Euphorbia characias ssp. wulfenii as reservoirs of aphid parasitoids (Hymenoptera: Braconidae: Aphidiinae)

    Czech Academy of Sciences Publication Activity Database

    Kavallieratos, N. G.; Tomanovic, Ž.; Starý, Petr; Emmanouel, N. E.

    2008-01-01

    Roč. 91, č. 2 (2008), s. 179-191 ISSN 0015-4040 Grant - others:The Ministry of Science nad Environment Protection of the Republic of Serbia(CS) 143006B Institutional research plan: CEZ:AV0Z50070508 Keywords : aphids * parasitoids * reservoirs Subject RIV: EH - Ecology, Behaviour Impact factor: 0.886, year: 2008

  1. The helper component-proteinase of cowpea aphid-borne mosaic virus

    NARCIS (Netherlands)

    Mlotshwa, S.

    2000-01-01

    Cowpea aphid-borne mosaic potyvirus causes severe yield losses in cowpea, an important legume crop in semi-arid regions of Africa. We have elucidated the genomic sequence of the virus and subsequently focused our attention on the so-called helper component-proteinase (HC-Pro), a

  2. The genomic sequence of cowpea aphid-borne mosaic virus and its similarities with other potyviruses

    NARCIS (Netherlands)

    Mlotshwa, S.; Verver, J.; Sithole-Niang, I.; Kampen, van T.; Kammen, van A.; Wellink, J.

    2002-01-01

    The genomic sequence of a Zimbabwe isolate of Cowpea aphid-borne mosaic virus (CABMV-Z) was determined by sequencing overlapping viral cDNA clones generated by RT-PCR using degenerate and/or specific primers. The sequence is 9465 nucleotides in length excluding the 3' terminal poly (A) tail and

  3. Relationship between the abundance of aphids and their natural enemies in cereal fields and landscape composition

    Czech Academy of Sciences Publication Activity Database

    Hassan, D. A.; Parisey, N.; Burel, F.; Plantegenest, M.; Kindlmann, Pavel; Butet, A.

    2012-01-01

    Roč. 2, č. 2 (2012), s. 89-101 ISSN 1805-0174 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : agroecosystems * landscape structure * crop pests * aphids * biological control * semi-natural habitats Subject RIV: EH - Ecology, Behaviour

  4. Characterization and genetic dissection of resistance to spotted alfalfa aphid (Therioaphis trifolii) in Medicago truncatula

    KAUST Repository

    Kamphuis, L. G.; Lichtenzveig, J.; Peng, K.; Guo, S.-M.; Klingler, John; Siddique, K. H. M.; Gao, L.-L.; Singh, K. B.

    2013-01-01

    Aphids cause significant yield losses in agricultural crops worldwide. Medicago truncatula, a model legume, cultivated pasture species in Australia and close relative of alfalfa (Medicago sativa), was used to study the defence response against Therioaphis trifolii f. maculate [spotted alfalfa aphid (SAA)]. Aphid performance and plant damage were compared among three accessions. A20 is highly susceptible, A17 has moderate resistance, and Jester is strongly resistant. Subsequent analyses using A17 and A20, reciprocal F1s and an A17×A20 recombinant inbred line (RIL) population revealed that this moderate resistance is phloem mediated and involves antibiosis and tolerance but not antixenosis. Electrical penetration graph analysis also identified a novel waveform termed extended potential drop, which occurred following SAA infestation of M. truncatula. Genetic dissection using the RIL population revealed three quantitative trait loci on chromosomes 3, 6, and 7 involved in distinct modes of aphid defence including antibiosis and tolerance. An antibiosis locus resides on linkage group 3 (LG3) and is derived from A17, whereas a plant tolerance and antibiosis locus resides on LG6 and is derived from A20, which exhibits strong temporary tolerance. The loci identified reside in regions harbouring classical resistance genes, and introgression of these loci in current medic cultivars may help provide durable resistance to SAA, while elucidation of their molecular mechanisms may provide valuable insight into other aphid–plant interactions.

  5. Checklist of Aphidiine parasitoids (Hymenoptera: Braconidae) and their host aphid associations in Iran

    Czech Academy of Sciences Publication Activity Database

    Barahoei, H.; Rakhshani, E.; Nader, E.; Starý, Petr; Kavallieratos, N. G.; Tomanović, Ž.; Mehrparvar, M.

    2014-01-01

    Roč. 3, č. 2 (2014), s. 199-232 ISSN 2251-9041 Grant - others:University of Zabol(IR) 89-9198; Ministry of Education, Science and Technological Development of the Republic of Serbia(IR) III43001 Institutional support: RVO:60077344 Keywords : fauna * aphid parasitoids * host association

  6. Characterisation and cross-amplification of polymorphic microsatellite loci in ant-associated root-aphids

    NARCIS (Netherlands)

    Ivens, A. B. F.; Kronauer, D. J. C.; Boomsma, J. J.

    Twenty-six polymorphic microsatellite loci were developed for four species of ant-associated root-aphids: Geoica utricularia, Forda marginata, Tetraneura ulmi and Anoecia corni. We found up to 9 alleles per locus, with an average of 4.8. We also report polymorphic cross-amplification of eleven of

  7. Which shrubs and trees can conserve natural enemies of aphids in spring?

    NARCIS (Netherlands)

    van Rijn, P.C.J.

    2014-01-01

    Habitats with shrubs and trees within the agricultural landscape may contribute to the maintenance of natural enemies of pests. Aphids and flowers are important resources for beneficial natural enemies such as ladybeetles, hoverflies and lacewings. Woody plants are the most likely candidates to

  8. Two-year oscillation cycle in abundance of soybean aphid in Indiana

    Czech Academy of Sciences Publication Activity Database

    Rhainds, M.; Yoo, H. J. S.; Kindlmann, Pavel; Voegtlin, D.; Castillo, D.; Rutledge, C.; Sadof, C.; Yaninek, S.; O'Neil, R. J.

    2010-01-01

    Roč. 12, č. 3 (2010), s. 251-257 ISSN 1461-9555 Institutional research plan: CEZ:AV0Z60870520 Keywords : Aphididae * Aphis glycines * autumn migration * Hemiptera * heteroecy * Rhamnus * seesaw effect * soybean aphid Subject RIV: EH - Ecology, Behaviour Impact factor: 1.484, year: 2010

  9. Characterization and genetic dissection of resistance to spotted alfalfa aphid (Therioaphis trifolii) in Medicago truncatula

    KAUST Repository

    Kamphuis, L. G.

    2013-09-21

    Aphids cause significant yield losses in agricultural crops worldwide. Medicago truncatula, a model legume, cultivated pasture species in Australia and close relative of alfalfa (Medicago sativa), was used to study the defence response against Therioaphis trifolii f. maculate [spotted alfalfa aphid (SAA)]. Aphid performance and plant damage were compared among three accessions. A20 is highly susceptible, A17 has moderate resistance, and Jester is strongly resistant. Subsequent analyses using A17 and A20, reciprocal F1s and an A17×A20 recombinant inbred line (RIL) population revealed that this moderate resistance is phloem mediated and involves antibiosis and tolerance but not antixenosis. Electrical penetration graph analysis also identified a novel waveform termed extended potential drop, which occurred following SAA infestation of M. truncatula. Genetic dissection using the RIL population revealed three quantitative trait loci on chromosomes 3, 6, and 7 involved in distinct modes of aphid defence including antibiosis and tolerance. An antibiosis locus resides on linkage group 3 (LG3) and is derived from A17, whereas a plant tolerance and antibiosis locus resides on LG6 and is derived from A20, which exhibits strong temporary tolerance. The loci identified reside in regions harbouring classical resistance genes, and introgression of these loci in current medic cultivars may help provide durable resistance to SAA, while elucidation of their molecular mechanisms may provide valuable insight into other aphid–plant interactions.

  10. Plant growth promoting rhizobacteria reduce aphid population and enhance the productivity of bread wheat.

    Science.gov (United States)

    Naeem, Muhammad; Aslam, Zubair; Khaliq, Abdul; Ahmed, Jam Nazir; Nawaz, Ahmad; Hussain, Mubshar

    2018-04-24

    Plant growth promoting rhizobacteria increase plant growth and give protection against insect pests and pathogens. Due to the negative impact of chemical pesticides on environment, alternatives to these chemicals are needed. In this scenario, the biological methods of pest control offer an eco-friendly and an attractive option. In this study, the effect of two plant growth promoting rhizobacterial strains (Bacillus sp. strain 6 and Pseudomonas sp. strain 6K) on aphid population and wheat productivity was evaluated in an aphid susceptible (Pasban-90) and resistant (Inqlab-91) wheat cultivar. The seeds were inoculated with each PGPR strain, separately or the combination of both. The lowest aphid population (2.1tiller -1 ), and highest plant height (85.8cm), number of spikelets per spike (18), grains per spike (44), productive tillers (320m -2 ), straw yield (8.6Mgha -1 ), and grain yield (4.8Mgha -1 ) were achieved when seeds were inoculated with Bacillus sp. strain 6+Pseudomonas sp. strain 6K. The grain yield of both varieties was enhanced by 35.5-38.9% with seed inoculation with both bacterial strains. Thus, the combine use of both PGPR strains viz. Bacillus sp. strain 6+Pseudomonas sp. strain 6K offers an attractive option to reduce aphid population tied with better wheat productivity. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  11. Reconstructing the phylogeny of aphids (Hemiptera: Aphididae) using DNA of the obligate symbiont Buchnera aphidicola

    Czech Academy of Sciences Publication Activity Database

    Nováková, Eva; Hypša, Václav; Klein, J.; Foottit, R. G.; von Dohlen, C.D.; Moran, N. A.

    2013-01-01

    Roč. 68, č. 1 (2013), s. 42-54 ISSN 1055-7903 R&D Projects: GA ČR GD206/09/H026 Institutional support: RVO:60077344 Keywords : Aphid * Evolution * Buchnera * Phylogeny * Informative markers Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.018, year: 2013

  12. Resistance to Cucurbit aphid-borne yellows virus in Melon Accession TGR-1551.

    Science.gov (United States)

    Kassem, Mona A; Gosalvez, Blanca; Garzo, Elisa; Fereres, Alberto; Gómez-Guillamón, Maria Luisa; Aranda, Miguel A

    2015-10-01

    The genetic control of resistance to Cucurbit aphid-borne yellows virus (CABYV; genus Polerovirus, family Luteoviridae) in the TGR-1551 melon accession was studied through agroinoculation of a genetic family obtained from the cross between this accession and the susceptible Spanish cultivar 'Bola de Oro'. Segregation analyses were consistent with the hypothesis that one dominant gene and at least two more modifier genes confer resistance; one of these additional genes is likely present in the susceptible parent 'Bola de Oro'. Local and systemic accumulation of the virus was analyzed in a time course experiment, showing that TGR-1551 resistance was expressed systemically as a significant reduction of virus accumulation compared with susceptible controls, but not locally in agroinoculated cotyledons. In aphid transmission experiments, CABYV inoculation by aphids was significantly reduced in TGR-1551 plants, although the virus was acquired at a similar rate from TGR-1551 as from susceptible plants. Results of feeding behavior studies using the DC electrical penetration graph technique suggested that viruliferous aphids can salivate and feed from the phloem of TGR-1551 plants and that the observed reduction in virus transmission efficiency is not related to reduced salivation by Aphis gossypii in phloem sieve elements. Since the virus is able to accumulate to normal levels in agroinoculated tissues, our results suggest that resistance of TGR-1551 plants to CABYV is related to impairment of virus movement or translocation after it reaches the phloem sieve elements.

  13. First Complete Genome Sequence of Suakwa aphid-borne yellows virus from East Timor

    Science.gov (United States)

    Maina, Solomon; Edwards, Owain R.; de Almeida, Luis; Ximenes, Abel

    2016-01-01

    We present here the first complete genomic RNA sequence of the polerovirus Suakwa aphid-borne yellows virus (SABYV), from East Timor. The isolate sequenced came from a virus-infected pumpkin plant. The East Timorese genome had a nucleotide identity of 86.5% with the only other SABYV genome available, which is from Taiwan. PMID:27469955

  14. Systemic Propagation of a Fluorescent Infectious Clone of a Polerovirus Following Inoculation by Agrobacteria and Aphids.

    Science.gov (United States)

    Boissinot, Sylvaine; Pichon, Elodie; Sorin, Céline; Piccini, Céline; Scheidecker, Danièle; Ziegler-Graff, Véronique; Brault, Véronique

    2017-06-29

    A fluorescent viral clone of the polerovirus Turnip yellows virus (TuYV) was engineered by introducing the Enhanced Green Fluorescent Protein (EGFP) sequence into the non-structural domain sequence of the readthrough protein, a minor capsid protein. The resulting recombinant virus, referred to as TuYV-RT GFP , was infectious in several plant species when delivered by agroinoculation and invaded efficiently non-inoculated leaves. As expected for poleroviruses, which infect only phloem cells, the fluorescence emitted by TuYV-RT GFP was restricted to the vasculature of infected plants. In addition, TuYV-RT GFP was aphid transmissible and enabled the observation of the initial sites of infection in the phloem after aphid probing in epidermal cells. The aphid-transmitted virus moved efficiently to leaves distant from the inoculation sites and importantly retained the EGFP sequence in the viral genome. This work reports on the first engineered member in the Luteoviridae family that can be visualized by fluorescence emission in systemic leaves of different plant species after agroinoculation or aphid transmission.

  15. Revision of charipine aphid hyperparasitoids (Hymenoptera, Cynipoidea: Figitidae) from central Europe

    Czech Academy of Sciences Publication Activity Database

    Ferrer-Suay, M.; Starý, Petr; Selfa, J.; Pujade-Villar, J.

    2017-01-01

    Roč. 28, č. 3 (2017), s. 113-147 ISSN 0785-8760 Institutional support: RVO:60077344 Keywords : Hymenoptera * central Europe * aphid Subject RIV: EG - Zoology OBOR OECD: Zoology Impact factor: 0.300, year: 2016 http://www.entomologicafennica.org/Volume28/EF_28_3/1Ferrer-Suay.pdf

  16. Studying, the Insecticidal Effects of Melia azedarach and Citrus limonum Extracts on Two Aphid Species

    Directory of Open Access Journals (Sweden)

    maryam Pahlavan Yali

    2018-01-01

    Full Text Available Introduction: Wheat (Triticum aestivum L. is the most principal plant food for 35 percent of the world's population, and canola (Brassica napus L. is one of the most important brassicaceous crops that play a major role in the development of edible oil. The greenbug, Schizaphis graminum (Rondani and cabbage aphid, Brevicoryne brassicae (L. are the main pests of wheat and canola, respectively, which can considerably limit profitable production of these crops either through direct feeding or via transmission of plant pathogenic viruses. Although chemical control is the most effective and easiest way to control aphids, but this method causes problems such as pesticide residues in food and environment, and development of resistance to insecticides. The utilization of plant extracts is an environmentally safe method that can be used in control of these aphids. Among these, the products of the Melia seed (Melia azedarach Linnaeus and lemon peel (Citrus limonum Risso can be noted. Negative associations between phenolic compounds present in plant species and aphid’s invasion have been recorded for some aphid species. In this study, our goal was to determine the amount of phenol in plant extracts of Melia seed and lemon peel and evaluate the toxicity of these compounds on the wheat aphid and cabbage aphid in various doses after different time periods. Materials and methods: This research was conducted in a growth chamber (temperature 25 ± 1˚C, 65± 5% RH and a photoperiod of 16L: 8D. S. graminum and B. brassicae were bred on wheat (Pishtaz cultivar and canola (Hyola401 cultivar, respectively. The extraction of Melia seed and lemon peel was carried out and then contact toxicity bioassay was done to evaluate the insecticidal effects of these extracts on nymphs of wheat and cabbage aphids using a completely randomized design. The leaves of wheat and canola plants, impregnated with three different concentrations of each extract (10, 50 and 80 g/ml and

  17. Population Growth Parameters of Rose Aphid, Macrosiphum rosae (Hemiptera: Aphididae) on Different Rose Cultivars.

    Science.gov (United States)

    Golizadeh, A; Jafari-Behi, V; Razmjou, J; Naseri, B; Hassanpour, M

    2017-02-01

    The rose aphid, Macrosiphum rosae (L.), is one of the most important pests on rose plants (Rosa spp.) with a worldwide distribution. As resistance indices, the development, survivorship, and reproduction of this aphid were evaluated on 10 rose cultivars, including Bella Vita, Cool Water, Dolce Vita, Maroussia, Orange Juice, Pinkpromise, Roulette, Tea, Valentine, and Persian Yellow in laboratory at 25 ± 1°C, 65 ± 5% relative humidity, and photoperiod of 16:8 (L/D) h. Rose aphid successfully survived on all 10 rose cultivars, although mortality rate was higher on Tea and Bella Vita. The number of offspring per female differed significantly among the tested rose cultivars, and ranged from 9.2 on Tea to 38.7 nymphs on Orange Juice. Population growth parameters were significantly affected by rose cultivars. The longest mean generation time (T) was observed on Bella Vita (14.8 days) and Tea (14.7 days) and the shortest on Orange Juice (10.0 days). The net reproductive rate (R 0 ) ranged from 6.9 on Tea to 33.2 nymphs on Orange Juice cultivar. Correspondingly, the highest value of intrinsic rate of increase (r m ) was observed on Orange Juice (0.348 day -1 ) and lower values on Tea (0.131 day -1 ) followed by Bella Vita (0.154 day -1 ). Cluster analysis of all the measured parameters of rose aphid on different rose cultivars revealed that Tea and Bella Vita were relatively resistant to M. rosae. These findings could be useful in developing an integrated pest management (IPM) program for this aphid in urbanized areas and commercial rose potting.

  18. Aboveground feeding by soybean aphid, Aphis glycines, affects soybean cyst nematode, Heterodera glycines, reproduction belowground.

    Directory of Open Access Journals (Sweden)

    Michael T McCarville

    Full Text Available Heterodera glycines is a cyst nematode that causes significant lost soybean yield in the U.S. Recent studies observed the aphid Aphis glycines and H. glycines interacting via their shared host, soybean, Glycine max. A greenhouse experiment was conducted to discern the effect of A. glycines feeding on H. glycines reproduction. An H. glycines-susceptible cultivar, Kenwood 94, and a resistant cultivar, Dekalb 27-52, were grown in H. glycines-infested soil for 30 and 60 d. Ten days after planting, plants were infested with either zero, five, or ten aphids. At 30 and 60 d, the number of H. glycines females and cysts (dead females and the number of eggs within were counted. In general, H. glycines were less abundant on the resistant than the susceptible cultivar, and H. glycines abundance increased from 30 to 60 d. At 30 d, 33% more H. glycines females and eggs were produced on the resistant cultivar in the ten-aphid treatment compared to the zero-aphid treatment. However, at 30 d the susceptible cultivar had 50% fewer H. glycines females and eggs when infested with ten aphids. At 60 d, numbers of H. glycines females and cysts and numbers of eggs on the resistant cultivar were unaffected by A. glycines feeding, while numbers of both were decreased by A. glycines on the susceptible cultivar. These results indicate that A. glycines feeding improves the quality of soybean as a host for H. glycines, but at higher herbivore population densities, this effect is offset by a decrease in resource quantity.

  19. The Effect of Methanolic Extract of Otostegia persica on Serum Glucose Level and Renal Function Indicators in Streptozotocin Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Mahdiye Hedayati

    2012-05-01

    Full Text Available Background: Regarding the antioxidant property of Otostegia persica extract and the role of antioxidants in Diabetes mellitus treatment, in this study the effect of extract on serum glucose level and renal function indicators was determined in diabetic male rats. Materials and Methods: Diabetes mellitus (type I was inducted in male rats using intraperitoneal injection of streptozotocin (STZ (65 mg/kg. To determine blood glucose, urea, and creatinine serum levels; fasting blood samples were collected twice (before STZ injection and 5 days later. The rats with their serum glucose level exceeding 250 mg/dl were considered diabetic and divided into 10 groups separately received Otostegia persica alcoholic extract (100, 200, and 300 mg/kg/day doses, glibenclamide with 600 µg/kg dose and 0.5 ml distilled water for 3 and 6 days using gavage. After 3 and 6 days, blood samples were collected again and glucose, urea, and creatinine serum levels were assessed using spectrophotometry technique by respective kits.Results: Treating diabetic rats by Otostegia persica extract (100, 200, and 300 mg/kg/day doses for 6 days results in a significant decrease of glucose and creatinine, yet an increase of serum urea with 200 mg/kg dose. Also, administration of the extract for 3 days (300 mg/kg reduced glucose, and (in various doses urea and creatinine serum levels. Conclusion: Otostegia persica extract has hypoglycemic effect and administering it in diabetes mellitus not only had no undesirable renal side effects, but also improved renal function to some extent.

  20. Aphid effects on rhizosphere microorganisms and microfauna depend more on barley growth phase than on soil fertilization

    DEFF Research Database (Denmark)

    Madsen, Mette Vestergård; Strandmark, Lisa Bjørnlund; Christensen, Søren

    2004-01-01

    This paper gives the first reports on aphid effects on rhizosphere organisms as influenced by soil nutrient status and plant development. Barley plants grown in pots fertilized with N but without P (N), with N and P (NP), or not fertilized (0) were sampled in the early growth phase (day 25), 1 week...... before and 1 week after spike emergence. Aphids were added 16 days before sampling was carried out. In a separate experiment belowground respiration was measured on N and NP fertilized plant–soil systems with aphid treatments comparable to the first experiment. Aphids reduced numbers of rhizosphere...... experimental conditions with nematodes being the dominant bacterial grazers at N fertilization and Protozoa in the NP treatment before spike emergence....

  1. Tritrophic associations and taxonomic notes on Lysiphlebus fabarum (Marshall (Hymenoptera: Braconidae: Aphidiinae, a keystone aphid parasitoid in Iran

    Directory of Open Access Journals (Sweden)

    Rakhshani Ehsan

    2013-01-01

    Full Text Available An investigation of host associations, distribution and types of reproduction (sexual, asexual of Lysiphlebus fabarum (Marshall across 20 provinces of Iran during 2006-2011 was undertaken. The parasitoid was reared from three groups of host aphids belonging to genera Aphis and Brachycaudus, and occasional host aphid genera. Aphis craccivora Koch was the most frequent host aphid for L. fabarum on various host plants, including economically important crops. The field sex ratio generally favored females, but in some cases, only thelytokous (uniparental populations were found. In those cases, the host was always an Aphis species. Specimens reared from Brachycaudus aphids were all biparental, indicating the presence of a sibling biological species. Overall analysis of diagnostic morphological characters in the forewing indicated intra-specific variability in forewing marginal setae as well as variations in length of the R1 vein. [Projekat Ministarstva nauke Republike Srbije, br. 43001

  2. Aphids and ladybird beetle’s abundance and diversity in alfalfa fields of Yasouj, southwestern of Iran

    Directory of Open Access Journals (Sweden)

    S. Mirfakhraie

    2017-12-01

    Full Text Available Alfalfa (Medicago sativa L. is the oldest and the most important forage legume. It has been cultivated for forage longer than any other crop. Diversity indices provide information about community composition. Diversity indices are measured by species richness and species evenness therefore, it could give us more ecological information rather than a simple species list in the fields. During 2015-2016, aphids and ladybird beetle’s abundance and diversity were monitored in alfalfa fields of Yasouj. Samplings were conducted with 150 plants in the alfalfa fields from mid-May to mid-November. Species richness was measured using Shannon and Simpson indices. In this study, six aphids and five coccinellid species were collected and identified. Among the collected aphid species, Aphis fabae (Scopoli, 1763 and Therioaphis maculata (Buckton, 1899 were most abundant in the fields. For coccinellids, Coccinella septempunctata L. was the most abundant species. Highest aphid species diversity was observed on 17 May 2016.

  3. Cellular tropism, population dynamics, host range and taxonomic status of an aphid secondary symbiont, SMLS (Sitobion miscanthi L type symbiont.

    Directory of Open Access Journals (Sweden)

    Tong Li

    Full Text Available SMLS (Sitobion miscanthi L type symbiont is a newly reported aphid secondary symbiont. Phylogenetic evidence from molecular markers indicates that SMLS belongs to the Rickettsiaceae and has a sibling relationship with Orientia tsutsugamushi. A comparative analysis of coxA nucleotide sequences further supports recognition of SMLS as a new genus in the Rickettsiaceae. In situ hybridization reveals that SMLS is housed in both sheath cells and secondary bacteriocytes and it is also detected in aphid hemolymph. The population dynamics of SMLS differ from those of Buchnera aphidicola and titer levels of SMLS increase in older aphids. A survey of 13 other aphids reveals that SMLS only occurs in wheat-associated species.

  4. Selective effects of the extract from Angelica archangelica L. against Harmonia axyridis (Pallas)—An important predator of aphids

    Czech Academy of Sciences Publication Activity Database

    Pavela, R.; Žabka, M.; Vrchotová, Naděžda; Tříska, Jan; Kazda, J.

    2013-01-01

    Roč. 51, NOV 2013 (2013), s. 87-92 ISSN 0926-6690 Institutional support: RVO:67179843 Keywords : Angelica archangelica * Harmonia axyridis * furanocoumarins * botanical insecticides * aphids Subject RIV: EH - Ecology, Behaviour Impact factor: 3.208, year: 2013

  5. Efficacy of mineral oil combined with insecticides for the control of aphid virus vectors to reduce potato virus Y infections in seed potatoes (Solanum tuberosum)

    DEFF Research Database (Denmark)

    Hansen, Lars M.; Nielsen, Steen L.

    2012-01-01

    Aphids are major vectors of plant viruses. Potato virus Y (PVY) is the most important aphid-transmitted virus affecting potato crops in Denmark. Because of a changed seed potato growing strategy, the seed potato area in Denmark is changing from regions with a low average temperature to regions...... with a higher average temperature. This means that the aphids may infest the potato crops earlier and the population development of the aphids may be faster, and consequently PVY may more easily become epidemic in seed potato crops. With a view to reducing the spread of PVY a 3-year experiment was carried out...... with a combination of mineral oil and insecticides. In 2005 and 2007 when a very high number of aphids were present, nearly all plants were infected with PVY. In 2006 with a lower number of aphids a smaller proportion of the plants were infected, and a tendency to a lower PVY incidence in mineral-oil treated plots...

  6. Deciphering the role of NADPH oxidase in complex interactions between maize (Zea mays L.) genotypes and cereal aphids.

    Science.gov (United States)

    Sytykiewicz, Hubert

    2016-07-22

    Plant NADPH oxidases (NOXs) encompass a group of membrane-bound enzymes participating in formation of reactive oxygen species (ROS) under physiological conditions as well as in response to environmental stressors. The purpose of the survey was to unveil the role of NADPH oxidase in pro-oxidative responses of maize (Zea mays L.) seedling leaves exposed to cereal aphids' infestation. The impact of apteral females of bird cherry-oat aphid (Rhopalosiphum padi L.) and grain aphid (Sitobion avenae F.) feeding on expression levels of all four NADPH oxidase genes (rbohA, rbohB, rbohC, rbohD) and total activity of NOX enzyme in maize plants were investigated. In addition, inhibitory effect of diphenylene iodonium (DPI) pre-treatment on NOX activity and hydrogen peroxide content in aphid-stressed maize seedlings was studied. Leaf infestation biotests were accomplished on 14-day-old seedlings representing two aphid-resistant varieties (Ambrozja and Waza) and two aphid-susceptible ones (Tasty Sweet and Złota Karłowa). Insects' attack led to profound upregulation of rbohA and rbohD genes in tested host plants, lower elevations were noted in level of rbohB mRNA, whereas abundance of rbohC transcript was not significantly altered. It was uncovered aphid-induced enhancement of NOX activity in examined plants. Higher increases in expression of all investigated rboh genes and activity of NADPH oxidase occurred in tissues of more resistant maize cultivars than in susceptible ones. Furthermore, DPI treatment resulted in strong reduction of NOX activity and H2O2 accumulation in aphid-infested Z. mays plants, thus evidencing circumstantial role of the enzyme in insect-elicited ROS generation. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Sugarcane Aphid Population Growth, Plant Injury, and Natural Enemies on Selected Grain Sorghum Hybrids in Texas and Louisiana.

    Science.gov (United States)

    Brewer, Michael J; Gordy, John W; Kerns, David L; Woolley, James B; Rooney, William L; Bowling, Robert D

    2017-10-01

    In response to the 2013 outbreak of sugarcane aphid, Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae), on sorghum, Sorghum bicolor (L.), in North America, experiments were conducted at three southern U.S. grain sorghum production locations (Corpus Christi, TX; Winnsboro, LA; Rosenberg, TX). The objectives were to authenticate yield decline on susceptible hybrids (2014 and 2015) and to measure aphid population growth and natural enemy prevalence on susceptible and resistant hybrids with similar genetic background (2014). Yield decline on susceptible hybrids (Tx 2752/Tx430 and DKS53-67) was more substantial when aphid population growth accelerated quickly and peaked above 300 aphids per leaf (50 to nearly 100% yield decline). Location and year variation in maximum aphid density and cumulative aphid-days was high, with doubling time values on the susceptible hybrids ranging between 3.9 and 7.9 d. On resistant Tx2752/Tx2783, leaf injury and yield decline were not seen or less severe than on its paired susceptible Tx2752/Tx430. Aphids declined on Tx2752/Tx2783 after initial colony establishment (Corpus Christi) or took about 60% longer to double in population size when compared with Tx2572/Tx430 (Winnsboro). The predominant natural enemy taxa were aphelinid mummies (Hymenoptera: Aphelinidae), ladybird beetles (Coleoptera: Coccinellidae), and sryphid flies (Diptera: Syrphidae), and they were more prevalent during flowering than prior to flowering. They were generally responsive to changes in aphid density of both susceptible and resistant hybrids, but variability points to need for further study. In future research, full season observations should continue as well as more detailed study of potential compatibility of sorghum resistance and biological control. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Inter- and intra-guild interactions related to aphids in nettle (Urtica dioica L.) strips closed to field crops.

    OpenAIRE

    Alhmedi, A.; Haubruge, Eric; Bodson, Bernard; Francis, Frédéric

    2006-01-01

    A field experiment designed to assess the biodiversity related to nettle strips closed to crops, and more particularly the aphid and related beneficial populations, was established in experimental farm located in Gembloux (Belgium). Margin strips of nettle (Urtica dioica) closed to wheat (Triticum aestivum), green pea (Pisum sativum) and rape (Brassicae napus) fields were investigated. The diversity, abundance of aphids and related predators were analysed according to the plant crop species a...

  9. Interactions among the predatory midge Aphidoletes aphidimyza (Diptera: Cecidomyiidae), the fungal pathogen Metarhizium brunneum (Ascomycota: Hypocreales), and maize-infesting aphids in greenhouse mesocosms

    DEFF Research Database (Denmark)

    Campos de Azevedo, Ana Gorete; Steinwender, Bernhardt Michael; Eilenberg, Jørgen

    2017-01-01

    , the interaction between these two biological control organisms and how it may affect the biological control of aphids awaits further investigation. As part of the EU-supported project INBIOSOIL, this study was conducted in greenhouse conditions to assess the possible effects of combining both biological control...... by treatment. Aphidoletes aphidimyza applied alone suppressed the aphid population more effectively than M. brunneum applied alone. Additionally, the aphid population was most suppressed when both agents were combined, though the suppression was less than additive....

  10. Effects of imidacloprid and clothianidin seed treatments on wheat aphids and their natural enemies on winter wheat.

    Science.gov (United States)

    Zhang, Peng; Zhang, Xuefeng; Zhao, Yunhe; Wei, Yan; Mu, Wei; Liu, Feng

    2016-06-01

    Wheat aphid (Hemiptera: Aphididae) is one of the major pests of winter wheat and has posed a significant threat to winter wheat production in China. Although neonicotinoid insecticidal seed treatments have been suggested to be a control method, the season-long efficacy on pests and the impact on their natural enemies are still uncertain. Experiments were conducted to determine the efficacy of imidacloprid and clothianidin on the control of aphids, the number of their natural enemies and the emergence rate and yield of wheat during 2011-2014. Imidacloprid and clothianidin seed treatments had no effect on the emergence rate of winter wheat and could prevent yield losses and wheat aphid infestations throughout the winter wheat growing season. Furthermore, their active ingredients were detected in winter wheat leaves up to 200 days after sowing. Imidacloprid and clothianidin seed treatments had no adverse effects on ladybirds, hoverflies or parasitoids, and instead increased the spider-aphid ratios. Wheat seeds treated with imidacloprid and clothianidin were effective against wheat aphids throughout the winter wheat growing season and reduced the yield loss under field conditions. Imidacloprid and clothianidin seed treatments may be an important component of the integrated management of wheat aphids on winter wheat. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  11. Transgenic Expression of a Functional Fragment of Harpin Protein Hpa1 in Wheat Represses English Grain Aphid Infestation

    Institute of Scientific and Technical Information of China (English)

    XU Man-yu; ZHOU Ting; ZHAO Yan-ying; LI Jia-bao; XU Heng; DONG Han-song; ZHANG Chun-ling

    2014-01-01

    The harpin protein Hpa1 produced by the rice bacterial blight pathogen promotes plant growth and induces plant resistance to pathogens and insect pests. The region of 10-42 residues (Hpa110-42) in the Hpa1 sequence is critical as the isolated Hpa110-42 fragment is 1.3-7.5-fold more effective than the full length in inducing plant growth and resistance. Here we report that transgenic expression of Hpa110-42 in wheat induces resistance to English grain aphid, a dominant species of wheat aphids. Hpa110-42-induced resistance is effective to inhibit the aphid behavior in plant preference at the initial colonization stage and repress aphid performances in the reproduction, nymph growth, and instar development on transgenic plants. The resistance characters are correlated with enhanced expression of defense-regulatory genes (EIN2, PP2-A, and GSL10) and consistent with induced expression of defense response genes (Hel, PDF1.2, PR-1b, and PR-2b). As a result, aphid infestations are alleviated in transgenic plants. The level of Hpa110-42-induced resistance in regard to repression of aphid infestations is equivalent to the effect of chemical control provided by an insecticide. These results suggested that the defensive role of Hpa110-42 can be integrated into breeding germplasm of the agriculturally signiifcant crop with a great potential of the agricultural application.

  12. UTILIZACION DE ISOENZIMAS DE EXTRACTOS DE HOJAS EN LA CARACTERIZACION DE CULTIVARES DE DURAZNERO (Prunus persica (L Batsch THE USE OF ISOZYME LEAF EXTRACTS IN THE CHARACTERIZATION OF PEACH CULTIVARS (Prunus persica L Batsch

    Directory of Open Access Journals (Sweden)

    HECTOR ABEL ALTUBE

    2001-08-01

    Full Text Available La caracterización de cultivares de duraznero (Prunus persica (L Batsch se hace por medio de la descripción de caracteres agronómicos y morfológicos codificados por organizaciones internacionales, los cuales están fuertemente influenciados por el ambiente. Se han buscado métodos alternativos de caracterización y las isoenzimas han sido utilizadas por su independencia de las condiciones del ambiente, además de identificar individuos en etapas tempranas de su desarrollo. El objetivo del presente estudio es caracterizar cultivares de duraznero mediante el análisis isoenzimático de catecol oxidasas, fosfatasas ácidas, esterazas y peroxidazos en extractos de hojas. Los cultivares de duraznero analizados presentaron bajo polimorfismo isoenzimático, las esterazas caracterizaron diez cultivares, las catecol oxidasas un cultivar agrupándose el resto en cinco modelos, las fosfatasas ácidas caracterizaron dos cultivares agrupándose los otros en siete modelos y las peroxidazos formaron tres grupos. Ello puede explicarse ya que el duraznero es una especie autofértil y presenta una base genética muy reducida. Los evidentes límites discriminatorios de este tipo de análisis hacen que su aporte sea sólo complementario a los métodos de los caracteres agronómicos y morfológicos.Characterization of peach cultivars (Prunus persica (L Batsh was made by description of agronomical and morphological characters codified from international organizations, which are strongly affected by environmental conditions. Alternative methods of characterization have been searched, and isoenzymes have been used as independent of environmental conditions in addition to identify some individuals in early stages of development. The goal of this study is the peach cultivars characterization by isoenzymatic analysis of catecol oxidases, acid phosphatases, esterases and peroxidases within the leaf extracts. The peach cultivars analyzed have showed low isoenzymatic

  13. Performance and feeding behaviour of two biotypes of the black currant-lettuce aphid, Nasonovia ribisnigri, on resistant and susceptible Lactuca sativa near-isogenic lines.

    Science.gov (United States)

    ten Broeke, Cindy J M; Dicke, Marcel; van Loon, Joop J A

    2013-10-01

    The black currant-lettuce aphid, Nasonovia ribisnigri, is an important pest of cultivated lettuce, Lactuca sativa. Since 1982, the control of this aphid on lettuce is largely based on host plant resistance, conferred by the Nr gene, introgressed from Lactuca virosa. The resistance mechanism remains to be identified. N. ribisnigri populations virulent on the Nr-based resistance in lettuce have emerged in several locations in Europe since 2007. The objective of this study was to investigate the resistance mechanism mediated by the Nr gene in lettuce by detailed studies of aphid feeding behaviour and performance. Both avirulent (Nr:0) and virulent (Nr:1)biotypes of N. ribisnigri were studied on five resistant and two susceptible near isogenic lines (NILs). In addition, survival and colony development were quantified.Nr:0 aphids showed a strong decrease in sieve element ingestion and took longer to accept a sieve element on resistant NILs compared with susceptible NILs, and no aphids survived on the resistant NIL. Nr:1 aphids fed and performed equally well on the resistant and susceptible NILs. The resistance mechanism against Nr:0 aphids encoded by the Nr gene seems to be located in the phloem, although we also observed differences in feeding behaviour during the pathway phase to the phloem. Nr:1 aphids were highly virulent to the resistance conferred by the Nr gene. The consequences of the appearance of Nr:1 aphids for control of N. ribisnigri are discussed.

  14. Morphological variation of Aphidius ervi Haliday (Hymenoptera: Braconidae associated with different aphid hosts

    Directory of Open Access Journals (Sweden)

    Cinthya M. Villegas

    2017-07-01

    Full Text Available Background Parasitoids are frequently used in biological control due to the fact that they are considered host specific and highly efficient at attacking their hosts. As they spend a significant part of their life cycle within their hosts, feeding habits and life history of their host can promote specialization via host-race formation (sequential radiation. The specialized host races from different hosts can vary morphologically, behaviorally and genetically. However, these variations are sometimes inconspicuous and require more powerful tools in order to detect variation such as geometric morphometrics analysis. Methods We examined Aphidius ervi, an important introduced biological control agent in Chile associated with a great number of aphid species, which are exploiting different plant hosts and habitats. Several combinations (biotypes of parasitoids with various aphid/host plant combinations were analyzed in order to obtain measures of forewing shape and size. To show the differences among defined biotypes, we chose 13 specific landmarks on each individual parasitoid wing. The analysis of allometric variation calculated in wing shape and size over centroid size (CS, revealed the allometric changes among biotypes collected from different hosts. To show all differences in shape of forewings, we made seven biotype pairs using an outline-based geometric morphometrics comparison. Results The biotype A. pis_pea (Acyrthosiphon pisum on pea was the extreme wing size in this study compared to the other analyzed biotypes. Aphid hosts have a significant influence in the morphological differentiation of the parasitoid forewing, splitting biotypes in two groups. The first group consisted of biotypes connected with Acyrthosiphon pisum on legumes, while the second group is composed of biotypes connected with aphids attacking cereals, with the exception of the R. pad_wheat (Rhopalosiphum padi on wheat biotype. There was no significant effect of plant

  15. Monitoring of aphid flight activities in seed potato crops in Serbia

    Directory of Open Access Journals (Sweden)

    Andja Vucetic

    2013-07-01

    Full Text Available Aphid flight activities in seed potato fields have been studied by the yellow water traps. It is a good method for monitoring aphids as vectors of viruses, but this study also showed it is a suitable method for insect-diversity research. During the four-year studies, over 11.500 specimens were collected and a total of 107 different taxa of aphids were identified. The most abundant species were polyphagous species, such as: Acyrthosiphon pisum (Haris, Aphis fabae Scopoli, Aphis gossypii Glover and Brachycaudus helichrysi (Kaltenbach. The results of the studies show that diversity of aphids in different regions of Serbia is similar regardless of the altitude and the diversity of terrain. At most sites it ranged from 2 to 3. The highest value was recorded in Begeč, locality in northern part of Serbia, in year 2008, and it was 2.92. The maximum values of the Shannon-Weaver diversity index at all sites were recorded in the first weeks of the monitoring of aphid flight activities. Morisita-Horn similarity index shows no significant differences between sites regardless of altitudes. The sites are grouped by year, not by similarity of relief. In spite of these results, the Chi-square analysis showed highly significant difference in vector frequencies among seasons and sites with more pronounced differences for PVY. As a consequence of differences in vector frequencies, the vector pressure index in some regions was different also. The number of vectors and vector pressure index vary depending on the altitude of localities. At localities at altitudes under 1000 m, they were high. The highest index was at Kotraža, locality in central part of Serbia, in 2007, when PVY index exceeded the value of 180, while for PLRV it was 60. At high altitudes on mountain Golija, above 1100 m, the number of aphids was low, as well as the vector pressure index which indicates that these regions are suitable for producing virus-free seed potato.

  16. Physiological, anatomical and metabolic implications of salt tolerance in the halophyte Salvadora persica under hydroponic culture condition

    Directory of Open Access Journals (Sweden)

    ASISH KUMAR PARIDA

    2016-03-01

    Full Text Available Salt tolerance mechanism of an extreme halophyte Salvadora persica was assessed by analysing growth, nutrient uptake, anatomical modifications and alterations in levels of some organic metabolites in seedlings imposed to various levels of salinity (0, 250, 500 and 750 mM NaCl under hydroponic culture condition. After 21 days of salt treatment, plant height, leaf area and shoot biomass decreased with increase in salinity whereas the leaf succulence increased significantly with increasing salinity in S. persica. The RWC% of leaf increased progressively in salt-treated seedlings as compared to control. Na+ contents of leaf, stem and root increased in dose-dependent manner whereas there was no significant changes in K+ content. There was significant alterations in leaf, stem and root anatomy by salinity. The thickness of epidermis and spongy parenchyma of leaf increased in salt treated seedlings as compared to control, whereas palisade parenchyma decreased dramatically in extreme salinity (750 mM NaCl. There was a significant reduction in stomatal density and stomatal pore area of leaf with increasing salinity. Anatomical observations of stem showed that the epidermal cells diameter and thickness of cortex decreased by salinity whereas thickness of hypodermal layer, hypodermal cell diameter, pith area and pith cell diameter increased by high salinity. The root anatomy showed an increase in epidermal thickness by salinity whereas diameters of epidermal cells and xylem vessels decreased. Total soluble sugar content remained unchanged at all levels of salinity whereas reducing sugar content increased by 2-fold at high salinity (750 mM NaCl. The starch content of leaf decreased progressively in NaCl treated seedlings as compared to control. Total free amino acid content did not change at low salinity (250 mM, whereas it increased significantly at higher salinity (500 and 750 mM NaCl. The proline content increased in the NaCl treated seedlings as

  17. The Cytotoxic, Antibacterial and Free Radical Scavenging Activities of Crude Extracts of Matricaria chamomilla, Salvadora persica and Artemisia annua

    KAUST Repository

    Seddek, Ahmed

    2011-12-01

    The discovery of drugs from natural sources has been a rapidly growing science in this era. Plants used for medicinal purposes have been usually studied as rich sources of bioactive chemical compounds that can be used as medications. Several plant-derived drugs have been approved so far. Cancer and infectious diseases have been common targets for the science of drug discovery, due to the high mortality rates caused by these diseases all over the world. Several plant-derived compounds are being marketed now as anti-cancer agents. However, finding novel antimicrobial and anti-cancer compounds has become an important goal to overcome the problems of existing anti-cancer and antimicrobial agents, such as resistance and non-selectivity. In this thesis project, an attempt to find out useful biological activities of the crude extracts of some plants used traditionally for medicinal purposes in Saudi Arabia has been made. Matricaria chamomilla, Salvadora persica and Artemisia annua have been selected for study, based on the literature review performed. These plants were screened for three biological activities; anti-cancer, anti-bacterial and free radical scavenging activities. The experimental part of the study consisted of some common in-vitro techniques, such as cytotoxicity and cell viability assays, disk diffusion assay and 1,1-diphenyl-2-picryl-hydrazyl assay. In addition, the crude extract of Matricaria chamomilla has undergone chemical fractionation and four solvent fractions were obtained using column chromatography. The crude extract of Matricaria chamomilla showed a promising anti-bacterial activity against Escherichia coli and a very promising free radical scavenging activity that was comparable to ascorbic acid, an important anti-oxidant. The four solvent fractions obtained from that extract showed that these activities were produced by more than one compound belonging to different solvent fractions. In addition, the crude extract of Artemisia annua showed

  18. Aphids (Hemiptera: Aphidomorpha of the Botanic Garden of the Jagiellonian University, Kraków*

    Directory of Open Access Journals (Sweden)

    Starowicz Marzena

    2015-12-01

    Full Text Available The paper presents results of faunistic investigations of aphids (Aphidomorpha in the Botanic Garden of the Jagiellonian University, Kraków, in the Kraków – Wieluń Upland. During two seasons of research (2011, 2012 two aphid species from the family Adelgidae and 50 species from the family Aphididae, associated with 66 host plants were recorded. The following species – Eriosoma anncharlotteae Danielsson, 1979, Capitophorus elaeagni (Del Guercio, 1894, Rhopalosiphoninus (Neorhopalosiphoninus staphyleae staphyleae (Koch, 1854, Eulachnus brevipilosus Börner, 1940 and E. cembrae Börner, 1950 – are new for the Kraków – Wieluń Upland. Seven of the species recorded are regarded as alien to Poland.

  19. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions.

    Science.gov (United States)

    Castillo Lopez, Diana; Zhu-Salzman, Keyan; Ek-Ramos, Maria Julissa; Sword, Gregory A

    2014-01-01

    The effects of two entomopathogenic fungal endophytes, Beauveria bassiana and Purpureocillium lilacinum (formerly Paecilomyces lilacinus), were assessed on the reproduction of cotton aphid, Aphis gossypii Glover (Homoptera:Aphididae), through in planta feeding trials. In replicate greenhouse and field trials, cotton plants (Gossypium hirsutum) were inoculated as seed treatments with two concentrations of B. bassiana or P. lilacinum conidia. Positive colonization of cotton by the endophytes was confirmed through potato dextrose agar (PDA) media plating and PCR analysis. Inoculation and colonization of cotton by either B. bassiana or P. lilacinum negatively affected aphid reproduction over periods of seven and 14 days in a series of greenhouse trials. Field trials were conducted in the summers of 2012 and 2013 in which cotton plants inoculated as seed treatments with B. bassiana and P. lilacinum were exposed to cotton aphids for 14 days. There was a significant overall effect of endophyte treatment on the number of cotton aphids per plant. Plants inoculated with B. bassiana had significantly lower numbers of aphids across both years. The number of aphids on plants inoculated with P. lilacinum exhibited a similar, but non-significant, reduction in numbers relative to control plants. We also tested the pathogenicity of both P. lilacinum and B. bassiana strains used in the experiments against cotton aphids in a survival experiment where 60% and 57% of treated aphids, respectively, died from infection over seven days versus 10% mortality among control insects. Our results demonstrate (i) the successful establishment of P. lilacinum and B. bassiana as endophytes in cotton via seed inoculation, (ii) subsequent negative effects of the presence of both target endophytes on cotton aphid reproduction using whole plant assays, and (iii) that the P. lilacinum strain used is both endophytic and pathogenic to cotton aphids. Our results illustrate the potential of using these

  20. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions.

    Directory of Open Access Journals (Sweden)

    Diana Castillo Lopez

    Full Text Available The effects of two entomopathogenic fungal endophytes, Beauveria bassiana and Purpureocillium lilacinum (formerly Paecilomyces lilacinus, were assessed on the reproduction of cotton aphid, Aphis gossypii Glover (Homoptera:Aphididae, through in planta feeding trials. In replicate greenhouse and field trials, cotton plants (Gossypium hirsutum were inoculated as seed treatments with two concentrations of B. bassiana or P. lilacinum conidia. Positive colonization of cotton by the endophytes was confirmed through potato dextrose agar (PDA media plating and PCR analysis. Inoculation and colonization of cotton by either B. bassiana or P. lilacinum negatively affected aphid reproduction over periods of seven and 14 days in a series of greenhouse trials. Field trials were conducted in the summers of 2012 and 2013 in which cotton plants inoculated as seed treatments with B. bassiana and P. lilacinum were exposed to cotton aphids for 14 days. There was a significant overall effect of endophyte treatment on the number of cotton aphids per plant. Plants inoculated with B. bassiana had significantly lower numbers of aphids across both years. The number of aphids on plants inoculated with P. lilacinum exhibited a similar, but non-significant, reduction in numbers relative to control plants. We also tested the pathogenicity of both P. lilacinum and B. bassiana strains used in the experiments against cotton aphids in a survival experiment where 60% and 57% of treated aphids, respectively, died from infection over seven days versus 10% mortality among control insects. Our results demonstrate (i the successful establishment of P. lilacinum and B. bassiana as endophytes in cotton via seed inoculation, (ii subsequent negative effects of the presence of both target endophytes on cotton aphid reproduction using whole plant assays, and (iii that the P. lilacinum strain used is both endophytic and pathogenic to cotton aphids. Our results illustrate the potential of

  1. Isolated and Community Contexts Produce Distinct Responses by Host Plants to the Presence of Ant-Aphid Interaction: Plant Productivity and Seed Viability

    Science.gov (United States)

    Santiago, Graziele Silva; Zurlo, Luana Fonseca; Ribas, Carla Rodrigues; Carvalho, Rafaela Pereira; Alves, Guilherme Pereira; Carvalho, Mariana Comanucci Silva; Souza, Brígida

    2017-01-01

    Ant-aphid interactions may affect host plants in several ways, however, most studies measure only the amount of fruit and seed produced, and do not test seed viability. Therefore, the aim of this study was to assess the effects of the presence of ant-aphid interactions upon host plant productivity and seed viability in two different contexts: isolated and within an arthropod community. For this purpose we tested the hypothesis that in both isolated and community contexts, the presence of an ant-aphid interaction will have a positive effect on fruit and seed production, seed biomass and rate of seed germination, and a negative effect on abnormal seedling rates, in comparison to plants without ants. We performed a field mesocosm experiment containing five treatments: Ant-aphid, Aphid, Community, Ant-free community and Control. We counted fruits and seeds produced by each treatment, and conducted experiments for seed biomass and germinability. We found that in the community context the presence of an ant-aphid interaction negatively affected fruit and seed production. We think this may be because aphid attendance by tending-ants promotes aphid damage to the host plant, but without an affect on seed weight and viability. On the other hand, when isolated, the presence of an ant-aphid interaction positively affected fruit and seed production. These positive effects are related to the cleaning services offered to aphids by tending-ants, which prevent the development of saprophytic fungi on the surface of leaves, which would cause a decrease in photosynthetic rates. Our study is important because we evaluated some parameters of plant fitness that have not been addressed very well by other studies involving the effects of ant-aphid interactions mainly on plants with short life cycles. Lastly, our context dependent approach sheds new light on how ecological interactions can vary among different methods of crop management. PMID:28141849

  2. Isolated and Community Contexts Produce Distinct Responses by Host Plants to the Presence of Ant-Aphid Interaction: Plant Productivity and Seed Viability.

    Directory of Open Access Journals (Sweden)

    Ernesto Oliveira Canedo-Júnior

    Full Text Available Ant-aphid interactions may affect host plants in several ways, however, most studies measure only the amount of fruit and seed produced, and do not test seed viability. Therefore, the aim of this study was to assess the effects of the presence of ant-aphid interactions upon host plant productivity and seed viability in two different contexts: isolated and within an arthropod community. For this purpose we tested the hypothesis that in both isolated and community contexts, the presence of an ant-aphid interaction will have a positive effect on fruit and seed production, seed biomass and rate of seed germination, and a negative effect on abnormal seedling rates, in comparison to plants without ants. We performed a field mesocosm experiment containing five treatments: Ant-aphid, Aphid, Community, Ant-free community and Control. We counted fruits and seeds produced by each treatment, and conducted experiments for seed biomass and germinability. We found that in the community context the presence of an ant-aphid interaction negatively affected fruit and seed production. We think this may be because aphid attendance by tending-ants promotes aphid damage to the host plant, but without an affect on seed weight and viability. On the other hand, when isolated, the presence of an ant-aphid interaction positively affected fruit and seed production. These positive effects are related to the cleaning services offered to aphids by tending-ants, which prevent the development of saprophytic fungi on the surface of leaves, which would cause a decrease in photosynthetic rates. Our study is important because we evaluated some parameters of plant fitness that have not been addressed very well by other studies involving the effects of ant-aphid interactions mainly on plants with short life cycles. Lastly, our context dependent approach sheds new light on how ecological interactions can vary among different methods of crop management.

  3. Response of Aphidius colemani to aphid sex pheromone varies depending on plant synergy and prior experience

    OpenAIRE

    Fernandez-Grandon, G. Mandela; Poppy, Guy M.

    2015-01-01

    A critical stage in the success of a parasitoid is the ability to locate a host within its habitat. It is hypothesized that a series of olfactory cues may be involved in altering the parasitoid's movement patterns at this stage of foraging. This paper focuses specifically on host habitat location and host location and the olfactory stimuli necessary to mediate the transition between these stages. Firstly, we confirm the ability of the parasitoid Aphidius colemani to detect the aphid sex phero...

  4. Method To immobilize the aphid-pathogenic fungus erynia neoaphidis in an alginate matrix for biocontrol

    Science.gov (United States)

    Shah; Aebi; Tuor

    1998-11-01

    Erynia neoaphidis is an important fungal pathogen of aphid pests worldwide. There have been few reported attempts to formulate this natural agent for use in biocontrol. In the current study, factors involved in the immobilization of E. neoaphidis hyphae in an alginate matrix were investigated. Hyphae of two isolates cultured in liquid medium were 220 to 620 &mgr;m in length and 7 to 19 &mgr;m in diameter with a 74 to 83% cytoplasmic content. The optimal concentration of low-viscosity sodium alginate for production of conidia from entrapped hyphae was 1.5% (wt/vol), and 0.1 and 0.25 M calcium chloride were equally suitable for use as the gelling solution. Alginate beads were rinsed with 10% sucrose after gelling. However, beads should not be left for longer than 40 min in 0.1 M calcium chloride or 10% sucrose to prevent a 10% loss in conidial production. A 40% (vol/vol) concentration of fungal biomass produced significantly more conidia than either 20% or the standard concentration of 10%. This effect persisted even after beads were dried overnight in a laminar flow hood and stored at 4 degreesC for 4 days. Conidia from freshly produced alginate beads caused 27 to 32% infection in Pea aphids as determined by standardized laboratory bioassays. This finding was not significantly different from infections in aphids inoculated with fresh mycelial mats or plugs from Petri dish cultures. In conclusion, algination appears to be a promising technique for utilizing E. neoaphidis in the biocontrol of aphid pests.

  5. Macroevolutionary patterns in the Aphidini aphids (Hemiptera: Aphididae: diversification, host association, and biogeographic origins.

    Directory of Open Access Journals (Sweden)

    Hyojoong Kim

    Full Text Available Due to its biogeographic origins and rapid diversification, understanding the tribe Aphidini is key to understanding aphid evolution. Major questions about aphid evolution include origins of host alternation as well as age and patterns of diversification in relation to host plants. To address these questions, we reconstructed the phylogeny of the Aphidini which contains Aphis, the most diverse genus in the family. We used a combined dataset of one nuclear and four mitochondrial DNA regions. A molecular dating approach, calibrated with fossil records, was used to estimate divergence times of these taxa.Most generic divergences in Aphidini occurred in the Middle Tertiary, and species-level divergences occurred between the Middle and Late Tertiary. The ancestral state of host use for Aphidini was equivocal with respect to three states: monoecy on trees, heteroecy, and monoecy on grasses. The ancestral state of Rhopalosiphina likely included both heteroecy and monoecy, whereas that of Aphidina was most likely monoecy. The divergence times of aphid lineages at the generic or subgeneric levels are close to those of their primary hosts. The species-level divergences in aphids are consistent with the diversification of the secondary hosts, as a few examples suggest. The biogeographic origin of Aphidini as a whole was equivocal, but the major lineages within Aphidina likely separated into Nearctic, Western Palearctic, and Eastern Palearctic regions.Most generic divergences in Aphidini occurred in the Middle Tertiary when primary hosts, mainly in the Rosaceae, were diverging, whereas species-level divergences were contemporaneous with diversification of the secondary hosts such as Poaceae in the Middle to Late Tertiary. Our results suggest that evolution of host alternation within Aphidini may have occurred during the Middle Tertiary (Oligocene when the secondary hosts emerged.

  6. Non-pest prey do not disrupt aphid predation by a web-building spider.

    Science.gov (United States)

    Welch, K D; Whitney, T D; Harwood, J D

    2016-02-01

    A generalist predator's ability to contribute to biological control is influenced by the decisions it makes during foraging. Predators often use flexible foraging tactics, which allows them to pursue specific types of prey at the cost of reducing the likelihood of capturing other types of prey. When a pest insect has low nutritional quality or palatability for a predator, the predator is likely to reject that prey in favour of pursuing alternative, non-pest prey. This is often thought to limit the effectiveness of generalist predators in consuming aphids, which are of low nutritional quality for many generalist predators. Here, we report behavioural assays that test the hypothesis that the generalist predator, Grammonota inornata (Araneae: Linyphiidae), preferentially forages for a non-pest prey with high nutritional quality (springtails), and rejects a pest prey with low nutritional quality (aphids). In no-choice assays, molecular gut-content analysis revealed that spiders continued to feed on the low-quality aphids at high rates, even when high-quality springtails were readily available. When provided a choice between aphids and springtails in two-way choice tests, spiders did not show the expected preference for springtails. Decision-making by spiders during foraging therefore appears to be sub-optimal, possibly because of attraction to the less frequently encountered of two preys as part of a dietary diversification strategy. These results indicate that behavioural preferences alone do not necessarily compromise the pest-suppression capacity of natural enemies: even nutritionally sub-optimal pest prey can potentially be subject to predation and suppression by natural enemies.

  7. Agronomic aspects of strip intercropping lettuce with alyssum for biological control of aphids

    OpenAIRE

    Brennan, Eric B.

    2013-01-01

    Organic lettuce growers in California typically use insectary strips of alyssum (Lobularia maritima (L.) Desv.) to attract hoverflies (Syrphidae) that provide biological control of aphids. A two year study with transplanted organic romaine lettuce in Salinas, California investigated agronomic aspects of lettuce monoculture and lettuce-alyssum strip intercropping on beds in replacement intercropping treatments where alyssum transplants replaced 2 to 8% of the lettuce transplants, and in additi...

  8. Aphid parasitoids (Hymenoptera, Braconidae, Aphidiinae) and their associations related to biological control in Brazil

    Czech Academy of Sciences Publication Activity Database

    Starý, Petr; Sampaio, M. V.; Bueno, V. H. P.

    2007-01-01

    Roč. 51, č. 1 (2007), s. 107-118 ISSN 0085-5626 R&D Projects: GA AV ČR IBS5007102 Grant - others:FAO programmers(BR) TCP/BRA/8908 Institutional research plan: CEZ:AV0Z50070508 Keywords : aphid * host range * insect-plant interactions Subject RIV: EH - Ecology, Behaviour Impact factor: 0.432, year: 2007

  9. Aphids and their parasitoids (Hym., Braconidae: Aphidiinae) asociated with medicinal plants in Iran

    Czech Academy of Sciences Publication Activity Database

    Talebi, A. A.; Rakhshani, E.; Fathipour, Y.; Starý, Petr; Tomanović, Ž.; Rajabi-Mazhar, N.

    2009-01-01

    Roč. 3, č. 2 (2009), s. 205-219 ISSN 1995-0748 R&D Projects: GA AV ČR IBS5007102 Grant - others:University of Zabol(IR) No. 86-19; The Serbian Ministry of Science(CS) 143006 Institutional research plan: CEZ:AV0Z50070508 Keywords : medicinal plants * aphid parasitoids * Aphidiinae Subject RIV: EH - Ecology, Behaviour

  10. Control of green apple aphid (Aphis pomi De Geer) in organic apple production

    OpenAIRE

    Milenković Slobodan; Marčić Dejan; Ružičić Lazar

    2013-01-01

    The efficacy of different methods for controlling populations of green apple aphid (Aphis pomi De Geer) in organic apple orchard was compared over three consecutive years. The following three control methods were tested: a) predator activity (Coccinela septempunctata), b) predator activity (C. septempunctata) + selective spraying of trees with infestation level exceeding 10% with a botanical insecticide (NeemAzal T/S), and c) predator activity (C. septempun...

  11. Rothamsted’s aphid-resistant wheat – a turning point for GMOs?

    Directory of Open Access Journals (Sweden)

    Lynas Mark

    2012-10-01

    Full Text Available Abstract Rothamsted Research mounted a successful counter-campaign in response to a threat by environmental protesters to destroy their research project examining aphid-resistant genetically modified (GM wheat. This involved the use of online media, petitions, and other tools, by which researchers engaged directly with media and the general public in defense of their work. Lessons are suggested for other researchers in the controversial field of GM plant breeding.

  12. Analysis of carotenoid compounds in aphids by Raman imaging and mass spectrometry

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Pierre Brat, Jean Christophe Valmalette, Christian Mertz, George de Sousa, Aviv Dombrovsky, Maria Capovilla & Alain Robichon ### Abstract Carotenoids are compounds synthesized in plants, bacteria and fungi, closely associated to the chlorophyll to perform photosynthesis. A spectacular evolutionary achievement allowed the aphid to produce carotenoids obviously by lateral transfer of genes from fungi. We have recently documented that these molecules are involved in photo condi...

  13. New species and a review of aphid parasitoids of Madagascar (Hym., Braconidae, Aphidiinae)

    Czech Academy of Sciences Publication Activity Database

    Starý, Petr

    2005-01-01

    Roč. 37, č. 2 (2005), s. 1711-1718 ISSN 0253-116X R&D Projects: GA AV ČR(CZ) IBS5007102 Grant - others:National Science Foundation(US) DEB-0072713; National Science Foundation(US) DEB-0344731 Institutional research plan: CEZ:AV0Z50070508 Keywords : aphids * parasitoids * sub - Saharan Africa Sub ject RIV: EG - Zoology

  14. Characterization of cytokinin signaling and homeostasis gene families in two hardwood tree species: Populus trichocarpa and Prunus persica.

    Science.gov (United States)

    Immanen, Juha; Nieminen, Kaisa; Duchens Silva, Héctor; Rodríguez Rojas, Fernanda; Meisel, Lee A; Silva, Herman; Albert, Victor A; Hvidsten, Torgeir R; Helariutta, Ykä

    2013-12-16

    Through the diversity of cytokinin regulated processes, this phytohormone has a profound impact on plant growth and development. Cytokinin signaling is involved in the control of apical and lateral meristem activity, branching pattern of the shoot, and leaf senescence. These processes influence several traits, including the stem diameter, shoot architecture, and perennial life cycle, which define the development of woody plants. To facilitate research about the role of cytokinin in regulation of woody plant development, we have identified genes associated with cytokinin signaling and homeostasis pathways from two hardwood tree species. Taking advantage of the sequenced black cottonwood (Populus trichocarpa) and peach (Prunus persica) genomes, we have compiled a comprehensive list of genes involved in these pathways. We identified genes belonging to the six families of cytokinin oxidases (CKXs), isopentenyl transferases (IPTs), LONELY GUY genes (LOGs), two-component receptors, histidine containing phosphotransmitters (HPts), and response regulators (RRs). All together 85 Populus and 45 Prunus genes were identified, and compared to their Arabidopsis orthologs through phylogenetic analyses. In general, when compared to Arabidopsis, differences in gene family structure were often seen in only one of the two tree species. However, one class of genes associated with cytokinin signal transduction, the CKI1-like family of two-component histidine kinases, was larger in both Populus and Prunus than in Arabidopsis.

  15. Chemical characterization and thermal properties of kernel oils from Tunisian peach and nectarine varieties of Prunus persica

    International Nuclear Information System (INIS)

    Chamli, D.; Bootello, M.A.; Bouali, I.; Jouhri, S.; Boukhchina, S.; Martínez-Force, S.

    2017-01-01

    A comparative study was conducted to determine the fatty acids, triacylglycerol compositions and thermal properties of Tunisian kernel oils from the Prunus persica varieties, peach and nectarine, grown in two areas of Tunisia, Gabes and Morneg. Qualitatively, the fatty acids composition and triacylglycerol species were identical for all samples. Oleic acid (67.7-75.0%) was the main fatty acid, followed by linoleic (15.7-22.1%) and palmitic (5.6-6.3%) acids. The major triacylglycerol species were triolein, OOO (38.4-50.5%), followed by OOL (18.2-23.2%), POO (8.3-9.7%) and OLL (6.3-10.1%). The thermal profiles were highly influenced by the high content of triolein due to the importance of oleic acid in these oils. Moreover, the fatty acids distribution in TAG external positions was determined as corresponding to an α asymmetry coefficient that was between 0.10 and 0.12, indicating a high asymmetry in the distribution of saturated fatty acids in the position sn-1 and sn-3 in the TAG species of all samples. [es

  16. Evaluating the anti-plaque efficacy of meswak (Salvadora persica containing dentifrice: A triple blind controlled trial

    Directory of Open Access Journals (Sweden)

    Puneet Gupta

    2012-01-01

    Full Text Available Introduction: The growing field of alternative medicine has shown that dentifrices based on plant extracts are available in the market but there is little or no research to prove or refute the efficacy of dentifrices containing combination of herbal components. Aim: The study was conducted to evaluate the anti-plaque efficacy of a commercially available Meswak containing dentifrice compared to the conventional dentifrice using a randomized, triple blind, parallel design method. Materials and Methods: A total of 350 subjects were selected. All the subjects (aged 13-54 years were given the test dentifrices, packed in plain white color-coded tubes. The subjects were instructed to brush their teeth twice daily for 2 min with the allocated dentifrice. The total study duration was 4 weeks. Plaque scores were recorded at the baseline, 2 weeks and 4 weeks respectively, using the Turesky modification of the Quigley Hein Plaque Index. Results: The results showed that there were significant differences in the reduction of plaque by the herbal dentifrice, Meswak (Salvadora persica on intra-group and inter-group comparison. Conclusion: It was concluded that further research is required to know the dental benefits of herbal products being incorporated into the commercially available dentifrices.

  17. Chemical characterization and thermal properties of kernel oils from Tunisian peach and nectarine varieties of Prunus persica

    Directory of Open Access Journals (Sweden)

    D. Chamli

    2017-09-01

    Full Text Available A comparative study was conducted to determine the fatty acids, triacylglycerol compositions and thermal properties of Tunisian kernel oils from the Prunus persica varieties, peach and nectarine, grown in two areas of Tunisia, Gabes and Morneg. Qualitatively, the fatty acids composition and triacylglycerol species were identical for all samples. Oleic acid (67.7-75.0% was the main fatty acid, followed by linoleic (15.7-22.1% and palmitic (5.6-6.3% acids. The major triacylglycerol species were triolein, OOO (38.4-50.5%, followed by OOL (18.2-23.2%, POO (8.3-9.7% and OLL (6.3-10.1%. The thermal profiles were highly influenced by the high content of triolein due to the importance of oleic acid in these oils. Moreover, the fatty acids distribution in TAG external positions was determined as corresponding to an α asymmetry coefficient that was between 0.10 and 0.12, indicating a high asymmetry in the distribution of saturated fatty acids in the position sn-1 and sn-3 in the TAG species of all samples.

  18. Accelerated solvent extraction of carotenoids from: Tunisian Kaki (Diospyros kaki L.), peach (Prunus persica L.) and apricot (Prunus armeniaca L.).

    Science.gov (United States)

    Zaghdoudi, Khalil; Pontvianne, Steve; Framboisier, Xavier; Achard, Mathilde; Kudaibergenova, Rabiga; Ayadi-Trabelsi, Malika; Kalthoum-Cherif, Jamila; Vanderesse, Régis; Frochot, Céline; Guiavarc'h, Yann

    2015-10-01

    Extraction of carotenoids from biological matrices and quantifications remains a difficult task. Accelerated solvent extraction was used as an efficient extraction process for carotenoids extraction from three fruits cultivated in Tunisia: kaki (Diospyros kaki L.), peach (Prunus persica L.) and apricot (Prunus armeniaca L.). Based on a design of experiment (DoE) approach, and using a binary solvent consisting of methanol and tetrahydrofuran, we could identify the best extraction conditions as being 40°C, 20:80 (v:v) methanol/tetrahydrofuran and 5 min of extraction time. Surprisingly and likely due to the high extraction pressure used (103 bars), these conditions appeared to be the best ones both for extracting xanthophylls such as lutein, zeaxanthin or β-cryptoxanthin and carotenes such as β-carotene, which present quite different polarities. Twelve surface responses were generated for lutein, zeaxanthin, β-cryptoxanthin and β-carotene in kaki, peach and apricot. Further LC-MS analysis allowed comparisons in carotenoids profiles between the fruits. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The Effect of Temperature and Host Plant Resistance on Population Growth of the Soybean Aphid Biotype 1 (Hemiptera: Aphididae).

    Science.gov (United States)

    Hough, Ashley R; Nechols, James R; McCornack, Brian P; Margolies, David C; Sandercock, Brett K; Yan, Donglin; Murray, Leigh

    2017-02-01

    A laboratory experiment was conducted to evaluate direct and indirect effects of temperature on demographic traits and population growth of biotype 1 of the soybean aphid, Aphis glycines Matsumura. Our objectives were to better understand how temperature influences the expression of host plant resistance, quantify the individual and interactive effects of plant resistance and temperature on soybean aphid population growth, and generate thermal constants for predicting temperature-dependent development on both susceptible and resistant soybeans. To assess indirect (plant-mediated) effects, soybean aphids were reared under a range of temperatures (15-30 °C) on soybean seedlings from a line expressing a Rag1 gene for resistance, and life history traits were quantified and compared to those obtained for soybean aphids on a susceptible soybean line. Direct effects of temperature were obtained by comparing relative differences in the magnitude of life-history traits among temperatures on susceptible soybeans. We predicted that temperature and host plant resistance would have a combined, but asymmetrical, effect on soybean aphid fitness and population growth. Results showed that temperature and plant resistance influenced preimaginal development and survival, progeny produced, and adult longevity. There also appeared to be a complex interaction between temperature and plant resistance for survival and developmental rate. Evidence suggested that the level of plant resistance increased at higher, but not lower, temperature. Soybean aphids required about the same number of degree-days to develop on resistant and susceptible plants. Our results will be useful for making predictions of soybean aphid population growth on resistant plants under different seasonal temperatures. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Inter- and intra-guild interactions related to aphids in nettle (Urtica dioica L.) strips closed to field crops.

    Science.gov (United States)

    Alhmedi, A; Haubruge, E; Bodson, B; Francis, F

    2006-01-01

    A field experiment designed to assess the biodiversity related to nettle strips closed to crops, and more particularly the aphid and related beneficial populations, was established in experimental farm located in Gembloux (Belgium). Margin strips of nettle (Urtica dioica) closed to wheat (Triticum aestivum), green pea (Pisum sativum) and rape (Brassicae napus) fields were investigated. The diversity, abundance of aphids and related predators were analysed according to the plant crop species and the differential pesticide application (treated plot and control). Insects were visually observed every week during all the cultivation season. Two main families of aphidophagous predators were found in all field crops and nettle, the Coccinellidae and Syrphidae. The diversity of the aphidophagous predators was shown to be higher on nettle than in field crops, particularly the Chrysopidae, the Anthocoridae and the Miridae. However, a striking difference of ladybird abundance was observed according to the aphid host plant. In one side, Coccinella septempunctata was much more abundant on Acyrthosiphon pisum infested green pea than on the other host plant species. At the opposite, higher occurrence of Harmonia axyridis was observed on the aphid infested nettle plants than on the crop plants. In particular, none of H. axyridis was found in wheat crop. Also, more than only a significant positive correlation between predator and aphid abundance, specialised relations between particular aphid species and some so-called generalist predators was determined in the fields. Finally, intraguild interactions between the aphidophagous predators was assessed and shown that only a significant negative correlation between Episyrphus balteatus and H. axyridis related to the nettle aphid, Micrlophium carnosum, was observed. The relative distribution of the ladybirds, namely C. septempunctata and H. axyridis according to the host plant, nettle strips and crop plots was discussed in relation to

  1. The effect of within-crop habitat manipulations on the conservation biological control of aphids in field-grown lettuce.

    Science.gov (United States)

    Skirvin, D J; Kravar-Garde, L; Reynolds, K; Wright, C; Mead, A

    2011-12-01

    Within-crop habitat manipulations have the potential to increase the biological control of pests in horticultural field crops. Wildflower strips have been shown to increase the abundance of natural enemies, but there is little evidence to date of an impact on pest populations. The aim of this study was to determine whether within-crop wildflower strips can increase the natural regulation of pests in horticultural field crops. Aphid numbers in plots of lettuce grown adjacent to wildflower strips were compared with those in plots grown in the absence of wildflowers. The presence of wildflower strips led to a decrease in aphid numbers on adjacent lettuce plants during June and July, but had less impact in August and September. The decrease in aphid numbers was greatest close to the wildflower strips and, the decrease in aphid numbers declined with increasing distance from the wildflower strips, with little effect at a distance of ten metres. The main natural enemies found in the crop were those that dispersed aerially, which is consistent with data from previous studies on cereal crops. Analysis and interpretation of natural enemy numbers was difficult due to low recovery of natural enemies, and the numbers appeared to follow changes in aphid abundance rather than being directly linked to the presence of wildflower strips. Cutting the wildflower strips, to remove floral resources, had no impact on the reduction in aphid numbers achieved during June and July, but decreased the effect of the wildflower strips during August and September. The results suggest that wildflower strips can lead to increased natural regulation of pest aphids in outdoor lettuce crops, but more research is required to determine how this is mediated by natural enemies and how the impact of wildflower strips on natural pest regulation changes during the growing season.

  2. Evidence for intermittency and a truncated power law from highly resolved aphid movement data.

    Science.gov (United States)

    Mashanova, Alla; Oliver, Tom H; Jansen, Vincent A A

    2010-01-06

    Power laws are increasingly used to describe animal movement. Despite this, the use of power laws has been criticized on both empirical and theoretical grounds, and alternative models based on extensions of conventional random walk theory (Brownian motion) have been suggested. In this paper, we analyse a large volume of data of aphid walking behaviour (65,068 data points), which provides a highly resolved dataset to investigate the pattern of movement. We show that aphid movement is intermittent--with alternations of a slow movement with frequent change of direction and a fast, relatively directed movement--and that the fast movement consists of two phases--a strongly directed phase that gradually changes into an uncorrelated random walk. By measuring the mean-squared displacement and the duration of non-stop movement episodes we found that both spatial and temporal aspects of aphid movement are best described using a truncated power law approach. We suggest that the observed spatial pattern arises from the duration of non-stop movement phases rather than from correlations in turning angles. We discuss the implications of these findings for interpreting movement data, such as distinguishing between movement and non-movement, and the effect of the range of data used in the analysis on the conclusions.

  3. Maternal effects of the English grain aphids feeding on the wheat varieties with different resistance traits.

    Science.gov (United States)

    Hu, Xiang-Shun; Zhang, Zhan-Feng; Zhu, Tong-Yi; Song, Yue; Wu, Li-Juan; Liu, Xiao-Feng; Zhao, Hui-Yan; Liu, Tong-Xian

    2018-05-09

    The maternal effects of the English grain aphid, Sitobion avenae on offspring phenotypes and performance on wheat varieties with different resistance traits were examined. We found that both conditioning wheat varieties(the host plant for over 3 months) and transition wheat varieties affected the biological parameters of aphid offspring after they were transferred between wheat varieties with different resistance traits. The conditioning varieties affected weight gain, development time (DT), and the intrinsic rate of natural increase (r m ), whereas transition varieties affected the fecundity, r m , net reproductive rate, and fitness index. The conditioning and transition wheat varieties had significant interaction effects on the aphid offspring's DT, mean relative growth rate, and fecundity. Our results showed that there was obvious maternal effects on offspring when S. avenae transferred bwteen wheat varieties with different resistance level, and the resistance traits of wheat varieties could induce an interaction between the conditioning and transition wheat varieties to influence the growth, development, reproduction, and even population dynamics of S. avenae. The conditioning varieties affected life-history traits related to individual growth and development to a greater extent, whereas transition varieties affected fecundity and population parameters more.

  4. Erwinia iniecta sp. nov., isolated from Russian wheat aphid (Diuraphis noxia).

    Science.gov (United States)

    Campillo, Tony; Luna, Emily; Portier, Perrine; Fischer-Le Saux, Marion; Lapitan, Nora; Tisserat, Ned A; Leach, Jan E

    2015-10-01

    Short, Gram-negative-staining, rod-shaped bacteria were isolated from crushed bodies of Russian wheat aphid [Diuraphis noxia (Kurdjumov)] and artificial diets after Russian wheat aphid feeding. Based on multilocus sequence analysis involving the 16S rRNA, atpD, infB, gyrB and rpoB genes, these bacterial isolates constitute a novel clade in the genus Erwinia, and were most closely related to Erwinia toletana. Representative distinct strains within this clade were used for comparisons with related species of Erwinia. Phenotypic comparisons using four distinct strains and average nucleotide identity (ANI) measurements using two distinct draft genomes revealed that these strains form a novel species within the genus Erwinia. The name Erwinia iniecta sp. nov. is proposed, and strain B120T ( = CFBP 8182T = NCCB 100485T) was designated the type strain. Erwinia iniecta sp. nov. was not pathogenic to plants. However, virulence to the Russian wheat aphid was observed.

  5. Mouthpart structure in the woolly apple aphid Eriosoma lanigerum (Hausmann) (Hemiptera: Aphidoidea: Pemphigidae).

    Science.gov (United States)

    Ge, Furong; Dietrich, Chris; Dai, Wu

    2016-05-01

    Mouthparts are important sensory and feeding structures in insects and differences in mouthpart structure reflect differences among lineages in feeding strategy and behavior. The woolly apple aphid (WAA), Eriosoma lanigerum (Hausmann), is an important pest of apple orchards worldwide, causing direct damage through feeding by the highly specialized piercing-sucking mouthparts. To obtain a better understanding of feeding, the morphology of mouthparts of the WAA was examined using scanning electron microscopy (SEM). The mouthparts of E. lanigerum are similar to those of previously studied aphid species in most aspects and composed of a cone-shaped labrum, a tube-like, four-segmented labium with a deep groove on the anterior side, and a stylet fascicle consisting of two mandibular and two maxillary stylets. The sculpturing on the lateral margin of the distal extremity of the maxillary stylets and a dentate protuberance at the very sharp tip are newly observed features that distinguish E. lanigerum from other aphids and Auchenorrhyncha. Also, there is a common duct in E. lanigerum as based on SEM. Two types of sensilla trichodea and three types of sensilla basiconica occur at different locations on the labium; the labial tip has eight pairs of small sensilla basiconica. The morphology of the mouthparts and the distribution of sensilla located on the labium in E. lanigerum are discussed with respect to their possible taxonomic and functional significance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Serratia symbiotica from the aphid Cinara cedri: a missing link from facultative to obligate insect endosymbiont.

    Directory of Open Access Journals (Sweden)

    Araceli Lamelas

    2011-11-01

    Full Text Available The genome sequencing of Buchnera aphidicola BCc from the aphid Cinara cedri, which is the smallest known Buchnera genome, revealed that this bacterium had lost its symbiotic role, as it was not able to synthesize tryptophan and riboflavin. Moreover, the biosynthesis of tryptophan is shared with the endosymbiont Serratia symbiotica SCc, which coexists with B. aphidicola in this aphid. The whole-genome sequencing of S. symbiotica SCc reveals an endosymbiont in a stage of genome reduction that is closer to an obligate endosymbiont, such as B. aphidicola from Acyrthosiphon pisum, than to another S. symbiotica, which is a facultative endosymbiont in this aphid, and presents much less gene decay. The comparison between both S. symbiotica enables us to propose an evolutionary scenario of the transition from facultative to obligate endosymbiont. Metabolic inferences of B. aphidicola BCc and S. symbiotica SCc reveal that most of the functions carried out by B. aphidicola in A. pisum are now either conserved in B. aphidicola BCc or taken over by S. symbiotica. In addition, there are several cases of metabolic complementation giving functional stability to the whole consortium and evolutionary preservation of the actors involved.

  7. Comparative analysis of mitochondrial genomes of five aphid species (Hemiptera: Aphididae and phylogenetic implications.

    Directory of Open Access Journals (Sweden)

    Yuan Wang

    Full Text Available Insect mitochondrial genomes (mitogenomes are of great interest in exploring molecular evolution, phylogenetics and population genetics. Only two mitogenomes have been previously released in the insect group Aphididae, which consists of about 5,000 known species including some agricultural, forestry and horticultural pests. Here we report the complete 16,317 bp mitogenome of Cavariella salicicola and two nearly complete mitogenomes of Aphis glycines and Pterocomma pilosum. We also present a first comparative analysis of mitochondrial genomes of aphids. Results showed that aphid mitogenomes share conserved genomic organization, nucleotide and amino acid composition, and codon usage features. All 37 genes usually present in animal mitogenomes were sequenced and annotated. The analysis of gene evolutionary rate revealed the lowest and highest rates for COI and ATP8, respectively. A unique repeat region exclusively in aphid mitogenomes, which included variable numbers of tandem repeats in a lineage-specific manner, was highlighted for the first time. This region may have a function as another origin of replication. Phylogenetic reconstructions based on protein-coding genes and the stem-loop structures of control regions confirmed a sister relationship between Cavariella and pterocommatines. Current evidence suggest that pterocommatines could be formally transferred into Macrosiphini. Our paper also offers methodological instructions for obtaining other Aphididae mitochondrial genomes.

  8. Pepo aphid-borne yellows virus: a new species in the genus Polerovirus.

    Science.gov (United States)

    Ibaba, Jacques D; Laing, Mark D; Gubba, Augustine

    2017-02-01

    Pepo aphid-borne yellows virus (PABYV) has been proposed as a putative representative of a new species in the genus Polerovirus in the family Luteoviridae. The genomes of two South African (SA) isolates of cucurbit-infecting PABYV were described in this record. Total RNA, extracted from a pattypan (Cucurbita pepo L.) and a baby marrow (C. pepo L.) leaf samples, was subjected to next-generation sequencing (NGS) on the HiSeq Illumina platform. Sanger sequencing was subsequently used to authenticate the integrity of PABYV's genome generated from de novo assembly of the NGS data. PABYV genome of SA isolates consists of 5813 nucleotides and displays an organisation typical of poleroviruses. Genome sequence comparisons of the SA PABYV isolates to other poleroviruses support the classification of PABYV as a new species in the genus Polerovirus. Recombination analyses showed that PABYV and Cucurbit aphid-borne yellows virus (CABYV) shared the same ancestor for the genome part situated between breaking points. Phylogenetic analyses of the RNA-dependent RNA polymerase and the coat protein genes showed that SA PABYV isolates shared distant relationship with CABYV and Suakwa aphid-borne yellows virus. Based on our results, we propose that PABYV is a distinct species in the genus Polerovirus.

  9. Early biotic stress detection in tomato (Solanum lycopersicum) by BVOC emissions.

    Science.gov (United States)

    Kasal-Slavik, Tina; Eschweiler, Julia; Kleist, Einhard; Mumm, Roland; Goldbach, Heiner E; Schouten, Alexander; Wildt, Jürgen

    2017-12-01

    We investigated impacts of early and mild biotic stress on Biogenic Volatile Organic Compounds (BVOC) emissions from tomato in order to test their potential for early (biotic) stress detection. Tomato plants were exposed to two common fungal pathogens, Botrytis cinerea and Oidium neolycopesici and the sap-sucking aphid Myzus persicae. Furthermore, plants were exposed to methyl jasmonate (MeJA) in order to identify BVOC emissions related to activation of jasmonic acid (JA) signalling pathway. These emissions where then used as a reference for identifying active JA signalling pathway in plants at early stages of biotic stress. After infection by the necrotrophic fungus B. cinerea, changes in BVOC emissions indicated that tomato plants had predominantly activated the jasmonic acid (JA) signalling pathway. The plants were able to modify their defence pathways in order to overcome fungal infection. When tomato plants were infected with the biotrophic fungus O. neolycopersici, only minor changes in BVOC emissions were observed with additional emissions of the sesquiterpene α-copaene. α-copaene emissions allowed the identification of general biotic stress in the plants, without pinpointing the actual triggered defence pathway. BVOC emissions during M. persicae attack had changed before the occurrence of visual symptoms. Despite low infestation rates, plants emitted methyl salicylate indicating activation of the SA-mediated defence pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Induced plant resistance as a pest management tactic on piercing sucking insects of sesame crop

    Directory of Open Access Journals (Sweden)

    M. F. Mahmoud

    2013-09-01

    Full Text Available Sesame, Sesamum indicum L. is the most oil seed crop of the world and also a major oil seed crop of Egypt. One of the major constraints in its production the damage caused by insect pests, particularly sucking insects which suck the cell sap from leaves, flowers and capsules. Impact of three levels of potassin-F, salicylic acid and combination between them on reduction infestation of Stink bug Nezara viridula L., Mirid bug Creontiades sp., Green peach aphid Myzus persicae (Sulzer, Leafhopper Empoasca lybica de Berg and Whitefly Bemisia tabaci (Gennadius of sesame crop cultivar Shandawil 3 was carried out during 2010-2011 crop season at Experimental farm, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt. Also, the impacts of potassin-F and salicylic acid on yield production of sesame were studied. Results indicated that percent of reduction of infestation by N. viridula, M. persicae, Creontiades sp., E. lybicae, B. tabaci and phyllody disease were significantly higher at Level 2 (Potassin-F= 2.5 cm/l, Salicylic acid= 0.001 M and Potassin + Salicylic= 2.5 cm/l + 0.001 M and consequently higher seed yield per plant were obtained.

  11. Resistance of Wheat Accessions to the English Grain Aphid Sitobion avenae

    Science.gov (United States)

    Hu, Xiang-Shun; Liu, Ying-Jie; Wang, Yu-Han; Wang, Zhe; Yu, Xin-lin; Wang, Bo; Zhang, Gai-Sheng; Liu, Xiao-Feng; Hu, Zu-Qing; Zhao, Hui-Yan; Liu, Tong-Xian

    2016-01-01

    The English grain aphid, Sitobion avenae, is a major pest species of wheat crops; however, certain varieties may have stronger resistance to infestation than others. Here, we investigated 3 classical resistance mechanisms (antixenosis, antibiosis, and tolerance) by 14 wheat varieties/lines to S. avenae under laboratory and field conditions. Under laboratory conditions, alatae given the choice between 2 wheat varieties, strongly discriminated against certain varieties. Specifically, the ‘Amigo’ variety had the lowest palatability to S. avenae alatae of all varieties. ‘Tm’ (Triticum monococcum), ‘Astron,’ ‘Xanthus,’ ‘Ww2730,’ and ‘Batis’ varieties also had lower palatability than other varieties. Thus, these accessions may use antibiosis as the resistant mechanism. In contrast, under field conditions, there were no significant differences in the number of alatae detected on the 14 wheat varieties. One synthetic line (98-10-30, a cross between of Triticum aestivum (var. Chris) and Triticum turgidum (var. durum) hybridization) had low aphid numbers but high yield loss, indicating that it has high antibiosis, but poor tolerance. In comparison, ‘Amigo,’ ‘Xiaoyan22,’ and some ‘186Tm’ samples had high aphid numbers but low yield loss rates, indicating they have low antibiosis, but good tolerance. Aphid population size and wheat yield loss rates greatly varied in different fields and years for ‘98-10-35,’ ‘Xiaoyan22,’ ‘Tp,’ ‘Tam200,’ ‘PI high,’ and other ‘186Tm’ samples, which were hybrid offspring of T. aestivum and wheat related species. Thus, these germplasm should be considered for use in future studies. Overall, S. avenae is best adapted to ‘Xinong1376,’ because it was the most palatable variety, with the greatest yield loss rates of all 14 wheat varieties. However, individual varieties/lines influenced aphid populations differently in different years. Therefore, we strongly recommend a combination of

  12. Neonicotinoid binding, toxicity and expression of nicotinic acetylcholine receptor subunits in the aphid Acyrthosiphon pisum.

    Directory of Open Access Journals (Sweden)

    Emiliane Taillebois

    Full Text Available Neonicotinoid insecticides act on nicotinic acetylcholine receptor and are particularly effective against sucking pests. They are widely used in crops protection to fight against aphids, which cause severe damage. In the present study we evaluated the susceptibility of the pea aphid Acyrthosiphon pisum to the commonly used neonicotinoid insecticides imidacloprid (IMI, thiamethoxam (TMX and clothianidin (CLT. Binding studies on aphid membrane preparations revealed the existence of high and low-affinity binding sites for [3H]-IMI (Kd of 0.16 ± 0.04 nM and 41.7 ± 5.9 nM and for the nicotinic antagonist [125I]-α-bungarotoxin (Kd of 0.008 ± 0.002 nM and 1.135 ± 0.213 nM. Competitive binding experiments demonstrated that TMX displayed a higher affinity than IMI for [125I]-α-bungarotoxin binding sites while CLT affinity was similar for both [125I]-α-bungarotoxin and [3H]-IMI binding sites. Interestingly, toxicological studies revealed that at 48 h, IMI (LC50 = 0.038 µg/ml and TMX (LC50 = 0.034 µg/ml were more toxic than CLT (LC50 = 0.118 µg/ml. The effect of TMX could be associated to its metabolite CLT as demonstrated by HPLC/MS analysis. In addition, we found that aphid larvae treated either with IMI, TMX or CLT showed a strong variation of nAChR subunit expression. Using semi-quantitative PCR experiments, we detected for all insecticides an increase of Apisumα10 and Apisumβ1 expressions levels, whereas Apisumβ2 expression decreased. Moreover, some other receptor subunits seemed to be differently regulated according to the insecticide used. Finally, we also demonstrated that nAChR subunit expression differed during pea aphid development. Altogether these results highlight species specificity that should be taken into account in pest management strategies.

  13. Neonicotinoid Binding, Toxicity and Expression of Nicotinic Acetylcholine Receptor Subunits in the Aphid Acyrthosiphon pisum

    Science.gov (United States)

    Taillebois, Emiliane; Beloula, Abdelhamid; Quinchard, Sophie; Jaubert-Possamai, Stéphanie; Daguin, Antoine; Servent, Denis; Tagu, Denis

    2014-01-01

    Neonicotinoid insecticides act on nicotinic acetylcholine receptor and are particularly effective against sucking pests. They are widely used in crops protection to fight against aphids, which cause severe damage. In the present study we evaluated the susceptibility of the pea aphid Acyrthosiphon pisum to the commonly used neonicotinoid insecticides imidacloprid (IMI), thiamethoxam (TMX) and clothianidin (CLT). Binding studies on aphid membrane preparations revealed the existence of high and low-affinity binding sites for [3H]-IMI (Kd of 0.16±0.04 nM and 41.7±5.9 nM) and for the nicotinic antagonist [125I]-α-bungarotoxin (Kd of 0.008±0.002 nM and 1.135±0.213 nM). Competitive binding experiments demonstrated that TMX displayed a higher affinity than IMI for [125I]-α-bungarotoxin binding sites while CLT affinity was similar for both [125I]-α-bungarotoxin and [3H]-IMI binding sites. Interestingly, toxicological studies revealed that at 48 h, IMI (LC50 = 0.038 µg/ml) and TMX (LC50 = 0.034 µg/ml) were more toxic than CLT (LC50 = 0.118 µg/ml). The effect of TMX could be associated to its metabolite CLT as demonstrated by HPLC/MS analysis. In addition, we found that aphid larvae treated either with IMI, TMX or CLT showed a strong variation of nAChR subunit expression. Using semi-quantitative PCR experiments, we detected for all insecticides an increase of Apisumα10 and Apisumβ1 expressions levels, whereas Apisumβ2 expression decreased. Moreover, some other receptor subunits seemed to be differently regulated according to the insecticide used. Finally, we also demonstrated that nAChR subunit expression differed during pea aphid development. Altogether these results highlight species specificity that should be taken into account in pest management strategies. PMID:24801634

  14. Female-induced increase of host-plant volatiles enhance specific attraction of aphid male Dysaphis plantaginea (Homoptera: Aphididae) to the sex pheromone

    NARCIS (Netherlands)

    Tol, van R.W.H.M.; Helsen, H.H.M.; Griepink, F.C.; Kogel, de W.J.

    2009-01-01

    All aphid species studied so far share the same sex pheromone components, nepetalactol and nepetalactone. Variation by different enantiomers and blends of the two components released by different aphid species are limited and can only partially explain species-specific attraction of males to

  15. How conserved are the bacterial communities associated with aphids? A detailed assessment of the Brevicoryne brassicae (Hemiptera: Aphididae) using 16S rDNA.

    Science.gov (United States)

    Clark, E L; Daniell, T J; Wishart, J; Hubbard, S F; Karley, A J

    2012-12-01

    Aphids harbor a community of bacteria that include obligate and facultative endosymbionts belonging to the Enterobacteriaceae along with opportunistic, commensal, or pathogenic bacteria. This study represents the first detailed analysis of the identity and diversity of the bacterial community associated with the cabbage aphid, Brevicoryne brassicae (L.). 16S rDNA sequence analysis revealed that the community of bacteria associated with B. brassicae was diverse, with at least four different bacterial community types detected among aphid lines, collected from widely dispersed sites in Northern Britain. The bacterial sequence types isolated from B. brassicae showed little similarity to any bacterial endosymbionts characterized in insects; instead, they were closely related to free-living extracellular bacterial species that have been isolated from the aphid gut or that are known to be present in the environment, suggesting that they are opportunistic bacteria transmitted between the aphid gut and the environment. To quantify variation in bacterial community between aphid lines, which was driven largely by differences in the proportions of two dominant bacterial orders, the Pseudomonales and the Enterobacteriales, we developed a novel real-time (Taqman) qPCR assay. By improving our knowledge of aphid microbial ecology, and providing novel molecular tools to examine the presence and function of the microbial community, this study forms the basis of further research to explore the influence of the extracellular bacterial community on aphid fitness, pest status, and susceptibility to control by natural enemies.

  16. Releases of a natural flightless strain of the ladybird beetle Adalia bipunctata reduce aphid-born honeydew beneath urban lime trees

    NARCIS (Netherlands)

    Lommen, S.T.E.; Holness, T.C.; Kuik, van A.J.; Jong, de P.W.; Brakefield, P.M.

    2013-01-01

    Aphids can cause major environmental problems in urban areas. One important problem is the annual outbreaks of lime aphid, Eucallipterus tiliae (L.) (Hemiptera: Aphididae), which spoil the surroundings of lime trees by depositing honeydew. To date no environmentally friendly method has been

  17. Identification of an intraspecific alarm pheromone and two conserved odorant-binding proteins associated with (E)-β-farnesene perception in aphid Rhopalosiphum padi.

    Science.gov (United States)

    Fan, Jia; Xue, Wenxin; Duan, Hongxia; Jiang, Xin; Zhang, Yong; Yu, Wenjuan; Jiang, Shanshan; Sun, Jingrun; Chen, Julian

    2017-08-01

    (E)-β-farnesene (EBF) is the common active component of aphid alarm pheromone. Either or both of two orthologs of ordorant-binding proteins (OBPs), OBP3 and OBP7, recently reported in aphids, may be involved in EBF perception. The aim of this study was to investigate the respondence of the aphid Rhopalosiphum padi to its intraspecific alarm pheromone and which OBP is responsible for that response. We tested the olfactory response of the aphid R. padi to EBF and freshly crushed aphids. Then, we extracted the volatiles from crushed aphids using solid phase microextraction (SPME) for analysis with GC×GC-TOF/MS. We also cloned two OBPs cDNAs in R. padi (RpadOBP3 and RpadOBP7) and expressed them in competent Escherichia coli cells. Both recombinant proteins, RpadOBP3 and RpadOBP7, bound EBF well, with RpadOBP7 having specifically stronger affinity for EBF than for other volatiles. Based on the crystal structure of the OBPs with high identity, we performed homology modeling and analyzed the interactions between RpadOBPs and EBF. In conclusion, R. padi was repelled by both EBF and crushed aphids. EBF was identified as the only volatile that acted as the alarm pheromone. Our results indicated that OBP7 is a potential molecular target to control wheat aphids by disturbing their behaviors to the alarm pheromone. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Molecular evolution of aphids and their primary ( Buchnera sp.) and secondary endosymbionts: implications for the role of symbiosis in insect evolution.

    NARCIS (Netherlands)

    Sabater-Munoz, B.; Ham, van R.C.H.J.; Martinez-Torres, D.; Silva, F.J.; Latorre, A.; Moya, A.

    2001-01-01

    Aphids maintain an obligate, endosymbiotic association with Buchnera sp., a bacterium closely related to Escherichia coli. Bacteria are housed in specialized cells of organ-like structures called bacteriomes in the hemocoel of the aphid and are maternally transmitted. Phylogenetic studies have shown

  19. Performance and feeding behaviour of two biotypes of the black currant-lettuce aphid, Nasonovia ribisnigri, on resistant and susceptible Lactuca sativa near-isogenic lines

    NARCIS (Netherlands)

    Broeke, ten C.J.M.; Dicke, M.; Loon, van J.J.A.

    2013-01-01

    The black currant-lettuce aphid, Nasonovia ribisnigri, is an important pest of cultivated lettuce, Lactuca sativa. Since 1982, the control of this aphid on lettuce is largely based on host plant resistance, conferred by the Nr gene, introgressed from Lactuca virosa. The resistance mechanism remains

  20. Aphids transform and detoxify the mycotoxin deoxynivalenol via a type II biotransformation mechanism yet unknown in animals.

    Science.gov (United States)

    De Zutter, N; Audenaert, K; Arroyo-Manzanares, N; De Boevre, M; Van Poucke, C; De Saeger, S; Haesaert, G; Smagghe, G

    2016-12-08

    Biotransformation of mycotoxins in animals comprises phase I and phase II metabolisation reactions. For the trichothecene deoxynivalenol (DON), several phase II biotransformation reactions have been described resulting in DON-glutathiones, DON-glucuronides and DON-sulfates made by glutathione-S-transferases, uridine-diphosphoglucuronyl transferases and sulfotransferases, respectively. These metabolites can be easily excreted and are less toxic than their free compounds. Here, we demonstrate for the first time in the animal kingdom the conversion of DON to DON-3-glucoside (DON-3G) via a model system with plant pathogenic aphids. This phase II biotransformation mechanism has only been reported in plants. As the DON-3G metabolite was less toxic for aphids than DON, this conversion is considered a detoxification reaction. Remarkably, English grain aphids (Sitobion avenae) which co-occur with the DON producer Fusarium graminearum on wheat during the development of fusarium symptoms, tolerate DON much better and convert DON to DON-3G more efficiently than pea aphids (Acyrthosiphon pisum), the latter being known to feed on legumes which are no host for F. graminearum. Using a non-targeted high resolution mass spectrometric approach, we detected DON-diglucosides in aphids probably as a result of sequential glucosylation reactions. Data are discussed in the light of an eventual co-evolutionary adaptation of S. avenae to DON.

  1. Insulin-related peptide 5 is involved in regulating embryo development and biochemical composition in pea aphid with wing polyphenism

    Directory of Open Access Journals (Sweden)

    Shan-Shan eGuo

    2016-02-01

    Full Text Available In aphids there is a fecundity-dispersal trade-off between wingless and winged morphs. Recent research on the molecular mechanism of wing morphs associated with dispersal reveals that insulin receptors in the insulin signaling (IS pathway regulate alteration of wing morphs in planthoppers. However, little is known about whether genes in the IS pathway are involved in developmental regulation in aphid nymphs with different wing morphs. In this study, we show that expression of the insulin-related peptide 5 gene (Apirp5 affects biochemical composition and embryo development of wingless pea aphids, Acyrthosiphon pisum. After comparing expression levels of major genes in the IS pathway between third instar winged and wingless nymphs, we found that Apirp5 showed higher expression in head and thorax of the wingless nymphs than in the winged nymphs. Although microinjection treatment affects physical performance in aphids, nymphs with RNA interference of Apirp5 had less weight, smaller embryo size and higher carbohydrate and protein contents compared to control group. Comparison between winged and wingless nymphs showed a similar trend. These results indicate that Apirp5 is involved in embryo development and metabolic regulation in wing dimorphic pea aphid.

  2. Coupling genetics and proteomics to identify aphid proteins associated with vector-specific transmission of polerovirus (luteoviridae).

    Science.gov (United States)

    Yang, Xiaolong; Thannhauser, T W; Burrows, Mary; Cox-Foster, Diana; Gildow, Fred E; Gray, Stewart M

    2008-01-01

    Cereal yellow dwarf virus-RPV (CYDV-RPV) is transmitted specifically by the aphids Rhopalosiphum padi and Schizaphis graminum in a circulative nonpropagative manner. The high level of vector specificity results from the vector aphids having the functional components of the receptor-mediated endocytotic pathways to allow virus to transverse the gut and salivary tissues. Studies of F(2) progeny from crosses of vector and nonvector genotypes of S. graminum showed that virus transmission efficiency is a heritable trait regulated by multiple genes acting in