WorldWideScience

Sample records for aphid genome absence

  1. First Complete Genome Sequence of Suakwa aphid-borne yellows virus from East Timor

    Science.gov (United States)

    Maina, Solomon; Edwards, Owain R.; de Almeida, Luis; Ximenes, Abel

    2016-01-01

    We present here the first complete genomic RNA sequence of the polerovirus Suakwa aphid-borne yellows virus (SABYV), from East Timor. The isolate sequenced came from a virus-infected pumpkin plant. The East Timorese genome had a nucleotide identity of 86.5% with the only other SABYV genome available, which is from Taiwan. PMID:27469955

  2. The genomic sequence of cowpea aphid-borne mosaic virus and its similarities with other potyviruses

    NARCIS (Netherlands)

    Mlotshwa, S.; Verver, J.; Sithole-Niang, I.; Kampen, van T.; Kammen, van A.; Wellink, J.

    2002-01-01

    The genomic sequence of a Zimbabwe isolate of Cowpea aphid-borne mosaic virus (CABMV-Z) was determined by sequencing overlapping viral cDNA clones generated by RT-PCR using degenerate and/or specific primers. The sequence is 9465 nucleotides in length excluding the 3' terminal poly (A) tail and

  3. Comparative analysis of mitochondrial genomes of five aphid species (Hemiptera: Aphididae and phylogenetic implications.

    Directory of Open Access Journals (Sweden)

    Yuan Wang

    Full Text Available Insect mitochondrial genomes (mitogenomes are of great interest in exploring molecular evolution, phylogenetics and population genetics. Only two mitogenomes have been previously released in the insect group Aphididae, which consists of about 5,000 known species including some agricultural, forestry and horticultural pests. Here we report the complete 16,317 bp mitogenome of Cavariella salicicola and two nearly complete mitogenomes of Aphis glycines and Pterocomma pilosum. We also present a first comparative analysis of mitochondrial genomes of aphids. Results showed that aphid mitogenomes share conserved genomic organization, nucleotide and amino acid composition, and codon usage features. All 37 genes usually present in animal mitogenomes were sequenced and annotated. The analysis of gene evolutionary rate revealed the lowest and highest rates for COI and ATP8, respectively. A unique repeat region exclusively in aphid mitogenomes, which included variable numbers of tandem repeats in a lineage-specific manner, was highlighted for the first time. This region may have a function as another origin of replication. Phylogenetic reconstructions based on protein-coding genes and the stem-loop structures of control regions confirmed a sister relationship between Cavariella and pterocommatines. Current evidence suggest that pterocommatines could be formally transferred into Macrosiphini. Our paper also offers methodological instructions for obtaining other Aphididae mitochondrial genomes.

  4. The genome of Diuraphis noxia, a global aphid pest of small grains.

    Science.gov (United States)

    Nicholson, Scott J; Nickerson, Michael L; Dean, Michael; Song, Yan; Hoyt, Peter R; Rhee, Hwanseok; Kim, Changhoon; Puterka, Gary J

    2015-06-05

    The Russian wheat aphid, Diuraphis noxia Kurdjumov, is one of the most important pests of small grains throughout the temperate regions of the world. This phytotoxic aphid causes severe systemic damage symptoms in wheat, barley, and other small grains as a direct result of the salivary proteins it injects into the plant while feeding. We sequenced and de novo assembled the genome of D. noxia Biotype 2, the strain most virulent to resistance genes in wheat. The assembled genomic scaffolds span 393 MB, equivalent to 93% of its 421 MB genome, and contains 19,097 genes. D. noxia has the most AT-rich insect genome sequenced to date (70.9%), with a bimodal CpG(O/E) distribution and a complete set of methylation related genes. The D. noxia genome displays a widespread, extensive reduction in the number of genes per ortholog group, including defensive, detoxification, chemosensory, and sugar transporter groups in comparison to the Acyrthosiphon pisum genome, including a 65% reduction in chemoreceptor genes. Thirty of 34 known D. noxia salivary genes were found in this assembly. These genes exhibited less homology with those salivary genes commonly expressed in insect saliva, such as glucose dehydrogenase and trehalase, yet greater conservation among genes that are expressed in D. noxia saliva but not detected in the saliva of other insects. Genes involved in insecticide activity and endosymbiont-derived genes were also found, as well as genes involved in virus transmission, although D. noxia is not a viral vector. This genome is the second sequenced aphid genome, and the first of a phytotoxic insect. D. noxia's reduced gene content of may reflect the influence of phytotoxic feeding in shaping the D. noxia genome, and in turn in broadening its host range. The presence of methylation-related genes, including cytosine methylation, is consistent with other parthenogenetic and polyphenic insects. The D. noxia genome will provide an important contrast to the A. pisum genome and

  5. Organization of the mitochondrial genomes of whiteflies, aphids, and psyllids (Hemiptera, Sternorrhyncha

    Directory of Open Access Journals (Sweden)

    Baumann Paul

    2004-08-01

    Full Text Available Abstract Background With some exceptions, mitochondria within the class Insecta have the same gene content, and generally, a similar gene order allowing the proposal of an ancestral gene order. The principal exceptions are several orders within the Hemipteroid assemblage including the order Thysanoptera, a sister group of the order Hemiptera. Within the Hemiptera, there are available a number of completely sequenced mitochondrial genomes that have a gene order similar to that of the proposed ancestor. None, however, are available from the suborder Sternorryncha that includes whiteflies, psyllids and aphids. Results We have determined the complete nucleotide sequence of the mitochondrial genomes of six species of whiteflies, one psyllid and one aphid. Two species of whiteflies, one psyllid and one aphid have mitochondrial genomes with a gene order very similar to that of the proposed insect ancestor. The remaining four species of whiteflies had variations in the gene order. In all cases, there was the excision of a DNA fragment encoding for cytochrome oxidase subunit III(COIII-tRNAgly-NADH dehydrogenase subunit 3(ND3-tRNAala-tRNAarg-tRNAasn from the ancestral position between genes for ATP synthase subunit 6 and NADH dehydrogenase subunit 5. Based on the position in which all or part of this fragment was inserted, the mitochondria could be subdivided into four different gene arrangement types. PCR amplification spanning from COIII to genes outside the inserted region and sequence determination of the resulting fragments, indicated that different whitefly species could be placed into one of these arrangement types. A phylogenetic analysis of 19 whitefly species based on genes for mitochondrial cytochrome b, NADH dehydrogenase subunit 1, and 16S ribosomal DNA as well as cospeciating endosymbiont 16S and 23S ribosomal DNA indicated a clustering of species that corresponded to the gene arrangement types. Conclusions In whiteflies, the region of the

  6. Analysis of an RNA-seq Strand-Specific Library from an East Timorese Cucumber Sample Reveals a Complete Cucurbit aphid-borne yellows virus Genome.

    Science.gov (United States)

    Maina, Solomon; Edwards, Owain R; de Almeida, Luis; Ximenes, Abel; Jones, Roger A C

    2017-05-11

    Analysis of an RNA-seq library from cucumber leaf RNA extracted from a fast technology for analysis of nucleic acids (FTA) card revealed the first complete genome of Cucurbit aphid-borne yellows virus (CABYV) from East Timor. We compare it with 35 complete CABYV genomes from other world regions. It most resembled the genome of the South Korean isolate HD118. Copyright © 2017 Maina et al.

  7. The Nerium oleander aphid Aphis nerii is tolerant to a local isolate of Aphid lethal paralysis virus (ALPV).

    Science.gov (United States)

    Dombrovsky, Aviv; Luria, Neta

    2013-04-01

    In a survey that was conducted during the year 2011, a local strain of Aphid lethal paralysis virus (ALPV) was identified and isolated from a wild population of Aphis nerii aphids living on Nerium oleander plants located in northern Israel. The new strain was tentatively named (ALPV-An). RNA extracted from the viral particles allowed the amplification and determination of the complete genome sequence. The virus genome is comprised of 9835 nucleotides. In a BLAST search analysis, the ALPV-An sequence showed 89 % nucleotide sequence identity with the whole genome of a South African ALPV and 96 and 94 % amino acid sequence identity with the ORF1 and ORF2 of that strain, respectively. In preliminary experiments, spray-applied, purified ALPV virions were highly pathogenic to the green peach aphid Myzus persicae; 95 % mortality was recorded 4 days post-infection. These preliminary results demonstrate the potential of ALPV for use as a biologic agent for some aphid control. Surprisingly, no visible ALPV pathogenic effects, such as morphological changes or paralysis, were observed in the A. nerii aphids infected with ALPV-An. The absence of clear ALPV symptoms in A. nerii led to the formulation of two hypotheses, which were partially examined in this study. The first hypothesis suggest that A. nerii is resistant or tolerant of ALPV, while the second hypothesis propose that ALPV-An may be a mild strain of ALPV. Currently, our results is in favor with the first hypothesis since ALPV-An is cryptic in A. nerii aphids and can be lethal for M. persicae aphids.

  8. Plant-aphid interactions: molecular and ecological perspectives.

    Science.gov (United States)

    Goggin, Fiona L

    2007-08-01

    Many aphids are major agricultural pests because of their unparalleled reproductive capacity and their ability to manipulate host plant physiology. Aphid population growth and its impact on plant fitness are strongly influenced by interactions with other organisms, including plant pathogens, endophytes, aphid endosymbionts, predators, parasitoids, ants, and other herbivores. Numerous molecular and genomic resources have recently been developed to identify sources of aphid resistance in plants, as well as potentially novel targets for control in aphids. Moreover, the same model systems that are used to explore direct molecular interactions between plants and aphids can be utilized to study the ecological context in which they occur.

  9. Bacterial symbionts, Buchnera, and starvation on wing dimorphism in English grain aphid, Sitobion avenae (F. (Homoptera: Aphididae

    Directory of Open Access Journals (Sweden)

    Fangmei eZhang

    2015-05-01

    Full Text Available Wing dimorphism in aphids can be affected by multiple cues, including both biotic (nutrition, crowding, interspecific interactions, the presence of natural enemies, maternal and transgenerational effects, and alarm pheromone and abiotic factors (temperature, humidity, and photoperiod. The majority of the phloem-feeding aphids carry Buchnera, an obligate symbiotic proteobacteria. Buchnera has a highly reduced genome size, but encode key enzymes in the tryptophan biosynthetic pathway and is crucial for nutritional balance, development and reproduction in aphids. In this study, we investigated the impact of two nutritional-based biotic factors, symbionts and starvation, on the wing dimorphism in the English grain aphid, Sitobion avenae, a devastating insect pest of cereal crops (e.g., wheat worldwide. Elimination of Buchnera using the antibiotic rifampicin significantly reduced the formation of winged morphs, body mass and fecundity in S. avenae. Furthermore, the absence of this primary endosymbiont may disrupt the nutrient acquisition in aphids and alter transgenerational phenotypic expression. Similarly, both survival rate and the formation of winged morphs were substantially reduced after neonatal (< 24h old offspring were starved for a period of time. The combined results shed light on the impact of two nutritional-based biotic factors on the phenotypic plasticity in aphids. A better understanding of the wing dimorphism in aphids will provide the theoretical basis for the prediction and integrated management of these phloem-feeding insect pests.

  10. Absence of genome reduction in diverse, facultative endohyphal bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Baltrus, David A. [Univ. of Arizona, Tucson, AZ (United States); Dougherty, Kevin [Univ. of Arizona, Tucson, AZ (United States); Arendt, Kayla R. [Univ. of Arizona, Tucson, AZ (United States); Huntemann, Marcel [Joint Genome Institute, Walnut Creek, CA (United States); Clum, Alicia [Joint Genome Institute, Walnut Creek, CA (United States); Pillay, Manoj [Joint Genome Institute, Walnut Creek, CA (United States); Palaniappan, Krishnaveni [Joint Genome Institute, Walnut Creek, CA (United States); Varghese, Neha [Joint Genome Institute, Walnut Creek, CA (United States); Mikhailova, Natalia [Joint Genome Institute, Walnut Creek, CA (United States); Stamatis, Dimitrios [Joint Genome Institute, Walnut Creek, CA (United States); Reddy, T. B. K. [Joint Genome Institute, Walnut Creek, CA (United States); Ngan, Chew Yee [Joint Genome Institute, Walnut Creek, CA (United States); Daum, Chris [Joint Genome Institute, Walnut Creek, CA (United States); Shapiro, Nicole [Joint Genome Institute, Walnut Creek, CA (United States); Markowitz, Victor [Joint Genome Institute, Walnut Creek, CA (United States); Ivanova, Natalia [Joint Genome Institute, Walnut Creek, CA (United States); Kyrpides, Nikos [Joint Genome Institute, Walnut Creek, CA (United States); Woyke, Tanja [Joint Genome Institute, Walnut Creek, CA (United States); Arnold, A. Elizabeth [Univ. of Arizona, Tucson, AZ (United States)

    2017-02-28

    Fungi interact closely with bacteria, both on the surfaces of the hyphae and within their living tissues (i.e. endohyphal bacteria, EHB). These EHB can be obligate or facultative symbionts and can mediate diverse phenotypic traits in their hosts. Although EHB have been observed in many lineages of fungi, it remains unclear how widespread and general these associations are, and whether there are unifying ecological and genomic features can be found across EHB strains as a whole. We cultured 11 bacterial strains after they emerged from the hyphae of diverse Ascomycota that were isolated as foliar endophytes of cupressaceous trees, and generated nearly complete genome sequences for all. Unlike the genomes of largely obligate EHB, the genomes of these facultative EHB resembled those of closely related strains isolated from environmental sources. Although all analysed genomes encoded structures that could be used to interact with eukaryotic hosts, pathways previously implicated in maintenance and establishment of EHB symbiosis were not universally present across all strains. Independent isolation of two nearly identical pairs of strains from different classes of fungi, coupled with recent experimental evidence, suggests horizontal transfer of EHB across endophytic hosts. Given the potential for EHB to influence fungal phenotypes, these genomes could shed light on the mechanisms of plant growth promotion or stress mitigation by fungal endophytes during the symbiotic phase, as well as degradation of plant material during the saprotrophic phase. As such, these findings contribute to the illumination of a new dimension of functional biodiversity in fungi.

  11. Genetic diversity for Russian wheat aphid resistance as determined by genome-wide association mapping and inheritance in progeny

    Science.gov (United States)

    Russian wheat aphid (RWA) is an increasing problem on barley throughout the world. Genetic resistance has been identified and used to create barley germplasm and cultivars adapted to the US. Several mapping studies have been conducted to identify loci associated with resistance, but questions remain...

  12. First full-length genome sequence of the polerovirus luffa aphid-borne yellows virus (LABYV) reveals the presence of at least two consensus sequences in an isolate from Thailand.

    Science.gov (United States)

    Knierim, Dennis; Maiss, Edgar; Kenyon, Lawrence; Winter, Stephan; Menzel, Wulf

    2015-10-01

    Luffa aphid-borne yellows virus (LABYV) was proposed as the name for a previously undescribed polerovirus based on partial genome sequences obtained from samples of cucurbit plants collected in Thailand between 2008 and 2013. In this study, we determined the first full-length genome sequence of LABYV. Based on phylogenetic analysis and genome properties, it is clear that this virus represents a distinct species in the genus Polerovirus. Analysis of sequences from sample TH24, which was collected in 2010 from a luffa plant in Thailand, reveals the presence of two different full-length genome consensus sequences.

  13. Comparative genomic hybridizations reveal absence of large Streptomyces coelicolor genomic islands in Streptomyces lividans

    OpenAIRE

    Jayapal, Karthik P; Lian, Wei; Glod, Frank; Sherman, David H; Hu, Wei-Shou

    2007-01-01

    Abstract Background The genomes of Streptomyces coelicolor and Streptomyces lividans bear a considerable degree of synteny. While S. coelicolor is the model streptomycete for studying antibiotic synthesis and differentiation, S. lividans is almost exclusively considered as the preferred host, among actinomycetes, for cloning and expression of exogenous DNA. We used whole genome microarrays as a comparative genomics tool for identifying the subtle differences between these two chromosomes. Res...

  14. Effect of ant attendance by Monomorium minimum (Buckley) (Hymenoptera: Formicidae) on predation and parasitism of the soybean aphid Aphis glycines Matsumura (Hemiptera: Aphididae).

    Science.gov (United States)

    Herbert, John J; Horn, David J

    2008-10-01

    Ant attendance is known to affect the population dynamics of aphids and may increase or decrease aphid populations through stimulation, predation, or protection. In this study, we performed a series of laboratory experiments to examine the effects of ant attendance on populations of the soybean aphid Aphis glycines. Aphid colonies were exposed to the predators Harmonia axyridis (Coccinellidae) and Orius insidiosus (Anthocoridae) and a parasitoid Aphidius colemani (Aphidiidae) in the presence and absence of attending Monomorium minimum (Formicidae). We also tested for direct effects of ant attendance in the absence of natural enemies. Ants attending soybean aphid populations were observed harassing or killing O. insidiosus and H. axyridis. Attendance interfered with both predator species, resulting in reduced predation and an increase in aphid numbers up to 10-fold in the presence of ants. Ants were not observed directly interfering with the parasitoid A. colemani, but the number of parasitized aphids was higher in aphid colonies that were left unattended by ants.

  15. Ecological effects of aphid abundance, genotypic variation, and contemporary evolution on plants.

    Science.gov (United States)

    Turley, Nash E; Johnson, Marc T J

    2015-07-01

    Genetic variation and contemporary evolution within populations can shape the strength and nature of species interactions, but the relative importance of these forces compared to other ecological factors is unclear. We conducted a field experiment testing the effects of genotypic variation, abundance, and presence/absence of green peach aphids (Myzus persicae) on the growth, leaf nitrogen, and carbon of two plant species (Brassica napus and Solanum nigrum). Aphid genotype affected B. napus but not S. nigrum biomass explaining 20 and 7% of the total variation, respectively. Averaging across both plant species, the presence/absence of aphids had a 1.6× larger effect size (Cohen's d) than aphid genotype, and aphid abundance had the strongest negative effects on plant biomass explaining 29% of the total variation. On B. napus, aphid genotypes had different effects on leaf nitrogen depending on their abundance. Aphids did not influence leaf nitrogen in S. nigrum nor leaf carbon in either species. We conducted a second experiment in the field to test whether contemporary evolution could affect plant performance. Aphid populations evolved in as little as five generations, but the rate and direction of this evolution did not consistently vary between plant species. On one host species (B. napus), faster evolving populations had greater negative effects on host plant biomass, with aphid evolutionary rate explaining 23% of the variation in host plant biomass. Together, these results show that genetic variation and evolution in an insect herbivore can play important roles in shaping host plant ecology.

  16. Ants defend aphids against lethal disease

    Science.gov (United States)

    Nielsen, Charlotte; Agrawal, Anurag A.; Hajek, Ann E.

    2010-01-01

    Social insects defend their own colonies and some species also protect their mutualist partners. In mutualisms with aphids, ants typically feed on honeydew produced by aphids and, in turn guard and shelter aphid colonies from insect natural enemies. Here we report that Formica podzolica ants tending milkweed aphids, Aphis asclepiadis, protect aphid colonies from lethal fungal infections caused by an obligate aphid pathogen, Pandora neoaphidis. In field experiments, bodies of fungal-killed aphids were quickly removed from ant-tended aphid colonies. Ant workers were also able to detect infective conidia on the cuticle of living aphids and responded by either removing or grooming these aphids. Our results extend the long-standing view of ants as mutualists and protectors of aphids by demonstrating focused sanitizing and quarantining behaviour that may lead to reduced disease transmission in aphid colonies. PMID:19923138

  17. Estimation of low-dose radiation-responsive proteins in the absence of genomic instability in normal human fibroblast cells.

    Science.gov (United States)

    Yim, Ji-Hye; Yun, Jung Mi; Kim, Ji Young; Nam, Seon Young; Kim, Cha Soon

    2017-11-01

    Low-dose radiation has various biological effects such as adaptive responses, low-dose hypersensitivity, as well as beneficial effects. However, little is known about the particular proteins involved in these effects. Here, we sought to identify low-dose radiation-responsive phosphoproteins in normal fibroblast cells. We assessed genomic instability and proliferation of fibroblast cells after γ-irradiation by γ-H2AX foci and micronucleus formation analyses and BrdU incorporation assay, respectively. We screened fibroblast cells 8 h after low-dose (0.05 Gy) γ-irradiation using Phospho Explorer Antibody Microarray and validated two differentially expressed phosphoproteins using Western blotting. Cell proliferation proceeded normally in the absence of genomic instability after low-dose γ-irradiation. Phospho antibody microarray analysis and Western blotting revealed increased expression of two phosphoproteins, phospho-NFκB (Ser536) and phospho-P70S6K (Ser418), 8 h after low-dose radiation. Our findings suggest that low-dose radiation of normal fibroblast cells activates the expression of phospho-NFκB (Ser536) and phospho-P70S6K (Ser418) in the absence of genomic instability. Therefore, these proteins may be involved in DNA damage repair processes.

  18. Sugarcane Aphid in Sorghum

    Science.gov (United States)

    Evers, Logan

    2018-01-01

    This article is intended for readers in the production agriculture industry who deal with grain sorghum throughout the growing season. This publication will discuss the impacts of the sugarcane aphid in various crops and the ways to manage and identify them as they continue to advance north.

  19. Novel male-biased expression in paralogs of the aphid slimfast nutrient amino acid transporter expansion

    Directory of Open Access Journals (Sweden)

    Nathanson Lubov

    2011-09-01

    Full Text Available Abstract Background A major goal of molecular evolutionary biology is to understand the fate and consequences of duplicated genes. In this context, aphids are intriguing because the newly sequenced pea aphid genome harbors an extraordinary number of lineage-specific gene duplications relative to other insect genomes. Though many of their duplicated genes may be involved in their complex life cycle, duplications in nutrient amino acid transporters appear to be associated rather with their essential amino acid poor diet and the intracellular symbiosis aphids rely on to compensate for dietary deficits. Past work has shown that some duplicated amino acid transporters are highly expressed in the specialized cells housing the symbionts, including a paralog of an aphid-specific expansion homologous to the Drosophila gene slimfast. Previous data provide evidence that these bacteriocyte-expressed transporters mediate amino acid exchange between aphids and their symbionts. Results We report that some nutrient amino acid transporters show male-biased expression. Male-biased expression characterizes three paralogs in the aphid-specific slimfast expansion, and the male-biased expression is conserved across two aphid species for at least two paralogs. One of the male-biased paralogs has additionally experienced an accelerated rate of non-synonymous substitutions. Conclusions This is the first study to document male-biased slimfast expression. Our data suggest that the male-biased aphid slimfast paralogs diverged from their ancestral function to fill a functional role in males. Furthermore, our results provide evidence that members of the slimfast expansion are maintained in the aphid genome not only for the previously hypothesized role in mediating amino acid exchange between the symbiotic partners, but also for sex-specific roles.

  20. Methyl salicylate attracts natural enemies and reduces populations of soybean aphids (Hemiptera: Aphididae) in soybean agroecosystems.

    Science.gov (United States)

    Mallinger, Rachel E; Hogg, David B; Gratton, Claudio

    2011-02-01

    Methyl salicylate, an herbivore-induced plant volatile, has been shown to attract natural enemies and affect herbivore behavior. In this study, methyl salicylate was examined for its attractiveness to natural enemies of the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), and for its direct effects on soybean aphid population growth rates. Methyl salicylate lures were deployed in plots within organic soybean [Glycine max (L.) Merr.] fields. Sticky card traps adjacent to and 1.5 m from the lure measured the relative abundance of natural enemies, and soybean aphid populations were monitored within treated and untreated plots. In addition, exclusion cage studies were conducted to determine methyl salicylate's effect on soybean aphid population growth rates in the absence of natural enemies. Significantly greater numbers of syrphid flies (Diptera: Syrphidae) and green lacewings (Neuroptera: Chrysopidae) were caught on traps adjacent to the methyl salicylate lure, but no differences in abundance were found at traps 1.5 m from the lure. Furthermore, abundance of soybean aphids was significantly lower in methyl salicylate-treated plots. In exclusion cage studies, soybean aphid numbers were significantly reduced on treated soybean plants when all plants were open to natural enemies. When plants were caged, however, soybean aphid numbers and population growth rates did not differ between treated and untreated plants suggesting no effect of methyl salicylate on soybean aphid reproduction and implicating the role of natural enemies in depressing aphid populations. Although aphid populations were reduced locally around methyl salicylate lures, larger scale studies are needed to assess the technology at the whole-field scale.

  1. Volatile communication in plant-aphid interactions.

    Science.gov (United States)

    de Vos, Martin; Jander, Georg

    2010-08-01

    Volatile communication plays an important role in mediating the interactions between plants, aphids, and other organisms in the environment. In response to aphid infestation, many plants initiate indirect defenses through the release of volatiles that attract ladybugs, parasitoid wasps, and other aphid-consuming predators. Aphid-induced volatile release in the model plant Arabidopsis thaliana requires the jasmonate signaling pathway. Volatile release is also induced by infection with aphid-transmitted viruses. Consistent with mathematical models of optimal transmission, viruses that are acquired rapidly by aphids induce volatile release to attract migratory aphids, but discourage long-term aphid feeding. Although the ecology of these interactions is well-studied, further research is needed to identify the molecular basis of aphid-induced and virus-induced changes in plant volatile release. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling.

    Science.gov (United States)

    Kloth, Karen J; Wiegers, Gerrie L; Busscher-Lange, Jacqueline; van Haarst, Jan C; Kruijer, Willem; Bouwmeester, Harro J; Dicke, Marcel; Jongsma, Maarten A

    2016-05-01

    Aphids induce many transcriptional perturbations in their host plants, but the signalling cascades responsible and the effects on plant resistance are largely unknown. Through a genome-wide association (GWA) mapping study in Arabidopsis thaliana, we identified WRKY22 as a candidate gene associated with feeding behaviour of the green peach aphid, Myzus persicae The transcription factor WRKY22 is known to be involved in pathogen-triggered immunity, and WRKY22 gene expression has been shown to be induced by aphids. Assessment of aphid population development and feeding behaviour on knockout mutants and overexpression lines showed that WRKY22 increases susceptibility to M. persicae via a mesophyll-located mechanism. mRNA sequencing analysis of aphid-infested wrky22 knockout plants revealed the up-regulation of genes involved in salicylic acid (SA) signalling and down-regulation of genes involved in plant growth and cell-wall loosening. In addition, mechanostimulation of knockout plants by clip cages up-regulated jasmonic acid (JA)-responsive genes, resulting in substantial negative JA-SA crosstalk. Based on this and previous studies, WRKY22 is considered to modulate the interplay between the SA and JA pathways in response to a wide range of biotic and abiotic stimuli. Its induction by aphids and its role in suppressing SA and JA signalling make WRKY22 a potential target for aphids to manipulate host plant defences. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. A Rad53 Independent Function of Rad9 Becomes Crucial for Genome Maintenance in the Absence of the RecQ Helicase Sgs1

    DEFF Research Database (Denmark)

    Nielsen, Ida; Bentsen, Iben Bach; Andersen, Anni Hangaard

    2013-01-01

    becomes crucial for genome maintenance in the absence of Sgs1. Despite this, our dissection of the MMS checkpoint response reveals parallel, but unequal pathways for Rad53 activation and highlights significant differences between MMS- and hydroxyurea (HU)-induced checkpoint responses with relation...

  4. Alfalfa Leaf Curl Virus: an Aphid-Transmitted Geminivirus.

    Science.gov (United States)

    Roumagnac, Philippe; Granier, Martine; Bernardo, Pauline; Deshoux, Maëlle; Ferdinand, Romain; Galzi, Serge; Fernandez, Emmanuel; Julian, Charlotte; Abt, Isabelle; Filloux, Denis; Mesléard, François; Varsani, Arvind; Blanc, Stéphane; Martin, Darren P; Peterschmitt, Michel

    2015-09-01

    The family Geminiviridae comprises seven genera differentiated by genome organization, sequence similarity, and insect vector. Capulavirus, an eighth genus, has been proposed to accommodate two newly discovered highly divergent geminiviruses that presently have no known vector. Alfalfa leaf curl virus, identified here as a third capulavirus, is shown to be transmitted by Aphis craccivora. This is the first report of an aphid-transmitted geminivirus. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. A compromised yeast RNA polymerase II enhances UV sensitivity in the absence of global genome nucleotide excision repair.

    Science.gov (United States)

    Wong, J M; Ingles, C J

    2001-02-01

    Nucleotide excision repair is the major pathway responsible for removing UV-induced DNA damage, and is therefore essential for cell survival following exposure to UV radiation. In this report, we have assessed the contributions of some components of the RNA polymerase II (Pol II) transcription machinery to UV resistance in Saccharomyces cerevisiae. Deletion of the gene encoding the Pol II elongation factor TFIIS (SII) resulted in enhanced UV sensitivity, but only in the absence of global genome repair dependent on the RAD7 and RAD16 genes, a result seen previously with deletions of RAD26 and RAD28, yeast homologs of the human Cockayne syndrome genes CSB and CSA, respectively. A RAD7/16-dependent reduction in survival after UV irradiation was also seen in the presence of mutations in RNA Pol II that confer a defect in its response to SII, as well as with other mutations which reside in regions of the largest subunit of Pol II not involved in SII interactions. Indeed, an increase in UV sensitivity was achieved by simply decreasing the steadystate level of RNA Pol II. Truncation of the C-terminal domain and other RNA Pol II mutations conferred sensitivity to the ribonucleotide reductase inhibitor hydroxyurea and induction of RNR1 and RNR2 mRNAs after UV irradiation was attenuated in these mutant cells. That UV sensitivity can be a consequence of mutations in the RNA Pol II machinery in yeast cells suggests that alterations in transcriptional programs could underlie some of the pathophysiological defects seen in the human disease Cockayne syndrome.

  6. High-throughput phenotyping of plant resistance to aphids by automated video tracking.

    Science.gov (United States)

    Kloth, Karen J; Ten Broeke, Cindy Jm; Thoen, Manus Pm; Hanhart-van den Brink, Marianne; Wiegers, Gerrie L; Krips, Olga E; Noldus, Lucas Pjj; Dicke, Marcel; Jongsma, Maarten A

    2015-01-01

    Piercing-sucking insects are major vectors of plant viruses causing significant yield losses in crops. Functional genomics of plant resistance to these insects would greatly benefit from the availability of high-throughput, quantitative phenotyping methods. We have developed an automated video tracking platform that quantifies aphid feeding behaviour on leaf discs to assess the level of plant resistance. Through the analysis of aphid movement, the start and duration of plant penetrations by aphids were estimated. As a case study, video tracking confirmed the near-complete resistance of lettuce cultivar 'Corbana' against Nasonovia ribisnigri (Mosely), biotype Nr:0, and revealed quantitative resistance in Arabidopsis accession Co-2 against Myzus persicae (Sulzer). The video tracking platform was benchmarked against Electrical Penetration Graph (EPG) recordings and aphid population development assays. The use of leaf discs instead of intact plants reduced the intensity of the resistance effect in video tracking, but sufficiently replicated experiments resulted in similar conclusions as EPG recordings and aphid population assays. One video tracking platform could screen 100 samples in parallel. Automated video tracking can be used to screen large plant populations for resistance to aphids and other piercing-sucking insects.

  7. Reproduction and dispersal in an ant-associated root aphid community

    DEFF Research Database (Denmark)

    Ivens, A.B.F.; Kronauer, Daniel Jan Christoph; Pen, I.

    2012-01-01

    viscosity is high and winged aphids rare, consistent with infrequent horizontal transmission between ant host colonies. The absence of the primary host shrub (Pistacia) may explain the absence of sex in three of the studied species, but elm trees (Ulmus) that are primary hosts of the fourth species (T...... above ground, whereas dispersal constraints and dependence on ant-tending may differentially affect the costs and benefits of sex in subterranean aphids. Here, we studied reproductive mode and dispersal in a community of root aphids that are obligately associated with the ant Lasius flavus. We assessed...... the genetic population structure of four species (Geoica utricularia, Tetraneura ulmi, Forda marginata and Forda formicaria) in a Dutch population and found that all species reproduce predominantly if not exclusively asexually, so that populations consist of multiple clonal lineages. We show that population...

  8. Plant immunity in plant–aphid interactions

    Science.gov (United States)

    Jaouannet, Maëlle; Rodriguez, Patricia A.; Lenoir, Camille J. G.; MacLeod, Ruari; Escudero-Martinez, Carmen; Bos, Jorunn I.B.

    2014-01-01

    Aphids are economically important pests that cause extensive feeding damage and transmit viruses. While some species have a broad host range and cause damage to a variety of crops, others are restricted to only closely related plant species. While probing and feeding aphids secrete saliva, containing effectors, into their hosts to manipulate host cell processes and promote infestation. Aphid effector discovery studies pointed out parallels between infection and infestation strategies of plant pathogens and aphids. Interestingly, resistance to some aphid species is known to involve plant resistance proteins with a typical NB-LRR domain structure. Whether these resistance proteins indeed recognize aphid effectors to trigger ETI remains to be elucidated. In addition, it was recently shown that unknown aphid derived elicitors can initiate reactive oxygen species (ROS) production and callose deposition and that these responses were dependent on BAK1 (BRASSINOSTERIOD INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1) which is a key component of the plant immune system. In addition, BAK-1 contributes to non-host resistance to aphids pointing to another parallel between plant-pathogen and – aphid interactions. Understanding the role of plant immunity and non-host resistance to aphids is essential to generate durable and sustainable aphid control strategies. Although insect behavior plays a role in host selection and non-host resistance, an important observation is that aphids interact with non-host plants by probing the leaf surface, but are unable to feed or establish colonization. Therefore, we hypothesize that aphids interact with non-host plants at the molecular level, but are potentially not successful in suppressing plant defenses and/or releasing nutrients. PMID:25520727

  9. Pest control of aphids depends on landscape complexity and natural enemy interactions.

    Science.gov (United States)

    Martin, Emily A; Reineking, Björn; Seo, Bumsuk; Steffan-Dewenter, Ingolf

    2015-01-01

    Aphids are a major concern in agricultural crops worldwide, and control by natural enemies is an essential component of the ecological intensification of agriculture. Although the complexity of agricultural landscapes is known to influence natural enemies of pests, few studies have measured the degree of pest control by different enemy guilds across gradients in landscape complexity. Here, we use multiple natural-enemy exclosures replicated in 18 fields across a gradient in landscape complexity to investigate (1) the strength of natural pest control across landscapes, measured as the difference between pest pressure in the presence and in the absence of natural enemies; (2) the differential contributions of natural enemy guilds to pest control, and the nature of their interactions across landscapes. We show that natural pest control of aphids increased up to six-fold from simple to complex landscapes. In the absence of pest control, aphid population growth was higher in complex than simple landscapes, but was reduced by natural enemies to similar growth rates across all landscapes. The effects of enemy guilds were landscape-dependent. Particularly in complex landscapes, total pest control was supplied by the combined contribution of flying insects and ground-dwellers. Birds had little overall impact on aphid control. Despite evidence for intraguild predation of flying insects by ground-dwellers and birds, the overall effect of enemy guilds on aphid control was complementary. Understanding pest control services at large spatial scales is critical to increase the success of ecological intensification schemes. Our results suggest that, where aphids are the main pest of concern, interactions between natural enemies are largely complementary and lead to a strongly positive effect of landscape complexity on pest control. Increasing the availability of seminatural habitats in agricultural landscapes may thus benefit not only natural enemies, but also the effectiveness of

  10. Genome size evolution in Ontario ferns (Polypodiidae): evolutionary correlations with cell size, spore size, and habitat type and an absence of genome downsizing.

    Science.gov (United States)

    Henry, Thomas A; Bainard, Jillian D; Newmaster, Steven G

    2014-10-01

    Genome size is known to correlate with a number of traits in angiosperms, but less is known about the phenotypic correlates of genome size in ferns. We explored genome size variation in relation to a suite of morphological and ecological traits in ferns. Thirty-six fern taxa were collected from wild populations in Ontario, Canada. 2C DNA content was measured using flow cytometry. We tested for genome downsizing following polyploidy using a phylogenetic comparative analysis to explore the correlation between 1Cx DNA content and ploidy. There was no compelling evidence for the occurrence of widespread genome downsizing during the evolution of Ontario ferns. The relationship between genome size and 11 morphological and ecological traits was explored using a phylogenetic principal component regression analysis. Genome size was found to be significantly associated with cell size, spore size, spore type, and habitat type. These results are timely as past and recent studies have found conflicting support for the association between ploidy/genome size and spore size in fern polyploid complexes; this study represents the first comparative analysis of the trend across a broad taxonomic group of ferns.

  11. Altruistic defence behaviours in aphids

    Directory of Open Access Journals (Sweden)

    Brodeur Jacques

    2010-01-01

    Full Text Available Abstract Background Altruistic anti-predatory behaviours pose an evolutionary problem because they are costly to the actor and beneficial to the recipients. Altruistic behaviours can evolve through indirect fitness benefits when directed toward kin. The altruistic nature of anti-predatory behaviours is often difficult to establish because the actor can obtain direct fitness benefits, or the behaviour could result from selfish coercion by others, especially in eusocial animals. Non-eusocial parthenogenetically reproducing aphids form colonies of clone-mates, which are ideal to test the altruistic nature of anti-predatory defence behaviours. Many aphids release cornicle secretions when attacked by natural enemies such as parasitoids. These secretions contain an alarm pheromone that alerts neighbours (clone-mates of danger, thereby providing indirect fitness benefits to the actor. However, contact with cornicle secretions also hampers an attacker and could provide direct fitness to the actor. Results We tested the hypothesis that cornicle secretions are altruistic by assessing direct and indirect fitness consequences of smearing cornicle secretions onto an attacker, and by manipulating the number of clone-mates that could benefit from the behaviour. We observed parasitoids, Aphidius rhopalosiphi, foraging singly in patches of the cereal aphid Sitobion avenae of varied patch size (2, 6, and 12 aphids. Aphids that smeared parasitoids did not benefit from a reduced probability of parasitism, or increase the parasitoids' handling time. Smeared parasitoids, however, spent proportionately more time grooming and less time foraging, which resulted in a decreased host-encounter and oviposition rate within the host patch. In addition, individual smearing rate increased with the number of clone-mates in the colony. Conclusions Cornicle secretions of aphids were altruistic against parasitoids, as they provided no direct fitness benefits to secretion

  12. The helper component-proteinase of cowpea aphid-borne mosaic virus

    NARCIS (Netherlands)

    Mlotshwa, S.

    2000-01-01

    Cowpea aphid-borne mosaic potyvirus causes severe yield losses in cowpea, an important legume crop in semi-arid regions of Africa. We have elucidated the genomic sequence of the virus and subsequently focused our attention on the so-called helper component-proteinase (HC-Pro), a

  13. Aphid alarm pheromone as a cue for ants to locate aphid partners.

    Directory of Open Access Journals (Sweden)

    François J Verheggen

    Full Text Available The mutualistic relationships that occur between myrmecophilous aphids and ants are based on the rich food supply that honeydew represents for ants and on the protection they provide against aphid natural enemies. While aphid predators and parasitoids actively forage for oviposition sites by using aphid semiochemicals, scouts of aphid-tending ant species would also benefit from locating honeydew resources by orienting toward aphid pheromone sources. The present study aims to provide additional information on the use of Aphis fabae alarm pheromone, i.e. (E-β-farnesene (EβF, by ant scouts. The perception and behavioral impact of EβF on Lasius niger were investigated using electroantennography and two bio-assays measuring their attraction and orientation towards aphid semiochemicals. Pronounced electrical depolarizations were observed from L. niger scout antennae to stimulations of A. fabae alarm pheromone, while other sesquiterpenes elicited weak or no responses. L. niger scouts were significantly attracted toward EβF in a four-arm olfactometer, as well as in an two-choice bioassay. These laboratory results suggest for the first time that low amounts of aphid alarm pheromone can be used by L. niger scouts as a cue indicating the presence of aphid colonies and could therefore mediate the aphid-ant partnership in the field.

  14. All 37 Mitochondrial Genes of Aphid Aphis craccivora Obtained from Transcriptome Sequencing: Implications for the Evolution of Aphids.

    Directory of Open Access Journals (Sweden)

    Nan Song

    Full Text Available The availability of mitochondrial genome data for Aphididae, one of the economically important insect pest families, in public databases is limited. The advent of next generation sequencing technology provides the potential to generate mitochondrial genome data for many species timely and cost-effectively. In this report, we used transcriptome sequencing technology to determine all the 37 mitochondrial genes of the cowpea aphid, Aphis craccivora. This method avoids the necessity of finding suitable primers for long PCRs or primer-walking amplicons, and is proved to be effective in obtaining the whole set of mitochondrial gene data for insects with difficulty in sequencing mitochondrial genome by PCR-based strategies. Phylogenetic analyses of aphid mitochondrial genome data show clustering based on tribe level, and strongly support the monophyly of the family Aphididae. Within the monophyletic Aphidini, three samples from Aphis grouped together. In another major clade of Aphididae, Pterocomma pilosum was recovered as a potential sister-group of Cavariella salicicola, as part of Macrosiphini.

  15. The phytopathogen Dickeya dadantii (Erwinia chrysanthemi 3937) is a pathogen of the pea aphid.

    Science.gov (United States)

    Grenier, Anne-Marie; Duport, Gabrielle; Pagès, Sylvie; Condemine, Guy; Rahbé, Yvan

    2006-03-01

    Dickeya dadantii (Erwinia chrysanthemi) is a phytopathogenic bacterium causing soft rot diseases on many crops. The sequencing of its genome identified four genes encoding homologues of the Cyt family of insecticidal toxins from Bacillus thuringiensis, which are not present in the close relative Pectobacterium carotovorum subsp. atrosepticum. The pathogenicity of D. dadantii was tested on the pea aphid Acyrthosiphon pisum, and the bacterium was shown to be highly virulent for this insect, either by septic injury or by oral infection. The lethal inoculum dose was calculated to be as low as 10 ingested bacterial cells. A D. dadantii mutant with the four cytotoxin genes deleted showed a reduced per os virulence for A. pisum, highlighting the potential role of at least one of these genes in pathogenicity. Since only one bacterial pathogen of aphids has been previously described (Erwinia aphidicola), other species from the same bacterial group were tested. The pathogenic trait for aphids was shown to be widespread, albeit variable, within the phytopathogens, with no link to phylogenetic positioning in the Enterobacteriaceae. Previously characterized gut symbionts from thrips (Erwinia/Pantoea group) were also highly pathogenic to the aphid, whereas the potent entomopathogen Photorhabdus luminescens was not. D. dadantii is not a generalist insect pathogen, since it has low pathogenicity for three other insect species (Drosophila melanogaster, Sitophilus oryzae, and Spodoptera littoralis). D. dadantii was one of the most virulent aphid pathogens in our screening, and it was active on most aphid instars, except for the first one, probably due to anatomical filtering. The observed difference in virulence toward apterous and winged aphids may have an ecological impact, and this deserves specific attention in future research.

  16. Spruce aphid (Elatobium abietinum Walker) (Hemiptera: Aphididae) [Chapter XXIV

    Science.gov (United States)

    Ann M. Lynch

    2014-01-01

    Elatobium abietinum Walker is a spruce-feeding aphid that in Europe is referred to as the green spruce aphid (Day et al., 1998a) (Fig. 1). However, in North America E. abietinum is known simply as the spruce aphid, while the common name "green spruce aphid" refers to a different species, Cinara fornacula Hottes (Hemiptera: Aphididae) (http://www.entsoc.org/...

  17. Ant Larval Demand Reduces Aphid Colony Growth Rates in an Ant-Aphid Interaction

    Directory of Open Access Journals (Sweden)

    James M. Cook

    2012-02-01

    Full Text Available Ants often form mutualistic interactions with aphids, soliciting honeydew in return for protective services. Under certain circumstances, however, ants will prey upon aphids. In addition, in the presence of ants aphids may increase the quantity or quality of honeydew produced, which is costly. Through these mechanisms, ant attendance can reduce aphid colony growth rates. However, it is unknown whether demand from within the ant colony can affect the ant-aphid interaction. In a factorial experiment, we tested whether the presence of larvae in Lasius niger ant colonies affected the growth rate of Aphis fabae colonies. Other explanatory variables tested were the origin of ant colonies (two separate colonies were used and previous diet (sugar only or sugar and protein. We found that the presence of larvae in the ant colony significantly reduced the growth rate of aphid colonies. Previous diet and colony origin did not affect aphid colony growth rates. Our results suggest that ant colonies balance the flow of two separate resources from aphid colonies- renewable sugars or a protein-rich meal, depending on demand from ant larvae within the nest. Aphid payoffs from the ant-aphid interaction may change on a seasonal basis, as the demand from larvae within the ant colony waxes and wanes.

  18. Encyclopedia of bacterial gene circuits whose presence or absence correlate with pathogenicity--a large-scale system analysis of decoded bacterial genomes.

    Science.gov (United States)

    Shestov, Maksim; Ontañón, Santiago; Tozeren, Aydin

    2015-10-13

    Bacterial infections comprise a global health challenge as the incidences of antibiotic resistance increase. Pathogenic potential of bacteria has been shown to be context dependent, varying in response to environment and even within the strains of the same genus. We used the KEGG repository and extensive literature searches to identify among the 2527 bacterial genomes in the literature those implicated as pathogenic to the host, including those which show pathogenicity in a context dependent manner. Using data on the gene contents of these genomes, we identified sets of genes highly abundant in pathogenic but relatively absent in commensal strains and vice versa. In addition, we carried out genome comparison within a genus for the seventeen largest genera in our genome collection. We projected the resultant lists of ortholog genes onto KEGG bacterial pathways to identify clusters and circuits, which can be linked to either pathogenicity or synergy. Gene circuits relatively abundant in nonpathogenic bacteria often mediated biosynthesis of antibiotics. Other synergy-linked circuits reduced drug-induced toxicity. Pathogen-abundant gene circuits included modules in one-carbon folate, two-component system, type-3 secretion system, and peptidoglycan biosynthesis. Antibiotics-resistant bacterial strains possessed genes modulating phagocytosis, vesicle trafficking, cytoskeletal reorganization, and regulation of the inflammatory response. Our study also identified bacterial genera containing a circuit, elements of which were previously linked to Alzheimer's disease. Present study produces for the first time, a signature, in the form of a robust list of gene circuitry whose presence or absence could potentially define the pathogenicity of a microbiome. Extensive literature search substantiated a bulk majority of the commensal and pathogenic circuitry in our predicted list. Scanning microbiome libraries for these circuitry motifs will provide further insights into the complex

  19. Exposure to bacterial signals does not alter pea aphids' survival upon a second challenge or investment in production of winged offspring.

    Directory of Open Access Journals (Sweden)

    Bas ter Braak

    Full Text Available Pea aphids have an obligate nutritional symbiosis with the bacteria Buchneraaphidicola and frequently also harbor one or more facultative symbionts. Aphids are also susceptible to bacterial pathogen infections, and it has been suggested that aphids have a limited immune response towards such pathogen infections compared to other, more well-studied insects. However, aphids do possess at least some of the genes known to be involved in bacterial immune responses in other insects, and immune-competent hemocytes. One possibility is that immune priming with microbial elicitors could stimulate immune protection against subsequent bacterial infections, as has been observed in several other insect systems. To address this hypothesis we challenged aphids with bacterial immune elicitors twenty-four hours prior to live bacterial pathogen infections and then compared their survival rates to aphids that were not pre-exposed to bacterial signals. Using two aphid genotypes, we found no evidence for immune protection conferred by immune priming during infections with either Serratia marcescens or with Escherichia coli. Immune priming was not altered by the presence of facultative, beneficial symbionts in the aphids. In the absence of inducible immune protection, aphids may allocate energy towards other defense traits, including production of offspring with wings that could escape deteriorating conditions. To test this, we monitored the ratio of winged to unwinged offspring produced by adult mothers of a single clone that had been exposed to bacterial immune elicitors, to live E. coli infections or to no challenge. We found no correlation between immune challenge and winged offspring production, suggesting that this mechanism of defense, which functions upon exposure to fungal pathogens, is not central to aphid responses to bacterial infections.

  20. Facultative symbiont infections affect aphid reproduction.

    Science.gov (United States)

    Simon, Jean-Christophe; Boutin, Sébastien; Tsuchida, Tsutomu; Koga, Ryuichi; Le Gallic, Jean-François; Frantz, Adrien; Outreman, Yannick; Fukatsu, Takema

    2011-01-01

    Some bacterial symbionts alter their hosts reproduction through various mechanisms that enhance their transmission in the host population. In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum harbors several facultative symbionts influencing several aspects of host ecology. Aphids reproduce by cyclical parthenogenesis whereby clonal and sexual reproduction alternate within the annual life cycle. Many species, including the pea aphid, also show variation in their reproductive mode at the population level, with some lineages reproducing by cyclical parthenogenesis and others by permanent parthenogenesis. While the role of facultative symbionts has been well studied during the parthenogenetic phase of their aphid hosts, very little is known on their possible influence during the sexual phase. Here we investigated whether facultative symbionts modulate the capacity to produce sexual forms in various genetic backgrounds of the pea aphid with controlled symbiont composition and also in different aphid genotypes from natural populations with previously characterized infection status and reproductive mode. We found that most facultative symbionts exhibited detrimental effects on their hosts fitness under sex-inducing conditions in comparison with the reference lines. We also showed that the loss of sexual phase in permanently parthenogenetic lineages of A. pisum was not explained by facultative symbionts. Finally, we demonstrated that Spiroplasma infection annihilated the production of males in the host progeny by inducing a male-killing phenotype, an unexpected result for organisms such as aphids that reproduce primarily through clonal reproduction.

  1. Facultative symbiont infections affect aphid reproduction.

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Simon

    Full Text Available Some bacterial symbionts alter their hosts reproduction through various mechanisms that enhance their transmission in the host population. In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum harbors several facultative symbionts influencing several aspects of host ecology. Aphids reproduce by cyclical parthenogenesis whereby clonal and sexual reproduction alternate within the annual life cycle. Many species, including the pea aphid, also show variation in their reproductive mode at the population level, with some lineages reproducing by cyclical parthenogenesis and others by permanent parthenogenesis. While the role of facultative symbionts has been well studied during the parthenogenetic phase of their aphid hosts, very little is known on their possible influence during the sexual phase. Here we investigated whether facultative symbionts modulate the capacity to produce sexual forms in various genetic backgrounds of the pea aphid with controlled symbiont composition and also in different aphid genotypes from natural populations with previously characterized infection status and reproductive mode. We found that most facultative symbionts exhibited detrimental effects on their hosts fitness under sex-inducing conditions in comparison with the reference lines. We also showed that the loss of sexual phase in permanently parthenogenetic lineages of A. pisum was not explained by facultative symbionts. Finally, we demonstrated that Spiroplasma infection annihilated the production of males in the host progeny by inducing a male-killing phenotype, an unexpected result for organisms such as aphids that reproduce primarily through clonal reproduction.

  2. Transmission of Turnip yellows virus by Myzus persicae Is Reduced by Feeding Aphids on Double-Stranded RNA Targeting the Ephrin Receptor Protein

    Directory of Open Access Journals (Sweden)

    Michaël Mulot

    2018-03-01

    Full Text Available Aphid-transmitted plant viruses are a threat for major crops causing massive economic loss worldwide. Members in the Luteoviridae family are transmitted by aphids in a circulative and non-replicative mode. Virions are acquired by aphids when ingesting sap from infected plants and are transported through the gut and the accessory salivary gland (ASG cells by a transcytosis mechanism relying on virus-specific receptors largely unknown. Once released into the salivary canal, virions are inoculated to plants, together with saliva, during a subsequent feeding. In this paper, we bring in vivo evidence that the membrane-bound Ephrin receptor (Eph is a novel aphid protein involved in the transmission of the Turnip yellows virus (TuYV, Polerovirus genus, Luteoviridae family by Myzus persicae. The minor capsid protein of TuYV, essential for aphid transmission, was able to bind the external domain of Eph in yeast. Feeding M. persicae on in planta- or in vitro-synthesized dsRNA targeting Eph-mRNA (dsRNAEph did not affect aphid feeding behavior but reduced accumulation of TuYV genomes in the aphid's body. Consequently, TuYV transmission efficiency by the dsRNAEph-treated aphids was reproducibly inhibited and we brought evidence that Eph is likely involved in intestinal uptake of the virion. The inhibition of virus uptake after dsRNAEph acquisition was also observed for two other poleroviruses transmitted by M. persicae, suggesting a broader role of Eph in polerovirus transmission. Finally, dsRNAEph acquisition by aphids did not affect nymph production. These results pave the way toward an ecologically safe alternative of insecticide treatments that are used to lower aphid populations and reduce polerovirus damages.

  3. Transmission of Turnip yellows virus by Myzus persicae Is Reduced by Feeding Aphids on Double-Stranded RNA Targeting the Ephrin Receptor Protein.

    Science.gov (United States)

    Mulot, Michaël; Monsion, Baptiste; Boissinot, Sylvaine; Rastegar, Maryam; Meyer, Sophie; Bochet, Nicole; Brault, Véronique

    2018-01-01

    Aphid-transmitted plant viruses are a threat for major crops causing massive economic loss worldwide. Members in the Luteoviridae family are transmitted by aphids in a circulative and non-replicative mode. Virions are acquired by aphids when ingesting sap from infected plants and are transported through the gut and the accessory salivary gland (ASG) cells by a transcytosis mechanism relying on virus-specific receptors largely unknown. Once released into the salivary canal, virions are inoculated to plants, together with saliva, during a subsequent feeding. In this paper, we bring in vivo evidence that the membrane-bound Ephrin receptor (Eph) is a novel aphid protein involved in the transmission of the Turnip yellows virus (TuYV, Polerovirus genus, Luteoviridae family) by Myzus persicae . The minor capsid protein of TuYV, essential for aphid transmission, was able to bind the external domain of Eph in yeast. Feeding M. persicae on in planta - or in vitro -synthesized dsRNA targeting Eph -mRNA (dsRNA Eph ) did not affect aphid feeding behavior but reduced accumulation of TuYV genomes in the aphid's body. Consequently, TuYV transmission efficiency by the dsRNA Eph -treated aphids was reproducibly inhibited and we brought evidence that Eph is likely involved in intestinal uptake of the virion. The inhibition of virus uptake after dsRNA Eph acquisition was also observed for two other poleroviruses transmitted by M. persicae , suggesting a broader role of Eph in polerovirus transmission. Finally, dsRNA Eph acquisition by aphids did not affect nymph production. These results pave the way toward an ecologically safe alternative of insecticide treatments that are used to lower aphid populations and reduce polerovirus damages.

  4. Pepo aphid-borne yellows virus: a new species in the genus Polerovirus.

    Science.gov (United States)

    Ibaba, Jacques D; Laing, Mark D; Gubba, Augustine

    2017-02-01

    Pepo aphid-borne yellows virus (PABYV) has been proposed as a putative representative of a new species in the genus Polerovirus in the family Luteoviridae. The genomes of two South African (SA) isolates of cucurbit-infecting PABYV were described in this record. Total RNA, extracted from a pattypan (Cucurbita pepo L.) and a baby marrow (C. pepo L.) leaf samples, was subjected to next-generation sequencing (NGS) on the HiSeq Illumina platform. Sanger sequencing was subsequently used to authenticate the integrity of PABYV's genome generated from de novo assembly of the NGS data. PABYV genome of SA isolates consists of 5813 nucleotides and displays an organisation typical of poleroviruses. Genome sequence comparisons of the SA PABYV isolates to other poleroviruses support the classification of PABYV as a new species in the genus Polerovirus. Recombination analyses showed that PABYV and Cucurbit aphid-borne yellows virus (CABYV) shared the same ancestor for the genome part situated between breaking points. Phylogenetic analyses of the RNA-dependent RNA polymerase and the coat protein genes showed that SA PABYV isolates shared distant relationship with CABYV and Suakwa aphid-borne yellows virus. Based on our results, we propose that PABYV is a distinct species in the genus Polerovirus.

  5. Absence seizure

    Science.gov (United States)

    Seizure - petit mal; Seizure - absence; Petit mal seizure; Epilepsy - absence seizure ... Elsevier; 2016:chap 101. Marcdante KJ, Kliegman RM. Seizures (paroxysmal disorders). In: Marcdante KJ, Kliegman RM, eds. Nelson Essentials ...

  6. Aphid thermal tolerance is governed by a point mutation in bacterial symbionts.

    Directory of Open Access Journals (Sweden)

    Helen E Dunbar

    2007-05-01

    Full Text Available Symbiosis is a ubiquitous phenomenon generating biological complexity, affecting adaptation, and expanding ecological capabilities. However, symbionts, which can be subject to genetic limitations such as clonality and genomic degradation, also impose constraints on hosts. A model of obligate symbiosis is that between aphids and the bacterium Buchnera aphidicola, which supplies essential nutrients. We report a mutation in Buchnera of the aphid Acyrthosiphon pisum that recurs in laboratory lines and occurs in field populations. This single nucleotide deletion affects a homopolymeric run within the heat-shock transcriptional promoter for ibpA, encoding a small heat-shock protein. This Buchnera mutation virtually eliminates the transcriptional response of ibpA to heat stress and lowers its expression even at cool or moderate temperatures. Furthermore, this symbiont mutation dramatically affects host fitness in a manner dependent on thermal environment. Following a short heat exposure as juveniles, aphids bearing short-allele symbionts produced few or no progeny and contained almost no Buchnera, in contrast to aphids bearing symbionts without the deletion. Conversely, under constant cool conditions, aphids containing symbionts with the short allele reproduced earlier and maintained higher reproductive rates. The short allele has appreciable frequencies in field populations (up to 20%, further supporting the view that lowering of ibpA expression improves host fitness under some conditions. This recurring Buchnera mutation governs thermal tolerance of aphid hosts. Other cases in which symbiont microevolution has a major effect on host ecological tolerance are likely to be widespread because of the high mutation rates of symbiotic bacteria and their crucial roles in host metabolism and development.

  7. A Rad53 independent function of Rad9 becomes crucial for genome maintenance in the absence of the Recq helicase Sgs1.

    Directory of Open Access Journals (Sweden)

    Ida Nielsen

    Full Text Available The conserved family of RecQ DNA helicases consists of caretaker tumour suppressors, that defend genome integrity by acting on several pathways of DNA repair that maintain genome stability. In budding yeast, Sgs1 is the sole RecQ helicase and it has been implicated in checkpoint responses, replisome stability and dissolution of double Holliday junctions during homologous recombination. In this study we investigate a possible genetic interaction between SGS1 and RAD9 in the cellular response to methyl methane sulphonate (MMS induced damage and compare this with the genetic interaction between SGS1 and RAD24. The Rad9 protein, an adaptor for effector kinase activation, plays well-characterized roles in the DNA damage checkpoint response, whereas Rad24 is characterized as a sensor protein also in the DNA damage checkpoint response. Here we unveil novel insights into the cellular response to MMS-induced damage. Specifically, we show a strong synergistic functionality between SGS1 and RAD9 for recovery from MMS induced damage and for suppression of gross chromosomal rearrangements, which is not the case for SGS1 and RAD24. Intriguingly, it is a Rad53 independent function of Rad9, which becomes crucial for genome maintenance in the absence of Sgs1. Despite this, our dissection of the MMS checkpoint response reveals parallel, but unequal pathways for Rad53 activation and highlights significant differences between MMS- and hydroxyurea (HU-induced checkpoint responses with relation to the requirement of the Sgs1 interacting partner Topoisomerase III (Top3. Thus, whereas earlier studies have documented a Top3-independent role of Sgs1 for an HU-induced checkpoint response, we show here that upon MMS treatment, Sgs1 and Top3 together define a minor but parallel pathway to that of Rad9.

  8. Serratia symbiotica from the aphid Cinara cedri: a missing link from facultative to obligate insect endosymbiont.

    Directory of Open Access Journals (Sweden)

    Araceli Lamelas

    2011-11-01

    Full Text Available The genome sequencing of Buchnera aphidicola BCc from the aphid Cinara cedri, which is the smallest known Buchnera genome, revealed that this bacterium had lost its symbiotic role, as it was not able to synthesize tryptophan and riboflavin. Moreover, the biosynthesis of tryptophan is shared with the endosymbiont Serratia symbiotica SCc, which coexists with B. aphidicola in this aphid. The whole-genome sequencing of S. symbiotica SCc reveals an endosymbiont in a stage of genome reduction that is closer to an obligate endosymbiont, such as B. aphidicola from Acyrthosiphon pisum, than to another S. symbiotica, which is a facultative endosymbiont in this aphid, and presents much less gene decay. The comparison between both S. symbiotica enables us to propose an evolutionary scenario of the transition from facultative to obligate endosymbiont. Metabolic inferences of B. aphidicola BCc and S. symbiotica SCc reveal that most of the functions carried out by B. aphidicola in A. pisum are now either conserved in B. aphidicola BCc or taken over by S. symbiotica. In addition, there are several cases of metabolic complementation giving functional stability to the whole consortium and evolutionary preservation of the actors involved.

  9. New genus and species of the extinct aphid family Szelegiewicziidae and their implications for aphid evolution

    DEFF Research Database (Denmark)

    Wegierek, Piotr; Zyła, Dagmara Maria; Homan, Agnieszka

    2017-01-01

    of the extinct groups. The extinct aphid family Szelegiewicziidae is supposed to be one of the oviparous lineages in aphid evolution. New material from the rock fossil deposits of Shar Teg (Upper Jurassic of Mongolia), Baissa (Lower Cretaceous of Siberia-Russia), and Burmese amber (Upper Cretaceous of Myanmar...

  10. AphID (Lucid key) http://AphID.AphidNet.org

    Science.gov (United States)

    This peer-reviewed web site concentrates on the 66 adult alate and apterous aphids that are the world's most cosmopolitan and polyphagous species. The site includes fact sheets about the various aphids species, a glossary of terms helpful to the student, hundreds of photographs and illustrations, a...

  11. Whitefly and aphid inducible promoters from Arabidopsis thaliana L.

    Indian Academy of Sciences (India)

    Aphids, whitefly, inducible promoter, sap sucking insects, biotic stress. Whitefly and aphid ..... pathway related genes in cotton plants (Dubey et al. 2013). ... and coordination of work, data analysis and interpretation, and revised the article.

  12. Degenerative minimalism in the genome of a psyllid endosymbiont.

    Science.gov (United States)

    Clark, M A; Baumann, L; Thao, M L; Moran, N A; Baumann, P

    2001-03-01

    Psyllids, like aphids, feed on plant phloem sap and are obligately associated with prokaryotic endosymbionts acquired through vertical transmission from an ancestral infection. We have sequenced 37 kb of DNA of the genome of Carsonella ruddii, the endosymbiont of psyllids, and found that it has a number of unusual properties revealing a more extreme case of degeneration than was previously reported from studies of eubacterial genomes, including that of the aphid endosymbiont Buchnera aphidicola. Among the unusual properties are an exceptionally low guanine-plus-cytosine content (19.9%), almost complete absence of intergenic spaces, operon fusion, and lack of the usual promoter sequences upstream of 16S rDNA. These features suggest the synthesis of long mRNAs and translational coupling. The most extreme instances of base compositional bias occur in the genes encoding proteins that have less highly conserved amino acid sequences; the guanine-plus-cytosine content of some protein-coding sequences is as low as 10%. The shift in base composition has a large effect on proteins: in polypeptides of C. ruddii, half of the residues consist of five amino acids with codons low in guanine plus cytosine. Furthermore, the proteins of C. ruddii are reduced in size, with an average of about 9% fewer amino acids than in homologous proteins of related bacteria. These observations suggest that the C. ruddii genome is not subject to constraints that limit the evolution of other known eubacteria.

  13. Systemic Propagation of a Fluorescent Infectious Clone of a Polerovirus Following Inoculation by Agrobacteria and Aphids.

    Science.gov (United States)

    Boissinot, Sylvaine; Pichon, Elodie; Sorin, Céline; Piccini, Céline; Scheidecker, Danièle; Ziegler-Graff, Véronique; Brault, Véronique

    2017-06-29

    A fluorescent viral clone of the polerovirus Turnip yellows virus (TuYV) was engineered by introducing the Enhanced Green Fluorescent Protein (EGFP) sequence into the non-structural domain sequence of the readthrough protein, a minor capsid protein. The resulting recombinant virus, referred to as TuYV-RT GFP , was infectious in several plant species when delivered by agroinoculation and invaded efficiently non-inoculated leaves. As expected for poleroviruses, which infect only phloem cells, the fluorescence emitted by TuYV-RT GFP was restricted to the vasculature of infected plants. In addition, TuYV-RT GFP was aphid transmissible and enabled the observation of the initial sites of infection in the phloem after aphid probing in epidermal cells. The aphid-transmitted virus moved efficiently to leaves distant from the inoculation sites and importantly retained the EGFP sequence in the viral genome. This work reports on the first engineered member in the Luteoviridae family that can be visualized by fluorescence emission in systemic leaves of different plant species after agroinoculation or aphid transmission.

  14. Work Absence

    DEFF Research Database (Denmark)

    Amilon, Anna; Wallette, Mårten

    2009-01-01

    This paper investigates whether low levels of absence increase the probability of permanent employment and reduce that of unemployment for Swedish temporary workers. We investigate two reasons for absence: worker sickness and sickness of a dependent child. Using a competing risk estimation model,...

  15. The effect of within-crop habitat manipulations on the conservation biological control of aphids in field-grown lettuce.

    Science.gov (United States)

    Skirvin, D J; Kravar-Garde, L; Reynolds, K; Wright, C; Mead, A

    2011-12-01

    Within-crop habitat manipulations have the potential to increase the biological control of pests in horticultural field crops. Wildflower strips have been shown to increase the abundance of natural enemies, but there is little evidence to date of an impact on pest populations. The aim of this study was to determine whether within-crop wildflower strips can increase the natural regulation of pests in horticultural field crops. Aphid numbers in plots of lettuce grown adjacent to wildflower strips were compared with those in plots grown in the absence of wildflowers. The presence of wildflower strips led to a decrease in aphid numbers on adjacent lettuce plants during June and July, but had less impact in August and September. The decrease in aphid numbers was greatest close to the wildflower strips and, the decrease in aphid numbers declined with increasing distance from the wildflower strips, with little effect at a distance of ten metres. The main natural enemies found in the crop were those that dispersed aerially, which is consistent with data from previous studies on cereal crops. Analysis and interpretation of natural enemy numbers was difficult due to low recovery of natural enemies, and the numbers appeared to follow changes in aphid abundance rather than being directly linked to the presence of wildflower strips. Cutting the wildflower strips, to remove floral resources, had no impact on the reduction in aphid numbers achieved during June and July, but decreased the effect of the wildflower strips during August and September. The results suggest that wildflower strips can lead to increased natural regulation of pest aphids in outdoor lettuce crops, but more research is required to determine how this is mediated by natural enemies and how the impact of wildflower strips on natural pest regulation changes during the growing season.

  16. Loss of aphid transmissibility of plum pox virus isolates

    NARCIS (Netherlands)

    Kamenova, I.; Lohuis, H.; Peters, D.

    2002-01-01

    The aphid transmissibility of seven Plum pox virus (PPV) isolates and the amino acid sequences of their coat proteins were analysed Two aphid transmissible isolates PPV-A and PPV-P contained the DAG amino triplet, while DAL or NAG replaced this triplet in the coat proteins of non-aphid transmissible

  17. Root-lesion nematodes suppress cabbage aphid population development by reducing aphid daily reproduction

    Directory of Open Access Journals (Sweden)

    W. H. Gera eHol

    2016-02-01

    Full Text Available Empirical studies have shown that belowground feeding herbivores can affect the performance of aboveground herbivores in different ways. Often the critical life-history parameters underlying the observed performance effects remain unexplored. In order to better understand the cause for the observed effects on aboveground herbivores, these ecological mechanisms must be better understood. In this study we combined empirical experiments with a modelling approach to analyse the effect of two root feeding endoparasitic nematodes with different feeding strategies on the population growth of the aboveground feeding specialist aphid Brevicoryne brassicae on Brassica nigra. The aim was to test whether emerging differences in life history characteristics (days until reproduction, daily reproduction would be sufficient to explain observed differences in aphid population development on plants with and without two species of nematodes. Aphid numbers were lower on plants with Pratylenchus penetrans in comparison to aphid numbers on plants with Meloidogyne spp. A dedicated experiment showed that aphid daily reproduction was lower on plants with P. penetrans (3.08 offspring per female per day in comparison to both uninfested plants and plants with Meloidogyne spp. (3.50 offspring per female per day. The species-specific reduction of aphid reproduction appeared independent of changes in amino acids, soluble sugars or the glucosinolate sinigrin in the phloem. An individual-based model revealed that relatively small differences in reproduction rate per female were sufficient to yield a similar difference in aphid populations as was found in the empirical experiments.

  18. Responses of Russian Wheat Aphid (Homoptera: Aphididae) to Aphid Alarm Pheromone

    OpenAIRE

    Shah, P. A.; Pickett, J. A.; Vandenberg, J. D.

    2017-01-01

    In a series of laboratory tests, Russian wheat aphids, Diuraphis noxia (Mordvilko), responded to synthetic aphid alarm pheromone, (E)-β-farnesene, by removing stylets and leaving feeding sites or by crawling out of test arenas. Late instars and adults were more responsive than early instars. In dose-response assays, EC50 estimates ranged from 0.94 to 8.95 mg/ml among 3 experiments. In arenas, D. noxia also responded to the proximity of cornicle-damaged nymphs of either the green peach aphid, ...

  19. Improvement of wheat for resistance to Russian Wheat Aphid

    International Nuclear Information System (INIS)

    Kinyua, M.; Malinga, J.N.; Wanyama, J.; Karanja, L.; Njau, P.; Leo, T.; Alomba, E.

    2001-01-01

    Breeding for resistance against Russian wheat aphid in Kenya is reported. Results of six of the lines were found to have high to moderate resistance to Russian wheat aphid. Popular lines were susceptible in the greenhouse when subjected to aphid pressure but showed moderate susceptibility when screened under field conditions, indicating that in years or location with low aphid pressure farmers may still get a crop. However in areas of high aphid pressure or bad years they may lose their crop. Consequently, developing resistant/torerant varieties is urgent

  20. Partial aphid resistance in lettuce negatively affects parasitoids.

    Science.gov (United States)

    Lanteigne, Marie-Eve; Brodeur, Jacques; Jenni, Sylvie; Boivin, Guy

    2014-10-01

    This study investigated the effects of partial plant resistance on the lettuce aphid Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae), a major pest of cultivated lettuce (Lactuca sativa L.), and one of its parasitoids, Aphidius ervi Haliday (Hymenoptera: Braconidae). Aphids were reared on susceptible (L. sativa variety Estival; S) or partially resistant (Lactuca serriola L. PI 491093; PR) lettuce, and next parasitized by A. ervi females. Fitness proxies were measured for both aphids and parasitoids. Developmental time to adult stage took longer for alate and apterous aphids (an average of 3.5 and 1.5 additional days, respectively) on PR than on S lettuce, and fecundity of alate aphids reared on PR lettuce was reduced by 37.8% relative to those reared on S lettuce. Size (tibia length) and weight of aphids reared on PR lettuce were lower than for aphids reared on S lettuce from the third and second instar onward, respectively. Parasitism of aphids reared on PR plants resulted in lower parasitoid offspring emergence (-49.9%), lower adult female (-30.3%) and male (-27.5%) weight, smaller adult female (-17.5%) and male (-11.9%) size, and lower female fecundity (37.8% fewer eggs) than when parasitoids developed from aphids reared on S plants. Our results demonstrate that partial aphid resistance in lettuce negatively affects both the second and third trophic levels. Host plant resistance in cultivated lettuce may therefore create an ecological sink for aphid parasitoids.

  1. Ants farm subterranean aphids mostly in single clone groups

    DEFF Research Database (Denmark)

    Ivens, Aniek B.F.; Kronauer, Daniel Jan Christoph; Pen, Ido

    2012-01-01

    mutualisms have been studied in sufficient genetic detail to address these issues, so we decided to characterize symbiont diversity in the complex mutualism between multiple root aphid species and Lasius flavus ants. After showing elsewhere that three of these aphid species have low dispersal and mostly...... if not exclusively asexual reproduction, we here investigate aphid diversity within and between ant nest mounds. Results The three focal species (Geoica utricularia, Forda marginata and Tetraneura ulmi) had considerable clonal diversity at the population level. Yet more than half of the ant mounds contained just....... The ants appear to eat most of the early instar aphids, so that adult aphids are unlikely to face limited phloem resources and scramble competition with other aphids. We suggest that such culling of carbohydrate-providing symbionts for protein ingestion may maintain maximal host yield per aphid while also...

  2. Wide dispersal of aphid-pathogenic Entomophthorales among aphids relies upon migratory alates.

    Science.gov (United States)

    Feng, Ming-Guang; Chen, Chun; Chen, Bin

    2004-05-01

    Entomophthoralean mycoses are of general importance in the natural control of aphids, but mechanisms involved in their dissemination are poorly understood. Despite several possible means of fungal survival, the dispersal of the mycoses in aphids has never been related to the flight of their migratory alates that are able to locate suitable host plants. In this study, aphid-pathogenic fungi proved to be widely disseminated among various aphids by their alates through migratory flight based on the following findings. First, up to 36.6% of the 7139 migratory alates (including nine species of vegetable or cereal aphids) trapped from air > 30 m above the ground in three provinces of China were found bearing eight species of fungal pathogens. Of those, six were aphid-specific Entomophthorales dominated in individual cases by Pandora neoaphidis, which occurs globally but has no resting spores discovered to date. Secondly, infected alates were confirmed to be able to fly for hours, to initiate colonies on plants after flight and to transmit fungal infection to their offspring in a laboratory experiment, in which 238 Sitobion avenae alates were individually flown in a computer-monitoring flight mill system after exposure to a spore shower of P. neoaphidis and then allowed to colonize host plants.

  3. First report of Pandora neoaphidis resting spore formation in vivo in aphid hosts under field conditions

    Science.gov (United States)

    The entomopathogenic fungus PANDORA NEOAPHIDIS is a recognized pathogen of aphids, causing natural epizootics in aphid populations, and interacts favorably with aphid predators and parasitoids. Survival of entomophthoralean fungi in periods of unsuitable weather conditions or lack of appropriate hos...

  4. Aphid parasitoids (Hymenoptera, Braconidae, Aphidiinae) from Thailand

    Czech Academy of Sciences Publication Activity Database

    Starý, Petr; Rakhshani, E.; Tomanović, Ž.; Kavallieratos, N. G.; Sharkey, M.

    -, č. 2498 (2010), s. 47-52 ISSN 1175-5326 Grant - others:Ministry of Science of the Republic of Serbia(CS) 143006B; U. S. National Science Foundation(US) DEB 0542864 Institutional research plan: CEZ:AV0Z50070508 Keywords : aphids * parasitoids * biodiversity Subject RIV: EG - Zoology Impact factor: 0.853, year: 2010

  5. Relationships of Lower Invertebrates Aphid Ecology

    African Journals Online (AJOL)

    or even males for a single species of the about 4(XX) described thus far. Nonetheless, Professor ... the aphid armoury is dispersal, an adaptation related to total habitat quality and ... It also considers predator - prey interactions and the possible ...

  6. Aphid egg protection by ants: a novel aspect of the mutualism between the tree-feeding aphid Stomaphis hirukawai and its attendant ant Lasius productus

    Science.gov (United States)

    Matsuura, Kenji; Yashiro, Toshihisa

    2006-10-01

    Aphids often form mutualistic associations with ants, in which the aphids provide the ants with honeydew and the ants defend the aphids from predators. In this paper, we report aphid egg protection by ants as a novel aspect of the deeply interdependent relationship between a tree-feeding aphid and its attendant ant. The ant Lasius productus harbours oviparous females, males, and eggs of the hinoki cypress-feeding aphid Stomaphis hirukawai in its nests in winter. We investigated the behaviour of ants kept with aphid eggs in petri dishes to examine whether the ants recognise the aphid eggs and tend them or only provide a refuge for the aphids. Workers carried almost all of the aphid eggs into the nest within 24 h. The ants indiscriminately tended aphid eggs collected from their own colonies and those from other ant colonies. The ants cleaned the eggs and piled them up in the nest, and egg tending by ants dramatically increased aphid egg survival rates. Starving the ants showed no significant effect on aphid egg survivorship. Without ants, aphid eggs were rapidly killed by fungi. These results suggested that grooming by the ants protected the aphid eggs, at least, against pathogenic fungi. This hygienic service afforded by the ants seems indispensable for egg survival of these aphids in an environment rich in potentially pathogenic microorganisms.

  7. A peptide that binds the pea aphid gut impedes entry of Pea enation mosaic virus into the aphid hemocoel

    International Nuclear Information System (INIS)

    Liu Sijun; Sivakumar, S.; Sparks, Wendy O.; Miller, W. Allen; Bonning, Bryony C.

    2010-01-01

    Development of ways to block virus transmission by aphids could lead to novel and broad-spectrum means of controlling plant viruses. Viruses in the Luteoviridae enhanced are obligately transmitted by aphids in a persistent manner that requires virion accumulation in the aphid hemocoel. To enter the hemocoel, the virion must bind and traverse the aphid gut epithelium. By screening a phage display library, we identified a 12-residue gut binding peptide (GBP3.1) that binds to the midgut and hindgut of the pea aphid Acyrthosiphon pisum. Binding was confirmed by labeling the aphid gut with a GBP3.1-green fluorescent protein fusion. GBP3.1 reduced uptake of Pea enation mosaic virus (Luteoviridae) from the pea aphid gut into the hemocoel. GBP3.1 also bound to the gut epithelia of the green peach aphid and the soybean aphid. These results suggest a novel strategy for inhibiting plant virus transmission by at least three major aphid pest species.

  8. Multi-modal defences in aphids offer redundant protection and increased costs likely impeding a protective mutualism.

    Science.gov (United States)

    Martinez, Adam J; Doremus, Matthew R; Kraft, Laura J; Kim, Kyungsun L; Oliver, Kerry M

    2018-03-01

    The pea aphid, Acyrthosiphon pisum, maintains extreme variation in resistance to its most common parasitoid wasp enemy, Aphidius ervi, which is sourced from two known mechanisms: protective bacterial symbionts, most commonly Hamiltonella defensa, or endogenously encoded defences. We have recently found that individual aphids may employ each defence individually, occasionally both defences together, or neither. In field populations, Hamiltonella-infected aphids are found at low to moderate frequencies and while less is known about the frequency of resistant genotypes, they show up less often than susceptible genotypes in field collections. To better understand these patterns, we sought to compare the strengths and costs of both types of defence, individually and together, in order to elucidate the selective pressures that maintain multi-modal defence mechanisms or that may favour one over the other. We experimentally infected five aphid genotypes (two lowly and three highly resistant), each with two symbiont strains, Hamiltonella-APSE8 (moderate protection) and Hamiltonella-APSE3 (high protection). This resulted in three sublines per genotype: uninfected, +APSE8 and +APSE3. Each of the 15 total sublines was first subjected to a parasitism assay to determine its resistance phenotype and in a second experiment, a subset was chosen to compare fitness (fecundity and survivorship) in the presence and absence of parasitism. In susceptible aphid genotypes, parasitized sublines infected with Hamiltonella generally showed increased protection with direct fitness benefits, but clear infection costs to fitness in the absence of parasitism. In resistant genotypes, Hamiltonella infection rarely conferred additional protection, often further reduced fecundity and survivorship when enemy challenged, and resulted in constitutive fitness costs in the absence of parasitism. We also identified strong aphid genotype × symbiont-strain interactions, such that the best defensive

  9. Evolutionary ecology of the interactions between aphids and their parasitoids.

    Science.gov (United States)

    Le Ralec, Anne; Anselme, Caroline; Outreman, Yannick; Poirié, Marylène; van Baaren, Joan; Le Lann, Cécile; van Alphen, Jacques J-M

    2010-01-01

    Many organisms, including entomopathogenous fungi, predators or parasites, use aphids as ressources. Parasites of aphids are mostly endoparasitoid insects, i.e. insects which lay eggs inside the body of an other insect which will die as a result of their development. In this article, we review the consequences of the numerous pecularities of aphid biology and ecology for their endoparasitoids, notably the Aphidiinae (Hymenoptera: Braconidae). We first examine the various mechanisms used by aphids for defence against these enemies. We then explore the strategies used by aphidiine parasitoids to exploit their aphid hosts. Finally, we consider the responses of both aphids and parasitoids to ecological constraints induced by seasonal cycles and to environmental variations linked to host plants and climate. The fundamental and applied interest of studying these organisms is discussed. Copyright 2010 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  10. Overcoming Absence

    DEFF Research Database (Denmark)

    Paldam, Camilla Skovbjerg

    2017-01-01

    In this chapter, I address the rhetoric of modern love correspondence – its various purposes, modes of communication, and meta-reflections on writing and media – from the beginning of the 20th century till today. I analyze how love and the beloved are mediated in the articulated desire and longing...... of love letters, and how love letters are used as a medium to overcome absence. I also reflect on the material status of love letters in relation to the technological development and subsequently the replacement of traditional letters by their digital counterparts such as email, text messages and real...

  11. Erwinia iniecta sp. nov., isolated from Russian wheat aphid (Diuraphis noxia).

    Science.gov (United States)

    Campillo, Tony; Luna, Emily; Portier, Perrine; Fischer-Le Saux, Marion; Lapitan, Nora; Tisserat, Ned A; Leach, Jan E

    2015-10-01

    Short, Gram-negative-staining, rod-shaped bacteria were isolated from crushed bodies of Russian wheat aphid [Diuraphis noxia (Kurdjumov)] and artificial diets after Russian wheat aphid feeding. Based on multilocus sequence analysis involving the 16S rRNA, atpD, infB, gyrB and rpoB genes, these bacterial isolates constitute a novel clade in the genus Erwinia, and were most closely related to Erwinia toletana. Representative distinct strains within this clade were used for comparisons with related species of Erwinia. Phenotypic comparisons using four distinct strains and average nucleotide identity (ANI) measurements using two distinct draft genomes revealed that these strains form a novel species within the genus Erwinia. The name Erwinia iniecta sp. nov. is proposed, and strain B120T ( = CFBP 8182T = NCCB 100485T) was designated the type strain. Erwinia iniecta sp. nov. was not pathogenic to plants. However, virulence to the Russian wheat aphid was observed.

  12. Shallot aphids, Myzus ascalonicus, in strawberry

    DEFF Research Database (Denmark)

    Enkegaard, Annie; Sigsgaard, Lene; Kristensen, Kristian

    2013-01-01

    The parasitization capacity of 3 parasitoids and the predation capacity of 3 predators towards the shallot aphid, Myzus ascalonicus Doncaster (Homoptera: Aphididae), on strawberry, Fragaria x ananassa Duchesne (Rosales: Rosaceae) cv. Honeoye, were examined in laboratory experiments. In Petri dish...... other parasitoid-induced causes. However, the host feeding rate was reduced to only 1.2 ± 0.8%, and no significant parasitization mortality was observed on strawberry plants, suggesting that host plants interfered with A. abdominalis activity. This parasitoid does not, therefore, seem to be suited...... to either inoculative or inundative biocontrol of shallot aphids in strawberry. The three predators studied were the green lacewing, Chrysoperla carnea Steph. (Neuroptera: Chrysopi-dae), the two-spotted lady beetle, Adalia bipunctata L. (Coleoptera: Coccinellidae), and the gall midge Aphidoletes aphidimyza...

  13. Aphid reproductive investment in response to mortality risks

    Science.gov (United States)

    2010-01-01

    Background Aphids are striking in their prodigious reproductive capacity and reliance on microbial endosymbionts, which provision their hosts with necessary amino acids and provide protection against parasites and heat stress. Perhaps as a result of this bacterial dependence, aphids have limited immune function that may leave them vulnerable to bacterial pathogens. An alternative, non-immunological response that may be available to infected aphids is to increase reproduction, thereby ameliorating fitness loss from infection. Such a response would reduce the need to mount a potentially energetically costly immune response, and would parallel that of other hosts that alter life-history traits when there is a risk of infection. Here we examined whether pea aphids (Acyrthosiphon pisum) respond to immunological challenges by increasing reproduction. As a comparison to the response to the internal cue of risk elicited by immunological challenge, we also exposed pea aphids to an external cue of risk - the aphid alarm pheromone (E)-β-farnesene (EBF), which is released in the presence of predators. For each challenge, we also examined whether the presence of symbionts modified the host response, as maintaining host fitness in the face of challenge would benefit both the host and its dependent bacteria. Results We found that aphids stabbed abdominally with a sterile needle had reduced fecundity relative to control aphids but that aphids stabbed with a needle bearing heat-killed bacteria had reproduction intermediate, and statistically indistinguishable, to the aphids stabbed with a sterile needle and the controls. Aphids with different species of facultative symbiotic bacteria had different reproductive patterns overall, but symbionts in general did not alter aphid reproduction in response to bacterial exposure. However, in response to exposure to alarm pheromone, aphids with Hamiltonella defensa or Serratia symbiotica symbiotic infections increased reproduction but those

  14. Seasonal Abundance of Aphids and Aphidophagous Insects in Pecan

    Directory of Open Access Journals (Sweden)

    Ghulam Abbas

    2012-12-01

    Full Text Available Seasonal occurrence of aphids and aphidophagous insects was monitored for six years (2006–2011 from full leaf expansion in May to leaf fall in October in “Desirable” variety pecan trees that were not treated with insecticides. Aphid outbreaks occurred two times per season, once in the spring and again in the late summer. Yellow pecan and blackmargined aphids exceeded the recommended treatment thresholds one time and black pecan aphids exceeded the recommended treatment levels three times over the six seasons. Increases in aphidophagous insect abundance coincided with aphid outbreaks in five of the six seasons. Among aphidophagous insects Harmonia axyridis and Olla v-nigrum were frequently collected in both the tree canopy and at the ground level, whereas, Coccinella septempunctata, Hippodamia convergens were rarely found in the tree canopy and commonly found at the ground level. Green lacewing abundance was higher in the ground level than in the tree canopy. Brown lacewings were more abundant in the tree canopy than at the ground level. Dolichopodid and syrphid fly abundance, at the ground level increased during peak aphid abundance in the tree canopy. Application of an aqueous solution of fermenting molasses to the pecan foliage during an aphid outbreak significantly increased the abundance of ladybeetles and lacewings and significantly reduced the abundance of yellow pecan, blackmargined and black pecan aphids.

  15. Seasonal Abundance of Aphids and Aphidophagous Insects in Pecan

    Science.gov (United States)

    Dutcher, James D.; Karar, Haider; Abbas, Ghulam

    2012-01-01

    Seasonal occurrence of aphids and aphidophagous insects was monitored for six years (2006–2011) from full leaf expansion in May to leaf fall in October in “Desirable” variety pecan trees that were not treated with insecticides. Aphid outbreaks occurred two times per season, once in the spring and again in the late summer. Yellow pecan and blackmargined aphids exceeded the recommended treatment thresholds one time and black pecan aphids exceeded the recommended treatment levels three times over the six seasons. Increases in aphidophagous insect abundance coincided with aphid outbreaks in five of the six seasons. Among aphidophagous insects Harmonia axyridis and Olla v-nigrum were frequently collected in both the tree canopy and at the ground level, whereas, Coccinella septempunctata, Hippodamia convergens were rarely found in the tree canopy and commonly found at the ground level. Green lacewing abundance was higher in the ground level than in the tree canopy. Brown lacewings were more abundant in the tree canopy than at the ground level. Dolichopodid and syrphid fly abundance, at the ground level increased during peak aphid abundance in the tree canopy. Application of an aqueous solution of fermenting molasses to the pecan foliage during an aphid outbreak significantly increased the abundance of ladybeetles and lacewings and significantly reduced the abundance of yellow pecan, blackmargined and black pecan aphids. PMID:26466738

  16. Do aphid colonies amplify their emission of alarm pheromone?

    Science.gov (United States)

    Hatano, Eduardo; Kunert, Grit; Bartram, Stefan; Boland, Wilhelm; Gershenzon, Jonathan; Weisser, Wolfgang W

    2008-09-01

    When aphids are attacked by natural enemies, they emit alarm pheromone to alert conspecifics. For most aphids tested, (E)-beta-farnesene (EBF) is the main, or only, constituent of the alarm pheromone. In response to alarm pheromone, alerted aphids drop off the plant, walk away, or attempt to elude predators. However, under natural conditions, EBF concentration might be low due to the low amounts emitted, to rapid air movement, or to oxidative degradation. To ensure that conspecifics are warned, aphids might conceivably amplify the alarm signal by emitting EBF in response to EBF emitted by other aphids. To examine whether such amplification occurs, we synthesized deuterated EBF (DEBF), which allowed us to differentiate between applied and aphid-derived chemical. Colonies of Acyrthosiphon pisum were treated with DEBF, and headspace volatiles were collected and analyzed for evidence of aphid-derived EBF. No aphid-derived EBF was detected, suggesting that amplification of the alarm signal does not occur. We discuss the disadvantages of alarm signal reinforcement.

  17. New aphid (Aphidoidea) records for the Netherlands (1984-2005)

    NARCIS (Netherlands)

    Piron, P.G.M.

    2009-01-01

    Presented are 18 species.of aphids in combination with their food-plants found in The Netherlands from 1984 to 2005 not earlier described here. Among these are well-known species that are caught with the high suction trap andlor MOERICKE yellow water traps and aphids new for The Netherlands. The

  18. The resistance of lettuce to the aphid Nasonovia ribisnigri

    NARCIS (Netherlands)

    Helden, van M.

    1995-01-01

    The resistance of lettuce to the aphid Nasonovia ribisnigri is based on a single, dominant gene, the Nr-gene. On the resistant plant aphids died within a few days, without any honeydew production. Transfer-experiments with a short stay on a resistant plant followed by a

  19. Interspecific Associations between Cycloneda sanguinea and Two Aphid Species (Aphis gossypii and Hyadaphis foeniculi) in Sole-Crop and Fennel-Cotton Intercropping Systems.

    Science.gov (United States)

    Fernandes, Francisco S; Ramalho, Francisco S; Malaquias, José B; Godoy, Wesley A C; Santos, Bárbara Davis B

    2015-01-01

    Aphids cause significant damage to crop plants. Studies regarding predator-prey relationships in fennel (Foeniculum vulgare Mill.) and cotton (Gossypium hirsutum L.) crops are important for understanding essential ecological interactions in the context of intercropping and for establishing pest management programs for aphids. This study evaluated the association among Hyadaphis foeniculi (Passerini) (Hemiptera: Aphididae), Aphis gossypii Glover (Hemiptera: Aphididae) and Cycloneda sanguinea (L.) (Coleoptera: Coccinellidae) in cotton with coloured fibres, fennel and cotton intercropped with fennel. Association analysis was used to investigate whether the presence or absence of prey and predator species can indicate possible interactions between aphids and ladybugs. Significant associations among both apterous and alate H. foeniculi and C. sanguinea were observed in both the fennel and fennel-cotton intercropping systems. The similarity analysis showed that the presence of aphids and ladybugs in the same system is significantly dependent on the type of crop. A substantial amount of evidence indicates that the presence of the ladybug C. sanguinea, is associated with apterous or alate A. gossypii and H. foeniculi in fennel-cotton intercropping system. We recommend that future research vising integrated aphid management taking into account these associations for take decisions.

  20. Elevated atmospheric carbon dioxide concentrations promote ant tending of aphids.

    Science.gov (United States)

    Kremer, Jenni M M; Nooten, Sabine S; Cook, James M; Ryalls, James M W; Barton, Craig V M; Johnson, Scott N

    2018-04-27

    Animal mutualisms, which involve beneficial interactions between individuals of different species, are common in nature. Insect-insect mutualism, for example, is widely regarded as a keystone ecological interaction. Some mutualisms are anticipated to be modified by climate change, but the focus has largely been on plant-microbe and plant-animal mutualisms rather than those between animals. Ant-aphid mutualisms, whereby ants tend aphids to harvest their honeydew excretions and, in return, provide protection for the aphids, are widespread. The mutualism is heavily influenced by the quality and quantity of honeydew produced by aphids, which is directly affected by host plant quality. As predicted increases in concentrations of atmospheric carbon dioxide (eCO 2 ) are widely reported to affect plant nutritional chemistry, this may also alter honeydew quality and hence the nature of ant-aphid mutualisms. Using glasshouse chambers and field-based open-top chambers, we determined the effect of eCO 2 on the growth and nutritional quality (foliar amino acids) of lucerne (Medicago sativa). We determined how cowpea aphid (Aphis craccivora) populations and honeydew production were impacted when feeding on such plants and how this affected the tending behaviour of ants (Iridomyrmex sp.). eCO 2 stimulated plant growth but decreased concentrations of foliar amino acids by 29% and 14% on aphid-infested plants and aphid-free plants, respectively. Despite the deterioration in host plant quality under eCO 2 , aphids maintained performance and populations were unchanged by eCO 2 . Aphids induced higher concentrations of amino acids (glutamine, asparagine, glutamic acid and aspartic acid) important for endosymbiont-mediated synthesis of essential amino acids. Aphids feeding under eCO 2 also produced over three times more honeydew than aphids feeding under ambient CO 2 , suggesting they were imbibing more phloem sap at eCO 2 . The frequency of ant tending of aphids more than doubled in

  1. Chlorotic feeding injury by the black pecan aphid (hemiptera: aphididae) to pecan foliage promotes aphid settling and nymphal development.

    Science.gov (United States)

    Cottrell, Ted E; Wood, Bruce W; Ni, Xinzhi

    2009-04-01

    The nature of the interaction between the black pecan aphid, Melanocallis caryaefoliae (Davis) (Hemiptera: Aphididae), and the chlorosis it causes to foliage of its pecan [Carya illinoinensis (Wangenh.) K. Koch)] host is poorly understood. Laboratory experiments were conducted on the settling behavior of the black pecan aphid, when provided chlorotic pecan leaf discs resulting from previous black pecan aphid feeding and nonchlorotic leaf discs, under a normal photoperiod and constant dark. Additionally, aphid development from the first instar to the adult stage was examined when nymphs were either allowed to feed on the same leaf disc or moved daily to a new, nondamaged, same age leaf disc. After 24 h, a significantly higher percentage of black pecan aphids settled on chlorotic than on nonchlorotic leaf discs, regardless of photoperiod. When starting from the first instar, nymphs that were prevented from inducing leaf chlorosis by moving daily to new, same-age leaf discs took approximately 5 d longer to complete development, had a shorter body length, and had higher mortality than when aphids remained on the same leaf disc. These results show that black pecan aphid-induced leaf chlorosis plays an important role in the interaction of the black pecan aphid with its pecan host.

  2. Parasitic wasp responses to symbiont-based defense in aphids

    Directory of Open Access Journals (Sweden)

    Oliver Kerry M

    2012-02-01

    Full Text Available Abstract Background Recent findings indicate that several insect lineages receive protection against particular natural enemies through infection with heritable symbionts, but little is yet known about whether enemies are able to discriminate and respond to symbiont-based defense. The pea aphid, Acyrthosiphon pisum, receives protection against the parasitic wasp, Aphidius ervi, when infected with the bacterial symbiont Hamiltonella defensa and its associated bacteriophage APSE (Acyrthosiphon pisum secondary endosymbiont. Internally developing parasitoid wasps, such as A. ervi, use maternal and embryonic factors to create an environment suitable for developing wasps. If more than one parasitoid egg is deposited into a single aphid host (superparasitism, then additional complements of these factors may contribute to the successful development of the single parasitoid that emerges. Results We performed experiments to determine if superparasitism is a tactic allowing wasps to overcome symbiont-mediated defense. We found that the deposition of two eggs into symbiont-protected aphids significantly increased rates of successful parasitism relative to singly parasitized aphids. We then conducted behavioral assays to determine whether A. ervi selectively superparasitizes H. defensa-infected aphids. In choice tests, we found that A. ervi tends to deposit a single egg in uninfected aphids, but two or more eggs in H. defensa-infected aphids, indicating that oviposition choices may be largely determined by infection status. Finally, we identified differences in the quantity of the trans-β-farnesene, the major component of aphid alarm pheromone, between H. defensa-infected and uninfected aphids, which may form the basis for discrimination. Conclusions Here we show that the parasitic wasp A. ervi discriminates among symbiont-infected and uninfected aphids, and changes its oviposition behavior in a way that increases the likelihood of overcoming symbiont

  3. Spotted alfalfa aphid, Therioaphis trifolii (Monell) (Hemiptera: Aphididae): Pest on alfalfa in Serbia

    OpenAIRE

    Jovičić, Ivana; Radonjić, Anđa; Petrović-Obradović, Olivera

    2017-01-01

    Spotted alfalfa aphid Therioaphis trifolii (Monell) (Hemiptera, Aphididae) is one of the most important alfalfa pest on the world. Also, it is the most abundant alfalfa aphid in Serbia. This aphid cause damage to alfalfa directly by feeding and indirectly by vectoring plant-pathogenic viruses. Some notes of morphology, host plants, damage, biology, vector role and distribution of spotted alfalfa aphid are given. Abundance of this aphid on alfalfa, influence of climates changes on its abundanc...

  4. Genomes

    National Research Council Canada - National Science Library

    Brown, T. A. (Terence A.)

    2002-01-01

    ... of genome expression and replication processes, and transcriptomics and proteomics. This text is richly illustrated with clear, easy-to-follow, full color diagrams, which are downloadable from the book's website...

  5. Multiple cues for winged morph production in an aphid metacommunity.

    Directory of Open Access Journals (Sweden)

    Mohsen Mehrparvar

    Full Text Available Environmental factors can lead individuals down different developmental pathways giving rise to distinct phenotypes (phenotypic plasticity. The production of winged or unwinged morphs in aphids is an example of two alternative developmental pathways. Dispersal is paramount in aphids that often have a metapopulation structure, where local subpopulations frequently go extinct, such as the specialized aphids on tansy (Tanacetum vulgare. We conducted various experiments to further understand the cues involved in the production of winged dispersal morphs by the two dominant species of the tansy aphid metacommunity, Metopeurum fuscoviride and Macrosiphoniella tanacetaria. We found that the ant-tended M. fuscoviride produced winged individuals predominantly at the beginning of the season while the untended M. tanacetaria produced winged individuals throughout the season. Winged mothers of both species produced winged offspring, although in both species winged offspring were mainly produced by unwinged females. Crowding and the presence of predators, effects already known to influence wing production in other aphid species, increased the percentage of winged offspring in M. tanacetaria, but not in M. fuscoviride. We find there are also other factors (i.e. temporal effects inducing the production of winged offspring for natural aphid populations. Our results show that the responses of each aphid species are due to multiple wing induction cues.

  6. Aphid Identification and Counting Based on Smartphone and Machine Vision

    Directory of Open Access Journals (Sweden)

    Suo Xuesong

    2017-01-01

    Full Text Available Exact enumeration of aphids before the aphids outbreak can provide basis for precision spray. This paper designs counting software that can be run on smartphones for real-time enumeration of aphids. As a first step of the method used in this paper, images of the yellow sticky board that is aiming to catch insects are segmented from complex background by using GrabCut method; then the images will be normalized by perspective transformation method. The second step is the pretreatment on the images; images of aphids will be segmented by using OSTU threshold method after the effect of random illumination is eliminated by single image difference method. The last step of the method is aphids’ recognition and counting according to area feature of aphids after extracting contours of aphids by contour detection method. At last, the result of the experiment proves that the effect of random illumination can be effectively eliminated by using single image difference method. The counting accuracy in greenhouse is above 95%, while it can reach 92.5% outside. Thus, it can be seen that the counting software designed in this paper can realize exact enumeration of aphids under complicated illumination which can be used widely. The design method proposed in this paper can provide basis for precision spray according to its effective detection insects.

  7. Role of the aphid species and their feeding locations in parasitization behavior of Aphelinus abdominalis, a parasitoid of the lettuce aphid Nasonovia ribisnigri

    OpenAIRE

    Shrestha, Govinda; Skovg?rd, Henrik; Reddy, Gadi V. P.; Steenberg, Tove; Enkegaard, Annie

    2017-01-01

    Aphid species feeding on lettuce occupy distinct feeding sites: the lettuce aphid Nasonovia ribisnigri prefers to feed on heart leaves, whereas the potato aphid Macrosiphum euphorbiae feeds only on outer leaves. The aphid parasitoid Aphelinus abdominalis, known to be able to regulate M. euphorbiae on many crops, has recently been indicated as a promising biocontrol candidate also for use against N. ribisnigri, a major pest of lettuce. This study therefore examined A. abdominalis parasitizatio...

  8. Social aggregation in pea aphids: experiment and random walk modeling.

    Directory of Open Access Journals (Sweden)

    Christa Nilsen

    Full Text Available From bird flocks to fish schools and ungulate herds to insect swarms, social biological aggregations are found across the natural world. An ongoing challenge in the mathematical modeling of aggregations is to strengthen the connection between models and biological data by quantifying the rules that individuals follow. We model aggregation of the pea aphid, Acyrthosiphon pisum. Specifically, we conduct experiments to track the motion of aphids walking in a featureless circular arena in order to deduce individual-level rules. We observe that each aphid transitions stochastically between a moving and a stationary state. Moving aphids follow a correlated random walk. The probabilities of motion state transitions, as well as the random walk parameters, depend strongly on distance to an aphid's nearest neighbor. For large nearest neighbor distances, when an aphid is essentially isolated, its motion is ballistic with aphids moving faster, turning less, and being less likely to stop. In contrast, for short nearest neighbor distances, aphids move more slowly, turn more, and are more likely to become stationary; this behavior constitutes an aggregation mechanism. From the experimental data, we estimate the state transition probabilities and correlated random walk parameters as a function of nearest neighbor distance. With the individual-level model established, we assess whether it reproduces the macroscopic patterns of movement at the group level. To do so, we consider three distributions, namely distance to nearest neighbor, angle to nearest neighbor, and percentage of population moving at any given time. For each of these three distributions, we compare our experimental data to the output of numerical simulations of our nearest neighbor model, and of a control model in which aphids do not interact socially. Our stochastic, social nearest neighbor model reproduces salient features of the experimental data that are not captured by the control.

  9. Comparative Genomics of Pneumocystis Species Suggests the Absence of Genes for myo-Inositol Synthesis and Reliance on Inositol Transport and Metabolism

    Science.gov (United States)

    Sesterhenn, Thomas M.; Collins, Margaret S.; Welge, Jeffrey A.

    2014-01-01

    ABSTRACT In the context of deciphering the metabolic strategies of the obligate pathogenic fungi in the genus Pneumocystis, the genomes of three species (P. carinii, P. murina, and P. jirovecii) were compared among themselves and with the free-living, phylogenetically related fission yeast (Schizosaccharomyces pombe). The underrepresentation of amino acid metabolism pathways compared to those in S. pombe, as well as the incomplete steroid biosynthesis pathway, were confirmed for P. carinii and P. jirovecii and extended to P. murina. All three Pneumocystis species showed overrepresentation of the inositol phosphate metabolism pathway compared to that in the fission yeast. In addition to those known in S. pombe, four genes, encoding inositol-polyphosphate multikinase (EC 2.7.1.151), inositol-pentakisphosphate 2-kinase (EC 2.7.1.158), phosphoinositide 5-phosphatase (EC 3.1.3.36), and inositol-1,4-bisphosphate 1-phosphatase (EC 3.1.3.57), were identified in the two rodent Pneumocystis genomes, P. carinii and P. murina. The P. jirovecii genome appeared to contain three of these genes but lacked phosphoinositide 5-phosphatase. Notably, two genes encoding enzymes essential for myo-inositol synthesis, inositol-1-phosphate synthase (INO1) and inositol monophosphatase (INM1), were absent from all three genomes, suggesting that Pneumocystis species are inositol auxotrophs. In keeping with the need to acquire exogenous inositol, two genes with products homologous to fungal inositol transporters, ITR1 and ITR2, were identified in P. carinii and P. murina, while P. jirovecii contained only the ITR1 homolog. The ITR and inositol metabolism genes in P. murina and P. carinii were expressed during fulminant infection as determined by reverse transcriptase real-time PCR of cDNA from infected lung tissue. Supplementation of in vitro culture with inositol yielded significant improvement of the viability of P. carinii for days 7 through 14. PMID:25370490

  10. Escherichia coli K-12 pathogenicity in the pea aphid, Acyrthosiphon pisum, reveals reduced antibacterial defense in aphids.

    Science.gov (United States)

    Altincicek, Boran; Ter Braak, Bas; Laughton, Alice M; Udekwu, Klas I; Gerardo, Nicole M

    2011-10-01

    To better understand the molecular basis underlying aphid immune tolerance to beneficial bacteria and immune defense to pathogenic bacteria, we characterized how the pea aphid Acyrthosiphon pisum responds to Escherichia coli K-12 infections. E. coli bacteria, usually cleared in the hemolymph of other insect species, were capable of growing exponentially and killing aphids within a few days. Red fluorescence protein expressing E. coli K-12 laboratory strain multiplied in the aphid hemolymph as well as in the digestive tract, resulting in death of infected aphids. Selected gene deletion mutants of the E. coli K-12 predicted to have reduced virulence during systemic infections showed no difference in either replication or killing rate when compared to the wild type E. coli strain. Of note, however, the XL1-Blue E. coli K-12 strain exhibited a significant lag phase before multiplying and killing aphids. This bacterial strain has recently been shown to be more sensitive to oxidative stress than other E. coli K-12 strains, revealing a potential role for reactive oxygen species-mediated defenses in the otherwise reduced aphid immune system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. For the Aphid fauna in the territory of Yenisei river basin. Communication 1. Aphids on coniferous plants

    Directory of Open Access Journals (Sweden)

    A. V. Gurov

    2016-02-01

    Full Text Available The paper reports on new and previously not well-known data on insufficiently studied fauna of aphids living on coniferous trees in Central Siberia of the basin of Yenisei river. This region is the extensive transect of latitudinal geographic zones from semi-desert in the South to the arctic deserts in the North. That is why this region is very peculiar. This is the reason for insufficient study of regional entomological fauna. Aphids (Homoptera: Aphidoideaare a very taxonomically and ecologically heterogeneous group of insects. The aphids living on conifer trees are notstudied completely on the territory of Yenisei basin. Due to this, the studying of not well-known and economicallyimportant aphids is actual. For example, the insufficient study of regional aphids is confirmed by the fact, that duringthree weeks only of the work for INTAS-94-0930 Project two new aphid species were found and described on thisterritory. Also, the new species of family Mindaridae, which was described in Mongolia in 1980, was found in Siberiafor the first time. These finds indicate the real possibility to describe an interesting conifer aphid complex in the absolutely unstudied forested territory between Angara and Lower Tunguska rivers. Geographical location, dates ofcollection and feeding preferences of different species are described. A general review of Yenisei basin Siberian aphidfauna is suggested for the first time ever.

  12. The Green Lacewing, Chrysoperla carnea: Preference between Lettuce Aphids, Nasonovia ribisnigri, and Western Flower Thrips, Frankliniella occidentalis

    OpenAIRE

    Shrestha, Govinda; Enkegaard, Annie

    2013-01-01

    This study investigated the prey preference of 3rd instar green lacewing, Chrysoperla carnea Stephens (Neuroptera: Chrysopidae), between western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), and lettuce aphids, Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae) in laboratory experiments at 25 ? 1? C and 70 ? 5% RH with five prey ratios (10 aphids:80 thrips, 25 aphids:65 thrips, 45 aphids:45 thrips, 65 aphids:25 thrips, and 80 aphids:10 thrips). Third instar...

  13. Effect of Intercropping Collard with Beans or Onions on Aphid ...

    African Journals Online (AJOL)

    chemical sprays, which has tended to result in pest resistance and pollution to the environment, This ... effects of intercropping and nitrogen fertilization on aphid population on collard and the yield ... :h~ cultivation and sale of collard (Brassica.

  14. Biological control of tortricids and aphids in strawberries

    DEFF Research Database (Denmark)

    Sigsgaard, Lene; Enkegaard, Annie; Eilenberg, Jørgen

    Cropping practice and biological control can contribute to reduced pesticide use in strawberries. Organic strawberries are less attacked by strawberry tortricid and buckwheat flower strips can augment its natural enemies. Against shallot aphid the two-spot ladybird is promising....

  15. New genus and species of the extinct aphid family Szelegiewicziidae and their implications for aphid evolution.

    Science.gov (United States)

    Wegierek, Piotr; Żyła, Dagmara; Homan, Agnieszka; Cai, Chenyang; Huang, Diying

    2017-10-24

    Recently, we are witnessing an increased appreciation for the importance of the fossil record in phylogenetics and testing various evolutionary hypotheses. However, this approach brings many challenges, especially for such a complex group as aphids and requires a thorough morphological analysis of the extinct groups. The extinct aphid family Szelegiewicziidae is supposed to be one of the oviparous lineages in aphid evolution. New material from the rock fossil deposits of Shar Teg (Upper Jurassic of Mongolia), Baissa (Lower Cretaceous of Siberia-Russia), and Burmese amber (Upper Cretaceous of Myanmar) allowed us to undertake a more detailed examination of the morphological features and carry out an analysis of the taxonomical composition and evolution of the family. This led us to the conclusion that evolution of the body plan and wing structure was similar in different, often not closely related groups, probably as a result of convergence. Additionally, we present a description of a new genus and two species (Tinaphis mongolica Żyła &Wegierek, sp. nov., and Feroorbis burmensis Wegierek & Huang, gen. et sp. nov.) that belong to this family.

  16. New genus and species of the extinct aphid family Szelegiewicziidae and their implications for aphid evolution

    Science.gov (United States)

    Wegierek, Piotr; Żyła, Dagmara; Homan, Agnieszka; Cai, Chenyang; Huang, Diying

    2017-12-01

    Recently, we are witnessing an increased appreciation for the importance of the fossil record in phylogenetics and testing various evolutionary hypotheses. However, this approach brings many challenges, especially for such a complex group as aphids and requires a thorough morphological analysis of the extinct groups. The extinct aphid family Szelegiewicziidae is supposed to be one of the oviparous lineages in aphid evolution. New material from the rock fossil deposits of Shar Teg (Upper Jurassic of Mongolia), Baissa (Lower Cretaceous of Siberia-Russia), and Burmese amber (Upper Cretaceous of Myanmar) allowed us to undertake a more detailed examination of the morphological features and carry out an analysis of the taxonomical composition and evolution of the family. This led us to the conclusion that evolution of the body plan and wing structure was similar in different, often not closely related groups, probably as a result of convergence. Additionally, we present a description of a new genus and two species ( Tinaphis mongolica Żyła &Wegierek, sp. nov., and Feroorbis burmensis Wegierek & Huang, gen. et sp. nov.) that belong to this family.

  17. Intraspecific variation in aphid resistance and constitutive phenolics exhibited by the wild blueberry Vaccinium darrowi.

    Science.gov (United States)

    Ranger, C M; Singh, A P; Johnson-Cicalese, J; Polavarapu, S; Vorsa, N

    2007-04-01

    Illinoia pepperi (MacGillivray) infests cultivated highbush blueberries, Vaccinium corymbosum L., in the Northeastern United States. Allopatric resistance to I. pepperi was examined in Vaccinium darrowi Camp, which evolved in the absence of I. pepperi in the Southeastern U.S. V. corymbosum cv. "Elliott", was used as a susceptible control. Between population variability in I. pepperi resistance was assessed by measuring length of the prereproductive period, fecundity, and survivorship on 14 V. darrowi accessions representing 11 discrete wild populations. Length of I. pepperi's prereproductive period and survivorship were not significantly affected. However, differences were detected in fecundity and the intrinsic rate of increase (r ( m )). Within population variability in resistance was measured by confining first instars to 24 accessions from a single wild population of V. darrowi (NJ88-06). Significant differences in the mean total number of aphids occurring after 20 d were only detected between 2 of the 24 V. darrowi accessions. A greater degree of diversity in I. pepperi resistance exists between populations of V. darrowi compared to within a population. Constitutive leaf and stem polyphenolics were identified by HPLC-MS and quantified from 14 of the V. darrowi accessions. The accessions varied in concentrations of five phenolic acids and seven flavonol glycosides, but a correlation was not found between individual or total phenolics and aphid performance. Overall, screening within and between populations of V. darrowi identified promising sources of aphid resistance, but phenolic acid and flavonol glycoside profiles did not predict resistance levels. The mechanism of resistance remains to be identified.

  18. Do Aphids Alter Leaf Surface Temperature Patterns During Early Infestation?

    Directory of Open Access Journals (Sweden)

    Thomas Cahon

    2018-03-01

    Full Text Available Arthropods at the surface of plants live in particular microclimatic conditions that can differ from atmospheric conditions. The temperature of plant leaves can deviate from air temperature, and leaf temperature influences the eco-physiology of small insects. The activity of insects feeding on leaf tissues, may, however, induce changes in leaf surface temperatures, but this effect was only rarely demonstrated. Using thermography analysis of leaf surfaces under controlled environmental conditions, we quantified the impact of presence of apple green aphids on the temperature distribution of apple leaves during early infestation. Aphids induced a slight change in leaf surface temperature patterns after only three days of infestation, mostly due to the effect of aphids on the maximal temperature that can be found at the leaf surface. Aphids may induce stomatal closure, leading to a lower transpiration rate. This effect was local since aphids modified the configuration of the temperature distribution over leaf surfaces. Aphids were positioned at temperatures near the maximal leaf surface temperatures, thus potentially experiencing the thermal changes. The feedback effect of feeding activity by insects on their host plant can be important and should be quantified to better predict the response of phytophagous insects to environmental changes.

  19. Resting spore formation of aphid-pathogenic fungus Pandora nouryi depends on the concentration of infective inoculum.

    Science.gov (United States)

    Huang, Zhi-Hong; Feng, Ming-Guang

    2008-07-01

    Resting spore formation of some aphid-pathogenic Entomophthorales is important for the seasonal pattern of their prevalence and survival but this process is poorly understood. To explore the possible mechanism involved in the process, Pandora nouryi (obligate aphid pathogen) interacted with green peach aphid Myzus persicae on cabbage leaves under favourable conditions. Host nymphs showered with primary conidia of an isolate (LC(50): 0.9-6.7 conidia mm(-2) 4-7 days post shower) from air captures in the low-latitude plateau of China produced resting spores (azygospores), primary conidia or both spore types. Surprisingly, the proportion of mycosed cadavers forming resting spores (P(CFRS)) increased sharply within the concentrations (C) of 28-240 conidia mm(-2), retained high levels at 240-1760, but was zero or extremely low at 0.3-16. The P(CFRS)-C relationship fit well the logistic equation P(CFRS) = 0.6774/[1 + exp(3.1229-0.0270C)] (r(2) = 0.975). This clarified for the first time the dependence of in vivo resting spore formation of P. nouryi upon the concentration of infective inoculum. A hypothesis is thus proposed that some sort of biochemical signals may exist in the host-pathogen interaction so that the fungal pathogen perceives the signals for prompt response to forthcoming host-density changes by either producing conidia for infecting available hosts or forming resting spores for surviving host absence in situ.

  20. Preparing soft-bodied arthropods for microscope examination: Aphids (Insecta: Hemiptera: Aphididae)

    Science.gov (United States)

    Proper identification of aphids (Hemiptera: Aphididae) require preparation of the specimen on a microscope slide. This training video provides visual instruction on how to prepare aphid specimens on microscope slides for examination and indentification. Steps ranging from collection, specimen clear...

  1. Agronomy of strip intercropping broccoli with alyssum for biological control of aphids

    Science.gov (United States)

    Organic broccoli growers in California typically control aphids by intercropping broccoli with strips of alyssum (Lobularia maritima (L.) Desv.) which attracts hoverflies (Diptera: Syrphidae) that are important predators of aphids. A three year study with transplanted organic broccoli in Salinas, ...

  2. Host-associated populations in the lettuce root aphid, Pemphigus bursarius (L.).

    Science.gov (United States)

    Miller, N J; Kift, N B; Tatchell, G M

    2005-05-01

    Pemphigus bursarius is a host-alternating aphid in which annual rounds of sexual reproduction on its primary host, Populus nigra, are interspersed with parthenogenesis on a range of secondary hosts. Evidence was sought for the existence of genetically distinct populations, associated with different secondary hosts, in P. bursarius. Microsatellite markers revealed that genetically distinct populations were present on three different secondary host species. Microsatellites were also used, in conjunction with mitochondrial DNA sequence variation, to investigate the relationships between aphids on Populus, following sexual reproduction, and those on the secondary hosts. Evidence was found for a distinct, cyclically parthenogenetic population that exploited Lactuca sativa as its secondary host. In contrast, populations associated with Matricaria inodora appeared to be largely composed of obligate parthenogens or may even have been another species of Pemphigus. Populations on Lapsana communis appeared to be a mixture of cyclical and obligate parthenogens and were more genetically heterogeneous than those on other secondary hosts, possibly due to founder effects. Experiments to measure the performance of P. bursarius clones on different secondary hosts were inconclusive, failing to demonstrate either the presence or absence of adaptations to secondary hosts.

  3. Aphid Transmission of the Ontario Isolate of Plum Pox Virus.

    Science.gov (United States)

    Lowery, D Thomas; Vickers, Patricia M; Bittner, Lori A; Stobbs, Lorne W; Foottit, Robert G

    2015-10-01

    Utilization of timed virus acquisition access probes in studies of plum pox virus (PPV) transmission by aphids demonstrated that endemic species transmitted the virus readily from plum, Prunus domestica (L.) Batsch; peach, P. persica (L.); or dwarf flowering almond, P. glandulosa Thunberg., to peach seedlings. The green peach aphid, Myzus persicae (Sulzer), was shown to be the most efficient vector. Acquisition of virus by green peach aphids from infected peach leaves resulted in 18-28% infected peach seedlings, while aphids previously fed on infected leaves of plum transferred virus to 36% of peach seedlings. Although the spirea aphid, Aphis spiraecola (Patch), was a less efficient vector than M. persicae it is perhaps more important for the spread of PPV due to its greater abundance and occurrence earlier in the season when peach trees are thought to be more susceptible to infection. Virus transmission rates varied depending on the virus source and healthy test plant species. In contrast to many previous studies, aphid inoculation of the experimental host Nicotiana benthamiana Domin occurred at a low rate, never exceeding 4%. Acquisition of PPV by M. persicae from infected peach fruit was greatly reduced compared with acquisition from leaves. The results of this research indicate that the Ontario isolate of PPV-D is readily transmissible by aphids to peach and natural spread of the virus needs to be considered in future management or eradication programs. © Her Majesty in Right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada. Published by Oxford University Press on behalf of Entomological Society of America.

  4. Cereal aphid colony turnover and persistence in winter wheat.

    Directory of Open Access Journals (Sweden)

    Linton Winder

    Full Text Available An understanding of spatial and temporal processes in agricultural ecosystems provides a basis for rational decision-making with regards to the management and husbandry of crops, supporting the implementation of integrated farming strategies. In this study we investigated the spatial and temporal distribution of aphid pests (Sitobion avenae and Metopolophium dirhodum within winter wheat fields. Using an intensive sampling programme we investigated distributions at both the small (single shoot and large (field scales. Within two fields, a grid with 82 locations was established (area 120 m by 168 m. At each location, 25 shoots were individually marked and aphid counts by observation conducted on 21 and 22 occasions as the crop matured, resulting in 43,050 and 45,100 counts being conducted in the two fields respectively. We quantified field scale spatial distributions, demonstrating that spatial pattern generally emerged, with temporal stability being both species- and field- dependent. We then measured turnover of colonies at the small (individual shoot and large (field scales by comparing consecutive pairs of sampling occasions. Four turnover categories were defined: Empty (no aphids recorded on either occasion; Colonised (aphids recorded on the second occasion but not the first; Extinction (aphids recorded on the first occasion but not the second; Stable (aphids recorded on both occasions. At the field scale, population stability soon established, but, at the small scale there was a consistently high proportion of unoccupied shoots with considerable colonisation and extinction and low stability. The redistribution of aphids within the crop at the local scale is a vulnerability which could be used to disrupt population development--by mediating exposure to ground-active natural enemies and by incurring a metabolic cost caused by the physiological demands to re-establish on a nearby host plant.

  5. National Plant Diagnostic Network, Taxonomic training videos: Aphids under the microscope - overview

    Science.gov (United States)

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This training video provides provides an overview of general aphid morphology by using a compound microscope. The narrator discusses and highlights structures on the aphid that are important to make a species identification....

  6. Variable isotopic compositions of host plant populations preclude assessment of aphid overwintering sites

    Science.gov (United States)

    Soybean aphid (Aphis glycines Matsumura) is a pest of soybean in the northern Midwest whose migratory patterns have been difficult to quantify. Improved knowledge of soybean aphid overwintering sites could facilitate the development of control efforts with exponential impacts on aphid densities on a...

  7. Terpenoid biosynthesis in Arabidopsis attacked by caterpillars and aphids: effects of aphid density on the attraction of a caterpillar parasitoid.

    Science.gov (United States)

    Kroes, Anneke; Weldegergis, Berhane T; Cappai, Francesco; Dicke, Marcel; van Loon, Joop J A

    2017-12-01

    One of the responses of plants to insect attack is the production of volatile organic compounds that mediate indirect defence of plants by attracting natural enemies of the attacking herbivores. Herbivore-induced plant volatiles (HIPVs) include terpenoids that play key roles in the attraction of natural enemies. Crosstalk between phytohormonal signalling pathways is well known to affect the regulation of plant defences, including the emission of HIPVs. Thus, simultaneous feeding on the same plant by caterpillars and aphids, can affect the attraction of parasitoids by the plant compared to single insect attack. The role of aphid density in the regulation of HIPV emission by plants under dual attack has not been studied previously. Here, we investigated the attraction of Diadegma semiclausum, a parasitoid of the Diamondback moth Plutella xylostella, to volatiles emitted by Arabidopsis thaliana plants, simultaneously attacked by host caterpillars, and by the non-host aphid Brevicoryne brassicae. Our study shows that the effect of aphid infestation on parasitoid attraction is influenced by the density of the aphids. Biosynthesis and emission of (E,E)-α-farnesene could be linked to the observed preference of D. semiclausum parasitoids for the HIPV blend emitted by plants dually infested by caterpillars and aphids at a high density compared to dually infested plants with a low aphid density. Parasitoids such as D. semiclausum are important enemies of herbivorous insects and a better understanding of how plants express indirect defence mechanisms in response to multiple insect attack will provide important knowledge on plant-herbivore-parasitoid interactions under multiple stress conditions.

  8. Particle film affects black pecan aphid (Homoptera: Aphididae) on pecan.

    Science.gov (United States)

    Cottrell, Ted E; Wood, Bruce W; Reilly, Charles C

    2002-08-01

    Three species of aphids attack pecan foliage, Carya illinoensis (Wang.) K. Koch, and cause economic damage. We tested a kaolin-based particle film against one of these aphid species, black pecan aphid, Melanocallis caryaefoliae (Davis). Effect of particle film on host selection, adult mortality, and production of nymphs by M. caryaefoliae was tested on seedling pecans in the laboratory. Fewer M. caryaefoliae adults selected treated foliage compared with untreated foliage. A higher percentage of adults that did select treated foliage were recovered from upper leaf surfaces compared with the percentage of adults recovered from upper leaf surfaces of untreated leaves. Observations with a microscope revealed an accumulation of particle film on aphid body parts, especially on tarsi, and strongly suggests that aphid mobility was restricted. Adult mortality was higher on treated foliage and led to an overall decrease in production of nymphs on those seedlings. In addition, we measured spectral properties of treated seedling pecan foliage. Light reflectance by treated foliage was increased and absorptance decreased compared with control foliage whereas transmittance of light through control and particle film-treated leaves was similar. We did not detect any phytotoxic effect on pecan due to application of particle film.

  9. Differential divergences of obligately insect-pathogenic Entomophthora species from fly and aphid hosts.

    Science.gov (United States)

    Jensen, Annette Bruun; Eilenberg, Jørgen; López Lastra, Claudia

    2009-11-01

    Three DNA regions (ITS 1, LSU rRNA and GPD) of isolates from the insect-pathogenic fungus genus Entomophthora originating from different fly (Diptera) and aphid (Hemiptera) host taxa were sequenced. The results documented a large genetic diversity among the fly-pathogenic Entomophthora and only minor differences among aphid-pathogenic Entomophthora. The evolutionary time of divergence of the fly and the aphid host taxa included cannot account for this difference. The host-driven divergence of Entomophthora, therefore, has been much greater in flies than in aphids. Host-range differences or a recent host shift to aphid are possible explanations.

  10. Work Absence in Europe

    OpenAIRE

    Leo Bonato; Lusine Lusinyan

    2004-01-01

    Work absence is a part of an individual's decision concerning hours worked. This paper focuses on sickness absence in Europe and builds on an analytical framework in which absence enters both labor supply and demand considerations, with sickness insurance provisions and labor market institutions affecting the costs of absence. The results from a panel of 18 European countries indicate that absence is higher under generous insurance systems and where employers bear little responsibility for th...

  11. Orally Delivered Scorpion Antimicrobial Peptides Exhibit Activity against Pea Aphid (Acyrthosiphon pisum) and Its Bacterial Symbionts.

    Science.gov (United States)

    Luna-Ramirez, Karen; Skaljac, Marisa; Grotmann, Jens; Kirfel, Phillipp; Vilcinskas, Andreas

    2017-08-24

    Aphids are severe agricultural pests that damage crops by feeding on phloem sap and vectoring plant pathogens. Chemical insecticides provide an important aphid control strategy, but alternative and sustainable control measures are required to avoid rapidly emerging resistance, environmental contamination, and the risk to humans and beneficial organisms. Aphids are dependent on bacterial symbionts, which enable them to survive on phloem sap lacking essential nutrients, as well as conferring environmental stress tolerance and resistance to parasites. The evolution of aphids has been accompanied by the loss of many immunity-related genes, such as those encoding antibacterial peptides, which are prevalent in other insects, probably because any harm to the bacterial symbionts would inevitably affect the aphids themselves. This suggests that antimicrobial peptides (AMPs) could replace or at least complement conventional insecticides for aphid control. We fed the pea aphids ( Acyrthosiphon pisum ) with AMPs from the venom glands of scorpions. The AMPs reduced aphid survival, delayed their reproduction, displayed in vitro activity against aphid bacterial symbionts, and reduced the number of symbionts in vivo. Remarkably, we found that some of the scorpion AMPs compromised the aphid bacteriome, a specialized organ that harbours bacterial symbionts. Our data suggest that scorpion AMPs holds the potential to be developed as bio-insecticides, and are promising candidates for the engineering of aphid-resistant crops.

  12. Orally Delivered Scorpion Antimicrobial Peptides Exhibit Activity against Pea Aphid (Acyrthosiphon pisum and Its Bacterial Symbionts

    Directory of Open Access Journals (Sweden)

    Karen Luna-Ramirez

    2017-08-01

    Full Text Available Aphids are severe agricultural pests that damage crops by feeding on phloem sap and vectoring plant pathogens. Chemical insecticides provide an important aphid control strategy, but alternative and sustainable control measures are required to avoid rapidly emerging resistance, environmental contamination, and the risk to humans and beneficial organisms. Aphids are dependent on bacterial symbionts, which enable them to survive on phloem sap lacking essential nutrients, as well as conferring environmental stress tolerance and resistance to parasites. The evolution of aphids has been accompanied by the loss of many immunity-related genes, such as those encoding antibacterial peptides, which are prevalent in other insects, probably because any harm to the bacterial symbionts would inevitably affect the aphids themselves. This suggests that antimicrobial peptides (AMPs could replace or at least complement conventional insecticides for aphid control. We fed the pea aphids (Acyrthosiphon pisum with AMPs from the venom glands of scorpions. The AMPs reduced aphid survival, delayed their reproduction, displayed in vitro activity against aphid bacterial symbionts, and reduced the number of symbionts in vivo. Remarkably, we found that some of the scorpion AMPs compromised the aphid bacteriome, a specialized organ that harbours bacterial symbionts. Our data suggest that scorpion AMPs holds the potential to be developed as bio-insecticides, and are promising candidates for the engineering of aphid-resistant crops.

  13. Stem nematode counteracts plant resistance of aphids in alfalfa, Medicago sativa.

    Science.gov (United States)

    Ramirez, Ricardo A; Spears, Lori R

    2014-10-01

    Plants are exploited by a diverse community of insect herbivores and phytopathogens that interact indirectly through plant-mediated interactions. Generally, plants are thought to respond to insects and pathogens through different defensive signaling pathways. As plants are selected for resistance to one phytophagous organism type (insect vs. pathogen) in managed systems, it is not clear how this selection may affect community interactions. This study examined the effect of nematode-resistant varieties on aphid (Acyrthosiphon pisum) suppression, and then determined how infection by the stem nematode, Ditylenchus dipsaci, mediated ecological effects on aphids and on plant defense proteins. Four alfalfa (Medicago sativa) varieties were selected with resistance to nematodes only (+,-), aphids only (-,+), nematodes and aphids (+,+), and susceptibility to nematodes and aphids (-,-). Field and greenhouse experiments were conducted to isolate the effect of nematode infection and aphid abundance on each variety. We found that varieties resistant to nematode, regardless of aphid resistance, had the lowest aphid counts, suggesting possible cross-resistance. Aphid abundance, however, increased when plants were exposed to nematodes. Resistant varieties were associated with elevated saponins but these compounds were not affected by insect or pathogen feeding. Concentrations of peroxidases and trypsin inhibitors, however, were increased in nematode resistant varieties when exposed to nematodes and aphids, respectively. The patterns of plant defense were variable, and a combination of resistance traits and changes in nutrient availability may drive positive interactions between nematodes and aphids aboveground.

  14. Unrelated facultative endosymbionts protect aphids against a fungal pathogen.

    Science.gov (United States)

    Łukasik, Piotr; van Asch, Margriet; Guo, Huifang; Ferrari, Julia; Godfray, H Charles J

    2013-02-01

    The importance of microbial facultative endosymbionts to insects is increasingly being recognized, but our understanding of how the fitness effects of infection are distributed across symbiont taxa is limited. In the pea aphid, some of the seven known species of facultative symbionts influence their host's resistance to natural enemies, including parasitoid wasps and a pathogenic fungus. Here we show that protection against this entomopathogen, Pandora neoaphidis, can be conferred by strains of four distantly related symbionts (in the genera Regiella, Rickettsia, Rickettsiella and Spiroplasma). They reduce mortality and also decrease fungal sporulation on dead aphids which may help protect nearby genetically identical insects. Pea aphids thus obtain protection from natural enemies through association with a wider range of microbial associates than has previously been thought. Providing resistance against natural enemies appears to be a particularly common way for facultative endosymbionts to increase in frequency within host populations. © 2012 Blackwell Publishing Ltd/CNRS.

  15. Ant tending influences soldier production in a social aphid.

    Science.gov (United States)

    Shingleton, A W; Foster, W A

    2000-09-22

    The aphid Pseudoregma sundanica (Van der Goot) (Homoptera: Aphididae) has two defence strategies. It is obligatorily tended by various species of ant and also produces sterile soldiers. We investigated how they allocate their investment in these two strategies. We measured the size, number of soldiers, number and species of tending ant, and number and species of predators in P. sundanica populations. We found that the level of ant tending correlated negatively with soldier investment in P. sundanica. The species of tending ant also influenced soldier investment. We excluded ants from aphid populations and recorded changes in population size and structure over four weeks. Ant exclusion led to population decline and extinction. At the same time, surviving populations showed a significant increase in soldier investment. The data demonstrate that social aphids can adjust their investment in soldiers in direct response to environmental change.

  16. The Potato Aphid Salivary Effector Me47 Is a Glutathione-S-Transferase Involved in Modifying Plant Responses to Aphid Infestation

    OpenAIRE

    Kettles, Graeme J.; Kaloshian, Isgouhi

    2016-01-01

    Polyphagous aphid pests cause considerable economic damage to crop plants, primarily through the depletion of photoassimilates and transfer of viruses. The potato aphid (Macrosiphum euphorbiae) is a notable pest of solanaceous crops, however, the molecular mechanisms that underpin the ability to colonize these hosts are unknown. It has recently been demonstrated that like other aphid species, M. euphorbiae injects a battery of salivary proteins into host plants during feeding. It is speculate...

  17. Spatial and Temporal Dynamics of Aphids (Hemiptera: Aphididae) in the Columbia Basin and Northeastern Oregon.

    Science.gov (United States)

    Klein, Mathew L; Rondon, Silvia I; Walenta, Darrin L; Zeb, Qamar; Murphy, Alexzandra F

    2017-08-01

    Aphid species, such as the potato aphid, Macrosiphum euphorbiae Thomas, and the green peach aphid, Myzus persicae Sulzer, are routinely considered the most important pests of potatoes. Potato aphid, green peach aphid, and more recently, other aphids such as the bird cherry-oat aphid Rhopalosiphum padi L. have been identified as vectors of multiple plant pathogenic viruses in potatoes. Since 2006, an area-wide trapping network consisting of ∼60 sites was developed through collaboration between researchers, extension faculty, and stakeholders, to monitor aphid populations in the Columbia Basin of Oregon (Umatilla and Morrow counties) and in northeastern Oregon (Union and Baker counties). Over a 9-yr period (2006 to 2014), aphid specimens were collected weekly using yellow bucket traps and specimens were then identified and counted to determine population levels during the growing season (May-September). Thus, aphid population data were compiled and subjected to spatial and temporal distribution analysis. Weather data, obtained from an established network of weather stations located in the monitoring areas, were used in a nonparametric multiplicative regression analysis to determine which abiotic variables may impact aphid populations. Weather conditions were characterized using confidence intervals (CIs) established based on weather data from 1999 to 2005 for each environmental variable. Aphid populations were found to have a heterogeneous distribution in most years; a few sites had high aphid populations while low numbers were observed at most sites; aphids were also found to correlate with several abiotic variables, namely, elevation, previous season temperature, and previous season dew point. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Inventory and assessment of foliar natural enemies of the soybean aphid (Hemiptera: Aphididae) in South Dakota.

    Science.gov (United States)

    Hesler, Louis S

    2014-06-01

    Soybean aphid (Aphis glycines Matsumura) (Hemiptera: Aphididae) is a major pest of soybean in northern production regions of North America, and insecticides have been the primary management approach while alternative methods are developed. Knowledge of arthropod natural enemies and their impact on soybean aphid is critical for developing biological control as a management tool. Soybean is a major field crop in South Dakota, but information about its natural enemies and their impact on soybean aphid is lacking. Thus, this study was conducted in field plots in eastern South Dakota during July and August of 2004 and 2005 to characterize foliar-dwelling, arthropod natural enemies of soybean aphid, and it used exclusion techniques to determine impact of natural enemies and ants (Hymenoptera: Formicidae) on soybean aphid densities. In open field plots, weekly soybean aphid densities reached a plateau of several hundred aphids per plant in 2004, and peaked at roughly 400 aphids per plant in 2005. Despite these densities, a relatively high frequency of aphid-infested plants lacked arthropod natural enemies. Lady beetles (Coleoptera: Coccinellidae) were most abundant, peaking at 90 and 52% of all natural enemies sampled in respective years, and Harmonia axyridis Pallas was the most abundant lady beetle. Green lacewings (Neuroptera: Chrysopidae) were abundant in 2005, due mainly to large numbers of their eggs. Abundances of arachnids and coccinellid larvae correlated with soybean aphid densities each year, and chrysopid egg abundance was correlated with aphid density in 2005. Three-week cage treatments of artificially infested soybean plants in 2004 showed that noncaged plants had fewer soybean aphids than caged plants, but abundance of soybean aphid did not differ among open cages and ones that provided partial or total exclusion of natural enemies. In 2005, plants within open cages had fewer soybean aphids than those within cages that excluded natural enemies, and aphid

  19. First report of Pandora neoaphidis resting spore formation in vivo in aphid hosts

    DEFF Research Database (Denmark)

    Clara Scorsetti, Ana; Jensen, Annette Bruun; Lopez Lastra, Claudia

    2012-01-01

    The entomopathogenic fungus Pandora neoaphidis is a recognized pathogen of aphids, causes natural epizootics in aphid populations, and interacts and competes with aphid predators and parasitoids. Survival of entomophthoralean fungi in periods of unsuitable weather conditions or lack of appropriat...

  20. A highly infective plant-associated bacterium influences reproductive rates in pea aphids.

    Science.gov (United States)

    Hendry, Tory A; Clark, Kelley J; Baltrus, David A

    2016-02-01

    Pea aphids, Acyrthosiphon pisum, have the potential to increase reproduction as a defence against pathogens, though how frequently this occurs or how infection with live pathogens influences this response is not well understood. Here we determine the minimum infective dose of an environmentally common bacterium and possible aphid pathogen, Pseudomonas syringae, to determine the likelihood of pathogenic effects to pea aphids. Additionally, we used P. syringae infection to investigate how live pathogens may alter reproductive rates. We found that oral bacterial exposure decreased subsequent survival of aphids in a dose-dependent manner and we estimate that ingestion of less than 10 bacterial cells is sufficient to increase aphid mortality. Pathogen dose was positively related to aphid reproduction. Aphids exposed to low bacterial doses showed decreased, although statistically indistinguishable, fecundity compared to controls. Aphids exposed to high doses reproduced significantly more than low dose treatments and also more, but not significantly so, than controls. These results are consistent with previous studies suggesting that pea aphids may use fecundity compensation as a response to pathogens. Consequently, even low levels of exposure to a common plant-associated bacterium may therefore have significant effects on pea aphid survival and reproduction.

  1. Aphid facultative symbionts reduce survival of the predatory lady beetle Hippodamia convergens

    Science.gov (United States)

    2014-01-01

    Background Non-essential facultative endosymbionts can provide their hosts with protection from parasites, pathogens, and predators. For example, two facultative bacterial symbionts of the pea aphid (Acyrthosiphon pisum), Serratia symbiotica and Hamiltonella defensa, protect their hosts from parasitism by two species of parasitoid wasp. Previous studies have not explored whether facultative symbionts also play a defensive role against predation in this system. We tested whether feeding on aphids harboring different facultative symbionts affected the fitness of an aphid predator, the lady beetle Hippodamia convergens. Results While these aphid faculative symbionts did not deter lady beetle feeding, they did decrease survival of lady beetle larvae. Lady beetle larvae fed a diet of aphids with facultative symbionts had significantly reduced survival from egg hatching to pupation and therefore had reduced survival to adult emergence. Additionally, lady beetle adults fed aphids with facultative symbionts were significantly heavier than those fed facultative symbiont-free aphids, though development time was not significantly different. Conclusions Aphids reproduce clonally and are often found in large groups. Thus, aphid symbionts, by reducing the fitness of the aphid predator H. convergens, may indirectly defend their hosts’ clonal descendants against predation. These findings highlight the often far-reaching effects that symbionts can have in ecological systems. PMID:24555501

  2. A highly infective plant-associated bacterium influences reproductive rates in pea aphids

    Science.gov (United States)

    Hendry, Tory A.; Clark, Kelley J.; Baltrus, David A.

    2016-01-01

    Pea aphids, Acyrthosiphon pisum, have the potential to increase reproduction as a defence against pathogens, though how frequently this occurs or how infection with live pathogens influences this response is not well understood. Here we determine the minimum infective dose of an environmentally common bacterium and possible aphid pathogen, Pseudomonas syringae, to determine the likelihood of pathogenic effects to pea aphids. Additionally, we used P. syringae infection to investigate how live pathogens may alter reproductive rates. We found that oral bacterial exposure decreased subsequent survival of aphids in a dose-dependent manner and we estimate that ingestion of less than 10 bacterial cells is sufficient to increase aphid mortality. Pathogen dose was positively related to aphid reproduction. Aphids exposed to low bacterial doses showed decreased, although statistically indistinguishable, fecundity compared to controls. Aphids exposed to high doses reproduced significantly more than low dose treatments and also more, but not significantly so, than controls. These results are consistent with previous studies suggesting that pea aphids may use fecundity compensation as a response to pathogens. Consequently, even low levels of exposure to a common plant-associated bacterium may therefore have significant effects on pea aphid survival and reproduction. PMID:26998321

  3. Application of plant growth regulators mitigates chlorotic foliar injury by the black pecan aphid (Hemiptera: Aphididae).

    Science.gov (United States)

    Cottrell, Ted E; Wood, Bruce W; Ni, Xinzhi

    2010-11-01

    Black pecan aphid, Melanocallis caryaefoliae (Davis) (Hemiptera: Aphididae), feeding elicits localized chlorotic injury to pecan foliage [Carya illinoinensis (Wangenh.) K Koch] and apparent acceleration of leaf senescence and defoliation. The ability of certain plant growth regulators (PGRs) (forchlorfenuron, gibberellic acid and aviglycine) to prevent M. caryaefoliae from triggering pecan leaf chlorosis and senescence-like processes was evaluated on two dates in both 2006 and 2007. Treatments were applied to orchard foliage and used in laboratory leaf-disc bioassays to assess possible reduction in aphid-elicited chlorosis and concomitant effects on aphid mortality and development. Foliage pretreated with forchlorfenuron + gibberellic acid prior to being challenged with aphids resulted in significantly less aphid-elicited chlorosis than did control or aviglycine-treated leaf discs. No PGR affected aphid mortality; however, development time was increased by forchlorfenuron + gibberellic acid in 2006 and by aviglycine + gibberellic acid on one date in 2007. Certain PGRs possess the potential for usage on pecan to protect foliar canopies from M. caryaefoliae via changes in the susceptibility of the host leaf to senescence-like factors being introduced by feeding aphids. This protective effect on host foliage and the associated suppressive effect on development of feeding aphids might also be relevant to pest management programs on other aphid-crop systems in which aphid-elicited chlorosis and senescence-like processes can limit profitability. Published 2010 by John Wiley & Sons, Ltd.

  4. Genetic diversity and potential vectors and reservoirs of Cucurbit aphid-borne yellows virus in southeastern Spain.

    Science.gov (United States)

    Kassem, Mona A; Juarez, Miguel; Gómez, Pedro; Mengual, Carmen M; Sempere, Raquel N; Plaza, María; Elena, Santiago F; Moreno, Aranzazu; Fereres, Alberto; Aranda, Miguel A

    2013-11-01

    The genetic variability of a Cucurbit aphid-borne yellows virus (CABYV) (genus Polerovirus, family Luteoviridae) population was evaluated by determining the nucleotide sequences of two genomic regions of CABYV isolates collected in open-field melon and squash crops during three consecutive years in Murcia (southeastern Spain). A phylogenetic analysis showed the existence of two major clades. The sequences did not cluster according to host, year, or locality of collection, and nucleotide similarities among isolates were 97 to 100 and 94 to 97% within and between clades, respectively. The ratio of nonsynonymous to synonymous nucleotide substitutions reflected that all open reading frames have been under purifying selection. Estimates of the population's genetic diversity were of the same magnitude as those previously reported for other plant virus populations sampled at larger spatial and temporal scales, suggesting either the presence of CABYV in the surveyed area long before it was first described, multiple introductions, or a particularly rapid diversification. We also determined the full-length sequences of three isolates, identifying the occurrence and location of recombination events along the CABYV genome. Furthermore, our field surveys indicated that Aphis gossypii was the major vector species of CABYV and the most abundant aphid species colonizing melon fields in the Murcia (Spain) region. Our surveys also suggested the importance of the weed species Ecballium elaterium as an alternative host and potential virus reservoir.

  5. Estimation of the number of aphids carrying Citrus tristeza virus that visit adult citrus trees.

    Science.gov (United States)

    Marroquín, Carlos; Olmos, Antonio; Teresa Gorris, María; Bertolini, Edson; Carmen Martínez, M; Carbonell, Emilio A; Hermoso de Mendoza, Alfonso; Cambra, Mariano

    2004-03-01

    Aphid species were counted on citrus trees in orchards in Valencia, Spain, in the spring and autumn of 1997, 1998 and 1999. Moericke yellow water traps, the 'sticky shoot' method and counts of established colonies were used in extensive surveys in which 29,502 aphids were recorded and identified. Aphis spiraecola and Aphis gossypii were the most abundant aphid species. The numbers of aphid species landing on mature trees of grapefruit, sweet orange, lemon and clementine and satsuma mandarins, were estimated by counting the numbers of young shoots/tree and aphids trapped on sticky shoots. The proportions of the different aphid species captured were: A. gossypii (53%), A. spiraecola (32%), Toxoptera aurantii (11%), Myzus persicae (1%), Aphis craccivora (1%) and other species (2%). Clementine was the most visited species with 266,700 aphids landing/tree in spring 2000, followed by lemon (147,000), sweet orange (129,150), grapefruit (103,200), and satsuma (92,400). The numbers and relative percentages of aphids carrying Citrus tristeza virus (CTV) were assessed by nested RT-PCR in single closed tubes and analysed by extraction of RNA-CTV targets from trapped aphids. An average of 37,190 CTV-carrying aphids visited each tree in spring 2000 (29 per shoot). The percentage detection of viral RNA in the aphid species that landed were 27% for A. gossypii, 23% for A. spiraecola and 19% for T. aurantii. This high incidence of aphids carrying CTV is consistent with the high prevalence and rapid spread of CTV in sweet orange, clementine, and satsuma mandarins in recent years in the region. The infection rate was proportional to the number of aphids landing/tree.

  6. Presence of the aphid, Chaetosiphon fragaefolii, on strawberry in Argentina.

    Science.gov (United States)

    Cédola, Claudia; Grecob, Nancy

    2010-01-01

    Seasonal abundance of the strawberry aphid complex under different agronomic practices in the outskirts of La Plata, Argentina was studied on strawberry, Fragaria x ananassa Duchesne (Rosales: Rosaceae). Aphid densities were low in strawberry fields in which insecticides and fungicides were used. In addition to Aphis gossypii, Aphis fabae, Mysus persicae and Macrosiphum euphorbiae, the aphid, Chaetosiphon fragaefolii (Cockerell) (Homoptera: Aphididae), was recorded for the first time in this horticultural area. Life history and some demographic parameters were calculated for C. fragaefolii. The mean duration of nymphal stages was 10.44 days, the oviposition period was 11.8 days, and the mean number of nymph/female/day was 2.4 +/- 0.3. Demographic parameters analyzed included the net reproductive rate R(o) = 14.55 +/- 0.096 nymph/female, generation time T=16.91 +/- 0.035 days, and the intrinsic rate of increase r(m) = 0.158 +/- (0.004). No parasites were found associated with C. fragaefolli. The pathogenic fungus, Entomophthora planchoniana Cornu (Zygomycetes: Entomophthorales) was the main mortality factor. Although aphids are not the main pests in strawberry fields, C. fragaefolii can be a serious problem because it can transmit several virus diseases of strawberry. Greater knowledge of life history traits and mortality factors of this species is needed in order to design appropriate control strategies.

  7. Transgenic plants expressing the coat protein gene of cowpea aphid ...

    African Journals Online (AJOL)

    Cowpea aphid-borne mosaic virus (CABMV) is a potyvirus that infects cowpea causing significant yield reduction. However, there is no durable natural resistance to the virus within the crop and genetic engineering for virus resistance was not possible because of a lack of an efficient, reliable and reproducible cowpea ...

  8. Predator efficiency reconsidered for a ladybird-aphid system

    Czech Academy of Sciences Publication Activity Database

    Kindlmann, Pavel; Yasuda, H.; Kajita, Y.; Sato, S.; Dixon, Anthony F. G.

    2015-01-01

    Roč. 3, mar (2015), s. 27 ISSN 2296-701X R&D Projects: GA MŠk(CZ) LO1415; GA ČR GB14-36098G Institutional support: RVO:67179843 Keywords : biological control * generation time ratio * population dynamics * predator-prey systems * ladybirds * aphids Subject RIV: EH - Ecology, Behaviour

  9. Local predators attack exotic aphid Brachycaudus divaricatae in Lithuania

    Czech Academy of Sciences Publication Activity Database

    Danilov, J.; Rakauskas, R.; Havelka, Jan; Starý, Petr

    2016-01-01

    Roč. 69, č. 2 (2016), s. 263-269 ISSN 1721-8861 Institutional support: RVO:60077344 Keywords : Prunus * Aphids * Brachycaudus divaricatae Subject RIV: EH - Ecology, Behaviour Impact factor: 1.051, year: 2016 http://www.bulletinofinsectology.org/pdfarticles/vol69-2016-263-269danilov.pdf

  10. Is the response of aphids to alarm pheromone stable?

    Czech Academy of Sciences Publication Activity Database

    Thieme, T.; Dixon, Anthony F. G.

    2015-01-01

    Roč. 139, č. 10 (2015), s. 741-746 ISSN 0931-2048 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : (E)-β-farnesene * dropping response * habituation * Leguminosae * pea aphid Subject RIV: EH - Ecology, Behaviour Impact factor: 1.517, year: 2015

  11. Behavioral evidence for local reduction of aphid-induced resistance

    NARCIS (Netherlands)

    Prado, E.; Tjallingii, W.F.

    2007-01-01

    Twenty-five aphids of three different species, Brevicoryne brassicae L, Myzus persicae Schulzer, and Rhopalosiphum padi L(Hemiptera: Aphididae) were each allowed to infest leaves of a young plant of their respective host plant species for 4 days, except that the oldest expanded leaf (the `systemic¿

  12. Ecdysone signaling underlies the pea aphid transgenerational wing polyphenism.

    Science.gov (United States)

    Vellichirammal, Neetha Nanoth; Gupta, Purba; Hall, Tannice A; Brisson, Jennifer A

    2017-02-07

    The wing polyphenism of pea aphids is a compelling laboratory model with which to study the molecular mechanisms underlying phenotypic plasticity. In this polyphenism, environmental stressors such as high aphid density cause asexual, viviparous adult female aphids to alter the developmental fate of their embryos from wingless to winged morphs. This polyphenism is transgenerational, in that the pea aphid mother experiences the environmental signals, but it is her offspring that are affected. Previous research suggested that the steroid hormone ecdysone may play a role in this polyphenism. Here, we analyzed ecdysone-related gene expression patterns and found that they were consistent with a down-regulation of the ecdysone pathway being involved in the production of winged offspring. We therefore predicted that reduced ecdysone signaling would result in more winged offspring. Experimental injections of ecdysone or its analog resulted in a decreased production of winged offspring. Conversely, interfering with ecdysone signaling using an ecdysone receptor antagonist or knocking down the ecdysone receptor gene with RNAi resulted in an increased production of winged offspring. Our results are therefore consistent with the idea that ecdysone plays a causative role in the regulation of the proportion of winged offspring produced in response to crowding in this polyphenism. Our results also show that an environmentally regulated maternal hormone can mediate phenotype production in the next generation, as well as provide significant insight into the molecular mechanisms underlying the functioning of transgenerational phenotypic plasticity.

  13. Trichoderma harzianum enhances tomato indirect defense against aphids.

    Science.gov (United States)

    Coppola, Mariangela; Cascone, Pasquale; Chiusano, Maria Luisa; Colantuono, Chiara; Lorito, Matteo; Pennacchio, Francesco; Rao, Rosa; Woo, Sheridan Lois; Guerrieri, Emilio; Digilio, Maria Cristina

    2017-12-01

    Many fungal root symbionts of the genus Trichoderma are well-known for their beneficial effects on agronomic performance and protection against plant pathogens; moreover, they may enhance protection from insect pests, by triggering plant resistance mechanisms. Defense barriers against insects are induced by the activation of metabolic pathways involved in the production of defense-related plant compounds, either directly active against herbivore insects, or exerting an indirect effect, by increasing the attraction of herbivore natural enemies. In a model system composed of the tomato plant, the aphid Macrosiphum euphorbiae and the parasitoid Aphidius ervi, plant metabolic changes induced by Trichoderma harzianum and their effects on higher trophic levels have been assessed. T. harzianum T22 treatments induce a primed state that upon aphid attacks leads to an increased attraction of aphid parasitoids, mediated by the enhanced production of volatile organic compounds (VOCs) that are known to induce Aphidius ervi flight. Transcriptome sequencing of T22-treated plants infested by aphids showed a remarkable upregulation of genes involved in terpenoids biosynthesis and salicylic acid pathway, which are consistent with the observed flight response of A. ervi and the VOC bouquet profile underlying this behavioral response. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  14. Short Communication: Occurrence of the pea aphid, Acyrthosiphon ...

    African Journals Online (AJOL)

    The occurrence of pea aphid, Acyrthosiphon pisum (Harris) (Homoptera: Aphididae), on wild annual and perennial leguminous plants was studied at two locations (Adet and Wondata) in West Gojam, Ethiopia in 1999/2000 seasons. Annual and perennial leguminous wild or volunteer plants encountered in the study areas ...

  15. Resistance source to cowpea aphid (Aphis craccivora Koch) in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-18

    Jul 18, 2008 ... The present study evaluated the resistance of 7 varieties of the broad bean Vicia faba L. to cowpea aphid, Aphis craccivora Koch, 1854. These landraces from the region of Biskra (in the south of Algeria) were selected in an initial field trial and subjected to further testing in the greenhouse. Landrace V51.

  16. Recent characterization of cowpea aphid-borne mosaic virus ...

    African Journals Online (AJOL)

    Woodiness disease is the most important disorder of passion fruit worldwide. The causal agent in Brazil is the Cowpea aphid-borne mosaic virus (CABMV), and despite the economic relevance of passion fruit for agriculture there have been recently very few studies about this virus in Brazil and worldwide. This work reveals ...

  17. Extraordinary proliferation of microorganisms in aposymbiotic pea aphids, Acyrthosiphon pisum.

    Science.gov (United States)

    Nakabachi, Atsushi; Ishikawa, Hajime; Kudo, Toshiaki

    2003-03-01

    Aposymbiotic pea aphids, which were deprived of their intracellular symbiotic bacterium, Buchnera, exhibit growth retardation and no fecundity. High performance liquid chromatographic (HPLC) analysis revealed that these aposymbiotic aphids, when reared on broad bean plants, accumulated a large amount of histamine. To assess the possibility of extraordinary proliferation of microorganisms other than Buchnera, we enumerated eubacteria and fungi in aphids using the real-time quantitative PCR method that targets genes encoding small-subunit rRNAs. The result showed that these microorganisms were extremely abundant in the aposymbiotic aphids reared on plants. Microbial communities in aposymbiotic aphids were further profiled by phylogenetic analysis of small-subunit rDNAs. Of 172 nonchimeric sequences of fungal 18S rDNAs, 138 (80.2%) belonged to the phylum Ascomycota. Among them, 21 clustered within a monophyletic group consisting of insect-pathogenic fungi and yeast-like symbionts of homopteran insects. Thirty-one (18.0%), two (1.2%), and one (0.6%) clones were clustered within the Basidiomycota, Zygomycota, and Oomycota, respectively. Of 167 nonchimeric sequences of eubacterial 16S rDNAs, 84 (50.3%) belonged to the gamma-subdivision of Proteobacteria to which most primary endosymbionts of insects and prolific histamine producers belong. Forty (24.0%), 25 (15.0%), 10 (6.0%), and five (3.0%) clones were clustered within alpha-Proteobacteria, Cytophaga-Flavobacterium-Bacteroides (CFB) group, Actinobacteria, and beta-Proteobacteria, respectively. Three had no phylogenetic association with known taxonomic divisions. None of the sequences studied in this study coincided exactly with those deposited in GenBank.

  18. Field and laboratory evaluations of soybean lines against soybean aphid (Hemiptera: Aphididae).

    Science.gov (United States)

    Hesler, Louis S; Prischmann, Deirdre A; Dashiell, Kenton E

    2012-04-01

    The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a major pest of soybean, Glycine max (L.). Merr., that significantly reduces yield in northern production areas of North America. Insecticides are widely used to control soybean aphid outbreaks, but efforts are underway to develop host plant resistance as an effective alternative management strategy. Here, previously identified resistant lines were evaluated in laboratory tests against field-collected populations of soybean aphid and in field-plot tests over 2 yr in South Dakota. Six lines previously identified with resistance to soybean aphid--Jackson, Dowling, K1639, Cobb, Palmetto and Sennari--were resistant in this study, but relatively high aphid counts on Tie-feng 8 in field plots contrasted with its previously reported resistance. Bhart-PI 165989 showed resistance in one of two laboratory tests, but it had relatively large aphid infestations in both years of field tests. Intermediate levels of soybean aphid occurred in field plots on lines previously shown to have strong (Sugao Zairai, PI 230977, and D75-10169) or moderate resistance to soybean aphid (G93-9223, Bragg, Braxton, and Tracy-M). Sugao Zairai also failed to have a significant proportion of resistant plants in two laboratory tests against aphids field-collected in 2008, but it was resistant in laboratory tests with aphids collected in 2002, 2005, and 2006. Overall, results showed that lines with Rag (i.e., Jackson) or Rag1 gene (i.e., Dowling) had low aphid numbers, whereas lines with Rag2 (i.e., Sugao Zairai, Sennari) had mixed results. Collectively, responses of soybean aphid populations in laboratory and field tests in 2008 resembled a virulence pattern reported previously for biotype 3 soybean aphids, but virulence in soybean aphid populations was variable and dynamic over years of the study. These results, coupled with previous reports of biotypes virulent to Rag1, suggest that deployment of lines with a single aphid

  19. Arabidopsis thaliana - Myzus persicae interaction: shaping the understanding of plant defense against phloem-feeding aphids

    Directory of Open Access Journals (Sweden)

    Joe eLouis

    2013-07-01

    Full Text Available The phloem provides a unique niche for several organisms. Aphids are a large group of Hemipteran insects that utilize stylets present in their mouthparts to pierce sieve elements and drink large volumes of phloem sap. In addition, many aphids also vector viral diseases. Myzus persicae, commonly known as the green peach aphid (GPA, is an important pest of a large variety of plants that includes Arabidopsis thaliana. This review summarizes recent studies that have exploited the compatible interaction between Arabidopsis and GPA to understand the molecular and physiological mechanisms utilized by plants to control aphid infestation, as well as genes and mechanisms that contribute to susceptibility. In addition, recent efforts to identify aphid-delivered elicitors of plant defenses and novel aphid salivary components that facilitate infestation are also discussed.

  20. Role of the aphid species and their feeding locations in parasitization behavior of Aphelinus abdominalis, a parasitoid of the lettuce aphid Nasonovia ribisnigri.

    Science.gov (United States)

    Shrestha, Govinda; Skovgård, Henrik; Reddy, Gadi V P; Steenberg, Tove; Enkegaard, Annie

    2017-01-01

    Aphid species feeding on lettuce occupy distinct feeding sites: the lettuce aphid Nasonovia ribisnigri prefers to feed on heart leaves, whereas the potato aphid Macrosiphum euphorbiae feeds only on outer leaves. The aphid parasitoid Aphelinus abdominalis, known to be able to regulate M. euphorbiae on many crops, has recently been indicated as a promising biocontrol candidate also for use against N. ribisnigri, a major pest of lettuce. This study therefore examined A. abdominalis parasitization preference between N. ribisnigri and M. euphorbiae and its ability to parasitize aphids feeding on different parts of lettuce plants. In addition, life history traits of A. abdominalis on these aphid species were investigated. In no-choice laboratory experiments on leaf discs and 24 h exposure, A. abdominalis successfully parasitized 54% and 60% of the offered N. ribisnigri and M. euphorbiae, respectively, with no significant difference. In the corresponding choice experiment, however, A. abdominalis had a tendency for a significantly higher preference for M. euphorbiae (38%) compared to N. ribisnigri (30%). Growth chamber experiments on whole plants demonstrated that A. abdominalis was able to parasitize aphids, regardless of their feeding locations on lettuce plants. However, aphid feeding behavior had a significant effect on the parasitization rate. A. abdominalis parasitized significantly higher percentages of M. euphorbiae or N. ribisnigri when aphids were exposed separately to parasitoids on whole lettuce plants as compared with N. ribisnigri exposed only on heart leaf. A significant preference of A. abdominalis for M. euphorbiae compared to N. ribisnigri was also observed in the growth chamber choice experiment. A high percentage of adult emergence (> 84%) and female-biased sex ratio (> 83%) were found irrespective of the aphid species.

  1. Role of the aphid species and their feeding locations in parasitization behavior of Aphelinus abdominalis, a parasitoid of the lettuce aphid Nasonovia ribisnigri.

    Directory of Open Access Journals (Sweden)

    Govinda Shrestha

    Full Text Available Aphid species feeding on lettuce occupy distinct feeding sites: the lettuce aphid Nasonovia ribisnigri prefers to feed on heart leaves, whereas the potato aphid Macrosiphum euphorbiae feeds only on outer leaves. The aphid parasitoid Aphelinus abdominalis, known to be able to regulate M. euphorbiae on many crops, has recently been indicated as a promising biocontrol candidate also for use against N. ribisnigri, a major pest of lettuce. This study therefore examined A. abdominalis parasitization preference between N. ribisnigri and M. euphorbiae and its ability to parasitize aphids feeding on different parts of lettuce plants. In addition, life history traits of A. abdominalis on these aphid species were investigated. In no-choice laboratory experiments on leaf discs and 24 h exposure, A. abdominalis successfully parasitized 54% and 60% of the offered N. ribisnigri and M. euphorbiae, respectively, with no significant difference. In the corresponding choice experiment, however, A. abdominalis had a tendency for a significantly higher preference for M. euphorbiae (38% compared to N. ribisnigri (30%. Growth chamber experiments on whole plants demonstrated that A. abdominalis was able to parasitize aphids, regardless of their feeding locations on lettuce plants. However, aphid feeding behavior had a significant effect on the parasitization rate. A. abdominalis parasitized significantly higher percentages of M. euphorbiae or N. ribisnigri when aphids were exposed separately to parasitoids on whole lettuce plants as compared with N. ribisnigri exposed only on heart leaf. A significant preference of A. abdominalis for M. euphorbiae compared to N. ribisnigri was also observed in the growth chamber choice experiment. A high percentage of adult emergence (> 84% and female-biased sex ratio (> 83% were found irrespective of the aphid species.

  2. Role of the aphid species and their feeding locations in parasitization behavior of Aphelinus abdominalis, a parasitoid of the lettuce aphid Nasonovia ribisnigri

    Science.gov (United States)

    Shrestha, Govinda; Skovgård, Henrik; Reddy, Gadi V. P.; Steenberg, Tove; Enkegaard, Annie

    2017-01-01

    Aphid species feeding on lettuce occupy distinct feeding sites: the lettuce aphid Nasonovia ribisnigri prefers to feed on heart leaves, whereas the potato aphid Macrosiphum euphorbiae feeds only on outer leaves. The aphid parasitoid Aphelinus abdominalis, known to be able to regulate M. euphorbiae on many crops, has recently been indicated as a promising biocontrol candidate also for use against N. ribisnigri, a major pest of lettuce. This study therefore examined A. abdominalis parasitization preference between N. ribisnigri and M. euphorbiae and its ability to parasitize aphids feeding on different parts of lettuce plants. In addition, life history traits of A. abdominalis on these aphid species were investigated. In no-choice laboratory experiments on leaf discs and 24 h exposure, A. abdominalis successfully parasitized 54% and 60% of the offered N. ribisnigri and M. euphorbiae, respectively, with no significant difference. In the corresponding choice experiment, however, A. abdominalis had a tendency for a significantly higher preference for M. euphorbiae (38%) compared to N. ribisnigri (30%). Growth chamber experiments on whole plants demonstrated that A. abdominalis was able to parasitize aphids, regardless of their feeding locations on lettuce plants. However, aphid feeding behavior had a significant effect on the parasitization rate. A. abdominalis parasitized significantly higher percentages of M. euphorbiae or N. ribisnigri when aphids were exposed separately to parasitoids on whole lettuce plants as compared with N. ribisnigri exposed only on heart leaf. A significant preference of A. abdominalis for M. euphorbiae compared to N. ribisnigri was also observed in the growth chamber choice experiment. A high percentage of adult emergence (> 84%) and female-biased sex ratio (> 83%) were found irrespective of the aphid species. PMID:28854232

  3. Impact of fertilization and granular insecticides on the incidence of tobacco aphid, myzus persicae (sulz)

    International Nuclear Information System (INIS)

    Razaq, A.; Hussain, N.; Khalil, S.K.; Alamzeb

    1989-01-01

    Field studies were conducted on the control of tobacco aphid, Myzus persicase (Sulz) with four granular insecticides, viz, Furadan 3% G, Diazinon 5% g, Thiodan 5% g and Larsban 5% g, with and without NPK fertilization. The aphid population was significantly higher in the fertilized plots compared to the non-fertilized ones. All the four insecticides significantly reduced the aphids density compared to the check. Furada 3% gave best results for the control of this pest. (author)

  4. Peroxiredoxin 1 protects the pea aphid Acyrthosiphon pisum from oxidative stress induced by Micrococcus luteus infection.

    Science.gov (United States)

    Zhang, Yongdong; Lu, Zhiqiang

    2015-05-01

    Reactive oxygen species (ROSs) are generated in organisms in response to infections caused by invading microbes. However, excessive ROSs will inflict oxidative damage on the host. Peroxiredoxins (Prxs) are antioxidative enzymes that may eliminate ROSs efficiently. In this study, ApPrx1 from the pea aphid Acyrthosiphon pisum was cloned, and its function was investigated in vitro and in vivo. In the presence of DTT, recombinant ApPrx1 protein from Escherichia coli showed antioxidative activity by eliminating H2O2 effectively. The H2O2 levels were significantly higher in Micrococcus luteus-infected aphids than in uninfected aphids, and ApPrx1 expression was remarkably up-regulated when the aphids were infected with M. luteus or injected with H2O2. When ApPrx1 expression was reduced by dsRNA injection, the survival of the aphids decreased significantly after M. luteus infection. Knockdown of ApPrx1 decreased M. luteus loads inside the aphids 48h post-infection. While under infection conditions, the H2O2 levels were much higher in ApPrx1 knockdown aphids than in dsGFP-injected aphids, indicating that the decreased survival of the aphids was caused by increased oxidative stress. Taken together, our results reveal that ApPrx1 plays a protective role in oxidative stress caused by bacterial infection. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Aphid Infestation Increases Fusarium langsethiae and T-2 and HT-2 Mycotoxins in Wheat

    Science.gov (United States)

    Drakulic, Jassy; Ajigboye, Olubukola; Swarup, Ranjan; Bruce, Toby

    2016-01-01

    ABSTRACT Fusarium langsethiae is a fungal pathogen of cereal crops that is an increasing problem in northern Europe, but much of its epidemiology is poorly understood. The species produces the mycotoxins T-2 and HT-2, which are highly toxic. It was hypothesized that grain aphids, Sitobion avenae, may transmit F. langsethiae inoculum between wheat plants, and a series of transmission experiments and volatile chemical analyses was performed to test this. Manual translocation of aphids from inoculated to uninfected hosts resulted in pathogen DNA accumulation in hosts. However, the free movement of wingless aphids from infected to healthy plants did not. The addition of winged aphids reared on F. langsethiae-inoculated wheat seedlings to wheat plants also did not achieve successful pathogen transfer. While our data suggested that aphid transmission of the pathogen was not very efficient, we observed an increase in disease when aphids were present. After seedling inoculation, an increase in pathogen DNA accumulation in seedling leaves was observed upon treatment with aphids. Furthermore, the presence of aphids on wheat plants with F. langsethiae-inoculated ears not only led to a rise in the amount of F. langsethiae DNA in infected grain but also to an increase in the concentrations of T-2 and HT-2 toxins, with more than 3-fold higher toxin levels than diseased plants without aphids. This work highlights that aphids increase the susceptibility of wheat host plants to F. langsethiae and that aphid infestation is a risk factor for accumulating increased levels of T-2 and HT-2 in wheat products. IMPORTANCE Fusarium langsethiae is shown here to cause increased contamination levels of grain with toxins produced by fungus when aphids share the host plant. This effect has also recently been demonstrated with Fusarium graminearum, yet the two fungal species show stark differences in their effect on aphid populations. In both cases, aphids improve the ability of the pathogens to

  6. Proteomic investigation of aphid honeydew reveals an unexpected diversity of proteins.

    Directory of Open Access Journals (Sweden)

    Ahmed Sabri

    Full Text Available Aphids feed on the phloem sap of plants, and are the most common honeydew-producing insects. While aphid honeydew is primarily considered to comprise sugars and amino acids, its protein diversity has yet to be documented. Here, we report on the investigation of the honeydew proteome from the pea aphid Acyrthosiphon pisum. Using a two-Dimensional Differential in-Gel Electrophoresis (2D-Dige approach, more than 140 spots were isolated, demonstrating that aphid honeydew also represents a diverse source of proteins. About 66% of the isolated spots were identified through mass spectrometry analysis, revealing that the protein diversity of aphid honeydew originates from several organisms (i.e. the host aphid and its microbiota, including endosymbiotic bacteria and gut flora. Interestingly, our experiments also allowed to identify some proteins like chaperonin, GroEL and Dnak chaperones, elongation factor Tu (EF-Tu, and flagellin that might act as mediators in the plant-aphid interaction. In addition to providing the first aphid honeydew proteome analysis, we propose to reconsider the importance of this substance, mainly acknowledged to be a waste product, from the aphid ecology perspective.

  7. Bacteria may contribute to distant species recognition in ant-aphid mutualistic relationships.

    Science.gov (United States)

    Fischer, Christophe Y; Detrain, Claire; Thonart, Philippe; Haubruge, Eric; Francis, Frédéric; Verheggen, François J; Lognay, Georges C

    2017-04-01

    Mutualistic interactions between ant and aphid species have been the subject of considerable historical and contemporary investigations, the primary benefits being cleaning and protection for the aphids and carbohydrate-rich honeydew for the ants. Questions remained, however, as to the volatile semiochemical factor influencing this relationship. A recent study highlighted the role of bacterial honeydew volatile compounds in ant attraction. Here, ant's ability to distantly discriminate 2 aphid species was investigated based on bacterial honeydew semiochemicals emissions using a two-way olfactometer. Both the mutualistic aphid Aphis fabae L. and the nonmyrmecophilous aphid Acyrthosiphon pisum Harris were found to be attractive for the ant Lasius niger L. The level of attraction was similar in both assays (control vs. one of the aphid species). However, when given a choice between these 2 aphid species, ants showed a significant preference for Aphis fabae. Honeydew volatiles, mostly from bacterial origins, are known to be a key element in ant attraction. Using the same olfactometry protocol, the relative attractiveness of volatiles emitted by honeydews collected from each aphid species and by bacteria isolated from each honeydew was investigated. Again, ants significantly preferred volatiles released by Aphis fabae honeydew and bacteria. This information suggests that microbial honeydew volatiles enable ants to distantly discriminate aphid species. These results strengthen the interest of studying the occurrence and potential impact of microorganisms in insect symbioses. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  8. Influences of pea morphology and interacting factors on pea aphid (Homoptera: Aphididae) reproduction.

    Science.gov (United States)

    Buchman, N; Cuddington, K

    2009-08-01

    It has been claimed that plant architecture can alter aphid reproductive rates, but the mechanism driving this effect has not been identified. We studied interactions between plant architecture, aphid density, environmental conditions, and nutrient availability on the reproduction of pea aphids [Acyrthosiphon pisum (Harris)] using four near-isogenic peas (Pisum sativum L.) that differ in morphology. Manipulations of aphid density (1, 5, and 10 adults per plant) allowed us to examine any effects of plant morphology on crowding and consequently reproduction. Pea morphology per se did not alter pea aphid crowding, as measured by mean nearest neighbor distance, and there was no effect on reproduction. In addition, reproduction increased with increasing adult density, indicating positive density dependence. In a separate experiment, peas were fertilized to determine whether differences between nutrient availability of the four different morphologies might drive any observed differences in aphid reproduction. Although plant nitrogen content was altered by fertilization treatments, this did not have an impact on aphid reproduction. Greenhouse experiments, however, suggested that pea morphology can interact with environmental conditions to reduce aphid reproduction under some conditions. We conclude that plant morphology only influences aphid reproduction when environmental conditions are less than optimal.

  9. THE ROLE OF BACTERIAL SYMBIONTS IN AMINO ACID COMPOSITION OF BLACK BEAN APHIDS

    Institute of Scientific and Technical Information of China (English)

    MingGan; De-ChengDing; Xue-xiaMiao

    2003-01-01

    To evaluate the role of bacterial symbionts ( Buchnera spp. ) in the black bean aphids ( Aphis craccivora Koch), the aphids were treated with the antibiotic, rifampicin, to eliminate their intracellular symbiotic bacteria. Analysis of protein and amino acid concentration in 7-day-old of aposymbiotic aphids showed that the total protein content per mg fresh weight was significantly reduced by 29 %, but free amino acid titers were increased by 17% . The ratio of the essential amino acids was in general only around 20% essential amino acids in phloem sap of broad bean, whereas it was 44% and 37% in symbiotic and aposymbiotic aphids, respectively,suggesting that the composition of the free amino acids was unbalanced. For example, the essential amino acid,threonine represented 21. 6% of essential amino acids in symbiotic aphids, but it was only 16.7% in aposymbiotic aphids. Likewise, two nonessential amino acids, tyrosine and serine, represented 8.9% and 5.6% of total amino acids in symbiontic aphids, respectively, but they enhanced to 21.1% and 13.6% in aposymbiotic aphids. It seems likely that the elevated free amino acid concentration in aposymbiotic aphids was caused by the limited protein anabolism as the result of the unbalanced amino acid composition.

  10. EFFICACY OF IMIDACLOPRID (CONFIDOR 200 SL AGAINST APHIDS INFESTING WHEAT CROP

    Directory of Open Access Journals (Sweden)

    N Joshi

    2010-02-01

    Full Text Available Imidacloprid (Confidor 200 SL was evaluated either alone or with a fungicide (Tilt 0.01% against wheat aphids. There were seven different treatments, including an untreated control. All the treatments were replicated three times in a similar field environment. Population of wheat aphids was recorded on randomly selected five plants in each plot at different intervals, both before and after the spraying. Confidor 200 SL @ 400 ml/ha treatment was found most effective against wheat aphids. However, mixing of Confidor 200 SL @ 100 ml/ha with Tilt @ 0.01 %, was found significantly least effective for wheat aphids control.

  11. Aphid secondary symbionts do not affect prey attractiveness to two species of predatory lady beetles.

    Directory of Open Access Journals (Sweden)

    Jennifer L Kovacs

    Full Text Available Heritable symbionts have been found to mediate interactions between host species and their natural enemies in a variety of organisms. Aphids, their facultative symbionts, and their potential fitness effects have been particularly well-studied. For example, the aphid facultative symbiont Regiella can protect its host from infection from a fungal pathogen, and aphids with Hamiltonella are less likely to be parasitized by parasitic wasps. Recent work has also found there to be negative fitness effects for the larvae of two species of aphidophagous lady beetles that consumed aphids with facultative symbionts. In both species, larvae that consumed aphids with secondary symbionts were significantly less likely to survive to adulthood. In this study we tested whether adult Harmonia axyridis and Hippodamia convergens lady beetles avoided aphids with symbionts in a series of choice experiments. Adults of both lady beetle species were as likely to choose aphids with symbionts as those without, despite the potential negative fitness effects associated with consuming aphids with facultative symbionts. This may suggest that under natural conditions aphid secondary symbionts are not a significant source of selection for predatory lady beetles.

  12. Coexistence of three specialist aphids on common milkweed, Asclepias syriaca.

    Science.gov (United States)

    Smith, R A; Mooney, K A; Agrawal, A A

    2008-08-01

    Coexistence of host-specific herbivores on plants is believed to be governed by interspecific interactions, but few empirical studies have systematically unraveled these dynamics. We investigated the role of several factors in promoting coexistence among the aphids Aphis nerii, Aphis asclepiadis, and Myzocallis asclepiadis that all specialize on common milkweed (Asclepias syriaca). Competitive exclusion is thought to occur when interspecific competition is stronger than intraspecific competition. Consequently, we investigated whether predators, mutualists, or resource quality affected the strength of intra- vs. interspecific competition among aphids in factorial manipulations of competition with exposure to predation, ants, and variable plant genotypes in three separate experiments. In the predation x competition experiment, predators reduced aphid per capita growth by 66%, but the strength of intra- and interspecific competition did not depend on predators. In the ants x competition experiment, ants reduced per capita growth of A. nerii and M. asclepiadis (neither of which were mutualists with ants) by approximately one-half. In so doing, ants ameliorated the negative effects of these competitors on ant-tended A. asclepiadis by two-thirds, representing a novel benefit of ant-aphid mutualism. Nevertheless, ants alone did not explain the persistence of competitively inferior A. asclepiadis as, even in the presence of ants, interspecific competition remained stronger than intraspecific competition. In the plant genotype x competition experiment, both A. asclepiadis and M. asclepiadis were competitively inferior to A. nerii, with the strength of interspecific competition exceeding that of intraspecific competition by 83% and 23%, respectively. Yet these effects differed among milkweed genotypes, and there were one or more plant genotypes for each aphid species where coexistence was predicted. A synthesis of our results shows that predators play little or no role in

  13. NDVI to Detect Sugarcane Aphid Injury to Grain Sorghum.

    Science.gov (United States)

    Elliott, N C; Backoulou, G F; Brewer, M J; Giles, K L

    2015-06-01

    Multispectral remote sensing has potential to provide quick and inexpensive information on sugarcane aphid, Melanaphis sacchari (Zehntner), pest status in sorghum fields. We describe a study conducted to determine if injury caused by sugarcane aphid to sorghum plants in fields of grain sorghum could be detected using multispectral remote sensing from a fixed wing aircraft. A study was conducted in commercial grain sorghum fields in the Texas Gulf Coast region in June 2014. Twenty-six commercial grain sorghum fields were selected and rated for the level of injury to sorghum plants in the field caused by sugarcane aphid. Plant growth stage ranged from 5.0 (watery ripe) to 7.0 (hard dough) among fields; and plant injury rating from sugarcane aphid ranged from 1.0 (little or no injury) to 4.0 (>40% of plants displaying injury) among fields. The normalized differenced vegetation index (NDVI) is calculated from light reflectance in the red and near-infrared wavelength bands in multispectral imagery and is a common index of plant stress. High NDVI indicates low levels of stress and low NDVI indicates high stress. NDVI ranged from -0.07 to 0.26 among fields. The correlation between NDVI and plant injury rating was negative and significant, as was the correlation between NDVI and plant growth stage. The negative correlation of NDVI with injury rating indicated that plant stress increased with increasing plant injury. Reduced NDVI with increasing plant growth probably resulted from reduced photosynthetic activity in more mature plants. The correlation between plant injury rating and plant growth stage was positive and significant indicating that plant injury from sugarcane aphid increased as plants matured. The partial correlation of NDVI with plant injury rating was negative and significant indicating that NDVI decreased with increasing plant injury after adjusting for its association with plant growth stage. We demonstrated that remotely sensed imagery acquired from grain

  14. Analyses of Sickness Absence

    NARCIS (Netherlands)

    Heijnen, S.M.M.

    2014-01-01

    Sickness absence is an empirical phenomenon of all time. Generally, it has a medical cause. However, other factors also appear to have an impact on the actual rate of sickness absence, such as the institutional setting, the business cycle and the economic structure. Many questions on the different

  15. Expansion of genes encoding piRNA-associated argonaute proteins in the pea aphid: diversification of expression profiles in different plastic morphs.

    Directory of Open Access Journals (Sweden)

    Hsiao-Ling Lu

    Full Text Available Piwi-interacting RNAs (piRNAs are known to regulate transposon activity in germ cells of several animal models that propagate sexually. However, the role of piRNAs during asexual reproduction remains almost unknown. Aphids that can alternate sexual and asexual reproduction cycles in response to seasonal changes of photoperiod provide a unique opportunity to study piRNAs and the piRNA pathway in both reproductive modes. Taking advantage of the recently sequenced genome of the pea aphid Acyrthosiphon pisum, we found an unusually large lineage-specific expansion of genes encoding the Piwi sub-clade of Argonaute proteins. In situ hybridisation showed differential expressions between the duplicated piwi copies: while Api-piwi2 and Api-piwi6 are "specialised" in germ cells their most closely related copy, respectively Api-piwi5 and Api-piwi3, are expressed in the somatic cells. The differential expression was also identified in duplicated ago3: Api-ago3a in germ cells and Api-ago3b in somatic cells. Moreover, analyses of expression profiles of the expanded piwi and ago3 genes by semi-quantitative RT-PCR showed that expressions varied according to the reproductive types. These specific expression patterns suggest that expanded aphid piwi and ago3 genes have distinct roles in asexual and sexual reproduction.

  16. Genome-wide methylation profiling identifies an essential role of reactive oxygen species in pediatric glioblastoma multiforme and validates a methylome specific for H3 histone family 3A with absence of G-CIMP/isocitrate dehydrogenase 1 mutation.

    Science.gov (United States)

    Jha, Prerana; Pia Patric, Irene Rosita; Shukla, Sudhanshu; Pathak, Pankaj; Pal, Jagriti; Sharma, Vikas; Thinagararanjan, Sivaarumugam; Santosh, Vani; Suri, Vaishali; Sharma, Mehar Chand; Arivazhagan, Arimappamagan; Suri, Ashish; Gupta, Deepak; Somasundaram, Kumaravel; Sarkar, Chitra

    2014-12-01

    Pediatric glioblastoma multiforme (GBM) is rare, and there is a single study, a seminal discovery showing association of histone H3.3 and isocitrate dehydrogenase (IDH)1 mutation with a DNA methylation signature. The present study aims to validate these findings in an independent cohort of pediatric GBM, compare it with adult GBM, and evaluate the involvement of important functionally altered pathways. Genome-wide methylation profiling of 21 pediatric GBM cases was done and compared with adult GBM data (GSE22867). We performed gene mutation analysis of IDH1 and H3 histone family 3A (H3F3A), status evaluation of glioma cytosine-phosphate-guanine island methylator phenotype (G-CIMP), and Gene Ontology analysis. Experimental evaluation of reactive oxygen species (ROS) association was also done. Distinct differences were noted between methylomes of pediatric and adult GBM. Pediatric GBM was characterized by 94 hypermethylated and 1206 hypomethylated cytosine-phosphate-guanine (CpG) islands, with 3 distinct clusters, having a trend to prognostic correlation. Interestingly, none of the pediatric GBM cases showed G-CIMP/IDH1 mutation. Gene Ontology analysis identified ROS association in pediatric GBM, which was experimentally validated. H3F3A mutants (36.4%; all K27M) harbored distinct methylomes and showed enrichment of processes related to neuronal development, differentiation, and cell-fate commitment. Our study confirms that pediatric GBM has a distinct methylome compared with that of adults. Presence of distinct clusters and an H3F3A mutation-specific methylome indicate existence of epigenetic subgroups within pediatric GBM. Absence of IDH1/G-CIMP status further indicates that findings in adult GBM cannot be simply extrapolated to pediatric GBM and that there is a strong need for identification of separate prognostic markers. A possible role of ROS in pediatric GBM pathogenesis is demonstrated for the first time and needs further evaluation. © The Author(s) 2014

  17. Temperature and Development Impacts on Housekeeping Gene Expression in Cowpea Aphid, Aphis craccivora (Hemiptera: Aphidiae.

    Directory of Open Access Journals (Sweden)

    Chunxiao Yang

    Full Text Available Quantitative real-time PCR (qRT-PCR is a powerful technique to quantify gene expression. To standardize gene expression studies and obtain more accurate qRT-PCR analysis, normalization relative to consistently expressed housekeeping genes (HKGs is required. In this study, ten candidate HKGs including elongation factor 1 α (EF1A, ribosomal protein L11 (RPL11, ribosomal protein L14 (RPL14, ribosomal protein S8 (RPS8, ribosomal protein S23 (RPS23, NADH-ubiquinone oxidoreductase (NADH, vacuolar-type H+-ATPase (ATPase, heat shock protein 70 (HSP70, 18S ribosomal RNA (18S, and 12S ribosomal RNA (12S from the cowpea aphid, Aphis craccivora Koch were selected. Four algorithms, geNorm, Normfinder, BestKeeper, and the ΔCt method were employed to evaluate the expression profiles of these HKGs as endogenous controls across different developmental stages and temperature regimes. Based on RefFinder, which integrates all four analytical algorithms to compare and rank the candidate HKGs, RPS8, RPL14, and RPL11 were the three most stable HKGs across different developmental stages and temperature conditions. This study is the first step to establish a standardized qRT-PCR analysis in A. craccivora following the MIQE guideline. Results from this study lay a foundation for the genomics and functional genomics research in this sap-sucking insect pest with substantial economic impact.

  18. The Potato Aphid Salivary Effector Me47 Is a Glutathione-S-Transferase Involved in Modifying Plant Responses to Aphid Infestation.

    Science.gov (United States)

    Kettles, Graeme J; Kaloshian, Isgouhi

    2016-01-01

    Polyphagous aphid pests cause considerable economic damage to crop plants, primarily through the depletion of photoassimilates and transfer of viruses. The potato aphid (Macrosiphum euphorbiae) is a notable pest of solanaceous crops, however, the molecular mechanisms that underpin the ability to colonize these hosts are unknown. It has recently been demonstrated that like other aphid species, M. euphorbiae injects a battery of salivary proteins into host plants during feeding. It is speculated that these proteins function in a manner analagous to secreted effectors from phytopathogenic bacteria, fungi and oomycetes. Here, we describe a novel aphid effector (Me47) which was identified from the potato aphid salivary secretome as a putative glutathione-S-transferase (GST). Expression of Me47 in Nicotiana benthamiana enhanced reproductive performance of green peach aphid (Myzus persicae). Similarly, delivery of Me47 into leaves of tomato (Solanum lycopersicum) by Pseudomonas spp. enhanced potato aphid fecundity. In contrast, delivery of Me47 into Arabidopsis thaliana reduced GPA reproductive performance, indicating that Me47 impacts the outcome of plant-aphid interactions differently depending on the host species. Delivery of Me47 by the non-pathogenic Pseudomonas fluorescens revealed that Me47 protein or activity triggers defense gene transcriptional upregulation in tomato but not Arabidopsis. Recombinant Me47 was purified and demonstrated to have GST activity against two specific isothiocyanates (ITCs), compounds implicated in herbivore defense. Whilst GSTs have previously been associated with development of aphid resistance to synthetic insecticides, the findings described here highlight a novel function as both an elicitor and suppressor of plant defense when delivered into host tissues.

  19. The potato aphid salivary effector Me47 is a glutathione-S-transferase involved in modifying plant responses to aphid infestation

    Directory of Open Access Journals (Sweden)

    Graeme James Kettles

    2016-08-01

    Full Text Available Polyphagous aphid pests cause considerable economic damage to crop plants, primarily through the depletion of photoassimilates and transfer of viruses. The potato aphid (Macrosiphum euphorbiae is a notable pest of solanaceous crops, however the molecular mechanisms that underpin the ability to colonize these hosts are unknown. It has recently been demonstrated that like other aphid species, M. euphorbiae injects a battery of salivary proteins into host plants during feeding. It is speculated that these proteins function in a manner analagous to secreted effectors from phytopathogenic bacteria, fungi and oomycetes. Here we describe a novel aphid effector (Me47 which was identified from the potato aphid salivary secretome as a putative glutathione-S-transferase (GST. Expression of Me47 in Nicotiana benthamiana enhanced reproductive performance of green peach aphid (Myzus persicae. Similarly, delivery of Me47 into leaves of tomato (Solanum lycopersicum by Pseudomonas spp. enhanced potato aphid fecundity. In contrast, delivery of Me47 into Arabidopsis thaliana reduced GPA reproductive performance, indicating that Me47 impacts the outcome of plant-aphid interactions differently depending on the host species. Delivery of Me47 by the non-pathogenic Pseudomonas fluorescens revealed that Me47 protein or activity triggers defense gene transcriptional upregulation in tomato but not Arabidopsis. Recombinant Me47 was purified and demonstrated to have GST activity against two specific isothiocyanates (ITCs, compounds implicated in herbivore defense. Whilst GSTs have previously been associated with development of aphid resistance to synthetic insecticides, the findings described here highlight a novel function as both an elicitor and suppressor of plant defense when delivered into host tissues.

  20. Indian Bt cotton varieties do not affect the performance of cotton aphids.

    Directory of Open Access Journals (Sweden)

    Nora C Lawo

    Full Text Available Cotton varieties expressing Cry proteins derived from the soil bacterium Bacillus thuringiensis (Bt are grown worldwide for the management of pest Lepidoptera. To prevent non-target pest outbreaks and to retain the biological control function provided by predators and parasitoids, the potential risk that Bt crops may pose to non-target arthropods is addressed prior to their commercialization. Aphids play an important role in agricultural systems since they serve as prey or host to a number of predators and parasitoids and their honeydew is an important energy source for several arthropods. To explore possible indirect effects of Bt crops we here examined the impact of Bt cotton on aphids and their honeydew. In climate chambers we assessed the performance of cotton aphids, Aphis gossypii Glover (Hemiptera: Aphididae when grown on three Indian Bt (Cry1Ac cotton varieties (MECH 12, MECH 162, MECH 184 and their non-transformed near isolines. Furthermore, we examined whether aphids pick up the Bt protein and analyzed the sugar composition of aphid honeydew to evaluate its suitability for honeydew-feeders. Plant transformation did not have any influence on aphid performance. However, some variation was observed among the three cotton varieties which might partly be explained by the variation in trichome density. None of the aphid samples contained Bt protein. As a consequence, natural enemies that feed on aphids are not exposed to the Cry protein. A significant difference in the sugar composition of aphid honeydew was detected among cotton varieties as well as between transformed and non-transformed plants. However, it is questionable if this variation is of ecological relevance, especially as honeydew is not the only sugar source parasitoids feed on in cotton fields. Our study allows the conclusion that Bt cotton poses a negligible risk for aphid antagonists and that aphids should remain under natural control in Bt cotton fields.

  1. Plant genetic variation mediates an indirect ecological effect between belowground earthworms and aboveground aphids.

    Science.gov (United States)

    Singh, Akanksha; Braun, Julia; Decker, Emilia; Hans, Sarah; Wagner, Agnes; Weisser, Wolfgang W; Zytynska, Sharon E

    2014-10-21

    Interactions between aboveground and belowground terrestrial communities are often mediated by plants, with soil organisms interacting via the roots and aboveground organisms via the shoots and leaves. Many studies now show that plant genetics can drive changes in the structure of both above and belowground communities; however, the role of plant genetic variation in mediating aboveground-belowground interactions is still unclear. We used an earthworm-plant-aphid model system with two aphid species (Aphis fabae and Acyrthosiphon pisum) to test the effect of host-plant (Vicia faba) genetic variation on the indirect interaction between the belowground earthworms (Eisenia veneta) on the aboveground aphid populations. Our data shows that host-plant variety mediated an indirect ecological effect of earthworms on generalist black bean aphids (A. fabae), with earthworms increasing aphid growth rate in three plant varieties but decreasing it in another variety. We found no effect of earthworms on the second aphid species, the pea aphid (A. pisum), and no effect of competition between the aphid species. Plant biomass was increased when earthworms were present, and decreased when A. pisum was feeding on the plant (mediated by plant variety). Although A. fabae aphids were influenced by the plants and worms, they did not, in turn, alter plant biomass. Previous work has shown inconsistent effects of earthworms on aphids, but we suggest these differences could be explained by plant genetic variation and variation among aphid species. This study demonstrates that the outcome of belowground-aboveground interactions can be mediated by genetic variation in the host-plant, but depends on the identity of the species involved.

  2. Scaling up population dynamic processes in a ladybird–aphid

    Czech Academy of Sciences Publication Activity Database

    Houdková, Kateřina; Kindlmann, Pavel

    2006-01-01

    Roč. 48, - (2006), s. 323-332 ISSN 1438-3896 R&D Projects: GA ČR(CZ) GEDIV/06/E013; GA MŠk(CZ) LC06073; GA AV ČR(CZ) IAA6087301; GA ČR(CZ) GD206/03/H034 Keywords : Aphids * Egg window * Ladybirds * Metapopulation * Model * Population dynamics Subject RIV: EH - Ecology, Behaviour Impact factor: 1.534, year: 2006

  3. The effect of co-infestation by conspecific and heterospecific aphids on the feeding behaviour of Nasonovia ribisnigri on resistant and susceptible lettuce cultivars

    NARCIS (Netherlands)

    Broeke, ten Cindy J.M.; Dicke, Marcel; Loon, van Joop J.A.

    2017-01-01

    Aphid saliva can suppress the blocking of sieve elements, a reaction that plants employ to inhibit aphid feeding, but aphid saliva can also elicit plant defence responses. Such plant responses might affect interactions between different aphid species and intraspecifically, e.g. among different

  4. National Plant Diagnostic Network, Taxonomic training videos: Aphids under the microscope - Aphis gossypii

    Science.gov (United States)

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides provides training to identify the cotton aphid, Aphis gossypii, using a compound microscope and an electronic identification key called “LUCID.” The video demonstrates key morphological structures that ca...

  5. National Plant Diagnostic Network, Taxonomic training videos: Aphids under the microscope - Cerataphis brasiliensis

    Science.gov (United States)

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides provides training to identify the palm aphid, Cerataphis brasiliensis, using a compound microscope and an electronic identification key called “LUCID.” The video demonstrates key morphological structures...

  6. National Plant Diagnostic Network, Taxonomic training videos: Aphids under the microscope - Myzus persicae

    Science.gov (United States)

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides provides training to identify the green peach aphid, Myzus persicae, using a compound microscope and an electronic identification key called “LUCID.” The video demonstrates key morphological structures t...

  7. Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean.

    Directory of Open Access Journals (Sweden)

    Charles Kanobe

    Full Text Available The soybean aphid (Aphis glycines Matsumura is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of "metabolic hijacking" by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor.

  8. Plant resistance in sorghums to the sugarcane aphid Melanaphis sacchari (Hemiptera: Aphididae)

    Science.gov (United States)

    We evaluated ten sorghum lines that were near or in commercial release with the intent of identifying phenotypic expression of host-plant resistance to the sugarcane aphid. Two of the ten entries OL2042 and SP7715 expressed a high degree of resistance to the sugarcane aphid with damage ratings <3.0...

  9. Reproduction and dispersal in an ant-associated root aphid community

    NARCIS (Netherlands)

    Ivens, A. B. F.; Kronauer, D. J. C.; Pen, I.; Weissing, F. J.; Boomsma, J. J.

    Clonal organisms with occasional sex are important for our general understanding of the costs and benefits that maintain sexual reproduction. Cyclically parthenogenetic aphids are highly variable in their frequency of sexual reproduction. However, studies have mostly focused on free-living aphids

  10. The molecular basis of the interactions between luteoviruses and their aphid vectors

    NARCIS (Netherlands)

    Hogenhout, S.A.

    1999-01-01

    Luteoviruses essentially replicate in the phloem tissue and are transmitted from plant to plant by aphids in a circulative, persistent manner. Virus particles are acquired when aphids feed on phloem sap. Particles are then transported from the midgut or hindgut into the haemolymph and from

  11. Inheritance patterns of secondary symbionts during sexual reproduction of pea aphid biotypes.

    Science.gov (United States)

    Peccoud, Jean; Bonhomme, Joël; Mahéo, Frédérique; de la Huerta, Manon; Cosson, Olivier; Simon, Jean-Christophe

    2014-06-01

    Herbivorous insects frequently harbor bacterial symbionts that affect their ecology and evolution. Aphids host the obligatory endosymbiont Buchnera, which is required for reproduction, together with facultative symbionts whose frequencies vary across aphid populations. These maternally transmitted secondary symbionts have been particularly studied in the pea aphid, Acyrthosiphon pisum, which harbors at least 8 distinct bacterial species (not counting Buchnera) having environmentally dependent effects on host fitness. In particular, these symbiont species are associated with pea aphid populations feeding on specific plants. Although they are maternally inherited, these bacteria are occasionally transferred across insect lineages. One mechanism of such nonmaternal transfer is paternal transmission to the progeny during sexual reproduction. To date, transmission of secondary symbionts during sexual reproduction of aphids has been investigated in only a handful of aphid lineages and 3 symbiont species. To better characterize this process, we investigated inheritance patterns of 7 symbiont species during sexual reproduction of pea aphids through a crossing experiment involving 49 clones belonging to 9 host-specialized biotypes, and 117 crosses. Symbiont species in the progeny were detected with diagnostic qualitative PCR at the fundatrix stage hatching from eggs and in later parthenogenetic generations. We found no confirmed case of paternal transmission of symbionts to the progeny, and we observed that maternal transmission of a particular symbiont species (Serratia symbiotica) was quite inefficient. We discuss these observations in respect to the ecology of the pea aphid. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  12. Association mapping of aphid resistance in USDA cowpea (Vigna unguiculata L. Walp.) core collection using SNPs

    Science.gov (United States)

    Cowpea aphid (CPA; Aphis craccivora) is a destructive insect pest of cowpea, as well as other legume crops including alfalfa, beans, chickpea, lentils, lupins and peanuts. The utilization of aphid resistance in cowpea breeding is one of the most efficient and environmental friendly methods to contro...

  13. Variable Isotopic Compositions of Host Plant Populations Preclude Assessment of Aphid Overwintering Sites

    Directory of Open Access Journals (Sweden)

    Michael S. Crossley

    2017-12-01

    Full Text Available Soybean aphid (Aphis glycines Matsumura is a pest of soybean in the northern Midwest whose migratory patterns have been difficult to quantify. Improved knowledge of soybean aphid overwintering sites could facilitate the development of control efforts with exponential impacts on aphid densities on a regional scale. In this preliminary study, we explored the utility of variation in stable isotopes of carbon and nitrogen to distinguish soybean aphid overwintering origins. We compared variation in bulk 13C and 15N content in buckthorn (Rhamnus cathartica L. and soybean aphids in Wisconsin, among known overwintering locations in the northern Midwest. Specifically, we looked for associations between buckthorn and environmental variables that could aid in identifying overwintering habitats. We detected significant evidence of correlation between the bulk 13C and 15N signals of soybean aphids and buckthorn, despite high variability in stable isotope composition within and among buckthorn plants. Further, the 15N signal in buckthorn varied predictably with soil composition. However, lack of sufficient differentiation of geographic areas along axes of isotopic and environmental variation appears to preclude the use of carbon and nitrogen isotopic signals as effective predictors of likely aphid overwintering sites. These preliminary data suggest the need for future work that can further account for variability in 13C and 15N within/among buckthorn plants, and that explores the utility of other stable isotopes in assessing likely aphid overwintering sites.

  14. The Effects of Aphid Traits on Parasitoid Host Use and Specialist Advantage

    Science.gov (United States)

    Gagic, Vesna; Petrović-Obradović, Olivera; Fründ, Jochen; Kavallieratos, Nickolas G.; Athanassiou, Christos G.; Starý, Petr; Tomanović, Željko

    2016-01-01

    Specialization is a central concept in ecology and one of the fundamental properties of parasitoids. Highly specialized parasitoids tend to be more efficient in host-use compared to generalized parasitoids, presumably owing to the trade-off between host range and host-use efficiency. However, it remains unknown how parasitoid host specificity and host-use depends on host traits related to susceptibility to parasitoid attack. To address this question, we used data from a 13-year survey of interactions among 142 aphid and 75 parasitoid species in nine European countries. We found that only aphid traits related to local resource characteristics seem to influence the trade-off between host-range and efficiency: more specialized parasitoids had an apparent advantage (higher abundance on shared hosts) on aphids with sparse colonies, ant-attendance and without concealment, and this was more evident when host relatedness was included in calculation of parasitoid specificity. More traits influenced average assemblage specialization, which was highest in aphids that are monophagous, monoecious, large, highly mobile (easily drop from a plant), without myrmecophily, habitat specialists, inhabit non-agricultural habitats and have sparse colonies. Differences in aphid wax production did not influence parasitoid host specificity and host-use. Our study is the first step in identifying host traits important for aphid parasitoid host specificity and host-use and improves our understanding of bottom-up effects of aphid traits on aphid-parasitoid food web structure. PMID:27309729

  15. First survey on ecological host range of aphid pathogenic fungi (Phylum Entomophthoromycota) in Tunisia

    DEFF Research Database (Denmark)

    Ben Fekih, Ibtissem; Boukhris-Bouhachem, Sonia; Allagui, Mohamed Bechir

    2015-01-01

    Summary. The natural occurrence of fungal pathogens of aphids and their ecological host range was investigated in Tunisia from 2009 to 2012. The survey focused on aphid infesting different crops and weeds and included 10 different aphid species. Samples were collected from eight agricultural crops...... (Entomophthorales: Ancylistaceae) and Neozygites fresenii (Neozygitales: Neozygitaceae). The occurrence of entomophthoralean fungi depended on the sampling area, the bioclimatic zone, and aphid species. P. neoaphidis and E. planchoniana were the predominant pathogens infecting a wide range of aphid species whereas...... sites belonging to three different bioclimatic zones. Four pathogens from the phylum Entomophthoromycota were found to occur naturally in Tunisian ecosystems: Pandora neoaphidis (Entomophthorales: Entomophthoraceae), Entomophthora planchoniana (Entomophthorales: Entomophthoraceae), Conidiobolus obscurus...

  16. The genetics of indirect ecological effects - plant parasites and aphid herbivores

    Directory of Open Access Journals (Sweden)

    Jennifer K Rowntree

    2014-04-01

    Full Text Available When parasitic plants and aphid herbivores share a host, both direct and indirect ecological effects (IEEs can influence evolutionary processes. We used a hemiparasitic plant (Rhinanthus minor, a grass host (Hordeum vulgare and a cereal aphid (Sitobion avenae to investigate the genetics of IEEs between the aphid and the parasitic plant, and looked to see how these might affect or be influenced by the genetic diversity of the host plants. Survival of R. minor depended on the parasite’s population of origin, the genotypes of the aphids sharing the host and the genetic diversity in the host plant community. Hence the indirect effects of the aphids on the parasitic plants depended on the genetic environment of the system. Here, we show that genetic variation can be important in determining the outcome of IEEs. Therefore, IEEs have the potential to influence evolutionary processes and the continuity of species interactions over time.

  17. Spectral Detection of Soybean Aphid (Hemiptera: Aphididae) and Confounding Insecticide Effects in Soybean

    Science.gov (United States)

    Alves, Tavvs Micael

    Soybean aphid, Aphis glycines (Hemiptera: Aphididae) is the primary insect pest of soybean in the northcentral United States. Soybean aphid may cause stunted plants, leaf discoloration, plant death, and decrease soybean yield by 40%. Sampling plans have been developed for supporting soybean aphid management. However, growers' perception about time involved in direct insect counts has been contributing to a lower adoption of traditional pest scouting methods and may be associated with the use of prophylactic insecticide applications in soybean. Remote sensing of plant spectral (light-derived) responses to soybean aphid feeding is a promising alternative to estimate injury without direct insect counts and, thus, increase adoption and efficiency of scouting programs. This research explored the use of remote sensing of soybean reflectance for detection of soybean aphids and showed that foliar insecticides may have implications for subsequent use of soybean spectral reflectance for pest detection. (Abstract shortened by ProQuest.).

  18. Predatory behavior of Pseudodorus clavatus (Diptera, Syrphidae on aphids tended by ants

    Directory of Open Access Journals (Sweden)

    Alexandra Bächtold

    2013-12-01

    Full Text Available Predatory behavior of Pseudodorus clavatus (Diptera, Syrphidae on aphids tended by ants. In this study, we examined the interactions between myrmecophilous aphids, their ant-guards and a predatory syrphid species, Pseudodorus clavatus (F.. Larvae of this predator were found in the colonies of three aphid species: Aphis gossypii, A. spiraecola and Toxoptera sp., which were tended by eight ant species, especially Camponotus. Hoverfly larvae managed to infiltrate the aphid colonies and consume nymphs. Predator larvae exhibited inconspicuous movements and were not detected by ants which were commonly observed touching and antennating the larvae they come into contact. These results suggest that behavioral and chemical cues are involved in the infiltration and on the successful predation of syrphids upon aphids.

  19. Parasitization of commercially available parasitoid species against the lettuce aphid, Nasonovia ribisnigri (Hemiptera: Aphididae).

    Science.gov (United States)

    Shrestha, G; Skovgård, H; Enkegaard, A

    2014-12-01

    The lettuce aphid, Nasonovia ribisnigri (Mosley), is an economically important pest of lettuce worldwide. Little documentation exists for the control efficacy of aphid parasitoids against N. ribisnigri. This laboratory study evaluated three commercially available parasitoid species: Aphidius colemani (Viereck), Lysiphlebus testaceipes (Cresson), and Aphelinus abdominalis (Dalman) for their mortality impact on N. ribisnigri. The green peach aphid Myzus persicae (Sulzer) was included as a reference aphid. The study showed that A. abdominalis successfully parasitized 39 and 13% of the offered N. ribisnigri and M. persicae, respectively, within a 24-h exposure period. In contrast, none of the lettuce aphids exposed to Ap. colemani or L. testaceipes were successfully parasitized, whereas 60 and 3.5% of M. persicae, respectively, were successfully parasitized within a 6-h exposure period. Lettuce aphid mortality due to incomplete parasitization was 26 and 31% when exposed to Ap. colemani and L. testaceipes, respectively, with corresponding values for M. persicae being 5 and 10%, respectively. Mortality as a result of incomplete parasitization when aphids were exposed to A. abdominalis was low for both aphid species. The total mortality inflicted by A. abdominalis within a 24-h exposure period was 51% for the lettuce aphids and significantly less (19%) for green peach aphids. In contrast, Ap. colemani inflicted a higher mortality in M. persicae (65%) compared with N. ribisnigri (26%) within a 6-h exposure period. L. testaceipes caused a greater mortality in N. ribisnigri as compared with M. persicae. This study concludes that A. abdominalis has the potential to be used against N. ribisnigri in inoculative biocontrol programs as compared with the other parasitoid species based on successful parasitization.

  20. The effect of co-infestation by conspecific and heterospecific aphids on the feeding behaviour of Nasonovia ribisnigri on resistant and susceptible lettuce cultivars

    OpenAIRE

    Broeke, ten, Cindy J.M.; Dicke, Marcel; Loon, van, Joop J.A.

    2017-01-01

    Aphid saliva can suppress the blocking of sieve elements, a reaction that plants employ to inhibit aphid feeding, but aphid saliva can also elicit plant defence responses. Such plant responses might affect interactions between different aphid species and intraspecifically, e.g. among different biotypes. The objectives of our study were to investigate if feeding behaviour and performance of two biotypes of the lettuce aphid Nasonovia ribisnigri are affected by (1) feeding by the other biotype ...

  1. The green lacewing, Chrysoperla carnea: preference between lettuce aphids, Nasonovia ribisnigri, and Western flower thrips, Frankliniella occidentalis.

    Science.gov (United States)

    Shrestha, Govinda; Enkegaard, Annie

    2013-01-01

    This study investigated the prey preference of 3(rd) instar green lacewing, Chrysoperla carnea Stephens (Neuroptera: Chrysopidae), between western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), and lettuce aphids, Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae) in laboratory experiments at 25 ± 1° C and 70 ± 5% RH with five prey ratios (10 aphids:80 thrips, 25 aphids:65 thrips, 45 aphids:45 thrips, 65 aphids:25 thrips, and 80 aphids:10 thrips). Third instar C. carnea larvae readily preyed upon both thrips and aphids, with thrips mortality varying between 40 and 90%, and aphid mortality between 52 and 98%. Chrysoperla carnea had a significant preference for N. ribisnigri at two ratios (10 aphids:80 thrips, 65 aphids:25 thrips), but no preference for either prey at the other ratios. There was no significant linear relationship between preference index and prey ratio, but a significant intercept of the linear regression indicated an overall preference of C. carnea for aphids with a value of 0.651 ± 0.054. The possible implications of these findings for control of N. ribisnigri and F. occidentalis by C. carnea are discussed.

  2. Survey of aphid population in a yellow passion fruit crop and its relationship on the spread Cowpea aphid-borne mosaic virus in a subtropical region of Brazil.

    Science.gov (United States)

    Garcêz, Renata Maia; Chaves, Alexandre Levi Rodrigues; Eiras, Marcelo; Meletti, Laura Maria Molina; de Azevedo Filho, Joaquim Adelino; da Silva, Leonardo Assis; Colariccio, Addolorata

    2015-01-01

    Passion fruit woodiness may be caused by Cowpea aphid-borne mosaic virus (CABMV) and is currently the major passion fruit disease in Brazil. To assess the virus-vector-host interactions, a newly introduced golden passion fruit plantation located in eastern region of São Paulo State, Brazil, was monitored. Dissemination of CABMV was determined analyzing golden passion fruit plants monthly for 18 months by PTA-ELISA. Seasonality and aphid fauna diversity was determined by identification of the captured species using yellow sticky, yellow water-pan and green tile traps. Population composition of the aphid species was determined using the descriptive index of occurrence, dominance and general classification and overlap of species in the R program. Analyses of species grouping afforded to recognize 14 aphid species. The genus Aphis represented 55.42 % of the species captured. Aphid species formed two distinct clusters, one of which was characterized by the diversity of polyphagous species that presented high potential to spread CABMV. The low abundance and diversity of aphid species did not interfere negatively in the CABMV epidemiology. The genus Aphis, particularly Aphis fabae/solanella and A. gossypii, was crucial in the spread of CABMV in passion fruit orchards in the eastern State of São Paulo.

  3. A Genetic Survey of Pyrethroid Insecticide Resistance in Aphids in New Brunswick, Canada, with Particular Emphasis on Aphids as Vectors of Potato virus Y.

    Science.gov (United States)

    MacKenzie, Tyler D B; Arju, Irin; Poirier, René; Singh, Mathuresh

    2018-05-28

    Aphids are viral vectors in potatoes, most importantly of Potato virus Y (PVY), and insecticides are frequently used to reduce viral spread during the crop season. Aphids collected from the potato belt of New Brunswick, Canada, in 2015 and 2016 were surveyed for known and novel mutations in the Na-channel (para) gene, coding for the target of synthetic pyrethroid insecticides. Specific genetic mutations known to confer resistance (kdr and skdr) were found in great abundance in Myzus persicae (Sulzer) (Hemiptera: Aphididae), which rose from 76% in 2015 to 96% in 2016. Aphids other than M. persicae showed lower frequency of resistance. In 2015, 3% of individuals contained the resistance mutation skdr, rising to 13% in 2016 (of 45 species). Several novel resistance mutations or mutations not before reported in aphids were identified in this gene target. One of these mutations, I936V, is known to confer pyrethroid resistance in another unrelated insect, and three others occur immediately adjacent and prompt similar chemical shifts in the primary protein structure, to previously characterized mutations associated with pyrethroid resistance. Most novel mutations were found in species other than M. persicae or others currently tracked individually by the provincial aphid monitoring program, which were determined by cytochrome C oxidase I (cox1) sequencing. Through our cox1 DNA barcoding survey, at least 45 species of aphids were discovered in NB potato fields in 2015 and 2016, many of which are known carriers of PVY.

  4. Father Absence in Infancy.

    Science.gov (United States)

    Pedersen, Frank A.; And Others

    This document reports a study investigating the effects of father absence on measures of cognitive, social, and motivational development in infancy. The sample included 54 black infants, 27 of whom were classified "father-absent." This classification was based on two indices, (1) a dichotomy of father-absent or father-present based on…

  5. Differential expression of superoxide dismutase genes in aphid-stressed maize (Zea mays L.) seedlings.

    Science.gov (United States)

    Sytykiewicz, Hubert

    2014-01-01

    The aim of this study was to compare the expression patterns of superoxide dismutase genes (sod2, sod3.4, sod9 and sodB) in seedling leaves of the Zea mays L. Tasty Sweet (susceptible) and Ambrozja (relatively resistant) cultivars infested with one of two hemipteran species, namely monophagous Sitobion avenae F. (grain aphid) or oligophagous Rhopalosiphum padi L. (bird cherry-oat aphid). Secondarily, aphid-elicited alternations in the antioxidative capacity towards DPPH (1,1-diphenyl-2-picrylhydrazyl) radical in insect-stressed plants were evaluated. Comprehensive comparison of expression profiles of the four sod genes showed that both insect species evoked significant upregulation of three genes sod2, sod3.4 and sod9). However, aphid infestation affected non-significant fluctuations in expression of sodB gene in seedlings of both maize genotypes. The highest levels of transcript accumulation occurred at 8 h (sod2 and sod3.4) or 24 h (sod9) post-infestation, and aphid-induced changes in the expression of sod genes were more dramatic in the Ambrozja cultivar than in the Tasty Sweet variety. Furthermore, bird cherry-oat aphid colonization had a more substantial impact on levels of DPPH radical scavenging activity in infested host seedlings than grain aphid colonization. Additionally, Ambrozja plants infested by either hemipteran species showed markedly lower antioxidative capacity compared with attacked Tasty Sweet plants.

  6. Aphids of the genus Diuraphis caught by Johnson suction trap in Poznań, Poland

    Directory of Open Access Journals (Sweden)

    Strażyński Przemysław

    2016-12-01

    Full Text Available In 1973-2011 in Poznań, aphid catches were carried out using Johnson’s suction trap. Since then the suction trap located at the Institute of Plant Protection - National Research Institute in Poznań has continuously recorded the daily and seasonal dynamics of aphid flights. The collected results has been used to establish one of the largest databases of this type in Europe. The data also allow tracking changes in aphid biodiversity under the changing climatic conditions. Three aphid species of Diuraphis spp. were identified: D. muehlei (Börner, 1950 - in 1974, D. bromicola (Hille Ris Lambers, 1959 - in 1988, D. noxia (Kurdjumov, 1913 - in 2003 as a result of systematic and long-term aphid collections. The occurrence of D. noxia presents a particular risk to cereal crops in Poland. This expansive aphid species that originates from Asia and the Mediterranean is a vector of Barley yellow dwarf viruses (BYDV, and has become one of the most important pest of wheat and barley in the world. Changes in climatic conditions that have been observed in recent years in Poland such as hot summer, long and warm autumn, mild winter seem to be optimal for occurrence and development of aphid species from warmer parts of Europe.

  7. Plant genotype shapes ant-aphid interactions: implications for community structure and indirect plant defense.

    Science.gov (United States)

    Mooney, Kailen A; Agrawal, Anurag A

    2008-06-01

    Little is known about the mechanisms by which plant genotype shapes arthropod community structure. In a field experiment, we measured the effects of milkweed (Asclepias syriaca) genotype and ants on milkweed arthropods. Populations of the ant-tended aphid Aphis asclepiadis and the untended aphid Myzocallis asclepiadis varied eight- to 18-fold among milkweed genotypes, depending on aphid species and whether ants were present. There was no milkweed effect on predatory arthropods. Ants increased Aphis abundance 59%, decreased Myzocallis abundance 52%, and decreased predator abundance 56%. Milkweed genotype indirectly influenced ants via direct effects on Aphis and Myzocallis abundance. Milkweed genotype also modified ant-aphid interactions, influencing the number of ants attracted per Aphis and Myzocallis. While ant effects on Myzocallis were consistently negative, effects on Aphis ranged from antagonistic to mutualistic among milkweed genotypes. As a consequence of milkweed effects on ant-aphid interactions, ant abundance varied 13-fold among milkweed genotypes, and monarch caterpillar survival was negatively correlated with genetic variation in ant abundance. We speculate that heritable variation in milkweed phloem sap drives these effects on aphids, ants, and caterpillars. In summary, milkweed exerts genetic control over the interactions between aphids and an ant that provides defense against foliage-feeding caterpillars.

  8. Differential Expression of Superoxide Dismutase Genes in Aphid-Stressed Maize (Zea mays L.) Seedlings

    Science.gov (United States)

    Sytykiewicz, Hubert

    2014-01-01

    The aim of this study was to compare the expression patterns of superoxide dismutase genes (sod2, sod3.4, sod9 and sodB) in seedling leaves of the Zea mays L. Tasty Sweet (susceptible) and Ambrozja (relatively resistant) cultivars infested with one of two hemipteran species, namely monophagous Sitobion avenae F. (grain aphid) or oligophagous Rhopalosiphum padi L. (bird cherry-oat aphid). Secondarily, aphid-elicited alternations in the antioxidative capacity towards DPPH (1,1-diphenyl-2-picrylhydrazyl) radical in insect-stressed plants were evaluated. Comprehensive comparison of expression profiles of the four sod genes showed that both insect species evoked significant upregulation of three genes sod2, sod3.4 and sod9). However, aphid infestation affected non-significant fluctuations in expression of sodB gene in seedlings of both maize genotypes. The highest levels of transcript accumulation occurred at 8 h (sod2 and sod3.4) or 24 h (sod9) post-infestation, and aphid-induced changes in the expression of sod genes were more dramatic in the Ambrozja cultivar than in the Tasty Sweet variety. Furthermore, bird cherry-oat aphid colonization had a more substantial impact on levels of DPPH radical scavenging activity in infested host seedlings than grain aphid colonization. Additionally, Ambrozja plants infested by either hemipteran species showed markedly lower antioxidative capacity compared with attacked Tasty Sweet plants. PMID:24722734

  9. Redox Control of Aphid Resistance through Altered Cell Wall Composition and Nutritional Quality.

    Science.gov (United States)

    Rasool, Brwa; McGowan, Jack; Pastok, Daria; Marcus, Sue E; Morris, Jenny A; Verrall, Susan R; Hedley, Peter E; Hancock, Robert D; Foyer, Christine H

    2017-09-01

    The mechanisms underpinning plant perception of phloem-feeding insects, particularly aphids, remain poorly characterized. Therefore, the role of apoplastic redox state in controlling aphid infestation was explored using transgenic tobacco ( Nicotiana tabacum ) plants that have either high (PAO) or low (TAO) ascorbate oxidase (AO) activities relative to the wild type. Only a small number of leaf transcripts and metabolites were changed in response to genotype, and cell wall composition was largely unaffected. Aphid fecundity was decreased significantly in TAO plants compared with other lines. Leaf sugar levels were increased and maximum extractable AO activities were decreased in response to aphids in all genotypes. Transcripts encoding the Respiratory Burst Oxidase Homolog F, signaling components involved in ethylene and other hormone-mediated pathways, photosynthetic electron transport components, sugar, amino acid, and cell wall metabolism, were increased significantly in the TAO plants in response to aphid perception relative to other lines. The levels of galactosylated xyloglucan were decreased significantly in response to aphid feeding in all the lines, the effect being the least in the TAO plants. Similarly, all lines exhibited increases in tightly bound (1→4)-β-galactan. Taken together, these findings identify AO-dependent mechanisms that limit aphid infestation. © 2017 American Society of Plant Biologists. All Rights Reserved.

  10. Yield response of brassica varieties/strains in relation to mustard aphid lipaphis erysimi (Kalt.)

    International Nuclear Information System (INIS)

    Shahzad, M.A.; Bukhari, S.A.H.

    2009-01-01

    Nine brassica varieties/advanced lines were tested to find out the varietal comparison against mustard aphid Lipaphis erysimi (kalt.) in relation to aphid population. average number of branches/plant, average number of grains per pod and grain yield (kg/ha) during 2004-2006. Minimum aphid population was observed on promising cultivar P-20 during both years 2004-2005-06 which were 2005-06 which were 31 and 23 aphid/30 cm of apical inflorescence from randomly selected five plants respectively. This promising strain also proved significantly the highest yielder and gave 1633 kg. grains/ha (2004,05) and 817.5 kg grains/ha (2005-06) followed by SP-36 which showed aphid population 36 and 32.5 aphid/30 cm inflorescence having yield 1373 and 780 kg grains/ha during the both periods respectively under report. The other parameters viz. Average number of branches per plant and average no. of grains/pod remained non significant as far as aphid effect is concerned. (author)

  11. Yield response of brassica varieties/strains in relation to mustard aphid lipaphis erysimi (kalt.)

    International Nuclear Information System (INIS)

    Shahzad, M.A.; Bukhari, S.A.H.; Tariq, H.

    2010-01-01

    Nine brassica varieties/advanced lines were tested to find out the varietal comparison against mustard aphid Lipaphis erysimi (kalt.) in relation to aphid population, average number of branches/plant, average number of grains per pod and grain yield (kg/ha) during 2004-2006. Minimum aphid population was observed on promising cultivar P-20 during both years 2004-2005 and 2005-06 which were 3.l and 23 aphid/30 cm of apical inflorescence from randomly selected five plants respectively. This promising strain also proved significantly the highest yielder and gave 1633 kg. grains/ha (2004-05) and 8 17.5 kg grains/ha (2005-06) followed by SP-36 which showed aphid population 36 and 32.5 aphid/30 cm inflorescence having yield 1373 and 780 kg grains/ha during the both periods respectively under report. The other parameters viz. Average number of branches per plant and average no. of grains/pod remained nonsignificant as far as aphid effect is concerned. (author)

  12. Indirect effect of a transgenic wheat on aphids through enhanced powdery mildew resistance.

    Science.gov (United States)

    von Burg, Simone; Álvarez-Alfageme, Fernando; Romeis, Jörg

    2012-01-01

    In agricultural ecosystems, arthropod herbivores and fungal pathogens are likely to colonise the same plant and may therefore affect each other directly or indirectly. The fungus that causes powdery mildew (Blumeria graminis tritici) and cereal aphids are important pests of wheat but interactions between them have seldom been investigated. We studied the effects of powdery mildew of wheat on two cereal aphid species, Metopolophium dirhodum and Rhopalosiphum padi. We hypothesized that aphid number and size will be smaller on powdery mildew-infected plants than on non-infected plants. In a first experiment we used six commercially available wheat varieties whereas in the second experiment we used a genetically modified (GM) mildew-resistant wheat line and its non-transgenic sister line. Because the two lines differed only in the presence of the transgene and in powdery mildew resistance, experiment 2 avoided the confounding effect of variety. In both experiments, the number of M. dirhodum but not of R. padi was reduced by powdery mildew infection. Transgenic mildew-resistant lines therefore harboured bigger aphid populations than the non-transgenic lines. For both aphid species individual size was mostly influenced by aphid number. Our results indicate that plants that are protected from a particular pest (powdery mildew) became more favourable for another pest (aphids).

  13. Indirect effect of a transgenic wheat on aphids through enhanced powdery mildew resistance.

    Directory of Open Access Journals (Sweden)

    Simone von Burg

    Full Text Available In agricultural ecosystems, arthropod herbivores and fungal pathogens are likely to colonise the same plant and may therefore affect each other directly or indirectly. The fungus that causes powdery mildew (Blumeria graminis tritici and cereal aphids are important pests of wheat but interactions between them have seldom been investigated. We studied the effects of powdery mildew of wheat on two cereal aphid species, Metopolophium dirhodum and Rhopalosiphum padi. We hypothesized that aphid number and size will be smaller on powdery mildew-infected plants than on non-infected plants. In a first experiment we used six commercially available wheat varieties whereas in the second experiment we used a genetically modified (GM mildew-resistant wheat line and its non-transgenic sister line. Because the two lines differed only in the presence of the transgene and in powdery mildew resistance, experiment 2 avoided the confounding effect of variety. In both experiments, the number of M. dirhodum but not of R. padi was reduced by powdery mildew infection. Transgenic mildew-resistant lines therefore harboured bigger aphid populations than the non-transgenic lines. For both aphid species individual size was mostly influenced by aphid number. Our results indicate that plants that are protected from a particular pest (powdery mildew became more favourable for another pest (aphids.

  14. Expression of Pinellia pedatisecta Lectin Gene in Transgenic Wheat Enhances Resistance to Wheat Aphids

    Directory of Open Access Journals (Sweden)

    Xiaoliang Duan

    2018-03-01

    Full Text Available Wheat aphids are major pests during the seed filling stage of wheat. Plant lectins are toxic to sap-sucking pests such as wheat aphids. In this study, Pinellia pedatisecta agglutinin (ppa, a gene encoding mannose binding lectin, was cloned, and it shared 92.69% nucleotide similarity and 94% amino acid similarity with Pinellia ternata agglutinin (pta. The ppa gene, driven by the constitutive and phloem-specific ribulose bisphosphate carboxylase small subunit gene (rbcs promoter in pBAC-rbcs-ppa expression vector, was transferred into the wheat cultivar Baofeng104 (BF104 by particle bombardment transformation. Fifty-four T0 transgenic plants were generated. The inheritance and expression of the ppa gene were confirmed by PCR and RT-PCR analysis respectively, and seven homozygous transgenic lines were obtained. An aphid bioassay on detached leaf segments revealed that seven ppa transgenic wheat lines had lower aphid growth rates and higher inhibition rates than BF104. Furthermore, two-year aphid bioassays in isolated fields showed that aphid numbers per tiller of transgenic lines were significantly decreased, compared with wild type BF104. Therefore, ppa could be a strong biotechnological candidate to produce aphid-resistant wheat.

  15. Aphid wing induction and ecological costs of alarm pheromone emission under field conditions.

    Directory of Open Access Journals (Sweden)

    Eduardo Hatano

    2010-06-01

    Full Text Available The pea aphid, Acyrthosiphon pisum Harris, (Homoptera: Aphididae releases the volatile sesquiterpene (E-beta-farnesene (EBF when attacked by a predator, triggering escape responses in the aphid colony. Recently, it was shown that this alarm pheromone also mediates the production of the winged dispersal morph under laboratory conditions. The present work tested the wing-inducing effect of EBF under field conditions. Aphid colonies were exposed to two treatments (control and EBF and tested in two different environmental conditions (field and laboratory. As in previous experiments aphids produced higher proportion of winged morphs among their offspring when exposed to EBF in the laboratory but even under field conditions the proportion of winged offspring was higher after EBF application (6.84+/-0.98% compared to the hexane control (1.54+/-0.25%. In the field, the proportion of adult aphids found on the plant at the end of the experiment was lower in the EBF treatment (58.1+/-5.5% than in the control (66.9+/-4.6%, in contrast to the climate chamber test where the numbers of adult aphids found on the plant at the end of the experiment were, in both treatments, similar to the numbers put on the plant initially. Our results show that the role of EBF in aphid wing induction is also apparent under field conditions and they may indicate a potential cost of EBF emission. They also emphasize the importance of investigating the ecological role of induced defences under field conditions.

  16. A magical biological insecticide extracted from seeds of Millettia pachyarpa to kill cabbage aphids

    Science.gov (United States)

    Lin, Tianxing; Gong, Mingfu; Guan, Qinlan

    2018-04-01

    Millettia pachycarpa Benth is a perennial climbing shrub belonging to the genus Millettia, as it is widely used in traditional practices like agricultural pesticides, blood tonics, fish poison, and treatments for cancer and infertility. The crude extract of the seeds of M. pachycarpa had insecticidal activity on cabbage aphids. The conventional extract approach with three kinds of organic solvents: methanol, ethanol, and acetone was used for extracting of crude extract of seeds of M. pachycarpa. The leaf immersion method in a petri dish was used to measure contact activity on cabbage aphids. The field measurement method in a cabbage field was used to measure the control effect. The result indicated that the average mortality rate of cabbage aphids reached 91.3 percent under the action of crude extract of the seeds of M. pachycarpa, indicating that contacting activity against cabbage aphid was strong. After the crude extract was sprayed for 2 days, the proofread control effect of 1000 μg / mL ethanol crude extract against cabbage aphid was 85.0 percent. After 7 days of spraying, this number increased to 92.2 percent. The study concluded that crude extract of the seeds of M. pachyarpa extracted with methanol, ethanol, acetone had demonstrable contact activity against cabbage aphid and 1000 μg / mL ethanol crude extract had significant control effect against the larvae of cabbage aphid.

  17. Differential Life History Trait Associations of Aphids with Nonpersistent Viruses in Cucurbits.

    Science.gov (United States)

    Angelella, G M; Egel, D S; Holland, J D; Nemacheck, J A; Williams, C E; Kaplan, I

    2015-06-01

    The diversity of vectors and fleeting nature of virus acquisition and transmission renders nonpersistent viruses a challenge to manage. We assessed the importance of noncolonizing versus colonizing vectors with a 2-yr survey of aphids and nonpersistent viruses on commercial pumpkin farms. We quantified aphid alightment using pan traps, while testing leaf samples with multiplex RT-PCR targeting cucumber mosaic virus (CMV), zucchini yellow mosaic virus (ZYMV), watermelon mosaic virus (WMV), and papaya ringspot virus (PRSV). Overall, we identified 53 aphid species (3,899 individuals), from which the melon aphid, Aphis gossypii Glover, a pumpkin-colonizing species, predominated (76 and 37% of samples in 2010 and 2011, respectively). CMV and ZYMV were not detected, but WMV and PRSV were prevalent, both regionally (WMV: 28/29 fields, PRSV: 21/29 fields) and within fields (infection rates = 69 and 55% for WMV in 2010 and 2011; 28 and 25% for PRSV in 2010 and 2011). However, early-season samples showed extremely low infection levels, suggesting cucurbit viruses are not seed-transmitted and implicating aphid activity as a causal factor driving virus spread. Interestingly, neither noncolonizer and colonizer alightment nor total aphid alightment were good predictors of virus presence, but community analyses revealed species-specific relationships. For example, cowpea aphid (Aphis craccivora Koch) and spotted alfalfa aphid (Therioaphis trifolii Monell f. maculata) were associated with PRSV infection, whereas the oleander aphid (Aphis nerii Bover de Fonscolombe) was associated with WMV spread within fields. These outcomes highlight the need for tailored management plans targeting key vectors of nonpersistent viruses in agricultural systems. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Aphid parasitoid (Hymenoptera:Braconidae: Aphidiinae) in wetland habitats in western Palearctic: key and associated aphid parasitoid guilds

    Czech Academy of Sciences Publication Activity Database

    Tomanović, Ž.; Starý, Petr; Kavallieratos, N. G.; Gagić, V.; Plećaš, M.; Janković, M.; Rakhshani, E.; Ćetković, A.; Petrović, A.

    2012-01-01

    Roč. 48, 1-2 (2012), s. 189-198 ISSN 0037-9271 Grant - others:The Ministry of Science and Technological Development of the Republic of Serbia(RS) 043001 Institutional research plan: CEZ:AV0Z50070508 Keywords : aphid parasitoids * tritrophic interactions * wetlands Subject RIV: EH - Ecology, Behaviour Impact factor: 0.529, year: 2012 http://zoologie.umh.ac.be/asef/pdf/2012_48_01_02/full/Tomanovic_et_al_2012_ASEF_48_1_2_189_198_full.pdf

  19. Exploring the nitrogen ingestion of aphids--a new method using electrical penetration graph and (15N labelling.

    Directory of Open Access Journals (Sweden)

    Franziska Kuhlmann

    Full Text Available Studying plant-aphid interactions is challenging as aphid feeding is a complex process hidden in the plant tissue. Here we propose a combination of two well established methods to study nutrient acquisition by aphids focusing on the uptake of isotopically labelled nitrogen ((15N. We combined the Electrical Penetration Graph (EPG technique that allows detailed recording of aphid feeding behaviour and stable isotope ratio mass spectrometry (IRMS to precisely measure the uptake of nitrogen. Bird cherry-oat aphids Rhopalosiphum padi L. (Hemiptera, Aphididae fed for 24 h on barley plants (Hordeum vulgare L., cultivar Lina, Poaceae that were cultivated with a (15N enriched nutrient solution. The time aphids fed in the phloem was strongly positive correlated with their (15N uptake. All other single behavioural phases were not correlated with (15N enrichment in the aphids, which corroborates their classification as non-feeding EPG phases. In addition, phloem-feeding and (15N enrichment of aphids was divided into two groups. One group spent only short time in the phloem phase and was unsuccessful in nitrogen acquisition, while the other group displayed longer phloem-feeding phases and was successful in nitrogen acquisition. This suggests that several factors such as the right feeding site, time span of feeding and individual conditions play a role for the aphids to acquire nutrients successfully. The power of this combination of methods for studying plant-aphid interactions is discussed.

  20. Spatial Distribution and Sampling Plans With Fixed Level of Precision for Citrus Aphids (Hom., Aphididae) on Two Orange Species.

    Science.gov (United States)

    Kafeshani, Farzaneh Alizadeh; Rajabpour, Ali; Aghajanzadeh, Sirous; Gholamian, Esmaeil; Farkhari, Mohammad

    2018-04-02

    Aphis spiraecola Patch, Aphis gossypii Glover, and Toxoptera aurantii Boyer de Fonscolombe are three important aphid pests of citrus orchards. In this study, spatial distributions of the aphids on two orange species, Satsuma mandarin and Thomson navel, were evaluated using Taylor's power law and Iwao's patchiness. In addition, a fixed-precision sequential sampling plant was developed for each species on the host plant by Green's model at precision levels of 0.25 and 0.1. The results revealed that spatial distribution parameters and therefore the sampling plan were significantly different according to aphid and host plant species. Taylor's power law provides a better fit for the data than Iwao's patchiness regression. Except T. aurantii on Thomson navel orange, spatial distribution patterns of the aphids were aggregative on both citrus. T. aurantii had regular dispersion pattern on Thomson navel orange. Optimum sample size of the aphids varied from 30-2061 and 1-1622 shoots on Satsuma mandarin and Thomson navel orange based on aphid species and desired precision level. Calculated stop lines of the aphid species on Satsuma mandarin and Thomson navel orange ranged from 0.48 to 19 and 0.19 to 80.4 aphids per 24 shoots according to aphid species and desired precision level. The performance of the sampling plan was validated by resampling analysis using resampling for validation of sampling plans (RVSP) software. This sampling program is useful for IPM program of the aphids in citrus orchards.

  1. Selection of reference genes for expression analysis using quantitative real-time PCR in the pea aphid, Acyrthosiphon pisum (Harris (Hemiptera, Aphidiae.

    Directory of Open Access Journals (Sweden)

    Chunxiao Yang

    Full Text Available To facilitate gene expression study and obtain accurate qRT-PCR analysis, normalization relative to stable expressed housekeeping genes is required. In this study, expression profiles of 11 candidate reference genes, including actin (Actin, elongation factor 1 α (EF1A, TATA-box-binding protein (TATA, ribosomal protein L12 (RPL12, β-tubulin (Tubulin, NADH dehydrogenase (NADH, vacuolar-type H+-ATPase (v-ATPase, succinate dehydrogenase B (SDHB, 28S ribosomal RNA (28S, 16S ribosomal RNA (16S, and 18S ribosomal RNA (18S from the pea aphid Acyrthosiphon pisum, under different developmental stages and temperature conditions, were investigated. A total of four analytical tools, geNorm, Normfinder, BestKeeper, and the ΔCt method, were used to evaluate the suitability of these genes as endogenous controls. According to RefFinder, a web-based software tool which integrates all four above-mentioned algorithms to compare and rank the reference genes, SDHB, 16S, and NADH were the three most stable house-keeping genes under different developmental stages and temperatures. This work is intended to establish a standardized qRT-PCR protocol in pea aphid and serves as a starting point for the genomics and functional genomics research in this emerging insect model.

  2. Aphid-parasitoid community structure on genetically modified wheat.

    Science.gov (United States)

    von Burg, Simone; van Veen, Frank J F; Álvarez-Alfageme, Fernando; Romeis, Jörg

    2011-06-23

    Since the introduction of genetically modified (GM) plants, one of the main concerns has been their potential effect on non-target insects. Many studies have looked at GM plant effects on single non-target herbivore species or on simple herbivore-natural enemy food chains. Agro-ecosystems, however, are characterized by numerous insect species which are involved in complex interactions, forming food webs. In this study, we looked at transgenic disease-resistant wheat (Triticum aestivum) and its effect on aphid-parasitoid food webs. We hypothesized that the GM of the wheat lines directly or indirectly affect aphids and that these effects cascade up to change the structure of the associated food webs. Over 2 years, we studied different experimental wheat lines under semi-field conditions. We constructed quantitative food webs to compare their properties on GM lines with the properties on corresponding non-transgenic controls. We found significant effects of the different wheat lines on insect community structure up to the fourth trophic level. However, the observed effects were inconsistent between study years and the variation between wheat varieties was as big as between GM plants and their controls. This suggests that the impact of our powdery mildew-resistant GM wheat plants on food web structure may be negligible and potential ecological effects on non-target insects limited.

  3. Evidence of Absence software

    Science.gov (United States)

    Dalthorp, Daniel; Huso, Manuela M. P.; Dail, David; Kenyon, Jessica

    2014-01-01

    Evidence of Absence software (EoA) is a user-friendly application used for estimating bird and bat fatalities at wind farms and designing search protocols. The software is particularly useful in addressing whether the number of fatalities has exceeded a given threshold and what search parameters are needed to give assurance that thresholds were not exceeded. The software is applicable even when zero carcasses have been found in searches. Depending on the effectiveness of the searches, such an absence of evidence of mortality may or may not be strong evidence that few fatalities occurred. Under a search protocol in which carcasses are detected with nearly 100 percent certainty, finding zero carcasses would be convincing evidence that overall mortality rate was near zero. By contrast, with a less effective search protocol with low probability of detecting a carcass, finding zero carcasses does not rule out the possibility that large numbers of animals were killed but not detected in the searches. EoA uses information about the search process and scavenging rates to estimate detection probabilities to determine a maximum credible number of fatalities, even when zero or few carcasses are observed.

  4. Plant-derived differences in the composition of aphid honeydew and their effects on colonies of aphid-tending ants

    Science.gov (United States)

    Pringle, Elizabeth G; Novo, Alexandria; Ableson, Ian; Barbehenn, Raymond V; Vannette, Rachel L

    2014-01-01

    In plant–ant–hemipteran interactions, ants visit plants to consume the honeydew produced by phloem-feeding hemipterans. If genetically based differences in plant phloem chemistry change the chemical composition of hemipteran honeydew, then the plant's genetic constitution could have indirect effects on ants via the hemipterans. If such effects change ant behavior, they could feed back to affect the plant itself. We compared the chemical composition of honeydews produced by Aphis nerii aphid clones on two milkweed congeners, Asclepias curassavica and Asclepias incarnata, and we measured the responses of experimental Linepithema humile ant colonies to these honeydews. The compositions of secondary metabolites, sugars, and amino acids differed significantly in the honeydews from the two plant species. Ant colonies feeding on honeydew derived from A. incarnata recruited in higher numbers to artificial diet, maintained higher queen and worker dry weight, and sustained marginally more workers than ants feeding on honeydew derived from A. curassavica. Ants feeding on honeydew from A. incarnata were also more exploratory in behavioral assays than ants feeding from A. curassavica. Despite performing better when feeding on the A. incarnata honeydew, ant workers marginally preferred honeydew from A. curassavica to honeydew from A. incarnata when given a choice. Our results demonstrate that plant congeners can exert strong indirect effects on ant colonies by means of plant-species-specific differences in aphid honeydew chemistry. Moreover, these effects changed ant behavior and thus could feed back to affect plant performance in the field. PMID:25505534

  5. Kaolin particle films suppress many apple pests, disrupt natural enemies and promote woolly apple aphid

    NARCIS (Netherlands)

    Markó, V.; Blommers, L.H.M.; Bogya, S.; Helsen, H.H.M.

    2008-01-01

    Multiple applications of hydrophobic kaolin particle film in apple orchards suppressed numbers of blossom weevil (Anthonomus pomorum), brown leaf weevil (Phyllobius oblongus), attelabid weevil (Caenorhinus pauxillus), leafhoppers (Empoasca vitis and Zygina flammigera) and green apple aphid (Aphis

  6. The Polerovirus Minor Capsid Protein Determines Vector Specificity and Intestinal Tropism in the Aphid

    Science.gov (United States)

    Brault, Véronique; Périgon, Sophie; Reinbold, Catherine; Erdinger, Monique; Scheidecker, Danièle; Herrbach, Etienne; Richards, Ken; Ziegler-Graff, Véronique

    2005-01-01

    Aphid transmission of poleroviruses is highly specific, but the viral determinants governing this specificity are unknown. We used a gene exchange strategy between two poleroviruses with different vectors, Beet western yellows virus (BWYV) and Cucurbit aphid-borne yellows virus (CABYV), to analyze the role of the major and minor capsid proteins in vector specificity. Virus recombinants obtained by exchanging the sequence of the readthrough domain (RTD) between the two viruses replicated in plant protoplasts and in whole plants. The hybrid readthrough protein of chimeric viruses was incorporated into virions. Aphid transmission experiments using infected plants or purified virions revealed that vector specificity is driven by the nature of the RTD. BWYV and CABYV have specific intestinal sites in the vectors for endocytosis: the midgut for BWYV and both midgut and hindgut for CABYV. Localization of hybrid virions in aphids by transmission electron microscopy revealed that gut tropism is also determined by the viral origin of the RTD. PMID:16014930

  7. Russian wheat aphid, Diuraphis noxia in the Czech Republic – cause of the significant population decrease

    Czech Academy of Sciences Publication Activity Database

    Havelka, Jan; Žurovcová, Martina; Rychlý, S.; Starý, Petr

    2014-01-01

    Roč. 138, č. 4 (2014), s. 273-280 ISSN 0931-2048 R&D Projects: GA ČR GA522/09/1940 Institutional support: RVO:60077344 Keywords : alien aphid species * anholocyclic populations * aphids overwintering mortality Subject RIV: EH - Ecology, Behaviour Impact factor: 1.650, year: 2014 http://onlinelibrary.wiley.com/doi/10.1111/jen.12068/pdf

  8. Winter treatments against the woolly apple aphid (Eriosoma lanigerum): products and timing of applications

    OpenAIRE

    Kelderer, Markus; Lardschneider, Ewald; Casera, Claudio

    2008-01-01

    In organic apple growing the woolly apple aphid (Eriosoma lanigerum) is still an unsolved problem. Various approaches to use beneficial insects were not really effective. Only winter treatments with mineral oils showed partial and fluctuating success. In 2006 and 2007 field trials were carried out to evaluate the efficacy of winter treatments to control woolly apple aphids. The efficacy of several products (different mineral oils, lime sulphur, and lime sulphur + mineral oil) w...

  9. Expression of Pinellia pedatisecta Lectin Gene in Transgenic Wheat Enhances Resistance to Wheat Aphids

    OpenAIRE

    Xiaoliang Duan; Qiling Hou; Guoyu Liu; Xiaomeng Pang; Zhenli Niu; Xiao Wang; Yufeng Zhang; Baoyun Li; Rongqi Liang

    2018-01-01

    Wheat aphids are major pests during the seed filling stage of wheat. Plant lectins are toxic to sap-sucking pests such as wheat aphids. In this study, Pinellia pedatisecta agglutinin (ppa), a gene encoding mannose binding lectin, was cloned, and it shared 92.69% nucleotide similarity and 94% amino acid similarity with Pinellia ternata agglutinin (pta). The ppa gene, driven by the constitutive and phloem-specific ribulose bisphosphate carboxylase small subunit gene (rbcs) promoter in pBAC-rbcs...

  10. Trophic transfer of soil arsenate and associated toxic effects in a plant-aphid-parasitoid system

    Science.gov (United States)

    Lee, Y. S.; Wee, J.; Lee, M.; Hong, J.; Cho, K.

    2017-12-01

    Terrestrial toxic effects of soil arsenic were studied using a model system consisting of soil which artificially treated with arsenic, Capsicum annum,Myzus persicae and Aphidus colemani. We investigated the transfer of arsenic in a soil-plant-aphid system and toxic effect of elevated arsenic through a plant-aphid-parasitoid system. To remove the effect of poor plant growth on aphid performance, test concentrations which have a no effect on health plant growth were selected. Arsenic concentration of growth medium, plant tissues (root, stem, leaf) aphids were measured to observe the arsenic transfer. Correlation matrix was made with arsenic in growth medium which extracted with three extractants (aquaregia, 0.01 M CaCl2 and deionized water), arsenic in plant tissues and plant performance. Toxic effects of elevated arsenic concentrations on each species were investigated at population level. Studied plant performances were dry weight of each tissue, elongation of roots and stems, area of leaves, chlorophyll content of leaves, protein content of leaves and sugar content of leaves. Mean development time, fecundity and honeydew excretion of the aphids and host choice capacity and parasitism success of the parasitoids were examined. In addition, enzyme activities of the plants and the aphids against reactive oxygen species (ROS) induced by arsenic stress were also investigated. The results suggest that arsenic concentration in plant tissues and aphids were elevated with increased concentration of arsenic in soil. Decreased fecundity and honeydew excretion of aphids were observed and decreased eclosion rate of parasitoids were observed with increased arsenic treatment in growth medium. The results showed low concentration of arsenic in soil can transfer through food chain and can impact on higher trophic level species.

  11. Foliar aphid feeding recruits rhizosphere bacteria and primes plant immunity against pathogenic and non-pathogenic bacteria in pepper.

    Science.gov (United States)

    Lee, Boyoung; Lee, Soohyun; Ryu, Choong-Min

    2012-07-01

    Plants modulate defence signalling networks in response to different biotic stresses. The present study evaluated the effect of a phloem-sucking aphid on plant defence mechanisms in pepper (Capsicum annuum) during subsequent pathogen attacks on leaves and rhizosphere bacteria on roots. Plants were pretreated with aphids and/or the chemical trigger benzothiadiazol (BTH) 7 d before being challenged with two pathogenic bacteria, Xanthomonas axonopodis pv. vesicatoria (Xav) as a compatible pathogen and X. axonopodis pv. glycines (Xag) as an incompatible (non-host) pathogen. Disease severity was noticeably lower in aphid- and BTH + aphid-treated plants than in controls. Although treatment with BTH or aphids alone did not affect the hypersensitive response (HR) against Xag strain 8ra, the combination treatment had a synergistic effect on the HR. The aphid population was reduced by BTH pretreatment and by combination treatment with BTH and bacterial pathogens in a synergistic manner. Analysis of the expression of the defence-related genes Capsicum annum pathogenesis-related gene 9 (CaPR9), chitinase 2 (CaCHI2), SAR8·2 and Lipoxygenase1 (CaLOX1) revealed that aphid infestation resulted in the priming of the systemic defence responses against compatible and incompatible pathogens. Conversely, pre-challenge with the compatible pathogen Xav on pepper leaves significantly reduced aphid numbers. Aphid infestation increased the population of the beneficial Bacillus subtilis GB03 but reduced that of the pathogenic Ralstonia solanacearum SL1931. The expression of defence-related genes in the root and leaf after aphid feeding indicated that the above-ground aphid infestation elicited salicylic acid and jasmonic acid signalling throughout the whole plant. The findings of this study show that aphid feeding elicits plant resistance responses and attracts beneficial bacterial populations to help the plant cope with subsequent pathogen attacks.

  12. Cucumber Plants Baited with Methyl Salicylate Accelerates Scymnus (Pullus) sodalis (Coleoptera: Coccinellidae) Visiting to Reduce Cotton Aphid (Hemiptera: Aphididae) Infestation.

    Science.gov (United States)

    Dong, Y J; Hwang, S Y

    2017-10-01

    The cotton aphid, Aphis gossypii (Glover) (Hemiptera: Aphididae), is a major pest of many crops worldwide and a major cucumber plant pest in Taiwan. Because cotton aphids rapidly develop insecticide resistance and because of the insecticide residue problem, a safe and sustainable method is required to replace conventional chemical control methods. Methyl salicylate (MeSA), a herbivore-induced plant volatile, has been shown to affect aphids' behavior and attract the natural enemies of aphids for reducing their population. Therefore, this study examined the direct effects of MeSA on cotton aphids' settling preference, population development, and attractiveness to natural enemies. The efficiency of using MeSA and the commercial insecticide pymetrozine for reducing the cotton aphid population in laboratory and outdoor cucumber plant pot was also examined. The results showed no difference in winged aphids' settling preference and population development between the MeSA and blank treatments. Cucumber plants infested with cotton aphids and baited with 0.1% or 10% MeSA contained significantly higher numbers of the natural enemy of cotton aphids, namely Scymnus (Pullus) sodalis (Weise) (Coleoptera: Coccinellidae), and MeSA-treated cucumber plants contained a lower number of aphids. Significantly lower cotton aphid numbers were found on cucumber plants within a 10-m range of MeSA application. In addition, fruit yield showed no difference between the MeSA and pymetrozine treatments. According to our findings, 0.1% MeSA application can replace insecticides as a cotton aphid control tool. However, large-scale experiments are necessary to confirm its efficiency and related conservation biological control strategies before further use. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Expression profiling of selected glutathione transferase genes in Zea mays (L.) seedlings infested with cereal aphids.

    Science.gov (United States)

    Sytykiewicz, Hubert; Chrzanowski, Grzegorz; Czerniewicz, Paweł; Sprawka, Iwona; Łukasik, Iwona; Goławska, Sylwia; Sempruch, Cezary

    2014-01-01

    The purpose of this report was to evaluate the expression patterns of selected glutathione transferase genes (gst1, gst18, gst23 and gst24) in the tissues of two maize (Zea mays L.) varieties (relatively resistant Ambrozja and susceptible Tasty Sweet) that were colonized with oligophagous bird cherry-oat aphid (Rhopalosiphum padi L.) or monophagous grain aphid (Sitobion avenae L.). Simultaneously, insect-triggered generation of superoxide anion radicals (O2•-) in infested Z. mays plants was monitored. Quantified parameters were measured at 1, 2, 4, 8, 24, 48 and 72 h post-initial aphid infestation (hpi) in relation to the non-infested control seedlings. Significant increases in gst transcript amounts were recorded in aphid-stressed plants in comparison to the control seedlings. Maximal enhancement in the expression of the gst genes in aphid-attacked maize plants was found at 8 hpi (gst23) or 24 hpi (gst1, gst18 and gst24) compared to the control. Investigated Z. mays cultivars formed excessive superoxide anion radicals in response to insect treatments, and the highest overproduction of O2•- was noted 4 or 8 h after infestation, depending on the aphid treatment and maize genotype. Importantly, the Ambrozja variety could be characterized as having more profound increments in the levels of gst transcript abundance and O2•- generation in comparison with the Tasty Sweet genotype.

  14. [An example of research on biological control: Entomophthora fungi pathogenic for aphids].

    Science.gov (United States)

    Latgé, J P; Remaudière, G; Papierok, B

    1978-01-01

    The results obtained in 15 years of research on the Entomophthorales pathogen of aphids showed the importance of the action of these fungi in the regulation of natural aphid populations and their possible use in agriculture as a biological control agent. Recent ecological studies on natural populations of aphids established the seasonal variation of the different fungal species and the diverse degrees of specificity between the species or groups of species of aphid and the various species of Entomophthora. The study of populations dynamics of an aphid species on a cultivated plant permitted the determination of the way a certain number of biotic and abiotic factors, such as temperature, humidity, thresholds of the insect population and of the infecting fungus lead to an epizootic development. If the air propagation of the disease by conidia is understood for a long time, the role of the soil as a reservoir for the infecting fungus has been demonstrated recently. Under favourable climatic conditions, the use of industrially produced resistant resting spores would allow the regulation of aphid populations in nature.

  15. Expression Profiling of Selected Glutathione Transferase Genes in Zea mays (L.) Seedlings Infested with Cereal Aphids

    Science.gov (United States)

    Sytykiewicz, Hubert; Chrzanowski, Grzegorz; Czerniewicz, Paweł; Sprawka, Iwona; Łukasik, Iwona; Goławska, Sylwia; Sempruch, Cezary

    2014-01-01

    The purpose of this report was to evaluate the expression patterns of selected glutathione transferase genes (gst1, gst18, gst23 and gst24) in the tissues of two maize (Zea mays L.) varieties (relatively resistant Ambrozja and susceptible Tasty Sweet) that were colonized with oligophagous bird cherry-oat aphid (Rhopalosiphum padi L.) or monophagous grain aphid (Sitobion avenae L.). Simultaneously, insect-triggered generation of superoxide anion radicals (O2 •−) in infested Z. mays plants was monitored. Quantified parameters were measured at 1, 2, 4, 8, 24, 48 and 72 h post-initial aphid infestation (hpi) in relation to the non-infested control seedlings. Significant increases in gst transcript amounts were recorded in aphid-stressed plants in comparison to the control seedlings. Maximal enhancement in the expression of the gst genes in aphid-attacked maize plants was found at 8 hpi (gst23) or 24 hpi (gst1, gst18 and gst24) compared to the control. Investigated Z. mays cultivars formed excessive superoxide anion radicals in response to insect treatments, and the highest overproduction of O2 •− was noted 4 or 8 h after infestation, depending on the aphid treatment and maize genotype. Importantly, the Ambrozja variety could be characterized as having more profound increments in the levels of gst transcript abundance and O2 •− generation in comparison with the Tasty Sweet genotype. PMID:25365518

  16. Foliar methyl salicylate emissions indicate prolonged aphid infestation on silver birch and black alder.

    Science.gov (United States)

    Blande, James D; Korjus, Minna; Holopainen, Jarmo K

    2010-03-01

    It is well documented that when plants are damaged by insects they respond by emitting a range of volatile organic compounds (VOCs). While there have been numerous reports concerning VOCs induced by chewing herbivores, there are relatively few studies detailing the VOCs induced by aphid feeding. The effects of aphid feeding on VOCs emitted by boreal forest trees have been particularly neglected. Herbivore-induced VOCs have relevance to direct and indirect plant defence and atmospheric chemistry. In this study, we analysed the VOCs emitted by Betula pendula (Roth) and Alnus glutinosa (L.) (Gaertn.) infested by specialist aphid species under laboratory conditions. We also complemented this by collecting VOCs from leaf beetle-damaged saplings under field conditions. In addition to induction of some inducible terpenes, we detected substantial aphid-induced emissions of methyl salicylate (MeSA) in both B. pendula and A. glutinosa. MeSA emission intensity depended on the length of aphid infestation. Feeding by beetles induced emission of (E)-DMNT in both tree species and (E)-beta-ocimene in A. glutinosa but had no effect on MeSA emissions. MeSA has been shown to have aphid-repellent qualities and has been shown recently to have impact on formation of secondary organic aerosols in the atmosphere. We discuss our results in relation to these two phenomena.

  17. Assessment of patch quality by aphidophagous ladybirds: laboratory study on the minimum density of aphids required for oviposition

    Directory of Open Access Journals (Sweden)

    B. C. Das

    2011-12-01

    Full Text Available Many studies indicate that there is a density of aphids below which ladybirds are unlikely to lay eggs. This is adaptive as theory indicates that a certain minimum population density of aphids is required if hatchling larvae are to survive. The responses of gravid females of the two spot ladybird, Adalia bipunctata (L. (Coleoptera: Coccinellidae, recorded over a period of an hour, to colonies of 5 and 50 pea aphids on bean plants and similar plants each previously infested with the same number of aphids for 48 hours were determined. Proportionally more of the ladybirds on plants with 50 aphids or that were previously infested with the same number of aphids for 48 hours laid eggs and larger clusters of eggs, and were less active than those on plants that were infested with or had previously been infested with five aphids. That is, gravid females showed similar oviposition and activity responses to aphid abundance and different levels of honeydew contamination. This indicates that honeydew contamination may be an important cue used by ladybirds when locating and assessing the abundance of prey in aphid colonies.

  18. Past absence as a predictor of present absence

    DEFF Research Database (Denmark)

    Løkke Møller, Ann-Kristina Løkke

    2014-01-01

    of confounders such as gender, age, seniority, wage, contracted number of work hours and season. The results of the empirical study show that there is a significant positive relationship between employees' absence duration and past absence spells and past absence days, respectively. The study thus confirms...... that past days and past spells have an equal potential of predicting present absent. Past absence behaviour can thus be used as an early warning for managers. The study also confirms that personal characteristics such as age and seniority also influence absence duration. Moreover, job characteristics...... such as wage and contracted number of work hours also influence absence duration. Finally, the season of the year seems to influence absence duration....

  19. The return of dissociation as absence within absence.

    Science.gov (United States)

    Gurevich, Hayuta

    2014-12-01

    My aim is to translate Ferenczi's central concepts of the intrapsychic impact and imprint of early developmental trauma into both revived and contemporary conceptualizations. The concept of dissociation was renounced by Freud, yet it is returning as a cornerstone of recent trauma theories. Ferenczi used the concept of "repression," but used it in the sense of an intrapsychic imprint of early external trauma that fragments consciousness, that is, as dissociation. Furthermore, early trauma is double: an absence of protection that threatens existence of the self, combined with an absence of attachment and of recognition of this threat and terror; thus it is an absence-within-absence. This contemporary conceptualization entails a widening of the intrapsychic realm to include an intersubjective one, and regards dissociation as a unique and complex intrapsychic absence, which is a negative of the external absence-within-absence in the early environment.

  20. Molecular systematics of aphids (Homoptera: Aphididae): new insights from the long-wavelength opsin gene.

    Science.gov (United States)

    Ortiz-Rivas, Benjamín; Moya, Andrés; Martínez-Torres, David

    2004-01-01

    Viviparous aphids (Aphididae) constitute a monophyletic group within the Homoptera with more than 4000 extant species worldwide but higher diversity in temperate regions. Several aspects of their biology account for attention paid to this group of insects. Their plant-sap-sucking way of feeding with many species transmitting viruses to crop plants has important implications on crop management strategies. Cyclical parthenogenesis associated in many groups to host alternation and elaborate polyphenisms is of special interests for evolutionists. Finally, the ancient association of most aphid species with intracellular endosymbiotic bacteria (Buchnera sp.) has also received much attention from evolutionists interested in mechanisms involved in the symbiotic process. Knowing the phylogenetic relationships among major aphid taxa is of special interest to evolutionists interested in the above issues. However, until recently, molecular approaches to aphid phylogeny were absent and discussions on the evolution of aphid life-cycles and on evolutionary aspects of their symbiotic association with Buchnera were framed by morphology-based phylogenies. Recently, two reports using molecular approaches attempted to address the yet unresolved phylogeny of Aphididae with limited although somehow different conclusions. In the present report we study the utility of the long-wave opsin gene in resolving phylogenetic relationships among seven subfamilies within the Aphididae. Our results corroborate some previously proposed relationships and suggest a revision of some others. In particular, our data support grouping the analysed aphid species into three main clades, being the subfamily Lachninae one of them, which contradicts its generally accepted sistership relationship with the subfamily Aphidinae. Moreover, our data also suggest a basal position of Lachninae which has implications on current discussions about the ancestrality of conifer-feeding in modern aphids.

  1. Seasonal phenology and species composition of the aphid fauna in a northern crop production area.

    Directory of Open Access Journals (Sweden)

    Sascha M Kirchner

    Full Text Available BACKGROUND: The species diversity of aphids and seasonal timing of their flight activity can have significant impacts on crop production, as aphid species differ in their ability to transmit plant viruses and flight timing affects virus epidemiology. The aim of the study was to characterise the species composition and phenology of aphid fauna in Finland in one of the northernmost intensive crop production areas of the world (latitude 64°. METHODOLOGY/PRINCIPAL FINDINGS: Flight activity was monitored in four growing seasons (2007-010 using yellow pan traps (YPTs placed in 4-8 seed potato fields and a Rothamsted suction trap. A total of 58,528 winged aphids were obtained, identified to 83 taxa based on morphology, and 34 species were additionally characterised by DNA barcoding. Seasonal flight activity patterns analysed based on YPT catch fell into three main phenology clusters. Monoecious taxa showed early or middle-season flight activity and belonged to species living on shrubs/trees or herbaceous plants, respectively. Heteroecious taxa occurred over the entire potato growing season (ca. 90 days. Abundance of aphids followed a clear 3-year cycle based on suction trap data covering a decade. Rhopalosiphum padi occurring at the end of the potato growing season was the most abundant species. The flight activity of Aphis fabae, the main vector of Potato virus Y in the region, and Aphis gossypii peaked in the beginning of potato growing season. CONCLUSIONS/SIGNIFICANCE: Detailed information was obtained on phenology of a large number aphid species, of which many are agriculturally important pests acting as vectors of plant viruses. Aphis gossypii is known as a pest in greenhouses, but our study shows that it occurs also in the field, even far in the north. The novel information on aphid phenology and ecology has wide implications for prospective pest management, particularly in light of climate change.

  2. Preference and life history traits of Aphelinus abdominalis (Hymenoptera: Aphelinidae) when offered different development stages of the lettuce aphid Nasonovia ribisnigri (Hemiptera: Aphididae)

    DEFF Research Database (Denmark)

    Shrestha, Govinda; Skovgård, Henrik; Steenberg, Tove

    2015-01-01

    stages of the lettuce aphid were exposed for parasitism compared with older developmental stages. This pattern was supported in the choice experiment where significantly more 2nd instar lettuce aphids were parasitised than alatoid 4th instars, with Manly’s preference index (mean ± SE) for the former...... %) were found across all host stages of the lettuce aphid....

  3. Ultrastructure of compatible and incompatible interactions in phloem sieve elements during the stylet penetration by cotton aphids in melon

    NARCIS (Netherlands)

    Garzo, E.; Fernández-Pascual, Mercedes; Morcillo, Cesar; Fereres, Alberto; Gómez-Guillamón, M.L.; Tjallingii, W.F.

    2017-01-01

    Resistance of the melon line TGR-1551 to the aphid Aphis gossypii is based on preventing aphids from ingesting phloem sap. In electrical penetration graphs (EPGs), this resistance has been characterized with A. gossypii showing unusually long phloem salivation periods (waveform E1) mostly

  4. Virus-induced gene silencing of WRKY53 and an inducible phenylalanine ammonia-lyase in wheat reduces aphid resistance

    Science.gov (United States)

    Although several wheat genes differentially expressed during the Russian wheat aphid resistance response have recently been identified, their requirement for and specific role in resistance remain unclear. Progress in wheat-aphid interaction research is hampered by inadequate collections of mutant g...

  5. Temperature dependent functional response of Diaeretiella rapae (Hymenoptera: Aphidiidae) to the cabbage aphid, Brevicoryne brassicae (Hemiptera: Aphididae)

    DEFF Research Database (Denmark)

    Moayeri, Hamid R. S.; Madadi, Hossein; Pouraskari, Hossein

    2013-01-01

    Diaeretiella rapae MacIntosh (Hymenoptera: Aphidiidae) is one of the most common and successful parasitoids of the cabbage aphid. The functional response of D. rapae towards cabbage aphids was examined in laboratory studies at three constant temperatures, 17°C, 25°C and 30°C. D. rapae exhibited a...

  6. Invertebrate communities in spring wheat and the identification of cereal aphid predators through molecular gut content analysis

    Science.gov (United States)

    Cereal aphid complexes are responsible for reducing wheat production worldwide; however, management against these species is rare in North America. Generalist predators may contribute to reducing cereal aphid numbers and preventing significant damage to crops. A two-year survey identifying the arth...

  7. The price of protection: a defensive endosymbiont impairs nymph growth in the bird cherry-oat aphid, Rhopalosiphum padi.

    Science.gov (United States)

    Leybourne, Daniel J; Bos, Jorunn I B; Valentine, Tracy A; Karley, Alison J

    2018-05-24

    Bacterial endosymbionts have enabled aphids to adapt to a range of stressors, but their effects in many aphid species remain to be established. The bird cherry-oat aphid, Rhopalosiphum padi (Linnaeus), is an important pest of cereals worldwide and has been reported to form symbiotic associations with Serratia symbiotica and Sitobion miscanthi L-type Symbiont endobacteria, although the resulting aphid phenotype has not been described. This study presents the first report of R. padi infection with the facultative bacterial endosymbiont Hamiltonella defensa. Individuals of R. padi were sampled from populations in Eastern Scotland, UK, and shown to represent seven R. padi genotypes based on the size of polymorphic microsatellite markers; two of these genotypes harboured H. defensa. In parasitism assays, survival of H. defensa-infected nymphs following attack by the parasitoid wasp Aphidius colemani (Viereck) was five-fold higher than for uninfected nymphs. Aphid genotype was a major determinant of aphid performance on two Hordeum species, a modern cultivar of barley H. vulgaris and a wild relative H. spontaneum, although aphids infected with H. defensa showed 16% lower nymph mass gain on the partially-resistant wild relative compared with uninfected individuals. These findings suggest that deploying resistance traits in barley will favour the fittest R. padi genotypes, but symbiont-infected individuals will be favoured when parasitoids are abundant, although these aphids will not achieve optimal performance on a poor quality host plant. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Resistance to lettuce aphid (Nasonovia ribisnigri) biotype 0 in wild lettuce accessions PI 491093 and PI 274378

    Science.gov (United States)

    Lettuce aphid, Nasonovia ribisnigri Mosley (Homoptera : Aphididae), is a major insect pest of lettuce, Lactuca sativa L, in many commercial lettuce productions areas around the world. Resistance to lettuce aphid was first reported in Lactuca virosa L. accession IVT 280 and characterized as complete,...

  9. 77 FR 46373 - Field Release of Aphelinus glycinis for the Biological Control of the Soybean Aphid in the...

    Science.gov (United States)

    2012-08-03

    ... Inspection Service [Docket No APHIS-2012-0061] Field Release of Aphelinus glycinis for the Biological Control... for the biological control of the soybean aphid, Aphis glycines, in the continental United States. We... glycinis for the Biological Control of the Soybean Aphid in the Continental United States'' (March 2012...

  10. Genetics coupled to quantitative intact proteomics links heritable aphid and endosymbiont protein isoform expression to polerovirus transmission

    Science.gov (United States)

    Yellow dwarf viruses in the family Luteoviridae, such as Cereal yellow dwarf virus-RPV (CYDV-RPV), are vectored by aphids and cause the most economically important virus disease of cereal crops worldwide. The identification of aphid proteins mediating virus transmission will better define transmiss...

  11. Resistance to a new biotype of the lettuce aphid Nasonovia ribisnigri in Lactuca virosa accession IVT280

    NARCIS (Netherlands)

    Broeke, ten C.J.M.; Dicke, M.; Loon, van J.J.A.

    2013-01-01

    Host plant resistance is an effective protection strategy to control aphids in many crops. However, the evolution of insensitive aphid biotypes necessitates the search for new resistance sources. Wild relatives of crop plants can be important sources for resistance genes to be introgressed into new

  12. Role of syrphid larvae and other predators in suppressing aphid infestations in organic lettuce on California's Central Coast.

    Science.gov (United States)

    Smith, Hugh A; Chaney, William E; Bensen, Tiffany A

    2008-10-01

    Organic lettuce, Lactuca sativa L., growers on the Central Coast of California rely on conservation biological control to manage Nasonovia ribisnigri Mosley (Hemiptera: Aphididae) and other aphid pests of lettuce. In 2006, we carried out five replicated field trials to determine the importance of syrphid larvae in the suppression of N. ribisnigri and other aphids infesting organic romaine lettuce. We used Entrust, a spinosad-based insecticide approved for use on organic farms, to suppress syrphid larvae in aphid-infested romaine. Romaine treated with Entrust was unmarketable at harvest because of aphid infestation, whereas insecticide-free romaine was marketable. Syrphid larvae composed 85% or more of total predators in most trials, and they were the only predators consistently recovered from romaine that was infested with aphids early and largely aphid-free by harvest. The species mix of nonsyrphid predators varied from site to site. Applications of Entrust suppressed nonsyrphid predators in two trials, and so was an imperfect tool for selectively suppressing syrphid larvae. The relative importance of syrphid larvae and other predators in the conservation biological control of aphids in organic romaine is discussed. We conclude that syrphid larvae are primarily responsible for the suppression of aphids in organic romaine on California's Central Coast.

  13. Modulation of legume defense signaling pathways by native and non-native pea aphid clones

    Directory of Open Access Journals (Sweden)

    Carlos Sanchez-Arcos

    2016-12-01

    Full Text Available The pea aphid (Acyrthosiphon pisum is a complex of at least 15 genetically different host races that are native to specific legume plants, but can all develop on the universal host plant Vicia faba. Despite much research it is still unclear why pea aphid host races (biotypes are able to colonize their native hosts while other host races are not. All aphids penetrate the plant and salivate into plant cells when they test plant suitability. Thus plants might react differently to the various pea aphid host races. To find out whether legume species vary in their defense responses to different pea aphid host races, we measured the amounts of salicylic acid (SA, the jasmonic acid-isoleucine conjugate (JA-Ile, other jasmonate precursors and derivatives, and abscisic acid (ABA in four different species (Medicago sativa, Trifolium pratense, Pisum sativum, V. faba after infestation by native and non-native pea aphid clones of various host races. Additionally, we assessed the performance of the clones on the four plant species. On M. sativa and T. pratense, non-native clones that were barely able to survive or reproduce, triggered a strong SA and JA-Ile response, whereas infestation with native clones led to lower levels of both phytohormones. On P. sativum, non-native clones, which survived or reproduced to a certain extent, induced fluctuating SA and JA-Ile levels, whereas the native clone triggered only a weak SA and JA-Ile response. On the universal host V. faba all aphid clones triggered only low SA levels initially, but induced clone-specific patterns of SA and JA-Ile later on. The levels of the active JA-Ile conjugate and of the other JA-pathway metabolites measured showed in many cases similar patterns, suggesting that the reduction in JA signaling was due to an effect upstream of OPDA. ABA levels were downregulated in all aphid clone-plant combinations and were therefore probably not decisive factors for aphid-plant compatibility. Our results

  14. The dynamics of absence behaviour: Interrelations between absence from class and absence in class

    DEFF Research Database (Denmark)

    Jonasson, Charlotte

    2011-01-01

    Abstract: Background: Studies of absence in educational settings have primarily been concerned with the causes for and results of student absence. However, recent research has argued that distinguishing between different forms of absence could be important. In consequence, studying the way in whi...... in the social practice of students, teachers and school managers. Evaluations of both absence from class and absence in class are important for understanding how absence behaviour can be identified and prevented....... performance. It is helpful to describe these findings using theoretical frameworks from sociology and psychology: specifically, spill-over theory and symbolic capital theory. Conclusions: This study has demonstrated how different forms of absence become dynamically interrelated through ongoing negotiations...

  15. Proteomic Analysis of Aphid-Resistant and -Sensitive Rose (Rosa Hybrida) Cultivars at Two Developmental Stages.

    Science.gov (United States)

    Muneer, Sowbiya; Jeong, Hai Kyoung; Park, Yoo Gyeong; Jeong, Byoung Ryong

    2018-05-25

    The rose is one the most commercially grown and costly ornamental plants because of its aesthetic beauty and aroma. A large number of pests attack its buds, flowers, leaves, and stem at every growing stage due to its high sugar content. The most common pest on roses are aphids which are considered to be the major cause for product loss. Aphid infestations lead to major changes in rose plants, such as large and irregular holes in petals, intact leaves and devouring tissues. It is hypothesized that different cut rose cultivars would have different levels of sensitivity or resistance to aphids, since different levels of infestation are observed in commercially cut rose production greenhouses. The present work compared four cut rose cultivars which were bred in Korea and were either resistant or sensitive to aphid infestation at different flower developmental stages. An integrative study was conducted using comprehensive proteome analyses. Proteins related to ubiquitin metabolism and the stress response were differentially expressed due to aphid infestation. The regulations and possible functions of identified proteins are presented in detail. The differential expressions of the identified proteins were validated by immunoblotting and blue native page. In addition, total sugar and carbohydrate content were also observed.

  16. Transcriptomic and proteomic analyses of seasonal photoperiodism in the pea aphid

    Directory of Open Access Journals (Sweden)

    Gauthier J-P

    2009-09-01

    Full Text Available Abstract Background Aphid adaptation to harsh winter conditions is illustrated by an alternation of their reproductive mode. Aphids detect photoperiod shortening by sensing the length of the night and switch from viviparous parthenogenesis in spring and summer, to oviparous sexual reproduction in autumn. The photoperiodic signal is transduced from the head to the reproductive tract to change the fate of the future oocytes from mitotic diploid embryogenesis to haploid formation of gametes. This process takes place in three consecutive generations due to viviparous parthenogenesis. To understand the molecular basis of the switch in the reproductive mode, transcriptomic and proteomic approaches were used to detect significantly regulated transcripts and polypeptides in the heads of the pea aphid Acyrthosiphon pisum. Results The transcriptomic profiles of the heads of the first generation were slightly affected by photoperiod shortening. This suggests that trans-generation signalling between the grand-mothers and the viviparous embryos they contain is not essential. By analogy, many of the genes and some of the proteins regulated in the heads of the second generation are implicated in visual functions, photoreception and cuticle structure. The modification of the cuticle could be accompanied by a down-regulation of the N-β-alanyldopamine pathway and desclerotization. In Drosophila, modification of the insulin pathway could cause a decrease of juvenile hormones in short-day reared aphids. Conclusion This work led to the construction of hypotheses for photoperiodic regulation of the switch of the reproductive mode in aphids.

  17. Unravelling mycorrhiza-induced wheat susceptibility to the English grain aphid Sitobion avenae

    Science.gov (United States)

    Simon, Amma L.; Wellham, Peter A. D.; Aradottir, Gudbjorg I.; Gange, Alan C.

    2017-04-01

    Arbuscular mycorrhizal (AM) fungi are root symbionts that can increase or decrease aphid growth rates and reproduction, but the reason by which this happens is unknown. To investigate the underlying mechanisms of this interaction, we examined the effect of AM fungi on the English Grain aphid (Sitobion avenae) development, reproduction, attraction, settlement and feeding behaviour on two naturally susceptible varieties Triticum aestivum (L.) variety Solstice and T. monococcum MDR037, and two naturally resistant lines, T. monococcum MDR045 and MDR049. Mycorrhizal colonisation increased the attractiveness of T. aestivum var. Solstice to aphids, but there was no effect on aphid development on this variety. Using the Electrical Penetration Graph (EPG) technique, we found that mycorrhizal colonisation increased aphid phloem feeding on T. monococcum MDR037 and MDR045, colonisation also increased growth rate and reproductive success of S. avenae on these varieties. Mycorrhizas increased vascular bundle size, demonstrating that these fungi can influence plant anatomy. We discuss if and how this could be related to an enhanced success rate in phloem feeding in two varieties. Overall, we present and discuss how mycorrhizal fungi can affect the feeding behaviour of S. avenae in wheat, inducing susceptibility in a resistant variety.

  18. Sublethal and hormesis effects of imidacloprid on the soybean aphid Aphis glycines.

    Science.gov (United States)

    Qu, Yanyan; Xiao, Da; Li, Jinyu; Chen, Zhou; Biondi, Antonio; Desneux, Nicolas; Gao, Xiwu; Song, Dunlun

    2015-04-01

    The soybean aphid, Aphis glycines Matsumura, is a major pest in soybean crop. Current management of this pest relies mainly on insecticides applications, and the neonicotinoid imidacloprid has been proposed as an effective insecticide to control A. glycines in soybean field. Imidacloprid at lethal concentrations not only exerts acute toxicity to A. glycines, but also cause various biological changes when aphids are chronically exposed to lower concentrations. In this study, we assessed the effects of a low-lethal (0.20 mg L(-1)) and two sublethal (0.05 and 0.10 mg L(-1)) imidacloprid concentrations on various A. glycines life history traits. Aphid exposure to 0.20 mg L(-1) imidacloprid caused slower juvenile development, shorter reproductive period, and reduced adult longevity, fecundity and total lifespan. Stimulatory effects, i.e. hormesis, on reproduction and immature development duration were observed in aphids exposed to the lower sublethal imidacloprid concentrations. Consequently, the net reproduction rate (R 0) was significantly higher than in the control aphids. These findings stress the importance of the actual imidacloprid concentration in its toxicological properties on A. glycines. Therefore, our results would be useful for assessing the overall effects of imidacloprid on A. glycines and for optimizing integrated pest management programs targeting this pest.

  19. Predation determines different selective pressure on pea aphid host races in a complex agricultural mosaic.

    Directory of Open Access Journals (Sweden)

    Adalbert Balog

    Full Text Available Field assessments were conducted to examine the interplay between host plant and predation in complex agricultural mosaic on pea aphid clover and alfalfa races. In one experiment, we examined the relative fitness on clover race (CR and alfalfa race (AR pea aphids on broad bean, red clover and alfalfa alone. But because clover is typically grown in a more complex agricultural mosaic with alfalfa and broad bean, a second experiment was conducted to assess the fitness consequences under predation in a more complex agricultural field setting that also included potential apparent competition with AR pea aphids. In a third experiment we tested for the effect of differential host race density on the fitness of the other host race mediated by a predator effect. CR pea aphids always had fitness losses when on broad bean (had lower fitness on broad bean relative to red clover and fitness benefits when on red clover (higher fitness on red clover relative to broad bean, whether or not in apparent competition with alfalfa race aphids on bean and alfalfa. AR suffered fitness loss on both alfalfa and bean in apparent competition with CR on clover. Therefore we can conclude that the predation rate between host races was highly asymmetrical. The complexity of the agricultural mosaic thus can influence prey selection by predators on different host plants. These may have evolutionary consequences through context dependent fitness benefits on particular host plants.

  20. Gene expression profiles responses to aphid feeding in chrysanthemum (Chrysanthemum morifolium).

    Science.gov (United States)

    Xia, Xiaolong; Shao, Yafeng; Jiang, Jiafu; Ren, Liping; Chen, Fadi; Fang, Weimin; Guan, Zhiyong; Chen, Sumei

    2014-12-02

    Chrysanthemum is an important ornamental plant all over the world. It is easily attacked by aphid, Macrosiphoniella sanbourni. The molecular mechanisms of plant defense responses to aphid are only partially understood. Here, we investigate the gene expression changes in response to aphid feeding in chrysanthemum leaf by RNA-Seq technology. Three libraries were generated from pooled leaf tissues of Chrysanthemum morifolium 'nannongxunzhang' that were collected at different time points with (Y) or without (CK) aphid infestations and mock puncture treatment (Z), and sequenced using an Illumina HiSeqTM 2000 platform. A total of 7,363,292, 7,215,860 and 7,319,841 clean reads were obtained in library CK, Y and Z, respectively. The proportion of clean reads was >97.29% in each library. Approximately 76.35% of the clean reads were mapped to a reference gene database including all known chrysanthemum unigene sequences. 1,157, 527 and 340 differentially expressed genes (DEGs) were identified in the comparison of CK-VS-Y, CK-VS-Z and Z-VS-Y, respectively. These DEGs were involved in phytohormone signaling, cell wall biosynthesis, photosynthesis, reactive oxygen species (ROS) pathway and transcription factor regulatory networks, and so on. Changes in gene expression induced by aphid feeding are shown to be multifaceted. There are various forms of crosstalk between different pathways those genes belonging to, which would allow plants to fine-tune its defense responses.

  1. Laboratory and semi-field evaluation of Beauveria bassiana (Ascomycota: Hypocreales) against the lettuce aphid, Nasonovia ribisnigri (Hemiptera: Aphididae)

    DEFF Research Database (Denmark)

    Shrestha, Govinda; Enkegaard, Annie; Steenberg, Tove

    2015-01-01

    The lettuce aphid, Nasonovia ribisnigri (Mosley), is an economically important pest of lettuce worldwide. The entomopathogenic fungus Beauveria bassiana strain GHA has recently been reported as a potential biocontrol candidate for use against the lettuce aphid. This study provides information...... on the mortality inflicted by B. bassiana when applied against different life stages of the lettuce aphid under laboratory conditions and how fungus infection affects the aphid fecundity. In addition, temporal changes in persistence of fungus inoculum applied to foliage of young lettuce plants under semi......-field conditions was analysed. Immature life stages were generally the least susceptible to fungal infection and the susceptibility of all stages was dose-dependent, with the highest mortality occurring at the highest dose. B. bassiana significantly affected the rate of nymph production by the lettuce aphid...

  2. Hamiltonella defensa, genome evolution of protective bacterial endosymbiont from pathogenic ancestors.

    Science.gov (United States)

    Degnan, Patrick H; Yu, Yeisoo; Sisneros, Nicholas; Wing, Rod A; Moran, Nancy A

    2009-06-02

    Eukaryotes engage in a multitude of beneficial and deleterious interactions with bacteria. Hamiltonella defensa, an endosymbiont of aphids and other sap-feeding insects, protects its aphid host from attack by parasitoid wasps. Thus H. defensa is only conditionally beneficial to hosts, unlike ancient nutritional symbionts, such as Buchnera, that are obligate. Similar to pathogenic bacteria, H. defensa is able to invade naive hosts and circumvent host immune responses. We have sequenced the genome of H. defensa to identify possible mechanisms that underlie its persistence in healthy aphids and protection from parasitoids. The 2.1-Mb genome has undergone significant reduction in size relative to its closest free-living relatives, which include Yersinia and Serratia species (4.6-5.4 Mb). Auxotrophic for 8 of the 10 essential amino acids, H. defensa is reliant upon the essential amino acids produced by Buchnera. Despite these losses, the H. defensa genome retains more genes and pathways for a variety of cell structures and processes than do obligate symbionts, such as Buchnera. Furthermore, putative pathogenicity loci, encoding type-3 secretion systems, and toxin homologs, which are absent in obligate symbionts, are abundant in the H. defensa genome, as are regulatory genes that likely control the timing of their expression. The genome is also littered with mobile DNA, including phage-derived genes, plasmids, and insertion-sequence elements, highlighting its dynamic nature and the continued role horizontal gene transfer plays in shaping it.

  3. The Absence of the Transcription Factor Yrr1p, Identified from Comparative Genome Profiling, Increased Vanillin Tolerance Due to Enhancements of ABC Transporters Expressing, rRNA Processing and Ribosome Biogenesis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Wang, Xinning; Liang, Zhenzhen; Hou, Jin; Shen, Yu; Bao, Xiaoming

    2017-01-01

    Enhancing the tolerance of Saccharomyces cerevisiae to inhibitors derived from lignocellulose is conducive to producing biofuel and chemicals using abundant lignocellulosic materials. Vanillin is a major type of phenolic inhibitor in lignocellulose hydrolysates for S. cerevisiae . In the present work, the factors beneficial to vanillin resistance in yeast were identified from the vanillin-resistant strain EMV-8, which was derived from strain NAN-27 by adaptive evolution. We found 450 SNPs and 44 genes with InDels in the vanillin-tolerant strain EMV-8 by comparing the genome sequences of EMV-8 and NAN-27. To investigate the effects of InDels, InDels were deleted in BY4741, respectively. We demonstrated that the deletion of YRR1 improved vanillin tolerance of strain. In the presence of 6 mM vanillin, deleting YRR1 increase the maximum specific growth rate and the vanillin consumption rate by 142 and 51%, respectively. The subsequent transcriptome analysis revealed that deleting YRR1 resulted in changed expression of over 200 genes in the presence of 5 mM vanillin. The most marked changes were the significant up-regulation of the dehydrogenase ADH7 , several ATP-binding cassette (ABC) transporters, and dozens of genes involved in ribosome biogenesis and rRNA processing. Coincidently, the crude enzyme solution of BY4741( yrr1 Δ) exhibited higher NADPH-dependent vanillin reduction activity than control. In addition, overexpressing the ABC transporter genes PDR5, YOR1 , and SNQ2 , as well as the RNA helicase gene DBP2 , increased the vanillin tolerance of strain. Interestingly, unlike the marked changes we mentioned above, under vanillin-free conditions, there are only limited transcriptional differences between wildtype and yrr1 Δ. This indicated that vanillin might act as an effector in Yrr1p-related regulatory processes. The new findings of the relationship between YRR1 and vanillin tolerance, as well as the contribution of rRNA processing and ribosome biogenesis to

  4. Identification of top-down forces regulating cotton aphid population growth in transgenic Bt cotton in central China.

    Directory of Open Access Journals (Sweden)

    Peng Han

    Full Text Available The cotton aphid Aphis gossypii Glover is the main aphid pest in cotton fields in the Yangtze River Valley Cotton-planting Zone (YRZ in central China. Various natural enemies may attack the cotton aphid in Bt cotton fields but no studies have identified potential specific top-down forces that could help manage this pest in the YRZ in China. In order to identify possibilities for managing the cotton aphid, we monitored cotton aphid population dynamics and identified the effect of natural enemies on cotton aphid population growth using various exclusion cages in transgenic Cry1Ac (Bt+CpTI (Cowpea trypsin inhibitor cotton field in 2011. The aphid population growth in the open field (control was significantly lower than those protected or restricted from exposure to natural enemies in the various exclusion cage types tested. The ladybird predator Propylaea japonica Thunberg represented 65% of Coccinellidae predators, and other predators consisted mainly of syrphids (2.1% and spiders (1.5%. The aphid parasitoids Aphidiines represented 76.7% of the total count of the natural enemy guild (mainly Lysiphlebia japonica Ashmead and Binodoxys indicus Subba Rao & Sharma. Our results showed that P. japonica can effectively delay the establishment and subsequent population growth of aphids during the cotton growing season. Aphidiines could also reduce aphid density although their impact may be shadowed by the presence of coccinellids in the open field (likely both owing to resource competition and intraguild predation. The implications of these results are discussed in a framework of the compatibility of transgenic crops and top-down forces exerted by natural enemy guild.

  5. The Endosymbiont Arsenophonus Is Widespread in Soybean Aphid, Aphis glycines, but Does Not Provide Protection from Parasitoids or a Fungal Pathogen

    Science.gov (United States)

    Wulff, Jason A.; Buckman, Karrie A.; Wu, Kongming; Heimpel, George E.; White, Jennifer A.

    2013-01-01

    Aphids commonly harbor bacterial facultative symbionts that have a variety of effects upon their aphid hosts, including defense against hymenopteran parasitoids and fungal pathogens. The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is infected with the symbiont Arsenophonus sp., which has an unknown role in its aphid host. Our research goals were to document the infection frequency and diversity of the symbiont in field-collected soybean aphids, and to determine whether Arsenophonus is defending soybean aphid against natural enemies. We performed diagnostic PCR and sequenced four Arsenophonus genes in soybean aphids from their native and introduced range to estimate infection frequency and genetic diversity, and found that Arsenophonus infection is highly prevalent and genetically uniform. To evaluate the defensive role of Arsenophonus, we cured two aphid genotypes of their natural Arsenophonus infection through ampicillin microinjection, resulting in infected and uninfected isolines within the same genetic background. These isolines were subjected to parasitoid assays using a recently introduced biological control agent, Binodoxys communis [Braconidae], a naturally recruited parasitoid, Aphelinus certus [Aphelinidae], and a commercially available biological control agent, Aphidius colemani [Braconidae]. We also assayed the effect of the common aphid fungal pathogen, Pandora neoaphidis (Remaudiere & Hennebert) Humber (Entomophthorales: Entomophthoraceae), on the same aphid isolines. We did not find differences in successful parasitism for any of the parasitoid species, nor did we find differences in P. neoaphidis infection between our treatments. Our conclusion is that Arsenophonus does not defend its soybean aphid host against these major parasitoid and fungal natural enemies. PMID:23614027

  6. Potential candidates for biological control of the black bean aphid Aphis fabae in Serbia

    Directory of Open Access Journals (Sweden)

    Stanković, S.S.

    2015-09-01

    Full Text Available The black bean aphid is widely spread aphid species in the Palaearctic, known to attack over 1150 plant species. Because some of the host plants are of great agricultural interest, Aphis fabae represent a very important pest. We assembled all data concerning the presence of this pest and connected it in tritrophic associations. In the period of 24 years investigation on the territory of Serbia it has been recorded in 107 trophic associations. In total there are 145 findings of A. fabae parasitized by 19 taxa of Aphidiinae (Brackonidae from seven genera. The most suitable biocontrol agents for the black bean aphid are Lysiphlebus fabarum, Binodoxys angelicae, Lipolesis gracilis and the introduced species Lysiphlebus testaceipes.

  7. Wheat Nitrogen Fertilisation Effects on the Performance of the Cereal Aphid Metopolophium dirhodum

    Directory of Open Access Journals (Sweden)

    Alan F. J. Gash

    2012-02-01

    Full Text Available The effects of five rates of nitrogen fertiliser applications on the performance of the cereal aphid Metopolophium dirhodum on winter wheat, within the range of rates recommended for UK crops, were investigated over two seasons in field-grown crops and also on plants grown in the glasshouse. Longevity was unaffected by the level of fertilisation, but aphid intrinsic rate of increase and fecundity increased with each level applied. In the second field season, when a higher upper limit was used, many of these increases were significant. A previously unreported finding for this species was that there was a significant decrease in fecundity for the highest rate of fertilisation. Results for the glasshouse-reared aphids followed a similar pattern to those in the field, and overall they underline recent reports in the literature of the negative effects of high nutrient concentrations on the performance of herbivorous insects. The underlying reasons for these are discussed.

  8. Host Plant Volatiles and the Sexual Reproduction of the Potato Aphid, Macrosiphum euphorbiae

    Directory of Open Access Journals (Sweden)

    Jessica Hurley

    2014-10-01

    Full Text Available In late summer, heteroecious aphids, such as the potato aphid, Macrosiphum euphorbiae, move from their secondary summer host plants to primary host plants, where the sexual oviparae mate and lay diapausing eggs. We tested the hypothesis that volatiles of the primary host, Rosa rugosa, would attract the gynoparae, the parthenogenetic alate morph that produce oviparae, as well as the alate males foraging for suitable mates. In wind tunnel assays, both gynoparae and males oriented towards and reached rose cuttings significantly more often than other odour sources, including potato, a major secondary host. The response of males was as high to rose cuttings alone as to potato with a calling virgin oviparous female. These findings are discussed within the seasonal ecology of host alternating aphids.

  9. Field evaluation of Bt cotton crop impact on nontarget pests: cotton aphid and boll weevil.

    Science.gov (United States)

    Sujii, E R; Togni, P H B; de A Ribeiro, P; de A Bernardes, T; Milane, P V G N; Paula, D P; Pires, C S S; Fontes, E M G

    2013-02-01

    Bt cotton plants expressing Cry1Ac protein have high specificity for the control of lepidopteran larvae. However, studies conducted in several countries have shown these plants have a differential impact on nontarget herbivores. The aim of this study was to compare the colonization rates and population abundance of the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae) and the boll weevil, Anthonomus grandis Boheman (Coleoptera: Curculionidae), in plots of Bt (Nuopal) and non-Bt cotton (Delta Opal) in an experimental field in Brasilia, DF, Brazil. No difference was observed in the preference and colonization by winged aphids to plants from the two treatments. There was no significant difference in abundance of wingless aphids or in the production of winged aphids between treatments. Apparently, the parameters that control factors such as fecundity, survival, and dispersal were similar on both Bt and non-Bt plants. Monitoring of plants for coccinellids, a specialist predator of aphids, and ants that act on the dispersal of aphids among plants showed no significant difference between Bt and non-Bt plants, supporting the inference above. Regarding the effect on boll weevil, there was also no significant difference between treatments in the total number of fruiting structures attacked in each plot, the percentage of fruiting structures attacked per plant or on the number of weevils emerging from fruits with boll weevil damage from egg-laying, when damaged fruit samples were held in the laboratory. Based on these results, we conclude that there is no impact of Bt cotton crop expressing Cry1Ac on the nontarget herbivores tested under field conditions.

  10. Expression of the Galanthus nivalis agglutinin (GNA) gene in transgenic potato plants confers resistance to aphids.

    Science.gov (United States)

    Mi, Xiaoxiao; Liu, Xue; Yan, Haolu; Liang, Lina; Zhou, Xiangyan; Yang, Jiangwei; Si, Huaijun; Zhang, Ning

    2017-01-01

    Aphids, the largest group of sap-sucking pests, cause significant yield losses in agricultural crops worldwide every year. The massive use of pesticides to combat this pest causes severe damage to the environment, putting in risk the human health. In this study, transgenic potato plants expressing Galanthus nivalis agglutinin (GNA) gene were developed using CaMV 35S and ST-LS1 promoters generating six transgenic lines (35S1-35S3 and ST1-ST3 corresponding to the first and second promoter, respectively). Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that the GNA gene was expressed in leaves, stems and roots of transgenic plants under the control of the CaMV 35S promoter, while it was only expressed in leaves and stems under the control of the ST-LS1 promoter. The levels of aphid mortality after 5 days of the inoculation in the assessed transgenic lines ranged from 20 to 53.3%. The range of the aphid population in transgenic plants 15 days after inoculation was between 17.0±1.43 (ST2) and 36.6±0.99 (35S3) aphids per plant, which corresponds to 24.9-53.5% of the aphid population in non-transformed plants. The results of our study suggest that GNA expressed in transgenic potato plants confers a potential tolerance to aphid attack, which appears to be an alternative against the use of pesticides in the future. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  11. Polyphyly of the extinct family Oviparosiphidae and its implications for inferring aphid evolution (Hemiptera, Sternorrhyncha.

    Directory of Open Access Journals (Sweden)

    Dagmara Żyła

    Full Text Available Aphidoidea, the so-called "true aphids" are one of the most challenging groups in terms of solving the phylogenetic relationships. Morphology-based analyses were strongly affected by widespread homoplasy, while the molecular-based attempts struggled with the lack of sufficient phylogenetic signal. Despite significant improvements, the higher classification still remains unresolved and rather controversial. However, the use of the fossil record, one of the most valuable sources of information, was mainly limited to calibration of a phylogenetic tree, without a direct inclusion into the analysis. The extinct family Oviparosiphidae has long been considered as the common ancestor of all recent Aphidoidea and it was used as a calibration point in several analyses, but it has been never analyzed in a phylogenetic context. The family has been treated as a monophyletic group purely based on the simultaneous presence of two abdominal structures, ovipositor and siphunculi. However, it has been shown recently that at least one more extinct lineage, present at the same time, was characterized by the same features. For these reasons, we performed a maximum parsimony analysis using morphological data for extinct aphid taxa to prove the monophyly of Oviparosiphidae. Our analysis shows that the presumed ancestor lineage of recent aphids is a polyphyletic group. Our results support the hypothesis of an early Mesozoic rapid radiation of aphids, which led to several different lineages characterized by both ovipositor and siphunculi. The results indicate the necessity of examining the other extinct families, and shows that the diversity of aphids before the Cretaceous Terrestrial Revolution (KTR was higher than expected. Even though there is not enough data to perform a formal analysis, fossils seem to suggest a significant impact of the KTR on aphid diversification. Additionally, we have made a redescription of two genera and description of a new species

  12. Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata.

    Science.gov (United States)

    Zhu, Junwei; Park, Kye-Chung

    2005-08-01

    Induced volatiles provide a signal to foraging predatory insects about the location of their prey. In Iowa, early in the growing season of soybean, Glycine max, many predacious seven-spotted lady beetles, Coccinella septempunctata, were observed on plants with heavy infestations of soybean aphid, Aphis glycines. We studied whether the attraction of this beetle is caused by the release of specific volatile compounds of soybean plants infested by aphids. Volatile compounds emitted by soybean plants infested by aphids were compared with those of undamaged, uninfested, and artificially damaged plants. Gas chromatography-mass spectrometry analyses revealed consistent differences in the profiles of volatile compounds between aphid-infested soybean plants and undamaged ones. Significantly more methyl salicylate was released from infested plants at both the V1 and V2 plant growth stages. However, release patterns of two other induced plant volatiles, (D)-limonene and (E,E)-alpha-farnesene, differed between the two plant growth stages. Gas chromatographic-electroantennographic detection of volatile extracts from infested soybean plants showed that methyl salicylate elicited significant electrophysiological responses in C. septempunctata. In field tests, traps baited with methyl salicylate were highly attractive to adult C. septempunctata, whereas 2-phenylethanol was most attractive to the lacewing Chrysoperla carnea and syrphid flies. Another common lady beetle, the multicolored Asian lady beetle, Harmonia axyridis, showed no preference for the compounds. These results indicate that C. septempunctata may use methyl salicylate as the olfactory cue for prey location. We also tested the attractiveness of some selected soybean volatiles to alate soybean aphids in the field, and results showed that traps baited with benzaldehyde caught significantly higher numbers of aphids.

  13. Establishment of Lipolexis oregmae (Hymenoptera: Aphidiidae) in a classical biological control program directed against the brown citrus aphid (Homoptera: Aphididae) in Florida

    International Nuclear Information System (INIS)

    Persad, A.B.; Hoy, M.A.; Ru Nguyen

    2007-01-01

    The parasitoid Lipolexis oregmae Gahan (introduced as L. scutellaris Mackauer) was imported from Guam, evaluated in quarantine, mass reared, and released into citrus groves in Florida in a classical biological control program directed against the brown citrus aphid, Toxoptera citricida Kirkaldy. Releases of 20,200, 12,100, and 1,260 adults of L. oregmae were made throughout Florida during 2000, 2001, and 2002, respectively. To determine if L. oregmae had successfully established, surveys were conducted throughout the state beginning in the summer of 2001 and continuing through the summer of 2003. Parasitism during 2001 and 2002 was evaluated by holding brown citrus aphids in the laboratory until parasitoid adults emerged. Lipolexis oregmae was found in 10 sites in 7 counties and 4 sites in 3 counties with parasitism rates ranging from 0.7 to 3.3% in 2001 and 2002, respectively. Laboratory tests indicated that high rates of mortality occurred if field-collected parasitized aphids were held in plastic bags, so a molecular assay was used that allowed immature L. oregmae to be detected within aphid hosts immediately after collection. The molecular assay was used in 2003 with the brown citrus aphids and with other aphid species collected from citrus, weeds, and vegetables near former release sites; immatures of L. oregmae were detected in black citrus aphids, cowpea aphids, spirea aphids, and melon aphids, as well as in the brown citrus aphid, in 4 of 8 counties sampled, with parasitism ranging from 2.0 to 12.9%, indicating that L. oregmae is established and widely distributed. Samples taken in Polk County during Oct 2005 indicated that L. oregmae has persisted. The ability of L. oregmae to parasitize other aphid species on citrus, and aphids on other host plants, enhances the ability of L. oregmae to persist when brown citrus aphid populations are low. (author) [es

  14. Macrosiphoniella remaudierei, a new species of aphid on Helichrysum in Iran (Hemiptera, Aphididae).

    Science.gov (United States)

    Barbagallo, Sebastiano; Nieto Nafría, Juan M

    2016-01-01

    A new species of aphid, belonging to the genus Macrosiphoniella Del Guercio, 1911, is described using three samples collected in Iran on Helichrysum armenium (Asteraceae, Inuleae) by the late Prof. G. Remaudière. Both apterous and alate viviparous females of the new taxon, Macrosiphoniella remaudierei sp. n. , are described and compared to corresponding morphs of the closely allied Macrosiphoniella aetnensis and to other congeneric aphid species on Helichrysum in the Palaearctic region. Type specimens are now stored in the Muséum national d'Histoire naturelle in Paris.

  15. Macrosiphoniella remaudierei, a new species of aphid on Helichrysum in Iran (Hemiptera, Aphididae

    Directory of Open Access Journals (Sweden)

    Sebastiano Barbagallo

    2017-01-01

    Full Text Available A new species of aphid, belonging to the genus Macrosiphoniella Del Guercio, 1911, is described using three samples collected in Iran on Helichrysum armenium (Asteraceae, Inuleae by the late Prof. G. Remaudière. Both apterous and alate viviparous females of the new taxon, M. remaudierei sp. n., are described and compared to corresponding morphs of the closely allied M. aetnensis and to other congeneric aphid species on Helichrysum in the Palaearctic region. Type specimens are now stored in the Muséum national d’Histoire naturelle in Paris.

  16. New invasive species of aphids (Hemiptera, Aphididae in Serbia and Montenegro

    Directory of Open Access Journals (Sweden)

    Petrović-Obradović Olivera

    2010-01-01

    Full Text Available Three new invasive species of aphids have been found in Serbia: Chaitophorus populifolli Essig, Myzocallis walshii (Monell and Trichosiphonaphis polygonifoliae (Shinji and two have been found in Montenegro: Aphis illinoisensis Shimer and Tinocallis kahawaluokalani (Kirkaldy. A. illinoisensis is a pest of the grapevine, T. polygonifoliae, feeds on a decorative shrub (Lonicera and the other three feed on trees (Populus, Quercus and Lagerostroemia. Three of the species are American aphids and two are of Asian origin. Their morphology, illustrated by original drawings and data on the biology and distribution are given. .

  17. Synergy between chemical and biological control in the IPM of currant-lettuce aphid (Nasonovia ribisnigri) in Canterbury, New Zealand.

    Science.gov (United States)

    Fagan, L L; McLachlan, A; Till, C M; Walker, M K

    2010-04-01

    Field trials were conducted at four Canterbury, New Zealand locations in 2005-06 to determine if the synergistic effects of biological control by natural enemies and standard drenching techniques controlled lettuce aphid populations throughout the entire growing season. Chemical usage significantly lowered aphid densities in the outer, wrapper and heart leaves compared to control plants at most times. However, in mid-summer, natural enemies, such as the brown lacewing (Micromus tasmaniae), 11-spotted ladybird beetle (Coccinella undecimpunctata) and small hoverfly larvae (Melanostoma fasciatum), were more than sufficient to control lettuce aphids without the use of insecticides. Drenching, in addition to natural enemy attack, appears to be required in early spring and late summer to maintain very low levels of lettuce aphid. Given the potential for imidacloprid resistance to develop, it may be advisable to restrict drenches to these key periods in order to allow populations of natural enemies to maintain control of prey populations. We recommend industry support the validation of action thresholds across different regions within New Zealand and focus on the seasonal biology of predators to assist growers with the sustainable long-term control of lettuce aphids. The inclusion of additional data into an economic model to compare pest damage with predator loading would be useful for growers in managing aphid problems. These results will assist in the continued improvement and development of a sustainable IPM strategy for lettuce aphids in New Zealand and elsewhere.

  18. Modification of Cry4Aa toward Improved Toxin Processing in the Gut of the Pea Aphid, Acyrthosiphon pisum.

    Directory of Open Access Journals (Sweden)

    Michael A Rausch

    Full Text Available Aphids are sap-sucking insects (order: Hemiptera that cause extensive damage to a wide range of agricultural crops. Our goal was to optimize a naturally occurring insecticidal crystalline (Cry toxins produced by the soil-dwelling bacterium Bacillus thuringiensis for use against the pea aphid, Acyrthosiphon pisum. On the basis that activation of the Cry4Aa toxin is a rate-limiting factor contributing to the relatively low aphicidal activity of this toxin, we introduced cathepsin L and cathepsin B cleavage sites into Cry4Aa for rapid activation in the aphid gut environment. Incubation of modified Cry4Aa and aphid proteases in vitro demonstrated enhanced processing of the toxin into the active form for some of the modified constructs relative to non-modified Cry4Aa. Aphids fed artificial diet with toxin at a final concentration of 125 μg/ml showed enhanced mortality after two days for one of the four modified constructs. Although only modest toxin improvement was achieved by use of this strategy, such specific toxin modifications designed to overcome factors that limit aphid toxicity could be applied toward managing aphid populations via transgenic plant resistance.

  19. Genetic mapping and legume synteny of aphid resistance in African cowpea (Vigna unguiculata L. Walp.) grown in California.

    Science.gov (United States)

    Huynh, Bao-Lam; Ehlers, Jeffrey D; Ndeve, Arsenio; Wanamaker, Steve; Lucas, Mitchell R; Close, Timothy J; Roberts, Philip A

    The cowpea aphid Aphis craccivora Koch (CPA) is a destructive insect pest of cowpea, a staple legume crop in Sub-Saharan Africa and other semiarid warm tropics and subtropics. In California, CPA causes damage on all local cultivars from early vegetative to pod development growth stages. Sources of CPA resistance are available in African cowpea germplasm. However, their utilization in breeding is limited by the lack of information on inheritance, genomic location and marker linkage associations of the resistance determinants. In the research reported here, a recombinant inbred line (RIL) population derived from a cross between a susceptible California blackeye cultivar (CB27) and a resistant African breeding line (IT97K-556-6) was genotyped with 1,536 SNP markers. The RILs and parents were phenotyped for CPA resistance using field-based screenings during two main crop seasons in a 'hotspot' location for this pest within the primary growing region of the Central Valley of California. One minor and one major quantitative trait locus (QTL) were consistently mapped on linkage groups 1 and 7, respectively, both with favorable alleles contributed from IT97K-556-6. The major QTL appeared dominant based on a validation test in a related F2 population. SNP markers flanking each QTL were positioned in physical contigs carrying genes involved in plant defense based on synteny with related legumes. These markers could be used to introgress resistance alleles from IT97K-556-6 into susceptible local blackeye varieties by backcrossing.

  20. The impacts of climate change and belowground herbivory on aphids via primary metabolites

    Science.gov (United States)

    Ryalls, James M. W.

    Global climate and atmospheric change (summarised as climate change for brevity) may alter patterns of crop damage by insect herbivores, but little is known about how multiple climate change factors, acting in tandem, shape such interactions. Crucially, the specific plant-mediated mechanisms underpinning these effects remain largely unknown. Moreover, research into the effects of climate change on leguminous plant species, which have the ability to fix atmospheric nitrogen (N2) via their association with root nodule-dwelling rhizobial bacteria, and their associated insect herbivores, is surprisingly scarce considering their increasing importance in terrestrial ecosystems worldwide. Using a model legume, lucerne, otherwise known as alfalfa, Medicago sativa (Fabaceae), and a model pest species, the pea aphid, Acyrthosiphon pisum (Hemiptera: Aphididae), this work addresses how predicted changes in carbon dioxide (CO2) concentrations, temperature and rainfall patterns as well as interactions with other organisms, including the root-feeding weevil Sitona discoideus (Coleoptera: Curculionidae), might shape legume-feeding aphid populations in the future. Recent literature on the impacts of climate change on aphids and the biology and trophic interactions of lucerne aphids specifically were synthesised in chapters one and two, respectively. These chapters highlighted the importance of the interactions between multiple abiotic and biotic variables in shaping aphid population dynamics. Empirical research chapters three to six, using up to five lucerne genotypes (i.e. cultivars) in glasshouse and field experiments, addressed how A. pisum responded to the isolated and combined effects of climate change and root herbivory. In particular, chapter three determined the effects of elevated temperatures (eT) and elevated atmospheric CO2 concentrations (eCO2) on root-feeding S. discoideus larvae and their interaction with A. pisum. Chapter four addressed whether the effects of eT, e

  1. Dynamic Maize Responses to Aphid Feeding Are Revealed by a Time Series of Transcriptomic and Metabolomic Assays1[OPEN

    Science.gov (United States)

    Tzin, Vered; Fernandez-Pozo, Noe; Richter, Annett; Schmelz, Eric A.; Schoettner, Matthias; Schäfer, Martin; Ahern, Kevin R.; Meihls, Lisa N.; Kaur, Harleen; Huffaker, Alisa; Mori, Naoki; Degenhardt, Joerg; Mueller, Lukas A.; Jander, Georg

    2015-01-01

    As a response to insect attack, maize (Zea mays) has inducible defenses that involve large changes in gene expression and metabolism. Piercing/sucking insects such as corn leaf aphid (Rhopalosiphum maidis) cause direct damage by acquiring phloem nutrients as well as indirect damage through the transmission of plant viruses. To elucidate the metabolic processes and gene expression changes involved in maize responses to aphid attack, leaves of inbred line B73 were infested with corn leaf aphids for 2 to 96 h. Analysis of infested maize leaves showed two distinct response phases, with the most significant transcriptional and metabolic changes occurring in the first few hours after the initiation of aphid feeding. After 4 d, both gene expression and metabolite profiles of aphid-infested maize reverted to being more similar to those of control plants. Although there was a predominant effect of salicylic acid regulation, gene expression changes also indicated prolonged induction of oxylipins, although not necessarily jasmonic acid, in aphid-infested maize. The role of specific metabolic pathways was confirmed using Dissociator transposon insertions in maize inbred line W22. Mutations in three benzoxazinoid biosynthesis genes, Bx1, Bx2, and Bx6, increased aphid reproduction. In contrast, progeny production was greatly decreased by a transposon insertion in the single W22 homolog of the previously uncharacterized B73 terpene synthases TPS2 and TPS3. Together, these results show that maize leaves shift to implementation of physical and chemical defenses within hours after the initiation of aphid feeding and that the production of specific metabolites can have major effects in maize-aphid interactions. PMID:26378100

  2. Activity of aphids associated with lettuce and broccoli in Spain and their efficiency as vectors of Lettuce mosaic virus.

    Science.gov (United States)

    Nebreda, M; Moreno, A; Pérez, N; Palacios, I; Seco-Fernández, V; Fereres, A

    2004-03-01

    This research sought to identify the aphid virus vector species associated with lettuce and broccoli crops in Spain, and to determine their population dynamics and ability to transmit Lettuce mosaic virus (LMV). Green tile traps and Moericke yellow water-pan traps were used to monitor aphid flights during the spring and autumn growing seasons of 2001. Aphid species feeding on lettuce were counted weekly. The transmission efficiencies of LMV were determined for the aphid species caught most frequently. The Moericke traps generally caught more aphid species than the tile trap, but the latter was the most suitable to estimate flight activity of species involved in virus spread. Spring aphid catches indicated that the main aphid species landing on lettuce in the regions of Madrid and Murcia was Hyperomyzus lactucae, but Brachycaudus helichrysi was also abundant in both regions. In broccoli in the Navarra region, the most abundant species in spring were Aphis fabae, B. helichrysi and H. lactucae. In autumn-sown crops, the main species landing on lettuce in the Madrid region were Hyadaphis coriandri and Aphis spiraecola. In Murcia, A. spiraecola and Myzus persicae were the most abundant, while in Navarra, Therioaphis trifolii, and various Aphis spp. were the most numerous landing on broccoli. The main aphid species colonising lettuce was Nasonovia ribisnigri, but other less abundant colonising species were Aulacorthum solani and Macrosiphum euphorbiae. The most efficient vectors of LMV were M. persicae, Aphis gossypii and M. euphorbiae, while A. fabae and H. lactucae transmitted with low efficiency, and Rhopalosiphum padi and N. ribisnigri did not transmit. Occurrence of LMV epidemics in central Spain in relation to aphid flights and the role of weeds as virus reservoirs is discussed.

  3. Parasitoids (Hymenoptera: Braconidae: Aphidiinae) attacking aphids feeding on solanaceae and cucurbitaceae crops in Southeastern Europe: Aphidiine-aphid-plant associations and key

    Czech Academy of Sciences Publication Activity Database

    Kavallieratos, N. G.; Tomanović, Ž.; Starý, Petr; Žikić, V.; Petrović-Obradović, O.

    2010-01-01

    Roč. 103, č. 2 (2010), s. 153-164 ISSN 0013-8746 R&D Projects: GA AV ČR IBS5007102 Grant - others:The Ministry of Science and Environment Protection(CS) 143006B Institutional research plan: CEZ:AV0Z50070508 Keywords : Aphidiinae * aphids * Solanaceae Subject RIV: EH - Ecology, Behaviour Impact factor: 1.031, year: 2010

  4. Evidence for an Invasive Aphid “Superclone”: Extremely Low Genetic Diversity in Oleander Aphid (Aphis nerii) Populations in the Southern United States

    Science.gov (United States)

    Harrison, John Scott; Mondor, Edward B.

    2011-01-01

    Background The importance of genetic diversity in successful biological invasions is unclear. In animals, but not necessarily plants, increased genetic diversity is generally associated with successful colonization and establishment of novel habitats. The Oleander aphid, Aphis nerii, though native to the Mediterranean region, is an invasive pest species throughout much of the world. Feeding primarily on Oleander (Nerium oleander) and Milkweed (Asclepias spp.) under natural conditions, these plants are unlikely to support aphid populations year round in the southern US. The objective of this study was to describe the genetic variation within and among US populations of A. nerii, during extinction/recolonization events, to better understand the population ecology of this invasive species. Methodology/Principal Findings We used five microsatellite markers to assess genetic diversity over a two year period within and among three aphid populations separated by small (100 km) and large (3,700 km) geographic distances on two host plant species. Here we provide evidence for A. nerii “superclones”. Genotypic variation was absent in all populations (i.e., each population consisted of a single multilocus genotype (MLG) or “clone”) and the genetic composition of only one population completely changed across years. There was no evidence of sexual reproduction or host races on different plant species. Conclusions/Significance Aphis nerii is a well established invasive species despite having extremely low genetic diversity. As this aphid appears to be obligatorily asexual, it may share more similarities with clonally reproducing invasive plants, than with other animals. Patterns of temporal and geographic genetic variation, viewed in the context of its population dynamics, have important implications for the management of invasive pests and the evolutionary biology of asexual species. PMID:21408073

  5. Evidence for an invasive aphid "superclone": extremely low genetic diversity in Oleander aphid (Aphis nerii populations in the southern United States.

    Directory of Open Access Journals (Sweden)

    John Scott Harrison

    2011-03-01

    Full Text Available The importance of genetic diversity in successful biological invasions is unclear. In animals, but not necessarily plants, increased genetic diversity is generally associated with successful colonization and establishment of novel habitats. The Oleander aphid, Aphis nerii, though native to the Mediterranean region, is an invasive pest species throughout much of the world. Feeding primarily on Oleander (Nerium oleander and Milkweed (Asclepias spp. under natural conditions, these plants are unlikely to support aphid populations year round in the southern US. The objective of this study was to describe the genetic variation within and among US populations of A. nerii, during extinction/recolonization events, to better understand the population ecology of this invasive species.We used five microsatellite markers to assess genetic diversity over a two year period within and among three aphid populations separated by small (100 km and large (3,700 km geographic distances on two host plant species. Here we provide evidence for A. nerii "superclones". Genotypic variation was absent in all populations (i.e., each population consisted of a single multilocus genotype (MLG or "clone" and the genetic composition of only one population completely changed across years. There was no evidence of sexual reproduction or host races on different plant species.Aphis nerii is a well established invasive species despite having extremely low genetic diversity. As this aphid appears to be obligatorily asexual, it may share more similarities with clonally reproducing invasive plants, than with other animals. Patterns of temporal and geographic genetic variation, viewed in the context of its population dynamics, have important implications for the management of invasive pests and the evolutionary biology of asexual species.

  6. Neozygites osornensis sp. nov., a fungal species causing mortality to the cypress aphid Cinara cupressi in Chile.

    Science.gov (United States)

    Retamal, Cristian Montalva; Barta, Marek; Pérez, Eladio Rojas; Flores, Eduardo Valenzuela

    2013-01-01

    An entomophthoralean fungus causing epizootics in populations of the cypress aphid, Cinara cupressi Buckton, in Chile is described as a new species, Neozygites osornensis Montalva et Barta. The aphid pathogen is described based on morphological characters. An exhaustive description, illustrations and a comparison with closely related species are provided. The fungus differs from similar Neozygites species by smaller hyphal bodies, nuclei, primary conidia, capilliconidia and capilliphores and by noticeably different shape of capilliconidia. A key to aphid-pathogenic species of Neozygites is also included.

  7. Ants farm subterranean aphids mostly in single clone groups - an example of prudent husbandry for carbohydrates and proteins?

    Directory of Open Access Journals (Sweden)

    Ivens Aniek BF

    2012-07-01

    Full Text Available Abstract Background Mutualistic interactions are wide-spread but the mechanisms underlying their evolutionary stability and ecological dynamics remain poorly understood. Cultivation mutualisms in which hosts consume symbionts occur in phylogenetically diverse groups, but often have symbiont monocultures for each host. This is consistent with the prediction that symbionts should avoid coexistence with other strains so that host services continue to benefit relatives, but it is less clear whether hosts should always favor monocultures and what mechanisms they might have to manipulate symbiont diversity. Few mutualisms have been studied in sufficient genetic detail to address these issues, so we decided to characterize symbiont diversity in the complex mutualism between multiple root aphid species and Lasius flavus ants. After showing elsewhere that three of these aphid species have low dispersal and mostly if not exclusively asexual reproduction, we here investigate aphid diversity within and between ant nest mounds. Results The three focal species (Geoica utricularia, Forda marginata and Tetraneura ulmi had considerable clonal diversity at the population level. Yet more than half of the ant mounds contained just a single aphid species, a significantly higher percentage than expected from a random distribution. Over 60% of these single-species mounds had a single aphid clone, and clones tended to persist across subsequent years. Whenever multiple species/clones co-occurred in the same mound, they were spatially separated with more than 95% of the aphid chambers containing individuals of a single clone. Conclusions L. flavus “husbandry” is characterized by low aphid “livestock” diversity per colony, especially at the nest-chamber level, but it lacks the exclusive monocultures known from other cultivation mutualisms. The ants appear to eat most of the early instar aphids, so that adult aphids are unlikely to face limited phloem resources and

  8. Genetics Coupled to Quantitative Intact Proteomics Links Heritable Aphid and Endosymbiont Protein Expression to Circulative Polerovirus Transmission▿ †

    Science.gov (United States)

    Cilia, M.; Tamborindeguy, C.; Fish, T.; Howe, K.; Thannhauser, T. W.; Gray, S.

    2011-01-01

    Yellow dwarf viruses in the family Luteoviridae, which are the causal agents of yellow dwarf disease in cereal crops, are each transmitted most efficiently by different species of aphids in a circulative manner that requires the virus to interact with a multitude of aphid proteins. Aphid proteins differentially expressed in F2 Schizaphis graminum genotypes segregating for the ability to transmit Cereal yellow dwarf virus-RPV (CYDV-RPV) were identified using two-dimensional difference gel electrophoresis (DIGE) coupled to either matrix-assisted laser desorption ionization-tandem mass spectrometry or online nanoscale liquid chromatography coupled to electrospray tandem mass spectrometry. A total of 50 protein spots, containing aphid proteins and proteins from the aphid's obligate and maternally inherited bacterial endosymbiont, Buchnera, were identified as differentially expressed between transmission-competent and refractive aphids. Surprisingly, in virus transmission-competent F2 genotypes, the isoelectric points of the Buchnera proteins did not match those in the maternal Buchnera proteome as expected, but instead they aligned with the Buchnera proteome of the transmission-competent paternal parent. Among the aphid proteins identified, many were involved in energy metabolism, membrane trafficking, lipid signaling, and the cytoskeleton. At least eight aphid proteins were expressed as heritable, isoelectric point isoform pairs, one derived from each parental lineage. In the F2 genotypes, the expression of aphid protein isoforms derived from the competent parental lineage aligned with the virus transmission phenotype with high precision. Thus, these isoforms are candidate biomarkers for CYDV-RPV transmission in S. graminum. Our combined genetic and DIGE approach also made it possible to predict where several of the proteins may be expressed in refractive aphids with different barriers to transmission. Twelve proteins were predicted to act in the hindgut of the aphid

  9. Genetics coupled to quantitative intact proteomics links heritable aphid and endosymbiont protein expression to circulative polerovirus transmission.

    Science.gov (United States)

    Cilia, M; Tamborindeguy, C; Fish, T; Howe, K; Thannhauser, T W; Gray, S

    2011-03-01

    Yellow dwarf viruses in the family Luteoviridae, which are the causal agents of yellow dwarf disease in cereal crops, are each transmitted most efficiently by different species of aphids in a circulative manner that requires the virus to interact with a multitude of aphid proteins. Aphid proteins differentially expressed in F2 Schizaphis graminum genotypes segregating for the ability to transmit Cereal yellow dwarf virus-RPV (CYDV-RPV) were identified using two-dimensional difference gel electrophoresis (DIGE) coupled to either matrix-assisted laser desorption ionization-tandem mass spectrometry or online nanoscale liquid chromatography coupled to electrospray tandem mass spectrometry. A total of 50 protein spots, containing aphid proteins and proteins from the aphid's obligate and maternally inherited bacterial endosymbiont, Buchnera, were identified as differentially expressed between transmission-competent and refractive aphids. Surprisingly, in virus transmission-competent F2 genotypes, the isoelectric points of the Buchnera proteins did not match those in the maternal Buchnera proteome as expected, but instead they aligned with the Buchnera proteome of the transmission-competent paternal parent. Among the aphid proteins identified, many were involved in energy metabolism, membrane trafficking, lipid signaling, and the cytoskeleton. At least eight aphid proteins were expressed as heritable, isoelectric point isoform pairs, one derived from each parental lineage. In the F2 genotypes, the expression of aphid protein isoforms derived from the competent parental lineage aligned with the virus transmission phenotype with high precision. Thus, these isoforms are candidate biomarkers for CYDV-RPV transmission in S. graminum. Our combined genetic and DIGE approach also made it possible to predict where several of the proteins may be expressed in refractive aphids with different barriers to transmission. Twelve proteins were predicted to act in the hindgut of the aphid

  10. How the use of nitrogen fertiliser may switch plant suitability for aphids: the case of Miscanthus, a promising biomass crop, and the aphid pest Rhopalosiphum maidis.

    Science.gov (United States)

    Bogaert, Florent; Chesnais, Quentin; Catterou, Manuella; Rambaud, Caroline; Doury, Géraldine; Ameline, Arnaud

    2017-08-01

    The use of nitrogen fertiliser in agrosystems can alter plant nitrogen and consequently improve nutrient availability for herbivores, potentially leading to better performance for herbivores and higher pest pressure in the field. We compared, in laboratory conditions, the effects of nitrogen fertilisation on a promising biomass crop, Miscanthus × giganteus, and its parents M. sinensis and M. sacchariflorus. The plant-mediated effects were compared on the second trophic level, the green corn leaf aphid Rhopalosiphum maidis. Results showed that the biomass and leaf C:N ratio of M. sinensis plants treated with nitrogen fertiliser were significantly greater than those of non-treated plants. As regards M. × giganteus and M. sacchariflorus, the only reported change was a significantly smaller leaf C:N ratio for treated M. sacchariflorus compared with non-treated plants. Surprisingly, nitrogen fertilisation had opposite effects on plant-herbivore interactions. Following nitrogen treatments, M. sinensis was less suitable in terms of intrinsic rate of increase for R. maidis, the feeding behaviour of which was negatively affected, while M. sacchariflorus and M. × giganteus exhibited greater suitability in terms of aphid weight. Nitrogen fertilisation had contrasting effects on the three species of Miscanthus plants. These effects cascaded up to the second trophic level, R. maidis aphid pests, either through a modification of their weight or demographic parameters. The implications of these results were discussed in the context of agricultural sustainability and intensive production practices. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Changes in the free amino acid composition of Capsicum annuum (pepper) leaves in response to Myzus persicae (green peach aphid) infestation. A comparison with water stress.

    Science.gov (United States)

    Florencio-Ortiz, Victoria; Sellés-Marchart, Susana; Zubcoff-Vallejo, José; Jander, Georg; Casas, José L

    2018-01-01

    Amino acids play a central role in aphid-plant interactions. They are essential components of plant primary metabolism, function as precursors for the synthesis of defense-related specialized metabolites, and are major growth-limiting nutrients for aphids. To quantify changes in the free amino acid content of pepper (Capsicum annuum L.) leaves in response to green peach aphid (Myzus persicae Sulzer) feeding, plants were infested with a low (20 aphids/plant) or a high (200 aphids/plant) aphid density in time-course experiments ranging from 3 hours to 7 days. A parallel experiment was conducted with pepper plants that had been subjected to water stress. Factor Analysis of Mixed Data revealed a significant interaction of time x density in the free amino acid response of aphid-infested leaves. At low aphid density, M. persicae did not trigger a strong response in pepper leaves. Conversely, at high density, a large increase in total free amino acid content was observed and specific amino acids peaked at different times post-infestation. Comparing aphid-infested with water-stressed plants, most of the observed differences were quantitative. In particular, proline and hydroxyproline accumulated dramatically in response to water stress, but not in response to aphid infestation. Some additional differences and commonalities between the two stress treatments are discussed.

  12. Tools for evaluating Lipolexis oregmae (Hymenoptera: Aphidiidae) in the field: Effects of host aphid and host plant on mummy location and color plus improved methods for obtaining adults

    International Nuclear Information System (INIS)

    Singh, R.; Hoy, M.A.

    2007-01-01

    Lipolexis oregmae Gahan was introduced into Florida in a classical biological control program directed against the brown citrus aphid, Toxoptera citricida (Kirkaldy), on citrus. Prior to evaluating distribution, host range, and potential nontarget effects of L. oregmae in Florida, we evaluated the role of other potential host aphids and host plants on mummy production and location. Under laboratory conditions, this parasitoid produced the most progeny on the target pest, the brown citrus aphid on citrus. This parasitoid, unlike the majority of aphidiids, did not produce mummies on any of the host plants tested when reared in black citrus aphid T. aurantii (Boyer de Fonscolombe) on grapefruit, spirea aphid Aphis spiraecola Patch on grapefruit and pittosporum, cowpea aphid A. craccivora Koch on grapefruit and cowpeas, or melon aphid A. gossypii Glover on grapefruit and cucumber. Thus, sampling for L. oregmae mummies of these host aphids and host plants must involve holding foliage in the laboratory until mummies are produced. This parasitoid requires high relative humidity to produce adults because no adults emerged when mummies were held in gelatin capsules, but high rates of emergence were observed when mummies were held on 1.5% agar plates. In addition, we compared the color of 6 aphid hosts and the color of mummies produced by L. oregmae when reared in them to determine if color of mummies could be used to identify L. oregmae . Mummy color varied between aphid hosts and tested host plants, and is not a useful tool for identifying L. oregmae for nontarget effects. (author) [es

  13. Aphid parasitoids sampled by Malaise traps in the National parks of Thailand (Hymenoptera, Braconidae, Aphidiinae)

    Czech Academy of Sciences Publication Activity Database

    Starý, Petr; Sharkey, M.; Hutacharern, C.

    2008-01-01

    Roč. 41, 1-2 (2008), s. 37-43 ISSN 0049-3589 Grant - others:Framework of Research Funded by the NSF grant(US) DEB 0542864 Institutional research plan: CEZ:AV0Z50070508 Keywords : aphids * parasitoids * biodiversity Subject RIV: EH - Ecology, Behaviour

  14. Parasitoids and hyperparasitoids (Hymenoptera) on aphids (Hemiptera) infesting citrus in east Mediterranean region of Turkey

    Czech Academy of Sciences Publication Activity Database

    Satar, S.; Satar, G.; Karacaoglu, M.; Uygun, N.; Kavallieratos, N. G.; Starý, Petr; Athanassiou, CH. G.

    2014-01-01

    Roč. 14, article no. 178 (2014) ISSN 1536-2442 Grant - others:Turkish Scientific and Technical Research Council(TR) 105-0-581 Institutional support: RVO:60077344 Keywords : citrus * aphid * Aphidiinae Subject RIV: EH - Ecology, Behaviour Impact factor: 1.025, year: 2014 http://jinsectscience.oxfordjournals.org/content/jis/14/1/178.full.pdf

  15. Establishment and maintenance of aphid endosymbionts after horizontal transfer is dependent on host genotype

    Czech Academy of Sciences Publication Activity Database

    Parker, B. J.; McLean, A. H. C.; Hrček, Jan; Gerardo, N. M.; Godfray, H. C. J.

    2017-01-01

    Roč. 13, č. 5 (2017), č. článku 20170016. ISSN 1744-9561 Institutional support: RVO:60077344 Keywords : endosymbionts * horizontal transfer * pea aphid Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 3.089, year: 2016 http://rsbl.royalsocietypublishing.org/content/13/5/20170016.long

  16. Secretome of fungus-infected aphids documents high pathogen activity and weak host response

    DEFF Research Database (Denmark)

    Grell, Morten Nedergaard; Jensen, Annette Bruun; Olsen, Peter B.

    2011-01-01

    Discovery of novel secretome proteins contributes to the understanding of host-pathogen interactions. Here we report a rich diversity of secreted proteins from the interaction between grain aphids (host, insect order Hemiptera) and fungi of the order Entomophthorales (insect pathogens), made...

  17. Characterisation and cross-amplification of polymorphic microsatellite loci in ant-associated root-aphids

    DEFF Research Database (Denmark)

    Ivens, A.B.F.; Kronauer, Daniel Jan Christoph; Boomsma, J.J.

    2011-01-01

    Twenty-six polymorphic microsatellite loci were developed for four species of ant-associated root-aphids: Geoica utricularia, Forda marginata, Tetraneura ulmi and Anoecia corni. We found up to 9 alleles per locus, with an average of 4.8. We also report polymorphic cross-amplification of eleven of...

  18. Role of Pea Enation Mosaic Virus Coat Protein in the Host Plant and Aphid Vector

    Directory of Open Access Journals (Sweden)

    Juliette Doumayrou

    2016-11-01

    Full Text Available Understanding the molecular mechanisms involved in plant virus–vector interactions is essential for the development of effective control measures for aphid-vectored epidemic plant diseases. The coat proteins (CP are the main component of the viral capsids, and they are implicated in practically every stage of the viral infection cycle. Pea enation mosaic virus 1 (PEMV1, Enamovirus, Luteoviridae and Pea enation mosaic virus 2 (PEMV2, Umbravirus, Tombusviridae are two RNA viruses in an obligate symbiosis causing the pea enation mosaic disease. Sixteen mutant viruses were generated with mutations in different domains of the CP to evaluate the role of specific amino acids in viral replication, virion assembly, long-distance movement in Pisum sativum, and aphid transmission. Twelve mutant viruses were unable to assemble but were able to replicate in inoculated leaves, move long-distance, and express the CP in newly infected leaves. Four mutant viruses produced virions, but three were not transmissible by the pea aphid, Acyrthosiphon pisum. Three-dimensional modeling of the PEMV CP, combined with biological assays for virion assembly and aphid transmission, allowed for a model of the assembly of PEMV coat protein subunits.

  19. Role of Pea Enation Mosaic Virus Coat Protein in the Host Plant and Aphid Vector.

    Science.gov (United States)

    Doumayrou, Juliette; Sheber, Melissa; Bonning, Bryony C; Miller, W Allen

    2016-11-18

    Understanding the molecular mechanisms involved in plant virus-vector interactions is essential for the development of effective control measures for aphid-vectored epidemic plant diseases. The coat proteins (CP) are the main component of the viral capsids, and they are implicated in practically every stage of the viral infection cycle. Pea enation mosaic virus 1 (PEMV1, Enamovirus , Luteoviridae ) and Pea enation mosaic virus 2 (PEMV2, Umbravirus , Tombusviridae ) are two RNA viruses in an obligate symbiosis causing the pea enation mosaic disease. Sixteen mutant viruses were generated with mutations in different domains of the CP to evaluate the role of specific amino acids in viral replication, virion assembly, long-distance movement in Pisum sativum , and aphid transmission. Twelve mutant viruses were unable to assemble but were able to replicate in inoculated leaves, move long-distance, and express the CP in newly infected leaves. Four mutant viruses produced virions, but three were not transmissible by the pea aphid, Acyrthosiphon pisum . Three-dimensional modeling of the PEMV CP, combined with biological assays for virion assembly and aphid transmission, allowed for a model of the assembly of PEMV coat protein subunits.

  20. Trade-Off Between Fitness Gain and Cost Determines Profitability of a Peach Aphid Parasitoid.

    Science.gov (United States)

    Khatri, Diwas; He, Xiong Z; Wang, Qiao

    2016-08-01

    Aphidius colemani (Viereck) (Hymenoptera: Aphidiidae) is commercially produced and utilized for biological control of peach aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae) on greenhouse crops in many countries. To provide knowledge for the evaluation of parasitoid-host interactions and development of effective mass rearing programs, we investigated how and why host age or size affected fitness gain in A. colemani We show that the parasitoid was significantly more likely to encounter larger hosts and that an encounter almost always triggered an attack attempt. However, the attack attempt did not proportionally translate into oviposition because larger aphids had greater ability to defend themselves and the parasitoid spent more time in handling larger aphids. The host age at parasitization had no effect on emergence rates and sex ratio of parasitoid progeny, suggesting that pupae and larvae have similar survival rate in hosts of different ages and/or the parasitoid females do not adjust sex allocation based on host size. When parasitizing mid-aged hosts, the parasitoid gained maximum fitness for their progeny in developmental period, body size, and parasitism. Taking all findings together, we suggest that parasitizing mid-aged green peach aphid nymphs is most profitable for A. colemani. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Phenotypic plasticity in the response of aphids to host plant quality

    Czech Academy of Sciences Publication Activity Database

    Thieme, T.; Truberg, B.; Dixon, Anthony F. G.

    2014-01-01

    Roč. 4, č. 2 (2014), s. 92-96 ISSN 1805-0174 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : lupin * alkaloids * aphids * Macrosiphum albifrons * biological performance Subject RIV: EH - Ecology, Behaviour

  2. Fauna and associations of aphid parasitoids in an up-dated farmland area (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Starý, Petr; Havelka, Jan

    2008-01-01

    Roč. 61, č. 2 (2008), s. 251-276 ISSN 1721-8861 R&D Projects: GA AV ČR IAA600960705 Institutional research plan: CEZ:AV0Z50070508 Keywords : aphids * Hymenoptera * Braconidae Subject RIV: EH - Ecology, Behaviour Impact factor: 0.153, year: 2008

  3. The effects of aphid traits on parasitoids host use and specialist advantage

    Czech Academy of Sciences Publication Activity Database

    Gagic, V.; Petrović-Obradović, O.; Fründ, J.; Kavallieratos, N. G.; Athanassiou, C. G.; Starý, Petr; Tomanović, Ž.

    2016-01-01

    Roč. 11, č. 6 (2016), č. článku e0157674. E-ISSN 1932-6203 Institutional support: RVO:60077344 Keywords : aphid * parasitoid species * European countries Subject RIV: EH - Ecology, Behaviour Impact factor: 2.806, year: 2016 http://journals.plos.org/plosone/article/asset?id=10.1371%2Fjournal.pone.0157674.PDF

  4. No choice but to find resistance to soybean aphid biotype 4

    Science.gov (United States)

    Host plant resistance in soybean [Glycine max (L.) Merr] utilizes its natural defenses to limit soybean aphid (Aphis glycines Matsamura, SBA) injury, reducing insecticide reliance. Specific genes called Rag or Resistance to Aphis glycines are unfavorable to SBA and may suppress their development and...

  5. Tissue location of resistance in apple to the rosy apple aphid established by electrical penetration graphs

    NARCIS (Netherlands)

    Marchetti, E.; Civolani, S.; Leis, M.; Chicca, M.; Tjallingii, W.F.; Pasqualini, E.; Baroni, P.

    2009-01-01

    A study of the constitutive resistance of the apple cultivar Florina, Malus domestica Borkh. (Rosaceae), to the rosy apple aphid, Dysaphis plantaginea (Passerini) (Homoptera Aphididae), was performed for the first time by the electrical penetration graph (DC-EPG) system, using the susceptible apple

  6. Prey foraging movements by Hippodamia convergens in wheat are influenced by hunger and aphids

    Science.gov (United States)

    We investigated foraging movements by adult female convergent lady beetles, Hippodamia convergens Guerin-Meneville, on English grain aphids, Sitobion avenae L., on wheat, Triticum aestivum L., growing in 1.8 x 1.8 m plantings in a greenhouse with a soil floor. The wheat was planted to simulate whea...

  7. Vitex agnus castus and Euphorbia characias ssp. wulfenii as reservoirs of aphid parasitoids (Hymenoptera: Braconidae: Aphidiinae)

    Czech Academy of Sciences Publication Activity Database

    Kavallieratos, N. G.; Tomanovic, Ž.; Starý, Petr; Emmanouel, N. E.

    2008-01-01

    Roč. 91, č. 2 (2008), s. 179-191 ISSN 0015-4040 Grant - others:The Ministry of Science nad Environment Protection of the Republic of Serbia(CS) 143006B Institutional research plan: CEZ:AV0Z50070508 Keywords : aphids * parasitoids * reservoirs Subject RIV: EH - Ecology, Behaviour Impact factor: 0.886, year: 2008

  8. Relationship between the abundance of aphids and their natural enemies in cereal fields and landscape composition

    Czech Academy of Sciences Publication Activity Database

    Hassan, D. A.; Parisey, N.; Burel, F.; Plantegenest, M.; Kindlmann, Pavel; Butet, A.

    2012-01-01

    Roč. 2, č. 2 (2012), s. 89-101 ISSN 1805-0174 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : agroecosystems * landscape structure * crop pests * aphids * biological control * semi-natural habitats Subject RIV: EH - Ecology, Behaviour

  9. Characterization and genetic dissection of resistance to spotted alfalfa aphid (Therioaphis trifolii) in Medicago truncatula

    KAUST Repository

    Kamphuis, L. G.; Lichtenzveig, J.; Peng, K.; Guo, S.-M.; Klingler, John; Siddique, K. H. M.; Gao, L.-L.; Singh, K. B.

    2013-01-01

    Aphids cause significant yield losses in agricultural crops worldwide. Medicago truncatula, a model legume, cultivated pasture species in Australia and close relative of alfalfa (Medicago sativa), was used to study the defence response against Therioaphis trifolii f. maculate [spotted alfalfa aphid (SAA)]. Aphid performance and plant damage were compared among three accessions. A20 is highly susceptible, A17 has moderate resistance, and Jester is strongly resistant. Subsequent analyses using A17 and A20, reciprocal F1s and an A17×A20 recombinant inbred line (RIL) population revealed that this moderate resistance is phloem mediated and involves antibiosis and tolerance but not antixenosis. Electrical penetration graph analysis also identified a novel waveform termed extended potential drop, which occurred following SAA infestation of M. truncatula. Genetic dissection using the RIL population revealed three quantitative trait loci on chromosomes 3, 6, and 7 involved in distinct modes of aphid defence including antibiosis and tolerance. An antibiosis locus resides on linkage group 3 (LG3) and is derived from A17, whereas a plant tolerance and antibiosis locus resides on LG6 and is derived from A20, which exhibits strong temporary tolerance. The loci identified reside in regions harbouring classical resistance genes, and introgression of these loci in current medic cultivars may help provide durable resistance to SAA, while elucidation of their molecular mechanisms may provide valuable insight into other aphid–plant interactions.

  10. Checklist of Aphidiine parasitoids (Hymenoptera: Braconidae) and their host aphid associations in Iran

    Czech Academy of Sciences Publication Activity Database

    Barahoei, H.; Rakhshani, E.; Nader, E.; Starý, Petr; Kavallieratos, N. G.; Tomanović, Ž.; Mehrparvar, M.

    2014-01-01

    Roč. 3, č. 2 (2014), s. 199-232 ISSN 2251-9041 Grant - others:University of Zabol(IR) 89-9198; Ministry of Education, Science and Technological Development of the Republic of Serbia(IR) III43001 Institutional support: RVO:60077344 Keywords : fauna * aphid parasitoids * host association

  11. Characterisation and cross-amplification of polymorphic microsatellite loci in ant-associated root-aphids

    NARCIS (Netherlands)

    Ivens, A. B. F.; Kronauer, D. J. C.; Boomsma, J. J.

    Twenty-six polymorphic microsatellite loci were developed for four species of ant-associated root-aphids: Geoica utricularia, Forda marginata, Tetraneura ulmi and Anoecia corni. We found up to 9 alleles per locus, with an average of 4.8. We also report polymorphic cross-amplification of eleven of

  12. Response of Green Peach Aphids and Other Arthropods to Garlic Intercropped with Tobacco

    NARCIS (Netherlands)

    Lai, R.; You, M.; Lotz, L.A.P.; Vasseur, L.

    2011-01-01

    The green peach aphid, Myzus persicae (Sulzer), is an insect pest that causes extensive damage to tobacco (Nicotiana tabacum L.) in China. Field trials were conducted in 2008 and 2009 at Longyan in the Fujian Province (China) to evaluate the effects of garlic (Allium sativum L.) as a deterrent to

  13. Which shrubs and trees can conserve natural enemies of aphids in spring?

    NARCIS (Netherlands)

    van Rijn, P.C.J.

    2014-01-01

    Habitats with shrubs and trees within the agricultural landscape may contribute to the maintenance of natural enemies of pests. Aphids and flowers are important resources for beneficial natural enemies such as ladybeetles, hoverflies and lacewings. Woody plants are the most likely candidates to

  14. Two-year oscillation cycle in abundance of soybean aphid in Indiana

    Czech Academy of Sciences Publication Activity Database

    Rhainds, M.; Yoo, H. J. S.; Kindlmann, Pavel; Voegtlin, D.; Castillo, D.; Rutledge, C.; Sadof, C.; Yaninek, S.; O'Neil, R. J.

    2010-01-01

    Roč. 12, č. 3 (2010), s. 251-257 ISSN 1461-9555 Institutional research plan: CEZ:AV0Z60870520 Keywords : Aphididae * Aphis glycines * autumn migration * Hemiptera * heteroecy * Rhamnus * seesaw effect * soybean aphid Subject RIV: EH - Ecology, Behaviour Impact factor: 1.484, year: 2010

  15. Characterization and genetic dissection of resistance to spotted alfalfa aphid (Therioaphis trifolii) in Medicago truncatula

    KAUST Repository

    Kamphuis, L. G.

    2013-09-21

    Aphids cause significant yield losses in agricultural crops worldwide. Medicago truncatula, a model legume, cultivated pasture species in Australia and close relative of alfalfa (Medicago sativa), was used to study the defence response against Therioaphis trifolii f. maculate [spotted alfalfa aphid (SAA)]. Aphid performance and plant damage were compared among three accessions. A20 is highly susceptible, A17 has moderate resistance, and Jester is strongly resistant. Subsequent analyses using A17 and A20, reciprocal F1s and an A17×A20 recombinant inbred line (RIL) population revealed that this moderate resistance is phloem mediated and involves antibiosis and tolerance but not antixenosis. Electrical penetration graph analysis also identified a novel waveform termed extended potential drop, which occurred following SAA infestation of M. truncatula. Genetic dissection using the RIL population revealed three quantitative trait loci on chromosomes 3, 6, and 7 involved in distinct modes of aphid defence including antibiosis and tolerance. An antibiosis locus resides on linkage group 3 (LG3) and is derived from A17, whereas a plant tolerance and antibiosis locus resides on LG6 and is derived from A20, which exhibits strong temporary tolerance. The loci identified reside in regions harbouring classical resistance genes, and introgression of these loci in current medic cultivars may help provide durable resistance to SAA, while elucidation of their molecular mechanisms may provide valuable insight into other aphid–plant interactions.

  16. Plant growth promoting rhizobacteria reduce aphid population and enhance the productivity of bread wheat.

    Science.gov (United States)

    Naeem, Muhammad; Aslam, Zubair; Khaliq, Abdul; Ahmed, Jam Nazir; Nawaz, Ahmad; Hussain, Mubshar

    2018-04-24

    Plant growth promoting rhizobacteria increase plant growth and give protection against insect pests and pathogens. Due to the negative impact of chemical pesticides on environment, alternatives to these chemicals are needed. In this scenario, the biological methods of pest control offer an eco-friendly and an attractive option. In this study, the effect of two plant growth promoting rhizobacterial strains (Bacillus sp. strain 6 and Pseudomonas sp. strain 6K) on aphid population and wheat productivity was evaluated in an aphid susceptible (Pasban-90) and resistant (Inqlab-91) wheat cultivar. The seeds were inoculated with each PGPR strain, separately or the combination of both. The lowest aphid population (2.1tiller -1 ), and highest plant height (85.8cm), number of spikelets per spike (18), grains per spike (44), productive tillers (320m -2 ), straw yield (8.6Mgha -1 ), and grain yield (4.8Mgha -1 ) were achieved when seeds were inoculated with Bacillus sp. strain 6+Pseudomonas sp. strain 6K. The grain yield of both varieties was enhanced by 35.5-38.9% with seed inoculation with both bacterial strains. Thus, the combine use of both PGPR strains viz. Bacillus sp. strain 6+Pseudomonas sp. strain 6K offers an attractive option to reduce aphid population tied with better wheat productivity. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  17. Reconstructing the phylogeny of aphids (Hemiptera: Aphididae) using DNA of the obligate symbiont Buchnera aphidicola

    Czech Academy of Sciences Publication Activity Database

    Nováková, Eva; Hypša, Václav; Klein, J.; Foottit, R. G.; von Dohlen, C.D.; Moran, N. A.

    2013-01-01

    Roč. 68, č. 1 (2013), s. 42-54 ISSN 1055-7903 R&D Projects: GA ČR GD206/09/H026 Institutional support: RVO:60077344 Keywords : Aphid * Evolution * Buchnera * Phylogeny * Informative markers Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.018, year: 2013

  18. Resistance to Cucurbit aphid-borne yellows virus in Melon Accession TGR-1551.

    Science.gov (United States)

    Kassem, Mona A; Gosalvez, Blanca; Garzo, Elisa; Fereres, Alberto; Gómez-Guillamón, Maria Luisa; Aranda, Miguel A

    2015-10-01

    The genetic control of resistance to Cucurbit aphid-borne yellows virus (CABYV; genus Polerovirus, family Luteoviridae) in the TGR-1551 melon accession was studied through agroinoculation of a genetic family obtained from the cross between this accession and the susceptible Spanish cultivar 'Bola de Oro'. Segregation analyses were consistent with the hypothesis that one dominant gene and at least two more modifier genes confer resistance; one of these additional genes is likely present in the susceptible parent 'Bola de Oro'. Local and systemic accumulation of the virus was analyzed in a time course experiment, showing that TGR-1551 resistance was expressed systemically as a significant reduction of virus accumulation compared with susceptible controls, but not locally in agroinoculated cotyledons. In aphid transmission experiments, CABYV inoculation by aphids was significantly reduced in TGR-1551 plants, although the virus was acquired at a similar rate from TGR-1551 as from susceptible plants. Results of feeding behavior studies using the DC electrical penetration graph technique suggested that viruliferous aphids can salivate and feed from the phloem of TGR-1551 plants and that the observed reduction in virus transmission efficiency is not related to reduced salivation by Aphis gossypii in phloem sieve elements. Since the virus is able to accumulate to normal levels in agroinoculated tissues, our results suggest that resistance of TGR-1551 plants to CABYV is related to impairment of virus movement or translocation after it reaches the phloem sieve elements.

  19. Revision of charipine aphid hyperparasitoids (Hymenoptera, Cynipoidea: Figitidae) from central Europe

    Czech Academy of Sciences Publication Activity Database

    Ferrer-Suay, M.; Starý, Petr; Selfa, J.; Pujade-Villar, J.

    2017-01-01

    Roč. 28, č. 3 (2017), s. 113-147 ISSN 0785-8760 Institutional support: RVO:60077344 Keywords : Hymenoptera * central Europe * aphid Subject RIV: EG - Zoology OBOR OECD: Zoology Impact factor: 0.300, year: 2016 http://www.entomologicafennica.org/Volume28/EF_28_3/1Ferrer-Suay.pdf

  20. Studying, the Insecticidal Effects of Melia azedarach and Citrus limonum Extracts on Two Aphid Species

    Directory of Open Access Journals (Sweden)

    maryam Pahlavan Yali

    2018-01-01

    Full Text Available Introduction: Wheat (Triticum aestivum L. is the most principal plant food for 35 percent of the world's population, and canola (Brassica napus L. is one of the most important brassicaceous crops that play a major role in the development of edible oil. The greenbug, Schizaphis graminum (Rondani and cabbage aphid, Brevicoryne brassicae (L. are the main pests of wheat and canola, respectively, which can considerably limit profitable production of these crops either through direct feeding or via transmission of plant pathogenic viruses. Although chemical control is the most effective and easiest way to control aphids, but this method causes problems such as pesticide residues in food and environment, and development of resistance to insecticides. The utilization of plant extracts is an environmentally safe method that can be used in control of these aphids. Among these, the products of the Melia seed (Melia azedarach Linnaeus and lemon peel (Citrus limonum Risso can be noted. Negative associations between phenolic compounds present in plant species and aphid’s invasion have been recorded for some aphid species. In this study, our goal was to determine the amount of phenol in plant extracts of Melia seed and lemon peel and evaluate the toxicity of these compounds on the wheat aphid and cabbage aphid in various doses after different time periods. Materials and methods: This research was conducted in a growth chamber (temperature 25 ± 1˚C, 65± 5% RH and a photoperiod of 16L: 8D. S. graminum and B. brassicae were bred on wheat (Pishtaz cultivar and canola (Hyola401 cultivar, respectively. The extraction of Melia seed and lemon peel was carried out and then contact toxicity bioassay was done to evaluate the insecticidal effects of these extracts on nymphs of wheat and cabbage aphids using a completely randomized design. The leaves of wheat and canola plants, impregnated with three different concentrations of each extract (10, 50 and 80 g/ml and

  1. Population Growth Parameters of Rose Aphid, Macrosiphum rosae (Hemiptera: Aphididae) on Different Rose Cultivars.

    Science.gov (United States)

    Golizadeh, A; Jafari-Behi, V; Razmjou, J; Naseri, B; Hassanpour, M

    2017-02-01

    The rose aphid, Macrosiphum rosae (L.), is one of the most important pests on rose plants (Rosa spp.) with a worldwide distribution. As resistance indices, the development, survivorship, and reproduction of this aphid were evaluated on 10 rose cultivars, including Bella Vita, Cool Water, Dolce Vita, Maroussia, Orange Juice, Pinkpromise, Roulette, Tea, Valentine, and Persian Yellow in laboratory at 25 ± 1°C, 65 ± 5% relative humidity, and photoperiod of 16:8 (L/D) h. Rose aphid successfully survived on all 10 rose cultivars, although mortality rate was higher on Tea and Bella Vita. The number of offspring per female differed significantly among the tested rose cultivars, and ranged from 9.2 on Tea to 38.7 nymphs on Orange Juice. Population growth parameters were significantly affected by rose cultivars. The longest mean generation time (T) was observed on Bella Vita (14.8 days) and Tea (14.7 days) and the shortest on Orange Juice (10.0 days). The net reproductive rate (R 0 ) ranged from 6.9 on Tea to 33.2 nymphs on Orange Juice cultivar. Correspondingly, the highest value of intrinsic rate of increase (r m ) was observed on Orange Juice (0.348 day -1 ) and lower values on Tea (0.131 day -1 ) followed by Bella Vita (0.154 day -1 ). Cluster analysis of all the measured parameters of rose aphid on different rose cultivars revealed that Tea and Bella Vita were relatively resistant to M. rosae. These findings could be useful in developing an integrated pest management (IPM) program for this aphid in urbanized areas and commercial rose potting.

  2. Aboveground feeding by soybean aphid, Aphis glycines, affects soybean cyst nematode, Heterodera glycines, reproduction belowground.

    Directory of Open Access Journals (Sweden)

    Michael T McCarville

    Full Text Available Heterodera glycines is a cyst nematode that causes significant lost soybean yield in the U.S. Recent studies observed the aphid Aphis glycines and H. glycines interacting via their shared host, soybean, Glycine max. A greenhouse experiment was conducted to discern the effect of A. glycines feeding on H. glycines reproduction. An H. glycines-susceptible cultivar, Kenwood 94, and a resistant cultivar, Dekalb 27-52, were grown in H. glycines-infested soil for 30 and 60 d. Ten days after planting, plants were infested with either zero, five, or ten aphids. At 30 and 60 d, the number of H. glycines females and cysts (dead females and the number of eggs within were counted. In general, H. glycines were less abundant on the resistant than the susceptible cultivar, and H. glycines abundance increased from 30 to 60 d. At 30 d, 33% more H. glycines females and eggs were produced on the resistant cultivar in the ten-aphid treatment compared to the zero-aphid treatment. However, at 30 d the susceptible cultivar had 50% fewer H. glycines females and eggs when infested with ten aphids. At 60 d, numbers of H. glycines females and cysts and numbers of eggs on the resistant cultivar were unaffected by A. glycines feeding, while numbers of both were decreased by A. glycines on the susceptible cultivar. These results indicate that A. glycines feeding improves the quality of soybean as a host for H. glycines, but at higher herbivore population densities, this effect is offset by a decrease in resource quantity.

  3. Comparative genomics of Serratia spp.: two paths towards endosymbiotic life.

    Directory of Open Access Journals (Sweden)

    Alejandro Manzano-Marín

    Full Text Available Symbiosis is a widespread phenomenon in nature, in which insects show a great number of these associations. Buchnera aphidicola, the obligate endosymbiont of aphids, coexists in some species with another intracellular bacterium, Serratia symbiotica. Of particular interest is the case of the cedar aphid Cinara cedri, where B. aphidicola BCc and S. symbiotica SCc need each other to fulfil their symbiotic role with the insect. Moreover, various features seem to indicate that S. symbiotica SCc is closer to an obligate endosymbiont than to other facultative S. symbiotica, such as the one described for the aphid Acirthosyphon pisum (S. symbiotica SAp. This work is based on the comparative genomics of five strains of Serratia, three free-living and two endosymbiotic ones (one facultative and one obligate which should allow us to dissect the genome reduction taking place in the adaptive process to an intracellular life-style. Using a pan-genome approach, we have identified shared and strain-specific genes from both endosymbiotic strains and gained insight into the different genetic reduction both S. symbiotica have undergone. We have identified both retained and reduced functional categories in S. symbiotica compared to the Free-Living Serratia (FLS that seem to be related with its endosymbiotic role in their specific host-symbiont systems. By means of a phylogenomic reconstruction we have solved the position of both endosymbionts with confidence, established the probable insect-pathogen origin of the symbiotic clade as well as the high amino-acid substitution rate in S. symbiotica SCc. Finally, we were able to quantify the minimal number of rearrangements suffered in the endosymbiotic lineages and reconstruct a minimal rearrangement phylogeny. All these findings provide important evidence for the existence of at least two distinctive S. symbiotica lineages that are characterized by different rearrangements, gene content, genome size and branch lengths.

  4. Aphid effects on rhizosphere microorganisms and microfauna depend more on barley growth phase than on soil fertilization

    DEFF Research Database (Denmark)

    Madsen, Mette Vestergård; Strandmark, Lisa Bjørnlund; Christensen, Søren

    2004-01-01

    This paper gives the first reports on aphid effects on rhizosphere organisms as influenced by soil nutrient status and plant development. Barley plants grown in pots fertilized with N but without P (N), with N and P (NP), or not fertilized (0) were sampled in the early growth phase (day 25), 1 week...... before and 1 week after spike emergence. Aphids were added 16 days before sampling was carried out. In a separate experiment belowground respiration was measured on N and NP fertilized plant–soil systems with aphid treatments comparable to the first experiment. Aphids reduced numbers of rhizosphere...... experimental conditions with nematodes being the dominant bacterial grazers at N fertilization and Protozoa in the NP treatment before spike emergence....

  5. Tritrophic associations and taxonomic notes on Lysiphlebus fabarum (Marshall (Hymenoptera: Braconidae: Aphidiinae, a keystone aphid parasitoid in Iran

    Directory of Open Access Journals (Sweden)

    Rakhshani Ehsan

    2013-01-01

    Full Text Available An investigation of host associations, distribution and types of reproduction (sexual, asexual of Lysiphlebus fabarum (Marshall across 20 provinces of Iran during 2006-2011 was undertaken. The parasitoid was reared from three groups of host aphids belonging to genera Aphis and Brachycaudus, and occasional host aphid genera. Aphis craccivora Koch was the most frequent host aphid for L. fabarum on various host plants, including economically important crops. The field sex ratio generally favored females, but in some cases, only thelytokous (uniparental populations were found. In those cases, the host was always an Aphis species. Specimens reared from Brachycaudus aphids were all biparental, indicating the presence of a sibling biological species. Overall analysis of diagnostic morphological characters in the forewing indicated intra-specific variability in forewing marginal setae as well as variations in length of the R1 vein. [Projekat Ministarstva nauke Republike Srbije, br. 43001

  6. Aphids and ladybird beetle’s abundance and diversity in alfalfa fields of Yasouj, southwestern of Iran

    Directory of Open Access Journals (Sweden)

    S. Mirfakhraie

    2017-12-01

    Full Text Available Alfalfa (Medicago sativa L. is the oldest and the most important forage legume. It has been cultivated for forage longer than any other crop. Diversity indices provide information about community composition. Diversity indices are measured by species richness and species evenness therefore, it could give us more ecological information rather than a simple species list in the fields. During 2015-2016, aphids and ladybird beetle’s abundance and diversity were monitored in alfalfa fields of Yasouj. Samplings were conducted with 150 plants in the alfalfa fields from mid-May to mid-November. Species richness was measured using Shannon and Simpson indices. In this study, six aphids and five coccinellid species were collected and identified. Among the collected aphid species, Aphis fabae (Scopoli, 1763 and Therioaphis maculata (Buckton, 1899 were most abundant in the fields. For coccinellids, Coccinella septempunctata L. was the most abundant species. Highest aphid species diversity was observed on 17 May 2016.

  7. Cellular tropism, population dynamics, host range and taxonomic status of an aphid secondary symbiont, SMLS (Sitobion miscanthi L type symbiont.

    Directory of Open Access Journals (Sweden)

    Tong Li

    Full Text Available SMLS (Sitobion miscanthi L type symbiont is a newly reported aphid secondary symbiont. Phylogenetic evidence from molecular markers indicates that SMLS belongs to the Rickettsiaceae and has a sibling relationship with Orientia tsutsugamushi. A comparative analysis of coxA nucleotide sequences further supports recognition of SMLS as a new genus in the Rickettsiaceae. In situ hybridization reveals that SMLS is housed in both sheath cells and secondary bacteriocytes and it is also detected in aphid hemolymph. The population dynamics of SMLS differ from those of Buchnera aphidicola and titer levels of SMLS increase in older aphids. A survey of 13 other aphids reveals that SMLS only occurs in wheat-associated species.

  8. Selective effects of the extract from Angelica archangelica L. against Harmonia axyridis (Pallas)—An important predator of aphids

    Czech Academy of Sciences Publication Activity Database

    Pavela, R.; Žabka, M.; Vrchotová, Naděžda; Tříska, Jan; Kazda, J.

    2013-01-01

    Roč. 51, NOV 2013 (2013), s. 87-92 ISSN 0926-6690 Institutional support: RVO:67179843 Keywords : Angelica archangelica * Harmonia axyridis * furanocoumarins * botanical insecticides * aphids Subject RIV: EH - Ecology, Behaviour Impact factor: 3.208, year: 2013

  9. Chromosomal genomics facilitates fine mapping of a Russian wheat aphid resistance gene

    Czech Academy of Sciences Publication Activity Database

    Staňková, Helena; Valárik, Miroslav; Lapitan, N.L.V.; Berkman, P.J.; Batley, J.; Edwards, D.; Luo, M.C.; Tulpová, Zuzana; Kubaláková, Marie; Stein, N.; Doležel, Jaroslav; Šimková, Hana

    2015-01-01

    Roč. 128, č. 7 (2015), s. 1373-1383 ISSN 0040-5752 R&D Projects: GA ČR(CZ) GAP501/12/2554; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : TRITICUM-AESTIVUM L. * BREAD WHEAT * AEGILOPS-TAUSCHII Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.900, year: 2015

  10. Efficacy of mineral oil combined with insecticides for the control of aphid virus vectors to reduce potato virus Y infections in seed potatoes (Solanum tuberosum)

    DEFF Research Database (Denmark)

    Hansen, Lars M.; Nielsen, Steen L.

    2012-01-01

    Aphids are major vectors of plant viruses. Potato virus Y (PVY) is the most important aphid-transmitted virus affecting potato crops in Denmark. Because of a changed seed potato growing strategy, the seed potato area in Denmark is changing from regions with a low average temperature to regions...... with a higher average temperature. This means that the aphids may infest the potato crops earlier and the population development of the aphids may be faster, and consequently PVY may more easily become epidemic in seed potato crops. With a view to reducing the spread of PVY a 3-year experiment was carried out...... with a combination of mineral oil and insecticides. In 2005 and 2007 when a very high number of aphids were present, nearly all plants were infected with PVY. In 2006 with a lower number of aphids a smaller proportion of the plants were infected, and a tendency to a lower PVY incidence in mineral-oil treated plots...

  11. Deciphering the role of NADPH oxidase in complex interactions between maize (Zea mays L.) genotypes and cereal aphids.

    Science.gov (United States)

    Sytykiewicz, Hubert

    2016-07-22

    Plant NADPH oxidases (NOXs) encompass a group of membrane-bound enzymes participating in formation of reactive oxygen species (ROS) under physiological conditions as well as in response to environmental stressors. The purpose of the survey was to unveil the role of NADPH oxidase in pro-oxidative responses of maize (Zea mays L.) seedling leaves exposed to cereal aphids' infestation. The impact of apteral females of bird cherry-oat aphid (Rhopalosiphum padi L.) and grain aphid (Sitobion avenae F.) feeding on expression levels of all four NADPH oxidase genes (rbohA, rbohB, rbohC, rbohD) and total activity of NOX enzyme in maize plants were investigated. In addition, inhibitory effect of diphenylene iodonium (DPI) pre-treatment on NOX activity and hydrogen peroxide content in aphid-stressed maize seedlings was studied. Leaf infestation biotests were accomplished on 14-day-old seedlings representing two aphid-resistant varieties (Ambrozja and Waza) and two aphid-susceptible ones (Tasty Sweet and Złota Karłowa). Insects' attack led to profound upregulation of rbohA and rbohD genes in tested host plants, lower elevations were noted in level of rbohB mRNA, whereas abundance of rbohC transcript was not significantly altered. It was uncovered aphid-induced enhancement of NOX activity in examined plants. Higher increases in expression of all investigated rboh genes and activity of NADPH oxidase occurred in tissues of more resistant maize cultivars than in susceptible ones. Furthermore, DPI treatment resulted in strong reduction of NOX activity and H2O2 accumulation in aphid-infested Z. mays plants, thus evidencing circumstantial role of the enzyme in insect-elicited ROS generation. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Sugarcane Aphid Population Growth, Plant Injury, and Natural Enemies on Selected Grain Sorghum Hybrids in Texas and Louisiana.

    Science.gov (United States)

    Brewer, Michael J; Gordy, John W; Kerns, David L; Woolley, James B; Rooney, William L; Bowling, Robert D

    2017-10-01

    In response to the 2013 outbreak of sugarcane aphid, Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae), on sorghum, Sorghum bicolor (L.), in North America, experiments were conducted at three southern U.S. grain sorghum production locations (Corpus Christi, TX; Winnsboro, LA; Rosenberg, TX). The objectives were to authenticate yield decline on susceptible hybrids (2014 and 2015) and to measure aphid population growth and natural enemy prevalence on susceptible and resistant hybrids with similar genetic background (2014). Yield decline on susceptible hybrids (Tx 2752/Tx430 and DKS53-67) was more substantial when aphid population growth accelerated quickly and peaked above 300 aphids per leaf (50 to nearly 100% yield decline). Location and year variation in maximum aphid density and cumulative aphid-days was high, with doubling time values on the susceptible hybrids ranging between 3.9 and 7.9 d. On resistant Tx2752/Tx2783, leaf injury and yield decline were not seen or less severe than on its paired susceptible Tx2752/Tx430. Aphids declined on Tx2752/Tx2783 after initial colony establishment (Corpus Christi) or took about 60% longer to double in population size when compared with Tx2572/Tx430 (Winnsboro). The predominant natural enemy taxa were aphelinid mummies (Hymenoptera: Aphelinidae), ladybird beetles (Coleoptera: Coccinellidae), and sryphid flies (Diptera: Syrphidae), and they were more prevalent during flowering than prior to flowering. They were generally responsive to changes in aphid density of both susceptible and resistant hybrids, but variability points to need for further study. In future research, full season observations should continue as well as more detailed study of potential compatibility of sorghum resistance and biological control. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Inter- and intra-guild interactions related to aphids in nettle (Urtica dioica L.) strips closed to field crops.

    OpenAIRE

    Alhmedi, A.; Haubruge, Eric; Bodson, Bernard; Francis, Frédéric

    2006-01-01

    A field experiment designed to assess the biodiversity related to nettle strips closed to crops, and more particularly the aphid and related beneficial populations, was established in experimental farm located in Gembloux (Belgium). Margin strips of nettle (Urtica dioica) closed to wheat (Triticum aestivum), green pea (Pisum sativum) and rape (Brassicae napus) fields were investigated. The diversity, abundance of aphids and related predators were analysed according to the plant crop species a...

  14. Interactions among the predatory midge Aphidoletes aphidimyza (Diptera: Cecidomyiidae), the fungal pathogen Metarhizium brunneum (Ascomycota: Hypocreales), and maize-infesting aphids in greenhouse mesocosms

    DEFF Research Database (Denmark)

    Campos de Azevedo, Ana Gorete; Steinwender, Bernhardt Michael; Eilenberg, Jørgen

    2017-01-01

    , the interaction between these two biological control organisms and how it may affect the biological control of aphids awaits further investigation. As part of the EU-supported project INBIOSOIL, this study was conducted in greenhouse conditions to assess the possible effects of combining both biological control...... by treatment. Aphidoletes aphidimyza applied alone suppressed the aphid population more effectively than M. brunneum applied alone. Additionally, the aphid population was most suppressed when both agents were combined, though the suppression was less than additive....

  15. Effects of imidacloprid and clothianidin seed treatments on wheat aphids and their natural enemies on winter wheat.

    Science.gov (United States)

    Zhang, Peng; Zhang, Xuefeng; Zhao, Yunhe; Wei, Yan; Mu, Wei; Liu, Feng

    2016-06-01

    Wheat aphid (Hemiptera: Aphididae) is one of the major pests of winter wheat and has posed a significant threat to winter wheat production in China. Although neonicotinoid insecticidal seed treatments have been suggested to be a control method, the season-long efficacy on pests and the impact on their natural enemies are still uncertain. Experiments were conducted to determine the efficacy of imidacloprid and clothianidin on the control of aphids, the number of their natural enemies and the emergence rate and yield of wheat during 2011-2014. Imidacloprid and clothianidin seed treatments had no effect on the emergence rate of winter wheat and could prevent yield losses and wheat aphid infestations throughout the winter wheat growing season. Furthermore, their active ingredients were detected in winter wheat leaves up to 200 days after sowing. Imidacloprid and clothianidin seed treatments had no adverse effects on ladybirds, hoverflies or parasitoids, and instead increased the spider-aphid ratios. Wheat seeds treated with imidacloprid and clothianidin were effective against wheat aphids throughout the winter wheat growing season and reduced the yield loss under field conditions. Imidacloprid and clothianidin seed treatments may be an important component of the integrated management of wheat aphids on winter wheat. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  16. Transgenic Expression of a Functional Fragment of Harpin Protein Hpa1 in Wheat Represses English Grain Aphid Infestation

    Institute of Scientific and Technical Information of China (English)

    XU Man-yu; ZHOU Ting; ZHAO Yan-ying; LI Jia-bao; XU Heng; DONG Han-song; ZHANG Chun-ling

    2014-01-01

    The harpin protein Hpa1 produced by the rice bacterial blight pathogen promotes plant growth and induces plant resistance to pathogens and insect pests. The region of 10-42 residues (Hpa110-42) in the Hpa1 sequence is critical as the isolated Hpa110-42 fragment is 1.3-7.5-fold more effective than the full length in inducing plant growth and resistance. Here we report that transgenic expression of Hpa110-42 in wheat induces resistance to English grain aphid, a dominant species of wheat aphids. Hpa110-42-induced resistance is effective to inhibit the aphid behavior in plant preference at the initial colonization stage and repress aphid performances in the reproduction, nymph growth, and instar development on transgenic plants. The resistance characters are correlated with enhanced expression of defense-regulatory genes (EIN2, PP2-A, and GSL10) and consistent with induced expression of defense response genes (Hel, PDF1.2, PR-1b, and PR-2b). As a result, aphid infestations are alleviated in transgenic plants. The level of Hpa110-42-induced resistance in regard to repression of aphid infestations is equivalent to the effect of chemical control provided by an insecticide. These results suggested that the defensive role of Hpa110-42 can be integrated into breeding germplasm of the agriculturally signiifcant crop with a great potential of the agricultural application.

  17. Thalamic stimulation in absence epilepsy

    NARCIS (Netherlands)

    Luttjohann, A.K.; Luijtelaar, E.L.J.M. van

    2013-01-01

    Purpose The site specific effects of two different types of electrical stimulation of the thalamus on electroencephalic epileptic activity as generated in the cortico-thalamo-cortical system were investigated in genetic epileptic WAG/Rij rats, a well characterized and validated absence

  18. Performance and feeding behaviour of two biotypes of the black currant-lettuce aphid, Nasonovia ribisnigri, on resistant and susceptible Lactuca sativa near-isogenic lines.

    Science.gov (United States)

    ten Broeke, Cindy J M; Dicke, Marcel; van Loon, Joop J A

    2013-10-01

    The black currant-lettuce aphid, Nasonovia ribisnigri, is an important pest of cultivated lettuce, Lactuca sativa. Since 1982, the control of this aphid on lettuce is largely based on host plant resistance, conferred by the Nr gene, introgressed from Lactuca virosa. The resistance mechanism remains to be identified. N. ribisnigri populations virulent on the Nr-based resistance in lettuce have emerged in several locations in Europe since 2007. The objective of this study was to investigate the resistance mechanism mediated by the Nr gene in lettuce by detailed studies of aphid feeding behaviour and performance. Both avirulent (Nr:0) and virulent (Nr:1)biotypes of N. ribisnigri were studied on five resistant and two susceptible near isogenic lines (NILs). In addition, survival and colony development were quantified.Nr:0 aphids showed a strong decrease in sieve element ingestion and took longer to accept a sieve element on resistant NILs compared with susceptible NILs, and no aphids survived on the resistant NIL. Nr:1 aphids fed and performed equally well on the resistant and susceptible NILs. The resistance mechanism against Nr:0 aphids encoded by the Nr gene seems to be located in the phloem, although we also observed differences in feeding behaviour during the pathway phase to the phloem. Nr:1 aphids were highly virulent to the resistance conferred by the Nr gene. The consequences of the appearance of Nr:1 aphids for control of N. ribisnigri are discussed.

  19. Morphological variation of Aphidius ervi Haliday (Hymenoptera: Braconidae associated with different aphid hosts

    Directory of Open Access Journals (Sweden)

    Cinthya M. Villegas

    2017-07-01

    Full Text Available Background Parasitoids are frequently used in biological control due to the fact that they are considered host specific and highly efficient at attacking their hosts. As they spend a significant part of their life cycle within their hosts, feeding habits and life history of their host can promote specialization via host-race formation (sequential radiation. The specialized host races from different hosts can vary morphologically, behaviorally and genetically. However, these variations are sometimes inconspicuous and require more powerful tools in order to detect variation such as geometric morphometrics analysis. Methods We examined Aphidius ervi, an important introduced biological control agent in Chile associated with a great number of aphid species, which are exploiting different plant hosts and habitats. Several combinations (biotypes of parasitoids with various aphid/host plant combinations were analyzed in order to obtain measures of forewing shape and size. To show the differences among defined biotypes, we chose 13 specific landmarks on each individual parasitoid wing. The analysis of allometric variation calculated in wing shape and size over centroid size (CS, revealed the allometric changes among biotypes collected from different hosts. To show all differences in shape of forewings, we made seven biotype pairs using an outline-based geometric morphometrics comparison. Results The biotype A. pis_pea (Acyrthosiphon pisum on pea was the extreme wing size in this study compared to the other analyzed biotypes. Aphid hosts have a significant influence in the morphological differentiation of the parasitoid forewing, splitting biotypes in two groups. The first group consisted of biotypes connected with Acyrthosiphon pisum on legumes, while the second group is composed of biotypes connected with aphids attacking cereals, with the exception of the R. pad_wheat (Rhopalosiphum padi on wheat biotype. There was no significant effect of plant

  20. Monitoring of aphid flight activities in seed potato crops in Serbia

    Directory of Open Access Journals (Sweden)

    Andja Vucetic

    2013-07-01

    Full Text Available Aphid flight activities in seed potato fields have been studied by the yellow water traps. It is a good method for monitoring aphids as vectors of viruses, but this study also showed it is a suitable method for insect-diversity research. During the four-year studies, over 11.500 specimens were collected and a total of 107 different taxa of aphids were identified. The most abundant species were polyphagous species, such as: Acyrthosiphon pisum (Haris, Aphis fabae Scopoli, Aphis gossypii Glover and Brachycaudus helichrysi (Kaltenbach. The results of the studies show that diversity of aphids in different regions of Serbia is similar regardless of the altitude and the diversity of terrain. At most sites it ranged from 2 to 3. The highest value was recorded in Begeč, locality in northern part of Serbia, in year 2008, and it was 2.92. The maximum values of the Shannon-Weaver diversity index at all sites were recorded in the first weeks of the monitoring of aphid flight activities. Morisita-Horn similarity index shows no significant differences between sites regardless of altitudes. The sites are grouped by year, not by similarity of relief. In spite of these results, the Chi-square analysis showed highly significant difference in vector frequencies among seasons and sites with more pronounced differences for PVY. As a consequence of differences in vector frequencies, the vector pressure index in some regions was different also. The number of vectors and vector pressure index vary depending on the altitude of localities. At localities at altitudes under 1000 m, they were high. The highest index was at Kotraža, locality in central part of Serbia, in 2007, when PVY index exceeded the value of 180, while for PLRV it was 60. At high altitudes on mountain Golija, above 1100 m, the number of aphids was low, as well as the vector pressure index which indicates that these regions are suitable for producing virus-free seed potato.

  1. Aphids (Hemiptera: Aphidomorpha of the Botanic Garden of the Jagiellonian University, Kraków*

    Directory of Open Access Journals (Sweden)

    Starowicz Marzena

    2015-12-01

    Full Text Available The paper presents results of faunistic investigations of aphids (Aphidomorpha in the Botanic Garden of the Jagiellonian University, Kraków, in the Kraków – Wieluń Upland. During two seasons of research (2011, 2012 two aphid species from the family Adelgidae and 50 species from the family Aphididae, associated with 66 host plants were recorded. The following species – Eriosoma anncharlotteae Danielsson, 1979, Capitophorus elaeagni (Del Guercio, 1894, Rhopalosiphoninus (Neorhopalosiphoninus staphyleae staphyleae (Koch, 1854, Eulachnus brevipilosus Börner, 1940 and E. cembrae Börner, 1950 – are new for the Kraków – Wieluń Upland. Seven of the species recorded are regarded as alien to Poland.

  2. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions.

    Science.gov (United States)

    Castillo Lopez, Diana; Zhu-Salzman, Keyan; Ek-Ramos, Maria Julissa; Sword, Gregory A

    2014-01-01

    The effects of two entomopathogenic fungal endophytes, Beauveria bassiana and Purpureocillium lilacinum (formerly Paecilomyces lilacinus), were assessed on the reproduction of cotton aphid, Aphis gossypii Glover (Homoptera:Aphididae), through in planta feeding trials. In replicate greenhouse and field trials, cotton plants (Gossypium hirsutum) were inoculated as seed treatments with two concentrations of B. bassiana or P. lilacinum conidia. Positive colonization of cotton by the endophytes was confirmed through potato dextrose agar (PDA) media plating and PCR analysis. Inoculation and colonization of cotton by either B. bassiana or P. lilacinum negatively affected aphid reproduction over periods of seven and 14 days in a series of greenhouse trials. Field trials were conducted in the summers of 2012 and 2013 in which cotton plants inoculated as seed treatments with B. bassiana and P. lilacinum were exposed to cotton aphids for 14 days. There was a significant overall effect of endophyte treatment on the number of cotton aphids per plant. Plants inoculated with B. bassiana had significantly lower numbers of aphids across both years. The number of aphids on plants inoculated with P. lilacinum exhibited a similar, but non-significant, reduction in numbers relative to control plants. We also tested the pathogenicity of both P. lilacinum and B. bassiana strains used in the experiments against cotton aphids in a survival experiment where 60% and 57% of treated aphids, respectively, died from infection over seven days versus 10% mortality among control insects. Our results demonstrate (i) the successful establishment of P. lilacinum and B. bassiana as endophytes in cotton via seed inoculation, (ii) subsequent negative effects of the presence of both target endophytes on cotton aphid reproduction using whole plant assays, and (iii) that the P. lilacinum strain used is both endophytic and pathogenic to cotton aphids. Our results illustrate the potential of using these

  3. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions.

    Directory of Open Access Journals (Sweden)

    Diana Castillo Lopez

    Full Text Available The effects of two entomopathogenic fungal endophytes, Beauveria bassiana and Purpureocillium lilacinum (formerly Paecilomyces lilacinus, were assessed on the reproduction of cotton aphid, Aphis gossypii Glover (Homoptera:Aphididae, through in planta feeding trials. In replicate greenhouse and field trials, cotton plants (Gossypium hirsutum were inoculated as seed treatments with two concentrations of B. bassiana or P. lilacinum conidia. Positive colonization of cotton by the endophytes was confirmed through potato dextrose agar (PDA media plating and PCR analysis. Inoculation and colonization of cotton by either B. bassiana or P. lilacinum negatively affected aphid reproduction over periods of seven and 14 days in a series of greenhouse trials. Field trials were conducted in the summers of 2012 and 2013 in which cotton plants inoculated as seed treatments with B. bassiana and P. lilacinum were exposed to cotton aphids for 14 days. There was a significant overall effect of endophyte treatment on the number of cotton aphids per plant. Plants inoculated with B. bassiana had significantly lower numbers of aphids across both years. The number of aphids on plants inoculated with P. lilacinum exhibited a similar, but non-significant, reduction in numbers relative to control plants. We also tested the pathogenicity of both P. lilacinum and B. bassiana strains used in the experiments against cotton aphids in a survival experiment where 60% and 57% of treated aphids, respectively, died from infection over seven days versus 10% mortality among control insects. Our results demonstrate (i the successful establishment of P. lilacinum and B. bassiana as endophytes in cotton via seed inoculation, (ii subsequent negative effects of the presence of both target endophytes on cotton aphid reproduction using whole plant assays, and (iii that the P. lilacinum strain used is both endophytic and pathogenic to cotton aphids. Our results illustrate the potential of

  4. Isolated and Community Contexts Produce Distinct Responses by Host Plants to the Presence of Ant-Aphid Interaction: Plant Productivity and Seed Viability

    Science.gov (United States)

    Santiago, Graziele Silva; Zurlo, Luana Fonseca; Ribas, Carla Rodrigues; Carvalho, Rafaela Pereira; Alves, Guilherme Pereira; Carvalho, Mariana Comanucci Silva; Souza, Brígida

    2017-01-01

    Ant-aphid interactions may affect host plants in several ways, however, most studies measure only the amount of fruit and seed produced, and do not test seed viability. Therefore, the aim of this study was to assess the effects of the presence of ant-aphid interactions upon host plant productivity and seed viability in two different contexts: isolated and within an arthropod community. For this purpose we tested the hypothesis that in both isolated and community contexts, the presence of an ant-aphid interaction will have a positive effect on fruit and seed production, seed biomass and rate of seed germination, and a negative effect on abnormal seedling rates, in comparison to plants without ants. We performed a field mesocosm experiment containing five treatments: Ant-aphid, Aphid, Community, Ant-free community and Control. We counted fruits and seeds produced by each treatment, and conducted experiments for seed biomass and germinability. We found that in the community context the presence of an ant-aphid interaction negatively affected fruit and seed production. We think this may be because aphid attendance by tending-ants promotes aphid damage to the host plant, but without an affect on seed weight and viability. On the other hand, when isolated, the presence of an ant-aphid interaction positively affected fruit and seed production. These positive effects are related to the cleaning services offered to aphids by tending-ants, which prevent the development of saprophytic fungi on the surface of leaves, which would cause a decrease in photosynthetic rates. Our study is important because we evaluated some parameters of plant fitness that have not been addressed very well by other studies involving the effects of ant-aphid interactions mainly on plants with short life cycles. Lastly, our context dependent approach sheds new light on how ecological interactions can vary among different methods of crop management. PMID:28141849

  5. Isolated and Community Contexts Produce Distinct Responses by Host Plants to the Presence of Ant-Aphid Interaction: Plant Productivity and Seed Viability.

    Directory of Open Access Journals (Sweden)

    Ernesto Oliveira Canedo-Júnior

    Full Text Available Ant-aphid interactions may affect host plants in several ways, however, most studies measure only the amount of fruit and seed produced, and do not test seed viability. Therefore, the aim of this study was to assess the effects of the presence of ant-aphid interactions upon host plant productivity and seed viability in two different contexts: isolated and within an arthropod community. For this purpose we tested the hypothesis that in both isolated and community contexts, the presence of an ant-aphid interaction will have a positive effect on fruit and seed production, seed biomass and rate of seed germination, and a negative effect on abnormal seedling rates, in comparison to plants without ants. We performed a field mesocosm experiment containing five treatments: Ant-aphid, Aphid, Community, Ant-free community and Control. We counted fruits and seeds produced by each treatment, and conducted experiments for seed biomass and germinability. We found that in the community context the presence of an ant-aphid interaction negatively affected fruit and seed production. We think this may be because aphid attendance by tending-ants promotes aphid damage to the host plant, but without an affect on seed weight and viability. On the other hand, when isolated, the presence of an ant-aphid interaction positively affected fruit and seed production. These positive effects are related to the cleaning services offered to aphids by tending-ants, which prevent the development of saprophytic fungi on the surface of leaves, which would cause a decrease in photosynthetic rates. Our study is important because we evaluated some parameters of plant fitness that have not been addressed very well by other studies involving the effects of ant-aphid interactions mainly on plants with short life cycles. Lastly, our context dependent approach sheds new light on how ecological interactions can vary among different methods of crop management.

  6. Response of Aphidius colemani to aphid sex pheromone varies depending on plant synergy and prior experience

    OpenAIRE

    Fernandez-Grandon, G. Mandela; Poppy, Guy M.

    2015-01-01

    A critical stage in the success of a parasitoid is the ability to locate a host within its habitat. It is hypothesized that a series of olfactory cues may be involved in altering the parasitoid's movement patterns at this stage of foraging. This paper focuses specifically on host habitat location and host location and the olfactory stimuli necessary to mediate the transition between these stages. Firstly, we confirm the ability of the parasitoid Aphidius colemani to detect the aphid sex phero...

  7. Method To immobilize the aphid-pathogenic fungus erynia neoaphidis in an alginate matrix for biocontrol

    Science.gov (United States)

    Shah; Aebi; Tuor

    1998-11-01

    Erynia neoaphidis is an important fungal pathogen of aphid pests worldwide. There have been few reported attempts to formulate this natural agent for use in biocontrol. In the current study, factors involved in the immobilization of E. neoaphidis hyphae in an alginate matrix were investigated. Hyphae of two isolates cultured in liquid medium were 220 to 620 &mgr;m in length and 7 to 19 &mgr;m in diameter with a 74 to 83% cytoplasmic content. The optimal concentration of low-viscosity sodium alginate for production of conidia from entrapped hyphae was 1.5% (wt/vol), and 0.1 and 0.25 M calcium chloride were equally suitable for use as the gelling solution. Alginate beads were rinsed with 10% sucrose after gelling. However, beads should not be left for longer than 40 min in 0.1 M calcium chloride or 10% sucrose to prevent a 10% loss in conidial production. A 40% (vol/vol) concentration of fungal biomass produced significantly more conidia than either 20% or the standard concentration of 10%. This effect persisted even after beads were dried overnight in a laminar flow hood and stored at 4 degreesC for 4 days. Conidia from freshly produced alginate beads caused 27 to 32% infection in Pea aphids as determined by standardized laboratory bioassays. This finding was not significantly different from infections in aphids inoculated with fresh mycelial mats or plugs from Petri dish cultures. In conclusion, algination appears to be a promising technique for utilizing E. neoaphidis in the biocontrol of aphid pests.

  8. Macroevolutionary patterns in the Aphidini aphids (Hemiptera: Aphididae: diversification, host association, and biogeographic origins.

    Directory of Open Access Journals (Sweden)

    Hyojoong Kim

    Full Text Available Due to its biogeographic origins and rapid diversification, understanding the tribe Aphidini is key to understanding aphid evolution. Major questions about aphid evolution include origins of host alternation as well as age and patterns of diversification in relation to host plants. To address these questions, we reconstructed the phylogeny of the Aphidini which contains Aphis, the most diverse genus in the family. We used a combined dataset of one nuclear and four mitochondrial DNA regions. A molecular dating approach, calibrated with fossil records, was used to estimate divergence times of these taxa.Most generic divergences in Aphidini occurred in the Middle Tertiary, and species-level divergences occurred between the Middle and Late Tertiary. The ancestral state of host use for Aphidini was equivocal with respect to three states: monoecy on trees, heteroecy, and monoecy on grasses. The ancestral state of Rhopalosiphina likely included both heteroecy and monoecy, whereas that of Aphidina was most likely monoecy. The divergence times of aphid lineages at the generic or subgeneric levels are close to those of their primary hosts. The species-level divergences in aphids are consistent with the diversification of the secondary hosts, as a few examples suggest. The biogeographic origin of Aphidini as a whole was equivocal, but the major lineages within Aphidina likely separated into Nearctic, Western Palearctic, and Eastern Palearctic regions.Most generic divergences in Aphidini occurred in the Middle Tertiary when primary hosts, mainly in the Rosaceae, were diverging, whereas species-level divergences were contemporaneous with diversification of the secondary hosts such as Poaceae in the Middle to Late Tertiary. Our results suggest that evolution of host alternation within Aphidini may have occurred during the Middle Tertiary (Oligocene when the secondary hosts emerged.

  9. Non-pest prey do not disrupt aphid predation by a web-building spider.

    Science.gov (United States)

    Welch, K D; Whitney, T D; Harwood, J D

    2016-02-01

    A generalist predator's ability to contribute to biological control is influenced by the decisions it makes during foraging. Predators often use flexible foraging tactics, which allows them to pursue specific types of prey at the cost of reducing the likelihood of capturing other types of prey. When a pest insect has low nutritional quality or palatability for a predator, the predator is likely to reject that prey in favour of pursuing alternative, non-pest prey. This is often thought to limit the effectiveness of generalist predators in consuming aphids, which are of low nutritional quality for many generalist predators. Here, we report behavioural assays that test the hypothesis that the generalist predator, Grammonota inornata (Araneae: Linyphiidae), preferentially forages for a non-pest prey with high nutritional quality (springtails), and rejects a pest prey with low nutritional quality (aphids). In no-choice assays, molecular gut-content analysis revealed that spiders continued to feed on the low-quality aphids at high rates, even when high-quality springtails were readily available. When provided a choice between aphids and springtails in two-way choice tests, spiders did not show the expected preference for springtails. Decision-making by spiders during foraging therefore appears to be sub-optimal, possibly because of attraction to the less frequently encountered of two preys as part of a dietary diversification strategy. These results indicate that behavioural preferences alone do not necessarily compromise the pest-suppression capacity of natural enemies: even nutritionally sub-optimal pest prey can potentially be subject to predation and suppression by natural enemies.

  10. Agronomic aspects of strip intercropping lettuce with alyssum for biological control of aphids

    OpenAIRE

    Brennan, Eric B.

    2013-01-01

    Organic lettuce growers in California typically use insectary strips of alyssum (Lobularia maritima (L.) Desv.) to attract hoverflies (Syrphidae) that provide biological control of aphids. A two year study with transplanted organic romaine lettuce in Salinas, California investigated agronomic aspects of lettuce monoculture and lettuce-alyssum strip intercropping on beds in replacement intercropping treatments where alyssum transplants replaced 2 to 8% of the lettuce transplants, and in additi...

  11. Aphid parasitoids (Hymenoptera, Braconidae, Aphidiinae) and their associations related to biological control in Brazil

    Czech Academy of Sciences Publication Activity Database

    Starý, Petr; Sampaio, M. V.; Bueno, V. H. P.

    2007-01-01

    Roč. 51, č. 1 (2007), s. 107-118 ISSN 0085-5626 R&D Projects: GA AV ČR IBS5007102 Grant - others:FAO programmers(BR) TCP/BRA/8908 Institutional research plan: CEZ:AV0Z50070508 Keywords : aphid * host range * insect-plant interactions Subject RIV: EH - Ecology, Behaviour Impact factor: 0.432, year: 2007

  12. Aphids and their parasitoids (Hym., Braconidae: Aphidiinae) asociated with medicinal plants in Iran

    Czech Academy of Sciences Publication Activity Database

    Talebi, A. A.; Rakhshani, E.; Fathipour, Y.; Starý, Petr; Tomanović, Ž.; Rajabi-Mazhar, N.

    2009-01-01

    Roč. 3, č. 2 (2009), s. 205-219 ISSN 1995-0748 R&D Projects: GA AV ČR IBS5007102 Grant - others:University of Zabol(IR) No. 86-19; The Serbian Ministry of Science(CS) 143006 Institutional research plan: CEZ:AV0Z50070508 Keywords : medicinal plants * aphid parasitoids * Aphidiinae Subject RIV: EH - Ecology, Behaviour

  13. Control of green apple aphid (Aphis pomi De Geer) in organic apple production

    OpenAIRE

    Milenković Slobodan; Marčić Dejan; Ružičić Lazar

    2013-01-01

    The efficacy of different methods for controlling populations of green apple aphid (Aphis pomi De Geer) in organic apple orchard was compared over three consecutive years. The following three control methods were tested: a) predator activity (Coccinela septempunctata), b) predator activity (C. septempunctata) + selective spraying of trees with infestation level exceeding 10% with a botanical insecticide (NeemAzal T/S), and c) predator activity (C. septempun...

  14. Rothamsted’s aphid-resistant wheat – a turning point for GMOs?

    Directory of Open Access Journals (Sweden)

    Lynas Mark

    2012-10-01

    Full Text Available Abstract Rothamsted Research mounted a successful counter-campaign in response to a threat by environmental protesters to destroy their research project examining aphid-resistant genetically modified (GM wheat. This involved the use of online media, petitions, and other tools, by which researchers engaged directly with media and the general public in defense of their work. Lessons are suggested for other researchers in the controversial field of GM plant breeding.

  15. Analysis of carotenoid compounds in aphids by Raman imaging and mass spectrometry

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Pierre Brat, Jean Christophe Valmalette, Christian Mertz, George de Sousa, Aviv Dombrovsky, Maria Capovilla & Alain Robichon ### Abstract Carotenoids are compounds synthesized in plants, bacteria and fungi, closely associated to the chlorophyll to perform photosynthesis. A spectacular evolutionary achievement allowed the aphid to produce carotenoids obviously by lateral transfer of genes from fungi. We have recently documented that these molecules are involved in photo condi...

  16. New species and a review of aphid parasitoids of Madagascar (Hym., Braconidae, Aphidiinae)

    Czech Academy of Sciences Publication Activity Database

    Starý, Petr

    2005-01-01

    Roč. 37, č. 2 (2005), s. 1711-1718 ISSN 0253-116X R&D Projects: GA AV ČR(CZ) IBS5007102 Grant - others:National Science Foundation(US) DEB-0072713; National Science Foundation(US) DEB-0344731 Institutional research plan: CEZ:AV0Z50070508 Keywords : aphids * parasitoids * sub - Saharan Africa Sub ject RIV: EG - Zoology

  17. The Effect of Temperature and Host Plant Resistance on Population Growth of the Soybean Aphid Biotype 1 (Hemiptera: Aphididae).

    Science.gov (United States)

    Hough, Ashley R; Nechols, James R; McCornack, Brian P; Margolies, David C; Sandercock, Brett K; Yan, Donglin; Murray, Leigh

    2017-02-01

    A laboratory experiment was conducted to evaluate direct and indirect effects of temperature on demographic traits and population growth of biotype 1 of the soybean aphid, Aphis glycines Matsumura. Our objectives were to better understand how temperature influences the expression of host plant resistance, quantify the individual and interactive effects of plant resistance and temperature on soybean aphid population growth, and generate thermal constants for predicting temperature-dependent development on both susceptible and resistant soybeans. To assess indirect (plant-mediated) effects, soybean aphids were reared under a range of temperatures (15-30 °C) on soybean seedlings from a line expressing a Rag1 gene for resistance, and life history traits were quantified and compared to those obtained for soybean aphids on a susceptible soybean line. Direct effects of temperature were obtained by comparing relative differences in the magnitude of life-history traits among temperatures on susceptible soybeans. We predicted that temperature and host plant resistance would have a combined, but asymmetrical, effect on soybean aphid fitness and population growth. Results showed that temperature and plant resistance influenced preimaginal development and survival, progeny produced, and adult longevity. There also appeared to be a complex interaction between temperature and plant resistance for survival and developmental rate. Evidence suggested that the level of plant resistance increased at higher, but not lower, temperature. Soybean aphids required about the same number of degree-days to develop on resistant and susceptible plants. Our results will be useful for making predictions of soybean aphid population growth on resistant plants under different seasonal temperatures. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Disruption of Ethylene Responses by Turnip mosaic virus Mediates Suppression of Plant Defense against the Green Peach Aphid Vector.

    Science.gov (United States)

    Casteel, Clare L; De Alwis, Manori; Bak, Aurélie; Dong, Haili; Whitham, Steven A; Jander, Georg

    2015-09-01

    Plants employ diverse responses mediated by phytohormones to defend themselves against pathogens and herbivores. Adapted pathogens and herbivores often manipulate these responses to their benefit. Previously, we demonstrated that Turnip mosaic virus (TuMV) infection suppresses callose deposition, an important plant defense induced in response to feeding by its aphid vector, the green peach aphid (Myzus persicae), and increases aphid fecundity compared with uninfected control plants. Further, we determined that production of a single TuMV protein, Nuclear Inclusion a-Protease (NIa-Pro) domain, was responsible for changes in host plant physiology and increased green peach aphid reproduction. To characterize the underlying molecular mechanisms of this phenomenon, we examined the role of three phytohormone signaling pathways, jasmonic acid, salicylic acid, and ethylene (ET), in TuMV-infected Arabidopsis (Arabidopsis thaliana), with or without aphid herbivory. Experiments with Arabidopsis mutants ethylene insensitive2 and ethylene response1, and chemical inhibitors of ET synthesis and perception (aminoethoxyvinyl-glycine and 1-methylcyclopropene, respectively), show that the ET signaling pathway is required for TuMV-mediated suppression of Arabidopsis resistance to the green peach aphid. Additionally, transgenic expression of NIa-Pro in Arabidopsis alters ET responses and suppresses aphid-induced callose formation in an ET-dependent manner. Thus, disruption of ET responses in plants is an additional function of NIa-Pro, a highly conserved potyvirus protein. Virus-induced changes in ET responses may mediate vector-plant interactions more broadly and thus represent a conserved mechanism for increasing transmission by insect vectors across generations. © 2015 American Society of Plant Biologists. All Rights Reserved.

  19. Inter- and intra-guild interactions related to aphids in nettle (Urtica dioica L.) strips closed to field crops.

    Science.gov (United States)

    Alhmedi, A; Haubruge, E; Bodson, B; Francis, F

    2006-01-01

    A field experiment designed to assess the biodiversity related to nettle strips closed to crops, and more particularly the aphid and related beneficial populations, was established in experimental farm located in Gembloux (Belgium). Margin strips of nettle (Urtica dioica) closed to wheat (Triticum aestivum), green pea (Pisum sativum) and rape (Brassicae napus) fields were investigated. The diversity, abundance of aphids and related predators were analysed according to the plant crop species and the differential pesticide application (treated plot and control). Insects were visually observed every week during all the cultivation season. Two main families of aphidophagous predators were found in all field crops and nettle, the Coccinellidae and Syrphidae. The diversity of the aphidophagous predators was shown to be higher on nettle than in field crops, particularly the Chrysopidae, the Anthocoridae and the Miridae. However, a striking difference of ladybird abundance was observed according to the aphid host plant. In one side, Coccinella septempunctata was much more abundant on Acyrthosiphon pisum infested green pea than on the other host plant species. At the opposite, higher occurrence of Harmonia axyridis was observed on the aphid infested nettle plants than on the crop plants. In particular, none of H. axyridis was found in wheat crop. Also, more than only a significant positive correlation between predator and aphid abundance, specialised relations between particular aphid species and some so-called generalist predators was determined in the fields. Finally, intraguild interactions between the aphidophagous predators was assessed and shown that only a significant negative correlation between Episyrphus balteatus and H. axyridis related to the nettle aphid, Micrlophium carnosum, was observed. The relative distribution of the ladybirds, namely C. septempunctata and H. axyridis according to the host plant, nettle strips and crop plots was discussed in relation to

  20. Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae.

    Science.gov (United States)

    Puinean, Alin M; Foster, Stephen P; Oliphant, Linda; Denholm, Ian; Field, Linda M; Millar, Neil S; Williamson, Martin S; Bass, Chris

    2010-06-24

    The aphid Myzus persicae is a globally significant crop pest that has evolved high levels of resistance to almost all classes of insecticide. To date, the neonicotinoids, an economically important class of insecticides that target nicotinic acetylcholine receptors (nAChRs), have remained an effective control measure; however, recent reports of resistance in M. persicae represent a threat to the long-term efficacy of this chemical class. In this study, the mechanisms underlying resistance to the neonicotinoid insecticides were investigated using biological, biochemical, and genomic approaches. Bioassays on a resistant M. persicae clone (5191A) suggested that P450-mediated detoxification plays a primary role in resistance, although additional mechanism(s) may also contribute. Microarray analysis, using an array populated with probes corresponding to all known detoxification genes in M. persicae, revealed constitutive over-expression (22-fold) of a single P450 gene (CYP6CY3); and quantitative PCR showed that the over-expression is due, at least in part, to gene amplification. This is the first report of a P450 gene amplification event associated with insecticide resistance in an agriculturally important insect pest. The microarray analysis also showed over-expression of several gene sequences that encode cuticular proteins (2-16-fold), and artificial feeding assays and in vivo penetration assays using radiolabeled insecticide provided direct evidence of a role for reduced cuticular penetration in neonicotinoid resistance. Conversely, receptor radioligand binding studies and nucleotide sequencing of nAChR subunit genes suggest that target-site changes are unlikely to contribute to resistance to neonicotinoid insecticides in M. persicae.

  1. Evidence for intermittency and a truncated power law from highly resolved aphid movement data.

    Science.gov (United States)

    Mashanova, Alla; Oliver, Tom H; Jansen, Vincent A A

    2010-01-06

    Power laws are increasingly used to describe animal movement. Despite this, the use of power laws has been criticized on both empirical and theoretical grounds, and alternative models based on extensions of conventional random walk theory (Brownian motion) have been suggested. In this paper, we analyse a large volume of data of aphid walking behaviour (65,068 data points), which provides a highly resolved dataset to investigate the pattern of movement. We show that aphid movement is intermittent--with alternations of a slow movement with frequent change of direction and a fast, relatively directed movement--and that the fast movement consists of two phases--a strongly directed phase that gradually changes into an uncorrelated random walk. By measuring the mean-squared displacement and the duration of non-stop movement episodes we found that both spatial and temporal aspects of aphid movement are best described using a truncated power law approach. We suggest that the observed spatial pattern arises from the duration of non-stop movement phases rather than from correlations in turning angles. We discuss the implications of these findings for interpreting movement data, such as distinguishing between movement and non-movement, and the effect of the range of data used in the analysis on the conclusions.

  2. Maternal effects of the English grain aphids feeding on the wheat varieties with different resistance traits.

    Science.gov (United States)

    Hu, Xiang-Shun; Zhang, Zhan-Feng; Zhu, Tong-Yi; Song, Yue; Wu, Li-Juan; Liu, Xiao-Feng; Zhao, Hui-Yan; Liu, Tong-Xian

    2018-05-09

    The maternal effects of the English grain aphid, Sitobion avenae on offspring phenotypes and performance on wheat varieties with different resistance traits were examined. We found that both conditioning wheat varieties(the host plant for over 3 months) and transition wheat varieties affected the biological parameters of aphid offspring after they were transferred between wheat varieties with different resistance traits. The conditioning varieties affected weight gain, development time (DT), and the intrinsic rate of natural increase (r m ), whereas transition varieties affected the fecundity, r m , net reproductive rate, and fitness index. The conditioning and transition wheat varieties had significant interaction effects on the aphid offspring's DT, mean relative growth rate, and fecundity. Our results showed that there was obvious maternal effects on offspring when S. avenae transferred bwteen wheat varieties with different resistance level, and the resistance traits of wheat varieties could induce an interaction between the conditioning and transition wheat varieties to influence the growth, development, reproduction, and even population dynamics of S. avenae. The conditioning varieties affected life-history traits related to individual growth and development to a greater extent, whereas transition varieties affected fecundity and population parameters more.

  3. Mouthpart structure in the woolly apple aphid Eriosoma lanigerum (Hausmann) (Hemiptera: Aphidoidea: Pemphigidae).

    Science.gov (United States)

    Ge, Furong; Dietrich, Chris; Dai, Wu

    2016-05-01

    Mouthparts are important sensory and feeding structures in insects and differences in mouthpart structure reflect differences among lineages in feeding strategy and behavior. The woolly apple aphid (WAA), Eriosoma lanigerum (Hausmann), is an important pest of apple orchards worldwide, causing direct damage through feeding by the highly specialized piercing-sucking mouthparts. To obtain a better understanding of feeding, the morphology of mouthparts of the WAA was examined using scanning electron microscopy (SEM). The mouthparts of E. lanigerum are similar to those of previously studied aphid species in most aspects and composed of a cone-shaped labrum, a tube-like, four-segmented labium with a deep groove on the anterior side, and a stylet fascicle consisting of two mandibular and two maxillary stylets. The sculpturing on the lateral margin of the distal extremity of the maxillary stylets and a dentate protuberance at the very sharp tip are newly observed features that distinguish E. lanigerum from other aphids and Auchenorrhyncha. Also, there is a common duct in E. lanigerum as based on SEM. Two types of sensilla trichodea and three types of sensilla basiconica occur at different locations on the labium; the labial tip has eight pairs of small sensilla basiconica. The morphology of the mouthparts and the distribution of sensilla located on the labium in E. lanigerum are discussed with respect to their possible taxonomic and functional significance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Does multigenerational exposure to hormetic concentrations of imidacloprid precondition aphids for increased insecticide tolerance?

    Science.gov (United States)

    Rix, Rachel R; Cutler, G Christopher

    2018-02-01

    Hormetic preconditioning, whereby exposure to mild stress primes an organism to better tolerate subsequent stress, is well documented. It is unknown if exposure to hormetic concentrations of insecticide can trans-generationally prime insects to better tolerate insecticide exposure, or whether exposure to hormetic concentrations of insecticide can induce mutations in genes responsible for insecticide resistance. Using the aphid Myzus persicae (Sulzer) and the insecticide imidacloprid as a model, we examined if exposure to mildly toxic and hormetic concentrations of imidacloprid reduced aphid susceptibility to insecticides across four generations, and whether such exposures induced mutations in the imidacloprid binding site in post-synaptic nicotinic acetylcholine receptors. Chronic, multigenerational exposure of aphids to hormetic concentrations of imidacloprid primed offspring to better survive exposure to certain concentrations of imidacloprid, but not exposure to spirotetramat, an insecticide with a different mode of action. Exposure to hormetic and mildly toxic concentrations of imidacloprid did not result in mutations in any of the examined nicotinic acetylcholine receptor subunits. Our findings demonstrate that exposure to hormetic concentrations of insecticide can prime insects to better withstand subsequent chemical stress, but this is dependent upon the insecticide exposure scenario, and may be subtle over generations. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Microsatellite marker analysis of peach-potato aphids (Myzus persicae, Homoptera: Aphididae) from Scottish suction traps.

    Science.gov (United States)

    Malloch, G; Highet, F; Kasprowicz, L; Pickup, J; Neilson, R; Fenton, B

    2006-12-01

    The peach-potato aphid Myzus persicae (Sulzer) is an important vector of plant viruses. A network of suction traps collects aerial samples of this aphid in order to monitor and help predict its spatial distribution and likely impact on virus transmission in crops. A suction trap catch is thought to be a good representation of the total aphid pool. Sensitive molecular markers have been developed that determine the genetic composition of the M. persicae population. In Scotland, UK, these were applied to field collections revealing a limited number of clones. Molecular markers are less successful when applied to specimens that have been preserved in an ethanol-based trap fluid designed to preserve morphology. An assessment of different DNA extraction and PCR techniques is presented and the most efficient are used to analyse M. persicae specimens caught in the Dundee suction trap in 2001, a year when exceptionally high numbers were caught. The results reveal that the majority of the M. persicae caught belonged to two highly insecticide resistant clones. In addition, it was possible to compare the relative frequencies of genotypes caught in the trap with those collected at insecticide treated and untreated field sites in the vicinity. These results indicate that, in addition to suction trap data, the ability to sample field sites provides valuable early warning data which have implications for pest control and virus management strategies.

  6. Absence of satellites of asteroids

    International Nuclear Information System (INIS)

    Gehrels, T.; Drummond, J.D.; Levenson, N.A.

    1987-01-01

    The absence of satellites within 0.1-7.0 arcmin of minor planets noted in the present CCD imaging survey is judged consistent with previous theoretical studies of collisions in which it is held that satellites would have to be larger than about 30 km in order to be collisionally stable. In view of tidal stability, the only main belt asteroid satellites which could conceivably possess stability over eons are near-contact binaries. Any recent collisional debris would be chaotic and collisionally unstable. 15 references

  7. Resistance of Wheat Accessions to the English Grain Aphid Sitobion avenae

    Science.gov (United States)

    Hu, Xiang-Shun; Liu, Ying-Jie; Wang, Yu-Han; Wang, Zhe; Yu, Xin-lin; Wang, Bo; Zhang, Gai-Sheng; Liu, Xiao-Feng; Hu, Zu-Qing; Zhao, Hui-Yan; Liu, Tong-Xian

    2016-01-01

    The English grain aphid, Sitobion avenae, is a major pest species of wheat crops; however, certain varieties may have stronger resistance to infestation than others. Here, we investigated 3 classical resistance mechanisms (antixenosis, antibiosis, and tolerance) by 14 wheat varieties/lines to S. avenae under laboratory and field conditions. Under laboratory conditions, alatae given the choice between 2 wheat varieties, strongly discriminated against certain varieties. Specifically, the ‘Amigo’ variety had the lowest palatability to S. avenae alatae of all varieties. ‘Tm’ (Triticum monococcum), ‘Astron,’ ‘Xanthus,’ ‘Ww2730,’ and ‘Batis’ varieties also had lower palatability than other varieties. Thus, these accessions may use antibiosis as the resistant mechanism. In contrast, under field conditions, there were no significant differences in the number of alatae detected on the 14 wheat varieties. One synthetic line (98-10-30, a cross between of Triticum aestivum (var. Chris) and Triticum turgidum (var. durum) hybridization) had low aphid numbers but high yield loss, indicating that it has high antibiosis, but poor tolerance. In comparison, ‘Amigo,’ ‘Xiaoyan22,’ and some ‘186Tm’ samples had high aphid numbers but low yield loss rates, indicating they have low antibiosis, but good tolerance. Aphid population size and wheat yield loss rates greatly varied in different fields and years for ‘98-10-35,’ ‘Xiaoyan22,’ ‘Tp,’ ‘Tam200,’ ‘PI high,’ and other ‘186Tm’ samples, which were hybrid offspring of T. aestivum and wheat related species. Thus, these germplasm should be considered for use in future studies. Overall, S. avenae is best adapted to ‘Xinong1376,’ because it was the most palatable variety, with the greatest yield loss rates of all 14 wheat varieties. However, individual varieties/lines influenced aphid populations differently in different years. Therefore, we strongly recommend a combination of

  8. Neonicotinoid binding, toxicity and expression of nicotinic acetylcholine receptor subunits in the aphid Acyrthosiphon pisum.

    Directory of Open Access Journals (Sweden)

    Emiliane Taillebois

    Full Text Available Neonicotinoid insecticides act on nicotinic acetylcholine receptor and are particularly effective against sucking pests. They are widely used in crops protection to fight against aphids, which cause severe damage. In the present study we evaluated the susceptibility of the pea aphid Acyrthosiphon pisum to the commonly used neonicotinoid insecticides imidacloprid (IMI, thiamethoxam (TMX and clothianidin (CLT. Binding studies on aphid membrane preparations revealed the existence of high and low-affinity binding sites for [3H]-IMI (Kd of 0.16 ± 0.04 nM and 41.7 ± 5.9 nM and for the nicotinic antagonist [125I]-α-bungarotoxin (Kd of 0.008 ± 0.002 nM and 1.135 ± 0.213 nM. Competitive binding experiments demonstrated that TMX displayed a higher affinity than IMI for [125I]-α-bungarotoxin binding sites while CLT affinity was similar for both [125I]-α-bungarotoxin and [3H]-IMI binding sites. Interestingly, toxicological studies revealed that at 48 h, IMI (LC50 = 0.038 µg/ml and TMX (LC50 = 0.034 µg/ml were more toxic than CLT (LC50 = 0.118 µg/ml. The effect of TMX could be associated to its metabolite CLT as demonstrated by HPLC/MS analysis. In addition, we found that aphid larvae treated either with IMI, TMX or CLT showed a strong variation of nAChR subunit expression. Using semi-quantitative PCR experiments, we detected for all insecticides an increase of Apisumα10 and Apisumβ1 expressions levels, whereas Apisumβ2 expression decreased. Moreover, some other receptor subunits seemed to be differently regulated according to the insecticide used. Finally, we also demonstrated that nAChR subunit expression differed during pea aphid development. Altogether these results highlight species specificity that should be taken into account in pest management strategies.

  9. Neonicotinoid Binding, Toxicity and Expression of Nicotinic Acetylcholine Receptor Subunits in the Aphid Acyrthosiphon pisum

    Science.gov (United States)

    Taillebois, Emiliane; Beloula, Abdelhamid; Quinchard, Sophie; Jaubert-Possamai, Stéphanie; Daguin, Antoine; Servent, Denis; Tagu, Denis

    2014-01-01

    Neonicotinoid insecticides act on nicotinic acetylcholine receptor and are particularly effective against sucking pests. They are widely used in crops protection to fight against aphids, which cause severe damage. In the present study we evaluated the susceptibility of the pea aphid Acyrthosiphon pisum to the commonly used neonicotinoid insecticides imidacloprid (IMI), thiamethoxam (TMX) and clothianidin (CLT). Binding studies on aphid membrane preparations revealed the existence of high and low-affinity binding sites for [3H]-IMI (Kd of 0.16±0.04 nM and 41.7±5.9 nM) and for the nicotinic antagonist [125I]-α-bungarotoxin (Kd of 0.008±0.002 nM and 1.135±0.213 nM). Competitive binding experiments demonstrated that TMX displayed a higher affinity than IMI for [125I]-α-bungarotoxin binding sites while CLT affinity was similar for both [125I]-α-bungarotoxin and [3H]-IMI binding sites. Interestingly, toxicological studies revealed that at 48 h, IMI (LC50 = 0.038 µg/ml) and TMX (LC50 = 0.034 µg/ml) were more toxic than CLT (LC50 = 0.118 µg/ml). The effect of TMX could be associated to its metabolite CLT as demonstrated by HPLC/MS analysis. In addition, we found that aphid larvae treated either with IMI, TMX or CLT showed a strong variation of nAChR subunit expression. Using semi-quantitative PCR experiments, we detected for all insecticides an increase of Apisumα10 and Apisumβ1 expressions levels, whereas Apisumβ2 expression decreased. Moreover, some other receptor subunits seemed to be differently regulated according to the insecticide used. Finally, we also demonstrated that nAChR subunit expression differed during pea aphid development. Altogether these results highlight species specificity that should be taken into account in pest management strategies. PMID:24801634

  10. Female-induced increase of host-plant volatiles enhance specific attraction of aphid male Dysaphis plantaginea (Homoptera: Aphididae) to the sex pheromone

    NARCIS (Netherlands)

    Tol, van R.W.H.M.; Helsen, H.H.M.; Griepink, F.C.; Kogel, de W.J.

    2009-01-01

    All aphid species studied so far share the same sex pheromone components, nepetalactol and nepetalactone. Variation by different enantiomers and blends of the two components released by different aphid species are limited and can only partially explain species-specific attraction of males to

  11. Characterization of Arabidopsis Transcriptional Responses to Different Aphid Species Reveals Genes that Contribute to Host Susceptibility and Non-host Resistance

    Science.gov (United States)

    Jaouannet, Maëlle; Morris, Jenny A.; Hedley, Peter E.; Bos, Jorunn I. B.

    2015-01-01

    Aphids are economically important pests that display exceptional variation in host range. The determinants of diverse aphid host ranges are not well understood, but it is likely that molecular interactions are involved. With significant progress being made towards understanding host responses upon aphid attack, the mechanisms underlying non-host resistance remain to be elucidated. Here, we investigated and compared Arabidopsis thaliana host and non-host responses to aphids at the transcriptional level using three different aphid species, Myzus persicae, Myzus cerasi and Rhopalosiphum pisum. Gene expression analyses revealed a high level of overlap in the overall gene expression changes during the host and non-host interactions with regards to the sets of genes differentially expressed and the direction of expression changes. Despite this overlap in transcriptional responses across interactions, there was a stronger repression of genes involved in metabolism and oxidative responses specifically during the host interaction with M. persicae. In addition, we identified a set of genes with opposite gene expression patterns during the host versus non-host interactions. Aphid performance assays on Arabidopsis mutants that were selected based on our transcriptome analyses identified novel genes contributing to host susceptibility, host defences during interactions with M. persicae as well to non-host resistance against R. padi. Understanding how plants respond to aphid species that differ in their ability to infest plant species, and identifying the genes and signaling pathways involved, is essential for the development of novel and durable aphid control in crop plants. PMID:25993686

  12. How conserved are the bacterial communities associated with aphids? A detailed assessment of the Brevicoryne brassicae (Hemiptera: Aphididae) using 16S rDNA.

    Science.gov (United States)

    Clark, E L; Daniell, T J; Wishart, J; Hubbard, S F; Karley, A J

    2012-12-01

    Aphids harbor a community of bacteria that include obligate and facultative endosymbionts belonging to the Enterobacteriaceae along with opportunistic, commensal, or pathogenic bacteria. This study represents the first detailed analysis of the identity and diversity of the bacterial community associated with the cabbage aphid, Brevicoryne brassicae (L.). 16S rDNA sequence analysis revealed that the community of bacteria associated with B. brassicae was diverse, with at least four different bacterial community types detected among aphid lines, collected from widely dispersed sites in Northern Britain. The bacterial sequence types isolated from B. brassicae showed little similarity to any bacterial endosymbionts characterized in insects; instead, they were closely related to free-living extracellular bacterial species that have been isolated from the aphid gut or that are known to be present in the environment, suggesting that they are opportunistic bacteria transmitted between the aphid gut and the environment. To quantify variation in bacterial community between aphid lines, which was driven largely by differences in the proportions of two dominant bacterial orders, the Pseudomonales and the Enterobacteriales, we developed a novel real-time (Taqman) qPCR assay. By improving our knowledge of aphid microbial ecology, and providing novel molecular tools to examine the presence and function of the microbial community, this study forms the basis of further research to explore the influence of the extracellular bacterial community on aphid fitness, pest status, and susceptibility to control by natural enemies.

  13. Releases of a natural flightless strain of the ladybird beetle Adalia bipunctata reduce aphid-born honeydew beneath urban lime trees

    NARCIS (Netherlands)

    Lommen, S.T.E.; Holness, T.C.; Kuik, van A.J.; Jong, de P.W.; Brakefield, P.M.

    2013-01-01

    Aphids can cause major environmental problems in urban areas. One important problem is the annual outbreaks of lime aphid, Eucallipterus tiliae (L.) (Hemiptera: Aphididae), which spoil the surroundings of lime trees by depositing honeydew. To date no environmentally friendly method has been

  14. Identification of an intraspecific alarm pheromone and two conserved odorant-binding proteins associated with (E)-β-farnesene perception in aphid Rhopalosiphum padi.

    Science.gov (United States)

    Fan, Jia; Xue, Wenxin; Duan, Hongxia; Jiang, Xin; Zhang, Yong; Yu, Wenjuan; Jiang, Shanshan; Sun, Jingrun; Chen, Julian

    2017-08-01

    (E)-β-farnesene (EBF) is the common active component of aphid alarm pheromone. Either or both of two orthologs of ordorant-binding proteins (OBPs), OBP3 and OBP7, recently reported in aphids, may be involved in EBF perception. The aim of this study was to investigate the respondence of the aphid Rhopalosiphum padi to its intraspecific alarm pheromone and which OBP is responsible for that response. We tested the olfactory response of the aphid R. padi to EBF and freshly crushed aphids. Then, we extracted the volatiles from crushed aphids using solid phase microextraction (SPME) for analysis with GC×GC-TOF/MS. We also cloned two OBPs cDNAs in R. padi (RpadOBP3 and RpadOBP7) and expressed them in competent Escherichia coli cells. Both recombinant proteins, RpadOBP3 and RpadOBP7, bound EBF well, with RpadOBP7 having specifically stronger affinity for EBF than for other volatiles. Based on the crystal structure of the OBPs with high identity, we performed homology modeling and analyzed the interactions between RpadOBPs and EBF. In conclusion, R. padi was repelled by both EBF and crushed aphids. EBF was identified as the only volatile that acted as the alarm pheromone. Our results indicated that OBP7 is a potential molecular target to control wheat aphids by disturbing their behaviors to the alarm pheromone. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Molecular evolution of aphids and their primary ( Buchnera sp.) and secondary endosymbionts: implications for the role of symbiosis in insect evolution.

    NARCIS (Netherlands)

    Sabater-Munoz, B.; Ham, van R.C.H.J.; Martinez-Torres, D.; Silva, F.J.; Latorre, A.; Moya, A.

    2001-01-01

    Aphids maintain an obligate, endosymbiotic association with Buchnera sp., a bacterium closely related to Escherichia coli. Bacteria are housed in specialized cells of organ-like structures called bacteriomes in the hemocoel of the aphid and are maternally transmitted. Phylogenetic studies have shown

  16. Performance and feeding behaviour of two biotypes of the black currant-lettuce aphid, Nasonovia ribisnigri, on resistant and susceptible Lactuca sativa near-isogenic lines

    NARCIS (Netherlands)

    Broeke, ten C.J.M.; Dicke, M.; Loon, van J.J.A.

    2013-01-01

    The black currant-lettuce aphid, Nasonovia ribisnigri, is an important pest of cultivated lettuce, Lactuca sativa. Since 1982, the control of this aphid on lettuce is largely based on host plant resistance, conferred by the Nr gene, introgressed from Lactuca virosa. The resistance mechanism remains

  17. Aphids transform and detoxify the mycotoxin deoxynivalenol via a type II biotransformation mechanism yet unknown in animals.

    Science.gov (United States)

    De Zutter, N; Audenaert, K; Arroyo-Manzanares, N; De Boevre, M; Van Poucke, C; De Saeger, S; Haesaert, G; Smagghe, G

    2016-12-08

    Biotransformation of mycotoxins in animals comprises phase I and phase II metabolisation reactions. For the trichothecene deoxynivalenol (DON), several phase II biotransformation reactions have been described resulting in DON-glutathiones, DON-glucuronides and DON-sulfates made by glutathione-S-transferases, uridine-diphosphoglucuronyl transferases and sulfotransferases, respectively. These metabolites can be easily excreted and are less toxic than their free compounds. Here, we demonstrate for the first time in the animal kingdom the conversion of DON to DON-3-glucoside (DON-3G) via a model system with plant pathogenic aphids. This phase II biotransformation mechanism has only been reported in plants. As the DON-3G metabolite was less toxic for aphids than DON, this conversion is considered a detoxification reaction. Remarkably, English grain aphids (Sitobion avenae) which co-occur with the DON producer Fusarium graminearum on wheat during the development of fusarium symptoms, tolerate DON much better and convert DON to DON-3G more efficiently than pea aphids (Acyrthosiphon pisum), the latter being known to feed on legumes which are no host for F. graminearum. Using a non-targeted high resolution mass spectrometric approach, we detected DON-diglucosides in aphids probably as a result of sequential glucosylation reactions. Data are discussed in the light of an eventual co-evolutionary adaptation of S. avenae to DON.

  18. Non-pathogenic rhizobacteria interfere with the attraction of parasitoids to aphid-induced plant volatiles via jasmonic acid signalling.

    Science.gov (United States)

    Pineda, Ana; Soler, Roxina; Weldegergis, Berhane T; Shimwela, Mpoki M; VAN Loon, Joop J A; Dicke, Marcel

    2013-02-01

    Beneficial soil-borne microbes, such as mycorrhizal fungi or rhizobacteria, can affect the interactions of plants with aboveground insects at several trophic levels. While the mechanisms of interactions with herbivorous insects, that is, the second trophic level, are starting to be understood, it remains unknown how plants mediate the interactions between soil microbes and carnivorous insects, that is, the third trophic level. Using Arabidopsis thaliana Col-0 and the aphid Myzus persicae, we evaluate here the underlying mechanisms involved in the plant-mediated interaction between the non-pathogenic rhizobacterium Pseudomonas fluorescens and the parasitoid Diaeretiella rapae, by combining ecological, chemical and molecular approaches. Rhizobacterial colonization modifies the composition of the blend of herbivore-induced plant volatiles. The volatile blend from rhizobacteria-treated aphid-infested plants is less attractive to an aphid parasitoid, in terms of both olfactory preference behaviour and oviposition, than the volatile blend from aphid-infested plants without rhizobacteria. Importantly, the effect of rhizobacteria on both the emission of herbivore-induced volatiles and parasitoid response to aphid-infested plants is lost in an Arabidopsis mutant (aos/dde2-2) that is impaired in jasmonic acid production. By modifying the blend of herbivore-induced plant volatiles that depend on the jasmonic acid-signalling pathway, root-colonizing microbes interfere with the attraction of parasitoids of leaf herbivores. © 2012 Blackwell Publishing Ltd.

  19. Insulin-related peptide 5 is involved in regulating embryo development and biochemical composition in pea aphid with wing polyphenism

    Directory of Open Access Journals (Sweden)

    Shan-Shan eGuo

    2016-02-01

    Full Text Available In aphids there is a fecundity-dispersal trade-off between wingless and winged morphs. Recent research on the molecular mechanism of wing morphs associated with dispersal reveals that insulin receptors in the insulin signaling (IS pathway regulate alteration of wing morphs in planthoppers. However, little is known about whether genes in the IS pathway are involved in developmental regulation in aphid nymphs with different wing morphs. In this study, we show that expression of the insulin-related peptide 5 gene (Apirp5 affects biochemical composition and embryo development of wingless pea aphids, Acyrthosiphon pisum. After comparing expression levels of major genes in the IS pathway between third instar winged and wingless nymphs, we found that Apirp5 showed higher expression in head and thorax of the wingless nymphs than in the winged nymphs. Although microinjection treatment affects physical performance in aphids, nymphs with RNA interference of Apirp5 had less weight, smaller embryo size and higher carbohydrate and protein contents compared to control group. Comparison between winged and wingless nymphs showed a similar trend. These results indicate that Apirp5 is involved in embryo development and metabolic regulation in wing dimorphic pea aphid.

  20. Varietals resistance and susceptibility in mustard (brassica campestris l.) genotypes against aphid myzus persicae (sulzer) (homoptera: aphididae)

    International Nuclear Information System (INIS)

    Sarwar, M.; Ahmad, N.; Khan, G.Z.; Tofique, M.

    2009-01-01

    The exploitation of resistant cultivars is an imperative, simple, practical and flexible way to cope with insect pests incidence. Thirty genotypes of mustard (Brassica campestris L.) were tested for their resistance and susceptibility to aphid Myzus persicae (Sulzer) exposed under natural field conditions. Data on pest tolerance of genotypes were judged by quantitative traits such as number of aphids on each infested plant and mean dry weight of seeds per genotype. Studies observed the discrepancy in overall rates of pest invasion and seed yield contained by trailed mustard genotypes. Agati sarson (P), S-9-S-97-100/45 and S-9-S-97-100/45 were the least damaged genotypes showing their moderate resistance. Amongst other genotypes, MM-I/01-5, MM-I285 and MM-I/01-6 were the most damaged showing oversensitive response. Although the majority of genotypes were found vulnerable to pest, Agati sarson (P) and S-9-S-97-100/45 due to their lowest hypersensitive response toward aphid contamination and increased pods yield could be used for the development of essential resistance in mustard plant. A marked mode of damage inflicted by aphid on the crop was noticed and the abiotic factors contributing variations in aphid infestation levels during both growing seasons were determined. Knowledge about the host plant resistance investigated can facilitate growers to choose the most appropriate cultivars as pest control strategy. (author)

  1. Coupling genetics and proteomics to identify aphid proteins associated with vector-specific transmission of polerovirus (luteoviridae).

    Science.gov (United States)

    Yang, Xiaolong; Thannhauser, T W; Burrows, Mary; Cox-Foster, Diana; Gildow, Fred E; Gray, Stewart M

    2008-01-01

    Cereal yellow dwarf virus-RPV (CYDV-RPV) is transmitted specifically by the aphids Rhopalosiphum padi and Schizaphis graminum in a circulative nonpropagative manner. The high level of vector specificity results from the vector aphids having the functional components of the receptor-mediated endocytotic pathways to allow virus to transverse the gut and salivary tissues. Studies of F(2) progeny from crosses of vector and nonvector genotypes of S. graminum showed that virus transmission efficiency is a heritable trait regulated by multiple genes acting in an additive fashion and that gut- and salivary gland-associated factors are not genetically linked. Utilizing two-dimensional difference gel electrophoresis to compare the proteomes of vector and nonvector parental and F(2) genotypes, four aphid proteins (S4, S8, S29, and S405) were specifically associated with the ability of S. graminum to transmit CYDV-RPV. The four proteins were coimmunoprecipitated with purified RPV, indicating that the aphid proteins are capable of binding to virus. Analysis by mass spectrometry identified S4 as a luciferase and S29 as a cyclophilin, both of which have been implicated in macromolecular transport. Proteins S8 and S405 were not identified from available databases. Study of this unique genetic system coupled with proteomic analysis indicated that these four virus-binding aphid proteins were specifically inherited and conserved in different generations of vector genotypes and suggests that they play a major role in regulating polerovirus transmission.

  2. Coupling Genetics and Proteomics To Identify Aphid Proteins Associated with Vector-Specific Transmission of Polerovirus (Luteoviridae)▿

    Science.gov (United States)

    Yang, Xiaolong; Thannhauser, T. W.; Burrows, Mary; Cox-Foster, Diana; Gildow, Fred E.; Gray, Stewart M.

    2008-01-01

    Cereal yellow dwarf virus-RPV (CYDV-RPV) is transmitted specifically by the aphids Rhopalosiphum padi and Schizaphis graminum in a circulative nonpropagative manner. The high level of vector specificity results from the vector aphids having the functional components of the receptor-mediated endocytotic pathways to allow virus to transverse the gut and salivary tissues. Studies of F2 progeny from crosses of vector and nonvector genotypes of S. graminum showed that virus transmission efficiency is a heritable trait regulated by multiple genes acting in an additive fashion and that gut- and salivary gland-associated factors are not genetically linked. Utilizing two-dimensional difference gel electrophoresis to compare the proteomes of vector and nonvector parental and F2 genotypes, four aphid proteins (S4, S8, S29, and S405) were specifically associated with the ability of S. graminum to transmit CYDV-RPV. The four proteins were coimmunoprecipitated with purified RPV, indicating that the aphid proteins are capable of binding to virus. Analysis by mass spectrometry identified S4 as a luciferase and S29 as a cyclophilin, both of which have been implicated in macromolecular transport. Proteins S8 and S405 were not identified from available databases. Study of this unique genetic system coupled with proteomic analysis indicated that these four virus-binding aphid proteins were specifically inherited and conserved in different generations of vector genotypes and suggests that they play a major role in regulating polerovirus transmission. PMID:17959668

  3. Crystal Structures and Binding Dynamics of Odorant-Binding Protein 3 from two aphid species Megoura viciae and Nasonovia ribisnigri.

    Science.gov (United States)

    Northey, Tom; Venthur, Herbert; De Biasio, Filomena; Chauviac, Francois-Xavier; Cole, Ambrose; Ribeiro, Karlos Antonio Lisboa; Grossi, Gerarda; Falabella, Patrizia; Field, Linda M; Keep, Nicholas H; Zhou, Jing-Jiang

    2016-04-22

    Aphids use chemical cues to locate hosts and find mates. The vetch aphid Megoura viciae feeds exclusively on the Fabaceae, whereas the currant-lettuce aphid Nasonovia ribisnigri alternates hosts between the Grossulariaceae and Asteraceae. Both species use alarm pheromones to warn of dangers. For N. ribisnigri this pheromone is a single component (E)-β-farnesene but M. viciae uses a mixture of (E)-β-farnesene, (-)-α-pinene, β-pinene, and limonene. Odorant-binding proteins (OBP) are believed to capture and transport such semiochemicals to their receptors. Here, we report the first aphid OBP crystal structures and examine their molecular interactions with the alarm pheromone components. Our study reveals some unique structural features: 1) the lack of an internal ligand binding site; 2) a striking groove in the surface of the proteins as a putative binding site; 3) the N-terminus rather than the C-terminus occupies the site closing off the conventional OBP pocket. The results from fluorescent binding assays, molecular docking and dynamics demonstrate that OBP3 from M. viciae can bind to all four alarm pheromone components and the differential ligand binding between these very similar OBP3s from the two aphid species is determined mainly by the direct π-π interactions between ligands and the aromatic residues of OBP3s in the binding pocket.

  4. Resistance of Four Canola Genotypes Against Cabbage Aphid Brevicoryne brassicae (L.

    Directory of Open Access Journals (Sweden)

    S.H. MousaviAnzabi

    2017-12-01

    Full Text Available Introduction: Canola (Brassica napus L. is one of the prominent oil seed plants in Iran. This plant has good agricultural and food nourishment properties, such as resistant to drought, cold and salinity stresses and low level of cholesterol. Cabbage waxy aphid Brevicorynebrassicae (L. is the most important and cosmopolitan pest of cruciferous crops. This aphid is reduced 9 to 77% grain yields and up to 11% oil content. Developing environmental-friendly methods, such as deploying insect-resistant varieties to pest control was advised by scientists. Resistant varieties decrease production costs and can be integrated with other pest control policies in IPM programs. In a greenhouse experiment plants of cabbage, cauliflower wassusceptible host plant and broccoli, turnip, rapeseed, showed resistance to cabbage aphid. With the aim of identifying the existence of resistance resources, a laboratory study was conducted to evaluate the effects of seven canola genotypes on biological parameters of cabbage aphid. Detected resistant variety could be used as a resistance source. Material and Methods: In order to resistancy evaluation of canola, genotypes contain “RGS”,“Hyola-308”,“Hyola-401” and “Sarigol” to cabbage aphid, two experiments was conducted under field and greenhouse conditions in Kahriz region of West Azerbaijan province in 2010.In this study infestation index and tolerance in Field conditions and antibiosis study in greenhouse conditions was evaluated.To study antibiosis, genotypes were planted in pots with 10 replications based on completely random design and cabbage aphid population intrinsic rate of increase (rm was calculated. As followed: (Lotka 1924: 1= other population parameters computed by Carey (1993 method. Field experiment contains10 replications wereperformed based on complete randomized blocks experimental designs that five of them were under natural infestation and five others, free of infestation (control. To

  5. Is Reduction in Yield Potential of Some Brassicaceous Species Due to Aphid Infestation Associated with the Changes in Stomatal Factors of Photosynthesis

    International Nuclear Information System (INIS)

    Razaq, M.; Farooq, M.; Abbas, G.; Rehman, H. M.; Iqbal, M.

    2016-01-01

    Aphids cause heavy yield losses to Brassicaceous species by affecting various physiological and biochemical processes including photosynthesis. In the present study, seasonal activity of aphid population and its impact on some brassicaceous species was assessed. Three brassicaceous species (Brassica campestris, Brassica carinata, Eruca sativa) were grown in field following standard agricultural practices. Plants of control plots retained aphid free by insecticide spray, whereas treatment plots were freely allowed for aphid infestation. There was also intermediate treatment of partial aphid infestation where insecticidal spray was applied two times. Peak populations of both aphid species were observed in the 2nd week of March during which plant photosynthetic attributes were recorded. At the time of maturity, yield attributes were also recorded. From the results, it is obvious that application of insecticide significantly reduced the aphid populations on the three brassicaceous species and enhanced the crop yield. Yield losses due to aphid infestation were maximal in Brassica campestris followed by B. carinata whereas it was minimal in Eruca sativa. Yield losses in Brassica campestris and B. carinata were due to reduction in number of pods per plant, number of seeds per pod and size of seeds, whereas yield losses due to aphid infestation in Eruca sativa was mainly attributed to reduction in number of pods per plant. Although insecticidal spray reduced the aphid population and increased growth and productivity of all brassicaceous species, it did not change photosynthetic capacity of all plants except in Eruca sativa. Moreover, growth and yield reduction was not associated with stomatal factors of photosynthesis. Chlorophyll contents measured as SPAD values were reduced due to aphid infestation which is positively associated with yield reduction. Insecticidal spray increased chlorophyll contents in these three brassicaceous species by reducing aphid population

  6. Bilateral absence of musculocutaneous nerve

    Directory of Open Access Journals (Sweden)

    Mathada V Ravishankar

    2012-01-01

    Full Text Available Brachial plexus is an important group of spinal nerve plexus that supplies the muscles of the upper limb via the ventral rami of the Cervical 5 - Thoracic 1 fibers of the spinal nerves. It is not uncommon to notice the variations during cadaveric dissections in many regions of the body, at different levels, such as, roots, trunks, division, cords, communications, and branches as reported in the literature. Although the nerve supply of the body musculature takes place in the fetal life itself, its course, branching pattern, innervations, and communication can show variable patterns as the fetal development progresses. One such anomaly was noticed during our routine cadaveric dissection in the Department of Anatomy, Jawaharlal Nehru Medical College, Belgaum, showing bilateral absence of the musculocutaneous nerve, which obviously drew the attention of the students of medicine, physiotherapy, and learning clinicians as well.

  7. Dizziness causes absence from work.

    Science.gov (United States)

    van der Zaag-Loonen, H J; van Leeuwen, R B

    2015-09-01

    The objective of the study was to assess absenteeism from work due to dizziness in patients referred to a tertiary centre. Consecutive patients with a paid employment completed the WHO Health and work Performance Questionnaire, including items on work absence in the past 7 days and 4 weeks, and the Dizziness Handicap Inventory. Of the 400 patients [55% females, mean age 46.3 years (SD 10.8), range 18-68 years], 46 (12%) indicated they were completely disabled to work due to dizziness, while 202 (51%) patients indicated they had worked less than expected due to dizziness. Patients with more disease-related disabilities had more absenteeism from work. Half of the patients who are referred to a tertiary centre for dizziness report work absenteeism due to their complaints, and 12% is completely disabled to work.

  8. Use of electrical penetration graphs (EPG) and quantitative PCR to evaluate the relationship between feeding behaviour and Pandora neoaphidis infection levels in green peach aphid, Myzus persicae.

    Science.gov (United States)

    Chen, Chun; Ye, Sudan; Hu, Huajun; Xue, Chengmei; Yu, Xiaoping

    2018-01-01

    A real-time qPCR method was developed, validated, and used to quantity the fungal pathogen, P. neoaphidis, within aphids at different times during infection; colonization rate fitted the Gompertz model well (R 2  = 0.9356). Feeding behaviour of P. neoaphidis-infected and uninfected M. persicae were investigated, for the first time, using DC-electrical penetration graphs (DC-EPG) that characterized the waveforms made during different aphid stylet probing periods corresponding to epidermis penetration, salivation and ingestion. In the 6 h following the 12-h incubation period (to achieve infection), there were significant differences in the number of events of Np (non-probing) and C (stylet pathway) between infected and uninfected aphids. However, the difference between total duration of Np and C were not significantly different between infected and uninfected aphids. There were no significant differences in the number of events or total duration of E1 (phloem salivation) or E2 (phloem ingestion) between infected and uninfected aphids. There were significant differences in mean number of events and total duration of the pd waveform (intracellular punctures) in infected and uninfected aphids. In the 16 h prior to death, the same differences in behaviour were observed but they were even more obvious. Furthermore, the total duration time of E2 was significantly greater in uninfected aphids than infected aphids, a change that had not been observed in the first 6 h observation period. In conclusion, qPCR quantification demonstrated 'molecular' colonization levels throughout infection, and EPG data analysis during the two periods (during early infection and then during late infection just prior to death) demonstrated the actual physical effects of fungal infection on feeding behaviour of M. persicae; this has the potential to decrease the aphid's capacity of transmission and dispersal. These studies increase our understanding of the interaction between P

  9. A novel computerised image analysis method for the measurement of production of conidia from the aphid pathogenic fungus Erynia neoaphidis.

    Science.gov (United States)

    Bonner, Tony J; Pell, Judith K; Gray, Simon N

    2003-03-14

    A semi-automated method has been developed for the quantification and measurement of conidia discharged by the aphid pathogen Erynia neoaphidis. This was used to compare conidiation by E. neoaphidis-mycosed pea aphid cadavers, mycelial plugs cut from agar plates, mycelial pellets from shake flasks and by mycelial pellets from different phases of liquid batch fermenter culture. Aphid cadavers discharged significantly more and significantly smaller conidia than plugs or pellets. The volume of conidia discharged was stable over the period of discharge (80 h), but more detailed analysis of the size frequency distribution showed that more very small and very large conidia were discharged after 5 h incubation than after 75 h incubation. Biomass harvested at the end of the exponential growth phase in batch fermenter culture produced significantly more conidia than biomass from any other growth phase. The implications of these findings for the development of production and formulation processes for E. neoaphidis as a biological control agent are discussed.

  10. Alternaria toxin-induced resistance in rose plants against rose aphid (Macrosiphum rosivorum): effect of tenuazonic acid.

    Science.gov (United States)

    Yang, Fa-zhong; Yang, Bin; Li, Bei-bei; Xiao, Chun

    2015-04-01

    Many different types of toxins are produced by the fungus, Alternaria alternata (Fr.) Keissler. Little is known, however, regarding the influence of these toxins on insects. In this study, we investigated the toxin-induced inhibitory effects of the toxin produced by A. alternata on the rose aphid, Macrosiphum rosivorum, when the toxin was applied to leaves of the rose, Rosa chinensis. The results demonstrated that the purified crude toxin was non-harmful to rose plants and rose aphids, but had an intensive inhibitory effect on the multiplication of aphids. The inhibitory index against rose aphids reached 87.99% when rose plants were sprayed with the toxin solution at a low concentration. Further results from bioassays with aphids and high performance liquid chromatography (HPLC) analyses demonstrated that tenuazonic acid (TeA) was one of the most important resistance-related active components in the crude toxin. The content of TeA was 0.1199% in the crude toxin under the HPLC method. Similar to the crude toxin, the inhibitory index of pure TeA reached 83.60% 15 d after the rose plants were sprayed with pure TeA solution at the lower concentration of 0.060 μg/ml, while the contents of residual TeA on the surface and in the inner portion of the rose plants were only 0.04 and 0.00 ng/g fresh weight of TeA-treated rose twigs, respectively, 7 d after the treatment. Our results show that TeA, an active component in the A. alternata toxin, can induce the indirect plant-mediated responses in rose plants to intensively enhance the plant's resistances against rose aphids, and the results are very helpful to understand the plant-mediated interaction between fungi and insects on their shared host plants.

  11. Changes of oxidase and hydrolase activities in pecan leaves elicited by black pecan aphid (Hemiptera: Aphididae) feeding.

    Science.gov (United States)

    Chen, Yigen; Ni, Xinzhi; Cottrell, Ted E; Wood, Bruce W; Buntin, G David

    2009-06-01

    The black pecan aphid, Melanocallis caryaefoliae (Davis) (Hemiptera: Aphididae), is a foliar feeder of pecan, Carya illinoinensis (Wangenh.) K. Koch (Juglandaceae). The pest causes chlorosis of leaflet lamina, physiological damage to foliage and trees, and commonly limits the profitability of commercial pecan orchard enterprises. However, key aspects of this host-pest interaction are poorly understood. We report here the effects of M. caryaefoliae feeding on the foliar activity of oxidative (i.e., catalase, lipoxygenase [LOX]-1 and 3, and peroxidase) and hydrolytic (i.e., esterase) enzymes in relation to the degree of aphid resistance among pecan varieties. The 2-yr study showed that M. caryaefoliae-infested foliage exhibited elevated peroxidase activity only in susceptible ('Desirable', 'Sumner', and 'Schley'), but not in resistant ('Cape Fear', 'Gloria Grande', and 'Money Maker') genotypes. Susceptible genotypes also exhibited more severe leaf chlorosis in response to M. caryaefoliae feeding than the resistant genotypes; however, the aphid feeding did not influence catalase or esterase activity in all varieties, except the increase of esterase activity in Desirable and Gloria Grande. Melanocallis caryaefoliae feeding also influences activity of two lipoxygenase isozymes, with LOX3 being more frequently induced than LOX1. Foliar LOX3 activity was more frequently induced by M. caryaefoliae feeding in the moderately resistant 'Oconee' and highly resistant Money Maker and Cape Fear than in the susceptible genotypes. Therefore, the elevation of peroxidase is likely to be associated with aphid susceptibility and contributed to the severe leaf chlorosis, whereas the increase of LOX3 activity might be associated with aphid resistance in pecan. These findings contribute to our understanding of the etiology of M. caryaefoliae-elicited leaf chlorosis on pecan foliage. Such information may also be used to develop enzyme markers for identifying black pecan aphid resistance

  12. Up-regulation of abscisic acid signaling pathway facilitates aphid xylem absorption and osmoregulation under drought stress.

    Science.gov (United States)

    Guo, Huijuan; Sun, Yucheng; Peng, Xinhong; Wang, Qinyang; Harris, Marvin; Ge, Feng

    2016-02-01

    The activation of the abscisic acid (ABA) signaling pathway reduces water loss from plants challenged by drought stress. The effect of drought-induced ABA signaling on the defense and nutrition allocation of plants is largely unknown. We postulated that these changes can affect herbivorous insects. We studied the effects of drought on different feeding stages of pea aphids in the wild-type A17 of Medicago truncatula and ABA signaling pathway mutant sta-1. We examined the impact of drought on plant water status, induced plant defense signaling via the abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) pathways, and on the host nutritional quality in terms of leaf free amino acid content. During the penetration phase of aphid feeding, drought decreased epidermis/mesophyll resistance but increased mesophyll/phloem resistance of A17 but not sta-1 plants. Quantification of transcripts associated with ABA, JA and SA signaling indicated that the drought-induced up-regulation of ABA signaling decreased the SA-dependent defense but increased the JA-dependent defense in A17 plants. During the phloem-feeding phase, drought had little effect on the amino acid concentrations and the associated aphid phloem-feeding parameters in both plant genotypes. In the xylem absorption stage, drought decreased xylem absorption time of aphids in both genotypes because of decreased water potential. Nevertheless, the activation of the ABA signaling pathway increased water-use efficiency of A17 plants by decreasing the stomatal aperture and transpiration rate. In contrast, the water potential of sta-1 plants (unable to close stomata) was too low to support xylem absorption activity of aphids; the aphids on sta-1 plants had the highest hemolymph osmolarity and lowest abundance under drought conditions. Taken together this study illustrates the significance of cross-talk between biotic-abiotic signaling pathways in plant-aphid interaction, and reveals the mechanisms leading to alter

  13. Job demands, health perception and sickness absence

    NARCIS (Netherlands)

    Roelen, C.A.; Koopmans, P.C.; de Graaf, J.H.; van Zandbergen, J.W.; Groothoff, J.W.

    2007-01-01

    Background Investigation of the relations between job demands, health and sickness absence is required to design a strategy for the prevention of absence and disability. Aim To study the relationships between (physical and psychological) job demands, health perception and sickness absence. Methods

  14. Multi-scales analysis of the global change impact on the diversity of the aphid communities

    International Nuclear Information System (INIS)

    Hulle, M.

    2007-01-01

    The primary objective of this project is to investigate the effects of global change on the biodiversity of aphid communities in Western Europe. Biodiversity has been examined at 3 levels: total number of species, phenology and reproductive strategy. Data were provided by EXAMINE, the European suction traps network which has been now operating for 35 years. 392 different species have been identified. At each location, total number of species has been regularly increasing, one additional species being caught every 1 or 2 years depending on location. This is due to introduced species but also to warming which favours rare species. No general trend of increasing density has been detected, but phenological earliness of almost all species (annual date of first appearance in suction traps) is strongly correlated with temperature and especially with mean daily temperature (during more or less long periods of time lying principally in February and March) or number of days below 0 C. Strong relationships between aphid phenology and environmental variables have been found and there is strong discrimination between species with different life cycle strategies, and between species feeding on herbs and trees, suggesting the possible value of trait-based groupings in predicting responses to environmental changes. These preliminary results suggest that 1) biodiversity has increased during the last decades; 2) there is a pool of species among which some of them reach a detectable density only during years where temperatures are high enough; 3) a set of newly introduced species succeed in settling being favoured by warming and 4) phenology of aphids is expected to advance and their abundance to increase with temperature, and the possible role of natural enemies to regulate abundant species is discussed. (author)

  15. Homeopathic Preparations to Control the Rosy Apple Aphid (Dysaphis plantaginea Pass.

    Directory of Open Access Journals (Sweden)

    Eric Wyss

    2010-01-01

    Full Text Available A laboratory model system with the rosy apple aphid (Dysaphis plantaginea Pass. on apple seedlings was developed to study the effects of homeopathic preparations on this apple pest. The assessment included the substance Lycopodium clavatum and a nosode of the rosy apple aphid. Each preparation was applied on the substrate surface as aqueous solution of granules (6c, 15c, or 30c. Controls were aqueous solutions of placebo granules or pure water. In eight independent, randomized, and blinded experiments under standardized conditions in growth chambers, the development of aphids on treated and untreated apple seedlings was observed over 17 days, each. Six experiments were determined to assess the effects of a strict therapeutic treatment; two experiments were designed to determine the effects of a combined preventative and therapeutic treatment. After application of the preparations, the number of juvenile offspring and the damage on apple seedlings were assessed after 7 and 17 days, respectively. In addition, after 17 days, the seedling weight was measured. In the final evaluation of the six strictly therapeutic trials after 17 days, the number of juvenile offspring was reduced after application of L. clavatum 15c (-17%, p = 0.002 and nosode 6c (-14%, p = 0.02 compared to the pure water control. No significant effects were observed for leaf damage or fresh weight for any application. In the two experiments with combined preventative and therapeutic treatment, no significant effects were observed in any measured parameter. Homeopathic remedies may be effective in plant-pest systems. The magnitude of observed effects seems to be larger than in models with healthy plants, which renders plant-pest systems promising candidates for homeopathic basic research. For successful application in agriculture, however, the effect is not yet sufficient. This calls for further optimization concerning homeopathic remedy selection, potency level, dosage, and

  16. Feeding of Whitefly on Tobacco Decreases Aphid Performance via Increased Salicylate Signaling.

    Directory of Open Access Journals (Sweden)

    Haipeng Zhao

    Full Text Available The feeding of Bemisia tabaci nymphs trigger the SA pathway in some plant species. A previous study showed that B. tabaci nymphs induced defense against aphids (Myzus persicae in tobacco. However, the mechanism underlying this defense response is not well understood.Here, the effect of activating the SA signaling pathway in tobacco plants through B. tabaci nymph infestation on subsequent M. persicae colonization is investigated. Performance assays showed that B. tabaci nymphs pre-infestation significantly reduced M. persicae survival and fecundity systemically in wild-type (WT but not salicylate-deficient (NahG plants compared with respective control. However, pre-infestation had no obvious local effects on subsequent M. persicae in either WT or NahG tobacco. SA quantification results indicated that the highest accumulation of SA was induced by B. tabaci nymphs in WT plants after 15 days of infestation. These levels were 8.45- and 6.14-fold higher in the local and systemic leaves, respectively, than in controls. Meanwhile, no significant changes of SA levels were detected in NahG plants. Further, biochemical analysis of defense enzymes polyphenol oxidase (PPO, peroxidase (POD, β-1,3-glucanase, and chitinase demonstrated that B. tabaci nymph infestation increased these enzymes' activity locally and systemically in WT plants, and there was more chitinase and β-1, 3-glucanase activity systemically than locally, which was opposite to the changing trends of PPO. However, B. tabaci nymph infestation caused no obvious increase in enzyme activity in any NahG plants except POD.In conclusion, these results underscore the important role that induction of the SA signaling pathway by B. tabaci nymphs plays in defeating aphids. It also indicates that the activity of β-1, 3-glucanase and chitinase may be positively correlated with resistance to aphids.

  17. Impact of water-deficit stress on tritrophic interactions in a wheat-aphid-parasitoid system.

    Directory of Open Access Journals (Sweden)

    Syed Suhail Ahmed

    Full Text Available Increasing temperature and CO2 concentrations can alter tritrophic interactions in ecosystems, but the impact of increasingly severe drought on such interactions is not well understood. We examined the response of a wheat-aphid-parasitoid system to variation in water-deficit stress levels. Our results showed that arid area clones of the aphid, Sitobion avenae (Fabricius, tended to have longer developmental times compared to semiarid and moist area clones, and the development of S. avenae clones tended to be slower with increasing levels of water-deficit. Body sizes of S. avenae clones from all areas decreased with increasing water-deficit levels, indicating their declining adaptation potential under drought. Compared to arid area clones, moist area clones of S. avenae had a higher frequency of backing under severe water stress only, but a higher frequency of kicking under well-watered conditions only, suggesting a water-deficit level dependent pattern of resistance against the parasitoid, Aphidius gifuensis (Ashmead. The number of S. avenae individuals attacked by the parasitoid in 10 min showed a tendency to decrease with increasing water-deficit levels. Clones of S. avenae tended to have lower parasitism rates under treatments with higher water-deficit levels. The development of the parasitoid tended to be slower under higher levels of water-deficit stress. Thus, the bottom-up effects of water-deficit stressed plants were negative on S. avenae. However, the top-down effects via parasitoids were compromised by water-deficit, which could favor the growth of aphid populations. Overall, the first trophic level under water-deficit stress was shown to have an indirect and negative impact on the third trophic level parasitoid, suggesting that parasitoids could be increasingly vulnerable in future warming scenarios.

  18. Transgenerational shifts in reproduction hormesis in green peach aphid exposed to low concentrations of imidacloprid.

    Directory of Open Access Journals (Sweden)

    Murali-Mohan Ayyanath

    Full Text Available Hormesis is a biphasic phenomenon that in toxicology is characterized by low-dose stimulation and high-dose inhibition. It has been observed in a wide range of organisms in response to many chemical stressors, including insects exposed to pesticides, with potential repercussions for agriculture and pest management. To address questions related to the nature of the dose-response and potential consequences on biological fitness, we examined transgenerational hormesis in the green peach aphid, Myzus persicae, when exposed to sublethal concentrations of the insecticide imidacloprid. A hormetic response in the form of increased reproduction was consistently observed and a model previously developed to test for hormesis adequately fit some of our data. However, the nature of the dose-response differed within and across generations depending upon the duration and mode of exposure. Decreased reproduction in intermediate generations confirmed that fitness tradeoffs were a consequence of the hormetic response. However, recovery to levels of reproduction equal to that of controls in subsequent generations and significantly greater total reproduction after four generations suggested that biological fitness was increased by exposure to low concentrations of the insecticide, even when insects were continuously exposed to the stressor. This was especially evident in a greenhouse experiment where the instantaneous rate of population increase almost doubled and total aphid production more than quadrupled when aphids were exposed to potato plants systemically treated with low amounts of imidacloprid. Our results show that although fitness tradeoffs do occur with hormetic responses, this does not necessarily compromise overall biological fitness.

  19. Plant Water Stress Affects Interactions Between an Invasive and a Naturalized Aphid Species on Cereal Crops.

    Science.gov (United States)

    Foote, N E; Davis, T S; Crowder, D W; Bosque-Pérez, N A; Eigenbrode, S D

    2017-06-01

    In cereal cropping systems of the Pacific Northwestern United States (PNW), climate change is projected to increase the frequency of drought during summer months, which could increase water stress for crop plants. Yet, it remains uncertain how interactions between herbivore species are affected by drought stress. Here, interactions between two cereal aphids present in PNW cereal systems, Metopolophium festucae (Theobald) subsp. cerealium (a newly invasive species) and Rhopalosiphum padi L. (a naturalized species), were tested relative to wheat water stress. When aphids were confined in leaf cages on wheat, asymmetrical facilitation occurred; per capita fecundity of R. padi was increased by 46% when M. festucae cerealium was also present, compared to when only R. padi was present. Imposed water stress did not influence this interaction. When aphids were confined on whole wheat plants, asymmetrical competition occurred; cocolonization inhibited M. festucae cerealium population growth but did not affect R. padi population growth. Under conditions of plant water stress, however, the inhibitory effect of R. padi on M. festucae cerealium was not observed. We conclude that beneficial effects of cocolonization on R. padi are due to a localized plant response to M. festucae cerealium feeding, and that cocolonization of plants is likely to suppress M. festucae cerealium populations under ample water conditions, but not when plants are water stressed. This suggests that plant responses to water stress alter the outcome of competition between herbivore species, with implications for the structure of pest communities on wheat during periods of drought. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  20. Dynamics of nonpersistent aphid-borne viruses in lettuce crops covered with UV-absorbing nets.

    Science.gov (United States)

    Legarrea, S; Betancourt, M; Plaza, M; Fraile, A; García-Arenal, F; Fereres, A

    2012-04-01

    Aphid-transmitted viruses frequently cause severe epidemics in lettuce grown under Mediterranean climates. Spatio-temporal dynamics of aphid-transmitted viruses and its vector were studied on lettuce (Lactuca sativa L.) grown under tunnels covered by two types of nets: a commercial UV-absorbing net (Bionet) and a Standard net. A group of plants infected by Cucumber mosaic virus (CMV, family Bromoviridae, genus Cucumovirus) and Lettuce mosaic virus (LMV, family Potyviridae, genus Potyvirus) was transplanted in each plot. The same virus-infected source plants were artificially infested by the aphid Macrosiphum euphorbiae (Thomas). Secondary spread of insects was weekly monitored and plants were sampled for the detection of viruses every two weeks. In 2008, the infection rate of both CMV and LMV were lower under the Bionet than under the Standard cover, probably due to the lower population density and lower dispersal rate achieved by M. euphorbiae. However, during spring of 2009, significant differences in the rate of infection between the two covers were only found for LMV six weeks after transplant. The spatial distribution of the viruses analysed by SADIE methodology was "at random", and it was not associated to the spatial pattern of the vector. The results obtained are discussed analyzing the wide range of interactions that occurred among UV-radiation, host plant, viruses, insect vector and environmental conditions. Our results show that UV-absorbing nets can be recommended as a component of an integrated disease management program to reduce secondary spread of lettuce viruses, although not as a control measure on its own. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Natural occurrence of entomophthoroid fungi of aphid pests on Medicago sativa L. in Argentina

    Directory of Open Access Journals (Sweden)

    Romina G Manfrino

    Full Text Available Four species of entomophthoroid fungi, Pandora neoaphidis (Entomophthorales: Entomophthoraceae, Zoophthora radicans (Entomophthorales: Entomophthoraceae, Entomophthora planchoniana (Entomophthorales: Entomophthoraceae and Neozygites fresenii (Neozygitales: Neozygitaceae were found to infect Aphis craccivora, Therioaphis trifolii, and Acyrthosiphon pisum and unidentified species of Acyrthosiphon on lucerne in Argentina. Samples were collected from five sites (Ceres, Rafaela, Sarmiento, Monte Vera and Bernardo de Irigoyen in the province of Santa Fe. In this study, Zoophthora radicans was the most important pathogen and was recorded mainly on Acyrthosiphon sp. Zoophthora radicans was successfully isolated and maintained in pure cultures. This study is the first report of entomophthoroid fungi infecting lucerne (Medicago sativa L. aphids in Argentina.

  2. How accurate is the phenotype? – An analysis of developmental noise in a cotton aphid clone

    Directory of Open Access Journals (Sweden)

    Babbitt Gregory A

    2008-02-01

    Full Text Available Abstract Background The accuracy by which phenotype can be reproduced by genotype potentially is important in determining the stability, environmental sensitivity, and evolvability of morphology and other phenotypic traits. Because two sides of an individual represent independent development of the phenotype under identical genetic and environmental conditions, average body asymmetry (or "fluctuating asymmetry" can estimate the developmental instability of the population. The component of developmental instability not explained by intrapopulational differences in gene or environment (or their interaction can be further defined as internal developmental noise. Surprisingly, developmental noise remains largely unexplored despite its potential influence on our interpretations of developmental stability, canalization, and evolvability. Proponents of fluctuating asymmetry as a bioindicator of environmental or genetic stress, often make the assumption that developmental noise is minimal and, therefore, that phenotype can respond sensitively to the environment. However, biologists still have not measured whether developmental noise actually comprises a significant fraction of the overall environmental response of fluctuating asymmetry observed within a population. Results In a morphometric study designed to partition developmental noise from fluctuating asymmetry in the wing morphology of a monoclonal culture of cotton aphid, Aphis gossipyii, it was discovered that fluctuating asymmetry in the aphid wing was nearly four times higher than in other insect species. Also, developmental noise comprised a surprisingly large fraction (≈ 50% of the overall response of fluctuating asymmetry to a controlled graded temperature environment. Fluctuating asymmetry also correlated negatively with temperature, indicating that environmentally-stimulated changes in developmental instability are mediated mostly by changes in the development time of individuals

  3. Alteration of intersubunit acid–base pair interactions at the quasi-threefold axis of symmetry of Cucumber mosaic virus disrupts aphid vector transmission

    International Nuclear Information System (INIS)

    Bricault, Christine A.; Perry, Keith L.

    2013-01-01

    In the atomic model of Cucumber mosaic virus (CMV), six amino acid residues form stabilizing salt bridges between subunits of the asymmetric unit at the quasi-threefold axis of symmetry. To evaluate the effects of these positions on virion stability and aphid vector transmissibility, six charged amino acid residues were individually mutated to alanine. All of the six engineered viruses were viable and exhibited near wild type levels of virion stability in the presence of urea. Aphid vector transmissibility was nearly or completely eliminated in the case of four of the mutants; two mutants demonstrated intermediate aphid transmissibility. For the majority of the engineered mutants, second-site mutations were observed following aphid transmission and/or mechanical passaging, and one restored transmission rates to that of the wild type. CMV capsids tolerate disruption of acid–base pairing interactions at the quasi-threefold axis of symmetry, but these interactions are essential for maintaining aphid vector transmissibility. - Highlights: ► Amino acids between structural subunits of Cucumber mosaic virus affect vector transmission. ► Mutant structural stability was retained, while aphid vector transmissibility was disrupted. ► Spontaneous, second-site mutations restored aphid vector transmissibility

  4. Alteration of intersubunit acid–base pair interactions at the quasi-threefold axis of symmetry of Cucumber mosaic virus disrupts aphid vector transmission

    Energy Technology Data Exchange (ETDEWEB)

    Bricault, Christine A. [Department of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Building, Cornell University, Ithaca, NY 14850 (United States); Perry, Keith L., E-mail: KLP3@cornell.edu [Department of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Building, Cornell University, Ithaca, NY 14850 (United States)

    2013-06-05

    In the atomic model of Cucumber mosaic virus (CMV), six amino acid residues form stabilizing salt bridges between subunits of the asymmetric unit at the quasi-threefold axis of symmetry. To evaluate the effects of these positions on virion stability and aphid vector transmissibility, six charged amino acid residues were individually mutated to alanine. All of the six engineered viruses were viable and exhibited near wild type levels of virion stability in the presence of urea. Aphid vector transmissibility was nearly or completely eliminated in the case of four of the mutants; two mutants demonstrated intermediate aphid transmissibility. For the majority of the engineered mutants, second-site mutations were observed following aphid transmission and/or mechanical passaging, and one restored transmission rates to that of the wild type. CMV capsids tolerate disruption of acid–base pairing interactions at the quasi-threefold axis of symmetry, but these interactions are essential for maintaining aphid vector transmissibility. - Highlights: ► Amino acids between structural subunits of Cucumber mosaic virus affect vector transmission. ► Mutant structural stability was retained, while aphid vector transmissibility was disrupted. ► Spontaneous, second-site mutations restored aphid vector transmissibility.

  5. Assessing the value and pest management window provided by neonicotinoid seed treatments for management of soybean aphid (Aphis glycines Matsumura) in the Upper Midwestern United States.

    Science.gov (United States)

    Krupke, Christian H; Alford, Adam M; Cullen, Eileen M; Hodgson, Erin W; Knodel, Janet J; McCornack, Brian; Potter, Bruce D; Spigler, Madeline I; Tilmon, Kelley; Welch, Kelton

    2017-10-01

    A 2-year, multi-state study was conducted to assess the benefits of using soybean seed treated with the neonicotinoid thiamethoxam to manage soybean aphid in the upper Midwestern USA and compare this approach with an integrated pest management (IPM) approach that included monitoring soybean aphids and treating with foliar-applied insecticide only when the economic threshold was reached. Concentrations of thiamethoxam in soybean foliage were also quantified throughout the growing season to estimate the pest management window afforded by insecticidal seed treatments. Both the IPM treatment and thiamethoxam-treated seed resulted in significant reductions in cumulative aphid days when soybean aphid populations reached threshold levels. However, only the IPM treatment resulted in significant yield increases. Analysis of soybean foliage from thiamethoxam-treated seeds indicated that tissue concentrations of thiamethoxam were statistically similar to plants grown from untreated seeds beginning at the V2 growth stage, indicating that the period of pest suppression for soybean aphid is likely to be relatively short. These data demonstrate that an IPM approach, combining scouting and foliar-applied insecticide where necessary, remains the best option for treatment of soybean aphids, both in terms of protecting the yield potential of the crop and of break-even probability for producers. Furthermore, we found that thiamethoxam concentrations in foliage are unlikely to effectively manage soybean aphids for most of the pests' activity period across the region. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Infestation of potato (Solanum tuberosum L.) by the peach-potato aphid (Myzus persicae Sulzer) alters cellular redox status and is influenced by ascorbate.

    Science.gov (United States)

    Kerchev, Pavel I; Fenton, Brian; Foyer, Christine H; Hancock, Robert D

    2012-02-01

    The peach-potato aphid (Myzus persicae Sulzer) is a major pest of potato (Solanum tuberosum L.) but the molecular characterization of this interaction particularly with regard to oxidants and antioxidants remains to be undertaken. Aphid colonies reared on potato leaves containing high ascorbate were twice the size of those grown on leaves with low ascorbate. Infestation-dependent decreases in the abundance of key transcripts such as chloroplastic FeSOD, peroxisomal catalase 2, PR1 and JAZ1 preceded detectable leaf H(2)O(2) or polyphenol accumulation. The leaf glutathione pool was increased 48 h after infestation, but the amount of ascorbate was unchanged. The ascorbate/dehydroacorbate (DHA) ratio was lower at 48 h but the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) was unchanged. While DHA reductase and GSSG reductase activities were unaffected by aphid feeding, non-specific peroxidase activities were enhanced 48 h following aphid infestation. Brown ethanol-insoluble deposits were observed close to leaf veins following aphid infestation. Taken together, the results demonstrate that high ascorbate favours aphid colony expansion and that perturbations in the leaf antioxidant system are intrinsic to the potato leaf response to aphids. Moreover, these changes together with the induction of hormone-related transcripts precede the deposition of defence-associated oxidized polyphenols along the stylet track. © 2011 Blackwell Publishing Ltd.

  7. Elevated CO2 increases R gene-dependent resistance of Medicago truncatula against the pea aphid by up-regulating a heat shock gene.

    Science.gov (United States)

    Sun, Yucheng; Guo, Huijuan; Yuan, Erliang; Ge, Feng

    2018-03-01

    Resistance against pathogens and herbivorous insects in many plant results from the expression of resistance (R) genes. Few reports, however, have considered the effects of elevated CO 2 on R gene-based resistance in plants. The current study determined the responses of two near isogenic Medicago truncatula genotypes (Jester has an R gene and A17 does not) to the pea aphid and elevated CO 2 in open-top chambers in the field. Aphid abundance, mean relative growth rate and feeding efficiency were increased by elevated CO 2 on A17 plants but were reduced on Jester plants. According to proteomic and gene expression data, elevated CO 2 enhanced pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) but decreased the effector-triggered immunity (ETI) in aphid-infested A17 plants. For aphid-infested Jester plants, by contrast, elevated CO 2 enhanced the ETI-related heat shock protein (HSP) 90 and its co-chaperones, the jasmonic acid (JA) signaling pathway, and ubiquitin-mediated proteolysis. In a loss-of-function experiment, silencing of the HSP90 gene in Jester plants impaired the JA signaling pathway and ubiquitin-mediated proteolysis against the aphid under ambient CO 2 , and negated the increased resistance against the aphid under elevated CO 2 . Our results suggest that increases in expression of HSP90 are responsible for the enhanced resistance against the aphid under elevated CO 2 . © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  8. Elucidating the resistance response of irradiated banana cv. Lakatan to banana bunchy top virus (BBTV) infection transmitted by the banana aphid Pentalonia nigronervosa Coquerol

    International Nuclear Information System (INIS)

    Dela Cueva, F.M.; Sison, M.L.J.; Dinglasan, E.G.; Damasco, O.P.

    2014-01-01

    Development of banana bunchy top virus (BBTV)-resistant banana variety Lakatan through gamma-irradiation had been successfully done as part of integrated management strategies against the disease. Ten irradiated Lakatan lines exhibited resistance to BBTV. Resistance of these lines was evaluated based on symptomatology and host-virus relationship. Insect colony development on Lakatan banana irradiated lines was monitored by artificially inoculating viruliferous banana aphids, Pentalonia nigronervosa, and counting the resulting number of aphids per plant at weekly intervals. Resistance to virus multiplication of Lakatan irradiated lines was characterized by quantifying the virus titer through Enzyme-Linked Immunosorbent Assay (ELISA). Results showed that not all lines were suitable as hosts in establishing aphid population. The reaction of the mutant lines to the vector and the pathogen varied to some extent. Disease incidence in some cases was correlated with aphid preference. Disease incidence was significantly higher (50%) on lines that were preferred by aphids and lower (50%) in those that were not colonized. Some mutant lines with very low aphid colony count, however showed high BBTV incidence. Variability in the results could be affected by other factors such as the developmental stage of the plant and prevailing environmental conditions during the conduct of the experiment. Virus titer was also reduced on these mutant lines, thus reduced virus multiplication. Non-irradiated (control) Lakatan banana had comparably high population of aphids, high disease incidence, and high virus titer

  9. Prospecting sugarcane resistance to Sugarcane yellow leaf virus by genome-wide association.

    Science.gov (United States)

    Debibakas, S; Rocher, S; Garsmeur, O; Toubi, L; Roques, D; D'Hont, A; Hoarau, J-Y; Daugrois, J H

    2014-08-01

    Using GWAS approaches, we detected independent resistant markers in sugarcane towards a vectored virus disease. Based on comparative genomics, several candidate genes potentially involved in virus/aphid/plant interactions were pinpointed. Yellow leaf of sugarcane is an emerging viral disease whose causal agent is a Polerovirus, the Sugarcane yellow leaf virus (SCYLV) transmitted by aphids. To identify quantitative trait loci controlling resistance to yellow leaf which are of direct relevance for breeding, we undertook a genome-wide association study (GWAS) on a sugarcane cultivar panel (n = 189) representative of current breeding germplasm. This panel was fingerprinted with 3,949 polymorphic markers (DArT and AFLP). The panel was phenotyped for SCYLV infection in leaves and stalks in two trials for two crop cycles, under natural disease pressure prevalent in Guadeloupe. Mixed linear models including co-factors representing population structure fixed effects and pairwise kinship random effects provided an efficient control of the risk of inflated type-I error at a genome-wide level. Six independent markers were significantly detected in association with SCYLV resistance phenotype. These markers explained individually between 9 and 14 % of the disease variation of the cultivar panel. Their frequency in the panel was relatively low (8-20 %). Among them, two markers were detected repeatedly across the GWAS exercises based on the different disease resistance parameters. These two markers could be blasted on Sorghum bicolor genome and candidate genes potentially involved in plant-aphid or plant-virus interactions were localized in the vicinity of sorghum homologs of sugarcane markers. Our results illustrate the potential of GWAS approaches to prospect among sugarcane germplasm for accessions likely bearing resistance alleles of significant effect useful in breeding programs.

  10. Resistance and susceptibility of alfalfa (Medicago sativa L.) cultivars to the aphid Therioaphis maculata (Homoptera:Aphididae): insect biology and cultivar evaluation

    Institute of Scientific and Technical Information of China (English)

    ALEXANDRE DE ALMEIDA E SILVA; ELENICE MOURO VARANDA; JOS(E) RICARDO BAROSELA

    2006-01-01

    Biology of the aphid Therioaphis maculata was studied on alfalfa (Medicago sativa L.), including four resistant (Mesa-Sirsa, CUF101, Baker and Lahontan) and two susceptible (ARC and Caliverde) alfalfa cultivars, and one of the most cropped Brazilian cultivars, Crioula. Under controlled conditions, antibiosis (i.e., reduced longevity, fecundity and increased mortality of the aphid) was observed mainly on the resistant alfalfa cultivars,except on Lahontan. Crioula seemed to be tolerant to aphids. Present data support geographic limitation usage of cultivars, and we suggest Baker and Mesa-Sirsa as sources of antibiosis,and provide biological information of a tropical T. maculata biotype on alfalfa.

  11. Expression Patterns of Genes Involved in Ascorbate-Glutathione Cycle in Aphid-Infested Maize (Zea mays L.) Seedlings.

    Science.gov (United States)

    Sytykiewicz, Hubert

    2016-02-23

    Reduced forms of ascorbate (AsA) and glutathione (GSH) are among the most important non-enzymatic foliar antioxidants in maize (Zea mays L.). The survey was aimed to evaluate impact of bird cherry-oat aphid (Rhopalosiphum padi L.) or grain aphid (Sitobion avenae F.) herbivory on expression of genes related to ascorbate-glutathione (AsA-GSH) cycle in seedlings of six maize varieties (Ambrozja, Nana, Tasty Sweet, Touran, Waza, Złota Karłowa), differing in resistance to the cereal aphids. Relative expression of sixteen maize genes encoding isoenzymes of ascorbate peroxidase (APX1, APX2, APX3, APX4, APX5, APX6, APX7), monodehydroascorbate reductase (MDHAR1, MDHAR2, MDHAR3, MDHAR4), dehydroascorbate reductase (DHAR1, DHAR2, DHAR3) and glutathione reductase (GR1, GR2) was quantified. Furthermore, effect of hemipterans' attack on activity of APX, MDHAR, DHAR and GR enzymes, and the content of reduced and oxidized ascorbate and glutathione in maize plants were assessed. Seedling leaves of more resistant Z. mays varieties responded higher elevations in abundance of target transcripts. In addition, earlier and stronger aphid-triggered changes in activity of APX, MDHAR, DHAR and GR enzymes, and greater modulations in amount of the analyzed antioxidative metabolites were detected in foliar tissues of highly resistant Ambrozja genotype in relation to susceptible Tasty Sweet plants.

  12. Experimental test of an eco-evolutionary dynamic feedback loop between evolution and population density in the green peach aphid.

    Science.gov (United States)

    Turcotte, Martin M; Reznick, David N; Daniel Hare, J

    2013-05-01

    An eco-evolutionary feedback loop is defined as the reciprocal impacts of ecology on evolutionary dynamics and evolution on ecological dynamics on contemporary timescales. We experimentally tested for an eco-evolutionary feedback loop in the green peach aphid, Myzus persicae, by manipulating initial densities and evolution. We found strong evidence that initial aphid density alters the rate and direction of evolution, as measured by changes in genotype frequencies through time. We also found that evolution of aphids within only 16 days, or approximately three generations, alters the rate of population growth and predicts density compared to nonevolving controls. The impact of evolution on population dynamics also depended on density. In one evolution treatment, evolution accelerated population growth by up to 10.3% at high initial density or reduced it by up to 6.4% at low initial density. The impact of evolution on population growth was as strong as or stronger than that caused by a threefold change in intraspecific density. We found that, taken together, ecological condition, here intraspecific density, alters evolutionary dynamics, which in turn alter concurrent population growth rate (ecological dynamics) in an eco-evolutionary feedback loop. Our results suggest that ignoring evolution in studies predicting population dynamics might lead us to over- or underestimate population density and that we cannot predict the evolutionary outcome within aphid populations without considering population size.

  13. Effect of a genetically modified potato on aphids and their predatory gall midge Aphidoletes aphidimyza (Rond.) (Diptera, Cecidomyiidae)

    Czech Academy of Sciences Publication Activity Database

    Hussein, Hany; Havelka, Jan

    2005-01-01

    Roč. 15, č. 2 (2005), s. 123-127 ISSN 1110-1768 R&D Projects: GA AV ČR(CZ) IBS5007102 Institutional research plan: CEZ:AV0Z50070508 Keywords : aphid-predator-interactions * GNA * Macrosiphum eubhorbiae Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection

  14. Localization, Concentration, and Transmission Efficiency of Banana bunchy top virus in Four Asexual Lineages of Pentalonia aphids

    Directory of Open Access Journals (Sweden)

    Alberto Bressan

    2013-02-01

    Full Text Available Banana bunchy top virus (BBTV is the most destructive pathogenic virus of banana plants worldwide. The virus is transmitted in a circulative non-propagative manner by the banana aphid, Pentalonia nigronervosa Coquerel. In this work, we examined the localization, accumulation, and transmission efficiency of BBTV in four laboratory-established lineages of Pentalonia aphids derived from four different host plants: taro (Colocasia esculenta, heliconia (Heliconia spp., red ginger (Alpinia purpurata, and banana (Musa sp.. Mitochondrial sequencing identified three and one lineages as Pentalonia caladii van der Goot, a recently proposed species, and P. nigronervosa, respectively. Microsatellite analysis separated the aphid lineages into four distinct genotypes. The transmission of BBTV was tested using leaf disk and whole-plant assays, both of which showed that all four lineages are competent vectors of BBTV, although the P. caladii from heliconia transmitted BBTV to the leaf disks at a significantly lower rate than did P. nigronervosa. The concentration of BBTV in dissected guts, haemolymph, and salivary glands was quantified by real-time PCR. The BBTV titer reached similar concentrations in the guts, haemolymph, and salivary glands of aphids from all four lineages tested. Furthermore, immunofluorescence assays showed that BBTV antigens localized to the anterior midguts and the principal salivary glands, demonstrating a similar pattern of translocations across the four lineages. The results reported in this study showed for the first time that P. caladii is a competent vector of BBTV.

  15. Localization, concentration, and transmission efficiency of Banana bunchy top virus in four asexual lineages of Pentalonia aphids.

    Science.gov (United States)

    Watanabe, Shizu; Greenwell, April M; Bressan, Alberto

    2013-02-22

    Banana bunchy top virus (BBTV) is the most destructive pathogenic virus of banana plants worldwide. The virus is transmitted in a circulative non-propagative manner by the banana aphid, Pentalonia nigronervosa Coquerel. In this work, we examined the localization, accumulation, and transmission efficiency of BBTV in four laboratory-established lineages of Pentalonia aphids derived from four different host plants: taro (Colocasia esculenta), heliconia (Heliconia spp.), red ginger (Alpinia purpurata), and banana (Musa sp.). Mitochondrial sequencing identified three and one lineages as Pentalonia caladii van der Goot, a recently proposed species, and P. nigronervosa, respectively. Microsatellite analysis separated the aphid lineages into four distinct genotypes. The transmission of BBTV was tested using leaf disk and whole-plant assays, both of which showed that all four lineages are competent vectors of BBTV, although the P. caladii from heliconia transmitted BBTV to the leaf disks at a significantly lower rate than did P. nigronervosa. The concentration of BBTV in dissected guts, haemolymph, and salivary glands was quantified by real-time PCR. The BBTV titer reached similar concentrations in the guts, haemolymph, and salivary glands of aphids from all four lineages tested. Furthermore, immunofluorescence assays showed that BBTV antigens localized to the anterior midguts and the principal salivary glands, demonstrating a similar pattern of translocations across the four lineages. The results reported in this study showed for the first time that P. caladii is a competent vector of BBTV.

  16. The impact of transgenic wheat expressing GNA (snowdrop lectin) on the aphids Sitobion avenae, Schizaphis graminum, and Rhopalosiphum padi.

    Science.gov (United States)

    Miao, Jin; Wu, Yuqing; Xu, Weigang; Hu, Lin; Yu, Zhenxing; Xu, Qiongfang

    2011-06-01

    This study investigated the impact of transgenic wheat expressing Galanthus nivalis agglutinin (GNA), commonly known as snowdrop lectin, on three wheat aphids: Sitobion avenae (F.), Schizaphis graminum (Rondani), and Rhopalosiphum padi (L.). We compared the feeding behavior and the life-table parameters of aphids reared on GNA transgenic wheat (test group) and those aphids reared on untransformed wheat (control group). The results showed that the feeding behaviors of S. avenae and S. graminum on GNA transgenic wheat were affected. Compared with the control group, they had shorter initial probing period, longer total nonprobing period, shorter initial and total phloem sap ingestion phase (waveform E2), shorter duration of sustained ingestion (E (pd) > 10 min), and lower percentage of phloem phase of the total observation time. Moreover, S. graminum made more probes and had a longer total duration of extracellular stylet pathway (waveform C). The fecundity and intrinsic rate of natural increase (r(m)) of S. avenae and S. graminum on the transgenic wheat were lowered in the first and second generations, however, the survival and lifespan were not affected. The effects of the GNA expressing wheat on S. graminum and S. avenae were not significant in the third generation, suggesting rapid adaptation by the two aphid species. Despite the impact we found on S. avenae and S. graminum, transgenic GNA expressing wheat did not have any effects on R. padi.

  17. Reciprocal interactions between native and introduced populations of common milkweed, Asclepias syriaca, and the specialist aphid, Aphis nerii

    NARCIS (Netherlands)

    Bukovinszky, T.; Gols, R.; Agrawal, A.A.; Roge, C.; Bezemer, T.M.; Biere, A.; Harvey, J.A.

    2014-01-01

    Following its introduction into Europe (EU), the common milkweed (Asclepias syriaca) has been free of most specialist herbivores that are present in its native North American (NA) range, except for the oleander aphid Aphis nerii. We compared EU and NA populations of A. nerii on EU and NA milkweed

  18. Comparison of complete mitochondrial DNA sequences between old and new world strains of the cowpea aphid, Aphis craccivora (Hemiptera: Aphididae)

    Science.gov (United States)

    Mitochondrial DNA provides useful tools for inferring population genetic structure within a species and phylogenetic relationships between species. The complete mitogenome sequences were assembled from strains of the cowpea aphids, Aphis craccivora, from the old (15,308 bp) and new world (15,305 bp...

  19. Expression of an (E-β-farnesene synthase gene from Asian peppermint in tobacco affected aphid infestation

    Directory of Open Access Journals (Sweden)

    Xiudao Yu

    2013-10-01

    Full Text Available Aphids are major agricultural pests that cause significant yield losses in crop plants each year. (E-β-farnesene (EβF is the main or only component of an alarm pheromone involved in chemical communication within aphid species and particularly in the avoidance of predation. EβF also occurs in the essential oil of some plant species, and is catalyzed by EβF synthase. By using oligonucleotide primers designed from the known sequence of an EβF synthase gene from black peppermint (Mentha × piperita, two cDNA sequences, MaβFS1 and MaβFS2, were isolated from Asian peppermint (Mentha asiatica. Expression pattern analysis showed that the MaβFS1 gene exhibited higher expression in flowers than in roots, stems and leaves at the transcriptional level. Overexpression of MaβFS1 in tobacco plants resulted in emission of pure EβF ranging from 2.62 to 4.85 ng d− 1 g− 1 of fresh tissue. Tritrophic interactions involving peach aphids (Myzus persicae, and predatory lacewing (Chrysopa septempunctata larvae demonstrated that transgenic tobacco expressing MaβFS1 had lower aphid infestation. This result suggested that the EβF synthase gene from Asian peppermint could be a good candidate for genetic engineering of agriculturally important crop plants.

  20. Susceptibility of Aphelinus certus to foliar-applied insecticides currently or potentially registered for soybean aphid control.

    Science.gov (United States)

    Frewin, Andrew J; Schaafsma, Arthur W; Hallett, Rebecca H

    2012-02-01

    Soybean aphid, a serious economic pest of soybean in North America, is currently managed by applying non-selective foliar insecticides during outbreaks according to decision thresholds and crop maturity. Natural enemies, such as the parasitoid Aphelinus certus Yasnosh, potentially play an important role in suppressing soybean aphid. Using selective insecticides that preserve A. certus may enhance the biological control service they provide and thus prevent or reduce the severity of soybean aphid outbreaks. The toxicity of five insecticides (λ-cyhalothrin, dimethoate, flonicamid, mineral oil, spirotetramat) and the biopesticide Beauveria bassiana to A. certus was assessed. The LD50 values of λ-cyhalothrin and dimethoate were similar; however, the hazard quotient of dimethoate was greater than that of λ-cyhalothrin. In a screening bioassay, the descending order of toxicity for the recommended rates 48 h after application was dimethoate>λ-cyhalothrin>flonicamid>mineral oil>Beauveria bassiana>spirotetramat. Overall, λ-cyhalothrin and dimethoate were both harmful to A. certus. The other insecticides tested were harmless to A. certus and are potential candidates for inclusion in soybean aphid management programs. Copyright © 2011 Society of Chemical Industry.

  1. Interactions between extrafloral nectaries, aphids and ants: are there competition effects between plant and homopteran sugar sources?

    NARCIS (Netherlands)

    Engel, V.; Fischer, M.D.; Wäckers, F.L.; Volkl, W.

    2001-01-01

    Broad bean (Vicia faba), an annual plant bearing extrafloral nectaries (EFN) at the base of the upper leaves, is regularly infested by two aphid species, Aphis fabae and Acyrthosiphon pisum. EFN and A. fabae are commonly attended by the ant, Lasius niger, while Ac. pisum usually remains uninfested.

  2. Spring aphid-parasitoid (Hom., Aphididae, Hym., Braconidae) associations and interactions in a Mediterranean arable crop ecosystem, including Bt maize

    Czech Academy of Sciences Publication Activity Database

    Pons, X.; Starý, Petr

    2003-01-01

    Roč. 76, - (2003), s. 133-138 ISSN 1436-5693 R&D Projects: GA AV ČR IBS5007102 Institutional research plan: CEZ:AV0Z5007907 Keywords : Cereal aphids * Iberian peninsula Subject RIV: EH - Ecology, Behaviour Impact factor: 0.197, year: 2003

  3. Biological control of cotton aphid (Aphis gossypii Glover) in cotton (inter)cropping systems in China : a simulation study

    NARCIS (Netherlands)

    Xia, J.

    1997-01-01

    Cotton aphid ( Aphis gossypii Glover) is the key insect pest of seedling cotton ( Gossypium hirsutum L. ) in China, particularly in the North China cotton region. The resulting annual losses amount to 10-15% of the attainable yield. Sole reliance on

  4. Alfalfa (Medicago sativa L.) shoot saponins: identification and bio-activity by the assessment of aphid feeding.

    Science.gov (United States)

    Mazahery-Laghab, H; Yazdi-Samadi, B; Bagheri, M; Bagheri, A R

    2011-01-01

    Biochemical components in alfalfa (Medicago sativa L.), such as saponins, can act as protecting factors against bio-stresses. Saponins are also antifeedants and show oral toxicity towards higher and lower animals. Changes in saponins, such as variation in the carbon skeleton, or hydrolysis of saponin glycosides and other conjugates, may change their biological effects. The aims of this research were to study saponin variation in different growth stages of alfalfa and to investigate the biological role of saponins in the spotted alfalfa aphid, Therioaphis maculata. Saponins from alfalfa shoots in different growth stages were extracted, chemically purified and analysed by TLC. Specific saponins such as soyasaponin1 from root and shoot and two bisdesmosides of medicagenic acid, one from shoot and another from root tissues, were identified using reference compounds allowing changes in saponin composition during plant development in different shoot tissues of alfalfa to be assessed. The response of the alfalfa aphid to feeding on alfalfa in different growth stages was studied. No significant difference in the survival of aphids, from neonate to adult, was observed, but due to the antibiotic effects of saponins, two differences were found in the onset of nymph production and cumulative nymph production. The results show that the saponin composition in alfalfa changes with plant development and this, in turn, can often negatively affect the development of specific insect pests such as the spotted alfalfa aphid, suggesting a possible biological role of alfalfa saponins.

  5. Elevated CO2 changes interspecific competition among three species of wheat aphids: Sitobion avenae, Rhopalosiphum padi, and Schizaphis graminum.

    Science.gov (United States)

    Sun, Yu Cheng; Chen, Fa Jun; Ge, Feng

    2009-02-01

    Effects of elevated CO2 (twice ambient) on the interspecific competition among three species of wheat aphids (Sitobion avenae, Rhopalosiphum padi, and Schizaphis graminum) and on wheat-aphid interactions were studied. Wheat plants had higher biomass and yield and lower water and nitrogen content of grain when grown under elevated CO2 than under ambient CO2; levels of condensed tannins, total phenols, and total nonstructural carbohydrates were also higher in wheat ears under elevated CO2. Compared with ambient CO2, elevated CO2 increased the abundance of R. padi when introduced solely but reduced its abundance when S. avenae was also present. The spatial distribution of wheat aphids was apparently influenced by CO2 levels, with significantly more S. avenae on ears and a more even distribution of R. padi on wheat plants under elevated CO2 versus ambient CO2. Elevated CO2 did not affect the abundance and spatial distribution of S. graminus when inoculated solely. Moreover, when S. avenae was present with either R. padi or S. graminum, spatial niche overlap was significantly decreased with elevated CO2. When three species co-occurred, elevated CO2 reduced spatial niche overlap between S. avenae and S. graminum and between R. padi and S. graminum. Our results suggest that increases in atmospheric CO2 would alleviate interspecific competition for these cases, which would accentuate the abundance of and the damage caused by these wheat aphids.

  6. Life stages of an aphid living under similar thermal conditions differ in thermal performance.

    Science.gov (United States)

    Zhao, Fei; Hoffmann, Ary A; Xing, Kun; Ma, Chun-Sen

    2017-05-01

    Heat responses can vary ontogenetically in many insects with complex life cycles, reflecting differences in thermal environments they experience. Such variation has rarely been considered in insects that develop incrementally and experience common microclimates across stages. To test if there is a low level of ontogenetic variation for heat responses in one such species, the English grain aphid Sitobion avenae, basal tolerance [upper lethal temperature (ULT 50 ) and maximum critical temperature (CT max )], hardening capacity (CT max ) and hardening costs (adult longevity and fecundity) were measured across five stages (1st, 2nd, 3rd and 4th-instar nymphs and newly moulted adults). We found large tolerance differences among stages of this global pest species, and a tendency for the stage with lower heat tolerance to show a stronger hardening response. There were also substantial reproductive costs of hardening responses, with the level of stress experienced, and not the proximity of the exposed stage to the reproductive adult stage, influencing the magnitude of this cost. Hence hardening in this aphid may counter inherently low tolerance levels of some life stages but at a cost to adult longevity and fecundity. Our findings highlight the significance of ontogenetic variation in predicting responses of a species to climate change, even in species without a complex life cycle. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. THE EFFECT OF WATER EXTRACTS FROM WINTER SAVORY ON BLACK BEAN APHID MORTALITY

    Directory of Open Access Journals (Sweden)

    Milena Rusin

    2016-01-01

    Full Text Available The aim of this study was to determine the effect of water extracts prepared from fresh and dry matter of winter savory (Satureja montana L. on mortality of wingless females and larvae of black bean aphid (Aphis fabae Scop.. The experiment was conducted in the laboratory, in six replicates. Dry extracts were prepared at concentration of 2%, 5% and 10%, while the fresh plant at concentration of 10%, 20% and 30%. Stomach poisoning of extracts was determined by soaking broad bean leaves in the respective solutions, and then determining mortality of wingless female and larvae feeding on leaves thus prepared at 12 hour intervals. The results of the experiment showed that the extract prepared from dry matter at the highest concentration (10%, as well as the extracts from fresh matter at concentration of 20% and 30% contributed to an increase in mortality of wingless female of black bean aphid. Meanwhile, extracts prepared from both dry and fresh matter at two highest concentrations caused an increase in mortality of larvae of this pest. Furthermore, with increasing concentrations of analysed extracts prepared from both fresh and dry matter of winter savory, their negative effect on wingless females and larvae usually increase.

  8. A Plant-Feeding Nematode Indirectly Increases the Fitness of an Aphid

    Directory of Open Access Journals (Sweden)

    Grace A. Hoysted

    2017-11-01

    Full Text Available Plants suffer multiple, simultaneous assaults from above and below ground. In the laboratory, pests and/or pathogen attack are commonly studied on an individual basis. The molecular response of the plant to attack from multiple organisms and the interaction of different defense pathways is unclear. The inducible systemic responses of the potato (Solanum tuberosum L. host plant were analyzed to characterize the plant-mediated indirect interactions between a sedentary, endoparasitic nematode (Globodera pallida, and a phloem-sucking herbivore (Myzus persicae. The reproductive success of M. persicae was greater on potato plants pre-infected with G. pallida compared to control plants. Salicylic acid (SA increased systemically in the leaves of potato plants following nematode and aphid infection singly with a corresponding increase in expression of SA-mediated marker genes. An increase in jasmonic acid associated with aphid infection was suppressed when plants were co-infected with nematodes. Our data suggests a positive, asymmetric interaction between a sedentary endoparasitic nematode and a sap-sucking insect. The systemic response of the potato plant following infection with G. pallida indirectly influences the performance of M. persicae. This work reveals additional secondary benefits of controlling individual crop pests.

  9. Salt Stress Effects on Secondary Metabolites of Cotton in Relation to Gene Expression Responsible for Aphid Development.

    Directory of Open Access Journals (Sweden)

    Qi Wang

    Full Text Available Many secondary metabolites have insecticidal efficacy against pests and may be affected by abiotic stress. However, little is known of how plants may respond to such stress as pertains the growth and development of pests. The objective of this study was to determine if and how salt stress on cotton plants affects the population dynamics of aphids. The NaCl treatment (50 mM, 100 mM, 150 mM and 200 mM increased contents of gossypol in cotton by 26.8-51.4%, flavonoids by 22.5-37.6% and tannic by 15.1-24.3% at 7-28 d after salt stress. Compared with non-stressed plants, the population of aphids on 150 and 200 mM NaCl stressed plants was reduced by 46.4 and 65.4% at 7d and by 97.3 and 100% at 14 days after infestation. Reductions in aphid population were possibly attributed to the elevated secondary metabolism under salt stress. A total of 796 clones for aphids transcriptome, 412 clones in the positive- library (TEST and 384 clones in the reverse-library (Ck, were obtained from subtracted cDNA libraries and sequenced. Gene ontology (GO functional classification and KEGG pathway analysis showed more genes related to fatty acid and lipid biosynthesis, and fewer genes related to carbohydrate metabolism, amino acid metabolism, energy metabolism and cell motility pathways in TEST than in Ck library, which might be the reason of aphids population reduction. A comparative analysis with qRT-PCR indicated high expression of transcripts CYP6A14, CYP6A13, CYP303A1, NADH dehydrogenase and fatty acid synthase in the TEST group. However, CYP307A1 and two ecdysone-induced protein genes were down regulated. The results indicate that genes of aphids related to growth and development can express at a higher level in reaction to the enhanced secondary metabolism in cotton under salinity stress. The expression of CYP307A1 was positively correlated with the population dynamics of aphids since it was involved in ecdysone synthesis.

  10. Dickeya dadantii, a plant pathogenic bacterium producing Cyt-like entomotoxins, causes septicemia in the pea aphid Acyrthosiphon pisum.

    Science.gov (United States)

    Costechareyre, Denis; Balmand, Séverine; Condemine, Guy; Rahbé, Yvan

    2012-01-01

    Dickeya dadantii (syn. Erwinia chrysanthemi) is a plant pathogenic bacteria that harbours a cluster of four horizontally-transferred, insect-specific toxin genes. It was recently shown to be capable of causing an acute infection in the pea aphid Acyrthosiphon pisum (Insecta: Hemiptera). The infection route of the pathogen, and the role and in vivo expression pattern of these toxins, remain unknown. Using bacterial numeration and immunolocalization, we investigated the kinetics and the pattern of infection of this phytopathogenic bacterium within its insect host. We compared infection by the wild-type strain and by the Cyt toxin-deficient mutant. D. dadantii was found to form dense clusters in many luminal parts of the aphid intestinal tract, including the stomach, from which it invaded internal tissues as early as day 1 post-infection. Septicemia occurred soon after, with the fat body being the main infected tissue, together with numerous early infections of the embryonic chains showing embryonic gut and fat body as the target organs. Generalized septicemia led to insect death when the bacterial load reached about 10(8) cfu. Some individual aphids regularly escaped infection, indicating an effective partial immune response to this bacteria. Cyt-defective mutants killed insects more slowly but were capable of localisation in any type of tissue. Cyt toxin expression appeared to be restricted to the digestive tract where it probably assisted in crossing over the first cell barrier and, thus, accelerating bacterial diffusion into the aphid haemocel. Finally, the presence of bacteria on the surface of leaves hosting infected aphids indicated that the insects could be vectors of the bacteria.

  11. Dickeya dadantii, a plant pathogenic bacterium producing Cyt-like entomotoxins, causes septicemia in the pea aphid Acyrthosiphon pisum.

    Directory of Open Access Journals (Sweden)

    Denis Costechareyre

    Full Text Available Dickeya dadantii (syn. Erwinia chrysanthemi is a plant pathogenic bacteria that harbours a cluster of four horizontally-transferred, insect-specific toxin genes. It was recently shown to be capable of causing an acute infection in the pea aphid Acyrthosiphon pisum (Insecta: Hemiptera. The infection route of the pathogen, and the role and in vivo expression pattern of these toxins, remain unknown. Using bacterial numeration and immunolocalization, we investigated the kinetics and the pattern of infection of this phytopathogenic bacterium within its insect host. We compared infection by the wild-type strain and by the Cyt toxin-deficient mutant. D. dadantii was found to form dense clusters in many luminal parts of the aphid intestinal tract, including the stomach, from which it invaded internal tissues as early as day 1 post-infection. Septicemia occurred soon after, with the fat body being the main infected tissue, together with numerous early infections of the embryonic chains showing embryonic gut and fat body as the target organs. Generalized septicemia led to insect death when the bacterial load reached about 10(8 cfu. Some individual aphids regularly escaped infection, indicating an effective partial immune response to this bacteria. Cyt-defective mutants killed insects more slowly but were capable of localisation in any type of tissue. Cyt toxin expression appeared to be restricted to the digestive tract where it probably assisted in crossing over the first cell barrier and, thus, accelerating bacterial diffusion into the aphid haemocel. Finally, the presence of bacteria on the surface of leaves hosting infected aphids indicated that the insects could be vectors of the bacteria.

  12. Long Chain Alcohols Produced by Trichoderma citrinoviride Have Phagodeterrent Activity Against the Bird Cherry-Oat Aphid Rhopalosiphum padi

    Directory of Open Access Journals (Sweden)

    Sonia eGanassi

    2016-03-01

    Full Text Available In this study we report the effects of fungal metabolites isolated from cultures of the fungus Trichoderma citrinoviride ITEM 4484 on the feeding preference of the aphid Rhopalosiphum padi, a major pest of cereal crops. Different phagodeterrent metabolites were purified by a combination of direct and reverse phase column chromatography and thin-layer chromatography. Chemical investigations, by spectroscopic and chemical methods, led to the identification of different long chain primary alcohols (LCOHs of the general formula R-OH, wherein R is a long, unbranched, unsubstituted, linear aliphatic group. LCOHs have been reported as components of lepidopteran pheromone blends, but their phagodeterrent effect to aphids is herein reported for the first time. We studied the effects of LCOHs on R. padi by behavioral and electrophysiological bioassays. Feeding preference tests that were carried out with winged and wingless morphs of R. padi showed that LCOHs have a distinctly high phagodeterrent activity and significantly restrain aphids from settling on treated leaves already at a concentration as low as 0.15 mM (0.036 g/l. The results of different electrophysiological analyses indicate that taste receptor neurons located on the aphid tarsomeres are involved in the LCOHs perception. Behavioral assays carried out with some commercial agrochemicals, including azadirachtin A, pyrethrum and mineral oil based products, in combination with 1-hexadecanol, the LCOH most abundantly produced by T. citrinoviride ITEM 4484, showed that these different active principles can be applied together, resulting in a useful increase of the phagodeterrent effect. Therefore these compounds can be profitably utilized for novel applications in biotechnical control of aphid pests. The LCOHs tested have no chiral centers and therefore can be obtained in good yields and at low cost through chemical synthesis, beside than from natural sources.

  13. Aphid transmission of Lettuce necrotic leaf curl virus, a member of a tentative new subgroup within the genus Torradovirus.

    Science.gov (United States)

    Verbeek, Martin; Dullemans, Annette M; van der Vlugt, René A A

    2017-09-15

    Lettuce necrotic leaf curl virus (LNLCV) was described as the first non-tomato-infecting member of the genus Torradovirus. Until today, the virus was found only in The Netherlands in two different areas in open field crops of lettuce. In 2015, LNLCV was accepted by the ICTV as a new member of the genus Torradovirus. The tomato-infecting (TI) torradoviruses Tomato torrado virus (ToTV), Tomato marchitez virus (ToMarV) and Tomato chocolàte virus (ToChV) are transmitted by at least three whitefly species in a semi-persistent and stylet-borne manner. As LNLCV was transmitted in open fields in The Netherlands, where whiteflies are present only in low incidence, transmission studies were set up to identify the natural vector of LNLCV. Whitefly species which survive Dutch open field conditions during summer, as well as lettuce colonizing aphid species, were tested for their ability to transmit LNLCV. Lengths of acquisition and inoculation periods were chosen in accordance with the conditions for TI torradoviruses. Transmission experiments involving whiteflies were never successful. Transmission with aphids was only successful in case of the lettuce-currant aphid, Nasonovia ribisnigri. Localization of LNLCV virions in N. ribisnigri with a nested RT-PCR indicated the stylets as possible retention sites. The willow-carrot aphid Cavariella aegopodii did not transmit LNLCV in our transmission experiment but the virus could be detected in the stylets of this aphid, leaving C. aegopodii as a possible vector for LNLCV. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Discovery of three woolly apple aphid Eriosoma lanigerum (Hemiptera: Aphididae) biotypes in Australia: the role of antixenosis and antibiosis in apple tree resistance

    Czech Academy of Sciences Publication Activity Database

    Costa, Arnaud; Williams, D. G.; Powell, K. S.

    2014-01-01

    Roč. 53, č. 3 (2014), s. 280-287 ISSN 2052-1758 Institutional support: RVO:60077344 Keywords : aphid * apple * biotype Subject RIV: EH - Ecology, Behaviour http://onlinelibrary.wiley.com/doi/10.1111/aen.12074/pdf

  15. Effects of feeding frequency and sugar concentration on behavior and longevity of the adult aphid parasitoid: Aphidius ervi (Haliday) (Hymenoptera: Braconidae)

    NARCIS (Netherlands)

    Azzouz, H.; Giordanengo, P.; Wäckers, F.L.; Kaiser, L.

    2004-01-01

    Aphidius ervi (Haliday) (Hymenoptera: Braconidae) is a solitary aphid endoparasitoid. Adults feed on honeydew and possibly on other sugar sources such as nectar. Sugar sources can vary qualitatively and quantitatively according to biotic factors and environmental conditions. Experiments were

  16. [Sickness absence associated with major life events].

    Science.gov (United States)

    Markussen, Simen; Røgeberg, Ole

    2012-05-29

    Sickness absence in the Norwegian workplace doubled in the period 1993-2003. However, the extent to which the driving factors were medical or non-medical remains unclear, as does the extent to which the cause may be found in the composition of the workforce. A differences-in-differences regression model was used to estimate the added sickness absence associated with major life events such as separation, death of spouse and pregnancy in the period 1993-2005. The data were obtained from administrative registers covering the entire Norwegian population, and include all absence periods of 16 days' duration or more reported by a doctor's medical certificate. The primary outcome measures were incidence (the proportion of absentees in a given time window) and absence (the proportion of sick days in a given time window). The level of absence among employees exposed to the specified life events was compared to control groups matched for gender, age, education and income. In 1993, people in each of the three groups exposed to major life events had more frequent and longer periods of absence than people in the control groups. This added sickness absence increased between 1993 and 2005. The changes in added sickness absence were at times significant, particularly for pregnant women. While sickness absence among pregnant women in 1993 was 15.4 percentage points higher than in the control group, the difference had increased to 24.8 percentage points in 2005. We find it improbable for the increase in added sickness absence to be caused by changes in the medical impact of life events or alterations in the workforce composition. We believe the increase is caused by changing attitudes among the working population and in the medical profession towards sickness absence on grounds that are not strictly medical, combined with improved social acceptance and diagnosis of mental health issues, and/or a medicalisation of natural health variations (pregnancy) and emotional distress (grief).

  17. Extreme genomes

    OpenAIRE

    DeLong, Edward F

    2000-01-01

    The complete genome sequence of Thermoplasma acidophilum, an acid- and heat-loving archaeon, has recently been reported. Comparative genomic analysis of this 'extremophile' is providing new insights into the metabolic machinery, ecology and evolution of thermophilic archaea.

  18. Identification of distinct quantitative trait loci associated with defence against the closely related aphids Acyrthosiphon pisum and A. kondoi in Medicago truncatula

    KAUST Repository

    Guo, Su-Min

    2012-03-21

    Aphids are a major family of plant insect pests. Medicago truncatula and Acyrthosiphon pisum (pea aphid, PA) are model species with a suite of resources available to help dissect the mechanism underlying plant-aphid interactions. A previous study focused on monogenic and relatively strong resistance in M. truncatula to PA and other aphid species. In this study a moderate resistance to PA was characterized in detail in the M. truncatula line A17 and compared with the highly susceptible line A20 and the more resistant line Jester. The results show that PA resistance in A17 involves both antibiosis and tolerance, and that resistance is phloem based. Quantitative trait locus (QTL) analysis using a recombinant inbred line (RIL) population (n=114) from a cross between A17 and A20 revealed that one locus, which co-segregated with AIN (Acyrthosiphon-induced necrosis) on chromosome 3, is responsible for the reduction of aphid biomass (indicator of antibiosis) for both PA and bluegreen aphid (BGA, A. kondoi), albeit to a lesser degree for PA than BGA. Interestingly, two independent loci on chromosomes 5 and 3 were identified for the plant biomass reduction (indicator of plant tolerance) by PA and BGA, respectively, demonstrating that the plant\\'s tolerance response to these two closely related aphid species is distinct. Together with previously identified major resistant (R) genes, the QTLs identified in this study are powerful tools to understand fully the spectrum of plant defence against sap-sucking insects and provide opportunities for breeders to generate effective and sustainable strategies for aphid control. 2012 The Author.

  19. Interactions among the Predatory Midge Aphidoletes aphidimyza (Diptera: Cecidomyiidae, the Fungal Pathogen Metarhizium brunneum (Ascomycota: Hypocreales, and Maize-Infesting Aphids in Greenhouse Mesocosms

    Directory of Open Access Journals (Sweden)

    Ana Gorete Campos de Azevedo

    2017-04-01

    Full Text Available The generalist entomopathogenic fungus, Metarhizium brunneum, has proved to have great potential as a versatile biological pest control agent. The gall midge Aphidoletes aphidimyza is a specialist predator that occurs naturally in Europe and has been successfully used for aphid suppression. However, the interaction between these two biological control organisms and how it may affect the biological control of aphids awaits further investigation. As part of the EU-supported project INBIOSOIL, this study was conducted in greenhouse conditions to assess the possible effects of combining both biological control agents. In a randomized complete block design, sweet corn (Zea mays var. saccharata plants were grown in large pots filled with natural soil or natural soil inoculated with M. brunneum. At the third leaf stage, before being individually caged, plants were infested with Rhopalosiphum padi and A. aphidimyza pupae were introduced in the soil. Aphidoletes aphidimyza midge emergence, number of living midges and number of aphids were recorded daily. The presence of conidia in the soil and on leaves was assessed during the experiment. At the conclusion of the experiment, the number of live aphids and their developmental stage, consumed aphids, and A. aphidimyza eggs was assessed under stereomicroscope. This study’s findings showed that the presence of M. brunneum did not affect A. aphidimyza midge emergence. However, longevity was significantly affected. As the study progressed, significantly fewer predatory midges were found in cages treated with M. brunneum compared to untreated cages. Furthermore, by the end of the study, the number of predatory midges found in the Metarhizium-treated cages was four times lower than in the untreated cages. Both daily and final count of aphids were significantly affected by treatment. Aphidoletes aphidimyza applied alone suppressed the aphid population more effectively than M. brunneum applied alone. Additionally

  20. Discovery and Targeted LC-MS/MS of Purified Polerovirus Reveals Differences in the Virus-Host Interactome Associated with Altered Aphid Transmission

    Science.gov (United States)

    Howe, Kevin; Fish, Tara; Smith, Dawn; Gildow, Fredrick; MacCoss, Michael J.; Thannhauser, Theodore W.; Gray, Stewart M.

    2012-01-01

    Circulative transmission of viruses in the Luteoviridae, such as cereal yellow dwarf virus (CYDV), requires a series of precisely orchestrated interactions between virus, plant, and aphid proteins. Natural selection has favored these viruses to be retained in the phloem to facilitate acquisition and transmission by aphids. We show that treatment of infected oat tissue homogenate with sodium sulfite reduces transmission of the purified virus by aphids. Transmission electron microscopy data indicated no gross change in virion morphology due to treatments. However, treated virions were not acquired by aphids through the hindgut epithelial cells and were not transmitted when injected directly into the hemocoel. Analysis of virus preparations using nanoflow liquid chromatography coupled to tandem mass spectrometry revealed a number of host plant proteins co-purifying with viruses, some of which were lost following sodium sulfite treatment. Using targeted mass spectrometry, we show data suggesting that several of the virus-associated host plant proteins accumulated to higher levels in aphids that were fed on CYDV-infected plants compared to healthy plants. We propose two hypotheses to explain these observations, and these are not mutually exclusive: (a) that sodium sulfite treatment disrupts critical virion-host protein interactions required for aphid transmission, or (b) that host infection with CYDV modulates phloem protein expression in a way that is favorable for virus uptake by aphids. Importantly, the genes coding for the plant proteins associated with virus may be examined as targets in breeding cereal crops for new modes of virus resistance that disrupt phloem-virus or aphid-virus interactions. PMID:23118947

  1. Discovery and targeted LC-MS/MS of purified polerovirus reveals differences in the virus-host interactome associated with altered aphid transmission.

    Directory of Open Access Journals (Sweden)

    Michelle Cilia

    Full Text Available Circulative transmission of viruses in the Luteoviridae, such as cereal yellow dwarf virus (CYDV, requires a series of precisely orchestrated interactions between virus, plant, and aphid proteins. Natural selection has favored these viruses to be retained in the phloem to facilitate acquisition and transmission by aphids. We show that treatment of infected oat tissue homogenate with sodium sulfite reduces transmission of the purified virus by aphids. Transmission electron microscopy data indicated no gross change in virion morphology due to treatments. However, treated virions were not acquired by aphids through the hindgut epithelial cells and were not transmitted when injected directly into the hemocoel. Analysis of virus preparations using nanoflow liquid chromatography coupled to tandem mass spectrometry revealed a number of host plant proteins co-purifying with viruses, some of which were lost following sodium sulfite treatment. Using targeted mass spectrometry, we show data suggesting that several of the virus-associated host plant proteins accumulated to higher levels in aphids that were fed on CYDV-infected plants compared to healthy plants. We propose two hypotheses to explain these observations, and these are not mutually exclusive: (a that sodium sulfite treatment disrupts critical virion-host protein interactions required for aphid transmission, or (b that host infection with CYDV modulates phloem protein expression in a way that is favorable for virus uptake by aphids. Importantly, the genes coding for the plant proteins associated with virus may be examined as targets in breeding cereal crops for new modes of virus resistance that disrupt phloem-virus or aphid-virus interactions.

  2. Discovery and targeted LC-MS/MS of purified polerovirus reveals differences in the virus-host interactome associated with altered aphid transmission.

    Science.gov (United States)

    Cilia, Michelle; Peter, Kari A; Bereman, Michael S; Howe, Kevin; Fish, Tara; Smith, Dawn; Gildow, Fredrick; MacCoss, Michael J; Thannhauser, Theodore W; Gray, Stewart M

    2012-01-01

    Circulative transmission of viruses in the Luteoviridae, such as cereal yellow dwarf virus (CYDV), requires a series of precisely orchestrated interactions between virus, plant, and aphid proteins. Natural selection has favored these viruses to be retained in the phloem to facilitate acquisition and transmission by aphids. We show that treatment of infected oat tissue homogenate with sodium sulfite reduces transmission of the purified virus by aphids. Transmission electron microscopy data indicated no gross change in virion morphology due to treatments. However, treated virions were not acquired by aphids through the hindgut epithelial cells and were not transmitted when injected directly into the hemocoel. Analysis of virus preparations using nanoflow liquid chromatography coupled to tandem mass spectrometry revealed a number of host plant proteins co-purifying with viruses, some of which were lost following sodium sulfite treatment. Using targeted mass spectrometry, we show data suggesting that several of the virus-associated host plant proteins accumulated to higher levels in aphids that were fed on CYDV-infected plants compared to healthy plants. We propose two hypotheses to explain these observations, and these are not mutually exclusive: (a) that sodium sulfite treatment disrupts critical virion-host protein interactions required for aphid transmission, or (b) that host infection with CYDV modulates phloem protein expression in a way that is favorable for virus uptake by aphids. Importantly, the genes coding for the plant proteins associated with virus may be examined as targets in breeding cereal crops for new modes of virus resistance that disrupt phloem-virus or aphid-virus interactions.

  3. Grass genomes

    OpenAIRE

    Bennetzen, Jeffrey L.; SanMiguel, Phillip; Chen, Mingsheng; Tikhonov, Alexander; Francki, Michael; Avramova, Zoya

    1998-01-01

    For the most part, studies of grass genome structure have been limited to the generation of whole-genome genetic maps or the fine structure and sequence analysis of single genes or gene clusters. We have investigated large contiguous segments of the genomes of maize, sorghum, and rice, primarily focusing on intergenic spaces. Our data indicate that much (>50%) of the maize genome is composed of interspersed repetitive DNAs, primarily nested retrotransposons that in...

  4. Cancer genomics

    DEFF Research Database (Denmark)

    Norrild, Bodil; Guldberg, Per; Ralfkiær, Elisabeth Methner

    2007-01-01

    Almost all cells in the human body contain a complete copy of the genome with an estimated number of 25,000 genes. The sequences of these genes make up about three percent of the genome and comprise the inherited set of genetic information. The genome also contains information that determines whe...

  5. Leaves of Absence. School Law Summary.

    Science.gov (United States)

    National Education Association, Washington, DC. Research Div.

    This report contains State-by-State statutory summaries on three types of leaves of absence relating to teachers -- sick leave, maternity leave, and sabbatical leave. Only State laws that have specific reference to one of these three types of leaves of absence are included. Not included are those statutes granting boards of education the general…

  6. The effect of insecticide applications to melon crop on melon aphid and its natural enemies

    International Nuclear Information System (INIS)

    Guerra, J.; Gonzalez, J.E.; Ceballos, J.; Checa, B.

    1999-01-01

    Melons are an important export crop for Panama and are cultivated on more than 1000 ha of land. Long growing season, extending well into January, allows several generations and build up of heavy populations of an important insect pest, Aphis gossypii, the melon aphid. Growers find it difficult to cultivate melons without several applications of insecticides. Although the insecticide applications control the aphids, they may also have adverse effects on the natural enemies of the aphid, in particular the two predatory insects Cycloneda sanguinea and Chrysoperla carnea. The purpose of this research was to evaluate the impact of insecticide applications on these insects and on the yield of melons, and to estimate residues of the applied insecticides in soil. The insecticides were applied as four different type of treatments to melon crop. The treatments were (i) three periodic applications of endosulfan (Thiodan 35EC), each at 0.52 kg a.i./ha, (ii) three applications of fenitrothion (Sumithion 50WP), each at 0.35 kg a.i./ha, (iii) two applications of fenitrothion and one of endosulfan, and (iv) grower's treatment, which included applications of six different insecticides. The effect of the insecticide applications was evaluated by estimating numbers of each of the three type of insects before and within 72 hours after the applications and estimating yield of melons. All insecticide treatments reduced the populations of Aphis gossypii, but they also reduced the numbers of the benificial insects. Endosulfan was somewhat less toxic to C. carnea than the other insecticides were, since greater number of C. carnea were recorded from the plots treated with endosulfan than the other treated plots. The best yield of melons was recorded in the plots which were sprayed with fenitrothion, followed by the plots sprayed with endosulfan. and then those with grower's insecticides. Soon after the application of endosulfan the residue in the soil was 0.2 mg/kg, but it declined to less

  7. Infection dynamic of symbiotic bacteria in the pea aphid Acyrthosiphon pisum gut and host immune response at the early steps in the infection process.

    Directory of Open Access Journals (Sweden)

    François Renoz

    Full Text Available In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum can harbor several facultative bacterial symbionts which can be mutualistic in the context of various ecological interactions. Belonging to a genus where many members have been described as pathogen in invertebrates, Serratia symbiotica is one of the most common facultative partners found in aphids. The recent discovery of strains able to grow outside their host allowed us to simulate environmental acquisition of symbiotic bacteria by aphids. Here, we performed an experiment to characterize the A. pisum response to the ingestion of the free-living S. symbiotica CWBI-2.3T in comparison to the ingestion of the pathogenic Serratia marcescens Db11 at the early steps in the infection process. We found that, while S. marcescens Db11 killed the aphids within a few days, S. symbiotica CWBI-2.3T did not affect host survival and colonized the whole digestive tract within a few days. Gene expression analysis of immune genes suggests that S. symbiotica CWBI-2.3T did not trigger an immune reaction, while S. marcescens Db11 did, and supports the hypothesis of a fine-tuning of the host immune response set-up for fighting pathogens while maintaining mutualistic partners. Our results also suggest that the lysosomal system and the JNK pathway are possibly involved in the regulation of invasive bacteria in aphids and that the activation of the JNK pathway is IMD-independent in the pea aphid.

  8. Infection dynamic of symbiotic bacteria in the pea aphid Acyrthosiphon pisum gut and host immune response at the early steps in the infection process.

    Science.gov (United States)

    Renoz, François; Noël, Christine; Errachid, Abdelmounaim; Foray, Vincent; Hance, Thierry

    2015-01-01

    In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum can harbor several facultative bacterial symbionts which can be mutualistic in the context of various ecological interactions. Belonging to a genus where many members have been described as pathogen in invertebrates, Serratia symbiotica is one of the most common facultative partners found in aphids. The recent discovery of strains able to grow outside their host allowed us to simulate environmental acquisition of symbiotic bacteria by aphids. Here, we performed an experiment to characterize the A. pisum response to the ingestion of the free-living S. symbiotica CWBI-2.3T in comparison to the ingestion of the pathogenic Serratia marcescens Db11 at the early steps in the infection process. We found that, while S. marcescens Db11 killed the aphids within a few days, S. symbiotica CWBI-2.3T did not affect host survival and colonized the whole digestive tract within a few days. Gene expression analysis of immune genes suggests that S. symbiotica CWBI-2.3T did not trigger an immune reaction, while S. marcescens Db11 did, and supports the hypothesis of a fine-tuning of the host immune response set-up for fighting pathogens while maintaining mutualistic partners. Our results also suggest that the lysosomal system and the JNK pathway are possibly involved in the regulation of invasive bacteria in aphids and that the activation of the JNK pathway is IMD-independent in the pea aphid.

  9. Aphid (Myzus persicae) feeding on the parasitic plant dodder (Cuscuta australis) activates defense responses in both the parasite and soybean host.

    Science.gov (United States)

    Zhuang, Huifu; Li, Juan; Song, Juan; Hettenhausen, Christian; Schuman, Meredith C; Sun, Guiling; Zhang, Cuiping; Li, Jing; Song, Dunlun; Wu, Jianqiang

    2018-06-01

    Dodders (Cuscuta spp.) are shoot holoparasites, whose haustoria penetrate host tissues to enable fusion between the parasite and host vascular systems, allowing Cuscuta to extract water, nutrients and other molecules from hosts. Aphids are piercing-sucking herbivores that use specialized stylets to feed on phloem sap. Aphids are known to feed on Cuscuta, but how Cuscuta and its host plant respond to aphids attacking the parasite was unknown. Phytohormone quantification, transcriptomic analysis and bioassays were performed to determine the responses of Cuscuta australis and its soybean (Glycine max) hosts to the feeding of green peach aphid (GPA; Myzus persicae) on C. australis. Decreased salicylic acid levels and 172 differentially expressed genes (DEGs) were found in GPA-attacked C. australis, and the soybean hosts exhibited increased jasmonic acid contents and 1015 DEGs, including > 100 transcription factor genes. Importantly, GPA feeding on C. australis increased the resistance of the soybean host to subsequent feeding by the leafworm Spodoptera litura and soybean aphid Aphis glycines, resulting in 21% decreased leafworm mass and 41% reduced aphid survival rate. These data strongly suggest that GPA feeding on Cuscuta induces a systemic signal, which is translocated to hosts and activates defense against herbivores. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  10. Attraction of Chrysoperla carnea complex and Chrysopa spp. lacewings (Neuroptera: Chrysopidae) to aphid sex pheromone components and a synthetic blend of floral compounds in Hungary.

    Science.gov (United States)

    Koczor, Sándor; Szentkirályi, Ferenc; Birkett, Michael A; Pickett, John A; Voigt, Erzsébet; Tóth, Miklós

    2010-12-01

    The deployment of synthetic attractants for the manipulation of lacewing populations as aphid predators is currently used in integrated pest management. This study investigates a synthetic bait comprising floral compounds previously found to attract the Chrysoperla carnea complex, and, for the first time, the aphid sex pheromone components (1R,4aS,7S,7aR)-nepetalactol and (4aS,7S,7aR)-nepetalactone, in field experiments in Hungary, for their ability to manipulate lacewing populations. The synthetic floral bait attracted both sexes of the Chrysoperla carnea complex, and Chrysopa formosa Brauer showed minimal attraction. The aphid sex pheromone compounds alone attracted males of C. formosa and C. pallens (Rambur). When the two baits were combined, Chrysopa catches were similar to those with aphid sex pheromone baits alone, but carnea complex catches decreased significantly (by 85-88%). As the floral bait alone attracted both sexes of the carnea complex, it showed potential to manipulate the location of larval density via altering the site of oviposition. Aphid sex pheromone compounds alone attracted predatory males of Chrysopa spp. and can potentially be used to enhance biological control of aphids. For the carnea complex, however, a combination of both baits is not advantageous because of the decrease in adults attracted. Assumptions of intraguild avoidance underlying this phenomenon are discussed. Copyright © 2010 Society of Chemical Industry.

  11. Examining paid sickness absence by shift workers.

    Science.gov (United States)

    Catano, V M; Bissonnette, A B

    2014-06-01

    Shift workers are at greater risk than day workers with respect to psychological and physical health, yet little research has linked shift work to increased sickness absence. To investigate the relationship between shift work and sickness absence while controlling for organizational and individual characteristics and shift work attributes that have confounded previous research. The study used archive data collected from three national surveys in Canada, each involving over 20000 employees and 6000 private-sector firms in 14 different occupational groups. The employees reported the number of paid sickness absence days in the past 12 months. Data were analysed using both chi-squared statistics and hierarchical regressions. Contrary to previous research, shift workers took less paid sickness absence than day workers. There were no differences in the length of the sickness absence between both groups or in sickness absence taken by female and male workers whether working days or shifts. Only job tenure, the presence of a union in the workplace and working rotating shifts predicted sickness absence in shift workers. The results were consistent across all three samples. In general, shift work does not seem to be linked to increased sickness absence. However, such associations may be true for specific industries. Male and female workers did not differ in the amount of sickness absence taken. Rotating shifts, regardless of industry, predicted sickness absence among shift workers. Consideration should be given to implementing scheduled time off between shift changes. © The Author 2014. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Tyrosine pathway regulation is host-mediated in the pea aphid symbiosis during late embryonic and early larval development.

    Science.gov (United States)

    Rabatel, Andréane; Febvay, Gérard; Gaget, Karen; Duport, Gabrielle; Baa-Puyoulet, Patrice; Sapountzis, Panagiotis; Bendridi, Nadia; Rey, Marjolaine; Rahbé, Yvan; Charles, Hubert; Calevro, Federica; Colella, Stefano

    2013-04-10

    Nutritional symbioses play a central role in insects' adaptation to specialized diets and in their evolutionary success. The obligatory symbiosis between the pea aphid, Acyrthosiphon pisum, and the bacterium, Buchnera aphidicola, is no exception as it enables this important agricultural pest insect to develop on a diet exclusively based on plant phloem sap. The symbiotic bacteria provide the host with essential amino acids lacking in its diet but necessary for the rapid embryonic growth seen in the parthenogenetic viviparous reproduction of aphids. The aphid furnishes, in exchange, non-essential amino acids and other important metabolites. Understanding the regulations acting on this integrated metabolic system during the development of this insect is essential in elucidating aphid biology. We used a microarray-based approach to analyse gene expression in the late embryonic and the early larval stages of the pea aphid, characterizing, for the first time, the transcriptional profiles in these developmental phases. Our analyses allowed us to identify key genes in the phenylalanine, tyrosine and dopamine pathways and we identified ACYPI004243, one of the four genes encoding for the aspartate transaminase (E.C. 2.6.1.1), as specifically regulated during development. Indeed, the tyrosine biosynthetic pathway is crucial for the symbiotic metabolism as it is shared between the two partners, all the precursors being produced by B. aphidicola. Our microarray data are supported by HPLC amino acid analyses demonstrating an accumulation of tyrosine at the same developmental stages, with an up-regulation of the tyrosine biosynthetic genes. Tyrosine is also essential for the synthesis of cuticular proteins and it is an important precursor for cuticle maturation: together with the up-regulation of tyrosine biosynthesis, we observed an up-regulation of cuticular genes expression. We were also able to identify some amino acid transporter genes which are essential for the switch

  13. The influence of managers' and colleagues' absence on public employee absence

    DEFF Research Database (Denmark)

    Møller, Ann-Kristina Løkke; Jensen, Morten Berg

    2015-01-01

    Background: The level of absence is higher in the public sector than in the private sector both internationally and in a Danish context (e.g. The Confederation of Danish Employers, 2002, Winkelmann, 1999). However, little economic research is conducted to understand determinants of absence among...... public sector employees (De Paola, 2010). Research on the effect of managers’ own absence on their employees’ absence is scarce (Kristensen et al., 2006, Løkke, 2008) and so is the effect of colleagues’ absence in a large scale (Bradley et al., 2007, Dale-Olsen et al., 2010, Hesselius et al., 2009......). To date, research on the simultaneous effect of managers’ and colleagues’ absence behavior does not exist. The most acknowledged literature on absence (e.g., Steers and Rhodes, 1978) concludes that absence is influenced by many determinants; this makes it relevant to control for gender, age etc. Aim...

  14. Control of Green Apple Aphid (Aphis pomi De Geer in Organic Apple Production

    Directory of Open Access Journals (Sweden)

    Slobodan Milenković

    2013-12-01

    Full Text Available The efficacy of different methods for controlling populations of green apple aphid (Aphis pomi De Geer in organic apple orchard was compared over three consecutive years. The following three control methods were tested: a predator activity (Coccinela septempunctata, b predator activity (C. septempunctata + selective spraying of trees with infestation level exceeding 10% with a botanical insecticide (NeemAzal T/S, and c predator activity (C. septempunctata + total spraying of all orchard trees with the botanical insecticide (NeemAzal T/S. In terms of maintaining a biological balance within an orchard, the combination of natural regulation by C. septempunctata and selective spraying of individual trees with NeemAzal T/S proved to be the most efficient method.

  15. Efficacy of different chemicals for the control of aphid (acyrthosiphon pisum) on guar (cymopisis tetragonolobus) crop

    International Nuclear Information System (INIS)

    Din, Q.M.U.; Hussain, I.; Abbas, G.; Abbas, Z.

    2009-01-01

    An experiment was carried out to evaluate the efficacy of different chemicals far the control of aphid on guar crop at Adaptive Research Farm Karor during the three successive kharif seasons i.e. 2006-07 and 2008. The experiments were laid out in Randomized Complete Block Design with three replications and five treatments viz T1=control, T2 Bifenthrin at the rate 375 ml ha/sup -1/, T3=Primore 50PP at the rate 850 ml ha/sup -1/ T4=Furathiocrab at the rate 750 ml ha/sup -1/ and T5=Carbosulfan at the rate 1250 ml ha/sup -1/. All the treatments (T4) caused significant decrease in the Pest population as compared to the control. Treatment (T4) where Furathiocrab was applied at the rate. 750 ml ha/sup -1/ during the years 2006, 2007 and 2008 respectively. (author)

  16. Genetic variability of woolly aphid (Adelges laricis Vall.) resistance in European larch (Larix decidua Mill.)

    Energy Technology Data Exchange (ETDEWEB)

    Blada, I. [Forest Research Inst., Bucharest (Romania)

    1995-12-31

    One hundred and eleven clones of European larch were exposed to the woolly aphid and then outplanted in three locations using a randomized complete block design. At ages 11 and 19 years resistance was measured on 102 clones at 2 locations. Highly significant genetic differences were observed among the clones at both locations and at both ages. Highly significant clone x location, clone x location x age interactions were also observed. Differences between the most resistant and most susceptible clones was 483%. Sufficient genetic variation for a breeding program was present. Broad-sense heritability estimates for Adelges resistance varied by location. Significant age to age, location to location and age to location phenotypic correlation for resistance were found. Larch resistance seems to be under polygenic control. A substantial genetic gain could be achieved by selecting the best clones and using vegetative propagation, including somaclonal embryogenesis, for multiplication. 23 refs, 2 figs, 8 tabs

  17. Effects of Insecticides on Strawberry Aphid Chaetosiphon fragaefolii (Cockerell on Resistant and Susceptible Strawberry Genotypes

    Directory of Open Access Journals (Sweden)

    Slobodan Milenković

    2011-01-01

    Full Text Available Strawberry aphid, Chaetosiphon fragaefolii (Cockerell, is the most important vector ofstrawberry virus. Breeding of genotypes resistant to this pest is an important preventivecontrol measure, which can be compatible with rational insecticide application. The aimof the paper was to determine effects of dimethoate and deltamethrin on C. fragaefoliipopulations reared on two strawberry genotypes different in susceptibility: susceptiblestrawberry cultivar Čačanska rana and medium resistant hybrid, zf/1/94/96 (Senga Fructarinax Del Norte. Lower toxicity of deltamethrin was observed (laboratory assay as well aslower biological efficacy of dimethoate at lower concentrations (field trial for specimensfrom C. fragaefolii population reared on susceptible strawberry cultivar Čačanska rana.

  18. Natural occurrence of entomophthoroid fungi of aphid pests on Medicago sativa L. in Argentina.

    Science.gov (United States)

    Manfrino, Romina G; Zumoffen, Leticia; Salto, César E; Lastra, Claudia C López

    2014-01-01

    Four species of entomophthoroid fungi, Pandora neoaphidis (Entomophthorales: Entomophthoraceae), Zoophthora radicans (Entomophthorales: Entomophthoraceae), Entomophthora planchoniana (Entomophthorales: Entomophthoraceae) and Neozygites fresenii (Neozygitales: Neozygitaceae) were found to infect Aphis craccivora, Therioaphis trifolii, and Acyrthosiphon pisum and unidentified species of Acyrthosiphon on lucerne in Argentina. Samples were collected from five sites (Ceres, Rafaela, Sarmiento, Monte Vera and Bernardo de Irigoyen) in the province of Santa Fe. In this study, Zoophthora radicans was the most important pathogen and was recorded mainly on Acyrthosiphon sp. Zoophthora radicans was successfully isolated and maintained in pure cultures. This study is the first report of entomophthoroid fungi infecting lucerne (Medicago sativa L.) aphids in Argentina. Copyright © 2014 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  19. Genetic variability of woolly aphid (Adelges laricis Vall.) resistance in European larch (Larix decidua Mill.)

    Energy Technology Data Exchange (ETDEWEB)

    Blada, I [Forest Research Inst., Bucharest (Romania)

    1996-12-31

    One hundred and eleven clones of European larch were exposed to the woolly aphid and then outplanted in three locations using a randomized complete block design. At ages 11 and 19 years resistance was measured on 102 clones at 2 locations. Highly significant genetic differences were observed among the clones at both locations and at both ages. Highly significant clone x location, clone x location x age interactions were also observed. Differences between the most resistant and most susceptible clones was 483%. Sufficient genetic variation for a breeding program was present. Broad-sense heritability estimates for Adelges resistance varied by location. Significant age to age, location to location and age to location phenotypic correlation for resistance were found. Larch resistance seems to be under polygenic control. A substantial genetic gain could be achieved by selecting the best clones and using vegetative propagation, including somaclonal embryogenesis, for multiplication. 23 refs, 2 figs, 8 tabs

  20. Explaining the gender gap in sickness absence.

    Science.gov (United States)

    Østby, K A; Mykletun, A; Nilsen, W

    2018-04-17

    In many western countries, women have a much higher rate of sickness absence than men. To what degree the gender differences in sickness absence are caused by gender differences in health is largely unknown. To assess to what degree the gender gap in sickness absence can be explained by health factors and work- and family-related stressors. Norwegian parents participating in the Tracking Opportunities and Problems (TOPP) study were asked about sickness absence and a range of factors possibly contributing to gender differences in sickness absence, including somatic and mental health, sleep problems, job control/demands, work-home conflicts, parent-child conflicts and stressful life events. Using a cross-sectional design, we did linear regression analyses, to assess the relative contribution from health and stressors. There were 557 study participants. Adjusting for health factors reduced the gender difference in sickness absence by 24%, while adjusting for stressors in the family and at work reduced the difference by 22%. A simultaneous adjustment for health factors and stressors reduced the difference in sickness absence by about 28%. Despite adjusting for a large number of factors, including both previously well-studied factors (e.g. health, job control/demands) and lesser-studied factors (parent-child conflict and sexual assault), this study found that most of the gender gap in sickness absence remains unexplained. Gender differences in health and stressors account for only part of the differences in sickness absence. Other factors must, therefore, exist outside the domains of health, work and family stressors.

  1. Impact of reduced-risk insecticides on soybean aphid and associated natural enemies.

    Science.gov (United States)

    Ohnesorg, Wayne J; Johnson, Kevin D; O'Neal, Matthew E

    2009-10-01

    Insect predators in North America suppress Aphis glycines Matsumura (Hemiptera: Aphididae) populations; however, insecticides are required when populations reach economically damaging levels. Currently, insecticides used to manage A. glycines are broad-spectrum (pyrethroids and organophosphates), and probably reduce beneficial insect abundance in soybean, Glycine max (L.) Merr. Our goal was to determine whether insecticides considered reduced-risk by the Environmental Protection Agency could protect soybean yield from A. glycines herbivory while having a limited impact on the aphid's natural enemies. We compared three insecticides (imidacloprid, thiamethoxam, and pymetrozine,) to a broad-spectrum insecticide (lamda-cyhalothrin) and an untreated control using two application methods. We applied neonicotinoid insecticides to seeds (imidacloprid and thiamethoxam) as well as foliage (imidacloprid); pymetrozine and lamda-cyhalothrin were applied only to foliage. Foliage-applied insecticides had lower A. glycines populations and higher yields than the seed-applied insecticides. Among foliage-applied insecticides, pymetrozine and imidacloprid had an intermediate level of A. glycines population and yield protection compared with lamda-cyhalothrin and the untreated control. We monitored natural enemies with yellow sticky cards, sweep-nets, and direct observation. Before foliar insecticides were applied (i.e., before aphid populations developed) seed treatments had no observable effect on the abundance of natural enemies. After foliar insecticides were applied, differences in natural enemy abundance were observed when sampled with sweep-nets and direct observation but not with yellow sticky cards. Based on the first two sampling methods, pymetrozine and the foliage-applied imidacloprid had intermediate abundances of natural enemies compared with the untreated control and lamda-cyhalothrin.

  2. Predictors of sickness absence in pregnancy

    DEFF Research Database (Denmark)

    Hansen, Mette Lausten; Thulstrup, Ane Marie; Juhl, Mette

    2014-01-01

    OBJECTIVE: The aim of this cohort study was to investigate associations between parity, pre-pregnancy body mass index (BMI), assisted reproductive therapy (ART), time to pregnancy (TTP), and engagement in physical exercise and the risk of sickness absence in pregnancy from 10-29 completed pregnancy...... with higher HR of sickness absence. Physical exercise of >120 minutes per week was associated with lower HR 0.84 (95% CI 0.75-0.95). CONCLUSION: Risk for sickness absence was higher among women who were multiparous, overweight, obese, received ART, and had prolonged TTP, and lower among women engaged...

  3. Complete genome analysis of a novel umbravirus-polerovirus combination isolated from Ixeridium dentatum.

    Science.gov (United States)

    Yoo, Ran Hee; Lee, Seung-Won; Lim, Seungmo; Zhao, Fumei; Igori, Davaajargal; Baek, Dasom; Hong, Jin-Sung; Lee, Su-Heon; Moon, Jae Sun

    2017-12-01

    Two novel viruses, isolated in Bonghwa, Republic of Korea, from an Ixeridium dentatum plant with yellowing mottle symptoms, have been provisionally named Ixeridium yellow mottle-associated virus 1 (IxYMaV-1) and Ixeridium yellow mottle-associated virus 2 (IxYMaV-2). IxYMaV-1 has a genome of 6,017 nucleotides sharing a 56.4% sequence identity with that of cucurbit aphid-borne yellows virus (genus Polerovirus). The IxYMaV-2 genome of 4,196 nucleotides has a sequence identity of less than 48.3% with e other species classified within the genus Umbravirus. Genome properties and phylogenetic analysis suggested that IxYMaV-1 and -2 are representative isolates of new species classifiable within the genus Polerovirus and Umbravirus, respectively.

  4. Source and sink nodes in absence seizures.

    Science.gov (United States)

    Rodrigues, Abner C; Machado, Birajara S; Caboclo, Luis Otavio S F; Fujita, Andre; Baccala, Luiz A; Sameshima, Koichi

    2016-08-01

    As opposed to focal epilepsy, absence seizures do not exhibit a clear seizure onset zone or focus since its ictal activity rapidly engages both brain hemispheres. Yet recent graph theoretical analysis applied to absence seizures EEG suggests the cortical focal presence, an unexpected feature for this type of epilepsy. In this study, we explore the characteristics of absence seizure by classifying the nodes as to their source/sink natures via weighted directed graph analysis based on connectivity direction and strength estimation using information partial directed coherence (iPDC). By segmenting the EEG signals into relatively short 5-sec-long time windows we studied the evolution of coupling strengths from both sink and source nodes, and the network dynamics of absence seizures in eight patients.

  5. Can digital presence reconfigure experiences of absence?

    OpenAIRE

    Jain, J.; Clayton, W.

    2014-01-01

    Family Rituals 2.0 is a project based on the premise that work-related travel is unlikely to disappear in the foreseeable future. Many work roles – from truck drivers to CEOs – involve periods of absence, and often being away overnight. Travel which takes people away overnight impacts on family and home life; however, the emergence of powerful new digital communication technologies could challenge traditional experiences of such absence.\\ud \\ud Many studies have considered the potential for d...

  6. Effect of absence of vision on posture

    OpenAIRE

    Alotaibi, Abdullah Z.; Alghadir, Ahmad; Iqbal, Zaheen A.; Anwer, Shahnawaz

    2016-01-01

    [Purpose] The visual system is one of the sensory systems that enables the body to assess and process information about the external environment. In the absence of vision, a blind person loses contact with the outside world and develops faulty motor patterns, which results in postural deficiencies. However, literature regarding the development of such deficiencies is limited. The aim of this study was to discuss the effect of absence of vision on posture, the possible biomechanics behind the ...

  7. Worried sick? Sickness absence during organizational turmoil

    OpenAIRE

    Bratberg, Espen; Monstad, Karin

    2011-01-01

    Sickness absence has risen over the past years in Norway. An explanation put forward is that a tougher labour market represents a health hazard, while a competing hypothesis predicts that loss of job security works as a disciplinary device. In this analysis we aim to trace a causal impact of organizational turmoil or job insecurity on sickness absence, applying a difference-in-difference approach. Utilizing a negative financial shock that hit specific employers and workplaces, we find that...

  8. Mitochondrial COI and morphological specificity of the mealy aphids (Hyalopterus ssp. collected from different hosts in Europe (Hemiptera, Aphididae

    Directory of Open Access Journals (Sweden)

    Rimantas Rakauskas

    2013-07-01

    Full Text Available Forty three European population samples of mealy aphids from various winter and summer host plants were attributed to respective species of Hyalopterus by means of their partial sequences of mitochondrial COI gene. Used Hyalopterus samples emerged as monophyletic relative to outgroup and formed three major clades representing three host specific mealy aphid species in the Neighbor joining, Maximum parsimony, Maximum likelihood and Bayesian inference trees. H. pruni and H. persikonus emerged as a sister species, whilst H. amygdali was located basally. Samples representing different clades in the molecular trees were used for canonical discrimination analysis based on twenty two morphological characters. Length of the median dorsal head hair enabled a 97.3 % separation of H. amygdali from the remaining two species. No single character enabled satisfactory discrimination between apterous viviparous females of H. pruni and H. persikonus. A modified key for the morphological identification of Hyalopterus species is suggested and their taxonomic status discussed.

  9. Relative Deprivation and Sickness Absence in Sweden

    Directory of Open Access Journals (Sweden)

    Jonas Helgertz

    2013-08-01

    Full Text Available Background: A high prevalence of sickness absence in many countries, at a substantial societal cost, underlines the importance to understand its determining mechanisms. This study focuses on the link between relative deprivation and the probability of sickness absence. Methods: 184,000 men and women in Sweden were followed between 1982 and 2001. The sample consists of working individuals between the ages of 19 and 65. The outcome is defined as experiencing more than 14 days of sickness absence during a year. Based on the complete Swedish population, an individual’s degree of relative deprivation is measured through income compared to individuals of the same age, sex, educational level and type. In accounting for the possibility that sickness absence and socioeconomic status are determined by common factors, discrete-time duration models were estimated, accounting for unobserved heterogeneity through random effects. Results: The results confirm that the failure to account for the dynamics of the individual’s career biases the influence from socioeconomic characteristics. Results consistently suggest a major influence from relative deprivation, with a consistently lower risk of sickness absence among the highly educated. Conclusions: Altering individual’s health behavior through education appears more efficient in reducing the reliance on sickness absence, rather than redistributive policies.

  10. Relative deprivation and sickness absence in Sweden.

    Science.gov (United States)

    Helgertz, Jonas; Hess, Wolfgang; Scott, Kirk

    2013-08-29

    A high prevalence of sickness absence in many countries, at a substantial societal cost, underlines the importance to understand its determining mechanisms. This study focuses on the link between relative deprivation and the probability of sickness absence. 184,000 men and women in Sweden were followed between 1982 and 2001. The sample consists of working individuals between the ages of 19 and 65. The outcome is defined as experiencing more than 14 days of sickness absence during a year. Based on the complete Swedish population, an individual's degree of relative deprivation is measured through income compared to individuals of the same age, sex, educational level and type. In accounting for the possibility that sickness absence and socioeconomic status are determined by common factors, discrete-time duration models were estimated, accounting for unobserved heterogeneity through random effects. The results confirm that the failure to account for the dynamics of the individual's career biases the influence from socioeconomic characteristics. Results consistently suggest a major influence from relative deprivation, with a consistently lower risk of sickness absence among the highly educated. Altering individual's health behavior through education appears more efficient in reducing the reliance on sickness absence, rather than redistributive policies.

  11. Induction of Systemic Resistance against Aphids by Endophytic Bacillus velezensis YC7010 via Expressing PHYTOALEXIN DEFICIENT4 in Arabidopsis

    OpenAIRE

    Rashid, Md. Harun-Or-; Khan, Ajmal; Hossain, Mohammad T.; Chung, Young R.

    2017-01-01

    Aphids are the most destructive insect pests. They suck the sap and transmit plant viruses, causing widespread yield loss of many crops. A multifunctional endophytic bacterial strain Bacillus velezensis YC7010 has been found to induce systemic resistance against bacterial and fungal pathogens of rice. However, its activity against insects attack and underlying cellular and molecular defense mechanisms are not elucidated yet. Here, we show that root drenching of Arabidopsis seedlings with B. v...

  12. Effect Of Intercropping System On Green Peach Aphid Dinamics On Organic Farming Of Potato In Karo Highland

    Directory of Open Access Journals (Sweden)

    Lamria Sidauruk

    2015-08-01

    Full Text Available Abstract Green peach aphid Myzus persicae Sulzer represents one of the major pest affecting decreased production which found in different potato fields in Karo Highland. This study was conducted to determine the population dynamics of Myzus persicae Sulzer on potato cropping system. The experiment was laid out in split plot design with main plot are farming system such as conventional farming semi organic farming and organic farming. The sub plot are intercropping system consist of potato monoculture potato with cabbage potato with mustard potato with celery potato with cabbage and mustard potato with cabbage and celery potato with mustard and celery potato with cabbage mustard and celery. Research carried out for two planting season. The first at May-August and the second at September-December. The results showed that M. persicae was consistently at different densities in different intercropping system on potato. The aphid was first recorded at three week until planting. The kind of intercroppingculture plants significantly reduced the number of aphid at two planting season. Intercropping system decrease population of M. persicae at potato. At 9 weeks after planting the decreased are respectively at intercropping potato with mustard 3.97 aphidleaf potato with cabbage and mustard 4.43 aphidleaf and potato with celery 4.45 aphidleaf. At 11 weeks after planting the decreased are respectively at intercropping potato with mustard 2.99 aphid per leaf potato with cabbage 3.10 aphidleaf and potato with cabbage and mustard 3.60 aphidleaf. At 7 weeks after planting the highest population of natural enemies Braconid wasp was found on intercropping potato with cabbage2.62 braconid waspplant and at 9 weeks was found on intercropping potato with cabbage mustard and celery 2.38 braconid waspplant. The highest population of Coccinellidae found on intercropping potato with cabbage mustard and celery 1.80plant at 11 weeks after planting.

  13. Effect Of Intercropping System On Green Peach Aphid Dinamics On Organic Farming Of Potato In Karo Highland

    OpenAIRE

    Lamria Sidauruk; Darma Bakti; Retna Astuti Kuswardani; Chairani Hanum

    2015-01-01

    Abstract Green peach aphid Myzus persicae Sulzer represents one of the major pest affecting decreased production which found in different potato fields in Karo Highland. This study was conducted to determine the population dynamics of Myzus persicae Sulzer on potato cropping system. The experiment was laid out in split plot design with main plot are farming system such as conventional farming semi organic farming and organic farming. The sub plot are intercropping system consist of potato mon...

  14. Primary and secondary parasitoids (Hymenoptera) of aphids (Hemiptera: Aphididae) on blueberry and other Vaccinium in the Pacific Northwest.

    Science.gov (United States)

    Raworth, D A; Pike, K S; Tanigoshi, L K; Mathur, S; Graf, G

    2008-04-01

    Blueberry scorch virus, a commercially important Carlavirus in highbush blueberry, Vaccinium corymbosum L., is vectored by aphids (Hemiptera: Aphididae). We surveyed the aphids, primary parasitoids (Hymenoptera: Aphelinidae, Braconidae), and associated secondary parasitoids (Hymenoptera: Charipidae, Megaspilidae, Pteromalidae) on highbush blueberry and other Vaccinium in the Pacific Northwest from 1995 to 2006, with samples concentrated in 2005 and 2006, to lay the groundwork for augmentative biological control. Ericaphis fimbriata (Richards) was the principal aphid. The dominant parasitoid species were Praon unicum Smith, Aphidius n. sp., A. sp., and Aphidius ervi Haliday. Their frequency in relation to the other primary parasitoids varied significantly with geographical area; P. unicum dominated the frequency distribution in southwestern British Columbia, A. n. sp., west of the Cascades, and A. sp. and A. ervi east of the Cascades. Among the secondary parasitoids, pteromalids dominated, and their frequency in relation to the other secondary parasitoids was lowest in southwestern British Columbia. The parasitization rate for P. unicum and A. n. sp. in southwestern British Columbia increased from May or June to a maximum of 0.080 +/- 0.024 and 0.090 +/- 0.084 (SD), respectively, in late July or early August. P. unicum emerged in the spring 4 wk before A. n. sp. The parasitization rate for P. unicum was lower in conventional than organic fields. Whereas aphid density increased monotonically, P. unicum had two spring peaks. A simulation model showed that these peaks could reflect discrete generations. Releases of insectary-reared P. unicum at 150 or 450 DD above 5.6 degrees C, summing from 1 January, may effectively augment the natural spring populations by creating overlapping generations.

  15. Dickeya dadantii, a plant pathogenic bacterium producing Cyt-like entomotoxins, causes septicemia in the pea aphid Acyrthosiphon pisum

    OpenAIRE

    Costechareyre, Denis; Balmand, Severine; Condemine, Guy; Rahbé, Yves

    2012-01-01

    International audience; Dickeya dadantii (syn. Erwinia chrysanthemi) is a plant pathogenic bacteria that harbours a cluster of four horizontally-transferred, insect-specific toxin genes. It was recently shown to be capable of causing an acute infection in the pea aphid Acyrthosiphon pisum (Insecta: Hemiptera). The infection route of the pathogen, and the role and in vivo expression pattern of these toxins, remain unknown. Using bacterial numeration and immunolocalization, we investigated the ...

  16. Glucosinolates from Host Plants Influence Growth of the Parasitic Plant Cuscuta gronovii and Its Susceptibility to Aphid Feeding.

    Science.gov (United States)

    Smith, Jason D; Woldemariam, Melkamu G; Mescher, Mark C; Jander, Georg; De Moraes, Consuelo M

    2016-09-01

    Parasitic plants acquire diverse secondary metabolites from their hosts, including defense compounds that target insect herbivores. However, the ecological implications of this phenomenon, including the potential enhancement of parasite defenses, remain largely unexplored. We studied the translocation of glucosinolates from the brassicaceous host plant Arabidopsis (Arabidopsis thaliana) into parasitic dodder vines (Convolvulaceae; Cuscuta gronovii) and its effects on the parasite itself and on dodder-aphid interactions. Aliphatic and indole glucosinolates reached concentrations in parasite tissues higher than those observed in corresponding host tissues. Dodder growth was enhanced on cyp79B2 cyp79B3 hosts (without indole glucosinolates) but inhibited on atr1D hosts (with elevated indole glucosinolates) relative to wild-type hosts, which responded to parasitism with localized elevation of indole and aliphatic glucosinolates. These findings implicate indole glucosinolates in defense against parasitic plants. Rates of settling and survival on dodder vines by pea aphids (Acyrthosiphon pisum) were reduced significantly when dodder parasitized glucosinolate-producing hosts (wild type and atr1D) compared with glucosinolate-free hosts (cyp79B2 cyp79B3 myb28 myb29). However, settling and survival of green peach aphids (Myzus persicae) were not affected. M. persicae population growth was actually reduced on dodder parasitizing glucosinolate-free hosts compared with wild-type or atr1D hosts, even though stems of the former contain less glucosinolates and more amino acids. Strikingly, this effect was reversed when the aphids fed directly upon Arabidopsis, which indicates an interactive effect of parasite and host genotype on M. persicae that stems from host effects on dodder. Thus, our findings indicate that glucosinolates may have both direct and indirect effects on dodder-feeding herbivores. © 2016 American Society of Plant Biologists. All rights reserved.

  17. Glucosinolates from Host Plants Influence Growth of the Parasitic Plant Cuscuta gronovii and Its Susceptibility to Aphid Feeding1[OPEN

    Science.gov (United States)

    2016-01-01

    Parasitic plants acquire diverse secondary metabolites from their hosts, including defense compounds that target insect herbivores. However, the ecological implications of this phenomenon, including the potential enhancement of parasite defenses, remain largely unexplored. We studied the translocation of glucosinolates from the brassicaceous host plant Arabidopsis (Arabidopsis thaliana) into parasitic dodder vines (Convolvulaceae; Cuscuta gronovii) and its effects on the parasite itself and on dodder-aphid interactions. Aliphatic and indole glucosinolates reached concentrations in parasite tissues higher than those observed in corresponding host tissues. Dodder growth was enhanced on cyp79B2 cyp79B3 hosts (without indole glucosinolates) but inhibited on atr1D hosts (with elevated indole glucosinolates) relative to wild-type hosts, which responded to parasitism with localized elevation of indole and aliphatic glucosinolates. These findings implicate indole glucosinolates in defense against parasitic plants. Rates of settling and survival on dodder vines by pea aphids (Acyrthosiphon pisum) were reduced significantly when dodder parasitized glucosinolate-producing hosts (wild type and atr1D) compared with glucosinolate-free hosts (cyp79B2 cyp79B3 myb28 myb29). However, settling and survival of green peach aphids (Myzus persicae) were not affected. M. persicae population growth was actually reduced on dodder parasitizing glucosinolate-free hosts compared with wild-type or atr1D hosts, even though stems of the former contain less glucosinolates and more amino acids. Strikingly, this effect was reversed when the aphids fed directly upon Arabidopsis, which indicates an interactive effect of parasite and host genotype on M. persicae that stems from host effects on dodder. Thus, our findings indicate that glucosinolates may have both direct and indirect effects on dodder-feeding herbivores. PMID:27482077

  18. Effect of cowpea aphid-borne mosaic virus on penetration and reproduction of meloidogyne incognita in cowpea

    OpenAIRE

    Adekunle O.K.; Owa T.E.

    2008-01-01

    greenhouse studies were conducted to investigate the effects of cowpea aphid-borne mosaic virus on penetration and reproduction of Meloidogyne incognita in cowpea and the influence of these pathogens on the yield of cowpea. The interaction of both pathogens resulted in higher population density of the nematode at harvest and correspondingly reduced grain yield in comparison to inoculation of either pathogen alone or un-inoculated control. An almost equal number of nematode juveniles penetrate...

  19. Assessment of patch quality by aphidophagous ladybirds: Laboratory study on the minimum density of aphids required for oviposition

    Czech Academy of Sciences Publication Activity Database

    Das, B. C.; Dixon, Anthony F. G.

    2011-01-01

    Roč. 1, č. 1 (2011), s. 57-60 ISSN 1805-0174 R&D Projects: GA MŠk LC06073; GA MŠk(CZ) ED1.1.00/02.0073 Institutional research plan: CEZ:AV0Z60870520 Keywords : Adalia bipunctata * Aphididae * arrestant * Coccinellidae * cues for oviposition * honeydew * minimum aphid density * patch quality * predator Subject RIV: EH - Ecology, Behaviour

  20. Does the presence of grassy strips and landscape grain affect the spatial distribution of aphids and their carabid predators?

    Czech Academy of Sciences Publication Activity Database

    Hassan, D. A.; Georgelin, T.; Delattre, T.; Burel, F.; Plantengenest, M.; Kindlmann, Pavel; Butet, A.

    2013-01-01

    Roč. 15, č. 1 (2013), s. 24-33 ISSN 1461-9555 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA ČR(CZ) GEVOL/11/E036 Institutional support: RVO:67179843 Keywords : Beneficial predators * biological control * Carabidae * cereal aphids * grassy strips * landscape structure Subject RIV: EH - Ecology, Behaviour Impact factor: 1.556, year: 2013

  1. Comparative role of neem seed extract, moringa leaf extract and imidacloprid in the management of wheat aphids in relation to yield losses in Pakistan.

    Science.gov (United States)

    Shah, Farhan Mahmood; Razaq, Muhammad; Ali, Abid; Han, Peng; Chen, Julian

    2017-01-01

    Wheat being staple food of Pakistan is constantly attacked by major wheat aphid species, Schizaphis graminum (R.), Rhopalosiphum padi (L.) and Sitobion avenae (F.). Due to concern on synthetic chemical use in wheat, it is imperative to search for alternative environment- and human- friendly control measures such as botanical pesticides. In the present study, we evaluated the comparative role of neem seed extract (NSE), moringa leaf extract (MLE) and imidacloprid (I) in the management of the aphid as well as the yield losses parameters in late planted wheat fields. Imidacloprid reduced significantly aphids infestation compared to the other treatments, hence resulting in higher yield, particularly when applied with MLE. The percentages of yield increase in I+MLE treated plots over the control were 19.15-81.89% for grains per spike, 5.33-37.62% for thousand grain weight and 27.59-61.12% for yield kg/ha. NSE was the second most effective control measure in suppressing aphid population, but the yield protected by NSE treatment over the control was comparable to that by imidacloprid. Population densities of coccinellids and syrphids in the plots treated with NSE-2 were higher than those treated with imidacloprid in two out of three experiments during 2013-14. Low predator density in imidacloprid-treated plots was attributed to the lower availability of prey aphids. The efficacy of NSE against aphids varied depending on degree of synchronization among the application timing, the activity of aphids, crop variety and environmental conditions. Despite that, we suggested NSE to be a promising alternative botanical insecticide compared to the most commonly recommended imidiacloprid. Further studies should consider the side effects of biopesticides on non-target organisms in order to provide better management practices in the field.

  2. Rice-straw mulch reduces the green peach aphid, Myzus persicae (Hemiptera: Aphididae populations on kale, Brassica oleracea var. acephala (Brassicaceae plants.

    Directory of Open Access Journals (Sweden)

    Reinildes Silva-Filho

    Full Text Available Organic mulches, like peel and rice-straw, besides other materials affect the UV and temperature, which cause a reduction in the aphid arrival. The aim was to evaluate the effect of covering the soil with straw on the populations of the green peach aphid, Myzus persicae on the kale, Brassica oleracea var. acephala plants. The first experiment evaluated the direct effect of the rice-straw mulch and the second its indirect effect on aphid immigration, testing the plant characteristics that could lead to the landing preference of this insect. The third experiment evaluated the direct effect of the mulch on the aphid population. In the second and third experiments, four plants, each in a 14 L polyethylene pot with holes at the bottom, were used in areas with and without soil mulching. These pots were changed between areas, after seven days, to evaluate the effects of this change on the arrival of the winged aphids to the plants. Each plant was covered with anti-aphid gauze and inoculated with one winged M. persicae. Winged and apterous adults of this insect were counted per plant after 15 days. The temperature increased in the mulched plots to a maximum of 21-36°C and to 18-32°C in the plots with or without soil covering, respectively. Plant growth reduced the numbers of the winged aphids landing before and after they were moved to the bare soil plots. The nutrient content was similar in plants in both the mulched and no mulched plots. The population growth of M. persicae was higher in the control than in the mulched plots. This was partially due to temperatures close to 30°C in these plots and changes in the plant physiology. The soil mulching with rice-straw decreased the M. persicae landing, increased the plot temperatures and improved the vegetative growth of the kale plants.

  3. Transgenic expression of a functional fragment of harpin protein Hpa1 in wheat induces the phloem-based defence against English grain aphid

    Science.gov (United States)

    Fu, Maoqiang; Xu, Manyu; Zhang, Chunling

    2014-01-01

    The harpin protein Hpa1 has multiple beneficial effects in plants, promoting plant growth and development, increasing crop yield, and inducing resistance to pathogens and insect pests. For these effects, the 10–40 residue fragment (Hpa110–42) isolated from the Hpa1 sequence is 1.3- to 7.5-fold more effective than the full-length protein. Here it is reported that the expression of Hpa110–42 under the direction of an insect-induced promoter induces the phloem-based defence to English grain aphid, a dominant species of wheat aphids. The expression of Hpa110–42 was found to compromise the colonization preference of aphids on the plant and further inhibit aphid reproduction in leaf colonies. In Hpa110–42-expressing wheat lines, moreover, aphid feeding from the phloem was repressed in correlation with the phloem-based defence. This defensive mechanism was shown as enhanced expression of wheat genes encoding phloem lectin proteins (PP2-A1 and PP2-A2) and β-1,3-glucan synthase-like enzymes (GSL2, GSL10, and GSL12). Both PP2-A and β-1,3-glucan formed high molecular mass polymers to block phloem sieve plate pores and therefore impede aphid feeding from the phloem. However, the phloem-based defence was impaired by treating plants with ethylene signalling inhibitors, suggesting the requirement for the ethylene signalling pathway. In addition, if Hpa110–42-expressing plants were subjected to attack by a small number of aphids, they newly acquired agriculturally beneficial characters, such as enhanced vegetative growth and increased tiller numbers and grain output values. These results suggest that the defensive and developmental roles of Hpa110–42 can be integrated into the germplasm of this agriculturally significant crop. PMID:24676030

  4. Rice-straw mulch reduces the green peach aphid, Myzus persicae (Hemiptera: Aphididae) populations on kale, Brassica oleracea var. acephala (Brassicaceae) plants.

    Science.gov (United States)

    Silva-Filho, Reinildes; Santos, Ricardo Henrique Silva; Tavares, Wagner de Souza; Leite, Germano Leão Demolin; Wilcken, Carlos Frederico; Serrão, José Eduardo; Zanuncio, José Cola

    2014-01-01

    Organic mulches, like peel and rice-straw, besides other materials affect the UV and temperature, which cause a reduction in the aphid arrival. The aim was to evaluate the effect of covering the soil with straw on the populations of the green peach aphid, Myzus persicae on the kale, Brassica oleracea var. acephala plants. The first experiment evaluated the direct effect of the rice-straw mulch and the second its indirect effect on aphid immigration, testing the plant characteristics that could lead to the landing preference of this insect. The third experiment evaluated the direct effect of the mulch on the aphid population. In the second and third experiments, four plants, each in a 14 L polyethylene pot with holes at the bottom, were used in areas with and without soil mulching. These pots were changed between areas, after seven days, to evaluate the effects of this change on the arrival of the winged aphids to the plants. Each plant was covered with anti-aphid gauze and inoculated with one winged M. persicae. Winged and apterous adults of this insect were counted per plant after 15 days. The temperature increased in the mulched plots to a maximum of 21-36°C and to 18-32°C in the plots with or without soil covering, respectively. Plant growth reduced the numbers of the winged aphids landing before and after they were moved to the bare soil plots. The nutrient content was similar in plants in both the mulched and no mulched plots. The population growth of M. persicae was higher in the control than in the mulched plots. This was partially due to temperatures close to 30°C in these plots and changes in the plant physiology. The soil mulching with rice-straw decreased the M. persicae landing, increased the plot temperatures and improved the vegetative growth of the kale plants.

  5. Transgenic expression of a functional fragment of harpin protein Hpa1 in wheat induces the phloem-based defence against English grain aphid.

    Science.gov (United States)

    Fu, Maoqiang; Xu, Manyu; Zhou, Ting; Wang, Defu; Tian, Shan; Han, Liping; Dong, Hansong; Zhang, Chunling

    2014-04-01

    The harpin protein Hpa1 has multiple beneficial effects in plants, promoting plant growth and development, increasing crop yield, and inducing resistance to pathogens and insect pests. For these effects, the 10-40 residue fragment (Hpa1₁₀₋₄₂) isolated from the Hpa1 sequence is 1.3- to 7.5-fold more effective than the full-length protein. Here it is reported that the expression of Hpa1₁₀₋₄₂ under the direction of an insect-induced promoter induces the phloem-based defence to English grain aphid, a dominant species of wheat aphids. The expression of Hpa1₁₀₋₄₂ was found to compromise the colonization preference of aphids on the plant and further inhibit aphid reproduction in leaf colonies. In Hpa1₁₀₋₄₂-expressing wheat lines, moreover, aphid feeding from the phloem was repressed in correlation with the phloem-based defence. This defensive mechanism was shown as enhanced expression of wheat genes encoding phloem lectin proteins (PP2-A1 and PP2-A2) and β-1,3-glucan synthase-like enzymes (GSL2, GSL10, and GSL12). Both PP2-A and β-1,3-glucan formed high molecular mass polymers to block phloem sieve plate pores and therefore impede aphid feeding from the phloem. However, the phloem-based defence was impaired by treating plants with ethylene signalling inhibitors, suggesting the requirement for the ethylene signalling pathway. In addition, if Hpa1₁₀₋₄₂-expressing plants were subjected to attack by a small number of aphids, they newly acquired agriculturally beneficial characters, such as enhanced vegetative growth and increased tiller numbers and grain output values. These results suggest that the defensive and developmental roles of Hpa1₁₀₋₄₂ can be integrated into the germplasm of this agriculturally significant crop.

  6. First records of aphid-pathogenic Entomophthorales in the sub-Antarctic archipelagos of Crozet and Kerguelen

    Directory of Open Access Journals (Sweden)

    Bernard Papierok

    2016-07-01

    Full Text Available Since the 20th century, the sub-Antarctic islands have suffered an increasing number of biological invasions. Despite the large number of publications on this topic, there is a lack of knowledge on parasitism rates of invasive species and on the role of parasites and pathogens to regulate their populations. Six aphid species have been introduced in the archipelagos of Crozet (Île de la Possession, 46° 25’ S–51° 51’ E and Kerguelen (49° 21’ S–70° 13’ E. Five of these species were found infected by entomopathogenic fungi of the order Entomophthorales. All these fungal species are cosmopolitan. Conidiobolus obscurus and Entomophthora planchoniana were the most frequently observed on Île de la Possession and in Archipel des Kerguelen, respectively. This is the first report of pathogenic fungi of aphids on the sub-Antarctic islands. We discuss these results in the light of our current knowledge of these insect pathogens. Their introduction by aphids surviving on plants during transportation is the most likely hypothesis to explain their presence on these remote islands.

  7. Transcriptomic insight into pathogenicity-associated factors of Conidiobolus obscurus, an obligate aphid-pathogenic fungus belonging to Entomopthoromycota.

    Science.gov (United States)

    Wang, Jianghong; Zhou, Xiang; Guo, Kai; Zhang, Xinqi; Lin, Haiping; Montalva, Cristian

    2018-01-16

    Conidiobolus obscurus is a widespread fungal entomopathogen with aphid biocontrol potential. This study focused on a de novo transcriptomic analysis of C. obscurus. A number of pathogenicity-associated factors were annotated for the first time from the assembled 17 231 fungal unigenes, including those encoding subtilisin-like proteolytic enzymes (Pr1s), trypsin-like proteases, metalloproteases, carboxypeptidases and endochitinases. Many of these genes were transcriptionally up-regulated by at least twofold in mycotized cadavers compared with the in vitro fungal cultures. The resultant transcriptomic database was validated by the transcript levels of three selected pathogenicity-related genes quantified from different in vivo and in vitro material in real-time quantitative polymerase chain reaction (PCR). The involvement of multiple Pr1 proteases in the first stage of fungal infection was also suggested. Interestingly, a unique cytolytic (Cyt)-like δ-endotoxin gene was highly expressed in both mycotized cadavers and fungal cultures, and was more or less distinct from its homologues in bacteria and other fungi. Our findings provide the first global insight into various pathogenicity-related genes in this obligate aphid pathogen and may help to develop novel biocontrol strategy against aphid pests. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  8. Genetic origin and dispersal of the invasive soybean aphid inferred from population genetic analysis and approximate Bayesian computation.

    Science.gov (United States)

    Fang, Fang; Chen, Jing; Jiang, Li-Yun; Qu, Yan-Hua; Qiao, Ge-Xia

    2018-01-09

    Biological invasion is considered one of the most important global environmental problems. Knowledge of the source and dispersal routes of invasion could facilitate the eradication and control of invasive species. Soybean aphid, Aphis glycines Matsumura, is one of the most destructive soybean pests. For effective management of this pest, we conducted genetic analyses and approximate Bayesian computation (ABC) analysis to determine the origins and dispersal of the aphid species, as well as the source of its invasion in the USA, using eight microsatellite loci and the mitochondrial cytochrome c oxidase subunit I (COI) gene. We were able to identify a significant isolation by distance (IBD) pattern and three genetic lineages in the microsatellite data but not in the mtDNA dataset. The genetic structure showed that the USA population has the closest relationship with those from Korea and Japan, indicating that the two latter populations might be the sources of the invasion to the USA. Both population genetic analyses and ABC showed that the northeastern populations in China were the possible sources of the further spread of A. glycines to Indonesia. The dispersal history of this aphid can provide useful information for pest management strategies and can further help predict areas at risk of invasion. This article is protected by copyright. All rights reserved.

  9. Relative degree of susceptibility and resistance of different brassica campestris l. genotypes against aphid myzus persicae- a field investigation

    International Nuclear Information System (INIS)

    Sarwar, M.

    2013-01-01

    Field evaluation of twenty three Brassica campestris L. genotypes was conducted for aphid (Homoptera: Aphididae) resistance during 2008 crop season. The parameters used to assess tolerance of germplasm lines included pest population during growth season and grain yield at crop maturity. Aphids showed obvious preferences for all of the germplasm investigated; however, the evaluation for resistance to pest identified several genotypes with variable potential for tolerance and sensitivity. Estimated grain yield also varied significantly due to variable pest intensity noted, and seemed to be more appropriately dependent on the pest population conditions at the experimental site. Among the germplasm, the estimation obtained regarding both the parameters sorted out MM-II/02-3 and MM-I285 genotypes as most tolerant due to less pest infestation and damage. Peak infestations by aphid caused severe crop fatalities on S-9-S-97-0.75+75/55 and S-9-1006/95 genotypes, affecting the seed weight and resulting an immense reduction in grain Brassica genotypes appeared to be governed by means of varietals characteristics of diverse germplasms. The result of resistance test conducted under field environment is an effective and consistent approach in the practical selection of crop lines resistant or partially resistant to pests for use in future breeding programs. (author)

  10. The role of detoxifying enzymes in the resistance of the cowpea aphid (Aphis craccivora Koch to thiamethoxam

    Directory of Open Access Journals (Sweden)

    Abdallah Ibrahim Saleh

    2016-01-01

    Full Text Available The cowpea aphid (Aphis craccivora Koch is considered a serious insect pest attacking several crops. We carried out biochemical studies to elucidate the role of the metabolising enzymes in conferring resistance to thiamethoxam, in two strains (resistant and susceptible of the cowpea aphid. Bioassay experiments showed that the thiamethoxam selected strain developed a 48 fold resistance after consecutive selection with thiamethoxam for 12 generations. This resistant strain also exhibited cross-resistance to the tested carbamates; pirimicarb and carbosulfan, organophosphorus (malathion, fenitrothion, and chlorpyrifos-methyl, and the neonicotinoid (acetamiprid. Synergism studies have indicated that S,S,S-tributyl phosphorotrithioate (DEF, a known inhibitor for esterases, increased thiamethoxam toxicity 5.58 times in the resistant strain compared with the susceptible strain. Moreover, the biochemical determination revealed that carboxylestersae activity was 30 times greater in the resistant strain than in the susceptible strain. In addition, the enzyme activity of glutathione S-transferase (GST and mixed function oxidases (mfo increased only in the resistant strain 3.7 and 2.7 times, respectively, in relation to the susceptible (the control. Generally, our results suggest that the higher activity of the detoxifying enzymes, particularly carboxylesterase, in the resistant strain of the cowpea aphid, apparently have a significant role in endowing resistance to thiamethoxam, although additional mechanisms may contribute.

  11. Components of Adenovirus Genome Packaging

    Science.gov (United States)

    Ahi, Yadvinder S.; Mittal, Suresh K.

    2016-01-01

    Adenoviruses (AdVs) are icosahedral viruses with double-stranded DNA (dsDNA) genomes. Genome packaging in AdV is thought to be similar to that seen in dsDNA containing icosahedral bacteriophages and herpesviruses. Specific recognition of the AdV genome is mediated by a packaging domain located close to the left end of the viral genome and is mediated by the viral packaging machinery. Our understanding of the role of various components of the viral packaging machinery in AdV genome packaging has greatly advanced in recent years. Characterization of empty capsids assembled in the absence of one or more components involved in packaging, identification of the unique vertex, and demonstration of the role of IVa2, the putative packaging ATPase, in genome packaging have provided compelling evidence that AdVs follow a sequential assembly pathway. This review provides a detailed discussion on the functions of the various viral and cellular factors involved in AdV genome packaging. We conclude by briefly discussing the roles of the empty capsids, assembly intermediates, scaffolding proteins, portal vertex and DNA encapsidating enzymes in AdV assembly and packaging. PMID:27721809

  12. Genome Imprinting

    Indian Academy of Sciences (India)

    the cell nucleus (mitochondrial and chloroplast genomes), and. (3) traits governed ... tively good embryonic development but very poor development of membranes and ... Human homologies for the type of situation described above are naturally ..... imprint; (b) New modifications of the paternal genome in germ cells of each ...

  13. Baculovirus Genomics

    NARCIS (Netherlands)

    Oers, van M.M.; Vlak, J.M.

    2007-01-01

    Baculovirus genomes are covalently closed circles of double stranded-DNA varying in size between 80 and 180 kilobase-pair. The genomes of more than fourty-one baculoviruses have been sequenced to date. The majority of these (37) are pathogenic to lepidopteran hosts; three infect sawflies

  14. Genomic Testing

    Science.gov (United States)

    ... this database. Top of Page Evaluation of Genomic Applications in Practice and Prevention (EGAPP™) In 2004, the Centers for Disease Control and Prevention launched the EGAPP initiative to establish and test a ... and other applications of genomic technology that are in transition from ...

  15. Ancient genomes

    OpenAIRE

    Hoelzel, A Rus

    2005-01-01

    Ever since its invention, the polymerase chain reaction has been the method of choice for work with ancient DNA. In an application of modern genomic methods to material from the Pleistocene, a recent study has instead undertaken to clone and sequence a portion of the ancient genome of the cave bear.

  16. Occurrence and parasitism of aphids (Hemiptera: Aphididae on cultivars of irrigated oat (Avena spp. in São Carlos, Brazil

    Directory of Open Access Journals (Sweden)

    Júlio Cesar Ronquim

    2004-06-01

    Full Text Available The interactions between aphids and their Hymenopteran parasitoids on irrigated oats as well as the response of different cultivars of cereals regarding the resistance to these aphids and the influence on the host/parasitoid relationships were studied during two years in São Carlos, Brazil. Rhopalosiphum padi (L. was the predominant aphid observed throughout the study, while the other species were rarely found. Five species of parasitic Hymenoptera were found: three primary parasitoids, Lysiphlebus testaceipes (Cresson, Aphidius colemani (Viereck and Diaeretiella rapae (M'Intosh and two hyperparasitoids, Syrphophagus aphidivorus (Myer and Alloxysta brassicae (Ashmead. The UPF 86081 cultivar presented significant results regarding lower Rhopalosiphum padi contamination and higher aphid parasitism rates than those observed on some other cultivars. No significant effect on the percentage variation of parasitoid emergence on the mummified aphids was observed throughout this study.Foram avaliadas as interações entre afídeos e seus himenópteros parasitóides em cultivares de aveia irrigada, como também a resposta de diferentes cultivares em relação resistência à estes afídeos e a influência nas relações hospedeiro/parasitóide durante dois anos em São Carlos, SP, Brasil. Rhopalosiphum padi (L. foi o afídeo predominante ao longo do estudo, enquanto as outras espécies raramente foram encontradas. Foram observadas cinco espécies de himenópteros parasitóides: três parasitóides primários, Lysiphlebus testaceipes (Cresson, Aphidius colemani (Viereck e Diaeretiella rapae (M'Intosh e dois hiperparasitóides, Syrphophagus aphidivorus (Myer and Alloxysta brassicae (Ashmead. A cultivar UPF 86081 apresentou resultados significativos quanto à baixa infestação por Rhopalosiphum padi e maiores taxas de parasitismo que a demais cultivares. Não foi observado efeito significativo na variação de porcentagem de emergência de parasit

  17. Comparison of a Canadian and a Dutch strain of the parasitoid Aphelinus mali (Hald) (Hym., Aphelinidae) for control of woolly apple aphid Eriosoma lanigerum (Haussmann) (Hom., Aphididae) in the Netherlands: a simulation approach

    NARCIS (Netherlands)

    Mols, P.J.M.; Boers, J.M.

    2001-01-01

    Woolly apple aphid, Eriosoma lanigerum is one of the important apple pests in the Netherlands. Weather conditions and natural enemies determine whether woolly apple aphid (WAA) will reach pest status. WAA may escape control by natural enemies and therefore it must be controlled using chemical

  18. Comparative field evaluation of some newer versus conventional insecticides for the control of aphids (homoptera: aphididae) on oilseed rape (brassica napus l.)

    International Nuclear Information System (INIS)

    Sarwar, M.; Ahmad, N.; Bux, M.; Nasrullah, A.; Tofique, M.

    2011-01-01

    This study was designed to evaluate the effects of new insecticides like, Imidacloprid (Confidor 200 EC), Thiomethoxam (Actara 25 WG) and Acetamiprid (Megamos 20 SL) belonging to Nitroguanidine group along with conventional insecticides such as, Chlorpyrifos (Lorsban 40 EC) and Dimethoate (Systoate 40 EC) belonging to Organophosphate group against aphids' population on oilseed rape (Brassica napus L.). A perusal of data, based on the overall performance of the test compounds, reflected that newer insecticides were superior in reducing the population of aphids and yield enhancement as compared to conventional insecticides. The best results were achieved with the application of Imidacloprid by recording the lowest number of aphids (2.2 per plant) than obtained with Thiomethoxam and Acetamiprid (3.22 and 4.66, respectively). Other insecticides, viz., Chlorpyrifos and Dimethoate were also found to be effective in maintaining the aphids' population at lower levels per plant (16.2 and 17.5, respectively) over untreated control (227.7). Imidacloprid was responsible for increasing the grain yield to 3722.85 Kg per Hectare, approached by Thiomethoxam, Acetamiprid, Chlorpyrifos and Dimethoate as against unsprayed control (2980.0, 2542.85, 1542.85, 540.0 and 604.85 Kg per Hectare, respectively). Study indicated that selective use of newer insecticides would seem a reasonable strategy in aphids controlling and integration of such chemicals in insects' management package could help to reduce pest densities. (author)

  19. Within-field distribution of the damson-hop aphid Phorodon humuli (Schrank) (Hemiptera: Aphididae) and natural enemies on hops in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzana, A.; Hermoso de Mendoza, A.; Seco, V.; Campelo, P.; Casquero, P.A.

    2017-07-01

    A field trial was performed in a hop yard throughout 2002, 2003 and 2004 in order to determine the within-field distribution of Phorodon humuli (Schrank) (Hemiptera: Aphididae) and its natural enemies. The distribution of P. humuli was directly affected by the position of the hop plants in the garden, with significantly higher concentrations of aphids (p=0.0122 in 2002 and p=0.0006 in 2003) observed along the edge. However, in 2004 the plants located on the marginal plots had similar populations to those on the more inner plots. This can be explained by a higher wind speed which made it more difficult to land on edge plants first. The hop aphid’s main natural enemy was Coccinella septempunctata (Coleoptera: Coccinellidae), whose population was greatest where the aphids were most abundant with a significantly greater number of eggs (p=0.0230) and adults (p=0.0245) in 2003. Lacewing eggs were also frequently observed, with a significantly higher population (p=0.0221 in 2003 and p=0.0046 in 2004) where the aphid numbers were high. The number of winged aphids was greatest towards the margins of the garden in 2003. It is argued that the spatial distribution of the hop aphid and its natural enemies could be used to plan a sampling program and to estimate the population densities of these insects for use in integrated pest management programs.

  20. Evaluation of the Susceptibility of the Pea Aphid, Acyrthosiphon pisum, to a Selection of Novel Biorational Insecticides using an Artificial Diet

    Science.gov (United States)

    Sadeghi, Amin; Van Damme, Els J.M.; Smagghe, Guy

    2009-01-01

    An improved technique was developed to assay the toxicity of insecticides against aphids using an artificial diet. The susceptibility of the pea aphid Acyrthosiphon pisum (Harris) (Hemiptera: Aphidoidea) was determined for a selection of novel biorational insecticides, each representing a novel mode of action. Flonicamid, a novel systemic insecticide with selective activity as feeding blocker against sucking insects, showed high toxicity against first-instar A. pisum nymphs with an LC50 of 20.4 μg/ml after 24 h, and of 0.24 µg/ml after 72 h. The toxicity was compared with another feeding blocker, pymetrozine, and the neonicotinoid, imidacloprid. In addition, four insect growth regulators were tested. The chitin synthesis inhibitor flufenoxuron, the juvenile hormone analogue pyriproxyfen, and the azadirachtin compound Neem Azal-T/S showed strong effects and reduced the aphid population by 50% after 3 days of treatment at a concentration of 7–9 µg/ml. The ecdysone agonist tested, halofenozide, was less potent. In conclusion, the improved aphid feeding apparatus can be useful as a miniature screening device for insecticides against different aphid pests. The present study demonstrated rapid and strong toxicity of flonicamid, and other biorational insecticides towards A. pisum. PMID:20053120

  1. Effects of root herbivory by nematodes on the performance and preference of a leaf-infesting generalist aphid depend on nitrate fertilization.

    Science.gov (United States)

    Kutyniok, Magdalene; Persicke, Marcus; Müller, Caroline

    2014-02-01

    The performance and behavior of herbivores is strongly affected by the quality of their host plants, which is determined by various environmental conditions. We investigated the performance and preference of the polyphagous shoot-infesting aphid Myzus persicae on the host-plant Arabidopsis thaliana in a two-factorial design in which nitrate fertilization was varied by 33 %, and the root-infesting cyst-nematode Heterodera schachtii was present or absent. Aphid performance was influenced by these abiotic and biotic factors in an interactive way. Nematode presence decreased aphid performance when nitrate levels were low, whereas nematode infestation did not influence aphid performance under higher nitrate fertilization. Aphids followed the "mother knows best" principle when given a choice, settling preferentially on those plants on which they performed best. Hence, they preferred nematode-free over nematode-infested plants in the low fertilization treatment but host choice was not affected by nematodes under higher nitrate fertilization. The amino acid composition of the phloem exudates was significantly influenced by fertilization but also by the interaction of the two treatments. Various glucosinolates in the leaves, which provide an estimate of phloem glucosinolates, were not affected by the individual treatments but by the combination of fertilization and herbivory. These changes in primary and secondary metabolites may be decisive for the herbivore responses. Our data demonstrate that abiotic and biotic factors can interactively affect herbivores, adding a layer of complexity to plant-mediated herbivore interactions.

  2. Within-field distribution of the damson-hop aphid Phorodon humuli (Schrank) (Hemiptera: Aphididae) and natural enemies on hops in Spain

    International Nuclear Information System (INIS)

    Lorenzana, A.; Hermoso de Mendoza, A.; Seco, V.; Campelo, P.; Casquero, P.A.

    2017-01-01

    A field trial was performed in a hop yard throughout 2002, 2003 and 2004 in order to determine the within-field distribution of Phorodon humuli (Schrank) (Hemiptera: Aphididae) and its natural enemies. The distribution of P. humuli was directly affected by the position of the hop plants in the garden, with significantly higher concentrations of aphids (p=0.0122 in 2002 and p=0.0006 in 2003) observed along the edge. However, in 2004 the plants located on the marginal plots had similar populations to those on the more inner plots. This can be explained by a higher wind speed which made it more difficult to land on edge plants first. The hop aphid’s main natural enemy was Coccinella septempunctata (Coleoptera: Coccinellidae), whose population was greatest where the aphids were most abundant with a significantly greater number of eggs (p=0.0230) and adults (p=0.0245) in 2003. Lacewing eggs were also frequently observed, with a significantly higher population (p=0.0221 in 2003 and p=0.0046 in 2004) where the aphid numbers were high. The number of winged aphids was greatest towards the margins of the garden in 2003. It is argued that the spatial distribution of the hop aphid and its natural enemies could be used to plan a sampling program and to estimate the population densities of these insects for use in integrated pest management programs.

  3. Trends in sickness absence in Denmark

    DEFF Research Database (Denmark)

    Johansen, Kristina; Bihrmann, Kristine; Mikkelsen, Sigurd

    2009-01-01

    's Authority, and the Labor Force Survey indicated a stable and largely unaltered pattern of sickness absence during the last 20 years. Findings from Statistics Denmark showed an increase in the cumulative incidence proportion from 6.6 to 7.5% among employed people between 2000 and 2007. CONCLUSION: Our data...... a linear regression analysis to analyze time trends in sickness absence based on datasets from the Danish Employers Confederation, the State Employer's Authority, the Labour Force Survey, and Statistics Denmark. RESULTS: The findings from the Confederation of Danish Employers, the State Employer...

  4. Does paternity leave affect mothers’ sickness absence

    OpenAIRE

    Bratberg, Espen; Naz, Ghazala

    2009-01-01

    Female labour force participation is high in Norway but sickness absence rates are higher for women than for men. This may be partly a result of unequal sharing of childcare in the family. In this paper, we consider the effect of paternity leave on sickness absence among women who have recently given birth. We draw on a six-year panel taken from full population data from administrative sources. We find that in the 6% of families where fathers take out leave more than the standard quota (gende...

  5. Congenital Absence of the Internal Carotid Artery

    International Nuclear Information System (INIS)

    Florio, Francesco; Balzano, Silverio; Nardella, Michele; Strizzi, Vincenzo; Cammisa, Mario; Bozzini, Vincenzo; Catapano, Giuseppe; D'Angelo, Vincenzo

    1999-01-01

    We report three cases of congenital absence of an internal carotid artery (ICA), diagnosed incidentally by digital subtraction angiography. The analysis of the cases is based on the classification of segmental ICA agenesis proposed by Lasjaunias and Berenstein. Usually the patients with this rare vascular anomaly are asymptomatic; some may have symptoms related to cerebrovascular insufficiency, compression by enlarged intracranial collateral vessels, or complications associated with cerebral aneurysms. Diagnosis of congenital absence of ICA is made by skull base computed tomography (CT) scan, CT and magnetic resonance angiography, and conventional or digital subtraction angiography

  6. Isolated absence of the septum pellucidum

    International Nuclear Information System (INIS)

    Supprian, T.; Sian, J.; Heils, A.; Hofmann, E.; Warmuth-Metz, M.; Solymosi, L.

    1999-01-01

    Absence of the septum pellucidum in the human is a rare congenital anomaly. Previous reports suggest it is almost always associated with other brain anomalies. However, MRI in two patients with absence of the septum pellucidum presented here, indicates that this anomaly may occur without associated anomalies. It may be one manifestation of a spectrum of developmental anomalies. One patient presented with schizophrenic psychosis; developmental disturbances in limbic areas are believed to be associated with schizophrenia. Agenesis of the septum pellucidum may indicate abnormal development of limbic structures and it may be associated with anomalies, such as cytoarchitectural disturbances of cortical layers, as yet undetectable by MRI. (orig.)

  7. Isolated absence of the septum pellucidum

    Energy Technology Data Exchange (ETDEWEB)

    Supprian, T. [Department of Psychiatry, University of Wuerzburg, Fuechsleinstrasse 15, D-97080 Wuerzburg (Germany)]|[Department of Neuroradiology, University of Wuerzburg (Germany); Sian, J.; Heils, A. [Department of Psychiatry, University of Wuerzburg, Fuechsleinstrasse 15, D-97080 Wuerzburg (Germany); Hofmann, E.; Warmuth-Metz, M.; Solymosi, L. [Department of Neuroradiology, University of Wuerzburg (Germany)

    1999-08-01

    Absence of the septum pellucidum in the human is a rare congenital anomaly. Previous reports suggest it is almost always associated with other brain anomalies. However, MRI in two patients with absence of the septum pellucidum presented here, indicates that this anomaly may occur without associated anomalies. It may be one manifestation of a spectrum of developmental anomalies. One patient presented with schizophrenic psychosis; developmental disturbances in limbic areas are believed to be associated with schizophrenia. Agenesis of the septum pellucidum may indicate abnormal development of limbic structures and it may be associated with anomalies, such as cytoarchitectural disturbances of cortical layers, as yet undetectable by MRI. (orig.) With 1 fig., 19 refs.

  8. RPAN: rice pan-genome browser for ∼3000 rice genomes.

    Science.gov (United States)

    Sun, Chen; Hu, Zhiqiang; Zheng, Tianqing; Lu, Kuangchen; Zhao, Yue; Wang, Wensheng; Shi, Jianxin; Wang, Chunchao; Lu, Jinyuan; Zhang, Dabing; Li, Zhikang; Wei, Chaochun

    2017-01-25

    A pan-genome is the union of the gene sets of all the individuals of a clade or a species and it provides a new dimension of genome complexity with the presence/absence variations (PAVs) of genes among these genomes. With the progress of sequencing technologies, pan-genome study is becoming affordable for eukaryotes with large-sized genomes. The Asian cultivated rice, Oryza sativa L., is one of the major food sources for the world and a model organism in plant biology. Recently, the 3000 Rice Genome Project (3K RGP) sequenced more than 3000 rice genomes with a mean sequencing depth of 14.3×, which provided a tremendous resource for rice research. In this paper, we present a genome browser, Rice Pan-genome Browser (RPAN), as a tool to search and visualize the rice pan-genome derived from 3K RGP. RPAN contains a database of the basic information of 3010 rice accessions, including genomic sequences, gene annotations, PAV information and gene expression data of the rice pan-genome. At least 12 000 novel genes absent in the reference genome were included. RPAN also provides multiple search and visualization functions. RPAN can be a rich resource for rice biology and rice breeding. It is available at http://cgm.sjtu.edu.cn/3kricedb/ or http://www.rmbreeding.cn/pan3k. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Effect of absence of vision on posture.

    Science.gov (United States)

    Alotaibi, Abdullah Z; Alghadir, Ahmad; Iqbal, Zaheen A; Anwer, Shahnawaz

    2016-04-01

    [Purpose] The visual system is one of the sensory systems that enables the body to assess and process information about the external environment. In the absence of vision, a blind person loses contact with the outside world and develops faulty motor patterns, which results in postural deficiencies. However, literature regarding the development of such deficiencies is limited. The aim of this study was to discuss the effect of absence of vision on posture, the possible biomechanics behind the resulting postural deficiencies, and strategies to correct and prevent them. [Subjects and Methods] Various electronic databases including PubMed, Medline, and Google scholar were examined using the words "body", "posture", "blind" and "absence of vision". References in the retrieved articles were also examined for cross-references. The search was limited to articles in the English language. [Results] A total of 74 papers were shortlisted for this review, most of which dated back to the 1950s and 60s. [Conclusion] Blind people exhibit consistent musculoskeletal deformities. Absence of vision leads to numerous abnormal sensory and motor interactions that often limit blind people in isolation. Rehabilitation of the blind is a multidisciplinary task. Specialists from different fields need to diagnose and treat the deficiencies of the blind together as a team. Before restoring the normal mechanics of posture and gait, the missing link with the external world should be reestablished.

  10. Automatic characterization of dynamics in Absence Epilepsy

    DEFF Research Database (Denmark)

    Petersen, Katrine N. H.; Nielsen, Trine N.; Kjær, Troels W.

    2013-01-01

    Dynamics of the spike-wave paroxysms in Childhood Absence Epilepsy (CAE) are automatically characterized using novel approaches. Features are extracted from scalograms formed by Continuous Wavelet Transform (CWT). Detection algorithms are designed to identify an estimate of the temporal development...

  11. Father Absence Effects on Military Children

    Science.gov (United States)

    1981-03-01

    during his absence. Then there’s the problem of learning how to drive an automobile after being on a cruise for nine months." For those who felt that...D.C. 20370 3. Director for HRM Plans and Policy (OP-150) Human Resource Management Division Deputy Chief of Naval Operations (Manpoer. Personnel

  12. Pedagogy of Absence, Conflict, and Emergence

    DEFF Research Database (Denmark)

    Tom, Miye Nadya; Suárez-Krabbe, Julia; Caballero Castro, Trinidad

    2017-01-01

    This article employs the pedagogy of absence, conflict, and emergence (PACE), as an analytical approach to study concrete contributions to the decolonization of education. PACE seeks to transcend Eurocentric knowledge construction, and hence one of its fundamental efforts is to think from...

  13. School Ethical Climate and Teachers' Voluntary Absence

    Science.gov (United States)

    Shapira-Lishchinsky, Orly; Rosenblatt, Zehava

    2010-01-01

    Purpose: This paper aims to offer a theoretical framework for linking school ethical climate with teachers' voluntary absence. The paper attempts to explain this relationship using the concept of affective organizational commitment. Design/methodology/approach: Participants were 1,016 school teachers from 35 high schools in Israel. Data were…

  14. Pretreatment seizure semiology in childhood absence epilepsy.

    Science.gov (United States)

    Kessler, Sudha Kilaru; Shinnar, Shlomo; Cnaan, Avital; Dlugos, Dennis; Conry, Joan; Hirtz, Deborah G; Hu, Fengming; Liu, Chunyan; Mizrahi, Eli M; Moshé, Solomon L; Clark, Peggy; Glauser, Tracy A

    2017-08-15

    To determine seizure semiology in children with newly diagnosed childhood absence epilepsy and to evaluate associations with short-term treatment outcomes. For participants enrolled in a multicenter, randomized, double-blind, comparative-effectiveness trial, semiologic features of pretreatment seizures were analyzed as predictors of treatment outcome at the week 16 to 20 visit. Video of 1,932 electrographic absence seizures from 416 participants was evaluated. Median seizure duration was 10.2 seconds; median time between electrographic seizure onset and clinical manifestation onset was 1.5 seconds. For individual seizures and by participant, the most common semiology features were pause/stare (seizure 95.5%, participant 99.3%), motor automatisms (60.6%, 86.1%), and eye involvement (54.9%, 76.5%). The interrater agreement for motor automatisms and eye involvement was good (72%-84%). Variability of semiology features between seizures even within participants was high. Clustering analyses revealed 4 patterns (involving the presence/absence of eye involvement and motor automatisms superimposed on the nearly ubiquitous pause/stare). Most participants experienced more than one seizure cluster pattern. No individual semiologic feature was individually predictive of short-term outcome. Seizure freedom was half as likely in participants with one or more seizure having the pattern of eye involvement without motor automatisms than in participants without this pattern. Almost all absence seizures are characterized by a pause in activity or staring, but rarely is this the only feature. Semiologic features tend to cluster, resulting in identifiable absence seizure subtypes with significant intraparticipant seizure phenomenologic heterogeneity. One seizure subtype, pause/stare and eye involvement but no motor automatisms, is specifically associated with a worse treatment outcome. © 2017 American Academy of Neurology.

  15. Herbarium genomics

    DEFF Research Database (Denmark)

    Bakker, Freek T.; Lei, Di; Yu, Jiaying

    2016-01-01

    Herbarium genomics is proving promising as next-generation sequencing approaches are well suited to deal with the usually fragmented nature of archival DNA. We show that routine assembly of partial plastome sequences from herbarium specimens is feasible, from total DNA extracts and with specimens...... up to 146 years old. We use genome skimming and an automated assembly pipeline, Iterative Organelle Genome Assembly, that assembles paired-end reads into a series of candidate assemblies, the best one of which is selected based on likelihood estimation. We used 93 specimens from 12 different...... correlation between plastome coverage and nuclear genome size (C value) in our samples, but the range of C values included is limited. Finally, we conclude that routine plastome sequencing from herbarium specimens is feasible and cost-effective (compared with Sanger sequencing or plastome...

  16. Isolation and in vitro cultivation of the aphid pathogenic fungus Entomophthora planchoniana.

    Science.gov (United States)

    Freimoser, F M; Jensen, A B; Tuor, U; Aebi, M; Eilenberg, J

    2001-12-01

    Entomophthora planchoniana is an important fungal pathogen of aphids. Although Entomophthora chromaphidis has been considered a synonym for E. planchoniana, the two species are now separated, and E. planchoniana is reported not to grow in vitro. In this paper, we describe for the first time the isolation and cultivation of this species. Entomophthora planchoniana was isolated from a population of Ovatus crataegarius (Homoptera, Aphididae), which was infected by E. planchoniana only. The isolates did not sporulate, but the sequence of the small subunit rDNA and the restriction fragment length polymorphism patterns of the first part of the large subunit rDNA and the ITS II region confirm that the isolates were E. planchoniana. The isolated fungus grew in a medium consisting of Grace's insect cell culture medium supplemented with lactalbumin hydrolysate, yeastolate, and 10% fetal bovine serum or in GLEN medium with 10% fetal bovine serum. Vegetative cells of E. planchoniana were long and club-shaped and did not stain with Calcofluor, thus suggesting that they were protoplasts.

  17. Intraguild Predation Responses in Two Aphidophagous Coccinellids Identify Differences among Juvenile Stages and Aphid Densities.

    Science.gov (United States)

    Rondoni, Gabriele; Ielo, Fulvio; Ricci, Carlo; Conti, Eric

    2014-12-08

    (1) Intraguild predation (IGP) can occur among aphidophagous predators thus reducing their effectiveness in controlling crop pests. Among ladybirds, Coccinella septempunctata L. and Hippodamia variegata Goeze are the most effective predators upon Aphis gossypii Glov., which is an economically important pest of melon. Understanding their likelihood to engage in reciprocal predation is a key point for conservation of biological control. Here, we aim to investigate, under laboratory conditions, the level of IGP between the two above mentioned aphidophagous species. (2) Fourth-instars of the two species were isolated in petri dishes with combinations of different stages of the heterospecific ladybird and different densities of A. gossypii. The occurrence of IGP events was recorded after six hours. (3) C. septempunctata predated H. variegata at a higher rate than vice versa (70% vs. 43% overall). Higher density of the aphid or older juvenile stage of the IG-prey (22% of fourth instars vs. 74% of eggs and second instars) reduces the likelihood of predation. (4) To our knowledge, IGP between C. septempunctata and H. variegata was investigated for the first time. Results represent a baseline, necessary to predict the likelihood of IGP occurrence in the field.

  18. COMPARATIVE DEMOGRAPHICS OF A GENERALIST PREDATORY LADYBIRD ON FIVE APHID PREY: A LABORATORY STUDY

    Institute of Scientific and Technical Information of China (English)

    Omkar; AhmadPervez

    2004-01-01

    Prey driven demographic parameters of an aphidophagous ladybird, Propylea dissecta (Mulsant) were studied in attempt to answer how ladybird overcomes the problem of seasonally fluctuating food base. The ladybird reared for five generations in laboratory derived differential nutrition from five food sources (i.e. aphid species, Rhopalosiphum maidis (Fitch), Aphis craccivora Koch, Aphis gossypii Glover, Uroleucon compositae (Theobald) and Lipaphis erysimi (Kalt.)). The order of relative prey suitability was A. gossypii, A. craccivora, R. maidis, U. compositae and L.erysimi. Neonates suffered maximum mortality followed by eggs. Estimates of net reproductive rate,intrinsic rate of increase and finite rate of increase were highest (407.18, 0.2274 day-1, 1.2553 day-1) on A. gossypii and lowest (176.02, 0.1533 day-1, 1.1657 day-1) on L. erysimi. Generation time was shortest (26.43 days) on A. gossypii and longest (33.73 days) on L. erysimi. The present study thus,provides an explanation to the high incidence of P. dissecta on A. gossypii, as it experienced high intrinsic rate of increase and optimal values for related demographic parameters.

  19. Effects of organic-farming-compatible insecticides on four aphid natural enemy species.

    Science.gov (United States)

    Jansen, Jean P; Defrance, Thibaut; Warnier, Anne M

    2010-06-01

    The toxicities of pyrethrins + rapeseed oil, pyrethrins + piperonyl butoxide (PBO), potassium salts of fatty acids and linseed oil were assessed in the laboratory on the parasitic wasp Aphidius rhopalosiphi (Destefani-Perez), the ladybird Adalia bipunctata (L.), the rove beetle Aleochara bilineata (Gyll.) and the carabid beetle Bembidion lampros (Herbst.). The methods selected were residual contact toxicity tests on inert and natural substrates. Both the pyrethrin products led to 100% mortality in the adult parasitic wasps and ladybird larvae on glass plates and plants. The pyrethrins + PBO formulation was toxic for B. lampros on sand and natural soil, but the pyrethrins + rapeseed oil formulation was harmless for this species. Insecticidal soaps were harmless for all these beneficial species. None of the tested products significantly affected the parasitism of the onion fly pupae by A. bilineata. The results indicated the potentially high toxicity of natural pyrethrins for beneficial arthropods. Although this toxicity needs to be confirmed in field conditions, the toxicity levels obtained in the laboratory were similar to or higher than those of several synthetic insecticides known to be toxic in the field. Insecticidal soaps could be considered as an alternative for aphid control in organic farming in terms of selectivity.

  20. THE ADAPTATION TEST ON YARDLONG BEAN LINES TOLERANT TO APHIDS AND HIGH YIELD

    Directory of Open Access Journals (Sweden)

    Kuswanto

    2011-06-01

    Full Text Available The adaptation trial was applied to determine the benefits of genotype-environmental inter-action, adaptability and stability of lines. The previous research successfully obtained 8 UB lines which had high yield and tolerant to aphids. These lines belong to plant breeding laboratory of Brawijaya University, which had stability and a high potential can be immediately released to the public. Research was conducted in 2010, dry and rainy season, on 3 locations of yardlong bean, namely Malang, Kediri and Jombang. Randomized Block Design was applied in these locations.Genotype-environment interaction was analyzed with combined analysis of nested design.The adaptability and stability were known from regression analysis based on the stability of Eberhart and Russel. There were 6 stabile lines, namely UB7070P1, UB24089X1, UB606572, UB61318, UB7023J44, and UB715, respectively. They were recommended to be released as new varieties which had pest tolerance and high yield. The UBPU was suitable to be developed in marginal land. The 6 new varieties had registered to Agriculture Department Republic of Indonesia, namely, Brawijaya 1, Brawijaya 3, Brawijaya 4, Bagong 2, Bagong 3 dan Bagong Ungu, respectively.