WorldWideScience

Sample records for apetala2 repeat transcription

  1. Combinatorial Signal Integration by APETALA2/Ethylene Response Factor (ERF-Transcription Factors and the Involvement of AP2-2 in Starvation Response

    Directory of Open Access Journals (Sweden)

    Karl-Josef Dietz

    2012-05-01

    Full Text Available Transcription factors of the APETALA 2/Ethylene Response Factor (AP2/ERF-family have been implicated in diverse processes during development, stress acclimation and retrograde signaling. Fifty-three leaf-expressed AP2/ERFs were screened for their transcriptional response to abscisic acid (ABA, 3-(3,4-dichlorophenyl-1,1-dimethylurea (DCMU, methylviologen (MV, sucrose and high or low light, respectively, and revealed high reactivity to these effectors. Six of them (AP2-2, ARF14, CEJ1, ERF8, ERF11, RAP2.5 were selected for combinatorial response analysis to ABA, DCMU and high light. Additive, synergistic and antagonistic effects demonstrated that these transcription factors are components of multiple signaling pathways. AP2-2 (At1g79700 was subjected to an in depth study. AP2-2 transcripts were high under conditions linked to limited carbohydrate availability and stress and down-regulated in extended light phase, high light or in the presence of sugar. ap2-2 knock out plants had unchanged metabolite profiles and transcript levels of co-expressed genes in extended darkness. However, ap2-2 revealed more efficient germination and faster early growth under high sugar, osmotic or salinity stress, but the difference was abolished in the absence of sugar or during subsequent growth. It is suggested that AP2-2 is involved in mediating starvation-related and hormonal signals.

  2. 白桦APETALA2( AP2)转录因子基因的分离及其表达%Isolation and Expression of APETALA2 Transcription Factor Gene in Betula platyphylla

    Institute of Scientific and Technical Information of China (English)

    张妍; 刘瀛; 孙丰宾; 戴超; 刘雪梅

    2012-01-01

    AP2 gene is a key transcription factor involved in flower development in plants. The full cDNA of AP2 gene was isolated from Betula platyphylla Suk. by methods of reverse transcription polymerase chain reaction ( RT-PCR) and 5' and 3' rapid amplification of cDNA ends (RACE) . Results showed that AP2 gene contains an open reading frame (ORF) ,of 1554bp encoding 517 amino acids. Molecular weight of the deduced protein of BpAPl is 56.74kDa and the theoretical isoelectric point is 6. 34. The AP2 functional sites and characterized domains were confirmed in the sequence, so the isolated gene was named as BpAPl, and registered in Gen Bank with accession number JN247408. The deduced amino acid sequence shared 51%~77% of identity with other twelve plant species, the maximum identity with Arabidopsis thaliana (77% ) and minimum identity with Pinus thunbergii (51% ). A phylogenetic tree was constructed according to multiple sequences alignment of all the thirteen plant species. Transcription expression of BpAPl was analyzed by qRT-PCR in different tissues and periods in B. platyphylla. Results showed that BpAPl was more highly expressed in floral organs than in vegetative organs, expression quantity more highly in young tissues than in mature tissues. It inferred that BpAP2 transfactor involved in the regulation of development of floral organs and meristematic tissues in Betula. In addition, a natural male inflorescence- abnormal mutant of B. platyphylla was used for transcription analysis of BpAP2. Results showed that BpAPl gene is expressed up-regulatedly in female inflorescences, while down-regulation in male inflorescences, young leaves and young shoots, which predicted that BpAPl should be involved in regulation and expression of multiple genes, and not only be involved in the development of floral organs, but also play some roles in the development of vegetative tissues.

  3. Genome-Wide Analysis of APETALA2/Ethylene-Responsive Factor (AP2/ERF) Gene Family in Barley (Hordeum vulgare L.)

    Science.gov (United States)

    Lin, Shen; Luan, Haiye; Lv, Chao; Zhang, Xinzhong; Song, Xiyun; Xu, Rugen

    2016-01-01

    APETALA2/Ethylene-Responsive Factor (AP2/ERF) gene family is plant specific transcription factor. It plays critical roles in development process, tolerance to biotic and abiotic stresses, and responses to plant hormones. However, limited data are available on the contributions of AP2/ERF gene family in barley (Hordeum vulgare L.). In the present study, 121 HvAP2/ERF genes in barley were identified by using bioinformatics methods. A total of 118 HvAP2/ERF (97.5%) genes were located on seven chromosomes. According to phylogenetic classification of AP2/ERF family in Arabidopsis, HvAP2/ERF proteins were divided into AP2 (APETALA2), RAV (Related to ABI3/VP), DREB (dehydration responsive element binding), ERF (ethylene responsive factors) and soloist sub families. The analysis of duplication events indicated that tandem repeat and segmental duplication contributed to the expansion of the AP2/ERF family in barley. HvDREB1s/2s genes displayed various expression patterns under abiotic stress and phytohormone. Taken together, the data generated in this study will be useful for genome-wide analysis to determine the precise role of the HvAP2/ERF gene during barley development, abiotic stress and phytohormone responses with the ultimate goal of improving crop production. PMID:27598245

  4. Genome investigation suggests MdSHN3, an APETALA2-domain transcription factor gene, to be a positive regulator of apple fruit cuticle formation and an inhibitor of russet development.

    Science.gov (United States)

    Lashbrooke, Justin; Aharoni, Asaph; Costa, Fabrizio

    2015-11-01

    The outer epidermal layer of apple fruit is covered by a protective cuticle. Composed of a polymerized cutin matrix embedded with waxes, the cuticle is a natural waterproof barrier and protects against several abiotic and biotic stresses. In terms of apple production, the cuticle is essential to maintain long post-harvest storage, while severe failure of the cuticle can result in the formation of a disorder known as russet. Apple russet results from micro-cracking of the cuticle and the formation of a corky suberized layer. This is typically an undesirable consumer trait, and negatively impacts the post-harvest storage of apples. In order to identify genetic factors controlling cuticle biosynthesis (and thus preventing russet) in apple, a quantitative trait locus (QTL) mapping survey was performed on a full-sib population. Two genomic regions located on chromosomes 2 and 15 that could be associated with russeting were identified. Apples with compromised cuticles were identified through a novel and high-throughput tensile analysis of the skin, while histological analysis confirmed cuticle failure in a subset of the progeny. Additional genomic investigation of the determined QTL regions identified a set of underlying genes involved in cuticle biosynthesis. Candidate gene expression profiling by quantitative real-time PCR on a subset of the progeny highlighted the specific expression pattern of a SHN1/WIN1 transcription factor gene (termed MdSHN3) on chromosome 15. Orthologues of SHN1/WIN1 have been previously shown to regulate cuticle formation in Arabidopsis, tomato, and barley. The MdSHN3 transcription factor gene displayed extremely low expression in lines with improper cuticle formation, suggesting it to be a fundamental regulator of cuticle biosynthesis in apple fruit.

  5. Evolution of the APETALA2 Gene Lineage in Seed Plants.

    Science.gov (United States)

    Zumajo-Cardona, Cecilia; Pabón-Mora, Natalia

    2016-07-01

    Gene duplication is a fundamental source of functional evolutionary change and has been associated with organismal diversification and the acquisition of novel features. The APETALA2/ETHYLENE RESPONSIVE ELEMENT-BINDING FACTOR (AP2/ERF) genes are exclusive to vascular plants and have been classified into the AP2-like and ERF-like clades. The AP2-like clade includes the AINTEGUMENTA (ANT) and the euAPETALA2 (euAP2) genes, both regulated by miR172 Arabidopsis has two paralogs in the euAP2 clade, namely APETALA2 (AP2) and TARGET OF EAT3 (TOE3) that control flowering time, meristem determinacy, sepal and petal identity and fruit development. euAP2 genes are likely functionally divergent outside Brassicaceae, as they control fruit development in tomato, and regulate inflorescence meristematic activity in maize. We studied the evolution and expression patterns of euAP2/TOE3 genes to assess large scale and local duplications and evaluate protein motifs likely related with functional changes across seed plants. We sampled euAP2/TOE3 genes from vascular plants and have found three major duplications and a few taxon-specific duplications. Here, we report conserved and new motifs across euAP2/TOE3 proteins and conclude that proteins predating the Brassicaceae duplication are more similar to AP2 than TOE3. Expression data show a shift from restricted expression in leaves, carpels, and fruits in non-core eudicots and asterids to a broader expression of euAP2 genes in leaves, all floral organs and fruits in rosids. Altogether, our data show a functional trend where the canonical A-function (sepal and petal identity) is exclusive to Brassicaceae and it is likely not maintained outside of rosids. PMID:27030733

  6. Variable Glutamine-Rich Repeats Modulate Transcription Factor Activity

    OpenAIRE

    Gemayel, Rita; Chavali, Sreenivas; Pougach, Ksenia; Legendre, Matthieu; Zhu, Bo; Boeynaems, Steven; van der Zande, Elisa; Gevaert, Kris; Rousseau, Frederic; Schymkowitz, Joost; Babu, M Madan; Verstrepen, Kevin J.

    2015-01-01

    Summary Excessive expansions of glutamine (Q)-rich repeats in various human proteins are known to result in severe neurodegenerative disorders such as Huntington’s disease and several ataxias. However, the physiological role of these repeats and the consequences of more moderate repeat variation remain unknown. Here, we demonstrate that Q-rich domains are highly enriched in eukaryotic transcription factors where they act as functional modulators. Incremental changes in the number of repeats i...

  7. Differential Regulation of Strand-Specific Transcripts from Arabidopsis Centromeric Satellite Repeats.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available Centromeres interact with the spindle apparatus to enable chromosome disjunction and typically contain thousands of tandemly arranged satellite repeats interspersed with retrotransposons. While their role has been obscure, centromeric repeats are epigenetically modified and centromere specification has a strong epigenetic component. In the yeast Schizosaccharomyces pombe, long heterochromatic repeats are transcribed and contribute to centromere function via RNA interference (RNAi. In the higher plant Arabidopsis thaliana, as in mammalian cells, centromeric satellite repeats are short (180 base pairs, are found in thousands of tandem copies, and are methylated. We have found transcripts from both strands of canonical, bulk Arabidopsis repeats. At least one subfamily of 180-base pair repeats is transcribed from only one strand and regulated by RNAi and histone modification. A second subfamily of repeats is also silenced, but silencing is lost on both strands in mutants in the CpG DNA methyltransferase MET1, the histone deacetylase HDA6/SIL1, or the chromatin remodeling ATPase DDM1. This regulation is due to transcription from Athila2 retrotransposons, which integrate in both orientations relative to the repeats, and differs between strains of Arabidopsis. Silencing lost in met1 or hda6 is reestablished in backcrosses to wild-type, but silencing lost in RNAi mutants and ddm1 is not. Twenty-four-nucleotide small interfering RNAs from centromeric repeats are retained in met1 and hda6, but not in ddm1, and may have a role in this epigenetic inheritance. Histone H3 lysine-9 dimethylation is associated with both classes of repeats. We propose roles for transcribed repeats in the epigenetic inheritance and evolution of centromeres.

  8. Intergenic and repeat transcription in human, chimpanzee and macaque brains measured by RNA-Seq.

    Directory of Open Access Journals (Sweden)

    Augix Guohua Xu

    Full Text Available Transcription is the first step connecting genetic information with an organism's phenotype. While expression of annotated genes in the human brain has been characterized extensively, our knowledge about the scope and the conservation of transcripts located outside of the known genes' boundaries is limited. Here, we use high-throughput transcriptome sequencing (RNA-Seq to characterize the total non-ribosomal transcriptome of human, chimpanzee, and rhesus macaque brain. In all species, only 20-28% of non-ribosomal transcripts correspond to annotated exons and 20-23% to introns. By contrast, transcripts originating within intronic and intergenic repetitive sequences constitute 40-48% of the total brain transcriptome. Notably, some repeat families show elevated transcription. In non-repetitive intergenic regions, we identify and characterize 1,093 distinct regions highly expressed in the human brain. These regions are conserved at the RNA expression level across primates studied and at the DNA sequence level across mammals. A large proportion of these transcripts (20% represents 3'UTR extensions of known genes and may play roles in alternative microRNA-directed regulation. Finally, we show that while transcriptome divergence between species increases with evolutionary time, intergenic transcripts show more expression differences among species and exons show less. Our results show that many yet uncharacterized evolutionary conserved transcripts exist in the human brain. Some of these transcripts may play roles in transcriptional regulation and contribute to evolution of human-specific phenotypic traits.

  9. Control of trichome formation in Arabidopsis by poplar single-repeat R3 MYB transcription factors

    OpenAIRE

    Limei eZhou; Kaijie eZheng; Xiaoyu eWang; Hainan eTian; Xianling eWang; Shucai eWang

    2014-01-01

    In Arabidopsis, trichome formation is regulated by the interplay of R3 MYBs and several others transcription factors including the WD40-repeat protein TRANSPARENT TESTA GLABRA1 (TTG1), the R2R3 MYB transcription factor GLABRA1 (GL1), the bHLH transcription factor GLABRA3 (GL3) or ENHANCER OF GLABRA3 (EGL3), and the homeodomain protein GLABRA2 (GL2). R3 MYBs including TRICHOMELESS1 (TCL1), TRYPTICHON (TRY), CAPRICE (CPC), ENHANCER OF TRY AND CPC1 (ETC1), ETC2 and ETC3 negatively regulate trich...

  10. Modulation of CRISPR locus transcription by the repeat-binding protein Cbp1 in Sulfolobus

    DEFF Research Database (Denmark)

    Deng, Ling; Kenchappa, Chandra Shekar; Peng, Xu;

    2012-01-01

    CRISPR loci are essential components of the adaptive immune system of archaea and bacteria. They consist of long arrays of repeats separated by DNA spacers encoding guide RNAs (crRNA), which target foreign genetic elements. Cbp1 (CRISPR DNA repeat binding protein) binds specifically to the multiple...... direct repeats of CRISPR loci of members of the acidothermophilic, crenarchaeal order Sulfolobales. cbp1 gene deletion from Sulfolobus islandicus REY15A produced a strong reduction in pre-crRNA yields from CRISPR loci but did not inhibit the foreign DNA targeting capacity of the CRISPR/Cas system....... Conversely, overexpression of Cbp1 in S. islandicus generated an increase in pre-crRNA yields while the level of reverse strand transcripts from CRISPR loci remained unchanged. It is proposed that Cbp1 modulates production of longer pre-crRNA transcripts from CRISPR loci. A possible mechanism...

  11. Isolation and Characterization of a C-repeat Binding Transcription Factor from Maize

    Institute of Scientific and Technical Information of China (English)

    Lei Wang; Yanzhong Luo; Lan Zhang; Jun Zhao; Zhiqiu Hu; Yunliu Fan; Chunyi Zhang

    2008-01-01

    C-repeat binding proteins (CBFs) are a group of transcription factors that have been proven to be important for stress tolerance in plants.Many of these transcription factors transactivate the promoters of cold-regulated genes via binding to low temperature- or dehydration-responsive cis-elements,thus conferring plants cold acclimation.In the present study,we Isolated a C-repeat binding transcription factor from maize using the yeast one-hybrid system with the C-repeat motif from the promoter of the Arabidopsis COR15a gene as bait.The isolated transcription factor is highly similar to the Arabidopsis CBF3 in their predicted amino acid sequences,and is therefore designated ZmCBF3.Point mutation analyses of the ZmCBF3-binding cis-element revealed (A/G)(C/T)CGAC as the core binding sequence.Expression analyses showed that ZmCBF3 was upregulated by both abscisic acid and low temperature,and was actively expressed during embryogenesis,suggesting that ZmCBF3 plays a role in stress response in maize.

  12. A conserved inverted repeat from rice plastome functions as an intrinsic transcription terminator

    Institute of Scientific and Technical Information of China (English)

    LIN Chi-Hui; LIANG Yu-Jin; CHEN Liang-Jwu

    2005-01-01

    Results from a previous rice transcription mapping and the GeSTer algorithm analysis used in this investigation for rice plastid genome suggest that an inverted repeat, IRs18, in 3' region of the plastid rps18 gene may serve as a transcription terminator. The in vitro transcription assay showed that the transcript ending at the IRs18 was not processed by ribonucleases but terminated intrinsically in an rNTP substrate-dependent manner as demonstrated for the first time in plant gene regulation. For the poly-T tract (TTCTTTTTT) 3'-proximal to the IRs18, the C base conversion to T resulting in a perfect 9 Ts can dramatically increase termination efficiency, which is a common feature of bacterial intrinsic termination. This study is the first case to indicate that a conserved inverted repeat with a poly-T tract from higher plant chloroplast contributes to transcription termination of the translation-associated rps18 gene in a manner with the intrinsic termination, probably resulting from a heritage of endosymbiosis.

  13. Nuclear speckles are detention centers for transcripts containing expanded CAG repeats.

    Science.gov (United States)

    Urbanek, Martyna O; Jazurek, Magdalena; Switonski, Pawel M; Figura, Grzegorz; Krzyzosiak, Wlodzimierz J

    2016-09-01

    The human genetic disorders caused by CAG repeat expansions in the translated sequences of various genes are called polyglutamine (polyQ) diseases because of the cellular "toxicity" of the mutant proteins. The contribution of mutant transcripts to the pathogenesis of these diseases is supported by several observations obtained from cellular models of these disorders. Here, we show that the common feature of cell lines modeling polyQ diseases is the formation of nuclear CAG RNA foci. We performed qualitative and quantitative analyses of these foci in numerous cellular models endogenously and exogenously expressing mutant transcripts by fluorescence in situ hybridization (FISH). We compared the CAG RNA foci of polyQ diseases with the CUG foci of myotonic dystrophy type 1 and found substantial differences in their number and morphology. Smaller differences within the polyQ disease group were also revealed and included a positive correlation between the foci number and the CAG repeat length. We show that expanded CAA repeats, also encoding glutamine, did not trigger RNA foci formation and foci formation is independent of the presence of mutant polyglutamine protein. Using FISH combined with immunofluorescence, we demonstrated partial co-localization of CAG repeat foci with MBNL1 alternative splicing factor, which explains the mild deregulation of MBNL1-dependent genes. We also showed that foci reside within nuclear speckles in diverse cell types: fibroblasts, lymphoblasts, iPS cells and neuronal progenitors and remain dependent on integrity of these nuclear structures. PMID:27239700

  14. An inverted repeat motif stabilizes binding of E2F and enhances transcription of the dihydrofolate reductase gene

    DEFF Research Database (Denmark)

    Wade, M; Blake, M C; Jambou, R C;

    1995-01-01

    An overlapping inverted repeat sequence that binds the eukaryotic transcription factor E2F is 100% conserved near the major transcription start sites in the promoters of three mammalian genes encoding dihydrofolate reductase, and is also found in the promoters of several other important cellular ...

  15. Control of trichome formation in Arabidopsis by poplar single-repeat R3 MYB transcription factors

    Directory of Open Access Journals (Sweden)

    Limei eZhou

    2014-06-01

    Full Text Available In Arabidopsis, trichome formation is regulated by the interplay of R3 MYBs and several others transcription factors including the WD40-repeat protein TRANSPARENT TESTA GLABRA1 (TTG1, the R2R3 MYB transcription factor GLABRA1 (GL1, the bHLH transcription factor GLABRA3 (GL3 or ENHANCER OF GLABRA3 (EGL3, and the homeodomain protein GLABRA2 (GL2. R3 MYBs including TRICHOMELESS1 (TCL1, TRYPTICHON (TRY, CAPRICE (CPC, ENHANCER OF TRY AND CPC1 (ETC1, ETC2 and ETC3 negatively regulate trichome formation by competing with GL1 for binding GL3 or EGL3, thus blocking the formation of TTG1-GL3/EGL3-GL1, an activator complex required for the activation of the trichome positive regulator gene GL2. However, it is largely unknown if R3 MYBs in other plant species especially woody plants have similar functions. By BLASTing the Populus trichocarpa protein database using the entire amino acid sequence of TCL1, an Arabidopsis R3 MYB transcription factor, we identified a total of eight R3 MYB transcription factor genes in poplar, namely Populus trichocarpa TRICHOMELESS1through 8 (PtrTCL1-PtrTCL8. The amino acid signature required for interacting with bHLH transcription factors and the amino acids required for cell-to-cell movement of R3 MYBs are not fully conserved in all PtrTCLs. When tested in Arabidopsis protoplasts, however, all PtrTCL interacted with GL3. Expressing each of the eight PtrTCLs genes in Arabidopsis resulted in either glabrous phenotypes or plants with reduced trichome numbers, and expression levels of GL2 in all transgenic plants tested were greatly reduced. Expression of PtrTCL1 under the control of TCL1 native promoter almost completely complemented the mutant phenotype of tcl. In contrast, expression of PtrTCL1 under the control of TRY native promoter in the try mutant, or under the control of CPC native promoter in the cpc mutant resulted in glabrous phenotypes, suggesting that PtrTCL1 functions similarly to TCL1, but not TRY and CPC.

  16. Comprehensive analysis of single-repeat R3 MYB proteins in epidermal cell patterning and their transcriptional regulation in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Schiefelbein John

    2008-07-01

    Full Text Available Abstract Background Single-repeat R3 MYB transcription factors are critical components of the lateral inhibition machinery that mediates epidermal cell patterning in plants. Sequence analysis of the Arabidopsis genome using the BLAST program reveals that there are a total of six genes, including TRIPTYCHON (TRY, CAPRICE (CPC, TRICHOMELESS1 (TCL1, and ENHANCER of TRY and CPC 1, 2, and 3 (ETC1, ETC2 and ETC3 encoding single-repeat R3 MYB transcription factors that are approximately 50% identical to one another at the amino acid level. Previous studies indicate that these single-repeat R3 MYBs regulate epidermal cell patterning. However, each of the previous studies of these single-repeat R3 MYBs has been limited to an analysis of only a subset of these six genes, and furthermore, they have limited their attention to epidermal development in only one or two of the organs. In addition, the transcriptional regulation of these single-repeat R3 MYB genes remains largely unknown. Results By analyzing multiple mutant lines, we report here that TCL1 functions redundantly with other single-repeat R3 MYB transcription factors to control both leaf trichome and root hair formation. On the other hand, ETC1 and ETC3 participate in controlling trichome formation on inflorescence stems and pedicles. Further, we discovered that single-repeat R3 MYBs suppress trichome formation on cotyledons and siliques, organs that normally do not bear any trichomes. By using Arabidopsis protoplast transfection assays, we found that all single-repeat R3 MYBs examined interact with GL3, and that GL1 or WER and GL3 or EGL3 are required and sufficient to activate the transcription of TRY, CPC, ETC1 and ETC3, but not TCL1 and ETC2. Furthermore, only ETC1's transcription was greatly reduced in the gl3 egl3 double mutants. Conclusion Our comprehensive analysis enables us to draw broader conclusions about the role of single-repeat R3 MYB gene family than were possible in the earlier

  17. Repeat associated non-ATG translation initiation: one DNA, two transcripts, seven reading frames, potentially nine toxic entities!

    Directory of Open Access Journals (Sweden)

    Christopher E Pearson

    2011-03-01

    Full Text Available Diseases associated with unstable repetitive elements in the DNA, RNA, and amino acids have consistently revealed scientific surprises. Most diseases are caused by expansions of trinucleotide repeats, which ultimately lead to diseases like Huntington's disease, myotonic dystrophy, fragile X syndrome, and a series of spinocerebellar ataxias. These repeat mutations are dynamic, changing through generations and within an individual, and the repeats can be bi-directionally transcribed. Unsuspected modes of pathogenesis involve aberrant loss of protein expression; aberrant over-expression of non-mutant proteins; toxic-gain-of-protein function through expanded polyglutamine tracts that are encoded by expanded CAG tracts; and RNA-toxic-gain-of-function caused by transcripts harboring expanded CUG, CAG, or CGG tracts. A recent advance reveals that RNA transcripts with expanded CAG repeats can be translated in the complete absence of a starting ATG, and this Repeat Associated Non-ATG translation (RAN-translation occurs across expanded CAG repeats in all reading frames (CAG, AGC, and GCA to produce homopolymeric proteins of long polyglutamine, polyserine, and polyalanine tracts. Expanded CTG tracts expressing CUG transcripts also show RAN-translation occurring in all three frames (CUG, UGC, and GCU, to produce polyleucine, polycysteine, and polyalanine. These RAN-translation products can be toxic. Thus, one unstable (CAG•(CTG DNA can produce two expanded repeat transcripts and homopolymeric proteins with reading frames (the AUG-directed polyGln and six RAN-translation proteins, yielding a total of potentially nine toxic entities. The occurrence of RAN-translation in patient tissues expands our horizons of modes of disease pathogenesis. Moreover, since RAN-translation counters the canonical requirements of translation initiation, many new questions are now posed that must be addressed. This review covers RAN-translation and some of the pertinent

  18. Analysis of stage-specific transcripts of the Plasmodium falciparum serine repeat antigen (SERA) gene and transcription from the SERA locus.

    Science.gov (United States)

    Fox, B A; Bzik, D J

    1994-11-01

    We evaluated the stage-specific transcription and processing of serine repeat antigen (SERA) messenger RNA to further examine mechanisms regulating gene expression in Plasmodium falciparum. SERA mRNA was expressed exclusively in trophozoite and schizont stages. Transcription from the SERA gene was first detected between 24 and 29 h following erythrocyte invasion. The transcript mapping data revealed heterogeneity of the SERA mRNA 5' and 3' ends. RNA sequencing revealed that SERA transcripts were not generated by a trans-splicing mechanism. A new SERA gene, SERA3, was identified 1.8 kb upstream of SERA. The direction of transcription of the SERA locus genes, SERA3, SERA, and SERA2, was mapped relative to the location of other chromosome 2 genetic markers. The SERA locus and the closely linked MSA2 locus were found to be transcriptionally regulated in a coordinate fashion. Collectively, the results of these experiments show that parallel and coordinately controlled transcription units reside on chromosome 2. These results implicate a novel mechanism of transcriptional control in Plasmodium. PMID:7891737

  19. Bovine proteins containing poly-glutamine repeats are often polymorphic and enriched for components of transcriptional regulatory complexes

    LENUS (Irish Health Repository)

    Whan, Vicki

    2010-11-23

    Abstract Background About forty human diseases are caused by repeat instability mutations. A distinct subset of these diseases is the result of extreme expansions of polymorphic trinucleotide repeats; typically CAG repeats encoding poly-glutamine (poly-Q) tracts in proteins. Polymorphic repeat length variation is also apparent in human poly-Q encoding genes from normal individuals. As these coding sequence repeats are subject to selection in mammals, it has been suggested that normal variations in some of these typically highly conserved genes are implicated in morphological differences between species and phenotypic variations within species. At present, poly-Q encoding genes in non-human mammalian species are poorly documented, as are their functions and propensities for polymorphic variation. Results The current investigation identified 178 bovine poly-Q encoding genes (Q ≥ 5) and within this group, 26 genes with orthologs in both human and mouse that did not contain poly-Q repeats. The bovine poly-Q encoding genes typically had ubiquitous expression patterns although there was bias towards expression in epithelia, brain and testes. They were also characterised by unusually large sizes. Analysis of gene ontology terms revealed that the encoded proteins were strongly enriched for functions associated with transcriptional regulation and many contributed to physical interaction networks in the nucleus where they presumably act cooperatively in transcriptional regulatory complexes. In addition, the coding sequence CAG repeats in some bovine genes impacted mRNA splicing thereby generating unusual transcriptional diversity, which in at least one instance was tissue-specific. The poly-Q encoding genes were prioritised using multiple criteria for their likelihood of being polymorphic and then the highest ranking group was experimentally tested for polymorphic variation within a cattle diversity panel. Extensive and meiotically stable variation was identified

  20. Histone deacetylases suppress CGG repeat-induced neurodegeneration via transcriptional silencing in models of fragile X tremor ataxia syndrome.

    Directory of Open Access Journals (Sweden)

    Peter K Todd

    Full Text Available Fragile X Tremor Ataxia Syndrome (FXTAS is a common inherited neurodegenerative disorder caused by expansion of a CGG trinucleotide repeat in the 5'UTR of the fragile X syndrome (FXS gene, FMR1. The expanded CGG repeat is thought to induce toxicity as RNA, and in FXTAS patients mRNA levels for FMR1 are markedly increased. Despite the critical role of FMR1 mRNA in disease pathogenesis, the basis for the increase in FMR1 mRNA expression is unknown. Here we show that overexpressing any of three histone deacetylases (HDACs 3, 6, or 11 suppresses CGG repeat-induced neurodegeneration in a Drosophila model of FXTAS. This suppression results from selective transcriptional repression of the CGG repeat-containing transgene. These findings led us to evaluate the acetylation state of histones at the human FMR1 locus. In patient-derived lymphoblasts and fibroblasts, we determined by chromatin immunoprecipitation that there is increased acetylation of histones at the FMR1 locus in pre-mutation carriers compared to control or FXS derived cell lines. These epigenetic changes correlate with elevated FMR1 mRNA expression in pre-mutation cell lines. Consistent with this finding, histone acetyltransferase (HAT inhibitors repress FMR1 mRNA expression to control levels in pre-mutation carrier cell lines and extend lifespan in CGG repeat-expressing Drosophila. These findings support a disease model whereby the CGG repeat expansion in FXTAS promotes chromatin remodeling in cis, which in turn increases expression of the toxic FMR1 mRNA. Moreover, these results provide proof of principle that HAT inhibitors or HDAC activators might be used to selectively repress transcription at the FMR1 locus.

  1. DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants

    Indian Academy of Sciences (India)

    M. Akhtar; A. Jaiswal; G. Taj; J. P. Jaiswal; M. I. Qureshi; N. K. Singh

    2012-12-01

    Drought, high salinity and low temperature are major abiotic stresses that influence survival, productivity and geographical distribution of many important crops across the globe. Plants respond to these environmental challenges via physiological, cellular and molecular processes, which results in adjusted metabolic and structural alterations. The dehydration-responsive-element-binding (DREB) protein / C-repeat binding factors (CBFs) belong to APETALA2 (AP2) family transcription factors that bind to DRE/CRT cis-element and regulate the expression of stress-responsive genes. DREB1/CBF genes, therefore, play an important role in increasing stress tolerance in plants and their deployment using transgenic technology seems to be a potential alternative in management of abiotic stresses in crop plants. This review is mainly focussed on the structural characteristics as well as transcriptional regulation of gene expression in response to various abiotic stresses, with particular emphasis on the role of DREB1/CBF regulon in stress-responsive gene expression. The recent progress related to genetic engineering of DREB1/CBF transcription factors in various crops and model plants is also summarized.

  2. Intergenic and Repeat Transcription in Human, Chimpanzee and Macaque Brains Measured by RNA-Seq

    OpenAIRE

    Augix Guohua Xu; Liu He; Zhongshan Li; Ying Xu; Mingfeng Li; Xing Fu; Zheng Yan; Yuan Yuan; Corinna Menzel; Na Li; Mehmet Somel; Hao Hu; Wei Chen; Svante Pääbo; Philipp Khaitovich

    2010-01-01

    Transcription is the first step connecting genetic information with an organism's phenotype. While expression of annotated genes in the human brain has been characterized extensively, our knowledge about the scope and the conservation of transcripts located outside of the known genes' boundaries is limited. Here, we use high-throughput transcriptome sequencing (RNA-Seq) to characterize the total non-ribosomal transcriptome of human, chimpanzee, and rhesus macaque brain. In all species, only 2...

  3. Repeated Glucose Deprivation/Reperfusion Induced PC-12 Cell Death through the Involvement of FOXO Transcription Factor

    Science.gov (United States)

    Han, Na; Kim, You Jeong; Park, Su Min; Kim, Seung Man; Lee, Ji Suk; Jung, Hye Sook; Lee, Eun Ju; Kim, Tae Kyoon; Kim, Tae Nyun; Kwon, Min Jeong; Lee, Soon Hee; Rhee, Byoung Doo

    2016-01-01

    Background Cognitive impairment and brain damage in diabetes is suggested to be associated with hypoglycemia. The mechanisms of hypoglycemia-induced neural death and apoptosis are not clear and reperfusion injury may be involved. Recent studies show that glucose deprivation/reperfusion induced more neuronal cell death than glucose deprivation itself. The forkhead box O (FOXO) transcription factors are implicated in the regulation of cell apoptosis and survival, but their role in neuronal cells remains unclear. We examined the role of FOXO transcription factors and the involvement of the phosphatidylinositol 3-kinase (PI3K)/Akt and apoptosis-related signaling pathways in PC-12 cells exposed to repeated glucose deprivation/reperfusion. Methods PC-12 cells were exposed to control (Dulbecco's Modified Eagle Medium [DMEM] containing 25 mM glucose) or glucose deprivation/reperfusion (DMEM with 0 mM glucose for 6 hours and then DMEM with 25 mM glucose for 18 hours) for 5 days. MTT assay and Western blot analysis were performed for cell viability, apoptosis, and the expression of survival signaling pathways. FOXO3/4',6-diamidino-2-phenylindole staining was done to ascertain the involvement of FOXO transcription factors in glucose deprivation/reperfusion conditions. Results Compared to PC-12 cells not exposed to hypoglycemia, cells exposed to glucose deprivation/reperfusion showed a reduction of cell viability, decreased expression of phosphorylated Akt and Bcl-2, and an increase of cleaved caspase-3 expression. Of note, FOXO3 protein was localized in the nuclei of glucose deprivation/reperfusion cells but not in the control cells. Conclusion Repeated glucose deprivation/reperfusion caused the neuronal cell death. Activated FOXO3 via the PI3K/Akt pathway in repeated glucose deprivation/reperfusion was involved in genes related to apoptosis.

  4. A single-repeat R3-MYB transcription factor MYBC1 negatively regulates freezing tolerance in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Hong, E-mail: Zhai.h@hotmail.com [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Bai, Xi, E-mail: baixi@neau.edu.cn [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Zhu, Yanming, E-mail: ymzhu2001@neau.edu.cn [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Li, Yong, E-mail: Yong@neau.edu.cn [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Cai, Hua, E-mail: small-big@sohu.com [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Ji, Wei, E-mail: iwei_j@hotmail.com [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Ji, Zuojun, E-mail: jizuojun_2001@163.com [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Liu, Xiaofei, E-mail: liuxfme@hotmail.com [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Liu, Xin, E-mail: fangfei6073@126.com [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Li, Jing, E-mail: lijing@neau.edu.cn [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China)

    2010-04-16

    We had previously identified the MYBC1 gene, which encodes a single-repeat R3-MYB protein, as a putative osmotic responding gene; however, no R3-MYB transcription factor has been reported to regulate osmotic stress tolerance. Thus, we sought to elucidate the function of MYBC1 in response to osmotic stresses. Real-time RT-PCR analysis indicated that MYBC1 expression responded to cold, dehydration, salinity and exogenous ABA at the transcript level. mybc1 mutants exhibited an increased tolerance to freezing stress, whereas 35S::MYBC1 transgenic plants exhibited decreased cold tolerance. Transcript levels of some cold-responsive genes, including CBF/DREB genes, KIN1, ADC1, ADC2 and ZAT12, though, were not altered in the mybc1 mutants or the 35S::MYBC1 transgenic plants in response to cold stress, as compared to the wild type. Microarray analysis results that are publically available were investigated and found transcript level of MYBC1 was not altered by overexpression of CBF1, CBF2, and CBF3, suggesting that MYBC1 is not down regulated by these CBF family members. Together, these results suggested that MYBC1is capable of negatively regulating the freezing tolerance of Arabidopsis in the CBF-independent pathway. In transgenic Arabidopsis carrying an MYBC1 promoter driven {beta}-glucuronidase (GUS) construct, GUS activity was observed in all tissues and was relatively stronger in the vascular tissues. Fused MYBC1 and GFP protein revealed that MYBC1 was localized exclusively in the nuclear compartment.

  5. Functional analysis of a highly conserved abundant larval transcript-2 (alt-2) intron 2 repeat region of lymphatic filarial parasites.

    Science.gov (United States)

    Sakthidevi, Moorthy; Hoti, Sugeerappa Laxmanappa; Kaliraj, Perumal

    2014-06-01

    The filarial-specific protein abundant larval transcript-2 (ALT-2) is expressed exclusively in the infective larval stage (L3) and is a crucial protein for establishing immunopathogenesis in human hosts. The alt-2 gene has a conserved minisatellite repeat (29 or 27bp) in intron 2 (IR2) whose significance within lymphatic filarial species is unknown. Here, we report the role of IR2 in the regulation of alt-2 gene expression using an in vitro model. Using electrophoretic mobility shift assays, we identified the presence of a putative nuclear protein binding region within IR2. Subsequent transient expression experiments in eukaryotic cell lines demonstrated that the IR2 downregulated the expression of a downstream luciferase reporter gene, which was further validated with RT-PCR. We therefore identify IR2 as a suppressor element that regulates L3 stage-specific expression of alt-2. PMID:24681262

  6. Unbiased identification of signal-activated transcription factors by barcoded synthetic tandem repeat promoter screening (BC-STAR-PROM).

    Science.gov (United States)

    Gosselin, Pauline; Rando, Gianpaolo; Fleury-Olela, Fabienne; Schibler, Ueli

    2016-08-15

    The discovery of transcription factors (TFs) controlling pathways in health and disease is of paramount interest. We designed a widely applicable method, dubbed barcorded synthetic tandem repeat promoter screening (BC-STAR-PROM), to identify signal-activated TFs without any a priori knowledge about their properties. The BC-STAR-PROM library consists of ∼3000 luciferase expression vectors, each harboring a promoter (composed of six tandem repeats of synthetic random DNA) and an associated barcode of 20 base pairs (bp) within the 3' untranslated mRNA region. Together, the promoter sequences encompass >400,000 bp of random DNA, a sequence complexity sufficient to capture most TFs. Cells transfected with the library are exposed to a signal, and the mRNAs that it encodes are counted by next-generation sequencing of the barcodes. This allows the simultaneous activity tracking of each of the ∼3000 synthetic promoters in a single experiment. Here we establish proof of concept for BC-STAR-PROM by applying it to the identification of TFs induced by drugs affecting actin and tubulin cytoskeleton dynamics. BC-STAR-PROM revealed that serum response factor (SRF) is the only immediate early TF induced by both actin polymerization and microtubule depolymerization. Such changes in cytoskeleton dynamics are known to occur during the cell division cycle, and real-time bioluminescence microscopy indeed revealed cell-autonomous SRF-myocardin-related TF (MRTF) activity bouts in proliferating cells.

  7. Unbiased identification of signal-activated transcription factors by barcoded synthetic tandem repeat promoter screening (BC-STAR-PROM).

    Science.gov (United States)

    Gosselin, Pauline; Rando, Gianpaolo; Fleury-Olela, Fabienne; Schibler, Ueli

    2016-08-15

    The discovery of transcription factors (TFs) controlling pathways in health and disease is of paramount interest. We designed a widely applicable method, dubbed barcorded synthetic tandem repeat promoter screening (BC-STAR-PROM), to identify signal-activated TFs without any a priori knowledge about their properties. The BC-STAR-PROM library consists of ∼3000 luciferase expression vectors, each harboring a promoter (composed of six tandem repeats of synthetic random DNA) and an associated barcode of 20 base pairs (bp) within the 3' untranslated mRNA region. Together, the promoter sequences encompass >400,000 bp of random DNA, a sequence complexity sufficient to capture most TFs. Cells transfected with the library are exposed to a signal, and the mRNAs that it encodes are counted by next-generation sequencing of the barcodes. This allows the simultaneous activity tracking of each of the ∼3000 synthetic promoters in a single experiment. Here we establish proof of concept for BC-STAR-PROM by applying it to the identification of TFs induced by drugs affecting actin and tubulin cytoskeleton dynamics. BC-STAR-PROM revealed that serum response factor (SRF) is the only immediate early TF induced by both actin polymerization and microtubule depolymerization. Such changes in cytoskeleton dynamics are known to occur during the cell division cycle, and real-time bioluminescence microscopy indeed revealed cell-autonomous SRF-myocardin-related TF (MRTF) activity bouts in proliferating cells. PMID:27601530

  8. Activation of the Long Terminal Repeat of Human Endogenous Retrovirus K by Melanoma-Specific Transcription Factor MITF-M

    Directory of Open Access Journals (Sweden)

    Iyoko Katoh

    2011-11-01

    Full Text Available The human and Old World primate genomes possess conserved endogenous retrovirus sequences that have been implicated in evolution, reproduction, and carcinogenesis. Human endogenous retrovirus (HERV-K with 5′LTR-gag-pro-pol-env-rec/np9-3′LTR sequences represents the newest retrovirus family that integrated into the human genome 1 to 5 million years ago. Although a high-level expression of HERV-K in melanomas, breast cancers, and terato-carcinomas has been demonstrated, the mechanism of the lineage-specific activation of the long terminal repeat (LTR remains obscure. We studied chromosomal HERV-K expression in MeWo melanoma cells in comparison with the basal expression in human embryonic kidney 293 (HEK293 cells. Cloned LTR of HERV-K (HML-2.HOM was also characterized by mutation and transactivation experiments. We detected multiple transcriptional initiator (Inr sites in the LTR by rapid amplification of complementary DNA ends (5′ RACE. HEK293 and MeWo showed different Inr usage. The most potent Inr was associated with a TATA box and three binding motifs of microphthalmia-associated transcription factor (MITF. Both chromosomal HERV-K expression and the cloned LTR function were strongly activated in HEK293 by transfection with MITF-M, a melanocyte/melanoma–specific isoform of MITF. Coexpression of MITF and the HERV-K core antigen was detected in retinal pigmented epithelium by an immunofluorescence analysis. Although malignant melanoma lines MeWo, G361, and SK-MEL-28 showed enhanced HERV-K transcription compared with normal melanocytes, the level of MITF-M messenger RNA persisted from normal to transformed melanocytes. Thus, MITF-M may be a prerequisite for the pigmented cell lineage–specific function of HERV-K LTR, leading to the high-level expression in malignant melanomas.

  9. Topological diversity of chromatin fibers: Interplay between nucleosome repeat length, DNA linking number and the level of transcription

    Directory of Open Access Journals (Sweden)

    Davood Norouzi

    2015-11-01

    Full Text Available The spatial organization of nucleosomes in 30-nm fibers remains unknown in detail. To tackle this problem, we analyzed all stereochemically possible configurations of two-start chromatin fibers with DNA linkers L = 10-70 bp (nucleosome repeat length NRL = 157-217 bp. In our model, the energy of a fiber is a sum of the elastic energy of the linker DNA, steric repulsion, electrostatics, and the H4 tail-acidic patch interaction between two stacked nucleosomes. We found two families of energetically feasible conformations of the fibers—one observed earlier, and the other novel. The fibers from the two families are characterized by different DNA linking numbers—that is, they are topologically different. Remarkably, the optimal geometry of a fiber and its topology depend on the linker length: the fibers with linkers L = 10n and 10n + 5 bp have DNA linking numbers per nucleosome DLk >>-1.5 and -1.0, respectively. In other words, the level of DNA supercoiling is directly related to the length of the inter-nucleosome linker in the chromatin fiber (and therefore, to NRL. We hypothesize that this topological polymorphism of chromatin fibers may play a role in the process of transcription, which is known to generate different levels of DNA supercoiling upstream and downstream from RNA polymerase. A genome-wide analysis of the NRL distribution in active and silent yeast genes yielded results consistent with this assumption.

  10. The last half-repeat of transcription activator-like effector (TALE) is dispensable and thereby TALE-based technology can be simplified.

    Science.gov (United States)

    Zheng, Chong-Ke; Wang, Chun-Lian; Zhang, Xiao-Ping; Wang, Fu-Jun; Qin, Teng-Fei; Zhao, Kai-Jun

    2014-09-01

    To activate the expression of host genes that contribute to pathogen growth, pathogenic Xanthomonas bacteria inject their transcription activator-like effectors (TALEs) into plant cells and the TALEs bind to target gene promoters by the central repeat region consisting of near-perfect 34-amino-acid repeats (34-aa repeats). Based on the recognition codes between the 34-aa repeats and the targeted nucleotides, TALE-based technologies, such as designer TALEs (dTALEs) and TALE nucleases (TALENs), have been developed. Amazingly, every natural TALE invariantly has a truncated last half-repeat (LHR) at the end of the 34-aa repeats. Consequently, all the reported dTALEs and TALENs also harbour their LHRs. Here, we show that the LHRs in dTALEs are dispensable for the function of gene activation by both transient expression assays in Nicotiana benthamiana and gene-specific targeting in the rice genome, indicating that TALEs might originate from a single progenitor. In the light of this finding, we demonstrate that dTALEs can be constructed through two simple steps. Moreover, the activation strengths of dTALEs lacking the LHR are comparable with those of dTALEs harbouring the LHR. Our results provide new insights into the origin of natural TALEs, and will facilitate the simplification of the design and assembly of TALE-based tools, such as dTALEs and TALENs, in the near future.

  11. Mutant CAG repeats of Huntingtin transcript fold into hairpins, form nuclear foci and are targets for RNA interference

    OpenAIRE

    de Mezer, Mateusz; Wojciechowska, Marzena; Napierala, Marek; Sobczak, Krzysztof; Krzyzosiak, Wlodzimierz J.

    2011-01-01

    The CAG repeat expansions that occur in translated regions of specific genes can cause human genetic disorders known as polyglutamine (poly-Q)-triggered diseases. Huntington’s disease and spinobulbar muscular atrophy (SBMA) are examples of these diseases in which underlying mutations are localized near other trinucleotide repeats in the huntingtin (HTT) and androgen receptor (AR) genes, respectively. Mutant proteins that contain expanded polyglutamine tracts are well-known triggers of pathoge...

  12. Gene targeting technologies in rats: zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats.

    Science.gov (United States)

    Mashimo, Tomoji

    2014-01-01

    The laboratory rat has been widely used as an animal model in biomedical science for more than 150 years. Applying zinc-finger nucleases or transcription activator-like effector nucleases to rat embryos via microinjection is an efficient genome editing tool for generating targeted knockout rats. Recently, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated endonucleases have been used as an effective tool for precise and multiplex genome editing in mice and rats. In this review, the advantages and disadvantages of these site-specific nuclease technologies for genetic analysis and manipulation in rats are discussed.

  13. Interaction between the yeast mitochondrial and nuclear genomes influences the abundance of novel transcripts derived from the spacer region of the nuclear ribosomal DNA repeat.

    OpenAIRE

    Parikh, V S; Conrad-Webb, H; Docherty, R; Butow, R A

    1989-01-01

    We have identified stable transcripts from the so-called nontranscribed spacer region (NTS) of the nuclear ribosomal DNA repeat in certain respiration-deficient strains of Saccharomyces cerevisiae. These RNAs, which are transcribed from the same strand as is the 37S rRNA precursor, are 500 to 800 nucleotides long and extend from the 5' end of the 5S rRNA gene to three major termination sites about 1,780, 1,830, and 1,870 nucleotides from the 3' end of the 26S rRNA gene. A survey of various wi...

  14. Comparison of the transcriptional activity of the long terminal repeats of simian immunodeficiency viruses SIVmac251 and SIVmac239 in T-cell lines and macrophage cell lines.

    OpenAIRE

    Anderson, M G; Clements, J E

    1991-01-01

    The U3 regions of the long terminal repeats (LTRs) of simian immunodeficiency viruses SIVmac251 and SIVmac239 were analyzed for basal transcriptional activity and for interaction with cellular factors in the T-cell line HUT-78 and the monocyte/macrophage cell line U937. A number of 5' deletions and mutations were made in the U3 regions of the two LTRs, and these constructs were placed upstream of a plasmid containing the bacterial chloramphenicol acetyltransferase reporter gene. The nucleotid...

  15. Extensive neuroadaptive changes in cortical gene-transcript expressions of the glutamate system in response to repeated intermittent MDMA administration in adolescent rats

    Directory of Open Access Journals (Sweden)

    Malki Rana

    2008-04-01

    Full Text Available Abstract Background Many studies have focused on the implication of the serotonin and dopamine systems in neuroadaptive responses to the recreational drug 3,4-methylenedioxy-metamphetamine (MDMA. Less attention has been given to the major excitatory neurotransmitter glutamate known to be implicated in schizophrenia and drug addiction. The aim of the present study was to investigate the effect of repeated intermittent MDMA administration upon gene-transcript expression of the glutamate transporters (EAAT1, EAAT2-1, EAAT2-2, the glutamate receptor subunits of AMPA (GluR1, GluR2, GluR3, the glutamate receptor subunits of NMDA (NR1, NR2A and NR2B, as well as metabotropic glutamate receptors (mGluR1, mGluR2, mGluR3, mGluR5 in six different brain regions. Adolescent male Sprague Dawley rats received MDMA at the doses of 3 × 1 and 3 × 5 mg/kg/day, or 3× vehicle 3 hours apart, every 7th day for 4 weeks. The gene-transcript levels were assessed using real-time PCR validated with a range of housekeeping genes. Results The findings showed pronounced enhancements in gene-transcript expression of GluR2, mGluR1, mGluR5, NR1, NR2A, NR2B, EAAT1, and EAAT2-2 in the cortex at bregma +1.6. In the caudate putamen, mRNA levels of GluR3, NR2A, and NR2B receptor subunits were significantly increased. In contrast, the gene-transcript expression of GluR1 was reduced in the hippocampus. In the hypothalamus, there was a significant increase of GluR1, GluR3, mGluR1, and mGluR3 gene-transcript expressions. Conclusion Repeated intermittent MDMA administration induces neuroadaptive changes in gene-transcript expressions of glutamatergic NMDA and AMPA receptor subunits, metabotropic receptors and transporters in regions of the brain regulating reward-related associative learning, cognition, and memory and neuro-endocrine functions.

  16. The C9orf72 repeat size correlates with onset age of disease, DNA methylation and transcriptional downregulation of the promoter

    Science.gov (United States)

    Gijselinck, I; Van Mossevelde, S; van der Zee, J; Sieben, A; Engelborghs, S; De Bleecker, J; Ivanoiu, A; Deryck, O; Edbauer, D; Zhang, M; Heeman, B; Bäumer, V; Van den Broeck, M; Mattheijssens, M; Peeters, K; Rogaeva, E; De Jonghe, P; Cras, P; Martin, J-J; de Deyn, P P; Cruts, M; Van Broeckhoven, C

    2016-01-01

    Pathological expansion of a G4C2 repeat, located in the 5' regulatory region of C9orf72, is the most common genetic cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). C9orf72 patients have highly variable onset ages suggesting the presence of modifying factors and/or anticipation. We studied 72 Belgian index patients with FTLD, FTLD–ALS or ALS and 61 relatives with a C9orf72 repeat expansion. We assessed the effect of G4C2 expansion size on onset age, the role of anticipation and the effect of repeat size on methylation and C9orf72 promoter activity. G4C2 expansion sizes varied in blood between 45 and over 2100 repeat units with short expansions (45–78 units) present in 5.6% of 72 index patients with an expansion. Short expansions co-segregated with disease in two families. The subject with a short expansion in blood but an indication of mosaicism in brain showed the same pathology as those with a long expansion. Further, we provided evidence for an association of G4C2 expansion size with onset age (P<0.05) most likely explained by an association of methylation state of the 5' flanking CpG island and expansion size in blood (P<0.0001) and brain (P<0.05). In several informative C9orf72 parent–child transmissions, we identified earlier onset ages, increasing expansion sizes and/or increasing methylation states (P=0.0034) of the 5' CpG island, reminiscent of disease anticipation. Also, intermediate repeats (7–24 units) showed a slightly higher methylation degree (P<0.0001) and a decrease of C9orf72 promoter activity (P<0.0001) compared with normal short repeats (2–6 units). Decrease of transcriptional activity was even more prominent in the presence of small deletions flanking G4C2 (P<0.0001). Here we showed that increased methylation of CpGs in the C9orf72 promoter may explain how an increasing G4C2 size lead to loss-of-function without excluding repeat length-dependent toxic gain-of-function. These data provide

  17. Tandem Repeat of a Transcriptional Enhancer Upstream of the Sterol 14α-Demethylase Gene (CYP51) in Penicillium digitatum

    OpenAIRE

    Hamamoto, Hiroshi; Hasegawa, Koji; Nakaune, Ryoji; Lee, Young Jin; Makizumi, Yoshiyuki; Akutsu, Katsumi; Hibi, Tadaaki

    2000-01-01

    We investigated the mechanism of resistance to demethylation inhibitors (DMI) in Penicillium digitatum by isolating the CYP51 gene, which encodes the target enzyme (P45014DM) of DMI, from three DMI-resistant and three DMI-sensitive strains. The structural genes of all six strains were identical, but in the promoter region, a unique 126-bp sequence was tandemly repeated five times in the DMI-resistant strains and was present only once in the DMI-sensitive strains. Constitutive expression of CY...

  18. Structural Insights Reveal the Dynamics of the Repeating r(CAG Transcript Found in Huntington's Disease (HD and Spinocerebellar Ataxias (SCAs.

    Directory of Open Access Journals (Sweden)

    Arpita Tawani

    Full Text Available In humans, neurodegenerative disorders such as Huntington's disease (HD and many spinocerebellar ataxias (SCAs have been found to be associated with CAG trinucleotide repeat expansion. An important RNA-mediated mechanism that causes these diseases involves the binding of the splicing regulator protein MBNL1 (Muscleblind-like 1 protein to expanded r(CAG repeats. Moreover, mutant huntingtin protein translated from expanded r(CAG also yields toxic effects. To discern the role of mutant RNA in these diseases, it is essential to gather information about its structure. Detailed insight into the different structures and conformations adopted by these mutant transcripts is vital for developing therapeutics targeting them. Here, we report the crystal structure of an RNA model with a r(CAG motif, which is complemented by an NMR-based solution structure obtained from restrained Molecular Dynamics (rMD simulation studies. Crystal structure data of the RNA model resolved at 2.3 Å reveals non-canonical pairing of adenine in 5´-CAG/3´-GAC motif samples in different syn and anti conformations. The overall RNA structure has helical parameters intermediate to the A- and B-forms of nucleic acids due to the global widening of major grooves and base-pair preferences near internal AA loops. The comprehension of structural behaviour by studying the spectral features and the dynamics also supports the flexible nature of the r(CAG motif.

  19. Toll-Interacting Protein Suppresses HIV-1 Long-Terminal-Repeat-Driven Gene Expression and Silences the Post-Integrational Transcription of Viral Proviral DNA.

    Directory of Open Access Journals (Sweden)

    Fu-Chun Yang

    Full Text Available Toll-interacting protein (Tollip is a host adaptor protein for negatively regulating Toll-like receptor 2-, 4-, and IL-1R (interleukin-1 receptor-mediated signaling. We found that Tollip expression could be induced in MDDCs (monocyte-derived dendritic cells by HIV-1 particles and recombinant gp120 glycoprotein. Hence, we investigated the role of Tollip in modulating HIV-1 infection. We found that Tollip expression suppressed NF-κB-dependent HIV-1 long terminal repeat (LTR-driven transcription and thus inhibited HIV-1 infection. Our protein truncation experiments proved that the intact C-terminus of Tollip was required for inhibition of both NF-κB activity and HIV-1 LTR-driven gene expression. Intriguingly, Tollip silenced the post-integrational transcription of HIV-1 proviral DNA, indicating the potential role of Tollip in maintaining viral persistence. Our results reveal the novel role of host factor Tollip in modulating HIV-1 infection, and may suggest the hijacking of Tollip as the negative regulator of the TLR pathway and even the downstream signaling, by HIV-1 for maintaining persistent infection. Further elucidation of the mechanisms by which HIV-1 induces Tollip expression and identification of the role of Tollip in modulating HIV-1 latency will facilitate the understanding of host regulation in viral replication and benefit the exploration of novel strategies for combating HIV-1 infection.

  20. Transcriptional and Bioinformatic Analysis Provide a Relationship between Host Response Changes to Marek’s Disease Viruses Infection and an Integrated Long Terminal Repeat

    Directory of Open Access Journals (Sweden)

    Ning eCui

    2016-04-01

    Full Text Available GX0101, Marek’s disease virus (MDV strain with a long terminal repeat (LTR insert of reticuloendotheliosis virus (REV, was isolated from CVI988/Rispens vaccinated birds showing tumors. We have constructed a LTR deleted strain GX0101∆LTR in our previous study. To compare the host responses to GX0101 and GX0101∆LTR, chicken embryo fibroblasts (CEF cells were infected with two MDV strains and a gene-chip containing chicken genome was employed to examine gene transcription changes in host cells in the present study. Of the 42 368 chicken transcripts on the chip, there were 2199 genes that differentially expressed in CEF infected with GX0101 compared to GX0101∆LTR significantly. Differentially expressed genes were distributed to 25 possible gene networks according to their intermolecular connections and were annotated to 56 pathways. The insertion of REV LTR showed the greatest influence on cancer formation and metastasis, followed with immune changes, atherosclerosis and nervous system disorders in MDV-infected CEF cells. Based on these bio functions, GX0101 infection was predicated with a greater growth and survival inhibition but lower oncogenicity in chickens than GX0101∆LTR, at least in the acute phase of infection. In summary, the insertion of REV LTR altered the expression of host genes in response to MDV infection, possibly resulting in novel phenotypic properties in chickens. Our study has provided the evidence of retroviral insertional changes of host responses to herpesvirus infection for the first time, which will promote to elucidation of the possible relationship between the LTR insertion and the observed phenotypes.

  1. The C9orf72 repeat size correlates with onset age of disease, DNA methylation and transcriptional downregulation of the promoter.

    Science.gov (United States)

    Gijselinck, I; Van Mossevelde, S; van der Zee, J; Sieben, A; Engelborghs, S; De Bleecker, J; Ivanoiu, A; Deryck, O; Edbauer, D; Zhang, M; Heeman, B; Bäumer, V; Van den Broeck, M; Mattheijssens, M; Peeters, K; Rogaeva, E; De Jonghe, P; Cras, P; Martin, J-J; de Deyn, P P; Cruts, M; Van Broeckhoven, C

    2016-08-01

    Pathological expansion of a G4C2 repeat, located in the 5' regulatory region of C9orf72, is the most common genetic cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). C9orf72 patients have highly variable onset ages suggesting the presence of modifying factors and/or anticipation. We studied 72 Belgian index patients with FTLD, FTLD-ALS or ALS and 61 relatives with a C9orf72 repeat expansion. We assessed the effect of G4C2 expansion size on onset age, the role of anticipation and the effect of repeat size on methylation and C9orf72 promoter activity. G4C2 expansion sizes varied in blood between 45 and over 2100 repeat units with short expansions (45-78 units) present in 5.6% of 72 index patients with an expansion. Short expansions co-segregated with disease in two families. The subject with a short expansion in blood but an indication of mosaicism in brain showed the same pathology as those with a long expansion. Further, we provided evidence for an association of G4C2 expansion size with onset age (Pdisease anticipation. Also, intermediate repeats (7-24 units) showed a slightly higher methylation degree (Pdisease mechanisms and have important implications for diagnostic counseling and potential therapeutic approaches.

  2. Transcriptional activation of homologous viral long terminal repeats by the human immunodeficiency virus type 1 or the human T-cell leukemia virus type I tat proteins occurs in the absence of de novo protein synthesis.

    OpenAIRE

    Jeang, K T; Shank, P R; Kumar, A

    1988-01-01

    The genomes of human retroviruses [human immunodeficiency virus type 1 (HIV-1) and human T-cell leukemia virus (HTLV-I)] encode positive trans-activator proteins, named tat. In the presence of tat, the transcriptional activity of the homologous HIV-1 or HTLV-I long terminal repeat (LTR) promoter is markedly increased. We have constructed mammalian cell lines that contain stably integrated copies of a HIV-1 or a HTLV-I LTR-chloramphenicol acetyltransferase (CAT) gene. When presynthesized HIV-1...

  3. Repeated Miscarriage

    Science.gov (United States)

    f AQ FREQUENTLY ASKED QUESTIONS FAQ100 PREGNANCY Repeated Miscarriages • What is recurrent pregnancy loss? • What is the likelihood of having repeated miscarriages? • What is the most common cause of miscarriage? • ...

  4. Identification of drought-induced transcription factors in peanut (Arachis hypogaea L.

    Directory of Open Access Journals (Sweden)

    Corley C Holbrook

    2012-10-01

    Full Text Available Transcription factors play key roles in the regulation of genes involved in normal development as well as tolerance to biotic and abiotic stresses. Specific transcription factors that are induced in peanut under drought conditions have not been identified.  The objectives of this study were to compare gene-expression patterns of various transcription factors of a drought tolerant versus a susceptible peanut genotype under drought conditions and to identify transcripts that were regulated in a drought dependent manner. Twelve putative transcription factors were identified and real-time PCR analysis was performed which resulted in the identification of three unique transcripts in which ahERF1 was highly induced in the recovery stage; ahERF7 and ahERF8 were also highly induced by drought and returned to nominal levels after recovery.  These sequences contain DNA binding domains that are present in the APETALA2/Ethelene Responsive Factors (AP2/ERF family of transcription factors which have been shown to be induced by stress.  Induction levels and patterns of gene-expression of ahERF1, ahERF7 and ahERF8 may be used to select plants that may have higher drought tolerance.

  5. Revisiting the TALE repeat.

    Science.gov (United States)

    Deng, Dong; Yan, Chuangye; Wu, Jianping; Pan, Xiaojing; Yan, Nieng

    2014-04-01

    Transcription activator-like (TAL) effectors specifically bind to double stranded (ds) DNA through a central domain of tandem repeats. Each TAL effector (TALE) repeat comprises 33-35 amino acids and recognizes one specific DNA base through a highly variable residue at a fixed position in the repeat. Structural studies have revealed the molecular basis of DNA recognition by TALE repeats. Examination of the overall structure reveals that the basic building block of TALE protein, namely a helical hairpin, is one-helix shifted from the previously defined TALE motif. Here we wish to suggest a structure-based re-demarcation of the TALE repeat which starts with the residues that bind to the DNA backbone phosphate and concludes with the base-recognition hyper-variable residue. This new numbering system is consistent with the α-solenoid superfamily to which TALE belongs, and reflects the structural integrity of TAL effectors. In addition, it confers integral number of TALE repeats that matches the number of bound DNA bases. We then present fifteen crystal structures of engineered dHax3 variants in complex with target DNA molecules, which elucidate the structural basis for the recognition of bases adenine (A) and guanine (G) by reported or uncharacterized TALE codes. Finally, we analyzed the sequence-structure correlation of the amino acid residues within a TALE repeat. The structural analyses reported here may advance the mechanistic understanding of TALE proteins and facilitate the design of TALEN with improved affinity and specificity.

  6. Genome-wide investigation and expression profiling of AP2/ERF transcription factor superfamily in foxtail millet (Setaria italica L..

    Directory of Open Access Journals (Sweden)

    Charu Lata

    Full Text Available The APETALA2/ethylene-responsive element binding factor (AP2/ERF family is one of the largest transcription factor (TF families in plants that includes four major sub-families, namely AP2, DREB (dehydration responsive element binding, ERF (ethylene responsive factors and RAV (Related to ABI3/VP. AP2/ERFs are known to play significant roles in various plant processes including growth and development and biotic and abiotic stress responses. Considering this, a comprehensive genome-wide study was conducted in foxtail millet (Setaria italica L.. A total of 171 AP2/ERF genes were identified by systematic sequence analysis and were physically mapped onto nine chromosomes. Phylogenetic analysis grouped AP2/ERF genes into six classes (I to VI. Duplication analysis revealed that 12 (∼7% SiAP2/ERF genes were tandem repeated and 22 (∼13% were segmentally duplicated. Comparative physical mapping between foxtail millet AP2/ERF genes and its orthologs of sorghum (18 genes, maize (14 genes, rice (9 genes and Brachypodium (6 genes showed the evolutionary insights of AP2/ERF gene family and also the decrease in orthology with increase in phylogenetic distance. The evolutionary significance in terms of gene-duplication and divergence was analyzed by estimating synonymous and non-synonymous substitution rates. Expression profiling of candidate AP2/ERF genes against drought, salt and phytohormones revealed insights into their precise and/or overlapping expression patterns which could be responsible for their functional divergence in foxtail millet. The study showed that the genes SiAP2/ERF-069, SiAP2/ERF-103 and SiAP2/ERF-120 may be considered as potential candidate genes for further functional validation as well for utilization in crop improvement programs for stress resistance since these genes were up-regulated under drought and salinity stresses in ABA dependent manner. Altogether the present study provides new insights into evolution, divergence and

  7. Genome-wide investigation and expression profiling of AP2/ERF transcription factor superfamily in foxtail millet (Setaria italica L.).

    Science.gov (United States)

    Lata, Charu; Mishra, Awdhesh Kumar; Muthamilarasan, Mehanathan; Bonthala, Venkata Suresh; Khan, Yusuf; Prasad, Manoj

    2014-01-01

    The APETALA2/ethylene-responsive element binding factor (AP2/ERF) family is one of the largest transcription factor (TF) families in plants that includes four major sub-families, namely AP2, DREB (dehydration responsive element binding), ERF (ethylene responsive factors) and RAV (Related to ABI3/VP). AP2/ERFs are known to play significant roles in various plant processes including growth and development and biotic and abiotic stress responses. Considering this, a comprehensive genome-wide study was conducted in foxtail millet (Setaria italica L.). A total of 171 AP2/ERF genes were identified by systematic sequence analysis and were physically mapped onto nine chromosomes. Phylogenetic analysis grouped AP2/ERF genes into six classes (I to VI). Duplication analysis revealed that 12 (∼7%) SiAP2/ERF genes were tandem repeated and 22 (∼13%) were segmentally duplicated. Comparative physical mapping between foxtail millet AP2/ERF genes and its orthologs of sorghum (18 genes), maize (14 genes), rice (9 genes) and Brachypodium (6 genes) showed the evolutionary insights of AP2/ERF gene family and also the decrease in orthology with increase in phylogenetic distance. The evolutionary significance in terms of gene-duplication and divergence was analyzed by estimating synonymous and non-synonymous substitution rates. Expression profiling of candidate AP2/ERF genes against drought, salt and phytohormones revealed insights into their precise and/or overlapping expression patterns which could be responsible for their functional divergence in foxtail millet. The study showed that the genes SiAP2/ERF-069, SiAP2/ERF-103 and SiAP2/ERF-120 may be considered as potential candidate genes for further functional validation as well for utilization in crop improvement programs for stress resistance since these genes were up-regulated under drought and salinity stresses in ABA dependent manner. Altogether the present study provides new insights into evolution, divergence and systematic

  8. Transcriptional control of fleshy fruit development and ripening.

    Science.gov (United States)

    Karlova, Rumyana; Chapman, Natalie; David, Karine; Angenent, Gerco C; Seymour, Graham B; de Maagd, Ruud A

    2014-08-01

    Fleshy fruits have evolved to be attractive to frugivores in order to enhance seed dispersal, and have become an indispensable part of the human diet. Here we review the recent advances in the understanding of transcriptional regulation of fleshy fruit development and ripening with a focus on tomato. While aspects of fruit development are probably conserved throughout the angiosperms, including the model plant Arabidopsis thaliana, it is shown that the likely orthologues of Arabidopsis genes have distinct functions in fleshy fruits. The model for the study of fleshy fruit development is tomato, because of the availability of single gene mutants and transgenic knock-down lines. In other species, our knowledge is often incomplete or absent. Tomato fruit size and shape are co-determined by transcription factors acting during formation of the ovary. Other transcription factors play a role in fruit chloroplast formation, and upon ripening impact quality aspects such as secondary metabolite content. In tomato, the transcription factors NON-RIPENING (NOR), COLORLESS NON-RIPENING (CNR), and RIPENING INHIBITOR (MADS-RIN) in concert with ethylene signalling regulate ripening, possibly in response to a developmental switch. Additional components include TOMATO AGAMOUS-LIKE1 (TAGL1), APETALA2a (AP2a), and FRUITFULL (FUL1 and FUL2). The links between this highly connected regulatory network and downstream effectors modulating colour, texture, and flavour are still relatively poorly understood. Intertwined with this network is post-transcriptional regulation by fruit-expressed microRNAs targeting several of these transcription factors. This important developmental process is also governed by changes in DNA methylation levels and possibly chromatin remodelling.

  9. The bi-directional transcriptional promoters for the latency-relating transcripts of the pp38/pp24 mRNAs and the 1.8 kb-mRNA in the long inverted repeats of Marek's disease virus serotype 1 DNA are regulated by common promoter-specific enhancers.

    Science.gov (United States)

    Shigekane, H; Kawaguchi, Y; Shirakata, M; Sakaguchi, M; Hirai, K

    1999-01-01

    In cell lines established from Marek's disease tumors, several viral transcripts are expressed and among them the products of pp38/pp24 mRNA and 1.8 kb-mRNA have been suggested to be involved in viral oncogenicity. The long inverted repeats of Marek's Disease virus serotype 1 (MDV1) genome contain closely located transcriptional promoters for phosphorylated protein pp38/pp24 and 1.8 kb-mRNA. These promoters initiate transcription in opposite directions and are separated only by a short enhancer region, which is likely to regulate both promoters simultaneously. We have analyzed the transcription activity of these promoters in MDV1 (Md5 strain) infected CEF by transient expression of CAT reporter genes and found that the promoters were in fact active in infected cells and the promoter for 1.8 kb-mRNA was more active than the pp38/pp24 promoter. Deletion analysis of the short enhancer region revealed that the 30 bp region overlapping the enhancer elements for 1.8 kb-mRNA was important for promoter activity for pp38/pp24. The gel shift analysis revealed that nuclear factor(s) actually bound to the overlapping 30 bp region. In addition, the activity of these promoters in infected cells varied with MDV strains. These results suggest that pp38/pp24 and 1.8 kb-mRNA promoters share a common regulatory sequence but a viral or a cellular factor(s) induced by viral infection regulates the promoter by distinct mechanisms.

  10. Regulation of Transcription of Nucleotide-Binding Leucine-Rich Repeat-Encoding Genes SNC1 and RPP4 via H3K4 Trimethylation1[C][W][OA

    Science.gov (United States)

    Xia, Shitou; Cheng, Yu Ti; Huang, Shuai; Win, Joe; Soards, Avril; Jinn, Tsung-Luo; Jones, Jonathan D.G.; Kamoun, Sophien; Chen, She; Zhang, Yuelin; Li, Xin

    2013-01-01

    Plant nucleotide-binding leucine-rich repeat (NB-LRR) proteins serve as intracellular sensors to detect pathogen effectors and trigger immune responses. Transcription of the NB-LRR-encoding Resistance (R) genes needs to be tightly controlled to avoid inappropriate defense activation. How the expression of the NB-LRR R genes is regulated is poorly understood. The Arabidopsis (Arabidopsis thaliana) suppressor of npr1-1, constitutive 1 (snc1) mutant carries a gain-of-function mutation in a Toll/Interleukin1 receptor-like (TIR)-NB-LRR-encoding gene, resulting in the constitutive activation of plant defense responses. A snc1 suppressor screen identified modifier of snc1,9 (mos9), which partially suppresses the autoimmune phenotypes of snc1. Positional cloning revealed that MOS9 encodes a plant-specific protein of unknown function. Expression analysis showed that MOS9 is required for the full expression of TIR-NB-LRR protein-encoding RECOGNITION OF PERONOSPORA PARASITICA 4 (RPP4) and SNC1, both of which reside in the RPP4 cluster. Coimmunoprecipitation and mass spectrometry analyses revealed that MOS9 associates with the Set1 class lysine 4 of histone 3 (H3K4) methyltransferase Arabidopsis Trithorax-Related7 (ATXR7). Like MOS9, ATXR7 is also required for the full expression of SNC1 and the autoimmune phenotypes in the snc1 mutant. In atxr7 mutant plants, the expression of RPP4 is similarly reduced, and resistance against Hyaloperonospora arabidopsidis Emwa1 is compromised. Consistent with the attenuated expression of SNC1 and RPP4, trimethylated H3K4 marks are reduced around the promoters of SNC1 and RPP4 in mos9 plants. Our data suggest that MOS9 functions together with ATXR7 to regulate the expression of SNC1 and RPP4 through H3K4 methylation, which plays an important role in fine-tuning their transcription levels and functions in plant defense. PMID:23690534

  11. EBE, an AP2/ERF transcription factor highly expressed in proliferating cells, affects shoot architecture in Arabidopsis.

    Science.gov (United States)

    Mehrnia, Mohammad; Balazadeh, Salma; Zanor, María-Inés; Mueller-Roeber, Bernd

    2013-06-01

    We report about ERF BUD ENHANCER (EBE; At5g61890), a transcription factor that affects cell proliferation as well as axillary bud outgrowth and shoot branching in Arabidopsis (Arabidopsis thaliana). EBE encodes a member of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor superfamily; the gene is strongly expressed in proliferating cells and is rapidly and transiently up-regulated in axillary meristems upon main stem decapitation. Overexpression of EBE promotes cell proliferation in growing calli, while the opposite is observed in EBE-RNAi lines. EBE overexpression also stimulates axillary bud formation and outgrowth, while repressing it results in inhibition of bud growth. Global transcriptome analysis of estradiol-inducible EBE overexpression lines revealed 48 EBE early-responsive genes, of which 14 were up-regulated and 34 were down-regulated. EBE activates several genes involved in cell cycle regulation and dormancy breaking, including D-type cyclin CYCD3;3, transcription regulator DPa, and BRCA1-ASSOCIATED RING DOMAIN1. Among the down-regulated genes were DORMANCY-ASSOCIATED PROTEIN1 (AtDRM1), AtDRM1 homolog, MEDIATOR OF ABA-REGULATED DORMANCY1, and ZINC FINGER HOMEODOMAIN5. Our data indicate that the effect of EBE on shoot branching likely results from an activation of genes involved in cell cycle regulation and dormancy breaking.

  12. The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus.

    Science.gov (United States)

    Van Moerkercke, Alex; Steensma, Priscille; Schweizer, Fabian; Pollier, Jacob; Gariboldi, Ivo; Payne, Richard; Vanden Bossche, Robin; Miettinen, Karel; Espoz, Javiera; Purnama, Purin Candra; Kellner, Franziska; Seppänen-Laakso, Tuulikki; O'Connor, Sarah E; Rischer, Heiko; Memelink, Johan; Goossens, Alain

    2015-06-30

    Plants make specialized bioactive metabolites to defend themselves against attackers. The conserved control mechanisms are based on transcriptional activation of the respective plant species-specific biosynthetic pathways by the phytohormone jasmonate. Knowledge of the transcription factors involved, particularly in terpenoid biosynthesis, remains fragmentary. By transcriptome analysis and functional screens in the medicinal plant Catharanthus roseus (Madagascar periwinkle), the unique source of the monoterpenoid indole alkaloid (MIA)-type anticancer drugs vincristine and vinblastine, we identified a jasmonate-regulated basic helix-loop-helix (bHLH) transcription factor from clade IVa inducing the monoterpenoid branch of the MIA pathway. The bHLH iridoid synthesis 1 (BIS1) transcription factor transactivated the expression of all of the genes encoding the enzymes that catalyze the sequential conversion of the ubiquitous terpenoid precursor geranyl diphosphate to the iridoid loganic acid. BIS1 acted in a complementary manner to the previously characterized ethylene response factor Octadecanoid derivative-Responsive Catharanthus APETALA2-domain 3 (ORCA3) that transactivates the expression of several genes encoding the enzymes catalyzing the conversion of loganic acid to the downstream MIAs. In contrast to ORCA3, overexpression of BIS1 was sufficient to boost production of high-value iridoids and MIAs in C. roseus suspension cell cultures. Hence, BIS1 might be a metabolic engineering tool to produce sustainably high-value MIAs in C. roseus plants or cultures. PMID:26080427

  13. Repeat-until-success quantum repeaters

    Science.gov (United States)

    Bruschi, David Edward; Barlow, Thomas M.; Razavi, Mohsen; Beige, Almut

    2014-09-01

    We propose a repeat-until-success protocol to improve the performance of probabilistic quantum repeaters. Conventionally, these rely on passive static linear-optics elements and photodetectors to perform Bell-state measurements (BSMs) with a maximum success rate of 50%. This is a strong impediment for entanglement swapping between distant quantum memories. Every time a BSM fails, entanglement needs to be redistributed between the corresponding memories in the repeater link. The key ingredients of our scheme are repeatable BSMs. Under ideal conditions, these turn probabilistic quantum repeaters into deterministic ones. Under realistic conditions, our protocol too might fail. However, using additional threshold detectors now allows us to improve the entanglement generation rate by almost orders of magnitude, at a nominal distance of 1000 km, compared to schemes that rely on conventional BSMs. This improvement is sufficient to make the performance of our scheme comparable to the expected performance of some deterministic quantum repeaters.

  14. Structural Determinants of DNA Binding by a P. falciparum ApiAP2 Transcriptional Regulator

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, Scott E.; De Silva, Erandi K.; Keck, James L.; Llinás, Manuel (Princeton); (UW-MED)

    2010-11-05

    Putative transcription factors have only recently been identified in the Plasmodium spp., with the major family of regulators comprising the Apicomplexan Apetala2 (AP2) proteins. To better understand the DNA-binding mechanisms of these transcriptional regulators, we characterized the structure and in vitro function of an AP2 DNA-binding domain from a prototypical Apicomplexan AP2 protein, PF14{_}0633 from Plasmodium falciparum. The X-ray crystal structure of the PF14{_}0633 AP2 domain bound to DNA reveals a {beta}-sheet fold that binds the DNA major groove through base-specific and backbone contacts; a prominent {alpha}-helix supports the {beta}-sheet structure. Substitution of predicted DNA-binding residues with alanine weakened or eliminated DNA binding in solution. In contrast to plant AP2 domains, the PF14{_}0633 AP2 domain dimerizes upon binding to DNA through a domain-swapping mechanism in which the {alpha}-helices of the AP2 domains pack against the {beta}-sheets of the dimer mates. DNA-induced dimerization of PF14{_}0633 may be important for tethering two distal DNA loci together in the nucleus and/or for inducing functional rearrangements of its domains to facilitate transcriptional regulation. Consistent with a multisite binding mode, at least two copies of the consensus sequence recognized by PF14{_}0633 are present upstream of a previously identified group of sporozoite-stage genes. Taken together, these findings illustrate how Plasmodium has adapted the AP2 DNA-binding domain for genome-wide transcriptional regulation.

  15. Investigating transcription reinitiation through in vitro approaches.

    Science.gov (United States)

    Dieci, Giorgio; Fermi, Beatrice; Bosio, Maria Cristina

    2014-01-01

    By influencing the number of RNA molecules repeatedly synthesized from the same gene, the control of transcription reinitiation has the potential to shape the transcriptome. Transcription reinitiation mechanisms have been mainly addressed in vitro, through approaches based on both crude and reconstituted systems. These studies support the notion that transcription reinitiation and its regulation rely on dedicated networks of molecular interactions within transcription machineries. At the same time, comparison with in vivo transcription rates suggests that additional mechanisms, factors and conditions must exist in the nucleus, whose biochemical elucidation is a fascinating challenge for future in vitro transcription studies.

  16. Advances in Research of Transcriptional Regulatory Network in Response to Cold Stress in Plants%植物应答低温胁迫的转录调控网络研究进展

    Institute of Scientific and Technical Information of China (English)

    刘辉; 李德军; 邓治

    2014-01-01

    低温胁迫严重影响植物的生长发育及作物的产量。为了生存,植物形成了复杂而高效的调控网络以抵御和适应低温胁迫,其中转录调控起关键作用。转录因子通过结合启动子区域的顺式作用元件,调控一系列基因的表达,在植物非生物逆境应答网络中起着关键作用。文章全面综述了参与调控植物低温胁迫应答的转录因子,包括AP2/ERF(APETALA2/ethylene responsive factor)、MYB(myeloblastosis)、bHLH(basic helix-loop-helix)、NAC(NAM、ATAF1、ATAF2和CUC2)、ZFP(zinc finger protein)、WRKY、VOZ(vascular plant one zinc-finger protein)、CAMTA(calmodulin-binding transcription activator)及 EIN3(ethylene-insensitive 3)等,简要概述了各类转录因子的结构特征,重点介绍了其在植物抗寒中的功能及调控机制,并基于转录因子间的调控关系,绘制出植物低温应答的转录调控网络。在该调控网络中,CBF(C-repeat binding factor)转录因子起着关键分子开关的作用。CBFs 特异地与启动子区域的 DRE/CRT ( dehydration-responsive element/C-repeat element,A/GCCGAC)顺式作用元件结合,从而激活COR(cold regulated)、LTI(low-temperature induced)、DHN(dehydrin)及RD(responsive to dehydration)等一系列低温应答基因的表达。CBFs的表达受ICE1/2(inducer of CBF expression 1/2)、CAA1(circadian clock-associated 1)、LHY(late elongated hypocotyl)、MYB56、ZFP1/182及CAMTA1/2/3等转录因子的正调控,而受MYB15、MYBS3、ZAT12、PIF4/7、WRKY34及EIN3等转录因子的负调控。ICE1蛋白的转录活性受翻译后修饰的严谨调控,包括 SIZ1(SAP and Miz 1)介导的 SUMO(small ubiquitin-related modifier)化修饰和HOS1(high expression of osmotically responsive gene 1)介导的泛素化修饰。HOS1-SIZ1系统精细严谨地调控着 ICE1-CBFs 及其靶基因的表达,以适应外

  17. Redundant ERF-VII Transcription Factors Bind to an Evolutionarily Conserved cis-Motif to Regulate Hypoxia-Responsive Gene Expression in Arabidopsis.

    Science.gov (United States)

    Gasch, Philipp; Fundinger, Moritz; Müller, Jana T; Lee, Travis; Bailey-Serres, Julia; Mustroph, Angelika

    2016-01-01

    The response of Arabidopsis thaliana to low-oxygen stress (hypoxia), such as during shoot submergence or root waterlogging, includes increasing the levels of ∼50 hypoxia-responsive gene transcripts, many of which encode enzymes associated with anaerobic metabolism. Upregulation of over half of these mRNAs involves stabilization of five group VII ethylene response factor (ERF-VII) transcription factors, which are routinely degraded via the N-end rule pathway of proteolysis in an oxygen- and nitric oxide-dependent manner. Despite their importance, neither the quantitative contribution of individual ERF-VIIs nor the cis-regulatory elements they govern are well understood. Here, using single- and double-null mutants, the constitutively synthesized ERF-VIIs RELATED TO APETALA2.2 (RAP2.2) and RAP2.12 are shown to act redundantly as principle activators of hypoxia-responsive genes; constitutively expressed RAP2.3 contributes to this redundancy, whereas the hypoxia-induced HYPOXIA RESPONSIVE ERF1 (HRE1) and HRE2 play minor roles. An evolutionarily conserved 12-bp cis-regulatory motif that binds to and is sufficient for activation by RAP2.2 and RAP2.12 is identified through a comparative phylogenetic motif search, promoter dissection, yeast one-hybrid assays, and chromatin immunopurification. This motif, designated the hypoxia-responsive promoter element, is enriched in promoters of hypoxia-responsive genes in multiple species. PMID:26668304

  18. Reconfigurable multiport EPON repeater

    Science.gov (United States)

    Oishi, Masayuki; Inohara, Ryo; Agata, Akira; Horiuchi, Yukio

    2009-11-01

    An extended reach EPON repeater is one of the solutions to effectively expand FTTH service areas. In this paper, we propose a reconfigurable multi-port EPON repeater for effective accommodation of multiple ODNs with a single OLT line card. The proposed repeater, which has multi-ports in both OLT and ODN sides, consists of TRs, BTRs with the CDR function and a reconfigurable electrical matrix switch, can accommodate multiple ODNs to a single OLT line card by controlling the connection of the matrix switch. Although conventional EPON repeaters require full OLT line cards to accommodate subscribers from the initial installation stage, the proposed repeater can dramatically reduce the number of required line cards especially when the number of subscribers is less than a half of the maximum registerable users per OLT. Numerical calculation results show that the extended reach EPON system with the proposed EPON repeater can save 17.5% of the initial installation cost compared with a conventional repeater, and can be less expensive than conventional systems up to the maximum subscribers especially when the percentage of ODNs in lightly-populated areas is higher.

  19. Recursive quantum repeater networks

    CERN Document Server

    Van Meter, Rodney; Horsman, Clare

    2011-01-01

    Internet-scale quantum repeater networks will be heterogeneous in physical technology, repeater functionality, and management. The classical control necessary to use the network will therefore face similar issues as Internet data transmission. Many scalability and management problems that arose during the development of the Internet might have been solved in a more uniform fashion, improving flexibility and reducing redundant engineering effort. Quantum repeater network development is currently at the stage where we risk similar duplication when separate systems are combined. We propose a unifying framework that can be used with all existing repeater designs. We introduce the notion of a Quantum Recursive Network Architecture, developed from the emerging classical concept of 'recursive networks', extending recursive mechanisms from a focus on data forwarding to a more general distributed computing request framework. Recursion abstracts independent transit networks as single relay nodes, unifies software layer...

  20. Identification of a Bipartite Jasmonate-Responsive Promoter Element in the Catharanthus roseus ORCA3 Transcription Factor Gene That Interacts Specifically with AT-Hook DNA-Binding Proteins1[W

    Science.gov (United States)

    Vom Endt, Débora; Soares e Silva, Marina; Kijne, Jan W.; Pasquali, Giancarlo; Memelink, Johan

    2007-01-01

    Jasmonates are plant signaling molecules that play key roles in defense against certain pathogens and insects, among others, by controlling the biosynthesis of protective secondary metabolites. In Catharanthus roseus, the APETALA2-domain transcription factor ORCA3 is involved in the jasmonate-responsive activation of terpenoid indole alkaloid biosynthetic genes. ORCA3 gene expression is itself induced by jasmonate. By loss- and gain-of-function experiments, we located a 74-bp region within the ORCA3 promoter, which contains an autonomous jasmonate-responsive element (JRE). The ORCA3 JRE is composed of two important sequences: a quantitative sequence responsible for a high level of expression and a qualitative sequence that appears to act as an on/off switch in response to methyl jasmonate. We isolated 12 different DNA-binding proteins having one of four different types of DNA-binding domains, using the ORCA3 JRE as bait in a yeast (Saccharomyces cerevisiae) one-hybrid transcription factor screening. The binding of one class of proteins bearing a single AT-hook DNA-binding motif was affected by mutations in the quantitative sequence within the JRE. Two of the AT-hook proteins tested had a weak activating effect on JRE-mediated reporter gene expression, suggesting that AT-hook family members may be involved in determining the level of expression of ORCA3 in response to jasmonate. PMID:17496112

  1. Friedreich's ataxia--a case of aberrant transcription termination?

    Science.gov (United States)

    Butler, Jill Sergesketter; Napierala, Marek

    2015-01-01

    Reduced expression of the mitochondrial protein Frataxin (FXN) is the underlying cause of Friedreich's ataxia. We propose a model of premature termination of FXN transcription induced by pathogenic expanded GAA repeats that links R-loop structures, antisense transcription, and heterochromatin formation as a novel mechanism of transcriptional repression in Friedreich's ataxia.

  2. The Pentapeptide Repeat Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Vetting,M.; Hegde, S.; Fajardo, J.; Fiser, A.; Roderick, S.; Takiff, H.; Blanchard, J.

    2006-01-01

    The Pentapeptide Repeat Protein (PRP) family has over 500 members in the prokaryotic and eukaryotic kingdoms. These proteins are composed of, or contain domains composed of, tandemly repeated amino acid sequences with a consensus sequence of [S, T,A, V][D, N][L, F]-[S, T,R][G]. The biochemical function of the vast majority of PRP family members is unknown. The three-dimensional structure of the first member of the PRP family was determined for the fluoroquinolone resistance protein (MfpA) from Mycobacterium tuberculosis. The structure revealed that the pentapeptide repeats encode the folding of a novel right-handed quadrilateral {beta}-helix. MfpA binds to DNA gyrase and inhibits its activity. The rod-shaped, dimeric protein exhibits remarkable size, shape and electrostatic similarity to DNA.

  3. Honesty through repeated interactions.

    Science.gov (United States)

    Rich, Patricia; Zollman, Kevin J S

    2016-04-21

    In the study of signaling, it is well known that the cost of deception is an essential element for stable honest signaling in nature. In this paper, we show how costs for deception can arise endogenously from repeated interactions between individuals. Utilizing the Sir Philip Sidney game as an illustrative case, we show that repeated interactions can sustain honesty with no observable signal costs, even when deception cannot be directly observed. We provide a number of potential experimental tests for this theory which distinguish it from the available alternatives. PMID:26869213

  4. All-optical repeater.

    Science.gov (United States)

    Silberberg, Y

    1986-06-01

    An all-optical device containing saturable gain, saturable loss, and unsaturable loss is shown to transform weak, distorted optical pulses into uniform standard-shape pulses. The proposed device performs thresholding, amplification, and pulse shaping as required from an optical repeater. It is shown that such a device could be realized by existing semiconductor technology.

  5. Bidirectional Manchester repeater

    Science.gov (United States)

    Ferguson, J.

    1980-01-01

    Bidirectional Manchester repeater is inserted at periodic intervals along single bidirectional twisted pair transmission line to detect, amplify, and transmit bidirectional Manchester 11 code signals. Requiring only 18 TTL 7400 series IC's, some line receivers and drivers, and handful of passive components, circuit is simple and relatively inexpensive to build.

  6. Isolation and molecular characterization of a novel WIN1/SHN1 ethylene-responsive transcription factor TdSHN1 from durum wheat (Triticum turgidum. L. subsp. durum).

    Science.gov (United States)

    Djemal, Rania; Khoudi, Habib

    2015-11-01

    Over the last decade, APETALA2/Ethylene Responsive Factor (AP2/ERF) proteins have become the subject of intensive research activity due to their involvement in a variety of biological processes. This research led to the identification of AP2/ERF genes in many species; however, little is known about these genes in durum wheat, one of the most important cereal crops in the world. In this study, a new member of the AP2/ERF transcription factor family, designated TdSHN1, was isolated from durum wheat using thermal asymetric interlaced PCR (TAIL-PCR) method. Protein sequence analysis showed that TdSHN1 contained an AP2/ERF domain of 63 amino acids and a putative nuclear localization signal (NLS). Phylogenetic analysis showed that TdSHN1 belongs to a group Va protein in the ERF subfamily which contains the Arabidopsis ERF proteins (SHN1, SHN2, and SHN3). Expression of TdSHN1 was strongly induced by salt, drought, abscisic acid (ABA), and cold. In planta, TdSHN1 protein was able to activate the transcription of GUS reporter gene driven by the GCC box and DRE element sequences. In addition, TdSHN1 was targeted to the nucleus when transiently expressed in tobacco epidermal cells. In transgenic yeast, overexpression of TdSHN1 increased tolerance to multiple abiotic stresses. Taken together, the results showed that TdSHN1 encodes an abiotic stress-inducible, transcription factor which confers abiotic stress tolerance in yeast. TdSHN1 is therefore a promising candidate for improvement of biotic and abiotic stress tolerance in wheat as well as other crops.

  7. Duct Leakage Repeatability Testing

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sherman, Max [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-01-01

    Duct leakage often needs to be measured to demonstrate compliance with requirements or to determine energy or Indoor Air Quality (IAQ) impacts. Testing is often done using standards such as ASTM E1554 (ASTM 2013) or California Title 24 (California Energy Commission 2013 & 2013b), but there are several choices of methods available within the accepted standards. Determining which method to use or not use requires an evaluation of those methods in the context of the particular needs. Three factors that are important considerations are the cost of the measurement, the accuracy of the measurement and the repeatability of the measurement. The purpose of this report is to evaluate the repeatability of the three most significant measurement techniques using data from the literature and recently obtained field data. We will also briefly discuss the first two factors. The main question to be answered by this study is to determine if differences in the repeatability of these tests methods is sufficient to indicate that any of these methods is so poor that it should be excluded from consideration as an allowed procedure in codes and standards.

  8. Specific tandem repeats are sufficient for paramutation-induced trans-generational silencing.

    Directory of Open Access Journals (Sweden)

    Christiane L Belele

    Full Text Available Paramutation is a well-studied epigenetic phenomenon in which trans communication between two different alleles leads to meiotically heritable transcriptional silencing of one of the alleles. Paramutation at the b1 locus involves RNA-mediated transcriptional silencing and requires specific tandem repeats that generate siRNAs. This study addressed three important questions: 1 are the tandem repeats sufficient for paramutation, 2 do they need to be in an allelic position to mediate paramutation, and 3 is there an association between the ability to mediate paramutation and repeat DNA methylation levels? Paramutation was achieved using multiple transgenes containing the b1 tandem repeats, including events with tandem repeats of only one half of the repeat unit (413 bp, demonstrating that these sequences are sufficient for paramutation and an allelic position is not required for the repeats to communicate. Furthermore, the transgenic tandem repeats increased the expression of a reporter gene in maize, demonstrating the repeats contain transcriptional regulatory sequences. Transgene-mediated paramutation required the mediator of paramutation1 gene, which is necessary for endogenous paramutation, suggesting endogenous and transgene-mediated paramutation both require an RNA-mediated transcriptional silencing pathway. While all tested repeat transgenes produced small interfering RNAs (siRNAs, not all transgenes induced paramutation suggesting that, as with endogenous alleles, siRNA production is not sufficient for paramutation. The repeat transgene-induced silencing was less efficiently transmitted than silencing induced by the repeats of endogenous b1 alleles, which is always 100% efficient. The variability in the strength of the repeat transgene-induced silencing enabled testing whether the extent of DNA methylation within the repeats correlated with differences in efficiency of paramutation. Transgene-induced paramutation does not require extensive

  9. Duct Leakage Repeatability Testing

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sherman, Max [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-01

    The purpose of this report is to evaluate the repeatability of the three most significant measurement techniques for duct leakage using data from the literature and recently obtained field data. We will also briefly discuss the first two factors. The main question to be answered by this study is to determine if differences in the repeatability of these tests methods is sufficient to indicate that any of these methods is so poor that it should be excluded from consideration as an allowed procedure in codes and standards. The three duct leak measurement methods assessed in this report are the two duct pressurization methods that are commonly used by many practitioners and the DeltaQ technique. These are methods B, C and A, respectively of the ASTM E1554 standard. Although it would be useful to evaluate other duct leak test methods, this study focused on those test methods that are commonly used and are required in various test standards, such as BPI (2010), RESNET (2014), ASHRAE 62.2 (2013), California Title 24 (CEC 2012), DOE Weatherization and many other energy efficiency programs.

  10. Repeat Customer Success in Extension

    Science.gov (United States)

    Bess, Melissa M.; Traub, Sarah M.

    2013-01-01

    Four multi-session research-based programs were offered by two Extension specialist in one rural Missouri county. Eleven participants who came to multiple Extension programs could be called "repeat customers." Based on the total number of participants for all four programs, 25% could be deemed as repeat customers. Repeat customers had…

  11. Specific Tandem Repeats Are Sufficient for Paramutation-Induced Trans-Generational Silencing

    OpenAIRE

    Belele, Christiane L.; Lyudmila Sidorenko; Maike Stam; Rechien Bader; Arteaga-Vazquez, Mario A.; Chandler, Vicki L.

    2013-01-01

    Paramutation is a well-studied epigenetic phenomenon in which trans communication between two different alleles leads to meiotically heritable transcriptional silencing of one of the alleles. Paramutation at the b1 locus involves RNA-mediated transcriptional silencing and requires specific tandem repeats that generate siRNAs. This study addressed three important questions: 1) are the tandem repeats sufficient for paramutation, 2) do they need to be in an allelic position to mediate paramutati...

  12. Large Polyglutamine Repeats Cause Muscle Degeneration in SCA17 Mice

    Directory of Open Access Journals (Sweden)

    Shanshan Huang

    2015-10-01

    Full Text Available In polyglutamine (polyQ diseases, large polyQ repeats cause juvenile cases with different symptoms than those of adult-onset patients, who carry smaller expanded polyQ repeats. The mechanisms behind the differential pathology mediated by different polyQ repeat lengths remain unknown. By studying knockin mouse models of spinal cerebellar ataxia-17 (SCA17, we found that a large polyQ (105 glutamines in the TATA-box-binding protein (TBP preferentially causes muscle degeneration and reduces the expression of muscle-specific genes. Direct expression of TBP with different polyQ repeats in mouse muscle revealed that muscle degeneration is mediated only by the large polyQ repeats. Different polyQ repeats differentially alter TBP’s interaction with neuronal and muscle-specific transcription factors. As a result, the large polyQ repeat decreases the association of MyoD with TBP and DNA promoters. Our findings suggest that specific alterations in protein interactions by large polyQ repeats may account for the unique pathology in juvenile polyQ diseases.

  13. GFP-based fluorescence assay for CAG repeat instability in cultured human cells.

    Directory of Open Access Journals (Sweden)

    Beatriz A Santillan

    Full Text Available Trinucleotide repeats can be highly unstable, mutating far more frequently than point mutations. Repeats typically mutate by addition or loss of units of the repeat. CAG repeat expansions in humans trigger neurological diseases that include myotonic dystrophy, Huntington disease, and several spinocerebellar ataxias. In human cells, diverse mechanisms promote CAG repeat instability, and in mice, the mechanisms of instability are varied and tissue-dependent. Dissection of mechanistic complexity and discovery of potential therapeutics necessitates quantitative and scalable screens for repeat mutation. We describe a GFP-based assay for screening modifiers of CAG repeat instability in human cells. The assay exploits an engineered intronic CAG repeat tract that interferes with expression of an inducible GFP minigene. Like the phenotypes of many trinucleotide repeat disorders, we find that GFP function is impaired by repeat expansion, in a length-dependent manner. The intensity of fluorescence varies inversely with repeat length, allowing estimates of repeat tract changes in live cells. We validate the assay using transcription through the repeat and engineered CAG-specific nucleases, which have previously been reported to induce CAG repeat instability. The assay is relatively fast and should be adaptable to large-scale screens of chemical and shRNA libraries.

  14. Saturation of repeated quantum measurements

    Science.gov (United States)

    Haapasalo, Erkka; Heinosaari, Teiko; Kuramochi, Yui

    2016-08-01

    We study sequential measurement scenarios where the system is repeatedly subjected to the same measurement process. We first provide examples of such repeated measurements where further repetitions of the measurement do not increase our knowledge on the system after some finite number of measurement steps. We also prove, however, that repeating the Lüders measurement of an unsharp two-outcome observable never saturates in this sense, and we characterize the observable measured in the limit of infinitely many repetitions. Our result implies that a repeated measurement can be used to correct the inherent noise of an unsharp observable.

  15. DWI Repeaters and Non-Repeaters: A Comparison.

    Science.gov (United States)

    Weeber, Stan

    1981-01-01

    Discussed how driving-while-intoxicated (DWI) repeaters differed signigicantly from nonrepeaters on 4 of 23 variables tested. Repeaters were more likely to have zero or two dependent children, attend church frequently, drink occasionally and have one or more arrests for public intoxication. (Author)

  16. To Repeat or Not to Repeat a Course

    Science.gov (United States)

    Armstrong, Michael J.; Biktimirov, Ernest N.

    2013-01-01

    The difficult transition from high school to university means that many students need to repeat (retake) 1 or more of their university courses. The authors examine the performance of students repeating first-year core courses in an undergraduate business program. They used data from university records for 116 students who took a total of 232…

  17. A repeat sequence causes competition of ColE1-type plasmids.

    Science.gov (United States)

    Lin, Mei-Hui; Fu, Jen-Fen; Liu, Shih-Tung

    2013-01-01

    Plasmid pSW200 from Pantoea stewartii contains 41 copies of 15-bp repeats and has a replicon that is homologous to that of ColE1. Although deleting the repeats (pSW207) does not change the copy number and stability of the plasmid. The plasmid becomes unstable and is rapidly lost from the host when a homoplasmid with the repeats (pSW201) is present. Deleting the repeats is found to reduce the transcriptional activity of RNAIp and RNAIIp by about 30%, indicating that the repeats promote the transcription of RNAI and RNAII, and how the RNAI that is synthesized by pSW201 inhibits the replication of pSW207. The immunoblot analysis herein demonstrates that RNA polymerase β subunit and σ(70) in the lysate from Escherichia coli MG1655 bind to a biotin-labeled DNA probe that contains the entire sequence of the repeat region. Electrophoretic mobility shift assay also reveals that purified RNA polymerase shifts a DNA probe that contains four copies of the repeats. These results thus obtained reveal that RNA polymerase holoenzyme binds to the repeats. The repeats also exchange RNA polymerase with RNAIp and RNAIIp in vitro, revealing the mechanism by which the transcription is promoted. This investigation elucidates a mechanism by which a plasmid prevents the invasion of an incompatible plasmid and maintains its stability in the host cell during evolution. PMID:23613898

  18. A repeat sequence causes competition of ColE1-type plasmids.

    Directory of Open Access Journals (Sweden)

    Mei-Hui Lin

    Full Text Available Plasmid pSW200 from Pantoea stewartii contains 41 copies of 15-bp repeats and has a replicon that is homologous to that of ColE1. Although deleting the repeats (pSW207 does not change the copy number and stability of the plasmid. The plasmid becomes unstable and is rapidly lost from the host when a homoplasmid with the repeats (pSW201 is present. Deleting the repeats is found to reduce the transcriptional activity of RNAIp and RNAIIp by about 30%, indicating that the repeats promote the transcription of RNAI and RNAII, and how the RNAI that is synthesized by pSW201 inhibits the replication of pSW207. The immunoblot analysis herein demonstrates that RNA polymerase β subunit and σ(70 in the lysate from Escherichia coli MG1655 bind to a biotin-labeled DNA probe that contains the entire sequence of the repeat region. Electrophoretic mobility shift assay also reveals that purified RNA polymerase shifts a DNA probe that contains four copies of the repeats. These results thus obtained reveal that RNA polymerase holoenzyme binds to the repeats. The repeats also exchange RNA polymerase with RNAIp and RNAIIp in vitro, revealing the mechanism by which the transcription is promoted. This investigation elucidates a mechanism by which a plasmid prevents the invasion of an incompatible plasmid and maintains its stability in the host cell during evolution.

  19. 78 FR 65594 - Vehicular Repeaters

    Science.gov (United States)

    2013-11-01

    ... Proceedings, 63 FR 24121 (May 1, 1998). Electronic Filers: Comments may be filed electronically using the... COMMISSION 47 CFR Part 90 Vehicular Repeaters AGENCY: Federal Communications Commission. ACTION: Proposed... the Commission's rules to allow the licensing and operation of vehicular repeater systems and...

  20. Nifty Nines and Repeating Decimals

    Science.gov (United States)

    Brown, Scott A.

    2016-01-01

    The traditional technique for converting repeating decimals to common fractions can be found in nearly every algebra textbook that has been published, as well as in many precalculus texts. However, students generally encounter repeating decimal numerals earlier than high school when they study rational numbers in prealgebra classes. Therefore, how…

  1. All-photonic quantum repeaters

    Science.gov (United States)

    Azuma, Koji; Tamaki, Kiyoshi; Lo, Hoi-Kwong

    2015-01-01

    Quantum communication holds promise for unconditionally secure transmission of secret messages and faithful transfer of unknown quantum states. Photons appear to be the medium of choice for quantum communication. Owing to photon losses, robust quantum communication over long lossy channels requires quantum repeaters. It is widely believed that a necessary and highly demanding requirement for quantum repeaters is the existence of matter quantum memories. Here we show that such a requirement is, in fact, unnecessary by introducing the concept of all-photonic quantum repeaters based on flying qubits. In particular, we present a protocol based on photonic cluster-state machine guns and a loss-tolerant measurement equipped with local high-speed active feedforwards. We show that, with such all-photonic quantum repeaters, the communication efficiency scales polynomially with the channel distance. Our result paves a new route towards quantum repeaters with efficient single-photon sources rather than matter quantum memories. PMID:25873153

  2. CRISPR families of the crenarchaeal genus Sulfolobus: bidirectional transcription and dynamic properties

    DEFF Research Database (Denmark)

    Lillestøl, Reidun K; Shah, Shiraz Ali; Brügger, Kim;

    2009-01-01

    Summary CRISPRs of Sulfolobus fall into three main families based on their repeats, leader regions, associated cas genes, and putative recognition sequences on viruses and plasmids. Spacer sequence matches to different viruses and plasmids of the Sulfolobales revealed some bias particularly...... for family III CRISPRs. Transcription occurs on both strands of the five repeat-clusters of Sulfolobus acidocaldarius and a repeat-cluster of the conjugative plasmid pKEF9. Leader strand transcripts cover whole repeat-clusters and are processed mainly from the 3'-end, within repeats, yielding heterogeneous...

  3. Solution properties of the archaeal CRISPR DNA repeat-binding homeodomain protein Cbp2

    DEFF Research Database (Denmark)

    Kenchappa, Chandra; Heiðarsson, Pétur Orri; Kragelund, Birthe;

    2013-01-01

    in facilitating high affinity DNA binding of Cbp2 by tethering the two domains. Structural studies on mutant proteins provide support for Cys(7) and Cys(28) enhancing high thermal stability of Cbp2(Hb) through disulphide bridge formation. Consistent with their proposed CRISPR transcriptional regulatory role, Cbp2......Clustered regularly interspaced short palindromic repeats (CRISPR) form the basis of diverse adaptive immune systems directed primarily against invading genetic elements of archaea and bacteria. Cbp1 of the crenarchaeal thermoacidophilic order Sulfolobales, carrying three imperfect repeats, binds...... specifically to CRISPR DNA repeats and has been implicated in facilitating production of long transcripts from CRISPR loci. Here, a second related class of CRISPR DNA repeat-binding protein, denoted Cbp2, is characterized that contains two imperfect repeats and is found amongst members of the crenarchaeal...

  4. Overexpression of the Transcription Factors GmSHN1 and GmSHN9 Differentially Regulates Wax and Cutin Biosynthesis, Alters Cuticle Properties, and Changes Leaf Phenotypes in Arabidopsis.

    Science.gov (United States)

    Xu, Yangyang; Wu, Hanying; Zhao, Mingming; Wu, Wang; Xu, Yinong; Gu, Dan

    2016-04-21

    SHINE (SHN/WIN) clade proteins, transcription factors of the plant-specific APETALA 2/ethylene-responsive element binding factor (AP2/ERF) family, have been proven to be involved in wax and cutin biosynthesis. Glycine max is an important economic crop, but its molecular mechanism of wax biosynthesis is rarely characterized. In this study, 10 homologs of Arabidopsis SHN genes were identified from soybean. These homologs were different in gene structures and organ expression patterns. Constitutive expression of each of the soybean SHN genes in Arabidopsis led to different leaf phenotypes, as well as different levels of glossiness on leaf surfaces. Overexpression of GmSHN1 and GmSHN9 in Arabidopsis exhibited 7.8-fold and 9.9-fold up-regulation of leaf cuticle wax productions, respectively. C31 and C29 alkanes contributed most to the increased wax contents. Total cutin contents of leaves were increased 11.4-fold in GmSHN1 overexpressors and 5.7-fold in GmSHN9 overexpressors, mainly through increasing C16:0 di-OH and dioic acids. GmSHN1 and GmSHN9 also altered leaf cuticle membrane ultrastructure and increased water loss rate in transgenic Arabidopsis plants. Transcript levels of many wax and cutin biosynthesis and leaf development related genes were altered in GmSHN1 and GmSHN9 overexpressors. Overall, these results suggest that GmSHN1 and GmSHN9 may differentially regulate the leaf development process as well as wax and cutin biosynthesis.

  5. Involvement of EARLY BUD-BREAK, an AP2/ERF Transcription Factor Gene, in Bud Break in Japanese Pear (Pyrus pyrifolia Nakai) Lateral Flower Buds: Expression, Histone Modifications and Possible Target Genes.

    Science.gov (United States)

    Anh Tuan, Pham; Bai, Songling; Saito, Takanori; Imai, Tsuyoshi; Ito, Akiko; Moriguchi, Takaya

    2016-05-01

    In the Japanese pear (Pyrus pyrifolia Nakai) 'Kosui', three developmental stages of lateral flower buds have been proposed to occur during ecodormancy to the flowering phase, i.e. rapid enlargement, sprouting and flowering. Here, we report an APETALA2/ethylene-responsive factor (AP2/ERF) transcription factor gene, named pear EARLY BUD-BREAK (PpEBB), which was highly expressed during the rapid enlargement stage occurring prior to the onset of bud break in flower buds. Gene expression analysis revealed that PpEBB expression was dramatically increased during the rapid enlargement stage in three successive growing seasons. PpEBB transcript levels peaked 1 week prior to onset of bud break in 'Kosui' potted plants treated with hydrogen cyanamide or water under forcing conditions. Chromatin immunoprecipitation-quantitative PCR showed that higher levels of active histone modifications (trimethylation of the histone H3 tail at Lys4) in the 5'-upstream and start codon regions of the PpEBB gene were associated with the induced expression level of PpEBB during the rapid enlargement stage. In addition, we provide evidence that PpEBB may interact with and regulate pear four D-type cyclin (PpCYCD3) genes during bud break in 'Kosui' lateral flower buds. PpEBB significantly increased the promoter activities of four PpCYCD3 genes in a dual-luciferase assay using tobacco leaves. Taken together, our findings uncovered aspects of the bud break regulatory mechanism in the Japanese pear and provided further evidence that the EBB family plays an important role in bud break in perennial plants. PMID:26940832

  6. Overexpression of the Transcription Factors GmSHN1 and GmSHN9 Differentially Regulates Wax and Cutin Biosynthesis, Alters Cuticle Properties, and Changes Leaf Phenotypes in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Yangyang Xu

    2016-04-01

    Full Text Available SHINE (SHN/WIN clade proteins, transcription factors of the plant-specific APETALA 2/ethylene-responsive element binding factor (AP2/ERF family, have been proven to be involved in wax and cutin biosynthesis. Glycine max is an important economic crop, but its molecular mechanism of wax biosynthesis is rarely characterized. In this study, 10 homologs of Arabidopsis SHN genes were identified from soybean. These homologs were different in gene structures and organ expression patterns. Constitutive expression of each of the soybean SHN genes in Arabidopsis led to different leaf phenotypes, as well as different levels of glossiness on leaf surfaces. Overexpression of GmSHN1 and GmSHN9 in Arabidopsis exhibited 7.8-fold and 9.9-fold up-regulation of leaf cuticle wax productions, respectively. C31 and C29 alkanes contributed most to the increased wax contents. Total cutin contents of leaves were increased 11.4-fold in GmSHN1 overexpressors and 5.7-fold in GmSHN9 overexpressors, mainly through increasing C16:0 di-OH and dioic acids. GmSHN1 and GmSHN9 also altered leaf cuticle membrane ultrastructure and increased water loss rate in transgenic Arabidopsis plants. Transcript levels of many wax and cutin biosynthesis and leaf development related genes were altered in GmSHN1 and GmSHN9 overexpressors. Overall, these results suggest that GmSHN1 and GmSHN9 may differentially regulate the leaf development process as well as wax and cutin biosynthesis.

  7. A model for genesis of transcription systems.

    Science.gov (United States)

    Burton, Zachary F; Opron, Kristopher; Wei, Guowei; Geiger, James H

    2016-01-01

    Repeating sequences generated from RNA gene fusions/ligations dominate ancient life, indicating central importance of building structural complexity in evolving biological systems. A simple and coherent story of life on earth is told from tracking repeating motifs that generate α/β proteins, 2-double-Ψ-β-barrel (DPBB) type RNA polymerases (RNAPs), general transcription factors (GTFs), and promoters. A general rule that emerges is that biological complexity that arises through generation of repeats is often bounded by solubility and closure (i.e., to form a pseudo-dimer or a barrel). Because the first DNA genomes were replicated by DNA template-dependent RNA synthesis followed by RNA template-dependent DNA synthesis via reverse transcriptase, the first DNA replication origins were initially 2-DPBB type RNAP promoters. A simplifying model for evolution of promoters/replication origins via repetition of core promoter elements is proposed. The model can explain why Pribnow boxes in bacterial transcription (i.e., (-12)TATAATG(-6)) so closely resemble TATA boxes (i.e., (-31)TATAAAAG(-24)) in archaeal/eukaryotic transcription. The evolution of anchor DNA sequences in bacterial (i.e., (-35)TTGACA(-30)) and archaeal (BRE(up); BRE for TFB recognition element) promoters is potentially explained. The evolution of BRE(down) elements of archaeal promoters is potentially explained. PMID:26735411

  8. Limitations on quantum key repeaters.

    Science.gov (United States)

    Bäuml, Stefan; Christandl, Matthias; Horodecki, Karol; Winter, Andreas

    2015-04-23

    A major application of quantum communication is the distribution of entangled particles for use in quantum key distribution. Owing to noise in the communication line, quantum key distribution is, in practice, limited to a distance of a few hundred kilometres, and can only be extended to longer distances by use of a quantum repeater, a device that performs entanglement distillation and quantum teleportation. The existence of noisy entangled states that are undistillable but nevertheless useful for quantum key distribution raises the question of the feasibility of a quantum key repeater, which would work beyond the limits of entanglement distillation, hence possibly tolerating higher noise levels than existing protocols. Here we exhibit fundamental limits on such a device in the form of bounds on the rate at which it may extract secure key. As a consequence, we give examples of states suitable for quantum key distribution but unsuitable for the most general quantum key repeater protocol.

  9. Unusual structures are present in DNA fragments containing super-long Huntingtin CAG repeats.

    Directory of Open Access Journals (Sweden)

    Daniel Duzdevich

    Full Text Available BACKGROUND: In the R6/2 mouse model of Huntington's disease (HD, expansion of the CAG trinucleotide repeat length beyond about 300 repeats induces a novel phenotype associated with a reduction in transcription of the transgene. METHODOLOGY/PRINCIPAL FINDINGS: We analysed the structure of polymerase chain reaction (PCR-generated DNA containing up to 585 CAG repeats using atomic force microscopy (AFM. As the number of CAG repeats increased, an increasing proportion of the DNA molecules exhibited unusual structural features, including convolutions and multiple protrusions. At least some of these features are hairpin loops, as judged by cross-sectional analysis and sensitivity to cleavage by mung bean nuclease. Single-molecule force measurements showed that the convoluted DNA was very resistant to untangling. In vitro replication by PCR was markedly reduced, and TseI restriction enzyme digestion was also hindered by the abnormal DNA structures. However, significantly, the DNA gained sensitivity to cleavage by the Type III restriction-modification enzyme, EcoP15I. CONCLUSIONS/SIGNIFICANCE: "Super-long" CAG repeats are found in a number of neurological diseases and may also appear through CAG repeat instability. We suggest that unusual DNA structures associated with super-long CAG repeats decrease transcriptional efficiency in vitro. We also raise the possibility that if these structures occur in vivo, they may play a role in the aetiology of CAG repeat diseases such as HD.

  10. Transcriptome and Metabolite Profiling Show That APETALA2a Is a Major Regulator of Tomato Fruit Ripening

    NARCIS (Netherlands)

    Karlova, R.B.; Rosin, F.M.A.; Busscher-Lange, J.; Parapunova, V.A.; Do, P.T.; Fernie, A.R.; Fraser, P.D.; Baxter, C.; Angenent, G.C.; Maagd, de R.A.

    2011-01-01

    Fruit ripening in tomato (Solanum lycopersicum) requires the coordination of both developmental cues as well as the plant hormone ethylene. Although the role of ethylene in mediating climacteric ripening has been established, knowledge regarding the developmental regulators that modulate the involve

  11. A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening

    Science.gov (United States)

    The transition of fleshy fruit maturation to ripening is regulated by exogenous and endogenous signals which coordinate the transition of the fruit to a final state of attractiveness to seed dispersing organisms. Tomato is a model for biology and genetics regulating specific ripening pathways includ...

  12. Sequencing Games with Repeated Players

    NARCIS (Netherlands)

    Estevez Fernandez, M.A.; Borm, P.E.M.; Calleja, P.; Hamers, H.J.M.

    2004-01-01

    Two classes of one machine sequencing situations are considered in which each job corresponds to exactly one player but a player may have more than one job to be processed, so called RP(repeated player) sequencing situations.In max-RP sequencing situations it is assumed that each player's cost funct

  13. Sequence-specific binding of a chloroplast pentatricopeptide repeat protein to its native group II intron ligand

    OpenAIRE

    Williams-Carrier, Rosalind; Kroeger, Tiffany; Barkan, Alice

    2008-01-01

    Pentatricopeptide repeat (PPR) proteins are defined by degenerate 35-amino acid repeats that are related to the tetratricopeptide repeat (TPR). Most characterized PPR proteins mediate specific post-transcriptional steps in gene expression in mitochondria or chloroplasts. However, little is known about the structure of PPR proteins or the biochemical mechanisms through which they act. Here we establish features of PPR protein structure and nucleic acid binding activity through in vitro experim...

  14. Preferential Nucleosome Assembly at DNA Triplet Repeats from the Myotonic Dystrophy Gene

    Science.gov (United States)

    Wang, Yuh-Hwa; Amirhaeri, Sorour; Kang, Seongman; Wells, Robert D.; Griffith, Jack D.

    1994-07-01

    The expansion of CTG repeats in DNA occurs in or near genes involved in several human diseases, including myotonic dystrophy and Huntington's disease. Nucleosomes, the basic structural element of chromosomes, consist of 146 base pairs of DNA coiled about an octamer of histone proteins and mediate general transcriptional repression. Electron microscopy was used to examine in vitro the nucleosome assembly of DNA containing repeating CTG triplets. The efficiency of nucleosome formation increased with expanded triplet blocks, suggesting that such blocks may repress transcription through the creation of stable nucleosomes.

  15. In Vitro Expansion of CAG, CAA, and Mixed CAG/CAA Repeats

    OpenAIRE

    Grzegorz Figura; Edyta Koscianska; Krzyzosiak, Wlodzimierz J.

    2015-01-01

    Polyglutamine diseases, including Huntington’s disease and a number of spinocerebellar ataxias, are caused by expanded CAG repeats that are located in translated sequences of individual, functionally-unrelated genes. Only mutant proteins containing polyglutamine expansions have long been thought to be pathogenic, but recent evidence has implicated mutant transcripts containing long CAG repeats in pathogenic processes. The presence of two pathogenic factors prompted us to attempt to distinguis...

  16. Synthetic heterochromatin bypasses RNAi and centromeric repeats to establish functional centromeres

    OpenAIRE

    Kagansky, Alexander; Folco, Hernan Diego; Almeida, Ricardo; Pidoux, Alison L.; Boukaba, Abdelhalim; Simmer, Femke; Urano, Takeshi; Hamilton, Georgina L.; Allshire, Robin C.

    2009-01-01

    In the central domain of fission yeast centromeres, the kinetochore is assembled on CENP-A(Cnp1) nucleosomes. Normally, small interfering RNAs generated from flanking outer repeat transcripts direct histone H3 lysine 9 methyltransferase Clr4 to homologous loci to form heterochromatin. Outer repeats, RNA interference (RNAi), and centromeric heterochromatin are required to establish CENP-A(Cnp1) chromatin. We demonstrated that tethering Clr4 via DNA-binding sites at euchromatic loci induces het...

  17. A Semiparametric Bayesian Model for Repeatedly Repeated Binary Outcomes

    OpenAIRE

    Quintana, Fernando A.; Müller, Peter; Rosner, Gary L.; Mary V Relling

    2008-01-01

    We discuss the analysis of data from single nucleotide polymorphism (SNP) arrays comparing tumor and normal tissues. The data consist of sequences of indicators for loss of heterozygosity (LOH) and involve three nested levels of repetition: chromosomes for a given patient, regions within chromosomes, and SNPs nested within regions. We propose to analyze these data using a semiparametric model for multi-level repeated binary data. At the top level of the hierarchy we assume a sampling model fo...

  18. Alternate utilization of two regulatory domains within the Moloney murine sarcoma virus long terminal repeat.

    OpenAIRE

    Graves, B J; Eisenberg, S P; Coen, D M; McKnight, S L

    1985-01-01

    The Moloney murine sarcoma virus long terminal repeat (LTR) harbors two distinct positive activators of transcription, namely, a distal signal and an enhancer. In this report we demonstrate that infection by herpes simplex virus (HSV) can markedly affect the utilization of these two Moloney murine sarcoma virus transcription signals. We investigated the HSV-mediated trans-acting effects with two goals in mind: first, to gain insight into LTR function, and second, to probe the mechanisms used ...

  19. Large-scale transcriptome data reveals transcriptional activity of fission yeast LTR retrotransposons

    DEFF Research Database (Denmark)

    Mourier, Tobias; Willerslev, Eske

    2010-01-01

    transcriptional activity from Long Terminal Repeat (LTR) retrotransposons. LTR retrotransposons are normally flanked by two LTR sequences. However, the majority of LTR sequences in S. pombe exist as solitary LTRs, i.e. as single terminal repeat sequences not flanking a retrotransposon. Transcriptional activity...... of transcriptional activity are observed from both strands of solitary LTR sequences. Transcriptome data collected during meiosis suggests that transcription of solitary LTRs is correlated with the transcription of nearby protein-coding genes. CONCLUSIONS: Presumably, the host organism negatively regulates...... proliferation of LTR retrotransposons. The finding of considerable transcriptional activity of retrotransposons suggests that part of this regulation is likely to take place at a posttranscriptional level. Alternatively, the transcriptional activity may signify a hitherto unrecognized activity level...

  20. Directionality switchable gain stabilized linear repeater

    Science.gov (United States)

    Ota, Takayuki; Ohmachi, Tadashi; Aida, Kazuo

    2004-10-01

    We propose a new approach to realize a bidirectional linear repeater suitable for future optical internet networks and fault location in repeater chain with OTDR. The proposed approach is the linear repeater of simple configuration whose directionality is rearranged dynamically by electrical control signal. The repeater is composed of a magneto-optical switch, a circulator, a dynamically gain stabilized unidirectional EDFA, and control circuits. The repeater directionality is rearranged as fast as 0.1ms by an electrical control pulse. It is experimentally confirmed that OTDR with the directionality switchable repeater is feasible for repeater chain. The detailed design and performance of the repeater are also discussed, including the multi-pass interference (MPI) which may arise in the proposed repeater, the effect of the MPI on SNR degradation of the repeater chain and the feed-forward EDFA gain control circuit.

  1. A Repeating Fast Radio Burst

    CERN Document Server

    Spitler, L G; Hessels, J W T; Bogdanov, S; Brazier, A; Camilo, F; Chatterjee, S; Cordes, J M; Crawford, F; Deneva, J; Ferdman, R D; Freire, P C C; Kaspi, V M; Lazarus, P; Lynch, R; Madsen, E C; McLaughlin, M A; Patel, C; Ransom, S M; Seymour, A; Stairs, I H; Stappers, B W; van Leeuwen, J; Zhu, W W

    2016-01-01

    Fast Radio Bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measures (i.e. integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of the fast radio bursts has led several authors to hypothesise that they originate in cataclysmic astrophysical events. Here we report the detection of ten additional bursts from the direction of FRB121102, using the 305-m Arecibo telescope. These new bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and wh...

  2. Repeatability of Harris Corner Detector

    Institute of Scientific and Technical Information of China (English)

    HU Lili

    2003-01-01

    Interest point detectors are commonly employed to reduce the amount of data to be processed. The ideal interest point detector would robustly select those features which are most appropriate or salient for the application and data at hand. This paper shows that interest points are geometrically stable under different transformations.This property makes interest points very successful in the context of image matching. To measure this property quantatively, we introduce a evaluation criterion: repeatability rate.

  3. A repeating fast radio burst

    Science.gov (United States)

    Spitler, L. G.; Scholz, P.; Hessels, J. W. T.; Bogdanov, S.; Brazier, A.; Camilo, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J.; Ferdman, R. D.; Freire, P. C. C.; Kaspi, V. M.; Lazarus, P.; Lynch, R.; Madsen, E. C.; McLaughlin, M. A.; Patel, C.; Ransom, S. M.; Seymour, A.; Stairs, I. H.; Stappers, B. W.; van Leeuwen, J.; Zhu, W. W.

    2016-03-01

    Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star.

  4. Spt4 selectively regulates the expression of C9orf72 sense and antisense mutant transcripts.

    Science.gov (United States)

    Kramer, Nicholas J; Carlomagno, Yari; Zhang, Yong-Jie; Almeida, Sandra; Cook, Casey N; Gendron, Tania F; Prudencio, Mercedes; Van Blitterswijk, Marka; Belzil, Veronique; Couthouis, Julien; Paul, Joseph West; Goodman, Lindsey D; Daughrity, Lillian; Chew, Jeannie; Garrett, Aliesha; Pregent, Luc; Jansen-West, Karen; Tabassian, Lilia J; Rademakers, Rosa; Boylan, Kevin; Graff-Radford, Neill R; Josephs, Keith A; Parisi, Joseph E; Knopman, David S; Petersen, Ronald C; Boeve, Bradley F; Deng, Ning; Feng, Yanan; Cheng, Tzu-Hao; Dickson, Dennis W; Cohen, Stanley N; Bonini, Nancy M; Link, Christopher D; Gao, Fen-Biao; Petrucelli, Leonard; Gitler, Aaron D

    2016-08-12

    An expanded hexanucleotide repeat in C9orf72 causes amyotrophic lateral sclerosis and frontotemporal dementia (c9FTD/ALS). Therapeutics are being developed to target RNAs containing the expanded repeat sequence (GGGGCC); however, this approach is complicated by the presence of antisense strand transcription of expanded GGCCCC repeats. We found that targeting the transcription elongation factor Spt4 selectively decreased production of both sense and antisense expanded transcripts, as well as their translated dipeptide repeat (DPR) products, and also mitigated degeneration in animal models. Knockdown of SUPT4H1, the human Spt4 ortholog, similarly decreased production of sense and antisense RNA foci, as well as DPR proteins, in patient cells. Therapeutic targeting of a single factor to eliminate c9FTD/ALS pathological features offers advantages over approaches that require targeting sense and antisense repeats separately. PMID:27516603

  5. Morphology of nuclear transcription.

    Science.gov (United States)

    Weipoltshammer, Klara; Schöfer, Christian

    2016-04-01

    Gene expression control is a fundamental determinant of cellular life with transcription being the most important step. The spatial nuclear arrangement of the transcription process driven by RNA polymerases II and III is nonrandomly organized in foci, which is believed to add another regulatory layer on gene expression control. RNA polymerase I transcription takes place within a specialized organelle, the nucleolus. Transcription of ribosomal RNA directly responds to metabolic requirements, which in turn is reflected in the architecture of nucleoli. It differs from that of the other polymerases with respect to the gene template organization, transcription rate, and epigenetic expression control, whereas other features are shared like the formation of DNA loops bringing genes and components of the transcription machinery in close proximity. In recent years, significant advances have been made in the understanding of the structural prerequisites of nuclear transcription, of the arrangement in the nuclear volume, and of the dynamics of these entities. Here, we compare ribosomal RNA and mRNA transcription side by side and review the current understanding focusing on structural aspects of transcription foci, of their constituents, and of the dynamical behavior of these components with respect to foci formation, disassembly, and cell cycle. PMID:26847177

  6. A Nonnatural Transcriptional Coactivator

    Science.gov (United States)

    Nyanguile, Origene; Uesugi, Motonari; Austin, David J.; Verdine, Gregory L.

    1997-12-01

    In eukaryotes, sequence-specific DNA-binding proteins activate gene expression by recruiting the transcriptional apparatus and chromatin remodeling proteins to the promoter through protein-protein contacts. In many instances, the connection between DNA-binding proteins and the transcriptional apparatus is established through the intermediacy of adapter proteins known as coactivators. Here we describe synthetic molecules with low molecular weight that act as transcriptional coactivators. We demonstrate that a completely nonnatural activation domain in one such molecule is capable of stimulating transcription in vitro and in vivo. The present strategy provides a means of gaining external control over gene activation through intervention using small molecules.

  7. Detection of an unstable non-coding tandem repeat in the ZNF291 gene.

    Science.gov (United States)

    Laura, Vallo; Emanuela, Bonifazi; Corrado, Angelini; Giuseppe, Novelli; Annalisa, Botta

    2007-01-01

    Repeat instability is an important form of mutation that is responsible for several neurological, neurodegenerative and neuromuscular disorders. In this study we identified an unstable [CCTG](n) repeat in the second intron of the ZNF291 gene, on chromosome 15q21-24. The repeat number is polymorphic in normal population and the ZNF291 transcript is expressed in different areas of human brain, skeletal muscle and heart. These findings suggest that ZNF291 gene should be taken in consideration as an attractive candidate for neuromuscular expansion related diseases mapping in this locus.

  8. Evolutionary Footprints of Short Tandem Repeats in Avian Promoters.

    Science.gov (United States)

    Abe, Hideaki; Gemmell, Neil J

    2016-01-01

    Short tandem repeats (STRs) or microsatellites are well-known sequence elements that may change the spacing between transcription factor binding sites (TFBSs) in promoter regions by expansion or contraction of repetitive units. Some of these mutations have the potential to contribute to phenotypic diversity by altering patterns of gene expression. To explore how repetitive sequence motifs within promoters have evolved in avian lineages under mutation-selection balance, more than 400 evolutionary conserved STRs (ecSTRs) were identified in this study by comparing the 2 kb upstream promoter sequences of chicken against those of other birds (turkey, duck, zebra finch, and flycatcher). The rate of conservation was significantly higher in AG dinucleotide repeats than in AC or AT repeats, with the expansion of AG motifs being noticeably constrained in passerines. Analysis of the relative distance between ecSTRs and TFBSs revealed a significantly higher rate of conserved TFBSs in the vicinity of ecSTRs in both chicken-duck and chicken-passerine comparisons. Our comparative study provides a novel insight into which intrinsic factors have influenced the degree of constraint on repeat expansion/contraction during avian promoter evolution. PMID:26766026

  9. The transcriptional landscape

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2011-01-01

    The application of new and less biased methods to study the transcriptional output from genomes, such as tiling arrays and deep sequencing, has revealed that most of the genome is transcribed and that there is substantial overlap of transcripts derived from the two strands of DNA. In protein codi...

  10. The Transcription Factor Encyclopedia

    DEFF Research Database (Denmark)

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I;

    2012-01-01

    ABSTRACT: Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130...

  11. Improving repeatability by improving quality

    Energy Technology Data Exchange (ETDEWEB)

    Ronen, Shuki; Ackers, Mark; Schlumberger, Geco-Prakla; Brink, Mundy

    1998-12-31

    Time lapse (4-D) seismic is a promising tool for reservoir characterization and monitoring. The method is apparently simple: to acquire data repeatedly over the same reservoir, process and interpret the data sets, then changes between the data sets indicate changes in the reservoir. A problem with time lapse seismic data is that reservoirs are a relatively small part of the earth and important reservoir changes may cause very small differences to the time lapse data. The challenge is to acquire and process economical time lapse data such that reservoir changes can be detected above the noise of varying acquisition and environment. 7 refs., 9 figs.

  12. Coordinated hybrid automatic repeat request

    KAUST Repository

    Makki, Behrooz

    2014-11-01

    We develop a coordinated hybrid automatic repeat request (HARQ) approach. With the proposed scheme, if a user message is correctly decoded in the first HARQ rounds, its spectrum is allocated to other users, to improve the network outage probability and the users\\' fairness. The results, which are obtained for single- and multiple-antenna setups, demonstrate the efficiency of the proposed approach in different conditions. For instance, with a maximum of M retransmissions and single transmit/receive antennas, the diversity gain of a user increases from M to (J+1)(M-1)+1 where J is the number of users helping that user.

  13. Design and analysis of effects of triplet repeat oligonucleotides in cell models for myotonic dystrophy

    NARCIS (Netherlands)

    Gonzalez-Barriga, A.; Mulders, S.A.M.; Giessen, J. van der; Hooijer, J.D.; Bijl, S.; Kessel, I.D.G. van; Beers, J. van; Deutekom, J.C. van; Fransen, J.A.M.; Wieringa, B.; Wansink, D.G.

    2013-01-01

    Myotonic dystrophy type 1 (DM1) is caused by DM protein kinase (DMPK) transcripts containing an expanded (CUG)n repeat. Antisense oligonucleotide (AON)-mediated suppression of these mutant RNAs is considered a promising therapeutic strategy for this severe disorder. Earlier, we identified a 2'-O-met

  14. Crowding by a repeating pattern.

    Science.gov (United States)

    Rosen, Sarah; Pelli, Denis G

    2015-01-01

    Theinability to recognize a peripheral target among flankers is called crowding. For a foveal target, crowding can be distinguished from overlap masking by its sparing of detection, linear scaling with eccentricity, and invariance with target size.Crowding depends on the proximity and similarity of the flankers to the target. Flankers that are far from or dissimilar to the target do not crowd it. On a gray page, text whose neighboring letters have different colors, alternately black and white, has enough dissimilarity that it might escape crowding. Since reading speed is normally limited by crowding, escape from crowding should allow faster reading. Yet reading speed is unchanged (Chung & Mansfield, 2009). Why? A recent vernier study found that using alternating-color flankers produces strong crowding (Manassi, Sayim, & Herzog, 2012). Might that effect occur with letters and reading? Critical spacing is the minimum center-to-center target-flanker spacing needed to correctly identify the target. We measure it for a target letter surrounded by several equidistant flanker letters of the same polarity, opposite polarity, or mixed polarity: alternately white and black. We find strong crowding in the alternating condition, even though each flanker letter is beyond its own critical spacing (as measured in a separate condition). Thus a periodic repeating pattern can produce crowding even when the individual elements do not. Further, in all conditions we find that, once a periodic pattern repeats (two cycles), further repetition does not affect critical spacing of the innermost flanker.

  15. CDC Vital Signs: Preventing Repeat Teen Births

    Science.gov (United States)

    ... MB] Read the MMWR Science Clips Preventing Repeat Teen Births Recommend on Facebook Tweet Share Compartir On ... live birth before age 20. Problem Too many teens, ages 15–19, have repeat births. Nearly 1 ...

  16. Automatization and familiarity in repeated checking

    NARCIS (Netherlands)

    Dek, Eliane C P; van den Hout, Marcel A.; Giele, Catharina L.; Engelhard, Iris M.

    2014-01-01

    Repeated checking paradoxically increases memory uncertainty. This study investigated the underlying mechanism of this effect. We hypothesized that as a result of repeated checking, familiarity with stimuli increases, and automatization of the checking procedure occurs, which should result in decrea

  17. Essays in the theory of repeated games

    OpenAIRE

    Osório-Costa, António Miguel

    2010-01-01

    This thesis comprises three essays in economic theory. The first two are in the theory of repeated games. The third is also a theoretical contribution, which mixes con- cepts both from repeated games and the theory of incentives. The first chapter is a novel contribution to frequent monitoring in repeated games. The second one, studies for the first time, infinitely repeated games where the repetitions of the stage game are random. The last chapter, studies the provision of incentives in a pr...

  18. Lambda Exonuclease Digestion of CGG Trinucleotide Repeats

    OpenAIRE

    Conroy, R. S.; Koretsky, A P; Moreland, J.

    2009-01-01

    Fragile X syndrome and other triplet repeat diseases are characterized by an elongation of a repeating DNA triplet. The ensemble-averaged lambda exonuclease digestion rate of different substrates, including one with an elongated FMR1 gene containing 120 CGG repeats, was measured using absorption and fluorescence spectroscopy. Using magnetic tweezers sequence-dependent digestion rates and pausing was measured for individual lambda exonucleases. Within the triplet repeats a lower average and na...

  19. ProtRepeatsDB: a database of amino acid repeats in genomes

    Directory of Open Access Journals (Sweden)

    Chauhan Virander S

    2006-07-01

    Full Text Available Abstract Background Genome wide and cross species comparisons of amino acid repeats is an intriguing problem in biology mainly due to the highly polymorphic nature and diverse functions of amino acid repeats. Innate protein repeats constitute vital functional and structural regions in proteins. Repeats are of great consequence in evolution of proteins, as evident from analysis of repeats in different organisms. In the post genomic era, availability of protein sequences encoded in different genomes provides a unique opportunity to perform large scale comparative studies of amino acid repeats. ProtRepeatsDB http://bioinfo.icgeb.res.in/repeats/ is a relational database of perfect and mismatch repeats, access to which is designed as a resource and collection of tools for detection and cross species comparisons of different types of amino acid repeats. Description ProtRepeatsDB (v1.2 consists of perfect as well as mismatch amino acid repeats in the protein sequences of 141 organisms, the genomes of which are now available. The web interface of ProtRepeatsDB consists of different tools to perform repeat s; based on protein IDs, organism name, repeat sequences, and keywords as in FASTA headers, size, frequency, gene ontology (GO annotation IDs and regular expressions (REGEXP describing repeats. These tools also allow formulation of a variety of simple, complex and logical queries to facilitate mining and large-scale cross-species comparisons of amino acid repeats. In addition to this, the database also contains sequence analysis tools to determine repeats in user input sequences. Conclusion ProtRepeatsDB is a multi-organism database of different types of amino acid repeats present in proteins. It integrates useful tools to perform genome wide queries for rapid screening and identification of amino acid repeats and facilitates comparative and evolutionary studies of the repeats. The database is useful for identification of species or organism specific

  20. 47 CFR 97.205 - Repeater station.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Repeater station. 97.205 Section 97.205... SERVICE Special Operations § 97.205 Repeater station. (a) Any amateur station licensed to a holder of a Technician, General, Advanced or Amateur Extra Class operator license may be a repeater. A holder of...

  1. 47 CFR 22.1015 - Repeater operation.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Repeater operation. 22.1015 Section 22.1015... Offshore Radiotelephone Service § 22.1015 Repeater operation. Offshore central stations may be used as repeater stations provided that the licensee is able to maintain control of the station, and in...

  2. Topological characteristics of helical repeat proteins

    NARCIS (Netherlands)

    Groves, M R; Barford, D

    1999-01-01

    The recent elucidation of protein structures based upon repeating amino acid motifs, including the armadillo motif, the HEAT motif and tetratricopeptide repeats, reveals that they belong to the class of helical repeat proteins. These proteins share the common property of being assembled from tandem

  3. General benchmarks for quantum repeaters

    CERN Document Server

    Pirandola, Stefano

    2015-01-01

    Using a technique based on quantum teleportation, we simplify the most general adaptive protocols for key distribution, entanglement distillation and quantum communication over a wide class of quantum channels in arbitrary dimension. Thanks to this method, we bound the ultimate rates for secret key generation and quantum communication through single-mode Gaussian channels and several discrete-variable channels. In particular, we derive exact formulas for the two-way assisted capacities of the bosonic quantum-limited amplifier and the dephasing channel in arbitrary dimension, as well as the secret key capacity of the qubit erasure channel. Our results establish the limits of quantum communication with arbitrary systems and set the most general and precise benchmarks for testing quantum repeaters in both discrete- and continuous-variable settings.

  4. Mechanism of Repeat-Associated MicroRNAs in Fragile X Syndrome

    Directory of Open Access Journals (Sweden)

    Karen Kelley

    2012-01-01

    Full Text Available The majority of the human genome is comprised of non-coding DNA, which frequently contains redundant microsatellite-like trinucleotide repeats. Many of these trinucleotide repeats are involved in triplet repeat expansion diseases (TREDs such as fragile X syndrome (FXS. After transcription, the trinucleotide repeats can fold into RNA hairpins and are further processed by Dicer endoribonuclases to form microRNA (miRNA-like molecules that are capable of triggering targeted gene-silencing effects in the TREDs. However, the function of these repeat-associated miRNAs (ramRNAs is unclear. To solve this question, we identified the first native ramRNA in FXS and successfully developed a transgenic zebrafish model for studying its function. Our studies showed that ramRNA-induced DNA methylation of the FMR1 5′-UTR CGG trinucleotide repeat expansion is responsible for both pathological and neurocognitive characteristics linked to the transcriptional FMR1 gene inactivation and the deficiency of its protein product FMRP. FMRP deficiency often causes synapse deformity in the neurons essential for cognition and memory activities, while FMR1 inactivation augments metabotropic glutamate receptor (mGluR-activated long-term depression (LTD, leading to abnormal neuronal responses in FXS. Using this novel animal model, we may further dissect the etiological mechanisms of TREDs, with the hope of providing insights into new means for therapeutic intervention.

  5. Quality control during repeated fryings

    Directory of Open Access Journals (Sweden)

    Cuesta, C.

    1998-08-01

    Full Text Available Most of the debate ¡s about how the slow or frequent turnover of fresh fat affects the deterioration, of fat used in frying. Then, the modification of different oils used in repeated fryings of potatoes without or with turnover of fresh oil, under similar frying conditions, was evaluated by two criteria: by measuring the total polar component isolated by column chromatography and by the evaluation of the specific compounds related to thermoxidative and hydrolytic alteration by High Performance Size Exclusion Chromatography (HPSEC. The results indicate that with frequent turnover of fresh oil, the critical level of 25% of polar material is rarely reached, and there are fewer problems with fat deterioration because the frying tended to increase the level of polar material and thermoxidative compounds (polymers and dimers of triglycerides and oxidized triglycerides in the fryer oil during the first fryings, followed by minor changes and a tendency to reach a near-steady state in successive fryings. However, in repeated frying of potatoes using a null turnover the alteration rate was higher being linear the relationship found between polar material or the different thermoxidative compounds and the number of fryings. On the other hand chemical reactions produced during deep-fat frying can be minimized by using proper oils. In addition the increased level of consumers awareness toward fat composition and its impact on human health could had an impact on the selection of fats for snacks and for industry. In this way monoenic fats are the most adequate from a nutritional point of view and for its oxidative stability during frying.

  6. Nascent transcription affected by RNA polymerase IV in Zea mays.

    Science.gov (United States)

    Erhard, Karl F; Talbot, Joy-El R B; Deans, Natalie C; McClish, Allison E; Hollick, Jay B

    2015-04-01

    All eukaryotes use three DNA-dependent RNA polymerases (RNAPs) to create cellular RNAs from DNA templates. Plants have additional RNAPs related to Pol II, but their evolutionary role(s) remain largely unknown. Zea mays (maize) RNA polymerase D1 (RPD1), the largest subunit of RNA polymerase IV (Pol IV), is required for normal plant development, paramutation, transcriptional repression of certain transposable elements (TEs), and transcriptional regulation of specific alleles. Here, we define the nascent transcriptomes of rpd1 mutant and wild-type (WT) seedlings using global run-on sequencing (GRO-seq) to identify the broader targets of RPD1-based regulation. Comparisons of WT and rpd1 mutant GRO-seq profiles indicate that Pol IV globally affects transcription at both transcriptional start sites and immediately downstream of polyadenylation addition sites. We found no evidence of divergent transcription from gene promoters as seen in mammalian GRO-seq profiles. Statistical comparisons identify genes and TEs whose transcription is affected by RPD1. Most examples of significant increases in genic antisense transcription appear to be initiated by 3'-proximal long terminal repeat retrotransposons. These results indicate that maize Pol IV specifies Pol II-based transcriptional regulation for specific regions of the maize genome including genes having developmental significance. PMID:25653306

  7. ProRepeat: an integrated repository for studying amino acid tandem repeats in proteins

    NARCIS (Netherlands)

    Luo, H.; Lin, K.; David, A.; Nijveen, H.; Leunissen, J.A.M.

    2012-01-01

    ProRepeat (http://prorepeat.bioinformatics.nl/) is an integrated curated repository and analysis platform for in-depth research on the biological characteristics of amino acid tandem repeats. ProRepeat collects repeats from all proteins included in the UniProt knowledgebase, together with 85 complet

  8. (TG/CAn repeats in human gene families: abundance and selective patterns of distribution according to function and gene length

    Directory of Open Access Journals (Sweden)

    Ramachandran Srinivasan

    2005-06-01

    Full Text Available Abstract Background Creation of human gene families was facilitated significantly by gene duplication and diversification. The (TG/CAn repeats exhibit length variability, display genome-wide distribution, and are abundant in the human genome. Accumulation of evidences for their multiple functional roles including regulation of transcription and stimulation of recombination and splicing elect them as functional elements. Here, we report analysis of the distribution of (TG/CAn repeats in human gene families. Results The 1,317 human gene families were classified into six functional classes. Distribution of (TG/CAn repeats were analyzed both from a global perspective and from a stratified perspective based on their biological properties. The number of genes with repeats decreased with increasing repeat length and several genes (53% had repeats of multiple types in various combinations. Repeats were positively associated with the class of Signaling and communication whereas, they were negatively associated with the classes of Immune and related functions and of Information. The proportion of genes with (TG/CAn repeats in each class was proportional to the corresponding average gene length. The repeat distribution pattern in large gene families generally mirrored the global distribution pattern but differed particularly for Collagen gene family, which was rich in repeats. The position and flanking sequences of the repeats of Collagen genes showed high conservation in the Chimpanzee genome. However the majority of these repeats displayed length polymorphism. Conclusion Positive association of repeats with genes of Signaling and communication points to their role in modulation of transcription. Negative association of repeats in genes of Information relates to the smaller gene length, higher expression and fundamental role in cellular physiology. In genes of Immune and related functions negative association of repeats perhaps relates to the smaller gene

  9. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors

    KAUST Repository

    Piatek, Agnieszka

    2014-11-14

    Targeted genomic regulation is a powerful approach to accelerate trait discovery and development in agricultural biotechnology. Bacteria and archaea use clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) regulatory systems for adaptive molecular immunity against foreign nucleic acids introduced by invading phages and conjugative plasmids. The type II CRISPR/Cas system has been adapted for genome editing in many cell types and organisms. A recent study used the catalytically inactive Cas9 (dCas9) protein combined with guide-RNAs (gRNAs) as a DNA-targeting platform to modulate gene expression in bacterial, yeast, and human cells. Here, we modified this DNA-targeting platform for targeted transcriptional regulation in planta by developing chimeric dCas9-based transcriptional activators and repressors. To generate transcriptional activators, we fused the dCas9 C-terminus with the activation domains of EDLL and TAL effectors. To generate a transcriptional repressor, we fused the dCas9 C-terminus with the SRDX repression domain. Our data demonstrate that dCas9 fusion with the EDLL activation domain (dCas9:EDLL) and the TAL activation domain (dCas9:TAD), guided by gRNAs complementary to selected promoter elements, induce strong transcriptional activation on Bs3

  10. Synthetic heterochromatin bypasses RNAi and centromeric repeats to establish functional centromeres.

    Science.gov (United States)

    Kagansky, Alexander; Folco, Hernan Diego; Almeida, Ricardo; Pidoux, Alison L; Boukaba, Abdelhalim; Simmer, Femke; Urano, Takeshi; Hamilton, Georgina L; Allshire, Robin C

    2009-06-26

    In the central domain of fission yeast centromeres, the kinetochore is assembled on CENP-A(Cnp1) nucleosomes. Normally, small interfering RNAs generated from flanking outer repeat transcripts direct histone H3 lysine 9 methyltransferase Clr4 to homologous loci to form heterochromatin. Outer repeats, RNA interference (RNAi), and centromeric heterochromatin are required to establish CENP-A(Cnp1) chromatin. We demonstrated that tethering Clr4 via DNA-binding sites at euchromatic loci induces heterochromatin assembly, with or without active RNAi. This synthetic heterochromatin completely substitutes for outer repeats on plasmid-based minichromosomes, promoting de novo CENP-A(Cnp1) and kinetochore assembly, to allow their mitotic segregation, even with RNAi inactive. Thus, the role of outer repeats in centromere establishment is simply the provision of RNAi substrates to direct heterochromatin formation; H3K9 methylation-dependent heterochromatin is alone sufficient to form functional centromeres. PMID:19556509

  11. EGFR CA repeat polymorphism predict clinical outcome in EGFR mutation positive NSCLC patients treated with erlotinib

    DEFF Research Database (Denmark)

    Winther Larsen, Anne; Nissen, Peter Henrik; Meldgaard, Peter;

    2014-01-01

    OBJECTIVES: Somatic mutations in the epidermal growth factor receptor (EGFR) are predictors of efficacy for treatment with the EGFR tyrosine kinase inhibitor erlotinib in non-small cell lung cancer (NSCLC). A CA repeat polymorphism in intron 1 of the EGFR gene influences the transcription...... of the EGFR gene. This study evaluates the association between the CA repeat polymorphism and outcome in NSCLC patients treated with erlotinib.MATERIALS AND METHODS: Number of CA repeats in the EGFR gene was evaluated with PCR-fragment length analysis by capillary electrophoresis in 432 advanced NSCLC...... patients treated with erlotinib irrespective of EGFR mutation status. Patients were dichotomized into harboring short allele (CA≤16 in any allele) or long alleles (CA>16 in both alleles). Number of repeats was correlated with clinical characteristic and outcome. A subgroup analysis was performed based...

  12. The crystal structure of a partial mouse Notch-1 ankyrin domain: Repeats 4 through 7 preserve an ankyrin fold

    Energy Technology Data Exchange (ETDEWEB)

    Lubman, Olga Y.; Kopan, Raphael; Waksman, Gabriel; Korolev, Sergey (Birbeck); (St. Louis-MED); (WU-MED)

    2010-07-20

    Folding and stability of proteins containing ankyrin repeats (ARs) is of great interest because they mediate numerous protein-protein interactions involved in a wide range of regulatory cellular processes. Notch, an ankyrin domain containing protein, signals by converting a transcriptional repression complex into an activation complex. The Notch ANK domain is essential for Notch function and contains seven ARs. Here, we present the 2.2 {angstrom} crystal structure of ARs 4-7 from mouse Notch 1 (m1ANK). These C-terminal repeats were resistant to degradation during crystallization, and their secondary and tertiary structures are maintained in the absence of repeats 1-3. The crystallized fragment adopts a typical ankyrin fold including the poorly conserved seventh AR, as seen in the Drosophila Notch ANK domain (dANK). The structural preservation and stability of the C-terminal repeats shed a new light onto the mechanism of hetero-oligomeric assembly during Notch-mediated transcriptional activation.

  13. Transcriptional Slippage and RNA Editing Increase the Diversity of Transcripts in Chloroplasts: Insight from Deep Sequencing of Vigna radiata Genome and Transcriptome.

    Directory of Open Access Journals (Sweden)

    Ching-Ping Lin

    Full Text Available We performed deep sequencing of the nuclear and organellar genomes of three mungbean genotypes: Vigna radiata ssp. sublobata TC1966, V. radiata var. radiata NM92 and the recombinant inbred line RIL59 derived from a cross between TC1966 and NM92. Moreover, we performed deep sequencing of the RIL59 transcriptome to investigate transcript variability. The mungbean chloroplast genome has a quadripartite structure including a pair of inverted repeats separated by two single copy regions. A total of 213 simple sequence repeats were identified in the chloroplast genomes of NM92 and RIL59; 78 single nucleotide variants and nine indels were discovered in comparing the chloroplast genomes of TC1966 and NM92. Analysis of the mungbean chloroplast transcriptome revealed mRNAs that were affected by transcriptional slippage and RNA editing. Transcriptional slippage frequency was positively correlated with the length of simple sequence repeats of the mungbean chloroplast genome (R2=0.9911. In total, 41 C-to-U editing sites were found in 23 chloroplast genes and in one intergenic spacer. No editing site that swapped U to C was found. A combination of bioinformatics and experimental methods revealed that the plastid-encoded RNA polymerase-transcribed genes psbF and ndhA are affected by transcriptional slippage in mungbean and in main lineages of land plants, including three dicots (Glycine max, Brassica rapa, and Nicotiana tabacum, two monocots (Oryza sativa and Zea mays, two gymnosperms (Pinus taeda and Ginkgo biloba and one moss (Physcomitrella patens. Transcript analysis of the rps2 gene showed that transcriptional slippage could affect transcripts at single sequence repeat regions with poly-A runs. It showed that transcriptional slippage together with incomplete RNA editing may cause sequence diversity of transcripts in chloroplasts of land plants.

  14. Repeated Sprints: An Independent Not Dependent Variable.

    Science.gov (United States)

    Taylor, Jonathan M; Macpherson, Tom W; Spears, Iain R; Weston, Matthew

    2016-07-01

    The ability to repeatedly perform sprints has traditionally been viewed as a key performance measure in team sports, and the relationship between repeated-sprint ability (RSA) and performance has been explored extensively. However, when reviewing the repeated-sprint profile of team-sports match play it appears that the occurrence of repeated-sprint bouts is sparse, indicating that RSA is not as important to performance as commonly believed. Repeated sprints are, however, a potent and time-efficient training strategy, effective in developing acceleration, speed, explosive leg power, aerobic power, and high-intensity-running performance--all of which are crucial to team-sport performance. As such, we propose that repeated-sprint exercise in team sports should be viewed as an independent variable (eg, a means of developing fitness) as opposed to a dependent variable (eg, a means of assessing fitness/performance). PMID:27197118

  15. Strengthening concept learning by repeated testing.

    Science.gov (United States)

    Wiklund-Hörnqvist, Carola; Jonsson, Bert; Nyberg, Lars

    2014-02-01

    The aim of this study was to examine whether repeated testing with feedback benefits learning compared to rereading of introductory psychology key-concepts in an educational context. The testing effect was examined immediately after practice, after 18 days, and at a five-week delay in a sample of undergraduate students (n = 83). The results revealed that repeated testing with feedback significantly enhanced learning compared to rereading at all delays, demonstrating that repeated retrieval enhances retention compared to repeated encoding in the short- and the long-term. In addition, the effect of repeated testing was beneficial for students irrespectively of working memory capacity. It is argued that teaching methods involving repeated retrieval are important to consider by the educational system.

  16. Short Tandem Repeat DNA Internet Database

    Science.gov (United States)

    SRD 130 Short Tandem Repeat DNA Internet Database (Web, free access)   Short Tandem Repeat DNA Internet Database is intended to benefit research and application of short tandem repeat DNA markers for human identity testing. Facts and sequence information on each STR system, population data, commonly used multiplex STR systems, PCR primers and conditions, and a review of various technologies for analysis of STR alleles have been included.

  17. Elucidation of the RNA Recognition Code for Pentatricopeptide Repeat Proteins Involved in Organelle RNA Editing in Plants

    OpenAIRE

    Yagi, Yusuke; Hayashi, Shimpei; Kobayashi, Keiko; Hirayama, Takashi; Nakamura, Takahiro

    2013-01-01

    Pentatricopeptide repeat (PPR) proteins are eukaryotic RNA-binding proteins that are commonly found in plants. Organelle transcript processing and stability are mediated by PPR proteins in a gene-specific manner through recognition by tandem arrays of degenerate 35-amino-acid repeating units, the PPR motifs. However, the sequence-specific RNA recognition mechanism of the PPR protein remains largely unknown. Here, we show the principle underlying RNA recognition for PPR proteins involved in RN...

  18. The transcription factor encyclopedia.

    Science.gov (United States)

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I; Bolotin, Eugene; Ticoll, Amy; Cheung, Warren A; Zhang, Xiao Yu Cindy; Dickman, Christopher T D; Fulton, Debra L; Lim, Jonathan S; Schnabl, Jake M; Ramos, Oscar H P; Vasseur-Cognet, Mireille; de Leeuw, Charles N; Simpson, Elizabeth M; Ryffel, Gerhart U; Lam, Eric W-F; Kist, Ralf; Wilson, Miranda S C; Marco-Ferreres, Raquel; Brosens, Jan J; Beccari, Leonardo L; Bovolenta, Paola; Benayoun, Bérénice A; Monteiro, Lara J; Schwenen, Helma D C; Grontved, Lars; Wederell, Elizabeth; Mandrup, Susanne; Veitia, Reiner A; Chakravarthy, Harini; Hoodless, Pamela A; Mancarelli, M Michela; Torbett, Bruce E; Banham, Alison H; Reddy, Sekhar P; Cullum, Rebecca L; Liedtke, Michaela; Tschan, Mario P; Vaz, Michelle; Rizzino, Angie; Zannini, Mariastella; Frietze, Seth; Farnham, Peggy J; Eijkelenboom, Astrid; Brown, Philip J; Laperrière, David; Leprince, Dominique; de Cristofaro, Tiziana; Prince, Kelly L; Putker, Marrit; del Peso, Luis; Camenisch, Gieri; Wenger, Roland H; Mikula, Michal; Rozendaal, Marieke; Mader, Sylvie; Ostrowski, Jerzy; Rhodes, Simon J; Van Rechem, Capucine; Boulay, Gaylor; Olechnowicz, Sam W Z; Breslin, Mary B; Lan, Michael S; Nanan, Kyster K; Wegner, Michael; Hou, Juan; Mullen, Rachel D; Colvin, Stephanie C; Noy, Peter John; Webb, Carol F; Witek, Matthew E; Ferrell, Scott; Daniel, Juliet M; Park, Jason; Waldman, Scott A; Peet, Daniel J; Taggart, Michael; Jayaraman, Padma-Sheela; Karrich, Julien J; Blom, Bianca; Vesuna, Farhad; O'Geen, Henriette; Sun, Yunfu; Gronostajski, Richard M; Woodcroft, Mark W; Hough, Margaret R; Chen, Edwin; Europe-Finner, G Nicholas; Karolczak-Bayatti, Magdalena; Bailey, Jarrod; Hankinson, Oliver; Raman, Venu; LeBrun, David P; Biswal, Shyam; Harvey, Christopher J; DeBruyne, Jason P; Hogenesch, John B; Hevner, Robert F; Héligon, Christophe; Luo, Xin M; Blank, Marissa Cathleen; Millen, Kathleen Joyce; Sharlin, David S; Forrest, Douglas; Dahlman-Wright, Karin; Zhao, Chunyan; Mishima, Yuriko; Sinha, Satrajit; Chakrabarti, Rumela; Portales-Casamar, Elodie; Sladek, Frances M; Bradley, Philip H; Wasserman, Wyeth W

    2012-01-01

    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe.

  19. DNA Topoisomerases in Transcription

    DEFF Research Database (Denmark)

    Rødgaard, Morten Terpager

    2015-01-01

    This Ph.D. thesis summarizes the main results of my studies on the interplay between DNA topoisomerases and transcription. The work was performed from 2011 to 2015 at Aarhus University in the Laboratory of Genome Research, and was supervised by associate professor Anni H. Andersen. Most of the ex......This Ph.D. thesis summarizes the main results of my studies on the interplay between DNA topoisomerases and transcription. The work was performed from 2011 to 2015 at Aarhus University in the Laboratory of Genome Research, and was supervised by associate professor Anni H. Andersen. Most...

  20. The Rhodomonas salina mitochondrial genome: bacteria-like operons, compact gene arrangement and complex repeat region.

    Science.gov (United States)

    Hauth, Amy M; Maier, Uwe G; Lang, B Franz; Burger, Gertraud

    2005-01-01

    To gain insight into the mitochondrial genome structure and gene content of a putatively ancestral group of eukaryotes, the cryptophytes, we sequenced the complete mitochondrial DNA of Rhodomonas salina. The 48 063 bp circular-mapping molecule codes for 2 rRNAs, 27 tRNAs and 40 proteins including 23 components of oxidative phosphorylation, 15 ribosomal proteins and two subunits of tat translocase. One potential protein (ORF161) is without assigned function. Only two introns occur in the genome; both are present within cox1 belong to group II and contain RT open reading frames. Primitive genome features include bacteria-like rRNAs and tRNAs, ribosomal protein genes organized in large clusters resembling bacterial operons and the presence of the otherwise rare genes such as rps1 and tatA. The highly compact gene organization contrasts with the presence of a 4.7 kb long, repeat-containing intergenic region. Repeat motifs approximately 40-700 bp long occur up to 31 times, forming a complex repeat structure. Tandem repeats are the major arrangement but the region also includes a large, approximately 3 kb, inverted repeat and several potentially stable approximately 40-80 bp long hairpin structures. We provide evidence that the large repeat region is involved in replication and transcription initiation, predict a promoter motif that occurs in three locations and discuss two likely scenarios of how this highly structured repeat region might have evolved.

  1. DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats.

    Science.gov (United States)

    de Lange, Orlando; Wolf, Christina; Thiel, Philipp; Krüger, Jens; Kleusch, Christian; Kohlbacher, Oliver; Lahaye, Thomas

    2015-11-16

    Transcription Activator-Like Effectors (TALEs) of Xanthomonas bacteria are programmable DNA binding proteins with unprecedented target specificity. Comparative studies into TALE repeat structure and function are hindered by the limited sequence variation among TALE repeats. More sequence-diverse TALE-like proteins are known from Ralstonia solanacearum (RipTALs) and Burkholderia rhizoxinica (Bats), but RipTAL and Bat repeats are conserved with those of TALEs around the DNA-binding residue. We study two novel marine-organism TALE-like proteins (MOrTL1 and MOrTL2), the first to date of non-terrestrial origin. We have assessed their DNA-binding properties and modelled repeat structures. We found that repeats from these proteins mediate sequence specific DNA binding conforming to the TALE code, despite low sequence similarity to TALE repeats, and with novel residues around the BSR. However, MOrTL1 repeats show greater sequence discriminating power than MOrTL2 repeats. Sequence alignments show that there are only three residues conserved between repeats of all TALE-like proteins including the two new additions. This conserved motif could prove useful as an identifier for future TALE-likes. Additionally, comparing MOrTL repeats with those of other TALE-likes suggests a common evolutionary origin for the TALEs, RipTALs and Bats. PMID:26481363

  2. DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats.

    Science.gov (United States)

    de Lange, Orlando; Wolf, Christina; Thiel, Philipp; Krüger, Jens; Kleusch, Christian; Kohlbacher, Oliver; Lahaye, Thomas

    2015-11-16

    Transcription Activator-Like Effectors (TALEs) of Xanthomonas bacteria are programmable DNA binding proteins with unprecedented target specificity. Comparative studies into TALE repeat structure and function are hindered by the limited sequence variation among TALE repeats. More sequence-diverse TALE-like proteins are known from Ralstonia solanacearum (RipTALs) and Burkholderia rhizoxinica (Bats), but RipTAL and Bat repeats are conserved with those of TALEs around the DNA-binding residue. We study two novel marine-organism TALE-like proteins (MOrTL1 and MOrTL2), the first to date of non-terrestrial origin. We have assessed their DNA-binding properties and modelled repeat structures. We found that repeats from these proteins mediate sequence specific DNA binding conforming to the TALE code, despite low sequence similarity to TALE repeats, and with novel residues around the BSR. However, MOrTL1 repeats show greater sequence discriminating power than MOrTL2 repeats. Sequence alignments show that there are only three residues conserved between repeats of all TALE-like proteins including the two new additions. This conserved motif could prove useful as an identifier for future TALE-likes. Additionally, comparing MOrTL repeats with those of other TALE-likes suggests a common evolutionary origin for the TALEs, RipTALs and Bats.

  3. CTCF regulates the local epigenetic state of ribosomal DNA repeats

    Directory of Open Access Journals (Sweden)

    van de Nobelen Suzanne

    2010-11-01

    Full Text Available Abstract Background CCCTC binding factor (CTCF is a highly conserved zinc finger protein, which is involved in chromatin organization, local histone modifications, and RNA polymerase II-mediated gene transcription. CTCF may act by binding tightly to DNA and recruiting other proteins to mediate its various functions in the nucleus. To further explore the role of this essential factor, we used a mass spectrometry-based approach to screen for novel CTCF-interacting partners. Results Using biotinylated CTCF as bait, we identified upstream binding factor (UBF and multiple other components of the RNA polymerase I complex as potential CTCF-interacting partners. Interestingly, CTCFL, the testis-specific paralog of CTCF, also binds UBF. The interaction between CTCF(L and UBF is direct, and requires the zinc finger domain of CTCF(L and the high mobility group (HMG-box 1 and dimerization domain of UBF. Because UBF is involved in RNA polymerase I-mediated ribosomal (rRNA transcription, we analyzed CTCF binding to the rDNA repeat. We found that CTCF bound to a site upstream of the rDNA spacer promoter and preferred non-methylated over methylated rDNA. DNA binding by CTCF in turn stimulated binding of UBF. Absence of CTCF in cultured cells resulted in decreased association of UBF with rDNA and in nucleolar fusion. Furthermore, lack of CTCF led to reduced binding of RNA polymerase I and variant histone H2A.Z near the rDNA spacer promoter, a loss of specific histone modifications, and diminished transcription of non-coding RNA from the spacer promoter. Conclusions UBF is the first common interaction partner of CTCF and CTCFL, suggesting a role for these proteins in chromatin organization of the rDNA repeats. We propose that CTCF affects RNA polymerase I-mediated events globally by controlling nucleolar number, and locally by regulating chromatin at the rDNA spacer promoter, similar to RNA polymerase II promoters. CTCF may load UBF onto rDNA, thereby forming

  4. Bayesian Music Transcription

    NARCIS (Netherlands)

    Cemgil, A.T.

    2004-01-01

    Music transcription refers to extraction of a human readable and interpretable description from a recording of a music performance. The final goal is to implement a program that can automatically infer a musical notation that lists the pitch levels of notes and corresponding score positions in any a

  5. Automatic Music Transcription

    Science.gov (United States)

    Klapuri, Anssi; Virtanen, Tuomas

    Written musical notation describes music in a symbolic form that is suitable for performing a piece using the available musical instruments. Traditionally, musical notation indicates the pitch, target instrument, timing, and duration of each sound to be played. The aim of music transcription either by humans or by a machine is to infer these musical parameters, given only the acoustic recording of a performance.

  6. Transcription Dynamics in Living Cells.

    Science.gov (United States)

    Lenstra, Tineke L; Rodriguez, Joseph; Chen, Huimin; Larson, Daniel R

    2016-07-01

    The transcription cycle can be roughly divided into three stages: initiation, elongation, and termination. Understanding the molecular events that regulate all these stages requires a dynamic view of the underlying processes. The development of techniques to visualize and quantify transcription in single living cells has been essential in revealing the transcription kinetics. They have revealed that (a) transcription is heterogeneous between cells and (b) transcription can be discontinuous within a cell. In this review, we discuss the progress in our quantitative understanding of transcription dynamics in living cells, focusing on all parts of the transcription cycle. We present the techniques allowing for single-cell transcription measurements, review evidence from different organisms, and discuss how these experiments have broadened our mechanistic understanding of transcription regulation.

  7. Repeatability & Workability Evaluation of SIGMOD 2009

    KAUST Repository

    Manegold, Stefan

    2010-12-15

    SIGMOD 2008 was the first database conference that offered to test submitters\\' programs against their data to verify the repeatability of the experiments published [1]. Given the positive feedback concerning the SIGMOD 2008 repeatability initiative, SIGMOD 2009 modified and expanded the initiative with a workability assessment.

  8. UK 2009-2010 repeat station report

    Directory of Open Access Journals (Sweden)

    Thomas J.G. Shanahan

    2013-03-01

    Full Text Available The British Geological Survey is responsible for conducting the UK geomagnetic repeat station programme. Measurements made at the UK repeat station sites are used in conjunction with the three UK magnetic observatories: Hartland, Eskdalemuir and Lerwick, to produce a regional model of the local field each year. The UK network of repeat stations comprises 41 stations which are occupied at approximately 3-4 year intervals. Practices for conducting repeat station measurements continue to evolve as advances are made in survey instrumentation and as the usage of the data continues to change. Here, a summary of the 2009 and 2010 UK repeat station surveys is presented, highlighting the measurement process and techniques, density of network, reduction process and recent results.

  9. ICAT Inhibits beta-Catenin Binding to Tcf/Lef-Family Transcription Factors and in the General Coactivator p300 Using Independent Structural Modules

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, D. L.

    2002-01-01

    In the canonical Wnt signaling pathway, {beta}-catenin activates target genes through its interactions with Tcf/Lef-family transcription factors and additional transcriptional coactivators. The crystal structure of ICAT, an inhibitor of {beta}-catenin-mediated transcription, bound to the armadillo repeat domain of {beta}-catenin, has been determined. ICAT contains an N-terminal helilical domain that binds to repeats 11 and 12 of {beta}-catenin, and an extended C-terminal region that binds to repeats 5-10 in a manner similar that of Tcfs and other {beta}-catenin ligands. Full-length ICAT dissociates complexes of {beta}-catenin, Lef-1, and the transcriptional coactivator p300, whereas the helical domain alone selectively blocks binding to p300. The C-terminal armadillo repeats of {beta}-catenin may be an attractive target for compounds designed to disrupt aberrant {beta}-catenin-mediated transcription associated with various cancers.

  10. Repeat prescribing: a role for community pharmacists in controlling and monitoring repeat prescriptions.

    OpenAIRE

    Bond, C.; Matheson, C.; Williams, S; Williams, P.; Donnan, P

    2000-01-01

    BACKGROUND: Traditional systems of managing repeat prescribing have been criticised for their lack of clinical and administrative controls. AIM: To compare a community pharmacist-managed repeat prescribing system with established methods of managing repeat prescribing. METHOD: A randomised controlled intervention study (19 general medical practices, 3074 patients, 62 community pharmacists). Patients on repeat medication were given sufficient three-monthly scripts, endorsed for monthly dispens...

  11. TBP Domain Symmetry in Basal and Activated Archaeal Transcription

    OpenAIRE

    Ouhammouch, Mohamed; Hausner, Winfried; Geiduschek, E Peter

    2008-01-01

    The TATA-box binding protein (TBP) is the platform for assembly of archaeal and eukaryotic transcription preinitiation complexes. Ancestral gene duplication and fusion events have produced the saddle-shaped TBP molecule, with its two direct-repeat subdomains and pseudo-two-fold symmetry. Collectively, eukaryotic TBPs have diverged from their present-day archaeal counterparts, which remain highly symmetrical. The similarity of the N- and C-halves of archaeal TBPs is especially pronounced in th...

  12. Automatic transcription of polyphonic music using a note masking technique

    OpenAIRE

    Kelly, Ronan

    2010-01-01

    peer-reviewed Music transcription is a complex cognitive task that requires a trained musician to listen to a piece of music, write down what notes were played and the timing of the notes. The task is further complicated if the music is polyphonic, where several notes are played simultaneously, requiring the musician to listen repeatedly to the piece of music so as to work out the notes that were played and their timing. This thesis describes a polyphonic note detection syst...

  13. Transcription, Processing, and Function of CRISPR Cassettes in Escherichia coli

    OpenAIRE

    Pougach, Ksenia; Semenova, Ekaterina; Bogdanova, Ekaterina; Datsenko, Kirill A.; Djordjevic, Marko; Wanner, Barry L.; Severinov, Konstantin

    2010-01-01

    CRISPR/Cas, bacterial and archaeal systems of interference with foreign genetic elements such as viruses or plasmids, consist of DNA loci called CRISPR cassettes (a set of variable spacers regularly separated by palindromic repeats) and associated cas genes. When a CRISPR spacer sequence exactly matches a sequence in a viral genome, the cell can become resistant to the virus. The CRISPR/Cas systems function through small RNAs originating from longer CRISPR cassette transcripts. While laborato...

  14. Global transcription of CRISPR loci in the human oral cavity

    OpenAIRE

    Lum, Andrew G; Ly, Melissa; Santiago-Rodriguez, Tasha M.; Naidu, Mayuri; Tobias K. Boehm; Pride, David T.

    2015-01-01

    Background Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) are active in acquired resistance against bacteriophage and plasmids in a number of environments. In the human mouth, CRISPR loci evolve to counteract oral phage, but the expression of these CRISPR loci has not previously been investigated. We sequenced cDNA from CRISPR loci found in numerous different oral bacteria and compared with oral phage communities to determine whether the transcription of CRISPR loci is sp...

  15. SNFing HIV transcription

    Directory of Open Access Journals (Sweden)

    Bukrinsky Michael

    2006-08-01

    Full Text Available Abstract The SWI/SNF chromatin remodeling complex is an essential regulator of transcription of cellular genes. HIV-1 infection induces exit of a core component of SWI/SNF, Ini1, into the cytoplasm and its association with the viral pre-integration complex. Several recent papers published in EMBO Journal, Journal of Biological Chemistry, and Retrovirology provide new information regarding possible functions of Ini1 and SWI/SNF in HIV life cycle. It appears that Ini1 has an inhibitory effect on pre-integration steps of HIV replication, but also contributes to stimulation of Tat-mediated transcription. This stimulation involves displacement of the nucleosome positioned at the HIV promoter.

  16. Identification and characterization of the RNA binding surface of the pentatricopeptide repeat protein

    OpenAIRE

    Kobayashi, Keiko; Kawabata, Masuyo; Hisano, Keizo; Kazama, Tomohiko; Matsuoka, Ken; Sugita, Mamoru; Nakamura, Takahiro

    2011-01-01

    The expressions of chloroplast and mitochondria genes are tightly controlled by numerous nuclear-encoded proteins, mainly at the post-transcriptional level. Recent analyses have identified a large, plant-specific family of pentatricopeptide repeat (PPR) motif-containing proteins that are exclusively involved in RNA metabolism of organelle genes via sequence-specific RNA binding. A tandem array of PPR motifs within the protein is believed to facilitate the RNA interaction, although little is k...

  17. Human mitochondrial mTERF wraps around DNA through a left-handed superhelical tandem repeat.

    Science.gov (United States)

    Jiménez-Menéndez, Nereida; Fernández-Millán, Pablo; Rubio-Cosials, Anna; Arnan, Carme; Montoya, Julio; Jacobs, Howard T; Bernadó, Pau; Coll, Miquel; Usón, Isabel; Solà, Maria

    2010-07-01

    The regulation of mitochondrial DNA (mtDNA) processes is slowly being characterized at a structural level. We present here crystal structures of human mitochondrial regulator mTERF, a transcription termination factor also implicated in replication pausing, in complex with double-stranded DNA oligonucleotides containing the tRNA(Leu)(UUR) gene sequence. mTERF comprises nine left-handed helical tandem repeats that form a left-handed superhelix, the Zurdo domain.

  18. Finding and Characterizing Repeats in Plant Genomes.

    Science.gov (United States)

    Nicolas, Jacques; Peterlongo, Pierre; Tempel, Sébastien

    2016-01-01

    Plant genomes contain a particularly high proportion of repeated structures of various types. This chapter proposes a guided tour of available software that can help biologists to look for these repeats and check some hypothetical models intended to characterize their structures. Since transposable elements are a major source of repeats in plants, many methods have been used or developed for this large class of sequences. They are representative of the range of tools available for other classes of repeats and we have provided a whole section on this topic as well as a selection of the main existing software. In order to better understand how they work and how repeats may be efficiently found in genomes, it is necessary to look at the technical issues involved in the large-scale search of these structures. Indeed, it may be hard to keep up with the profusion of proposals in this dynamic field and the rest of the chapter is devoted to the foundations of the search for repeats and more complex patterns. The second section introduces the key concepts that are useful for understanding the current state of the art in playing with words, applied to genomic sequences. This can be seen as the first stage of a very general approach called linguistic analysis that is interested in the analysis of natural or artificial texts. Words, the lexical level, correspond to simple repeated entities in texts or strings. In fact, biologists need to represent more complex entities where a repeat family is built on more abstract structures, including direct or inverted small repeats, motifs, composition constraints as well as ordering and distance constraints between these elementary blocks. In terms of linguistics, this corresponds to the syntactic level of a language. The last section introduces concepts and practical tools that can be used to reach this syntactic level in biological sequence analysis. PMID:26519414

  19. Multiplexed Memory-Insensitive Quantum Repeaters

    CERN Document Server

    Collins, O A; Kennedy, T A B; Kuzmich, A

    2006-01-01

    Long-distance quantum communication via distant pairs of entangled quantum bits (qubits) is the first step towards technologies such as perfectly secure message transmission and distributed quantum computing. To date, the most promising proposals require quantum repeaters to mitigate the exponential decrease in communication rate due to optical fiber losses. However, quantum repeaters are exquisitely sensitive to the lifetimes of the memory elements they use. We propose a new approach based on a real-time hardware reconfiguration of multiplexed quantum nodes. This scheme should enable the construction of multiplexed quantum repeater networks that are largely insensitive to the coherence times of the quantum memory elements.

  20. The child accident repeater: a review.

    Science.gov (United States)

    Jones, J G

    1980-04-01

    The child accident repeater is defined as one who has at least three accidents that come to medical attention within a year. The accident situation has features in common with those of the child who has a single accident through simple "bad luck", but other factors predispose him to repeated injury. In the child who has a susceptible personality, a tendency for accident repetition may be due to a breakdown in adjustment to a stressful environment. Prevention of repeat accidents should involve the usual measures considered appropriate for all children as well as an attempt to provide treatment of significant maladjustment and modification of a stressful environment.

  1. Nuclear Receptor HNF4α Binding Sequences are Widespread in Alu Repeats

    Directory of Open Access Journals (Sweden)

    Bolotin Eugene

    2011-11-01

    Full Text Available Abstract Background Alu repeats, which account for ~10% of the human genome, were originally considered to be junk DNA. Recent studies, however, suggest that they may contain transcription factor binding sites and hence possibly play a role in regulating gene expression. Results Here, we show that binding sites for a highly conserved member of the nuclear receptor superfamily of ligand-dependent transcription factors, hepatocyte nuclear factor 4alpha (HNF4α, NR2A1, are highly prevalent in Alu repeats. We employ high throughput protein binding microarrays (PBMs to show that HNF4α binds > 66 unique sequences in Alu repeats that are present in ~1.2 million locations in the human genome. We use chromatin immunoprecipitation (ChIP to demonstrate that HNF4α binds Alu elements in the promoters of target genes (ABCC3, APOA4, APOM, ATPIF1, CANX, FEMT1A, GSTM4, IL32, IP6K2, PRLR, PRODH2, SOCS2, TTR and luciferase assays to show that at least some of those Alu elements can modulate HNF4α-mediated transactivation in vivo (APOM, PRODH2, TTR, APOA4. HNF4α-Alu elements are enriched in promoters of genes involved in RNA processing and a sizeable fraction are in regions of accessible chromatin. Comparative genomics analysis suggests that there may have been a gain in HNF4α binding sites in Alu elements during evolution and that non Alu repeats, such as Tiggers, also contain HNF4α sites. Conclusions Our findings suggest that HNF4α, in addition to regulating gene expression via high affinity binding sites, may also modulate transcription via low affinity sites in Alu repeats.

  2. The post-transcriptional operon

    DEFF Research Database (Denmark)

    Tenenbaum, Scott A.; Christiansen, Jan; Nielsen, Henrik

    2011-01-01

    A post-transcriptional operon is a set of monocistronic mRNAs encoding functionally related proteins that are co-regulated by a group of RNA-binding proteins and/or small non-coding RNAs so that protein expression is coordinated at the post-transcriptional level. The post-transcriptional operon m...

  3. High SINE RNA Expression Correlates with Post-Transcriptional Downregulation of BRCA1

    Directory of Open Access Journals (Sweden)

    Giovanni Bosco

    2013-04-01

    Full Text Available Short Interspersed Nuclear Elements (SINEs are non-autonomous retrotransposons that comprise a large fraction of the human genome. SINEs are demethylated in human disease, but whether SINEs become transcriptionally induced and how the resulting transcripts may affect the expression of protein coding genes is unknown. Here, we show that downregulation of the mRNA of the tumor suppressor gene BRCA1 is associated with increased transcription of SINEs and production of sense and antisense SINE small RNAs. We find that BRCA1 mRNA is post-transcriptionally down-regulated in a Dicer and Drosha dependent manner and that expression of a SINE inverted repeat with sequence identity to a BRCA1 intron is sufficient for downregulation of BRCA1 mRNA. These observations suggest that transcriptional activation of SINEs could contribute to a novel mechanism of RNA mediated post-transcriptional silencing of human genes.

  4. The Moral Maturity of Repeater Delinquents.

    Science.gov (United States)

    Petronio, Richard J.

    1980-01-01

    Differences in moral development (as conceived by Kohlberg) were examined in a sample of delinquent teenagers. The repeater group was not found, as had been hypothesized, to be lower on moral maturity than those who engaged in less delinquency. (GC)

  5. SIRT1 regulates HIV transcription via Tat deacetylation.

    Directory of Open Access Journals (Sweden)

    Sara Pagans

    2005-02-01

    Full Text Available The human immunodeficiency virus (HIV Tat protein is acetylated by the transcriptional coactivator p300, a necessary step in Tat-mediated transactivation. We report here that Tat is deacetylated by human sirtuin 1 (SIRT1, a nicotinamide adenine dinucleotide-dependent class III protein deacetylase in vitro and in vivo. Tat and SIRT1 coimmunoprecipitate and synergistically activate the HIV promoter. Conversely, knockdown of SIRT1 via small interfering RNAs or treatment with a novel small molecule inhibitor of the SIRT1 deacetylase activity inhibit Tat-mediated transactivation of the HIV long terminal repeat. Tat transactivation is defective in SIRT1-null mouse embryonic fibroblasts and can be rescued by expression of SIRT1. These results support a model in which cycles of Tat acetylation and deacetylation regulate HIV transcription. SIRT1 recycles Tat to its unacetylated form and acts as a transcriptional coactivator during Tat transactivation.

  6. Editing the epigenome: technologies for programmable transcription and epigenetic modulation.

    Science.gov (United States)

    Thakore, Pratiksha I; Black, Joshua B; Hilton, Isaac B; Gersbach, Charles A

    2016-02-01

    Gene regulation is a complex and tightly controlled process that defines cell identity, health and disease, and response to pharmacologic and environmental signals. Recently developed DNA-targeting platforms, including zinc finger proteins, transcription activator-like effectors (TALEs) and the clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 system, have enabled the recruitment of transcriptional modulators and epigenome-modifying factors to any genomic site, leading to new insights into the function of epigenetic marks in gene expression. Additionally, custom transcriptional and epigenetic regulation is facilitating refined control over cell function and decision making. The unique properties of the CRISPR-Cas9 system have created new opportunities for high-throughput genetic screens and multiplexing targets to manipulate complex gene expression patterns. This Review summarizes recent technological developments in this area and their application to biomedical challenges. We also discuss remaining limitations and necessary future directions for this field. PMID:26820547

  7. Editing the epigenome: technologies for programmable transcription and epigenetic modulation.

    Science.gov (United States)

    Thakore, Pratiksha I; Black, Joshua B; Hilton, Isaac B; Gersbach, Charles A

    2016-02-01

    Gene regulation is a complex and tightly controlled process that defines cell identity, health and disease, and response to pharmacologic and environmental signals. Recently developed DNA-targeting platforms, including zinc finger proteins, transcription activator-like effectors (TALEs) and the clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 system, have enabled the recruitment of transcriptional modulators and epigenome-modifying factors to any genomic site, leading to new insights into the function of epigenetic marks in gene expression. Additionally, custom transcriptional and epigenetic regulation is facilitating refined control over cell function and decision making. The unique properties of the CRISPR-Cas9 system have created new opportunities for high-throughput genetic screens and multiplexing targets to manipulate complex gene expression patterns. This Review summarizes recent technological developments in this area and their application to biomedical challenges. We also discuss remaining limitations and necessary future directions for this field.

  8. FACT facilitates chromatin transcription by RNA polymerases I and III

    DEFF Research Database (Denmark)

    Birch, Joanna L; Tan, Bertrand C-M; Panov, Kostya I;

    2009-01-01

    Efficient transcription elongation from a chromatin template requires RNA polymerases (Pols) to negotiate nucleosomes. Our biochemical analyses demonstrate that RNA Pol I can transcribe through nucleosome templates and that this requires structural rearrangement of the nucleosomal core particle....... The subunits of the histone chaperone FACT (facilitates chromatin transcription), SSRP1 and Spt16, co-purify and co-immunoprecipitate with mammalian Pol I complexes. In cells, SSRP1 is detectable at the rRNA gene repeats. Crucially, siRNA-mediated repression of FACT subunit expression in cells results...... in a significant reduction in 47S pre-rRNA levels, whereas synthesis of the first 40 nt of the rRNA is not affected, implying that FACT is important for Pol I transcription elongation through chromatin. FACT also associates with RNA Pol III complexes, is present at the chromatin of genes transcribed by Pol III...

  9. Star repeaters for fiber optic links.

    Science.gov (United States)

    McMahon, D H; Gravel, R L

    1977-02-01

    A star repeater combines the functions of a passive star coupler and a signal regenerating amplifier. By more effectively utilizing the light power radiated by a light emitting diode, the star repeater can, when used with small diameter channels, couple as much power to all receivers of a multiterminal link as would be coupled to the single receiver of a simple point-to-point link.

  10. Quantum Key Distribution over Probabilistic Quantum Repeaters

    CERN Document Server

    Amirloo, Jeyran; Majedi, A Hamed

    2010-01-01

    A feasible route towards implementing long-distance quantum key distribution (QKD) systems relies on probabilistic schemes for entanglement distribution and swapping as proposed in the work of Duan, Lukin, Cirac, and Zoller (DLCZ) [Nature 414, 413 (2001)]. Here, we calculate the conditional throughput and fidelity of entanglement for DLCZ quantum repeaters, by accounting for the DLCZ self-purification property, in the presence of multiple excitations in the ensemble memories as well as loss and other sources of inefficiency in the channel and measurement modules. We then use our results to find the generation rate of secure key bits for QKD systems that rely on DLCZ quantum repeaters. We compare the key generation rate per logical memory employed in the two cases of with and without a repeater node. We find the cross-over distance beyond which the repeater system outperforms the non-repeater one. That provides us with the optimum inter-node distancing in quantum repeater systems. We also find the optimal exci...

  11. Ubiquitin and proteasomes in transcription.

    Science.gov (United States)

    Geng, Fuqiang; Wenzel, Sabine; Tansey, William P

    2012-01-01

    Regulation of gene transcription is vitally important for the maintenance of normal cellular homeostasis. Failure to correctly regulate gene expression, or to deal with problems that arise during the transcription process, can lead to cellular catastrophe and disease. One of the ways cells cope with the challenges of transcription is by making extensive use of the proteolytic and nonproteolytic activities of the ubiquitin-proteasome system (UPS). Here, we review recent evidence showing deep mechanistic connections between the transcription and ubiquitin-proteasome systems. Our goal is to leave the reader with a sense that just about every step in transcription-from transcription initiation through to export of mRNA from the nucleus-is influenced by the UPS and that all major arms of the system--from the first step in ubiquitin (Ub) conjugation through to the proteasome-are recruited into transcriptional processes to provide regulation, directionality, and deconstructive power. PMID:22404630

  12. Structures of designed armadillo-repeat proteins show propagation of inter-repeat interface effects.

    Science.gov (United States)

    Reichen, Christian; Madhurantakam, Chaithanya; Hansen, Simon; Grütter, Markus G; Plückthun, Andreas; Mittl, Peer R E

    2016-01-01

    The armadillo repeat serves as a scaffold for the development of modular peptide-recognition modules. In order to develop such a system, three crystal structures of designed armadillo-repeat proteins with third-generation N-caps (YIII-type), four or five internal repeats (M-type) and second-generation C-caps (AII-type) were determined at 1.8 Å (His-YIIIM4AII), 2.0 Å (His-YIIIM5AII) and 1.95 Å (YIIIM5AII) resolution and compared with those of variants with third-generation C-caps. All constructs are full consensus designs in which the internal repeats have exactly the same sequence, and hence identical conformations of the internal repeats are expected. The N-cap and internal repeats M1 to M3 are indeed extremely similar, but the comparison reveals structural differences in internal repeats M4 and M5 and the C-cap. These differences are caused by long-range effects of the C-cap, contacting molecules in the crystal, and the intrinsic design of the repeat. Unfortunately, the rigid-body movement of the C-terminal part impairs the regular arrangement of internal repeats that forms the putative peptide-binding site. The second-generation C-cap improves the packing of buried residues and thereby the stability of the protein. These considerations are useful for future improvements of an armadillo-repeat-based peptide-recognition system. PMID:26894544

  13. Modulating TRAP-mediated transcription termination by AT during transcription of the leader region of the Bacillus subtilis trp operon.

    Science.gov (United States)

    Sharma, Shraddha; Gollnick, Paul

    2014-05-01

    An 11-subunit protein called trp RNA binding Attenuation Protein (TRAP) controls attenuation of the tryptophan biosynthetic (trpEDCFBA) operon in Bacillus subtilis. Tryptophan-activated TRAP binds to 11 (G/U)AG repeats in the 5' leader region of trp mRNAs, and downregulates expression of the operon by promoting transcription termination prior to the structural genes. Anti-TRAP (AT) is an antagonist that binds to tryptophan-activated TRAP and prevents TRAP from binding to RNA, thereby upregulating expression of the trp genes. AT forms trimers, and multiple trimers bind to a TRAP 11mer. It is not known how many trimers must bind to TRAP in order to interfere with RNA binding. Studies of isolated TRAP and AT showed that AT can prevent TRAP from binding to the trp leader RNA but cannot dissociate a pre-formed TRAP-RNA complex. Here, we show that AT can prevent TRAP-mediated termination of transcription by inducing dissociation of TRAP from the nascent RNA when it has bound to fewer than all 11 (G/U)AG repeats. The 5'-most region of the TRAP binding site in the nascent transcript is most susceptible to dissociation from TRAP. We also show that one AT trimer bound to TRAP 11mer reduces the affinity of TRAP for RNA and eliminates TRAP-mediated transcription termination in vitro. PMID:24682818

  14. Deciphering Transcriptional Regulation

    DEFF Research Database (Denmark)

    Valen, Eivind

    in different cell types. This thesis presents several methods for analysis and description of promoters. We focus particularly the binding sites of TFs and computational methods for locating these. We contribute to the ¿eld by compiling a database of binding preferences for TFs which can be used for site...... published providing an unbiased overview of the transcription start site (TSS) usage in a tissue. We have paired this method with high-throughput sequencing technology to produce a library of unprecedented depth (DeepCAGE) for the mouse hippocampus. We investigated this in detail and focused particularly...

  15. Repeated Nrf2 stimulation using sulforaphane protects fibroblasts from ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Sherin T.; Bergström, Petra; Hammarsten, Ola, E-mail: ola.hammarsten@clinchem.gu.se

    2014-05-01

    Most of the cytotoxicity induced by ionizing radiation is mediated by radical-induced DNA double-strand breaks. Cellular protection from free radicals can be stimulated several fold by sulforaphane-mediated activation of the transcription factor Nrf2 that regulates more than 50 genes involved in the detoxification of reactive substances and radicals. Here, we report that repeated sulforaphane treatment increases radioresistance in primary human skin fibroblasts. Cells were either treated with sulforaphane for four hours once or with four-hour treatments repeatedly for three consecutive days prior to radiation exposure. Fibroblasts exposed to repeated-sulforaphane treatment showed a more pronounced dose-dependent induction of Nrf2-regulated mRNA and reduced amount of radiation-induced free radicals compared with cells treated once with sulforaphane. In addition, radiation- induced DNA double-strand breaks measured by gamma-H2AX foci were attenuated following repeated sulforaphane treatment. As a result, cellular protection from ionizing radiation measured by the 5-ethynyl-2′-deoxyuridine (EdU) assay was increased, specifically in cells exposed to repeated sulforaphane treatment. Sulforaphane treatment was unable to protect Nrf2 knockout mouse embryonic fibroblasts, indicating that the sulforaphane-induced radioprotection was Nrf2-dependent. Moreover, radioprotection by repeated sulforaphane treatment was dose-dependent with an optimal effect at 10 uM, whereas both lower and higher concentrations resulted in lower levels of radioprotection. Our data indicate that the Nrf2 system can be trained to provide further protection from radical damage. - Highlights: • Repeated treatment with sulforaphane protects fibroblasts from ionizing radiation • Repeated sulforaphane treatment attenuates radiation induced ROS and DNA damage • Sulforaphane mediated protection is Nrf2 dependent.

  16. Intracellular CMTM2 negatively regulates human immunodeficiency virus type-1 transcription through targeting the transcription factors AP-1 and CREB

    Institute of Scientific and Technical Information of China (English)

    SONG Hong-shuo; SHI Shuang; LU Xiao-zhi; GAO Feng; YAN Ling; WANG Ying; ZHUANG Hui

    2010-01-01

    Background The CKLF-like MARVEL transmembrane domain-containing family (CMTM) is a novel family of proteins linking chemokines and TM4SF. Different members exhibit diverse biological functions. In this study, the effect of intracellular CMTM2 on regulating human immunodeficiency virus type-1 (HIV-1) transcription was evaluated.Methods The effects of CMTM2 on regulating full-length HIV-1 provirus and the HIV-1 long terminal repeat (LTR)-directed transcription were assessed by luciferase assay. Transcription factor assays, using the luciferase reporter plasmids of AP-1, CRE, and NF-κB were conducted to explore the signaling pathway(s) that may be regulated by CMTM2. The potential relationship between CMTM2 and the transcription factor AP-1 was further analyzed by Western blotting analyses to investigate the effect of CMTM2 on PMA-induced ERK1/2 phosphorylation.Results The results from the current study revealed that CMTM2 acts as a negative regulator of HIV-1 transcription.CMTM2 exerted a suppressive action on both full-length HIV-1 provirus and HIV-1 LTR-directed transcription.Transcription factor assays showed that CMTM2 selectively inhibited basal AP-1 and CREB activity. Co-expression of HIV-1 Tat, a potent AP-1 and CREB activator, can not reverse CMTM2-mediated AP-1 and CREB inhibition, suggesting a potent and specific effect of CMTM2 on negatively regulating these two signaling pathways.Conclusion Intracellular CMTM2 can negatively regulate HIV-1 transcription, at least in part, by targeting the AP-1 and CREB pathways. Exploring the mechanisms further may lead to new ways to control HIV-1 replication.

  17. Quantum key distribution over probabilistic quantum repeaters

    Science.gov (United States)

    Amirloo, Jeyran; Razavi, Mohsen; Majedi, A. Hamed

    2010-09-01

    A feasible route toward implementing long-distance quantum key distribution (QKD) systems relies on probabilistic schemes for entanglement distribution and swapping as proposed in the work of Duan, Lukin, Cirac, and Zoller (DLCZ) [Nature (London)NATUAS0028-083610.1038/35106500 414, 413 (2001)]. Here, we calculate the conditional throughput and fidelity of entanglement for DLCZ quantum repeaters by accounting for the DLCZ self-purification property in the presence of multiple excitations in the ensemble memories as well as loss and other sources of inefficiency in the channel and measurement modules. We then use our results to find the generation rate of secure key bits for QKD systems that rely on DLCZ quantum repeaters. We compare the key generation rate per logical memory employed in the two cases with and without a repeater node. We find the crossover distance beyond which the repeater system outperforms the nonrepeater one. That provides us with the optimum internode distancing in quantum repeater systems. We also find the optimal excitation probability at which the QKD rate peaks. Such an optimum probability, in most regimes of interest, is insensitive to the total distance.

  18. Nucleocytoplasmic shuttling of transcription factors

    DEFF Research Database (Denmark)

    Cartwright, P; Helin, K

    2000-01-01

    To elicit the transcriptional response following intra- or extracellular stimuli, the signals need to be transmitted to their site of action within the nucleus. The nucleocytoplasmic shuttling of transcription factors is a mechanism mediating this process. The activation and inactivation...... of the transcriptional response is essential for cells to progress through the cell cycle in a normal manner. The involvement of cytoplasmic and nuclear accessory molecules, and the general nuclear membrane transport components, are essential for this process. Although nuclear import and export for different...... transcription factor families are regulated by similar mechanisms, there are several differences that allow for the specific activation of each transcription factor. This review discusses the general import and export pathways found to be common amongst many different transcription factors, and highlights...

  19. Transcriptional Silencing of Retroviral Vectors

    DEFF Research Database (Denmark)

    Lund, Anders Henrik; Duch, M.; Pedersen, F.S.

    1996-01-01

    . Extinction of long-term vector expression has been observed after implantation of transduced hematopoietic cells as well as fibroblasts, myoblasts and hepatocytes. Here we review the influence of vector structure, integration site and cell type on transcriptional silencing. While down-regulation of proviral...... transcription is known from a number of cellular and animal models, major insight has been gained from studies in the germ line and embryonal cells of the mouse. Key elements for the transfer and expression of retroviral vectors, such as the viral transcriptional enhancer and the binding site for the t......RNA primer for reverse transcription may have a major influence on transcriptional silencing. Alterations of these elements of the vector backbone as well as the use of internal promoter elements from housekeeping genes may contribute to reduce transcriptional silencing. The use of cell culture and animal...

  20. Sequences spanning the leader-repeat junction mediate CRISPR adaptation to phage in Streptococcus thermophilus.

    Science.gov (United States)

    Wei, Yunzhou; Chesne, Megan T; Terns, Rebecca M; Terns, Michael P

    2015-02-18

    CRISPR-Cas systems are RNA-based immune systems that protect prokaryotes from invaders such as phages and plasmids. In adaptation, the initial phase of the immune response, short foreign DNA fragments are captured and integrated into host CRISPR loci to provide heritable defense against encountered foreign nucleic acids. Each CRISPR contains a ∼100-500 bp leader element that typically includes a transcription promoter, followed by an array of captured ∼35 bp sequences (spacers) sandwiched between copies of an identical ∼35 bp direct repeat sequence. New spacers are added immediately downstream of the leader. Here, we have analyzed adaptation to phage infection in Streptococcus thermophilus at the CRISPR1 locus to identify cis-acting elements essential for the process. We show that the leader and a single repeat of the CRISPR locus are sufficient for adaptation in this system. Moreover, we identified a leader sequence element capable of stimulating adaptation at a dormant repeat. We found that sequences within 10 bp of the site of integration, in both the leader and repeat of the CRISPR, are required for the process. Our results indicate that information at the CRISPR leader-repeat junction is critical for adaptation in this Type II-A system and likely other CRISPR-Cas systems.

  1. Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors.

    Science.gov (United States)

    Morbitzer, Robert; Römer, Patrick; Boch, Jens; Lahaye, Thomas

    2010-12-14

    Proteins that can be tailored to bind desired DNA sequences are key tools for molecular biology. Previous studies suggested that DNA-binding specificity of transcription activator-like effectors (TALEs) from the bacterial genus Xanthomonas is defined by repeat-variable diresidues (RVDs) of tandem-arranged 34/35-amino acid repeat units. We have studied chimeras of two TALEs differing in RVDs and non-RVDs and found that, in contrast to the critical contributions by RVDs, non-RVDs had no major effect on the DNA-binding specificity of the chimeras. This finding suggests that one needs only to modify the RVDs to generate designer TALEs (dTALEs) to activate transcription of user-defined target genes. We used the scaffold of the TALE AvrBs3 and changed its RVDs to match either the tomato Bs4, the Arabidopsis EGL3, or the Arabidopsis KNAT1 promoter. All three dTALEs transcriptionally activated the desired promoters in a sequence-specific manner as mutations within the targeted DNA sequences abolished promoter activation. This study is unique in showing that chromosomal loci can be targeted specifically by dTALEs. We also engineered two AvrBs3 derivatives with four additional repeat units activating specifically either the pepper Bs3 or UPA20 promoter. Because AvrBs3 activates both promoters, our data show that addition of repeat units facilitates TALE-specificity fine-tuning. Finally, we demonstrate that the RVD NK mediates specific interaction with G nucleotides that thus far could not be targeted specifically by any known RVD type. In summary, our data demonstrate that the TALE scaffold can be tailored to target user-defined DNA sequences in whole genomes.

  2. Repeat Gamma Knife Radiosurgery for Trigeminal Neuralgia

    International Nuclear Information System (INIS)

    Purpose: Repeat gamma knife stereotactic radiosurgery (GKRS) for recurrent or persistent trigeminal neuralgia induces an additional response but at the expense of an increased incidence of facial numbness. The present series summarized the results of a repeat treatment series at Wake Forest University Baptist Medical Center, including a multivariate analysis of the data to identify the prognostic factors for treatment success and toxicity. Methods and Materials: Between January 1999 and December 2007, 37 patients underwent a second GKRS application because of treatment failure after a first GKRS treatment. The mean initial dose in the series was 87.3 Gy (range, 80–90). The mean retreatment dose was 84.4 Gy (range, 60–90). The dosimetric variables recorded included the dorsal root entry zone dose, pons surface dose, and dose to the distal nerve. Results: Of the 37 patients, 81% achieved a >50% pain relief response to repeat GKRS, and 57% experienced some form of trigeminal dysfunction after repeat GKRS. Two patients (5%) experienced clinically significant toxicity: one with bothersome numbness and one with corneal dryness requiring tarsorraphy. A dorsal root entry zone dose at repeat treatment of >26.6 Gy predicted for treatment success (61% vs. 32%, p = .0716). A cumulative dorsal root entry zone dose of >84.3 Gy (72% vs. 44%, p = .091) and a cumulative pons surface dose of >108.5 Gy (78% vs. 44%, p = .018) predicted for post-GKRS numbness. The presence of any post-GKRS numbness predicted for a >50% decrease in pain intensity (100% vs. 60%, p = .0015). Conclusion: Repeat GKRS is a viable treatment option for recurrent trigeminal neuralgia, although the patient assumes a greater risk of nerve dysfunction to achieve maximal pain relief.

  3. Repeat Gamma Knife Radiosurgery for Trigeminal Neuralgia

    Energy Technology Data Exchange (ETDEWEB)

    Aubuchon, Adam C., E-mail: acaubuchon@gmail.com [Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, NC (United States); Chan, Michael D. [Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, NC (United States); Lovato, James F. [Department of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC (United States); Balamucki, Christopher J. [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Ellis, Thomas L.; Tatter, Stephen B. [Department of Neurosurgery, Wake Forest University School of Medicine, Winston-Salem, NC (United States); McMullen, Kevin P.; Munley, Michael T.; Deguzman, Allan F.; Ekstrand, Kenneth E.; Bourland, J. Daniel; Shaw, Edward G. [Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, NC (United States)

    2011-11-15

    Purpose: Repeat gamma knife stereotactic radiosurgery (GKRS) for recurrent or persistent trigeminal neuralgia induces an additional response but at the expense of an increased incidence of facial numbness. The present series summarized the results of a repeat treatment series at Wake Forest University Baptist Medical Center, including a multivariate analysis of the data to identify the prognostic factors for treatment success and toxicity. Methods and Materials: Between January 1999 and December 2007, 37 patients underwent a second GKRS application because of treatment failure after a first GKRS treatment. The mean initial dose in the series was 87.3 Gy (range, 80-90). The mean retreatment dose was 84.4 Gy (range, 60-90). The dosimetric variables recorded included the dorsal root entry zone dose, pons surface dose, and dose to the distal nerve. Results: Of the 37 patients, 81% achieved a >50% pain relief response to repeat GKRS, and 57% experienced some form of trigeminal dysfunction after repeat GKRS. Two patients (5%) experienced clinically significant toxicity: one with bothersome numbness and one with corneal dryness requiring tarsorraphy. A dorsal root entry zone dose at repeat treatment of >26.6 Gy predicted for treatment success (61% vs. 32%, p = .0716). A cumulative dorsal root entry zone dose of >84.3 Gy (72% vs. 44%, p = .091) and a cumulative pons surface dose of >108.5 Gy (78% vs. 44%, p = .018) predicted for post-GKRS numbness. The presence of any post-GKRS numbness predicted for a >50% decrease in pain intensity (100% vs. 60%, p = .0015). Conclusion: Repeat GKRS is a viable treatment option for recurrent trigeminal neuralgia, although the patient assumes a greater risk of nerve dysfunction to achieve maximal pain relief.

  4. Initiation of HIV Reverse Transcription

    Directory of Open Access Journals (Sweden)

    Roland Marquet

    2010-01-01

    Full Text Available Reverse transcription of retroviral genomes into double stranded DNA is a key event for viral replication. The very first stage of HIV reverse transcription, the initiation step, involves viral and cellular partners that are selectively packaged into the viral particle, leading to an RNA/protein complex with very specific structural and functional features, some of which being, in the case of HIV-1, linked to particular isolates. Recent understanding of the tight spatio-temporal regulation of reverse transcription and its importance for viral infectivity further points toward reverse transcription and potentially its initiation step as an important drug target.

  5. Targeted genome regulation via synthetic programmable transcriptional regulators

    KAUST Repository

    Piatek, Agnieszka Anna

    2016-04-19

    Regulation of gene transcription controls cellular functions and coordinates responses to developmental, physiological and environmental cues. Precise and efficient molecular tools are needed to characterize the functions of single and multiple genes in linear and interacting pathways in a native context. Modular DNA-binding domains from zinc fingers (ZFs) and transcriptional activator-like proteins (TALE) are amenable to bioengineering to bind DNA target sequences of interest. As a result, ZF and TALE proteins were used to develop synthetic programmable transcription factors. However, these systems are limited by the requirement to re-engineer proteins for each new target sequence. The clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR associated 9 (Cas9) genome editing tool was recently repurposed for targeted transcriptional regulation by inactivation of the nuclease activity of Cas9. Due to the facile engineering, simplicity, precision and amenability to library construction, the CRISPR/Cas9 system is poised to revolutionize the functional genomics field across diverse eukaryotic species. In this review, we discuss the development of synthetic customizable transcriptional regulators and provide insights into their current and potential applications, with special emphasis on plant systems, in characterization of gene functions, elucidation of molecular mechanisms and their biotechnological applications. © 2016 Informa UK Limited, trading as Taylor & Francis Group

  6. Repeat surgery after failed midurethral slings

    DEFF Research Database (Denmark)

    Hansen, Margrethe Foss; Lose, Gunnar; Kesmodel, Ulrik Schiøler;

    2016-01-01

    MUS from 1998 through 2007. The outcome was repeat surgery with any subsequent procedure code for urinary incontinence within a 5-year period of the first procedure. RESULTS: A total of 5,820 women (mean age 55.4 years, ± 12.1) were registered with a synthetic MUS, and 354 (6 %) underwent reoperation...... they had undergone their primary synthetic MUS. CONCLUSION: In this nationwide cohort study of synthetic MUS a repeat synthetic MUS was the first choice and urethral injection therapy a frequent second choice. The majority of reoperations (82 %) took place in the same department as the primary operation....

  7. Repeating pneumatic pellet injector in JAERI

    International Nuclear Information System (INIS)

    A repeating pneumatic pellet injector has been developed and constructed at Japan Atomic Energy Research Institute. This injector can provide repetitive pellet injection to fuel tokamak plasmas for an extended period of time, aiming at the improvement of plasma performance. The pellets with nearly identical speed and mass can be repeatedly injected with a repetition rate of 2-3.3 Hz and a speed of up to 1.7 km/s by controlling the temperature of the cryogenic system, the piston speed and the pressure of the propellant gas. (author)

  8. Regulating retrotransposon activity through the use of alternative transcription start sites

    DEFF Research Database (Denmark)

    Persson, Jenna; Steglich, Babett; Smialowska, Agata;

    2016-01-01

    a new mechanism of retrotransposon regulation through transcription start site (TSS) selection by altered nucleosome occupancy. We show that Fun30 chromatin remodelers cooperate to maintain a high level of nucleosome occupancy at retrotransposon-flanking long terminal repeat (LTR) elements....... This enforces the use of a downstream TSS and the production of a truncated RNA incapable of reverse transcription and retrotransposition. However, in stressed cells, nucleosome occupancy at LTR elements is reduced, and the TSS shifts to allow for productive transcription. We propose that controlled...

  9. Copy number of tandem direct repeats within the inverted repeats of Marek's disease virus DNA.

    Science.gov (United States)

    Kanamori, A; Nakajima, K; Ikuta, K; Ueda, S; Kato, S; Hirai, K

    1986-12-01

    We previously reported that DNA of the oncogenic strain BC-1 of Marek's disease virus serotype 1 (MDV1) contains three units of tandem direct repeats with 132 base pair (bp) repeats within the inverted repeats of the long regions of the MDV1 genome, whereas the attenuated, nononcogenic viral DNA contains multiple units of tandem direct repeats (Maotani et al., 1986). In the present study, the difference in the copy numbers of 132 bp repeats of oncogenic and nononcogenic MDV1 DNAs in other strains of MDV1 was investigated by Southern blot hybridization. The main copy numbers in different oncogenic MDV1 strains differed: those of BC-1, JM and highly oncogenic Md5 were 3, 5 to 12 and 2, respectively. The viral DNA population with two units of repeats was small, but detectable, in cells infected with either the oncogenic BC-1 or JM strain. The MDV1 DNA in various MD cell lines contained either two units or both two and three units of repeats. The significance of the copy number of repeats in oncogenicity of MDV1 is discussed.

  10. Mediator directs co-transcriptional heterochromatin assembly by RNA interference-dependent and -independent pathways.

    Directory of Open Access Journals (Sweden)

    Eriko Oya

    Full Text Available Heterochromatin at the pericentromeric repeats in fission yeast is assembled and spread by an RNAi-dependent mechanism, which is coupled with the transcription of non-coding RNA from the repeats by RNA polymerase II. In addition, Rrp6, a component of the nuclear exosome, also contributes to heterochromatin assembly and is coupled with non-coding RNA transcription. The multi-subunit complex Mediator, which directs initiation of RNA polymerase II-dependent transcription, has recently been suggested to function after initiation in processes such as elongation of transcription and splicing. However, the role of Mediator in the regulation of chromatin structure is not well understood. We investigated the role of Mediator in pericentromeric heterochromatin formation and found that deletion of specific subunits of the head domain of Mediator compromised heterochromatin structure. The Mediator head domain was required for Rrp6-dependent heterochromatin nucleation at the pericentromere and for RNAi-dependent spreading of heterochromatin into the neighboring region. In the latter process, Mediator appeared to contribute to efficient processing of siRNA from transcribed non-coding RNA, which was required for efficient spreading of heterochromatin. Furthermore, the head domain directed efficient transcription in heterochromatin. These results reveal a pivotal role for Mediator in multiple steps of transcription-coupled formation of pericentromeric heterochromatin. This observation further extends the role of Mediator to co-transcriptional chromatin regulation.

  11. Adaptation and complexity in repeated games

    DEFF Research Database (Denmark)

    Maenner, Eliot Alexander

    2008-01-01

    The paper presents a learning model for two-player infinitely repeated games. In an inference step players construct minimally complex inferences of strategies based on observed play, and in an adaptation step players choose minimally complex best responses to an inference. When players randomly ...

  12. Why Do Students Repeat Admissions Tests?

    Science.gov (United States)

    Jones, Martha S.

    Attitudes and beliefs about the admissions process, especially the role of standardized testing in admissions, were examined for students who took a standardized admissions test more than once. Their attitudes were compared with those of students who did not repeat the test. About 200 preveterinary students who had taken the Veterinary Aptitude…

  13. The Effect of Repeaters on Equating

    Science.gov (United States)

    Kim, HeeKyoung; Kolen, Michael J.

    2010-01-01

    Test equating might be affected by including in the equating analyses examinees who have taken the test previously. This study evaluated the effect of including such repeaters on Medical College Admission Test (MCAT) equating using a population invariance approach. Three-parameter logistic (3-PL) item response theory (IRT) true score and…

  14. Multivariate linear models and repeated measurements revisited

    DEFF Research Database (Denmark)

    Dalgaard, Peter

    2009-01-01

    Methods for generalized analysis of variance based on multivariate normal theory have been known for many years. In a repeated measurements context, it is most often of interest to consider transformed responses, typically within-subject contrasts or averages. Efficiency considerations leads...

  15. Triggering of repeating earthquakes in central California

    Science.gov (United States)

    Wu, Chunquan; Gomberg, Joan; Ben-Naim, Eli; Johnson, Paul

    2014-01-01

    Dynamic stresses carried by transient seismic waves have been found capable of triggering earthquakes instantly in various tectonic settings. Delayed triggering may be even more common, but the mechanisms are not well understood. Catalogs of repeating earthquakes, earthquakes that recur repeatedly at the same location, provide ideal data sets to test the effects of transient dynamic perturbations on the timing of earthquake occurrence. Here we employ a catalog of 165 families containing ~2500 total repeating earthquakes to test whether dynamic perturbations from local, regional, and teleseismic earthquakes change recurrence intervals. The distance to the earthquake generating the perturbing waves is a proxy for the relative potential contributions of static and dynamic deformations, because static deformations decay more rapidly with distance. Clear changes followed the nearby 2004 Mw6 Parkfield earthquake, so we study only repeaters prior to its origin time. We apply a Monte Carlo approach to compare the observed number of shortened recurrence intervals following dynamic perturbations with the distribution of this number estimated for randomized perturbation times. We examine the comparison for a series of dynamic stress peak amplitude and distance thresholds. The results suggest a weak correlation between dynamic perturbations in excess of ~20 kPa and shortened recurrence intervals, for both nearby and remote perturbations.

  16. A Repeater in the Language Laboratory

    Science.gov (United States)

    Griffiths, B. T.

    1969-01-01

    Discusses the feasilility of the use of repeater devices in the language laboratory in order to enable the student to "recapitulate effortlessly and and indefinitely any utterance of any length which is causing him difficulty or is of special interest. (FWB)

  17. The Differential Effects of Repeating Kindergarten

    Science.gov (United States)

    Burkam, David T.; LoGerfo, Laura; Ready, Doug; Lee, Valerie E.

    2007-01-01

    We use the Early Childhood Longitudinal Study to investigate national patterns addressing (a) who repeats kindergarten, and (b) the subsequent cognitive effects of this event. Using OLS regression techniques, we investigate 1st-time kindergartners who are promoted, 1st-time kindergartners who are retained, and children who are already repeating…

  18. Childhood experiences and repeated suicidal behavior

    DEFF Research Database (Denmark)

    Krarup, Gertrud; Nielsen, Bent; Rask, P;

    1991-01-01

    that the psychological climate of the home may be more important than the rupture of early home life. It is noteworthy that the group of repeaters, as against the first-evers, could be characterized by personality disorders and abuse, especially of alcohol: disorders known to be precipitated by a discordant childhood...

  19. Preventing Repeat Teen Births PSA (:60)

    Centers for Disease Control (CDC) Podcasts

    2013-04-02

    This 60 second public service announcement is based on the April 2013 CDC Vital Signs report, which discusses repeat teen births and ways teens, parents and guardians, health care providers, and communities can help prevent them.  Created: 4/2/2013 by Centers for Disease Control and Prevention (CDC).   Date Released: 4/2/2013.

  20. Structural basis for triplet repeat disorders

    DEFF Research Database (Denmark)

    Baldi, Pierre; Brunak, Søren; Chauvin, Yves;

    1999-01-01

    that approximately 150 bp is a general threshold length far repeat instability Since this is about the length of DNA wrapped up in a single nucleosome care particle, we speculate that chromatin structure may play an important role in the expansion mechanism. We furthermore suggest that expansion afa dodecamer repent...

  1. Costly renegotiation in repeated Bertand games

    DEFF Research Database (Denmark)

    Andersson, Ola; Wengström, Erik Roland

    2010-01-01

    This paper extends the concept of weak renegotiation-proof equilibrium (WRP) to allow for costly renegotiation and shows that even small renegotiation costs can have dramatic effects on the set of equilibria. More specifically, the paper analyzes the infinitely repeated Bertrand game. It is shown...

  2. Testing Multiple Outcomes in Repeated Measures Designs

    Science.gov (United States)

    Lix, Lisa M.; Sajobi, Tolulope

    2010-01-01

    This study investigates procedures for controlling the familywise error rate (FWR) when testing hypotheses about multiple, correlated outcome variables in repeated measures (RM) designs. A content analysis of RM research articles published in 4 psychology journals revealed that 3 quarters of studies tested hypotheses about 2 or more outcome…

  3. Repeater For A Digital-Communication Bus

    Science.gov (United States)

    Torres-Guzman, Esteban; Olson, Stephen; Heaps, Tim

    1993-01-01

    Digital repeater circuit designed to extend range of communication on MIL-STD-1553 bus beyond original maximum allowable length of 300 ft. Circuit provides two-way communication, one way at time, and conforms to specifications of MIL-STD-1553. Crosstalk and instability eliminated.

  4. On balanced minimal repeated measurements designs

    Directory of Open Access Journals (Sweden)

    Shakeel Ahmad Mir

    2014-10-01

    Full Text Available Repeated Measurements designs are concerned with scientific experiments in which each experimental unit is assigned more than once to a treatment either different or identical. This class of designs has the property that the unbiased estimators for elementary contrasts among direct and residual effects are obtainable. Afsarinejad (1983 provided a method of constructing balanced Minimal Repeated Measurements designs p < t , when t is an odd or prime power, one or more than one treatment may occur more than once in some sequences and  designs so constructed no longer remain uniform in periods. In this paper an attempt has been made to provide a new method to overcome this drawback. Specifically, two cases have been considered                RM[t,n=t(t-t/(p-1,p], λ2=1 for balanced minimal repeated measurements designs and  RM[t,n=2t(t-t/(p-1,p], λ2=2 for balanced  repeated measurements designs. In addition , a method has been provided for constructing              extra-balanced minimal designs for special case RM[t,n=t2/(p-1,p], λ2=1.

  5. EVOLUTION AND RECOMBINATION OF BOVINE DNA REPEATS

    NARCIS (Netherlands)

    JOBSE, C; BUNTJER, JB; HAAGSMA, N; BREUKELMAN, HJ; BEINTEMA, JJ; LENSTRA, JA

    1995-01-01

    The history of the abundant repeat elements in the bovine genome has been studied by comparative hybridization and PCR. The Bov-A and Bov-B SINE elements both emerged just after the divergence of the Camelidae and the true ruminants. A 31-bp subrepeat motif in satellites of the Bovidae species cattl

  6. Accuracy of velocities from repeated GPS measurements

    Science.gov (United States)

    Akarsu, V.; Sanli, D. U.; Arslan, E.

    2015-04-01

    Today repeated GPS measurements are still in use, because we cannot always employ GPS permanent stations due to a variety of limitations. One area of study that uses velocities/deformation rates from repeated GPS measurements is the monitoring of crustal motion. This paper discusses the quality of the velocities derived using repeated GPS measurements for the aim of monitoring crustal motion. From a global network of International GNSS Service (IGS) stations, we processed GPS measurements repeated monthly and annually spanning nearly 15 years and estimated GPS velocities for GPS baseline components latitude, longitude and ellipsoidal height. We used web-based GIPSY for the processing. Assuming true deformation rates can only be determined from the solutions of 24 h observation sessions, we evaluated the accuracy of the deformation rates from 8 and 12 h sessions. We used statistical hypothesis testing to assess the velocities derived from short observation sessions. In addition, as an alternative control method we checked the accuracy of GPS solutions from short observation sessions against those of 24 h sessions referring to statistical criteria that measure the accuracy of regression models. Results indicate that the velocities of the vertical component are completely affected when repeated GPS measurements are used. The results also reveal that only about 30% of the 8 h solutions and about 40% of 12 h solutions for the horizontal coordinates are acceptable for velocity estimation. The situation is much worse for the vertical component in which none of the solutions from campaign measurements are acceptable for obtaining reliable deformation rates.

  7. Comprehensive analysis of the specificity of transcription activator-like effector nucleases

    DEFF Research Database (Denmark)

    Juillerat, Alexandre; Dubois, Gwendoline; Valton, Julien;

    2014-01-01

    their target site. The ability to predict the specificity of targeting is thus highly desirable. Here, we describe the first comprehensive experimental study focused on the specificity of the four commonly used repeat variable diresidues (RVDs; NI:A, HD:C, NN:G and NG:T) incorporated in transcription activator...

  8. Structural basis of transcription activation.

    Science.gov (United States)

    Feng, Yu; Zhang, Yu; Ebright, Richard H

    2016-06-10

    Class II transcription activators function by binding to a DNA site overlapping a core promoter and stimulating isomerization of an initial RNA polymerase (RNAP)-promoter closed complex into a catalytically competent RNAP-promoter open complex. Here, we report a 4.4 angstrom crystal structure of an intact bacterial class II transcription activation complex. The structure comprises Thermus thermophilus transcription activator protein TTHB099 (TAP) [homolog of Escherichia coli catabolite activator protein (CAP)], T. thermophilus RNAP σ(A) holoenzyme, a class II TAP-dependent promoter, and a ribotetranucleotide primer. The structure reveals the interactions between RNAP holoenzyme and DNA responsible for transcription initiation and reveals the interactions between TAP and RNAP holoenzyme responsible for transcription activation. The structure indicates that TAP stimulates isomerization through simple, adhesive, stabilizing protein-protein interactions with RNAP holoenzyme. PMID:27284196

  9. Asymmetric bidirectional transcription from the FSHD-causing D4Z4 array modulates DUX4 production.

    Directory of Open Access Journals (Sweden)

    Gregory J Block

    Full Text Available Facioscapulohumeral Disease (FSHD is a dominantly inherited progressive myopathy associated with aberrant production of the transcription factor, Double Homeobox Protein 4 (DUX4. The expression of DUX4 depends on an open chromatin conformation of the D4Z4 macrosatellite array and a specific haplotype on chromosome 4. Even when these requirements are met, DUX4 transcripts and protein are only detectable in a subset of cells indicating that additional constraints govern DUX4 production. Since the direction of transcription, along with the production of non-coding antisense transcripts is an important regulatory feature of other macrosatellite repeats, we developed constructs that contain the non-coding region of a single D4Z4 unit flanked by genes that report transcriptional activity in the sense and antisense directions. We found that D4Z4 contains two promoters that initiate sense and antisense transcription within the array, and that antisense transcription predominates. Transcriptional start sites for the antisense transcripts, as well as D4Z4 regions that regulate the balance of sense and antisense transcripts were identified. We show that the choice of transcriptional direction is reversible but not mutually exclusive, since sense and antisense reporter activity was often present in the same cell and simultaneously upregulated during myotube formation. Similarly, levels of endogenous sense and antisense D4Z4 transcripts were upregulated in FSHD myotubes. These studies offer insight into the autonomous distribution of muscle weakness that is characteristic of FSHD.

  10. 47 CFR 80.1179 - On-board repeater limitations.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false On-board repeater limitations. 80.1179 Section... On-board repeater limitations. When an on-board repeater is used, the following limitations must be met: (a) The on-board repeater antenna must be located no higher than 3 meters (10 feet) above...

  11. Large-scale transcriptome data reveals transcriptional activity of fission yeast LTR retrotransposons

    Directory of Open Access Journals (Sweden)

    Willerslev Eske

    2010-03-01

    Full Text Available Abstract Background Retrotransposons are transposable elements that proliferate within eukaryotic genomes through a process involving reverse transcription. The numbers of retrotransposons within genomes and differences between closely related species may yield insight into the evolutionary history of the elements. Less is known about the ongoing dynamics of retrotransposons, as analysis of genome sequences will only reveal insertions of retrotransposons that are fixed - or near fixation - in the population or strain from which genetic material has been extracted for sequencing. One pre-requisite for retrotransposition is transcription of the elements. Given their intrinsic sequence redundancy, transcriptome-level analyses of transposable elements are scarce. We have used recently published transcriptome data from the fission yeast Schizosaccharomyces pombe to assess the ability to detect and describe transcriptional activity from Long Terminal Repeat (LTR retrotransposons. LTR retrotransposons are normally flanked by two LTR sequences. However, the majority of LTR sequences in S. pombe exist as solitary LTRs, i.e. as single terminal repeat sequences not flanking a retrotransposon. Transcriptional activity was analysed for both full-length LTR retrotransposons and solitary LTRs. Results Two independent sets of transcriptome data reveal the presence of full-length, polyadenylated transcripts from LTR retrotransposons in S. pombe during growth phase in rich medium. The redundancy of retrotransposon sequences makes it difficult to assess which elements are transcriptionally active, but data strongly indicates that only a subset of the LTR retrotransposons contribute significantly to the detected transcription. A considerable level of reverse strand transcription is also detected. Equal levels of transcriptional activity are observed from both strands of solitary LTR sequences. Transcriptome data collected during meiosis suggests that transcription

  12. Abundant intergenic TAACTGA direct repeats and putative alternate RNA polymerase β´ subunits in marine Beggiatoaceae genomes: possible regulatory roles and origins

    Directory of Open Access Journals (Sweden)

    Barbara J. MacGregor

    2015-12-01

    Full Text Available The genome sequences of several giant marine sulfur-oxidizing bacteria present evidence of a possible post-transcriptional regulatory network that may have been transmitted to or from two distantly related bacteria lineages. The draft genome of a Cand. Maribeggiatoa filament from the Guaymas Basin (Gulf of California, Mexico seafloor contains 169 sets of TAACTGA direct repeats and one indirect repeat, with two to six copies per set. Related heptamers are rarely or never found as direct repeats. TAACTGA direct repeats are also found in some other Beggiatoaceae, Thiocystis violascens, a range of Cyanobacteria, and five Bacteroidetes. This phylogenetic distribution suggests they may have been transmitted horizontally, but no mechanism is evident. There is no correlation between total TAACTGA occurrences and repeats per genome. In most species the repeat units are relatively short, but longer arrays of up to 43 copies are found in several Bacteroidetes and Cyanobacteria. The majority of TAACTGA repeats in the Cand. Maribeggiatoa Orange Guaymas (BOGUAY genome are within several nucleotides upstream of a putative start codon, suggesting they may be binding sites for a post-transcriptional regulator. Candidates include members of the ribosomal protein S1, Csp (cold shock protein, and Csr (carbon storage regulator families. No pattern was evident in the predicted functions of the open reading frames (ORFs downstream of repeats, but some encode presumably essential products such as ribosomal proteins. Among these is an ORF encoding a possible alternate or modified RNA polymerase beta prime subunit, predicted to have the expected subunit interaction domains but lacking most catalytic residues. A similar ORF was found in the Thioploca ingrica draft genome, but in no others. In both species they are immediately upstream of putative sensor kinase genes with nearly identical domain structures. In the marine Beggiatoaceae, a role for the TAACTGA repeats in

  13. Abundant Intergenic TAACTGA Direct Repeats and Putative Alternate RNA Polymerase β' Subunits in Marine Beggiatoaceae Genomes: Possible Regulatory Roles and Origins.

    Science.gov (United States)

    MacGregor, Barbara J

    2015-01-01

    The genome sequences of several giant marine sulfur-oxidizing bacteria present evidence of a possible post-transcriptional regulatory network that may have been transmitted to or from two distantly related bacteria lineages. The draft genome of a Cand. "Maribeggiatoa" filament from the Guaymas Basin (Gulf of California, Mexico) seafloor contains 169 sets of TAACTGA direct repeats and one indirect repeat, with two to six copies per set. Related heptamers are rarely or never found as direct repeats. TAACTGA direct repeats are also found in some other Beggiatoaceae, Thiocystis violascens, a range of Cyanobacteria, and five Bacteroidetes. This phylogenetic distribution suggests they may have been transmitted horizontally, but no mechanism is evident. There is no correlation between total TAACTGA occurrences and repeats per genome. In most species the repeat units are relatively short, but longer arrays of up to 43 copies are found in several Bacteroidetes and Cyanobacteria. The majority of TAACTGA repeats in the Cand. "Maribeggiatoa" Orange Guaymas (BOGUAY) genome are within several nucleotides upstream of a putative start codon, suggesting they may be binding sites for a post-transcriptional regulator. Candidates include members of the ribosomal protein S1, Csp (cold shock protein), and Csr (carbon storage regulator) families. No pattern was evident in the predicted functions of the open reading frames (ORFs) downstream of repeats, but some encode presumably essential products such as ribosomal proteins. Among these is an ORF encoding a possible alternate or modified RNA polymerase beta prime subunit, predicted to have the expected subunit interaction domains but lacking most catalytic residues. A similar ORF was found in the Thioploca ingrica draft genome, but in no others. In both species they are immediately upstream of putative sensor kinase genes with nearly identical domain structures. In the marine Beggiatoaceae, a role for the TAACTGA repeats in translational

  14. AthaMap, integrating transcriptional and post-transcriptional data.

    Science.gov (United States)

    Bülow, Lorenz; Engelmann, Stefan; Schindler, Martin; Hehl, Reinhard

    2009-01-01

    The AthaMap database generates a map of predicted transcription factor binding sites (TFBS) for the whole Arabidopsis thaliana genome. AthaMap has now been extended to include data on post-transcriptional regulation. A total of 403,173 genomic positions of small RNAs have been mapped in the A. thaliana genome. These identify 5772 putative post-transcriptionally regulated target genes. AthaMap tools have been modified to improve the identification of common TFBS in co-regulated genes by subtracting post-transcriptionally regulated genes from such analyses. Furthermore, AthaMap was updated to the TAIR7 genome annotation, a graphic display of gene analysis results was implemented, and the TFBS data content was increased. AthaMap is freely available at http://www.athamap.de/. PMID:18842622

  15. Nonparametric additive regression for repeatedly measured data

    KAUST Repository

    Carroll, R. J.

    2009-05-20

    We develop an easily computed smooth backfitting algorithm for additive model fitting in repeated measures problems. Our methodology easily copes with various settings, such as when some covariates are the same over repeated response measurements. We allow for a working covariance matrix for the regression errors, showing that our method is most efficient when the correct covariance matrix is used. The component functions achieve the known asymptotic variance lower bound for the scalar argument case. Smooth backfitting also leads directly to design-independent biases in the local linear case. Simulations show our estimator has smaller variance than the usual kernel estimator. This is also illustrated by an example from nutritional epidemiology. © 2009 Biometrika Trust.

  16. High-bandwidth hybrid quantum repeater.

    Science.gov (United States)

    Munro, W J; Van Meter, R; Louis, Sebastien G R; Nemoto, Kae

    2008-07-25

    We present a physical- and link-level design for the creation of entangled pairs to be used in quantum repeater applications where one can control the noise level of the initially distributed pairs. The system can tune dynamically, trading initial fidelity for success probability, from high fidelity pairs (F=0.98 or above) to moderate fidelity pairs. The same physical resources that create the long-distance entanglement are used to implement the local gates required for entanglement purification and swapping, creating a homogeneous repeater architecture. Optimizing the noise properties of the initially distributed pairs significantly improves the rate of generating long-distance Bell pairs. Finally, we discuss the performance trade-off between spatial and temporal resources.

  17. Repeated interactions in open quantum systems

    International Nuclear Information System (INIS)

    Analyzing the dynamics of open quantum systems has a long history in mathematics and physics. Depending on the system at hand, basic physical phenomena that one would like to explain are, for example, convergence to equilibrium, the dynamics of quantum coherences (decoherence) and quantum correlations (entanglement), or the emergence of heat and particle fluxes in non-equilibrium situations. From the mathematical physics perspective, one of the main challenges is to derive the irreversible dynamics of the open system, starting from a unitary dynamics of the system and its environment. The repeated interactions systems considered in these notes are models of non-equilibrium quantum statistical mechanics. They are relevant in quantum optics, and more generally, serve as a relatively well treatable approximation of a more difficult quantum dynamics. In particular, the repeated interaction models allow to determine the large time (stationary) asymptotics of quantum systems out of equilibrium

  18. Repeated interactions in open quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Bruneau, Laurent, E-mail: laurent.bruneau@u-cergy.fr [Laboratoire AGM, Université de Cergy-Pontoise, Site Saint-Martin, BP 222, 95302 Cergy-Pontoise (France); Joye, Alain, E-mail: Alain.Joye@ujf-grenoble.fr [Institut Fourier, UMR 5582, CNRS-Université Grenoble I, BP 74, 38402 Saint-Martin d’Hères (France); Merkli, Marco, E-mail: merkli@mun.ca [Department of Mathematics and Statistics Memorial University of Newfoundland, St. John' s, NL Canada A1C 5S7 (Canada)

    2014-07-15

    Analyzing the dynamics of open quantum systems has a long history in mathematics and physics. Depending on the system at hand, basic physical phenomena that one would like to explain are, for example, convergence to equilibrium, the dynamics of quantum coherences (decoherence) and quantum correlations (entanglement), or the emergence of heat and particle fluxes in non-equilibrium situations. From the mathematical physics perspective, one of the main challenges is to derive the irreversible dynamics of the open system, starting from a unitary dynamics of the system and its environment. The repeated interactions systems considered in these notes are models of non-equilibrium quantum statistical mechanics. They are relevant in quantum optics, and more generally, serve as a relatively well treatable approximation of a more difficult quantum dynamics. In particular, the repeated interaction models allow to determine the large time (stationary) asymptotics of quantum systems out of equilibrium.

  19. Learning With Repeated-Game Strategies

    Directory of Open Access Journals (Sweden)

    Christos A. Ioannou

    2014-07-01

    Full Text Available We use the self-tuning Experience Weighted Attraction model with repeated-game strategies as a computer testbed to examine the relative frequency, speed of convergence and progression of a set of repeated-game strategies in four symmetric 2x2 games: Prisoner's Dilemma, Battle of the Sexes, Stag-Hunt, and Chicken. In the Prisoner's Dilemma game, we fi□nd that the strategy with the most occurrences is the Grim-Trigger. In the Battle of the Sexes game, a cooperative pair that alternates between the two pure-strategy Nash equilibria emerges as the one with the most occurrences. In the Stag-Hunt and Chicken games, the Win-Stay, Lose-Shift and Grim-Trigger strategies are the ones with the most occurrences. Overall, the pairs that converged quickly ended up at the cooperative outcomes, whereas the ones that were extremely slow to reach convergence ended up at non-cooperative outcomes.

  20. Repeated extraction of DNA from FTA cards

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Ferrero, Laura; Børsting, Claus;

    2011-01-01

    Extraction of DNA using magnetic bead based techniques on automated DNA extraction instruments provides a fast, reliable and reproducible method for DNA extraction from various matrices. However, the yield of extracted DNA from FTA-cards is typically low. Here, we demonstrate that it is possible...... to repeatedly extract DNA from the processed FTA-disk. The method increases the yield from the nanogram range to the microgram range....

  1. Repeatability of Response to Asthma Medications

    Science.gov (United States)

    Wu, Ann; Tantisira, Kelan; Li, Lingling; Schuemann, Brooke; Weiss, Scott

    2010-01-01

    Background Pharmacogenetic studies of drug response in asthma assume that patients respond consistently to a treatment but that treatment response varies across patients, however, no formal studies have demonstrated this. Objective To determine the repeatability of commonly used outcomes for treatment response to asthma medications: bronchodilator response, forced expiratory volume in 1 second (FEV1), and provocative concentration of methacholine producing a 20% decline in FEV1 (PC20). Methods The Childhood Asthma Management Program (CAMP) was a multi-center clinical trial of children randomized to receiving budesonide, nedocromil, or placebo. We determined the intraclass correlation coefficient (ICC) for each outcome over repeated visits over four years in CAMP using mixed effects regression models. We adjusted for the covariates: age, race/ethnicity, height, family income, parental education, and symptom score. We incorporated each outcome for each child as repeated outcome measurements and stratified by treatment group. Results The ICC for bronchodilator response was 0.31 in the budesonide group, 0.35 in the nedocromil group, and 0.40 in the placebo group, after adjusting for covariates. The ICC for FEV1 was 0.71 in the budesonide group, 0.60 in the nedocromil group, and 0.69 in the placebo group, after adjusting for covariates. The ICC for PC20 was 0.67 in the budesonide and placebo groups and 0.73 in the nedocromil group, after adjusting for covariates. Conclusion The within treatment group repeatability of FEV1 and PC20 are high; thus these phenotypes are heritable. FEV1 and PC20 may be better phenotypes than bronchodilator response for studies of treatment response in asthma. PMID:19064281

  2. Repeatability and Workability Evaluation of SIGMOD 2011

    DEFF Research Database (Denmark)

    Bonnet, Philippe

    2011-01-01

    SIGMOD has offered, since 2008, to verify the experiments published in the papers accepted at the conference. This year, we have been in charge of reproducing the experiments provided by the authors (repeatability), and exploring changes to experiment parameters (workability). In this paper, we a...... find that most experiments are distributed as Linux packages accompanied by instructions on how to setup and run the experiments. We are still far from the vision of executable papers...

  3. Aging and Repeated Thought Suppression Success

    OpenAIRE

    Ann E Lambert; Smyth, Frederick L.; Jessica R Beadel; Teachman, Bethany A.

    2013-01-01

    Intrusive thoughts and attempts to suppress them are common, but while suppression may be effective in the short-term, it can increase thought recurrence in the long-term. Because intentional suppression involves controlled processing, and many aspects of controlled processing decline with age, age differences in thought suppression outcomes may emerge, especially over repeated thought suppression attempts as cognitive resources are expended. Using multilevel modeling, we examined age differe...

  4. Repeat Gamma Knife surgery for vestibular schwannomas

    OpenAIRE

    Sarah Lonneville; Carine Delbrouck; Cécile Renier; Daniel Devriendt; Nicolas Massager

    2015-01-01

    Background: Gamma Knife (GK) surgery is a recognized treatment option for the management of small to medium-sized vestibular schwannoma (VS) associated with high-tumor control and low morbidity. When a radiosurgical treatment fails to stop tumor growth, repeat GK surgery can be proposed in selected cases. Methods : A series of 27 GK retreatments was performed in 25 patients with VS; 2 patients underwent three procedures. The median time interval between GK treatments was 45 months. The me...

  5. Repeated extraction of DNA from FTA cards

    OpenAIRE

    Stangegaard, Michael; Ferrero, Laura; Børsting, Claus; Frank-Hansen, Rune; Hansen, Anders Johannes; Morling, Niels

    2011-01-01

    Extraction of DNA using magnetic bead based techniques on automated DNA extraction instruments provides a fast, reliable and reproducible method for DNA extraction from various matrices. However, the yield of extracted DNA from FTA-cards is typically low. Here, we demonstrate that it is possible to repeatedly extract DNA from the processed FTA-disk. The method increases the yield from the nanogram range to the microgram range.

  6. Capacities of repeater-assisted quantum communications

    OpenAIRE

    Pirandola, Stefano

    2016-01-01

    We establish the ultimate rates for transmitting quantum information, distilling entanglement, and distributing secret keys in repeater-assisted quantum communications, under the most fundamental decoherence models for both discrete and continuous variable systems, including lossy channels, quantum-limited amplifiers, dephasing and erasure channels. These capacities are derived considering the most general adaptive protocols for quantum and private communication between the two end-points of ...

  7. Repeated Optional Gambles and Risk Aversion

    OpenAIRE

    Christian Gollier

    1996-01-01

    We analyze in this paper the effect of age on the optimal dynamic strategy toward repeated independent gambles. When deciding to accept or to reject a lottery that is offered today, the gambler knows how many lotteries can yet be played in the future. We first characterize the optimal dynamic strategy when future lotteries are identically distributed. We show that the existence of future lotteries always increases the willingness to gamble today. When the sequence of lotteries is independent ...

  8. Quantum Key Distribution over Probabilistic Quantum Repeaters

    OpenAIRE

    Amirloo, Jeyran; Razavi, Mohsen; Majedi, A. Hamed

    2010-01-01

    A feasible route towards implementing long-distance quantum key distribution (QKD) systems relies on probabilistic schemes for entanglement distribution and swapping as proposed in the work of Duan, Lukin, Cirac, and Zoller (DLCZ) [Nature 414, 413 (2001)]. Here, we calculate the conditional throughput and fidelity of entanglement for DLCZ quantum repeaters, by accounting for the DLCZ self-purification property, in the presence of multiple excitations in the ensemble memories as well as loss a...

  9. SSR markers in transcripts of genes linked to post-transcriptional and transcriptional regulatory functions during vegetative and reproductive development of Elaeis guineensis

    Directory of Open Access Journals (Sweden)

    Tranbarger Timothy

    2012-01-01

    Full Text Available Abstract Background The oil palm (Elaeis guineensis Jacq. is a perennial monocotyledonous tropical crop species that is now the world's number one source of edible vegetable oil, and the richest dietary source of provitamin A. While new elite genotypes from traditional breeding programs provide steady yield increases, the long selection cycle (10-12 years and the large areas required to cultivate oil palm make genetic improvement slow and labor intensive. Molecular breeding programs have the potential to make significant impacts on the rate of genetic improvement but the limited molecular resources, in particular the lack of molecular markers for agronomic traits of interest, restrict the application of molecular breeding schemes for oil palm. Results In the current study, 6,103 non-redundant ESTs derived from cDNA libraries of developing vegetative and reproductive tissues were annotated and searched for simple sequence repeats (SSRs. Primer pairs from sequences flanking 289 EST-SSRs were tested to detect polymorphisms in elite breeding parents and their crosses. 230 of these amplified PCR products, 88 of which were polymorphic within the breeding material tested. A detailed analysis and annotation of the EST-SSRs revealed the locations of the polymorphisms within the transcripts, and that the main functional category was related to transcription and post-transcriptional regulation. Indeed, SSR polymorphisms were found in sequences encoding AP2-like, bZIP, zinc finger, MADS-box, and NAC-like transcription factors in addition to other transcriptional regulatory proteins and several RNA interacting proteins. Conclusions The identification of new EST-SSRs that detect polymorphisms in elite breeding material provides tools for molecular breeding strategies. The identification of SSRs within transcripts, in particular those that encode proteins involved in transcriptional and post-transcriptional regulation, will allow insight into the functional

  10. Multiplexing schemes for quantum repeater networks

    Science.gov (United States)

    Aparicio, Luciano; Van Meter, Rodney

    2011-08-01

    When built, quantum repeaters will allow the distribution of entangled quantum states across large distances, playing a vital part in many proposed quantum technologies. Enabling multiple users to connect through the same network will be key to their real-world deployment. Previous work on repeater technologies has focussed only on simple entanglment production, without considering the issues of resource scarcity and competition that necessarily arise in a network setting. In this paper we simulated a thirteen-node network with up to five flows sharing different parts of the network, measuring the total throughput and fairness for each case. Our results suggest that the Internet-like approach of statistical multiplexing use of a congested link gives the highest aggregate throughput. Time division multiplexing and buffer space multiplexing were slightly less effective, but all three schemes allow the sum of multiple flows to substantially exceed that of any one flow, improving over circuit switching by taking advantage of resources that are forced to remain idle in circuit switching. All three schemes proved to have excellent fairness. The high performance, fairness and simplicity of implementation support a recommendation of statistical multiplexing for shared quantum repeater networks.

  11. Nuclear factor I acts as a transcription factor on the MMTV promoter but competes with steroid hormone receptors for DNA binding.

    OpenAIRE

    Brüggemeier, U; Rogge, L.; Winnacker, E L; Beato, M

    1990-01-01

    Several steroid hormones induce transcription of the mouse mammary tumor virus (MMTV) promoter, through an interaction of their respective receptors with the hormone responsive elements (HREs) in the long terminal repeat (LTR) region. The molecular mechanism underlying transcriptional activation is not known, but binding of nuclear factor I (NFI) to a site adjacent to the HRE appears to be required for efficient transcription of the MMTV promoter. In JEG-3 choriocarcinoma cells the MMTV promo...

  12. Mammalian TBX1 preferentially binds and regulates downstream targets via a tandem T-site repeat.

    Directory of Open Access Journals (Sweden)

    Raquel Castellanos

    Full Text Available Haploinsufficiency or mutation of TBX1 is largely responsible for the etiology of physical malformations in individuals with velo-cardio-facial/DiGeorge syndrome (VCFS/DGS/22q11.2 deletion syndrome. TBX1 encodes a transcription factor protein that contains an evolutionarily conserved DNA binding domain termed the T-box that is shared with other family members. All T-box proteins, examined so far, bind to similar but not identical consensus DNA sequences, indicating that they have specific binding preferences. To identify the TBX1 specific consensus sequence, Systematic Evolution of Ligands by Exponential Enrichment (SELEX was performed. In contrast to other TBX family members recognizing palindrome sequences, we found that TBX1 preferentially binds to a tandem repeat of 5'-AGGTGTGAAGGTGTGA-3'. We also identified a second consensus sequence comprised of a tandem repeat with a degenerated downstream site. We show that three known human disease-causing TBX1 missense mutations (F148Y, H194Q and G310S do not alter nuclear localization, or disrupt binding to the tandem repeat consensus sequences, but they reduce transcriptional activity in cell culture reporter assays. To identify Tbx1-downstream genes, we performed an in silico genome wide analysis of potential cis-acting elements in DNA and found strong enrichment of genes required for developmental processes and transcriptional regulation. We found that TBX1 binds to 19 different loci in vitro, which may correspond to putative cis-acting binding sites. In situ hybridization coupled with luciferase gene reporter assays on three gene loci, Fgf8, Bmper, Otog-MyoD, show that these motifs are directly regulated by TBX1 in vitro. Collectively, the present studies establish new insights into molecular aspects of TBX1 binding to DNA. This work lays the groundwork for future in vivo studies, including chromatin immunoprecipitation followed by next generation sequencing (ChIP-Seq to further elucidate the

  13. Mammalian TBX1 preferentially binds and regulates downstream targets via a tandem T-site repeat.

    Science.gov (United States)

    Castellanos, Raquel; Xie, Qing; Zheng, Deyou; Cvekl, Ales; Morrow, Bernice E

    2014-01-01

    Haploinsufficiency or mutation of TBX1 is largely responsible for the etiology of physical malformations in individuals with velo-cardio-facial/DiGeorge syndrome (VCFS/DGS/22q11.2 deletion syndrome). TBX1 encodes a transcription factor protein that contains an evolutionarily conserved DNA binding domain termed the T-box that is shared with other family members. All T-box proteins, examined so far, bind to similar but not identical consensus DNA sequences, indicating that they have specific binding preferences. To identify the TBX1 specific consensus sequence, Systematic Evolution of Ligands by Exponential Enrichment (SELEX) was performed. In contrast to other TBX family members recognizing palindrome sequences, we found that TBX1 preferentially binds to a tandem repeat of 5'-AGGTGTGAAGGTGTGA-3'. We also identified a second consensus sequence comprised of a tandem repeat with a degenerated downstream site. We show that three known human disease-causing TBX1 missense mutations (F148Y, H194Q and G310S) do not alter nuclear localization, or disrupt binding to the tandem repeat consensus sequences, but they reduce transcriptional activity in cell culture reporter assays. To identify Tbx1-downstream genes, we performed an in silico genome wide analysis of potential cis-acting elements in DNA and found strong enrichment of genes required for developmental processes and transcriptional regulation. We found that TBX1 binds to 19 different loci in vitro, which may correspond to putative cis-acting binding sites. In situ hybridization coupled with luciferase gene reporter assays on three gene loci, Fgf8, Bmper, Otog-MyoD, show that these motifs are directly regulated by TBX1 in vitro. Collectively, the present studies establish new insights into molecular aspects of TBX1 binding to DNA. This work lays the groundwork for future in vivo studies, including chromatin immunoprecipitation followed by next generation sequencing (ChIP-Seq) to further elucidate the molecular

  14. Molecular mechanisms for maintenance of G-rich short tandem repeats capable of adopting G4 DNA structures

    International Nuclear Information System (INIS)

    Mammalian genomes contain several types of repetitive sequences. Some of these sequences are implicated in various specific cellular events, including meiotic recombination, chromosomal breaks and transcriptional regulation, and also in several human disorders. In this review, we document the formation of DNA secondary structures by the G-rich repetitive sequences that have been found in several minisatellites, telomeres and in various triplet repeats, and report their effects on in vitro DNA synthesis. d(GGCAG) repeats in the mouse minisatellite Pc-1 were demonstrated to form an intra-molecular folded-back quadruplex structure (also called a G4' structure) by NMR and CD spectrum analyses. d(TTAGGG) telomere repeats and d(CGG) triplet repeats were also shown to form G4' and other unspecified higher order structures, respectively. In vitro DNA synthesis was substantially arrested within the repeats, and this could be responsible for the preferential mutability of the G-rich repetitive sequences. Electrophoretic mobility shift assays using NIH3T3 cell extracts revealed heterogeneous nuclear ribonucleoprotein (hnRNP) A1 and A3, which were tightly and specifically bound to d(GGCAG) and d(TTAGGG) repeats with K d values in the order of nM. HnRNP A1 unfolded the G4' structure formed in the d(GGCAG) n and d(TTAGGG) n repeat regions, and also resolved the higher order structure formed by d(CGG) triplet repeats. Furthermore, DNA synthesis arrest at the secondary structures of d(GGCAG) repeats, telomeres and d(CGG) triplet repeats was efficiently repressed by the addition of hnRNP A1. High expression of hnRNPs may contribute to the maintenance of G-rich repetitive sequences, including telomere repeats, and may also participate in ensuring the stability of the genome in cells with enhanced proliferation. Transcriptional regulation of genes, such as c-myc and insulin, by G4 sequences found in the promoter regions could be an intriguing field of research and help further

  15. Transcription factor ICBP90 regulates the MIF promoter and immune susceptibility locus.

    Science.gov (United States)

    Yao, Jie; Leng, Lin; Sauler, Maor; Fu, Weiling; Zheng, Junsong; Zhang, Yi; Du, Xin; Yu, Xiaoqing; Lee, Patty; Bucala, Richard

    2016-02-01

    The immunoregulatory cytokine macrophage migration inhibitory factor (MIF) is encoded in a functionally polymorphic locus that is linked to the susceptibility of autoimmune and infectious diseases. The MIF promoter contains a 4-nucleotide microsatellite polymorphism (-794 CATT) that repeats 5 to 8 times in the locus, with greater numbers of repeats associated with higher mRNA levels. Because there is no information about the transcriptional regulation of these common alleles, we used oligonucleotide affinity chromatography and liquid chromatography-mass spectrometry to identify nuclear proteins that interact with the -794 CATT5-8 site. An analysis of monocyte nuclear lysates revealed that the transcription factor ICBP90 (also known as UHRF1) is the major protein interacting with the MIF microsatellite. We found that ICBP90 is essential for MIF transcription from monocytes/macrophages, B and T lymphocytes, and synovial fibroblasts, and TLR-induced MIF transcription is regulated in an ICBP90- and -794 CATT5-8 length-dependent manner. Whole-genome transcription analysis of ICBP90 shRNA-treated rheumatoid synoviocytes uncovered a subset of proinflammatory and immune response genes that overlapped with those regulated by MIF shRNA. In addition, the expression levels of ICBP90 and MIF were correlated in joint synovia from patients with rheumatoid arthritis. These findings identify ICBP90 as a key regulator of MIF transcription and provide functional insight into the regulation of the polymorphic MIF locus.

  16. The grammar of transcriptional regulation.

    Science.gov (United States)

    Weingarten-Gabbay, Shira; Segal, Eran

    2014-06-01

    Eukaryotes employ combinatorial strategies to generate a variety of expression patterns from a relatively small set of regulatory DNA elements. As in any other language, deciphering the mapping between DNA and expression requires an understanding of the set of rules that govern basic principles in transcriptional regulation, the functional elements involved, and the ways in which they combine to orchestrate a transcriptional output. Here, we review the current understanding of various grammatical rules, including the effect on expression of the number of transcription factor binding sites, their location, orientation, affinity and activity; co-association with different factors; and intrinsic nucleosome organization. We review different methods that are used to study the grammar of transcription regulation, highlight gaps in current understanding, and discuss how recent technological advances may be utilized to bridge them. PMID:24390306

  17. RNA-guided transcriptional regulation

    Energy Technology Data Exchange (ETDEWEB)

    Church, George M.; Mali, Prashant G.; Esvelt, Kevin M.

    2016-02-23

    Methods of modulating expression of a target nucleic acid in a cell are provided including introducing into the cell a first foreign nucleic acid encoding one or more RNAs complementary to DNA, wherein the DNA includes the target nucleic acid, introducing into the cell a second foreign nucleic acid encoding a nuclease-null Cas9 protein that binds to the DNA and is guided by the one or more RNAs, introducing into the cell a third foreign nucleic acid encoding a transcriptional regulator protein or domain, wherein the one or more RNAs, the nuclease-null Cas9 protein, and the transcriptional regulator protein or domain are expressed, wherein the one or more RNAs, the nuclease-null Cas9 protein and the transcriptional regulator protein or domain co-localize to the DNA and wherein the transcriptional regulator protein or domain regulates expression of the target nucleic acid.

  18. The solution structure of the pentatricopeptide repeat protein PPR10 upon binding atpH RNA

    OpenAIRE

    Gully, Benjamin S.; Cowieson, Nathan; Stanley, Will A; Shearston, Kate; Small, Ian D.; Barkan, Alice; Bond, Charles S.

    2015-01-01

    The pentatricopeptide repeat (PPR) protein family is a large family of RNA-binding proteins that is characterized by tandem arrays of a degenerate 35-amino-acid motif which form an α-solenoid structure. PPR proteins influence the editing, splicing, translation and stability of specific RNAs in mitochondria and chloroplasts. Zea mays PPR10 is amongst the best studied PPR proteins, where sequence-specific binding to two RNA transcripts, atpH and psaJ, has been demonstrated to follow a recogniti...

  19. Transcriptional Mechanisms of Drug Addiction

    OpenAIRE

    Nestler, Eric J.

    2012-01-01

    Regulation of gene expression is considered a plausible mechanism of drug addiction given the stability of behavioral abnormalities that define an addicted state. Numerous transcription factors, proteins that bind to regulatory regions of specific genes and thereby control levels of their expression, have been implicated in the addiction process over the past decade or two. Here we review the growing evidence for the role played by several prominent transcription factors, including a Fos fami...

  20. National Capital Planning Commission Meeting Transcripts

    Data.gov (United States)

    National Capital Planning Commission — Transcripts of the monthly (with the exception of August) National Capital Planning Commission meeting transcripts are provided for research to confirm actions...

  1. Modulating TRAP-mediated transcription termination by AT during transcription of the leader region of the Bacillus subtilis trp operon

    OpenAIRE

    Sharma, Shraddha; Gollnick, Paul

    2014-01-01

    An 11-subunit protein called trp RNA binding Attenuation Protein (TRAP) controls attenuation of the tryptophan biosynthetic (trpEDCFBA) operon in Bacillus subtilis. Tryptophan-activated TRAP binds to 11 (G/U)AG repeats in the 5′ leader region of trp mRNAs, and downregulates expression of the operon by promoting transcription termination prior to the structural genes. Anti-TRAP (AT) is an antagonist that binds to tryptophan-activated TRAP and prevents TRAP from binding to RNA, thereby upregula...

  2. A Complete and Accurate Ab Initio Repeat Finding Algorithm.

    Science.gov (United States)

    Lian, Shuaibin; Chen, Xinwu; Wang, Peng; Zhang, Xiaoli; Dai, Xianhua

    2016-03-01

    It has become clear that repetitive sequences have played multiple roles in eukaryotic genome evolution including increasing genetic diversity through mutation, changes in gene expression and facilitating generation of novel genes. However, identification of repetitive elements can be difficult in the ab initio manner. Currently, some classical ab initio tools of finding repeats have already presented and compared. The completeness and accuracy of detecting repeats of them are little pool. To this end, we proposed a new ab initio repeat finding tool, named HashRepeatFinder, which is based on hash index and word counting. Furthermore, we assessed the performances of HashRepeatFinder with other two famous tools, such as RepeatScout and Repeatfinder, in human genome data hg19. The results indicated the following three conclusions: (1) The completeness of HashRepeatFinder is the best one among these three compared tools in almost all chromosomes, especially in chr9 (8 times of RepeatScout, 10 times of Repeatfinder); (2) in terms of detecting large repeats, HashRepeatFinder also performed best in all chromosomes, especially in chr3 (24 times of RepeatScout and 250 times of Repeatfinder) and chr19 (12 times of RepeatScout and 60 times of Repeatfinder); (3) in terms of accuracy, HashRepeatFinder can merge the abundant repeats with high accuracy. PMID:26272474

  3. Molecular, physiological, and motor performance defects in DMSXL mice carrying >1,000 CTG repeats from the human DM1 locus.

    Directory of Open Access Journals (Sweden)

    Aline Huguet

    Full Text Available Myotonic dystrophy type 1 (DM1 is caused by an unstable CTG repeat expansion in the 3'UTR of the DM protein kinase (DMPK gene. DMPK transcripts carrying CUG expansions form nuclear foci and affect splicing regulation of various RNA transcripts. Furthermore, bidirectional transcription over the DMPK gene and non-conventional RNA translation of repeated transcripts have been described in DM1. It is clear now that this disease may involve multiple pathogenic pathways including changes in gene expression, RNA stability and splicing regulation, protein translation, and micro-RNA metabolism. We previously generated transgenic mice with 45-kb of the DM1 locus and >300 CTG repeats (DM300 mice. After successive breeding and a high level of CTG repeat instability, we obtained transgenic mice carrying >1,000 CTG (DMSXL mice. Here we described for the first time the expression pattern of the DMPK sense transcripts in DMSXL and human tissues. Interestingly, we also demonstrate that DMPK antisense transcripts are expressed in various DMSXL and human tissues, and that both sense and antisense transcripts accumulate in independent nuclear foci that do not co-localize together. Molecular features of DM1-associated RNA toxicity in DMSXL mice (such as foci accumulation and mild missplicing, were associated with high mortality, growth retardation, and muscle defects (abnormal histopathology, reduced muscle strength, and lower motor performances. We have found that lower levels of IGFBP-3 may contribute to DMSXL growth retardation, while increased proteasome activity may affect muscle function. These data demonstrate that the human DM1 locus carrying very large expansions induced a variety of molecular and physiological defects in transgenic mice, reflecting DM1 to a certain extent. As a result, DMSXL mice provide an animal tool to decipher various aspects of the disease mechanisms. In addition, these mice can be used to test the preclinical impact of systemic

  4. Reversion of FMR1 Methylation and Silencing by Editing the Triplet Repeats in Fragile X iPSC-Derived Neurons

    Directory of Open Access Journals (Sweden)

    Chul-Yong Park

    2015-10-01

    Full Text Available Fragile X syndrome (FXS is the most common form of inherited intellectual disability, resulting from a CGG repeat expansion in the fragile X mental retardation 1 (FMR1 gene. Here, we report a strategy for CGG repeat correction using CRISPR/Cas9 for targeted deletion in both embryonic stem cells and induced pluripotent stem cells derived from FXS patients. Following gene correction in FXS induced pluripotent stem cells, FMR1 expression was restored and sustained in neural precursor cells and mature neurons. Strikingly, after removal of the CGG repeats, the upstream CpG island of the FMR1 promoter showed extensive demethylation, an open chromatin state, and transcription initiation. These results suggest a silencing maintenance mechanism for the FMR1 promoter that is dependent on the existence of the CGG repeat expansion. Our strategy for deletion of trinucleotide repeats provides further insights into the molecular mechanisms of FXS and future therapies of trinucleotide repeat disorders.

  5. Repeated vitrification/warming of human sperm gives better results than repeated slow programmable freezing

    Institute of Scientific and Technical Information of China (English)

    Teraporn Vutyavanich; Worashorn Lattiwongsakorn; Waraporn Piromlertamorn; Sudarat Samchimchom

    2012-01-01

    In this study,we compared the effects of repeated freezing/thawing of human sperm by our in-house method of rapid freezing with slow programmable freezing.Sperm samples from 11 normozoospermic subjects were processed through density gradients and divided into three aliquots:non-frozen,rapid freezing and slow programmable freezing.Sperm in the rapid freezing group had better motility and viability than those in the slow freezing group (P<O.01) after the first,second and third cycles of freezing/thawing,but there was no difference in morphology.In the second experiment,rapid freezing was repeated three times in 20 subjects.The samples from each thawing cycle were evaluated for DNA fragmentation using the alkaline comet assay.DNA fragmentation began to increase considerably after the second cycle of freezing/thawing,but to a level that was not clinically important.In the third experiment,rapid freezing was done repeatedly in 10 subjects,until no motile sperm were observed after thawing.The median number of repeated freezing/thawing that yielded no motile sperm was seven (range:5-8,mean:6.8).In conclusion,we demonstrated that repeated freezing/thawing of processed semen using our rapid freezing method gave better results than standard slow programmable freezing.This method can help maximize the usage of precious cryopreserved sperm samples in assisted reproduction technology.

  6. A tandem repeat gene in a picornavirus.

    OpenAIRE

    Forss, S; Schaller, H

    1982-01-01

    Three closely related genes for the small genome-linked protein (VPg) of picornaviruses have been identified by sequence analysis as a tandem repeat in the genome of Foot and Mouth Disease Virus (FMDV), strain O1K. This unusual structure was also found in the genome of strain C1O, belonging to a different FMDV serotype. Predicted biochemical properties of the three VPg gene products are in excellent agreement with the data from protein analysis of a heterogeneous VPg population from a third F...

  7. Source coding model for repeated snapshot imaging

    CERN Document Server

    Li, Junhui; Yang, Dongyue; wu, Guohua; Yin, Longfei; Guo, Hong

    2016-01-01

    Imaging based on successive repeated snapshot measurement is modeled as a source coding process in information theory. The necessary number of measurement to maintain a certain level of error rate is depicted as the rate-distortion function of the source coding. Quantitative formula of the error rate versus measurement number relation is derived, based on the information capacity of imaging system. Second order fluctuation correlation imaging (SFCI) experiment with pseudo-thermal light verifies this formula, which paves the way for introducing information theory into the study of ghost imaging (GI), both conventional and computational.

  8. Mechanical processes with repeated attenuated impacts

    CERN Document Server

    Nagaev, R F

    1999-01-01

    This book is devoted to considering in the general case - using typical concrete examples - the motion of machines and mechanisms of impact and vibro-impact action accompanied by a peculiar phenomenon called "impact collapse". This phenomenon is that after the initial collision, a sequence of repeated gradually quickening collisions of decreasing-to-zero intensity occurs, with the final establishment of protracted contact between the interacting bodies. The initiation conditions of the impact collapse are determined and calculation techniques for the quantitative characteristics of the corresp

  9. Platelet peripheral benzodiazepine receptors in repeated stress

    Energy Technology Data Exchange (ETDEWEB)

    Dar, D.E.; Bidder, M.; Gavish, M. (Technion-Israel Institute of Technology, Haifa (Israel)); Weizman, A.; Karp, L.; Tyano, S. (Tel Aviv Univ. (Israel)); Grinshpoon, A.; Bleich, A.

    1991-01-01

    ({sup 3}H)PK 11195 binding to platelet membranes and plasma stress hormones were studied in soldiers at the beginning of a parachute training course, following 6 days of preparatory exercises, and after the fourth actual parachute jump. A slight reduction (15%; NS) in the number of peripheral benzodiazepine receptors (PBR) was detected at the end of the exercise period, prior to the first jump. Reduced density of PBR was observed immediately after the repeated actual jumps. Equilibrium dissociation constants were not affected by the stressful situation. Plasma cortisol and prolactin levels remained unaltered during the entire study period.

  10. R-loops associated with triplet repeat expansions promote gene silencing in Friedreich ataxia and fragile X syndrome.

    Directory of Open Access Journals (Sweden)

    Matthias Groh

    2014-05-01

    Full Text Available Friedreich ataxia (FRDA and Fragile X syndrome (FXS are among 40 diseases associated with expansion of repeated sequences (TREDs. Although their molecular pathology is not well understood, formation of repressive chromatin and unusual DNA structures over repeat regions were proposed to play a role. Our study now shows that RNA/DNA hybrids (R-loops form in patient cells on expanded repeats of endogenous FXN and FMR1 genes, associated with FRDA and FXS. These transcription-dependent R-loops are stable, co-localise with repressive H3K9me2 chromatin mark and impede RNA Polymerase II transcription in patient cells. We investigated the interplay between repressive chromatin marks and R-loops on the FXN gene. We show that decrease in repressive H3K9me2 chromatin mark has no effect on R-loop levels. Importantly, increasing R-loop levels by treatment with DNA topoisomerase inhibitor camptothecin leads to up-regulation of repressive chromatin marks, resulting in FXN transcriptional silencing. This provides a direct molecular link between R-loops and the pathology of TREDs, suggesting that R-loops act as an initial trigger to promote FXN and FMR1 silencing. Thus R-loops represent a common feature of nucleotide expansion disorders and provide a new target for therapeutic interventions.

  11. Impact of Alu repeats on the evolution of human p53 binding sites

    Directory of Open Access Journals (Sweden)

    Sirotin Michael V

    2011-01-01

    Full Text Available Abstract Background The p53 tumor suppressor protein is involved in a complicated regulatory network, mediating expression of ~1000 human genes. Recent studies have shown that many p53 in vivo binding sites (BSs reside in transposable repeats. The relationship between these BSs and functional p53 response elements (REs remains unknown, however. We sought to understand whether the p53 REs also reside in transposable elements and particularly in the most-abundant Alu repeats. Results We have analyzed ~160 functional p53 REs identified so far and found that 24 of them occur in repeats. More than half of these repeat-associated REs reside in Alu elements. In addition, using a position weight matrix approach, we found ~400,000 potential p53 BSs in Alu elements genome-wide. Importantly, these putative BSs are located in the same regions of Alu repeats as the functional p53 REs - namely, in the vicinity of Boxes A/A' and B of the internal RNA polymerase III promoter. Earlier nucleosome-mapping experiments showed that the Boxes A/A' and B have a different chromatin environment, which is critical for the binding of p53 to DNA. Here, we compare the Alu-residing p53 sites with the corresponding Alu consensus sequences and conclude that the p53 sites likely evolved through two different mechanisms - the sites overlapping with the Boxes A/A' were generated by CG → TG mutations; the other sites apparently pre-existed in the progenitors of several Alu subfamilies, such as AluJo and AluSq. The binding affinity of p53 to the Alu-residing sites generally correlates with the age of Alu subfamilies, so that the strongest sites are embedded in the 'relatively young' Alu repeats. Conclusions The primate-specific Alu repeats play an important role in shaping the p53 regulatory network in the context of chromatin. One of the selective factors responsible for the frequent occurrence of Alu repeats in introns may be related to the p53-mediated regulation of Alu

  12. Overexpression of MIP2, a novel WD-repeat protein, promotes proliferation of H9c2 cells

    International Nuclear Information System (INIS)

    WD40 repeat proteins have a wide range of diverse biological functions including signal transduction, cell cycle regulation, RNA splicing, and transcription. Myocardial ischemic preconditioning up-regulated protein 2 (MIP2) is a novel member of the WD40 repeat proteins superfamily that contains five WD40 repeats. Little is known about its biological role, and the purpose of this study was to determine the role of MIP2 in regulating cellular proliferation. Transfection and constitutive expression of MIP2 in the rat cardiomyoblast cell line H9c2 results in enhanced growth of those cells as measured by cell number and is proportional to the amount of MIP2 expressed. Overexpression of MIP2 results in a shorter cell cycle, as measured by flow cytometry. Collectively, these data suggest that MIP2 may participate in the progression of cell proliferation in H9c2 cells.

  13. Gene Repression in Haloarchaea Using the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas I-B System.

    Science.gov (United States)

    Stachler, Aris-Edda; Marchfelder, Anita

    2016-07-15

    The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system is used by bacteria and archaea to fend off foreign genetic elements. Since its discovery it has been developed into numerous applications like genome editing and regulation of transcription in eukaryotes and bacteria. For archaea currently no tools for transcriptional repression exist. Because molecular biology analyses in archaea become more and more widespread such a tool is vital for investigating the biological function of essential genes in archaea. Here we use the model archaeon Haloferax volcanii to demonstrate that its endogenous CRISPR-Cas system I-B can be harnessed to repress gene expression in archaea. Deletion of cas3 and cas6b genes results in efficient repression of transcription. crRNAs targeting the promoter region reduced transcript levels down to 8%. crRNAs targeting the reading frame have only slight impact on transcription. crRNAs that target the coding strand repress expression only down to 88%, whereas crRNAs targeting the template strand repress expression down to 8%. Repression of an essential gene results in reduction of transcription levels down to 22%. Targeting efficiencies can be enhanced by expressing a catalytically inactive Cas3 mutant. Genes can be targeted on plasmids or on the chromosome, they can be monocistronic or part of a polycistronic operon.

  14. Gene Repression in Haloarchaea Using the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas I-B System*

    Science.gov (United States)

    Stachler, Aris-Edda; Marchfelder, Anita

    2016-01-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system is used by bacteria and archaea to fend off foreign genetic elements. Since its discovery it has been developed into numerous applications like genome editing and regulation of transcription in eukaryotes and bacteria. For archaea currently no tools for transcriptional repression exist. Because molecular biology analyses in archaea become more and more widespread such a tool is vital for investigating the biological function of essential genes in archaea. Here we use the model archaeon Haloferax volcanii to demonstrate that its endogenous CRISPR-Cas system I-B can be harnessed to repress gene expression in archaea. Deletion of cas3 and cas6b genes results in efficient repression of transcription. crRNAs targeting the promoter region reduced transcript levels down to 8%. crRNAs targeting the reading frame have only slight impact on transcription. crRNAs that target the coding strand repress expression only down to 88%, whereas crRNAs targeting the template strand repress expression down to 8%. Repression of an essential gene results in reduction of transcription levels down to 22%. Targeting efficiencies can be enhanced by expressing a catalytically inactive Cas3 mutant. Genes can be targeted on plasmids or on the chromosome, they can be monocistronic or part of a polycistronic operon. PMID:27226589

  15. Automated Planning in Repeated Adversarial Games

    CERN Document Server

    de Cote, Enrique Munoz; Sykulski, Adam M; Jennings, Nicholas R

    2012-01-01

    Game theory's prescriptive power typically relies on full rationality and/or self-play interactions. In contrast, this work sets aside these fundamental premises and focuses instead on heterogeneous autonomous interactions between two or more agents. Specifically, we introduce a new and concise representation for repeated adversarial (constant-sum) games that highlight the necessary features that enable an automated planing agent to reason about how to score above the game's Nash equilibrium, when facing heterogeneous adversaries. To this end, we present TeamUP, a model-based RL algorithm designed for learning and planning such an abstraction. In essence, it is somewhat similar to R-max with a cleverly engineered reward shaping that treats exploration as an adversarial optimization problem. In practice, it attempts to find an ally with which to tacitly collude (in more than two-player games) and then collaborates on a joint plan of actions that can consistently score a high utility in adversarial repeated gam...

  16. Chromosome-specific DNA Repeat Probes

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, Adolf; Weier, Jingly Fung; Weier, Heinz-Ulrich G.

    2006-03-16

    In research as well as in clinical applications, fluorescence in situ hybridization (FISH) has gained increasing popularity as a highly sensitive technique to study cytogenetic changes. Today, hundreds of commercially available DNA probes serve the basic needs of the biomedical research community. Widespread applications, however, are often limited by the lack of appropriately labeled, specific nucleic acid probes. We describe two approaches for an expeditious preparation of chromosome-specific DNAs and the subsequent probe labeling with reporter molecules of choice. The described techniques allow the preparation of highly specific DNA repeat probes suitable for enumeration of chromosomes in interphase cell nuclei or tissue sections. In addition, there is no need for chromosome enrichment by flow cytometry and sorting or molecular cloning. Our PCR-based method uses either bacterial artificial chromosomes or human genomic DNA as templates with {alpha}-satellite-specific primers. Here we demonstrate the production of fluorochrome-labeled DNA repeat probes specific for human chromosomes 17 and 18 in just a few days without the need for highly specialized equipment and without the limitation to only a few fluorochrome labels.

  17. Repeated proton beam therapy for hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Purpose: To retrospectively evaluate the safety and effectiveness of repeated proton beam therapy for newly developed or recurrent hepatocellular carcinoma (HCC). Methods and Materials: From June 1989 through July 2000, 225 patients with HCC underwent their first course of proton beam therapy at University of Tsukuba. Of them, 27 with 68 lesions who had undergone two or more courses were retrospectively reviewed in this study. Median interval between the first and second course was 24.5 months (range 3.3-79.8 months). Median total dose of 72 Gy in 16 fractions and 66 Gy in 16 fractions were given for the first course and the rest of the courses, respectively. Results: The 5-year survival rate and median survival period from the beginning of the first course for the 27 patients were 55.6% and 62.2 months, respectively. Five-year local control rate for the 68 lesions was 87.8%. Of the patients, 1 with Child-Pugh class B and another with class C before the last course suffered from acute hepatic failure. Conclusions: Repeated proton beam therapy for HCC is safe when the patient has a target in the peripheral region of the liver and liver function is Child-Pugh class A

  18. Extending Teach and Repeat to Pivoting Wheelchairs

    Directory of Open Access Journals (Sweden)

    Guillermo Del Castillo

    2003-02-01

    Full Text Available The paper extends the teach-and-repeat paradigm that has been successful for the control of holonomic robots to nonholonomic wheelchairs which may undergo pivoting action over the course of their taught movement. Due to the nonholonomic nature of the vehicle kinematics, estimation is required -- in the example given herein, based upon video detection of wall-mounted cues -- both in the teaching and the tracking events. In order to accommodate motion that approaches pivoting action as well as motion that approaches straight-line action, the estimation equations of the Extended Kalman Filter and the control equations are formulated using two different definitions of a nontemporal independent variable. The paper motivates the need for pivoting action in real-life settings by reporting extensively on the abilities and limitations of estimation-based teach-and-repeat action where pivoting and near-pivoting action is disallowed. Following formulation of the equations in the near-pivot mode, the paper reports upon experiments where taught trajectories which entail a seamless mix of near-straight and near-pivot action are tracked.

  19. Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain.

    Science.gov (United States)

    de Lange, Orlando; Wolf, Christina; Dietze, Jörn; Elsaesser, Janett; Morbitzer, Robert; Lahaye, Thomas

    2014-06-01

    The tandem repeats of transcription activator like effectors (TALEs) mediate sequence-specific DNA binding using a simple code. Naturally, TALEs are injected by Xanthomonas bacteria into plant cells to manipulate the host transcriptome. In the laboratory TALE DNA binding domains are reprogrammed and used to target a fused functional domain to a genomic locus of choice. Research into the natural diversity of TALE-like proteins may provide resources for the further improvement of current TALE technology. Here we describe TALE-like proteins from the endosymbiotic bacterium Burkholderia rhizoxinica, termed Bat proteins. Bat repeat domains mediate sequence-specific DNA binding with the same code as TALEs, despite less than 40% sequence identity. We show that Bat proteins can be adapted for use as transcription factors and nucleases and that sequence preferences can be reprogrammed. Unlike TALEs, the core repeats of each Bat protein are highly polymorphic. This feature allowed us to explore alternative strategies for the design of custom Bat repeat arrays, providing novel insights into the functional relevance of non-RVD residues. The Bat proteins offer fertile grounds for research into the creation of improved programmable DNA-binding proteins and comparative insights into TALE-like evolution.

  20. Discrepancies in reporting the CAG repeat lengths for Huntington's disease

    DEFF Research Database (Denmark)

    Quarrell, Oliver W; Handley, Olivia; O'Donovan, Kirsty;

    2011-01-01

    Huntington's disease results from a CAG repeat expansion within the Huntingtin gene; this is measured routinely in diagnostic laboratories. The European Huntington's Disease Network REGISTRY project centrally measures CAG repeat lengths on fresh samples; these were compared with the original...

  1. Quantum repeaters free of polarization disturbance and phase noise

    OpenAIRE

    Yin, Zhen-Qiang; Zhao, Yi-bo; Yong YANG; Han, Zheng-Fu; Guo, Guang-Can

    2009-01-01

    Original quantum repeater protocols based on single-photon interference suffer from phase noise of the channel, which makes the long-distance quantum communication infeasible. Fortunately, two-photon interference type quantum repeaters can be immune to phase noise of the channel. However, this type quantum repeaters may still suffer from polarization disturbance of the channel. Here we propose a quantum repeaters protocol which is free of polarization disturbance of the channel based on the i...

  2. Telomere Transcripts Target Telomerase in Human Cancer Cells.

    Science.gov (United States)

    Kreilmeier, Theresa; Mejri, Doris; Hauck, Marlene; Kleiter, Miriam; Holzmann, Klaus

    2016-01-01

    Long non-coding transcripts from telomeres, called telomeric repeat-containing RNA (TERRA), were identified as blocking telomerase activity (TA), a telomere maintenance mechanism (TMM), in tumors. We expressed recombinant TERRA transcripts in tumor cell lines with TA and with alternative lengthening of telomeres (ALT) to study effects on TMM and cell growth. Adeno- and lentivirus constructs (AV and LV) were established for transient and stable expression of approximately 130 units of telomere hexanucleotide repeats under control of cytomegalovirus (CMV) and human RNase P RNA H1 (hH1) promoters with and without polyadenylation, respectively. Six human tumor cell lines either using telomerase or ALT were infected and analyzed for TA levels. Pre-infection cells using telomerase had 1%-3% of the TERRA expression levels of ALT cells. AV and LV expression of recombinant TERRA in telomerase positive cells showed a 1.3-2.6 fold increase in TERRA levels, and a decrease in TA of 25%-58%. Dominant-negative or small hairpin RNA (shRNA) viral expression against human telomerase reverse transcriptase (hTERT) results in senescence, not induced by TERRA expression. Population doubling time, cell viability and TL (telomere length) were not impacted by ectopic TERRA expression. Clonal growth was reduced by TERRA expression in TA but not ALT cell lines. ALT cells were not affected by treatments applied. Established cell models and tools may be used to better understand the role of TERRA in the cell, especially for targeting telomerase. PMID:27537914

  3. Pervasive transcription: detecting functional RNAs in bacteria.

    Science.gov (United States)

    Lybecker, Meghan; Bilusic, Ivana; Raghavan, Rahul

    2014-01-01

    Pervasive, or genome-wide, transcription has been reported in all domains of life. In bacteria, most pervasive transcription occurs antisense to protein-coding transcripts, although recently a new class of pervasive RNAs was identified that originates from within annotated genes. Initially considered to be non-functional transcriptional noise, pervasive transcription is increasingly being recognized as important in regulating gene expression. The function of pervasive transcription is an extensively debated question in the field of transcriptomics and regulatory RNA biology. Here, we highlight the most recent contributions addressing the purpose of pervasive transcription in bacteria and discuss their implications.

  4. FRA2A is a CGG repeat expansion associated with silencing of AFF3.

    Science.gov (United States)

    Metsu, Sofie; Rooms, Liesbeth; Rainger, Jacqueline; Taylor, Martin S; Bengani, Hemant; Wilson, David I; Chilamakuri, Chandra Sekhar Reddy; Morrison, Harris; Vandeweyer, Geert; Reyniers, Edwin; Douglas, Evelyn; Thompson, Geoffrey; Haan, Eric; Gecz, Jozef; Fitzpatrick, David R; Kooy, R Frank

    2014-04-01

    Folate-sensitive fragile sites (FSFS) are a rare cytogenetically visible subset of dynamic mutations. Of the eight molecularly characterized FSFS, four are associated with intellectual disability (ID). Cytogenetic expression results from CGG tri-nucleotide-repeat expansion mutation associated with local CpG hypermethylation and transcriptional silencing. The best studied is the FRAXA site in the FMR1 gene, where large expansions cause fragile X syndrome, the most common inherited ID syndrome. Here we studied three families with FRA2A expression at 2q11 associated with a wide spectrum of neurodevelopmental phenotypes. We identified a polymorphic CGG repeat in a conserved, brain-active alternative promoter of the AFF3 gene, an autosomal homolog of the X-linked AFF2/FMR2 gene: Expansion of the AFF2 CGG repeat causes FRAXE ID. We found that FRA2A-expressing individuals have mosaic expansions of the AFF3 CGG repeat in the range of several hundred repeat units. Moreover, bisulfite sequencing and pyrosequencing both suggest AFF3 promoter hypermethylation. cSNP-analysis demonstrates monoallelic expression of the AFF3 gene in FRA2A carriers thus predicting that FRA2A expression results in functional haploinsufficiency for AFF3 at least in a subset of tissues. By whole-mount in situ hybridization the mouse AFF3 ortholog shows strong regional expression in the developing brain, somites and limb buds in 9.5-12.5dpc mouse embryos. Our data suggest that there may be an association between FRA2A and a delay in the acquisition of motor and language skills in the families studied here. However, additional cases are required to firmly establish a causal relationship. PMID:24763282

  5. Role of CTCF protein in regulating FMR1 locus transcription.

    Directory of Open Access Journals (Sweden)

    Stella Lanni

    Full Text Available Fragile X syndrome (FXS, the leading cause of inherited intellectual disability, is caused by epigenetic silencing of the FMR1 gene, through expansion and methylation of a CGG triplet repeat (methylated full mutation. An antisense transcript (FMR1-AS1, starting from both promoter and intron 2 of the FMR1 gene, was demonstrated in transcriptionally active alleles, but not in silent FXS alleles. Moreover, a DNA methylation boundary, which is lost in FXS, was recently identified upstream of the FMR1 gene. Several nuclear proteins bind to this region, like the insulator protein CTCF. Here we demonstrate for the first time that rare unmethylated full mutation (UFM alleles present the same boundary described in wild type (WT alleles and that CTCF binds to this region, as well as to the FMR1 gene promoter, exon 1 and intron 2 binding sites. Contrariwise, DNA methylation prevents CTCF binding to FXS alleles. Drug-induced CpGs demethylation does not restore this binding. CTCF knock-down experiments clearly established that CTCF does not act as insulator at the active FMR1 locus, despite the presence of a CGG expansion. CTCF depletion induces heterochromatinic histone configuration of the FMR1 locus and results in reduction of FMR1 transcription, which however is not accompanied by spreading of DNA methylation towards the FMR1 promoter. CTCF depletion is also associated with FMR1-AS1 mRNA reduction. Antisense RNA, like sense transcript, is upregulated in UFM and absent in FXS cells and its splicing is correlated to that of the FMR1-mRNA. We conclude that CTCF has a complex role in regulating FMR1 expression, probably through the organization of chromatin loops between sense/antisense transcriptional regulatory regions, as suggested by bioinformatics analysis.

  6. Erroneous Memories Arising from Repeated Attempts to Remember

    Science.gov (United States)

    Henkel, Linda A.

    2004-01-01

    The impact of repeated and prolonged attempts at remembering on false memory rates was assessed in three experiments. Participants saw and imagined pictures and then made repeated recall attempts before taking a source memory test. Although the number of items recalled increased with repeated tests, the net gains were associated with more source…

  7. 47 CFR 90.247 - Mobile repeater stations.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Mobile repeater stations. 90.247 Section 90.247... MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.247 Mobile repeater stations. A... repeater to extend the communications range of hand-carried units subject to the following: (a)...

  8. Circadian Control of Global Transcription

    Science.gov (United States)

    Li, Shujing; Zhang, Luoying

    2015-01-01

    Circadian rhythms exist in most if not all organisms on the Earth and manifest in various aspects of physiology and behavior. These rhythmic processes are believed to be driven by endogenous molecular clocks that regulate rhythmic expression of clock-controlled genes (CCGs). CCGs consist of a significant portion of the genome and are involved in diverse biological pathways. The transcription of CCGs is tuned by rhythmic actions of transcription factors and circadian alterations in chromatin. Here, we review the circadian control of CCG transcription in five model organisms that are widely used, including cyanobacterium, fungus, plant, fruit fly, and mouse. Comparing the similarity and differences in the five organisms could help us better understand the function of the circadian clock, as well as its output mechanisms adapted to meet the demands of diverse environmental conditions. PMID:26682214

  9. Circadian Control of Global Transcription

    Directory of Open Access Journals (Sweden)

    Shujing Li

    2015-01-01

    Full Text Available Circadian rhythms exist in most if not all organisms on the Earth and manifest in various aspects of physiology and behavior. These rhythmic processes are believed to be driven by endogenous molecular clocks that regulate rhythmic expression of clock-controlled genes (CCGs. CCGs consist of a significant portion of the genome and are involved in diverse biological pathways. The transcription of CCGs is tuned by rhythmic actions of transcription factors and circadian alterations in chromatin. Here, we review the circadian control of CCG transcription in five model organisms that are widely used, including cyanobacterium, fungus, plant, fruit fly, and mouse. Comparing the similarity and differences in the five organisms could help us better understand the function of the circadian clock, as well as its output mechanisms adapted to meet the demands of diverse environmental conditions.

  10. Transcriptional Landscape of Cardiomyocyte Maturation

    Directory of Open Access Journals (Sweden)

    Hideki Uosaki

    2015-11-01

    Full Text Available Decades of progress in developmental cardiology has advanced our understanding of the early aspects of heart development, including cardiomyocyte (CM differentiation. However, control of the CM maturation that is subsequently required to generate adult myocytes remains elusive. Here, we analyzed over 200 microarray datasets from early embryonic to adult hearts and identified a large number of genes whose expression shifts gradually and continuously during maturation. We generated an atlas of integrated gene expression, biological pathways, transcriptional regulators, and gene regulatory networks (GRNs, which show discrete sets of key transcriptional regulators and pathways activated or suppressed during CM maturation. We developed a GRN-based program named MatStatCM that indexes CM maturation status. MatStatCM reveals that pluripotent-stem-cell-derived CMs mature early in culture but are arrested at the late embryonic stage with aberrant regulation of key transcription factors. Our study provides a foundation for understanding CM maturation.

  11. Intrinsic transcript cleavage activity of RNA polymerase.

    OpenAIRE

    Orlova, M; Newlands, J; Das, A; Goldfarb, A; Borukhov, S

    1995-01-01

    The GreA and GreB transcript cleavage factors of Escherichia coli suppress elongation arrest and may have a proofreading role in transcription. With the use of E. coli greA-greB- mutant, RNA polymerase is demonstrated to possess substantial intrinsic transcript cleavage activity. Mildly alkaline pH mimics the effect of the Gre proteins by inducing transcript cleavage in ternary complexes and antagonizing elongation arrest through a cleavage-and-restart reaction. Thus, transcript cleavage cons...

  12. NAC transcription factors in senescence

    DEFF Research Database (Denmark)

    Podzimska-Sroka, Dagmara; O'Shea, Charlotte; Gregersen, Per L.;

    2015-01-01

    Within the last decade, NAC transcription factors have been shown to play essential roles in senescence, which is the focus of this review. Transcriptome analyses associate approximately one third of Arabidopsis NAC genes and many crop NAC genes with senescence, thereby implicating NAC genes...... as important regulators of the senescence process. The consensus DNA binding site of the NAC domain is used to predict NAC target genes, and protein interaction sites can be predicted for the intrinsically disordered transcription regulatory domains of NAC proteins. The molecular characteristics...

  13. Who Repeats Algebra, and How Does Initial Performance Relate to Improvement When the Course Is Repeated?

    Science.gov (United States)

    Fong, Anthony; Jaquet, Karina; Finkelstein, Neal

    2016-01-01

    The information provided in this report shows how students perform when they repeat algebra I and how the level of improvement varies depending on initial course performance and the academic measure (course grades or CST scores). This information can help inform decisions and policies regarding whether and under what circumstances students should…

  14. Repeat Testing Effects on Credentialing Exams: Are Repeaters Misinformed or Uninformed?

    Science.gov (United States)

    Feinberg, Richard A.; Raymond, Mark R.; Haist, Steven A.

    2015-01-01

    To mitigate security concerns and unfair score gains, credentialing programs routinely administer new test material to examinees retesting after an initial failing attempt. Counterintuitively, a small but growing body of recent research suggests that repeating the identical form does not create an unfair advantage. This study builds upon and…

  15. Design principles for efficient, repeated jumpgliding

    International Nuclear Information System (INIS)

    Combined jumping and gliding locomotion, or ‘jumpgliding’, can be an efficient way for small robots or animals to travel over cluttered terrain. This paper presents functional requirements and models for a simple jumpglider which formalize the benefits and limitations of using aerodynamic surfaces to augment jumping ability. Analysis of the model gives insight into design choices and control strategies for higher performance and to accommodate special conditions such as a slippery launching surface. The model informs the design of a robotic platform that can perform repeated jumps using a carbon fiber spring and a pivoting wing. Experiments with two different versions of the platform agree with predictions from the model and demonstrate a significantly greater range, and lower cost-of-transport, than a comparable ballistic jumper. (papers)

  16. Trochlear Nerve Schwannoma With Repeated Intratumoral Hemorrhage.

    Science.gov (United States)

    Liu, Pengfei; Bao, Yuhai; Zhang, Wenchuan

    2016-09-01

    Trochlear nerve schwannoma is extremely rare, with only 35 pathologically confirmed patients being reported in the literature. Here, the authors report a patient of trochlear nerve schwannoma in the prepontine cistern manifesting as facial pain and double vision and presenting the image characteristics of repeated intratumoral hemorrhage, which has never been reported in the literature. Total tumor along with a portion of the trochlear nerve was removed by using a retrosigmoid approach. Facial pain disappeared after operation, and the diplopia remained. Follow-up studies have shown no tumor recurrence for 2 years and the simultaneous alleviation of diplopia. Information regarding the clinical presentation, radiological features and surgical outcomes of trochlear nerve schwannoma are discussed and reviewed in the paper. PMID:27607129

  17. Aging and repeated thought suppression success.

    Directory of Open Access Journals (Sweden)

    Ann E Lambert

    Full Text Available Intrusive thoughts and attempts to suppress them are common, but while suppression may be effective in the short-term, it can increase thought recurrence in the long-term. Because intentional suppression involves controlled processing, and many aspects of controlled processing decline with age, age differences in thought suppression outcomes may emerge, especially over repeated thought suppression attempts as cognitive resources are expended. Using multilevel modeling, we examined age differences in reactions to thought suppression attempts across four thought suppression sequences in 40 older and 42 younger adults. As expected, age differences were more prevalent during suppression than during free monitoring periods, with younger adults indicating longer, more frequent thought recurrences and greater suppression difficulty. Further, younger adults' thought suppression outcomes changed over time, while trajectories for older adults' were relatively stable. Results are discussed in terms of older adults' reduced thought recurrence, which was potentially afforded by age-related changes in reactive control and distractibility.

  18. Aging and repeated thought suppression success.

    Science.gov (United States)

    Lambert, Ann E; Smyth, Frederick L; Beadel, Jessica R; Teachman, Bethany A

    2013-01-01

    Intrusive thoughts and attempts to suppress them are common, but while suppression may be effective in the short-term, it can increase thought recurrence in the long-term. Because intentional suppression involves controlled processing, and many aspects of controlled processing decline with age, age differences in thought suppression outcomes may emerge, especially over repeated thought suppression attempts as cognitive resources are expended. Using multilevel modeling, we examined age differences in reactions to thought suppression attempts across four thought suppression sequences in 40 older and 42 younger adults. As expected, age differences were more prevalent during suppression than during free monitoring periods, with younger adults indicating longer, more frequent thought recurrences and greater suppression difficulty. Further, younger adults' thought suppression outcomes changed over time, while trajectories for older adults' were relatively stable. Results are discussed in terms of older adults' reduced thought recurrence, which was potentially afforded by age-related changes in reactive control and distractibility. PMID:23776442

  19. Statistical Properties of repeating FRB 121102

    CERN Document Server

    Wang, F Y

    2016-01-01

    Fast radio bursts (FRBs) are millisecond-duration radio signals possibly occurring at cosmological distances. However the physical model of FRBs is mystery, many models have been proposed. Here we study the frequency distributions of peak flux, fluence, duration and waiting time for repeating FRB 121102. The cumulative distributions of peak flux, fluence and duration show power-law forms. The waiting time distribution also shows power-law distribution, and is consistent with a non-stationary Poisson process. We also use the statistical results to test the proposed models for FRBs. Comparing with the model predications, we find that the theoretical models proposed by Dai et al. (2016) and Katz (2016) are favored. These distributions are consistent with the predications from avalanche models of driven systems.

  20. Hybrid quantum repeater using bright coherent light.

    Science.gov (United States)

    van Loock, P; Ladd, T D; Sanaka, K; Yamaguchi, F; Nemoto, Kae; Munro, W J; Yamamoto, Y

    2006-06-23

    We describe a quantum repeater protocol for long-distance quantum communication. In this scheme, entanglement is created between qubits at intermediate stations of the channel by using a weak dispersive light-matter interaction and distributing the outgoing bright coherent-light pulses among the stations. Noisy entangled pairs of electronic spin are then prepared with high success probability via homodyne detection and postselection. The local gates for entanglement purification and swapping are deterministic and measurement-free, based upon the same coherent-light resources and weak interactions as for the initial entanglement distribution. Finally, the entanglement is stored in a nuclear-spin-based quantum memory. With our system, qubit-communication rates approaching 100 Hz over 1280 km with fidelities near 99% are possible for reasonable local gate errors.

  1. Simple sequence repeats in mycobacterial genomes

    Indian Academy of Sciences (India)

    Vattipally B Sreenu; Pankaj Kumar; Javaregowda Nagaraju; Hampapathalu A Nagarajaram

    2007-01-01

    Simple sequence repeats (SSRs) or microsatellites are the repetitive nucleotide sequences of motifs of length 1–6 bp. They are scattered throughout the genomes of all the known organisms ranging from viruses to eukaryotes. Microsatellites undergo mutations in the form of insertions and deletions (INDELS) of their repeat units with some bias towards insertions that lead to microsatellite tract expansion. Although prokaryotic genomes derive some plasticity due to microsatellite mutations they have in-built mechanisms to arrest undue expansions of microsatellites and one such mechanism is constituted by post-replicative DNA repair enzymes MutL, MutH and MutS. The mycobacterial genomes lack these enzymes and as a null hypothesis one could expect these genomes to harbour many long tracts. It is therefore interesting to analyse the mycobacterial genomes for distribution and abundance of microsatellites tracts and to look for potentially polymorphic microsatellites. Available mycobacterial genomes, Mycobacterium avium, M. leprae, M. bovis and the two strains of M. tuberculosis (CDC1551 and H37Rv) were analysed for frequencies and abundance of SSRs. Our analysis revealed that the SSRs are distributed throughout the mycobacterial genomes at an average of 220–230 SSR tracts per kb. All the mycobacterial genomes contain few regions that are conspicuously denser or poorer in microsatellites compared to their expected genome averages. The genomes distinctly show scarcity of long microsatellites despite the absence of a post-replicative DNA repair system. Such severe scarcity of long microsatellites could arise as a result of strong selection pressures operating against long and unstable sequences although influence of GC-content and role of point mutations in arresting microsatellite expansions can not be ruled out. Nonetheless, the long tracts occasionally found in coding as well as non-coding regions may account for limited genome plasticity in these genomes.

  2. Germ-line CAG repeat instability causes extreme CAG repeat expansion with infantile-onset spinocerebellar ataxia type 2

    DEFF Research Database (Denmark)

    Vinther-Jensen, Tua; Ek, Jakob; Duno, Morten;

    2013-01-01

    on an infantile SCA2 patient who, due to germ-line CAG repeat instability in her father, inherited an extremely expanded CAG repeat in the SCA2 locus. Surprisingly, the expanded allele of the father was an interrupted CAG repeat sequence. Furthermore, analyses of single spermatozoa showed a high frequency...

  3. R region sequences in the long terminal repeat of a murine retrovirus specifically increase expression of unspliced RNAs.

    Science.gov (United States)

    Trubetskoy, A M; Okenquist, S A; Lenz, J

    1999-04-01

    A stem-loop structure at the 5' end of the R region of the long terminal repeat (LTR) of the murine leukemia virus SL3 and other type C mammalian retroviruses is important for maximum levels of expression of a reporter gene under the control of the viral LTR. This element, termed the R region stem-loop (RSL), has a small effect on transcriptional initiation and no effect on RNA polymerase processivity. Its major effect is on posttranscriptional processing of LTR-driven transcripts. Here we tested whether the RSL affected the production of RNAs from a full-length SL3 genome. Mutation of the RSL in the 5' LTR of SL3 reduced the cytoplasmic levels of full-length viral transcripts but not those of spliced, env mRNA transcripts. Thus, the RSL specifically affected the cytoplasmic levels of the unspliced viral RNA. To test further whether the effect was specific for unspliced transcripts, a system was devised in which the expression of a reporter gene under the control of the viral LTR was tested in the presence or absence of an intron. Mutation of the RSL resulted in only about a twofold decline in the level of reporter gene expression when the transcripts contained an intron. However, when the intron was removed, mutation of the RSL reduced expression of the reporter gene about 10- to 60-fold in various cell lines. The secondary structure of the RSL was essential for its activity on the intronless transcript. Thus, the RSL appears to be important for the cytoplasmic accumulation of unspliced viral RNA and unspliced RNA from chimeric transcription units under the control of the viral LTR.

  4. HTLV-I antisense transcripts initiating in the 3'LTR are alternatively spliced and polyadenylated

    Directory of Open Access Journals (Sweden)

    Marriott Susan J

    2006-03-01

    Full Text Available Abstract Background Antisense transcription in retroviruses has been suggested for both HIV-1 and HTLV-I, although the existence and coding potential of these transcripts remain controversial. Thorough characterization is required to demonstrate the existence of these transcripts and gain insight into their role in retrovirus biology. Results This report provides the first complete characterization of an antisense retroviral transcript that encodes the previously described HTLV-I HBZ protein. In this study, we show that HBZ-encoding transcripts initiate in the 3' long terminal repeat (LTR at several positions and consist of two alternatively spliced variants (SP1 and SP2. Expression of the most abundant HBZ spliced variant (SP1 could be detected in different HTLV-I-infected cell lines and importantly in cellular clones isolated from HTLV-I-infected patients. Polyadenylation of HBZ RNA occurred at a distance of 1450 nucleotides downstream of the HBZ stop codon in close proximity of a typical polyA signal. We have also determined that translation mostly initiates from the first exon located in the 3' LTR and that the HBZ isoform produced from the SP1 spliced variant demonstrated inhibition of Tax and c-Jun-dependent transcriptional activation. Conclusion These results conclusively demonstrate the existence of antisense transcription in retroviruses, which likely plays a role in HTLV-I-associated pathogenesis through HBZ protein synthesis.

  5. Nucleophosmin contributes to the transcriptional activation function of the Epstein-Barr virus EBNA1 protein.

    Science.gov (United States)

    Malik-Soni, Natasha; Frappier, Lori

    2014-02-01

    The Epstein-Barr virus (EBV) EBNA1 protein plays important roles in latent infection, including transcriptional activation of EBV latency genes by binding to the family-of-repeats (FR) element. Through a proteomic approach, we previously identified an interaction between EBNA1 and the histone chaperone nucleophosmin. Here we show that the EBNA1-nucleophosmin interaction is direct and requires the Gly-Arg-rich sequences that contribute to transactivation. Additionally, nucleophosmin is recruited by EBNA1 to the FR element and is required for EBNA1-mediated transcriptional activation.

  6. Characterization of a promoter and a transcription terminator of Spiroplasma melliferum virus SpV4.

    OpenAIRE

    Stamburski, C; Renaudin, J; Bove, J M

    1990-01-01

    Spiroplasma virus 4 (SpV4) is an isometric virus with single-stranded, circular DNA infecting the helical mollicute Spiroplasma melliferum, a honeybee pathogen. Previous studies in our laboratory led to the determination of the base sequence of the SpV4 DNA. Nine open reading frames and three promoterlike sequences (P1, P2, and P3) were identified. An inverted repeat leading to the formation of a hairpin structure on the transcription product was also found and predicted to be a transcription...

  7. Multiple Roles of the τ131 Subunit of Yeast Transcription Factor IIIC (TFIIIC) in TFIIIB Assembly

    OpenAIRE

    Dumay-Odelot, Hélène; Acker, Joël; Arrebola, Rosalia; Sentenac, André; Marck, Christian

    2002-01-01

    Yeast transcription factor IIIC (TFIIIC) plays a key role in assembling the transcription initiation factor TFIIIB on class III genes after TFIIIC-DNA binding. The second largest subunit of TFIIIC, τ131, is thought to initiate TFIIIB assembly by interacting with Brf1/TFIIIB70. In this work, we have analyzed a TFIIIC mutant (τ131-ΔTPR2) harboring a deletion in τ131 removing the second of its 11 tetratricopeptide repeats. Remarkably, this thermosensitive mutation was selectively suppressed in v...

  8. Identification of an antisense transcript to ZIM2 in the primate lineage

    OpenAIRE

    Huang, Jennifer M.; Yu, Sungryul; Kim, Joomyeong

    2009-01-01

    In this study, we identified an antisense transcript to ZIM2 (zinc finger imprinted gene 2) in the human, called ZIM2as. Sequence analysis of the 110 kb region spanned by this transcript revealed a cluster of tandemly repeated sequence in the human, orangutan, and chimpanzee as well as a loss of approximately 70 kb from the corresponding region in the rhesus. The homologous region in most mammals contains a cluster of olfactory receptor (OLFR) genes, but this gene cluster has been lost from t...

  9. Role of DNA Polymerases in Repeat-Mediated Genome Instability

    Directory of Open Access Journals (Sweden)

    Kartik A. Shah

    2012-11-01

    Full Text Available Expansions of simple DNA repeats cause numerous hereditary diseases in humans. We analyzed the role of DNA polymerases in the instability of Friedreich’s ataxia (GAAn repeats in a yeast experimental system. The elementary step of expansion corresponded to ∼160 bp in the wild-type strain, matching the size of Okazaki fragments in yeast. This step increased when DNA polymerase α was mutated, suggesting a link between the scale of expansions and Okazaki fragment size. Expandable repeats strongly elevated the rate of mutations at substantial distances around them, a phenomenon we call repeat-induced mutagenesis (RIM. Notably, defects in the replicative DNA polymerases δ and ∊ strongly increased rates for both repeat expansions and RIM. The increases in repeat-mediated instability observed in DNA polymerase δ mutants depended on translesion DNA polymerases. We conclude that repeat expansions and RIM are two sides of the same replicative mechanism.

  10. Structural insights into transcription complexes

    NARCIS (Netherlands)

    Berger, I.; Blanco, A.G.; Boelens, R.; Cavarelli, J.; Coll, M.; Folkers, G.E.; Nie, Y.; Pogenberg, V.; Schultz, P.; Wilmanns, M.; Moras, D.; Poterszman, A.

    2011-01-01

    Control of transcription allows the regulation of cell activity in response to external stimuli and research in the field has greatly benefited from efforts in structural biology. In this review, based on specific examples from the European SPINE2-COMPLEXES initiative, we illustrate the impact of st

  11. Transcription factor-based biosensor

    Science.gov (United States)

    Dietrich, Jeffrey A; Keasling, Jay D

    2013-10-08

    The present invention provides for a system comprising a BmoR transcription factor, a .sigma..sup.54-RNA polymerase, and a pBMO promoter operatively linked to a reporter gene, wherein the pBMO promoter is capable of expression of the reporter gene with an activated form of the BmoR and the .sigma..sup.54-RNA polymerase.

  12. Transcriptional Regulation of the Streptococcus salivarius 57.I Urease Operon

    Science.gov (United States)

    Chen, Yi-Ywan M.; Weaver, Cheryl A.; Mendelsohn, David R.; Burne, Robert A.

    1998-01-01

    The Streptococcus salivarius 57.I ure cluster was organized as an operon, beginning with ureI, followed by ureABC (structural genes) and ureEFGD (accessory genes). Northern analyses revealed transcripts encompassing structural genes and transcripts containing the entire operon. A ς70-like promoter could be mapped 5′ to ureI (PureI) by primer extension analysis. The intensity of the signal increased when cells were grown at an acidic pH and was further enhanced by excess carbohydrate. To determine the function(s) of two inverted repeats located 5′ to PureI, transcriptional fusions of the full-length promoter region (PureI), or a deletion derivative (PureIΔ100), and a promoterless chloramphenicol acetyltransferase (CAT) gene were constructed and integrated into the chromosome to generate strains PureICAT and PureIΔ100CAT, respectively. CAT specific activities of PureICAT were repressed at pH 7.0 and induced at pH 5.5 and by excess carbohydrate. In PureIΔ100CAT, CAT activity was 60-fold higher than in PureICAT at pH 7.0 and pH induction was nearly eliminated, indicating that expression was negatively regulated. Thus, it was concluded that PureI was the predominant, regulated promoter and that regulation was governed by a mechanism differing markedly from other known mechanisms for bacterial urease expression. PMID:9791132

  13. Immunoglobulin genes and their transcriptional control in teleosts.

    Science.gov (United States)

    Hikima, Jun-ichi; Jung, Tae-Sung; Aoki, Takashi

    2011-09-01

    Immunoglobulin (Ig), which exists only in jawed vertebrates, is one of the most important molecules in adaptive immunity. In the last two decades, many teleost Ig genes have been identified by in silico data mining from the enormous gene and EST databases of many fish species. In this review, the organization of Ig gene segments, the expressed Ig isotypes and their transcriptional controls are discussed. The Ig heavy chain (IgH) locus in teleosts encodes the variable (V), the diversity (D), the joining (J) segments and three different isotypic constant (C) regions including Cμ, Cδ, and Cζ/τ genes, and is organized as a "translocon" type like the IgH loci of higher vertebrates. In contrast, the Ig light (L) chain locus is arranged in a "multicluster" or repeating set of VL, JL, and CL segments. The IgL chains have four isotypes; two κ L1/G and L3/F), σ (L2) and λ. The transcription of IgH genes in teleosts is regulated by a VH promoter and the Eμ3' enhancer, which both function in a B cell-specific manner. The location of the IgH locus, structure and transcriptional function of the Eμ3' enhancer are important to our understanding of the evolutional changes that have occurred in the IgH gene locus.

  14. Androgen receptor polyglutamine repeat number: models of selection and disease susceptibility.

    Science.gov (United States)

    Ryan, Calen P; Crespi, Bernard J

    2013-02-01

    Variation in polyglutamine repeat number in the androgen receptor (AR CAGn) is negatively correlated with the transcription of androgen-responsive genes and is associated with susceptibility to an extensive list of human disease. Only a small portion of the heritability for many of these diseases is explained by conventional SNP-based genome-wide association studies, and the forces shaping AR CAGn among humans remains largely unexplored. Here, we propose evolutionary models for understanding selection at the AR CAG locus, namely balancing selection, sexual conflict, accumulation-selection, and antagonistic pleiotropy. We evaluate these models by examining AR CAGn-linked susceptibility to eight extensively studied diseases representing the diverse physiological roles of androgens, and consider the costs of these diseases by their frequency and fitness effects. Five diseases could contribute to the distribution of AR CAGn observed among contemporary human populations. With support for disease susceptibilities associated with long and short AR CAGn, balancing selection provides a useful model for studying selection at this locus. Gender-specific differences AR CAGn health effects also support this locus as a candidate for sexual conflict over repeat number. Accompanied by the accumulation of AR CAGn in humans, these models help explain the distribution of repeat number in contemporary human populations. PMID:23467468

  15. Effective Alu repeat based RT-Qpcr normalization in cancer cell perturbation experiments.

    Directory of Open Access Journals (Sweden)

    Ali Rihani

    Full Text Available BACKGROUND: Measuring messenger RNA (mRNA levels using the reverse transcription quantitative polymerase chain reaction (RT-qPCR is common practice in many laboratories. A specific set of mRNAs as internal control reference genes is considered as the preferred strategy to normalize RT-qPCR data. Proper selection of reference genes is a critical issue, especially in cancer cells that are subjected to different in vitro manipulations. These manipulations may result in dramatic alterations in gene expression levels, even of assumed reference genes. In this study, we evaluated the expression levels of 11 commonly used reference genes as internal controls for normalization of 19 experiments that include neuroblastoma, T-ALL, melanoma, breast cancer, non small cell lung cancer (NSCL, acute myeloid leukemia (AML, prostate cancer, colorectal cancer, and cervical cancer cell lines subjected to various perturbations. RESULTS: The geNorm algorithm in the software package qbase+ was used to rank the candidate reference genes according to their expression stability. We observed that the stability of most of the candidate reference genes varies greatly in perturbation experiments. Expressed Alu repeats show relatively stable expression regardless of experimental condition. These Alu repeats are ranked among the best reference assays in all perturbation experiments and display acceptable average expression stability values (M<0.5. CONCLUSIONS: We propose the use of Alu repeats as a reference assay when performing cancer cell perturbation experiments.

  16. Genome-wide identification of human- and primate-specific core promoter short tandem repeats.

    Science.gov (United States)

    Bushehri, A; Barez, M R Mashhoudi; Mansouri, S K; Biglarian, A; Ohadi, M

    2016-08-01

    Recent reports of a link between human- and primate-specific genetic factors and human/primate-specific characteristics and diseases necessitate genome-wide identification of those factors. We have previously reported core promoter short tandem repeats (STRs) of extreme length (≥6-repeats) that have expanded exceptionally in primates vs. non-primates, and may have a function in adaptive evolution. In the study reported here, we extended our study to the human STRs of ≥3-repeats in the category of penta and hexaucleotide STRs, across the entire human protein coding gene core promoters, and analyzed their status in several superorders and orders of vertebrates, using the Ensembl database. The ConSite software was used to identify the transcription factor (TF) sets binding to those STRs. STR specificity was observed at different levels of human and non-human primate (NHP) evolution. 73% of the pentanucleotide STRs and 68% of the hexanucleotide STRs were found to be specific to human and NHPs. AP-2alpha, Sp1, and MZF were the predominantly selected TFs (90%) binding to the human-specific STRs. Furthermore, the number of TF sets binding to a given STR was found to be a selection factor for that STR. Our findings indicate that selected STRs, the cognate binding TFs, and the number of TF set binding to those STRs function as switch codes at different levels of human and NHP evolution and speciation. PMID:27108803

  17. Genome-wide identification of human- and primate-specific core promoter short tandem repeats.

    Science.gov (United States)

    Bushehri, A; Barez, M R Mashhoudi; Mansouri, S K; Biglarian, A; Ohadi, M

    2016-08-01

    Recent reports of a link between human- and primate-specific genetic factors and human/primate-specific characteristics and diseases necessitate genome-wide identification of those factors. We have previously reported core promoter short tandem repeats (STRs) of extreme length (≥6-repeats) that have expanded exceptionally in primates vs. non-primates, and may have a function in adaptive evolution. In the study reported here, we extended our study to the human STRs of ≥3-repeats in the category of penta and hexaucleotide STRs, across the entire human protein coding gene core promoters, and analyzed their status in several superorders and orders of vertebrates, using the Ensembl database. The ConSite software was used to identify the transcription factor (TF) sets binding to those STRs. STR specificity was observed at different levels of human and non-human primate (NHP) evolution. 73% of the pentanucleotide STRs and 68% of the hexanucleotide STRs were found to be specific to human and NHPs. AP-2alpha, Sp1, and MZF were the predominantly selected TFs (90%) binding to the human-specific STRs. Furthermore, the number of TF sets binding to a given STR was found to be a selection factor for that STR. Our findings indicate that selected STRs, the cognate binding TFs, and the number of TF set binding to those STRs function as switch codes at different levels of human and NHP evolution and speciation.

  18. Transposon Tn7 preferentially inserts into GAA*TTC triplet repeats under conditions conducive to Y*R*Y triplex formation.

    Directory of Open Access Journals (Sweden)

    Miriam Mancuso

    Full Text Available BACKGROUND: Expansion of an unstable GAA*TTC repeat in the first intron of the FXN gene causes Friedreich ataxia by reducing frataxin expression. Structure formation by the repeat has been implicated in both frataxin repression and GAA*TTC instability. The GAA*TTC sequence is capable of adopting multiple non-B DNA structures including Y*R*Y and R*R*Y triplexes. Lower pH promotes the formation of Y*R*Y triplexes by GAA*TTC. Here we used the bacterial transposon Tn7 as an in vitro tool to probe whether GAA*TTC repeats can attract a well-characterized recombinase. METHODOLOGY/PRINCIPAL FINDINGS: Tn7 showed a pH-dependent preference for insertion into uninterrupted regions of a Friedreich ataxia patient-derived repeat, inserting 48, 39 and 14 percent of the time at pH 7, pH 8 and pH 9, respectively. Moreover, Tn7 also showed orientation and region specific insertion within the repeat at pH 7 and pH 8, but not at pH 9. In contrast, transposon Tn5 showed no strong preference for or against the repeat during in vitro transposition at any pH tested. Y*R*Y triplex formation was reduced in predictable ways by transposon interruption of the GAA*TTC repeat. However, transposon interruptions in the GAA*TTC repeats did not increase the in vitro transcription efficiency of the templates. CONCLUSIONS/SIGNIFICANCE: We have demonstrated that transposon Tn7 will recognize structures that form spontaneously in GAA*TTC repeats and insert in a specific orientation within the repeat. The conditions used for in vitro transposition span the physiologically relevant range suggesting that long GAA*TTC repeats can form triplex structures in vivo, attracting enzymes involved in DNA repair, recombination and chromatin modification.

  19. Evidence that Transcript Cleavage Is Essential for RNA Polymerase II Transcription and Cell Viability

    OpenAIRE

    Sigurdsson, Stefan; Dirac-Svejstrup, A. Barbara; Svejstrup, Jesper Q.

    2010-01-01

    Summary During transcript elongation in vitro, backtracking of RNA polymerase II (RNAPII) is a frequent occurrence that can lead to transcriptional arrest. The polymerase active site can cleave the transcript during such backtracking, allowing transcription to resume. Transcript cleavage is either stimulated by elongation factor TFIIS or occurs much more slowly in its absence. However, whether backtracking actually occurs in vivo, and whether transcript cleavage is important to escape it, has...

  20. Genus-specific protein binding to the large clusters of DNA repeats (short regularly spaced repeats) present in Sulfolobus genomes

    DEFF Research Database (Denmark)

    Peng, Xu; Brügger, Kim; Shen, Biao;

    2003-01-01

    Short regularly spaced repeats (SRSRs) occur in multiple large clusters in archaeal chromosomes and as smaller clusters in some archaeal conjugative plasmids and bacterial chromosomes. The sequence, size, and spacing of the repeats are generally constant within a cluster but vary between clusters....... For the crenarchaeon Sulfolobus solfataricus P2, the repeats in the genome fall mainly into two closely related sequence families that are arranged in seven clusters containing a total of 441 repeats which constitute ca. 1% of the genome. The Sulfolobus conjugative plasmid pNOB8 contains a small cluster of six repeats...... that are identical in sequence to one of the repeat variants in the S. solfataricus chromosome. Repeats from the pNOB8 cluster were amplified and tested for protein binding with cell extracts from S. solfataricus. A 17.5-kDa SRSR-binding protein was purified from the cell extracts and sequenced. The protein is N...

  1. A robust transcriptional program in newts undergoing multiple events of lens regeneration throughout their lifespan.

    Science.gov (United States)

    Sousounis, Konstantinos; Qi, Feng; Yadav, Manisha C; Millán, José Luis; Toyama, Fubito; Chiba, Chikafumi; Eguchi, Yukiko; Eguchi, Goro; Tsonis, Panagiotis A

    2015-01-01

    Newts have the ability to repeatedly regenerate their lens even during ageing. However, it is unclear whether this regeneration reflects an undisturbed genetic activity. To answer this question, we compared the transcriptomes of lenses, irises and tails from aged newts that had undergone lens regeneration 19 times with the equivalent tissues from young newts that had never experienced lens regeneration. Our analysis indicates that repeatedly regenerated lenses showed a robust transcriptional program comparable to young never-regenerated lenses. In contrast, the tail, which was never regenerated, showed gene expression signatures of ageing. Our analysis strongly suggests that, with respect to gene expression, the regenerated lenses have not deviated from a robust transcriptional program even after multiple events of regeneration throughout the life of the newt. In addition, our study provides a new paradigm in biology, and establishes the newt as a key model for the study of regeneration in relation to ageing. PMID:26523389

  2. Modelling repeatedly flaring delta-sunspots

    CERN Document Server

    Chatterjee, Piyali; Carlsson, Mats

    2016-01-01

    Active regions (AR) appearing on the surface of the Sun are classified into $\\alpha$, $\\beta$, $\\gamma$, and $\\delta$ by the rules of the Mount Wilson Observatory, California on the basis of their topological complexity. Amongst these, the $\\delta$-sunspots are known to be super-active and produce the most X-ray flares. Here, we present results from a simulation of the Sun by mimicking the upper layers and the corona, but starting at a more primitive stage than any earlier treatment. We find that this initial state consisting of only a thin sub-photospheric magnetic sheet breaks into multiple flux-tubes which evolve into a colliding-merging system of spots of opposite polarity upon surface emergence, similar to those often seen on the Sun. The simulation goes on to produce many exotic $\\delta$-sunspot associated phenomena: repeated flaring in the range of typical solar flare energy release and ejective helical flux ropes with embedded cool-dense plasma filaments resembling solar coronal mass ejections.

  3. Genetically unstable CXG repeats are structurally dynamic and have a high propensity for folding. An NMR and UV spectroscopic study.

    Science.gov (United States)

    Zheng, M; Huang, X; Smith, G K; Yang, X; Gao, X

    1996-11-29

    Recent molecular genetics studies have revealed a correlation between spontaneous, progressive expansion of several DNA trinucleotide repeats and certain hereditary neurodegenerative diseases. Triplet repeat (TR) sequences may be present in structured forms that can mediate the processes interrupting normal cellular replication, transcription, or repair activities, eventually leading to gene mutation. Using high resolution NMR spectroscopy and other biophysical methods, we probed the solution structures and properties of single-stranded TR sequences. These studies have led to the discovery of a new duplex motif (e-motif), present in CCG repeats, and to the elucidation of the structure of the (CTG)3 duplex. In this paper we provide a global picture of the solution behavior of the human disease-related CXG (X = A, C, G, or T) and the comparison GXC (X = A, or T) TR sequences. All six triplet repeats form antiparallel duplexes. The mismatched bases in CAG and CGG repeat duplexes are rather flexible and they do not appear to form stable, paired conformations. By comparison, GAC repeat duplexes and their mismatched A residues are well-structured. Most interestingly, the structures of the disease-related CXG repeats exhibit a propensity for folding at chain lengths as short as 12 residues. Furthermore, the energy barrier for the formation of homo-duplexes from the corresponding complementary hetero-duplexes are much lower for the CXG TR sequences than for the GAC or GTC TR sequences. These results provide insights into the conformation and physiochemical properties of TR sequences. Thus, a basis is provided for further studies of the behavior of long TR sequences in an effort to elucidate the molecular mechanisms of in vivo expansion and function of TR sequences. PMID:8951379

  4. Repeat-mediated genetic and epigenetic changes at the FMR1 locus in the Fragile X-related disorders

    Directory of Open Access Journals (Sweden)

    Karen eUsdin

    2014-07-01

    Full Text Available AbstractThe Fragile X-related disorders are a group of genetic conditions that include the neurodegenerative disorder, Fragile X-associated tremor and ataxia syndrome (FXTAS, the fertility disorder, Fragile X-associated primary ovarian insufficiency (FXPOI and the intellectual disability, Fragile X syndrome (FXS. The pathology in all these diseases is related to the number of CGG/CCG-repeats in the 5’ UTR of the FMR1 gene. The repeats are prone to continuous expansion and the increase in repeat number has paradoxical effects on gene expression increasing transcription on mid-sized alleles and decreasing it on longer ones. In some cases the repeats can simultaneously both increase FMR1 mRNA production and decrease the levels of the FMR1 gene product, FMRP. Since FXTAS and FXPOI result from the deleterious consequences of the expression of elevated levels of FMR1 mRNA and FXS is caused by reduced FMRP levels, the clinical picture is turning out to be more complex than once appreciated. Added complications are generated by the fact that increasing repeat numbers make the alleles somatically unstable, generating resulting in individuals sometimes having a complex mixture of different sized alleles. Furthermore, it has become apparent that the eponymous fragile site, once thought to be no more than a useful diagnostic criterion, may have clinical consequences for females who inherit chromosomes that express this site. This review will cover what is currently known about the mechanisms responsible for repeat instability, for the repeat-mediated epigenetic changes that affect expression of the FMR1 gene, and for chromosome fragility. It will also touch on what current and future options are for ameliorating some of these effects.

  5. Reverse transcription of the pFOXC mitochondrial retroplasmids of Fusarium oxysporum is protein primed

    OpenAIRE

    Galligan Jeffrey T; Marchetti Sarah E; Kennell John C

    2011-01-01

    Abstract Background The pFOXC retroplasmids are small, autonomously replicating DNA molecules found in mitochondria of certain strains of the filamentous fungus Fusarium oxysporum and are among the first linear genetic elements shown to replicate via reverse transcription. The plasmids have a unique clothespin structure that includes a 5'-linked protein and telomere-like terminal repeats, with pFOXC2 and pFOXC3 having iterative copies of a 5 bp sequence. The plasmids contain a single large op...

  6. A novel rat genomic simple repeat DNA with RNA-homology shows triplex (H-DNA)-like structure and tissue-specific RNA expression

    International Nuclear Information System (INIS)

    Mammalian genome contains a wide variety of repetitive DNA sequences of relatively unknown function. We report a novel 227 bp simple repeat DNA (3.3 DNA) with a d {(GA) 7A (AG) 7} dinucleotide mirror repeat from the rat (Rattus norvegicus) genome. 3.3 DNA showed 75-85% homology with several eukaryotic mRNAs due to (GA/CU) n dinucleotide repeats by nBlast search and a dispersed distribution in the rat genome by Southern blot hybridization with [32P]3.3 DNA. The d {(GA) 7A (AG) 7} mirror repeat formed a triplex (H-DNA)-like structure in vitro. Two large RNAs of 9.1 and 7.5 kb were detected by [32P]3.3 DNA in rat brain by Northern blot hybridization indicating expression of such simple sequence repeats at RNA level in vivo. Further, several cDNAs were isolated from a rat cDNA library by [32P]3.3 DNA probe. Three such cDNAs showed tissue-specific RNA expression in rat. pRT 4.1 cDNA showed strong expression of a 2.39 kb RNA in brain and spleen, pRT 5.5 cDNA showed strong expression of a 2.8 kb RNA in brain and a 3.9 kb RNA in lungs, and pRT 11.4 cDNA showed weak expression of a 2.4 kb RNA in lungs. Thus, genomic simple sequence repeats containing d (GA/CT) n dinucleotides are transcriptionally expressed and regulated in rat tissues. Such d (GA/CT) n dinucleotide repeats may form structural elements (e.g., triplex) which may be sites for functional regulation of genomic coding sequences as well as RNAs. This may be a general function of such transcriptionally active simple sequence repeats widely dispersed in mammalian genome

  7. Rethinking transcription coupled DNA repair.

    Science.gov (United States)

    Kamarthapu, Venu; Nudler, Evgeny

    2015-04-01

    Nucleotide excision repair (NER) is an evolutionarily conserved, multistep process that can detect a wide variety of DNA lesions. Transcription coupled repair (TCR) is a subpathway of NER that repairs the transcribed DNA strand faster than the rest of the genome. RNA polymerase (RNAP) stalled at DNA lesions mediates the recruitment of NER enzymes to the damage site. In this review we focus on a newly identified bacterial TCR pathway in which the NER enzyme UvrD, in conjunction with NusA, plays a major role in initiating the repair process. We discuss the tradeoff between the new and conventional models of TCR, how and when each pathway operates to repair DNA damage, and the necessity of pervasive transcription in maintaining genome integrity. PMID:25596348

  8. Functionality of intergenic transcription: an evolutionary comparison.

    Directory of Open Access Journals (Sweden)

    Philipp Khaitovich

    2006-10-01

    Full Text Available Although a large proportion of human transcription occurs outside the boundaries of known genes, the functional significance of this transcription remains unknown. We have compared the expression patterns of known genes as well as intergenic transcripts within the ENCODE regions between humans and chimpanzees in brain, heart, testis, and lymphoblastoid cell lines. We find that intergenic transcripts show patterns of tissue-specific conservation of their expression, which are comparable to exonic transcripts of known genes. This suggests that intergenic transcripts are subject to functional constraints that restrict their rate of evolutionary change as well as putative positive selection to an extent comparable to that of classical protein-coding genes. In brain and testis, we find that part of this intergenic transcription is caused by widespread use of alternative promoters. Further, we find that about half of the expression differences between humans and chimpanzees are due to intergenic transcripts.

  9. Functionality of Intergenic Transcription: An Evolutionary Comparison

    Science.gov (United States)

    Visagie, Johann; Giger, Thomas; Joerchel, Sabrina; Petzold, Ekkehard; Green, Richard E; Lachmann, Michael; Pääbo, Svante

    2006-01-01

    Although a large proportion of human transcription occurs outside the boundaries of known genes, the functional significance of this transcription remains unknown. We have compared the expression patterns of known genes as well as intergenic transcripts within the ENCODE regions between humans and chimpanzees in brain, heart, testis, and lymphoblastoid cell lines. We find that intergenic transcripts show patterns of tissue-specific conservation of their expression, which are comparable to exonic transcripts of known genes. This suggests that intergenic transcripts are subject to functional constraints that restrict their rate of evolutionary change as well as putative positive selection to an extent comparable to that of classical protein-coding genes. In brain and testis, we find that part of this intergenic transcription is caused by widespread use of alternative promoters. Further, we find that about half of the expression differences between humans and chimpanzees are due to intergenic transcripts. PMID:17040132

  10. The Journey of a Transcription Factor

    DEFF Research Database (Denmark)

    Pireyre, Marie

    Plants have developed astonishing networks regulating their metabolism to adapt to their environment. The complexity of these networks is illustrated by the expansion of families of regulators such as transcription factors in the plant kingdom. Transcription factors specifically impact...... transcriptional networks by integrating exogenous and endogenous stimuli and regulating gene expression accordingly. Regulation of transcription factors and their activation is thus highly important to modulate the transcriptional programs and increase fitness of the plant in a given environment. Plant metabolism...... MYBs to activate transcription of GLS biosynthetic genes. A lot is known about transcriptional regulation of these nine GLS regulators. This thesis aimed at identifying regulatory mechanisms at the protein level, allowing rapid and specific regulation of transcription factors using GLS as a model...

  11. Significant molecular and systemic adaptations after repeated sprint training in hypoxia.

    Directory of Open Access Journals (Sweden)

    Raphael Faiss

    Full Text Available While intermittent hypoxic training (IHT has been reported to evoke cellular responses via hypoxia inducible factors (HIFs but without substantial performance benefits in endurance athletes, we hypothesized that repeated sprint training in hypoxia could enhance repeated sprint ability (RSA performed in normoxia via improved glycolysis and O(2 utilization. 40 trained subjects completed 8 cycling repeated sprint sessions in hypoxia (RSH, 3000 m or normoxia (RSN, 485 m. Before (Pre- and after (Post- training, muscular levels of selected mRNAs were analyzed from resting muscle biopsies and RSA tested until exhaustion (10-s sprint, work-to-rest ratio 1:2 with muscle perfusion assessed by near-infrared spectroscopy. From Pre- to Post-, the average power output of all sprints in RSA was increased (p<0.01 to the same extent (6% vs 7%, NS in RSH and in RSN but the number of sprints to exhaustion was increased in RSH (9.4±4.8 vs. 13.0±6.2 sprints, p<0.01 but not in RSN (9.3±4.2 vs. 8.9±3.5. mRNA concentrations of HIF-1α (+55%, carbonic anhydrase III (+35% and monocarboxylate transporter-4 (+20% were augmented (p<0.05 whereas mitochondrial transcription factor A (-40%, peroxisome proliferator-activated receptor gamma coactivator 1α (-23% and monocarboxylate transporter-1 (-36% were decreased (p<0.01 in RSH only. Besides, the changes in total hemoglobin variations (Δ[tHb] during sprints throughout RSA test increased to a greater extent (p<0.01 in RSH. Our findings show larger improvement in repeated sprint performance in RSH than in RSN with significant molecular adaptations and larger blood perfusion variations in active muscles.

  12. RECG maintains plastid and mitochondrial genome stability by suppressing extensive recombination between short dispersed repeats.

    Directory of Open Access Journals (Sweden)

    Masaki Odahara

    2015-03-01

    Full Text Available Maintenance of plastid and mitochondrial genome stability is crucial for photosynthesis and respiration, respectively. Recently, we have reported that RECA1 maintains mitochondrial genome stability by suppressing gross rearrangements induced by aberrant recombination between short dispersed repeats in the moss Physcomitrella patens. In this study, we studied a newly identified P. patens homolog of bacterial RecG helicase, RECG, some of which is localized in both plastid and mitochondrial nucleoids. RECG partially complements recG deficiency in Escherichia coli cells. A knockout (KO mutation of RECG caused characteristic phenotypes including growth delay and developmental and mitochondrial defects, which are similar to those of the RECA1 KO mutant. The RECG KO cells showed heterogeneity in these phenotypes. Analyses of RECG KO plants showed that mitochondrial genome was destabilized due to a recombination between 8-79 bp repeats and the pattern of the recombination partly differed from that observed in the RECA1 KO mutants. The mitochondrial DNA (mtDNA instability was greater in severe phenotypic RECG KO cells than that in mild phenotypic ones. This result suggests that mitochondrial genomic instability is responsible for the defective phenotypes of RECG KO plants. Some of the induced recombination caused efficient genomic rearrangements in RECG KO mitochondria. Such loci were sometimes associated with a decrease in the levels of normal mtDNA and significant decrease in the number of transcripts derived from the loci. In addition, the RECG KO mutation caused remarkable plastid abnormalities and induced recombination between short repeats (12-63 bp in the plastid DNA. These results suggest that RECG plays a role in the maintenance of both plastid and mitochondrial genome stability by suppressing aberrant recombination between dispersed short repeats; this role is crucial for plastid and mitochondrial functions.

  13. Survey of simple sequence repeats in woodland strawberry (Fragaria vesca).

    Science.gov (United States)

    Guan, L; Huang, J F; Feng, G Q; Wang, X W; Wang, Y; Chen, B Y; Qiao, Y S

    2013-07-30

    The use of simple sequence repeats (SSRs), or microsatellites, as genetic markers has become popular due to their abundance and variation in length among individuals. In this study, we investigated linkage groups (LGs) in the woodland strawberry (Fragaria vesca) and demonstrated variation in the abundances, densities, and relative densities of mononucleotide, dinucleotide, and trinucleotide repeats. Mononucleotide, dinucleotide, and trinucleotide repeats were more common than longer repeats in all LGs examined. Perfect SSRs were the predominant SSR type found and their abundance was extremely stable among LGs and chloroplasts. Abundances of mononucleotide, dinucleotide, and trinucleotide repeats were positively correlated with LG size, whereas those of tetranucleotide and hexanucleotide SSRs were not. Generally, in each LG, the abundance, relative abundance, relative density, and the proportion of each unique SSR all declined rapidly as the repeated unit increased. Furthermore, the lengths and frequencies of SSRs varied among different LGs.

  14. Quasimonomorphic Mononucleotide Repeats for High-Level Microsatellite Instability Analysis

    Directory of Open Access Journals (Sweden)

    Olivier Buhard

    2004-01-01

    Full Text Available Microsatellite instability (MSI analysis is becoming more and more important to detect sporadic primary tumors of the MSI phenotype as well as in helping to determine Hereditary Non-Polyposis Colorectal Cancer (HNPCC cases. After some years of conflicting data due to the absence of consensus markers for the MSI phenotype, a meeting held in Bethesda to clarify the situation proposed a set of 5 microsatellites (2 mononucleotide repeats and 3 dinucleotide repeats to determine MSI tumors. A second Bethesda consensus meeting was held at the end of 2002. It was discussed here that the 1998 microsatellite panel could underestimate high-level MSI tumors and overestimate low-level MSI tumors. Amongst the suggested changes was the exclusive use of mononucleotide repeats in place of dinucleotide repeats. We have already proposed a pentaplex MSI screening test comprising 5 quasimonomorphic mononucleotide repeats. This article compares the advantages of mono or dinucleotide repeats in determining microsatellite instability.

  15. An Expanded CAG Repeat in Huntingtin Causes +1 Frameshifting.

    Science.gov (United States)

    Saffert, Paul; Adamla, Frauke; Schieweck, Rico; Atkins, John F; Ignatova, Zoya

    2016-08-26

    Maintenance of triplet decoding is crucial for the expression of functional protein because deviations either into the -1 or +1 reading frames are often non-functional. We report here that expression of huntingtin (Htt) exon 1 with expanded CAG repeats, implicated in Huntington pathology, undergoes a sporadic +1 frameshift to generate from the CAG repeat a trans-frame AGC repeat-encoded product. This +1 recoding is exclusively detected in pathological Htt variants, i.e. those with expanded repeats with more than 35 consecutive CAG codons. An atypical +1 shift site, UUC C at the 5' end of CAG repeats, which has some resemblance to the influenza A virus shift site, triggers the +1 frameshifting and is enhanced by the increased propensity of the expanded CAG repeats to form a stem-loop structure. The +1 trans-frame-encoded product can directly influence the aggregation of the parental Htt exon 1. PMID:27382061

  16. Chromatin Dynamics of Circadian Transcription

    OpenAIRE

    Aguilar-Arnal, Lorena; Sassone-Corsi, Paolo

    2015-01-01

    The molecular circadian clock orchestrates the daily cyclical expression of thousands of genes. Disruption of this transcriptional program leads to a variety of pathologies, including insomnia, depression and metabolic disorders. Circadian rhythms in gene expression rely on specific chromatin transitions which are ultimately coordinated by the molecular clock. As a consequence, a highly plastic and dynamic circadian epigenome can be delineated across different tissues and cell types. Intrigui...

  17. Transcriptional Mechanisms of Drug Addiction

    Science.gov (United States)

    2012-01-01

    Regulation of gene expression is considered a plausible mechanism of drug addiction given the stability of behavioral abnormalities that define an addicted state. Numerous transcription factors, proteins that bind to regulatory regions of specific genes and thereby control levels of their expression, have been implicated in the addiction process over the past decade or two. Here we review the growing evidence for the role played by several prominent transcription factors, including a Fos family protein (ΔFosB), cAMP response element binding protein (CREB), and nuclear factor kappa B (NFκB), among several others, in drug addiction. As will be seen, each factor displays very different regulation by drugs of abuse within the brain's reward circuitry, and in turn mediates distinct aspects of the addiction phenotype. Current efforts are geared toward understanding the range of target genes through which these transcription factors produce their functional effects and the underlying molecular mechanisms involved. This work promises to reveal fundamentally new insight into the molecular basis of addiction, which will contribute to improved diagnostic tests and therapeutics for addictive disorders. PMID:23430970

  18. Regulation of Transcription Elongation and Termination

    Directory of Open Access Journals (Sweden)

    Robert S. Washburn

    2015-05-01

    Full Text Available This article will review our current understanding of transcription elongation and termination in E. coli. We discuss why transcription elongation complexes pause at certain template sites and how auxiliary host and phage transcription factors affect elongation and termination. The connection between translation and transcription elongation is described. Finally we present an overview indicating where progress has been made and where it has not.

  19. A Biclustering Approach to Combinatorial Transcription Control

    OpenAIRE

    Srinivasan, Venkataraghavan

    2005-01-01

    Combinatorial control of transcription is a well established phenomenon in the cell. Multiple transcription factors often bind to the same transcriptional control region of a gene and interact with each other to control the expression of the gene. It is thus necessary to consider the joint conservation of sequence pairs in order to identify combinations of binding sites to which the transcription factors bind. Conventional motif finding algorithms fail to address this issue. We propose a nove...

  20. Mutual interdependence of splicing and transcription elongation.

    Science.gov (United States)

    Brzyżek, Grzegorz; Świeżewski, Szymon

    2015-01-01

    Transcription and splicing are intrinsically linked, as splicing needs a pre-mRNA substrate to commence. The more nuanced view is that the rate of transcription contributes to splicing regulation. On the other hand there is accumulating evidence that splicing has an active role in controlling transcription elongation by DNA-dependent RNA polymerase II (RNAP II). We briefly review those mechanisms and propose a unifying model where splicing controls transcription elongation to provide an optimal timing for successive rounds of splicing.

  1. Toward a theory of repeat purchase drivers for consumer services

    OpenAIRE

    Paul, M; Hennig-Thurau, T.; Gremler, D.D.; Gwinner, K. P.; Wiertz, C.

    2009-01-01

    The marketing discipline’s knowledge about the drivers of service customers’ repeat purchase behavior is highly fragmented. This research attempts to overcome that fragmented state of knowledge by making major advances toward a theory of repeat purchase drivers for consumer services. Drawing on means–end theory, the authors develop a hierarchical classification scheme that organizes repeat purchase drivers into an integrative and comprehensive framework. They then identify drivers on the basi...

  2. Assembly of Repeat Content Using Next Generation Sequencing Data

    Energy Technology Data Exchange (ETDEWEB)

    labutti, Kurt; Kuo, Alan; Grigoriev, Igor; Copeland, Alex

    2014-03-17

    Repetitive organisms pose a challenge for short read assembly, and typically only unique regions and repeat regions shorter than the read length, can be accurately assembled. Recently, we have been investigating the use of Pacific Biosciences reads for de novo fungal assembly. We will present an assessment of the quality and degree of repeat reconstruction possible in a fungal genome using long read technology. We will also compare differences in assembly of repeat content using short read and long read technology.

  3. Triplet repeat length bias and variation in the human transcriptome

    OpenAIRE

    Molla, Michael; Delcher, Arthur; Sunyaev, Shamil; Cantor, Charles; Kasif, Simon

    2009-01-01

    Length variation in short tandem repeats (STRs) is an important family of DNA polymorphisms with numerous applications in genetics, medicine, forensics, and evolutionary analysis. Several major diseases have been associated with length variation of trinucleotide (triplet) repeats including Huntington's disease, hereditary ataxias and spinobulbar muscular atrophy. Using the reference human genome, we have catalogued all triplet repeats in genic regions. This data revealed a bias in noncoding D...

  4. Repeatability of nest morphology in African weaver birds

    OpenAIRE

    Walsh, Patrick T.; Hansell, Mike; Borello, Wendy D.; Healy, Susan D.

    2009-01-01

    It is generally assumed that birds build nests according to a genetic 'template', little influenced by learning or memory. One way to confirm the role of genetics in nest building is to assess the repeatability of nest morphology with repeated nest attempts. Solitary weaver birds, which build multiple nests in a single breeding season, are a useful group with which to do this. Here we show that repeatability of nest morphology was low, but significant, in male Southern Masked weaver birds and...

  5. Physiological Consequences of Repeated Exposures to Conditioned Fear

    OpenAIRE

    Thompson, Robert S.; Strong, Paul V; Monika Fleshner

    2012-01-01

    Activation of the stress response evokes a cascade of physiological reactions that may be detrimental when repeated or chronic, and when triggered after exposure to psychological/emotional stressors. Investigation of the physiological mechanisms responsible for the health damaging effects requires animal paradigms that repeatedly evoke a response to psychological/emotional stressors. To this end, adult male Sprague Dawley rats were repeatedly exposed (2X per day for 20 days) to a context that...

  6. A Novel Terminal-Repeat Retrotransposon in Miniature (TRIM) Is Massively Expressed in Echinococcus multilocularis Stem Cells.

    Science.gov (United States)

    Koziol, Uriel; Radio, Santiago; Smircich, Pablo; Zarowiecki, Magdalena; Fernández, Cecilia; Brehm, Klaus

    2015-08-01

    Taeniid cestodes (including the human parasites Echinococcus spp. and Taenia solium) have very few mobile genetic elements (MGEs) in their genome, despite lacking a canonical PIWI pathway. The MGEs of these parasites are virtually unexplored, and nothing is known about their expression and silencing. In this work, we report the discovery of a novel family of small nonautonomous long terminal repeat retrotransposons (also known as terminal-repeat retrotransposons in miniature, TRIMs) which we have named ta-TRIM (taeniid TRIM). ta-TRIMs are only the second family of TRIM elements discovered in animals, and are likely the result of convergent reductive evolution in different taxonomic groups. These elements originated at the base of the taeniid tree and have expanded during taeniid diversification, including after the divergence of closely related species such as Echinococcus multilocularis and Echinococcus granulosus. They are massively expressed in larval stages, from a small proportion of full-length copies and from isolated terminal repeats that show transcriptional read-through into downstream regions, generating novel noncoding RNAs and transcriptional fusions to coding genes. In E. multilocularis, ta-TRIMs are specifically expressed in the germinative cells (the somatic stem cells) during asexual reproduction of metacestode larvae. This would provide a developmental mechanism for insertion of ta-TRIMs into cells that will eventually generate the adult germ line. Future studies of active and inactive ta-TRIM elements could give the first clues on MGE silencing mechanisms in cestodes. PMID:26133390

  7. Consistent levels of A-to-I RNA editing across individuals in coding sequences and non-conserved Alu repeats

    Directory of Open Access Journals (Sweden)

    Osenberg Sivan

    2010-10-01

    Full Text Available Abstract Background Adenosine to inosine (A-to-I RNA-editing is an essential post-transcriptional mechanism that occurs in numerous sites in the human transcriptome, mainly within Alu repeats. It has been shown to have consistent levels of editing across individuals in a few targets in the human brain and altered in several human pathologies. However, the variability across human individuals of editing levels in other tissues has not been studied so far. Results Here, we analyzed 32 skin samples, looking at A-to-I editing level in three genes within coding sequences and in the Alu repeats of six different genes. We observed highly consistent editing levels across different individuals as well as across tissues, not only in coding targets but, surprisingly, also in the non evolutionary conserved Alu repeats. Conclusions Our findings suggest that A-to-I RNA-editing of Alu elements is a tightly regulated process and, as such, might have been recruited in the course of primate evolution for post-transcriptional regulatory mechanisms.

  8. Identification of the ankyrin repeat proteins ANKRA and RFXANK as novel partners of class IIa histone deacetylases.

    Science.gov (United States)

    Wang, Audrey H; Grégoire, Serge; Zika, Eleni; Xiao, Lin; Li, Cathy S; Li, Hongwei; Wright, Kenneth L; Ting, Jenny P; Yang, Xiang-Jiao

    2005-08-12

    Eighteen human histone deacetylases (HDACs) have been identified, and according to their sequence similarity to yeast homologs, these enzymes are grouped into distinct classes. Within class II, HDAC4, HDAC5, HDAC7, and HDAC9 share similar domain organization both within the N-terminal extension and the C-terminal catalytic domain, thus forming a subclass known as class IIa. These HDACs function as signal-responsive transcriptional corepressors. To gain further insight into their function and regulation, we utilized an N-terminal fragment of HDAC4 as bait in yeast two-hybrid screens, which uncovered myocyte enhancer factor 2C, 14-3-3zeta, and ankyrin repeat family A protein (ANKRA). ANKRA is a poorly characterized protein with an ankyrin repeat domain similar to RFXANK, a subunit of the trimeric transcription factor RFX. Mutations on genes of the RFX subunits and the coactivator CIITA are responsible for the bare lymphocyte syndrome, an immunodeficiency disorder attributed to the lack of major histocompatibility complex class II (MHCII) antigens. Through its ankyrin repeat domain, RFXANK interacted with HDAC4. Two RFXANK-binding sites were found on HDAC4 with one located within residues 118-279 and another within residues 448-666. Interestingly, this deacetylase also interacted with CIITA. Consistent with the physical interaction with RFXANK and CIITA, HDAC4 and homologs repressed MHCII expression. These results identify ANKRA, RFXANK, and CIITA as novel targets of class IIa HDACs and suggest that these deacetylases play a role in regulating MHCII expression.

  9. Molecular identification and characterization of clustered regularly interspaced short palindromic repeat (CRISPR) gene cluster in Taylorella equigenitalis.

    Science.gov (United States)

    Hara, Yasushi; Hayashi, Kyohei; Nakajima, Takuya; Kagawa, Shizuko; Tazumi, Akihiro; Moore, John E; Matsuda, Motoo

    2013-09-01

    Clustered regularly interspaced short palindromic repeats (CRISPRs), of approximately 10,000 base pairs (bp) in length, were shown to occur in the Japanese Taylorella equigenitalis strain, EQ59. The locus was composed of the putative CRISPRs-associated with 5 (cas5), RAMP csd1, csd2, recB, cas1, a leader region, 13 CRISPR consensus sequence repeats (each 32 bp; 5'-TCAGCCACGTTCGCGTGGCTGTGTGTTTAAAG-3'). These were in turn separated by 12 non repetitive unique spacer regions of similar length. In addition, a leader region, a transposase/IS protein, a leader region, and cas3 were also seen. All seven putative open reading frames carry their ribosome binding sites. Promoter consensus sequences at the -35 and -10 regions and putative intrinsic ρ-independent transcription terminator regions also occurred. A possible long overlap of 170 bp in length occurred between the recB and cas1 loci. Positive reverse transcription PCR signals of cas5, RAMP csd1, csd2-recB/cas1, and cas3 were generated. A putative secondary structure of the CRISPR consensus repeats was constructed. Following this, CRISPR results of the T. equigenitalis EQ59 isolate were subsequently compared with those from the Taylorella asinigenitalis MCE3 isolate.

  10. Intragenic tandem repeat variation between Legionella pneumophila strains

    Directory of Open Access Journals (Sweden)

    Jarraud Sophie

    2008-12-01

    Full Text Available Abstract Background Bacterial genomes harbour a large number of tandem repeats, yet the possible phenotypic effects of those found within the coding region of genes are only beginning to be examined. Evidence exists from other organisms that these repeats can be involved in the evolution of new genes, gene regulation, adaptation, resistance to environmental stresses, and avoidance of the immune system. Results In this study, we have investigated the presence and variability in copy number of intragenic tandemly repeated sequences in the genome of Legionella pneumophila, the etiological agent of a severe pneumonia known as Legionnaires' disease. Within the genome of the Philadelphia strain, we have identified 26 intragenic tandem repeat sequences using conservative selection criteria. Of these, seven were "polymorphic" in terms of repeat copy number between a large number of L. pneumophila serogroup 1 strains. These strains were collected from a wide variety of environments and patients in several geographical regions. Within this panel of strains, all but one of these seven genes exhibited statistically different patterns in repeat copy number between samples from different origins (environmental, clinical, and hot springs. Conclusion These results support the hypothesis that intragenic tandem repeats could play a role in virulence and adaptation to different environments. While tandem repeats are an increasingly popular focus of molecular typing studies in prokaryotes, including in L. pneumophila, this study is the first examining the difference in tandem repeat distribution as a function of clinical or environmental origin.

  11. Coexistence of 3G repeaters with LTE base stations.

    Science.gov (United States)

    Yeo, Woon-Young; Lee, Sang-Min; Hwang, Gyung-Ho; Kim, Jae-Hoon

    2013-01-01

    Repeaters have been an attractive solution for mobile operators to upgrade their wireless networks at low cost and to extend network coverage effectively. Since the first LTE commercial deployment in 2009, many mobile operators have launched LTE networks by upgrading their 3G and legacy networks. Because all 3G frequency bands are shared with the frequency bands for LTE deployment and 3G mobile operators have an enormous number of repeaters, reusing 3G repeaters in LTE networks is definitely a practical and cost-efficient solution. However, 3G repeaters usually do not support spatial multiplexing with multiple antennas, and thus it is difficult to reuse them directly in LTE networks. In order to support spatial multiplexing of LTE, the role of 3G repeaters should be replaced with small LTE base stations or MIMO-capable repeaters. In this paper, a repeater network is proposed to reuse 3G repeaters in LTE deployment while still supporting multilayer transmission of LTE. Interestingly, the proposed network has a higher cluster throughput than an LTE network with MIMO-capable repeaters.

  12. The great repression: chromatin and cryptic transcription.

    Science.gov (United States)

    Hennig, Bianca P; Fischer, Tamás

    2013-01-01

    The eukaryotic chromatin structure is essential in correctly defining transcription units. Impairing this structure can activate cryptic promoters, and lead to the accumulation of aberrant RNA transcripts. Here we discuss critical pathways that are responsible for the repression of cryptic transcription and the maintenance of genome integrity.

  13. TAF7: traffic controller in transcription initiation.

    Science.gov (United States)

    Gegonne, Anne; Devaiah, Ballachanda N; Singer, Dinah S

    2013-01-01

    TAF7, a component of the TFIID complex, controls the first steps of transcription. It interacts with and regulates the enzymatic activities of transcription factors that regulate RNA polymerase II progression. Its diverse functions in transcription initiation are consistent with its essential role in cell proliferation.

  14. Interplay between DNA supercoiling and transcription elongation.

    Science.gov (United States)

    Ma, Jie; Wang, Michelle

    2014-01-01

    Transcription-coupled DNA supercoiling has been shown to be an important regulator of transcription that is broadly present in the cell. Here we review experimental work which shows that RNA polymerase is a powerful torsional motor that can alter DNA topology and structure, and DNA supercoiling in turn directly affects transcription elongation.

  15. Reactivation of Latent HIV-1 Expression by Engineered TALE Transcription Factors.

    Science.gov (United States)

    Perdigão, Pedro; Gaj, Thomas; Santa-Marta, Mariana; Barbas, Carlos F; Goncalves, Joao

    2016-01-01

    The presence of replication-competent HIV-1 -which resides mainly in resting CD4+ T cells--is a major hurdle to its eradication. While pharmacological approaches have been useful for inducing the expression of this latent population of virus, they have been unable to purge HIV-1 from all its reservoirs. Additionally, many of these strategies have been associated with adverse effects, underscoring the need for alternative approaches capable of reactivating viral expression. Here we show that engineered transcriptional modulators based on customizable transcription activator-like effector (TALE) proteins can induce gene expression from the HIV-1 long terminal repeat promoter, and that combinations of TALE transcription factors can synergistically reactivate latent viral expression in cell line models of HIV-1 latency. We further show that complementing TALE transcription factors with Vorinostat, a histone deacetylase inhibitor, enhances HIV-1 expression in latency models. Collectively, these findings demonstrate that TALE transcription factors are a potentially effective alternative to current pharmacological routes for reactivating latent virus and that combining synthetic transcriptional activators with histone deacetylase inhibitors could lead to the development of improved therapies for latent HIV-1 infection.

  16. Global Repeat Map Method for Higher Order Repeat Alpha Satellites in Human and Chimpanzee Genomes (Build 37.2 Assembly)

    OpenAIRE

    Glunčić, Matko; Rosandić, Marija; Jelovina, Denis; Dekanić, Krešimir; Vlahović, Ines; Paar, Vladimir

    2012-01-01

    Alpha satellites are tandemly repeated sequences found in all human centromeres. In addition to the functional and structural role within centromere they are also a suitable model for evolutionary stud-ies, because of being subject to concerted evolution. The Global Repeat Map (GRM) algorithm is a convenient computational tool to determine consensus repeat units and their exact size within a given genomic sequence, both of monomeric and higher-order (HOR) type. Using GRM, we identify in Build...

  17. Transcriptional and post-transcriptional regulation of a NAC1 transcription factor in Medicago truncatula roots.

    Science.gov (United States)

    D'haeseleer, Katrien; Den Herder, Griet; Laffont, Carole; Plet, Julie; Mortier, Virginie; Lelandais-Brière, Christine; De Bodt, Stefanie; De Keyser, Annick; Crespi, Martin; Holsters, Marcelle; Frugier, Florian; Goormachtig, Sofie

    2011-08-01

    • Legume roots develop two types of lateral organs, lateral roots and nodules. Nodules develop as a result of a symbiotic interaction with rhizobia and provide a niche for the bacteria to fix atmospheric nitrogen for the plant. • The Arabidopsis NAC1 transcription factor is involved in lateral root formation, and is regulated post-transcriptionally by miRNA164 and by SINAT5-dependent ubiquitination. We analyzed in Medicago truncatula the role of the closest NAC1 homolog in lateral root formation and in nodulation. • MtNAC1 shows a different expression pattern in response to auxin than its Arabidopsis homolog and no changes in lateral root number or nodulation were observed in plants affected in MtNAC1 expression. In addition, no interaction was found with SINA E3 ligases, suggesting that post-translational regulation of MtNAC1 does not occur in M. truncatula. Similar to what was found in Arabidopsis, a conserved miR164 target site was retrieved in MtNAC1, which reduced protein accumulation of a GFP-miR164 sensor. Furthermore, miR164 and MtNAC1 show an overlapping expression pattern in symbiotic nodules, and overexpression of this miRNA led to a reduction in nodule number. • This work suggests that regulatory pathways controlling a conserved transcription factor are complex and divergent between M. truncatula and Arabidopsis.

  18. Calmodulin-binding transcription activators and perspectives for applications in biotechnology.

    Science.gov (United States)

    Shen, Chenjia; Yang, Yanjun; Du, Liqun; Wang, Huizhong

    2015-12-01

    In recent years, a novel family of calmodulin-binding transcription activators (CAMTAs) has been reported in various species. The CAMTAs share a conserved domain organization, with a CG-1 DNA-binding domain, a transcription factor immunoglobulin domain, several ankyrin repeats, a calmodulin-binding domain, and a varying number of IQ motifs. CAMTAs participate in transcriptional regulation by recognizing and binding to a specific cis-element: (G/A/C)CGCG(C/G/T). Plants suffer from the environmental challenges, including abiotic and biotic stresses. Investigations in various plant species indicate a broad range of CAMTA functions involved in developmental regulation, environmental stress response, and hormone cross talk. In this review, we focus on the expression patterns and biological functions of CAMTAs to explore their probable applications in biotechnology. Furthermore, the identification and phylogenetic analysis of CAMTAs in crops could open new perspectives for enhancing stress tolerance, which could lead to improved crop production.

  19. Contributions of in vitro transcription to the understanding of human RNA polymerase III transcription.

    Science.gov (United States)

    Dumay-Odelot, Hélène; Durrieu-Gaillard, Stéphanie; El Ayoubi, Leyla; Parrot, Camila; Teichmann, Martin

    2014-01-01

    Human RNA polymerase III transcribes small untranslated RNAs that contribute to the regulation of essential cellular processes, including transcription, RNA processing and translation. Analysis of this transcription system by in vitro transcription techniques has largely contributed to the discovery of its transcription factors and to the understanding of the regulation of human RNA polymerase III transcription. Here we review some of the key steps that led to the identification of transcription factors and to the definition of minimal promoter sequences for human RNA polymerase III transcription.

  20. Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification

    KAUST Repository

    Li, Lixin

    2012-01-22

    Transcription activator-like effectors (TALEs) can be used as DNA-targeting modules by engineering their repeat domains to dictate user-selected sequence specificity. TALEs have been shown to function as site-specific transcriptional activators in a variety of cell types and organisms. TALE nucleases (TALENs), generated by fusing the FokI cleavage domain to TALE, have been used to create genomic double-strand breaks. The identity of the TALE repeat variable di-residues, their number, and their order dictate the DNA sequence specificity. Because TALE repeats are nearly identical, their assembly by cloning or even by synthesis is challenging and time consuming. Here, we report the development and use of a rapid and straightforward approach for the construction of designer TALE (dTALE) activators and nucleases with user-selected DNA target specificity. Using our plasmid set of 100 repeat modules, researchers can assemble repeat domains for any 14-nucleotide target sequence in one sequential restriction-ligation cloning step and in only 24 h. We generated several custom dTALEs and dTALENs with new target sequence specificities and validated their function by transient expression in tobacco leaves and in vitro DNA cleavage assays, respectively. Moreover, we developed a web tool, called idTALE, to facilitate the design of dTALENs and the identification of their genomic targets and potential off-targets in the genomes of several model species. Our dTALE repeat assembly approach along with the web tool idTALE will expedite genome-engineering applications in a variety of cell types and organisms including plants. © 2012 Springer Science+Business Media B.V.

  1. Transcriptional Regulation of Heart Development in Zebrafish

    Directory of Open Access Journals (Sweden)

    Fei Lu

    2016-04-01

    Full Text Available Cardiac transcription factors orchestrate the complex cellular and molecular events required to produce a functioning heart. Misregulation of the cardiac transcription program leads to embryonic developmental defects and is associated with human congenital heart diseases. Recent studies have expanded our understanding of the regulation of cardiac gene expression at an additional layer, involving the coordination of epigenetic and transcriptional regulators. In this review, we highlight and discuss discoveries made possible by the genetic and embryological tools available in the zebrafish model organism, with a focus on the novel functions of cardiac transcription factors and epigenetic and transcriptional regulatory proteins during cardiogenesis.

  2. Transcriptional Regulation of Heart Development in Zebrafish

    Science.gov (United States)

    Lu, Fei; Langenbacher, Adam D.; Chen, Jau-Nian

    2016-01-01

    Cardiac transcription factors orchestrate the complex cellular and molecular events required to produce a functioning heart. Misregulation of the cardiac transcription program leads to embryonic developmental defects and is associated with human congenital heart diseases. Recent studies have expanded our understanding of the regulation of cardiac gene expression at an additional layer, involving the coordination of epigenetic and transcriptional regulators. In this review, we highlight and discuss discoveries made possible by the genetic and embryological tools available in the zebrafish model organism, with a focus on the novel functions of cardiac transcription factors and epigenetic and transcriptional regulatory proteins during cardiogenesis. PMID:27148546

  3. Contribution of transcription to animal early development.

    Science.gov (United States)

    Wang, Jianbin; Davis, Richard E

    2014-01-01

    In mature gametes and during the oocyte-to-embryo transition, transcription is generally silenced and gene expression is post-transcriptionally regulated. However, we recently discovered that major transcription can occur immediately after fertilization, prior to pronuclear fusion, and in the first cell division of the oocyte-to-embryo transition in the nematode Ascaris suum. We postulate that the balance between transcriptional and post-transcriptional regulation during the oocyte-to-embryo transition may largely be determined by cell cycle length and thus the time available for the genome to be transcribed.

  4. TRAP-5' stem loop interaction increases the efficiency of transcription termination in the Bacillus subtilis trpEDCFBA operon leader region.

    Science.gov (United States)

    McGraw, Adam P; Bevilacqua, Philip C; Babitzke, Paul

    2007-11-01

    TRAP regulates expression of the Bacillus subtilis trpEDCFBA operon by a transcription attenuation mechanism in which tryptophan-activated TRAP binds to 11 (G/U)AG repeats in the nascent trp leader transcript. Bound TRAP blocks formation of an antiterminator structure and allows formation of an overlapping intrinsic terminator upstream of the trp operon structural genes. A 5' stem-loop (5'SL) structure located upstream of the triplet repeat region also interacts with TRAP. TRAP-5'SL RNA interaction participates in the transcription attenuation mechanism by preferentially increasing the affinity of TRAP for the nascent trp leader transcript during the early stages of transcription, when only a few triplet repeats have been synthesized. Footprinting assays indicated that the 5'SL contacts TRAP through two discrete groups of single-stranded nucleotides that lie in the hairpin loop and in an internal loop. Filter binding and in vivo expression assays of 5'SL mutants established that G7, A8, and A9 from the internal loop, and A19 and G20 from the hairpin loop are critical for proper 5'SL function. These nucleotides are conserved among certain other 5'SL-containing organisms. Single-round transcription results indicated that the 5'SL increases the termination efficiency when transcription is fast; however, the influence of the 5'SL was lost when transcription was slowed by reducing the ribonucleoside triphosphate concentration. Since there is a limited amount of time for TRAP to bind to the nascent transcript and promote termination, our data suggest that the contribution of TRAP-5'SL interaction increases the rate of TRAP binding, which, in turn, increases the efficiency of transcription termination. PMID:17881743

  5. A Glimpse beyond Structures in Auxin-Dependent Transcription.

    Science.gov (United States)

    Parcy, François; Vernoux, Teva; Dumas, Renaud

    2016-07-01

    Auxin response factors (ARFs), transcription factors (TFs), and their Aux/IAA (IAA) repressors are central components of the auxin signalling pathway. They interact as homo- and heteromultimers. The structure of their interacting domains revealed a PB1 fold mediating electrostatic interactions through positive and negative faces. Detailed structural analysis revealed additional hydrophobic and polar determinants and started unveiling an ARF/IAA interaction code. Structural progress also shed new light on the DNA binding mode of ARFs showing how they dimerize to bind repeated DNA elements. Here, we discuss the in vitro and in vivo significance of these structural properties for the ARF family of TFs and identify some critical missing information on how specificity might be achieved in the auxin signalling pathway. PMID:26994657

  6. Vocabulary Learning through Assisted and Unassisted Repeated Reading

    Science.gov (United States)

    Webb, Stuart; Chang, Anna C-S.

    2012-01-01

    Previous research investigating the effects of unassisted and assisted repeated reading has primarily focused on how each approach may contribute to improvement in reading comprehension and fluency. Incidental learning of the form and meaning of unknown or partially known words encountered through assisted and unassisted repeated reading has yet…

  7. Hybrid quantum repeater protocol with fast local processing

    DEFF Research Database (Denmark)

    Borregaard, Johannes; Brask, Jonatan Bohr; Sørensen, Anders Søndberg

    2012-01-01

    We propose a hybrid quantum repeater protocol combining the advantages of continuous and discrete variables. The repeater is based on the previous work of Brask et al. [ Phys. Rev. Lett. 105 160501 (2010)] but we present two ways of improving this protocol. In the previous protocol entangled single...

  8. Impact of Inclusion or Exclusion of Repeaters on Test Equating

    Science.gov (United States)

    Puhan, Gautam

    2011-01-01

    This study examined the effect of including or excluding repeaters on the equating process and results. New forms of two tests were equated to their respective old forms using either all examinees or only the first timer examinees in the new form sample. Results showed that for both tests used in this study, including or excluding repeaters in the…

  9. Secret key rates for an encoded quantum repeater

    Science.gov (United States)

    Bratzik, Sylvia; Kampermann, Hermann; Bruß, Dagmar

    2014-03-01

    We investigate secret key rates for the quantum repeater using encoding [L. Jiang et al., Phys. Rev. A 79, 032325 (2009), 10.1103/PhysRevA.79.032325] and compare them to the standard repeater scheme by Briegel, Dür, Cirac, and Zoller. The former scheme has the advantage of a minimal consumption of classical communication. We analyze the trade-off in the secret key rate between the communication time and the required resources. For this purpose we introduce an error model for the repeater using encoding which allows for input Bell states with a fidelity smaller than one, in contrast to the model given by L. Jiang et al. [Phys. Rev. A 79, 032325 (2009), 10.1103/PhysRevA.79.032325]. We show that one can correct additional errors in the encoded connection procedure of this repeater and develop a suitable decoding algorithm. Furthermore, we derive the rate of producing entangled pairs for the quantum repeater using encoding and give the minimal parameter values (gate quality and initial fidelity) for establishing a nonzero secret key. We find that the generic quantum repeater is optimal regarding the secret key rate per memory per second and show that the encoded quantum repeater using the simple three-qubit repetition code can even have an advantage with respect to the resources compared to other recent quantum repeater schemes with encoding.

  10. Development of Repeated Sprint Ability in Talented Youth Basketball Players

    NARCIS (Netherlands)

    te Wierike, Sanne C. M.; de Jong, Mark C.; Tromp, Eveline J. Y.; Vuijk, Pieter J.; Lemmink, Koen A. P. M.; Malina, Robert M.; Elferink-Gemser, Marije T.; Visscher, Chris

    2014-01-01

    te Wierike, SCM, de Jong, MC, Tromp, EJY, Vuijk, PJ, Lemmink, KAPM, Malina, RM, Elferink-Gemser, MT, and Visscher, C. Development of repeated sprint ability in talented youth basketball players. J Strength Cond Res 28(4): 928-934, 2014-Factors affecting repeated sprint ability (RSA) were evaluated i

  11. Repeatable mechanochemical activation of dynamic covalent bonds in thermoplastic elastomers.

    Science.gov (United States)

    Imato, Keiichi; Kanehara, Takeshi; Nojima, Shiki; Ohishi, Tomoyuki; Higaki, Yuji; Takahara, Atsushi; Otsuka, Hideyuki

    2016-08-18

    Repeated mechanical scission and recombination of dynamic covalent bonds incorporated in segmented polyurethane elastomers are demonstrated by utilizing a diarylbibenzofuranone-based mechanophore and by the design of the segmented polymer structures. The repeated mechanochemical reactions can accompany clear colouration and simultaneous fading. PMID:27424868

  12. Turkish population data on the short tandem repeat locus TPOX

    DEFF Research Database (Denmark)

    Vural, B; Poda, M; Atlioglu, E;

    1998-01-01

    Allele and genotype frequencies were determined for the STR (short tandem repeat) locus TPOX in a random Turkish population sample of 200 individuals.......Allele and genotype frequencies were determined for the STR (short tandem repeat) locus TPOX in a random Turkish population sample of 200 individuals....

  13. Short-sequence DNA repeats in prokaryotic genomes

    NARCIS (Netherlands)

    A.F. van Belkum (Alex); S. Scherer; L. van Alphen (Loek); H.A. Verbrugh (Henri)

    1998-01-01

    textabstractShort-sequence DNA repeat (SSR) loci can be identified in all eukaryotic and many prokaryotic genomes. These loci harbor short or long stretches of repeated nucleotide sequence motifs. DNA sequence motifs in a single locus can be identical and/or heterogeneo

  14. Rethinking Transcription Coupled DNA Repair

    OpenAIRE

    Kamarthapu, Venu; Nudler, Evgeny

    2015-01-01

    Nucleotide excision repair (NER) is an evolutionarily conserved, multistep process that can detect a wide variety of DNA lesions. Transcription coupled repair (TCR) is a sub-pathway of NER that repairs the transcribed DNA strand faster than the rest of the genome. RNA polymerase (RNAP) stalled at DNA lesions mediates the recruitment of NER enzymes to the damage site. In this review we focus on a newly identified bacterial TCR pathway in which the NER enzyme UvrD, in conjunction with NusA, pla...

  15. Automatic transcription of polyphonic singing

    OpenAIRE

    Paščinski, Uroš

    2015-01-01

    In this work we focus on automatic transcription of polyphonic singing. In particular we do the multiple fundamental frequency (F0) estimation. From the terrain recordings a test set of Slovenian folk songs with polyphonic singing is extracted and manually transcribed. On the test set we try the general algorithm for multiple F0 detection. An interactive visualization of the main parts of the algorithm is made to analyse how it works and try to detect possible issues. As the data set is ne...

  16. Novel Transcriptional Regulatory Signals in the Adeno-Associated Virus Terminal Repeat A/D Junction Element

    OpenAIRE

    Haberman, Rebecca P.; McCown, Thomas J.; Samulski, Richard Jude

    2000-01-01

    Adeno-associated virus (AAV) type 2 vectors transfer stable, long-term gene expression to diverse cell types in vivo. Many gene therapy applications require the control of long-term transgene expression, and AAV vectors, similar to other gene transfer systems, are being evaluated for delivery of regulated gene expression cassettes. Previously, we (R. P. Haberman, T. J. McCown, and R. J. Samulski, Gene Ther. 5:1604–1611, 1998) demonstrated the use of the tetracycline-responsive system for long...

  17. Telomere Transcripts Target Telomerase in Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Theresa Kreilmeier

    2016-08-01

    Full Text Available Long non-coding transcripts from telomeres, called telomeric repeat-containing RNA (TERRA, were identified as blocking telomerase activity (TA, a telomere maintenance mechanism (TMM, in tumors. We expressed recombinant TERRA transcripts in tumor cell lines with TA and with alternative lengthening of telomeres (ALT to study effects on TMM and cell growth. Adeno- and lentivirus constructs (AV and LV were established for transient and stable expression of approximately 130 units of telomere hexanucleotide repeats under control of cytomegalovirus (CMV and human RNase P RNA H1 (hH1 promoters with and without polyadenylation, respectively. Six human tumor cell lines either using telomerase or ALT were infected and analyzed for TA levels. Pre-infection cells using telomerase had 1%–3% of the TERRA expression levels of ALT cells. AV and LV expression of recombinant TERRA in telomerase positive cells showed a 1.3–2.6 fold increase in TERRA levels, and a decrease in TA of 25%–58%. Dominant-negative or small hairpin RNA (shRNA viral expression against human telomerase reverse transcriptase (hTERT results in senescence, not induced by TERRA expression. Population doubling time, cell viability and TL (telomere length were not impacted by ectopic TERRA expression. Clonal growth was reduced by TERRA expression in TA but not ALT cell lines. ALT cells were not affected by treatments applied. Established cell models and tools may be used to better understand the role of TERRA in the cell, especially for targeting telomerase.

  18. Effects of 3-repeat tau on taxol mobility through microtubules

    Science.gov (United States)

    Park, Hyunjoo; Fygenson, Deborah; Kim, Mahn Won

    2005-03-01

    Both the anti-cancer drug taxol and the microtubule-associated protein tau suppress dynamics of microtubules (MT). We have observed taxol mobility with full-length 3-repeat tau, one of six tau isoforms, using fluorescence recovery after photobleaching (FRAP) on MTs and compare with earlier results on recombinant full-length adult 4-repeat tau. Taxol mobility becomes highly sensitive to taxol concentration in the presence of 3-repeat tau (up to 1:1 molar ratio) as it does in the presence of 4-repeat tau, but is 2 to 3 times faster at low taxol concentrations. Fitting to a mean-field binding reaction model [J.L. Ross et.al, PNAS 101:12910-5 (2004)] suggests that the presence of 3-repeat tau enhances taxol movement through pores in the MT walls.

  19. Characterization of the transcriptional potency of sub-elements of the UAS of the yeast PGK gene in a PGK mini-promoter

    OpenAIRE

    Stanway, C A; Chambers, A.; Kingsman, A J; Kingsman, S M

    1989-01-01

    The upstream activator (UAS) of the yeast PGK gene comprises three different sequence elements. These are 1) a region of strong protein binding called the YFP, 2) three repeats of the motif CTTCC and 3) an essential activator core (AC) sequence that binds the protein RAP1. To assess the function of each of these elements in transcriptional activation we have inserted them individually and in various combinations into a PGK mini-promoter. This comprises only the transcription initiation elemen...

  20. The Human Immunodeficiency Virus Type 1 TAR RNA Upper Stem-Loop Plays Distinct Roles in Reverse Transcription and RNA Packaging†

    OpenAIRE

    Harrich, David; Hooker, C. William; Parry, Emma

    2000-01-01

    The human immunodeficiency virus type 1 (HIV-1) RNA genome is flanked by a repeated sequence (R) that is required for HIV-1 replication. The first 57 nucleotides of R form a stable stem-loop structure called the transactivation response element (TAR) that can interact with the virally encoded transcription activator protein, Tat, to promote high levels of gene expression. Recently, we demonstrated that TAR is also important for efficient HIV-1 reverse transcription, since HIV-1 mutated in the...

  1. Reverse transcription of the pFOXC mitochondrial retroplasmids of Fusarium oxysporum is protein primed

    Directory of Open Access Journals (Sweden)

    Galligan Jeffrey T

    2011-01-01

    Full Text Available Abstract Background The pFOXC retroplasmids are small, autonomously replicating DNA molecules found in mitochondria of certain strains of the filamentous fungus Fusarium oxysporum and are among the first linear genetic elements shown to replicate via reverse transcription. The plasmids have a unique clothespin structure that includes a 5'-linked protein and telomere-like terminal repeats, with pFOXC2 and pFOXC3 having iterative copies of a 5 bp sequence. The plasmids contain a single large open reading frame (ORF encoding an active reverse transcriptase (RT. The pFOXC-RT is associated with the plasmid transcript in a ribonucleoprotein (RNP complex and can synthesize full-length (- strand cDNA products. In reactions containing partially purified RT preparations with exogenous RNAs, the pFOXC3-RT has been shown to initiate cDNA synthesis by use of snapped-back RNAs, as well as loosely associated DNA primers. Results The complete sequence of the distantly related pFOXC1 plasmid was determined and found to terminate in 3-5 copies of a 3 bp sequence. Unexpectedly, the majority of (- strand cDNA molecules produced from endogenous pFOXC1 transcripts were attached to protein. In vitro experiments using partially purified pFOXC3-RT preparations having a single radiolabeled deoxyribonucleotide triphosphate (dNTP generated a nucleotide-labeled protein that migrated at the size of the pFOXC-RT. The nucleotide preference of deoxynucleotidylation differed between pFOXC3 and pFOXC1 and showed complementarity to the respective 3' terminal repeats. In reactions that include exogenous RNA templates corresponding to the 3' end of pFOXC1, a protein-linked cDNA product was generated following deoxynucleotidylation, suggesting that reverse transcription initiates with a protein primer. Conclusions The finding that reverse transcription is protein primed suggests the pFOXC retroplasmids may have an evolutionary relationship with hepadnaviruses, the only other

  2. Consistency of Repeated Naming in Aphasia

    Directory of Open Access Journals (Sweden)

    Elizabeth E. Galletta

    2015-09-01

    Full Text Available Background People with mild aphasia and healthy elderly often exhibit similar impairments on language tests of word retrieval. However, variable practice effects in object naming by three individuals with aphasia compared to young and elderly adults have been reported (Wingfield et al. 2006. Wingfield et al. (2006 found that naming of the same pictures of objects over five trials demonstrated decreasing response latencies over repeated trials for both older and younger adults, but not for individuals with aphasia. In fact, among their three participants with aphasia, response latencies in the consecutive trials differed considerably. The authors suggested that different underlying processes may be involved in word retrieval for people with aphasia compared to adults without brain injuries. In our study we aimed to further consider the effect of practice on both object and action naming in individuals with mild aphasia. Method One woman with anomic aphasia (age 38 years; WAB Aphasia Quotient = 88 and one healthy woman (age 25 years participated. Both were native English speakers and reported 18 years of formal education. Participants were tested individually, with a set of 27 object pictures and a set of 27 action pictures presented one at a time on a computer screen. The participants were instructed to name each picture as quickly as possible as soon as each picture appeared on the screen. There were 10 trials of each set of pictures, with different random orders for each trial. The order of presentation of the object and action picture sets alternated across participants. Naming responses were recorded to computer sound files for later measurements of response latencies. A brief tone was presented simultaneous with the picture onset, allowing later measurement of response latencies from the onset of picture presentation to the onset of the participant’s correct response. Results Our findings resembled those reported in Wingfield et al. (2006

  3. Engineering customized TALE nucleases (TALENs) and TALE transcription factors by fast ligation-based automatable solid-phase high-throughput (FLASH) assembly.

    Science.gov (United States)

    Reyon, Deepak; Maeder, Morgan L; Khayter, Cyd; Tsai, Shengdar Q; Foley, Jonathan E; Sander, Jeffry D; Joung, J Keith

    2013-07-01

    Customized DNA-binding domains made using transcription activator-like effector (TALE) repeats are rapidly growing in importance as widely applicable research tools. TALE nucleases (TALENs), composed of an engineered array of TALE repeats fused to the FokI nuclease domain, have been used successfully for directed genome editing in various organisms and cell types. TALE transcription factors (TALE-TFs), consisting of engineered TALE repeat arrays linked to a transcriptional regulatory domain, have been used to up- or downregulate expression of endogenous genes in human cells and plants. This unit describes a detailed protocol for the recently described fast ligation-based automatable solid-phase high-throughput (FLASH) assembly method. FLASH enables automated high-throughput construction of engineered TALE repeats using an automated liquid handling robot or manually using a multichannel pipet. Using the automated approach, a single researcher can construct up to 96 DNA fragments encoding TALE repeat arrays of various lengths in a single day, and then clone these to construct sequence-verified TALEN or TALE-TF expression plasmids in a week or less. Plasmids required for FLASH are available by request from the Joung lab (http://eGenome.org). This unit also describes improvements to the Zinc Finger and TALE Targeter (ZiFiT Targeter) web server (http://ZiFiT.partners.org) that facilitate the design and construction of FLASH TALE repeat arrays in high throughput.

  4. Repeated exposure to heat stress results in a diaphragm phenotype that resists ventilator-induced diaphragm dysfunction.

    Science.gov (United States)

    Yoshihara, Toshinori; Ichinoseki-Sekine, Noriko; Kakigi, Ryo; Tsuzuki, Takamasa; Sugiura, Takao; Powers, Scott K; Naito, Hisashi

    2015-11-01

    Controlled mechanical ventilation (CMV) is a life-saving intervention for patients in respiratory failure. Unfortunately, prolonged mechanical ventilation (MV) results in diaphragmatic atrophy and contractile dysfunction, both of which are predicted to contribute to problems in weaning patients from the ventilator. Therefore, developing a strategy to protect the diaphragm against ventilator-induced weakness is important. We tested the hypothesis that repeated bouts of heat stress result in diaphragm resistance against CMV-induced atrophy and contractile dysfunction. Male Wistar rats were randomly divided into six experimental groups: 1) control; 2) single bout of whole body heat stress; 3) repeated bouts of whole body heat stress; 4) 12 h CMV; 5) single bout of whole body heat stress 24 h before CMV; and 6) repeated bouts of whole body heat stress 1, 3, and 5 days before 12 h of CMV. Our results revealed that repeated bouts of heat stress resulted in increased levels of heat shock protein 72 in the diaphragm and protection against both CMV-induced diaphragmatic atrophy and contractile dysfunction at submaximal stimulation frequencies. The specific mechanisms responsible for this protection remain unclear: this heat stress-induced protection against CMV-induced diaphragmatic atrophy and weakness may be partially due to reduced diaphragmatic oxidative stress, diminished activation of signal transducer/transcriptional activator-3, lower caspase-3 activation, and decreased autophagy in the diaphragm.

  5. The transcriptional regulation of pluripotency

    Institute of Scientific and Technical Information of China (English)

    Jia-Chi Yeo; Huck-Hui Ng

    2013-01-01

    The defining features of embryonic stem cells (ESCs) are their self-renewing and pluripotent capacities.Indeed,the ability to give rise into all cell types within the organism not only allows ESCs to function as an ideal in vitro tool to study embryonic development,but also offers great therapeutic potential within the field of regenerative medicine.However,it is also this same remarkable developmental plasticity that makes the efficient control of ESC differentiation into the desired cell type very difficult.Therefore,in order to harness ESCs for clinical applications,a detailed understanding of the molecular and cellular mechanisms controlling ESC pluripotency and lineage commitment is necessary.In this respect,through a variety of transcriptomic approaches,ESC pluripotency has been found to be regulated by a system of ESC-associated transcription factors; and the external signalling environment also acts as a key factor in modulating the ESC transcriptome.Here in this review,we summarize our current understanding of the transcriptional regulatory network in ESCs,discuss how the control of various signalling pathways could influence pluripotency,and provide a future outlook of ESC research.

  6. Strategy When Faced with Failure: Persistence and Degree Attainment of Course Repeaters versus Non-Repeaters. AIR 2002 Forum Paper.

    Science.gov (United States)

    Fenton, Kathleen S.

    Graduation and persistence rates were compared for 184 students, 92 of whom had repeated multiple courses or at least 1 course 3 times. A control group of 92 nonrepeating students was drawn from the remaining 303 students of the entire 1996 cohort. There was no difference between the graduation rate of repeaters and nonrepeaters. The persistence…

  7. Interactions of Brf1 Peptides with the Tetratricopeptide Repeat-Containing Subunit of TFIIIC Inhibit and Promote Preinitiation Complex Assembly

    OpenAIRE

    Liao, Yanling; Moir, Robyn D.; Willis, Ian M.

    2006-01-01

    The binding of Brf1 to the tetratricopeptide repeat (TPR)-containing transcription factor IIIC (TFIIIC) subunit (Tfc4) represents a rate-limiting step in the ordered assembly of the RNA polymerase III initiation factor TFIIIB. Tfc4 contains multiple binding sites for Brf1 within its amino terminus and adjacent TPR arrays, but the access of Brf1 to these sites is limited by autoinhibition. Moreover, the Brf1 binding sites in Tfc4 overlap with sites important for the subsequent recruitment of a...

  8. PPR8522 encodes a chloroplast-targeted pentatricopeptide repeat protein necessary for maize embryogenesis and vegetative development

    OpenAIRE

    Sosso, Davide; Canut, Matthieu; Gendrot, Ghislaine; Dedieu, Annick; Chambrier, Pierre; Barkan, Alice; Consonni, Gabriella; M. Rogowsky, Peter

    2012-01-01

    The pentatricopeptide repeat (PPR) domain is an RNA binding domain allowing members of the PPR superfamily to participate in post-transcriptional processing of organellar RNA. Loss of PPR8522 from maize (Zea mays) confers an embryo-specific (emb) phenotype. The emb8522 mutation was isolated in an active Mutator (Mu) population and co-segregation analysis revealed that it was tightly linked to a MuDR insertion in the first exon of PPR8522. Independent evidence that disruption of PPR8522 caused...

  9. Transcriptional changes in the nuc-2A mutant strain of Neurospora crassa cultivated under conditions of phosphate shortage.

    Science.gov (United States)

    Gras, Diana E; Silveira, Henrique C S; Peres, Nalu T A; Sanches, Pablo R; Martinez-Rossi, Nilce M; Rossi, Antonio

    2009-01-01

    The molecular mechanism that controls the response to phosphate shortage in Neurospora crassa involves four regulatory genes -nuc-2, preg, pgov, and nuc-1. Phosphate shortage is sensed by the nuc-2 gene, the product of which inhibits the functioning of the PREG-PGOV complex. This allows the translocation of the transcriptional factor NUC-1 into the nucleus, which activates the transcription of phosphate-repressible phosphatases. The nuc-2A mutant strain of N. crassa carries a loss-of-function mutation in the nuc-2 gene, which encodes an ankyrin-like repeat protein. In this study, we identified transcripts that are downregulated in the nuc-2A mutant strain. Functional grouping of these expressed sequence tags allowed the identification of genes that play essential roles in different cellular processes such as transport, transcriptional regulation, signal transduction, metabolism, protein synthesis, protein fate, and development. These results reveal novel aspects of the phosphorus-sensing network in N. crassa.

  10. Mitotic Transcriptional Activation: Clearance of Actively Engaged Pol II via Transcriptional Elongation Control in Mitosis.

    Science.gov (United States)

    Liang, Kaiwei; Woodfin, Ashley R; Slaughter, Brian D; Unruh, Jay R; Box, Andrew C; Rickels, Ryan A; Gao, Xin; Haug, Jeffrey S; Jaspersen, Sue L; Shilatifard, Ali

    2015-11-01

    Although it is established that some general transcription factors are inactivated at mitosis, many details of mitotic transcription inhibition (MTI) and its underlying mechanisms are largely unknown. We have identified mitotic transcriptional activation (MTA) as a key regulatory step to control transcription in mitosis for genes with transcriptionally engaged RNA polymerase II (Pol II) to activate and transcribe until the end of the gene to clear Pol II from mitotic chromatin, followed by global impairment of transcription reinitiation through MTI. Global nascent RNA sequencing and RNA fluorescence in situ hybridization demonstrate the existence of transcriptionally engaged Pol II in early mitosis. Both genetic and chemical inhibition of P-TEFb in mitosis lead to delays in the progression of cell division. Together, our study reveals a mechanism for MTA and MTI whereby transcriptionally engaged Pol II can progress into productive elongation and finish transcription to allow proper cellular division.

  11. Pentatricopeptide-repeat family protein RF6 functions with hexokinase 6 to rescue rice cytoplasmic male sterility.

    Science.gov (United States)

    Huang, Wenchao; Yu, Changchun; Hu, Jun; Wang, Lili; Dan, Zhiwu; Zhou, Wei; He, Chunlan; Zeng, Yafei; Yao, Guoxin; Qi, Jianzhao; Zhang, Zhihong; Zhu, Renshan; Chen, Xuefeng; Zhu, Yingguo

    2015-12-01

    Cytoplasmic male sterility (CMS) has been extensively used for hybrid seed production in many major crops. Honglian CMS (HL-CMS) is one of the three major types of CMS in rice and has contributed greatly to food security worldwide. The HL-CMS trait is associated with an aberrant chimeric mitochondrial transcript, atp6-orfH79, which causes pollen sterility and can be rescued by two nonallelic restorer-of-fertility (Rf) genes, Rf5 or Rf6. Here, we report the identification of Rf6, which encodes a novel pentatricopeptide repeat (PPR) family protein with a characteristic duplication of PPR motifs 3-5. RF6 is targeted to mitochondria, where it physically associates with hexokinase 6 (OsHXK6) and promotes the processing of the aberrant CMS-associated transcript atp6-orfH79 at nucleotide 1238, which ensures normal pollen development and restores fertility. The duplicated motif 3 of RF6 is essential for RF6-OsHXK6 interactions, processing of the aberrant transcript, and restoration of fertility. Furthermore, reductions in the level of OsHXK6 result in atp6-orfH79 transcript accumulation and male sterility. Together these results reveal a novel mechanism for CMS restoration by which RF6 functions with OsHXK6 to restore HL-CMS fertility. The present study also provides insight into the function of hexokinase 6 in regulating mitochondrial RNA metabolism and may facilitate further exploitation of heterosis in rice.

  12. Polymorphic repeat in AIB1 does not alter breast cancer risk

    International Nuclear Information System (INIS)

    We assessed the association between a glutamine repeat polymorphism in AIB1 and breast cancer risk in a case-control study (464 cases, 624 controls) nested within the Nurses' Health Study cohort. We observed no association between AIB1 genotype and breast cancer incidence, or specific tumor characteristics. These findings suggest that AIB1 repeat genotype does not influence postmenopausal breast cancer risk among Caucasian women in the general population. A causal association between endogenous and exogenous estrogens and breast cancer has been established. Steroid hormones regulate the expression of proteins that are involved in breast cell proliferation and development after binding to their respective steroid hormone receptors. Coactivator and corepressor proteins have recently been identified that interact with steroid hormone receptors and modulate transcriptional activation [1]. AIB1 (amplified in breast 1) is a member of the steroid receptor coactivator (SRC) family that interacts with estrogen receptor (ER)α in a ligand-dependent manner, and increases estrogen-dependent transcription [2]. Amplification and overexpression of AIB1 has been observed in breast and ovarian cancer cell lines and in breast tumors [2,3]. A polymorphic stretch of glutamine amino acids, with unknown biologic function, has recently been described in the carboxyl-terminal region of AIB1 [4]. Among women with germline BRCA1 mutations, significant positive associations were observed between AIB1 alleles with 26 or fewer glutamine repeats and breast cancer risk [5] To establish whether AIB1 repeat alleles are associated with breast cancer risk and specific tumor characteristics among Caucasian women. We evaluated associations prospectively between AIB1 alleles and breast cancer risk in the Nurses' Health Study using a nested case-control design. The Nurses' Health Study was initiated in 1976, when 121 700 US-registered nurses between the ages of 30 and 55 years returned an

  13. Repeating and not so Repeating Large Earthquakes in the Mexican Subduction Zone

    Science.gov (United States)

    Hjorleifsdottir, V.; Singh, S.; Iglesias, A.; Perez-Campos, X.

    2013-12-01

    The rupture area and recurrence interval of large earthquakes in the mexican subduction zone are relatively small and almost the entire length of the zone has experienced a large (Mw≥7.0) earthquake in the last 100 years (Singh et al., 1981). Several segments have experienced multiple large earthquakes in this time period. However, as the rupture areas of events prior to 1973 are only approximately known, the recurrence periods are uncertain. Large earthquakes occurred in the Ometepec, Guerrero, segment in 1937, 1950, 1982 and 2012 (Singh et al., 1981). In 1982, two earthquakes (Ms 6.9 and Ms 7.0) occurred about 4 hours apart, one apparently downdip from the other (Astiz & Kanamori, 1984; Beroza et al. 1984). The 2012 earthquake on the other hand had a magnitude of Mw 7.5 (globalcmt.org), breaking approximately the same area as the 1982 doublet, but with a total scalar moment about three times larger than the 1982 doublet combined. It therefore seems that 'repeat earthquakes' in the Ometepec segment are not necessarily very similar one to another. The Central Oaxaca segment broke in large earthquakes in 1928 (Mw7.7) and 1978 (Mw7.7) . Seismograms for the two events, recorded at the Wiechert seismograph in Uppsala, show remarkable similarity, suggesting that in this area, large earthquakes can repeat. The extent to which the near-trench part of the fault plane participates in the ruptures is not well understood. In the Ometepec segment, the updip portion of the plate interface broke during the 25 Feb 1996 earthquake (Mw7.1), which was a slow earthquake and produced anomalously low PGAs (Iglesias et al., 2003). Historical records indicate that a great tsunamigenic earthquake, M~8.6, occurred in the Oaxaca region in 1787, breaking the Central Oaxaca segment together with several adjacent segments (Suarez & Albini 2009). Whether the updip portion of the fault broke in this event remains speculative, although plausible based on the large tsunami. Evidence from the

  14. Repeating earthquakes recorded by Liaoning Regional Seismograph Network

    Institute of Scientific and Technical Information of China (English)

    LI Yu-tong; WU Zhong-liang; JIANG Chang-sheng; LI Guang-ping

    2008-01-01

    In the list of 'repeating pairs' or 'doublets' of earthquakes in China identified by Schaff and Richards using tele-seismic waveform cross-correlation, there were 23 repeating pairs located in Liaoning Province. In this study the waveforms of these events were cross-correlated using records from Liaoning Regional Seismograph Network (LRSN), and the 'repeating events' in the sense of regional waveform cross-correlation were obtained. The result was compared with that of Schaff and Richards and was used for the assessment of the seismic phase picking and event location practice of LRSN. The result shows that 'repeating events' in the sense of teleseismic waveform cross-correlation and those in the sense of regional waveform cross-correlation have significant difference, al-though with some overlap. However, the overall assessment of the location accuracy and the phase pick errors of LRSN by using these two sets of 'repeating events', respectively, provides similar results, while 'repeating events' in the sense of regional waveform cross-correlation seem to be better performing in such an assessment. With the assumption that the separation between the 'repeaters' be less than 1 km, the uncertainty in routine earthquake location of LRSN is estimated to be below 5 km, with the average of 2 km. In the observational bulletins of LRSN the time error in phase picking is estimated to be within±Is for 94% Pg readings and for 88% Sg readings.

  15. Exploring the repeat protein universe through computational protein design.

    Science.gov (United States)

    Brunette, T J; Parmeggiani, Fabio; Huang, Po-Ssu; Bhabha, Gira; Ekiert, Damian C; Tsutakawa, Susan E; Hura, Greg L; Tainer, John A; Baker, David

    2015-12-24

    A central question in protein evolution is the extent to which naturally occurring proteins sample the space of folded structures accessible to the polypeptide chain. Repeat proteins composed of multiple tandem copies of a modular structure unit are widespread in nature and have critical roles in molecular recognition, signalling, and other essential biological processes. Naturally occurring repeat proteins have been re-engineered for molecular recognition and modular scaffolding applications. Here we use computational protein design to investigate the space of folded structures that can be generated by tandem repeating a simple helix-loop-helix-loop structural motif. Eighty-three designs with sequences unrelated to known repeat proteins were experimentally characterized. Of these, 53 are monomeric and stable at 95 °C, and 43 have solution X-ray scattering spectra consistent with the design models. Crystal structures of 15 designs spanning a broad range of curvatures are in close agreement with the design models with root mean square deviations ranging from 0.7 to 2.5 Å. Our results show that existing repeat proteins occupy only a small fraction of the possible repeat protein sequence and structure space and that it is possible to design novel repeat proteins with precisely specified geometries, opening up a wide array of new possibilities for biomolecular engineering.

  16. A De Novo Genome Assembly Algorithm for Repeats and Nonrepeats

    Directory of Open Access Journals (Sweden)

    Shuaibin Lian

    2014-01-01

    Full Text Available Background. Next generation sequencing platforms can generate shorter reads, deeper coverage, and higher throughput than those of the Sanger sequencing. These short reads may be assembled de novo before some specific genome analyses. Up to now, the performances of assembling repeats of these current assemblers are very poor. Results. To improve this problem, we proposed a new genome assembly algorithm, named SWA, which has four properties: (1 assembling repeats and nonrepeats; (2 adopting a new overlapping extension strategy to extend each seed; (3 adopting sliding window to filter out the sequencing bias; and (4 proposing a compensational mechanism for low coverage datasets. SWA was evaluated and validated in both simulations and real sequencing datasets. The accuracy of assembling repeats and estimating the copy numbers is up to 99% and 100%, respectively. Finally, the extensive comparisons with other eight leading assemblers show that SWA outperformed others in terms of completeness and correctness of assembling repeats and nonrepeats. Conclusions. This paper proposed a new de novo genome assembly method for resolving complex repeats. SWA not only can detect where repeats or nonrepeats are but also can assemble them completely from NGS data, especially for assembling repeats. This is the advantage over other assemblers.

  17. Possibility of enhanced risk of retinal neovascularization in repeated blood donors: blood donation and retinal alteration

    Directory of Open Access Journals (Sweden)

    Rastmanesh R

    2011-09-01

    Full Text Available Reza RastmaneshDepartment of Clinical Nutrition and Dietetics, Shahid Beheshti University of Medical Sciences, National Nutrition and Food Technology Research Institute, Tehran, IranAbstract: Repeated blood donors manifest clinical, subclinical, and biochemical signs of iron deficiency anemia, have significantly higher erythropoietin and vascular endothelial growth factor (VEGF concentrations, and decreased tissue oxygen saturation, oxygenated tissue hemoglobin, and regional cerebral oxygen saturation. Erythropoietin and VEGF are potent retinal angiogenic factors which may initiate and promote the retinal angiogenesis process independently or simultaneously. Increases in circulating levels of erythropoietin and VEGF are proportionate to the levels of hematocrit, hypoxemia, and tissue hypoxia. It is suggested that higher erythropoietin production following iron deficiency anemia-induced chronic hypoxemia/hypoxia may, hypothetically, enhance the risk of retinal angiogenesis and/or neovascularization, possibly by inducing hypoxia inducible factor-1 alpha, which consequently upregulates genes stimulating angiogenesis, resulting in formation of a new vasculature, possibly by modulation of signal transducer and activator of transcription 3 signaling in the retina. Implications of this hypothesis cover erythropoietin doping, chronic hypoxia, and hypoxemic situations, such as angiogenesis-related cardiac and pulmonary diseases.Keywords: repeated blood donation, erythropoietin, retinal neovascularization, vascular endothelial growth factor, hypoxia

  18. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats.

    Science.gov (United States)

    Grissa, Ibtissem; Vergnaud, Gilles; Pourcel, Christine

    2007-07-01

    Clustered regularly interspaced short palindromic repeats (CRISPRs) constitute a particular family of tandem repeats found in a wide range of prokaryotic genomes (half of eubacteria and almost all archaea). They consist of a succession of highly conserved regions (DR) varying in size from 23 to 47 bp, separated by similarly sized unique sequences (spacer) of usually viral origin. A CRISPR cluster is flanked on one side by an AT-rich sequence called the leader and assumed to be a transcriptional promoter. Recent studies suggest that this structure represents a putative RNA-interference-based immune system. Here we describe CRISPRFinder, a web service offering tools to (i) detect CRISPRs including the shortest ones (one or two motifs); (ii) define DRs and extract spacers; (iii) get the flanking sequences to determine the leader; (iv) blast spacers against Genbank database and (v) check if the DR is found elsewhere in prokaryotic sequenced genomes. CRISPRFinder is freely accessible at http://crispr.u-psud.fr/Server/CRISPRfinder.php.

  19. Tandem-repeat protein domains across the tree of life

    Directory of Open Access Journals (Sweden)

    Kristin K. Jernigan

    2015-01-01

    Full Text Available Tandem-repeat protein domains, composed of repeated units of conserved stretches of 20–40 amino acids, are required for a wide array of biological functions. Despite their diverse and fundamental functions, there has been no comprehensive assessment of their taxonomic distribution, incidence, and associations with organismal lifestyle and phylogeny. In this study, we assess for the first time the abundance of armadillo (ARM and tetratricopeptide (TPR repeat domains across all three domains in the tree of life and compare the results to our previous analysis on ankyrin (ANK repeat domains in this journal. All eukaryotes and a majority of the bacterial and archaeal genomes analyzed have a minimum of one TPR and ARM repeat. In eukaryotes, the fraction of ARM-containing proteins is approximately double that of TPR and ANK-containing proteins, whereas bacteria and archaea are enriched in TPR-containing proteins relative to ARM- and ANK-containing proteins. We show in bacteria that phylogenetic history, rather than lifestyle or pathogenicity, is a predictor of TPR repeat domain abundance, while neither phylogenetic history nor lifestyle predicts ARM repeat domain abundance. Surprisingly, pathogenic bacteria were not enriched in TPR-containing proteins, which have been associated within virulence factors in certain species. Taken together, this comparative analysis provides a newly appreciated view of the prevalence and diversity of multiple types of tandem-repeat protein domains across the tree of life. A central finding of this analysis is that tandem repeat domain-containing proteins are prevalent not just in eukaryotes, but also in bacterial and archaeal species.

  20. Systematic genetic analysis of transcription factors to map the fission yeast transcription-regulatory network.

    Science.gov (United States)

    Chua, Gordon

    2013-12-01

    Mapping transcriptional-regulatory networks requires the identification of target genes, binding specificities and signalling pathways of transcription factors. However, the characterization of each transcription factor sufficiently for deciphering such networks remains laborious. The recent availability of overexpression and deletion strains for almost all of the transcription factor genes in the fission yeast Schizosaccharomyces pombe provides a valuable resource to better investigate transcription factors using systematic genetics. In the present paper, I review and discuss the utility of these strain collections combined with transcriptome profiling and genome-wide chromatin immunoprecipitation to identify the target genes of transcription factors.

  1. Transcription in Archaea: in vitro transcription assays for mjRNAP.

    Science.gov (United States)

    Smollett, Katherine; Blombach, Fabian; Werner, Finn

    2015-01-01

    The fully recombinant Methanocaldococcus jannaschii RNA polymerase allows for a detailed dissection of the different stages of the transcription. In the previous chapter, we discussed how to purify the different components of the M. jannaschii transcription system, the RNA polymerase subunits, and general transcription factors and how to assemble a functional M. jannaschii enzyme. Standard in vitro transcription assays can be used to examine the different stages of transcription. In this chapter, we describe how some of these assays have been optimized for M. jannaschii RNA polymerase, which transcribes at much higher temperatures than many other transcription complexes.

  2. Catching transcriptional regulation by thermostatistical modeling

    Science.gov (United States)

    Frank, Till D.; Cheong, Alex; Okada-Hatakeyama, Mariko; Kholodenko, Boris N.

    2012-08-01

    Gene expression is frequently regulated by multiple transcription factors (TFs). Thermostatistical methods allow for a quantitative description of interactions between TFs, RNA polymerase and DNA, and their impact on the transcription rates. We illustrate three different scales of the thermostatistical approach: the microscale of TF molecules, the mesoscale of promoter energy levels and the macroscale of transcriptionally active and inactive cells in a cell population. We demonstrate versatility of combinatorial transcriptional activation by exemplifying logic functions, such as AND and OR gates. We discuss a metric for cell-to-cell transcriptional activation variability known as Fermi entropy. Suitability of thermostatistical modeling is illustrated by describing the experimental data on transcriptional induction of NFκB and the c-Fos protein.

  3. Transcription Termination: Variations on Common Themes.

    Science.gov (United States)

    Porrua, Odil; Boudvillain, Marc; Libri, Domenico

    2016-08-01

    Transcription initiates pervasively in all organisms, which challenges the notion that the information to be expressed is selected mainly based on mechanisms defining where and when transcription is started. Together with post-transcriptional events, termination of transcription is essential for sorting out the functional RNAs from a plethora of transcriptional products that seemingly have no use in the cell. But terminating transcription is not that easy, given the high robustness of the elongation process. We review here many of the strategies that prokaryotic and eukaryotic cells have adopted to dismantle the elongation complex in a timely and efficient manner. We highlight similarities and diversity, underlying the existence of common principles in a diverse set of functionally convergent solutions. PMID:27371117

  4. Telomeric repeat-containing RNA (TERRA) constitutes a nucleoprotein component of extracellular inflammatory exosomes

    Science.gov (United States)

    Wang, Zhuo; Deng, Zhong; Dahmane, Nadia; Tsai, Kevin; Wang, Pu; Williams, Dewight R.; Kossenkov, Andrew V.; Showe, Louise C.; Zhang, Rugang; Huang, Qihong; Conejo-Garcia, José R.; Lieberman, Paul M.

    2015-01-01

    Telomeric repeat-containing RNA (TERRA) has been identified as a telomere-associated regulator of chromosome end protection. Here, we report that TERRA can also be found in extracellular fractions that stimulate innate immune signaling. We identified extracellular forms of TERRA in mouse tumor and embryonic brain tissue, as well as in human tissue culture cell lines using RNA in situ hybridization. RNA-seq analyses revealed TERRA to be among the most highly represented transcripts in extracellular fractions derived from both normal and cancer patient blood plasma. Cell-free TERRA (cfTERRA) could be isolated from the exosome fractions derived from human lymphoblastoid cell line (LCL) culture media. cfTERRA is a shorter form (∼200 nt) of cellular TERRA and copurifies with CD63- and CD83-positive exosome vesicles that could be visualized by cyro-electron microscopy. These fractions were also enriched for histone proteins that physically associate with TERRA in extracellular ChIP assays. Incubation of cfTERRA-containing exosomes with peripheral blood mononuclear cells stimulated transcription of several inflammatory cytokine genes, including TNFα, IL6, and C-X-C chemokine 10 (CXCL10) Exosomes engineered with elevated TERRA or liposomes with synthetic TERRA further stimulated inflammatory cytokines, suggesting that exosome-associated TERRA augments innate immune signaling. These findings imply a previously unidentified extrinsic function for TERRA and a mechanism of communication between telomeres and innate immune signals in tissue and tumor microenvironments. PMID:26578789

  5. Cellular pattern formation by SCRAMBLED, a leucine-rich repeat receptor-like kinase in Arabidopsis.

    Science.gov (United States)

    Kwak, Su-Hwan; Schiefelbein, John

    2008-02-01

    The appropriate specification of distinct cell types is important for generating the proper tissues and bodies of multicellular organisms. In the root epidermis of Arabidopsis, cell fate determination is accomplished by a transcriptional regulatory circuit that is influenced by positional signaling. A leucine-rich repeat receptor-like kinase, SCRAMBLED (SCM), has been shown to be responsible for the position-dependent aspect of this epidermal pattern. In a recent report, we find that SCM affects the transcriptional regulatory network by down-regulating the WEREWOLF (WER) MYB gene expression in a set of epidermal cells located in a specific position. We also find that SCM and the SCM-related SRF1 and SRF3 are not required for embryonic epidermal patterning and that SRF1 and SRF3 do not act redundantly with SCM. This suggests that distinct positional signaling mechanisms exist for embryonic and post-embryonic epidermal patterning. In this addendum, we discuss the implications of our recent findings and extend our working model for epidermal cell pattering.

  6. Telomeric repeat-containing RNA (TERRA) constitutes a nucleoprotein component of extracellular inflammatory exosomes.

    Science.gov (United States)

    Wang, Zhuo; Deng, Zhong; Dahmane, Nadia; Tsai, Kevin; Wang, Pu; Williams, Dewight R; Kossenkov, Andrew V; Showe, Louise C; Zhang, Rugang; Huang, Qihong; Conejo-Garcia, José R; Lieberman, Paul M

    2015-11-17

    Telomeric repeat-containing RNA (TERRA) has been identified as a telomere-associated regulator of chromosome end protection. Here, we report that TERRA can also be found in extracellular fractions that stimulate innate immune signaling. We identified extracellular forms of TERRA in mouse tumor and embryonic brain tissue, as well as in human tissue culture cell lines using RNA in situ hybridization. RNA-seq analyses revealed TERRA to be among the most highly represented transcripts in extracellular fractions derived from both normal and cancer patient blood plasma. Cell-free TERRA (cfTERRA) could be isolated from the exosome fractions derived from human lymphoblastoid cell line (LCL) culture media. cfTERRA is a shorter form (∼200 nt) of cellular TERRA and copurifies with CD63- and CD83-positive exosome vesicles that could be visualized by cyro-electron microscopy. These fractions were also enriched for histone proteins that physically associate with TERRA in extracellular ChIP assays. Incubation of cfTERRA-containing exosomes with peripheral blood mononuclear cells stimulated transcription of several inflammatory cytokine genes, including TNFα, IL6, and C-X-C chemokine 10 (CXCL10) Exosomes engineered with elevated TERRA or liposomes with synthetic TERRA further stimulated inflammatory cytokines, suggesting that exosome-associated TERRA augments innate immune signaling. These findings imply a previously unidentified extrinsic function for TERRA and a mechanism of communication between telomeres and innate immune signals in tissue and tumor microenvironments.

  7. Telomeric repeat-containing RNA TERRA: a noncoding RNA connecting telomere biology to genome integrity.

    Science.gov (United States)

    Cusanelli, Emilio; Chartrand, Pascal

    2015-01-01

    Telomeres are dynamic nucleoprotein structures that protect the ends of chromosomes from degradation and activation of DNA damage response. For this reason, telomeres are essential to genome integrity. Chromosome ends are enriched in heterochromatic marks and proper organization of telomeric chromatin is important to telomere stability. Despite their heterochromatic state, telomeres are transcribed giving rise to long noncoding RNAs (lncRNA) called TERRA (telomeric repeat-containing RNA). TERRA molecules play critical roles in telomere biology, including regulation of telomerase activity and heterochromatin formation at chromosome ends. Emerging evidence indicate that TERRA transcripts form DNA-RNA hybrids at chromosome ends which can promote homologous recombination among telomeres, delaying cellular senescence and sustaining genome instability. Intriguingly, TERRA RNA-telomeric DNA hybrids are involved in telomere length homeostasis of telomerase-negative cancer cells. Furthermore, TERRA transcripts play a role in the DNA damage response (DDR) triggered by dysfunctional telomeres. We discuss here recent developments on TERRA's role in telomere biology and genome integrity, and its implication in cancer.

  8. The effects of multiple UV exposures on HIV-LTR (long terminal repeat) expression

    International Nuclear Information System (INIS)

    Previous studies have shown that cellular stress agents such as UV radiation induce transcription from the long terminal repeat (LTR) of the human immunodeficiency virus (HIV). Using HeLa cells stably transfected with the HIV-LTR sequence, which transcriptionally drives the chloramphenicol acetyl transferase (CAT) reporter gene, we examined the effects of multiple exposures to UVC (254 nm) on HIV-LTR-CAT expression. Low doses (≤ 5 J m-2) had no effect on CAT expression, but up to 29-fold induction was observed with 10 J m-2 when cells were harvested 48 h after completion of the exposure. Little difference was noted in induction levels when cells were exposed to one 25 J m-2 dose, viable cells were harvested at 24 h, 48 h or 72 h, and cell lysates were assayed for CAT expression. Two sequential 12.5 J m-2 exposures, given 24 h apart, resulted in an additive effect on CAT expression; these two exposures produced CAT activity equivalent to that induced following a single 25 J m-2 dose. Our data suggest that HIV-LTR requires a specific threshold UV dose in order to elicit induction; a maximal induction dose is also evident; exposures higher than this maximal dose contribute no more to HIV-LTR induction in viable cells. (author)

  9. Analysis of repeated outcome measures from longitudinal studies

    Institute of Scientific and Technical Information of China (English)

    Yuanjia WANG; Naihua DUAN

    2011-01-01

    @@ In many clinical studies repeated measurements of an outcome are collected over time.For example,in an 8-week study of treatment for obsessive compulsive disorder,the severity of the disorder may be measured weekly using the Yale-Brown-Obsessive-Compulsive-Disorder-Scale (YBOCS).For each study participant who completes the study,there will be nine repeated measures of YBOCS (a baseline assessment plus eight assessments during the course of treatment).Such a study in which participants are followed and measured repeatedly over time is called a longitudinal study and the resulting data are called longitudinal data.

  10. Frequency Bandwidth of Half-Wave Impedance Repeater

    Directory of Open Access Journals (Sweden)

    Marek Dvorsky

    2012-01-01

    Full Text Available This article brings in the second part general information about half-wave impedance repeater. The third part describes the basic functional principles of the half-wave impedance repeater using Smith chart. The main attention is focused in part four on the derivation of repeater frequency bandwidth depending on characteristics and load impedance of unknown feeder line. Derived dependences are based on the elementary features of the feeder lines with specific length. The described functionality is proved in part 4.3 by measurement of transformed impedance using vector several unbalanced feeder lines and network analyzer VNWA3+.

  11. Secure quantum network coding for controlled repeater networks

    Science.gov (United States)

    Shang, Tao; Li, Jiao; Liu, Jian-wei

    2016-07-01

    To realize efficient quantum communication based on quantum repeater, we propose a secure quantum network coding scheme for controlled repeater networks, which adds a controller as a trusted party and is able to control the process of EPR-pair distribution. As the key operations of quantum repeater, local operations and quantum communication are designed to adopt quantum one-time pad to enhance the function of identity authentication instead of local operations and classical communication. Scheme analysis shows that the proposed scheme can defend against active attacks for quantum communication and realize long-distance quantum communication with minimal resource consumption.

  12. RNA polymerase II collision interrupts convergent transcription

    DEFF Research Database (Denmark)

    Hobson, David J; Wei, Wu; Steinmetz, Lars M;

    2012-01-01

    Antisense noncoding transcripts, genes-within-genes, and convergent gene pairs are prevalent among eukaryotes. The existence of such transcription units raises the question of what happens when RNA polymerase II (RNAPII) molecules collide head-to-head. Here we use a combination of biochemical...... genes. These results provide insight into fundamental mechanisms of gene traffic control and point to an unexplored effect of antisense transcription on gene regulation via polymerase collision....

  13. Balanced Branching in Transcription Termination

    CERN Document Server

    Harrington, K J; Liang, S

    2000-01-01

    The theory of stochastic transcription termination based on free-energy competition requires two or more reaction rates to be delicately balanced over a wide range of physical conditions. A large body of work on glasses and large molecules suggests that this should be impossible in such a large system in the absence of a new organizing principle of matter. We review the experimental literature of termination and find no evidence for such a principle but many troubling inconsistencies, most notably anomalous memory effects. These suggest that termination has a deterministic component and may conceivably be not stochastic at all. We find that a key experiment by Wilson and von Hippel allegedly refuting deterministic termination was an incorrectly analyzed regulatory effect of Mg2+ binding.

  14. Transcriptional networks and chromatin remodeling controlling adipogenesis

    DEFF Research Database (Denmark)

    Siersbæk, Rasmus; Nielsen, Ronni; Mandrup, Susanne

    2012-01-01

    Adipocyte differentiation is tightly controlled by a transcriptional cascade, which directs the extensive reprogramming of gene expression required to convert fibroblast-like precursor cells into mature lipid-laden adipocytes. Recent global analyses of transcription factor binding and chromatin...... remodeling have revealed 'snapshots' of this cascade and the chromatin landscape at specific time-points of differentiation. These studies demonstrate that multiple adipogenic transcription factors co-occupy hotspots characterized by an open chromatin structure and specific epigenetic modifications....... Such transcription factor hotspots are likely to represent key signaling nodes which integrate multiple adipogenic signals at specific chromatin sites, thereby facilitating coordinated action on gene expression....

  15. Heritable change caused by transient transcription errors.

    Directory of Open Access Journals (Sweden)

    Alasdair J E Gordon

    2013-06-01

    Full Text Available Transmission of cellular identity relies on the faithful transfer of information from the mother to the daughter cell. This process includes accurate replication of the DNA, but also the correct propagation of regulatory programs responsible for cellular identity. Errors in DNA replication (mutations and protein conformation (prions can trigger stable phenotypic changes and cause human disease, yet the ability of transient transcriptional errors to produce heritable phenotypic change ('epimutations' remains an open question. Here, we demonstrate that transcriptional errors made specifically in the mRNA encoding a transcription factor can promote heritable phenotypic change by reprogramming a transcriptional network, without altering DNA. We have harnessed the classical bistable switch in the lac operon, a memory-module, to capture the consequences of transient transcription errors in living Escherichia coli cells. We engineered an error-prone transcription sequence (A9 run in the gene encoding the lac repressor and show that this 'slippery' sequence directly increases epigenetic switching, not mutation in the cell population. Therefore, one altered transcript within a multi-generational series of many error-free transcripts can cause long-term phenotypic consequences. Thus, like DNA mutations, transcriptional epimutations can instigate heritable changes that increase phenotypic diversity, which drives both evolution and disease.

  16. Structure of noncoding RNA is a determinant of function of RNA binding proteins in transcriptional regulation

    Directory of Open Access Journals (Sweden)

    Oyoshi Takanori

    2012-01-01

    Full Text Available Abstract The majority of the noncoding regions of mammalian genomes have been found to be transcribed to generate noncoding RNAs (ncRNAs, resulting in intense interest in their biological roles. During the past decade, numerous ncRNAs and aptamers have been identified as regulators of transcription. 6S RNA, first described as a ncRNA in E. coli, mimics an open promoter structure, which has a large bulge with two hairpin/stalk structures that regulate transcription through interactions with RNA polymerase. B2 RNA, which has stem-loops and unstructured single-stranded regions, represses transcription of mRNA in response to various stresses, including heat shock in mouse cells. The interaction of TLS (translocated in liposarcoma with CBP/p300 was induced by ncRNAs that bind to TLS, and this in turn results in inhibition of CBP/p300 histone acetyltransferase (HAT activity in human cells. Transcription regulator EWS (Ewing's sarcoma, which is highly related to TLS, and TLS specifically bind to G-quadruplex structures in vitro. The carboxy terminus containing the Arg-Gly-Gly (RGG repeat domains in these proteins are necessary for cis-repression of transcription activation and HAT activity by the N-terminal glutamine-rich domain. Especially, the RGG domain in the carboxy terminus of EWS is important for the G-quadruplex specific binding. Together, these data suggest that functions of EWS and TLS are modulated by specific structures of ncRNAs.

  17. Regulation of CAPRICE transcription by MYB proteins for root epidermis differentiation in Arabidopsis.

    Science.gov (United States)

    Koshino-Kimura, Yoshihiro; Wada, Takuji; Tachibana, Tatsuhiko; Tsugeki, Ryuji; Ishiguro, Sumie; Okada, Kiyotaka

    2005-06-01

    Epidermal cell differentiation in Arabidopsis root is studied as a model system for understanding cell fate specification. Two types of MYB-related transcription factors are involved in this cell differentiation. One of these, CAPRICE (CPC), encoding an R3-type MYB protein, is a positive regulator of hair cell differentiation and is preferentially transcribed in hairless cells. We analyzed the regulatory mechanism of CPC transcription. Deletion analyses of the CPC promoter revealed that hairless cell-specific transcription of the CPC gene required a 69 bp sequence, and a tandem repeat of this region was sufficient for its expression in epidermis. This region includes two MYB-binding sites, and the epidermis-specific transcription of CPC was abolished when base substitutions were introduced in these sites. We showed by gel mobility shift experiments and by yeast one-hybrid assay that WEREWOLF (WER), which is an R2R3-type MYB protein, directly binds to this region. We showed that WER also binds to the GL2 promoter region, indicating that WER directly regulates CPC and GL2 transcription by binding to their promoter regions.

  18. Targeted HIV-1 Latency Reversal Using CRISPR/Cas9-Derived Transcriptional Activator Systems.

    Directory of Open Access Journals (Sweden)

    Julia K Bialek

    Full Text Available CRISPR/Cas9 technology is currently considered the most advanced tool for targeted genome engineering. Its sequence-dependent specificity has been explored for locus-directed transcriptional modulation. Such modulation, in particular transcriptional activation, has been proposed as key approach to overcome silencing of dormant HIV provirus in latently infected cellular reservoirs. Currently available agents for provirus activation, so-called latency reversing agents (LRAs, act indirectly through cellular pathways to induce viral transcription. However, their clinical performance remains suboptimal, possibly because reservoirs have diverse cellular identities and/or proviral DNA is intractable to the induced pathways. We have explored two CRISPR/Cas9-derived activator systems as targeted approaches to induce dormant HIV-1 proviral DNA. These systems recruit multiple transcriptional activation domains to the HIV 5' long terminal repeat (LTR, for which we have identified an optimal target region within the LTR U3 sequence. Using this target region, we demonstrate transcriptional activation of proviral genomes via the synergistic activation mediator complex in various in culture model systems for HIV latency. Observed levels of induction are comparable or indeed higher than treatment with established LRAs. Importantly, activation is complete, leading to production of infective viral particles. Our data demonstrate that CRISPR/Cas9-derived technologies can be applied to counteract HIV latency and may therefore represent promising novel approaches in the quest for HIV elimination.

  19. PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants.

    Science.gov (United States)

    Chow, Chi-Nga; Zheng, Han-Qin; Wu, Nai-Yun; Chien, Chia-Hung; Huang, Hsien-Da; Lee, Tzong-Yi; Chiang-Hsieh, Yi-Fan; Hou, Ping-Fu; Yang, Tien-Yi; Chang, Wen-Chi

    2016-01-01

    Transcription factors (TFs) are sequence-specific DNA-binding proteins acting as critical regulators of gene expression. The Plant Promoter Analysis Navigator (PlantPAN; http://PlantPAN2.itps.ncku.edu.tw) provides an informative resource for detecting transcription factor binding sites (TFBSs), corresponding TFs, and other important regulatory elements (CpG islands and tandem repeats) in a promoter or a set of plant promoters. Additionally, TFBSs, CpG islands, and tandem repeats in the conserve regions between similar gene promoters are also identified. The current PlantPAN release (version 2.0) contains 16 960 TFs and 1143 TF binding site matrices among 76 plant species. In addition to updating of the annotation information, adding experimentally verified TF matrices, and making improvements in the visualization of transcriptional regulatory networks, several new features and functions are incorporated. These features include: (i) comprehensive curation of TF information (response conditions, target genes, and sequence logos of binding motifs, etc.), (ii) co-expression profiles of TFs and their target genes under various conditions, (iii) protein-protein interactions among TFs and their co-factors, (iv) TF-target networks, and (v) downstream promoter elements. Furthermore, a dynamic transcriptional regulatory network under various conditions is provided in PlantPAN 2.0. The PlantPAN 2.0 is a systematic platform for plant promoter analysis and reconstructing transcriptional regulatory networks.

  20. Analysis of Simple Sequence Repeats in Genomes of Rhizobia

    Institute of Scientific and Technical Information of China (English)

    GAO Ya-mei; HAN Yi-qiang; TANG Hui; SUN Dong-mei; WANG Yan-jie; WANG Wei-dong

    2008-01-01

    Simple sequence repeats (SSRs) or microsatellites, as genetic markers, are ubiquitous in genomes of various organisms. The analysis of SSR in rhizobia genome provides useful information for a variety of applications in population genetics of rhizobia. We analyzed the occurrences, relative abundance, and relative density of SSRs, the most common in Bradyrhizobium japonicum, Mesorhizobium loti, and Sinorhizobium meliloti genomes se-quenced in the microorganisms tandem repeats database, and SSRs in the three species genomes were compared with each other. The result showed that there were 1 410, 859, and 638 SSRs in B. japonicum, M. loti, and 5. meliloti genomes, respectively. In the genomes of B. japonicum, M. loti, and 5. meliloti, tetranucleotide, pentanucleotide, and hexanucleotide repeats were more abundant and indicated higher mutation rates in these species. The least abundance was mononucleotide repeat. The SSRs type and distribution were similar among these species.

  1. Quantitation of Leishmania lipophosphoglycan repeat units by capillary electrophoresis.

    Science.gov (United States)

    Barron, Tamara L; Turco, Salvatore J

    2006-04-01

    The glycosylphosphatidylinositol (GPI)-anchored lipophosphoglycan (LPG) of Leishmania is the dominant cell surface glycoconjugate of these pathogenic parasites. LPG is structurally characterized by a series of phosphoglycan repeat units. Determining the number of repeat units per LPG molecule has proven difficult using current technologies, such as mass spectrometry. As an alternative method to quantitate the number of repeat units in LPG, a procedure based on capillary electrophoretic analysis of the proportion of mannose to 2,5-anhydromannose (derived from the nonacetylated glucosamine of the GPI anchor of LPG) was developed. The CE-based technique is sensitive and relatively rapid compared to GC-MS-based protocols. Its application was demonstrated in quantitating the number of LPG repeat units from several species of Leishmania as well as from two life-cycle stages of these organisms. PMID:16310310

  2. Correct use of repeated measures analysis of variance.

    Science.gov (United States)

    Park, Eunsik; Cho, Meehye; Ki, Chang-Seok

    2009-02-01

    In biomedical research, researchers frequently use statistical procedures such as the t-test, standard analysis of variance (ANOVA), or the repeated measures ANOVA to compare means between the groups of interest. There are frequently some misuses in applying these procedures since the conditions of the experiments or statistical assumptions necessary to apply these procedures are not fully taken into consideration. In this paper, we demonstrate the correct use of repeated measures ANOVA to prevent or minimize ethical or scientific problems due to its misuse. We also describe the appropriate use of multiple comparison tests for follow-up analysis in repeated measures ANOVA. Finally, we demonstrate the use of repeated measures ANOVA by using real data and the statistical software package SPSS (SPSS Inc., USA).

  3. Repeated morphine treatment influences operant and spatial learning differentially

    Institute of Scientific and Technical Information of China (English)

    Mei-Na WANG; Zhi-Fang DONG; Jun CAO; Lin XU

    2006-01-01

    Objective To investigate whether repeated morphine exposure or prolonged withdrawal could influence operant and spatial learning differentially. Methods Animals were chronically treated with morphine or subjected to morphine withdrawal. Then, they were subjected to two kinds of learning: operant conditioning and spatial learning.Results The acquisition of both simple appetitive and cued operant learning was impaired after repeated morphine treatment. Withdrawal for 5 weeks alleviated the impairments. Single morphine exposure disrupted the retrieval of operant memory but had no effect on rats after 5-week withdrawal. Contrarily, neither chronic morphine exposure nor 5-week withdrawal influenced spatial learning task of the Morris water maze. Nevertheless, the retrieval of spatial memory was impaired by repeated morphine exposure but not by 5-week withdrawal. Conclusion These observations suggest that repeated morphine exposure can influence different types of learning at different aspects, implicating that the formation of opiate addiction may usurp memory mechanisms differentially.

  4. Discriminant analysis for repeated measures data: a review

    Directory of Open Access Journals (Sweden)

    Lisa Lix

    2010-09-01

    Full Text Available Discriminant analysis (DA encompasses procedures for classifying observations into groups (i.e., predictive discriminative analysis and describing the relative importance of variables for distinguishing amongst groups (i.e., descriptive discriminative analysis. In recent years, a number of developments have occurred in DA procedures for the analysis of data from repeated measures designs. Specifically, DA procedures have been developed for repeated measures data characterized by missing observations and/or unbalanced measurement occasions, as well as high-dimensional data in which measurements are collected repeatedly on two or more variables. This paper reviews the literature on DA procedures for univariate and multivariate repeated measures data, focusing on covariance pattern and linear mixed-effects models. A numeric example illustrates their implementation using SAS software.

  5. Molecular identification and characterization of clustered regularly interspaced short palindromic repeats (CRISPRs) in a urease-positive thermophilic Campylobacter sp. (UPTC).

    Science.gov (United States)

    Tasaki, E; Hirayama, J; Tazumi, A; Hayashi, K; Hara, Y; Ueno, H; Moore, J E; Millar, B C; Matsuda, M

    2012-02-01

    Novel clustered regularly-interspaced short palindromic repeats (CRISPRs) locus [7,500 base pairs (bp) in length] occurred in the urease-positive thermophilic Campylobacter (UPTC) Japanese isolate, CF89-12. The 7,500 bp gene loci consisted of the 5'-methylaminomethyl-2-thiouridylate methyltransferase gene, putative (P) CRISPR associated (p-Cas), putative open reading frames, Cas1 and Cas2, leader sequence region (146 bp), 12 CRISPRs consensus sequence repeats (each 36 bp) separated by a non-repetitive unique spacer region of similar length (26-31 bp) and the phosphatidyl glycerophosphatase A gene. When the CRISPRs loci in the UPTC CF89-12 and five C. jejuni isolates were compared with one another, these six isolates contained p-Cas, Cas1 and Cas2 within the loci. Four to 12 CRISPRs consensus sequence repeats separated by a non-repetitive unique spacer region occurred in six isolates and the nucleotide sequences of those repeats gave approximately 92-100% similarity with each other. However, no sequence similarity occurred in the unique spacer regions among these isolates. The putative σ(70) transcriptional promoter and the hypothetical ρ-independent terminator structures for the CRISPRs and Cas were detected. No in vivo transcription of p-Cas, Cas1 and Cas2 was confirmed in the UPTC cells.

  6. The Dynamics of Repeat Migration: A Markov Chain Analysis

    OpenAIRE

    Zimmermann, Klaus F.; Amelie F. Constant

    2003-01-01

    While the literature has established that there is substantial and highly selective return migration, the growing importance of repeat migration has been largely ignored. Using Markov chain analysis, this paper provides a modeling framework for repeated moves of migrants between the host and home countries. The Markov transition matrix between the states in two consecutive periods is parameterized and estimated using a logit specification and a large panel data with 14 waves. The analysis for...

  7. Allele-selective inhibition of trinucleotide repeat genes

    OpenAIRE

    Matsui, Masayuki; Corey, David R.

    2012-01-01

    Expanded trinucleotide repeats cause Huntington’s disease (HD) and many other neurodegenerative disorders. There are no cures for these devastating illnesses and treatments are urgently needed. Each trinucleotide repeat disorder is the result of the mutation of just one gene, and agents that block expression of the mutant gene offer a promising option for treatment. Therapies that block expression of both mutant and wild-type alleles can have adverse effects, challenging researchers to develo...

  8. Are major repeater patients addicted to suicidal behavior?

    Science.gov (United States)

    Blasco-Fontecilla, Hilario; Artieda-Urrutia, Paula; Berenguer-Elias, Nuria; Garcia-Vega, Juan Manuel; Fernandez-Rodriguez, Monica; Rodriguez-Lomas, Cesar; Gonzalez-Villalobos, Isabel; Iruela-Cuadrado, Luis; de Leon, José

    2014-01-01

    The literature provides support for the hypothesis that some major repeaters (individuals with >=5 lifetime suicide attempts) are addicted to suicidal behavior (SB). This study explores whether major repeaters are addicted to SB or not using 7 criteria: tolerance (Criterion 1), withdrawal (Criterion 2), loss of control (Criterion 3), problems in quitting/cutting down (Criterion 4), much time spent using (Criterion 5), substantial reduction in activities (Criterion 6), and adverse physiological/physical consequences (Criterion 7). Total dependence on SB was indicated by the presence of 3 or more of the 7 criteria in the last 12 months. This cross-sectional study at Puerta de Hierro University Hospital (Madrid, Spain) recruited 118 suicide attempters including 8 major repeaters (7%, 8/118), who were all females. The association between each SB addiction criterion, physiological dependence and total dependence with major repeater status was tested for significance and for effect size with odds ratios (ORs) and their 95% confidence intervals. As hypothesized, major repeaters met significantly higher frequency of criteria for total dependence on SB, OR=62.9 (6.4-615). A backward stepwise logistic regression model was used to provide an OR between major repeater status and total dependence status corrected by confounding variables. Age, panic disorder without agoraphobia, borderline personality disorder, history of psychiatric inpatient admission, and total dependence on SB were introduced as independent variables with major repeater status as the dependent variable. The model selected total dependence and age as the remaining significant variables in the last step. Accordingly, major repeaters appear to be addicted to SB. PMID:25580865

  9. Gene conversion homogenizes the CMT1A paralogous repeats

    OpenAIRE

    Hurles Matthew E

    2001-01-01

    Abstract Background Non-allelic homologous recombination between paralogous repeats is increasingly being recognized as a major mechanism causing both pathogenic microdeletions and duplications, and structural polymorphism in the human genome. It has recently been shown empirically that gene conversion can homogenize such repeats, resulting in longer stretches of absolute identity that may increase the rate of non-allelic homologous recombination. Results Here, a statistical test to detect ge...

  10. Failure Characteristic of Laser Cladding Samples on Repeated Impact

    Institute of Scientific and Technical Information of China (English)

    SHI Shi-hong; ZHENG Qi-guang; FU Ge-yan; ZHANG Jin-ping

    2004-01-01

    Using self-made impact fatigue test instruments and related analytic devices,the mechanical components with laser cladding layer have been attempted.It is found that,on repeated impact force,several failure modes of the components include the surface cracks,surface plastic deformation,corrosive pitting and coat collapse,etc.The paper reported the test method and initial analysis conclusions about the unique failure characteristics of the mechanical components on repeated impact load.

  11. Fully integrated, fully automated generation of short tandem repeat profiles

    OpenAIRE

    Tan, Eugene; Rosemary S. Turingan; Hogan, Catherine; Vasantgadkar, Sameer; Palombo, Luke; Schumm, James W.; Richard F Selden

    2013-01-01

    Background The generation of short tandem repeat profiles, also referred to as ‘DNA typing,’ is not currently performed outside the laboratory because the process requires highly skilled technical operators and a controlled laboratory environment and infrastructure with several specialized instruments. The goal of this work was to develop a fully integrated system for the automated generation of short tandem repeat profiles from buccal swab samples, to improve forensic laboratory process flow...

  12. Memory-based quantum repeater in quantum information communication

    Institute of Scientific and Technical Information of China (English)

    Wu Xiang-Sheng

    2004-01-01

    This paper studies the quantum repeater in quantum information communication. We propose to introduce the photon buffer mechanism for storing photons, which uses fibre delay loops as photon memories and a programmable 1 × N switcher for distributing photon delay time. Meanwhile, we also consider entanglement purification and entanglement swapping restoration at an entanglement purification or entanglement swapping failure and introduce a protection link mechanism that allows the photonic quantum repeater of a broken connection to initiate a connection restoration process.

  13. Are major repeater patients addicted to suicidal behavior?

    Science.gov (United States)

    Blasco-Fontecilla, Hilario; Artieda-Urrutia, Paula; Berenguer-Elias, Nuria; Garcia-Vega, Juan Manuel; Fernandez-Rodriguez, Monica; Rodriguez-Lomas, Cesar; Gonzalez-Villalobos, Isabel; Iruela-Cuadrado, Luis; de Leon, José

    2014-01-01

    The literature provides support for the hypothesis that some major repeaters (individuals with >=5 lifetime suicide attempts) are addicted to suicidal behavior (SB). This study explores whether major repeaters are addicted to SB or not using 7 criteria: tolerance (Criterion 1), withdrawal (Criterion 2), loss of control (Criterion 3), problems in quitting/cutting down (Criterion 4), much time spent using (Criterion 5), substantial reduction in activities (Criterion 6), and adverse physiological/physical consequences (Criterion 7). Total dependence on SB was indicated by the presence of 3 or more of the 7 criteria in the last 12 months. This cross-sectional study at Puerta de Hierro University Hospital (Madrid, Spain) recruited 118 suicide attempters including 8 major repeaters (7%, 8/118), who were all females. The association between each SB addiction criterion, physiological dependence and total dependence with major repeater status was tested for significance and for effect size with odds ratios (ORs) and their 95% confidence intervals. As hypothesized, major repeaters met significantly higher frequency of criteria for total dependence on SB, OR=62.9 (6.4-615). A backward stepwise logistic regression model was used to provide an OR between major repeater status and total dependence status corrected by confounding variables. Age, panic disorder without agoraphobia, borderline personality disorder, history of psychiatric inpatient admission, and total dependence on SB were introduced as independent variables with major repeater status as the dependent variable. The model selected total dependence and age as the remaining significant variables in the last step. Accordingly, major repeaters appear to be addicted to SB.

  14. A note on renegotiation in repeated Bertrand duopolies

    DEFF Research Database (Denmark)

    Andersson, Ola; Wengström, Erik Roland

    2007-01-01

    Weak Renegotiation-Proofness (WRP) singles out marginal cost pricing as a unique pure-strategy equilibrium of the infinitely repeated Bertrand duopoly. We show that, with a discrete strategy space, WRP does not eliminate any relevant subgame perfect equilibrium outcome......Weak Renegotiation-Proofness (WRP) singles out marginal cost pricing as a unique pure-strategy equilibrium of the infinitely repeated Bertrand duopoly. We show that, with a discrete strategy space, WRP does not eliminate any relevant subgame perfect equilibrium outcome...

  15. DSR-Based Selective Repeat ARQ Protocol in MANET

    Institute of Scientific and Technical Information of China (English)

    张全新; 宋瀚涛

    2003-01-01

    The efficient route algorithms involved in mobile ad hoc network(MANET) are studied. An arrangement of a combination of the traditional dynamic source routing(DSR) protocol is put forward and the selective repeat ARQ protocol is put forward by analyzing and studying them in detail and providing the scheme. In networks, especially in wireless networks, the nodes are capable to process data much faster than transmission, the DSR-based selective repeat ARQ protocol has real meanings in MANET.

  16. Survey of extrachromosomal circular DNA derived from plant satellite repeats

    Directory of Open Access Journals (Sweden)

    Macas Jiří

    2008-08-01

    Full Text Available Abstract Background Satellite repeats represent one of the most dynamic components of higher plant genomes, undergoing rapid evolutionary changes of their nucleotide sequences and abundance in a genome. However, the exact molecular mechanisms driving these changes and their eventual regulation are mostly unknown. It has been proposed that amplification and homogenization of satellite DNA could be facilitated by extrachromosomal circular DNA (eccDNA molecules originated by recombination-based excision from satellite repeat arrays. While the models including eccDNA are attractive for their potential to explain rapid turnover of satellite DNA, the existence of satellite repeat-derived eccDNA has not yet been systematically studied in a wider range of plant genomes. Results We performed a survey of eccDNA corresponding to nine different families and three subfamilies of satellite repeats in ten species from various genera of higher plants (Arabidopsis, Oryza, Pisum, Secale, Triticum and Vicia. The repeats selected for this study differed in their monomer length, abundance, and chromosomal localization in individual species. Using two-dimensional agarose gel electrophoresis followed by Southern blotting, eccDNA molecules corresponding to all examined satellites were detected. EccDNA occurred in the form of nicked circles ranging from hundreds to over eight thousand nucleotides in size. Within this range the circular molecules occurred preferentially in discrete size intervals corresponding to multiples of monomer or higher-order repeat lengths. Conclusion This work demonstrated that satellite repeat-derived eccDNA is common in plant genomes and thus it can be seriously considered as a potential intermediate in processes driving satellite repeat evolution. The observed size distribution of circular molecules suggests that they are most likely generated by molecular mechanisms based on homologous recombination requiring long stretches of sequence

  17. Repeatability and reproducibility of decisions by latent fingerprint examiners.

    Directory of Open Access Journals (Sweden)

    Bradford T Ulery

    Full Text Available The interpretation of forensic fingerprint evidence relies on the expertise of latent print examiners. We tested latent print examiners on the extent to which they reached consistent decisions. This study assessed intra-examiner repeatability by retesting 72 examiners on comparisons of latent and exemplar fingerprints, after an interval of approximately seven months; each examiner was reassigned 25 image pairs for comparison, out of total pool of 744 image pairs. We compare these repeatability results with reproducibility (inter-examiner results derived from our previous study. Examiners repeated 89.1% of their individualization decisions, and 90.1% of their exclusion decisions; most of the changed decisions resulted in inconclusive decisions. Repeatability of comparison decisions (individualization, exclusion, inconclusive was 90.0% for mated pairs, and 85.9% for nonmated pairs. Repeatability and reproducibility were notably lower for comparisons assessed by the examiners as "difficult" than for "easy" or "moderate" comparisons, indicating that examiners' assessments of difficulty may be useful for quality assurance. No false positive errors were repeated (n = 4; 30% of false negative errors were repeated. One percent of latent value decisions were completely reversed (no value even for exclusion vs. of value for individualization. Most of the inter- and intra-examiner variability concerned whether the examiners considered the information available to be sufficient to reach a conclusion; this variability was concentrated on specific image pairs such that repeatability and reproducibility were very high on some comparisons and very low on others. Much of the variability appears to be due to making categorical decisions in borderline cases.

  18. Matching Probabilities: The Behavioral Law and Economics of Repeated Behavior

    OpenAIRE

    Ehud Guttel; Alon Harel

    2004-01-01

    Individuals may repeatedly face a choice of whether to obey a legal rule. Conventional legal scholarship has long assumed that whether such a choice is made repeatedly or is a one-time event has little or no effect on individuals’ decisions. Following models of rational-choice theory, traditional legal analysis predicts that, in either case, individuals would behave in a way that maximizes their payoffs. A large body of experimental literature, however, suggests that individuals facing a recu...

  19. Repeated adaptive divergence of microhabitat specialization in avian feather lice

    OpenAIRE

    Johnson Kevin P; Shreve Scott M; Smith Vincent S

    2012-01-01

    Abstract Background Repeated adaptive radiations are evident when phenotypic divergence occurs within lineages, but this divergence into different forms is convergent when compared across lineages. Classic examples of such repeated adaptive divergence occur in island (for example, Caribbean Anolis lizards) and lake systems (for example, African cichlids). Host-parasite systems in many respects are analogous to island systems, where host species represent isolated islands for parasites whose l...

  20. Quantum key distribution with two-segment quantum repeaters

    Energy Technology Data Exchange (ETDEWEB)

    Kampermann, Hermann; Abruzzo, Silvestre; Bruss, Dagmar [Theoretische Physik III, Heinrich-Heine-Universitaet Duesseldorf (Germany)

    2014-07-01

    Quantum repeaters represent one possible way to achieve long-distance quantum key distribution. One way of improving the repeater rate and decreasing the memory coherence time is the usage of multiplexing. Motivated by the experimental fact that long-range connections are practically demanding, we extend the analysis of the quantum repeater multiplexing protocol to the case of short-range connections. We derive formulas for the repeater rate and we show that short-range connections lead to most of the benefits of a full-range multiplexing protocol. A less demanding QKD-protocol without quantum memories was recently introduced by Lo et al. We generalize this measurement-device-independent quantum key Distribution protocol to the scenario where the repeater Station contains also heralded quantum memories. We assume either single-photon sources or weak coherent pulse sources plus decay states. We show that it is possible to significantly outperform the original proposal, even in presence of decoherence of the quantum memory. We give formulas in terms of device imperfections i.e., the quantum bit error rate and the repeater rate.

  1. Repeated swim stress alters brain benzodiazepine receptors measured in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Weizman, R.; Weizman, A.; Kook, K.A.; Vocci, F.; Deutsch, S.I.; Paul, S.M.

    1989-06-01

    The effects of repeated swim stress on brain benzodiazepine receptors were examined in the mouse using both an in vivo and in vitro binding method. Specific in vivo binding of (/sup 3/H)Ro15-1788 to benzodiazepine receptors was decreased in the hippocampus, cerebral cortex, hypothalamus, midbrain and striatum after repeated swim stress (7 consecutive days of daily swim stress) when compared to nonstressed mice. In vivo benzodiazepine receptor binding was unaltered after repeated swim stress in the cerebellum and pons medulla. The stress-induced reduction in in vivo benzodiazepine receptor binding did not appear to be due to altered cerebral blood flow or to an alteration in benzodiazepine metabolism or biodistribution because there was no difference in (14C)iodoantipyrine distribution or whole brain concentrations of clonazepam after repeated swim stress. Saturation binding experiments revealed a change in both apparent maximal binding capacity and affinity after repeated swim stress. Moreover, a reduction in clonazepam's anticonvulsant potency was also observed after repeated swim stress (an increase in the ED50 dose for protection against pentylenetetrazol-induced seizures), although there was no difference in pentylenetetrazol-induced seizure threshold between the two groups. In contrast to the results obtained in vivo, no change in benzodiazepine receptor binding kinetics was observed using the in vitro binding method. These data suggest that environmental stress can alter the binding parameters of the benzodiazepine receptor and that the in vivo and in vitro binding methods can yield substantially different results.

  2. Repeated swim stress alters brain benzodiazepine receptors measured in vivo

    International Nuclear Information System (INIS)

    The effects of repeated swim stress on brain benzodiazepine receptors were examined in the mouse using both an in vivo and in vitro binding method. Specific in vivo binding of [3H]Ro15-1788 to benzodiazepine receptors was decreased in the hippocampus, cerebral cortex, hypothalamus, midbrain and striatum after repeated swim stress (7 consecutive days of daily swim stress) when compared to nonstressed mice. In vivo benzodiazepine receptor binding was unaltered after repeated swim stress in the cerebellum and pons medulla. The stress-induced reduction in in vivo benzodiazepine receptor binding did not appear to be due to altered cerebral blood flow or to an alteration in benzodiazepine metabolism or biodistribution because there was no difference in [14C]iodoantipyrine distribution or whole brain concentrations of clonazepam after repeated swim stress. Saturation binding experiments revealed a change in both apparent maximal binding capacity and affinity after repeated swim stress. Moreover, a reduction in clonazepam's anticonvulsant potency was also observed after repeated swim stress [an increase in the ED50 dose for protection against pentylenetetrazol-induced seizures], although there was no difference in pentylenetetrazol-induced seizure threshold between the two groups. In contrast to the results obtained in vivo, no change in benzodiazepine receptor binding kinetics was observed using the in vitro binding method. These data suggest that environmental stress can alter the binding parameters of the benzodiazepine receptor and that the in vivo and in vitro binding methods can yield substantially different results

  3. Quantum repeater based on cavity QED evolutions and coherent light

    Science.gov (United States)

    Gonţa, Denis; van Loock, Peter

    2016-05-01

    In the framework of cavity QED, we propose a quantum repeater scheme that uses coherent light and chains of atoms coupled to optical cavities. In contrast to conventional repeater schemes, in our scheme there is no need for an explicit use of two-qubit quantum logical gates by exploiting solely the cavity QED evolution. In our previous work (Gonta and van Loock in Phys Rev A 88:052308, 2013), we already proposed a quantum repeater in which the entanglement between two neighboring repeater nodes was distributed using controlled displacements of input coherent light, while the produced low-fidelity entangled pairs were purified using ancillary (four-partite) entangled states. In the present work, the entanglement distribution is realized using a sequence of controlled phase shifts and displacements of input coherent light. Compared to previous coherent-state-based distribution schemes for two-qubit entanglement, our scheme here relies only upon a simple discrimination of two coherent states with opposite signs, which can be performed in a quantum mechanically optimal fashion via a beam splitter and two on-off detectors. For the entanglement purification, we employ a method that avoids the use of extra entangled ancilla states. Our repeater scheme exhibits reasonable fidelities and repeater rates providing an attractive platform for long-distance quantum communication.

  4. Two tandemly repeated telomere-associated sequences in Nicotiana plumbaginifolia.

    Science.gov (United States)

    Chen, C M; Wang, C T; Wang, C J; Ho, C H; Kao, Y Y; Chen, C C

    1997-12-01

    Two tandemly repeated telomere-associated sequences, NP3R and NP4R, have been isolated from Nicotiana plumbaginifolia. The length of a repeating unit for NP3R and NP4R is 165 and 180 nucleotides respectively. The abundance of NP3R, NP4R and telomeric repeats is, respectively, 8.4 x 10(4), 6 x 10(3) and 1.5 x 10(6) copies per haploid genome of N. plumbaginifolia. Fluorescence in situ hybridization revealed that NP3R is located at the ends and/or in interstitial regions of all 10 chromosomes and NP4R on the terminal regions of three chromosomes in the haploid genome of N. plumbaginifolia. Sequence homology search revealed that not only are NP3R and NP4R homologous to HRS60 and GRS, respectively, two tandem repeats isolated from N. tabacum, but that NP3R and NP4R are also related to each other, suggesting that they originated from a common ancestral sequence. The role of these repeated sequences in chromosome healing is discussed based on the observation that two to three copies of a telomere-similar sequence were present in each repeating unit of NP3R and NP4R. PMID:9451957

  5. Archaeal Transcription: Function of an Alternative Transcription Factor B from Pyrococcus furiosus▿

    OpenAIRE

    Micorescu, Michael; Grünberg, Sebastian; Franke, Andreas; Cramer, Patrick; Thomm, Michael; Bartlett, Michael

    2007-01-01

    The genome of the hyperthermophile archaeon Pyrococcus furiosus encodes two transcription factor B (TFB) paralogs, one of which (TFB1) was previously characterized in transcription initiation. The second TFB (TFB2) is unusual in that it lacks recognizable homology to the archaeal TFB/eukaryotic TFIIB B-finger motif. TFB2 functions poorly in promoter-dependent transcription initiation, but photochemical cross-linking experiments indicated that the orientation and occupancy of transcription com...

  6. Transcription-dependent DNA transactions in the mitochondrial genome of a yeast hypersuppressive petite mutant.

    Science.gov (United States)

    Van Dyck, E; Clayton, D A

    1998-05-01

    Mitochondrial DNA (mtDNA) of Saccharomyces cerevisiae contains highly conserved sequences, called rep/ori, that are associated with several aspects of its metabolism. These rep/ori sequences confer the transmission advantage exhibited by a class of deletion mutants called hypersuppressive petite mutants. In addition, because they share features with the mitochondrial leading-strand DNA replication origin of mammals, rep/ori sequences have also been proposed to participate in mtDNA replication initiation. Like the mammalian origins, where transcription is used as a priming mechanism for DNA synthesis, yeast rep/ori sequences contain an active promoter. Although transcription is required for maintenance of wild-type mtDNA in yeast, the role of the rep/ori promoter as a cis-acting element involved in the replication of wild-type mtDNA is unclear, since mitochondrial deletion mutants need neither transcription nor a rep/ori sequence to maintain their genome. Similarly, transcription from the rep/ori promoter does not seem to be necessary for biased inheritance of mtDNA. As a step to elucidate the function of the rep/ori promoter, we have attempted to detect transcription-dependent DNA transactions in the mtDNA of a hypersuppressive petite mutant. We have examined the mtDNA of the well-characterized petite mutant a-1/1R/Z1, whose repeat unit shelters the rep/ori sequence ori1, in strains carrying either wild-type or null alleles of the nuclear genes encoding the mitochondrial transcription apparatus. Complex DNA transactions were detected that take place around GC-cluster C, an evolutionarily conserved GC-rich sequence block immediately downstream from the rep/ori promoter. These transactions are strictly dependent upon mitochondrial transcription. PMID:9566917

  7. Transcriptional regulation of long-term memory in the marine snail Aplysia

    Directory of Open Access Journals (Sweden)

    Lee Yong-Seok

    2008-06-01

    Full Text Available Abstract Whereas the induction of short-term memory involves only covalent modifications of constitutively expressed preexisting proteins, the formation of long-term memory requires gene expression, new RNA, and new protein synthesis. On the cellular level, transcriptional regulation is thought to be the starting point for a series of molecular steps necessary for both the initiation and maintenance of long-term synaptic facilitation (LTF. The core molecular features of transcriptional regulation involved in the long-term process are evolutionally conserved in Aplysia, Drosophila, and mouse, and indicate that gene regulation by the cyclic AMP response element binding protein (CREB acting in conjunction with different combinations of transcriptional factors is critical for the expression of many forms of long-term memory. In the marine snail Aplysia, the molecular mechanisms that underlie the storage of long-term memory have been extensively studied in the monosynaptic connections between identified sensory neuron and motor neurons of the gill-withdrawal reflex. One tail shock or one pulse of serotonin (5-HT, a modulatory transmitter released by tail shocks, produces a transient facilitation mediated by the cAMP-dependent protein kinase leading to covalent modifications in the sensory neurons that results in an enhancement of transmitter release and a strengthening of synaptic connections lasting minutes. By contrast, repeated pulses of 5-hydroxytryptamine (5-HT induce a transcription- and translation-dependent long-term facilitation (LTF lasting more than 24 h and trigger the activation of a family of transcription factors in the presynaptic sensory neurons including ApCREB1, ApCREB2 and ApC/EBP. In addition, we have recently identified novel transcription factors that modulate the expression of ApC/EBP and also are critically involved in LTF. In this review, we examine the roles of these transcription factors during consolidation of LTF induced

  8. Transcriptional interference by RNA polymerase pausing and dislodgement of transcription factors.

    Science.gov (United States)

    Palmer, Adam C; Egan, J Barry; Shearwin, Keith E

    2011-01-01

    Transcriptional interference is the in cis suppression of one transcriptional process by another. Mathematical modeling shows that promoter occlusion by elongating RNA polymerases cannot produce strong interference. Interference may instead be generated by (1) dislodgement of slow-to-assemble pre-initiation complexes and transcription factors and (2) prolonged occlusion by paused RNA polymerases.

  9. Who Repeats Algebra I, and How Does Initial Performance Relate to Improvement When the Course Is Repeated? REL 2015-059

    Science.gov (United States)

    Fong, Anthony B.; Jaquet, Karina; Finkelstein, Neal

    2014-01-01

    This REL West study explores the prevalence of students repeating Algebra I, who is most likely to repeat the course, and the level of improvement for students who repeat. Using six years of data from a cohort of 3,400 first-time seventh grade students in a California school district, authors found that 44 percent of students repeated algebra I.…

  10. Promoter proximal polyadenylation sites reduce transcription activity

    DEFF Research Database (Denmark)

    Andersen, Pia Kjølhede; Lykke-Andersen, Søren; Jensen, Torben Heick

    2012-01-01

    Gene expression relies on the functional communication between mRNA processing and transcription. We previously described the negative impact of a point-mutated splice donor (SD) site on transcription. Here we demonstrate that this mutation activates an upstream cryptic polyadenylation (CpA) site...

  11. Transcription of Byzantine Chant - Problems, Possibilities, Formats

    DEFF Research Database (Denmark)

    Troelsgård, Christian

    2007-01-01

    Discusses the problems and possibilities for transsription of Byzantine chant on the basis of medieval musical manuscripts. A relatively 'neutral' style of transcription is suggested for musicological purposes.......Discusses the problems and possibilities for transsription of Byzantine chant on the basis of medieval musical manuscripts. A relatively 'neutral' style of transcription is suggested for musicological purposes....

  12. The NAC transcription factors of barley

    DEFF Research Database (Denmark)

    Wagner, Michael; Holm, Preben Bach; Gregersen, Per L.

    2011-01-01

    It is now 15 years ago the first NAC transcription factor was described in the literature (Souer et al. 1996), since then a number of plant species have been fully sequenced revealing the NAC gene family to be one of the largest families of transcription factors in plants (Shen et al 2009). The NAC...

  13. Transcription and the aspect ratio of DNA

    DEFF Research Database (Denmark)

    Olsen, Kasper Wibeck; Bohr, Jakob

    2013-01-01

    analysis of transcription. It is shown that under certain reasonable assumptions transcription is only possible if the aspect ratio is in the regime corresponding to further twisting. We find this constraint to be in agreement with long-established crystallographic studies of DNA....

  14. NUC-2, a component of the phosphate-regulated signal transduction pathway in Neurospora crassa, is an ankyrin repeat protein.

    Science.gov (United States)

    Poleg, Y; Aramayo, R; Kang, S; Hall, J G; Metzenberg, R L

    1996-10-28

    In response to phosphorus limitation, the fungus Neurospora crassa synthesizes a number of enzymes that function to bring more phosphate into the cell. The NUC-2 protein appears to sense the availability of phosphate and transmits the signal downstream to the regulatory pathway. The nuc-2+ gene has been cloned by its ability to restore growth of a nuc-2 mutant under restrictive conditions of high pH and low phosphate concentration. We mapped the cloned gene to the right arm of linkage group II, consistent with the chromosomal position of the nuc-2 mutation as determined by classical genetic mapping. The nuc-2' open reading frame is interrupted by five introns and codes for a protein of 1066 amino acid residues. Its predicted amino acid sequence has high similarity to that of its homolog in Saccharomyces cerevisiae, PHO81. Both proteins contain six ankyrin repeats, which have been implicated in the cyclin-dependent kinase inhibitory activity of PHO81. The phenotypes of a nuc-2 mutant generated by repeat-induced point mutation and of a strain harboring a UV-induced nuc-2 allele are indistinguishable. Both are unable to grow under the restrictive conditions, a phenotype which is to some degree temperature dependent. The nuc-2+ gene is transcriptionally regulated. A 15-fold increase in the level of the nuc-2+ transcript occurs in response to a decrease in exogenous phosphate concentration.

  15. CPC,a Single-Repeat R3 MYB,Is a Negative Regulator of Anthocyanin Biosynthesis in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Hui-Fen Zhu; Karen Fitzsimmons; Abha Khandelwal; Robert G.Kranz

    2009-01-01

    Single-repeat R3 MYB transcription factors like CPC (CAPRICE) are known to play roles in developmental processes such as root hair differentiation and trichome initiation.However,none of the six Arabidopsis single-repeat R3 MYB members has been reported to regulate flavonoid biosynthesis.We show here that CPC is a negative regulator of anthocyanin biosynthesis.In the process of using CPC to test GAL4-dependent driver lines,we observed a repression of anthocyanin synthesis upon GAL4-mediated CPC overexpression,We demonstrated that this is not due to an increase in nutrient uptake because of more root hairs.Rather,CPC expression level tightly controls anthocyanin accumulation.Microarray analysis on the whole genome showed that,of 37 000 features tested,85 genes are repressed greater than three-fold by CPC overexpression.Of these 85,seven are late anthocyanin biosynthesis genes.Also,anthocyanin synthesis genes were shown to be down-regulated in 35S::CPC overexpression plants.Transient expression results suggest that CPC competes with the R2R3-MYB transcription factor PAP1/2,which is an activator of anthocyanin biosynthesis genes.This report adds anthocyanin biosynthesis to the set of programs that are under CPC control,indicating that this regulator is not only for developmental programs (e.g.root hairs,trichomes),but can influence anthocyanin pigment synthesis.

  16. A Tandem Repeat in Decay Accelerating Factor 1 Is Associated with Severity of Murine Mercury-Induced Autoimmunity

    Directory of Open Access Journals (Sweden)

    David M. Cauvi

    2014-01-01

    Full Text Available Decay accelerating factor (DAF, a complement-regulatory protein, protects cells from bystander complement-mediated lysis and negatively regulates T cells. Reduced expression of DAF occurs in several systemic autoimmune diseases including systemic lupus erythematosus, and DAF deficiency exacerbates disease in several autoimmune models, including murine mercury-induced autoimmunity (mHgIA. Daf1, located within Hmr1, a chromosome 1 locus associated in DBA/2 mice with resistance to mHgIA, could be a candidate. Here we show that reduced Daf1 transcription in lupus-prone mice was not associated with a reduction in the Daf1 transcription factor SP1. Studies of NZB mice congenic for the mHgIA-resistant DBA/2 Hmr1 locus suggested that Daf1 expression was controlled by the host genome and not the Hmr1 locus. A unique pentanucleotide repeat variant in the second intron of Daf1 in DBA/2 mice was identified and shown in F2 intercrosses to be associated with less severe disease; however, analysis of Hmr1 congenics indicated that this most likely reflected the presence of autoimmunity-predisposing genetic variants within the Hmr1 locus or that Daf1 expression is mediated by the tandem repeat in epistasis with other genetic variants present in autoimmune-prone mice. These studies argue that the effect of DAF on autoimmunity is complex and may require multiple genetic elements.

  17. Transcriptional Regulation of Plant Secondary Metabolism

    Institute of Scientific and Technical Information of China (English)

    Chang-Qing Yang; Xin Fang; Xiu-Ming Wu; Ying-Bo Mao; Ling-Jian Wang; Xiao-Ya Chen

    2012-01-01

    Plant secondary metabolites play critical roles in plant-environment interactions.They are synthesized in different organs or tissues at particular developmental stages,and in response to various environmental stimuli,both biotic and abiotic.Accordingly,corresponding genes are regulated at the transcriptional level by multiple transcription factors.Several families of transcription factors have been identified to participate in controlling the biosynthesis and accumulation of secondary metabolites.These regulators integrate internal (often developmental) and external signals,bind to corresponding cis-elements — which are often in the promoter regions — to activate or repress the expression of enzyme-coding genes,and some of them interact with other transcription factors to form a complex.In this review,we summarize recent research in these areas,with an emphasis on newly-identified transcription factors and their functions in metabolism regulation.

  18. Transcriptional factors, Mafs and their biological roles

    Institute of Scientific and Technical Information of China (English)

    Mariko Tsuchiya; Ryoichi Misaka; Kosaku Nitta; Ken Tsuchiya

    2015-01-01

    The Maf family of transcription factors is characterizedby a typical bZip structure; these transcription factorsact as important regulators of the development anddifferentiation of many organs and tissues, includingthe kidney. The Maf family consists of two subgroupsthat are characterized according to their structure largeMaf transcription factors and small Maf transcriptionfactors. The large Maf subgroup consists of fourproteins, designated as MAFA, MAFB, c-MAF and neuralretina-specific leucine zipper. In particular, MAFA is adistinct molecule that has been attracting the attentionof researchers because it acts as a strong transactivatorof insulin, suggesting that Maf transcription factors arelikely to be involved in systemic energy homeostasis. Inthis review, we focused on the regulation of glucose/energy balance by Maf transcription factors in variousorgans.

  19. Automatic Phonetic Transcription for Danish Speech Recognition

    DEFF Research Database (Denmark)

    Kirkedal, Andreas Søeborg

    to acquire and expensive to create. For languages with productive compounding or agglutinative languages like German and Finnish, respectively, phonetic dictionaries are also hard to maintain. For this reason, automatic phonetic transcription tools have been produced for many languages. The quality...... of automatic phonetic transcriptions vary greatly with respect to language and transcription strategy. For some languages where the difference between the graphemic and phonetic representations are small, graphemic transcriptions can be used to create ASR systems with acceptable performance. In other languages...... representations, e.g. morphological analysis, decompounding, letter-to-sound rules, etc. Two different phonetic transcribers for Danish will be compared in this study: eSpeak (Duddington, 2010) and Phonix (Henrichsen, 2014). Both transcribers produce a richer transcription than ASR can utilise such as stress...

  20. Repeated high-intensity exercise in professional rugby union.

    Science.gov (United States)

    Austin, Damien; Gabbett, Tim; Jenkins, David

    2011-07-01

    The aim of the present study was to describe the frequency, duration, and nature of repeated high-intensity exercise in Super 14 rugby union. Time-motion analysis was used during seven competition matches over the 2008 and 2009 Super 14 seasons; five players from each of four positional groups (front row forwards, back row forwards, inside backs, and outside backs) were assessed (20 players in total). A repeated high-intensity exercise bout was considered to involve three or more sprints, and/or tackles and/or scrum/ruck/maul activities within 21 s during the same passage of play. The range of repeated high-intensity exercise bouts for each group in a match was as follows: 11-18 for front row forwards, 11-21 for back row forwards, 13-18 for inside backs, and 2-11 for outside backs. The durations of the most intense repeated high-intensity exercise bouts for each position ranged from 53 s to 165 s and the minimum recovery periods between repeated high-intensity exercise bouts ranged from 25 s for the back row forwards to 64 s for the front row forwards. The present results show that repeated high-intensity exercise bouts vary in duration and activities relative to position but all players in a game will average at least 10 changes in activity in the most demanding bouts and complete at least one tackle and two sprints. The most intense periods of activity are likely to last as long as 120 s and as little as 25 s recovery may separate consecutive repeated high-intensity exercise bouts. The present findings can be used by coaches to prepare their players for the most demanding passages of play likely to be experienced in elite rugby union. PMID:21756130

  1. Nuclear respiratory factor 1 mediates the transcription initiation of insulin-degrading enzyme in a TATA box-binding protein-independent manner.

    Directory of Open Access Journals (Sweden)

    Lang Zhang

    Full Text Available CpG island promoters often lack canonical core promoter elements such as the TATA box, and have dispersed transcription initiation sites. Despite the prevalence of CpG islands associated with mammalian genes, the mechanism of transcription initiation from CpG island promoters remains to be clarified. Here we investigate the mechanism of transcription initiation of the CpG island-associated gene, insulin-degrading enzyme (IDE. IDE is ubiquitously expressed, and has dispersed transcription initiation sites. The IDE core promoter locates within a 32-bp region, which contains three CGGCG repeats and a nuclear respiratory factor 1 (NRF-1 binding motif. Sequential mutation analysis indicates that the NRF-1 binding motif is critical for IDE transcription initiation. The NRF-1 binding motif is functional, because NRF-1 binds to this motif in vivo and this motif is required for the regulation of IDE promoter activity by NRF-1. Furthermore, the NRF-1 binding site in the IDE promoter is conserved among different species, and dominant negative NRF-1 represses endogenous IDE expression. Finally, TATA-box binding protein (TBP is not associated with the IDE promoter, and inactivation of TBP does not abolish IDE transcription, suggesting that TBP is not essential for IDE transcription initiation. Our studies indicate that NRF-1 mediates IDE transcription initiation in a TBP-independent manner, and provide insights into the potential mechanism of transcription initiation for other CpG island-associated genes.

  2. Intermittent Transcription Dynamics for the Rapid Production of Long Transcripts of High Fidelity

    Directory of Open Access Journals (Sweden)

    Martin Depken

    2013-10-01

    Full Text Available Normal cellular function relies on the efficient and accurate readout of the genetic code. Single-molecule experiments show that transcription and replication are highly intermittent processes that are frequently interrupted by polymerases pausing and reversing directions. Although intermittent dynamics in replication are known to result from proofreading, their origin and significance during transcription remain controversial. Here, we theoretically investigate transcriptional fidelity and show that the kinetic scheme provided by the RNA-polymerase backtracking and transcript-cleavage pathway can account for measured error rates. Importantly, we find that intermittent dynamics provide an enormous increase in the rate of producing long transcripts of high fidelity. Our results imply that intermittent dynamics during transcription may have evolved as a way to mitigate the competing demands of speed and fidelity in the transcription of extended sequences.

  3. Evolution and diversification of the basal transcription machinery.

    Science.gov (United States)

    Duttke, Sascha H C

    2015-03-01

    Transcription initiation was once thought to be regulated primarily by sequence-specific transcription factors with the basal transcription machinery being largely invariant. Gradually it became apparent that the basal transcription machinery greatly diversified during evolution and new studies now demonstrate that diversification of the TATA-binding protein (TBP) family yielded specialized and largely independent transcription systems.

  4. Telomere-Mediated Plasmid Segregation in Saccharomyces Cerevisiae Involves Gene Products Required for Transcriptional Repression at Silencers and Telomeres

    OpenAIRE

    Longtine, M. S.; Enomoto, S.; Finstad, S L; Berman, J

    1993-01-01

    Plasmids that contain Saccharomyces cerevisiae TG(1-3) telomere repeat sequences (TRS plasmids) segregate efficiently during mitosis. Mutations in histone H4 reduce the efficiency of TRS-mediated plasmid segregation, suggesting that chromatin structure is involved in this process. Sir2, Sir3 and Sir4 are required for the transcriptional repression of genes located at the silent mating type loci (HML and HMR) and at telomeres (telomere position effect) and are also involved in the segregation ...

  5. Repeat Sequences and Base Correlations in Human Y Chromosome Palindromes

    Institute of Scientific and Technical Information of China (English)

    Neng-zhi Jin; Zi-xian Liu; Yan-jiao Qi; Wen-yuan Qiu

    2009-01-01

    On the basis of information theory and statistical methods, we use mutual information, n-tuple entropy and conditional entropy, combined with biological characteristics, to analyze the long range correlation and short range correlation in human Y chromosome palindromes. The magnitude distribution of the long range correlation which can be reflected by the mutual information is P5>P5a>P5b (P5a and P5b are the sequences that replace solely Alu repeats and all interspersed repeats with random uncorrelated sequences in human Y chromosome palindrome 5, respectively); and the magnitude distribution of the short range correlation which can be reflected by the n-tuple entropy and the conditional entropy is P5>P5a>P5b>random uncorrelated sequence. In other words, when the Alu repeats and all interspersed repeats replace with random uncorrelated sequence, the long range and short range correlation decrease gradually. However, the random uncorrelated sequence has no correlation. This research indicates that more repeat sequences result in stronger correlation between bases in human Y chromosome. The analyses may be helpful to understand the special structures of human Y chromosome palindromes profoundly.

  6. Intragenic tandem repeats in Daphnia magna: structure, function and distribution

    Directory of Open Access Journals (Sweden)

    Du Pasquier Louis

    2009-10-01

    Full Text Available Abstract Background Expressed sequence tag (EST databases provide a valuable source of genetic data in organisms whose genome sequence information is not yet compiled. We used a published EST database for the waterflea Daphnia magna (Crustacea:Cladocera to isolate variable number of tandem repeat (VNTR markers for linkage mapping, Quantitative Trait Loci (QTL, and functional studies. Findings Seventy-four polymorphic markers were isolated and characterised. Analyses of repeat structure, putative gene function and polymorphism indicated that intragenic tandem repeats are not distributed randomly in the mRNA sequences; instead, dinucleotides are more frequent in non-coding regions, whereas trinucleotides (and longer motifs involving multiple-of-three nucleotide repeats are preferentially situated in coding regions. We also observed differential distribution of repeat motifs across putative genetic functions. This indicates differential selective constraints and possible functional significance of VNTR polymorphism in at least some genes. Conclusion Databases of VNTR markers situated in genes whose putative function can be inferred from homology searches will be a valuable resource for the genetic study of functional variation and selection.

  7. Value of repeat biopsy in lupus nephritis flares

    Science.gov (United States)

    Greloni, G; Scolnik, M; Marin, J; Lancioni, E; Quiroz, C; Zacariaz, J; De la Iglesia Niveyro, P; Christiansen, S; Pierangelo, M A; Varela, C F; Rosa-Diez, G J; Catoggio, L J; Soriano, E R

    2014-01-01

    Objectives Renal flares are common in lupus nephritis (LN), and class switch is thought to be characteristic. There is no agreement on indications for performing a repeat renal biopsy. Our objective was to retrospectively review patients who had more than one renal biopsy performed on clinical indications, and analyse clinical, pathological and treatment changes after successive biopsies. Methods Forty-five patients with LN and one or more repeat renal biopsies were included, with a total of 116 biopsies. Results Of the 71 repeat biopsies, pathological transition occurred in 39 (54.9%). When having a previous biopsy with a proliferative lesion, class switch occurred in 55.6%, with 24.4% evolving into non-proliferative classes. When previous biopsy was class V, transition to other classes occurred in 58.3% and changes were all into proliferative classes. Conversion from one pure proliferative form to another (class III to class IV or vice versa) happened in 11.3% of the rebiopsies, with 62 rebiopsies (87.3%) leading to a change in the treatment regimen. Conclusions Histological transformations were common, and they occurred when the previous biopsy had non-proliferative lesions as well as when lesions were proliferative. Treatments were modified after repeat renal biopsy in the majority of patients. In this experience, kidney repeat biopsies were useful in guiding treatment of LN flares. PMID:25396056

  8. Implementation of bipartite or remote unitary gates with repeater nodes

    Science.gov (United States)

    Yu, Li; Nemoto, Kae

    2016-08-01

    We propose some protocols to implement various classes of bipartite unitary operations on two remote parties with the help of repeater nodes in-between. We also present a protocol to implement a single-qubit unitary with parameters determined by a remote party with the help of up to three repeater nodes. It is assumed that the neighboring nodes are connected by noisy photonic channels, and the local gates can be performed quite accurately, while the decoherence of memories is significant. A unitary is often a part of a larger computation or communication task in a quantum network, and to reduce the amount of decoherence in other systems of the network, we focus on the goal of saving the total time for implementing a unitary including the time for entanglement preparation. We review some previously studied protocols that implement bipartite unitaries using local operations and classical communication and prior shared entanglement, and apply them to the situation with repeater nodes without prior entanglement. We find that the protocols using piecewise entanglement between neighboring nodes often require less total time compared to preparing entanglement between the two end nodes first and then performing the previously known protocols. For a generic bipartite unitary, as the number of repeater nodes increases, the total time could approach the time cost for direct signal transfer from one end node to the other. We also prove some lower bounds of the total time when there are a small number of repeater nodes. The application to position-based cryptography is discussed.

  9. Physiological Consequences of Repeated Exposures to Conditioned Fear

    Directory of Open Access Journals (Sweden)

    Robert S. Thompson

    2012-05-01

    Full Text Available Activation of the stress response evokes a cascade of physiological reactions that may be detrimental when repeated or chronic, and when triggered after exposure to psychological/emotional stressors. Investigation of the physiological mechanisms responsible for the health damaging effects requires animal paradigms that repeatedly evoke a response to psychological/emotional stressors. To this end, adult male Sprague Dawley rats were repeatedly exposed (2X per day for 20 days to a context that they were conditioned to fear (conditioned fear test, CFT. Repeated exposure to CFT produced body weight loss, adrenal hypertrophy, thymic involution, and basal corticosterone elevation. In vivo biotelemetry measures revealed that CFT evokes sympathetic nervous system driven increases in heart rate (HR, mean arterial pressure (MAP, and core body temperature. Extinction of behavioral (freezing and physiological responses to CFT was prevented using minimal reinstatement footshock. MAP responses to the CFT did not diminish across 20 days of exposure. In contrast, HR and cardiac contractility responses declined by day 15, suggesting a shift toward vascular-dominated MAP (a pre-clinical marker of CV dysfunction. Flattened diurnal rhythms, common to stress-related mood/anxiety disorders, were found for most physiological measures. Thus, repeated CFT produces adaptations indicative of the health damaging effects of psychological/emotional stress.

  10. Tracking a closing volcanic system using repeating earthquakes

    Science.gov (United States)

    Buurman, H.; West, M. E.; Grapenthin, R.

    2011-12-01

    Repeating, volcano-tectonic (VT) earthquakes were recorded at the end of the explosive phase of the 2009 eruption of Redoubt Volcano, Alaska. The events cluster into several families which exhibit cross-correlation values greater than 0.8 and are distributed between 0-10 km below the edifice. The earthquake magnitudes decline gradually with time, and the events also appear to shallow as the sequence progresses. This activity continued for over 2 months and accompanied steady dome growth, which halted around the same time that the last of the repeating VTs were recorded. The repetitive nature of these earthquakes, their relatively deep locations and their occurrence following 3 weeks of major explosive eruptions suggest that they are related to changes around the conduit system and/or the magma storage area as the last of the magma was removed from the mid-crustal storage area. Geodetic data indicate that the deflation of the edifice, which had been continuous throughout the explosive activity, ceased coincident with the onset of the repeating VT earthquakes. We use evidence from earthquake relocations and earthquake focal mechanisms to investigate the source for the repeating VT earthquakes. We propose a model in which the repeating earthquakes are closely related to the adjustment of the conduit system and mid crustal storage area in response to the last of the ascending magma.

  11. Design and analysis of communication protocols for quantum repeater networks

    Science.gov (United States)

    Jones, Cody; Kim, Danny; Rakher, Matthew T.; Kwiat, Paul G.; Ladd, Thaddeus D.

    2016-08-01

    We analyze how the performance of a quantum-repeater network depends on the protocol employed to distribute entanglement, and we find that the choice of repeater-to-repeater link protocol has a profound impact on entanglement-distribution rate as a function of hardware parameters. We develop numerical simulations of quantum networks using different protocols, where the repeater hardware is modeled in terms of key performance parameters, such as photon generation rate and collection efficiency. These parameters are motivated by recent experimental demonstrations in quantum dots, trapped ions, and nitrogen-vacancy centers in diamond. We find that a quantum-dot repeater with the newest protocol (‘MidpointSource’) delivers the highest entanglement-distribution rate for typical cases where there is low probability of establishing entanglement per transmission, and in some cases the rate is orders of magnitude higher than other schemes. Our simulation tools can be used to evaluate communication protocols as part of designing a large-scale quantum network.

  12. A COMPARISON OF PAIRS FIGURE SKATERS IN REPEATED JUMPS

    Directory of Open Access Journals (Sweden)

    William A. Sands

    2012-03-01

    Full Text Available Trends in pairs figure skating have shown that increasingly difficult jumps have become an essential aspect of high-level performance, especially in the latter part of a competitive program. We compared a repeated jump power index in a 60 s repeated jump test to determine the relationship of repeated jump test to competitive rank and to measure 2D hip, knee, and ankle angles and angular velocities at 0, 20, 40, and 60 s. Eighteen National Team Pairs Figure Skaters performed a 60 s repeated jump test on a large switch-mat with timing of flight and ground durations and digital video recording. Each 60-s period was divided into 6, 10-s intervals, with power indexes (W/kg calculated for each 10-s interval. Power index by 10-s interval repeated measures ANOVAs (RMANOVA showed that males exceeded females at all intervals, and the highest power index interval was during 10 to 20 s for both sexes. RMANOVAs of angles and angular velocities showed main effects for time only. Power index and jumping techniques among figure skaters showed rapid and steady declines over the test duration. Power index can predict approximately 50% of competitive rank variance, and sex differences in jumping technique were rare

  13. The diversity and evolution of Wolbachia ankyrin repeat domain genes.

    Directory of Open Access Journals (Sweden)

    Stefanos Siozios

    Full Text Available Ankyrin repeat domain-encoding genes are common in the eukaryotic and viral domains of life, but they are rare in bacteria, the exception being a few obligate or facultative intracellular Proteobacteria species. Despite having a reduced genome, the arthropod strains of the alphaproteobacterium Wolbachia contain an unusually high number of ankyrin repeat domain-encoding genes ranging from 23 in wMel to 60 in wPip strain. This group of genes has attracted considerable attention for their astonishing large number as well as for the fact that ankyrin proteins are known to participate in protein-protein interactions, suggesting that they play a critical role in the molecular mechanism that determines host-Wolbachia symbiotic interactions. We present a comparative evolutionary analysis of the wMel-related ankyrin repeat domain-encoding genes present in different Drosophila-Wolbachia associations. Our results show that the ankyrin repeat domain-encoding genes change in size by expansion and contraction mediated by short directly repeated sequences. We provide examples of intra-genic recombination events and show that these genes are likely to be horizontally transferred between strains with the aid of bacteriophages. These results confirm previous findings that the Wolbachia genomes are evolutionary mosaics and illustrate the potential that these bacteria have to generate diversity in proteins potentially involved in the symbiotic interactions.

  14. Widespread Alu repeat-driven expansion of consensus DR2 retinoic acid response elements during primate evolution

    Directory of Open Access Journals (Sweden)

    Wang Tian-Tian

    2007-01-01

    Full Text Available Abstract Background Nuclear receptors are hormone-regulated transcription factors whose signaling controls numerous aspects of development and physiology. Many receptors recognize DNA hormone response elements formed by direct repeats of RGKTCA motifs separated by 1 to 5 bp (DR1-DR5. Although many known such response elements are conserved in the mouse and human genomes, it is unclear to which extent transcriptional regulation by nuclear receptors has evolved specifically in primates. Results We have mapped the positions of all consensus DR-type hormone response elements in the human genome, and found that DR2 motifs, recognized by retinoic acid receptors (RARs, are heavily overrepresented (108,582 elements. 90% of these are present in Alu repeats, which also contain lesser numbers of other consensus DRs, including 50% of consensus DR4 motifs. Few DR2s are in potentially mobile AluY elements and the vast majority are also present in chimp and macaque. 95.5% of Alu-DR2s are distributed throughout subclasses of AluS repeats, and arose largely through deamination of a methylated CpG dinucleotide in a non-consensus motif present in AluS sequences. We find that Alu-DR2 motifs are located adjacent to numerous known retinoic acid target genes, and show by chromatin immunoprecipitation assays in squamous carcinoma cells that several of these elements recruit RARs in vivo. These findings are supported by ChIP-on-chip data from retinoic acid-treated HL60 cells revealing RAR binding to several Alu-DR2 motifs. Conclusion These data provide strong support for the notion that Alu-mediated expansion of DR elements contributed to the evolution of gene regulation by RARs and other nuclear receptors in primates and humans.

  15. Prunus transcription factors: Breeding perspectives

    Directory of Open Access Journals (Sweden)

    Valmor João Bianchi

    2015-06-01

    Full Text Available Many plant processes depend on differential gene expression, which is generally controlled by complex proteins called transcription factors (TFs. In peach, 1,533 TFs have been identified, accounting for about 5.5% of the 27,852 protein-coding genes. These TFs are the reference for the rest of the Prunus species. TF studies in Prunus have been performed on the gene expression analysis of different agronomic traits, including control of the flowering process, fruit quality, and biotic and abiotic stress resistance. These studies, using quantitative RT-PCR, have mainly been performed in peach, and to a lesser extent in other species, including almond, apricot, black cherry, Fuji cherry, Japanese apricot, plum, and sour and sweet cherry. Other tools have also been used in TF studies, including cDNA-AFLP, LC-ESI-MS, RNA and DNA blotting or mapping. More recently, new tools assayed include microarray and high-throughput DNA sequencing (DNA-Seq and RNA sequencing (RNA-Seq. New functional genomics opportunities include genome resequencing and the well-known synteny among Prunus genomes and transcriptomes. These new functional studies should be applied in breeding programs in the development of molecular markers. With the genome sequences available, some strategies that have been used in model systems (such as SNP genotyping assays and genotyping-by-sequencing may be applicable in the functional analysis of Prunus TFs as well. In addition, the knowledge of the gene functions and position in the peach reference genome of the TFs represents an additional advantage. These facts could greatly facilitate the isolation of genes via QTL (quantitative trait loci map-based cloning in the different Prunus species, following the association of these TFs with the identified QTLs using the peach reference genome.

  16. Transcriptional control of spermatogonial maintenance and differentiation.

    Science.gov (United States)

    Song, Hye-Won; Wilkinson, Miles F

    2014-06-01

    Spermatogenesis is a multistep process that generates millions of spermatozoa per day in mammals. A key to this process is the spermatogonial stem cell (SSC), which has the dual property of continually renewing and undergoing differentiation into a spermatogonial progenitor that expands and further differentiates. In this review, we will focus on how these proliferative and early differentiation steps in mammalian male germ cells are controlled by transcription factors. Most of the transcription factors that have so far been identified as promoting SSC self-renewal (BCL6B, BRACHYURY, ETV5, ID4, LHX1, and POU3F1) are upregulated by glial cell line-derived neurotrophic factor (GDNF). Since GDNF is crucial for promoting SSC self-renewal, this suggests that these transcription factors are responsible for coordinating the action of GDNF in SSCs. Other transcription factors that promote SSC self-renewal are expressed independently of GDNF (FOXO1, PLZF, POU5F1, and TAF4B) and thus may act in non-GDNF pathways to promote SSC cell growth or survival. Several transcription factors have been identified that promote spermatogonial differentiation (DMRT1, NGN3, SOHLH1, SOHLH2, SOX3, and STAT3); some of these may influence the decision of an SSC to commit to differentiate while others may promote later spermatogonial differentiation steps. Many of these transcription factors regulate each other and act on common targets, suggesting they integrate to form complex transcriptional networks in self-renewing and differentiating spermatogonia.

  17. Notation systems for transcription: an empirical investigation.

    Science.gov (United States)

    Romero, Catherine; O'Connell, Daniel C; Kowal, Sabine

    2002-11-01

    A 21-syllable question posed by Bernard Shaw in a CNN television interview with Margaret Thatcher was presented to 90 participants, either as an audio recording or as a typed transcript or as both. Participants were asked to speak it, as closely as possible, as Shaw had (or, in conditions without the audio recording, as he might have). The typed version was either an ordinary transcript or a transcript in one of three transcription systems used currently in research on spoken discourse, all of which incorporate notations for prosody. Hence, there were nine conditions in all, with five women and five men in each. Contrary to the experimental hypothesis, approximations to Shaw's original temporal measures of performance were not degraded but were instead improved significantly by the addition of a prosodically notated transcript to the audio recording and significantly more in the absence of the audio recording. Presentation of the ordinary transcript alone produced the worst approximation to Shaw's temporal measures. The usefulness, accuracy, and readability of transcripts prepared according to detailed notation systems are discussed.

  18. Clustered regularly interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes.

    Science.gov (United States)

    Al-Attar, Sinan; Westra, Edze R; van der Oost, John; Brouns, Stan J J

    2011-04-01

    Many prokaryotes contain the recently discovered defense system against mobile genetic elements. This defense system contains a unique type of repetitive DNA stretches, termed Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs). CRISPRs consist of identical repeated DNA sequences (repeats), interspaced by highly variable sequences referred to as spacers. The spacers originate from either phages or plasmids and comprise the prokaryotes' 'immunological memory'. CRISPR-associated (cas) genes encode conserved proteins that together with CRISPRs make-up the CRISPR/Cas system, responsible for defending the prokaryotic cell against invaders. CRISPR-mediated resistance has been proposed to involve three stages: (i) CRISPR-Adaptation, the invader DNA is encountered by the CRISPR/Cas machinery and an invader-derived short DNA fragment is incorporated in the CRISPR array. (ii) CRISPR-Expression, the CRISPR array is transcribed and the transcript is processed by Cas proteins. (iii) CRISPR-Interference, the invaders' nucleic acid is recognized by complementarity to the crRNA and neutralized. An application of the CRISPR/Cas system is the immunization of industry-relevant prokaryotes (or eukaryotes) against mobile-genetic invasion. In addition, the high variability of the CRISPR spacer content can be exploited for phylogenetic and evolutionary studies. Despite impressive progress during the last couple of years, the elucidation of several fundamental details will be a major challenge in future research.

  19. Intronic L1 retrotransposons and nested genes cause transcriptional interference by inducing intron retention, exonization and cryptic polyadenylation.

    Directory of Open Access Journals (Sweden)

    Kristel Kaer

    Full Text Available BACKGROUND: Transcriptional interference has been recently recognized as an unexpectedly complex and mostly negative regulation of genes. Despite a relatively few studies that emerged in recent years, it has been demonstrated that a readthrough transcription derived from one gene can influence the transcription of another overlapping or nested gene. However, the molecular effects resulting from this interaction are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using in silico chromosome walking, we searched for prematurely terminated transcripts bearing signatures of intron retention or exonization of intronic sequence at their 3' ends upstream to human L1 retrotransposons, protein-coding and noncoding nested genes. We demonstrate that transcriptional interference induced by intronic L1s (or other repeated DNAs and nested genes could be characterized by intron retention, forced exonization and cryptic polyadenylation. These molecular effects were revealed from the analysis of endogenous transcripts derived from different cell lines and tissues and confirmed by the expression of three minigenes in cell culture. While intron retention and exonization were comparably observed in introns upstream to L1s, forced exonization was preferentially detected in nested genes. Transcriptional interference induced by L1 or nested genes was dependent on the presence or absence of cryptic splice sites, affected the inclusion or exclusion of the upstream exon and the use of cryptic polyadenylation signals. CONCLUSIONS/SIGNIFICANCE: Our results suggest that transcriptional interference induced by intronic L1s and nested genes could influence the transcription of the large number of genes in normal as well as in tumor tissues. Therefore, this type of interference could have a major impact on the regulation of the host gene expression.

  20. Evaluating post-Katrina recovery in Mississippi using repeat photography.

    Science.gov (United States)

    Burton, Christopher; Mitchell, Jerry T; Cutter, Susan L

    2011-07-01

    Hurricane Katrina of August 2005 had extensive consequences for the state of Mississippi in the United States. Widespread infrastructure and property damage, massive social dislocation, and ecological loss remain among the many challenges faced by communities as they work towards 'normalcy'. This study employs repeat photography to understand differential recovery from Hurricane Katrina in Mississippi. Revealing change with conventional landscape photography, a process known as repeat photography, is common in the natural sciences. Simply stated, repeat photography is the practice of re-photographing the same scene as it appears in an earlier photograph. Photographs were taken at 131 sites every six months over a three-year period. Each photograph was assigned a recovery score and a spatially interpolated recovery surface was generated for each time period. The mapped and graphed results show disparities in the progression of recovery: some communities quickly entered the rebuilding process whereas others have lagged far behind.

  1. Evaluating post-Katrina recovery in Mississippi using repeat photography.

    Science.gov (United States)

    Burton, Christopher; Mitchell, Jerry T; Cutter, Susan L

    2011-07-01

    Hurricane Katrina of August 2005 had extensive consequences for the state of Mississippi in the United States. Widespread infrastructure and property damage, massive social dislocation, and ecological loss remain among the many challenges faced by communities as they work towards 'normalcy'. This study employs repeat photography to understand differential recovery from Hurricane Katrina in Mississippi. Revealing change with conventional landscape photography, a process known as repeat photography, is common in the natural sciences. Simply stated, repeat photography is the practice of re-photographing the same scene as it appears in an earlier photograph. Photographs were taken at 131 sites every six months over a three-year period. Each photograph was assigned a recovery score and a spatially interpolated recovery surface was generated for each time period. The mapped and graphed results show disparities in the progression of recovery: some communities quickly entered the rebuilding process whereas others have lagged far behind. PMID:21272057

  2. Repeated Games With Intervention: Theory and Applications in Communications

    CERN Document Server

    Xiao, Yuanzhang; van der Schaar, Mihaela

    2011-01-01

    In communication systems where users share common resources, users' selfish behavior usually results in suboptimal resource utilization. There have been extensive works that model communication systems with selfish users as one-shot games and propose incentive schemes to achieve Pareto optimal action profiles as non-cooperative equilibria. However, in many communication systems, due to strong negative externalities among users, the sets of feasible payoffs in one-shot games are nonconvex. Thus, it is possible to expand the set of feasible payoffs by having users choose convex combinations of different payoffs. In this paper, we propose a repeated game model generalized by intervention. First, we use repeated games to convexify the set of feasible payoffs in one-shot games. Second, we combine conventional repeated games with intervention, originally proposed for one-shot games, to achieve a larger set of equilibrium payoffs and loosen requirements for users' patience to achieve it. We study the problem of maxi...

  3. Plumb line deflection varied with time obtained by repeated gravimetry

    Institute of Scientific and Technical Information of China (English)

    李辉; 付广裕; 李正心

    2001-01-01

    In this paper, the plumb line deflection varied with time (PLV) are calculated with the Vening-Meinesz formula for Xiaguan and Beijing point based on the 28 and 39 campaigns of gravimetry at the local gravity networks in the Western Yunnan Earthquake Prediction Experiment Area and the North China, respectively. Based on the results, we conclude that: ① the maximum of PLV is under 0.12 and amplitudes of interannual variation are under 0.022.②PLV can be determined with the reliability of 0.012 by the modeling based on the precession of repeated gravimetry. This implies that repeated gravimetry could be used to determine the PLV. ③There exist some common and different characteristics for the different places and different components. It may provide a new approach for the study on the local or global geodynamic by using repeated gravimetry.

  4. A Brief Review of Short Tandem Repeat Mutation

    Institute of Scientific and Technical Information of China (English)

    Hao Fan; Jia-You Chu

    2007-01-01

    Short tandem repeats (STRs) are short tandemly repeated DNA sequences that involve a repetitive unit of 1-6 bp. Because of their polymorphisms and high mutation rates, STRs are widely used in biological research. Strand-slippage replication is the predominant mutation mechanism of STRs, and the stepwise mutation model is regarded as the main mutation model. STR mutation rates can be influenced by many factors. Moreover, some trinucleotide repeats are associated with human neurodegenerative diseases. In order to deepen our knowledge of these diseases and broaden STR application, it is essential to understand the STR mutation process in detail. In this review, we focus on the current known information about STR mutation.

  5. A Novel Algorithm for Finding Interspersed Repeat Regions

    Institute of Scientific and Technical Information of China (English)

    Dongdong Li; Zhengzhi Wang; Qingshan Ni

    2004-01-01

    The analysis of repeats in the DNA sequences is an important subject in bioinformatics. In this paper, we propose a novel projection-assemble algorithm to find unknown interspersed repeats in DNA sequences. The algorithm employs random projection algorithm to obtain a candidate fragment set, and exhaustive search algorithm to search each pair of fragments from the candidate fragment set to find potential linkage, and then assemble them together. The complexity of our projection-assemble algorithm is nearly linear to the length of the genome sequence, and its memory usage is limited by the hardware. We tested our algorithm with both simulated data and real biology data, and the results show that our projection-assemble algorithm is efficient. By means of this algorithm, we found an un-labeled repeat region that occurs five times in Escherichia coli genome, with its length more than 5,000 bp, and a mismatch probability less than 4%.

  6. Attempted suicide in Denmark. III. Assessment of repeated suicidal behaviour

    DEFF Research Database (Denmark)

    Wang, A G; Nielsen, B; Bille-Brahe, U;

    1985-01-01

    features for the repeaters were previous suicidal behaviour and suicidal behaviour among relatives. Many had a psychiatric record and expressed chronic somatic complaints. Around the time of the attempt, many expressed hopelessness, isolation and suicidal ideation. Pierce's Suicide Intent Scale performed......Ninety-nine patients, randomly chosen among hospital admitted suicide attempters, were initially interviewed at the Department of Psychiatry, Odense University Hospital, Denmark, and then followed up for a period of about 3 years. Half of the patients repeated the attempt in the follow-up period......, mostly in the first year. Ten patients committed suicide, half of them in the first 3 months after the interview, shortly after discharge from hospital. The majority of the repeaters were living alone, while those that committed suicide were mostly married women aged 50-60 years. Other characteristic...

  7. Our evolving knowledge of the transcriptional landscape.

    Science.gov (United States)

    Hume, David A

    2008-01-01

    The development of a genome-scale approach to identification of the 5' ends of capped mRNAs (CAGE) has given new insights into many aspects of mammalian RNApolII transcription control. They include the identification of the minimal initiator motif, the different types of proximal promoter architecture, the promoters of noncoding RNAs, the transcription of retrotransposons, and the extensive impact of alternative promoters on the proteome. CAGE also offers applications as a form of expression profiling that measures promoter use, allowing more precise development of transcriptional network models.

  8. CHD chromatin remodelers and the transcription cycle.

    Science.gov (United States)

    Murawska, Magdalena; Brehm, Alexander

    2011-01-01

    It is well established that ATP-dependent chromatin remodelers modulate DNA access of transcription factors and RNA polymerases by "opening" or "closing" chromatin structure. However, this view is far too simplistic. Recent findings have demonstrated that these enzymes not only set the stage for the transcription machinery to act but are actively involved at every step of the transcription process. As a consequence, they affect initiation, elongation, termination and RNA processing. In this review we will use the CHD family as a paradigm to illustrate the progress that has been made in revealing these new concepts.

  9. NAC transcription factors: structurally distinct, functionally diverse

    DEFF Research Database (Denmark)

    Olsen, Addie Nina; Ernst, Heidi A; Leggio, Leila Lo;

    2005-01-01

    NAC proteins constitute one of the largest families of plant-specific transcription factors, and the family is present in a wide range of land plants. Here, we summarize the biological and molecular functions of the NAC family, paying particular attention to the intricate regulation of NAC protein...... level and localization, and to the first indications of NAC participation in transcription factor networks. The recent determination of the DNA and protein binding NAC domain structure offers insight into the molecular functions of the protein family. Research into NAC transcription factors has...

  10. Optogenetic control of transcription in zebrafish.

    Directory of Open Access Journals (Sweden)

    Hongtao Liu

    Full Text Available Light inducible protein-protein interactions are powerful tools to manipulate biological processes. Genetically encoded light-gated proteins for controlling precise cellular behavior are a new and promising technology, called optogenetics. Here we exploited the blue light-induced transcription system in yeast and zebrafish, based on the blue light dependent interaction between two plant proteins, blue light photoreceptor Cryptochrome 2 (CRY2 and the bHLH transcription factor CIB1 (CRY-interacting bHLH 1. We demonstrate the utility of this system by inducing rapid transcription suppression and activation in zebrafish.

  11. Artificially inserting a reticuloendotheliosis virus long terminal repeat into a bacterial artificial chromosome clone of Marek's disease virus (MDV) alters expression of nearby MDV genes.

    Science.gov (United States)

    Kim, Taejoong; Mays, Jody; Fadly, Aly; Silva, Robert F

    2011-06-01

    Researchers reported that co-cultivating the JM/102W strain of Marek's disease virus (MDV) with reticuloendotheliosis virus (REV) resulted in an REV long terminal repeat (LTR) being inserted into the internal repeat short (IRS) region of JM/102W. When the resulting recombinant virus was serially passed in cell culture, the initial LTR was duplicated and a second LTR spontaneously appeared in the terminal repeat short (TRS) region of the MDV genome. The virus, designated RM1, was significantly attenuated but still induced severe bursal and thymic atrophy (Isfort et al. PNAS 89:991-995). To determine whether the altered phenotype was due solely to the LTR, we cloned the LTR from the RM1 IRS region and inserted it into the IRS region of a very virulent bacterial artificial clone (BAC) of the Md5 strain of MDV, which we designated rMd5-RM1-LTR. During blind passage in duck embryo fibroblast cultures, the initial LTR in the rMd5-RM1-LTR was also duplicated, with LTRs appearing in both IRS and TRS regions of the MDV genome. The inserted LTR sequences and transcripts associated with the MDV open reading frames MDV085, MDV086, SORF2, US1, and US10 were molecularly characterized. The parental Md5 BAC contains a family of transcripts of 3, 2, and 1 kb that all terminate at the end of the US10 gene. The rMd5-RM1-LTR and RM1 viruses both express an additional 4 kb transcript that originates in the LTR and also terminates after US10. Collectively, the data suggest that our engineered rMd5-RM1-LTR virus very closely resembles the RM1 virus in its structure and transcription patterns.

  12. Structure and possible function of a G-quadruplex in the long terminal repeat of the proviral HIV-1 genome.

    Science.gov (United States)

    De Nicola, Beatrice; Lech, Christopher J; Heddi, Brahim; Regmi, Sagar; Frasson, Ilaria; Perrone, Rosalba; Richter, Sara N; Phan, Anh Tuân

    2016-07-27

    The long terminal repeat (LTR) of the proviral human immunodeficiency virus (HIV)-1 genome is integral to virus transcription and host cell infection. The guanine-rich U3 region within the LTR promoter, previously shown to form G-quadruplex structures, represents an attractive target to inhibit HIV transcription and replication. In this work, we report the structure of a biologically relevant G-quadruplex within the LTR promoter region of HIV-1. The guanine-rich sequence designated LTR-IV forms a well-defined structure in physiological cationic solution. The nuclear magnetic resonance (NMR) structure of this sequence reveals a parallel-stranded G-quadruplex containing a single-nucleotide thymine bulge, which participates in a conserved stacking interaction with a neighboring single-nucleotide adenine loop. Transcription analysis in a HIV-1 replication competent cell indicates that the LTR-IV region may act as a modulator of G-quadruplex formation in the LTR promoter. Consequently, the LTR-IV G-quadruplex structure presented within this work could represent a valuable target for the design of HIV therapeutics. PMID:27298260

  13. Lovastatin insensitive 1, a Novel pentatricopeptide repeat protein, is a potential regulatory factor of isoprenoid biosynthesis in Arabidopsis.

    Science.gov (United States)

    Kobayashi, Keiko; Suzuki, Masashi; Tang, Jianwei; Nagata, Noriko; Ohyama, Kiyoshi; Seki, Hikaru; Kiuchi, Reiko; Kaneko, Yasuko; Nakazawa, Miki; Matsui, Minami; Matsumoto, Shogo; Yoshida, Shigeo; Muranaka, Toshiya

    2007-02-01

    Higher plants have two metabolic pathways for isoprenoid biosynthesis: the cytosolic mevalonate (MVA) pathway and the plastidal non-mevalonate (MEP) pathway. Despite the compartmentalization of these two pathways, metabolic flow occurs between them. However, little is known about the mechanisms that regulate the two pathways and the metabolic cross-talk. To identify such regulatory mechanisms, we isolated and characterized the Arabidopsis T-DNA insertion mutant lovastatin insensitive 1 (loi1), which is resistant to lovastatin and clomazone, inhibitors of the MVA and MEP pathways, respectively. The accumulation of the major products of these pathways, i.e. sterols and chlorophyll, was less affected by lovastatin and clomazone, respectively, in loi1 than in the wild type. Furthermore, the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) activity analysis showed higher activity of HMGR in loi1-1 treated with lovastatin than that in the WT. We consider that the lovastatin-resistant phenotype of loi1-1 was derived from this post-transcriptional up-regulation of HMGR. The LOI1 gene encodes a novel pentatricopeptide repeat (PPR) protein. PPR proteins are thought to regulate the expression of genes encoded in organelle genomes by post-transcriptional regulation in mitochondria or plastids. Our results demonstrate that LOI1 is predicted to localize in mitochondria and has the ability to bind single-stranded nucleic acids. Our investigation revealed that the post-transcriptional regulation of mitochondrial RNA may be involved in isoprenoid biosynthesis in both the MVA and MEP pathways.

  14. Statistical significance of precisely repeated intracellular synaptic patterns.

    Directory of Open Access Journals (Sweden)

    Yuji Ikegaya

    Full Text Available Can neuronal networks produce patterns of activity with millisecond accuracy? It may seem unlikely, considering the probabilistic nature of synaptic transmission. However, some theories of brain function predict that such precision is feasible and can emerge from the non-linearity of the action potential generation in circuits of connected neurons. Several studies have presented evidence for and against this hypothesis. Our earlier work supported the precision hypothesis, based on results demonstrating that precise patterns of synaptic inputs could be found in intracellular recordings from neurons in brain slices and in vivo. To test this hypothesis, we devised a method for finding precise repeats of activity and compared repeats found in the data to those found in surrogate datasets made by shuffling the original data. Because more repeats were found in the original data than in the surrogate data sets, we argued that repeats were not due to chance occurrence. Mokeichev et al. (2007 challenged these conclusions, arguing that the generation of surrogate data was insufficiently rigorous. We have now reanalyzed our previous data with the methods introduced from Mokeichev et al. (2007. Our reanalysis reveals that repeats are statistically significant, thus supporting our earlier conclusions, while also supporting many conclusions that Mokeichev et al. (2007 drew from their recent in vivo recordings. Moreover, we also show that the conditions under which the membrane potential is recorded contributes significantly to the ability to detect repeats and may explain conflicting results. In conclusion, our reevaluation resolves the methodological contradictions between Ikegaya et al. (2004 and Mokeichev et al. (2007, but demonstrates the validity of our previous conclusion that spontaneous network activity is non-randomly organized.

  15. Low-Normal FMR1 CGG Repeat Length: Phenotypic Associations

    Directory of Open Access Journals (Sweden)

    Marsha eMailick

    2014-09-01

    Full Text Available This population-based study investigates genotype-phenotype correlations of low-normal CGG repeats in the fragile X mental retardation 1 (FMR1 gene. FMR1 plays an important role in brain development and function, and encodes FMRP (fragile X mental retardation protein, an RNA-binding protein that regulates protein synthesis impacting activity-dependent synaptic development and plasticity. Most past research has focused on CGG premutation expansions (41 to 200 CGG repeats and on fragile X syndrome (200+ CGG repeats, with considerably less attention on the other end of the spectrum of CGG repeats. Using existing data, older adults with 23 or fewer CGG repeats (2 SDs below the mean were compared with age-peers who have normal numbers of CGGs (24-40 with respect to cognition, mental health, cancer, and having children with disabilities. Men (n = 341 with an allele in the low-normal range and women (n = 46 with two low-normal alleles had significantly more difficulty with their memory and ability to solve day to day problems. Women with both FMR1 alleles in the low-normal category had significantly elevated odds of feeling that they need to drink more to get the same effect as in the past. These women also had two and one-half times the odds of having had breast cancer and four times the odds of uterine cancer. Men and women with low-normal CGGs had higher odds of having a child with a disability, either a developmental disability or a mental health condition. These findings are in line with the hypothesis that there is a need for tight neuronal homeostatic control mechanisms for optimal cognitive and behavioral functioning, and more generally that low numbers as well as high numbers of CGG repeats may be problematic for health.

  16. Repeat urine cultures in children with urinary tract infection

    Directory of Open Access Journals (Sweden)

    Risky Vitria Prasetyo

    2012-05-01

    Full Text Available Background Urinary tract infections (UTIs are the second leading cause of infection in children, following respiratory tract infections. Repeat urine cultures after antibiotic treatment are routinely obtained in clinical practice to verify proof of bacteriologic cure. The American Academy of Pediatrics does not recommended repeat cultures, due to increased cost and discomfort to patients. Objective To determine the frequency of positive repeat urine cultures after 3 days of antibiotics in children with UTIs. Methods We conducted a retrospective study on children with UTIs who visited the Division of Pediatric Nephrology, Department of Child Health at Dr. Soetomo Hospital, Surabaya from January 2006 to December 2011. Results of repeat urine cultures were obtained after 3 days of antibiotic treatment. Descriptive statistics were used to analyze the data. Results Of the 779 pediatric UTI cases, repeat urine cultures were performed in 264 (33.9% cases. Of the 264 patients who comprised our study, there were similar numbers of girls and boys (50.4% vs. 49.6%, respectively. The mean age of patients was 43.9 (SD 1.59 months and 35.5% of subjects were aged under 1 year. In the initial urine cultures of our subjects, Escherichia coli was the most common organism found, with 92 cases (34.8%, compared to 58 cases (21.9% of Klebsiella pneumoniae and 29 cases (10.9% of Pseudomonas aeruginosa. Rrepeat urine cultures showed no bacterial growth in 168 cases (63.6%. Conclusion Mostly negative repeat urine cultures will probably obviate the need of this test in daily routine practice. [Paediatr Indones. 2012;52:170-4].

  17. Repeated adaptive divergence of microhabitat specialization in avian feather lice

    Directory of Open Access Journals (Sweden)

    Johnson Kevin P

    2012-06-01

    Full Text Available Abstract Background Repeated adaptive radiations are evident when phenotypic divergence occurs within lineages, but this divergence into different forms is convergent when compared across lineages. Classic examples of such repeated adaptive divergence occur in island (for example, Caribbean Anolis lizards and lake systems (for example, African cichlids. Host-parasite systems in many respects are analogous to island systems, where host species represent isolated islands for parasites whose life cycle is highly tied to that of their hosts. Thus, host-parasite systems might exhibit interesting cases of repeated adaptive divergence as seen in island and lake systems. The feather lice of birds spend their entire life cycle on the body of the host and occupy distinct microhabitats on the host: head, wing, body and generalist. These microhabitat specialists show pronounced morphological differences corresponding to how they escape from host preening. We tested whether these different microhabitat specialists were a case of repeated adaptive divergence by constructing both morphological and molecular phylogenies for a diversity of avian feather lice, including many examples of head, wing, body and generalist forms. Results Morphological and molecular based phylogenies were highly incongruent, which could be explained by rampant convergence in morphology related to microhabitat specialization on the host. In many cases lice from different microhabitat specializations, but from the same group of birds, were sister taxa. Conclusions This pattern indicates a process of repeated adaptive divergence of these parasites within host group, but convergence when comparing parasites across host groups. These results suggest that host-parasite systems might be another case in which repeated adaptive radiations could be relatively common, but potentially overlooked, because morphological convergence can obscure evolutionary relationships.

  18. Experimental realization of entanglement concentration and a quantum repeater.

    Science.gov (United States)

    Zhao, Zhi; Yang, Tao; Chen, Yu-Ao; Zhang, An-Ning; Pan, Jian-Wei

    2003-05-23

    We report an experimental realization of entanglement concentration using two polarization-entangled photon pairs produced by pulsed parametric down-conversion. In the meantime, our setup also provides a proof-in-principle demonstration of a quantum repeater. The quality of our procedure is verified by observing a violation of Bell's inequality by more than 5 standard deviations. The high experimental accuracy achieved in the experiment implies that the requirement of tolerable error rate in multistage realization of quantum repeaters can be fulfilled, hence providing a useful toolbox for quantum communication over large distances.

  19. Evaluation of pulsed RFI effects on digital satellite repeaters

    Science.gov (United States)

    Huang, T. C.; Braun, W. R.

    1980-01-01

    This paper presents an analytical approach for assessing the effect of pulsed RFI on the error probability of a coherent phase-shift keyed signal through a nonlinear satellite repeater. The RFI is assumed to affect the uplink channel and to consist of CW pulses with random power levels and arriving randomly in time with a Poisson distribution. A model to approximate the effect of intermodulation products is introduced and the error probability conditioned on the output of the satellite repeater is computed. The classical moment technique is then used as an efficient method of averaging the conditional error probability over the numerous random parameters associated with the uplink signal.

  20. Relationship between income and repeat criminal victimization in Brazil

    Directory of Open Access Journals (Sweden)

    Marcelo Justus

    2015-09-01

    Full Text Available This study analyzes the effect of income on repeat criminal victimization in Brazil using data from the 2009 National Household Sample Survey and its special supplement on victimization and access to justice. Two count-data models were estimated for four types of crime: theft, robbery, attempted theft/robbery, and physical assault. A positive nonlinear effect of income on repeat victimization for the three types of property crimes and a negative nonlinear effect of income on physical assault were observed.

  1. The role of oxytocin antagonists in repeated implantation failure

    OpenAIRE

    Decleer, W.; Osmanagaoglu, K.; Devroey, P.

    2012-01-01

    A prospective cohort study has been performed to find out if the administration of an oxytocin antagonist (Atosiban) at the occasion of embryo transfer has an effect on the pregnancy rate in patients with repeated failure of implantation. A total of 52 women with repeated failure of implantation after IVF/ICSI were included in this study. The ongoing pregnancy rate (OPR) in the total group of patients was 12 out of 52 (23.1%). Based on embryo quality all cases were categorized in two groups. ...

  2. Interactions of Cu2+ ions with chicken prion tandem repeats.

    Science.gov (United States)

    Stańczak, Pawel; Łuczkowski, Marek; Juszczyk, Paulina; Grzonka, Zbigniew; Kozłowski, Henryk

    2004-07-21

    The potentiometric and spectroscopic (EPR, UV-Vis, CD) data have shown that the chicken prion hexa-repeat (Ac-His-Asn-Pro-Gly-Tyr-Pro-NH(2)) is a very specific ligand for Cu(2+) ions. The His imidazole is an anchoring binding site, then the adjacent amide nitrogen coordinates as a second donor. The presence of Pro at position 3 induces binding of phenolate oxygen as a third donor atom. The tridentate coordination dominates around physiological pH. Similar to human octapeptide fragments, chicken tandem repeats exhibit a cooperative effect in binding Cu(2+) ions, although chicken peptides are much less effective in metal ion coordination. PMID:15249945

  3. A new role for plant R2R3-MYB transcription factors in cell cycle regulation

    Institute of Scientific and Technical Information of China (English)

    Eleonora Cominelli; Chiara Tonelli

    2009-01-01

    @@ MYB proteins are transcription factors present in all eukaryotes,sharing a common DNA-binding domain that consists of one to three imperfect helix-helix-turn-helix repeats of about 50 amino acids,called RI,R2,and R3 respectively [1].In animals and yeast these proteins represent a small gene family [1].Animal R1R2R3-MYB proteins have been described for their role in cell cycle regulation mainly at the G1/S,but also at the G2/M transition,as firstly demonstrated in Drosophila [2].

  4. Alu-directed transcriptional regulation of some novel miRNAs

    Directory of Open Access Journals (Sweden)

    Zhao Xi W

    2009-11-01

    Full Text Available Abstract Background Despite many studies on the biogenesis, molecular structure and biological functions of microRNAs, little is known about the transcriptional regulatory mechanisms controlling the spatiotemporal expression pattern of human miRNA gene loci. Several lines of experimental results have indicated that both polymerase II (Pol-II and polymerase III (Pol-III may be involved in transcribing miRNAs. Here, we assessed the genomic evidence for Alu-directed transcriptional regulation of some novel miRNA genes in humans. Our data demonstrate that the expression of these Alu-related miRNAs may be modulated by Pol-III. Results We present a comprehensive exploration of the Alu-directed transcriptional regulation of some new miRNAs. Using a new computational approach, a variety of Alu-related sequences from multiple sources were pooled and filtered to obtain a subset containing Alu elements and characterized miRNA genes for which there is clear evidence of full-length transcription (embedded in EST. We systematically demonstrated that 73 miRNAs including five known ones may be transcribed by Pol-III through Alu or MIR. Among the new miRNAs, 33 were determined by high-throughput Solexa sequencing. Real-time TaqMan PCR and Northern blotting verified that three newly identified miRNAs could be induced to co-express with their upstream Alu transcripts by heat shock or cycloheximide. Conclusion Through genomic analysis, Solexa sequencing and experimental validation, we have identified candidate sequences for Alu-related miRNAs, and have found that the transcription of these miRNAs could be governed by Pol-III. Thus, this study may elucidate the mechanisms by which the expression of a class of small RNAs may be regulated by their upstream repeat elements.

  5. Site-specific proteolysis of the transcriptional coactivator HCF-1 can regulate its interaction with protein cofactors.

    Science.gov (United States)

    Vogel, Jodi L; Kristie, Thomas M

    2006-05-01

    Limited proteolytic processing is an important transcriptional regulatory mechanism. In various contexts, proteolysis controls the cytoplasmic-to-nuclear transport of important transcription factors or removes domains to produce factors with altered activities. The transcriptional coactivator host cell factor-1 (HCF-1) is proteolytically processed within a unique domain consisting of 20-aa reiterations. Site-specific cleavage within one or more repeats generates a family of amino- and carboxyl-terminal subunits that remain tightly associated. However, the consequences of HCF-1 processing have been undefined. In this study, it was determined that the HCF-1-processing domain interacts with several proteins including the transcriptional coactivator/corepressor four-and-a-half LIM domain-2 (FHL2). Analysis of this interaction has uncovered specificity with both sequence and context determinants within the reiterations of this processing domain. In cells, FHL2 interacts exclusively with the nonprocessed coactivator and costimulates transcription of an HCF-1-dependent target gene. The functional interaction of HCF-1 with FHL2 supports a model in which site-specific proteolysis regulates the interaction of HCF-1 with protein partners and thus can modulate the activity of this coactivator. This paradigm expands the biological significance of limited proteolytic processing as a regulatory mechanism in gene transcription.

  6. TRAP binding to the Bacillus subtilis trp leader region RNA causes efficient transcription termination at a weak intrinsic terminator.

    Science.gov (United States)

    Potter, Kristine D; Merlino, Natalie M; Jacobs, Timothy; Gollnick, Paul

    2011-03-01

    The Bacillus subtilis trpEDCFBA operon is regulated by a transcription attenuation mechanism controlled by the trp RNA-binding attenuation protein (TRAP). TRAP binds to 11 (G/U)AG repeats in the trp leader transcript and prevents formation of an antiterminator, which allows formation of an intrinsic terminator (attenuator). Previously, formation of the attenuator RNA structure was believed to be solely responsible for signaling RNA polymerase (RNAP) to halt transcription. However, base substitutions that prevent formation of the antiterminator, and thus allow the attenuator structure to form constitutively, do not result in efficient transcription termination. The observation that the attenuator requires the presence of TRAP bound to the nascent RNA to cause efficient transcription termination suggests TRAP has an additional role in causing termination at the attenuator. We show that the trp attenuator is a weak intrinsic terminator due to low GC content of the hairpin stem and interruptions in the U-stretch following the hairpin. We also provide evidence that termination at the trp attenuator requires forward translocation of RNA polymerase and that TRAP binding to the nascent transcript can induce this activity. PMID:21097886

  7. The rate of TRAP binding to RNA is crucial for transcription attenuation control of the B. subtilis trp operon.

    Science.gov (United States)

    Barbolina, Maria V; Kristoforov, Roman; Manfredo, Amanda; Chen, Yanling; Gollnick, Paul

    2007-07-27

    The trp RNA-binding attenuation protein (TRAP) regulates expression of the tryptophan biosynthetic and transport genes in Bacillus subtilis in response to changes in the levels of intracellular tryptophan. Transcription of the trpEDCFBA operon is controlled by an attenuation mechanism involving two overlapping RNA secondary structures in the 5' leader region of the trp transcript; TRAP binding promotes formation of a transcription terminator structure that halts transcription prior to the structural genes. TRAP consists of 11 identical subunits and is activated to bind RNA by binding up to 11 molecules of L-tryptophan. The TRAP binding site in the leader region of the trp operon mRNA consists of 11 (G/U)AG repeats. We examined the importance of the rate of TRAP binding to RNA for the transcription attenuation mechanism. We compared the properties of two types of TRAP 11-mers: homo-11-mers composed of 11 wild-type subunits, and hetero-11-mers with only one wild-type subunit and ten mutant subunits defective in binding either RNA or tryptophan. The hetero-11-mers bound RNA with only slightly diminished equilibrium binding affinity but with slower on-rates as compared to WT TRAP. The hetero-11-mers showed significantly decreased ability to induce transcription termination in the trp leader region when examined using an in vitro attenuation system. Together these results indicate that the rate of TRAP binding to RNA is a crucial factor in TRAP's ability to control attenuation. PMID:17555767

  8. Contributions by the CAG-repeat Polymorphism of the Androgen Receptor Gene and Circulating Androgens to Muscle Size. Odense Androgen Study - A Population-based Study of 20-29 Year-old Danish Men

    DEFF Research Database (Denmark)

    Nielsen, Torben Leo; Hagen, Claus; Wraae, Kristian;

    2007-01-01

    -29 years, who matched the background population as regards body mass index, chronic disease, medication, physical activity, smoking, and sociodemographic parameters. Genotyping was performed in 767 men, whole body DXA in 783 men, and MRI in 406 consecutively included men. Main Outcome Measures: Six......-repeat number correlated inversely with thigh and axial muscle area and with lower and upper extremity lean body mass. Except for upper extremity lean body mass, these findings remained significant in multivariate analyses controlling for circulating androgens, physical activity, smoking, alcohol intake......Context: The number of CAG-repeats within the CAG-repeat polymorphism of the androgen receptor gene is inversely correlated with the transcriptional activity of the androgen receptor. Objective: To study the effect of the CAG-repeat number and circulating androgens on muscle size, to examine...

  9. Engineering synthetic TALE and CRISPR/Cas9 transcription factors for regulating gene expression.

    Science.gov (United States)

    Kabadi, Ami M; Gersbach, Charles A

    2014-09-01

    Engineered DNA-binding proteins that can be targeted to specific sites in the genome to manipulate gene expression have enabled many advances in biomedical research. This includes generating tools to study fundamental aspects of gene regulation and the development of a new class of gene therapies that alter the expression of endogenous genes. Designed transcription factors have entered clinical trials for the treatment of human diseases and others are in preclinical development. High-throughput and user-friendly platforms for designing synthetic DNA-binding proteins present innovative methods for deciphering cell biology and designing custom synthetic gene circuits. We review two platforms for designing synthetic transcription factors for manipulating gene expression: Transcription activator-like effectors (TALEs) and the RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. We present an overview of each technology and a guide for designing and assembling custom TALE- and CRISPR/Cas9-based transcription factors. We also discuss characteristics of each platform that are best suited for different applications.

  10. RNA-Interference Components Are Dispensable for Transcriptional Silencing of the Drosophila Bithorax-Complex

    KAUST Repository

    Cernilogar, Filippo M.

    2013-06-13

    Background:Beyond their role in post-transcriptional gene silencing, Dicer and Argonaute, two components of the RNA interference (RNAi) machinery, were shown to be involved in epigenetic regulation of centromeric heterochromatin and transcriptional gene silencing. In particular, RNAi mechanisms appear to play a role in repeat induced silencing and some aspects of Polycomb-mediated gene silencing. However, the functional interplay of RNAi mechanisms and Polycomb group (PcG) pathways at endogenous loci remains to be elucidated.Principal Findings:Here we show that the endogenous Dicer-2/Argonaute-2 RNAi pathway is dispensable for the PcG mediated silencing of the homeotic Bithorax Complex (BX-C). Although Dicer-2 depletion triggers mild transcriptional activation at Polycomb Response Elements (PREs), this does not induce transcriptional changes at PcG-repressed genes. Moreover, Dicer-2 is not needed to maintain global levels of methylation of lysine 27 of histone H3 and does not affect PRE-mediated higher order chromatin structures within the BX-C. Finally bioinformatic analysis, comparing published data sets of PcG targets with Argonaute-2-bound small RNAs reveals no enrichment of these small RNAs at promoter regions associated with PcG proteins.Conclusions:We conclude that the Dicer-2/Argonaute-2 RNAi pathway, despite its role in pairing sensitive gene silencing of transgenes, does not have a role in PcG dependent silencing of major homeotic gene cluster loci in Drosophila. © 2013 Cernilogar et al.

  11. Prediction of nucleosome positioning based on transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Xianfu Yi

    Full Text Available BACKGROUND: The DNA of all eukaryotic organisms is packaged into nucleosomes, the basic repeating units of chromatin. The nucleosome consists of a histone octamer around which a DNA core is wrapped and the linker histone H1, which is associated with linker DNA. By altering the accessibility of DNA sequences, the nucleosome has profound effects on all DNA-dependent processes. Understanding the factors that influence nucleosome positioning is of great importance for the study of genomic control mechanisms. Transcription factors (TFs have been suggested to play a role in nucleosome positioning in vivo. PRINCIPAL FINDINGS: Here, the minimum redundancy maximum relevance (mRMR feature selection algorithm, the nearest neighbor algorithm (NNA, and the incremental feature selection (IFS method were used to identify the most important TFs that either favor or inhibit nucleosome positioning by analyzing the numbers of transcription factor binding sites (TFBSs in 53,021 nucleosomal DNA sequences and 50,299 linker DNA sequences. A total of nine important families of TFs were extracted from 35 families, and the overall prediction accuracy was 87.4% as evaluated by the jackknife cross-validation test. CONCLUSIONS: Our results are consistent with the notion that TFs are more likely to bind linker DNA sequences than the sequences in the nucleosomes. In addition, our results imply that there may be some TFs that are important for nucleosome positioning but that play an insignificant role in discriminating nucleosome-forming DNA sequences from nucleosome-inhibiting DNA sequences. The hypothesis that TFs play a role in nucleosome positioning is, thus, confirmed by the results of this study.

  12. Alternative splicing generates novel Fads3 transcript in mice.

    Science.gov (United States)

    Zhang, Ji Yao; Qin, Xia; Park, Hui Gyu; Kim, Ellen; Liu, Guowen; Kothapalli, Kumar S D; Brenna, J Thomas

    2016-08-01

    Fads3 is the third member of the fatty acid desaturase gene cluster; with at least eight evolutionarily conserved alternative transcripts (AT), having no clearly established function as are known for FADS2 and FADS1. Here we present identification of a novel Fads3 transcript in mice (Fads3AT9), characterize Fads3AT9 expression in mouse tissues and evaluate correlations with metabolite profiles. Total RNA obtained from mouse tissues is reverse-transcribed into cDNA and used as template for PCR reactions. Tissue fatty acids were extracted and quantified by gas chromatography. Sequencing analysis revealed complete absence of exon 2 resulting in an open reading frame of 1239 bp, encoding a putative protein of 412 aa with loss of 37 aa compared to classical Fads3 (Fads3CS). FADS3AT9 retains all the conserved regions characteristic of front end desaturase (cytochrome b5 domain and three histidine repeats). Both Fads3CS and Fads3AT9 are ubiquitously expressed in 11 mouse tissues. Fads3AT9 abundance was greater than Fads3CS in pancreas, liver, spleen, brown adipose tissue and thymus. Fads3CS expression is low in pancreas while Fads3AT9 is over ten-fold greater abundance. The eicosanoid precursor fatty acid 20:4n - 6, the immediate desaturation product of the Fads1 coded Δ5-desaturase, was highest in pancreas where Fads3CS is low. Changes in expression patterns and fatty acid profiles suggest that Fads3AT9 may play a role in the regulation and/or biosynthesis of long chain polyunsaturated fatty acids from precursors. PMID:27216536

  13. Comparison of Transcription Factor Binding Site Models

    KAUST Repository

    Bhuyan, Sharifulislam

    2012-05-01

    Modeling of transcription factor binding sites (TFBSs) and TFBS prediction on genomic sequences are important steps to elucidate transcription regulatory mechanism. Dependency of transcription regulation on a great number of factors such as chemical specificity, molecular structure, genomic and epigenetic characteristics, long distance interaction, makes this a challenging problem. Different experimental procedures generate evidence that DNA-binding domains of transcription factors show considerable DNA sequence specificity. Probabilistic modeling of TFBSs has been moderately successful in identifying patterns from a family of sequences. In this study, we compare performances of different probabilistic models and try to estimate their efficacy over experimental TFBSs data. We build a pipeline to calculate sensitivity and specificity from aligned TFBS sequences for several probabilistic models, such as Markov chains, hidden Markov models, Bayesian networks. Our work, containing relevant statistics and evaluation for the models, can help researchers to choose the most appropriate model for the problem at hand.

  14. Transcription factors as targets of anticancer drugs.

    Science.gov (United States)

    Gniazdowski, M; Czyz, M

    1999-01-01

    Several general and gene- and cell-selective transcription factors are required for specific transcription to occur. Many of them exert their functions through specific contacts either in the promoter region or at distant sequences regulating the initiation. These contacts may be altered by anticancer drugs which form non-covalent complexes with DNA. Covalent modifications of DNA by alkylating agents may prevent transcription factors from recognizing their specific sequences or may constitute multiple "unnatural" binding sites in DNA which attract the factors thus decreasing their availability in the cell. The anticancer drug-transcription factor interplay which is based on specific interactions with DNA may contribute to pharmacological properties of the former and provide a basis for the search for new drugs. PMID:10547027

  15. Molecular biology Mediating transcription and RNA export

    Science.gov (United States)

    Rubin, Jonathan D.; Taatjes, Dylan J.

    2016-01-01

    The finding that the Mediator protein complex contributes to messenger RNA export from the nucleus in yeast adds to a growing list of roles for the complex in regulating transcriptional processes. PMID:26450052

  16. Dynamics of transcription-translation networks

    Science.gov (United States)

    Hudson, D.; Edwards, R.

    2016-09-01

    A theory for qualitative models of gene regulatory networks has been developed over several decades, generally considering transcription factors to regulate directly the expression of other transcription factors, without any intermediate variables. Here we explore a class of models that explicitly includes both transcription and translation, keeping track of both mRNA and protein concentrations. We mainly deal with transcription regulation functions that are steep sigmoids or step functions, as is often done in protein-only models, though translation is governed by a linear term. We extend many aspects of the protein-only theory to this new context, including properties of fixed points, description of trajectories by mappings between switching points, qualitative analysis via a state-transition diagram, and a result on periodic orbits for negative feedback loops. We find that while singular behaviour in switching domains is largely avoided, non-uniqueness of solutions can still occur in the step-function limit.

  17. High throughput assays for analyzing transcription factors.

    Science.gov (United States)

    Li, Xianqiang; Jiang, Xin; Yaoi, Takuro

    2006-06-01

    Transcription factors are a group of proteins that modulate the expression of genes involved in many biological processes, such as cell growth and differentiation. Alterations in transcription factor function are associated with many human diseases, and therefore these proteins are attractive potential drug targets. A key issue in the development of such therapeutics is the generation of effective tools that can be used for high throughput discovery of the critical transcription factors involved in human diseases, and the measurement of their activities in a variety of disease or compound-treated samples. Here, a number of innovative arrays and 96-well format assays for profiling and measuring the activities of transcription factors will be discussed. PMID:16834538

  18. Transcription of piano music with deep learning

    OpenAIRE

    Jug, Jan

    2015-01-01

    Transcription of music is a complex process of transcribing an audio recording into a symbolic notation. The goal of this thesis was to examine transcription of piano music with deep learning, for which three models of deep neural networks were implemented: multilayer perceptron, convolutional neural network and deep belief network. Through the use of deep belief network, unsupervised pretraining for automatic extraction of musical features from audio signals was also tested. Learning of thes...

  19. Extraction of Transcript Diversity from Scientific Literature

    OpenAIRE

    Parantu K Shah; Jensen, Lars J.; Stéphanie Boué; Peer Bork

    2005-01-01

    Synopsis Given the functional complexity of higher eukaryotes, the relatively small number of genes in the human and other mammalian genomes came as a surprise to the scientific community. Later it was discovered that the majority of genes are subject to alternative splicing (“cutting and pasting”) or associated mechanisms that ultimately increase the diversity of transcripts that code for proteins. Studies exploring transcript diversity are currently dominated by high-throughput experiments ...

  20. A Discriminative Model for Polyphonic Piano Transcription

    Directory of Open Access Journals (Sweden)

    Poliner Graham E

    2007-01-01

    Full Text Available We present a discriminative model for polyphonic piano transcription. Support vector machines trained on spectral features are used to classify frame-level note instances. The classifier outputs are temporally constrained via hidden Markov models, and the proposed system is used to transcribe both synthesized and real piano recordings. A frame-level transcription accuracy of 68% was achieved on a newly generated test set, and direct comparisons to previous approaches are provided.