WorldWideScience

Sample records for aperture shield materials

  1. Solar energy apparatus with apertured shield

    Science.gov (United States)

    Collings, Roger J. (Inventor); Bannon, David G. (Inventor)

    1989-01-01

    A protective apertured shield for use about an inlet to a solar apparatus which includesd a cavity receiver for absorbing concentrated solar energy. A rigid support truss assembly is fixed to the periphery of the inlet and projects radially inwardly therefrom to define a generally central aperture area through which solar radiation can pass into the cavity receiver. A non-structural, laminated blanket is spread over the rigid support truss in such a manner as to define an outer surface area and an inner surface area diverging radially outwardly from the central aperture area toward the periphery of the inlet. The outer surface area faces away from the inlet and the inner surface area faces toward the cavity receiver. The laminated blanket includes at least one layer of material, such as ceramic fiber fabric, having high infra-red emittance and low solar absorption properties, and another layer, such as metallic foil, of low infra-red emittance properties.

  2. Radiation Shielding Materials

    Science.gov (United States)

    Adams, James H., Jr.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    NASA has relied on the materials to provide radiation shielding for astronauts since the first manned flights. Until very recently existing materials in the structure of manned spacecraft as well as the equipment and consumables onboard have been taken advantage of for radiation shielding. With the advent of the International Space Station and the prospect of extended missions to the Moon or Mars, it has been found that the materials, which were included in the spacecraft for other reasons, do not provide adequate shielding. For the first time materials are being added to manned missions solely to improve the radiation shielding. It is now recognized that dual use materials must be identified/developed. These materials must serve a purpose as part of the spacecraft or its cargo and at the same time be good shielding. This paper will review methods for evaluating the radiation shielding effectiveness of materials and describe the character of materials that have high radiation shielding effectiveness. Some candidate materials will also be discussed.

  3. New Materials for EMI Shielding

    Science.gov (United States)

    Gaier, James R.

    1999-01-01

    Graphite fibers intercalated with bromine or similar mixed halogen compounds have substantially lower resistivity than their pristine counterparts, and thus should exhibit higher shielding effectiveness against electromagnetic interference. The mechanical and thermal properties are nearly unaffected, and the shielding of high energy x-rays and gamma rays is substantially increased. Characterization of the resistivity of the composite materials is subtle, but it is clear that the composite resistivity is substantially lowered. Shielding effectiveness calculations utilizing a simple rule of mixtures model yields results that are consistent with available data on these materials.

  4. Material Effectiveness for Radiation Shielding

    Science.gov (United States)

    2003-01-01

    Materials with a smaller mean atomic mass, such as lithium (Li) hydride and polyethylene, make the best radiation shields for astronauts. The materials have a higher density of nuclei and are better able to block incoming radiation. Also, they tend to produce fewer and less dangerous secondary particles after impact with incoming radiation.

  5. Radiation Shielding Materials and Containers Incorporating Same

    Energy Technology Data Exchange (ETDEWEB)

    Mirsky, Steven M.; Krill, Stephen J.; and Murray, Alexander P.

    2005-11-01

    An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound (''PYRUC'') shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

  6. Predictions for Radiation Shielding Materials

    Science.gov (United States)

    Kiefer, Richard L.

    2002-01-01

    Radiation from galactic cosmic rays (GCR) and solar particle events (SPE) is a serious hazard to humans and electronic instruments during space travel, particularly on prolonged missions outside the Earth s magnetic fields. Galactic cosmic radiation (GCR) is composed of approx. 98% nucleons and approx. 2% electrons and positrons. Although cosmic ray heavy ions are 1-2% of the fluence, these energetic heavy nuclei (HZE) contribute 50% of the long-term dose. These unusually high specific ionizations pose a significant health hazard acting as carcinogens and also causing microelectronics damage inside spacecraft and high-flying aircraft. These HZE ions are of concern for radiation protection and radiation shielding technology, because gross rearrangements and mutations and deletions in DNA are expected. Calculations have shown that HZE particles have a strong preference for interaction with light nuclei. The best shield for this radiation would be liquid hydrogen, which is totally impractical. For this reason, hydrogen-containing polymers make the most effective practical shields. Shielding is required during missions in Earth orbit and possibly for frequent flying at high altitude because of the broad GCR spectrum and during a passage into deep space and LunarMars habitation because of the protracted exposure encountered on a long space mission. An additional hazard comes from solar particle events (SPEs) which are mostly energetic protons that can produce heavy ion secondaries as well as neutrons in materials. These events occur at unpredictable times and can deliver a potentially lethal dose within several hours to an unshielded human. Radiation protection for humans requires safety in short-term missions and maintaining career exposure limits within acceptable levels on future long-term exploration missions. The selection of shield materials can alter the protection of humans by an order of magnitude. If improperly selected, shielding materials can actually

  7. Resonance suppression and electromagnetic shielding effectiveness improvement of an apertured rectangular cavity by using wall losses

    Institute of Scientific and Technical Information of China (English)

    Jiao Chong-Qing; Zhu Hong-Zhao

    2013-01-01

    The cavity-mode resonance effect could result in significant degradation of the shielding effectiveness (SE) of a shielding enclosure around its resonance frequencies.In this paper,the influence of coated wall loss on the suppression of the resonance effect is investigated.For this purpose,an equivalent circuit model is employed to analyze the SE of an apertured rectangular cavity coated with an inside layer of resistive material.The model is developed by extending Robinson's equivalent circuit model through incorporating the effect of the wall loss into both the propagation constant and the characteristic impedance of the waveguide.Calculation results show that the wall loss could lead to great improvement on the SE for frequencies near the resonance but almost no effect on the SE for frequencies far away from the resonance.

  8. A Novel Radiation Shielding Material Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiation shielding simulations showed that epoxy loaded with 10-70% polyethylene would be an excellent shielding material against GCRs and SEPs. Milling produced an...

  9. Shielding effectiveness of rectangular cavity made of a new shielding material and resonance suppression

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    New shielding material has become an alternative to traditional metal to shield boxes from electromagnetic interferences. This article introduces the theory of transmission line method to study the shield boxes made of a new sort of material, and then expands the fundamental formulas to deal with the cases of multiple holes and polarization with arbitrary angle. By means of genetic algorithms with the aid of a three dimensional simulation tool, the damping of electromagnetic resonances in enclosures is researched.The computation indicates that under resonant frequency, electromagnetic resonance results in low, even negative shielding coefficient; whereas, for the same areas, shielding effectiveness of a single hole is worse than that of multiple holes. Shielding coefficient varies when polarization angle increases, and the coupled field through the rectangular aperture with the long side parallel to the thin wire is much weaker than that with the long side vertical to the thin wire. By using the metallic-loss dielectric layer of optimized calculation on the internal surface of the cavity, the best result of resonance suppression has been realized with the same thickness of coating. Finally, according to the calculation result, suggestions for shielding are proposed.

  10. A new radiation shielding material: Amethyst ore

    Energy Technology Data Exchange (ETDEWEB)

    Korkut, Turgay, E-mail: turgaykorkut@hotmail.co [Faculty of Science and Art, Department of Physics, Ibrahim Cecen University, Agri (Turkey); Korkut, Hatun [Faculty of Science and Art, Department of Physics, Ibrahim Cecen University, Agri (Turkey); Karabulut, Abdulhalik; Budak, Goekhan [Faculty of Science, Department of Physics, Atatuerk University, Erzurum (Turkey)

    2011-01-15

    This paper describes a new radiation shielding material, amethyst ore. We have determined the elemental composition of amethyst using WDXRF spectroscopy technique. To see the shielding capability of amethyst for several photon energies, these results have been used in simulation process by FLUKA Monte Carlo radiation transport code. Linear attenuation coefficients have been calculated according to the simulation results. Then, these values have been compared to a fine shielding concrete material. The results show that amethyst shields more gamma beams than concrete. This investigation is the first study about the radiation shielding properties of amethyst ore.

  11. Lithium hydride - A space age shielding material

    Science.gov (United States)

    Welch, F. H.

    1974-01-01

    Men and materials performing in the environment of an operating nuclear reactor require shielding from the escaping neutron particles and gamma rays. For efficient shielding from gamma rays, dense, high atomic number elements such as iron, lead, or tungsten are required, whereas light, low atomic number elements such as hydrogen, lithium, or beryllium are required for efficient neutron shielding. The use of lithium hydride (LiH) as a highly efficient neutron-shielding material is considered. It contains, combined into a single, stable compound, two of the elements most effective in attenuating and absorbing neutrons.

  12. Boron-10 loaded inorganic shielding material

    Science.gov (United States)

    Baker, S. I.; Ryskiewicz, R. S.

    1972-01-01

    Shielding material containing Boron 10 and gadoliunium for neutron absorption has been developed to reduce interference from low energy neutrons in measurement of fission neutron spectrum using Li-6 fast neutron spectrometer.

  13. Space Shielding Materials for Prometheus Application

    Energy Technology Data Exchange (ETDEWEB)

    R. Lewis

    2006-01-20

    At the time of Prometheus program restructuring, shield material and design screening efforts had progressed to the point where a down-selection from approximately eighty-eight materials to a set of five ''primary'' materials was in process. The primary materials were beryllium (Be), boron carbide (B{sub 4}C), tungsten (W), lithium hydride (LiH), and water (H{sub 2}O). The primary materials were judged to be sufficient to design a Prometheus shield--excluding structural and insulating materials, that had not been studied in detail. The foremost preconceptual shield concepts included: (1) a Be/B{sub 4}C/W/LiH shield; (2) a Be/B{sub 4}C/W shield; (3) and a Be/B{sub 4}C/H{sub 2}O shield. Since the shield design and materials studies were still preliminary, alternative materials (e.g., {sup nal}B or {sup 10}B metal) were still being screened, but at a low level of effort. Two competing low mass neutron shielding materials are included in the primary materials due to significant materials uncertainties in both. For LiH, irradiation-induced swelling was the key issue, whereas for H{sub 2}O, containment corrosion without active chemistry control was key, Although detailed design studies are required to accurately estimate the mass of shields based on either hydrogenous material, both are expected to be similar in mass, and lower mass than virtually any alternative. Unlike Be, W, and B{sub 4}C, which are not expected to have restrictive temperature limits, shield temperature limits and design accommodations are likely to be needed for either LiH or H{sub 2}O. The NRPCT focused efforts on understanding swelting of LiH, and observed, from approximately fifty prior irradiation tests, that either casting ar thorough out-gassing should reduce swelling. A potential contributor to LiH swelling appears to be LiOH contamination due to exposure to humid air, that can be eliminated by careful processing. To better understand LiH irradiation performance and

  14. Carbohydrate based materials for gamma radiation shielding

    Science.gov (United States)

    Tabbakh, F.; Babaee, V.; Naghsh-Nezhad, Z.

    2015-05-01

    Due to the limitation in using lead as a shielding material for its toxic properties and limitation in abundance, price or non-flexibility of other commonly used materials, finding new shielding materials and compounds is strongly required. In this conceptual study carbohydrate based compounds were considered as new shielding materials. The simulation of radiation attenuation is performed using MCNP and Geant4 with a good agreement in the results. It is found that, the thickness of 2 mm of the proposed compound may reduce up to 5% and 50% of 1 MeV and 35 keV gamma-rays respectively in comparison with 15% and 100% for the same thickness of lead.

  15. Cosmic Ray Interactions in Shielding Materials

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.; Orrell, John L.; Berguson, Timothy J.; Troy, Meredith D.

    2011-09-08

    This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earth’s surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electron volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earth’s surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.

  16. Neutron Shielding Effectiveness of Multifunctional Composite Materials

    Science.gov (United States)

    2013-03-01

    Neutrons are moderated or reduced in energy by scattering off of nuclei. When cosmic neutrons with high kinetic energy enter earth’s atmosphere...neutron flux. The simulation volume was modeled as a sphere centered at the origin with a radius of 100 cm. The shielding material was modeled as a

  17. Novel Concepts for Radiation Shielding Materials

    Science.gov (United States)

    Oliva-Buisson, Yvette J.

    2014-01-01

    It is critical that safety factors be maximized with respect to long duration, extraterrestrial space flight. Any significant improvement in radiation protection will be critical in ensuring the safety of crew and hardware on such missions. The project goal is to study novel concepts for radiation shielding materials that can be used for long-duration space missions. As part of this project we will investigate the use of thin films for the evaluation of a containment system that can retain liquid hydrogen and provide the necessary hydrogen density for effective shielding.

  18. Neutron shielding material based on colemanite and epoxy resin.

    Science.gov (United States)

    Okuno, Koichi

    2005-01-01

    In recent years, there has been a need for compact shielding design such as self-shielding of a PET cyclotron or upgradation of radiation machinery in existing facilities. In these cases, high performance shielding materials are needed. Concrete or polyethylene have been used for a neutron shield. However, for compact shielding, they fall short in terms of performance or durability. Therefore, a new type of neutron shielding material based on epoxy resin and colemanite has been developed. Slab attenuation experiments up to 40 cm for the new shielding material were carried out using a 252Cf neutron source. Measurement was carried out using a REM-counter, and compared with calculation. The results show that the shielding performance is better than concrete and polyethylene mixed with 10 wt% boron oxide. From the result, we confirmed that the performance of the new material is suitable for practical use.

  19. Apertures

    CERN Document Server

    Hansen, R C

    2014-01-01

    Microwave Scanning Antennas, Volume I: Apertures is a comprehensive account of phased arrays, multiple beam arrays, time domain and synthetic apertures, and adaptive antennas. Advances in continuous apertures and near field theory are discussed. Low noise and monopulse apertures, optical scanners, and large radomes are also covered, along with radio astronomy instruments and associated theory.Comprised of five chapters, this volume begins with an overview of aperture theory as well as aperture distributions and near field theory. The second and third chapters deal with mechanically steered and

  20. Improved Spacecraft Materials for Radiation Shielding

    Science.gov (United States)

    Wilson, J. W.; Shinn, J. L.; Singleterry, R. C.; Tai, H.; Thibeault, S. A.; Simonsen, L. C.; Cucinotta, F. A.; Miller, J.

    1999-01-01

    In the execution of this proposal, we will first examine current and developing spacecraft materials and evaluate their ability to attenuate adverse biological mutational events in mammalian cell systems and reduce the rate of cancer induction in mice harderian glands as a measure of their protective qualities. The HZETRN code system will be used to generate a database on GCR attenuation in each material. If a third year of funding is granted, the most promising and mission-specific materials will be used to study the impact on mission cost for a typical Mars mission scenario as was planned in our original two year proposal at the original funding level. The most promising candidate materials will be further tested as to their transmission characteristics in Fe and Si ion beams to evaluate the accuracy of the HZETRN transmission factors. Materials deemed critical to mission success may also require testing as well as materials developed by industry for their radiation protective qualities (e.g., Physical Sciences Inc.) A study will be made of designing polymeric materials and composite materials with improved radiation shielding properties as well as the possible improvement of mission-specific materials.

  1. OPTIMAL BETA-RAY SHIELDING THICKNESSES FOR DIFFERENT THERAPEUTIC RADIONUCLIDES AND SHIELDING MATERIALS.

    Science.gov (United States)

    Cho, Yong In; Kim, Ja Mee; Kim, Jung Hoon

    2016-04-06

    To better understand the distribution of deposited energy of beta and gamma rays according to changes in shielding materials and thicknesses when radionuclides are used for therapeutic nuclear medicine, a simulation was conducted. The results showed that due to the physical characteristics of each therapeutic radionuclide, the thicknesses of shielding materials at which beta-ray shielding takes place varied. Additional analysis of the shielding of gamma ray was conducted for radionuclides that emit both beta and gamma rays simultaneously with results showing shielding effects proportional to the atomic number and density of the shielding materials. Also, analysis of bremsstrahlung emission after beta-ray interactions in the simulation revealed that the occurrence of bremsstrahlung was relatively lower than theoretically calculated and varied depending on different radionuclides.

  2. Radiation fields from neutron generators shielded with different materials

    Science.gov (United States)

    Chichester, D. L.; Blackburn, B. W.

    2007-08-01

    As a general guide for assessing radiological conditions around a DT neutron generator numerical modeling has been performed to assess neutron and photon dose profiles for a variety of shield materials ranging from 1 to 100 cm thick. In agreement with accepted radiation safety practices high-Z materials such as bismuth and lead have been found to be ineffective biological shield materials, owing in part to the existence of (n,2n) reaction channels available with 14.1 MeV DT neutrons, while low-Z materials serve as effective shields for these sources. Composite materials such as a mixture of polyethylene and bismuth, or regular concrete, are ideal shield materials for neutron generator radiation because of their ability to attenuate internally generated photon radiation resulting from neutron scattering and capture within the shields themselves.

  3. Optimal Shielding for Minimum Materials Cost of Mass

    Energy Technology Data Exchange (ETDEWEB)

    Woolley, Robert D. [PPPL

    2014-08-01

    Material costs dominate some shielding design problems. This is certainly the case for manned nuclear power space applications for which shielding is essential and the cost of launching by rocket from earth is high. In such situations or in those where shielding volume or mass is constrained, it is important to optimize the design. Although trial and error synthesis methods may succeed a more systematic approach is warranted. Design automation may also potentially reduce engineering costs.

  4. Performance study of galactic cosmic ray shield materials

    Science.gov (United States)

    Kim, Myung-Hee Y.; Wilson, John W.; Thibeault, Sheila A.; Nealy, John E.; Badavi, Francis F.; Kiefer, Richard L.

    1994-01-01

    The space program is faced with two difficult radiation protection issues for future long-term operations. First, retrofit of shield material or conservatism in shield design is prohibitively expensive and often impossible. Second, shielding from the cosmic heavy ions is faced with limited knowledge on the physical properties and biological responses of these radiations. The current status of space shielding technology and its impact on radiation health is discussed herein in terms of conventional protection practice and a test biological response model. The impact of biological response on the selection of optimum materials for cosmic ray shielding is presented in terms of the transmission characteristics of the shield material. Although the systematics of nuclear cross sections are able to demonstrate the relation of exposure risk to shield-material composition, the current uncertainty in-nuclear cross sections will not allow an accurate evaluation of risk reduction. This paper presents a theoretical study of risk-related factors and a pilot experiment to study the effectiveness of choice of shield materials to reduce the risk in space operations.

  5. Low Cost, Lightweight, Multifunctional Structural Shielding Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR involves the development of a lightweight innovative material for use as structure and radiation shielding in one. APS has assembled a uniquely qualified...

  6. Application of Advanced Radiation Shielding Materials to Inflatable Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This innovation is a weight-optimized, inflatable structure that incorporates radiation shielding materials into its construction, for use as a habitation module or...

  7. Measurement Procedure for Surface Emissivity of Heat-Shielding Materials

    Directory of Open Access Journals (Sweden)

    Arkhipov Vladimir

    2017-01-01

    Full Text Available A procedure is suggested for the measurement of the integral emissivity coefficient of heat-shielding materials in the temperature range close to the thermal destruction temperature.

  8. Study of Shielding Properties of a Rectangular Enclosure with Apertures Having Different Shapes but Same Area Using Modal Method of Moments

    Directory of Open Access Journals (Sweden)

    Chao Zhou

    2013-01-01

    Full Text Available In this study, electric field Shielding Effectiveness (SE of rectangular enclosure with apertures illuminated by vertical polarization plane wave has been studied by using modal method of moment technique. Electric field SE of enclosure with different shape apertures but same area has been c alculated at three different points inside enclosure. To achieve this, assuming appropriate electric field distribution on the aperture, fields inside the cavity are determined using rectangular cavity Green’s function. Electromagnetic fields outside the cavity and scattered due to the aperture are obtained using the free space Green’s function. Matching the tangential magnetic field across the apertures, the integral equation with aperture fields as unknown variables is obtained. A very good agreement among the results of the proposed technique, results available in the literature and experimental results is observed. The simulation results show that the electric field SE is seriously affected by calculation points, aperture shape and the number of aperture. It has been shown that usual assumption made in EMC literature that lower electric field SE near the aperture than at location inside the enclosure farther away from the aperture is not always true to square aperture at some frequency and square aperture has higher electric field SE than rectangular aperture even though they have same area.

  9. Composite Materials for Radiation Shielding During Deep Space Missions

    Science.gov (United States)

    Grugel, R. N.; Watts, J.; Adams, J. H.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Minimizing radiation exposure from the galactic cosmic ray (GCR) environment during deep space missions is essential to human health and sensitive instrument survivability. Given the fabrication constraints of space transportation vehicles protective shielding is, consequently, a complicated materials issue. These concerns are presented and considered in view of some novel composite materials being developed/suggested for GCR shielding applications. Advantages and disadvantages of the composites will be discussed as well as the need for coordinated testing/evaluation and modeling efforts.

  10. Reciprocity principle-based model for shielding effectiveness prediction of a rectangular cavity with a covered aperture

    Institute of Scientific and Technical Information of China (English)

    焦重庆; 李月月

    2015-01-01

    According to the reciprocity principle, we propose an efficient model to compute the shielding effectiveness of a rectangular cavity with apertures covered by conductive sheet against an external incident electromagnetic wave. This problem is converted into another problem of solving the electromagnetic field leakage from the cavity when the cavity is excited by an electric dipole placed within it. By the combination of the unperturbed cavity field and the transfer impedance of the sheet, the tangential electric field distribution on the outer surface of the sheet is obtained. Then, the field distribution is regarded as an equivalent surface magnetic current source responsible for the leakage field. The validation of this model is verified by a comparison with the circuital model and the full-wave simulations. This time-saving model can deal with arbitrary aperture shape, various wave propagation and polarization directions, and the near-field effect.

  11. Verification of some building materials as gamma-ray shields.

    Science.gov (United States)

    Mann, Kulwinder Singh; Singla, Jyoti; Kumar, Vipan; Sidhu, G S

    2012-08-01

    The shielding properties for gamma rays of a few low Z materials were investigated. The values of the mass attenuation coefficient, equivalent atomic number, effective atomic number, exposure buildup factor and energy absorption buildup factor were calculated and used to estimate the shielding effectiveness of the samples under investigation. It has been observed that the shielding effectiveness of a sample is directly related to its effective atomic number. The shielding character of any sample is a function of the incident photon energy. Good shielding behaviour has been verified in soil samples in the photon energy region of 0.015-0.30 MeV and of dolomite in 3-15 MeV. The results have been shown graphically with more useful conclusions.

  12. Homogeneous Dielectric Equivalents of Composite Material Shields

    Directory of Open Access Journals (Sweden)

    P. Tobola

    2009-04-01

    Full Text Available The paper deals with the methodology of replacing complicated parts of an airplane skin by simple homogeneous equivalents, which can exhibit similar shielding efficiency. On one hand, the airplane built from the virtual homogeneous equivalents can be analyzed with significantly reduced CPU-time demands and memory requirements. On the other hand, the equivalent model can estimate the internal fields satisfactory enough to evaluate the electromagnetic immunity of the airplane.

  13. Shielding effectiveness of original and modified building materials

    Directory of Open Access Journals (Sweden)

    T. Frenzel

    2007-06-01

    Full Text Available This contribution deals with the determination of the shielding effectiveness of building materials used for office, factory and government buildings. Besides the examination of standard materials, measurements were also performed on modified materials, e.g. ferro concrete with enhanced shielding effectiveness due to a changed mixture or structure of the reinforcement. The measurements of original and modified materials were carried out in a fully anechoic room (FAR according to IEEE 299-1997 from 80 MHz up to 10 GHz.

  14. New gadolinium based glasses for gamma-rays shielding materials

    Energy Technology Data Exchange (ETDEWEB)

    Kaewjang, S.; Maghanemi, U.; Kothan, S. [Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chang Mai University, Chang Mai 50200 (Thailand); Kim, H.J. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Limkitjaroenporn, P. [Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom 73000 (Thailand); Kaewkhao, J., E-mail: mink110@hotmail.com [Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom 73000 (Thailand)

    2014-12-15

    Highlights: • Gd{sub 2}O{sub 3} based glasses have been fabricated and investigated radiation shielding properties between 223 and 662 keV. • Density of the glass increases with increasing of Gd{sub 2}O{sub 3.} • All the glasses of Gd{sub 2}O{sub 3} compositions studied had been shown lower HVL than X-rays shielding window. • Prepared glasses to be utilized as radiation shielding material with Pb-free advantage. • This work is the first to reports on radiation shielding properties of Gd{sub 2}O{sub 3} based glass matrices. - Abstract: In this work, Gd{sub 2}O{sub 3} based glasses in compositions (80−x)B{sub 2}O{sub 3}-10SiO{sub 2}-10CaO-xGd{sub 2}O{sub 3} (where x = 15, 20, 25, 30 and 35 mol%) have been fabricated and investigated for their radiation shielding, physical and optical properties. The density of the glass was found to increase with the increasing of Gd{sub 2}O{sub 3} concentration. The experimental values of mass attenuation coefficients (μ{sub m}), effective atomic number (Z{sub eff}) and effective electron densities (N{sub e}) of the glasses were found to increase with the increasing of Gd{sub 2}O{sub 3} concentration and also with the decreasing of photon energy from 223 to 662 keV. The glasses of all Gd{sub 2}O{sub 3} compositions studied have been shown with lower HVL values in comparison to an X-rays shielding window, ordinary concrete and commercial window; indicating their potential as radiation shielding materials with Pb-free advantage. Optical spectra of the glasses in the present study had been shown with light transparency; an advantage when used as radiation shielding materials.

  15. Reusable shielding material for neutron- and gamma-radiation

    Science.gov (United States)

    Calzada, Elbio; Grünauer, Florian; Schillinger, Burkhard; Türck, Harald

    2011-09-01

    At neutron research facilities all around the world radiation shieldings are applied to reduce the background of neutron and gamma radiation as far as possible in order to perform high quality measurements and to fulfill the radiation protection requirements. The current approach with cement-based compounds has a number of shortcomings: "Heavy concrete" contains a high amount of elements, which are not desired to obtain a high attenuation of neutron and/or gamma radiation (e.g. calcium, carbon, oxygen, silicon and aluminum). A shielding material with a high density of desired nuclei such as iron, hydrogen and boron was developed for the redesign of the neutron radiography facility ANTARES at beam tube 4 (located at a cold neutron source) of FRM-II. The composition of the material was optimized by help of the Monte Carlo code MCNP5. With this shielding material a considerable higher attenuation of background radiation can be obtained compared to usual heavy concretes.

  16. A new lead-free radiation shielding material for radiotherapy.

    Science.gov (United States)

    Yue, Kun; Luo, Wenyun; Dong, Xiaoqing; Wang, Chuanshan; Wu, Guohua; Jiang, Mawei; Zha, Yuanzi

    2009-02-01

    Lead has recently been recognised as a source of environmental pollution, including the lead used for radiation shielding in radiotherapy. The bremsstrahlung radiation caused by the interaction between the electron beam and lead may reduce the accuracy of radiotherapy. To avoid the use of lead, a new material composed of tungsten and hydrogenated styrene-butadiene-styrene copolymer is studied with the Monte Carlo (MC) method and experiment in this paper. The component of the material is chosen after simulation with the MC method and the practical measurement is taken to validate the shielding ability of the material. The result shows that the shielding ability of the new material is good enough to fulfill the requirement for application in radiotherapy. Compared with lead alloy, the present new material is so flexible that can be easily customized into arbitrary shapes. Moreover, the material is environmentally friendly and can be recycled conveniently. Therefore, the material can be used as an effective lead substitute for shielding against electron beams in radiotherapy.

  17. Evaluation Of Shielding Efficacy Of A Ferrite Containing Ceramic Material

    Energy Technology Data Exchange (ETDEWEB)

    Verst, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-12

    The shielding evaluation of the ferrite based Mitsuishi ceramic material has produced for several radiation sources and possible shielding sizes comparative dose attenuation measurements and simulated projections. High resolution gamma spectroscopy provided uncollided and scattered photon spectra at three energies, confirming theoretical estimates of the ceramic’s mass attenuation coefficient, μ/ρ. High level irradiation experiments were performed using Co-60, Cs-137, and Cf-252 sources to measure penetrating dose rates through steel, lead, concrete, and the provided ceramic slabs. The results were used to validate the radiation transport code MCNP6 which was then used to generate dose rate attenuation curves as a function of shielding material, thickness, and mass for photons and neutrons ranging in energy from 200 keV to 2 MeV.

  18. Polybenzoxazine Materials for Radiation Shielding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed work will develop lightweight multifunctional composite materials based on high hydrogen content polybenzoxazine (PBZ) composites that provide excellent...

  19. Novel shielding materials for space and air travel.

    Science.gov (United States)

    Vana, N; Hajek, M; Berger, T; Fugger, M; Hofmann, P

    2006-01-01

    The reduction of dose onboard spacecraft and aircraft by appropriate shielding measures plays an essential role in the future development of space exploration and air travel. The design of novel shielding strategies and materials may involve hydrogenous composites, as it is well known that liquid hydrogen is most effective in attenuating charged particle radiation. As precursor for a later flight experiment, the shielding properties of newly developed hydrogen-rich polymers and rare earth-doped high-density rubber were tested in various ground-based neutron and heavy ion fields and compared with aluminium and polyethylene as reference materials. Absorbed dose, average linear energy transfer and gamma-equivalent neutron absorbed dose were determined by means of LiF:Mg,Ti thermoluminescence dosemeters and CR-39 plastic nuclear track detectors. First results for samples of equal aerial density indicate that selected hydrogen-rich plastics and rare-earth-doped rubber may be more effective in attenuating cosmic rays by up to 10% compared with conventional aluminium shielding. The appropriate adaptation of shielding thicknesses may thus allow reducing the biologically relevant dose. Owing to the lower density of the plastic composites, mass savings shall result in a significant reduction of launch costs. The experiment was flown as part of the European Space Agency's Biopan-5 mission in May 2005.

  20. Radiation Exposure Effects and Shielding Analysis of Carbon Nanotube Materials

    Science.gov (United States)

    Wilkins, Richard; Armendariz, Lupita (Technical Monitor)

    2002-01-01

    Carbon nanotube materials promise to be the basis for a variety of emerging technologies with aerospace applications. Potential applications to human space flight include spacecraft shielding, hydrogen storage, structures and fixtures and nano-electronics. Appropriate risk analysis on the properties of nanotube materials is essential for future mission safety. Along with other environmental hazards, materials used in space flight encounter a hostile radiation environment for all mission profiles, from low earth orbit to interplanetary space.

  1. Flexible neutron shielding composite material of EPDM rubber with boron trioxide: Mechanical, thermal investigations and neutron shielding tests

    Science.gov (United States)

    Özdemir, T.; Güngör, A.; Reyhancan, İ. A.

    2017-02-01

    In this study, EPDM and boron trioxide composite was produced and mechanical, thermal and neutron shielding tests were performed. EPDM rubber (Ethylene Propylene Diene Monomer) having a considerably high hydrogen content is an effective neutron shielding material. On the other hand, the materials containing boron components have effective thermal neutron absorption crossection. The composite of EPDM and boron trioxide would be an effective solution for both respects of flexibility and effectiveness for developing a neutron shielding material. Flexible nature of EPDM would be a great asset for the shielding purpose in case of intervention action to a radiation accident. The theoretical calculations and experimental neutron absorption tests have shown that the results were in parallel and an effective neutron shielding has been achieved with the use of the developed composite material.

  2. CORROSION OF LEAD SHIELDING IN NUCLEAR MATERIALS PACKAGES

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, K; Kerry Dunn, K; Joseph Murphy, J

    2008-07-18

    Inspection of United States-Department of Energy (US-DOE) model 9975 nuclear materials shipping package revealed corrosion of the lead shielding that was induced by off-gas constituents from organic components in the package. Experiments were performed to determine the corrosion rate of lead when exposed to off-gas or degradation products of these organic materials. The results showed that the room temperature vulcanizing (RTV) sealant was the most corrosive organic species used in the construction of the packaging, followed by polyvinyl acetate (PVAc) glue. Fiberboard material, also used in the construction of the packaging induced corrosion to a much lesser extent than the PVAc glue and RTV sealant, and only in the presence of condensed water. The results indicated faster corrosion at temperatures higher than ambient and with condensed water. In light of these corrosion mechanisms, the lead shielding was sheathed in a stainless steel liner to mitigate against corrosion.

  3. Gamma ray absorption of cylindrical fissile material with dual shields

    Institute of Scientific and Technical Information of China (English)

    WU Chen-Yan; TIAN Dong-Feng; CHENG Yi-Ying; HUANG Yong-Yi; LU Fu-Quan; YANG Fu-Jia

    2005-01-01

    This work analyzed the gamma ray attenuation effect from the self-absorption and shield attenuation perspectively. An exact mathematical equation was given for the geometric factor of the cylindrical fissile material with dual shields. In addition, several approximation approaches suitable for real situation were discussed, especially in the radial and axial directions of the cylinders, since the G-factors have simple forms. Then the space distribution patterns of the G-factor were analyzed based on numerical result and effective ways to solve the geometric information of the cylindrical fissile material, the radii and the heights, were deduced. This method was checked and verified by numerical calculation. Because of the efficiency of the method, it is ideal for application in real situations, such as nuclear safeguards, which demands speed of detection and accuracy of geometric analysis.

  4. Novel light-weight materials for shielding gamma ray

    Science.gov (United States)

    Chen, Shuo; Bourham, Mohamed; Rabiei, Afsaneh

    2014-03-01

    A comparison of gamma ray attenuation effectiveness of bulk aluminum, close-cell composite metal foams and open-cell aluminum foam infiltrated with variety of second phase materials were investigated and reported in this study. Mass attenuation coefficients for six sets of samples with three different areal densities of 2, 5 and 10 g/cm2 were determined at photon energies of 0.060, 0.662, 1.173, and 1.332 MeV. Theoretical values were calculated using XCOM software package. A complete agreement was observed between experimental and theoretical results. It is observed that close-cell composite metal foams exhibit a better shielding capability compared to open-cell Al foam with fillers. It is also observed that close-cell composite metal foams offer superior shielding effectiveness compared to bulk aluminum for energies below 0.662 MeV, the mass attenuation coefficients of steel-steel composite metal foam and Al-steel composite metal foam were measured 400 and 300% higher than that of aluminum A356. This study indicates the potential of utilizing the light-weight composite metal foams as shielding material replacing current heavy materials used for attenuation of low energy gamma ray with additional advantages such as high energy absorption and excellent heat rejection capabilities.

  5. Application of nano material for shielding power-frequency electromagnetic field

    Science.gov (United States)

    Li, Hualiang; Li, Li; Liu, Jiawen

    2015-07-01

    Only limited data are available on shielding electromagnetic field exposure in professional work. In our paper, we studied the electromagnetic field intensity in 500 kV substations, and explored influence of nanomaterial in high voltage laboratory simulation. Moreover, the results of nano-fabrics material for shielding power frequency electromagnetic field indicated that, both shielding fabrics can almost completely shield the electric field, but have weak shielding effectiveness against magnetic field.

  6. Depleted uranium hexafluoride: The source material for advanced shielding systems

    Energy Technology Data Exchange (ETDEWEB)

    Quapp, W.J.; Lessing, P.A. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Cooley, C.R. [Department of Technology, Germantown, MD (United States)

    1997-02-01

    The U.S. Department of Energy (DOE) has a management challenge and financial liability problem in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. DOE is evaluating several options for the disposition of this UF{sub 6}, including continued storage, disposal, and recycle into a product. Based on studies conducted to date, the most feasible recycle option for the depleted uranium is shielding in low-level waste, spent nuclear fuel, or vitrified high-level waste containers. Estimates for the cost of disposal, using existing technologies, range between $3.8 and $11.3 billion depending on factors such as the disposal site and the applicability of the Resource Conservation and Recovery Act (RCRA). Advanced technologies can reduce these costs, but UF{sub 6} disposal still represents large future costs. This paper describes an application for depleted uranium in which depleted uranium hexafluoride is converted into an oxide and then into a heavy aggregate. The heavy uranium aggregate is combined with conventional concrete materials to form an ultra high density concrete, DUCRETE, weighing more than 400 lb/ft{sup 3}. DUCRETE can be used as shielding in spent nuclear fuel/high-level waste casks at a cost comparable to the lower of the disposal cost estimates. Consequently, the case can be made that DUCRETE shielded casks are an alternative to disposal. In this case, a beneficial long term solution is attained for much less than the combined cost of independently providing shielded casks and disposing of the depleted uranium. Furthermore, if disposal is avoided, the political problems associated with selection of a disposal location are also avoided. Other studies have also shown cost benefits for low level waste shielded disposal containers.

  7. Reflector and Shield Material Properties for Project Prometheus

    Energy Technology Data Exchange (ETDEWEB)

    J. Nash

    2005-11-02

    This letter provides updated reflector and shield preliminary material property information to support reactor design efforts. The information provided herein supersedes the applicable portions of Revision 1 to the Space Power Program Preliminary Reactor Design Basis (Reference (a)). This letter partially answers the request in Reference (b) to provide unirradiated and irradiated material properties for beryllium, beryllium oxide, isotopically enriched boron carbide ({sup 11}B{sub 4}C) and lithium hydride. With the exception of {sup 11}B{sub 4}C, the information is provided in Attachments 1 and 2. At the time of issuance of this document, {sup 11}B{sub 4}C had not been studied.

  8. Discussion on the Standardization of Shielding Materials — Sensitivity Analysis of Material Compositions

    Directory of Open Access Journals (Sweden)

    Ogata Tomohiro

    2017-01-01

    Full Text Available The overview of standardization activities for shielding materials is described. We propose a basic approach for standardizing material composition used in radiation shielding design for nuclear and accelerator facilities. We have collected concrete composition data from actual concrete samples to organize a representative composition and its variance data. Then the sensitivity analysis of the composition variance has been performed through a simple 1-D dose calculation. Recent findings from the analysis are summarized.

  9. A novel shielding material prepared from solid waste containing lead for gamma ray

    Science.gov (United States)

    Erdem, Mehmet; Baykara, Oktay; Doğru, Mahmut; Kuluöztürk, Fatih

    2010-09-01

    Human beings are continuously exposed to cosmogenic radiation and its products in the atmosphere from naturally occurring radioactive materials (NORM) within Earth, their bodies, houses and foods. Especially, for the radiation protection environments where high ionizing radiation levels appear should be shielded. Generally, different materials are used for the radiation shielding in different areas and for different situations. In this study, a novel shielding material produced by a metallurgical solid waste containing lead was analyzed as shielding material for gamma radiation. The photon total mass attenuation coefficients ( μ/ ρ) were measured and calculated using WinXCom computer code for the novel shielding material, concrete and lead. Theoretical and experimental values of total mass attenuation coefficient of the each studied sample were compared. Consequently, a new shielding material prepared from the solid waste containing lead could be preferred for buildings as shielding materials against gamma radiation.

  10. Elrotherm shielding systems. New pioneering material composites; Elrotherm-Abschirmsysteme. Neue Zukunftsweisende Materialkompositionen

    Energy Technology Data Exchange (ETDEWEB)

    Zika-Beyerlein, B. [ElringKlinger (Germany). Geschaeftsbereich Abschirmtechnik

    2004-09-01

    Tightly packed engine compartments put special demands on thermal and acoustic shielding systems. With new material composites allowing for particularly thin-walled and light shielding parts, ElringKlinger is well equipped for the future. (orig.)

  11. Radiation Shielding Materials Containing Hydrogen, Boron, and Nitrogen: Systematic Computational and Experimental Study Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objectives of the proposed research are to develop a space radiation shielding material system that has high efficacy for shielding radiation and also has high...

  12. Application of solid waste containing lead for gamma ray shielding material

    OpenAIRE

    SARAEE, Rezaee Ebrahim; POURAJAM BAFERANI, S.; TAHMASEBI, O.

    2015-01-01

    Abstract. The basic strategies to decrease solid waste disposal problems have focused on the reduction of waste production and recovery of usable materials using waste and making raw materials. Generally, various materials have been used for radiation shielding in different areas and situations. In this study, a novel shielding material produced by a metallurgical solid waste containing lead has been analyzed in order to make a shielding material against gamma radiation. The photon total mass...

  13. γ-ray shielding behaviors of some nuclear engineering materials

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Kulwinder Singh [Dept. of Physics, D.A.V. College, Punjab (India)

    2017-06-15

    The essential requirement of a material to be used for engineering purposes at nuclear establishments is its ability to attenuate the most penetrating ionizing radiations, gamma (γ)-rays. Mostly, high-Z materials such as heavy concrete, lead, mercury, and their mixtures or alloys have been used in the construction of nuclear establishments and thus termed as nuclear engineering materials (NEM). The NEM are classified into two categories, namely opaque and transparent, depending on their behavior towards the visible spectrum of EM waves. The majority of NEM are opaque. By contrast, various types of glass, which are transparent to visible light, are necessary at certain places in the nuclear establishments. In the present study, γ-ray shielding behaviors (GSB) of six glass samples (transparent NEM) were evaluated and compared with some opaque NEM in a wide range of energy (15 keV–15 MeV) and optical thickness (OT). The study was performed by computing various γ-ray shielding parameters (GSP) such as the mass attenuation coefficient, equivalent atomic number, and buildup factor. A self-designed and validated computer-program, the buildup factor-tool, was used for various computations. It has been established that some glass samples show good GSB, thus can safely be used in the construction of nuclear establishments in conjunction with the opaque NEM as well.

  14. γ-Ray Shielding Behaviors of Some Nuclear Engineering Materials

    Directory of Open Access Journals (Sweden)

    Kulwinder Singh Mann

    2017-06-01

    Full Text Available The essential requirement of a material to be used for engineering purposes at nuclear establishments is its ability to attenuate the most penetrating ionizing radiations, gamma (γ-rays. Mostly, high-Z materials such as heavy concrete, lead, mercury, and their mixtures or alloys have been used in the construction of nuclear establishments and thus termed as nuclear engineering materials (NEM. The NEM are classified into two categories, namely opaque and transparent, depending on their behavior towards the visible spectrum of EM waves. The majority of NEM are opaque. By contrast, various types of glass, which are transparent to visible light, are necessary at certain places in the nuclear establishments. In the present study, γ-ray shielding behaviors (GSB of six glass samples (transparent NEM were evaluated and compared with some opaque NEM in a wide range of energy (15 keV–15 MeV and optical thickness (OT. The study was performed by computing various γ-ray shielding parameters (GSP such as the mass attenuation coefficient, equivalent atomic number, and buildup factor. A self-designed and validated computer-program, the buildup factor-tool, was used for various computations. It has been established that some glass samples show good GSB, thus can safely be used in the construction of nuclear establishments in conjunction with the opaque NEM as well.

  15. CORROSION OF LEAD SHIELDING IN NUCLEAR MATERIALS PACKAGES

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, K; Kerry Dunn, K

    2007-11-16

    Inspection of United States-Department of Energy (US-DOE) model 9975 nuclear materials shipping package revealed corrosion of the lead shielding induced by off-gas constituents from organic components in the package. Experiments were performed to determine the corrosion rate of lead when exposed to off-gas or degradation products of these organic materials. The results showed that the room temperature vulcanizing (RTV) sealant was the most corrosive organic species followed by the polyvinyl acetate (PVAc) glue. The fiberboard material induced corrosion to a much lesser extent than the PVAc glue and RTV, and only in the presence of condensed water. The results indicated faster corrosion at temperatures higher than ambient and with condensed water as expected. A corrosion rate of 0.05 mm/year measured for coupons exposed to the most aggressive conditions was recommended as a conservative estimate for use in package performance calculations.

  16. Materials for Shielding Astronauts from the Hazards of Space Radiations

    Science.gov (United States)

    Wilson, J. W.; Cucinotta, F. A.; Miller, J.; Shinn, J. L.; Thibeault, S. A.; Singleterry, R. C.; Simonsen, L. C.; Kim, M. H.

    1997-01-01

    One major obstacle to human space exploration is the possible limitations imposed by the adverse effects of long-term exposure to the space environment. Even before human spaceflight began, the potentially brief exposure of astronauts to the very intense random solar energetic particle (SEP) events was of great concern. A new challenge appears in deep space exploration from exposure to the low-intensity heavy-ion flux of the galactic cosmic rays (GCR) since the missions are of long duration and the accumulated exposures can be high. Because cancer induction rates increase behind low to rather large thickness of aluminum shielding according to available biological data on mammalian exposures to GCR like ions, the shield requirements for a Mars mission are prohibitively expensive in terms of mission launch costs. Preliminary studies indicate that materials with high hydrogen content and low atomic number constituents are most efficient in protecting the astronauts. This occurs for two reasons: the hydrogen is efficient in breaking up the heavy GCR ions into smaller less damaging fragments and the light constituents produce few secondary radiations (especially few biologically damaging neutrons). An overview of the materials related issues and their impact on human space exploration will be given.

  17. Materials for Low-Energy Neutron Radiation Shielding

    Science.gov (United States)

    Singleterry, Robert C., Jr.; Thibeault, Sheila A.

    2000-01-01

    Various candidate aircraft and spacecraft materials were analyzed and compared in a low-energy neutron environment using the Monte Carlo N-Particle (MCNP) transport code with an energy range up to 20 MeV. Some candidate materials have been tested in particle beams, and others seemed reasonable to analyze in this manner before deciding to test them. The two metal alloys analyzed are actual materials being designed into or used in aircraft and spacecraft today. This analysis shows that hydrogen-bearing materials have the best shielding characteristics over the metal alloys. It also shows that neutrons above 1 MeV are reflected out of the face of the slab better by larger quantities of carbon in the material. If a low-energy absorber is added to the material, fewer neutrons are transmitted through the material. Future analyses should focus on combinations of scatterers and absorbers to optimize these reaction channels and on the higher energy neutron component (above 50 MeV).

  18. Optimizing non-Pb radiation shielding materials using bilayers

    Energy Technology Data Exchange (ETDEWEB)

    McCaffrey, J. P.; Mainegra-Hing, E.; Shen, H. [Institute for National Measurement Standards, National Research Council of Canada, Building M-35, 1200 Montreal Road, Ottawa K1A 0R6 (Canada)

    2009-12-15

    Purpose: The objective of this study was to demonstrate that the weight of non-Pb radiation shielding materials can be minimized by structuring the material as a bilayer composed of different metal-powder-embedded elastomer layers. Methods: Measurements and Monte Carlo (MC) calculations were performed to study the attenuation properties of several non-Pb metal bilayers over the x-ray energy range 30-150 keV. Metals for the layers were chosen on the basis of low cost, nontoxicity, and complementary photoelectric absorption characteristics. The EGSnrc user code cavity.cpp was used to calculate the resultant x-ray fluence spectra after attenuation by these metal layers. Air kerma attenuation was measured using commercially manufactured metal/elastomer test layers. These layers were irradiated using the primary standard calibration beams at the Institute for National Measurement Standards in Ottawa, Canada utilizing the six x-ray beam qualities recommended in the German Standard DIN 6857. Both the measurements and the calculations were designed to approximate surface irradiation as well as penetrating radiation at 10 mm depth in soft tissue. The MC modeling point and the position of the measurement detector for surface irradiation were both directly against the downstream face of the attenuating material, as recommended in DIN 6857. Results: The low-Z upstream/high-Z downstream ordering of the metal bilayers provided substantially more attenuation than the reverse order. Optimal percentages of each metal in each bilayer were determined for each x-ray radiation beam quality. Conclusions: Depending on the x-ray quality, appropriate choices of two complementary metal-embedded elastomer layers can decrease the weight of radiation shielding garments by up to 25% compared to Pb-based elastomer garments while providing equivalent attenuation.

  19. Materials development for ITER shielding and test blanket in China

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.M., E-mail: Chenjm@swip.ac.cn [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041 (China); Wu, J.H.; Liu, X.; Wang, P.H. [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041 (China); Wang, Z.H.; Li, Z.N. [Ningxia Orient Non-ferrous Metals Group Co. Ltd., P.O. Box 105, Shizuishan (China); Wang, X.S.; Zhang, P.C. [China Academy of Engineering Physics, P.O. Box 919-71, Mianyang 621900 (China); Zhang, N.M.; Fu, H.Y.; Liu, D.H. [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041 (China)

    2011-10-01

    China is a member of the ITER program and is developing her own materials for its shielding and test blanket modules. The materials include vacuum-hot-pressing (VHP) Be, CuCrZr alloy, 316L(N) and China low activation ferritic/martensitic (CLF-1) steels. Joining technologies including Be/Cu hot isostatic pressing (HIP) and electron beam (EB) weldability of 316L(N) were investigated. Chinese VHP-Be showed good properties, with BeO content and ductility that satisfy the ITER requirements. Be/Cu mock-ups were fabricated for Be qualification tests at simulated ITER vertical displacement event (VDE) and heat flux cycling conditions. Fine microstructure and good mechanical strength of the CuCrZr alloy were achieved by a pre-forging treatment, while the weldability of 316L(N) by EB was demonstrated for welding depths varying from 5 to 80 mm. Fine microstructure, high strength, and good ductility were achieved in CLF-1 steel by an optimized normalizing, tempering and aging procedure.

  20. Research of glass fibre used in the electromagnetic wave shielding and absorption composite material

    Science.gov (United States)

    Xu, M.; Jia, F.; Bao, H. Q.; Cui, K.; Zhang, F.

    2016-07-01

    Electromagnetic shielding and absorption composite material plays an important role in the defence and economic field. Comparing with other filler, Glass fibre and its processed product—metal-coated glass fibre can greatly reduce the material's weight and costs, while it still remains the high strength and the electromagnetic shielding effectiveness. In this paper, the electromagnetic absorption mechanism and the reflection mechanism have been investigated as a whole, and the shielding effectiveness of the double-layer glass fibre composite material is mainly focused. The relationship between the shielding effectiveness and the filled glass fibre as well as its metal-coated product's parameters has also been studied. From the subsequent coaxial flange and anechoic chamber analysis, it can be confirmed that the peak electromagnetic shielding effectiveness of this double-layer material can reach -78dB while the bandwidth is from 2GHz to 18GHz.

  1. Characterizing and Manufacturing Multifunctional Radiation Shielding Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project addresses two vital problems for long-term space travel activities: radiation shielding and hydrogen storage for power and propulsion. While both...

  2. Space Vehicle Heat Shield Having Edgewise Strips of Ablative Material

    Science.gov (United States)

    Blosser, Max L. (Inventor); Poteet, Carl C. (Inventor); Bouslog, Stan A. (Inventor)

    2015-01-01

    A heat shield for a space vehicle comprises a plurality of phenolic impregnated carbon ablator (PICA) blocks secured to a surface of the space vehicle and arranged in a pattern with gaps therebetween. The heat shield further comprises a plurality of PICA strips disposed in the gaps between the PICA blocks. The PICA strips are mounted edgewise, such that the structural orientation of the PICA strips is substantially perpendicular to the structural orientation of the PICA blocks.

  3. Neutron and gamma radiation shielding material, structure, and process of making structure

    Energy Technology Data Exchange (ETDEWEB)

    Hondorp, H.L.

    1981-07-06

    The present invention is directed to a novel neutron and gamma radiation shielding material consisting of 95 to 97% by weight SiO/sub 2/ and 5 to 3% by weight sodium silicate. In addition, the method of using this composition to provide a continuous neutron and gamma radiation shielding structure is disclosed.

  4. Boron cage compound materials and composites for shielding and absorbing neutrons

    Science.gov (United States)

    Bowen, III, Daniel E; Eastwood, Eric A

    2014-03-04

    Boron cage compound-containing materials for shielding and absorbing neutrons. The materials include BCC-containing composites and compounds. BCC-containing compounds comprise a host polymer and a BCC attached thereto. BCC-containing composites comprise a mixture of a polymer matrix and a BCC filler. The BCC-containing materials can be used to form numerous articles of manufacture for shielding and absorbing neutrons.

  5. Barium-borate-flyash glasses: As radiation shielding materials

    Science.gov (United States)

    Singh, Sukhpal; Kumar, Ashok; Singh, Devinder; Thind, Kulwant Singh; Mudahar, Gurmel S.

    2008-01-01

    The attenuation coefficients of barium-borate-flyash glasses have been measured for γ-ray photon energies of 356, 662, 1173 and 1332 keV using narrow beam transmission geometry. The photon beam was highly collimated and overall scatter acceptance angle was less than 3°. Our results have an uncertainty of less than 3%. These coefficients were then used to obtain the values of mean free path (mfp), effective atomic number and electron density. Good agreements have been observed between experimental and theoretical values of these parameters. From the studies of the obtained results it is reported here that from the shielding point of view the barium-borate-flyash glasses are better shields to γ-radiations in comparison to the standard radiation shielding concretes and also to the ordinary barium-borate glasses.

  6. Space Station Validation of Advanced Radiation-Shielding Polymeric Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Subtopic X11-01, NASA has identified the need to develop advanced radiation-shielding materials and systems to protect humans from the hazards of space radiation...

  7. Space Station Validation of Advanced Radiation-Shielding Polymeric Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Subtopic X11.01, NASA has identified the need to develop advanced radiation-shielding materials and systems to protect humans from the hazards of space radiation...

  8. Monte Carlo calculations of the energy deposited in biological samples and shielding materials

    Science.gov (United States)

    Akar Tarim, U.; Gurler, O.; Ozmutlu, E. N.; Yalcin, S.

    2014-03-01

    The energy deposited by gamma radiation from the Cs-137 isotope into body tissues (bone and muscle), tissue-like medium (water), and radiation shielding materials (concrete, lead, and water), which is of interest for radiation dosimetry, was obtained using a simple Monte Carlo algorithm. The algorithm also provides a realistic picture of the distribution of backscattered photons from the target and the distribution of photons scattered forward after several scatterings in the scatterer, which is useful in studying radiation shielding. The presented method in this work constitutes an attempt to evaluate the amount of energy absorbed by body tissues and shielding materials.

  9. Radiation Protection of New Lightweight Electromagnetic Interference Shielding Materials Determined

    Science.gov (United States)

    1996-01-01

    Weight savings as high as 80 percent could be achieved by simply switching from aluminum electromagnetic interference (EMI) shielding covers for spacecraft power systems to EMI covers made from intercalated graphite fiber composites. Because EMI covers typically make up about one-fifth of the power system mass, this change would decrease the mass of a spacecraft power system by more than 15 percent. Intercalated graphite fibers are made by diffusing guest atoms or molecules, such as bromine, between the carbon planes of the graphite fibers. The resulting bromine-intercalated fibers have mechanical and thermal properties nearly identical to pristine graphite fibers, but their resistivity is lower by a factor of 5, giving them better electrical conductivity than stainless steel and making these composites suitable for EMI shielding.

  10. SOC-DS computer code provides tool for design evaluation of homogeneous two-material nuclear shield

    Science.gov (United States)

    Disney, R. K.; Ricks, L. O.

    1967-01-01

    SOC-DS Code /Shield Optimization Code-Direc Search/, selects a nuclear shield material of optimum volume, weight, or cost to meet the requirments of a given radiation dose rate or energy transmission constraint. It is applicable to evaluating neutron and gamma ray shields for all nuclear reactors.

  11. Optimal per cent by weight of elements in diagnostic quality radiation shielding materials.

    Science.gov (United States)

    Ashayer, Sahar; Askari, Mansur; Afarideh, Hossein

    2012-04-01

    By increasing the usage of radiation in all aspects of lives, the human body is becoming more exposed to ionising radiation. The purpose of this study is to find the optimal radiation shielding materials to protect humans from the radiation hazards of radiation. Some elements and compounds such as Ag, Bi, Pb, W, BaSO(4) were chosen on the basis of their attenuation coefficients and other characteristics to produce optimised radiation shielding compounds. Multi-objective non-dominated sorting genetic algorithm-II was used to optimise the weight fraction of the elements in compounds based on the dose equivalent rate, shield weight and cost. Consequently, sets of suitable compounds were obtained depending on various applications for energy 0.06 and 0.15 MeV. In addition, optimised lead free compounds were obtained. The results presented in a series of graphs should enable radiation shield designers to choose an appropriate combination according to their requirements.

  12. Innovative neutron shielding materials composed of natural rubber-styrene butadiene rubber blends, boron oxide and iron(III) oxide

    Science.gov (United States)

    Jumpee, C.; Wongsawaeng, D.

    2015-05-01

    Optimized flexible and lightweight neutron shielding materials were designed using the Monte Carlo N-Particle (MCNP) code. Thicknesses of 10 mm and 100 mm were tested for neutron shielding performances. Simulation results indicated that the 10 mm shielding material of natural rubber (NR) and styrene butadiene rubber (SBR) blend (1:1) with 60 part per hundred rubber (phr) boron oxide (B2O3) and 100 mm shielding material with four alternating layers of NR with 100 phr iron (III) oxide (Fe2O3) and of NR and SBR blend (1:1) with 10 phr B2O3 were most suitable for thermal neutron shielding and all-energy neutron shielding, respectively. Experimental results verified the shielding efficiency of these optimal designs and ease of fabrication.

  13. Evaluation of Multi-Functional Materials for Deep Space Radiation Shielding

    Science.gov (United States)

    Rojdev, Kristina; Atwell, William; Wilkins, Richard; Gersey, Brad; Badavi, Francis F.

    2009-01-01

    Small scale trade study of materials for radiation shielding: a) High-hydrogen polymers; b) Z-graded materials; c) Fiber-reinforced polymer composites. Discussed multi-functionality of fiber-reinforced polymer composites. Preliminary results of ground testing data.

  14. Establishment of Testing Device for Shielding Performance of X and Gamma Ray Radiation Protection Materials

    Institute of Scientific and Technical Information of China (English)

    SONG; Ming-zhe; WEI; Ke-xin; HOU; Jin-bing; WANG; Hong-yu; GAO; Fei; NI; Ning

    2015-01-01

    X and gamma ray radiation protective material shielding performance testing device was built based on the international standard IEC61331.1-2014.The device can be used to test attenuation ratio,attenuation equivalent and lead equivalent of radiation protective material in"narrow beam condition","broad beam condition"and"inverse

  15. Aluminum-titanium hydride-boron carbide composite provides lightweight neutron shield material

    Science.gov (United States)

    Poindexter, A. M.

    1967-01-01

    Inexpensive lightweight neutron shield material has high strength and ductility and withstands high internal heat generation rates without excessive thermal stress. This composite material combines structural and thermal properties of aluminum, neutron moderating properties of titanium hydride, and neutron absorbing characteristics of boron carbide.

  16. Hydrogen Absorbing Materials for Use as Radiation Shielding During Extended Space Flight Missions

    Science.gov (United States)

    Grugel, Richard N.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Minimizing radiation exposure from the galactic cosmic ray (GCR) environment during extended space missions is particularly crucial to crew health and safety. Here, an ideal candidate for shielding would be pure solid or liquid hydrogen, a material that effectively fragments heavy ions into ones of lower mass and energy that are more easily attenuated. Unfortunately, utilizing pure hydrogen is not presently feasible. It is, however, known that the hydrogen content of other materials (for example, metal hydrides, palladium alloys, and organic compounds) can exceed that of pure solid hydrogen and thus merit consideration as shielding candidates. This presentation will discuss an ongoing effort to develop novel shielding from such materials in concert with a coordinated testing/evaluation and modeling effort.

  17. Lightweight ZERODUR®: A Candidate Material for Affordable Future UVOIR Space Telescopes of All Apertures

    Science.gov (United States)

    Hull, Anthony B.; Westerhoff, T.; Leys, A.

    2014-01-01

    Recent Developments now make available for spaceborne applications highly lightweighted mirrors in ZERODUR®, regarded to be the “gold standard” material for thermal stability. ZERODUR® has flown on over 30 missions, including two great observatories, but not previously to this high degree of lightweighting. Now highly lightweighted mirror substrates can be made from a single billet of low expansion glass which exhibits remarkably low thermal expansion, anisotropy and inhomogeneity. This staility has the potential to simplify every aspect of a mission payload cost. A 1.2m open-back isogrid lightweighted mirror substrate has been made by SCHOTT exhibiting 88% lightweighting and a first Eigenfrequency over 200Hz. Also a recently made 0.3m isogrid lightweighted mirror exhibits ribs thinner than 0.9mm. Mirror or mirror segment substrates can be cost-effectively manufactured from monolithic blanks in apertures as small as 0.3m aperture to over 4m aperture (until recently SCHOTT maintained a line to make 8m ZERODUR® billets). We will describe this technology, the attributes of isogrid lightweighted mirror blanks, and the relevance of this material and manufacturing approach to upcoming UVOIR missions from suborbital to Explorer class to next generation Great Observatory. Lightweight ZERODUR® supports optical telescope systems requiring great stability, even in the presence of payload and scene thermal perturbations. Furthermore, mirrors or mirror segments made with the approach described can be made to remarkably short schedule, cost effectively and with little risk.

  18. Radiation attenuation by lead and nonlead materials used in radiation shielding garments.

    Science.gov (United States)

    McCaffrey, J P; Shen, H; Downton, B; Mainegra-Hing, E

    2007-02-01

    The attenuating properties of several types of lead (Pb)-based and non-Pb radiation shielding materials were studied and a correlation was made of radiation attenuation, materials properties, calculated spectra and ambient dose equivalent. Utilizing the well-characterized x-ray and gamma ray beams at the National Research Council of Canada, air kerma measurements were used to compare a variety of commercial and pre-commercial radiation shielding materials over mean energy ranges from 39 to 205 keV. The EGSnrc Monte Carlo user code cavity. cpp was extended to provide computed spectra for a variety of elements that have been used as a replacement for Pb in radiation shielding garments. Computed air kerma values were compared with experimental values and with the SRS-30 catalogue of diagnostic spectra available through the Institute of Physics and Engineering in Medicine Report 78. In addition to garment materials, measurements also included pure Pb sheets, allowing direct comparisons to the common industry standards of 0.25 and 0.5 mm "lead equivalent." The parameter "lead equivalent" is misleading, since photon attenuation properties for all materials (including Pb) vary significantly over the energy spectrum, with the largest variations occurring in the diagnostic imaging range. Furthermore, air kerma measurements are typically made to determine attenuation properties without reference to the measures of biological damage such as ambient dose equivalent, which also vary significantly with air kerma over the diagnostic imaging energy range. A single material or combination cannot provide optimum shielding for all energy ranges. However, appropriate choice of materials for a particular energy range can offer significantly improved shielding per unit mass over traditional Pb-based materials.

  19. Potential Use of In Situ Material Composites such as Regolith/Polyethylene for Shielding Space Radiation

    Science.gov (United States)

    Theriot, Corey A.; Gersey, Buddy; Bacon, Eugene; Johnson, Quincy; Zhang, Ye; Norman, Jullian; Foley, Ijette; Wilkins, Rick; Zhou, Jianren; Wu, Honglu

    2010-01-01

    NASA has an extensive program for studying materials and methods for the shielding of astronauts to reduce the effects of space radiation when on the surfaces of the Moon and Mars, especially in the use of in situ materials native to the destination reducing the expense of materials transport. The most studied material from the Moon is Lunar regolith and has been shown to be as efficient as aluminum for shielding purposes (1). The addition of hydrogenous materials such as polyethylene should increase shielding effectiveness and provide mechanical properties necessary of structural materials (2). The neutron radiation shielding effectiveness of polyethylene/regolith stimulant (JSC-1A) composites were studied using confluent human fibroblast cell cultures exposed to a beam of high-energy spallation neutrons at the 30deg-left beam line (ICE house) at the Los Alamos Neutron Science Center. At this angle, the radiation spectrum mimics the energy spectrum of secondary neutrons generated in the upper atmosphere and encountered when aboard spacecraft and high-altitude aircraft. Cell samples were exposed in series either directly to the neutron beam, within a habitat created using regolith composite blocks, or behind 25 g/sq cm of loose regolith bulk material. In another experiment, cells were also exposed in series directly to the neutron beam in T-25 flasks completely filled with either media or water up to a depth of 20 cm to test shielding effectiveness versus depth and investigate the possible influence of secondary particle generation. All samples were sent directly back to JSC for sub-culturing and micronucleus analysis. This presentation is of work performed in collaboration with the NASA sponsored Center for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie View A&M.

  20. Calculation of gamma-ray attenuation parameters for locally developed shielding material: Polyboron

    Directory of Open Access Journals (Sweden)

    Ripan Biswas

    2016-01-01

    Full Text Available In the present study, the mass attenuation coefficient (μm has been calculated analytically for a locally developed shielding material, polyboron, and compared with the values obtained from the WinXCom code, a Windows version of the XCOM database at the photon energy range 0.001 MeV–20 MeV. A good agreement has been observed between these two values. The linear attenuation coefficients (μ and relaxation lengths (λ have also been calculated from the obtained μm values and their variations with photon energy have been plotted. For comparison, other four shielding materials- ordinary concrete, pure polyethylene, borated polyethylene and water have also been studied. The obtained result shows that μm, μ and λ strongly depends on the photon energy, chemical composition and density of the shielding materials. The values of μm and μ of polyboron have been found greater than those of pure polyethylene and borated polyethylene but less than those of ordinary concrete and water at low photon energy range; and at the intermediate photon energy range (0.125 MeV–6 MeV, all the sample materials have approximately the same μm values. It has also been noticed that polyboron has the medial relaxation length (λ over the entire photon energy range. The total mass attenuation coefficient (μm and linear attenuation coefficient (μ, Half Value Layer (HVL and Tenth Value Layer (TVL of the five sample materials for some common gamma sources have been worked out and the transmission curves have been plotted. The curves exhibit that the transmission factor of the sample materials decreases with the increase in shielding thickness. The results of this study can be utilized to comprehend the shielding effectiveness of this locally developed material.

  1. Nanotube Reinforced Multifunctional Materials for Radiation Shielding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's programs to send manned and unmanned missions to Moon, Mars and the planets beyond will require structural materials that can protect the crew and the...

  2. 电磁辐射防护材料人体防护性能评价研究%SHIELDING EFFECTIVENESS EVALUATION OF EM SHIELDING MATERIAL

    Institute of Scientific and Technical Information of China (English)

    苏镇涛; 周红梅; 胡向军; 杨国山

    2009-01-01

    To study the relation between the EM property and shielding efficiency of shielding material, the whole body averaged SAR and organ SARs of the shielding human model have been calculated using FDTD, the effects of different frequencies and different incidence angles have been studied too. The results show the whole body averaged SAR decreases with the improvement of shielding efficiency of shielding material. Because of the EM leakage of neckline, cuff and other openings, the whole body averaged SAR doesn't change obviously after it declines to a certain extent. Partial shielding method has the good shielding effect on the shielded organs. Compared with horizontal irradiation, the whole body averaged SAR increases substantially when being irradiated upward, and decreases when being irradiated downward.%本文采用高分辨率人体电磁辐射模型和非均匀网络时域有限差分法(FDTD),通过比较人体模型在防护前后全身平均比吸收率SAR的变化,建立了防护材料对人体防护性能的评价方法.利用此方法,针对不同频率、不同人射角度的电磁辐射,对不同防护材料的防护性能进行了评价.结果表明,防护材料的防护性能并不仅仅取决于其屏蔽性能,还与防护方式、照射方式等密切相关.局部防护方式对被防护的器官有良好的防护效果.相对于水平照射,斜向上照射时,防护效果较差;斜向下照射时,防护效果较好.

  3. Detection of explosives, shielded nuclear materials and other hazardous substances in cargo containers

    Science.gov (United States)

    Kuznetsov, Andrey; Evsenin, Alexey; Vakhtin, Dmitry; Gorshkov, Igor; Osetrov, Oleg; Kalinin, Valery

    2006-05-01

    Nanosecond Neutron Analysis / Associated Particles Technique (NNA/APT) has been used to create devices for detection of explosives, radioactive and heavily shielded nuclear materials in cargo containers. Explosives and other hazardous materials are detected by analyzing secondary high-energy gamma-rays form reactions of fast neutrons with the materials inside the container. Depending on the dimensions of the inspected containers, the detecting system consists of one or several detection modules, each of which contains a small neutron generator with built-in position sensitive detector of associated alpha-particles and several scintillator-based gamma-ray detectors. The same gamma-ray detectors are used to detect unshielded radioactive and nuclear materials. Array of several detectors of fast neutrons is used to detect neutrons from spontaneous and induced fission of nuclear materials. These neutrons can penetrate thick layers of lead shielding, which can be used to conceal gamma-radioactivity from nuclear materials. Coincidence and timing analysis allows one to discriminate between fission neutrons and scattered probing neutrons. Mathematical modeling by MCNP5 code was used to estimate the sensitivity of the device and its optimal configuration. Capability of the device to detect 1 kg of explosive imitator inside container filled with suitcases and other baggage items has been confirmed experimentally. First experiments with heavily shielded nuclear materials have been carried out.

  4. Radiation shielding materials characterization in the MoMa-Count program and further evolutions

    Science.gov (United States)

    Lobascio, Cesare

    In the frame of the space research programme MoMa (From Molecules to Man) -Count (Coun-termeasures), funded by the Italian Space Agency, multi-functional protections for human space exploration have been investigated, paying particular attention to flexible materials, selected also for their excellent structural, thermal and ballistic performances. Flexible materials such as Kevlar R are qualified for space application, but have poorly known space radiation prop-erties, with consequent uncertainties about their shielding efficiency against the radiation en-vironment. The necessary evaluation of their shielding efficiency has been chiefly based on dedicated ground experiments in accelerators, supplemented by Monte Carlo simulations of the particle transport in the materials or multi-layers. In addition, flight experiments have been performed in Low Earth Orbit (LEO), onboard the International Space Station (ISS) and the re-entry capsule Foton, to measure the shielding behaviour in the actual operating environment of space, via dedicated detectors and dosimeters. This paper aims at presenting the results and lessons learned accrued within the MoMa-Count program, as well as the future actions planned for improving radiation shielding in long duration human exploration missions.

  5. Hypervelocity impact testing of advanced materials and structures for micrometeoroid and orbital debris shielding

    Science.gov (United States)

    Ryan, Shannon; Christiansen, Eric L.

    2013-02-01

    A series of 66 hypervelocity impact experiments have been performed to assess the potential of various materials (aluminium, titanium, copper, stainless steel, nickel, nickel/chromium, reticulated vitreous carbon, silver, ceramic, aramid, ceramic glass, and carbon fibre) and structures (monolithic plates, open-cell foam, flexible fabrics, rigid meshes) for micrometeoroid and orbital debris (MMOD) shielding. Arranged in various single-, double-, and triple-bumper configurations, screening tests were performed with 0.3175 cm diameter Al2017-T4 spherical projectiles at nominally 6.8 km/s and normal incidence. The top performing shields were identified through target damage assessments and their respective weight. The top performing candidate shield at the screening test condition was found to be a double-bumper configuration with a 0.25 mm thick Al3003 outer bumper, 6.35 mm thick 40 PPI aluminium foam inner bumper, and 1.016 mm thick Al2024-T3 rear wall (equal spacing between bumpers and rear wall). In general, double-bumper candidates with aluminium plate outer bumpers and foam inner bumpers were consistently found to be amongst the top performers. For this impact condition, potential weight savings of at least 47% over conventional all-aluminium Whipple shields are possible by utilizing the investigated materials and structures. The results of this study identify materials and structures of interest for further, more in-depth, impact investigations.

  6. Self-closing shielded container for use with radioactive materials

    Science.gov (United States)

    Smith, J.E.

    A container for storage of radioactive material comprises a container body and a closure member. The closure member is coupled to the container body to enable the closure body to move automatically from a first position (e.g., closed) to a second position (open).

  7. Structural and Radiation Shielding Properties of a Martian Habitat Material Synthesized From In-Situ Resources

    Science.gov (United States)

    Sen, S.; Caranza, S.; Bhattacharya, M.; Makel, D. B.

    2006-01-01

    The 2 primary requirements of a Martian habitat structure include sufficient structural integrity and effective radiation shielding. In addition, the capability to synthesize such building materials primarily from in-situ resources would significantly reduce the cost associated with transportation of such materials and structures from earth. To demonstrate the feasibility of such an approach we have fabricated samples in the laboratory using simulated in-situ resources, evaluated radiation shielding effectiveness using radiation transport codes and radiation test data, and conducted mechanical properties testing. In this paper we will present experimental results that demonstrate the synthesis of polyethylene from a simulated Martian atmosphere and the fabrication of a composite material using simulated Martian regolith with polyethylene as the binding material. Results from radiation transport calculations and data from laboratory radiation testing using a 500 MeV/nucleon Fe beam will be discussed. Mechanical properties of the proposed composite as a function of composition and processing parameters will also be presented.

  8. X-Ray Micro-Tomography Applied to Nasa's Materials Research: Heat Shields, Parachutes and Asteroids

    Science.gov (United States)

    Panerai, Francesco; Borner, Arnaud; Ferguson, Joseph C.; Mansour, Nagi N.; Stern, Eric C.; Barnard, Harold S.; Macdowell, Alastair A.; Parkinson, Dilworth Y.

    2017-01-01

    X-ray micro-tomography is used to support the research on materials carried out at NASA Ames Research Center. The technique is applied to a variety of applications, including the ability to characterize heat shield materials for planetary entry, to study the Earth- impacting asteroids, and to improve broadcloths of spacecraft parachutes. From micro-tomography images, relevant morphological and transport properties are determined and validated against experimental data.

  9. Ultra high molecular weight polyethylene as a base material for shielding cosmic radiation in aerospace applications

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Marlon A., E-mail: marlon@ieav.cta.br [Instituto de Estudos Avancados (IEAv), Sao Jose dos Campos, SP (Brazil). Divisao de Fisica Aplicada; Goncalez, Odair L. [Instituto Tecnologico de Aeronautica (PG/CTE/ITA), Sao Jose dos Campos, SP (Brazil). Programa de Pos-Graduacao em Ciencias e Tecnologias Espaciais

    2013-07-01

    Materials with high content of hydrogen have good properties of shielding against the effects of cosmic rays (CR) because are less effective than materials with high nuclear masses in the generation of secondary radiation. Beside the Aluminum, Polyethylene has been used as a reference and as a base material for composites applied in structures and in shielding of ionizing radiation for aerospace applications. Ultra high molecular weight polyethylene (UHMWPE), pure and doped 10% by mass with cadmium chloride, had its shielding properties for CR evaluated in this paper. Methodology used was based in conventional radioactive sources employed on simple geometries experiments and then computational simulation for isotropic fluxes of cosmic-ray high energy particles. Transmission experiments were performed with a3.7GBq (100 mCi){sup 241}Am-Be neutron source and a set of conventional calibration gamma radiation sources. Samples were characterized according to their gamma total attenuation coefficients from 59 to 1,408 keV, dose deposition curve for {sup 60}Co gamma-rays, fast neutron transmission coefficient, generation and self-absorption of thermal neutrons as well as their generation of internal cascades of secondary electrons and gamma-rays by nuclear interactions of fast neutrons with shielding material. Main effects of the additive in the polyethylene base were the most effective removal of gamma radiation and of secondary electrons with energies below 200 keV, the reduction of the albedo as well as the thermal neutrons transmission. Dose reduction due to primary CR were not significant, since the largest contribution to the doses due to high energy ionizing particles transmitted and, also, due to secondary radiation with energy above 1 MeV produced in shielding. (author)

  10. Radiation Shielding Materials Containing Hydrogen, Boron, and Nitrogen: Systematic Computational and Experimental Study. Phase I

    Science.gov (United States)

    Thibeault, Sheila A.; Fay, Catharine C.; Lowther, Sharon E.; Earle, Kevin D.; Sauti, Godfrey; Kang, Jin Ho; Park, Cheol; McMullen, Amelia M.

    2012-01-01

    The key objectives of this study are to investigate, both computationally and experimentally, which forms, compositions, and layerings of hydrogen, boron, and nitrogen containing materials will offer the greatest shielding in the most structurally robust combination against galactic cosmic radiation (GCR), secondary neutrons, and solar energetic particles (SEP). The objectives and expected significance of this research are to develop a space radiation shielding materials system that has high efficacy for shielding radiation and that also has high strength for load bearing primary structures. Such a materials system does not yet exist. The boron nitride nanotube (BNNT) can theoretically be processed into structural BNNT and used for load bearing structures. Furthermore, the BNNT can be incorporated into high hydrogen polymers and the combination used as matrix reinforcement for structural composites. BNNT's molecular structure is attractive for hydrogen storage and hydrogenation. There are two methods or techniques for introducing hydrogen into BNNT: (1) hydrogen storage in BNNT, and (2) hydrogenation of BNNT (hydrogenated BNNT). In the hydrogen storage method, nanotubes are favored to store hydrogen over particles and sheets because they have much larger surface areas and higher hydrogen binding energy. The carbon nanotube (CNT) and BNNT have been studied as potentially outstanding hydrogen storage materials since 1997. Our study of hydrogen storage in BNNT - as a function of temperature, pressure, and hydrogen gas concentration - will be performed with a hydrogen storage chamber equipped with a hydrogen generator. The second method of introducing hydrogen into BNNT is hydrogenation of BNNT, where hydrogen is covalently bonded onto boron, nitrogen, or both. Hydrogenation of BN and BNNT has been studied theoretically. Hyper-hydrogenated BNNT has been theoretically predicted with hydrogen coverage up to 100% of the individual atoms. This is a higher hydrogen content

  11. Textile materials for electromagnetic field shielding made with the use of nano- and micro-technology

    Science.gov (United States)

    Brzeziński, Stefan; Rybicki, Tomasz; Karbownik, Iwona; Malinowska, Grażyna; Śledzińska, Katarzyna

    2012-10-01

    Studies have been carried out aimed at the development of structures and technology for making special multi-layer textile-polymeric systems of shielding electromagnetic field (EMF). The use of textiles as EMF shielding materials is commonly known, however the EMF attenuation obtained practically exclusively results from the reflection of EMF, while the materials used for this purpose as a rule, show poor EMF absorption abilities. The basic assumption for a new solution is the exploitation of the multiple internal reflection of incident EMF either in textile-polymeric coating materials containing fine-particle electromagnetic materials or in special textile structures. This paper presents the results of investigating the EMF shielding effectiveness of several selected and developed textile-polymeric materials in respect of both their practical applications (protective clothing elements, technical materials, masking elements, etc.) and the structure and content of components with various EMF reflection and absorption properties. The measurement method for independent determination of reflection and transmission coefficients with a wavequide applicator was used. The results obtained with the 2.5 GHz to 18 GHz frequency range show a low value of transmission coefficient (min. -35 dB) and accepted reflection attenuation from about -4 dB to -15 dB for higher frequencies.

  12. Vacuum Ultraviolet Radiation and Atomic Oxygen Durability Evaluation of HST Bi-Stem Thermal Shield Materials

    Science.gov (United States)

    Dever, Joyce; deGroh, Kim K.

    2002-01-01

    Bellows-type thermal shields were used on the bi-stems of replacement solar arrays installed on the Hubble Space Telescope (HST) during the first HST servicing mission (SMI) in December 1993. These thermal shields helped reduce the problem of thermal gradient- induced jitter observed with the original HST solar arrays during orbital thermal cycling and have been in use on HST for eight years. This paper describes ground testing of the candidate solar array bi-stem thermal shield materials including backside aluminized Teflon(R)FEP (fluorinated ethylene propylene) with and without atomic oxygen (AO) and ultraviolet radiation protective surface coatings for durability to AO and combined AO and vacuum ultraviolet (VOV) radiation. NASA Glenn Research Center (GRC) conducted VUV and AO exposures of samples of candidate thermal shield materials at HST operational temperatures and pre- and post-exposure analyses as part of an overall program coordinated by NASA Goddard Space Flight Center (GSFC) to determine the on-orbit durability of these materials. Coating adhesion problems were observed for samples having the AO- and combined AO/UV-protective coatings. Coating lamination occurred with rapid thermal cycling testing which simulated orbital thermal cycling. This lack of adhesion caused production of coating flakes from the material that would have posed a serious risk to HST optics if the coated materials were used for the bi-stem thermal shields. No serious degradation was observed for the uncoated aluminized Teflon(R) as evaluated by optical microscopy, although atomic force microscopy (AFM) microhardness testing revealed that an embrittled surface layer formed on the uncoated Teflon(R) surface due to vacuum ultraviolet radiation exposure. This embrittled layer was not completely removed by AO erosion, No cracks or particle flakes were produced for the embrittled uncoated material upon exposure to VUV and AO at operational temperatures to an equivalent exposure of

  13. Hospital construction materials: poor shielding capacity with respect to signals transmitted by mobile telephones.

    Science.gov (United States)

    Hanada, E; Watanabe, Y; Antoku, Y; Kenjo, Y; Nutahara, H; Nose, Y

    1998-01-01

    Electromagnetic interference (EMI) with electronic medical equipment by the handsets of mobile telephones is a well documented problem in hospitals. To gain information about how to build an EMI-free hospital and how to make rooms safe for mobile telephone handset use in the hospital building the authors measured the shielding capacities of a concrete wall, concrete blocks, a steel door, and steel-surfaced partition panels. The shielding capacities of these materials were 2-7 dB for the concrete wall, 6-8 dB for the concrete blocks, 19-27 dB for the steel door, and 20-37 dB for the steel-surfaced partition panels. These results indicate that care should be taken to shield electronic equipment from signals coming from neighboring rooms and from those under and above any patient room in which such equipment is in use. Electricity-conductive paint, electricity-conductive wallpaper, and electricity-conductive cloth are examples of inexpensive materials that can increase shielding capacity.

  14. Development of Multifunctional Radiation Shielding Materials for Long Duration Human Exploration Beyond the Low Earth Orbit

    Science.gov (United States)

    Sen, S.; Bhattacharya, M.; Schofield, E.; Carranza, S.; O'Dell, S.

    2007-01-01

    One of the major challenges for long duration human exploration beyond the low Earth orbit and sustained human presence on planetary surfaces would be development of materials that would help minimize the radiation exposure to crew and equipment from the interplanetary radiation environment, This radiation environment consists primarily of a continuous flux of galactic cosmic rays (GCR) and transient but intense fluxes of solar energetic particles (SEP). The potential for biological damage by the relatively low percentage of high-energy heavy-ions in the GCR spectrum far outweigh that due to lighter particles because of their ionizing-power and the quality of the resulting biological damage. Although the SEP spectrum does not contain heavy ions and their energy range is much lower than that for GCRs, they however pose serious risks to astronaut health particularly in the event of a bad solar storm The primary purpose of this paper is to discuss our recent efforts in development and evaluation of materials for minimizing the hazards from the interplanetary radiation environment. Traditionally, addition of shielding materials to spacecrafts has invariably resulted in paying a penalty in terms of additional weight. It would therefore be of great benefit if materials could be developed not only with superior shielding effectiveness but also sufficient structural integrity. Such a multifunctional material could then be considered as an integral part of spacecraft structures. Any proposed radiation shielding material for use in outer space should be composed of nuclei that maximize the likelihood of projectile fragmentation while producing the minimum number of target fragments. A modeling based approach will be presented to show that composite materials using hydrogen-rich epoxy matrices reinforced with polyethylene fibers and/or fabrics could effectively meet this requirement. This paper will discuss the fabrication of such a material for a crewed vehicle. Ln addition

  15. Using Electronic Neutron Generators in Active Interrogation to Detect Shielded Fissionable Material

    Energy Technology Data Exchange (ETDEWEB)

    D. L. Chichester; E. H. Seabury

    2008-10-01

    Experiments have been performed at Idaho National Laboratory to study methodology and instrumentation for performing neutron active interrogation die-away analyses for the purpose of detecting shielded fissionable material. Here we report initial work using a portable DT electronic neutron generator with a He-3 fast neutron detector to detect shielded fissionable material including >2 kg quantities of enriched uranium and plutonium. Measurements have been taken of bare material as well as of material hidden within a large plywood cube. Results from this work have demonstrated the efficacy of the die-away neutron measurement technique for quickly detecting the presence of special nuclear material hidden within plywood shields by analyzing the time dependent neutron signals in-between neutron generator pulses. Using a DT electronic neutron generator operating at 300 Hz with a yield of approximately 0.36 x 10**8 neutrons per second, 2.2 kg of enriched uranium hidden within a 0.60 m x 0.60 m x 0.70 m volume of plywood was positively detected with a measurement signal 2-sigma above the passive background within 1 second. Similarly, for a 500 second measurement period a lower detection limit of approaching the gram level could be expected with the same simple set-up.

  16. Finishing panels for electromagnetic shielded premises on the basis of nanostructured composite material

    Directory of Open Access Journals (Sweden)

    AHMED Abdulbaset Arabi A

    2015-11-01

    Full Text Available A wide utilization of electronic equipment produces the need in integration of building and shielding technologies. This would allow to construct premises and buildings, capable of attenuation of the electromagnetic fields, generated by industrious and household sources. Such kinds of premises would solve the problems of electromagnetic compatibility, uncontrolled effect of electromagnetic radiation (EMR on humans’ organisms, protection of critical types of information assets, processed by automatic facilities. In addition to the high shielding effectiveness the materials should ensure the fire safety in the premises. The developed multilayered shielding materials based on composites, which are characterized by high dielectric and magnetic losses, ensure the EMR attenuation 20…35 dB in the frequency range of 0,7…17 GHz. The EMR reflection factor, ensured by the suggested materials, is -5…-1 dB. Open fire (+1700ºС impact on the developed materials was studied and the burning-through time for different samples was determined. The burning-through time is sufficiently increased upto 140 s due to hygroscopic aqueous solutions application in the composite materials content.

  17. Newton's metal as a new home-made shielding material

    Science.gov (United States)

    Kamal, M.; Moharam, B. M.; Farag, H. I.; El-Bediwi, A.; Shosha, Hany A.; Aboshieasha, H. F.

    The protection of critical organs inside the radiated area during radiotherapy applications is very important. Lipowitz's metal (also called cerrobend) is widely used. It consists of 50% bismuth, 26.7% lead, 13.3% tin and 10% cadmium. The physical density at 20 °C is 9.4 g/cm3 (70 °C melting point). Cadmium has been recognized as a source of environmental pollution and poisonous cadmium gas is emitted during fabrication of the material into custom blocks. The determining factor in the release of metallic oxide fumes is temperature. The higher the temperature, the greater the potential for release of metallic oxide fumes. To overcome the toxic effect of cadmium in Lipowitz's alloy during casting, low melting point Newton's metal (cadmium-free) is used. This study is carried out to compare the two alloys. The first alloy is the cerrobend alloy used in the National Cancer Institute of Cairo University, imported from Medical Technology Company, USA. Secondly, we deal with Newton's metal which has a composition of 50% Bi, 31.2% Pb and 18.8% Sn known in industry as a low melting point solder. The measurements taken using 60Co and 6 MV X-ray show that Bi50Pb31.2Sn18.8 alloys have good physical properties (low melting point, high attenuation coefficient, adequate values of hardness). They are easy to fabricate into shapes, and friendly to the environment, so that they may be used as a substitute for Lipowitz's metal in radiotherapy.

  18. Investigation of gold as a material for thermal radiation shielding

    Science.gov (United States)

    Munshi, Amit Harenkumar

    CdS/CdTe thin film solar cells technology is one of the fastest growing carbon neutral energy sources in the world today. Manufacturing of CdS/CdTe solar modules is carried out at temperature in the range of 620350°C under a vacuum of 40 millitorr using a Heated Pocket Deposition (HPD) system in the materials engineering laboratory. Since this system operates in vacuum, majority of the heat loss is due to thermal radiation. The concept here is to conserve the heat by reflecting the infrared radiation back into the deposition system thus increasing the thermal efficiency. Various metals may be used but calculations show that using a Gold thin film mirror can effectively reflect almost 97% of the incident radiation, thus conserving energy required for the manufacturing process. However, a phenomenon called thermal grooving or island formation inhibits its use. Thermal grooving occurs when the stress concentration at the grain boundaries causes grain separation. This phenomenon is observed in thin gold films that are exposed to a temperature in excess of 350°C for over 3 to 5 hours. In this study, these films are exposed to temperature upto 620350°C for cycles as long as 200 hours. The goal of this research is to explore the solutions for elimination of the phenomenon of thermal grooving and thus extract maximum life out of these thin gold films for conservation of heat. After carefully exploring literature on past research and conducting experiments it was found that within the range of the films that were tested, a 2000 A350° film with a 150 A350° of Indium underlay showed the best performance after thermal annealing and testing.

  19. Modelling the effect of lead and other materials for shielding of the fetus in CT pulmonary angiography.

    Science.gov (United States)

    Iball, G R; Kennedy, E V; Brettle, D S

    2008-06-01

    The aim of this work is to construct and validate a model to describe the variation in fetal dose as a function of the thickness of abdominal lead shielding used during CT pulmonary angiography and to determine the optimal shielding material. An anthropomorphic phantom was modified to contain a 15 cm(3) ionization chamber at the site of the uterus. Fetal dose was measured with varying thicknesses of lead shielding at four values of tube potential (kV(p)). Data generated by the proposed model were compared with experimental data to determine the validity of the model. The effect of lead shielding has been modelled accurately and results have shown that, although alternative materials could be used, lead is an effective and practical shielding material. In conclusion, lead remains a suitable shielding material and a pair of conventional lead aprons provides significant shielding for the fetus; we recommend that aprons should be reserved specifically for this purpose. However, it is possible that a dedicated and specifically designed lead shield could reduce fetal dose more effectively whilst also reducing patient discomfort.

  20. Potential space debris shield structure using impact-initiated energetic materials composed of polytetrafluoroethylene and aluminum

    Science.gov (United States)

    Wu, Qiang; Zhang, Qingming; Long, Renrong; Zhang, Kai; Guo, Jun

    2016-03-01

    A whipple shield using Al/PTFE (polytetrafluoroethylene) energetic material to protect against space debris is presented. The hypervelocity impact characteristics were investigated experimentally using a two-stage light gas gun at velocities between 3 and 6 km/s. A good protection of the shield was obtained through comparative experiments which used the same bumper areal density. The results showed that the critical projectile diameter can be improved by 28% by contrast with the Christiansen ballistic limit equations. The Al/PTFE energetic material bumper can break up the projectile into smaller, less massive, and slower projectiles due to the combined effect of impact and explosion, thereby producing a sharp rise in the spacecraft protection ability.

  1. Flexible EMI shielding materials derived by melt blending PVDF and ionic liquid modified MWNTs

    Science.gov (United States)

    Sharma, Maya; Sharma, Sukanya; Abraham, Jiji; Thomas, Sabu; Madras, Giridhar; Bose, Suryasarathi

    2014-09-01

    Nano composites of PVDF with ionic liquid [EMIM][TF2N] (IL) modified MWNTs were prepared by melt blending to design materials for EMI shielding applications. MWNTs and IL were mixed in two different ratios (1:1 and 1:5) to facilitate better dispersion of MWNTs in PVDF. It was observed that non-covalent interactions between IL and PVDF resulted in a better dispersion of CNTs and was consistent with increasing concentration of IL. Interestingly, IL modified MWNTs induced the formation of γ-phase crystals in PVDF, which was further confirmed by XRD, FTIR and DSC. Melt rheological measurements and DSC analysis revealed the plasticization effect of IL in PVDF composites further manifesting in a decrease in the storage modulus and the glass transition temperature. This phenomenal effect presumably led to better dispersion of IL modified MWNTs in PVDF further resulting in a significant improvement in electrical conductivity and structural properties. More interestingly, the elongational properties in the composites improved with IL modified MWNTs in striking contrast to MWNT filled PVDF composites. The ac conductivity of the composites reached about 10-3 S cm-1 with the addition of 2 wt% IL modified MWNTs (1:1). This further led to a high electro-magnetic interference (EMI) shielding effectiveness of about 20 dB at 2 wt% IL modified MWNTs. Such materials can further be explored for flexible, lightweight EMI shielding materials for a wide range of operating frequency.

  2. Shielding behaviors of some polymer and plastic materials for gamma-rays

    Science.gov (United States)

    Mann, Kulwinder Singh; Rani, Asha; Heer, Manmohan Singh

    2015-01-01

    Gamma-rays interaction parameters with six polymer and plastic materials have been computed and investigated for their shielding behaviours in the experimental energy range 10-1400 keV. Low mass-density and ability to transform into thin-sheets of H-containing plastic and polymer materials generate the curiosity for present study. Gamma Ray Interaction Coefficients (GRIC)-toolkit: a computer program designed in MS-Excel, 2007 for the investigation. The toolkit has the capability to compute different parameters linked to shielding properties of the sample-material such that; mass attenuation coefficients (μ/ρ), mass energy absorption coefficients (μen/ρ), equivalent atomic number (Zeq), KERMA (kinetic energy released per unit mass). Polyvinyl Chloride (PVC) seems to be the best shield for gamma radiations in energy range 10-110 keV. The interaction parameters for selected samples have been computed and provided in the extended energy range 0.015-15 MeV.

  3. The investigation of vermiculite as an alternating shielding material for gamma rays

    Science.gov (United States)

    Gülbiçim, Hasan; Tufan, M. Çağatay; Türkan, M. Nureddin

    2017-01-01

    In this study, gamma ray shielding properties of vermiculite has been investigated for the first time as a shielding material. The photon total mass attenuation coefficients μm, the half value layer (HVL), the tenth value layer (TVL) and the mean free path (MFP) values have been experimentally determined for the photon energies at 0.244, 0.262, 0.342, 0.600, 0.778, 1.173, 1.332, 1.408 and 1.728 MeV. The theoretical data are calculated by using WinXCom computer code. At the end, we obtained good agreement between experimental and theoretical values. As well as the total mass attenuation coefficients, we have also calculated the effective atomic number, Zeff, the effective electron number, Neff, the total atomic cross-section, σt,a, the total electronic cross-section, σt,e, values for vermiculite and some building materials. Consequently, the obtained results showed that vermiculite could be used as a shielding material for gamma radiation.

  4. Evaluation of lunar regolith geopolymer binder as a radioactive shielding material for space exploration applications

    Science.gov (United States)

    Montes, Carlos; Broussard, Kaylin; Gongre, Matthew; Simicevic, Neven; Mejia, Johanna; Tham, Jessica; Allouche, Erez; Davis, Gabrielle

    2015-09-01

    Future manned missions to the moon will require the ability to build structures using the moon's natural resources. The geopolymer binder described in this paper (Lunamer) is a construction material that consists of up to 98% lunar regolith, drastically reducing the amount of material that must be carried from Earth in the event of lunar construction. This material could be used to fabricate structural panels and interlocking blocks that have radiation shielding and thermal insulation characteristics. These panels and blocks could be used to construct living quarters and storage facilities on the lunar surface, or as shielding panels to be installed on crafts launched from the moon surface to deep-space destinations. Lunamer specimens were manufactured in the laboratory and compressive strength results of up to 16 MPa when cast with conventional methods and 37 MPa when cast using uniaxial pressing were obtained. Simulation results have shown that the mechanical and chemical properties of Lunamer allow for adequate radiation shielding for a crew inside the lunar living quarters without additional requirements.

  5. Use of CR-39 films for nuclear radiation shielding efficacy evaluation of lining materials for combat vehicles

    Science.gov (United States)

    Gopalani, Deepak; Jodha, A. S.; Das, M. K.; Singh, R. K.; Baheti, G. L.

    2009-06-01

    All materials provide, to a lesser or greater extent, shielding against nuclear radiations. Armoured fighting vehicles (AFVs) have steel as the structural material, which appears to be a reasonably good gamma and neutron shield material but a shield of pure iron would not be equally effective against whole range of neutron energies as it has a few resonances in electron volt range, and it reduces energy of fast neutrons to lower energy neutrons. These neutrons will be absorbed through radiative capture and emit gamma radiations. Thus it is essential that an effective shield should contain a large amount of moderating material, hydrogen being preferred with low atomic number materials (B, C, Li) and lead (Pb) to ensure that the neutrons do not diffuse at intermediate energies in the shield as well as gamma attenuation will also take place. In order to have a suitable shield material for armoured vehicles which serves as neutron and gamma radiation attenuator, polyethylene polymer with fillers lining materials are preferred. These materials were evaluated against gamma and fast neutrons using radioactive sources for suitability to fitment into combat vehicle as per the requirement of protection factor values. The detector for gamma radiation was used as Nal(Tl) while for neutron, CR-39 film was used.

  6. Shielding Effectiveness of Laminated Shields

    Directory of Open Access Journals (Sweden)

    B. P. Rao

    2008-12-01

    Full Text Available Shielding prevents coupling of undesired radiated electromagnetic energy into equipment otherwise susceptible to it. In view of this, some studies on shielding effectiveness of laminated shields with conductors and conductive polymers using plane-wave theory are carried out in this paper. The plane wave shielding effectiveness of new combination of these materials is evaluated as a function of frequency and thickness of material. Conductivity of the polymers, measured in previous investigations by the cavity perturbation technique, is used to compute the overall reflection and transmission coefficients of single and multiple layers of the polymers. With recent advances in synthesizing stable highly conductive polymers these lightweight mechanically strong materials appear to be viable alternatives to metals for EM1 shielding.

  7. Preparation and properties of the fast-curing γ-ray-shielding materials based on polyurethane

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Minxuan; Tang, Xiao Bin; Chai, Hao; Zhang, Yun; Chen, Tuo; Chen, Da [Dept. of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing (China)

    2016-12-15

    In this study, fast-curing shielding materials were prepared with a two-component polyurethane matrix and a filler material of PbO through a one-step, laboratory-scale method. With an increase in the filler content, viscosity increased. However, the two components showed a small difference. Curing time decreased as the filler content increased. The minimum tack-free time of 27 s was obtained at a filler content of 70 wt%. Tensile strength and compressive strength initially increased and then decreased as the filler content increased. Even when the filler content reached 60 wt%, mechanical properties were still greater than those of the matrix. Cohesional strength decreased as the filler content increased. However, cohesional strength was still greater than 100 kPa at a filler content of 60 wt%. The γ-ray-shielding properties increased with the increase in the filler content, and composite thickness could be increased to improve the shielding performance when the energy of γ-rays was high. When the filler content was 60 wt%, the composite showed excellent comprehensive properties.

  8. Beam loss reduction by magnetic shielding using beam pipes and bellows of soft magnetic materials

    Science.gov (United States)

    Kamiya, J.; Ogiwara, N.; Hotchi, H.; Hayashi, N.; Kinsho, M.

    2014-11-01

    One of the main sources of beam loss in high power accelerators is unwanted stray magnetic fields from magnets near the beam line, which can distort the beam orbit. The most effective way to shield such magnetic fields is to perfectly surround the beam region without any gaps with a soft magnetic high permeability material. This leads to the manufacture of vacuum chambers (beam pipes and bellows) with soft magnetic materials. A Ni-Fe alloy (permalloy) was selected for the material of the pipe parts and outer bellows parts, while a ferritic stainless steel was selected for the flanges. An austenitic stainless steel, which is non-magnetic material, was used for the inner bellows for vacuum tightness. To achieve good magnetic shielding and vacuum performances, a heat treatment under high vacuum was applied during the manufacturing process of the vacuum chambers. Using this heat treatment, the ratio of the integrated magnetic flux density along the beam orbit between the inside and outside of the beam pipe and bellows became small enough to suppress beam orbit distortion. The outgassing rate of the materials with this heat treatment was reduced by one order magnitude compared to that without heat treatment. By installing the beam pipes and bellows of soft magnetic materials as part of the Japan Proton Accelerator Research Complex 3 GeV rapid cycling synchrotron beam line, the closed orbit distortion (COD) was reduced by more than 80%. In addition, a 95.5% beam survival ratio was achieved by this COD improvement.

  9. Beam loss reduction by magnetic shielding using beam pipes and bellows of soft magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, J., E-mail: kamiya.junichiro@jaea.go.jp; Ogiwara, N.; Hotchi, H.; Hayashi, N.; Kinsho, M.

    2014-11-01

    One of the main sources of beam loss in high power accelerators is unwanted stray magnetic fields from magnets near the beam line, which can distort the beam orbit. The most effective way to shield such magnetic fields is to perfectly surround the beam region without any gaps with a soft magnetic high permeability material. This leads to the manufacture of vacuum chambers (beam pipes and bellows) with soft magnetic materials. A Ni–Fe alloy (permalloy) was selected for the material of the pipe parts and outer bellows parts, while a ferritic stainless steel was selected for the flanges. An austenitic stainless steel, which is non-magnetic material, was used for the inner bellows for vacuum tightness. To achieve good magnetic shielding and vacuum performances, a heat treatment under high vacuum was applied during the manufacturing process of the vacuum chambers. Using this heat treatment, the ratio of the integrated magnetic flux density along the beam orbit between the inside and outside of the beam pipe and bellows became small enough to suppress beam orbit distortion. The outgassing rate of the materials with this heat treatment was reduced by one order magnitude compared to that without heat treatment. By installing the beam pipes and bellows of soft magnetic materials as part of the Japan Proton Accelerator Research Complex 3 GeV rapid cycling synchrotron beam line, the closed orbit distortion (COD) was reduced by more than 80%. In addition, a 95.5% beam survival ratio was achieved by this COD improvement.

  10. Measurements of gamma-ray production cross sections for shielding materials of space nuclear systems

    Science.gov (United States)

    Orphan, V. J.; John, J.; Hoot, C. G.

    1972-01-01

    Measurements of secondary gamma ray production from neutron interactions have been made over the entire energy range of interest in shielding applications. The epithermal capture gamma ray yields for both resolved gamma ray lines and continuum have been measured from thermal energies to 100 KeV for natural tungsten and U-238, two important candidate shield materials in SNAP reactor systems. Data are presented to illustrate the variation of epithermal capture gamma ray yields with neutron energy. The gamma ray production cross sections from (n,xy) reactions have been measured for Fe and Al from the threshold energies for inelastic scattering to approximately 16 MeV. Typical Fe and Al cross sections obtained with high-neutron energy resolution and averaged over broad neutron-energy groups are presented.

  11. The Exploration Atmospheres Working Group's Report on Space Radiation Shielding Materials

    Science.gov (United States)

    Barghouty, A. F.; Thibeault, S. A.

    2006-01-01

    This part of Exploration Atmospheres Working Group analyses focuses on the potential use of nonmetallic composites as the interior walls and structural elements exposed to the atmosphere of the spacecraft or habitat. The primary drive to consider nonmetallic, polymer-based composites as an alternative to aluminum structure is due to their superior radiation shielding properties. But as is shown in this analysis, these composites can also be made to combine superior mechanical properties with superior shielding properties. In addition, these composites can be made safe; i.e., with regard to flammability and toxicity, as well as "smart"; i.e., embedded with sensors for the continuous monitoring of material health and conditions. The analysis main conclusions are that (1) smart polymer-based composites are an enabling technology for safe and reliable exploration missions, and (2) an adaptive, synergetic systems approach is required to meet the missions requirements from structure, properties, and processes to crew health and protection for exploration missions.

  12. Use of CR 39 Films for Evaluation of Shielding Efficacy of Materials against Fast Neutrons

    OpenAIRE

    1992-01-01

    CR-39 films have been used for evaluation of neutron shielding of metal alloys, different types of rubbers, sand polymers, etc. These films have been chosen because of their ability to record fast neutrons from 200 keV-10 MeV and their insensitivity to gamma radiations. Tenth value layer (TVL) for the materials studied varies from 10.5 to 28.6 cm. In addition, the values of TVL have also been computed for standard material, such as Al, steel, etc. Using neutron removal cross-section da...

  13. Solar tests of aperture plate materials for solar thermal dish collectors

    Science.gov (United States)

    Jaffe, L. D.

    1984-11-01

    If a malfunction occurs in a solar thermal point-focus distributed receiver power plant while a concentrator is pointed at the sun, motion of the concentrator may stop. As the sun moves relative to the earth, the spot of concentrated sunlight then slowly walks off the receiver aperture, across the receiver face plate, and perhaps across adjacent portions of the concentrator. Intense local heating by the concentrated sunlight may damage or destroy these parts. The behavior of various materials under conditions simulating walk-off of a parabolic dish solar collector were evaluated. Each test consisted of exposure to concentrated sunlight at a peak flux density of about 7000 kW/square meter for 15 minutes. Types of materials tested included graphite, silicon carbide, silica, various silicates, alumina, zirconia, aluminum, copper, steel, and polytetrafluroethylene. The only material that neither cracked nor melted was grade G-90 graphite. Grade CS graphite, a lower cost commercial grade, cracked half-way across, but did not fail apart. Both of these grades are medium-grain extruded graphites. A graphite cloth (graphitized polyacrylonitrile) showed fair performance when tested as a single thin ply; it might be useful as a multi-ply assembly. High purity slipcast silica showed some promise also.

  14. Solar tests of aperture plate materials for solar thermal dish collectors

    Science.gov (United States)

    Jaffe, L. D.

    1984-01-01

    If a malfunction occurs in a solar thermal point-focus distributed receiver power plant while a concentrator is pointed at the sun, motion of the concentrator may stop. As the sun moves relative to the earth, the spot of concentrated sunlight then slowly walks off the receiver aperture, across the receiver face plate, and perhaps across adjacent portions of the concentrator. Intense local heating by the concentrated sunlight may damage or destroy these parts. The behavior of various materials under conditions simulating walk-off of a parabolic dish solar collector were evaluated. Each test consisted of exposure to concentrated sunlight at a peak flux density of about 7000 kW/square meter for 15 minutes. Types of materials tested included graphite, silicon carbide, silica, various silicates, alumina, zirconia, aluminum, copper, steel, and polytetrafluroethylene. The only material that neither cracked nor melted was grade G-90 graphite. Grade CS graphite, a lower cost commercial grade, cracked half-way across, but did not fail apart. Both of these grades are medium-grain extruded graphites. A graphite cloth (graphitized polyacrylonitrile) showed fair performance when tested as a single thin ply; it might be useful as a multi-ply assembly. High purity slipcast silica showed some promise also.

  15. Long term testing of materials for tube shielding, stage 2; Laangtidsprovning av tubskyddsmaterial, etapp 2

    Energy Technology Data Exchange (ETDEWEB)

    Norling, Rikard; Hjoernhede, Anders; Mattsson, Mattias

    2012-02-15

    Circulating Fluidized Bed (CFB) boilers are commonly used for combustion of biomass and are used to some extent for Waste-to-Energy (WtE) plants as well. The superheaters of the latter are for obvious reasons more prone to suffer from high temperature corrosion caused by the corrosive species in the fuel, mainly chlorides. Frequently the final (hottest) superheater is positioned in the loop seal, where the circulating bed material is returned to the furnace after being separated from the flue gas by a cyclone. The environment in the loop seal is relatively free of chlorides, since these primarily follow the flue gas into the convection pass. Hence, higher steam temperature can be allowed without excessive damage to the final superheater. On the other hand the superheaters, which are located in the convection pass, are more exposed to the corrosive species of the flue gas. Further, they are eroded by particles entrained in the gas flow. Particles and condensing gaseous species are to a large extent deposited on the superheaters, which limits the heat transfer and promotes corrosion. The deposits are regularly removed e.g. by soot blowers. The pressurized steam from soot blowers causes additional erosion damage to that caused by entrained particles. It shall be noted that the actual damage is caused by a combined mechanism of erosion and corrosion denoted erosion-corrosion, which usually results in dramatically accelerated wear. To avoid excessive erosion damage on the superheater tubes the first tube row of each bundle is protected by tube shielding. In its simplest form the shields are made from a steel sheet that has been bent into a semi-circular half-cylinder shell. These shields are attached onto the wind-side of the tubes by hangers. A typical material for tube shielding is the austenitic high temperature resistant stainless steel 253MA. Life of tube shielding depends on numerous factors such as boiler design, superheater location, fuel and operating

  16. Ion-Electron-Conducting Polymer Composites: Promising Electromagnetic Interference Shielding Material.

    Science.gov (United States)

    Vyas, Manoj Kumar; Chandra, Amita

    2016-07-20

    Polymer nanocomposites consisting of poly(vinylidenefluoride-co-hexafluoropropylene) PVdF-HFP, inorganic salt (LiBF4), organic salt (EMIMBF4), multiwalled carbon nanotubes (MWCNTs), and Fe3O4 nanoparticles were prepared as electromagnetic shield material. Improvement in conductivity and dielectric property due to the introduction of EMIMBF4, LiBF4, and MWCNTs was confirmed by complex impedance spectroscopy. The highest conductivity obtained is ∼1.86 mS/cm. This is attributed to the high ionic conductivity of the ionic liquids and the formation of a connecting network by the MWCNTs facilitating electron conduction. The total electromagnetic interference (EMI) shielding effectiveness has a major contribution to it due to absorption. Although the total shielding effectiveness in the Ku band (12.4-18 GHz) of pure ion-conducting system was found to be ∼19 dB and that for the polymer composites which are mixed (ion + electron) conductors is ∼46 dB, the contributions due to absorption are ∼16 and ∼42 dB, respectively.

  17. Monte Carlo simulation of photon buildup factors for shielding materials in diagnostic x-ray facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kharrati, Hedi; Agrebi, Amel; Karoui, Mohamed Karim [Ecole Superieure des Sciences et Techniques de la Sante de Monastir, Avenue Avicenne, 5000 Monastir (Tunisia); Faculte des Sciences de Monastir, 5000 Monastir (Tunisia)

    2012-10-15

    Purpose: A simulation of buildup factors for ordinary concrete, steel, lead, plate glass, lead glass, and gypsum wallboard in broad beam geometry for photons energies from 10 keV to 150 keV at 5 keV intervals is presented. Methods: Monte Carlo N-particle radiation transport computer code has been used to determine the buildup factors for the studied shielding materials. Results: An example concretizing the use of the obtained buildup factors data in computing the broad beam transmission for tube potentials at 70, 100, 120, and 140 kVp is given. The half value layer, the tenth value layer, and the equilibrium tenth value layer are calculated from the broad beam transmission for these tube potentials. Conclusions: The obtained values compared with those calculated from the published data show the ability of these data to predict shielding transmission curves. Therefore, the buildup factors data can be combined with primary, scatter, and leakage x-ray spectra to provide a computationally based solution to broad beam transmission for barriers in shielding x-ray facilities.

  18. Monte Carlo simulation of photon buildup factors for shielding materials in radiotherapy x-ray facilities

    Energy Technology Data Exchange (ETDEWEB)

    Karim Karoui, Mohamed [Faculte des Sciences de Monastir, Avenue de l' environnement 5019 Monastir -Tunisia (Tunisia); Kharrati, Hedi [Ecole Superieure des Sciences et Techniques de la Sante de Monastir, Avenue Avicenne 5000 Monastir (Tunisia)

    2013-07-15

    Purpose: This paper presents the results of a series of calculations to determine buildup factors for ordinary concrete, baryte concrete, lead, steel, and iron in broad beam geometry for photons energies from 0.125 to 25.125 MeV at 0.250 MeV intervals.Methods: Monte Carlo N-particle radiation transport computer code has been used to determine the buildup factors for the studied shielding materials.Results: The computation of the primary broad beams using buildup factors data was done for nine published megavoltage photon beam spectra ranging from 4 to 25 MV in nominal energies, representing linacs made by the three major manufacturers. The first tenth value layer and the equilibrium tenth value layer are calculated from the broad beam transmission for these nine primary megavoltage photon beam spectra.Conclusions: The results, compared with published data, show the ability of these buildup factor data to predict shielding transmission curves for the primary radiation beam. Therefore, the buildup factor data can be combined with primary, scatter, and leakage x-ray spectra to perform computation of broad beam transmission for barriers in radiotherapy shielding x-ray facilities.

  19. Radiation Protection Effectiveness of Polymeric Based Shielding Materials at Low Earth Orbit

    Science.gov (United States)

    Badavi, Francis F.; Stewart-Sloan, Charlotte R.; Wilson, John W.; Adams, Daniel O.

    2008-01-01

    Correlations of limited ionizing radiation measurements onboard the Space Transportation System (STS; shuttle) and the International Space Station (ISS) with numerical simulations of charged particle transport through spacecraft structure have indicated that usage of hydrogen rich polymeric materials improves the radiation shielding performance of space structures as compared to the traditionally used aluminum alloys. We discuss herein the radiation shielding correlations between measurements on board STS-81 (Atlantis, 1997) using four polyethylene (PE) spheres of varying radii, and STS-89 (Endeavour, 1998) using aluminum alloy spheres; with numerical simulations of charged particle transport using the Langley Research Center (LaRC)-developed High charge (Z) and Energy TRaNsport (HZETRN) algorithm. In the simulations, the Galactic Cosmic Ray (GCR) component of the ionizing radiation environment at Low Earth Orbit (LEO) covering ions in the 1Radiation (AIR) measurements. With the validity of numerical simulations through correlation with PE and aluminum spheres measurements established, we further present results from the expansion of the simulations through the selection of high hydrogen content commercially available polymeric constituents such as PE foam core and Spectra fiber(Registered TradeMark) composite face sheet to assess their radiation shield properties as compared to generic PE.

  20. Geant4 calculations for space radiation shielding material Al2O3

    Science.gov (United States)

    Capali, Veli; Acar Yesil, Tolga; Kaya, Gokhan; Kaplan, Abdullah; Yavuz, Mustafa; Tilki, Tahir

    2015-07-01

    Aluminium Oxide, Al2O3 is the most widely used material in the engineering applications. It is significant aluminium metal, because of its hardness and as a refractory material owing to its high melting point. This material has several engineering applications in diverse fields such as, ballistic armour systems, wear components, electrical and electronic substrates, automotive parts, components for electric industry and aero-engine. As well, it is used as a dosimeter for radiation protection and therapy applications for its optically stimulated luminescence properties. In this study, stopping powers and penetrating distances have been calculated for the alpha, proton, electron and gamma particles in space radiation shielding material Al2O3 for incident energies 1 keV - 1 GeV using GEANT4 calculation code.

  1. Geant4 calculations for space radiation shielding material Al2O3

    Directory of Open Access Journals (Sweden)

    Capali Veli

    2015-01-01

    Full Text Available Aluminium Oxide, Al2O3 is the most widely used material in the engineering applications. It is significant aluminium metal, because of its hardness and as a refractory material owing to its high melting point. This material has several engineering applications in diverse fields such as, ballistic armour systems, wear components, electrical and electronic substrates, automotive parts, components for electric industry and aero-engine. As well, it is used as a dosimeter for radiation protection and therapy applications for its optically stimulated luminescence properties. In this study, stopping powers and penetrating distances have been calculated for the alpha, proton, electron and gamma particles in space radiation shielding material Al2O3 for incident energies 1 keV – 1 GeV using GEANT4 calculation code.

  2. High-resolution nondestructive testing of multilayer dielectric materials using wideband microwave synthetic aperture radar imaging

    Science.gov (United States)

    Kim, Tae Hee; James, Robin; Narayanan, Ram M.

    2017-04-01

    Fiber Reinforced Polymer or Plastic (FRP) composites have been rapidly increasing in the aerospace, automotive and marine industry, and civil engineering, because these composites show superior characteristics such as outstanding strength and stiffness, low weight, as well as anti-corrosion and easy production. Generally, the advancement of materials calls for correspondingly advanced methods and technologies for inspection and failure detection during production or maintenance, especially in the area of nondestructive testing (NDT). Among numerous inspection techniques, microwave sensing methods can be effectively used for NDT of FRP composites. FRP composite materials can be produced using various structures and materials, and various defects or flaws occur due to environmental conditions encountered during operation. However, reliable, low-cost, and easy-to-operate NDT methods have not been developed and tested. FRP composites are usually produced as multilayered structures consisting of fiber plate, matrix and core. Therefore, typical defects appearing in FRP composites are disbondings, delaminations, object inclusions, and certain kinds of barely visible impact damages. In this paper, we propose a microwave NDT method, based on synthetic aperture radar (SAR) imaging algorithms, for stand-off imaging of internal delaminations. When a microwave signal is incident on a multilayer dielectric material, the reflected signal provides a good response to interfaces and transverse cracks. An electromagnetic wave model is introduced to delineate interface widths or defect depths from the reflected waves. For the purpose of numerical analysis and simulation, multilayered composite samples with various artificial defects are assumed, and their SAR images are obtained and analyzed using a variety of high-resolution wideband waveforms.

  3. The gamma-ray and neutron shielding factors of fly-ash brick materials.

    Science.gov (United States)

    Singh, Vishwanath P; Badiger, N M

    2014-03-01

    A comprehensive study of gamma-ray exposure build-up factors (EBFs) of fly-ash brick materials has been carried out for photon energies of 0.015-15 MeV up to a penetration depth of 40 mfp (mean free path) by a geometrical progression (GP) fitting method. The EBF values of the fly-ash brick materials were found to be dependent upon the photon energy, penetration depth and chemical composition, and were found to be higher than the values for mud bricks and common bricks. Above a photon energy of 3 MeV for large penetration depths (>10 mfp), the EBF becomes directly proportional to Zeq. EBFs of fly-ashes were found to be less than or equal to those of concrete for low penetration depths (shielding effectiveness. The shielding effectiveness of the fly-ash materials against gamma-ray radiation was lower than that of common and mud bricks.

  4. Polymeric Materials With Additives for Durability and Radiation Shielding in Space

    Science.gov (United States)

    Kiefer, Richard

    2011-01-01

    Polymeric materials are attractive for use in space structures because of their light weight and high strength In addition, polymers are made of elements with low atomic numbers (Z), primarily carbon (C), hydrogen (H), oxygen (0), and nitrogen (N) which provide the best shielding from galactic cosmic rays (GCR) (ref. 1). Galactic cosmic rays are composed primarily of nuclei (i.e., fully ionized atoms) plus a contribution of about 2% from electrons and positrons. There is a small but significant component of GCR particles with high charge (Z > 10) and high energy (E >100 GeV) (ref. 2). These so-called HZE particles comprise only 1 to 2% of the cosmic ray fluence but they interact with very high specific ionization and contribute 50% of the long- term dose to humans. The best shield for this radiation would be liquid hydrogen, which is not feasible. For this reason, hydrogen-containing polymers make the most effective practical shields. Moreover, neutrons are formed in the interactions of GCR particles with materials. Neutrons can only lose energy by collisions or reactions with a nucleus since they are uncharged. This is a process that is much less probable than the Coulombic interactions of charged particles. Thus, neutrons migrate far from the site of the reaction in which they were formed. This increases the probability of neutrons reaching humans or electronic equipment. Fast neutrons (> 1 MeV) can interact with silicon chips in electronic equipment resulting in the production of recoil ions which can cause single event upsets (SEU) in sensitive components (ref. 3). Neutrons lose energy most effectively by elastic collisions with light atoms, particularly hydrogen atoms. Therefore, hydrogen-containing polymers are not only effective in interacting with GCR particles; they are also effective in reducing the energy of the neutrons formed in the interactions.

  5. Resistivity, ESR, and Radiation Shielding Properties of the Volcanic Rock Materials

    Directory of Open Access Journals (Sweden)

    Çiğdem Nuhoğlu

    2014-01-01

    Full Text Available Pumices have been used in cement, concrete, brick, and ceramic industries as an additive and aggregate material. It will be important to study pumice types by using a different tool as EPR which is a new technique for related material to be used for industrial aims. Electron spin resonance (ESR spectra of the pumice types were taken by EMX-type spectrometer. Also, the current-voltage (I-V and surface resistivity probe stand of the thin films was studied using a four-point probe measurements. The relationship between radiation shielding properties of the pumice samples and their surface resistivity, chemical, and electrokinetic properties was evaluated using simple regression analysis. Simple regression analysis indicated a strong correlation between surface resistivity and density and SiO2, Fe2O3, CaO, MgO, and TiO2 content of pumice samples in this study. It is found that a correlation between determined g-factor by EPR spectroscopy and radiation shielding is established for pumice samples.

  6. Study on photon sensitivity of silicon diodes related to materials used for shielding

    Science.gov (United States)

    Moiseev, T.

    1999-08-01

    Large area silicon diodes used in electronic neutron dosemeters have a significant over-response to X- and gamma-rays, highly non-linear at photon energies below 200 keV. This over-response to photons is proportional to the diode's active area and strongly affects the neutron sensitivity of such dosemeters. Since silicon diodes are sensitive to light and electromagnetic fields, most diode detector assemblies are provided with a shielding, sometimes also used as radiation filter. In this paper, the influence of materials covering the diode's active area is investigated using the MCNP-4A code by estimating the photon induced pulses in a typical silicon wafer (300 μm thickness and 1 cm diameter) when provided with a front case cover. There have been simulated small-size diode front covers made of several materials with low neutron interaction cross-sections like aluminium, TEFLON, iron and lead. The estimated number of induced pulses in the silicon wafer is calculated for each type of shielding at normal photon incidence for several photon energies from 9.8 keV up to 1.15 MeV and compared with that in a bare silicon wafer. The simulated pulse height spectra show the origin of the photon-induced pulses in silicon for each material used as protective cover: the photoelectric effect for low Z front case materials at low-energy incident photons (up to about 65 keV) and the Compton and build-up effects for high Z case materials at higher photon energies. A simple means to lower and flatten the photon response of silicon diodes over an extended X- and gamma rays energy range is proposed by designing a composed photon filter.

  7. UHMW-PE. A shielding material with special properties influenced by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ehe, K. von der; Jaunich, M.; Wolff, D. [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany)

    2011-07-01

    Ultra high molecular weight polyethylene (UHMW-PE) - due to its high hydrogen content - is used as neutron shielding material in casks for storage and transport of radioactive materials. Besides this, UHMW-PE - as a high-performance polymer - has been used for several years in medical technology due to its excellent slip and wear properties. Due to the special properties of UHMW-PE which result basically from its extreme chain lengths and its high degree of crystallinity, it is predestinated for the aforementioned applications. In both cases, irradiation and its impact on the molecular structure of polyethylene play an important role. In the first case, irradiation exists as a by-product of inserting the radioactive material in the cask. Hence PE has to withstand any type of degradation affecting safety relevant aspects to be applicable for long term radiation shielding purposes for instance over a period of 40 years. In the second case irradiation is applied deliberately for purposes such as sterilization and crosslinking, leading to partial improvement of the mechanical properties (e.g. fracture toughness, crack propagation resistance, wear resistance) and better chemical stability. Specifically concerning their use in the field of medical technology, different types of UHMW-PE have been objects of numerous publications. It is generally accepted that two parallel and competitive processes, based on chain scission and reactions of C-centered radicals and molecular fragments, occur in PE as a consequence of radiation: radical recombination accounts for crosslinking, together with some disproportionation, formation of low molecular weight fragments, and recrystallization. Furthermore, formation of oxygenated structures in the presence of traces of oxygen is an antagonist of the C-centered radicals. Radiation induced scission preferentially takes place in the amorphous phase and noncrystalline surface of the crystals. It is followed by folding of molecular fragments

  8. Multi-objective optimization of a compact pressurized water nuclear reactor computational model for biological shielding design using innovative materials

    Energy Technology Data Exchange (ETDEWEB)

    Tunes, M.A., E-mail: matheus.tunes@usp.br [Department of Metallurgical and Materials Engineering, Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes, 2463 – CEP 05508 – 030 São Paulo (Brazil); Oliveira, C.R.E. de, E-mail: cassiano@unm.edu [Department of Nuclear Engineering, The University of New Mexico, Farris Engineering Center, 221, Albuquerque, NM 87131-1070 (United States); Schön, C.G., E-mail: schoen@usp.br [Department of Metallurgical and Materials Engineering, Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes, 2463 – CEP 05508 – 030 São Paulo (Brazil)

    2017-03-15

    Highlights: • Use of two n-γ transport codes leads to optimized model of compact nuclear reactor. • It was possible to safely reduce both weight and volume of the biological shielding. • Best configuration obtained by using new composites for both γ and n attenuation. - Abstract: The aim of the present work is to develop a computational model of a compact pressurized water nuclear reactor (PWR) to investigate the use of innovative materials to enhance the biological shielding effectiveness. Two radiation transport codes were used: the first one – MCNP – for the PWR design and the GEM/EVENT to simulate (in a 1D slab) the behavior of several materials and shielding thickness on gamma and neutron radiation. Additionally MATLAB Optimization Toolbox was used to provide new geometric configurations of the slab aiming at reducing the volume and weight of the walls by means of a cost/objective function. It is demonstrated in the reactor model that the dose rate outside biological shielding has been reduced by one order of magnitude for the optimized model compared with the initial configuration. Volume and weight of the shielding walls were also reduced. The results indicated that one-dimensional deterministic code to reach an optimized geometry and test materials, combined with a three-dimensional model of a compact nuclear reactor in a stochastic code, is a fast and efficient procedure to test shielding performance and optimization before the experimental assessment. A major outcome of this research is that composite materials (ECOMASS 2150TU96) may replace (with advantages) traditional shielding materials without jeopardizing the nuclear power plant safety assurance.

  9. Use of CR 39 Films for Evaluation of Shielding Efficacy of Materials against Fast Neutrons

    Directory of Open Access Journals (Sweden)

    S. Kumar

    1992-10-01

    Full Text Available CR-39 films have been used for evaluation of neutron shielding of metal alloys, different types of rubbers, sand polymers, etc. These films have been chosen because of their ability to record fast neutrons from 200 keV-10 MeV and their insensitivity to gamma radiations. Tenth value layer (TVL for the materials studied varies from 10.5 to 28.6 cm. In addition, the values of TVL have also been computed for standard material, such as Al, steel, etc. Using neutron removal cross-section data, the results have been compared with those of experimentally determined values. The results seem to be in agreement within approximate 10 per cent variation.

  10. Comprehensive study on the light shielding potential of thermotropic layers for the development of new materials.

    Science.gov (United States)

    Gruber, D P; Winkler, G; Resch, K

    2015-01-10

    In recent years thermotropic overheating protection glazings have been the focus for both solar thermal collector technology and architecture. A thermotropic glazing changes its light transmittance from highly transparent to light diffusing upon reaching a certain threshold temperature autonomously and reversibly. In thermotropic systems with fixed domains (TSFD) the scattering domains are embedded in a polymer matrix, which exhibits a sudden change of the refractive index upon reaching a threshold temperature. The aim of the present study was to comprehensively investigate the light shielding characteristics and potential of TSFD materials by applying simulation of light scattering in particle-filled layers. In random walk simulations a variety of parameters were varied systematically, and the effect on the light transmission behavior of TSFD was studied. The calculation steps of the simulation process are shown in detail. The simulations demonstrate that there is great potential for the production of functional materials with high overheating protection efficiency.

  11. Inorganic nanotubes reinforced polyvinylidene fluoride composites as low-cost electromagnetic interference shielding materials

    Directory of Open Access Journals (Sweden)

    Sankaranarayanan Venkataraman

    2011-01-01

    Full Text Available Abstract Novel polymer nanocomposites comprising of MnO2 nanotubes (MNTs, functionalized multiwalled carbon nanotubes (f-MWCNTs, and polyvinylidene fluoride (PVDF were synthesized. Homogeneous distribution of f-MWCNTs and MNTs in PVDF matrix were confirmed by field emission scanning electron microscopy. Electrical conductivity measurements were performed on these polymer composites using four probe technique. The addition of 2 wt.% of MNTs (2 wt.%, f-MWCNTs to PVDF matrix results in an increase in the electrical conductivity from 10-16S/m to 4.5 × 10-5S/m (3.2 × 10-1S/m. Electromagnetic interference shielding effectiveness (EMI SE was measured with vector network analyzer using waveguide sample holder in X-band frequency range. EMI SE of approximately 20 dB has been obtained with the addition of 5 wt.% MNTs-1 wt.% f-MWCNTs to PVDF in comparison with EMI SE of approximately 18 dB for 7 wt.% of f-MWCNTs indicating the potential use of the present MNT/f-MWCNT/PVDF composite as low-cost EMI shielding materials in X-band region.

  12. Analysis of High Tc Superconducting Rectangular Microstrip Patches over Ground Planes with Rectangular Apertures in Substrates Containing Anisotropic Materials

    Directory of Open Access Journals (Sweden)

    Abderraouf Messai

    2013-01-01

    Full Text Available A rigorous full-wave analysis of high Tc superconducting rectangular microstrip patch over ground plane with rectangular aperture in the case where the patch is printed on a uniaxially anisotropic substrate material is presented. The dyadic Green’s functions of the considered structure are efficiently determined in the vector Fourier transform domain. The effect of the superconductivity of the patch is taken into account using the concept of the complex resistive boundary condition. The accuracy of the analysis is tested by comparing the computed results with measurements and previously published data for several anisotropic substrate materials. Numerical results showing variation of the resonant frequency and the quality factor of the superconducting antenna with regard to operating temperature are given. Finally, the effects of uniaxial anisotropy in the substrate on the resonant frequencies of different TM modes of the superconducting microstrip antenna with rectangular aperture in the ground plane are presented.

  13. Design, fabrication, and properties of a continuous carbon-fiber reinforced Sm{sub 2}O{sub 3}/polyimide gamma ray/neutron shielding material

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng [Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Tang, Xiaobin, E-mail: tangxiaobin@nuaa.edu.cn [Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Jiangsu Key Laboratory of Nuclear Energy Equipment Materials Engineering, Nanjing 210016 (China); Chai, Hao [Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Chen, Da [Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Jiangsu Key Laboratory of Nuclear Energy Equipment Materials Engineering, Nanjing 210016 (China); Qiu, Yunlong [ZhongXing Energy Equipment Co., Ltd, Haimen, Nantong 226100 (China)

    2015-12-15

    Highlights: • Sm{sub 2}O{sub 3} is used for neutron absorber instead of B{sub 4}C, and Sm{sub 2}O{sub 3} has a good photon-shielding effect. • Carbon-fiber cloth and polyimide were used to enhance shielding materials’ mechanical behavior and thermal behavior. • Both Monte Carlo method and shielding test were used to evaluate shielding performance of the novel shielding material. - Abstract: The design and fabrication of shielding materials with good heat-resistance and mechanical properties is a major problem in the radiation shielding field. In this paper, based on gamma ray and neutron shielding theory, a continuous carbon-fiber reinforced Sm{sub 2}O{sub 3}/polyimide gamma ray/neutron shielding material was fabricated by hot-pressing method. The material's application behavior was subsequently evaluated using neutron shielding, photon shielding, mechanical tensile, and thermogravimetric analysis–differential scanning calorimetry tests. The results show that the tensile strength of the novel shielding material exceeds 200 MPa, which makes it of similar strength to aluminum alloy. The material does not undergo crosslinking and decomposition reactions at 300 °C and it can be used in such environments for long periods of time. The continuous carbon-fiber reinforced Sm{sub 2}O{sub 3}/polyimide material has a good shielding performance with respect to gamma rays and neutrons. The material thus has good prospects for use in fusion reactor system and nuclear waste disposal applications.

  14. Accelerated 54{degree}C irradiated test of Shippingport neutron shield tank and HFIR vessel materials

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, J.R. [Materials Engineering Associates, Inc., Lanham, MD (United States); Rosinski, S.T. [Sandia National Labs., Albuquerque, NM (United States)

    1993-01-01

    Charpy V-notch specimens (ASTM Type A) and 5.74-mm diameter tension test specimens of the Shippingport Reactor Neutron Shield Tank (NST) (outer wall material) were irradiated together with Charpy V-notch specimens of the Oak Ridge National Laboratory (ORNI), High,, Flux Isotope Reactor (HFIR) vessel (shell material), to 5.07 {times} 10{sup 17} n/cm{sup 2}, E > 1 MeV. The irradiation was performed in the Ford Nuclear Reactor (FNR), a test reactor, at a controlled temperature of 54{degrees}C (130{degrees}F) selected to approximate the prior service temperatures of the cited reactor structures. Radiation-induced elevations in the Charpy 41-J transition temperature and the ambient temperature yield strength were small and independent of specimen test orientation (ASTM LT vs. TL). The observations are consistent with prior findings for the two materials (A 212-B plate) and other like materials irradiated at low temperature (< 200{degrees}C) to low fluence. The high radiation embrittlement sensitivity observed in HFIR vessel surveillance program tests was not found in the present accelerated irradiation test. Response to 288{degrees}C-168 h postirradiation annealing was explored for the NST material. Notch ductility recovery was found independent of specimen test orientation but dependent on the temperature within the transition region at which the specimens were tested.

  15. Accelerated 54[degree]C irradiated test of Shippingport neutron shield tank and HFIR vessel materials

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, J.R. (Materials Engineering Associates, Inc., Lanham, MD (United States)); Rosinski, S.T. (Sandia National Labs., Albuquerque, NM (United States))

    1993-01-01

    Charpy V-notch specimens (ASTM Type A) and 5.74-mm diameter tension test specimens of the Shippingport Reactor Neutron Shield Tank (NST) (outer wall material) were irradiated together with Charpy V-notch specimens of the Oak Ridge National Laboratory (ORNI), High,, Flux Isotope Reactor (HFIR) vessel (shell material), to 5.07 [times] 10[sup 17] n/cm[sup 2], E > 1 MeV. The irradiation was performed in the Ford Nuclear Reactor (FNR), a test reactor, at a controlled temperature of 54[degrees]C (130[degrees]F) selected to approximate the prior service temperatures of the cited reactor structures. Radiation-induced elevations in the Charpy 41-J transition temperature and the ambient temperature yield strength were small and independent of specimen test orientation (ASTM LT vs. TL). The observations are consistent with prior findings for the two materials (A 212-B plate) and other like materials irradiated at low temperature (< 200[degrees]C) to low fluence. The high radiation embrittlement sensitivity observed in HFIR vessel surveillance program tests was not found in the present accelerated irradiation test. Response to 288[degrees]C-168 h postirradiation annealing was explored for the NST material. Notch ductility recovery was found independent of specimen test orientation but dependent on the temperature within the transition region at which the specimens were tested.

  16. Radiation Engineering Analysis of Shielding Materials to Assess Their Ability to Protect Astronauts in Deep Space From Energetic Particle Radiation

    Science.gov (United States)

    Singleterry, R. C.

    2013-01-01

    An analysis is performed on four typical materials (aluminum, liquid hydrogen, polyethylene, and water) to assess their impact on the length of time an astronaut can stay in deep space and not exceed a design basis radiation exposure of 150 mSv. A large number of heavy lift launches of pure shielding mass are needed to enable long duration, deep space missions to keep astronauts at or below the exposure value with shielding provided by the vehicle. Therefore, vehicle mass using the assumptions in the paper cannot be the sole shielding mechanism for long duration, deep space missions. As an example, to enable the Mars Design Reference Mission 5.0 with a 400 day transit to and from Mars, not including the 500 day stay on the surface, a minimum of 24 heavy lift launches of polyethylene at 89,375 lbm (40.54 tonnes) each are needed for the 1977 galactic cosmic ray environment. With the assumptions used in this paper, a single heavy lift launch of water or polyethylene can protect astronauts for a 130 day mission before exceeding the exposure value. Liquid hydrogen can only protect the astronauts for 160 days. Even a single launch of pure shielding material cannot protect an astronaut in deep space for more than 180 days using the assumptions adopted in the analysis. It is shown that liquid hydrogen is not the best shielding material for the same mass as polyethylene for missions that last longer than 225 days.

  17. Radiation Engineering Analysis of Shielding Materials to Assess Their Ability to Protect Astronauts in Deep Space From Energetic Particle Radiation

    Science.gov (United States)

    Singleterry, R. C.

    2013-01-01

    An analysis is performed on four typical materials (aluminum, liquid hydrogen, polyethylene, and water) to assess their impact on the length of time an astronaut can stay in deep space and not exceed a design basis radiation exposure of 150 mSv. A large number of heavy lift launches of pure shielding mass are needed to enable long duration, deep space missions to keep astronauts at or below the exposure value with shielding provided by the vehicle. Therefore, vehicle mass using the assumptions in the paper cannot be the sole shielding mechanism for long duration, deep space missions. As an example, to enable the Mars Design Reference Mission 5.0 with a 400 day transit to and from Mars, not including the 500 day stay on the surface, a minimum of 24 heavy lift launches of polyethylene at 89,375 lbm (40.54 tonnes) each are needed for the 1977 galactic cosmic ray environment. With the assumptions used in this paper, a single heavy lift launch of water or polyethylene can protect astronauts for a 130 day mission before exceeding the exposure value. Liquid hydrogen can only protect the astronauts for 160 days. Even a single launch of pure shielding material cannot protect an astronaut in deep space for more than 180 days using the assumptions adopted in the analysis. It is shown that liquid hydrogen is not the best shielding material for the same mass as polyethylene for missions that last longer than 225 days.

  18. Detection of fast neutrons from shielded nuclear materials using a semiconductor alpha detector.

    Science.gov (United States)

    Pöllänen, R; Siiskonen, T

    2014-08-01

    The response of a semiconductor alpha detector to fast (>1 MeV) neutrons was investigated by using measurements and simulations. A polyethylene converter was placed in front of the detector to register recoil protons generated by elastic collisions between neutrons and hydrogen nuclei of the converter. The developed prototype equipment was tested with shielded radiation sources. The low background of the detector and insensitivity to high-energy gamma rays above 1 MeV are advantages when the detection of neutron-emitting nuclear materials is of importance. In the case of a (252)Cf neutron spectrum, the intrinsic efficiency of fast neutron detection was determined to be 2.5×10(-4), whereas three-fold greater efficiency was obtained for a (241)AmBe neutron spectrum.

  19. Detecting Shielded Special Nuclear Materials Using Multi-Dimensional Neutron Source and Detector Geometries

    Science.gov (United States)

    Santarius, John; Navarro, Marcos; Michalak, Matthew; Fancher, Aaron; Kulcinski, Gerald; Bonomo, Richard

    2016-10-01

    A newly initiated research project will be described that investigates methods for detecting shielded special nuclear materials by combining multi-dimensional neutron sources, forward/adjoint calculations modeling neutron and gamma transport, and sparse data analysis of detector signals. The key tasks for this project are: (1) developing a radiation transport capability for use in optimizing adaptive-geometry, inertial-electrostatic confinement (IEC) neutron source/detector configurations for neutron pulses distributed in space and/or phased in time; (2) creating distributed-geometry, gas-target, IEC fusion neutron sources; (3) applying sparse data and noise reduction algorithms, such as principal component analysis (PCA) and wavelet transform analysis, to enhance detection fidelity; and (4) educating graduate and undergraduate students. Funded by DHS DNDO Project 2015-DN-077-ARI095.

  20. Emission of fluorescent x-radiation from non-lead based shielding materials of protective clothing: a radiobiological problem?

    Science.gov (United States)

    Schmid, E; Panzer, W; Schlattl, H; Eder, H

    2012-09-01

    The aim of this study was to investigate the effectiveness of different shielding materials in protective clothing using dicentric frequency in human peripheral lymphocytes as a marker of radiation-induced damage. Blood samples from a healthy donor were exposed to 70 kV x-rays behind shielding materials lead (Pb), tin/antimony (Sn + Sb) and bismuth barrier/tin/tungsten (Bi + Sn + W) with the same nominal lead equivalent value of 0.35 mm lead. Irradiation was performed either in contact (exposure position A, containing secondary radiation) or at a distance of 19 cm behind the shielding materials (exposure position B, containing only the unaffected transmitted photons). Using shielding material Sn + Sb, a significantly higher dicentric yield was determined at exposure position A relative to position B, whereas no significant differences were found between the exposure positions using shielding materials Pb or Bi + Sn + W. For doses up to 434.4 mGy at exposure position A, the slopes of the linear dose-response curves for dicentrics obtained behind shielding materials Pb and Bi + Sn + W were not significantly different, whereas a significantly higher slope was determined behind Sn + Sb relative to Pb and Bi + Sn + W. Using moderately filtered 220 kV x-rays as a reference, maximum RBE values at low doses (RBE(M)) of 1.22 ± 0.10, 2.28 ± 0.19 and 1.03 ± 0.12 were estimated immediately behind shielding materials Pb, Sn + Sb and Bi + Sn + W, respectively. These findings indicate a significantly higher RBE(M) of 70 kV x-rays behind shielding material Sn + Sb with respect to Pb or Bi + Sn + W. Using previous dicentric data obtained for exposure of blood from the same donor to x-rays at energies lower than 70 kV, it can be assumed that the increased RBE(M) of the broad spectrum of 70 kV x-rays (mean energy of 44.1 keV) may be attributed predominately to secondary (mainly fluorescence) radiation generated in the shielding material Sn + Sb that is able to leave the shielding

  1. Stress shielding in periprosthetic bone following a total knee replacement: Effects of implant material, design and alignment.

    Science.gov (United States)

    Zhang, Qing-Hang; Cossey, Andrew; Tong, Jie

    2016-12-01

    Periprosthetic bone strain distributions in some of the typical cases of total knee replacement (TKR) were studied with regard to the selection of material, design and the alignments of tibial components to examine which conditions are more forgiving than the others to stress shielding post a TKR. Four tibial components with two implant designs (cruciate sacrificing and cruciate retaining) and material properties (metal-backed (MB) and all-polyethylene (AP)) were considered in a specimen-specific finite element tibia bone model loaded in a neutral position. The influence of tibial material and design on the periprosthetic bone strain response was investigated under the peak loads of walking and stair descending/ascending. Two of the models were also modified to examine the effect of selected implant malalignment conditions (7° posterior, 5° valgus and 5° varus) on stress shielding in the bone, where the medio-lateral load share ratios were adjusted accordingly. The predicted increases of bone density due to implantation for the selected cases studied were also presented. For the cases examined, the effect of stress shielding on the periprosthetic bone seems to be more significantly influenced by the implant material than by the implant geometry. Significant stress shielding is found in MB cases, as opposed to increase in bone density found in AP cases, particularly in the bones immediately beneath the baseplate. The effect of stress shielding is reduced somewhat for the MB components in the malaligned positions compared with the neutral case. In AP cases, the effect of stress shielding is mostly low except in the varus position, possibly due to off-loading of lateral condyle. Increases in bone density are found in both MB and AP cases for the malaligned conditions. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  2. Prediction of Thermophysical and Thermomechanical Characteristics of Porous Carbon-Ceramic Composite Materials of the Heat Shield of Aerospace Craft

    Science.gov (United States)

    Reznik, S. V.; Prosuntsov, P. V.; Mikhailovskii, K. V.

    2015-05-01

    A procedure for predicting thermophysical and thermomechanical characteristics of porous carbon-ceramic composite materials of the heat shield of aerospace craft as functions of the type of reinforcement, porosity of the structure, and the characteristics of the material's components has been developed. Results of mathematical modeling of the temperature and stressed-strained states of representative volume elements for determining the characteristics of a carbon-ceramic composite material with account taken of its anisotropy have been given.

  3. Detection of Shielded Special Nuclear Material With a Cherenkov-Based Transmission Imaging System

    Science.gov (United States)

    Rose, Paul; Erickson, Anna; Mayer, Michael; Jovanovic, Igor

    2015-10-01

    Detection of shielded special nuclear material, SSNM, while in transit, offers a unique challenge. Typical cargo imaging systems are Bremsstrahlung-based and cause an abundance of unnecessary signal in the detectors and doses to the cargo contents and surroundings. Active interrogation with dual monoenergetic photons can unveil the illicit material when coupled with a high-contrast imaging system while imparting significantly less dose to the contents. Cherenkov detectors offer speed, resilience, inherent energy threshold rejection, directionality and scalability beyond the capability of most scintillators. High energy resolution is not a priority when using two well separated gamma rays, 4.4 and 15.1 MeV, generated from low energy nuclear reactions such as 11B(d,n- γ)12C. These gamma rays offer a measure of the effective atomic number, Z, of the cargo by taking advantage of the large difference in photon interaction cross sections, Compton scattering and pair production. This imaging system will be coupled to neutron detectors to provide unique signature of SNM by monitoring delayed neutrons. Our experiments confirm that the Cherenkov imaging system can be used with the monoenergetic source to relate transmission and atomic number of the scanned material.

  4. A NEW ALGORITHM FOR RADIOISOTOPE IDENTIFICATION OF SHIELDED AND MASKED SNM/RDD MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Jeffcoat, R.

    2012-06-05

    Detection and identification of shielded and masked nuclear materials is crucial to national security, but vast borders and high volumes of traffic impose stringent requirements for practical detection systems. Such tools must be be mobile, and hence low power, provide a low false alarm rate, and be sufficiently robust to be operable by non-technical personnel. Currently fielded systems have not achieved all of these requirements simultaneously. Transport modeling such as that done in GADRAS is able to predict observed spectra to a high degree of fidelity; our research is focusing on a radionuclide identification algorithm that inverts this modeling within the constraints imposed by a handheld device. Key components of this work include incorporation of uncertainty as a function of both the background radiation estimate and the hypothesized sources, dimensionality reduction, and nonnegative matrix factorization. We have partially evaluated performance of our algorithm on a third-party data collection made with two different sodium iodide detection devices. Initial results indicate, with caveats, that our algorithm performs as good as or better than the on-board identification algorithms. The system developed was based on a probabilistic approach with an improved approach to variance modeling relative to past work. This system was chosen based on technical innovation and system performance over algorithms developed at two competing research institutions. One key outcome of this probabilistic approach was the development of an intuitive measure of confidence which was indeed useful enough that a classification algorithm was developed based around alarming on high confidence targets. This paper will present and discuss results of this novel approach to accurately identifying shielded or masked radioisotopes with radiation detection systems.

  5. Study on γ-ray exposure buildup factors and fast neutron-shielding properties of some building materials

    Science.gov (United States)

    Singh, Vishwanath P.; Badiger, N. M.; El-Khayatt, A. M.

    2014-06-01

    We have computed γ-ray exposure buildup factors (EBF) of some building materials; glass, marble, flyash, cement, limestone, brick, plaster of paris (POP) and gypsum for energy 0.015-15 MeV up to 40 mfp (mfp, mean free path) penetration depth. Also, the macroscopic effective removal cross-sections (ΣR) for fast neutron were calculated. We discussed the dependency of EBF values on photon energy, penetration depth and chemical elements. The half-value layer and kinetic energy per unit mass relative to air of building materials were calculated for assessment of shielding effectiveness. Shielding thicknesses for glass, marble, flyash, cement, limestone and gypsum plaster (or Plaster of Paris, POP) were found comparable with ordinary concrete. Among the studied materials limestone and POP showed superior shielding properties for γ-ray and neutron, respectively. Radiation safety inside houses, schools and primary health centers for sheltering and annual dose can be assessed by the determination of shielding parameters of common building materials.

  6. Improved ferrous shielding for flat cables

    Science.gov (United States)

    Drechsler, R. J.

    1969-01-01

    To improve shielding of flat multicore cables, a thin, seamless ferrous shield around all cores optimizes low frequency magnetic shielding. Such shielding is covered with an ultrathin seamless coat of highly conductive nonferrous material.

  7. Characterization of Candidate Materials for Remote Recession Measurements of Ablative Heat Shield Materials

    Science.gov (United States)

    Butler, Bradley D.; Winter, Michael; Panerai, Francesco; Martin, Alexandre; Bailey, Sean C. C.; Stackpoole, Margaret; Danehy, Paul M.; Splinter, Scott

    2016-01-01

    A method of remotely measuring surface recession of a material sample in a plasma flow through emission spectroscopy of the post shock layer was characterized through experiments in the NASA Langley HYMETS arc jet facility. Different methods for delivering the seed products into the Phenolic Impregnated Carbon Ablator (PICA) material samples were investigated. Three samples were produced by seeding the PICA material with combinations of Al, Si, HfO2, VB2, Al2O3, SiO2, TiC, HfC, NaCl, and MgCl2 through infusing seed materials into a core of PICA, or through encapsulating seed material in an epoxy disk, mechanically bonding the disk to a PICA sample. The PICA samples seeded with the candidate tracers were then tested at surface temperatures near 2400 K under low pressure air plasma. The emission of Al, Ti, V, Na, and Mg in the post-shock layer was observed in the UV with a high resolution imaging spectrometer viewing the whole stagnation line from the side, and from UV to NIR with a fiber-coupled miniaturized spectrometer observing the sample surface in the wavelength range from 200 nm to 1,100 nm from the front through a collimator. Al, Na, and Mg were found to be emitting in the post-shock spectra even before the recession reached the seeding depth - therefore possibly characterizing the pyrolysis process rather than the recession itself. The appearance of Ti and V emission in the spectra was well correlated with the actual recession which was monitored through a video of the front surface of the sample. The applicability of a seed material as an indicator for recession appears to be related to the melting temperature of the seed material. Future parametric studies will be carried out in low power plasma facilities at the University of Kentucky.

  8. Fast Neutron Tomography of Low-Z Object in High-Z Material Shielding

    Science.gov (United States)

    Babai, Ruth Weiss; Sabo-Napadensky, Iris; Bar, Doron; Mor, Ilan; Tamim, Noam; Dangendorf, Volker; Tittelmeier, Kai; Bromberger, Benjamin; Weierganz, Mathias

    The technique and first results of Fast Neutron Tomography (FNCT) experiments are presented which are performed at the accelerator facility of PTB, Germany. A high-intensity neutron beam of broad spectral distribution with an average energy of 5.5 MeV, was produced by 11.5 MeV deuterons impinging upon a thick beryllium target. The capability of FNCT for high contrast imaging of low-Z materials embedded in thick high-Z shielding materials is demonstrated, which is superior to more conventional high-energy X-ray imaging techniques. For demonstrating the method special test objects were prepared: One consisted of an assembled polyethylene cylinder with holes of various diameters and directions drilled in its surface and inner parts. The plastic phantom was inserted into lead cylinders of different thicknesses. The detector system consisted of a plastic scintillator along with a dedicated optics, image-intensifier and a CCD camera. Two scintillator screens were compared: a bulk plastic scintillator screen and a fibres optical scintillator screen. The tomographic scans were taken in two geometrical configurations: cone beam and semi-fan beam configuration. The image quality favours the semi-fan beam configuration which on the other hand is more time consuming The obtained tomographic images and a comparison of the imaging quality between the different experimental conditions will be presented.

  9. A captured asteroid : Our David's stone for shielding earth and providing the cheapest extraterrestrial material

    Science.gov (United States)

    Massonnet, Didier; Meyssignac, Benoît

    2006-07-01

    The issue of protecting the Earth against an asteroid impact is very popular and many concepts have been proposed to fulfil this objective. In this paper, we develop the idea of capturing a small size asteroid from an orbit close to Earth's in terms of energy and placing it into a loose Earth-bound orbit in order to use it as a shield by engineering its collision with any incoming, threatening body prior to its impact with the Earth. The operations for turning the captured asteroid into an efficient shield appear to be quicker, easier, cheaper and safer than an mission aimed at landing on an incoming impact-bound asteroid either for altering its trajectory or attempting to destroy it. The aim is an asteroid typically 20 40 m in diameter, too small to cause damage on Earth if an improper management leads to its crash, but big enough to destroy and deviate any incoming body if a collision is engineered with it preferably at more than one million km from Earth. Such a collision could be implemented within a 8 month time frame. Such an asteroid would also be a source of material such as liquid oxygen for exploratory missions. We show that the production of this material is much more efficient from an asteroid's surface than from the Moon's. As the celestial surface most accessible from Earth, a captured asteroid is also easier to engineer. Several thousands of tons of oxygen might become available sitting on the outer rim of Earth's gravity field. We examine the advantages and drawbacks of this concept and we propose a stepped approach for making it a reality within a foreseeable future. Key factors are first the detection of a candidate, whose small size make it difficult to spot, among a population of asteroids easy to reach from the Earth. We have identified such a potential candidate in 2000SG344 and describe the parameters of its capture. The second key point is how to deviate the candidate into an loose Earth bound orbit. Our preferred concept is to deposit a

  10. Contribution of loading conditions and material properties to stress shielding near the tibial component of total knee replacements.

    Science.gov (United States)

    Au, Anthony G; James Raso, V; Liggins, A B; Amirfazli, A

    2007-01-01

    This communication reports important preliminary results of a parametric analysis into the stress shielding effects of loading conditions and material properties of a total knee replacement (TKR) prosthesis. A previously developed finite element (FE) model of the proximal tibia that incorporated orthotropic and heterogeneous bone properties was used. Tibiofemoral joint compression and soft tissue (ligament and muscle) forces were also included to better represent the loading condition in the tibia. Stress shielding effects were studied for a prosthesis similar to a commercially available model. Results from the model show that the hypothesis of relatively higher Young's modulus of implant compared to bone as the primary cause of stress shielding is not sufficiently descriptive. Loading conditions as a result of altered bone or implant condylar surface geometry, load placement on the condylar surface, and load pattern created by the TKR are at least as important or, in some cases, more important factors in observed stress shielding immediately post-operation. This finding can be used to focus new implant design on altered loading conditions as well as material selection.

  11. Experimental Evaluation of Geopolymer and ?Lunamer? Binders as Radioactive Shielding Materials for Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to develop lunar regolith based geopolymer concrete and perform differential shielding studies on various geopolymer formulations to...

  12. A comparative study for different shielding material composition and beam geometry applied to PET facilities: simulated transmission curves

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, Gabriela [Pontificia Univ. Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, RS (Brazil). Grupo de Experimentacao e Simulacao Computacional em Fisica Medica; Costa, Paulo Roberto, E-mail: pcosta@if.usp.br [Universidade de Sao Paulo (IF/USP), SP (Brazil). Dept. de Fisica Nuclear. Lab. de Dosimetria das Radiacoes e Fisica Medica

    2013-03-15

    The aim of this work is to simulate transmission data for different beam geometry and material composition in order to evaluate the effect of these parameters on transmission curves. The simulations are focused on outgoing spectra for shielding barriers used in PET facilities. The behavior of the transmission was evaluated as a function of the shielding material composition and thickness using Geant4 Monte Carlo code, version 9.2 p 03.The application was benchmarked for barited mortar and compared to The American Association of Physicists in Medicine (AAPM) data for lead. Their influence on the transmission curves as well the study of the influence of the shielding material composition and beam geometry on the outgoing spectra were performed. Characteristics of transmitted spectra, such as shape, average energy and Half-Value Layer (HVL), were also evaluated. The Geant4 toolkit benchmark for the energy resulting from the positron annihilation phenomena and its application in transmission curves description shown good agreement between data published by American Association on Physicists in Medicine task group 108 and experimental data published by Brazil. The transmission properties for different material compositions were also studied and have shown low dependency with the considered thicknesses. The broad and narrow beams configuration presented significant differences on the result. The fitting parameter for determining the transmission curves equations, according to Archer model is presented for different material. As conclusion were defined that beam geometry has significant influence and the composition has low influence on transmission curves for shielding design for the range of energy applied to PET. (author)

  13. Monte carlo simulation of innovative neutron and photon shielding material composing of high density concrete, waste rubber, lead and boron carbide

    Science.gov (United States)

    Aim-O, P.; Wongsawaeng, D.; Phruksarojanakun, P.; Tancharakorn, S.

    2017-06-01

    High-density concrete exhibits high strength and can perform an important role of gamma ray attenuation. In order to upgrade this material’s radiation-shielding performance, hydrogen-rich material can be incorporated. Waste rubber from vehicles has high hydrogen content which is the prominent characteristic to attenuate neutron. The objective of this work was to evaluate the radiation-shielding properties of this composite material against neutron and photon radiations. Monte Carlo transport simulation was conducted to simulate radiation through the composite material. Am-241/Be was utilized for neutron source and Co-60 for photon source. Parameters of the study included volume percentages of waste rubber, lead and boron carbide and thickness of the shielding material. These designs were also fabricated and the radiation shielding properties were experimentally evaluated. The best neutron and gamma ray shielding material was determined to be high-density concrete mixed with 5 vol% crumb rubber and 5 vol% lead powder. This shielding material increased the neutron attenuation by 64% and photon attenuation by 68% compared to ordinary concrete. Also, increasing the waste rubber content to greater than 5% resulted in a decrease in the radiation attenuation. This innovative composite radiation shielding material not only benefits nuclear science and engineering applications, but also helps solve the environmental issue of waste rubber.

  14. Development of BaO-ZnO-B2O3 glasses as a radiation shielding material

    Science.gov (United States)

    Chanthima, N.; Kaewkhao, J.; Limkitjaroenporn, P.; Tuscharoen, S.; Kothan, S.; Tungjai, M.; Kaewjaeng, S.; Sarachai, S.; Limsuwan, P.

    2017-08-01

    The effects of the BaO on the optical, physical and radiation shielding properties of the xBaO: 20ZnO: (80-x)B2O3, where x=5, 10, 15, 20 and 25 mol%, were investigated. The glasses were developed by the conventional melt-quenching technique at 1400 °C with high purity chemicals of H3BO3, ZnO, and BaSO4. The optical transparency of the glasses indicated that the glasses samples were high, as observed by visual inspections. The mass attenuation coefficients (μm), the effective atomic numbers (Zeff), and the effective electron densities (Ne) were increased with the increase of BaO concentrations, and the decrease of gamma-ray energy. The developed glass samples were investigated and compared with the shielding concretes and glasses in terms of half value layer (HVL). The overall results demonstrated that the developed glasses had good shielding properties, and highly practical potentials in the environmental friendly radiation shielding materials without an additional of Pb.

  15. Synthetic Aperture Focusing Technique in Ultrasonic Inspection of Coarse Grained Materials

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Tadeusz (Uppsala Univ., Signals and Systems, Box 528, SE-751 20 Uppsala (Sweden))

    2007-12-15

    Experience from the ultrasonic inspection of nuclear power plants has shown that large focused transducers are relatively effective in suppressing grain (structure) noise. Operation of a large focused transducer can be thought of as an integration (coherent summation) of individual beams reflected from the target and received by individual points at the transducer surface. Synthetic aperture focusing technique (SAFT), in its simplest version mimics an acoustic lens used for focusing beams at a desired point in the region of interest. Thus, SAFT should be able to suppress the grain noise in the similar way as the focused transducer does. This report presents the results of investigation of SAFT algorithms applied for post-processing of ultrasonic data acquired in inspection of coarse grained metals. The performance of SAFT in terms of its spatial (cross-range) resolution and grain noise suppression is studied. The evaluation is made based on the experimental data obtained from the ultrasonic inspection of test specimens with artificial defects (side drilled holes). SAFT algorithms for both contact and immersion mode are introduced and experimentally verified

  16. Shielding the chemical reactivity using graphene layers for controlling the surface properties of carbon materials.

    Science.gov (United States)

    Sedykh, A E; Gordeev, E G; Pentsak, E O; Ananikov, V P

    2016-02-14

    Graphene can efficiently shield chemical interactions and gradually decrease the binding to reactive defect areas. In the present study, we have used the observed graphene shielding effect to control the reactivity patterns on the carbon surface. The experimental findings show that a surface coating with a tiny carbon layer of 1-2 nm thickness is sufficient to shield the defect-mediated reactivity and create a surface with uniform binding ability. The shielding effect was directly observed using a combination of microscopy techniques and evaluated with computational modeling. The theoretical calculations indicate that a few graphene layers can drastically reduce the binding energy of the metal centers to the surface defects by 40-50 kcal mol(-1). The construction of large carbon areas with controlled surface reactivity is extremely difficult, which is a key limitation in many practical applications. Indeed, the developed approach provides a flexible and simple tool to change the reactivity patterns on large surface areas within a few minutes.

  17. Conservative method for determination of material thickness used in shielding of veterinary facilities; Metodo conservativo para determinacao de espessura de materiais utilizados para blindagem de instalacoes veterinarias

    Energy Technology Data Exchange (ETDEWEB)

    Lava, Deise D.; Borges, Diogo da S.; Affonso, Renato R.W.; Moreira, Maria de L.; Guimaraes, Antonio C.F., E-mail: deise_dy@hotmail.com, E-mail: diogosb@outlook.com, E-mail: raoniwa@yahoo.com.br, E-mail: malu@ien.gov.br, E-mail: tony@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    For determination of an effective method for shielding of veterinary rooms, was provided shielding methods generally used in rooms which works with X-ray production and radiotherapy. Every calculation procedure is based in traditional variables used to transmission calculation. The thickness of the materials used for primary and secondary shieldings are obtained to respect the limits set by the Brazilian National Nuclear Energy Commission (CNEN). This work presents the development of a computer code in order to serve as a practical tool for determining rapid and effective materials and their thicknesses to shield veterinary facilities. The code determines transmission values of the shieldings and compares them with data from transmission 'maps' provided by NCRP-148 report. These 'maps' were added to the algorithm through interpolation techniques of curves of materials used for shielding. Each interpolation generates about 1,000,000 points that are used to generate a new curve. The new curve is subjected to regression techniques, which makes possible to obtain nine degree polynomial, and exponential equations. These equations whose variables consist of transmission of values, enable trace all the points of this curve with high precision. The data obtained from the algorithm were satisfactory with official data presented by the National Council of Radiation Protection and Measurements (NCRP) and can contribute as a practical tool for verification of shielding of veterinary facilities that require using Radiotherapy techniques and X-ray production.

  18. Microwave Absorption and Shielding, Property of Composites with FeSiA1 and Carbonous Materials as Filler

    Institute of Scientific and Technical Information of China (English)

    Wenqiang Zhang; Yonggang Xu; Liming Yuan; Jun Cai; Deyuan Zhangt

    2012-01-01

    Silicone rubber composites filled with FeSiAI alloys and multi-walled carbon nanotubes (MWCNT)/graphite have been prepared for the first time by a coating process. The complex permittivity and permeability of the composites were measured with a vector network analyzer in a 1-4 GHz frequency range, and the DC electric conductivity was measured by a standard four-point contact method. These parameters were then used to calculate the reflection loss (RL) and shielding effectiveness (SE) of the composites. The results showed that the added MWCNT increased the permittivity and permeability of composites in the L-band, while the added graphite increased only the permittivity. The variation lies in the interactions between two carbonous absorbents. Addition of 1 wt% MWCNT enhanced the RL in the L-band (minimum -5.7 dB at 1 ram, -7.3 dB at 1.5 ram), while the addition of graphite did not. Addition of MWCNT as well as graphite reinforced the shielding property of the composites (maximum SE 13.3 dB at 1 ram, 18.3 dB at 1.5 ram) owing to the increase of conductivity. The addition of these carbonous materials could hold the promise of enforcing the absorption and shielding property of the absorbers.

  19. Radiation transmission data for radionuclides and materials relevant to brachytherapy facility shielding.

    Science.gov (United States)

    Papagiannis, P; Baltas, D; Granero, D; Pérez-Calatayud, J; Gimeno, J; Ballester, F; Venselaar, J L M

    2008-11-01

    To address the limited availability of radiation shielding data for brachytherapy as well as some disparity in existing data, Monte Carlo simulation was used to generate radiation transmission data for 60Co, 137CS, 198Au, 192Ir 169Yb, 170Tm, 131Cs, 125I, and 103pd photons through concrete, stainless steel, lead, as well as lead glass and baryte concrete. Results accounting for the oblique incidence of radiation to the barrier, spectral variation with barrier thickness, and broad beam conditions in a realistic geometry are compared to corresponding data in the literature in terms of the half value layer (HVL) and tenth value layer (TVL) indices. It is also shown that radiation shielding calculations using HVL or TVL values could overestimate or underestimate the barrier thickness required to achieve a certain reduction in radiation transmission. This questions the use of HVL or TVL indices instead of the actual transmission data. Therefore, a three-parameter model is fitted to results of this work to facilitate accurate and simple radiation shielding calculations.

  20. Radiation transmission data for radionuclides and materials relevant to brachytherapy facility shielding

    Energy Technology Data Exchange (ETDEWEB)

    Papagiannis, P.; Baltas, D.; Granero, D.; Perez-Calatayud, J.; Gimeno, J.; Ballester, F.; Venselaar, J. L. M. [Medical Physics Laboratory, Medical School, University of Athens, 75 Mikras Asias, 11527, Athens (Greece); Department of Medical Physics and Engineering, Strahlenklinik, Klinikum Offenbach, 63069 Offenbach (Germany); Radiotherapy Department, La Fe University Hospital, E46009 Valencia (Spain); FIVO, Fundacion Instituto Valenciano, de Oncologia, E46009 Valencia (Spain); Department of Atomic, Molecular, and Nuclear Physics, University of Valencia and IFIC-CSIC, E46100 Burjassot (Spain); Department of Medical Physics, Dr. B. Verbeeten Instituut, P.O. Box 90120, 5000 LA, Tilburg (Netherlands)

    2008-11-15

    To address the limited availability of radiation shielding data for brachytherapy as well as some disparity in existing data, Monte Carlo simulation was used to generate radiation transmission data for {sup 60}Co, {sup 137}Cs, {sup 198}Au, {sup 192}Ir, {sup 169}Yb, {sup 170}Tm, {sup 131}Cs, {sup 125}I, and {sup 103}Pd photons through concrete, stainless steel, lead, as well as lead glass and baryte concrete. Results accounting for the oblique incidence of radiation to the barrier, spectral variation with barrier thickness, and broad beam conditions in a realistic geometry are compared to corresponding data in the literature in terms of the half value layer (HVL) and tenth value layer (TVL) indices. It is also shown that radiation shielding calculations using HVL or TVL values could overestimate or underestimate the barrier thickness required to achieve a certain reduction in radiation transmission. This questions the use of HVL or TVL indices instead of the actual transmission data. Therefore, a three-parameter model is fitted to results of this work to facilitate accurate and simple radiation shielding calculations.

  1. Decomposition of the absorbed dose by LET in tissue-equivalent materials within the SHIELD-HIT transport code

    CERN Document Server

    Sobolevsky, N; Buyukcizmeci, N; Ergun, A; Latysheva, L; Ogul, R

    2015-01-01

    The SHIELD-HIT transport code, in several versions, has been used for modeling the interaction of therapeutic beams of light nuclei with tissue-equivalent materials for a long time. All versions of the code include useful option of decomposition of the absorbed dose by the linear energy transfer (LET), but this option has not been described and published so far. In this work the procedure of decomposition of the absorbed dose by LET is described and illustrated by using the decomposition of the Bragg curve in water phantom, irradiated by beams of protons, alpha particles, and of ions lithium, carbon and oxygen.

  2. Determination of total mass attenuation coefficients, effective atomic numbers and electron densities for different shielding materials used in radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Almeida J, A. T. [FUNDACENTRO, Centro Regional de Minas Gerais, Brazilian Institute for Safety and Health at Work, Belo Horizonte, 30180-100 Minas Gerais (Brazil); Nogueira, M. S. [Center of Development of Nuclear Technology / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Santos, M. A. P., E-mail: mnogue@cdtn.br [Regional Center for Nuclear Science / CNEN, 50.740-540 Recife, Pernambuco (Brazil)

    2015-10-15

    Full text: In this paper, the interaction of X-rays with some shielding materials has been studied for materials containing different amounts of barite and aggregates. The total mass attenuation coefficient (μ{sub t}) for three shielding materials has been calculated by using WinXCOM program in the energy range from RQR qualities (RQR-4, RQR-6, RQR-9, and RQR-10). They were: cream barite (density 2.99 g/cm{sup 3} collected in the State of Sao Paulo), purple barite (density 2.95 g/cm{sup 3} collected in the State of Bahia) and white barite (density 3.10 g/cm{sup 3} collected in the State of Paraiba). The chemical analysis was carried out by an X-ray fluorescence spectrometer model EDX-720, through dispersive energy. The six elements of the higher concentration found in the sample and analyzed by Spectrophotometry of Energy Dispersive X-ray for the samples were Ba(60.9% - white barite), Ca(17,92% - cream barite), Ce(3,60% - white barite), Fe(17,16% - purple barite), S(12,11% - white barite) and Si(29,61% - purple barite). Also, the effective atomic number (Z{sub eff}) and the effective electron density (N{sub eff}) were calculated using the values of the total mass attenuation coefficient. The dependence of these parameters on the incident photon energy and the chemical composition has been examined. (Author)

  3. Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material

    Energy Technology Data Exchange (ETDEWEB)

    G. Gordon

    2004-10-13

    Stress corrosion cracking is one of the most common corrosion-related causes for premature breach of metal structural components. Stress corrosion cracking is the initiation and propagation of cracks in structural components due to three factors that must be present simultaneously: metallurgical susceptibility, critical environment, and static (or sustained) tensile stresses. This report was prepared according to ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of this report is to provide an evaluation of the potential for stress corrosion cracking of the engineered barrier system components (i.e., the drip shield, waste package outer barrier, and waste package stainless steel inner structural cylinder) under exposure conditions consistent with the repository during the regulatory period of 10,000 years after permanent closure. For the drip shield and waste package outer barrier, the critical environment is conservatively taken as any aqueous environment contacting the metal surfaces. Appendix B of this report describes the development of the SCC-relevant seismic crack density model (SCDM). The consequence of a stress corrosion cracking breach of the drip shield, the waste package outer barrier, or the stainless steel inner structural cylinder material is the initiation and propagation of tight, sometimes branching, cracks that might be induced by the combination of an aggressive environment and various tensile stresses that can develop in the drip shields or the waste packages. The Stainless Steel Type 316 inner structural cylinder of the waste package is excluded from the stress corrosion cracking evaluation because the Total System Performance Assessment for License Application (TSPA-LA) does not take credit for the inner cylinder. This document provides a detailed description of the process-level models that can be applied to assess the

  4. High Kinetic Energy Penetrator Shielding and High Wear Resistance Materials Fabricated with Boron Nitride Nanotubes (BNNTS) and BNNT Polymer Composites

    Science.gov (United States)

    Kang, Jin Ho (Inventor); Park, Cheol (Inventor); Sauti, Godfrey (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Lowther, Sharon E. (Inventor); Bryant, Robert George (Inventor)

    2015-01-01

    Boron nitride nanotubes (BNNTs), boron nitride nanoparticles (BNNPs), carbon nanotubes (CNTs), graphites, or combinations, are incorporated into matrices of polymer, ceramic or metals. Fibers, yarns, and woven or nonwoven mats of BNNTs are used as toughening layers in penetration resistant materials to maximize energy absorption and/or high hardness layers to rebound or deform penetrators. They can be also used as reinforcing inclusions combining with other polymer matrices to create composite layers like typical reinforcing fibers such as Kevlar.RTM., Spectra.RTM., ceramics and metals. Enhanced wear resistance and usage time are achieved by adding boron nitride nanomaterials, increasing hardness and toughness. Such materials can be used in high temperature environments since the oxidation temperature of BNNTs exceeds 800.degree. C. in air. Boron nitride based composites are useful as strong structural materials for anti-micrometeorite layers for spacecraft and space suits, ultra strong tethers, protective gear, vehicles, helmets, shields and safety suits/helmets for industry.

  5. Highly Effective Electromagnetic Interference Shielding Materials based on Silver Nanowire/Cellulose Papers.

    Science.gov (United States)

    Lee, Tae-Won; Lee, Sang-Eui; Jeong, Young Gyu

    2016-05-25

    We fabricated silver nanowire (AgNW)-coated cellulose papers with a hierarchical structure by an efficient and facile dip-coating process, and investigated their microstructures, electrical conductivity and electromagnetic interference (EMI) shielding effectiveness. SEM images confirm that AgNWs are coated dominantly on the paper surfaces, although they exist partially in the inner parts of the cellulose papers, which demonstrates that the AgNW density gradually decreases in thickness direction of the AgNW/cellulose papers. This result is supported by the anisotropic apparent electrical conductivity of the AgNW/cellulose papers depending on in-plane or thickness direction. Even for a AgNW/cellulose paper obtained by a single dip-coating cycle, the apparent electrical conductivity in the in-plane direction of 0.34 S/cm is achieved, which is far higher than the neat cellulose paper with ∼10(-11) S/cm. In addition, the apparent electrical conductivity of the papers in the in-plane direction increases significantly from 0.34 to 67.51 S/cm with increasing the number of dip-coating cycle. Moreover, although the AgNW/cellulose paper with 67.51 S/cm possesses 0.53 vol % AgNW only, it exhibits high EMI shielding performance of ∼48.6 dB at 1 GHz. This indicates that the cellulose paper structure is highly effective to form a conductive AgNW network. Overall, it can be concluded that the AgNW/cellulose papers with high flexibility and low density can be used as electrically conductive components and EMI shielding elements in advanced application areas.

  6. Gamma ray shielding study of barium-bismuth-borosilicate glasses as transparent shielding materials using MCNP-4C code, XCOM program, and available experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Reza; Yousefinia, Hassan [Nuclear Fuel Cycle Research School (NFCRS), Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of); Moghaddam, Alireza Khorrami [Radiology Department, Paramedical Faculty, Mazandaran University of Medical Sciences, Sari (Iran, Islamic Republic of)

    2017-02-15

    In this work, linear and mass attenuation coefficients, effective atomic number and electron density, mean free paths, and half value layer and 10th value layer values of barium-bismuth-borosilicate glasses were obtained for 662 keV, 1,173 keV, and 1,332 keV gamma ray energies using MCNP-4C code and XCOM program. Then obtained data were compared with available experimental data. The MCNP-4C code and XCOM program results were in good agreement with the experimental data. Barium-bismuth-borosilicate glasses have good gamma ray shielding properties from the shielding point of view.

  7. Shields-1, A SmallSat Radiation Shielding Technology Demonstration

    Science.gov (United States)

    Thomsen, D. Laurence, III; Kim, Wousik; Cutler, James W.

    2015-01-01

    The NASA Langley Research Center Shields CubeSat initiative is to develop a configurable platform that would allow lower cost access to Space for materials durability experiments, and to foster a pathway for both emerging and commercial-off-the-shelf (COTS) radiation shielding technologies to gain spaceflight heritage in a relevant environment. The Shields-1 will be Langleys' first CubeSat platform to carry out this mission. Radiation shielding tests on Shields-1 are planned for the expected severe radiation environment in a geotransfer orbit (GTO), where advertised commercial rideshare opportunities and CubeSat missions exist, such as Exploration Mission 1 (EM-1). To meet this objective, atomic number (Z) graded radiation shields (Zshields) have been developed. The Z-shield properties have been estimated, using the Space Environment Information System (SPENVIS) radiation shielding computational modeling, to have 30% increased shielding effectiveness of electrons, at half the thickness of a corresponding single layer of aluminum. The Shields-1 research payload will be made with the Z-graded radiation shields of varying thicknesses to create dose-depth curves to be compared with baseline materials. Additionally, Shields-1 demonstrates an engineered Z-grade radiation shielding vault protecting the systems' electronic boards. The radiation shielding materials' performances will be characterized using total ionizing dose sensors. Completion of these experiments is expected to raise the technology readiness levels (TRLs) of the tested atomic number (Z) graded materials. The most significant contribution of the Z-shields for the SmallSat community will be that it enables cost effective shielding for small satellite systems, with significant volume constraints, while increasing the operational lifetime of ionizing radiation sensitive components. These results are anticipated to increase the development of CubeSat hardware design for increased mission lifetimes, and enable

  8. Ion mobility spectrometer with virtual aperture grid

    Science.gov (United States)

    Pfeifer, Kent B.; Rumpf, Arthur N.

    2010-11-23

    An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

  9. Shielding properties of composite materials based on epoxy resin with graphene nanoplates in the microwave frequency range

    Science.gov (United States)

    Volynets, N. I.; Bychenok, D. S.; Lyubimov, A. G.; Kuzhir, P. P.; Maksimenko, S. A.; Baturkin, S. A.; Klochkov, A. Ya.; Mastrucci, M.; Micciulla, F.; Bellucci, S.

    2016-12-01

    Analysis of the electromagnetic properties of composite materials based on epoxy resin with the addition of 0.5 wt % graphene nanoplates in the frequency range of 26-37 GHz is performed. The influence of types of epoxy resin with different viscosities and the type of solvent used (ethanol, acetone) on the electromagnetic response in this frequency range are determined. It is established that the least viscous epoxy resin, Epikote 828, and solvent ethanol are most effective for creation of a shielding covering in the microwave range. Composite materials with optimal composition provide attenuation of the electromagnetic signal at a level at least 10 dB in power for a film thickness of 1.1 mm.

  10. Research Progress of Electromagnetic Shielding Material of Metal Fiber%金属纤维电磁屏蔽材料的研究进展

    Institute of Scientific and Technical Information of China (English)

    王建忠; 奚正平; 汤慧萍; 黄卫东; 朱纪磊; 李程; 敖庆波

    2011-01-01

    The present paper describes briefly the harm of electromagnetic radiation and the mechanism of electromagnetic shielding material and it focuses on the application and research progress of electromagnetic shielding fabric, electromagnetic shielding polymer and electromagnetic shielding architecture and decoration material made by metal fiber and predicts the development of electromagnetic shielding material in the future. It points out that great attention should be paid to developing an advanced, high-property, low-consumption and green-environment-protection electromagnetic shielding materials with high absorption and low reflection and transmission. Furthermore, it considers that the internal composition and structure need optimizing and the forming process needs improving in order to enhance shielding effectiveness.%描述电磁辐射的危害及电磁屏蔽材料的屏蔽机制,重点阐述金属纤维制备电磁屏蔽织物、电磁屏蔽聚合物材料及电磁屏蔽建筑与装饰材料的应用及研究进展,并对未来电磁屏蔽材料的发展趋势作预测,指出开发具有高吸收率、低反射率与低透射率的高性能、低消耗兼绿色环保的新型电磁屏蔽材料是未来的研究重点,同时对材料内部组织与结构进行优化,改进成型工艺,提高其电磁屏蔽效能.

  11. Preparation and properties of flexible flame-retardant neutron shielding material based on methyl vinyl silicone rubber

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Hao [Department of Nuclear Science & Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing (China); Tang, Xiaobin, E-mail: tangxiaobin@nuaa.edu.cn [Department of Nuclear Science & Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing (China); Jiangsu Key Laboratory of Nuclear Energy Equipment Materials Engineering (China); Ni, Minxuan; Chen, Feida; Zhang, Yun [Department of Nuclear Science & Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing (China); Chen, Da [Department of Nuclear Science & Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing (China); Jiangsu Key Laboratory of Nuclear Energy Equipment Materials Engineering (China); Qiu, Yunlong [ZhongXing Energy Equipment Co., LTD, Haimen Nantong (China)

    2015-09-15

    Flexible flame-retardant composites were prepared using high-functional methyl vinyl silicone rubber matrix with B{sub 4}C, hollow beads, and zinc borate (ZB) as filler materials. As filler content increased, the tensile strength, elongation, and tear strength of the composites initially increased and then decreased. The shore hardness of the composites increased with increasing filler content with a maximum value of 30 HA. The heat insulation properties of the composites with hollow beads were higher than that of the ordinary composites with the same filler mass fraction. When ZB content exceeded 12 wt%, the limit of oxygen index of the composites was higher than 27.1%. With Am–Be neutron as the test radiation source, the transmission of neutron for a 2 cm sample was only 47.8%. Powder surface modification improved the mechanical properties, thermal conductivity, flame retardancy, and neutron shielding performance of the composites, but did not affect shore hardness.

  12. Preparation and properties of flexible flame-retardant neutron shielding material based on methyl vinyl silicone rubber

    Science.gov (United States)

    Chai, Hao; Tang, Xiaobin; Ni, Minxuan; Chen, Feida; Zhang, Yun; Chen, Da; Qiu, Yunlong

    2015-09-01

    Flexible flame-retardant composites were prepared using high-functional methyl vinyl silicone rubber matrix with B4C, hollow beads, and zinc borate (ZB) as filler materials. As filler content increased, the tensile strength, elongation, and tear strength of the composites initially increased and then decreased. The shore hardness of the composites increased with increasing filler content with a maximum value of 30 HA. The heat insulation properties of the composites with hollow beads were higher than that of the ordinary composites with the same filler mass fraction. When ZB content exceeded 12 wt%, the limit of oxygen index of the composites was higher than 27.1%. With Am-Be neutron as the test radiation source, the transmission of neutron for a 2 cm sample was only 47.8%. Powder surface modification improved the mechanical properties, thermal conductivity, flame retardancy, and neutron shielding performance of the composites, but did not affect shore hardness.

  13. The performance test of anti-scattering x-ray grid with inclined shielding material by MCNP code simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jun Woo; Kim, Hee Reyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2016-06-15

    The scattered photons cause reduction of the contrast of radiographic image and it results in the degradation of the quality of the image. In order to acquire better quality image, an anti-scattering x-ray gird should be equipped in radiography system. The X-ray anti-scattering grid of the inclined type based on the hybrid concept for that of parallel and focused type was tested by MCNP code. The MCNPX 2.7.0 was used for the simulation based test. The geometry for the test was based on the IEC 60627 which was an international standard for diagnostic X-ray imaging equipment-Characteristics of general purpose and mammographic anti-scatter grids. The performance of grids with four inclined shielding material types was compared with that of the parallel type. The grid with completely tapered type the best performance where there were little performance difference according to the degree of inclination.

  14. Neutronic Reactor Shield

    Science.gov (United States)

    Fermi, Enrico; Zinn, Walter H.

    The argument of the present Patent is a radiation shield suitable for protection of personnel from both gamma rays and neutrons. Such a shield from dangerous radiations is achieved to the best by the combined action of a neutron slowing material (a moderator) and a neutron absorbing material. Hydrogen is particularly effective for this shield since it is a good absorber of slow neutrons and a good moderator of fast neutrons. The neutrons slowed down by hydrogen may, then, be absorbed by other materials such as boron, cadmium, gadolinium, samarium or steel. Steel is particularly convenient for the purpose, given its effectiveness in absorbing also the gamma rays from the reactor (both primary gamma rays and secondary ones produced by the moderation of neutrons). In particular, in the present Patent a shield is described, made of alternate layers of steel and Masonite (an hydrolized ligno-cellulose material). The object of the present Patent is not discussed in any other published paper.

  15. Influence of the placement of a previously derived ellipse shaped aperture in the starting material on the processing with drawing of the cold rolled sheet steels

    OpenAIRE

    Cvetkov, Slavco; Simeonov, Simeon; Dimitrov, Sasko

    2011-01-01

    In this paper, a research of the impact of the position regarding the main directions of the plane anisotropy of previously derived ellipse shaped aperture (opening) in starting material on the workability of the drawn cold rolled sheet steel is made. This influence is researched using hydraulic drawing of cold rolled sheet steel with previous derived ellipse shaped openings placed in the directions of plane anisotropy. The research aims to show how the position of the previous derived el...

  16. Foam-Reinforced Polymer Matrix Composite Radiation Shields Project

    Data.gov (United States)

    National Aeronautics and Space Administration — New and innovative lightweight radiation shielding materials are needed to protect humans in future manned exploration vehicles. Radiation shielding materials are...

  17. Gamma Dose Distribution Studies in Ducted Shield Material Having Different Configurations

    Science.gov (United States)

    Sayed Ahmed, F. M.

    In the present work the radial distribution of total gamma doses arising from the interaction of reactor neutrons and gamma radiations inside ilmenite heavy concrete shield are measured. The ilmenite concrete is pierced with neutral beam injector ducts having different diameters and lengths. The results obtained show a relative increase in radial gamma doses at a distance of 10 cm from the neutral beam end. An empirical formula was obtained, fitting the measured gamma doses at the peak position in good agreement within a factor of 1.27. Moreover the variation of the total gamma radiation was measured along straight filled ducted with different diameters and length. The experimental data obtained show a reasonable agreement with calculated ones. The scattered as well as unscattered components of the gamma radiation transmitted through a straight duct were investigated. An empirical formula describing this behaviour was obtained.Translated AbstractDie Untersuchung der Dosisverteilung in verschieden konfigurierten Schirmmaterialien mit DurchführungenIn der vorliegenden Arbeit wird die radiale Verteilung der totalen -Dosis gemessen, wie sie aus der Wechselwirkung von Reaktorneutronen und -Strahlung innerhalb eines Betonschirms entsteht. Der Beton ist mit verschieden großen und langen Durchführungen versehen. Die erhaltenen Resultate zeigen einen relativen Intensitätspik 10 cm vor Durchführungsende. Eine empirische Formel wird aufgestellt, die diese Verhältnisse relativ gut (um den Faktor 1.27) wiedergibt. Darüber hinaus wurde die Gamma-Strahlung entlang gerader, gefüllter Durchführungen unterschiedlicher Abmessungen gemessen. Übereinstimmung mit berechneten Werten konnte erzielt werden. Sowohl die gestreuten als auch die ungestreuten Komponenten der Gamma-Strahlung in einer geraden Durchführung wurden untersucht und eine beschriebene, empirische Formel dafür angegeben.

  18. The evaluation of neutron and gamma ray dose equivalent distributions in patients and the effectiveness of shield materials for high energy photons radiotherapy facilities.

    Science.gov (United States)

    Ghassoun, J; Senhou, N

    2012-04-01

    In this study, the MCNP5 code was used to model radiotherapy room of a medical linear accelerator operating at 18 MV and to evaluate the neutron and the secondary gamma ray fluences, the energy spectra and the dose equivalent distributions inside a liquid tissue-equivalent (TE) phantom. The obtained results were compared with measured data published in the literature. Moreover, the shielding effects of various neutron material shields on the radiotherapy room wall were also investigated. Our simulation results showed that paraffin wax containing boron carbide presents enough effectiveness to reduce both neutron and secondary gamma ray doses.

  19. The evaluation of neutron and gamma ray dose equivalent distributions in patients and the effectiveness of shield materials for high energy photons radiotherapy facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ghassoun, J., E-mail: ghassoun@ucam.ac.ma [EPRA, Department of Physics, Faculty of Sciences Semlalia, PO Box: 2390, 40000 Marrakech (Morocco); Senhou, N. [EPRA, Department of Physics, Faculty of Sciences Semlalia, PO Box: 2390, 40000 Marrakech (Morocco)

    2012-04-15

    In this study, the MCNP5 code was used to model radiotherapy room of a medical linear accelerator operating at 18 MV and to evaluate the neutron and the secondary gamma ray fluences, the energy spectra and the dose equivalent distributions inside a liquid tissue-equivalent (TE) phantom. The obtained results were compared with measured data published in the literature. Moreover, the shielding effects of various neutron material shields on the radiotherapy room wall were also investigated. Our simulation results showed that paraffin wax containing boron carbide presents enough effectiveness to reduce both neutron and secondary gamma ray doses. - Highlights: Black-Right-Pointing-Pointer The Monte Carlo method has been used to model radiotherapy room of a 18 MV linear accelerator. Black-Right-Pointing-Pointer The neutron and the gamma ray dose equivalent distributions inside a liquid (TE) phantom were evaluated. Black-Right-Pointing-Pointer The radiotherapy room shielding performance has been also investigated.

  20. Preparation of the New-type Gradient Nuclear Radiation Shielding Material%一种新型梯度防核辐射材料的制备

    Institute of Scientific and Technical Information of China (English)

    马涛; 刘宇艳; 刘振国; 刘少柱; 贾默; 尹松年

    2012-01-01

    A new-type gradient nuclear radiation shielding material was prepared for utilizing Lu203 ,tungsten and polyethylene as main raw materials by mechanical blending method handled with coupling agent, acid and alkali reaction method and in-situ reaction. Afterwards hot-press processing and layered hot-pressing superimposition was used to process materials and then gradient materials were obtained. At last,monolayer and gradient materials were characterized and tested. The results indicated that: the new gradient material had good tensile properties. Meanwhile, beta and gamma rays could be shielded well, it oneself had lead-free poison, the lasting shielding effectiveness, the good comprehensive shielding performance,and it could flexibly adjust the types and the order of monolayer materials for getting corresponding gradient materials according to the specific radiation environment. The gradient materials had a good application future.%以氧化镥、钨、聚乙烯为主要原料,运用偶联剂处理的机械共混法、酸碱反应法、原位反应法制备出一种新型梯度防核辐射材料,测试结果表明:制得的新型梯度防核辐射材料,具有良好的拉伸性能,对口射线、7射线均有很好的屏蔽效果,无铅毒、屏蔽效能持久,综合性能良好。这种梯度材料能根据具体辐射环境灵活调整组成材料的种类与顺序,具有良好的应用价值与使用前景。

  1. Material characterisation and preliminary mechanical design for the HL-LHC shielded beam screens operating at cryogenic temperatures

    CERN Document Server

    Garion, C; Koettig, T; Machiocha, W; Morrone, M

    2015-01-01

    The High Luminosity LHC project (HL-LHC) aims at increasing the luminosity (rate of collisions) in the Large Hadron Collider (LHC) experiments by a factor of 10 beyond the original design value (from 300 to 3000 fb-1). It relies on new superconducting magnets, installed close to the interaction points, equipped with new beam screen. This component has to ensure the vacuum performance together with shielding the cold mass from physics debris and screening the cold bore cryogenic system from beam induced heating. The beam screen operates in the range 40-60 K whereas the magnet cold bore temperature is 1.9 K. A tungsten-based material is used to absorb the energy of particles. In this paper, measurements of the mechanical and physical properties of such tungsten material are shown at room and cryogenic temperature. In addition, the design and the thermal mechanical behaviour of the beam screen assembly are presented also. They include the heat transfer from the tungsten absorbers to the cooling pipes and the sup...

  2. Material characterisation and preliminary mechanical design for the HL-LHC shielded beam screens operating at cryogenic temperatures.

    Science.gov (United States)

    Garion, C.; Dufay-Chanat, L.; Koettig, T.; Machiocha, W.; Morrone, M.

    2015-12-01

    The High Luminosity LHC project (HL-LHC) aims at increasing the luminosity (rate of collisions) in the Large Hadron Collider (LHC) experiments by a factor of 10 beyond the original design value (from 300 to 3000 fb-1). It relies on new superconducting magnets, installed close to the interaction points, equipped with new beam screen. This component has to ensure the vacuum performance together with shielding the cold mass from physics debris and screening the cold bore cryogenic system from beam induced heating. The beam screen operates in the range 40-60 K whereas the magnet cold bore temperature is 1.9 K. A tungsten-based material is used to absorb the energy of particles. In this paper, measurements of the mechanical and physical properties of such tungsten material are shown at room and cryogenic temperature. In addition, the design and the thermal mechanical behaviour of the beam screen assembly are presented also. They include the heat transfer from the tungsten absorbers to the cooling pipes and the supporting system that has to minimise the heat inleak into the cold mass. The behaviour during a magnet quench is also presented.

  3. Stress Corrosion Cracking of the Drip Shield, The Waste Package Outer Barrier and the Stainless Steel Structural Material

    Energy Technology Data Exchange (ETDEWEB)

    C. Stephen

    2000-04-17

    One of the potential failure modes of the drip shield (DS), the waste package (WP) outer barrier, and the stainless structural material is the initiation and propagation of stress corrosion cracking (SCC) induced by the WP environment and various types of stresses that can develop in the DSs or the WPs. For the current design of the DS and WP, however, the DS will be excluded from the SCC evaluation because stresses that are relevant to SCC are insignificant in the DS. The major sources of stresses in the DS are loadings due to backfill and earthquakes. These stresses will not induce SCC because the stress caused by backfill is generally compressive stress and the stress caused by earthquakes is temporary in nature. The 316NG stainless steel inner barrier of the WP will also be excluded from the SCC evaluation because the SCC performance assessment will not take credit from the inner barrier. Therefore, the purpose of this document is to provide a detailed description of the process-level models that can be applied to assess the performance of the material (i.e., Alloy 22) used for the WP outer barrier subjected to the effects of SCC. As already mentioned in the development plan for the WP PMR (CRWMS M and O 1999e), this Analyses and Models Report (AMR) is to serve as a feed to the Waste Package Degradation (WPD) Total System Performance Assessment (TSPA) and Process Model Report (PMR).

  4. 隔声罩吸声材料对其性能影响研究%Research on the Influence of Acoustic Shield Absorption Material on Its Performance

    Institute of Scientific and Technical Information of China (English)

    冀军鹤; 唐鹏

    2016-01-01

    In order to improve the performance of acoustic shield in our company's compressor, with a screw compressor as testing machine, sound absorption material used for the acoustic shield is researched. The results show that designing available materials have great influence on performance of acoustic shield according to noise spectrum characteristics. The optimized sound absorption material has made the acoustic shield insertion loss improved by 4.4 dB (A), reaching expected requirements.%以某螺杆压缩机作为试验机,对其隔声罩所用吸声材料进行研究。结果表明,根据噪声源频谱特征、设计合适的吸声材料对隔声罩的性能改善至关重要。吸声材料优化使得隔声罩的性能插入损失提高4.4dB (A),符合预期要求。

  5. Shielding Design and Radiation Shielding Evaluation for LSDS System Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Younggook; Kim, Jeongdong; Lee, Yongdeok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    As the system characteristics, the target in the spectrometer emits approximately 1012 neutrons/s. To efficiently shield the neutron, the shielding door designs are proposed for the LSDS system through a comparison of the direct shield and maze designs. Hence, to guarantee the radiation safety for the facility, the door design is a compulsory course of the development of the LSDS system. To improve the shielding rates, 250x250 covering structure was added as a subsidiary around the spectrometer. In this study, the evaluations of the suggested shielding designs were conducted using MCNP code. The suggested door design and covering structures can shield the neutron efficiently, thus all evaluations of all conditions are satisfied within the public dose limits. From the Monte Carlo code simulation, Resin(Indoor type) and Tungsten(Outdoor type) were selected as the shielding door materials. From a comparative evaluation of the door thickness, In and Out door thickness was selected 50 cm.

  6. Optimized design on multi-layer iron fiber electromagnetic shielding materials%铁纤维多层电磁屏蔽材料优化设计

    Institute of Scientific and Technical Information of China (English)

    曲兆明; 王庆国; 秦思良; 胡小锋

    2011-01-01

    The relationship between shielding effectiveness of iron fiber multi-layer electromagnetic shielding materials and dimension, concentration of filler and thickness of each layer was presented based on strong fluctuation theory and electromagnetic field theory. Three-layer iron fiber composite was optimized using genetic algorithms from 8GHz to 12GHz and the optimization parameters of every layer were presented under the targets of shielding effectiveness not below 35dB and the total thickness not exceeding 5mm. The feasibility of design on broadband, thin-layer iron fiber electromagnetic shielding materials was verified by the example.%应用强扰动理论及电磁场理论建立了填充铁纤维多层电磁屏蔽材料屏蔽效能与填料尺寸、浓度及各层厚度的关系.基于遗传算法对频带8~18GHz内填充铁纤维三层屏蔽复合材料进行了优化设计,在屏蔽效能不小于35dB、总厚度不超过5mm的优化目标下,得到了各层材料的最佳结构参数配比.算例分析验证了填充铁纤维实现宽带薄层电磁屏蔽材料的可行性.

  7. Preparation and Study of Electromagnetic Interference Shielding Materials Comprised of Ni-Co Coated on Web-Like Biocarbon Nanofibers via Electroless Deposition

    Directory of Open Access Journals (Sweden)

    Xiaohu Huang

    2015-01-01

    Full Text Available Electromagnetic interference (EMI shielding materials made of Ni-Co coated on web-like biocarbon nanofibers were successfully prepared by electroless plating. Biocarbon nanofibers (CF with a novel web-like structure comprised of entangled and interconnected carbon nanoribbons were obtained using bacterial cellulose pyrolyzed at 1200°C. Paraffin wax matrix composites filled with different loadings (10, 20, and 30 wt%, resp. of CF and Ni-Co coated CF (NCCF were prepared. The electrical conductivities and electromagnetic parameters of the composites were investigated by the four-probe method and vector network analysis. From these results, the EMI shielding efficiencies (SE of NCCF composites were shown to be significantly higher than that of CF at the same mass fraction. The paraffin wax composites containing 30 wt% NCCF showed the highest EMI SE of 41.2 dB (99.99% attenuation, which are attributed to the higher electrical conductivity and permittivity of the NCCF composites than the CF composites. Additionally, EMI SE increased with an increase in CF and NCCF loading and the absorption was determined to be the primary factor governing EMI shielding. This study conclusively reveals that NCCF composites have potential applications as EMI shielding materials.

  8. The Development of Materials for Structures and Radiation Shielding in Aerospace

    Science.gov (United States)

    Kiefer, Richard L.; Orwoll, Robert A.

    2001-01-01

    Polymeric materials on space vehicles and high-altitude aircraft win be exposed to highly penetrating radiations. These radiations come from solar flares and galactic cosmic rays (GCR). Radiation from solar flares consists primarily of protons with energies less than 1 GeV. On the other hand, GCR consist of nuclei with energies as high as 10(exp 10) GeV. Over 90% of the nuclei in GCR are protons and alpha particles, however there is a small but significant component of particles with atomic numbers greater than ten. Particles with high atomic number (Z) and high energy interact with very high specific ionization and thus represent a serious hazard for humans and electronic equipment on a spacecraft or on high-altitude commercial aircraft (most importantly for crew members who would have long exposures). Neutrons generated by reactions with the high energy particles also represent a hazard both for humans and electronic equipment.

  9. Shield construction methods. Recent status and examples of development of material transportation systems; Shirudo koho. Saikin no shizai hanso system kaihatsu genkyo to jirei

    Energy Technology Data Exchange (ETDEWEB)

    Mochizuki, M.; Tazaki, A.; Makigami, S. [Tomoe Electric Manufacturing Company, Limited, Tokyo (Japan)

    1998-03-25

    Material transportation in a shield construction is assigned to transporting segments, aggregates, and pipes, particularly the segment transportation being the major assignment. Other materials are transported in spare moments between the segment transportation as required. The other materials can often be transported by utilizing segment transporting vehicles. Thus, for a transportation system in the shield construction, a segment transportation system which can synchronize with construction cycles based on those for a shield excavation machine is considered most importantly, and developed as the main force. The segment transportation system is classified into a rail type transportation system and a tire type transportation system. A high-speed transportation system of the former type transports materials at as high speed as 8 to 15 km/h. An Abt-system railway type steep-slope transportation system operates on slopes as steep as 20 to 40%. The tire transportation system is advantageous from an environmental preservation viewpoint. This paper introduces examples of constructions using a high-speed construction system for long tunnel construction, a steep-slope material transportation system, and an automatic trackless system. 2 figs., 2 tabs.

  10. Shielding structure analysis for LSDS facility

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hong Yeop; Kim, Jeong Dong; Lee, Yong Deok; Kim, Ho Dong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The nuclear material (Pyro, Spent nuclear fuel) itself and the target material to generate neutrons is the LSDS system for isotopic fissile assay release of high intensity neutron and gamma rays. This research was performed to shield from various strong radiation. A shielding evaluation was carried out with a facilities model of LSDS system. The MCNPX 2.5 code was used and a shielding evaluation was performed for the shielding structure and location. The radiation dose based on the hole structure and location of the wall was evaluated. The shielding evaluation was performed to satisfy the safety standard for a normal person (1 μSv/h) and to use enough interior space. The MCNPX2.5 code was used and a dose evaluation was performed for the location of the shielding material, shielding structure, and hole structure. The evaluation result differs according to the shielding material location. The dose rate was small when the shielding material was positioned at the center. The dose evaluation result regarding the location of the shielding material was applied to the facility and the shielding thickness was determined (In 50 cm + Borax 5 cm + Out 45cm). In the existing hole structure, the radiation leak is higher than the standard. A hole structure model to prevent leakage of radiation was proposed. The general public dose limit was satisfied when using the concrete reinforcement and a zigzag structure. The shielding result will be of help to the facility shielding optimization.

  11. Development of a double plasma gun device for investigation of effects of vapor shielding on erosion of PFC materials under ELM-like pulsed plasma bombardment

    Science.gov (United States)

    Sakuma, I.; Iwamoto, D.; Kitagawa, Y.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2012-10-01

    It is considered that thermal transient events such as type I edge localized modes (ELMs) could limit the lifetime of plasma-facing components (PFCs) in ITER. We have investigated surface damage of tungsten (W) materials under transient heat and particle loads by using a magnetized coaxial plasma gun (MCPG) device at University of Hyogo. The capacitor bank energy for the plasma discharge is 144 kJ (2.88 mF, 10 kVmax). Surface melting of a W material was clearly observed at the energy density of ˜2 MJ/m2. It is known that surface melting and evaporation during a transient heat load could generate a vapor cloud layer in front of the target material [1]. Then, the subsequent erosion could be reduced by the vapor shielding effect. In this study, we introduce a new experiment using two MCPG devices (MCPG-1, 2) to understand vapor shielding effects of a W surface under ELM-like pulsed plasma bombardment. The capacitor bank energy of MCPG-2 is almost same as that of MCPG-1. The second plasmoid is applied with a variable delay time after the plasmoid produced by MCPG-1. Then, a vapor cloud layer could shield the second plasma load. To verify the vapor shielding effects, surface damage of a W material is investigated by changing the delay time. In the conference, the preliminary experimental results will be shown.[4pt] [1] A. Hassanein et al., J. Nucl. Mater. 390-391, pp. 777-780 (2009).

  12. Magnetic shielding for superconducting RF cavities

    Science.gov (United States)

    Masuzawa, M.; Terashima, A.; Tsuchiya, K.; Ueki, R.

    2017-03-01

    Magnetic shielding is a key technology for superconducting radio frequency (RF) cavities. There are basically two approaches for shielding: (1) surround the cavity of interest with high permeability material and divert magnetic flux around it (passive shielding); and (2) create a magnetic field using coils that cancels the ambient magnetic field in the area of interest (active shielding). The choice of approach depends on the magnitude of the ambient magnetic field, residual magnetic field tolerance, shape of the magnetic shield, usage, cost, etc. However, passive shielding is more commonly used for superconducting RF cavities. The issue with passive shielding is that as the volume to be shielded increases, the size of the shielding material increases, thereby leading to cost increase. A recent trend is to place a magnetic shield in a cryogenic environment inside a cryostat, very close to the cavities, reducing the size and volume of the magnetic shield. In this case, the shielding effectiveness at cryogenic temperatures becomes important. We measured the permeabilities of various shielding materials at both room temperature and cryogenic temperature (4 K) and studied shielding degradation at that cryogenic temperature.

  13. Aperture area measurement facility

    Data.gov (United States)

    Federal Laboratory Consortium — NIST has established an absolute aperture area measurement facility for circular and near-circular apertures use in radiometric instruments. The facility consists of...

  14. Shielding in Mental Health Hospitals

    Directory of Open Access Journals (Sweden)

    Espen W. Haugom

    2016-02-01

    Full Text Available Shielding is defined as the confinement of patients to a single room or a separate unit/area inside the ward, accompanied by a member of staff. It is understood as both a treatment and a control. The purpose of this study is to examine how staff in psychiatric hospitals describe and assess shielding. This qualitative study uses a descriptive and exploratory design with an inductive approach. The material was acquired through the Acute Network (in Psychiatry nationwide shielding project. Data collection was carried out by the staff, who described the shielding procedure on a semi-structured form. The analysis was inspired by Graneheim and Lundman’s qualitative content analysis. Shielding has been described as an ambiguous practice, that is, shielding can be understood in several ways. There is a clear tension between shielding as a control and shielding as a treatment, with control being described as more important. The important therapeutic elements of shielding have also been mentioned, and shielding involves isolation to different degrees.

  15. Shielding property of different prosthetic materials to shield radiation of 125I seed%基托材料对125I粒子屏蔽效果的初步研究

    Institute of Scientific and Technical Information of China (English)

    白阳; 王燕一; 张蕾; 步荣发

    2011-01-01

    目的 探讨应用赝复体或修复体承载 125I粒子进行肿瘤治疗时,不同修复材料对 125I粒子辐射的屏蔽作用.方法 125I粒子为放射源,用热释光剂量元件进行测量,建立体外照射模型.载体选用纯钛板、钴铬合金板、聚甲基丙烯酸甲酯板,以铅板为对照,比较各种材料板的屏蔽效果.结果 在距离放射源10 mm处,经屏蔽后剂量分别为0.09 mm纯钛板2.805 mGy,0.48 mm钛板1.082 mGy,0.410、0.671 mm钴铬合金板为0.390、0.261 mGy,1.685 mm聚甲基丙烯酸甲酯板为2.885 mGy.结论 钴铬合金的屏蔽效果优于其他材料,聚甲基丙烯酸甲酯对 125I粒子具有一定屏蔽作用,与0.557 mm以上钛板共用可达到铅板防护效果.%Objective To investigation the shielding property to 125I of several different prosthetic materials used in clinical when prostheses are used as carriers of 125I seed in tumor treatment. Methods125I seeds were taken as the radiation sources to establish a model in vitro and the radiation doses were measured by thermoluminescent dosemeters(TLD). The shielding property of titanium plate, cochrome plate, and poly methyl methacrylate(PMMA) plate were detected, calculated and compared with that of plumbum plate in the control group. Results The radiation doses of the radiation source at 10 mm distance through the following materials were measured, and the results are 2.805 mGy (0.09 mm thick titanium plate), 1.082 mGy (0.48 thick titanium plate),0.390 mGy (0.41 mm thick cochrome plate), and 0.261 mGy (0.67 mm′s cochrome plate), and 2.885 mGy (1.685 mm thick PMMA plate). ConclusionsThe shield property of cochrome is optimal. The poly methyl methacrylate behaves to some extend as a shield to the 125I seed which can shield the radiation as the effects of plumbum when adopted together with the 0.557 mm′s(or more)titanium plate.

  16. Study on Electromagnetic Shielding and Absorptive Materials Used for Landmine Shell%地雷壳体电磁屏蔽吸收材料应用研究

    Institute of Scientific and Technical Information of China (English)

    罗先南; 方向; 高振儒; 刘君; 方鲲

    2012-01-01

    采用不锈钢纤维( SSF)填充丙烯腈-丁二烯-苯乙烯塑料制备导电工程塑料,并测试材料的物理和电磁屏蔽吸收性能.结果表明,SSF质量分数为15%时,能较好地兼顾材料的物理性能与加工难度,且在强电磁源主要频段有20 dB以上的屏蔽效能.低频磁场屏蔽效能测试结果表明,材料对低频磁场影响甚微,不影响地雷磁引信正常工作.该材料有助于提高磁引信地雷在高功率电磁环境下的生存能力.%A new kinds of conductive engineering material was prepared, by using stainless steel fibers ( SSF ) to fill acrylonitrile-butadiene-styrenecopolymer, and physical properties and electromagnetic shielding and absorptive capabilities of the new materials were tested. The results showed that when the mass fraction of SSF was 15%, the new material was better balanced between the physical properties and the difficulty of processing. The electromagnetic shielding effect was more than 20 dB in main frequency band of high power microwave sources. The test of shielding effect in low frequency magnetic field showed that the new material had few influence on low frequency magnetic field and magnetic fuze of landmine could normally work. The new material could promote the viability of landmine with magnetic fuze in high power electromagnetic environment.

  17. Determination and Fabrication of New Shield Super Alloys Materials for Nuclear Reactor Safety by Experiments and Cern-Fluka Monte Carlo Simulation Code, Geant4 and WinXCom

    Science.gov (United States)

    Aygun, Bünyamin; Korkut, Turgay; Karabulut, Abdulhalik

    2016-05-01

    Despite the possibility of depletion of fossil fuels increasing energy needs the use of radiation tends to increase. Recently the security-focused debate about planned nuclear power plants still continues. The objective of this thesis is to prevent the radiation spread from nuclear reactors into the environment. In order to do this, we produced higher performanced of new shielding materials which are high radiation holders in reactors operation. Some additives used in new shielding materials; some of iron (Fe), rhenium (Re), nickel (Ni), chromium (Cr), boron (B), copper (Cu), tungsten (W), tantalum (Ta), boron carbide (B4C). The results of this experiments indicated that these materials are good shields against gamma and neutrons. The powder metallurgy technique was used to produce new shielding materials. CERN - FLUKA Geant4 Monte Carlo simulation code and WinXCom were used for determination of the percentages of high temperature resistant and high-level fast neutron and gamma shielding materials participated components. Super alloys was produced and then the experimental fast neutron dose equivalent measurements and gamma radiation absorpsion of the new shielding materials were carried out. The produced products to be used safely reactors not only in nuclear medicine, in the treatment room, for the storage of nuclear waste, nuclear research laboratories, against cosmic radiation in space vehicles and has the qualities.

  18. SU-E-T-523: Investigation of Various MR-Compatible Shielding Materials for Direction Modulated Brachytherapy (DMBT) Tandem Applicator for Cervical Cancer Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Safigholi, H; Soliman, A; Song, W [Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, U of T, Toronto, Ontario (Canada); Han, D [Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, U of T, Toronto, Ontario (Canada); University of California, San Diego, La Jolla, CA (United States); Meigooni, A Soleimani [Comprehensive Cancer Center of Nevada, Las Vegas, NV (United States); Scanderbeg, D [UCSD Medical Center, La Jolla, CA (United States)

    2015-06-15

    Purpose: To evaluate various shielding materials such as Gold (Au), Osmium (Os), Tantalum (Ta), and Tungsten (W) based alloys for use with a novel intensity modulation capable direction modulated brachytherapy (DMBT) tandem applicator for image guided cervical cancer HDR brachytherapy. Methods: The novel MRI-compatible DMBT tandem, made from nonmagnetic tungsten-alloy rod with diameter of 5.4 mm, has 6 symmetric peripheral holes of 1.3 mm diameter with 2.05 mm distance from the center for a high degree intensity modulation capacity. The 0.3 mm thickness of bio-compatible plastic tubing wraps the tandem. MCNPX was used for Monte Carlo simulations of the shields and the mHDR Ir-192 V2 source. MC-generated 3D dose matrices of different shielding materials of Au, Os, Ta, and W with 1 mm3 resolution were imported into an in-house-coded inverse optimization planning system to evaluate 19 clinical patient plans. Prescription dose was 15Gy. All plans were normalized to receive the same HRCTV D90. Results: In general, the plan qualities for various shielding materials were similar. The OAR D2cc for bladder was very similar for Au, Os, and Ta with 11.64±2.30Gy. For W, it was very close 11.65±2.30Gy. The sigmoid D2cc was 9.82±2.46Gy for Au and Os while it was 9.84±2.48Gy for Ta and W. The rectum D2cc was 7.44±3.06Gy for Au, 7.43±3.07Gy for Os, 7.48±3.05Gy for Ta, and 7.47±3.05Gy for W. The HRCTV D98 and V100 were very close with 16.37±1.87 Gy and 97.37±1.93 Gy, on average, respectively. Conclusion: Various MRI-compatible shielding alloys were investigated for the DMBT tandem applicator. The clinical plan qualities were not significantly different among these various alloys, however. Therefore, the candidate metals (or in combination) can be used to select best alloys for MRI image guided cervical cancer brachytherapy using the novel DMBT applicator that is capable of unprecedented level of intensity modulation.

  19. Structural/Radiation-Shielding Epoxies

    Science.gov (United States)

    Connell, John W.; Smith, Joseph G.; Hinkley, Jeffrey; Blattnig, Steve; Delozier, Donavon M.; Watson, Kent A.; Ghose, Sayata

    2009-01-01

    A development effort was directed toward formulating epoxy resins that are useful both as structural materials and as shielding against heavy-ion radiation. Hydrogen is recognized as the best element for absorbing heavy-ion radiation, and high-hydrogen-content polymers are now in use as shielding materials. However, high-hydrogen-content polymers (e.g. polyethylene) are typically not good structural materials. In contrast, aromatic polymers, which contain smaller amounts of hydrogen, often have the strength necessary for structural materials. Accordingly, the present development effort is based on the concept that an ideal structural/ heavy-ion-radiation-shielding material would be a polymer that contains sufficient hydrogen (e.g., in the form of aliphatic molecular groups) for radiation shielding and has sufficient aromatic content for structural integrity.

  20. Neutron shielding material design based on Monte Carlo simulation%基于蒙特卡罗方法的中子屏蔽材料设计

    Institute of Scientific and Technical Information of China (English)

    陈飞达; 汤晓斌; 王鹏; 陈达

    2012-01-01

    基于蒙特卡罗粒子输运程序MCNP,设计了一种强度高、密度低、具有优异中子屏蔽性能的新型玻璃纤维/B4C/环氧树脂复合材料,模拟计算了镅-铍(Am-Be)中子源产生中子对该材料的透射率;研究了该材料的中子屏蔽性能与传统屏蔽材料的差异以及不同B4C质量分数对该材料的屏蔽性能影响;根据模拟结果分析了该材料对不同能区中子(慢中子、中能中子、快中子)具有的不同屏蔽性能.研究发现:B4C质量分数为10%的该种新型玻璃纤维/B4C/环氧树脂复合材料的中子屏蔽性能,尤其是慢中子屏蔽性能较传统的含硼聚乙烯和Al-B4C合金材料更为优异;但随着B4C质量分数的增大,屏蔽性能提升不明显.结果验证了蒙特卡罗方法用于中子屏蔽材料优化设计的可行性.%Based on the Monte Carlo particle transport program MCNP, a noveL glass fiber/B4 C/epoxy resin composite for neutron shielding with high strength and low density was developed. Its neutron transmissivity was calculated under the Am-Be neutron source condition to study the difference of neutron shielding performance between the glass fiber/B4 C/epoxy resin composite and traditional shielding materials. Furthermore, effects of B4 C mass fraction of the composite on the shielding performance for neutrons with different energy(slow neutron, intermediate neutron, fast neutron) were analyzed. The results show the composites with 10% B4C mass contents have more advantages on the neutron shielding performance , especially the slow neutron shielding performance in comparison with polyethylene/boron containing composites and Al-B4 C alloy. With the further increasing of the B4C contents, no remarkable increase is observed. Monte Carlo method is demonstrated feasible in optimization design of neutron shielding materials and the results provide a theoretical basis for design and preparation of a new neutron shielding composite.

  1. Enhancement in the microstructure and neutron shielding efficiency of sandwich type of 6061Al–B{sub 4}C composite material via hot isostatic pressing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Ju, E-mail: jinjupark@kaeri.re.kr [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), 1045 Daedeokdaero, Yuseong, Daejon 305-353 (Korea, Republic of); Hong, Sung-Mo [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), 1045 Daedeokdaero, Yuseong, Daejon 305-353 (Korea, Republic of); Division of Advanced Materials Engineering, Kongju National University, Cheonan 330-717 (Korea, Republic of); Lee, Min-Ku; Rhee, Chang-Kyu [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), 1045 Daedeokdaero, Yuseong, Daejon 305-353 (Korea, Republic of); Rhee, Won-Hyuk [Daewha Alloytech, Dangjin 343-882 (Korea, Republic of)

    2015-02-15

    Highlights: • 6061Al–B{sub 4}C neutron shielding composites are fabricated by sintering and HIP. • HIP process improves the wettability of B{sub 4}C particles into 6061Al matrix. • Neutron attenuation performance can be enhanced by application of HIP process. - Abstract: Sandwich type of 6061Al–B{sub 4}C composite plates, which are used as a thermal neutron absorber for spent nuclear fuel pool storage rack, were fabricated using two different consolidation ways as sintering and hot isostatic pressing (HIP) processes and their thermal neutron shielding efficiency was investigated as a function of B{sub 4}C concentration ranging from 0 to 40 wt.%. For this purpose, two respective inner core compaction parts of sintered and HIPped neutron absorbing composite materials were first produced and then cladded them between two outer plates by HIP process. The application of HIP process provided not only a lead of excellent interfacial adhesion due to the improved wettability but also an enhancement of thermal neutron shielding efficiency owing to the more uniform dispersion of B{sub 4}C particles.

  2. Explicit formulation of the J2-integral in anisotropic materials and its application in microcrack shielding problems

    Institute of Scientific and Technical Information of China (English)

    陈宜亨; 马浩

    1997-01-01

    The explicit formulation of the J2-integral in anisotropic bodies and its application in microcrack shielding problems are discussed. With analytical treatments and numerical examinations, it is proved that there is a redistribution law for the remote J-integral in a discrete model of microcrack shielding problems, i.e. the projected conservation law of the Jk-vector. In this law, the J2-integral which was disregarded by Herrmann (1981) is proved to be of the same significance as the J1-integral. It is also concluded that the two energy dissipative processes due to the mi crocrack damage, i. e. the reduction in the effective moduli and the release of residual stresses, can be described by using the dissipation of the remote J-integral spreading across the microcrack damage zone.

  3. Heat and Mass Transfer in the Chemical Vapor Deposition of Silicon Carbide in a Porous Carbon-Carbon Composite Material for a Heat Shield

    Science.gov (United States)

    Reznik, S. V.; Mikhailovskii, K. V.; Prosuntsov, P. V.

    2017-03-01

    Physical and mathematical simulations of the chemical vapor deposition of silicon carbide in a porous carbon-carbon composite material in a chemical vapor deposition reactor for formation of a matrix of a carbon-ceramic composite material for a heat shield of an aerospace aircraft have been performed. Results of parametric calculations of the heat and mass transfer at the macro- and microlevels in representative elements of the microstructure of carbon-carbon composite materials different in residual porosity at different temperatures in the reaction zone of the reactor are presented. Features of compaction of the pore space of a carbon-carbon composite material by a silicon-carbide matrix depending on the technological parameters of the reaction medium were analyzed.

  4. Radiation Shielding Optimization on Mars

    Science.gov (United States)

    Slaba, Tony C.; Mertens, Chris J.; Blattnig, Steve R.

    2013-01-01

    Future space missions to Mars will require radiation shielding to be optimized for deep space transit and an extended stay on the surface. In deep space, increased shielding levels and material optimization will reduce the exposure from most solar particle events (SPE) but are less effective at shielding against galactic cosmic rays (GCR). On the surface, the shielding provided by the Martian atmosphere greatly reduces the exposure from most SPE, and long-term GCR exposure is a primary concern. Previous work has shown that in deep space, additional shielding of common materials such as aluminum or polyethylene does not significantly reduce the GCR exposure. In this work, it is shown that on the Martian surface, almost any amount of aluminum shielding increases exposure levels for humans. The increased exposure levels are attributed to neutron production in the shield and Martian regolith as well as the electromagnetic cascade induced in the Martian atmosphere. This result is significant for optimization of vehicle and shield designs intended for the surface of Mars.

  5. Study on the Gamma Passive Analysis for the Thickness of Two Layer Shield Materials%双层屏蔽厚度γ反解技术研究

    Institute of Scientific and Technical Information of China (English)

    张连平; 吴伦强; 韦孟伏

    2015-01-01

    分析高分辨(能谱获取测量对象特定信息在军控核查领域有重要应用,根据多组不同能峰强度比等信息反解给出源外屏蔽材料几何信息有望有效消除未知包装容器对容器内部材料特性认识的影响。分析建立了反解源外双层屏蔽厚度的方法,实验测量反解了钚源和152 Eu点源外双层屏蔽材料的厚度,152 Eu点源的解析结果明显优于钚源,分析了实验解析结果与实际厚度值之间存在一定偏差的原因。%Acquiring the special information about measured object by gamma spectrum has important application in the field of arms control verification.The geometry information of the shield material out of source has been obtained by several group of intensity ratio of different energy gamma rays, which would reduce the affect for the evaluation of the inner assembly characteristic when the packaging is unknown.In this paper, the method of an-alyzing the thickness of several layers shield materials has been established, and the thickness of several layer shield materials out of plutonium source and 152 Eu source has been analyzed based on the experiment, the result of the 152 Eu source is better than the plutonium source obviously, the reason of the disagreement between the ex-periment result and the actual value has been analyzed.

  6. 硫酸渣辐射屏蔽材料制备与效果评价%Preparation and Effect Assessment of Gamma Ray Shielding Materials Containing Pyrite Cinder

    Institute of Scientific and Technical Information of China (English)

    王烨; 张晓文; 王续琨; 钟永明; 吕俊文; 彭莹; 李密

    2015-01-01

    采用直接掺杂法分别制备了硫酸渣—混凝土、硫酸渣—粉煤灰—混凝土和铅—混凝土屏蔽材料,用NaI( TI)探测器、多道脉冲幅度分析仪和WINXCOM软件分析它们对γ射线的辐射防护能力。结果表明:硫酸渣制备的屏蔽材料辐射防护性能优于已有的石灰岩制备的屏蔽材料和FPPB屏蔽材料,可用作射线屏蔽材料,并有望实现固体废弃物的合理利用。%Pyrite cinder-concrete,pyrite cinder-fly ash-concrete and lead-concrete shielding materials have been prepared by means of direct doping. NaI ( TI) detectors,multi-channel pulse amplitude analyzer and WinXCOM software were used to test and analyze their radia-tion shielding property. The results show that the radiation shielding property of shielding material containing pyrite cinder is better than the existing shielding materials prepared from limestone and FPPB. Consequently,it can be used effectively as shielding materials against gamma radiation,and is expected to achieve the goal of rational utilization of solid waste.

  7. Numerical simulation of the coupling of ultra-wide band electromagnetic pulse into landmine by aperture

    Science.gov (United States)

    Gao, Zhen-Ru; Zhao, Hui-Chang; Yang, Li; Wang, Feng-Shan

    2015-09-01

    The modern landmine’s electronic fuse is susceptible to strong interference or can even be damaged by the ultra-wide band electromagnetic pulse (UWB-EMP). The finite-difference time-domain (FDTD) method in lossy media with cylindrical coordinates is used to study the interactions of the UWB-EMP with the landmine. First, the coupling of UWB-EMP into the landmine shielding shell through an aperture is numerically simulated. Second, the coupled electromagnetic field of mine shells made of different shielding materials and with apertures of different sizes is plotted. Third, the aperture coupling laws of UWB-EMP into shells are analyzed and categorized. Such an algorithm is capable of effectively preventing ladder similar errors, and consequently improving the calculation precision, and in addition to adopting the message passing interface (MPI) parallel method to divide the total calculating range into more sub-ranges, the overall calculating efficiency is greatly increased. These calculations are surely a constructive reference for modern landmine design against electromagnetic damage. Project supported by the Postdoctoral Science Foundation of China (Grant No. 2014M552610).

  8. Energy conserving coupling through small apertures in an infinite perfect conducting screen

    Science.gov (United States)

    Petzold, J.; Tkachenko, S.; Vick, R.

    2015-11-01

    Apertures in shielding enclosures are an important issue for determining shielding efficiencies. Various mathematical procedures and theories were employed to describe the coupling between the regions connected via an aperture in a well conducting plane. Bethe's theory describes the coupling via the equivalent problem of field excited dipole moments at the location of the aperture. This approach neglects the reaction of the dipole moments on the exciting field and therefore violates energy conservation. This work emphasizes an analytical approach for coupling between half-spaces through small apertures, inspired by the so called method of small antenna, which allows an understandable generalization of Bethe's theory.

  9. Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials

    Science.gov (United States)

    Singh, Narveer; Singh, Kanwar Jit; Singh, Kulwant; Singh, Harvinder

    2004-09-01

    Gamma-ray mass attenuation coefficients have been measured experimentally and calculated theoretically for PbO-B 2O 3 and Bi 2O 3-PbO-B 2O 3 glass systems using narrow beam transmission method. These values have been used to calculate half value layer (HVL) parameter. These parameters have also been calculated theoretically for some standard radiation shielding concretes at same energies. Effect of replacing lead by bismuth has been analyzed in terms of density, molar volume and mass attenuation coefficient.

  10. Measuring space radiation shielding effectiveness

    Science.gov (United States)

    Bahadori, Amir; Semones, Edward; Ewert, Michael; Broyan, James; Walker, Steven

    2017-09-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  11. X 射线屏蔽材料设计与制备的研究进展%Research progress of design and production of X-ray shielding materials

    Institute of Scientific and Technical Information of China (English)

    薛雯; 王富军; 王璐

    2015-01-01

    The characteristics and shielding mechanism of X-ray were introduced.The state-of-the-art of X-ray shielding materials was also reviewed in detail.Composite technology, gradient method and optimal design were put forward to fabricate lightweight and efficient radiation shielding materials.It was also pointed out that rare earth elements and nano-materials, as novel radiation shielding materials, should be used to enhance the overall performance of shielding material.%介绍X射线的特点及其屏蔽机制,详述X射线屏蔽材料的研究进展,提出材料的复合制备技术、梯度化设计以及遗传算法优化设计以制备轻质、高效、耐久的新型屏蔽材料,同时应发挥稀土元素和纳米材料的优势来增强屏蔽材料的综合性能。

  12. PENGARUH VARIASI SUHU POST WELD HEAT TREATMENT ANNEALING TERHADAP SIFAT MEKANIS MATERIAL BAJA EMS-45 DENGAN METODE PENGELASAN SHIELDED METAL ARC WELDING (SMAW

    Directory of Open Access Journals (Sweden)

    Rusiyanto Rusiyanto

    2012-02-01

    Full Text Available Penelitian ini bertujuan Untuk mengetahui nilai kekerasan Vickers material Baja EMS-45 sebelum proses pengelasan dan setelah dilakukan proses pengelasan tanpa post weld heat treatment annealing, Untuk mengetahui berapakah suhu optimal post weld heat treatment annealing untuk material baja EMS-45 dengan variasi suhu yang digunakan 350 o C, 550 o C, dan 750 C. Untuk mengetahui struktur mikro dari material baja EMS-45 akibat variasi suhu post weld heat treatment annealing pada proses pengelasan dengan menggunakan metode pengelasan shielded metal arc welding. Bahan atau material dasar yang digunakan pada penelitian ini adalah Baja EMS-45 dengan ketebalan pelat 10 mm, lebar pelat 20 mm dan panjang 100 mm. Berdasarkan hasil pengujian nilai kekerasan tertinggi setelah proses pengelasan terletak pada daerah Logam Las. Pengelasan non PWHT memiliki nilai kekerasan paling tinggi setelah proses pengelasan yaitu sebesar 183,2 VHN. Suhu optimal Post Weld Heat Treatment Annealing untuk material baja EMS-45 adalah pada suhu 750 C. Karena pada PWHT pada suhu tersebut mengalami penurunan kekerasan yang besar yaitu sebesar 127,2 VHN, sehingga material baja EMS-45 dapat memperbaiki sifat mampu mesinnya. Struktur mikro dari material baja EMS-45 sebelum proses pengelasan berupa grafit serpih, perlit dan ferit, setelah dilakukan proses pengelasan mempunyai struktur mikro berupa matrik ferit dan grafit pada daerah logam las, matrik perlit kasar dan grafit serpih pada daerah HAZ dan struktur perlit, grafit serpih dan ferit pada daerah logam induk o o

  13. Design of shielding-performance testing-device for reactors construction shielding-material based on 252Cf source%基于252Cf 源的反应堆结构屏蔽材料屏蔽性能测试装置设计

    Institute of Scientific and Technical Information of China (English)

    贺丹; 宋英明; 邹树梁; 徐守龙; 王晓冬; 朱志超; 谭桢干; 何志锋; 王新林

    2015-01-01

    Background: New material for the reactor shielding structure is one type of cast-steel impurity doping actinide elements have been adopted. The design parameters of the shielding performance testing device for the various parts of reactor can be obtained by Monte Carlo method. Purpose: This study aims to test the shielding performance of the shielding material of reactor. Methods: First of all, the testing device model was built based on a 252Cf neutron source. Three kinds of models (the thicknesses of the moderation layer, the protective layers of the neutron and gamma ray) are calculated respectively using the MCNP program for the shielding performance testing device. The GEANT4 program was used for the key moderation layer to verify the results obtained by the MCNP program. Results: Through the analysis of simulation results, we obtained optimal shielding materials and the thicknesses of material layer: moderator layer material is paraffin wax, which having a thickness of 8 cm, neutron shielding material is polyethylene, which having a thickness of 38 cm, and γ protective layer material is iron, which having a thickness of 11 cm. Conclusion: Simulation results show that the proposed shielding performance testing device can meet the requirements of neutron moderator, neutron protection and photon protection.%基于252Cf 中子源,构建了反应堆结构屏蔽材料屏蔽性能测试装置设计模型。采用 MCNP 程序建立了测试模型,并逐次模拟计算屏蔽性能测试装置慢化层、中子防护层、γ光子防护层厚度。对于关键的慢化层,采用 Geant4程序进一步验证 MCNP 程序的计算结果。通过分析模拟计算获得了最优屏蔽材料及厚度分别为:慢化层材料为石蜡,厚度为8 cm;中子防护层材料为聚乙烯,厚度为38 cm;γ防护层材料为铁,厚度为11 cm。模拟实验结果表明,所设计屏蔽性能测试装置能够满足中子慢化以及中子、光子防护的需要。

  14. Aperture optical antennas

    CERN Document Server

    Wenger, Jerome

    2014-01-01

    This contribution reviews the studies on subwavelength aperture antennas in the optical regime, paying attention to both the fundamental investigations and the applications. Section 2 reports on the enhancement of light-matter interaction using three main types of aperture antennas: single subwavelength aperture, single aperture surrounded by shallow surface corrugations, and subwavelength aperture arrays. A large fraction of nanoaperture applications is devoted to the field of biophotonics to improve molecular sensing, which are reviewed in Section 3. Lastly, the applications towards nano-optics (sources, detectors and filters) are discussed in Section 4.

  15. Advanced Multifunctional MMOD Shield: Radiation Shielding Assessment

    Science.gov (United States)

    Rojdev, Kristina; Christiansen, Eric

    2013-01-01

    Deep space missions must contend with a harsh radiation environment Impacts to crew and electronics. Need to invest in multifunctionality for spacecraft optimization. MMOD shield. Goals: Increase radiation mitigation potential. Retain overall MMOD shielding performance.

  16. Conduction mechanism in Polyaniline-flyash composite material for shielding against electromagnetic radiation in X-band & Ku band

    Science.gov (United States)

    Singh, Avanish Pratap; Anoop Kumar, S.; Chandra, Amita; Dhawan, S. K.

    2011-06-01

    β-Naphthalene sulphonic acid (β-NSA) doped polyaniline (PANI)-flyash (FA) composites have been prepared by chemical oxidative polymerization route whose conductivity lies in the range 2.37-21.49 S/cm. The temperature dependence of electrical conductivity has also been recorded which shows that composites follow Mott's 3D-VRH model. SEM images demonstrate that β-NSA leads to the formation of the tubular structure with incorporated flyash phase. TGA studies show the improvement in thermal stability of composites with increase in loading level of flyash. Complex parameters i.e. permittivity (ɛ* = ɛ'- iɛ″) and permeability (μ*=μ'- iμ″) of PANI-FA composites have been calculated from experimental scattering parameters (S11 & S21) using theoretical calculations given in Nicholson-Ross and Weir algorithms. The microwave absorption properties of the composites have been studied in X-band (8.2 - 12.4 GHz) & Ku-Band (12.4 - 18 GHz) frequency range. The maximum shielding effectiveness observed was 32dB, which strongly depends on dielectric loss and volume fraction of flyash in PANI matrix.

  17. Conduction mechanism in Polyaniline-flyash composite material for shielding against electromagnetic radiation in X-band & Ku band

    Directory of Open Access Journals (Sweden)

    Avanish Pratap Singh

    2011-06-01

    Full Text Available β–Naphthalene sulphonic acid (β–NSA doped polyaniline (PANI–flyash (FA composites have been prepared by chemical oxidative polymerization route whose conductivity lies in the range 2.37–21.49 S/cm. The temperature dependence of electrical conductivity has also been recorded which shows that composites follow Mott's 3D–VRH model. SEM images demonstrate that β–NSA leads to the formation of the tubular structure with incorporated flyash phase. TGA studies show the improvement in thermal stability of composites with increase in loading level of flyash. Complex parameters i.e. permittivity (ɛ* = ɛ′- iɛ″ and permeability (μ*=μ′- iμ″ of PANI-FA composites have been calculated from experimental scattering parameters (S11 & S21 using theoretical calculations given in Nicholson–Ross and Weir algorithms. The microwave absorption properties of the composites have been studied in X-band (8.2 – 12.4 GHz & Ku–Band (12.4 – 18 GHz frequency range. The maximum shielding effectiveness observed was 32dB, which strongly depends on dielectric loss and volume fraction of flyash in PANI matrix.

  18. A Reinforcement for Multifunctional Composites for Non-Parasitic Radiation Shielding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovative lightweight radiation shielding materials are enabling to shield humans in aerospace transportation vehicles and other human habited spaces....

  19. Carbon nanostructure composite for electromagnetic interference shielding

    Indian Academy of Sciences (India)

    Anupama Joshi; Suwarna Datar

    2015-06-01

    This communication reviews current developments in carbon nanostructure-based composite materials for electromagnetic interference (EMI) shielding. With more and more electronic gadgets being used at different frequencies, there is a need for shielding them from one another to avoid interference. Conventionally, metal-based shielding materials have been used. But due to the requirement of light weight, corrosion resistive materials, lot of work is being done on composite materials. In this research the forerunner is the nanocarbon-based composite material whose different forms add different characteristics to the composite. The article focusses on composites based on graphene, graphene oxide, carbon nanotubes, and several other novel forms of carbon.

  20. Benchmark studies of the effectiveness of structural and internal materials as radiation shielding for the international space station

    Science.gov (United States)

    Miller, J.; Zeitlin, C.; Cucinotta, F. A.; Heilbronn, L.; Stephens, D.; Wilson, J. W.

    2003-01-01

    Accelerator-based measurements and model calculations have been used to study the heavy-ion radiation transport properties of materials in use on the International Space Station (ISS). Samples of the ISS aluminum outer hull were augmented with various configurations of internal wall material and polyethylene. The materials were bombarded with high-energy iron ions characteristic of a significant part of the galactic cosmic-ray (GCR) heavy-ion spectrum. Transmitted primary ions and charged fragments produced in nuclear collisions in the materials were measured near the beam axis, and a model was used to extrapolate from the data to lower beam energies and to a lighter ion. For the materials and ions studied, at incident particle energies from 1037 MeV/nucleon down to at least 600 MeV/nucleon, nuclear fragmentation reduces the average dose and dose equivalent per incident ion. At energies below 400 MeV/nucleon, the calculation predicts that as material is added, increased ionization energy loss produces increases in some dosimetric quantities. These limited results suggest that the addition of modest amounts of polyethylene or similar material to the interior of the ISS will reduce the dose to ISS crews from space radiation; however, the radiation transport properties of ISS materials should be evaluated with a realistic space radiation field. Copyright 2003 by Radiation Research Society.

  1. Advanced Borobond™ Shields for Nuclear Materials Containment and Borobond™ Immobilization of Volatile Fission Products - Final CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Wagh, Arun S. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-05-19

    Borobond is a company-proprietary material developed by the CRADA partner in collaboration with Argonne, and is based on Argonne's Ceramicrete technology. It is being used by DOE for nuclear materials safe storage, and Boron Products, LLC is the manufacturer and supplier of Borobond.

  2. Paramagnetism shielding in drilling fluid

    OpenAIRE

    Li,Zhuo

    2013-01-01

    In drilling operations, drilling fluid containing magnetic materials is used when drilling a well. The materials can significantly shield the Earth’s magnetic field as measured by magnetic sensors inside the drilling strings. The magnetic property of the drilling fluid is one of the substantial error sources for the determination of magnetic azimuth for wellbores. Both the weight material, cuttings, clay and other formation material plus metal filings from the tubular wear m...

  3. Tile concrete base materials as substitutes for lead shielding installations diagnostic X-ray; Losetas de materiales con base de hormigon como blindajes sustitutivos del plomo en instalaciones de rayos X de diagnostico

    Energy Technology Data Exchange (ETDEWEB)

    Pombar Camean, M.; Pasin, J.; Fuestes-Vazquez, V.; Alonso, E.; Pereira, B.

    2011-07-01

    In this paper we study the damping characteristics in the energy range of medical diagnostic X-ray product X-RAD trade name manufactured by Construction Radiotherapy Techniques (CTRADC) consisting of different composition tile with concrete base, for its characterization as a substitute shielding material lead.

  4. Measurements of neutron effective doses and attenuation lengths for shielding materials at the heavy-ion medical accelerator in Chiba.

    Science.gov (United States)

    Kumamoto, Yoshikazu; Noda, Yutaka; Sato, Yukio; Kanai, Tatsuaki; Murakami, Takeshi

    2005-05-01

    The effective doses and attenuation lengths for concrete and iron were measured for the design of heavy ion facilities. Neutrons were produced through the reaction of copper, carbon, and lead bombarded by carbon ions at 230 and 400 MeV.A, neon ions at 400 and 600 MeV.A, and silicon ions at 600 and 800 MeV.A. The detectors used were a Linus and a Andersson-Braun-type rem counter and a detector based on the activation of a plastic scintillator. Representative effective dose rates (in units of 10(-8) microSv h(-1) pps(-1) at 1 m from the incident target surface, where pps means particles per second) and the attenuation lengths (in units of m) were 9.4 x 10(4), 0.46 for carbon ions at 230 MeV.A; 8.9 x 10(5), 0.48 for carbon ions at 400 MeV.A; 9.3 x 10(5), 0.48 for neon ions at 400 MeV.A; 3.8 x 10(6), 0.50 for neon ions at 600 MeV.A; 3.9 x 10(6), 0.50 for silicon ions at 600 MeV.A; and 1.1 x 10(7), 0.51 for silicon ions at 800 MeV.A. The attenuation provided by an iron plate approximately 20 cm thick (nearly equal to the attenuation length) corresponded to that of a 50-cm block of concrete in the present energy range. Miscellaneous results, such as the angular distributions of the neutron effective dose, narrow beam attenuation experiments, decay of gamma-ray doses after the bombardment of targets, doses around an irradiation room, order effects in the multi-layer (concrete and iron) shielding, the doses from different targets, the doses measured with a scintillator activation detector, the gamma-ray doses out of walls and the ratio of the response between the Andersson-Braun-type and the Linus rem counters are also reported.

  5. Mastering Apple Aperture

    CERN Document Server

    Fitzgerald, Thomas

    2013-01-01

    Written in a conversational style, the author will share his knowledge on advanced Aperture topics with detailed discussions of advanced topics, the theory behind some of those topics and lots of hints and tips for ways to improve your workflow.Photographer's who have a basic understanding of Aperture

  6. Analysis of tenth-value-layers for common shielding materials for a robotically mounted stereotactic radiosurgery machine.

    Science.gov (United States)

    Rodgers, James E

    2007-04-01

    Tenth-value-layers (TVLs) for a 6 MV stereotactic radiosurgery (SRS) x-ray beam have been computed using Monte Carlo methods for radiation transport simulation. The first and equilibrium TVLs were determined in the three most common building materials used in radiation therapy vault construction: ordinary concrete, lead, and steel (iron). In contrast to broad-beam 6 MV TVL data found in the literature, the SRS TVLs can change rapidly with the size of the radiation field incident on the barrier. This research has investigated characteristics of TVLs as a function of field size (diameter) at the barrier for all materials, with special attention given to the TVL properties in iron. The x-ray spectrum used to perform these simulations was generated for the CyberKnife accelerator with the BEAMnrc Monte Carlo code. Using this spectrum as input to the MCNP5 Monte Carlo code, predicted tissue-maximum-ratio (TMR) values for a 6-cm-diameter field (at 80 cm from the target) were benchmarked against measured TMR data. The MCNP5 code was used to simulate all barrier transmissions, keeping the standard error of each data point below 1% of the mean. Results compare very well with previous measured concrete TVLs and also with published broad-beam 6 MV TVL data for all three barrier materials.

  7. APT: Aperture Photometry Tool

    Science.gov (United States)

    Laher, Russ

    2012-08-01

    Aperture Photometry Tool (APT) is software for astronomers and students interested in manually exploring the photometric qualities of astronomical images. It has a graphical user interface (GUI) which allows the image data associated with aperture photometry calculations for point and extended sources to be visualized and, therefore, more effectively analyzed. Mouse-clicking on a source in the displayed image draws a circular or elliptical aperture and sky annulus around the source and computes the source intensity and its uncertainty, along with several commonly used measures of the local sky background and its variability. The results are displayed and can be optionally saved to an aperture-photometry-table file and plotted on graphs in various ways using functions available in the software. APT is geared toward processing sources in a small number of images and is not suitable for bulk processing a large number of images, unlike other aperture photometry packages (e.g., SExtractor). However, APT does have a convenient source-list tool that enables calculations for a large number of detections in a given image. The source-list tool can be run either in automatic mode to generate an aperture photometry table quickly or in manual mode to permit inspection and adjustment of the calculation for each individual detection. APT displays a variety of useful graphs, including image histogram, and aperture slices, source scatter plot, sky scatter plot, sky histogram, radial profile, curve of growth, and aperture-photometry-table scatter plots and histograms. APT has functions for customizing calculations, including outlier rejection, pixel “picking” and “zapping,” and a selection of source and sky models. The radial-profile-interpolation source model, accessed via the radial-profile-plot panel, allows recovery of source intensity from pixels with missing data and can be especially beneficial in crowded fields.

  8. Detailed IR aperture measurements

    CERN Document Server

    Bruce, Roderik; Garcia Morales, Hector; Giovannozzi, Massimo; Hermes, Pascal Dominik; Mirarchi, Daniele; Quaranta, Elena; Redaelli, Stefano; Rossi, Carlo; Skowronski, Piotr Krzysztof; Wretborn, Sven Joel; CERN. Geneva. ATS Department

    2016-01-01

    MD 1673 was carried out on October 5 2016, in order to investigate in more detail the available aperture in the LHC high-luminosity insertions at 6.5 TeV and β∗=40 cm. Previous aperture measurements in 2016 during commissioning had shown that the available aperture is at the edge of protection, and that the aperture bottleneck at β∗=40 cm in certain cases is found in the separation plane instead of in the crossing plane. Furthermore, the bottlenecks were consistently found in close to the upstream end of Q3 on the side of the incoming beam, and not in Q2 on the outgoing beam as expected from calculations. Therefore, this MD aimed at measuring IR1 and IR5 separately (at 6.5 TeV and β∗=40 cm, for 185 µrad half crossing angle), to further localize the bottlenecks longitudinally using newly installed BLMs, investigate the difference in aperture between Q2 and Q3, and to see if any aperture can be gained using special orbit bumps.

  9. Electromagnetic shielding. Citations from the NTIS data base

    Science.gov (United States)

    Reed, W. E.

    1980-06-01

    The bibliography presents research on electromagnetic shielding of electronic and electrical equipment personnel, and ordnance. The shielding effectiveness of materials and structures is covered. Nuclear electromagnetic pulse shielding is included. This updated bibliography contains 301 abstracts, 19 of which are new entries to the previous edition.

  10. Source of magma for Elet-Ozero pluton (NE Baltic Shield) - subduction or plume-related material?

    Science.gov (United States)

    Ryabchikov, Igor; Kogarko, Liya

    2016-04-01

    Eletozero pluton is located in the northeastern part of the Karelian Craton, it covers an area of about 100 km2 and cuts through Archaean granite-gneisses. The complex has a concentric zoned structure, the peripheral part being composed of a layered gabbro series; the central area is occupied by nepheline syenites. Mafic and ultramafic rocks in this intrusion often contain potassium feldspar (olivine monzonites and monzonites). Gabbroids are characterized by rhythmic layering expressed in the alternation of leucocratic layers predominantly composed of plagioclase and melanocratic layers with pyroxenes, olivine, titanomagnetite and ilmenite. The rocks of the pluton are enriched in highly incompatible elements by comparison with moderately incompatible elements: average primitive mantle normalized La/Lu ratio is 18.3. At the same time, all the rocks from Elet-Ozero massif including the most primitive ones (high Mg-numbers and high Ni contents) exhibit distinct positive Ba anomaly: mean chondrite normalized Ba/Th ratio is 15.3 (both elements have similar incompatibility-[1]). Enrichment of parent magma in Ba is also confirmed by the presence of high-Ba feldspars and micas in some samples of gabbroids. The most Ba-rich feldspar contains 75% of celsian component: K0.09Na0.04Ca0.008Sr0.04Ba0.75Al1.73Fe0.14Si2.20O8. Ba is a fluid mobile incompatible lithophile element that is probably the most sensitive indicator of subduction fluid addition to the mantle wedge. Thus, positive Ba anomaly suggests input of subduction related component into the source of Elet-Ozero magma. The presence of subduction related material in the lithosphere of Karelian craton has been proposed on the basis of Os isotope studies of mantle xenoliths from Finnish kimberlites [2]. The age of this subduction event is similar to the age of Elet-Ozero pluton. On the other hand, there are certain arguments in favor of connection of Elet-Ozero intrusive complex with mantle plume activity. In particular it

  11. Effective shielding to measure beam current from an ion source

    Energy Technology Data Exchange (ETDEWEB)

    Bayle, H., E-mail: bayle@bergoz.com [Bergoz Instrumentation, Saint-Genis-Pouilly (France); Delferrière, O.; Gobin, R.; Harrault, F.; Marroncle, J.; Senée, F.; Simon, C.; Tuske, O. [CEA, Saclay (France)

    2014-02-15

    To avoid saturation, beam current transformers must be shielded from solenoid, quad, and RFQ high stray fields. Good understanding of field distribution, shielding materials, and techniques is required. Space availability imposes compact shields along the beam pipe. This paper describes compact effective concatenated magnetic shields for IFMIF-EVEDA LIPAc LEBT and MEBT and for FAIR Proton Linac injector. They protect the ACCT Current Transformers beyond 37 mT radial external fields. Measurements made at Saclay on the SILHI source are presented.

  12. SU-E-T-10: A Dosimetric Comparison of Copper to Lead-Alloy Apertures for Electron Beam Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Rusk, B; Hogstrom, K; Gibbons, J; Carver, R [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States)

    2014-06-01

    Purpose: To evaluate dosimetric differences of copper compared to conventional lead-alloy apertures for electron beam therapy. Methods: Copper apertures were manufactured by .decimal, Inc. and matching lead-alloy, Cerrobend, apertures were constructed for 32 square field sizes (2×2 – 20×20 cm{sup 2}) for five applicator sizes (6×6–25×25 cm{sup 2}). Percent depth-dose and off-axis-dose profiles were measured using an electron diode in water with copper and Cerrobend apertures for a subset of aperture sizes (6×6, 10×10, 25×25 cm{sup 2}) and energies (6, 12, 20 MeV). Dose outputs were measured for all field size-aperture combinations and available energies (6–20 MeV). Measurements were taken at 100 and 110 cm SSDs. Using this data, 2D planar absolute dose distributions were constructed and compared. Passing criteria were ±2% of maximum dose or 1-mm distance-to-agreement for 99% of points. Results: A gamma analysis of the beam dosimetry showed 93 of 96 aperture size, applicator, energy, and SSD combinations passed the 2%/1mm criteria. Failures were found for small field size-large applicator combinations at 20 MeV and 100-cm SSD. Copper apertures showed a decrease in bremsstrahlung production due to copper's lower atomic number compared to Cerrobend (greatest difference was 2.5% at 20 MeV). This effect was most prominent at the highest energies with large amounts of shielding material present (small field size-large applicator). Also, an increase in electrons scattered from the collimator edge of copper compared to Cerrobend resulted in an increased dose at the field edge for copper at shallow depths (greatest increase was 1% at 20 MeV). Conclusion: Apertures for field sizes ≥6×6 cm{sup 2} at any energy, or for small fields (≤4×4 cm{sup 2}) at energies <20 MeV, showed dosimetric differences less than 2%/1mm for more than 99% of points. All field size-applicator size-energy combinations passed 3%/1mm criteria for 100% of points. Work partially

  13. Long Duration Space Shelter Shielding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) has developed a ceramic composite material system that is more effective for shielding both GCR and SPE than aluminum. The composite...

  14. The Active Muon Shield

    CERN Document Server

    Bezshyiko, Iaroslava

    2016-01-01

    In the SHiP beam-dump of the order of 1011 muons will be produced per second. An active muon-shield is used to magnetically deflect these muons out of the acceptance of the spectrom- eter. This note describes how this shield is modelled and optimized. The SHiP spectrometer is being re-optimized using a conical decay-vessel, and utilizing the possibility to magnetize part of the beam-dump shielding iron. A shield adapted to these new conditions is presented which is significantly shorter and lighter than the shield used in the Technical Proposal (TP), while showing a similar performance.

  15. Fast-neutron, coded-aperture imager

    Energy Technology Data Exchange (ETDEWEB)

    Woolf, Richard S., E-mail: richard.woolf@nrl.navy.mil; Phlips, Bernard F., E-mail: bernard.phlips@nrl.navy.mil; Hutcheson, Anthony L., E-mail: anthony.hutcheson@nrl.navy.mil; Wulf, Eric A., E-mail: eric.wulf@nrl.navy.mil

    2015-06-01

    This work discusses a large-scale, coded-aperture imager for fast neutrons, building off a proof-of concept instrument developed at the U.S. Naval Research Laboratory (NRL). The Space Science Division at the NRL has a heritage of developing large-scale, mobile systems, using coded-aperture imaging, for long-range γ-ray detection and localization. The fast-neutron, coded-aperture imaging instrument, designed for a mobile unit (20 ft. ISO container), consists of a 32-element array of 15 cm×15 cm×15 cm liquid scintillation detectors (EJ-309) mounted behind a 12×12 pseudorandom coded aperture. The elements of the aperture are composed of 15 cm×15 cm×10 cm blocks of high-density polyethylene (HDPE). The arrangement of the aperture elements produces a shadow pattern on the detector array behind the mask. By measuring of the number of neutron counts per masked and unmasked detector, and with knowledge of the mask pattern, a source image can be deconvolved to obtain a 2-d location. The number of neutrons per detector was obtained by processing the fast signal from each PMT in flash digitizing electronics. Digital pulse shape discrimination (PSD) was performed to filter out the fast-neutron signal from the γ background. The prototype instrument was tested at an indoor facility at the NRL with a 1.8-μCi and 13-μCi 252Cf neutron/γ source at three standoff distances of 9, 15 and 26 m (maximum allowed in the facility) over a 15-min integration time. The imaging and detection capabilities of the instrument were tested by moving the source in half- and one-pixel increments across the image plane. We show a representative sample of the results obtained at one-pixel increments for a standoff distance of 9 m. The 1.8-μCi source was not detected at the 26-m standoff. In order to increase the sensitivity of the instrument, we reduced the fastneutron background by shielding the top, sides and back of the detector array with 10-cm-thick HDPE. This shielding configuration led

  16. Confocal coded aperture imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, Jr., Kenneth William (Harriman, TN); Thomas, Jr., Clarence E. (Knoxville, TN)

    2001-01-01

    A method for imaging a target volume comprises the steps of: radiating a small bandwidth of energy toward the target volume; focusing the small bandwidth of energy into a beam; moving the target volume through a plurality of positions within the focused beam; collecting a beam of energy scattered from the target volume with a non-diffractive confocal coded aperture; generating a shadow image of said aperture from every point source of radiation in the target volume; and, reconstructing the shadow image into a 3-dimensional image of the every point source by mathematically correlating the shadow image with a digital or analog version of the coded aperture. The method can comprise the step of collecting the beam of energy scattered from the target volume with a Fresnel zone plate.

  17. Aperture size, materiality of the secondary room and listener location: Impact on the simulated impulse response of a coupled-volume concert hall

    Science.gov (United States)

    Ermann, Michael; Johnson, Marty E.; Harrison, Byron W.

    2003-04-01

    By adding a second room to a concert hall, and designing doors to control the sonic transparency between the two rooms, designers can create a new, coupled acoustic. Concert halls use coupling to achieve a variable, longer and distinct reverberant quality for their musicians and listeners. For this study, a coupled-volume concert hall based on an existing performing arts center is conceived and computer-modeled. It has a fixed geometric volume, form and primary-room sound absorption. Ray-tracing software simulates impulse responses, varying both aperture size and secondary-room sound absorption level, across a grid of receiver (listener) locations. The results are compared with statistical analysis that suggests a highly sensitive relationship between the double-sloped condition and the architecture of the space. This line of study aims to quantitatively and spatially correlate the double-sloped condition with (1) aperture size exposing the chamber, (2) sound absorptance in the coupled volume, and (3) listener location.

  18. Radiation Shielding for Nuclear Thermal Propulsion

    Science.gov (United States)

    Caffrey, Jarvis A.

    2016-01-01

    Design and analysis of radiation shielding for nuclear thermal propulsion has continued at Marshall Space Flight Center. A set of optimization tools are in development, and strategies for shielding optimization will be discussed. Considerations for the concurrent design of internal and external shielding are likely required for a mass optimal shield design. The task of reducing radiation dose to crew from a nuclear engine is considered to be less challenging than the task of thermal mitigation for cryogenic propellant, especially considering the likely implementation of additional crew shielding for protection from solar particles and cosmic rays. Further consideration is thus made for the thermal effects of radiation absorption in cryogenic propellant. Materials challenges and possible methods of manufacturing are also discussed.

  19. Aperture Photometry Tool

    Science.gov (United States)

    Laher, Russ R.; Gorjian, Varoujan; Rebull, Luisa M.; Masci, Frank J.; Fowler, John W.; Helou, George; Kulkarni, Shrinivas R.; Law, Nicholas M.

    2012-07-01

    Aperture Photometry Tool (APT) is software for astronomers and students interested in manually exploring the photometric qualities of astronomical images. It is a graphical user interface (GUI) designed to allow the image data associated with aperture photometry calculations for point and extended sources to be visualized and, therefore, more effectively analyzed. The finely tuned layout of the GUI, along with judicious use of color-coding and alerting, is intended to give maximal user utility and convenience. Simply mouse-clicking on a source in the displayed image will instantly draw a circular or elliptical aperture and sky annulus around the source and will compute the source intensity and its uncertainty, along with several commonly used measures of the local sky background and its variability. The results are displayed and can be optionally saved to an aperture-photometry-table file and plotted on graphs in various ways using functions available in the software. APT is geared toward processing sources in a small number of images and is not suitable for bulk processing a large number of images, unlike other aperture photometry packages (e.g., SExtractor). However, APT does have a convenient source-list tool that enables calculations for a large number of detections in a given image. The source-list tool can be run either in automatic mode to generate an aperture photometry table quickly or in manual mode to permit inspection and adjustment of the calculation for each individual detection. APT displays a variety of useful graphs with just the push of a button, including image histogram, x and y aperture slices, source scatter plot, sky scatter plot, sky histogram, radial profile, curve of growth, and aperture-photometry-table scatter plots and histograms. APT has many functions for customizing the calculations, including outlier rejection, pixel "picking" and "zapping," and a selection of source and sky models. The radial-profile-interpolation source model

  20. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to utilize a new detector material, polycrystalline mercuric iodide, for background suppression by active anticoincidence shielding in gamma-ray...

  1. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We utilize a new detector material, polycrystalline mercuric iodide, for background suppression by active anticoincidence shielding in gamma-ray spectrometers. Two...

  2. Synthetic Aperture Radar Interferometry

    Science.gov (United States)

    Rosen, P. A.; Hensley, S.; Joughin, I. R.; Li, F.; Madsen, S. N.; Rodriguez, E.; Goldstein, R. M.

    1998-01-01

    Synthetic aperture radar interferometry is an imaging technique for measuring the topography of a surface, its changes over time, and other changes in the detailed characteristics of the surface. This paper reviews the techniques of interferometry, systems and limitations, and applications in a rapidly growing area of science and engineering.

  3. Variable optofluidic slit aperture

    Institute of Scientific and Technical Information of China (English)

    Stefan Schuhladen; Kaustubh Banerjee; Moritz Stürmer; Philipp Müller; Ulrike Wallrabe; Hans Zappe

    2016-01-01

    The shape of liquid interfaces can be precisely controlled using electrowetting,an actuation mechanism which has been widely used for tunable optofluidic micro-optical components such as lenses or irises.We have expanded the considerable flexibility inherent in electrowetting actuation to realize a variable optofluidic slit,a tunable and reconfigurable two-dimensional aperture with no mechanically moving parts.This optofluidic slit is formed by precisely controlled movement of the liquid interfaces of two highly opaque ink droplets.The 1.5 mm long slit aperture,with controllably variable discrete widths down to 45 μm,may be scanned across a length of 1.5 mm with switching times between adjacent slit positions of less than 120 ms.In addition,for a fixed slit aperture position,the width may be tuned to a minimum of 3 μm with high uniformity and linearity over the entire slit length.This compact,purely fluidic device offers an electrically controlled aperture tuning range not achievable with extant mechanical alternatives of a similar size.

  4. Lensless image scanner using multilayered aperture array for noncontact imaging

    Science.gov (United States)

    Kawano, Hiroyuki

    2016-10-01

    We propose a new imaging system of a simple structure that uses a set of layered aperture arrays above a linear image sensor instead of an imaging lens. The image scanner transfers the image information by detecting the scattering rays from the object directly without any collecting power, as if it were an optical stamp. Since the aperture arrays shield the stray rays propagating obliquely, the image information can be read with high resolution even if the object floats within a few millimeters. The aperture arrays with staggered alignment in two lines widen the space with the adjacent pixel without decimating information. We manufactured a prototype model of 300-dpi resolution, whose height is as little as 5 mm. The experimental result shows that ghost images can be restricted sufficiently, and our scanner can clearly read an object within a space of <3.5 mm, meaning that it has a large depth of field of 3.5 mm.

  5. Optimization design of electromagnetic shielding composites

    Science.gov (United States)

    Qu, Zhaoming; Wang, Qingguo; Qin, Siliang; Hu, Xiaofeng

    2013-03-01

    The effective electromagnetic parameters physical model of composites and prediction formulas of composites' shielding effectiveness and reflectivity were derived based on micromechanics, variational principle and electromagnetic wave transmission theory. The multi-objective optimization design of multilayer composites was carried out using genetic algorithm. The optimized results indicate that material parameter proportioning of biggest absorption ability can be acquired under the condition of the minimum shielding effectiveness can be satisfied in certain frequency band. The validity of optimization design model was verified and the scheme has certain theoretical value and directive significance to the design of high efficiency shielding composites.

  6. Neutron shielding performance of water-extended polyester

    Energy Technology Data Exchange (ETDEWEB)

    Vega Carrillo, H.R.; Manzanares-Acuna, E.; Hernandez-Davila, V.M. [Zacatecas Univ. Autonoma, Nuclear Studies (Mexico); Vega Carrillo, H.R.; Hernandez-Davila, V.M. [Zacatecas Univ. Autonoma, Electric Engineering Academic Units (Mexico); Gallego, E.; Lorente, A. [Madrid Univ. Politecnica, cNuclear Engineering Department (Mexico)

    2006-07-01

    A Monte Carlo study to determine the shielding features to neutrons of water-extended polyester (WEP) was carried out. Materials with low atomic number are predominantly used for neutron shielding because these materials effectively attenuate neutrons, mainly through elastic and inelastic collisions. In addition to neutron attenuation properties, other desirable properties for neutron shielding materials include mechanical strength, stability, low cost, and ease of handling. During the selection of materials to design a neutron shield, prompt gamma production as well as radionuclide induced by neutron activation must be considered. In this investigation the Monte Carlo method (MCNP code) was used to evaluate the performance of a water-extended polyester shield designed for the transportation, storage, and use of a {sup 252}Cf isotopic neutron source, for comparison the calculations were extended to water shielding, the bare source in vacuum and in air. (authors)

  7. Shielding of Electronic Systems against Transient Electromagnetic Interferences

    Directory of Open Access Journals (Sweden)

    H. Herlemann

    2005-01-01

    Full Text Available In order to protect electronic systems against the effects of transient electromagnetic interferences, shields made of electrically conductive material can be used. The subject of this paper is an electrically conductive textile. When applying the shield, a reliable measure is needed in order to determine the effectiveness of the shield to protect against electromagnetic pulses. For this purpose, a time domain measurement technique is presented using double exponential pulses. With these pulses, the susceptibility of an operating electronic device with and without the shield is determined. As a criterion of quality of a shield, the breakdown failure rate found in both cases is compared.

  8. An attenuation Layer for Electromagnetic Shielding in X- Band Frequency

    Directory of Open Access Journals (Sweden)

    vida Zaroushani

    2015-06-01

    Full Text Available Uncontrolled exposure to X-band frequency leads to health damage. One of the principles of radiation protection is shielding. But, conventional shielding materials have disadvantages. Therefore, studies of novel materials, as an alternative to conventional shielding materials, are required to obtain new electromagnetic shielding material. Therefore, this study investigated the electromagnetic shielding of two component epoxy thermosetting resin for the X - band frequency with workplace approach. Two components of epoxy resin mixed according to manufacturing instruction with the weight ratio that was 100:10 .Epoxy plates fabricated in three different thicknesses (2, 4 and 6mm and shielding effectiveness measured by Vector Network Analyzer. Then, shielding effectiveness measured by the scattering parameters.The results showed that 6mm thickness of epoxy had the highest and 2mm had the lowest average of shielding effectiveness in X-band frequency that is 4.48 and 1.9 dB, respectively. Also, shielding effectiveness increased by increasing the thickness. But this increasing is useful up to 4mm. Percentage shielding effectiveness of attenuation for 6, 4 and 2mm thicknesses is 64.35%, 63.31% and 35.40%. Also, attenuation values for 4mm and 6mm thicknesses at 8.53 GHz and 8.52 GHz frequency are 77.15% and 82.95%, respectively, and can be used as favourite shields for the above frequency. 4mm-Epoxy is a suitable candidate for shielding application in X-band frequency range but, in the lower section, 6mm thickness is recommended. Finely, the shielding matrix can be used for selecting the proper thickness for electromagnetic shielding in X- Band frequency.

  9. Congenital pyriform aperture stenosis

    Energy Technology Data Exchange (ETDEWEB)

    Osovsky, Micky [Schneider Pediatric Hospital, Department of Neonatology, Petach Tikvah (Israel); Rabin Medical Center, Department of Neonatology, Schneider Children' s Medical Center of Israel, Beilinson Campus, Petah Tikvah (Israel); Aizer-Danon, Anat; Horev, Gadi [Schneider Pediatric Hospital, Department of Pediatric Radiology, Petach Tikvah (Israel); Sirota, Lea [Schneider Pediatric Hospital, Department of Neonatology, Petach Tikvah (Israel)

    2007-01-15

    Nasal airway obstruction is a potentially life-threatening condition in the newborn. Neonates are obligatory nasal breathers. The pyriform aperture is the narrowest, most anterior bony portion of the nasal airway, and a decrease in its cross-sectional area will significantly increase nasal airway resistance. Congenital nasal pyriform aperture stenosis (CNPAS) is a rare, unusual form of nasal obstruction. It should be considered in the differential diagnosis of any neonate or infant with signs and symptoms of upper airway compromise. It is important to differentiate this level of obstruction from the more common posterior choanal stenosis or atresia. CNPAS presents with symptoms of nasal airway obstruction, which are often characterized by episodic apnea and cyclical cyanosis. (orig.)

  10. International Space Station Radiation Shielding Model Development

    Science.gov (United States)

    Qualls, G. D.; Wilson, J. W.; Sandridge, C.; Cucinotta, F. A.; Nealy, J. E.; Heinbockel, J. H.; Hugger, C. P.; Verhage, J.; Anderson, B. M.; Atwell, W.

    2001-01-01

    The projected radiation levels within the International Space Station (ISS) have been criticized by the Aerospace Safety Advisory Panel in their report to the NASA Administrator. Methods for optimal reconfiguration and augmentation of the ISS shielding are now being developed. The initial steps are to develop reconfigurable and realistic radiation shield models of the ISS modules, develop computational procedures for the highly anisotropic radiation environment, and implement parametric and organizational optimization procedures. The targets of the redesign process are the crew quarters where the astronauts sleep and determining the effects of ISS shadow shielding of an astronaut in a spacesuit. The ISS model as developed will be reconfigurable to follow the ISS. Swapping internal equipment rack assemblies via location mapping tables will be one option for shield optimization. Lightweight shield augmentation materials will be optimally fit to crew quarter areas using parametric optimization procedures to minimize the augmentation shield mass. The optimization process is being integrated into the Intelligence Synthesis Environment s (ISE s) immersive simulation facility at the Langley Research Center and will rely on High Performance Computing and Communication (HPCC) for rapid evaluation of shield parameter gradients.

  11. Comparative Study of Tungsten and Lead as Gamma Ray Shielding Material%钨和铅作为γ射线屏蔽材料的性能对比研究

    Institute of Scientific and Technical Information of China (English)

    王建; 邹树梁

    2011-01-01

    首先通过对钨和铅的物理特性、价格、环保等方面特性进行了对比.当光子的能量为0.1、0.2、0.51、和1.25 MeV时,通过理论计算得出钨镍合金和铅在γ射线衰减10倍的情况下,分别所需两种物质的厚度,并作出对比图,其中钨镍合金是一种含钨量超过90%的钨基高比重合金,它是钨在工程应用中的主要存在形式.最后基于MCNP程序建立了常用的屏蔽模型,模拟计算结果显示理论计算的厚度都能够实现有效屏蔽.结果表明:钨作为新型的屏蔽材料具有很多的优势,对γ射线的屏蔽能力远高于铅.%This article firstly compares the tungsten and leads physical properties,price and environmental performance,then calculates the thickness of tungsten and lead with the gamma ray 10% transmission when the photon energy are 0.1 MeV,0.2 MeV,0.5,1 MeV and 1.25 MeV,and makes a comparison chart.Finally,it establishes a commonly used shielding model,through which to validate whether the thickness of theoretical calculation can achieve an effective shielding effect by MCNP program.The results showes that tungsten as a new type of shielding material has a lot of advantages,which shielding ability is far higher than the lead.Thus it provides the reference to choose the suitable shielding ma-terials in special occasions.

  12. Study on borate glass system containing with Bi 2O 3 and BaO for gamma-rays shielding materials: Comparison with PbO

    Science.gov (United States)

    Kaewkhao, J.; Pokaipisit, A.; Limsuwan, P.

    2010-04-01

    In this work, the mass attenuation coefficients and shielding parameters of borate glass matrices containing with Bi 2O 3 and BaO have been investigated at 662 keV, and compare with PbO in same glass structure. The theoretical values were calculated by WinXCom software and compare with experiential data. The results found that the mass attenuation coefficients were increased with increasing of Bi 2O 3, BaO and PbO concentration, due to increase photoelectric absorption of all glass samples. However, Compton scattering gives dominant contribution to the total mass attenuation coefficients for studied glass samples. Moreover the half value layers (HVL) of glass samples were also better than ordinary concretes and commercial window glass. These results reflecting that the Bi-based glass can use replace Pb in radiation shielding glass. In the case of Ba, may be can use at appropriate energy such as X-rays or lower.

  13. Radiation shielding for diagnostic radiology.

    Science.gov (United States)

    Martin, Colin J

    2015-07-01

    Scattered radiation makes up the majority of the stray radiation field around an X-ray unit. The scatter is linked to the amount of radiation incident on the patient. It can be estimated from quantities used to assess patient dose such as the kerma-area product, and factors have been established linking this to levels of scattered radiation for radiography and fluoroscopy. In radiography shielding against primary radiation is also needed, but in other modalities this is negligible, as the beam is intercepted by the image receptor. In the same way scatter from CT can be quantified in terms of dose-length product, but because of higher radiation levels, exposure to tertiary scatter from ceilings needs to be considered. Transmission requirements are determined from comparisons between calculated radiation levels and agreed dose criteria, taking into account the occupancy of adjacent areas. Thicknesses of shielding material required can then be calculated from simple equations.

  14. Passive Magnetic Shielding in Gradient Fields

    CERN Document Server

    Bidinosti, C P

    2013-01-01

    The effect of passive magnetic shielding on dc magnetic field gradients imposed by both external and internal sources is studied. It is found that for concentric cylindrical or spherical shells of high permeability material, higher order multipoles in the magnetic field are shielded progressively better, by a factor related to the order of the multipole. In regard to the design of internal coil systems for the generation of uniform internal fields, we show how one can take advantage of the coupling of the coils to the innermost magnetic shield to further optimize the uniformity of the field. These results demonstrate quantitatively a phenomenon that was previously well-known qualitatively: that the resultant magnetic field within a passively magnetically shielded region can be much more uniform than the applied magnetic field itself. Furthermore we provide formulae relevant to active magnetic compensation systems which attempt to stabilize the interior fields by sensing and cancelling the exterior fields clos...

  15. Reliability Methods for Shield Design Process

    Science.gov (United States)

    Tripathi, R. K.; Wilson, J. W.

    2002-01-01

    Providing protection against the hazards of space radiation is a major challenge to the exploration and development of space. The great cost of added radiation shielding is a potential limiting factor in deep space operations. In this enabling technology, we have developed methods for optimized shield design over multi-segmented missions involving multiple work and living areas in the transport and duty phase of space missions. The total shield mass over all pieces of equipment and habitats is optimized subject to career dose and dose rate constraints. An important component of this technology is the estimation of two most commonly identified uncertainties in radiation shield design, the shielding properties of materials used and the understanding of the biological response of the astronaut to the radiation leaking through the materials into the living space. The largest uncertainty, of course, is in the biological response to especially high charge and energy (HZE) ions of the galactic cosmic rays. These uncertainties are blended with the optimization design procedure to formulate reliability-based methods for shield design processes. The details of the methods will be discussed.

  16. Evaluation of Personal Shields Used in Selected Radiology Departments

    Directory of Open Access Journals (Sweden)

    Mohsen Salmanvandi

    2015-05-01

    Full Text Available Introduction The purpose of this study was to evaluate personal shields in radiation departments of hospitals affiliated to Mashhad University of Medical Sciences. Materials and Methods First, the information related to 109 personal shields was recorded and evaluated by imaging equipment. Afterwards, the equivalent lead thickness (ELT of 62 personal shields was assessed, using dosimeter and standard lead layers at 100 kVp. Results In this study, 109 personal shields were assessed in terms of tears, holes and cracks. The results showed that 18 shields were damaged. Moreover, ELT was evaluated in 62 shields. As the results indicated, ELT was unacceptable in 8 personal shields and lower than expected in 9 shields. Conclusion According to the results, 16.5% of personal shields had defects (tears, holes and cracks and 13% of them were unacceptable in terms of ELT and needed to be replaced. Therefore, regular quality control of personal shields and evaluation of new shields are necessary at any radiation department.

  17. Shielding high energy accelerators

    CERN Document Server

    Stevenson, Graham Roger

    2001-01-01

    After introducing the subject of shielding high energy accelerators, point source, line-of-sight models, and in particular the Moyer model. are discussed. Their use in the shielding of proton and electron accelerators is demonstrated and their limitations noted. especially in relation to shielding in the forward direction provided by large, flat walls. The limitations of reducing problems to those using it cylindrical geometry description are stressed. Finally the use of different estimators for predicting dose is discussed. It is suggested that dose calculated from track-length estimators will generally give the most satisfactory estimate. (9 refs).

  18. iSHIELD - A Line Source Application of SHIELD11

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, W.R.; Rokni, S.H.; /SLAC

    2006-04-27

    iSHIELD11 performs a line-source numerical integration of radiation source terms that are defined by the iSHIELD11 computer code[1] . An example is provided to demonstrate how one can use iSHIELD11 to perform a shielding analysis for a 250 GeV electron linear accelerator.

  19. Analysis and improvement of cyclotron thallium target room shield.

    Science.gov (United States)

    Hajiloo, N; Raisali, G; Aslani, G

    2008-01-01

    Because of high neutron and gamma-ray intensities generated during bombardment of a thallium-203 target, a thallium target-room shield and different ways of improving it have been investigated. Leakage of neutron and gamma ray dose rates at various points behind the shield are calculated by simulating the transport of neutrons and photons using the Monte Carlo N Particle transport computer code. By considering target-room geometry, its associated shield and neutron and gamma ray source strengths and spectra, three designs for enhancing shield performance have been analysed: a shielding door at the maze entrance, covering maze walls with layers of some effective materials and adding a shadow-shield in the target room in front of the radiation source. Dose calculations were carried out separately for different materials and dimensions for all the shielding scenarios considered. The shadow-shield has been demonstrated to be one suitable for neutron and gamma dose equivalent reduction. A 7.5-cm thick polyethylene shadow-shield reduces both dose equivalent rate at maze entrance door and leakage from the shield by a factor of 3.

  20. Tissue Harmonic Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Joachim

    The main purpose of this PhD project is to develop an ultrasonic method for tissue harmonic synthetic aperture imaging. The motivation is to advance the field of synthetic aperture imaging in ultrasound, which has shown great potentials in the clinic. Suggestions for synthetic aperture tissue...... system complexity compared to conventional synthetic aperture techniques. In this project, SASB is sought combined with a pulse inversion technique for 2nd harmonic tissue harmonic imaging. The advantages in tissue harmonic imaging (THI) are expected to further improve the image quality of SASB...... harmonic techniques have been made, but none of these methods have so far been applicable for in-vivo imaging. The basis of this project is a synthetic aperture technique known as synthetic aperture sequential beamforming (SASB). The technique utilizes a two step beamforming approach to drastically reduce...

  1. Microfabricated high-bandpass foucault aperture for electron microscopy

    Science.gov (United States)

    Glaeser, Robert; Cambie, Rossana; Jin, Jian

    2014-08-26

    A variant of the Foucault (knife-edge) aperture is disclosed that is designed to provide single-sideband (SSB) contrast at low spatial frequencies but retain conventional double-sideband (DSB) contrast at high spatial frequencies in transmission electron microscopy. The aperture includes a plate with an inner open area, a support extending from the plate at an edge of the open area, a half-circle feature mounted on the support and located at the center of the aperture open area. The radius of the half-circle portion of reciprocal space that is blocked by the aperture can be varied to suit the needs of electron microscopy investigation. The aperture is fabricated from conductive material which is preferably non-oxidizing, such as gold, for example.

  2. Microfabricated high-bandpass foucault aperture for electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Glaeser, Robert; Cambie, Rossana; Jin, Jian

    2014-08-26

    A variant of the Foucault (knife-edge) aperture is disclosed that is designed to provide single-sideband (SSB) contrast at low spatial frequencies but retain conventional double-sideband (DSB) contrast at high spatial frequencies in transmission electron microscopy. The aperture includes a plate with an inner open area, a support extending from the plate at an edge of the open area, a half-circle feature mounted on the support and located at the center of the aperture open area. The radius of the half-circle portion of reciprocal space that is blocked by the aperture can be varied to suit the needs of electron microscopy investigation. The aperture is fabricated from conductive material which is preferably non-oxidizing, such as gold, for example.

  3. Shielding effect of a customized intraoral mold including lead material in high-dose-rate 192-Ir brachytherapy for oral cavity cancer.

    Science.gov (United States)

    Kudoh, Takaharu; Ikushima, Hitoshi; Honda, Eiichi

    2012-01-01

    A high-dose-rate (HDR) 192-Ir brachytherapy using a customized intraoral mold is effective for superficial oral cavity cancer, and the surrounding normal tissue is kept away from the radioactive source with gauze pads and/or mouth piece for reducing the dose on the normal tissues. In the Tokushima university hospital, the mold has a lead shield which utilizes the space prepared with sufficient border-molding by a specific dental technique using modeling compound. In HDR 192-Ir brachytherapy using a lead shielded customized intraoral mold, there are no reports measuring the absorbed dose. The purpose of the present study is to measure the absorbed dose and discuss the optimum thickness of lead in HDR 192-Ir brachytherapy using a customized intraoral mold with lead shield using a 1 cm thickness mimic mold. The thickness of lead in the mold could be changed by varying the arrangement of 0.1 cm thickness sheet of the acrylic resin plate and lead. The measured doses at the lateral surface of the mold with thermo-luminescence dosimeter were reduced to 1.12, 0.79, 0.57, 0.41, 0.31, 0.24 and 0.19 Gy and the ratios to the prescription dose were reduced to 56, 40, 29, 21, 16, 12 and 10 percent as lead thickness increased from 0 to 0.6 cm in 0.1 cm increments, respectively. A 0.3 cm thickness lead was considered to be required for a 1 cm thickness mold, and it was necessary to thicken the lead as much as possible with the constraint of limited space in the oral cavity, especially at the fornix vestibule.

  4. New Aperture Partitioning Element

    Science.gov (United States)

    Griffin, S.; Calef, B.; Williams, S.

    Postprocessing in an optical system can be aided by adding an optical element to partition the pupil into a number of segments. When imaging through the atmosphere, the recorded data are blurred by temperature-induced variations in the index of refraction along the line of sight. Using speckle imaging techniques developed in the astronomy community, this blurring can be corrected to some degree. The effectiveness of these techniques is diminished by redundant baselines in the pupil. Partitioning the pupil reduces the degree of baseline redundancy, and therefore improves the quality of images that can be obtained from the system. It is possible to implement the described approach on an optical system with a segmented primary mirror, but not very practical. This is because most optical systems do not have segmented primary mirrors, and those that do have relatively low bandwidth positioning of segments due to their large mass and inertia. It is much more practical to position an active aperture partitioning element at an aft optics pupil of the optical system. This paper describes the design, implementation and testing of a new aperture partitioning element that is completely reflective and reconfigurable. The device uses four independent, annular segments that can be positioned with a high degree of accuracy without impacting optical wavefront of each segment. This mirror has been produced and is currently deployed and working on the 3.6 m telescope.

  5. RADIO SHIELDING PROPERTIES OF CONCRETE BASED ON SHUNGITE NANOMATERIALS

    OpenAIRE

    BELOUSOVA Elena Sergeevna; LYNKOV Leonid Mihailovich; MAHMOOD Mohammed Shakir; NASONOVA Natalia Viktorovna

    2013-01-01

    Modifications of shielding construction materials based on Portland cement with the addition of powder nanomaterial shungite were developed. Attenuation and re­flection of electromagnetic radiation for obtained materials were studied. Recommen­dations for using are given.

  6. Adhesive particle shielding

    Science.gov (United States)

    Klebanoff, Leonard Elliott; Rader, Daniel John; Walton, Christopher; Folta, James

    2009-01-06

    An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.

  7. Effect of CSR shielding in the compact linear collider

    CERN Document Server

    Esberg, J; Apsimon, R; Schulte, D

    2014-01-01

    The Drive Beam complex of the Compact Linear Collider must use short bunches with a large charge making beam transport susceptible to unwanted effects of Coherent Synchrotron Radiation emitted in the dipole magnets. We present the effects of transporting the beam within a limited aperture which decreases the magnitude of the CSR wake. The effect, known as CSR shielding, eases the design of key components of the facility.

  8. Shielded cells transfer automation

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, J J

    1984-01-01

    Nuclear waste from shielded cells is removed, packaged, and transferred manually in many nuclear facilities. Radiation exposure is absorbed by operators during these operations and limited only through procedural controls. Technological advances in automation using robotics have allowed a production waste removal operation to be automated to reduce radiation exposure. The robotic system bags waste containers out of glove box and transfers them to a shielded container. Operators control the system outside the system work area via television cameras. 9 figures.

  9. Gonad Shielding for Patients Undergoing Conventional Radiological Examinations: Is There Cause for Concern?

    Directory of Open Access Journals (Sweden)

    Karami

    2016-04-01

    Full Text Available Background Gonad shielding is one of the fundamental methods by which to protect reproductive organs in patients undergoing conventional radiological examinations. A lack of or inadequate shielding of the gonads may increase the exposure of these organs and result in malignancies future generations. Objectives The aim of this study is to investigate the prevalence of gonad shielding in patients undergoing conventional radiological examinations and the availability of gonad shields and gonad shielding protocols in radiology departments. Materials and Methods A retrospective, observational cross-sectional study on the application of gonad shielding, the availability of gonad shields and the existence of gonad shielding protocols in radiology departments was performed in five different hospitals in Ahvaz, Iran. Results The highest application of gonad shielding was 6.6% for the pediatric hospital. The prevalence of gonad shielding was less than 0.2%. In 64.3% of the radiography rooms, at least one flat-contact gonad shield of a large size was available. Only large-sized gonad shields were available. Curved-contact and shadow gonad shields did not exist. Gonad shielding protocols were not existence in any of the fourteen radiography rooms investigated. Conclusions Comprehensive protection programs with on-the-job training courses for staff members are strongly recommended, as well as, the provision of radiological shields and gonad shielding protocols in radiology departments to reduce the patient’s radiation dose during radiological examinations.

  10. Secondary particle simulation analysis of high-energy56Fe ion inject various shielding material%高能56Fe离子入射屏蔽材料的次级粒子模拟分析

    Institute of Scientific and Technical Information of China (English)

    荀明珠; 何承发; 陆妩; 郭旗; 孙静; 刘默寒; 曾骏哲; 王信

    2016-01-01

    Background: The heavy ion in the galaxy cosmos rays with extremely high energy can be fatal to the astronaut and electronic device in the spacecraft. Purpose:This study aims to analyze the secondary particles produced by high energy heavy ion inject shielding materials of spacecraft.Methods:Based on the Monte-Carlo method simulation software Geant4, 1-GeV·u−156Fe ion incident four kinds of shielding material aluminum, aluminum carbon, polyethylene and water with 1.35-g·cm−2 mass thickness have been studied. The energy deposition in the absorber and deep-dose distribution produced by the transmitted primary particles and secondary electrons, secondary neutrons, secondary protons and secondary gamma have been analyzed. All produced secondary heavy particles and energies from four kinds of shielding materials after injected high-energy 1-GeV·u−156Fe ion have been investigated, and the shielding performance was analyzed and compared.Results:Polyethylene material absorbs the most energy, thus preserve best shielding performance whilst majority of secondary particles and energies are produced. The energy of secondary heavy ion is quadruple of that produced by aluminum material.Conclusion: Among all the secondary particles, secondary protons and secondary heavy ions with atom number between 22 and 26 make the maximal contributions.%空间辐射环境下的高能重离子入射屏蔽材料会产生大量次级粒子,为研究屏蔽材料产生的次级粒子对太空舱内辐射环境的影响,本文使用基于蒙特卡罗方法的Geant4软件模拟空间高能56Fe离子入射铝、碳、聚乙烯、水4种屏蔽材料,分析透射屏蔽体的初级粒子及由屏蔽材料产生的次级电子、次级中子、次级质子和次级γ的能谱以及水吸收体中的能量沉积和深度剂量分布。分析产生的次级重粒子类型和能量,比较4种屏蔽材料对高能Fe离子的屏蔽性能。结果表明,聚乙烯材料对高能重离子的

  11. Correlated Uncertainties in Radiation Shielding Effectiveness

    Science.gov (United States)

    Werneth, Charles M.; Maung, Khin Maung; Blattnig, Steve R.; Clowdsley, Martha S.; Townsend, Lawrence W.

    2013-01-01

    The space radiation environment is composed of energetic particles which can deliver harmful doses of radiation that may lead to acute radiation sickness, cancer, and even death for insufficiently shielded crew members. Spacecraft shielding must provide structural integrity and minimize the risk associated with radiation exposure. The risk of radiation exposure induced death (REID) is a measure of the risk of dying from cancer induced by radiation exposure. Uncertainties in the risk projection model, quality factor, and spectral fluence are folded into the calculation of the REID by sampling from probability distribution functions. Consequently, determining optimal shielding materials that reduce the REID in a statistically significant manner has been found to be difficult. In this work, the difference of the REID distributions for different materials is used to study the effect of composition on shielding effectiveness. It is shown that the use of correlated uncertainties allows for the determination of statistically significant differences between materials despite the large uncertainties in the quality factor. This is in contrast to previous methods where uncertainties have been generally treated as uncorrelated. It is concluded that the use of correlated quality factor uncertainties greatly reduces the uncertainty in the assessment of shielding effectiveness for the mitigation of radiation exposure.

  12. Neutron shielding for a {sup 252} Cf source

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Manzanares A, E.; Hernandez D, V.M. [Unidades Academicas de Estudios Nucleares e Ingenieria Electrica, Universidad Autonoma de Zacatecas, C. Cipres 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Eduardo Gallego, Alfredo Lorente [Depto. de Ingenieria Nuclear, ETS Ingenieros Industriales, Universidad Politecnica de Madrid, C. Jose Gutierrez Abascal 2, 28006 Madrid (Spain)]. e-mail: fermineutron@yahoo.com

    2006-07-01

    To determine the neutron shielding features of water-extended polyester a Monte Carlo study was carried out. Materials with low atomic number are predominantly used for neutron shielding because these materials effectively attenuate neutrons, mainly through inelastic collisions and absorption reactions. During the selection of materials to design a neutron shield, prompt gamma production as well as radionuclide production induced by neutron activation must be considered. In this investigation the Monte Carlo method was used to evaluate the performance of a water-extended polyester shield designed for the transportation, storage, and use of a {sup 252}Cf isotopic neutron source. During calculations a detailed model for the {sup 252}Cf and the shield was utilized. To compare the shielding features of water extended polyester, the calculations were also made for the bare {sup 252}Cf in vacuum, air and the shield filled with water. For all cases the calculated neutron spectra was utilized to determine the ambient equivalent neutron dose at four sites around the shielding. In the case of water extended polyester and water shielding the calculations were extended to include the prompt gamma rays produced during neutron interactions, with this information the Kerma in air was calculated at the same locations where the ambient equivalent neutron dose was determined. (Author)

  13. Shielding Effectiveness of Composites Containing Flaky Inclusions

    Institute of Scientific and Technical Information of China (English)

    WANG Qingguo; QU Zhaoming; WANG Yilong

    2013-01-01

    To investigate the quantitative relationship between the electromagnetic-shielding property of composites and the distribution of inclusions,a scheme for predicting the shielding effectiveness of composites containing variously-distributed flaky inclusions is proposed.The scheme is based on equivalent parameters of homogeneous comparison materials and the plane-wave shielding theory.It leads to explicit formulas for the shielding effectiveness of multi-layered composites in terms of microstructural parameters that characterize the shape,distribution and orientation of the inclusions.For single layer composite that contains random and aligned flaky silver-coated carbonyl-iron particles with fractions of different volume,the predicted shielding effectiveness agrees well with the experimental data.As for composites containing aligned flaky particles,the shielding effectiveness obtained by the proposed scheme and experiment data is higher than that the random case,e.g.about 20 dB higher at 750 MHz.The proposed scheme is a straightforward method for optimizing future composite designs.

  14. 77 FR 67678 - Content Specifications and Shielding Evaluations for Type B Transportation Packages

    Science.gov (United States)

    2012-11-13

    ... COMMISSION Content Specifications and Shielding Evaluations for Type B Transportation Packages AGENCY... Regulatory Issue Summary (RIS) 2012-XX, ``Content Specifications and Shielding Evaluations for Type B... Plan for Transport Packages for Radioactive Material,'' for the review of content specifications...

  15. The physics of light transmission through subwavelength apertures and aperture arrays

    Science.gov (United States)

    Weiner, J.

    2009-06-01

    The passage of light through apertures much smaller than the wavelength of the light has proved to be a surprisingly subtle phenomenon. This report describes how modern developments in nanofabrication, coherent light sources and numerical vector field simulations have led to the upending of early predictions from scalar diffraction theory and classical electrodynamics. Optical response of real materials to incident coherent radiation at petahertz frequencies leads to unexpected consequences for transmission and extinction of light through subwavelength aperture arrays. This paper is a report on progress in our understanding of this phenomenon over the past decade.

  16. Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav; Gammelmark, Kim Løkke

    2006-01-01

    The paper describes the use of synthetic aperture (SA) imaging in medical ultrasound. SA imaging is a radical break with today's commercial systems, where the image is acquired sequentially one image line at a time. This puts a strict limit on the frame rate and the possibility of acquiring...... a sufficient amount of data for high precision flow estimation. These constrictions can be lifted by employing SA imaging. Here data is acquired simultaneously from all directions over a number of emissions, and the full image can be reconstructed from this data. The talk will demonstrate the many benefits...... of SA imaging. Due to the complete data set, it is possible to have both dynamic transmit and receive focusing to improve contrast and resolution. It is also possible to improve penetration depth by employing codes during ultrasound transmission. Data sets for vector flow imaging can be acquired using...

  17. Transionospheric synthetic aperture imaging

    CERN Document Server

    Gilman, Mikhail; Tsynkov, Semyon

    2017-01-01

    This landmark monograph presents the most recent mathematical developments in the analysis of ionospheric distortions of SAR images and offers innovative new strategies for their mitigation. As a prerequisite to addressing these topics, the book also discusses the radar ambiguity theory as it applies to synthetic aperture imaging and the propagation of radio waves through the ionospheric plasma, including the anisotropic and turbulent cases. In addition, it covers a host of related subjects, such as the mathematical modeling of extended radar targets (as opposed to point-wise targets) and the scattering of radio waves off those targets, as well as the theoretical analysis of the start-stop approximation, which is used routinely in SAR signal processing but often without proper justification. The mathematics in this volume is clean and rigorous – no assumptions are hidden or ambiguously stated. The resulting work is truly interdisciplinary, providing both a comprehensive and thorough exposition of the field,...

  18. Synthetic Aperture Compound Imaging

    DEFF Research Database (Denmark)

    Hansen, Jens Munk

    Medical ultrasound imaging is used for many purposes, e.g. for localizing and classifying cysts, lesions, and other processes. Almost any mass is first observed using B-mode imaging and later classified using e.g. color flow, strain, or attenuation imaging. It is therefore important that the B....... The method is investigated using simulations and through measurements using both phased array and convex array transducers. The images all show an improved contrast compared to images without compounding, and by construction, imaging using an improved frame rate is possible. Using a phased array transducer...... and the limiting factor is the amount of memory IO resources available. An equally high demand for memory throughput is found in the computer gaming industry, where a large part of the processing takes place on the graphics processing unit (GPU). Using the GPU, a framework for synthetic aperture imaging...

  19. The heterogeneous anti-radiation shield for spacecraft*

    Science.gov (United States)

    Telegin, S. V.; Draganyuk, O. N.

    2016-04-01

    The paper deals with modeling of elemental composition and properties of heterogeneous layers in multilayered shields to protect spacecraft onboard equipment from radiation emitted by the natural Earth’s radiation belt. This radiation causes malfunctioning of semiconductor elements in electronic equipment and may result in a failure of the spacecraft as a whole. We consider four different shield designs and compare them to the most conventional radiation-protective material for spacecraft - aluminum. Out of light and heavy chemical elements we chose the materials with high reaction cross sections and low density. The mass attenuation coefficient of boron- containing compounds is 20% higher than that of aluminum. Heterogeneous shields consist of three layers: a glass cloth, borated material, and nickel. With a protective shield containing heavy metal the output bremsstrahlung can be reduced. The amount of gamma rays that succeed to penetrate the shield is 4 times less compared to aluminum. The shields under study have the thicknesses of 5.95 and 6.2 mm. A comparative analysis of homogeneous and multilayered protective coatings of the same chemical composition has been performed. A heterogeneous protective shield has been found to be advantageous in weight and shielding properties over its homogeneous counterparts and aluminum. The dose characteristics and transmittance were calculated by the Monte Carlo method. The results of our study lead us to conclude that a three-layer boron carbide shield provides the most effective protection from radiation. This shield ensures twice as low absorbed dose and 4 times less the number of penetrated gamma-ray photons compared to its aluminum analogue. Moreover, a heterogeneous shield will have a weight 10% lighter than aluminum, with the same attenuation coefficient of the electron flux. Such heterogeneous shields can be used to protect spacecraft launched to geostationary orbit. Furthermore, a protective boron-containing and

  20. Holographically Correcting Synthetic Aperture Aberrations.

    Science.gov (United States)

    1987-12-01

    Malacara (20:105-148). The synthetic aperture was aligned in accordance with the synthetic-aperture alignment technique of Gill (8:61-64). The...1987. 20. Malacara , Daniel, ed. Optical Shop Testing. New York: John Wiley & Sons, 1978. 21. Marciniak, Capt Michael. Tutorial Presentation of mV

  1. Characteristics of Electromagnetic Coupling with A Wire through Shielding Enclosure

    Directory of Open Access Journals (Sweden)

    Yanpeng Sun

    2013-09-01

    Full Text Available The paper presents a numerical method based on Finite Difference Time Domain (FDTD in both frequency and time domain for modeling the coupling of an incident electromagnetic pulse(EMP with a conducting wire through a metallic shielding enclosure with a small aperture. Simulation and analysis are done by radius, length, and number of the wires, the incidence angle of EMP and the polaration angle of electric field in consideration. The simulation result shows that interference of the electromagnetic coupling into the shielding enclosure can be affected in different degrees by above factors. At low frequency, the larger the leakage length, the radius or the number of the wire penetrated into the cavity, the more interference is coupled into the shielding cavity from electromagnetic field. Also, the smaller the incident direction angle of propagation of the electromagnetic pulse or the polarization direction angle of the incident electric field, the more easily the electromagnetic interference is coupled into the cavity.

  2. Adsorption of Si6O12 on CNTs in view point of NMR shielding tensors and NBO analysis: A novel material for drug delivery

    Directory of Open Access Journals (Sweden)

    Zahra Barmaki

    2015-09-01

    Full Text Available The interaction of the Si6O12 molecule over the CNTs have been investigated with density functional theory using HF and B3LYP method and 6-31G, 6-31G** and 6-311G** basis sets. We also analyze the electronic structure and charge Mulliken population for the energetically most favorable complexes. Our results indicate Si6O12 can form stable bindings with CNTs via the Oxygen. The NMR shielding tensors have been investigated. The same Study performed for Si7O14 and we found that this molecule can form stable bindings with CNTs via the Silicon site. Thus, we arrive at the prediction that the even number (Si6O6 has a different mechanism for adding to CNTs compare to add number such as Si7O14.

  3. Radiation Shielding for Manned Deep Space Missions

    Science.gov (United States)

    Adams, James H., Jr.

    2003-01-01

    The arrival of the Expedition 1 Crew at the International Space Station represents the beginning of the continuous presence of man in space. Already we are deploying astronauts and cosmonauts for missions of approx. 6 months onboard the ISS. In the future we can anticipate that more people will be in space and they will be there for longer periods. Even with 6-months deployments to the ISS, the radiation exposure that crew members receive is approaching the exposure limits imposed by the governments of the space- faring nations. In the future we can expect radiation protection to be a dominant consideration for long manned missions. Recognizing this, NASA has expanded their research program on radiation health. This program has three components, bioastronautics, fundamental biology and radiation shielding materials. Bioastronautics is concerned with the investigating the effects of radiation on humans. Fundamental biology investigates the basic mechanisms of radiation damage to tissue. Radiation shielding materials research focuses on developing accurate computational tools to predict the radiation shielding effectiveness of materials. It also investigates new materials that can be used for spacecraft. The radiation shielding materials program will be described and examples of results from the ongoing research will be shown.

  4. Sparse synthetic aperture radar imaging with optimized azimuthal aperture

    Institute of Scientific and Technical Information of China (English)

    ZENG Cao; WANG MinHang; LIAO GuiSheng; ZHU ShengQi

    2012-01-01

    To counter the problem of acquiring and processing huge amounts of data for synthetic aperture radar (SAR) using traditional sampling techniques,a method for sparse SAR imaging with an optimized azimuthal aperture is presented.The equivalence of an azimuthal match filter and synthetic array beamforming is shown so that optimization of the azimuthal sparse aperture can be converted to optimization of synthetic array beamforming.The azimuthal sparse aperture,which is composed of a middle aperture and symmetrical bilateral apertures,can be obtained by optimization algorithms (density weighting and simulated annealing algorithms,respectively).Furthermore,sparse imaging of spectrum analysis SAR based on the optimized sparse aperture is achieved by padding zeros at null samplings and using a non-uniform Taylor window. Compared with traditional sampling,this method has the advantages of reducing the amount of sampling and alleviating the computational burden with acceptable image quality.Unlike periodic sparse sampling,the proposed method exhibits no image ghosts.The results obtained from airborne measurements demonstrate the effectiveness and superiority of the proposed method.

  5. Shielding superconductors with thin films

    CERN Document Server

    Posen, Sam; Catelani, Gianluigi; Liepe, Matthias U; Sethna, James P

    2015-01-01

    Determining the optimal arrangement of superconducting layers to withstand large amplitude AC magnetic fields is important for certain applications such as superconducting radiofrequency cavities. In this paper, we evaluate the shielding potential of the superconducting film/insulating film/superconductor (SIS') structure, a configuration that could provide benefits in screening large AC magnetic fields. After establishing that for high frequency magnetic fields, flux penetration must be avoided, the superheating field of the structure is calculated in the London limit both numerically and, for thin films, analytically. For intermediate film thicknesses and realistic material parameters we also solve numerically the Ginzburg-Landau equations. It is shown that a small enhancement of the superheating field is possible, on the order of a few percent, for the SIS' structure relative to a bulk superconductor of the film material, if the materials and thicknesses are chosen appropriately.

  6. General Corrosion and Localized Corrosion of the Drip Shield

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua

    2004-09-16

    The repository design includes a drip shield (BSC 2004 [DIRS 168489]) that provides protection for the waste package both as a barrier to seepage water contact and a physical barrier to potential rockfall. The purpose of the process-level models developed in this report is to model dry oxidation, general corrosion, and localized corrosion of the drip shield plate material, which is made of Ti Grade 7. This document is prepared according to ''Technical Work Plan For: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The models developed in this report are used by the waste package degradation analyses for TSPA-LA and serve as a basis to determine the performance of the drip shield. The drip shield may suffer from other forms of failure such as the hydrogen induced cracking (HIC) or stress corrosion cracking (SCC), or both. Stress corrosion cracking of the drip shield material is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]). Hydrogen induced cracking of the drip shield material is discussed in ''Hydrogen Induced Cracking of Drip Shield'' (BSC 2004 [DIRS 169847]).

  7. Preliminary review of Precambrian Shield rocks for potential waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Yardley, D.H.; Goldich, S.S.

    1975-11-01

    This review of the Canadian Shield is primarily concerned with the part (such as in the Lake Superior region) that is seismically the least active of the North American continent. The crystalline metamorphic and igneous rocks of the more stable elements of the shield provide excellent possibilities for dry excavations suitable for long-term storage of radioactive waste materials. (DLC)

  8. Wide Aperture Vector magnet for neutron scattering studies

    CERN Document Server

    Lavie, P; Peugeot, A; Bredy, P; Berriaud, C; Daël, A; Riffet, J -M; Klimko, S; Meuriot, J -L; Robillard, T; Aubert, G

    2016-01-01

    We propose an innovative design for a vector magnet compatible with neutron scattering experiments. This would vastly expand the range of experimental possibilities since applying a magnetic field and orienting the sample in diffraction conditions will become completely independent. This Wide Aperture VEctor magnet is a setup made of 16 coils, all with a vertical axis. The vertical component of the field is produced by two pairs of coaxial coils carrying opposite currents for an active shielding of the stray field, while the horizontal components are generated by 3 sets of 4 coils each, two above and two below the diffraction plane. This innovative geometry allows a very wide aperture (220$\\,^{\\circ}$ horizontal, $\\pm$ 10$\\,^{\\circ}$ vertical), which is crucial for neutron diffraction and inelastic neutron scattering experiments. Moreover, the homogeneity of the field is far better than in the usual vertical coils, and the diameter of the sample bore is unusually large (10 cm). The concept has been developed ...

  9. Determination of the aperture of the LHCb VELO RF foil

    CERN Document Server

    Ferro-Luzzi, M; Wallace, C

    2014-01-01

    Hadronic interactions in the material of the LHCb Vertex Locator are used to determine the aperture that the RF foil presents to the LHC beam. The aperture is found to be 4.5 mm, to be compared with the nominal value of 5.5 mm. The dierence is well within the tolerance of 2.4 mm considered for the safety of the beam.

  10. Technique for high axial shielding factor performance of large-scale, thin, open-ended, cylindrical Metglas magnetic shields

    CERN Document Server

    Malkowski, S; Hona, B; Mattie, C; Woods, D; Yan, H; Plaster, B; 10.1063/1.3605665

    2011-01-01

    Metglas 2705M is a low-cost commercially-available, high-permeability Cobalt-based magnetic alloy, provided as a 5.08-cm wide and 20.3-$\\mu$m thick ribbon foil. We present an optimized construction technique for single-shell, large-scale (human-size), thin, open-ended cylindrical Metglas magnetic shields. The measured DC axial and transverse magnetic shielding factors of our 0.61-m diameter and 1.83-m long shields in the Earth's magnetic field were 267 and 1500, for material thicknesses of only 122 $\\mu$m (i.e., 6 foil layers). The axial shielding performance of our single-shell Metglas magnetic shields, obtained without the use of magnetic shaking techniques, is comparable to the performance of significantly thicker, multiple-shell, open-ended Metglas magnetic shields in comparable-magnitude, low-frequency applied external fields reported previously in the literature.

  11. In-beam background suppression shield

    DEFF Research Database (Denmark)

    Santoro, V.; Cai, Xiao Xiao; DiJulio, D. D.

    2015-01-01

    , which do not use a bender to help mitigate the fast neutron background, are the most challenging. For these beam lines we propose the innovative shielding of placing blocks of material directly into the guide system, which allow a minimum attenuation of the cold and thermal fluxes relative...

  12. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)

    Science.gov (United States)

    Shahzad, Faisal; Alhabeb, Mohamed; Hatter, Christine B.; Anasori, Babak; Man Hong, Soon; Koo, Chong Min; Gogotsi, Yury

    2016-09-01

    Materials with good flexibility and high conductivity that can provide electromagnetic interference (EMI) shielding with minimal thickness are highly desirable, especially if they can be easily processed into films. Two-dimensional metal carbides and nitrides, known as MXenes, combine metallic conductivity and hydrophilic surfaces. Here, we demonstrate the potential of several MXenes and their polymer composites for EMI shielding. A 45-micrometer-thick Ti3C2Tx film exhibited EMI shielding effectiveness of 92 decibels (>50 decibels for a 2.5-micrometer film), which is the highest among synthetic materials of comparable thickness produced to date. This performance originates from the excellent electrical conductivity of Ti3C2Tx films (4600 Siemens per centimeter) and multiple internal reflections from Ti3C2Tx flakes in free-standing films. The mechanical flexibility and easy coating capability offered by MXenes and their composites enable them to shield surfaces of any shape while providing high EMI shielding efficiency.

  13. EURISOL-DS multi-MW target unit: Neutronics performance and shielding assessment, dose rate and material activation calculations for the MAFF configuration

    CERN Document Server

    Romanets, Y; Kadi, Y; Luis, R; Goncalves, I F; Tecchio, L; Kharoua, C; Vaz, P; Ene, D; David, J C; Rocca, R; Negoita, F

    2010-01-01

    One of the objectives of the EURISOL (EURopean Isotope Separation On-Line Radioactive Ion Beam) Design Study consisted of providing a safe and reliable facility layout and design for the following operational parameters and characteristics: (a) a 4 MW proton beam of 1 GeV energy impinging on a mercury target (the converter); (b) high neutron fluxes (similar to 3 x 10(16) neutrons/s) generated by spallation reactions of the protons impinging in the converter and (c) fission rate on fissile U-235 targets in excess of 10(15) fissions/s. In this work, the state-of-the-art Monte Carlo codes MCNPX (Pelowitz, 2005) and FLUKA (Vlachoudis, 2009; Ferrari et al., 2008) were used to characterize the neutronics performance and to perform the shielding assessment (Herrera-Martinez and Kadi, 2006; Cornell, 2003) of the EURISOLTarget Unit and to provide estimations of dose rate and activation of different components, in view of the radiation safety assessment of the facility. Dosimetry and activation calculations were perfor...

  14. Accelerator shielding experts meet at CERN

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Fifteen years after its first CERN edition, the Shielding Aspects of Accelerator, Targets and Irradiation Facility (SATIF) conference was held again here from 2-4 June. Now at its 10th edition, SATIF10 brought together experts from all over the world to discuss issues related to the shielding techniques. They set out the scene for an improved collaboration and discussed novel shielding solutions.   This was the most attended meeting of the series with more than 65 participants from 34 institutions and 14 countries. “We welcomed experts from many different laboratories around the world. We come from different contexts but we face similar problems. In this year’s session, among other things, we discussed ways for improving the effectiveness of calculations versus real data, as well as experimental solutions to investigate the damage that radiation produces on various materials and the electronics”, says Marco Silari, Chair of the conference and member of the DGS/RP gro...

  15. Electronics Shielding and Reliability Design Tools

    Science.gov (United States)

    Wilson, John W.; ONeill, P. M.; Zang, Thomas A., Jr.; Pandolf, John E.; Koontz, Steven L.; Boeder, P.; Reddell, B.; Pankop, C.

    2006-01-01

    It is well known that electronics placement in large-scale human-rated systems provides opportunity to optimize electronics shielding through materials choice and geometric arrangement. For example, several hundred single event upsets (SEUs) occur within the Shuttle avionic computers during a typical mission. An order of magnitude larger SEU rate would occur without careful placement in the Shuttle design. These results used basic physics models (linear energy transfer (LET), track structure, Auger recombination) combined with limited SEU cross section measurements allowing accurate evaluation of target fragment contributions to Shuttle avionics memory upsets. Electronics shielding design on human-rated systems provides opportunity to minimize radiation impact on critical and non-critical electronic systems. Implementation of shielding design tools requires adequate methods for evaluation of design layouts, guiding qualification testing, and an adequate follow-up on final design evaluation including results from a systems/device testing program tailored to meet design requirements.

  16. Radiation shielding effectiveness of newly developed superconductors

    Science.gov (United States)

    Singh, Vishwanath P.; Medhat, M. E.; Badiger, N. M.; Saliqur Rahman, Abu Zayed Mohammad

    2015-01-01

    Gamma ray shielding effectiveness of superconductors with a high mass density has been investigated. We calculated the mass attenuation coefficients, the mean free path (mfp) and the exposure buildup factor (EBF). The gamma ray EBF was computed using the Geometric Progression (G-P) fitting method at energies 0.015-15 MeV, and for penetration depths up to 40 mfp. The fast-neutron shielding effectiveness has been characterized by the effective neutron removal cross-section of the superconductors. It is shown that CaPtSi3, CaIrSi3, and Bi2Sr2Ca1Cu2O8.2 are superior shielding materials for gamma rays and Tl0.6Rb0.4Fe1.67Se2 for fast neutrons. The present work should be useful in various applications of superconductors in fusion engineering and design.

  17. Hinged Shields for Machine Tools

    Science.gov (United States)

    Lallande, J. B.; Poland, W. W.; Tull, S.

    1985-01-01

    Flaps guard against flying chips, but fold away for tool setup. Clear plastic shield in position to intercept flying chips from machine tool and retracted to give operator access to workpiece. Machine shops readily make such shields for own use.

  18. Preliminary Thermal Design of Cryogenic Radiation Shielding

    Science.gov (United States)

    Li, Xiaoyi; Mustafi, Shuvo; Boutte, Alvin

    2015-01-01

    Cryogenic Hydrogen Radiation Shielding (CHRS) is the most mass efficient material radiation shielding strategy for human spaceflight beyond low Earth orbit (LEO). Future human space flight, mission beyond LEO could exceed one year in duration. Previous radiation studies showed that in order to protect the astronauts from space radiation with an annual allowable radiation dose less than 500 mSv, 140 kgm2 of polyethylene is necessary. For a typical crew module that is 4 meter in diameter and 8 meter in length. The mass of polyethylene radiation shielding required would be more than 17,500 kg. The same radiation study found that the required hydrogen shielding for the same allowable radiation dose is 40 kgm2, and the mass of hydrogen required would be 5, 000 kg. Cryogenic hydrogen has higher densities and can be stored in relatively small containment vessels. However, the CHRS system needs a sophisticated thermal system which prevents the cryogenic hydrogen from evaporating during the mission. This study designed a cryogenic thermal system that protects the CHRS from hydrogen evaporation for one to up to three year mission. The design also includes a ground based cooling system that can subcool and freeze liquid hydrogen. The final results show that the CHRS with its required thermal protection system is nearly half of the mass of polyethylene radiation shielding.

  19. Electromagnetic shielding mats: facts and fiction.

    Science.gov (United States)

    Leitgeb, N; Cech, R

    2007-01-01

    The use of electricity is accompanied by electric and magnetic fields which, intended or not, became a part of our environment. However, fear from environmental electromagnetic fields (EMFs) is widespread and so is business with fear. A number of more or less serious products including miracle products are placed on the market partly at excessive costs. By numerical simulation the efficiency of electromagnetic shielding mats was investigated and claims of manufacturers and their cited expert opinions checked. It could be shown that such products do not fulfil the justified expectations of customers, neither in the extremely low frequency (ELF) nor in the radiofrequency (RF) range. On the contrary, these mats usually make things even worse. The connection to ground, if available, might increase the belief on shielding efficiency, but in fact it even enhances fields instead of improving shielding. The electric conductivity of the mat material plays a minor role in the ELF range and enhances field increase in the RF range. It can not explain the enormous price differences. It could be shown that positive reports can be explained by result picking and exceptional arrangements of selected field sources. Overall, the investigation showed that manufacturer's claims about the shielding effectiveness are misleading and fool the customers about the real situation. Therefore, acquisition and use of electromagnetic shielding mats must be strongly discouraged.

  20. Using a mobile transparent plastic-lead-boron shielding barrier to reduce radiation dose exposure in the work place

    Energy Technology Data Exchange (ETDEWEB)

    Parra, S A; Mecozzi, J M

    2001-01-11

    Moveable radiation shielding barriers made of plastic material containing lead and boron can be used to reduce radiation exposure near the work place. Personnel can maneuver and position the transparent radiation shielding barriers anywhere within the work place. The lead in the shielding barrier provides an effective shielding material against radiation exposure (approximately a 1.0 mm lead equivalent protection) while the boron in the shielding barrier provides neutron absorption to reduce the moderation/reflection effects of the shielding materials (approximately a 2% {Delta}k/k reduction).

  1. M-C simulation of shielding effects of PE, LiH and graphite fibers under 1 MeV electrons and 20 MeV protons

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Shielding effects of different materials under 1 MeV electron and 20 MeV proton beams were simulated with Geant4 code. It was found that shielding effects of polyethylene and graphite fibers are much better than aluminum. Energy depositions in the phantom shielded by the materials are calculated, with the least energy deposition by graphite fiber shielding. The results show that graphite fibers are good radiation shielding material in space programs.

  2. Spacecraft Electrostatic Radiation Shielding

    Science.gov (United States)

    2008-01-01

    This project analyzed the feasibility of placing an electrostatic field around a spacecraft to provide a shield against radiation. The concept was originally proposed in the 1960s and tested on a spacecraft by the Soviet Union in the 1970s. Such tests and analyses showed that this concept is not only feasible but operational. The problem though is that most of this work was aimed at protection from 10- to 100-MeV radiation. We now appreciate that the real problem is 1- to 2-GeV radiation. So, the question is one of scaling, in both energy and size. Can electrostatic shielding be made to work at these high energy levels and can it protect an entire vehicle? After significant analysis and consideration, an electrostatic shield configuration was proposed. The selected architecture was a torus, charged to a high negative voltage, surrounding the vehicle, and a set of positively charged spheres. Van de Graaff generators were proposed as the mechanism to move charge from the vehicle to the torus to generate the fields necessary to protect the spacecraft. This design minimized complexity, residual charge, and structural forces and resolved several concerns raised during the internal critical review. But, it still is not clear if such a system is costeffective or feasible, even though several studies have indicated usefulness for radiation protection at energies lower than that of the galactic cosmic rays. Constructing such a system will require power supplies that can generate voltages 10 times that of the state of the art. Of more concern is the difficulty of maintaining the proper net charge on the entire structure and ensuring that its interaction with solar wind will not cause rapid discharge. Yet, if these concerns can be resolved, such a scheme may provide significant radiation shielding to future vehicles, without the excessive weight or complexity of other active shielding techniques.

  3. Characterization of a lead breast shielding for dose reduction in computed tomography*

    OpenAIRE

    Correia,Paula Duarte; Granzotti, Cristiano Roberto Fabri; Santos, Yago da Silva; Brochi,Marco Aurelio Corte; Azevedo-Marques,Paulo Mazzoncini de

    2014-01-01

    Objective Several studies have been published regarding the use of bismuth shielding to protect the breast in computed tomography (CT) scans and, up to the writing of this article, only one publication about barium shielding was found. The present study was aimed at characterizing, for the first time, a lead breast shielding. Materials and Methods The percentage dose reduction and the influence of the shielding on quantitative imaging parameters were evaluated. Dose measurements were made on ...

  4. Experimental research of the effects of different shields on power frequency electric field mitigation

    Directory of Open Access Journals (Sweden)

    Nahman Jovan

    2012-01-01

    Full Text Available The paper describes experimental research on the effects of different shields on power frequency electric field mitigation. This research was performed in order to determine those materials that may be used for electric field mitigation in cases where the reference level is exceeded. Using measured results, the value of the shielding factor has been calculated for all tested shields and the most efficient shields were determined.

  5. A Review on the Production Methods and Testing of Textiles for Electro Magnetic Interference (EMI) shielding

    OpenAIRE

    2015-01-01

    The need of the present generation to protect themselves from electromagnetic radiation due the various technological developments has paved way to the birth of EMI shielding of textiles. The shielding effectiveness of the developed fabric will vary depending upon the fabric or the coating constituents. The shielding requirements for different applications vary widely which has resulted in the development of wide variety of shielding mechanisms and materials which can be used in t...

  6. High frequency electromagnetic interference shielding magnetic polymer nanocomposites

    Science.gov (United States)

    He, Qingliang

    Electromagnetic interference is one of the most concerned pollution and problem right now since more and more electronic devices have been extensively utilized in our daily lives. Besides the interference, long time exposure to electromagnetic radiation may also result in severe damage to human body. In order to mitigate the undesirable part of the electromagnetic wave energy and maintain the long term sustainable development of our modern civilized society, new technology development based researches have been made to solve this problem. However, one of the major challenges facing to the electromagnetic interference shielding is the relatively low shielding efficiency and the high cost as well as the complicated shielding material manufacture. From the materials science point of view, the key solutions to these challenges are strongly depended on the breakthrough of the current limit of shielding material design and manufacture (such as hierarchical material design with controllable and predictable arrangement in nanoscale particle configuration via an easy in-situ manner). From the chemical engineering point of view, the upgrading of advanced material shielding performance and the enlarged production scale for shielding materials (for example, configure the effective components in the shielding material in order to lower their usage, eliminate the "rate-limiting" step to enlarge the production scale) are of great importance. In this dissertation, the design and preparation of morphology controlled magnetic nanoparticles and their reinforced polypropylene polymer nanocomposites will be covered first. Then, the functionalities of these polymer nanocomposites will be demonstrated. Based on the innovative materials design and synergistic effect on the performance advancement, the magnetic polypropylene polymer nanocomposites with desired multifunctionalities are designed and produced targeting to the electromagnetic interference shielding application. In addition

  7. Shield-related signal instability in magnetoresistive heads

    Science.gov (United States)

    Nakamoto, K.; Narumi, S.; Kawabe, T.; Kobayashi, T.; Fukui, H.

    1999-04-01

    Magnetoresistive (MR) heads with various upper shield materials were fabricated and their read-write performance was tested to clarify the shield-related effect on the signal instability in MR heads. Comparison of a head with an upper shield layer of higher magnetostriction and one with lower magnetostriction showed that the latter had better stability in the output signal of a repeated read-write test. The output amplitude of a head with an upper shield layer of Co52Ni27Fe21 film, which had a high magnetostriction of about +3×10-6, was varied by applying a low external longitudinal field, which affected just the shield layers. This change in the output corresponded well to the output variation in the repeated read-write test. The spin scanning electron micrograph image of this head revealed a distinct domain wall in the air bearing surface near the MR sensor. These results indicated that instability of the domain structure in a shield layer was one of the causes of the signal instability in MR heads; an unusual bias field from a domain wall of the shield layer, which could be moved easily by a repeated writing operation, caused a variation in the biased state of the MR layer which resulted in the signal variation, and that low magnetostriction was required for a shield material to achieve a stable head.

  8. Space Radiation and the Challenges Towards Effective Shielding Solutions

    Science.gov (United States)

    Barghouty, Abdulnasser

    2014-01-01

    The hazards of space radiation and their effective mitigation strategies continue to pose special science and technology challenges to NASA. It is widely accepted now that shielding space vehicles and structures will have to rely on new and innovative materials since aluminum, like all high Z materials, are poor shields against the particulate and highly ionizing nature of space radiation. Shielding solutions, motivated and constrained by power and mass limitations, couple this realization with "multifunctionality," both in design concept as well as in material function and composition. Materials endowed with effective shielding properties as well as with some degree of multi-functionality may be the kernel of the so-called "radiation-smart" structures and designs. This talk will present some of the challenges and potential mitigation ideas towards the realization of such structures and designs.

  9. Screening with rubber screen surfaces with variously shaped apertures

    Energy Technology Data Exchange (ETDEWEB)

    Bock, B.; Kraemer, T.

    1984-07-01

    Rubber screen surfaces are advantageous for bulk materials screening because of their low rate of wear and low noise emission and because they tend to prevent clogging. Screens with four different aperture shapes and sizes were available for experimental research. The cut sizes were determined in relation to the above-mentioned parameters with round and with crushed feed materials.

  10. Light shielding apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Richard Dean; Thom, Robert Anthony

    2017-10-10

    A light shielding apparatus for blocking light from reaching an electronic device, the light shielding apparatus including left and right support assemblies, a cross member, and an opaque shroud. The support assemblies each include primary support structure, a mounting element for removably connecting the apparatus to the electronic device, and a support member depending from the primary support structure for retaining the apparatus in an upright orientation. The cross member couples the left and right support assemblies together and spaces them apart according to the size and shape of the electronic device. The shroud may be removably and adjustably connectable to the left and right support assemblies and configured to take a cylindrical dome shape so as to form a central space covered from above. The opaque shroud prevents light from entering the central space and contacting sensitive elements of the electronic device.

  11. Shielding calculations for SSC

    Energy Technology Data Exchange (ETDEWEB)

    Van Ginneken, A.

    1990-03-01

    Monte Carlo calculations of hadron and muon shielding for SSC are reviewed with emphasis on their application to radiation safety and environmental protection. Models and algorithms for simulation of hadronic and electromagnetic showers, and for production and transport of muons in the TeV regime are briefly discussed. Capabilities and limitations of these calculations are described and illustrated with a few examples. 12 refs., 3 figs.

  12. Design of ITER vacuum vessel in-wall shielding

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X., E-mail: xiaoyu.wang@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Ioki, K. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Morimoto, M. [Mitsubishi Heavy Industries, 1-1, Wadasaki-cho 1-chome, Hyogo-ku, Kobe (Japan); Choi, C.H.; Utin, Y.; Sborchia, C. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); TaiLhardat, O. [Assystem EOS, ZAC SAINT MARTIN, 23 rue Benjamin Franklin, 84120 Pertuis (France); Mille, B.; Terasawa, A.; Gribov, Y.; Barabash, V.; Polunovskiy, E.; Dani, S. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Pathak, H.; Raval, J. [ITER-India, Institute for Plasma Research, Gandhinagar 382025 (India); Liu, S.; Lu, M.; Du, S. [Institute of Plasma Physics, China Academy of Sciences, Shushanhu Road 350, Hefei (China)

    2014-10-15

    The ITER vacuum vessel is a torus-shaped, double wall structure. The space between the double walls of the VV is filled with in-wall shielding (IWS) and cooling water. The main purpose of the in-wall shielding is to provide neutron shielding together with the blanket and VV shells and water during ITER plasma operation and to reduce the ripple of the Toroidal magnetic field. Based on ITER vacuum vessel structure and related requirements, in-wall shielding are designed as about 8900 individual blocks with different sizes and several different materials distributed over nine vessel sectors and nine field joints of vessel sectors. This paper presents the design of the IWS, considering loads, structural stresses and assembly method, and also shows neutron shielding effect and TF ripple reduced by the IWS.

  13. Transparent Metal-Salt-Filled Polymeric Radiation Shields

    Science.gov (United States)

    Edwards, David; Lennhoff, John; Harris, George

    2003-01-01

    "COR-RA" (colorless atomic oxygen resistant -- radiation shield) is the name of a transparent polymeric material filled with x-ray-absorbing salts of lead, bismuth, cesium, and thorium. COR-RA is suitable for use in shielding personnel against bremsstrahlung radiation from electron-beam welding and industrial and medical x-ray equipment. In comparison with lead-foil and leaded-glass shields that give equivalent protection against x-rays (see table), COR-RA shields are mechanically more durable. COR-RA absorbs not only x-rays but also neutrons and rays without adverse effects on optical or mechanical performance. The formulation of COR-RA with the most favorable mechanical-durability and optical properties contains 22 weight percent of bismuth to absorb x-rays, plus 45 atomic percent hydrogen for shielding against neutrons.

  14. Magnetic shielding and exotic spin-dependent interactions

    CERN Document Server

    Kimball, D F Jackson; Li, Y; Thulasi, S; Pustelny, S; Budker, D; Zolotorev, M

    2016-01-01

    Experiments searching for exotic spin-dependent interactions typically employ magnetic shielding between the source of the exotic field and the interrogated spins. We explore the question of what effect magnetic shielding has on detectable signals induced by exotic fields. Our general conclusion is that for common experimental geometries and conditions, magnetic shields should not significantly reduce sensitivity to exotic spin-dependent interactions, especially when the technique of comagnetometry is used. However, exotic fields that couple to electron spin can induce magnetic fields in the interior of shields made of a soft ferro- or ferrimagnetic material. This induced magnetic field must be taken into account in the interpretation of experiments searching for new spin-dependent interactions and raises the possibility of using a flux concentrator inside magnetic shields to amplify exotic spin-dependent signals.

  15. Shielding of CO from dissociating radiation in interstellar clouds

    Science.gov (United States)

    Glassgold, A. E.; Huggins, P. J.; Langer, W. D.

    1985-01-01

    The paper investigates the photodissociation of CO in interstellar clouds in the light of recent laboratory studies which suggest that line rather than continuum processes dominate its dissociation by ultraviolet radiation. Using a simple radiative transfer model, the shielding of representative dissociating bands is estimated, including self-shielding, mutual shielding between different isotopes, and near coincidences with strong lines of H2. Each of these processes materially affects the photodestruction rates of the various isotopic species in the transition regions of molecular clouds. These results are combined with an appropriate gas phase chemical model to determine how the abundances of the CO isotopes vary with depth into the cloud. It is found that self-shielding and mutual shielding cause significant variations in isotopic ratios. In addition, fractionation enhances species containing C-13. The relationship between the column densities of CO and H2 is found to vary for the different isotopes and to be sensitive to local conditions.

  16. Beta radiation shielding with lead and plastic: effect on bremsstrahlung radiation when switching the shielding order.

    Science.gov (United States)

    Van Pelt, Wesley R; Drzyzga, Michael

    2007-02-01

    Lead and plastic are commonly used to shield beta radiation. Radiation protection literature is ubiquitous in advising the placement of plastic first to absorb all the beta particles before any lead shielding is used. This advice is based on the well established theory that radiative losses (bremsstrahlung production) are more prevalent in higher atomic number (Z) materials than in low Z materials. Using 32P beta radiation, we measured bremsstrahlung photons transmitted through lead and plastic (Lucite) shielding in different test configurations to determine the relative efficacy of lead alone, plastic alone, and the positional order of lead and plastic. With the source (32P) and detector held at a constant separation distance, we inserted lead and/or plastic absorbers and measured the reduction in bremsstrahlung radiation level measured by the detector. With these test conditions, analysis of measured bremsstrahlung radiation in various thicknesses and configurations of lead and plastic shielding shows the following: placing plastic first vs. lead first reduces the transmitted radiation level only marginally (10% to 40%); 2 mm of additional lead is sufficient to correct the "mistake" of placing the lead first; and for equal thicknesses or weights of lead and plastic, lead is a more efficient radiation shield than plastic.

  17. Background simulations and shielding calculations

    Science.gov (United States)

    Kudryavtsev, Vitaly A.

    2011-04-01

    Key improvements in the sensitivity of the underground particle astrophysics experiments can only be achieved if the radiation causing background events in detectors is well understood and proper measures are taken to suppress it. The background radiation arising from radioactivity and cosmic-ray muons is discussed here together with the methods of its suppression. Different shielding designs are considered to attenuate gamma-rays and neutrons coming from radioactivity in rock and lab walls. Purity of materials used in detector construction is analysed and the background event rates due to the presence of radioactive isotopes in detector components are discussed. Event rates in detectors caused by muon-induced neutrons with and without active veto systems are presented leading to the requirements for the depth of an underground laboratory and the efficiency of the veto system.

  18. Radiation Shielding Systems Using Nanotechnology

    Science.gov (United States)

    Chen, Bin (Inventor); McKay, Christoper P. (Inventor)

    2011-01-01

    A system for shielding personnel and/or equipment from radiation particles. In one embodiment, a first substrate is connected to a first array or perpendicularly oriented metal-like fingers, and a second, electrically conducting substrate has an array of carbon nanostructure (CNS) fingers, coated with an electro-active polymer extending toward, but spaced apart from, the first substrate fingers. An electric current and electric charge discharge and dissipation system, connected to the second substrate, receives a current and/or voltage pulse initially generated when the first substrate receives incident radiation. In another embodiment, an array of CNSs is immersed in a first layer of hydrogen-rich polymers and in a second layer of metal-like material. In another embodiment, a one- or two-dimensional assembly of fibers containing CNSs embedded in a metal-like matrix serves as a radiation-protective fabric or body covering.

  19. SU-C-BRB-02: Symmetric and Asymmetric MLC Based Lung Shielding and Dose Optimization During Translating Bed TBI

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, S; Kakakhel, MB [Pakistan Institute of Engineering & Applied Sciences (PIEAS), Islamabad (Pakistan); Ahmed, SBS; Hussain, A [Aga Khan University Hospital (AKUH), Karachi (Pakistan)

    2015-06-15

    Purpose: The primary aim was to introduce a dose optimization method for translating bed total body irradiation technique that ensures lung shielding dynamically. Symmetric and asymmetric dynamic MLC apertures were employed for this purpose. Methods: The MLC aperture sizes were defined based on the radiological depth values along the divergent ray lines passing through the individual CT slices. Based on these RD values, asymmetrically shaped MLC apertures were defined every 9 mm of the phantom in superior-inferior direction. Individual MLC files were created with MATLAB™ and were imported into Eclipse™ treatment planning system for dose calculations. Lungs can be shielded to an optimum level by reducing the MLC aperture width over the lungs. The process was repeated with symmetrically shaped apertures. Results: Dose-volume histogram (DVH) analysis shows that the asymmetric MLC based technique provides better dose coverage to the body and optimum shielding of the lungs compared to symmetrically shaped beam apertures. Midline dose homogeneity is within ±3% with asymmetric MLC apertures whereas it remains within ±4.5% with symmetric ones (except head region where it drops down to −7%). The substantial over and under dosage of ±5% at tissue interfaces has been reduced to ±2% with asymmetric MLC technique. Lungs dose can be reduced to any desired limit. In this experiment lungs dose was reduced to 80% of the prescribed dose, as was desired. Conclusion: The novel asymmetric MLC based technique assures optimum shielding of OARs (e.g. lungs) and better 3-D dose homogeneity and body-dose coverage in comparison with the symmetric MLC aperture optimization. The authors acknowledge the financial and infrastructural support provided by Pakistan Institute of Engineering & Applied Sciences (PIEAS), Islamabad and Aga Khan University Hospital (AKUH), Karachi during the course of this research project. Authors have no conflict of interest with any national / international

  20. A contribution to shielding effectiveness analysis of shielded tents

    Directory of Open Access Journals (Sweden)

    Vranić Zoran M.

    2004-01-01

    Full Text Available An analysis of shielding effectiveness (SE of the shielded tents made of the metallised fabrics is given. First, two electromagnetic characteristic fundamental for coupling through electrically thin shield, the skin depth break frequency and the surface resistance or transfer impedance, is defined and analyzed. Then, the transfer function and the SE are analyzed regarding to the frequency range of interest to the Electromagnetic Compatibility (EMC Community.

  1. Sequential Beamforming Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Kortbek, Jacob; Jensen, Jørgen Arendt; Gammelmark, Kim Løkke

    2013-01-01

    Synthetic aperture sequential beamforming (SASB) is a novel technique which allows to implement synthetic aperture beamforming on a system with a restricted complexity, and without storing RF-data. The objective is to improve lateral resolution and obtain a more depth independent resolution...... and a range independent lateral resolution is obtained. The SASB method has been investigated using simulations in Field II and by off-line processing of data acquired with a commercial scanner. The lateral resolution increases with a decreasing F#. Grating lobes appear if F# 6 2 for a linear array with k-pitch...

  2. Measurement of the transient shielding effectiveness of shielding cabinets

    Directory of Open Access Journals (Sweden)

    H. Herlemann

    2008-05-01

    Full Text Available Recently, new definitions of shielding effectiveness (SE for high-frequency and transient electromagnetic fields were introduced by Klinkenbusch (2005. Analytical results were shown for closed as well as for non closed cylindrical shields. In the present work, the shielding performance of different shielding cabinets is investigated by means of numerical simulations and measurements inside a fully anechoic chamber and a GTEM-cell. For the GTEM-cell-measurements, a downscaled model of the shielding cabinet is used. For the simulations, the numerical tools CONCEPT II and COMSOL MULTIPHYSICS were available. The numerical results agree well with the measurements. They can be used to interpret the behaviour of the shielding effectiveness of enclosures as function of frequency. From the measurement of the electric and magnetic fields with and without the enclosure in place, the electric and magnetic shielding effectiveness as well as the transient shielding effectiveness of the enclosure are calculated. The transient SE of four different shielding cabinets is determined and discussed.

  3. Justification for Shielded Receiver Tube Additional Lead Shielding

    Energy Technology Data Exchange (ETDEWEB)

    BOGER, R.M.

    2000-04-11

    In order to reduce high radiation dose rates encountered when core sampling some radioactive waste tanks the addition of 240 lbs. of lead shielding is being considered to the shielded receiver tube on core sample trucks No.1, No.3 and No.4. The lead shielding is 4 inch diameter x 1/2 inch thick half rounds that have been installed around the SR tube over its' full length. Using three unreleased but independently reviewed structural analyses HNF-6018 justifies the addition of the lead shielding.

  4. Shielding from cosmic radiation for interplanetary missions Active and passive methods

    CERN Document Server

    Spillantini, P; Durante, M; Müller-Mellin, R; Reitz, G; Rossi, L; Shurshakov, V; Sorbi, M

    2007-01-01

    Shielding is arguably the main countermeasure for the exposure to cosmic radiation during interplanetary exploratory missions. However, shielding of cosmic rays, both of galactic or solar origin, is problematic, because of the high energy of the charged particles involved and the nuclear fragmentation occurring in shielding materials. Although computer codes can predict the shield performance in space, there is a lack of biological and physical measurements to benchmark the codes. An attractive alternative to passive, bulk material shielding is the use of electromagnetic fields to deflect the charged particles from the spacecraft target. Active shielding concepts based on electrostatic fields, plasma, or magnetic fields have been proposed in the past years, and should be revised based on recent technological improvements. To address these issues, the European Space Agency (ESA) established a Topical Team (TT) in 2002 including European experts in the field of space radiation shielding and superconducting magn...

  5. Electrodynamic Dust Shield for Space Applications

    Science.gov (United States)

    Mackey, Paul J.; Johansen, Michael R.; Olsen, Robert C.; Raines, Matthew G.; Phillips, James R., III; Cox, Rachel E.; Hogue, Michael D.; Pollard, Jacob R. S.; Calle, Carlos I.

    2016-01-01

    Dust mitigation technology has been highlighted by NASA and the International Space Exploration Coordination Group (ISECG) as a Global Exploration Roadmap (GER) critical technology need in order to reduce life cycle cost and risk, and increase the probability of mission success. The Electrostatics and Surface Physics Lab in Swamp Works at the Kennedy Space Center has developed an Electrodynamic Dust Shield (EDS) to remove dust from multiple surfaces, including glass shields and thermal radiators. Further development is underway to improve the operation and reliability of the EDS as well as to perform material and component testing outside of the International Space Station (ISS) on the Materials on International Space Station Experiment (MISSE). This experiment is designed to verify that the EDS can withstand the harsh environment of space and will look to closely replicate the solar environment experienced on the Moon.

  6. The axion shield

    CERN Document Server

    Andrianov, A A; Mescia, F; Renau, A

    2010-01-01

    We investigate the propagation of a charged particle in a spatially constant, but time dependent, pseudoscalar background. Physically this pseudoscalar background could be provided by a relic axion density. The background leads to an explicit breaking of Lorentz invariance; as a consequence the process p-> p gamma is possible and the background acts as a shield against extremely energetic cosmic rays, an effect somewhat similar to the GZK cut-off effect. The effect is model independent and can be computed exactly. The hypothetical detection of the photons radiated via this mechanism would provide an indirect way of verifying the cosmological relevance of axions.

  7. Watching a disappearing shield

    Science.gov (United States)

    Stolarski, Richard S.

    1988-10-01

    The remote-sensing techniques used to monitor atmospheric ozone levels are reviewed, and recent results are discussed. The importance of the ozone layer as a shield for UV radiation is stressed, and the impact of human activities generating ozone-destroying compounds is considered. Ground-based, airborne, balloon-borne, and satellite remote-sensing methods are shown to complement each other to provide both global coverage and detailed structural information. Data obtained with the Nimbus-7 TOMS and solar-backscatter UV instruments are presented in graphs and briefly characterized.

  8. Noise Modeling From Conductive Shields Using Kirchhoff Equations.

    Science.gov (United States)

    Sandin, Henrik J; Volegov, Petr L; Espy, Michelle A; Matlashov, Andrei N; Savukov, Igor M; Schultz, Larry J

    2010-10-01

    Progress in the development of high-sensitivity magnetic-field measurements has stimulated interest in understanding the magnetic noise of conductive materials, especially of magnetic shields based on high-permeability materials and/or high-conductivity materials. For example, SQUIDs and atomic magnetometers have been used in many experiments with mu-metal shields, and additionally SQUID systems frequently have radio frequency shielding based on thin conductive materials. Typical existing approaches to modeling noise only work with simple shield and sensor geometries while common experimental setups today consist of multiple sensor systems with complex shield geometries. With complex sensor arrays used in, for example, MEG and Ultra Low Field MRI studies, knowledge of the noise correlation between sensors is as important as knowledge of the noise itself. This is crucial for incorporating efficient noise cancelation schemes for the system. We developed an approach that allows us to calculate the Johnson noise for arbitrary shaped shields and multiple sensor systems. The approach is efficient enough to be able to run on a single PC system and return results on a minute scale. With a multiple sensor system our approach calculates not only the noise for each sensor but also the noise correlation matrix between sensors. Here we will show how the algorithm can be implemented.

  9. X射线异物检测的图像屏蔽算法%The Application of Image Shielding Method in the X-ray Foreign Material Detection

    Institute of Scientific and Technical Information of China (English)

    项安; 张晗毓

    2011-01-01

    In the X-ray foreign material detection process, it is often misjudged some parts of the packaged products as foreign bodies, because the X-ray absorption in these parts are similar to that in the foreign bodies. However, the problem can be well solved by using image mask methods. To this problem, this paper put forward four kinds of image mask methods by combining the basic theories of image segmentation and the detection principle of X-ray foreign material inspection system. Matlab simulation results show that those error detection parts can be masked effectively by using corresponding mask method. And to some extent, it is proved that the proposed mask methods improve the sensitivity of the X-ray foreign material detection system and have good commercial use value.%X射线异物检测系统检测包装食品过程中,由于产品某些包装区域的材质以及厚度特征,此区域对X射线的吸收率与异物对X射线的吸收率十分相似,导致系统在异物识别时将这些区域误判为异物,造成误检.针对此类问题,结合X射线异物检测原理和图像分割理论,提出了4种图像屏蔽方法.Matlab仿真结果表明,针对不同检测产品采用相应的屏蔽算法,均可有效屏蔽该检测产品中被误判为异物的区域,大大提高了X射线异物检测系统的灵敏度,具有较好的商业使用价值.

  10. Optimizing Synthetic Aperture Compound Imaging

    DEFF Research Database (Denmark)

    Hansen, Jens Munk; Jensen, Jørgen Arendt

    2012-01-01

    Spatial compound images are constructed from synthetic aperture data acquired using a linear phased-array transducer. Compound images of wires, tissue, and cysts are created using a method, which allows both transmit and receive compounding without any loss in temporal resolution. Similarly to co...

  11. Ultrasound fields from triangular apertures

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1996-01-01

    The pulsed field from a triangular aperture mounted in an infinite, rigidbaffle is calculated. The approach of spatial impulse responses,as developed by Tupholme and Stepanishen, is used. By this both the emitted and received pulsed ultrasound field can be found for any transducerexcitation...

  12. Imaging with Synthetic Aperture Radar

    CERN Document Server

    Massonnet, Didier

    2008-01-01

    Describing a field that has been transformed by the recent availability of data from a new generation of space and airborne systems, the authors offer a synthetic geometrical approach to the description of synthetic aperture radar, one that addresses physicists, radar specialists, as well as experts in image processing.  

  13. Synthetic Aperture Radar - Hardware Development

    Directory of Open Access Journals (Sweden)

    V. Rosner

    2009-06-01

    Full Text Available Experimental real and synthetic aperture radar are developed from the base-band digital unit to the analogue RF parts, based on solid state units, using pulse compression for radar imaging. Proper QPSK code is found for matched filter.

  14. Heavy Metal Pad Shielding during Fluoroscopic Interventions

    OpenAIRE

    Dromi, Sergio; Wood, Bradford J.; Oberoi, Jay; Neeman, Ziv

    2006-01-01

    Significant direct and scatter radiation doses to patient and physician may result from routine interventional radiology practice. A lead-free disposable tungsten antimony shielding pad was tested in phantom patients during simulated diagnostic angiography procedures. Although the exact risk of low doses of ionizing radiation is unknown, dramatic dose reductions can be seen with routine use of this simple, sterile pad made from lightweighttungsten antimony material.

  15. Process for making RF shielded cable connector assemblies and the products formed thereby

    Science.gov (United States)

    Fisher, A.; Clatterbuck, C. H. (Inventor)

    1973-01-01

    A process for making RF shielded cable connector assemblies and the resulting structures is described. The process basically consists of potting wires of a shielded cable between the cable shield and a connector housing to fill in, support, regidize, and insulate the individual wires contained in the cable. The formed potting is coated with an electrically conductive material so as to form an entirely encompassing adhering conductive path between the cable shield and the metallic connector housing. A protective jacket is thereby formed over the conductive coating between the cable shield and the connector housing.

  16. Optimization of the National Ignition Facility primary shield design

    Energy Technology Data Exchange (ETDEWEB)

    Annese, C.E.; Watkins, E.F.; Greenspan, E.; Miller, W.F. [California Univ., Berkeley, CA (United States). Dept. of Nuclear Engineering; Latkowski, J.; Lee, J.D.; Soran, P.; Tobin, M.L. [Lawrence Livermore National Lab., CA (United States)

    1993-10-01

    Minimum cost design concepts of the primary shield for the National Ignition laser fusion experimental Facility (NIF) are searched with the help of the optimization code SWAN. The computational method developed for this search involves incorporating the time dependence of the delayed photon field within effective delayed photon production cross sections. This method enables one to address the time-dependent problem using relatively simple, time-independent transport calculations, thus significantly simplifying the design process. A novel approach was used for the identification of the optimal combination of constituents that will minimize the shield cost; it involves the generation, with SWAN, of effectiveness functions for replacing materials on an equal cost basis. The minimum cost shield design concept was found to consist of a mixture of polyethylene and low cost, low activation materials such as SiC, with boron added near the shield boundaries.

  17. SHIELD 1.0: development of a shielding calculator program in diagnostic radiology; SHIELD 1.0: desenvolvimento de um programa de calculo de blindagem em radiodiagnostico

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Romulo R.; Real, Jessica V.; Luz, Renata M. da [Hospital Sao Lucas (PUCRS), Porto Alegre, RS (Brazil); Friedrich, Barbara Q.; Silva, Ana Maria Marques da, E-mail: ana.marques@pucrs.br [Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, RS (Brazil)

    2013-08-15

    In shielding calculation of radiological facilities, several parameters are required, such as occupancy, use factor, number of patients, source-barrier distance, area type (controlled and uncontrolled), radiation (primary or secondary) and material used in the barrier. The shielding design optimization requires a review of several options about the physical facility design and, mainly, the achievement of the best cost-benefit relationship for the shielding material. To facilitate the development of this kind of design, a program to calculate the shielding in diagnostic radiology was implemented, based on data and limits established by National Council on Radiation Protection and Measurements (NCRP) 147 and SVS-MS 453/98. The program was developed in C⌗ language, and presents a graphical interface for user data input and reporting capabilities. The module initially implemented, called SHIELD 1.0, refers to calculating barriers for conventional X-ray rooms. The program validation was performed by the comparison with the results of examples of shielding calculations presented in NCRP 147.

  18. New Toroid shielding design

    CERN Multimedia

    Hedberg V

    On the 15th of June 2001 the EB approved a new conceptual design for the toroid shield. In the old design, shown in the left part of the figure above, the moderator part of the shielding (JTV) was situated both in the warm and cold areas of the forward toroid. It consisted both of rings of polyethylene and hundreds of blocks of polyethylene (or an epoxy resin) inside the toroid vacuum vessel. In the new design, shown to the right in the figure above, only the rings remain inside the toroid. To compensate for the loss of moderator in the toroid, the copper plug (JTT) has been reduced in radius so that a layer of borated polyethylene can be placed around it (see figure below). The new design gives significant cost-savings and is easier to produce in the tight time schedule of the forward toroid. Since the amount of copper is reduced the weight that has to be carried by the toroid is also reduced. Outgassing into the toroid vacuum was a potential problem in the old design and this is now avoided. The main ...

  19. Radiation shielding design for neutron diffractometers assisted by Monte Carlo methods

    Science.gov (United States)

    Osborn, John C.; Ersez, Tunay; Braoudakis, George

    2006-11-01

    Monte Carlo simulations may be used to model radiation shielding for neutron diffractometers. The use of the MCNP computer program to assess shielding for a diffractometer is discussed. A comparison is made of shielding requirements for radiation generated by several materials commonly used in neutron optical elements and beam stops, including lithium-6 based absorbers where the Monte Carlo method can model the effects of fast neutrons generated by this material.

  20. The effect of breast shielding during lumbar spine radiography:

    OpenAIRE

    Žontar, Dejan; Škrk, Damijan; Mekiš, Nejc

    2013-01-01

    Background The aim of the study was to determine the influence of lead shielding on the dose to female breasts in conventional x-ray lumbar spine imaging. The correlation between the body mass index and the dose received by the breast was also investigated. Materials and methods Breast surface dose was measured by thermoluminescent dosimeters (TLD). In the first phase measurements of breast dose with and without shielding from lumbar spine imaging in two projections were conducted on an anthr...

  1. Shielding efficiency of metal hydrides and borohydrides in fusion reactors

    DEFF Research Database (Denmark)

    Singh, Vishvanath P.; Badiger, Nagappa M.; Gerward, Leif

    2016-01-01

    at energies 0.015 MeV to15 MeV, and for penetration depths up to 40 mean free paths. Fast-neutron shielding efficiency has been characterized by the effective neutron removal cross-section. It is shown that ZrH2 and VH2 are very good shielding materials for gamma rays and fast neutrons due to their suitable...

  2. Enhanced plastic neutron shielding for thermal and epithermal neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Palomino, L A RodrIguez; Blostein, J J; Dawidowski, J [Consejo Nacional de Investigaciones CientIficas y Tecnicas, Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de EnergIa Atomica, Universidad Nacional de Cuyo, (8400) Bariloche, Av. Bustillo 9500, S. C. de Bariloche, RIo Negro (Argentina); Cuello, G J [Institut Laue Langevin, 6, rue Jules Horowitz, F-38042 Grenoble Cedex 9 (France)], E-mail: javier@cab.cnea.gov.ar

    2008-06-15

    We describe a compound made of paraffin and boron carbide (boraffin) deviced to enhance epithermal neutron shielding. The compound is easily prepared and is specially suited to be adapted to particular surfaces. Transmission experiments show a favourable comparison with a commercial rubber-boron carbide compound in the epithermal range. A detector shielding built with this material is described and the achieved background reduction experimentally determined is shown.

  3. Analysis methods for Kevlar shield response to rotor fragments

    Science.gov (United States)

    Gerstle, J. H.

    1977-01-01

    Several empirical and analytical approaches to rotor burst shield sizing are compared and principal differences in metal and fabric dynamic behavior are discussed. The application of transient structural response computer programs to predict Kevlar containment limits is described. For preliminary shield sizing, present analytical methods are useful if insufficient test data for empirical modeling are available. To provide other information useful for engineering design, analytical methods require further developments in material characterization, failure criteria, loads definition, and post-impact fragment trajectory prediction.

  4. Drip Shield Emplacement Gantry Concept

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.A.; Cron, J.

    2000-03-29

    This design analysis has shown that, on a conceptual level, the emplacement of drip shields is feasible with current technology and equipment. A plan for drip shield emplacement was presented using a Drip Shield Transporter, a Drip Shield Emplacement Gantry, a locomotive, and a Drip Shield Gantry Carrier. The use of a Drip Shield Emplacement Gantry as an emplacement concept results in a system that is simple, reliable, and interfaces with the numerous other exising repository systems. Using the Waste Emplacement/Retrieval System design as a basis for the drip shield emplacement concept proved to simplify the system by using existing equipment, such as the gantry carrier, locomotive, Electrical and Control systems, and many other systems, structures, and components. Restricted working envelopes for the Drip Shield Emplacement System require further consideration and must be addressed to show that the emplacement operations can be performed as the repository design evolves. Section 6.1 describes how the Drip Shield Emplacement System may use existing equipment. Depending on the length of time between the conclusion of waste emplacement and the commencement of drip shield emplacement, this equipment could include the locomotives, the gantry carrier, and the electrical, control, and rail systems. If the exisiting equipment is selected for use in the Drip Shield Emplacement System, then the length of time after the final stages of waste emplacement and start of drip shield emplacement may pose a concern for the life cycle of the system (e.g., reliability, maintainability, availability, etc.). Further investigation should be performed to consider the use of existing equipment for drip shield emplacement operations. Further investigation will also be needed regarding the interfaces and heat transfer and thermal effects aspects. The conceptual design also requires further design development. Although the findings of this analysis are accurate for the assumptions made

  5. 核用碳化硼制备工艺研究进展%Progress in preparation of boron carbides used as nuclear shielding material

    Institute of Scientific and Technical Information of China (English)

    郑伟; 徐姣; 张卫江

    2011-01-01

    Boron carbides are very important materials in refractory liners, dies, bearings, sandblasting nozzles and nuclear industry. In this paper, the production processes for boron carbides are introduced, which include the carbothermal reduction, self-propagation high-temperature synthesis, chemical vapor deposition and sol-gel carbothermal reduction method. The advantages and disadvantages of all the methods are compared. The difficulties, problems and development direction of how to produce boron carbides are discussed.%碳化硼是一种被广泛应用在耐火材料、模具、轴承、喷嘴和核工业中的新型材料,主要介绍了有关制备碳化硼的工艺,其主要包括碳热还原法、自蔓延热还原法、化学气相沉积法和溶胶-凝胶碳热还原法.通过对比指出各种方法的优缺点,探讨了碳化硼制备的研究现状、存在的问题及发展方向.

  6. Physical analysis of the shielding capacity for a lightweight apron designed for shielding low intensity scattering X-rays

    OpenAIRE

    Seon Chil Kim; Jeong Ryeol Choi; Byeong Kyou Jeon

    2016-01-01

    The purpose of this paper is to develop a lightweight apron that will be used for shielding low intensity radiation in medical imaging radiography room and to apply it to a custom-made effective shielding. The quality of existing aprons made for protecting our bodies from direct radiation are improved so that they are suitable for scattered X-rays. Textiles that prevent bodies from radiation are made by combining barium sulfate and liquid silicon. These materials have the function of shieldin...

  7. Coherence Studies for Synthetic Aperture Sonar

    Science.gov (United States)

    2014-09-30

    TITLE AND SUBTITLE Coherence Studies for Synthetic Aperture Sonar 5a. CONTRACT NUMBER 5b. GRANT NUMBER N00014-13-1-0020 5c. PROGRAM...systematic look at, coherence. 15. SUBJECT TERMS Synthetic; Aperture Sonar , Coherence, Seafloor Scatter, Propagation Variability 16. SECURITY...reconstruction of the document. Coherence Studies for Synthetic Aperture Sonar Anthony P. Lyons The Pennsylvania State University Applied Research

  8. The assembly of the disk shielding is finished.

    CERN Multimedia

    Vincent Hedberg

    At the end of March, the shielding project engineer, Jan Palla, could draw a sigh of relief when the fourth and final rotation of the disk shielding was carried out without incident. The two 80-ton heavy shielding assemblies were built in a horizontal position and they had to be first turned upside-down and then rotated to a vertical position during the assembly. The relatively thin disk plate with a diameter of 9 meters, made this operation quite delicate and a lot of calculation work and strengthening of the shielding was carried out before the rotations could take place. The disk shielding is being turned upside-down. The stainless steel cylinder in the centre supports the shielding as well as the small muon wheel. The two disk shielding assemblies consist of different materials such as bronze, gray steel, cast iron, stainless steel, boron doped polyethylene and lead. The project is multinational with the major pieces having been made by companies in Armenia, Serbia, Spain, Bulgaria, Italy, Slovaki...

  9. Thick Galactic Cosmic Radiation Shielding Using Atmospheric Data

    Science.gov (United States)

    Youngquist, Robert C.; Nurge, Mark A.; Starr, Stanley O.; Koontz, Steven L.

    2013-01-01

    NASA is concerned with protecting astronauts from the effects of galactic cosmic radiation and has expended substantial effort in the development of computer models to predict the shielding obtained from various materials. However, these models were only developed for shields up to about 120 g!cm2 in thickness and have predicted that shields of this thickness are insufficient to provide adequate protection for extended deep space flights. Consequently, effort is underway to extend the range of these models to thicker shields and experimental data is required to help confirm the resulting code. In this paper empirically obtained effective dose measurements from aircraft flights in the atmosphere are used to obtain the radiation shielding function of the earth's atmosphere, a very thick shield. Obtaining this result required solving an inverse problem and the method for solving it is presented. The results are shown to be in agreement with current code in the ranges where they overlap. These results are then checked and used to predict the radiation dosage under thick shields such as planetary regolith and the atmosphere of Venus.

  10. Aperture referral in dioptric systems with stigmatic elements

    Directory of Open Access Journals (Sweden)

    W. F. Harris

    2012-12-01

    Full Text Available A previous paper develops the general theory of aperture referral in linear optics and shows how several ostensibly distinct concepts, including the blur patch on the retina, the effective cornealpatch, the projective field and the field of view, are now unified as particular applications of the general theory.  The theory allows for astigmatism and heterocentricity.  Symplecticity and the generality of the approach, however, make it difficult to gain insight and mean that the material is not accessible to readers unfamiliar with matrices and linear algebra. The purpose of this paper is to examine whatis, perhaps, the most important special case, that in which astigmatism is ignored.  Symplecticity and, hence, the mathematics become greatly simplified. The mathematics reduces largely to elementary vector algebra and, in some places, simple scalar algebra and yet retains the mathematical form of the general approach.  As a result the paper allows insight into and provides a stepping stone to the general theory.  Under referral an aperture under-goes simple scalar magnification and transverse translation.  The paper pays particular attention to referral to transverse planes in the neighbourhood of a focal point where the magnification may be positive, zero or negative.  Circular apertures are treated as special cases of elliptical apertures and the meaning of referred apertures of negative radius is explained briefly. (S Afr Optom 2012 71(1 3-11

  11. Welding shield for coupling heaters

    Science.gov (United States)

    Menotti, James Louis

    2010-03-09

    Systems for coupling end portions of two elongated heater portions and methods of using such systems to treat a subsurface formation are described herein. A system may include a holding system configured to hold end portions of the two elongated heater portions so that the end portions are abutted together or located near each other; a shield for enclosing the end portions, and one or more inert gas inlets configured to provide at least one inert gas to flush the system with inert gas during welding of the end portions. The shield may be configured to inhibit oxidation during welding that joins the end portions together. The shield may include a hinged door that, when closed, is configured to at least partially isolate the interior of the shield from the atmosphere. The hinged door, when open, is configured to allow access to the interior of the shield.

  12. Development of large aperture composite adaptive optics

    Science.gov (United States)

    Kmetik, Viliam; Vitovec, Bohumil; Jiran, Lukas; Nemcova, Sarka; Zicha, Josef; Inneman, Adolf; Mikulickova, Lenka; Pavlica, Richard

    2015-01-01

    Large aperture composite adaptive optics for laser applications is investigated in cooperation of Institute of Plasma Physic, Department of Instrumentation and Control Engineering FME CTU and 5M Ltd. We are exploring opportunity of a large-size high-power-laser deformable-mirror production using a lightweight bimorph actuated structure with a composite core. In order to produce a sufficiently large operational free aperture we are developing new technologies for production of flexible core, bimorph actuator and deformable mirror reflector. Full simulation of a deformable-mirrors structure was prepared and validated by complex testing. A deformable mirror actuation and a response of a complicated structure are investigated for an accurate control of the adaptive optics. An original adaptive optics control system and a bimorph deformable mirror driver were developed. Tests of material samples, components and sub-assemblies were completed. A subscale 120 mm bimorph deformable mirror prototype was designed, fabricated and thoroughly tested. A large-size 300 mm composite-core bimorph deformable mirror was simulated and optimized, fabrication of a prototype is carried on. A measurement and testing facility is modified to accommodate large sizes optics.

  13. Broadband synthetic aperture geoacoustic inversion.

    Science.gov (United States)

    Tan, Bien Aik; Gerstoft, Peter; Yardim, Caglar; Hodgkiss, William S

    2013-07-01

    A typical geoacoustic inversion procedure involves powerful source transmissions received on a large-aperture receiver array. A more practical approach is to use a single moving source and/or receiver in a low signal to noise ratio (SNR) setting. This paper uses single-receiver, broadband, frequency coherent matched-field inversion and exploits coherently repeated transmissions to improve estimation of the geoacoustic parameters. The long observation time creates a synthetic aperture due to relative source-receiver motion. This approach is illustrated by studying the transmission of multiple linear frequency modulated (LFM) pulses which results in a multi-tonal comb spectrum that is Doppler sensitive. To correlate well with the measured field across a receiver trajectory and to incorporate transmission from a source trajectory, waveguide Doppler and normal mode theory is applied. The method is demonstrated with low SNR, 100-900 Hz LFM pulse data from the Shallow Water 2006 experiment.

  14. Analysis for Radiation and Shielding Dose in Plasma Focus Neutron Source Using FLUKA

    Science.gov (United States)

    Nemati, M. J.; Amrollahi, R.; Habibi, M.

    2012-06-01

    Monte Carlo simulations have been performed for the attenuation of neutron radiation produced at Plasma focus (PF) devices through various shielding design. At the test site it will be fired with deuterium and tritium (D-T) fusion resulting in a yield of about 1013 fusion neutrons of 14 MeV. This poses a radiological hazard to scientists and personnel operating the device. The goal of this paper was to evaluate various shielding options under consideration for the PF operating with D-T fusion. Shields of varying neutrons-shielding effectiveness were investigated using concrete, polyethylene, paraffin and borated materials. The most effective shield, a labyrinth structure, allowed almost 1,176 shots per year while keeping personnel under 20 mSV of dose. The most expensive shield that used, square shield with 100 cm concrete thickness on the walls and Borated paraffin along with borated polyethylene added outside the concrete allowed almost 15,000 shot per year.

  15. Preliminary Analysis of a Water Shield for a Surface Power Reactor

    Science.gov (United States)

    Pearson, J. Boise

    2006-01-01

    A water based shielding system is being investigated for use on initial lunar surface power systems. The use of water may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. A simple 1-D thermal model indicates the necessity of natural convection to maintain acceptable temperatures and pressures in the water shield. CFD analysis is done to quantify the natural convection in the shield, and predicts sufficient natural convection to transfer heat through the shield with small temperature gradients. A test program will he designed to experimentally verify the thermal hydraulic performance of the shield, and to anchor the CFD models to experimental results.

  16. In-Beam Background Suppression Shield

    CERN Document Server

    Santoro, V; DiJulio, D D; Ansell, S; Bentley, P M

    2015-01-01

    The long (3ms) proton pulse of the European Spallation Source (ESS) gives rise to unique and potentially high backgrounds for the instrument suite. In such a source an instrument capabilities will be limited by it's Signal to Noise (S/N) ratio. The instruments with a direct view of the moderator, which do not use a bender to help mitigate the fast neutron background, are the most challenging. For these beam lines we propose the innovative shielding of placing blocks of material directly into the guide system, which allow a minimum attenuation of the cold and thermal fluxes relative to the background suppression. This shielding configuration has been worked into a beam line model using Geant4. We study particularly the advantages of single crystal sapphire and silicon blocks .

  17. Electronically shielded solid state charged particle detector

    Energy Technology Data Exchange (ETDEWEB)

    Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.

    1996-08-20

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite. 1 fig.

  18. Electronically shielded solid state charged particle detector

    Energy Technology Data Exchange (ETDEWEB)

    Balmer, David K. (155 Coral Way, Broomfield, CO 80020); Haverty, Thomas W. (1173 Logan, Northglenn, CO 80233); Nordin, Carl W. (7203 W. 32nd Ave., Wheatridge, CO 80033); Tyree, William H. (1977 Senda Rocosa, Boulder, CO 80303)

    1996-08-20

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite.

  19. Shielding performance of metal fiber composites

    Institute of Scientific and Technical Information of China (English)

    CHEN Gang; WU Bin; CHEN Ze-fei

    2004-01-01

    Metal fibers have been applied to construct composites with desirable electromagnetic interference shiel ding effectiveness and mechanical properties. Copper and stainless steel fibers were prepared with micro-saw fiberpulling combined cutting method. The cross section of the fibers is hook-like, which is beneficial to the improvement of bonding strength. Cement-based composites with copper and stainless steel fibers were fabricated and their electromagnetic shielding effectiveness was measured in the frequency range of 1 - 5 GHz. The results show that the electromagnetic interference shielding effectiveness of those composites is enhanced by the addition of metal fibers,which functions mainly due to the absorption. At some frequencies, 20 dB or more difference is obtained between the materials with and without metal fibers.

  20. Grounding and shielding circuits and interference

    CERN Document Server

    Morrison, Ralph

    2016-01-01

    Applies basic field behavior in circuit design and demonstrates how it relates to grounding and shielding requirements and techniques in circuit design This book connects the fundamentals of electromagnetic theory to the problems of interference in all types of electronic design. The text covers power distribution in facilities, mixing of analog and digital circuitry, circuit board layout at high clock rates, and meeting radiation and susceptibility standards. The author examines the grounding and shielding requirements and techniques in circuit design and applies basic physics to circuit behavior. The sixth edition of this book has been updated with new material added throughout the chapters where appropriate. The presentation of the book has also been rearranged in order to reflect the current trends in the field.

  1. X-Ray Computed Tomography Inspection of the Stardust Heat Shield

    Science.gov (United States)

    McNamara, Karen M.; Schneberk, Daniel J.; Empey, Daniel M.; Koshti, Ajay; Pugel, D. Elizabeth; Cozmuta, Ioana; Stackpoole, Mairead; Ruffino, Norman P.; Pompa, Eddie C.; Oliveras, Ovidio; hide

    2010-01-01

    The "Stardust" heat shield, composed of a PICA (Phenolic Impregnated Carbon Ablator) Thermal Protection System (TPS), bonded to a composite aeroshell, contains important features which chronicle its time in space as well as re-entry. To guide the further study of the Stardust heat shield, NASA reviewed a number of techniques for inspection of the article. The goals of the inspection were: 1) to establish the material characteristics of the shield and shield components, 2) record the dimensions of shield components and assembly as compared with the pre-flight condition, 3) provide flight infonnation for validation and verification of the FIAT ablation code and PICA material property model and 4) through the evaluation of the shield material provide input to future missions which employ similar materials. Industrial X-Ray Computed Tomography (CT) is a 3D inspection technology which can provide infonnation on material integrity, material properties (density) and dimensional measurements of the heat shield components. Computed tomographic volumetric inspections can generate a dimensionally correct, quantitatively accurate volume of the shield assembly. Because of the capabilities offered by X-ray CT, NASA chose to use this method to evaluate the Stardust heat shield. Personnel at NASA Johnson Space Center (JSC) and Lawrence Livermore National Labs (LLNL) recently performed a full scan of the Stardust heat shield using a newly installed X-ray CT system at JSC. This paper briefly discusses the technology used and then presents the following results: 1. CT scans derived dimensions and their comparisons with as-built dimensions anchored with data obtained from samples cut from the heat shield; 2. Measured density variation, char layer thickness, recession and bond line (the adhesive layer between the PICA and the aeroshell) integrity; 3. FIAT predicted recession, density and char layer profiles as well as bondline temperatures Finally suggestions are made as to future uses

  2. Face shield design against blast-induced head injuries.

    Science.gov (United States)

    Tan, Long Bin; Tse, Kwong Ming; Tan, Yuan Hong; Sapingi, Mohamad Ali Bin; Tan, Vincent Beng Chye; Lee, Heow Pueh

    2017-03-22

    Blast-induced traumatic brain injury has been on the rise in recent years because of the increasing use of improvised explosive devices in conflict zones. Our study investigates the response of a helmeted human head subjected to a blast of 1 atm peak overpressure, for cases with and without a standard polycarbonate (PC) face shield and for face shields comprising of composite PC and aerogel materials and with lateral edge extension. The novel introduction of aerogel into the laminate face shield is explored and its wave-structure interaction mechanics and performance in blast mitigation is analysed. Our numerical results show that the face shield prevented direct exposure of the blast wave to the face and help delays the transmission of the blast to reduce the intracranial pressures (ICPs) at the parietal lobe. However, the blast wave can diffract and enter the midface region at the bottom and side edges of the face shield, resulting in traumatic brain injury. This suggests that the bottom and sides of the face shield are important regions to focus on to reduce wave ingress. The laminated PC/aerogel/PC face shield yielded higher peak positive and negative ICPs at the frontal lobe, than the original PC one. For the occipital and temporal brain regions, the laminated face shield performed better than the original. The composite face shield with extended edges reduced ICP at the temporal lobe but increases ICP significantly at the parietal lobe, which suggests that a greater coverage may not lead to better mitigating effects. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Shielding efficiency of metal hydrides and borohydrides in fusion reactors

    Directory of Open Access Journals (Sweden)

    Singh Vishvanath P.

    2016-01-01

    Full Text Available Mass attenuation coefficients, mean free paths and exposure buildup factors have been used to characterize the shielding efficiency of metal hydrides and borohydrides, with high density of hydrogen. Gamma ray exposure buildup factors were computed using five-parameter geometric progression fitting at energies 0.015 MeV to15 MeV, and for penetration depths up to 40 mean free paths. Fast-neutron shielding efficiency has been characterized by the effective neutron removal cross-section. It is shown that ZrH2 and VH2 are very good shielding materials for gamma rays and fast neutrons due to their suitable combination of low- and high-Z elements. The present work should be useful for the selection and design of blankets and shielding, and for dose evaluation for components in fusion reactors.

  4. Electromagnetic interference shielding effectiveness of polypropylene/conducting fiber composites

    Science.gov (United States)

    Lee, Pyoung-Chan; Kim, Bo-Ram; Jeoung, Sun Kyoung; Kim, Yeung Keun

    2016-03-01

    Electromagnetic released from the automotive electronic parts is harmful to human body. Electromagnetic interference (EMT) shielding refers to the reflection and/or adsorption of electromagnetic radiation by a material, which thereby acts as a shield against the penetration of the radiation through the shield. Polypropylene (PP)/conductive micro fiber composites containing various fiber contents and fiber length were injection-molded. The effect of fiber content and length on electrical properties of the composites was studied by electrical resistivity and EMT shielding measurements. The through-plane electrical conductivity and dielectric permittivity were obtained by measuring dielectric properties. The EMT shielding effectiveness (SE) was investigated by using S-parameter in the range of 100 ~ 1500 MHz. Reflection, absorption and multiple-reflection are the EMT attenuation mechanisms. From the measurement of S-Parameters, the absorption coefficient, reflection coefficient, and the shielding efficiency of the materials were calculated. The EMT SE of PP/conducing fiber composites is 40 dB over a wide frequency range up to 1.5 GHz, which is higher than that of PP/talc composite used automotive parts, viz. 0 dB.

  5. Electromagnetic interference shielding effectiveness of polypropylene/conducting fiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Pyoung-Chan, E-mail: pclee@katech.re.kr; Kim, Bo-Ram; Jeoung, Sun Kyoung [Korea Automotive Technology lnstitute, Dongnam-Gu, Chonan-Si, Chungnam 330-912 (Korea, Republic of); Kim, Yeung Keun [Win& Win Co., Ltd., Anseong-Si, Gyeonggi-Do, 456-931 (Korea, Republic of)

    2016-03-09

    Electromagnetic released from the automotive electronic parts is harmful to human body. Electromagnetic interference (EMT) shielding refers to the reflection and/or adsorption of electromagnetic radiation by a material, which thereby acts as a shield against the penetration of the radiation through the shield. Polypropylene (PP)/conductive micro fiber composites containing various fiber contents and fiber length were injection-molded. The effect of fiber content and length on electrical properties of the composites was studied by electrical resistivity and EMT shielding measurements. The through-plane electrical conductivity and dielectric permittivity were obtained by measuring dielectric properties. The EMT shielding effectiveness (SE) was investigated by using S-parameter in the range of 100 ~ 1500 MHz. Reflection, absorption and multiple-reflection are the EMT attenuation mechanisms. From the measurement of S-Parameters, the absorption coefficient, reflection coefficient, and the shielding efficiency of the materials were calculated. The EMT SE of PP/conducing fiber composites is 40 dB over a wide frequency range up to 1.5 GHz, which is higher than that of PP/talc composite used automotive parts, viz. 0 dB.

  6. Radiological evaluation of shielding devices type CPb-m and CPb-g used for radioactive material handling and transportation of CENTIS, Cuba; Evaluacion radiologica de los dispositivos de blindaje tipo CPb-m y CPb-g utilizados para la manipulacion y transportacion de los preparados radiactivos del CENTIS

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Rondon, Manuel; Torres Berdeguez, Mirta B. [Centro de Tecnologia Nuclear, San Jose de las Lajas (Cuba); Hernandez Rivero, Aerulio T.; Gutierrez Ravelo, Romay [Centro de Isotopos, XX (Cuba)

    1999-11-01

    This work has presented procedures applied for radiological evaluation of gamma shielding devices type CPb-m and CPb-g, used to 30-50 mCi respectively, asseverating a dose rate lower than 2 mSv/h and satisfying the requirements of radiological safety for handling and transportation of radioactive materials. The results has been shown and discussed 10 refs., 3 figs., 2 tabs.

  7. Radiation shielding for future space exploration missions

    Science.gov (United States)

    DeWitt, Joel Michael

    Scope and Method of Study. The risk to space crew health and safety posed by exposure to space radiation is regarded as a significant obstacle to future human space exploration. To countermand this risk, engineers and designers in today's aerospace community will require detailed knowledge of a broad range of possible materials suitable for the construction of future spacecraft or planetary surface habitats that provide adequate protection from a harmful space radiation environment. This knowledge base can be supplied by developing an experimental method that provides quantitative information about a candidate material's space radiation shielding efficacy with the understanding that (1) shielding is currently the only practical countermeasure to mitigate the effects of space radiation on human interplanetary missions, (2) any mass of a spacecraft or planetary surface habitat necessarily alters the incident flux of ionizing radiation on it, and (3) the delivery of mass into LEO and beyond is expensive and therefore may benefit from the possible use of novel multifunctional materials that could in principle reduce cost as well as ionizing radiation exposure. The developed method has an experimental component using CR-39 PNTD and Al2O3:C OSLD that exposes candidate space radiation shielding materials of varying composition and depth to a representative sample of the GCR spectrum that includes 1 GeV 1H and 1 GeV/n 16O, 28Si, and 56Fe heavy ion beams at the BNL NSRL. The computer modeling component of the method used the Monte Carlo radiation transport code FLUKA to account for secondary neutrons that were not easily measured in the laboratory. Findings and Conclusions. This study developed a method that quantifies the efficacy of a candidate space radiation shielding material relative to the standard of polyethylene using a combination of experimental and computer modeling techniques. The study used established radiation dosimetry techniques to present an empirical

  8. A Launch Requirements Trade Study for Active Space Radiation Shielding for Long Duration Human Missions

    Science.gov (United States)

    Singleterry, Robert C., Jr.; Bollweg, Ken; Martin, Trent; Westover, Shayne; Battiston, Roberto; Burger, William J.; Meinke, Rainer

    2015-01-01

    A trade study for an active shielding concept based on magnetic fields in a solenoid configuration versus mass based shielding was developed. Monte Carlo simulations were used to estimate the radiation exposure for two values of the magnetic field strength and the mass of the magnetic shield configuration. For each field strength, results were reported for the magnetic region shielding (end caps ignored) and total region shielding (end caps included but no magnetic field protection) configurations. A value of 15 cSv was chosen to be the maximum exposure for an astronaut. The radiation dose estimate over the total shield region configuration cannot be used at this time without a better understanding of the material and mass present in the end cap regions through a detailed vehicle design. The magnetic shield region configuration, assuming the end cap regions contribute zero exposure, can be launched on a single Space Launch System rocket and up to a two year mission can be supported. The magnetic shield region configuration results in two versus nine launches for a comparable mass based shielding configuration. The active shielding approach is clearly more mass efficient because of the reduced number of launches than the mass based shielding for long duration missions.

  9. Aperture

    OpenAIRE

    Tenace, Stephen M

    1991-01-01

    In the beginning God created the world. Waste and void, waste and void. And darkness was upon the face of the deep. And when there were men, in their various ways, they struggled in torment towards God. Blindly and vainly, for man is a vain thing, and man without God is a seed upon the wind: driven this way and that, and finding no place of lodgment and germination. They followed the light and the shadow, and the light led them forward to light and the ...

  10. RADIO SHIELDING PROPERTIES OF CONCRETE BASED ON SHUNGITE NANOMATERIALS

    Directory of Open Access Journals (Sweden)

    BELOUSOVA Elena Sergeevna

    2013-04-01

    Full Text Available Modifications of shielding construction materials based on Portland cement with the addition of powder nanomaterial shungite were developed. Attenuation and re­flection of electromagnetic radiation for obtained materials were studied. Recommen­dations for using are given.

  11. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, S.L. [Design and Accelerator Operations Consulting, 568 Wintergreen Ct Ridge, NY 11961 (United States); Ghosh, V.J.; Breitfeller, M. [NSLS-II, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-08-11

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons produced in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. This shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.

  12. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    Science.gov (United States)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.

    2016-08-01

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons produced in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. This shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.

  13. News from the Library: Facilitating access to a program for radiation shielding - the Library can help

    CERN Multimedia

    CERN Library

    2013-01-01

    MicroShield® is a comprehensive photon/gamma ray shielding and dose assessment programme. It is widely used for designing shields, estimating source strength from radiation measurements, minimising exposure to people, and teaching shielding principles.   Integrated tools allow the graphing of results, material and source file creation, source inference with decay (dose-to-Bq calculations accounting for decay and daughter buildup), the projection of exposure rate versus time as a result of decay, access to material and nuclide data, and decay heat calculations. The latest version is able to export results using Microsoft Office (formatted and colour-coded for readability). Sixteen geometries accommodate offset dose points and as many as ten standard shields plus source self-shielding and cylinder cladding are available. The library data (radionuclides, attenuation, build-up and dose conversion) reflect standard data from ICRP 38 and 107* as well as ANSI/ANS standards and RSICC publicat...

  14. A Novel Radiation Shielding Material Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In order to safely explore space, humans must be protected from radiation. There are 2 predominant sources of extraterrestrial ionizing radiation, namely, Galactic...

  15. Novel Concepts for Radiation Shielding Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — It is critical that safety factors be maximized with respect to long duration, extraterrestrial space flight. Any significant improvement in radiation protection...

  16. Electromagnetic shielding of thermal protection system for hypersonic vehicles

    Science.gov (United States)

    Albano, M.; Micheli, D.; Gradoni, G.; Morles, R. B.; Marchetti, M.; Moglie, F.; Mariani Primiani, V.

    2013-06-01

    The numerical simulation and the measurement of electromagnetic shielding at microwave frequencies of thermal protection system for hypersonic vehicles is presented using nested reverberation chamber. An example of a possible thermal protection system for a re-entry vehicle is presented. This system based on carbon material is electromagnetically characterized. The characterization takes into account not only the materials but also the final assembly configuration of the thermal protection system. The frequency range is 2-8 GHz. The results of measurements and simulations show that the microwave shielding effectiveness of carbon materials is above 60 dB for a single tile and that the tile inter-distance is able to downgrade the shielding effectiveness on the average to about 40 dB.

  17. A Radiation Shielding Code for Spacecraft and Its Validation

    Science.gov (United States)

    Shinn, J. L.; Cucinotta, F. A.; Singleterry, R. C.; Wilson, J. W.; Badavi, F. F.; Badhwar, G. D.; Miller, J.; Zeitlin, C.; Heilbronn, L.; Tripathi, R. K.

    2000-01-01

    The HZETRN code, which uses a deterministic approach pioneered at NASA Langley Research Center, has been developed over the past decade to evaluate the local radiation fields within sensitive materials (electronic devices and human tissue) on spacecraft in the space environment. The code describes the interactions of shield materials with the incident galactic cosmic rays, trapped protons, or energetic protons from solar particle events in free space and low Earth orbit. The content of incident radiations is modified by atomic and nuclear reactions with the spacecraft and radiation shield materials. High-energy heavy ions are fragmented into less massive reaction products, and reaction products are produced by direct knockout of shield constituents or from de-excitation products. An overview of the computational procedures and database which describe these interactions is given. Validation of the code with recent Monte Carlo benchmarks, and laboratory and flight measurement is also included.

  18. Beta Bremsstrahlung dose in concrete shielding

    Science.gov (United States)

    Manjunatha, H. C.; Chandrika, B. M.; Rudraswamy, B.; Sankarshan, B. M.

    2012-05-01

    In a nuclear reactor, beta nuclides are released during nuclear reactions. These betas interact with shielding concrete and produces external Bremsstrahlung (EB) radiation. To estimate Bremsstrahlung dose and shield efficiency in concrete, it is essential to know Bremsstrahlung distribution or spectra. The present work formulated a new method to evaluate the EB spectrum and hence Bremsstrahlung dose of beta nuclides (32P, 89Sr, 90Sr-90Y, 90Y, 91Y, 208Tl, 210Bi, 234Pa and 40K) in concrete. The Bremsstrahlung yield of these beta nuclides in concrete is also estimated. The Bremsstrahlung yield in concrete due to 90Sr-90Y is higher than those of other given nuclides. This estimated spectrum is accurate because it is based on more accurate modified atomic number (Zmod) and Seltzer's data, where an electron-electron interaction is also included. Presented data in concrete provide a quick and convenient reference for radiation protection. The present methodology can be used to calculate the Bremsstrahlung dose in nuclear shielding materials. It can be quickly employed to give a first pass dose estimate prior to a more detailed experimental study.

  19. Hybrid Shielding for Magnetic Fields

    Science.gov (United States)

    Mullins, David; Royal, Kevin

    2017-01-01

    Precision symmetry measurements such as the search for the electric dipole moment of the neutron require magnetic shielding rooms to reduce the ambient field to the pT scale. The massive mu-metal sheets and large separation between layers make these shield rooms bulky and expensive. Active field cancellation systems used to reduce the surrounding field are limited in uniformity of cancellation. A novel approach to reducing the space between shield layers and increasing the effectiveness of active cancellation is to combine the two systems into a hybrid system, with active and passive layers interspersed. We demonstrate this idea in a prototype with an active layer sandwiched between two passive layers of shielding.

  20. Radiation shielding for neutron guides

    Science.gov (United States)

    Ersez, T.; Braoudakis, G.; Osborn, J. C.

    2006-11-01

    Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120 mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions.

  1. Aperture scanning Fourier ptychographic microscopy

    Science.gov (United States)

    Ou, Xiaoze; Chung, Jaebum; Horstmeyer, Roarke; Yang, Changhuei

    2016-01-01

    Fourier ptychographic microscopy (FPM) is implemented through aperture scanning by an LCOS spatial light modulator at the back focal plane of the objective lens. This FPM configuration enables the capturing of the complex scattered field for a 3D sample both in the transmissive mode and the reflective mode. We further show that by combining with the compressive sensing theory, the reconstructed 2D complex scattered field can be used to recover the 3D sample scattering density. This implementation expands the scope of application for FPM and can be beneficial for areas such as tissue imaging and wafer inspection. PMID:27570705

  2. Terahertz wide aperture reflection tomography

    Science.gov (United States)

    Pearce, Jeremy; Choi, Hyeokho; Mittleman, Daniel M.; White, Jeff; Zimdars, David

    2005-07-01

    We describe a powerful imaging modality for terahertz (THz) radiation, THz wide aperture reflection tomography (WART). Edge maps of an object's cross section are reconstructed from a series of time-domain reflection measurements at different viewing angles. Each measurement corresponds to a parallel line projection of the object's cross section. The filtered backprojection algorithm is applied to recover the image from the projection data. To our knowledge, this is the first demonstration of a reflection computed tomography technique using electromagnetic waves. We demonstrate the capabilities of THz WART by imaging the cross sections of two test objects.

  3. Synthetic Aperture Vector Flow Imaging

    DEFF Research Database (Denmark)

    Oddershede, Niels

    2008-01-01

    of the thesis considers a method for estimating the two-dimensional velocity vector within the image plane. This method, called synthetic aperture vector flow imaging, is first shortly reviewed. The main contribution of this work is partly an analysis of the method with respect to focusing effects, motion...... estimation. The method can be used for increasing the frame rate of color flow maps or alternatively for a new imaging modality entitled quadroplex imaging, featuring a color flow map and two independent spectrograms at a high frame rate. The second is an alternative method for ultrasonic vector velocity...

  4. Space noise synthetic aperture radar

    Science.gov (United States)

    Kulpa, Krzysztof S.

    2006-03-01

    The paper presents limitations of space borne synthetic aperture radars, caused by range and Doppler velocity ambiguities, and the concept of usage of the noise radar technology for creation of high-resolution space SAR images. The noise SAR is free from limitation caused by the periodicity of pulse waveform ambiguity function, and therefore this technology can be used in the future space missions. The basic concept of noise SAR image formation is also presented. The image formation algorithm has been verified using the simulated data produced by Raw Radar Data Simulator.

  5. Application of Particle Swarm Optimization Algorithm in Design of Multilayered Planar Shielding Body

    Institute of Scientific and Technical Information of China (English)

    FUJiwei; HOUChaozhen; DOULihua

    2005-01-01

    Based on the basic electromagnetic wave propagation theory in this article, the Particle swarm optimization algorithm (PSO) is used in the design of the multilayered composite materials and the thickness of shielding body by the existent multilayered planar composite elec-tromagnetic shielding materials model, the different shielding materials of each layer can be designed under some kinds of circumstances: the prespecified Shielding effectiveness (SE), different incident angle and the prespecified band of frequencies. Finally the algorithm is simulated. At the same time the similar procedure can be implemented by Genetic algorithm (GA). The results acquired by particle swarm optimization algorithm are compared with there sults acquired by the genetic algorithm. The results indicate that: the particle swarm optimization algorithm is much better than the genetic algorithm not only in convergence speed but also in simplicity. So a more effective method (Particle Swarm Optimization algorithm) is offered for the design of the multilayered composite shielding materials.

  6. Evaluation of the Prevalence and Utility of Gonad Shielding in Pediatrics Undergoing Pelvic X-Ray

    Directory of Open Access Journals (Sweden)

    Vahid Karami

    2016-11-01

    Full Text Available Background: Gonad shielding has been recommended during pelvic x-rays since the 1950s. The popular method of gonad shielding is placement a lead shield in the midline of the pelvis. The aim of this study was to evaluate the prevalence and utility of gonad shielding in pediatrics undergoing pelvic x-rays.Materials and MethodsFollowing study approval, we retrospectively retrieved data from the digital image library of ten radiology depertments of Khuzestan provience-Iran to identify pediatric patients who underwent pelvic x-ray (anteriorposterior [AP] view. All the images were reviewed for the probable evidence of gonad shield. If there was evidence of shielding, the accuracy positioning of the shield was also investigated by a single assistant radiologist.ResultsIn all 1745 pelvic x-rays (942 girls and 803 boys were identified of which the shield was present in 51 (5.41% radiographs of girls and 132 (16.43% radiographs of boys. When a shield was present; the shields has adequate positioning only in 8 (15.68% radiographs in girls and 59 radiographs in boys. Inaccurate placement and absence of gonad shields were more common in girls than the boys. Due to the shield has concealed the anatomical criteria of the pelvis, retakes of the examination was required in 11 (21.56% radiographs of girls and 14 (10.6% radiographs of boys.ConclusionThe current methods of gonad shielding in girls pelvic x-ray was not effective nor is justifiable. We  no longer advocate of gonad shielding during girls pelvic x-ray. However in boys it is controversial and depends on the skill and effort of radiographers.

  7. Determination of dosimetric parameters for shielded 153Gd source in prostate cancer brachytherapy

    Science.gov (United States)

    Ghorbani, Mahdi; Ghatei, Najmeh; Mehrpouyan, Mohammad; Meigooni, Ali S.; Shahraini, Ramin

    2017-01-01

    Abstract Background Interstitial rotating shield brachytherapy (I-RSBT) is a recently developed method for treatment of prostate cancer. In the present study TG-43 dosimetric parameters of a 153Gd source were obtained for use in I-RSBT. Materials and methods A 153Gd source located inside a needle including a Pt shield and an aluminum window was simulated using MCNPX Monte Carlo code. Dosimetric parameters of this source model, including air kerma strength, dose rate constant, radial dose function and 2D anisotropy function, with and without the shields were calculated according to the TG-43 report. Results The air kerma strength was found to be 6.71 U for the non-shielded source with 1 GBq activity. This value was found to be 0.04 U and 6.19 U for the Pt shield and Al window cases, respectively. Dose rate constant for the non-shielded source was found to be 1.20 cGy/(hU). However, for a shielded source with Pt and aluminum window, dose rate constants were found to be 0.07 cGy/(hU) and 0.96 cGy/(hU), on the shielded and window sides, respectively. The values of radial dose function and anisotropy function were tabulated for these sources. Additionally, isodose curves were drawn for sources with and without shield, in order to evaluate the effect of shield on dose distribution. Conclusions Existence of the Pt shield may greatly reduce the dose to organs at risk and normal tissues which are located toward the shielded side. The calculated air kerma strength, dose rate constant, radial dose function and 2D anisotropy function data for the 153Gd source for the non-shielded and the shielded sources can be used in the treatment planning system (TPS). PMID:28265239

  8. Materials

    Science.gov (United States)

    Glaessgen, Edward H.; Schoeppner, Gregory A.

    2006-01-01

    NASA Langley Research Center has successfully developed an electron beam freeform fabrication (EBF3) process, a rapid metal deposition process that works efficiently with a variety of weldable alloys. The EBF3 process can be used to build a complex, unitized part in a layer-additive fashion, although the more immediate payoff is for use as a manufacturing process for adding details to components fabricated from simplified castings and forgings or plate products. The EBF3 process produces structural metallic parts with strengths comparable to that of wrought product forms and has been demonstrated on aluminum, titanium, and nickel-based alloys to date. The EBF3 process introduces metal wire feedstock into a molten pool that is created and sustained using a focused electron beam in a vacuum environment. Operation in a vacuum ensures a clean process environment and eliminates the need for a consumable shield gas. Advanced metal manufacturing methods such as EBF3 are being explored for fabrication and repair of aerospace structures, offering potential for improvements in cost, weight, and performance to enhance mission success for aircraft, launch vehicles, and spacecraft. Near-term applications of the EBF3 process are most likely to be implemented for cost reduction and lead time reduction through addition of details onto simplified preforms (casting or forging). This is particularly attractive for components with protruding details that would require a significantly large volume of material to be machined away from an oversized forging, offering significant reductions to the buy-to-fly ratio. Future far-term applications promise improved structural efficiency through reduced weight and improved performance by exploiting the layer-additive nature of the EBF3 process to fabricate tailored unitized structures with functionally graded microstructures and compositions.

  9. Thermal neutron shield and method of manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, Bert Clayton; Brindza, Paul Daniel

    2014-03-04

    A thermal neutron shield comprising boron shielding panels with a high percentage of the element Boron. The panel is least 46% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of boron shielding panels which includes enriching the pre-cursor mixture with varying grit sizes of Boron Carbide.

  10. Shielding requirements in helical tomotherapy

    Science.gov (United States)

    Baechler, S.; Bochud, F. O.; Verellen, D.; Moeckli, R.

    2007-08-01

    Helical tomotherapy is a relatively new intensity-modulated radiation therapy (IMRT) treatment for which room shielding has to be reassessed for the following reasons. The beam-on-time needed to deliver a given target dose is increased and leads to a weekly workload of typically one order of magnitude higher than that for conventional radiation therapy. The special configuration of tomotherapy units does not allow the use of standard shielding calculation methods. A conventional linear accelerator must be shielded for primary, leakage and scatter photon radiations. For tomotherapy, primary radiation is no longer the main shielding issue since a beam stop is mounted on the gantry directly opposite the source. On the other hand, due to the longer irradiation time, the accelerator head leakage becomes a major concern. An analytical model based on geometric considerations has been developed to determine leakage radiation levels throughout the room for continuous gantry rotation. Compared to leakage radiation, scatter radiation is a minor contribution. Since tomotherapy units operate at a nominal energy of 6 MV, neutron production is negligible. This work proposes a synthetic and conservative model for calculating shielding requirements for the Hi-Art II TomoTherapy unit. Finally, the required concrete shielding thickness is given for different positions of interest.

  11. Spacecraft Shielding: An Experimental Comparison Between Open Cell Aluminium Foam Core Sandwich Panel Structures and Whipple Shielding.

    Science.gov (United States)

    Pasini, D. L. S.; Price, M. C.; Burchell, M. J.; Cole, M. J.

    2013-09-01

    Spacecraft shielding is generally provided by metallic plates in a Whipple shield type configuration [1] where possible. However, mission restrictions such as spacecraft payload mass, can prevent the inclusion of a dedicated protective structure for prevention against impact damage from micrometeoroids. Due to this, often the spacecraft's primary structure will act as the de facto shield. This is commonly an aluminium honeycomb backed with either glass fibre reinforced plastic (GFRP) or aluminium faceplates [2]. Such materials are strong, lightweight and relatively cheap due to their abundance used within the aerospace industry. However, these materials do not offer the best protection (per unit weight) against hypervelocity impact damage. A new material for shielding (porous aluminium foam [3]) is suggested for low risk space missions. Previous studies by NASA [4] have been performed to test this new material against hypervelocity impacts using spherical aluminium projectiles. This showed its potential for protection for satellites in Earth orbit, against metallic space debris. Here we demonstrate the material's protective capabilities against micrometeoroids, using soda-lime glass spheres as projectiles to accurately gauge its potential with relation to silicatious materials, such as micrometeoroids and natural solar system debris. This is useful for spacecraft missions beyond Earth orbit where solar system materials are the dominant threat (via hypervelocity impacts) to the spacecraft, rather than manmade debris.

  12. Aperture Effects on Spectroscopic Galaxy Activity Classification

    CERN Document Server

    Maragkoudakis, A; Ashby, M L N; Willner, S P

    2014-01-01

    Activity classification of galaxies based on long-slit and fiber spectroscopy can be strongly influenced by aperture effects. Here we investigate how activity classification for 14 nearby galaxies depends on the proportion of the host galaxy's light that is included in the aperture. We use both observed long-slit spectra and simulated elliptical-aperture spectra of different sizes. The degree of change varies with galaxy morphology and nuclear activity type. Starlight removal techniques can mitigate but not remove the effect of host galaxy contamination in the nuclear aperture. Galaxies with extra-nuclear star formation can show higher [O III] {\\lambda}5007/H{\\beta} ratios with increasing aperture, in contrast to the naive expectation that integrated light will only dilute the nuclear emission lines. We calculate the mean dispersion for the diagnostic line ratios used in the standard BPT diagrams with respect to the central aperture of spectral extraction to obtain an estimate of the uncertainties resulting f...

  13. Advanced Multiple Aperture Seeing Profiler

    Science.gov (United States)

    Ren, Deqing; Zhao, Gang

    2016-10-01

    Measurements of the seeing profile of the atmospheric turbulence as a function of altitude are crucial for solar astronomical site characterization, as well as the optimized design and performance estimation of solar Multi-Conjugate Adaptive Optics (MCAO). Knowledge of the seeing distribution, up to 30 km, with a potential new solar observation site, is required for future solar MCAO developments. Current optical seeing profile measurement techniques are limited by the need to use a large facility solar telescope for such seeing profile measurements, which is a serious limitation on characterizing a site's seeing conditions in terms of the seeing profile. Based on our previous work, we propose a compact solar seeing profiler called the Advanced Multiple Aperture Seeing Profile (A-MASP). A-MASP consists of two small telescopes, each with a 100 mm aperture. The two small telescopes can be installed on a commercial computerized tripod to track solar granule structures for seeing profile measurement. A-MASP is extreme simple and portable, which makes it an ideal system to bring to a potential new site for seeing profile measurements.

  14. Upgrade of the LHC magnet interconnections thermal shielding

    Energy Technology Data Exchange (ETDEWEB)

    Musso, Andrea; Barlow, Graeme; Bastard, Alain; Charrondiere, Maryline; Deferne, Guy; Dib, Gaëlle; Duret, Max; Guinchard, Michael; Prin, Hervé; Craen, Arnaud Vande; Villiger, Gilles [CERN European Organization for Nuclear Research, Meyrin 1211, Geneva 23, CH (Switzerland); Chrul, Anna [The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, ul.Radzikowskiego 152, 31-324 Krakow (Poland); Damianoglou, Dimitrios [NTUA National Technical University of Athens, Heeron Polytechniou 9, 15780 Zografou (Greece); Strychalski, Michał [Wroclaw University of Technology, Faculty of Mechanical and Power Engineering, Wyb. Wyspianskiego 27, Wroclaw, 50-370 (Poland); Wright, Loren [Lancaster University, Bailrigg, Lancaster, LA1 4YW (United Kingdom)

    2014-01-29

    The about 1700 interconnections (ICs) between the Large Hadron Collider (LHC) superconducting magnets include thermal shielding at 50-75 K, providing continuity to the thermal shielding of the magnet cryostats to reduce the overall radiation heat loads to the 1.9 K helium bath of the magnets. The IC shield, made of aluminum, is conduction-cooled via a welded bridge to the thermal shield of the adjacent magnets which is actively cooled. TIG welding of these bridges made in the LHC tunnel at installation of the magnets induced a considerable risk of fire hazard due to the proximity of the multi-layer insulation of the magnet shields. A fire incident occurred in one of the machine sectors during machine installation, but fortunately with limited consequences thanks to prompt intervention of the operators. LHC is now undergoing a 2 years technical stop during which all magnet's ICs will have to be opened to consolidate the magnet electrical connections. The IC thermal shields will therefore have to be removed and re-installed after the work is completed. In order to eliminate the risk of fire hazard when re-welding, it has been decided to review the design of the IC shields, by replacing the welded bridges with a mechanical clamping which also preserves its thermal function. An additional advantage of this new solution is the ease in dismantling for maintenance, and eliminating weld-grinding operations at removal needing radioprotection measures because of material activation after long-term operation of the LHC. This paper describes the new design of the IC shields and in particular the theoretical and experimental validation of its thermal performance. Furthermore a status report of the on-going upgrade work in the LHC is given.

  15. Upgrade of the LHC magnet interconnections thermal shielding

    Science.gov (United States)

    Musso, Andrea; Barlow, Graeme; Bastard, Alain; Charrondiere, Maryline; Chrul, Anna; Damianoglou, Dimitrios; Deferne, Guy; Dib, Gaëlle; Duret, Max; Guinchard, Michael; Prin, Hervé; Strychalski, Michał; Craen, Arnaud Vande; Villiger, Gilles; Wright, Loren

    2014-01-01

    The about 1700 interconnections (ICs) between the Large Hadron Collider (LHC) superconducting magnets include thermal shielding at 50-75 K, providing continuity to the thermal shielding of the magnet cryostats to reduce the overall radiation heat loads to the 1.9 K helium bath of the magnets. The IC shield, made of aluminum, is conduction-cooled via a welded bridge to the thermal shield of the adjacent magnets which is actively cooled. TIG welding of these bridges made in the LHC tunnel at installation of the magnets induced a considerable risk of fire hazard due to the proximity of the multi-layer insulation of the magnet shields. A fire incident occurred in one of the machine sectors during machine installation, but fortunately with limited consequences thanks to prompt intervention of the operators. LHC is now undergoing a 2 years technical stop during which all magnet's ICs will have to be opened to consolidate the magnet electrical connections. The IC thermal shields will therefore have to be removed and re-installed after the work is completed. In order to eliminate the risk of fire hazard when re-welding, it has been decided to review the design of the IC shields, by replacing the welded bridges with a mechanical clamping which also preserves its thermal function. An additional advantage of this new solution is the ease in dismantling for maintenance, and eliminating weld-grinding operations at removal needing radioprotection measures because of material activation after long-term operation of the LHC. This paper describes the new design of the IC shields and in particular the theoretical and experimental validation of its thermal performance. Furthermore a status report of the on-going upgrade work in the LHC is given.

  16. Advanced Optics Experiments Using Nonuniform Aperture Functions

    CERN Document Server

    Wood, Lowell T

    2012-01-01

    A method to create instructive, nonuniform aperture functions using spatial frequency filtering is described. The diffraction from a single slit in the Fresnel limit and the interference from a double slit in the Fraunhofer limit are spatially filtered to create electric field distributions across an aperture to produce apodization, inverse apodization or super-resolution, and apertures with phase shifts across their widths. The diffraction effects from these aperture functions are measured and calculated. The excellent agreement between the experimental results and the calculated results makes the experiment ideal for use in an advanced undergraduate or graduate optics laboratory to illustrate experimentally several effects in Fourier optics.

  17. Nanoscale microwave microscopy using shielded cantilever probes

    KAUST Repository

    Lai, Keji

    2011-04-21

    Quantitative dielectric and conductivity mapping in the nanoscale is highly desirable for many research disciplines, but difficult to achieve through conventional transport or established microscopy techniques. Taking advantage of the micro-fabrication technology, we have developed cantilever-based near-field microwave probes with shielded structures. Sensitive microwave electronics and finite-element analysis modeling are also utilized for quantitative electrical imaging. The system is fully compatible with atomic force microscope platforms for convenient operation and easy integration of other modes and functions. The microscope is ideal for interdisciplinary research, with demonstrated examples in nano electronics, physics, material science, and biology.

  18. Large- and Small-Aperture Fixed-Point Cells of Cu, Pt C, and Re C

    Science.gov (United States)

    Anhalt, Klaus; Wang, Yunfen; Yamada, Yoshiro; Hartmann, Jürgen

    2008-06-01

    Extending the application of metal (carbide) carbon eutectic fixed-point cells to radiometry, e.g., for measurements in irradiance mode, requires fixed-point cells with large apertures. In order to make large-aperture cells more readily usable in furnace systems with smaller furnace tubes commonly used for small-aperture fixed-point cells, a novel cell design was developed. For each of Cu, Pt C, and Re C fixed points, two types of fixed-point cells were manufactured, the small- and large-aperture cell. For Pt C and Re C, the large-aperture cells were filled with a hyper-eutectic metal carbon mixture; for the small cells, a hypo-eutectic mixture was used for filling. For each material, the small and large cells were compared with respect to radiometric differences. Whereas plateau shape and melting temperature are in good agreement for the small- and large-aperture Cu cells, a larger difference was observed between small- and large-aperture cells of Pt C and Re C, respectively. The origin of these observations, attributed to the temperature distribution inside the furnace, ingot contamination during manufacture, and non-uniform ingot formation for the larger cells, is discussed. The comparison of measurements by a radiation thermometer and filter radiometer of the Re C and Pt C large-aperture cells showed large differences that could be explained only by a strong radiance distribution across the cavity bottom. Further investigations are envisaged to clarify the cause.

  19. Low eddy current RF shielding enclosure designs for 3T MR applications.

    Science.gov (United States)

    Lee, Brian J; Watkins, Ronald D; Chang, Chen-Ming; Levin, Craig S

    2017-06-06

    Magnetic resonance-compatible medical devices operate within the MR environment while benefitting from the superior anatomic information of MRI. Avoiding electromagnetic interference between such instrumentation and the MR system is crucial. In this work, various shielding configurations for positron emission tomography (PET) detectors were studied and analyzed regarding radiofrequency (RF) shielding effectiveness and gradient-induced eddy current performances. However, the results of this work apply to shielding considerations for any MR-compatible devices. Six shielding enclosure configurations with various thicknesses, patterns, and materials were designed: solid and segmented copper, phosphor bronze mesh (PBM), and carbon fiber composite (CFC). A series of tests was performed on RF shielding effectiveness and the gradient-induced eddy current. For the shielding effectiveness, the solid copper with various thickness and PBM configurations yield significantly better shielding effectiveness (>15 dB) compared with CFC and segmented configurations. For the gradient-induced eddy current performance, the solid copper shielding configurations with different thicknesses showed significantly worse results, up to a factor of 3.89 dB, compared with the segmented copper, PBM, and the CFC configurations. We evaluated the RF shielding effectiveness and the gradient-induced eddy current artifacts of several shielding designs, and only the PBM showed positive outcomes for both aspects. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  20. Rapid Analysis of Mass Distribution of Radiation Shielding

    Science.gov (United States)

    Zapp, Edward

    2007-01-01

    Radiation Shielding Evaluation Toolset (RADSET) is a computer program that rapidly calculates the spatial distribution of mass of an arbitrary structure for use in ray-tracing analysis of the radiation-shielding properties of the structure. RADSET was written to be used in conjunction with unmodified commercial computer-aided design (CAD) software that provides access to data on the structure and generates selected three-dimensional-appearing views of the structure. RADSET obtains raw geometric, material, and mass data on the structure from the CAD software. From these data, RADSET calculates the distribution(s) of the masses of specific materials about any user-specified point(s). The results of these mass-distribution calculations are imported back into the CAD computing environment, wherein the radiation-shielding calculations are performed.

  1. Optimal shielding thickness for galactic cosmic ray environments

    Science.gov (United States)

    Slaba, Tony C.; Bahadori, Amir A.; Reddell, Brandon D.; Singleterry, Robert C.; Clowdsley, Martha S.; Blattnig, Steve R.

    2017-02-01

    Models have been extensively used in the past to evaluate and develop material optimization and shield design strategies for astronauts exposed to galactic cosmic rays (GCR) on long duration missions. A persistent conclusion from many of these studies was that passive shielding strategies are inefficient at reducing astronaut exposure levels and the mass required to significantly reduce the exposure is infeasible, given launch and associated cost constraints. An important assumption of this paradigm is that adding shielding mass does not substantially increase astronaut exposure levels. Recent studies with HZETRN have suggested, however, that dose equivalent values actually increase beyond ∼20 g/cm2 of aluminum shielding, primarily as a result of neutron build-up in the shielding geometry. In this work, various Monte Carlo (MC) codes and 3DHZETRN are evaluated in slab geometry to verify the existence of a local minimum in the dose equivalent versus aluminum thickness curve near 20 g/cm2. The same codes are also evaluated in polyethylene shielding, where no local minimum is observed, to provide a comparison between the two materials. Results are presented so that the physical interactions driving build-up in dose equivalent values can be easily observed and explained. Variation of transport model results for light ions (Z ≤ 2) and neutron-induced target fragments, which contribute significantly to dose equivalent for thick shielding, is also highlighted and indicates that significant uncertainties are still present in the models for some particles. The 3DHZETRN code is then further evaluated over a range of related slab geometries to draw closer connection to more realistic scenarios. Future work will examine these related geometries in more detail.

  2. Shielding design studies for a neutron irradiator system based on a 252Cf source.

    Science.gov (United States)

    da Silva, A X; Crispim, V R

    2001-01-01

    This study aims to investigate a shielding design against neutrons and gamma rays from a source of 252Cf, using Monte Carlo simulation. The shielding materials studied were borated polyethylene, borated-lead polyethylene and stainless steel. The Monte Carlo code MCNP4B was used to design shielding for 252Cf based neutron irradiator systems. By normalising the dose equivalent rate values presented to the neutron production rate of the source, the resulting calculations are independent of the intensity of the actual 252Cf source. The results show that the total dose equivalent rates were reduced significantly by the shielding system optimisation.

  3. Heat shield manifold system for a midframe case of a gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Clinton A.; Eng, Jesse; Schopf, Cheryl A.

    2017-07-25

    A heat shield manifold system for an inner casing between a compressor and turbine assembly is disclosed. The heat shield manifold system protects the outer case from high temperature compressor discharge air, thereby enabling the outer case extending between a compressor and a turbine assembly to be formed from less expensive materials than otherwise would be required. In addition, the heat shield manifold system may be configured such that compressor bleed air is passed from the compressor into the heat shield manifold system without passing through a conventional flange to flange joint that is susceptible to leakage.

  4. Overview of active methods for shielding spacecraft from energetic space radiation

    Science.gov (United States)

    Townsend, L. W.; Wilson, J. W. (Principal Investigator)

    2001-01-01

    During the 1960's and into the early 1970's, investigations were conducted related to the feasibility of using active radiation shielding methods, such as afforded by electromagnetic fields, as alternatives to passive, bulk material shielding to attenuate space radiations. These active concepts fall into four categories: (1) electrostatic fields; (2) plasma shields; (3) confined magnetic fields; and (4) unconfined magnetic fields. In nearly all of these investigations, consideration was given only to shielding against protons or electrons, or both. During the 1980's and 1990's there were additional studies related to proton shielding and some new studies regarding the efficacy of using active methods to shield from the high energy heavy ion (HZE particle) component of the galactic cosmic ray spectrum. In this overview, each concept category is reviewed and its applicability and limitations for the various types of space radiations are described. Recommendations for future research on this topic are made.

  5. Characterization and biocompatibility studies of lead free X-ray shielding polymer composite for healthcare application

    Science.gov (United States)

    Singh, Anil Kumar; Singh, Rakesh Kumar; Sharma, Bhupesh; Tyagi, Ajay Kumar

    2017-09-01

    Lead based X-ray shielding systems are widely being used in healthcare and radiation processing centers to protect technicians, operators and patients from unwanted exposure to ionizing radiation. However, the use of lead is avoided mainly due to its toxic effects on human health and environment, and also discomfort due to heavier in weight. Hence, production of non-toxic, environment friendly, lead-free X-ray shielding system with less weight and good radiation shielding efficiency compared to conventional lead-based shielding systems is a challenging issue and need of the day. The objectives of present study are to develop, characterize and establish synergy of the materials making radiation shielding composition and their biocompatibility without compromising on radiation shielding efficiency and physico-mechanical attributes vis-à-vis lead based systems.

  6. Manufacturing technique and performance of functionally graded concrete segment in shield tunnel

    Institute of Scientific and Technical Information of China (English)

    Baoguo MA; Dinghua ZOU; Li XU

    2009-01-01

    The quality of segment is very important to theservice life of shield tunnel. Concerning the complex engineering environment of the Wuhan Yangtze River Shield Tunnel, the principle of functionally graded materials was introduced to design and produce the functionally graded concrete segment (FGCS). Its key manufacturing technique was proposed and its perfor-mance was tested.

  7. Conducting wall Hall thrusters in magnetic shielding and standard configurations

    Science.gov (United States)

    Grimaud, Lou; Mazouffre, Stéphane

    2017-07-01

    Traditional Hall thrusters are fitted with boron nitride dielectric discharge channels that confine the plasma discharge. Wall properties have significant effects on the performances and stability of the thrusters. In magnetically shielded thrusters, interactions between the plasma and the walls are greatly reduced, and the potential drop responsible for ion acceleration is situated outside the channel. This opens the way to the utilization of alternative materials for the discharge channel. In this work, graphite walls are compared to BN-SiO2 walls in the 200 W magnetically shielded ISCT200-MS and the unshielded ISCT200-US Hall thrusters. The magnetically shielded thruster shows no significant change in the discharge current mean value and oscillations, while the unshielded thruster's discharge current increases by 25% and becomes noticeably less stable. The electric field profile is also investigated through laser spectroscopy, and no significant difference is recorded between the ceramic and graphite cases for the shielded thruster. The unshielded thruster, on the other hand, has its acceleration region shifted 15% of the channel length downstream. Lastly, the plume profile is measured with planar probes fitted with guard rings. Once again the material wall has little influence on the plume characteristics in the shielded thruster, while the unshielded one is significantly affected.

  8. Synthetic Aperture Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando

    The main objective of this project was to continue the development of a synthetic aperture vector flow estimator. This type of estimator is capable of overcoming two of the major limitations in conventional ultrasound systems: 1) the inability to scan large region of interest with high temporal...... resolutions; 2) the lack of capability in detecting flow other than the one along the direction of the beam. Addressing these technical limitations would translate in the clinic as a gain in valuable clinical information and a removal of operator-dependant sources of error, which would improve the diagnosis....... The main contribution of this work was the development of an angle estimator which features high accuracy and low standard deviation over the full 360◦ range. The estimator demonstrated its capability of operating at high frame rates (> 1000 Hz), and simultaneously detecting a large range of flow...

  9. Shielding effectiveness of non-woven carbon fibre sheets

    OpenAIRE

    Dawson, John F.; Flintoft, Ian Dand; Austin, A. N.; Marvin, Andrew C.

    2016-01-01

    This paper describes work undertaken to understand how the structure of a nonwoven carbon fibre material determines its shielding effectiveness, including the effects of fibre orientation, and contact resistance. In order to facilitate understanding of the material behaviour, software has been written to generate Monte Carlo Models (MCMs) of the material structure. The results of our MCMs are compared with measurements and some empirical expressions.

  10. Towards Very Large Aperture Massive MIMO

    DEFF Research Database (Denmark)

    Oliveras Martínez, Àlex; De Carvalho, Elisabeth; Nielsen, Jesper Ødum

    2014-01-01

    on the impact of the array aperture which is the main limiting factor in the degrees of freedom available in the multiple antenna channel. We find that performance is improved as the aperture increases, with an impact mostly visible in crowded scenarios where the users are closely spaced. We also test MIMO...

  11. Fast Parametric Beamformer for Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt; Tomov, Borislav Gueorguiev

    2008-01-01

    . The implementation of the beamformer is optimized with respect to the architecture of a novel synthetic aperture real-time ultrasound scanner (SARUS), in which 4 channels are processed by the same set of field-programmable gate arrays (FPGA). In synthetic transmit aperture imaging, low-resolution images are formed...

  12. High frame rate synthetic aperture duplex imaging

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Tomov, Borislav Gueorguiev; Pihl, Michael Johannes

    2013-01-01

    aperture flow imaging as demonstrated in this paper. Synthetic aperture, directional beamforming, and cross-correlation are used to produce B-mode and vector velocity images at high frame rates. The frame rate equals the effective pulse repetition frequency of each imaging mode. Emissions for making the B...

  13. Momentum aperture of the advanced light source

    Science.gov (United States)

    Decking, W.; Robin, D.

    1999-04-01

    This paper shows measurements of the momentum aperture of the Advanced Light Source (ALS) based on Touschek lifetime measurements. The measured data is compared with tracking simulations and a simple model for the apertures will help to explain the observed effects.

  14. Nuclear reactor neutron shielding

    Energy Technology Data Exchange (ETDEWEB)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  15. Characteristic Impedance of a Microstrip-Like Interconnect Line in Presence of Ground Plane Aperture

    Directory of Open Access Journals (Sweden)

    Rohit Sharma

    2007-01-01

    Full Text Available We propose new empirical expressions for the characteristic impedance of a microstrip-like interconnect line in presence of ground plane aperture. The existing characteristic impedance expressions are modified so as to include the effect of the ground plane aperture. The variation in the characteristic impedance vis-à-vis the aperture size is established. The proposed expressions are general and valid for a range of dielectric materials concerning MICs, RFICs, and PCBs. The results are validated by measurements performed on a vector network analyzer.

  16. A circular aperture array for ultrasonic tomography and quantitative NDE

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, S.A.

    1998-08-01

    The main topics of this thesis are ultrasonic tomography and ultrasonic determination of elastic stiffness constants. Both issues are based on a synthetic array with transducer elements distributed uniformly along a circular aperture, i.e., a circular aperture array. The issues are treated both theoretically and experimentally by broadband pulse techniques. Ultrasonic tomography, UCT, from a circular aperture is a relatively new imaging technique in Non-destructive Evaluation (NDE) to acquire cross sectional images in bulk materials. A filtered back-projection algorithm is used to reconstruct images in four different experiments and results of attenuation, velocity and reflection tomograms in Plexiglas of AlSi-alloy cylinders are presented. Two kinds of ultrasonic tomography are introduced: bistatic and monostatic imaging. Both techniques are verified experimentally by Plexiglas cylinders. Different reconstruction artifacts are discussed and theoretical resolution constraints are discussed for various configurations of the circular aperture array. The monostatic technique is used in volumetric imaging. In the experimental verification artificial and real discontinuities in a cylindrical AlSi-alloy are compared with similar discontinuities in a Plexiglas specimen. Finally, some limitations to UCT are discussed. The circular aperture array is used to determine five independent elastic stiffness constants of a unidirectional glass/PET (Poly Ethylene Teraphtalate) laminate. Energy flux propagation and attenuation of ultrasonic waves are considered and velocity surfaces are calculated for different planes of interest. Relations between elastic stiffness constants and engineering constants (i.e., Young`s moduli, shear moduli and Poisson`s ratios) are discussed for an orthotropic composite. Six micromechanical theories are reviewed, and expressions predicting the elastic engineering constants are evaluated. The micromechanical predicted elastic stiffness constants for the

  17. Neutron guide shielding for the BIFROST spectrometer at ESS

    DEFF Research Database (Denmark)

    Mantulnikovs, K.; Bertelsen, M.; Cooper-Jensen, C.P.;

    We report on the study of fast-neutron background for the BIFROST spectrometer at ESS. We investigate the effect of background radiation induced by the interaction of fast neutrons from the source with the material of the neutron guide and devise a reasonable fast, thermal/cold neutron shielding...

  18. A Gravitational Shielding Based on ZnS:Ag Phosphor

    OpenAIRE

    De Aquino, Fran

    2001-01-01

    It was shown that there is a practical possibility of gravity control on electroluminescent (EL) materials (physics/0109060). We present here a type Gravitational Shielding based on an EL phosphor namely zinc sulfide doped with silver (ZnS:Ag) which can reduce the cost of the Gravitational Motor previously presented.

  19. PMMA/MWCNT nanocomposite for proton radiation shielding applications

    Science.gov (United States)

    Li, Zhenhao; Chen, Siyuan; Nambiar, Shruti; Sun, Yonghai; Zhang, Mingyu; Zheng, Wanping; Yeow, John T. W.

    2016-06-01

    Radiation shielding in space missions is critical in order to protect astronauts, spacecraft and payloads from radiation damage. Low atomic-number materials are efficient in shielding particle-radiation, but they have relatively weak material properties compared to alloys that are widely used in space applications as structural materials. However, the issues related to weight and the secondary radiation generation make alloys not suitable for space radiation shielding. Polymers, on the other hand, can be filled with different filler materials for reinforcement of material properties, while at the same time provide sufficient radiation shielding function with lower weight and less secondary radiation generation. In this study, poly(methyl-methacrylate)/multi-walled carbon nanotube (PMMA/MWCNT) nanocomposite was fabricated. The role of MWCNTs embedded in PMMA matrix, in terms of radiation shielding effectiveness, was experimentally evaluated by comparing the proton transmission properties and secondary neutron generation of the PMMA/MWCNT nanocomposite with pure PMMA and aluminum. The results showed that the addition of MWCNTs in PMMA matrix can further reduce the secondary neutron generation of the pure polymer, while no obvious change was found in the proton transmission property. On the other hand, both the pure PMMA and the nanocomposite were 18%-19% lighter in weight than aluminum for stopping the protons with the same energy and generated up to 5% fewer secondary neutrons. Furthermore, the use of MWCNTs showed enhanced thermal stability over the pure polymer, and thus the overall reinforcement effects make MWCNT an effective filler material for applications in the space industry.

  20. PMMA/MWCNT nanocomposite for proton radiation shielding applications.

    Science.gov (United States)

    Li, Zhenhao; Chen, Siyuan; Nambiar, Shruti; Sun, Yonghai; Zhang, Mingyu; Zheng, Wanping; Yeow, John T W

    2016-06-10

    Radiation shielding in space missions is critical in order to protect astronauts, spacecraft and payloads from radiation damage. Low atomic-number materials are efficient in shielding particle-radiation, but they have relatively weak material properties compared to alloys that are widely used in space applications as structural materials. However, the issues related to weight and the secondary radiation generation make alloys not suitable for space radiation shielding. Polymers, on the other hand, can be filled with different filler materials for reinforcement of material properties, while at the same time provide sufficient radiation shielding function with lower weight and less secondary radiation generation. In this study, poly(methyl-methacrylate)/multi-walled carbon nanotube (PMMA/MWCNT) nanocomposite was fabricated. The role of MWCNTs embedded in PMMA matrix, in terms of radiation shielding effectiveness, was experimentally evaluated by comparing the proton transmission properties and secondary neutron generation of the PMMA/MWCNT nanocomposite with pure PMMA and aluminum. The results showed that the addition of MWCNTs in PMMA matrix can further reduce the secondary neutron generation of the pure polymer, while no obvious change was found in the proton transmission property. On the other hand, both the pure PMMA and the nanocomposite were 18%-19% lighter in weight than aluminum for stopping the protons with the same energy and generated up to 5% fewer secondary neutrons. Furthermore, the use of MWCNTs showed enhanced thermal stability over the pure polymer, and thus the overall reinforcement effects make MWCNT an effective filler material for applications in the space industry.

  1. Hydrogen-Induced Cracking of the Drip Shield

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua

    2004-09-07

    Hydrogen-induced cracking is characterized by the decreased ductility and fracture toughness of a material due to the absorption of atomic hydrogen in the metal crystal lattice. Corrosion is the source of hydrogen generation. For the current design of the engineered barrier without backfill, hydrogen-induced cracking may be a concern because the titanium drip shield can be galvanically coupled to rock bolts (or wire mesh), which may fall onto the drip shield, thereby creating conditions for hydrogen production by electrochemical reaction. The purpose of this report is to analyze whether the drip shield will fail by hydrogen-induced cracking under repository conditions within 10,000 years after emplacement. Hydrogen-induced cracking is a scenario of premature failure of the drip shield. This report develops a realistic model to assess the form of hydrogen-induced cracking degradation of the drip shield under the hydrogen-induced cracking. The scope of this work covers the evaluation of hydrogen absorbed due to general corrosion and galvanic coupling to less noble metals (e.g., Stainless Steel Type 316 and carbon steels) under the repository conditions during the 10,000-year regulatory period after emplacement and whether the absorbed hydrogen content will exceed the critical hydrogen concentration value, above which the hydrogen-induced cracking is assumed to occur. This report also provides the basis for excluding the features, events, and processes (FEPs) related to hydrogen-induced cracking of the drip shield with particular emphasis on FEP 2.1.03.04.OB, hydride cracking of drip shields (DTN: M00407SEPFEPLA.000 [DIRS 170760]). This report is prepared according to ''Technical Work Plan (TWP) for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 169944]).

  2. Neutron shielding evaluation for a small fuel transport case

    CERN Document Server

    Coeck, M; Vanhavere, F

    2002-01-01

    We investigated the effectiveness of a small neutron shield configuration for the transportation of fresh MOX fuel rods in an experimental facility, this in order to reduce the dose received by the personnel. Monte Carlo simulations using the Tripoli and MCNP4B code were applied. Different configurations were studied, starting from the bare fuel rod positioned on an iron plate up to a fuel rod covered by a box-shaped shield made of different materials such as polyethylene, polyethylene with boron and polyethylene with a cadmium layer. We compared the neutron spectra for the different cases and calculated the corresponding ambient equivalent dose rate H*(10).

  3. MCNPX vs. DORT for SNS shielding design studies.

    Science.gov (United States)

    Popova, Irina I

    2005-01-01

    Radiation transport occurs through the 18 m long access way adjacent to the Spallation Neutron Source accelerator tunnel and the 2.2 m thick massive shielding door which closes the access way. A variety of typical materials for accelerator shielding, such as concrete and steel, were used for construction of the door to study radiation penetration. A comparison was carried out using both Monte Carlo (code MCNPX) and discrete ordinates (code DORT) methods. The beam losses during the accelerator operation are the sources for the radiation calculations. Analyses show that the results from the two methods are in good agreement.

  4. Description of Transport Codes for Space Radiation Shielding

    Science.gov (United States)

    Kim, Myung-Hee Y.; Wilson, John W.; Cucinotta, Francis A.

    2011-01-01

    This slide presentation describes transport codes and their use for studying and designing space radiation shielding. When combined with risk projection models radiation transport codes serve as the main tool for study radiation and designing shielding. There are three criteria for assessing the accuracy of transport codes: (1) Ground-based studies with defined beams and material layouts, (2) Inter-comparison of transport code results for matched boundary conditions and (3) Comparisons to flight measurements. These three criteria have a very high degree with NASA's HZETRN/QMSFRG.

  5. Shielding Performance Measurements of Spent Fuel Transportation Container

    Directory of Open Access Journals (Sweden)

    SUN Hong-chao

    2015-11-01

    Full Text Available The safety supervision of radioactive material transportation package has been further stressed and implemented. The shielding performance measurements of spent fuel transport container is the important content of supervision. However, some of the problems and difficulties reflected in practice need to be solved, such as the neutron dose rate on the surface of package is too difficult to measure exactly, the monitoring results are not always reliable, etc. The monitoring results using different spectrometers were compared and the simulation results of MCNP runs were considered. An improvement was provided to the shielding performance measurements technique and management of spent fuel transport.

  6. Radiation shielding properties of a novel cement–basalt mixture for nuclear energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Ipbüker, Cagatay; Nulk, Helena; Gulik, Volodymyr [University of Tartu, Institute of Physics (Estonia); Biland, Alex [HHK Technologies, Houston (United States); Tkaczyk, Alan Henry, E-mail: alan@ut.ee [University of Tartu, Institute of Physics (Estonia)

    2015-04-01

    Highlights: • Basalt fiber is a relatively cheap material that can be used as reinforcement. • Gamma-ray attenuation remains relatively stable with addition of basalt fiber. • Neutron attenuation remains relatively stable with addition of basalt fiber. • Cement–basalt mixture has a good potential for use in nuclear energy applications. - Abstract: The radiation shielding properties of a new proposed building material, a novel cement–basalt fiber mixture (CBM), are investigated. The authors analyze the possibility of this material to be a viable substitute to outgoing materials in nuclear energy applications, which will lead to a further sustained development of nuclear energy in the future. This computational study involves four types of concrete with various amounts of basalt fiber in them. The gamma-ray shielding characteristics of proposed CBM material are investigated with the help of WinXCom program, whereas the neutron shielding characteristics are computed by the Serpent code. For gamma-ray shielding, we find that the attenuation coefficients of concretes with basalt fibers are not notably influenced by the addition of fibers. For neutron shielding, additional basalt fiber in mixture presents negligible effect on neutron radiation shielding. With respect to radiation shielding, it can be concluded that basalt fibers have good potential as an addition to heavyweight concrete for nuclear energy applications.

  7. Optimized shielding for space radiation protection

    Science.gov (United States)

    Wilson, J. W.; Cucinotta, F. A.; Kim, M. H.; Schimmerling, W.

    2001-01-01

    Future deep space mission and International Space Station exposures will be dominated by the high-charge and -energy (HZE) ions of the Galactic Cosmic Rays (GCR). A few mammalian systems have been extensively tested over a broad range of ion types and energies. For example, C3H10T1/2 cells, V79 cells, and Harderian gland tumors have been described by various track-structure dependent response models. The attenuation of GCR induced biological effects depends strongly on the biological endpoint, response model used, and material composition. Optimization of space shielding is then driven by the nature of the response model and the transmission characteristics of the given material.

  8. Radiation Shielding Properties of Some Marbles in Turkey

    Science.gov (United States)

    Günoǧlu, K.; Akkurt, I.

    2011-12-01

    Especially after development of technology, radiation started to be used in a large fields such as medicine, industry and energy. Using radiation in those fields bring hazordous effect of radition into humancell. Thus radiation protection becomes important in physics. Although there are three ways for radiation protection, shielding of the radiation is the most commonly used method. Natural Stones such as marble is used as construction material especially in critical building and thus its radiation shielding capability should be determined. In this study, gamma ray shielding properties of some different types of marble mined in Turkey, have been measured using a NaI(Tl) scintillator detector. The measured results were also compared with the theoretical calculations XCOM.

  9. Investigating Radiation Shielding Properties of Different Mineral Origin Heavyweight Concretes

    Science.gov (United States)

    Basyigit, Celalettin; Uysal, Volkan; Kilinçarslan, Şemsettin; Mavi, Betül; Günoǧlu, Kadir; Akkurt, Iskender; Akkaş, Ayşe

    2011-12-01

    The radiation although has hazardous effects for human health, developing technologies bring lots of usage fields to radiation like in medicine and nuclear power station buildings. In this case protecting from undesirable radiation is a necessity for human health. Heavyweight concrete is one of the most important materials used in where radiation should be shielded, like those areas. In this study, used heavyweight aggregates of different mineral origin (Limonite, Siderite), in order to prepare different series in concrete mixtures and investigated radiation shielding properties. The experimental results on measuring the radiation shielding, the heavyweight concrete prepared with heavyweight aggregates of different mineral origin show that, are useful radiation absorbents when they used in concrete mixtures.

  10. The ATLAS SCT grounding and shielding concept and implementation

    CERN Document Server

    Bates, RL; Bernabeu, J; Bizzell, J; Bohm, J; Brenner, R; Bruckman de Renstrom, P A; Catinaccio, A; Cindro, V; Ciocio, A; Civera, J V; Chouridou, S; Dervan, P; Dick, B; Dolezal, Z; Eklund, L; Feld, L; Ferrere, D; Gadomski, S; Gonzalez, F; Gornicki, E; Greenhall, A; Grillo, A A; Grosse-Knetter, J; Gruwe, M; Haywood, S; Hessey, N P; Ikegami, Y; Jones, T J; Kaplon, J; Kodys, P; Kohriki, T; Kondo, T; Koperny, S; Lacasta, C; Lozano Bahilo, J; Malecki, P; Martinez-McKinney, F; McMahon, S J; McPherson, A; Mikulec, B; Mikus, M; Moorhead, G F; Morrissey, M C; Nagai, K; Nichols, A; O'Shea, V; Pater, J R; Peeters, S J M; Pernegger, H; Perrin, E; Phillips, P W; Pieron, J P; Roe, S; Sanchez, J; Spencer, E; Stastny, J; Tarrant, J; Terada, S; Tyndel, M; Unno, Y; Wallny, R; Weber, M; Weidberg, A R; Wells, P S; Werneke, P; Wilmut, I

    2012-01-01

    This paper describes the design and implementation of the grounding and shielding system for the ATLAS SemiConductor Tracker (SCT). The mitigation of electromagnetic interference and noise pickup through power lines is the critical design goal as they have the potential to jeopardize the electrical performance. We accomplish this by adhering to the ATLAS grounding rules, by avoiding ground loops and isolating the different subdetectors. Noise sources are identified and design rules to protect the SCT against them are described. A rigorous implementation of the design was crucial to achieve the required performance. This paper highlights the location, connection and assembly of the different components that affect the grounding and shielding system: cables, filters, cooling pipes, shielding enclosure, power supplies and others. Special care is taken with the electrical properties of materials and joints. The monitoring of the grounding system during the installation period is also discussed. Finally, after con...

  11. Reliability-Based Electronics Shielding Design Tools

    Science.gov (United States)

    Wilson, J. W.; O'Neill, P. J.; Zang, T. A.; Pandolf, J. E.; Tripathi, R. K.; Koontz, Steven L.; Boeder, P.; Reddell, B.; Pankop, C.

    2007-01-01

    Shielding design on large human-rated systems allows minimization of radiation impact on electronic systems. Shielding design tools require adequate methods for evaluation of design layouts, guiding qualification testing, and adequate follow-up on final design evaluation.

  12. Superconducting and hybrid systems for magnetic field shielding

    Science.gov (United States)

    Gozzelino, L.; Gerbaldo, R.; Ghigo, G.; Laviano, F.; Truccato, M.; Agostino, A.

    2016-03-01

    In this paper we investigate and compare the shielding properties of superconducting and hybrid superconducting/ferromagnetic systems, consisting of cylindrical cups with an aspect ratio of height/radius close to unity. First, we reproduced, by finite-element calculations, the induction magnetic field values measured along the symmetry axis in a superconducting (MgB2) and in a hybrid configuration (MgB2/Fe) as a function of the applied magnetic field and of the position. The calculations are carried out using the vector potential formalism, taking into account simultaneously the non-linear properties of both the superconducting and the ferromagnetic material. On the basis of the good agreement between the experimental and the computed data we apply the same model to study the influence of the geometric parameters of the ferromagnetic cup as well as of the thickness of the lateral gap between the two cups on the shielding properties of the superconducting cup. The results show that in the considered non-ideal geometry, where the edge effect in the flux penetration cannot be disregarded, the superconducting shield is always the most efficient solution at low magnetic fields. However, a partial recovery of the shielding capability of the hybrid configuration occurs if a mismatch in the open edges of the two cups is considered. In contrast, at high magnetic fields the hybrid configurations are always the most effective. In particular, the highest shielding factor was found for solutions with the ferromagnetic cup protruding over the superconducting one.

  13. Evaluating Shielding Effectiveness for Reducing Space Radiation Cancer Risks

    Science.gov (United States)

    Cucinotta, Francis A.; Kim, Myung-Hee Y.; Ren, Lei

    2007-01-01

    We discuss calculations of probability distribution functions (PDF) representing uncertainties in projecting fatal cancer risk from galactic cosmic rays (GCR) and solar particle events (SPE). The PDF s are used in significance tests of the effectiveness of potential radiation shielding approaches. Uncertainties in risk coefficients determined from epidemiology data, dose and dose-rate reduction factors, quality factors, and physics models of radiation environments are considered in models of cancer risk PDF s. Competing mortality risks and functional correlations in radiation quality factor uncertainties are treated in the calculations. We show that the cancer risk uncertainty, defined as the ratio of the 95% confidence level (CL) to the point estimate is about 4-fold for lunar and Mars mission risk projections. For short-stay lunar missions (shielding, especially for carbon composites structures with high hydrogen content. In contrast, for long duration lunar (>180 d) or Mars missions, GCR risks may exceed radiation risk limits, with 95% CL s exceeding 10% fatal risk for males and females on a Mars mission. For reducing GCR cancer risks, shielding materials are marginally effective because of the penetrating nature of GCR and secondary radiation produced in tissue by relativistic particles. At the present time, polyethylene or carbon composite shielding can not be shown to significantly reduce risk compared to aluminum shielding based on a significance test that accounts for radiobiology uncertainties in GCR risk projection.

  14. Radioprotection to the Gonads in Pediatric Pelvic Radiography: Effectiveness of Developed Bismuth Shield

    Directory of Open Access Journals (Sweden)

    Vahid Karami

    2017-06-01

    Full Text Available Background: The use and effectiveness of traditional lead gonad shields in pediatric pelvic radiography has been challenged by several literatures over the past two decades. The aim of this study was to develop a new radioprotective gonad shields to be use in pediatric pelvic radiography. Materials and Methods: The commercially available 0.06 mm lead equivalent bismuth garment has cropped squarely and used as ovarian shield to cover the entire region of pelvis. In order to prevent deterioration of image quality due to beam hardening artifacts, a 1-cm foam as spacer was located between the shield and patients pelvis. Moreover, we added a lead piece at the cranial position of the bismuth garment to absorb the scatter radiations to the radiosensitive organs. In girls, 49 radiographs with shield and 46 radiographs without shield was taken. The radiation dose was measured using thermoluminescent dosimeters (TLDs. Image quality assessments were performed using the European guidelines. For boys, the lead testicular shields was developed using 2 cm bismuth garment, added to the sides. The prevalence and efficacy of testicular shields was assessed in clinical practice fromFebruary 2016 to June 2016. Results: Without increasing the dose to the breast, thyroid and the lens of the eyes, the use of bismuth shield has reduced the entrance skin dose(ESD of the pelvis and radiation dose to the ovaries by 62.2% and 61.7%, respectively (P

  15. Deep-penetration calculations in concrete and iron for shielding of proton therapy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Sheu, Rong-Jiun, E-mail: rjsheu@mx.nthu.edu.tw [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101 Sec. 2, Kung Fu Road, Hsinchu 300, Taiwan (China); Department of Engineering and System Science, National Tsing Hua University, 101 Sec. 2, Kung Fu Road, Hsinchu 300, Taiwan (China); National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 300, Taiwan (China); Chen, Yen-Fu [Department of Engineering and System Science, National Tsing Hua University, 101 Sec. 2, Kung Fu Road, Hsinchu 300, Taiwan (China); Lin, Uei-Tyng [Institute of Radiological Sciences, Tzu Chi College of Technology, 880 Sec. 2, Chien-Kuo Road, Hualien 970, Taiwan (China); Jiang, Shiang-Huei [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101 Sec. 2, Kung Fu Road, Hsinchu 300, Taiwan (China); Department of Engineering and System Science, National Tsing Hua University, 101 Sec. 2, Kung Fu Road, Hsinchu 300, Taiwan (China)

    2012-06-01

    Proton accelerators in the energy range of approximately 200 MeV have become increasingly popular for cancer treatment in recent years. These proton therapy facilities usually involve bulky concrete or iron in their shielding design or accelerator structure. Simple shielding data, such as source terms or attenuation lengths for various proton energies and materials are useful in designing accelerator shielding. Understanding the appropriateness or uncertainties associated with these data, which are largely generated from Monte Carlo simulations, is critical to the quality of a shielding design. This study demonstrated and investigated the problems of deep-penetration calculations on the estimation of shielding parameters through an extensive comparison between the FLUKA and MCNPX calculations for shielding against a 200-MeV proton beam hitting an iron target. Simulations of double-differential neutron production from proton bombardment were validated by comparison with experimental data. For the concrete shielding, the FLUKA calculated depth-dose distributions were consistent with the MCNPX results, except for some discrepancies in backward directions. However, for the iron shielding, if FLUKA is used inappropriately then overestimation of neutron attenuation can be expected as shown by this work because of the multigroup treatment for low-energy neutrons in FLUKA. Two neutron energy group structures, three degrees of self-shielding correction, and two iron compositions were considered in this study. Significant variation of the resulting attenuation lengths indicated the importance of problem-dependent multigroup cross sections and proper modeling of iron composition in deep-penetration calculations.

  16. EXPERIMENTAL EVALUATION OF THE THERMAL PERFORMANCE OF A WATER SHIELD FOR A SURFACE POWER REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    REID, ROBERT S. [Los Alamos National Laboratory; PEARSON, J. BOSIE [Los Alamos National Laboratory; STEWART, ERIC T. [Los Alamos National Laboratory

    2007-01-16

    Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 C. The CFD model with 1/6-g predicts a maximum water temperature of 88 C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.

  17. Microstructured apertures in planar glass substrates for ion channel research.

    Science.gov (United States)

    Fertig, Niels; George, Michael; Klau, Michèle; Meyer, Christine; Tilke, Armin; Sobotta, Constanze; Blick, Robert H; Behrends, Jan C

    2003-01-01

    We have developed planar glass chip devices for patch clamp recording. Glass has several key advantages as a substrate for planar patch clamp devices. It is a good dielectric, is well-known to interact strongly with cell membranes and is also a relatively in-expensive material. In addition, it is optically neutral. However, microstructuring processes for glass are less well established than those for silicon-based substrates. We have used ion-track etching techniques to produce micron-sized apertures into borosilicate and quartz-glass coverslips. These apertures, which can be easily produced in arrays, have been used for high resolution recording of single ion channels as well as for whole-cell current recordings from mammalian cell lines. An additional attractive application that is greatly facilitated by the combination of planar geometry with the optical neutrality of the substrate is single-molecule fluorescence recording with simultaneous single-channel measurements.

  18. Walking through Apertures in Individuals with Stroke

    Science.gov (United States)

    Higuchi, Takahiro

    2017-01-01

    Objective Walking through a narrow aperture requires unique postural configurations, i.e., body rotation in the yaw dimension. Stroke individuals may have difficulty performing the body rotations due to motor paralysis on one side of their body. The present study was therefore designed to investigate how successfully such individuals walk through apertures and how they perform body rotation behavior. Method Stroke fallers (n = 10), stroke non-fallers (n = 13), and healthy controls (n = 23) participated. In the main task, participants walked for 4 m and passed through apertures of various widths (0.9–1.3 times the participant’s shoulder width). Accidental contact with the frame of an aperture and kinematic characteristics at the moment of aperture crossing were measured. Participants also performed a perceptual judgment task to measure the accuracy of their perceived aperture passability. Results and Discussion Stroke fallers made frequent contacts on their paretic side; however, the contacts were not frequent when they penetrated apertures from their paretic side. Stroke fallers and non-fallers rotated their body with multiple steps, rather than a single step, to deal with their motor paralysis. Although the minimum passable width was greater for stroke fallers, the body rotation angle was comparable among groups. This suggests that frequent contact in stroke fallers was due to insufficient body rotation. The fact that there was no significant group difference in the perceived aperture passability suggested that contact occurred mainly due to locomotor factors rather than perceptual factors. Two possible explanations (availability of vision and/or attention) were provided as to why accidental contact on the paretic side did not occur frequently when stroke fallers penetrated the apertures from their paretic side. PMID:28103299

  19. Self characterization of a coded aperture array for neutron source imaging

    Energy Technology Data Exchange (ETDEWEB)

    Volegov, P. L., E-mail: volegov@lanl.gov; Danly, C. R.; Guler, N.; Merrill, F. E.; Wilde, C. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Fittinghoff, D. N. [Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-12-15

    The neutron imaging system at the National Ignition Facility (NIF) is an important diagnostic tool for measuring the two-dimensional size and shape of the neutrons produced in the burning deuterium-tritium plasma during the stagnation stage of inertial confinement fusion implosions. Since the neutron source is small (∼100 μm) and neutrons are deeply penetrating (>3 cm) in all materials, the apertures used to achieve the desired 10-μm resolution are 20-cm long, triangular tapers machined in gold foils. These gold foils are stacked to form an array of 20 apertures for pinhole imaging and three apertures for penumbral imaging. These apertures must be precisely aligned to accurately place the field of view of each aperture at the design location, or the location of the field of view for each aperture must be measured. In this paper we present a new technique that has been developed for the measurement and characterization of the precise location of each aperture in the array. We present the detailed algorithms used for this characterization and the results of reconstructed sources from inertial confinement fusion implosion experiments at NIF.

  20. Shielding in biology and biophysics: Methodology, dosimetry, interpretation

    Science.gov (United States)

    Vladimirsky, B. M.; Temuryants, N. A.

    2016-12-01

    An interdisciplinary review of the publications on the shielding of organisms by different materials is presented. The authors show that some discrepancies between the results of different researchers might be attributed to methodological reasons, including purely biological (neglect of rhythms) and technical (specific features of the design or material of the screen) ones. In some cases, an important factor is the instability of control indices due to the variations in space weather. According to the modern concept of biological exposure to microdoses, any isolation of a biological object by any material necessarily leads to several simultaneous changes in environmental parameters, and this undermines the principle of "all other conditions being equal" in the classical differential scheme of an experiment. The shielding effects of water solution are universally recognized and their influence is to be observed for all organisms. Data on the exposure of living organisms to weak combined magnetic fields and on the influence of space weather enabled the development of theoretical models generally explaining the effect of shielding for bioorganisms. Ferromagnetic shielding results in changes of both the static magnetic field and the field of radio waves within the area protected by the screen. When screens are nonmagnetic, changes are due to the isolation from the radio waves. In both cases, some contribution to the fluctuations of measured parameters can be made by variations in the level of ionizing radiation.

  1. Parallel optical nanolithography using nanoscale bowtie apertures

    Science.gov (United States)

    Uppuluri, Sreemanth M. V.

    Over the past two decades various branches of science and engineering have developed techniques for producing nanoscopic light sources for different applications such as imaging, detection and fabrication. These areas include near-field scanning optical microscopy (NSOM), surface-enhanced Raman scattering and detection (SERS), plasmonics and so on. In particular nanolithography techniques have been developed to produce feature sizes in the sub-100 nm length scales. These processes include variations of standard photolithography process to achieve high resolution, optical fiber-based near-field lithography, surface plasmon assisted nanolithography, interference optical lithography and so on. This work presents a study of the viability of using nanoscale bowtie apertures for nanolithography. Bowtie apertures exhibit a unique property of supporting a propagating TE10 mode at wavelengths of light in the visible and near-UV regimes. The energy of this mode is concentrated in the gap region of the aperture and thus these apertures have the potential to produce high intensity nanoscale light spots that can be used for nano-patterning applications. We demonstrate this capability of nanoscale bowtie apertures by patterning photoresist to obtain resolution less than 100 nm. Initially we present the results from static lithography experiments and show that the ridge apertures of different shapes -- C, H and bowtie produce holes in the photoresist of dimensions around 50-60 nm. Subsequently we address the issues involved in using these apertures for nano directwriting. We show that chromium thin-films offer a viable solution to produce high quality metal films of surface roughness less than 1 nm over an area of 25 mum2. This is indeed important to achieve intimate contact between the apertures and the photoresist surface. We also explain ways to decrease friction between the mask and photoresist surfaces during nano direct-writing. In addition, to decrease the contact force

  2. Practical Applications of Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav Ivanov; Kortbek, Jacob; Jensen, Jørgen Arendt

    2010-01-01

    Synthetic aperture imaging has been a focus of research for almost 3 decades. The research carried out at the Center for Fast Ultrasound Imaging has demonstrated that synthetic aperture focusing not only can be used in-vivo, but that it also yields superior B-mode and blood flow images. In the last......, and multiple angle flash imaging are just a few of the names used to describe the commercial implementations of synthetic aperture focusing. Although they sound like different algorithms, they are the same in their core, as revealed in this paper....

  3. Passive microwave imaging by aperture synthesis technology

    Science.gov (United States)

    Lang, Liang; Zhang, Zuyin; Guo, Wei; Gui, Liangqi

    2007-11-01

    In order to verify the theory of aperture synthesis at low expense, two-channel ka-band correlation radiometer which is basic part of synthetic aperture radiometer is designed firstly before developing the multi-channel synthetic aperture radiometer. The performance of two-channel correlation radiometer such as stability and coherence of visibility phase are tested in the digital correlation experiment. Subsequently all required baselines are acquired by moving the antenna pair sequentially, corresponding samples of the visibility function are measured and the image of noise source is constructed using an inverse Fourier transformation.

  4. A Cylindrical Shielding Design Concept for the Prototype Gen-IV Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Sunghwan; Kim, Sang Ji [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In the Prototype Gen-IV Sodium-cooled Fast Reactor (PGSFR), a metal fueled, blanket-free, pool type SFR concept is adopted to acquire the inherent safety characteristics and high proliferation-resistance. In the pool type fast reactor, the intermediate heat exchangers (IHXs), which transfer heat from the primary sodium pool to a secondary sodium loop, are placed inside of the reactor vessel. Hence, secondary sodium passing the IHXs can be radioactivated by a {sup 23}Na(n,g){sup 24}Na reaction, and radioactivated secondary sodium causes a significant dose in the Steam Generator Building (SGB). Therefore, a typical core of a pool type fast reactor is usually surrounded by a massive quantity of shields. In addition, the blanket composed of depleted uranium plays a role as superior shielding material; a significant increase in shields is required in the blanket-free pool type SFR. In this paper, a new cylindrical shielding design concept is proposed for a blanket-free pool type SFR. In a conventional shielding design, massive axial shields are required to prevent irradiation of secondary sodium passing IHXs and they should be replaced according to the subassembly replacement in spite of negligible depletion of the shielding material. The proposed shielding design concept minimizes the quantity of shields without their replacement. In this paper, a new cylindrical shielding design concept is proposed for a blanket-free pool type SFR such as a PGSFR. The proposed design concept satisfied the dose limit in the steam generator building successfully without introducing a large quantity of B{sub 4}C shielding inside the subassembly.

  5. WAVS radiation shielding references and assumptions

    Energy Technology Data Exchange (ETDEWEB)

    McLean, Adam [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-07

    At ITER, the confluence of a high radiation environment and the requirement for high performance imaging for plasma and plasma-facing surface diagnosis will necessitate extensive application of radiation shielding. Recommended here is a dual-layer shield design composed of lead for gamma attenuation, surrounded by a fire-resistant polyehtylene doped with a thermal neutron absorber for neutron shielding.

  6. Investigation of gamma ray shielding efficiency and mechanical performances of concrete shields containing bismuth oxide as an environmentally friendly additive

    Science.gov (United States)

    Yao, Ya; Zhang, Xiaowen; Li, Mi; Yang, Rong; Jiang, Tianjiao; Lv, Junwen

    2016-10-01

    Concrete has a proven ability to attenuate gamma rays and neutrons without compromising structural property; therefore, it is widely used as the primary shielding material in many nuclear facilities. Recently, there is a tendency toward using various additives to enhance the shielding properties of these concrete mixtures. However, most of these additives being used either pose hygiene hazards or require special handling processes. It would be ideal if environmentally friendly additives were available for use. The bismuth oxide (Bi2O3) additive shows promise in various shielding applications due to its proven radiation attenuation ability and environmentally friendly nature. To the best of our knowledge, however, Bi2O3 has never been used in concrete mixtures. Therefore, for this research, we fabricated the Bi2O3-based concrete mixtures by adding Bi2O3 powder in the ordinary concrete mixture. Concrete mixtures with lead oxide (PbO) additives were used for comparison. Radiation shielding parameters like the linear attenuation coefficients (LAC) of all these concrete mixtures showing the effects of the Bi2O3 additions are presented. The mechanical performances of concrete mixtures incorporated with Bi2O3 additive were also investigated. It suggested that the concrete mixture containing 25% Bi2O3 powder (B5 in this study) provided the best shielding capacity and mechanical performance among other mixes. It has a significant potential for application as a structural concrete where radiological protection capability is required.

  7. Comparison between Clinically Used Irregular Fields Shielded by Cerrobend and Standard Lead Blocks

    Directory of Open Access Journals (Sweden)

    Farajollahi A. R.

    2015-06-01

    Full Text Available Introduction: In radiation therapy centers across Iran, protection of normal tissues is usually accomplished by either Cerrobend or lead block shielding. In this study, the influence of these two shielding methods on central axis dose distribution of photon beam a Cobalt unit was investigated in clinical conditions. Materials and Methods: All measurements were performed for 60Co γ-ray beams and the Cerrobend blocks were fabricated by commercial Cerrobend materials. Standard lead block shields belonged to Cobalt unit. Data was collected through a calibrated ionization chamber, relative dosimetry systems and a TLD dosimetery. Results: Results of the percent depth dose (PDD measurements at depths of 0.5, 1, 5, 10, 15 and 20 cm for 23 different field sizes of patients with head and neck cancer showed no significant differences between lead and Cerrobend shielding methods. Measurement results of absolute dosimetry in depths of 1.5, 3, 5, 7, 10 and 12 cm also showed no significant differences between these two shielding methods. The same results were obtained by TLD dosimetry on patient skin. Conclusion: Use of melt shielding methods is a very easy and fast shield-making technique with no differences in PDD, absolute and skin dose between lead and Cerrobend block shielding methods.

  8. Preparation of Y2O3/GeO2/Epoxy Resin Based Multilayer Radiation Shielding Material and its Property Research%Y2 O3/GeO2/环氧树脂基辐射防护材料的制备及性能研究

    Institute of Scientific and Technical Information of China (English)

    代旭之; 肖德涛

    2016-01-01

    用表面处理稀土氧化物Y2O3,GeO2的方法制备了Y2O3/GeO2/环氧树脂辐射防护材料。采用X射线衍射仪( XRD )研究了材料的微观结构;用多道γ谱仪测试并分析了材料的辐射防护能力。结果表明,制得的材料中的Y2 O3和GeO2粒子并未与环氧树脂发生键和反应,Y2 O3与GeO2粉末的加入明显提升了材料防护射线的效果。%Y2 O3/GeO2/Epoxy Resin Based Multilayer Radiation Shielding Material was pre-pared for radiation protection via route of surface treatment on Y2O3 and GeO2.The material’s microstructure was studied by X-ray diffraction( XRD);Radiation shielding property was cal-culated by gamma energy spectrum system.Results show that the obtained materials of Y2O3 and GeO2 particles was not with the key and the reaction of epoxy resin,the material’s shield capability is significantly improved by addition of Y2 O3 and GeO2 powder.

  9. Shielding from space radiations

    Science.gov (United States)

    Chang, C. Ken; Badavi, Forooz F.; Tripathi, Ram K.

    1993-01-01

    This Progress Report covering the period of 1 June 1993 to 1 Dec. 1993 presents the development of an analytical solution to the heavy ion transport equation in terms of a one-layer Green's function formalism. The mathematical developments are recasted into an efficient computer code for space applications. The efficiency of this algorithm is accomplished by a nonperturbative technique of extending the Green's function over the solution domain. The code may also be applied to accelerator boundary conditions to allow code validation in laboratory experiments. Results from the isotopic version of the code with 80 isotopes present for a single layer target material, for the case of an iron beam projectile at 600 MeV/nucleon in water is presented.

  10. A superconducting shield to protect astronauts

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The CERN Superconductors team in the Technology department is involved in the European Space Radiation Superconducting Shield (SR2S) project, which aims to demonstrate the feasibility of using superconducting magnetic shielding technology to protect astronauts from cosmic radiation in the space environment. The material that will be used in the superconductor coils on which the project is working is magnesium diboride (MgB2), the same type of conductor developed in the form of wire for CERN for the LHC High Luminosity Cold Powering project.   Image: K. Anthony/CERN. Back in April 2014, the CERN Superconductors team announced a world-record current in an electrical transmission line using cables made of the MgB2 superconductor. This result proved that the technology could be used in the form of wire and could be a viable solution for both electrical transmission for accelerator technology and long-distance power transportation. Now, the MgB2 superconductor has found another application: it wi...

  11. Technique and results of cartilage shield tympanoplasty

    Directory of Open Access Journals (Sweden)

    Sohil I Vadiya

    2014-01-01

    Full Text Available Aim: Use of cartilage for repair of tympanic membrane is recommended by many otologists. The current study aims at evaluating results of cartilage shield tympanoplasty in terms of graft take up and hearing outcomes. Material and Methods: In the current study, cartilage shield tympanoplasty(CST is used in ears with high risk perforations of the tympanic membrane. A total of 40 ears were selected where type I CST was done in 30 ears and type III CST was done in 10 ears. Results: An average of 37.08 dB air bone gap(ABG was present in pre operative time and an average of 19.15 dB of ABG was observed at 6 months after the surgery with hearing gain of 17.28 dB on average was observed. Graft take up rate of 97.5% was observed. The technique is modified to make it easier and to minimize chances of lateralization of graft. Conclusion: The hearing results of this technique are comparable to other methods of tympanic membrane repair.

  12. Multifunctional Carbon Nanotube/Polyethylene Complex Composites for Space Radiation Shielding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Polyethylene (PE), due to its high hydrogen content relative to its weight, has been identified by NASA as a promising radiation shielding material against galactic...

  13. A Reinforcement for Multifunctional Composites for Non-Parasitic Radiation Shielding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiation shielding is a requirement to protect humans from the hazards of space radiation during NASA missions. Multifunctional materials have the potential to...

  14. Multilayer Polymeric Shielding to Protect Humans from Galactic Cosmic Radiation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Sub-topic X4.01, NASA has identified a need for advanced radiation-shielding materials and structures to protect humans from the hazards of galactic cosmic...

  15. Singer product apertures-A coded aperture system with a fast decoding algorithm

    Science.gov (United States)

    Byard, Kevin; Shutler, Paul M. E.

    2017-06-01

    A new type of coded aperture configuration that enables fast decoding of the coded aperture shadowgram data is presented. Based on the products of incidence vectors generated from the Singer difference sets, we call these Singer product apertures. For a range of aperture dimensions, we compare experimentally the performance of three decoding methods: standard decoding, induction decoding and direct vector decoding. In all cases the induction and direct vector methods are several orders of magnitude faster than the standard method, with direct vector decoding being significantly faster than induction decoding. For apertures of the same dimensions the increase in speed offered by direct vector decoding over induction decoding is better for lower throughput apertures.

  16. Beam Combination for Sparse Aperture Telescopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Stellar Imager, an ultraviolet, sparse-aperture telescope, was one of the fifteen Vision Missions chosen for a study completed last year. Stellar Imager will...

  17. An empirical explanation of aperture effects.

    Science.gov (United States)

    Sung, Kyongje; Wojtach, William T; Purves, Dale

    2009-01-06

    The perceived direction of a moving line changes, often markedly, when viewed through an aperture. Although several explanations of this remarkable effect have been proposed, these accounts typically focus on the percepts elicited by a particular type of aperture and offer no biological rationale. Here, we test the hypothesis that to contend with the inherently ambiguous nature of motion stimuli the perceived direction of objects moving behind apertures of different shapes is determined by a wholly empirical strategy of visual processing. An analysis of moving line stimuli generated by objects projected through apertures shows that the directions of motion subjects report in psychophysical testing is accounted for by the frequency of occurrence of the 2D directions of stimuli generated by simulated 3D sources. The completeness of these predictions supports the conclusion that the direction of perceived motion is fully determined by accumulated behavioral experience with sources whose physical motions cannot be conveyed by image sequences as such.

  18. Synthetic Aperture Radar Missions Study Report

    Science.gov (United States)

    Bard, S.

    2000-01-01

    This report reviews the history of the LightSAR project and summarizes actions the agency can undertake to support industry-led efforts to develop an operational synthetic aperture radar (SAR) capability in the United States.

  19. Beam Combination for Sparse Aperture Telescopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for funding to continue development of an alternative beam combiner for Stellar Imager (SI), a 30-aperture, interferometric telescope chosen as one...

  20. Shielding: people and shelter

    Energy Technology Data Exchange (ETDEWEB)

    Krissdottir, M.; Simon, J.

    1977-01-01

    Housing is something that protects and defends. This book explores the ways in which humans have sought to defend themselves against physical dangers and to protect themselves against the imagined evils of the natural world by means of the shelters built. The book examines briefly the shelters built in ancient times, and shows how several basic types recurred in different ages and at different times. Following this there is a brief survey of the kinds of shelters built by the native peoples of Canada, depending on their environment--climate, the natural materials on hand--and the culture and life-style of each people. The next chapter explores the psychology of human beings, and how shelters should satisfy not only physical needs but psychological needs as well--the need for companionship and yet for privacy, space for children to play and community centers for adults to meet. The second half of the book looks at the dilemmas of housing today, and at various attempts around the world and in Canada to solve the problems--garden cities in England, the famous community of Tapiola in Finland, the technological innovations of Disneyland, new housing suburbs in Canada. There is a discussion of the problems of urban renewal, of overcoming the high cost of home-ownership--condominiums, cooperatives, owner-built homes, and the disadvantages of trailers--and of overcoming the energy crisis by building ecological houses.

  1. Parametric Transverse Patterns in Broad Aperture Lasers

    DEFF Research Database (Denmark)

    Grigorieva, E.V.; Kashchenko, S.A.; Mosekilde, Erik

    1998-01-01

    Parametrically generated optical patterns are investigated for finite and large-scale transverse aperture lasers. Standing and rotating patterns as well as periodic and chaotic pattern alternations are described in the framework of the amplitude equation formalism. Sensitive dependence on the geo......Parametrically generated optical patterns are investigated for finite and large-scale transverse aperture lasers. Standing and rotating patterns as well as periodic and chaotic pattern alternations are described in the framework of the amplitude equation formalism. Sensitive dependence...

  2. A direct technique to fabricate an intraoral shield for unilateral head and neck radiation.

    Science.gov (United States)

    Khan, Zafrulla; Abdel-Azim, Tamer

    2014-09-01

    A radiation oncologist may ask the prosthodontist to fabricate an intraoral shield when ipsilateral fields are used for patients with head and neck cancer. A technique for its fabrication is described that can be accomplished with materials and equipment that are readily available in the dental office. Baseplate wax is used intraorally to fabricate a pattern, which is duplicated with irreversible hydrocolloid material. Autopolymerizing acrylic resin is then used to make the shield. This simple technique can be completed in a single visit.

  3. Resonant Effects in Nanoscale Bowtie Apertures

    Science.gov (United States)

    Ding, Li; Qin, Jin; Guo, Songpo; Liu, Tao; Kinzel, Edward; Wang, Liang

    2016-01-01

    Nanoscale bowtie aperture antennas can be used to focus light well below the diffraction limit with extremely high transmission efficiencies. This paper studies the spectral dependence of the transmission through nanoscale bowtie apertures defined in a silver film. A realistic bowtie aperture is numerically modeled using the Finite Difference Time Domain (FDTD) method. Results show that the transmission spectrum is dominated by Fabry-Pérot (F-P) waveguide modes and plasmonic modes. The F-P resonance is sensitive to the thickness of the film and the plasmonic resonant mode is closely related to the gap distance of the bowtie aperture. Both characteristics significantly affect the transmission spectrum. To verify these numerical results, bowtie apertures are FIB milled in a silver film. Experimental transmission measurements agree with simulation data. Based on this result, nanoscale bowtie apertures can be optimized to realize deep sub-wavelength confinement with high transmission efficiency with applications to nanolithography, data storage, and bio-chemical sensing. PMID:27250995

  4. Aperture Engineering for Impulse Radiating Antennas

    Science.gov (United States)

    Tyo, J. S.

    The past several years have seen the development of an improved understanding of the role of aperture design for impulse radiating antennas (IRAs). The understanding began with the emergence of the concept of prompt aperture efficiency for ultra-wideband (UWB) antennas. This emergence allowed us to concentrate on ways to shape the aperture and control the field distribution within the aperture in order to maximize the prompt response from IRAs. In many high voltage UWB applications it is impossible to increase the radiated fields by increasing the source power. This is because in such instances the sources are already at the limits of linear electromagnetics. In these cases, we would like to come up with methods to improve the radiated field without altering the input impedance of the IRA. In this paper we will explore several such methods including the position of the feed arms to maximize field uniformity, the shaping of the aperture to increase radiated fields by reducing the aperture size, the relative sizing of the reflector (or lens) and the feed horn, and actually reorienting the currents on the reflector by controlling the direction of current flow. One common thread appears in all of these studies, that is the influence of Dr. Carl Baum on the direction and development of the work.

  5. Apparent apertures from ground penetrating radar data and their relation to heterogeneous aperture fields

    Science.gov (United States)

    Shakas, A.; Linde, N.

    2017-06-01

    Considering fractures with heterogeneous aperture distributions, we explore the reliability of constant-aperture estimates derived from ground penetrating radar (GPR) reflection data. We generate geostatistical fracture aperture realizations that are characterized by the same mean-aperture and variance, but different Hurst exponents and cut-off lengths. For each of the 16 classes of heterogeneity considered, we generate 1000 fracture realizations from which we compute GPR reflection data using our recent effective-dipole forward model. We then use each (noise-contaminated) data set individually to invert for a single 'apparent' aperture, that is, we assume that the fracture aperture is homogeneous. We find that the inferred 'apparent' apertures are only reliable when fracture heterogeneity is non-fractal (the Hurst exponent is close to 1) and the scale of the dominant aperture heterogeneities is larger than the first Fresnel zone. These results are a direct consequence of the nonlinear character of the thin-bed reflection coefficients. As fracture heterogeneity is ubiquitous and often fractal, our results suggest that robust field-based inference of fracture aperture can only be achieved by accounting for the nonlinear response of fracture heterogeneity on GPR data.

  6. Stellar activity and magnetic shielding

    CERN Document Server

    Grießmeier, J -M; Lammer, H; Grenfell, J L; Stadelmann, A; Motschmann, U; 10.1017/S1743921309992961

    2010-01-01

    Stellar activity has a particularly strong influence on planets at small orbital distances, such as close-in exoplanets. For such planets, we present two extreme cases of stellar variability, namely stellar coronal mass ejections and stellar wind, which both result in the planetary environment being variable on a timescale of billions of years. For both cases, direct interaction of the streaming plasma with the planetary atmosphere would entail servere consequences. In certain cases, however, the planetary atmosphere can be effectively shielded by a strong planetary magnetic field. The efficiency of this shielding is determined by the planetary magnetic dipole moment, which is difficult to constrain by either models or observations. We present different factors which influence the strength of the planetary magnetic dipole moment. Implications are discussed, including nonthermal atmospheric loss, atmospheric biomarkers, and planetary habitability.

  7. Facility target insert shielding assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mocko, Michal [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-06

    Main objective of this report is to assess the basic shielding requirements for the vertical target insert and retrieval port. We used the baseline design for the vertical target insert in our calculations. The insert sits in the 12”-diameter cylindrical shaft extending from the service alley in the top floor of the facility all the way down to the target location. The target retrieval mechanism is a long rod with the target assembly attached and running the entire length of the vertical shaft. The insert also houses the helium cooling supply and return lines each with 2” diameter. In the present study we focused on calculating the neutron and photon dose rate fields on top of the target insert/retrieval mechanism in the service alley. Additionally, we studied a few prototypical configurations of the shielding layers in the vertical insert as well as on the top.

  8. Light shield for solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Plesniak, Adam P.; Martins, Guy L.

    2014-08-26

    A solar receiver unit including a housing defining a recess, a cell assembly received in the recess, the cell assembly including a solar cell, and a light shield received in the recess and including a body and at least two tabs, the body defining a window therein, the tabs extending outward from the body and being engaged with the recess, wherein the window is aligned with the solar cell.

  9. Decommissioning of the ASTRA research reactor: Dismantling of the biological shield

    Directory of Open Access Journals (Sweden)

    Meyer Franz

    2006-01-01

    Full Text Available The paper describes the dismantling of the inactive and activated areas of the biological shield of the ASTRA research reactor at the Austrian Research Center in Seibersdorf. The calculation of the parameters determining the activated areas at the shield (reference nuclide, nuclide vector in the barite concrete and horizontal and vertical reduction behaviors of activity concentration and the activation profiles within the biological shield for unrestricted release, release restricted to permanent deposit and radioactive waste are presented. Considerations of located activation anomalies in the shield, e.g. in the vicinities of the beam-tubes, were made according to the reactor's operational history. Finally, an overview of the materials removed from the biological shield is given.

  10. Overlap Technique for End-Cap Seals on Cylindrical Magnetic Shields

    CERN Document Server

    Malkowski, S; Boissevain, J; Daurer, C; Filippone, B W; Hona, B; Plaster, B; Woods, D; Yan, H

    2013-01-01

    We present results from studies of the effectiveness of an overlap technique for forming a magnetic seal across a gap at the boundary between a cylindrical magnetic shield and an end-cap. In this technique a thin foil of magnetic material overlaps the two surfaces, thereby spanning the gap across the cylinder and the end-cap, with the magnetic seal then formed by clamping the thin magnetic foil to the surfaces of the cylindrical shield and the end-cap on both sides of the gap. In studies with a prototype 31-cm diameter, 91-cm long, 0.16-cm thick cylindrical magnetic shield and flared end-cap, the magnetic shielding performance of our overlap technique is comparable to that obtained with the conventional method in which the end-cap is placed in direct lapped contact with the cylindrical shield via through bolts or screws.

  11. Experimental Evaluation of a Water Shield for a Surface Power Reactor

    Science.gov (United States)

    Pearson, J. B.; Reid, R.; Sadasivan, P.; Stewart, E.

    2007-01-01

    A water based shielding system is being investigated for use on initial lunar surface power systems. The use of water may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. A representative lunar surface reactor design is evaluated at various power levels in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The evaluation compares the experimental data from the WST to CFD models. Performance of a water shield on the lunar surface is predicted by CFD models anchored to test data, and by matching relevant dimensionless parameters.

  12. ATLAS Award for Shield Supplier

    CERN Multimedia

    2004-01-01

    ATLAS technical coordinator Dr. Marzio Nessi presents the ATLAS supplier award to Vojtech Novotny, Director General of Skoda Hute.On 3 November, the ATLAS experiment honoured one of its suppliers, Skoda Hute s.r.o., of Plzen, Czech Republic, for their work on the detector's forward shielding elements. These huge and very massive cylinders surround the beampipe at either end of the detector to block stray particles from interfering with the ATLAS's muon chambers. For the shields, Skoda Hute produced 10 cast iron pieces with a total weight of 780 tonnes at a cost of 1.4 million CHF. Although there are many iron foundries in the CERN member states, there are only a limited number that can produce castings of the necessary size: the large pieces range in weight from 59 to 89 tonnes and are up to 1.5 metres thick.The forward shielding was designed by the ATLAS Technical Coordination in close collaboration with the ATLAS groups from the Czech Technical University and Charles University in Prague. The Czech groups a...

  13. Development of ITER shielding blanket prototype mockup by HIP bonding

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Satoshi; Furuya, Kazuyuki; Hatano, Toshihisa; Kuroda, Toshimasa; Enoeda, Mikio; Ohara, Yoshihiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Takatsu, Hideyuki [Japan Atomic Energy Research Inst., Office of ITER Project Promotion, Tokyo (Japan)

    2000-07-01

    minimize thermal effects on the mechanical properties and to reduce the number of fabrication steps. Based on the results of study for optimization of the simultaneous HIP bonding conditions, the HIP conditions were 1050degC, 150 MPa and holding time of 2 hours. Before this assembly for the HIP process, a deep drilling was performed for the coolant channels of the shield block from both sides of the block, then the shield block was bent by 10000-ton press machine to provide the specified curvature. During the bending, iced water was inserted into the drilled holes to prevent excessive deformation of the holes. Iced water was applied as the inserted material in this study because it was easy to remove the inserted material from the drilled holes and chemical reaction could be prevented during removal of the inserted materials. After the HIP process, the first wall surface was finally machined. The back part of the module was also machined to provide coolant manifolds, then cover plates of the manifolds were welded by TIG welding. A series of measurements and inspections was performed in the course of fabrication to make sure the dimensional accuracy and integrity of pressure boundaries. A destructive inspection was also performed with a cut specimen from the edge of the fabricated module to examine the bondability of HIPed interfaces. As a result of this fabrication experience, sufficient bonding by the single step solid HIP process has been demonstrated, and sufficient technical data base on the fabrication of the ITER shielding blanket module has been obtained. (author)

  14. On thermal stress failure of the SNAP-19A RTG heat shield

    Science.gov (United States)

    Pitts, W. C.; Anderson, L. A.

    1974-01-01

    Results of a study on thermal stress problems in an amorphous graphite heat shield that is part of the launch-abort protect system for the SNAP-19A radio-isotope thermoelectric generators (RTG) that will be used on the Viking Mars Lander are presended. The first result is from a thermal stress analysis of a full-scale RTG heat source that failed to survive a suborbital entry flight test, possibly due to thermal stress failure. It was calculated that the maximum stress in the heat shield was only 50 percent of the ultimate strength of the material. To provide information on the stress failure criterion used for this calculation, some heat shield specimens were fractured under abort entry conditions in a plasma arc facility. It was found that in regions free of stress concentrations the POCO graphite heat shield material did fracture when the local stress reached the ultimate uniaxial stress of the material.

  15. Evaluation of Shielding Wall Optimization in Lead Slowing Down Spectrometer System

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Ju Young; Kim, Jeong Dong; Lee, Yong Deok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    A Lead Slowing Down Spectrometer (LSDS) system is nondestructive technology for analyzing isotope fissile content in spent fuel and pyro processed material, in real time and directly. The high intensity neutron and gamma ray were generated from a nuclear material (Pyro, Spent nuclear fuel), electron beam-target reaction and fission of fissile material. Therefore, shielding analysis of LSDS system should be carried out. In this study, Borax, B{sub 4}C, Li{sub 2}Co{sub 3}, Resin were chosen for shielding analysis. The radiation dose limit (<0.1 μSv/hr) was adopted conservatively at the outer wall surface. The covering could be able to reduce the concrete wall thickness from 5cm to 15cm. The optimized shielding walls evaluation will be used as an important data for future real LSDS facility design and shielding door assessment.

  16. Ultrasound Beamforming Methods for Large Coherent Apertures

    Science.gov (United States)

    Bottenus, Nick

    This dissertation investigates the use of large coherent ultrasound apertures to improve diagnostic image quality for deep clinical targets. The current generation of ultrasound scanners restrict aperture size and geometry based on hardware limitations and field of view requirements at the expense of image quality. This work posits that, without these restrictions, ultrasound could be used for higher quality non-invasive imaging. To support this claim, an experimental device was constructed to acquire in vivo liver images with a synthetic aperture spanning at least 35 degrees at a radius of 10.2 cm with a scan time under one second. Using a 2.5 MHz commercial matrix array with the device, a lateral resolution of 0.45 mm at a depth of 11.6 cm was achieved, surpassing the capabilities of existing commercial systems. This work formed the basis for an in-depth investigation of the clinical promise of large aperture imaging. Ex vivo study of volumetric imaging through the human abdominal wall demonstrated the ability of large apertures to improve target detectability at depth by significantly increasing lateral resolution, even in the presence of tissue-induced aberration and reverberation. For various abdominal wall samples studied, full-width at half-maximum resolution was increased by 1.6 to 4.3 times using a 6.4 cm swept synthetic aperture compared to conventional imaging. Harmonic plane wave imaging was shown to limit the impact of reverberation clutter from the tissue layer and produce images with the highest target detectability, up to a 45.9% improvement in contrast-to-noise ratio (CNR) over fundamental imaging. This study was corroborated by simulation of a 10 cm concave matrix array imaging through an abdominal wall based on the Visible Human Project data set. The large aperture data were processed in several ways, including in their entirety as a fully populated large array as well as mimicking the swept synthetic aperture configuration. Image quality

  17. A free-air ionization chamber with a large aperture diaphragm

    Energy Technology Data Exchange (ETDEWEB)

    Takata, N., E-mail: n.takata@aist.go.j [Ionizing Radiation Section, NMIJ, AIST, Tsukuba, Ibaraki 305-8568 (Japan)

    2010-07-21

    Calculations of the electric field distributions in free-air ionization chambers reveal that the distortion of the charge collection volume is small even for wide X-ray beam passage if the diaphragm and the X-ray shielding box are kept at a potential equal to half that applied to the high-voltage electrode. Applying this potential to the diaphragm and the shielding box permits a larger aperture diaphragm to be used. This will allow a wider X-ray beam to enter the chamber, thus generating a larger signal. In addition, the distance between the diaphragm and the charge collection volume can be shortened to reduce the amount of X-ray attenuation. It is also possible to calibrate a dosimeter against a free-air ionization chamber that has a diaphragm whose aperture size is equal to the size of the dosimeter in an X-ray field that is collimated to the same size. This is important since free-air ionization chambers are not sensitive to X-rays that are incident at large angles, such as those scattered by the collimator, filters and air.

  18. ProtoEXIST: Advanced Prototype CZT Coded Aperture Telescopes for EXIST

    CERN Document Server

    Allen, Branden; Grindlay, Josh; Barthelmy, Scott D; Baker, Robert G; Gehrels, Neil A; Garson, Trey; Krawwczynski, Henric S; Cook, Walter R; Harrison, Fiona A; Apple, Jeffery A; Ramsey, Brian D; 10.1117/12.857940

    2010-01-01

    {\\it ProtoEXIST1} is a pathfinder for the {\\it EXIST-HET}, a coded aperture hard X-ray telescope with a 4.5 m$^2$ CZT detector plane a 90$\\times$70 degree field of view to be flown as the primary instrument on the {\\it EXIST} mission and is intended to monitor the full sky every 3 h in an effort to locate GRBs and other high energy transients. {\\it ProtoEXIST1} consists of a 256 cm$^2$ tiled CZT detector plane containing 4096 pixels composed of an 8$\\times$8 array of individual 1.95 cm $\\times$ 1.95 cm $\\times$ 0.5 cm CZT detector modules each with a 8 $\\times$ 8 pixilated anode configured as a coded aperture telescope with a fully coded $10^\\circ\\times10^\\circ$ field of view employing passive side shielding and an active CsI anti-coincidence rear shield, recently completed its maiden flight out of Ft. Sumner, NM on the 9th of October 2009. During the duration of its 6 hour flight on-board calibration of the detector plane was carried out utilizing a single tagged 198.8 nCi Am-241 source along with the simult...

  19. Signal-to-noise ratio of Singer product apertures

    Science.gov (United States)

    Shutler, Paul M. E.; Byard, Kevin

    2017-09-01

    Formulae for the signal-to-noise ratio (SNR) of Singer product apertures are derived, allowing optimal Singer product apertures to be identified, and the CPU time required to decode them is quantified. This allows a systematic comparison to be made of the performance of Singer product apertures against both conventionally wrapped Singer apertures, and also conventional product apertures such as square uniformly redundant arrays. For very large images, equivalently for images at very high resolution, the SNR of Singer product apertures is asymptotically as good as the best conventional apertures, but Singer product apertures decode faster than any conventional aperture by at least a factor of ten for image sizes up to several megapixels. These theoretical predictions are verified using numerical simulations, demonstrating that coded aperture video is for the first time a realistic possibility.

  20. Performances of Kevlar and Polyethylene as radiation shielding on-board the International Space Station in high latitude radiation environment.

    Science.gov (United States)

    Narici, Livio; Casolino, Marco; Di Fino, Luca; Larosa, Marianna; Picozza, Piergiorgio; Rizzo, Alessandro; Zaconte, Veronica

    2017-05-10

    Passive radiation shielding is a mandatory element in the design of an integrated solution to mitigate the effects of radiation during long deep space voyages for human exploration. Understanding and exploiting the characteristics of materials suitable for radiation shielding in space flights is, therefore, of primary importance. We present here the results of the first space-test on Kevlar and Polyethylene radiation shielding capabilities including direct measurements of the background baseline (no shield). Measurements are performed on-board of the International Space Station (Columbus modulus) during the ALTEA-shield ESA sponsored program. For the first time the shielding capability of such materials has been tested in a radiation environment similar to the deep-space one, thanks to the feature of the ALTEA system, which allows to select only high latitude orbital tracts of the International Space Station. Polyethylene is widely used for radiation shielding in space and therefore it is an excellent benchmark material to be used in comparative investigations. In this work we show that Kevlar has radiation shielding performances comparable to the Polyethylene ones, reaching a dose rate reduction of 32 ± 2% and a dose equivalent rate reduction of 55 ± 4% (for a shield of 10 g/cm(2)).

  1. Physical analysis of the shielding capacity for a lightweight apron designed for shielding low intensity scattering X-rays

    Science.gov (United States)

    Kim, Seon Chil; Choi, Jeong Ryeol; Jeon, Byeong Kyou

    2016-07-01

    The purpose of this paper is to develop a lightweight apron that will be used for shielding low intensity radiation in medical imaging radiography room and to apply it to a custom-made effective shielding. The quality of existing aprons made for protecting our bodies from direct radiation are improved so that they are suitable for scattered X-rays. Textiles that prevent bodies from radiation are made by combining barium sulfate and liquid silicon. These materials have the function of shielding radiation in a manner like lead. Three kinds of textiles are produced. The thicknesses of each textile are 0.15 mm, 0.21 mm, and 0.29 mm and the corresponding lead equivalents are 0.039 mmPb, 0.095 mmPb, 0.22 mmPb for each. The rate of shielding space scattering rays are 80% from the distance of 0.5 m, 86% from 1.0 m, and 97% from 1.5 m. If we intend to approach with the purpose of shielding scattering X-rays and low intensity radiations, it is possible to reduce the weight of the apron to be 1/5 compared to that of the existing lead aprons whose weight is typically more than 4 kg. We confirm, therefore, that it is possible to produce lightweight aprons that are used for the purpose of shielding low dose radiations.

  2. Physical analysis of the shielding capacity for a lightweight apron designed for shielding low intensity scattering X-rays.

    Science.gov (United States)

    Kim, Seon Chil; Choi, Jeong Ryeol; Jeon, Byeong Kyou

    2016-07-27

    The purpose of this paper is to develop a lightweight apron that will be used for shielding low intensity radiation in medical imaging radiography room and to apply it to a custom-made effective shielding. The quality of existing aprons made for protecting our bodies from direct radiation are improved so that they are suitable for scattered X-rays. Textiles that prevent bodies from radiation are made by combining barium sulfate and liquid silicon. These materials have the function of shielding radiation in a manner like lead. Three kinds of textiles are produced. The thicknesses of each textile are 0.15 mm, 0.21 mm, and 0.29 mm and the corresponding lead equivalents are 0.039 mmPb, 0.095 mmPb, 0.22 mmPb for each. The rate of shielding space scattering rays are 80% from the distance of 0.5 m, 86% from 1.0 m, and 97% from 1.5 m. If we intend to approach with the purpose of shielding scattering X-rays and low intensity radiations, it is possible to reduce the weight of the apron to be 1/5 compared to that of the existing lead aprons whose weight is typically more than 4 kg. We confirm, therefore, that it is possible to produce lightweight aprons that are used for the purpose of shielding low dose radiations.

  3. Upgrading the Neutron Radiography Facility in South Africa (SANRAD): Concrete Shielding Design Characteristics

    Science.gov (United States)

    de Beer, F. C.; Radebe, M. J.; Schillinger, B.; Nshimirimana, R.; Ramushu, M. A.; Modise, T.

    A common denominator of all neutron radiography (NRAD) facilities worldwide is that the perimeter of the experimental chamber of the facility is a radiation shielding structure which,in some cases, also includes flight tube and filter chamber structures. These chambers are normally both located on the beam port floor outside the biological shielding of the neutron source. The main function of the NRAD-shielding structure isto maintain a radiological safe working environment in the entire beam hall according to standards set by individual national radiological safety regulations. In addition, the shielding's integrity and capability should not allow, during NRAD operations, an increase in radiation levels in the beam port hall and thus negatively affectadjacent scientific facilities (e.g. neutron diffraction facilities).As a bonus, the shielding for the NRAD facility should also prevent radiation scattering towards the detector plane and doing so, thus increase thecapability of obtaining better quantitative results. This paper addresses Monte Carlo neutron-particletransport simulations to theoretically optimize the shielding capabilities of the biological barrierfor the SANRAD facility at the SAFARI-1 nuclear research reactor in South Africa. The experimental process to develop the shielding, based on the principles of the ANTARES facility, is described. After casting, the homogeneity distribution of these concrete mix materials is found to be near perfect and first order experimental radiation shielding characteristicsthrough film badge (TLD) exposure show acceptable values and trends in neutron- and gamma-ray attenuation.

  4. Comparison between Clinically Used Irregular Fields Shielded by Cerrobend and Standard Lead Blocks.

    Science.gov (United States)

    Farajollahi, A R; Bouzarjomehri, F; Kiani, M

    2015-06-01

    In radiation therapy centers across Iran, protection of normal tissues is usually accomplished by either Cerrobend or lead block shielding. In this study, the influence of these two shielding methods on central axis dose distribution of photon beam a Cobalt unit was investigated in clinical conditions. All measurements were performed for 60Co γ-ray beams and the Cerrobend blocks were fabricated by commercial Cerrobend materials. Standard lead block shields belonged to Cobalt unit. Data was collected through a calibrated ionization chamber, relative dosimetry systems and a TLD dosimetery. Results of the percent depth dose (PDD) measurements at depths of 0.5, 1, 5, 10, 15 and 20 cm for 23 different field sizes of patients with head and neck cancer showed no significant differences between lead and Cerrobend shielding methods. Measurement results of absolute dosimetry in depths of 1.5, 3, 5, 7, 10 and 12 cm also showed no significant differences between these two shielding methods. The same results were obtained by TLD dosimetry on patient skin. Use of melt shielding methods is a very easy and fast shield-making technique with no differences in PDD, absolute and skin dose between lead and Cerrobend block shielding methods.

  5. Multi-Layered Effects of Fe on EMI Shielding of Sn-Al Hotel Architectural Powder

    Directory of Open Access Journals (Sweden)

    Hung Fei-Shuo

    2016-01-01

    Full Text Available No evident effect in shielding efficiency is observed when the electromagnetic wave-absorbing coating materials were applied in single layers because of the dispersing nature of the powder. When increased to two-layer coating, shielding effects were evident at both high and low frequencies, with greater shielding efficiency at low frequencies over high frequencies. It is worth noting that when increased to three-layer coating, as the weight percentage of powdered Fe increased from 5% to 8% , the shielding efficiency of the powdered-Fe composite material was raised to −35 dB This shows that, as the weight percentage gets higher, the powder shows the resonance phenomenon of permeability spectrum, and at high frequencies, the electromagnetic wave shielding efficiency of the composite materials were greatly increased. As the weight percentage of the powered Fe were increased to 8% , we were unable to spread the powder evenly in the epoxy because of the dispersing characteristic in the electromagnetic properties of Fe and the anisotropic and heterogeneous nature of a powered composite material. During production, the powder aggregates often resulted in greater heterogeneity in the materials and consequently, lowered shielding efficiency at 3GHz.

  6. The Feasibility of Multipole Electrostatic Radiation Shielding

    Science.gov (United States)

    Metzger, Philip T.; Lane, John E.; Youngquist, Robert C.

    2004-01-01

    Although passive shielding appears to be the only workable solution for galactic cosmic radiation (GCR), active shielding may play an important augmenting role to control the dose from solar particle events (SPEs). It has been noted that, to meet the guidelines of NCRP Report No. 98 through the six SPEs of 1989, a crew member would need roughly double the passive shielding that is necessary to control the GCR dose . This would dramatically increase spacecraft mass, and so it has been proposed that a small but more heavily shielded storm shelter may be used to protect the crew during SPEs. Since a gradual SPE may last 5 or more days, staying in a storm shelter may be psychologically and physiologically distressing to the crew. Storm shelters do not provide shielding for the spacecraft itself against the SPE radiation, and radiation damage to critical electronics may result in loss of mission and life. Single-event effects during the radiation storm may require quick crew response to maintain the integrity of the spacecraft, and confining the crew to a storm shelter prohibits their attending to the spacecraft at the precise time when that attention is needed the most. Active shielding cannot protect against GCR because the particle energies are too high. Although lower energy particles are easier to stop in a passive shield, such shielding is more satisfactory against GCR than against SPE radiation because of the tremendous difference in their initial fluences. Even a small fraction of the SPE fluence penetrating the passive shielding may result in an unacceptably high dose. Active shielding is more effective than passive shielding against SPE radiation because it offers 100% shielding effectiveness up to the cutoff energy, and significant shielding effectiveness beyond the cutoff as well.

  7. Au Foil Activation Measurement and Simulation of the Concrete Neutron Shielding Ability for the Proposed New SANRAD Facility

    Science.gov (United States)

    Radebe, M. J.; Korochinsky, S.; Strydom, W. J.; De Beer, F. C.

    The purpose of this study was to measure the effective neutron shielding characteristics of the new shielding material designed and manufactured to be used for the construction of the new SANRAD facility at Necsa, South Africa, through Au foil activation as well as MCNP simulations. The shielding capability of the high density shielding material was investigated in the worst case region (the neutron beam axis) of the experimental chamber for two operational modes. The everyday operational mode includes the 15 cm thick poly crystalline Bismuth filter at room temperature (assumed) to filter gamma-rays and some neutron spectrum energies. The second mode, dynamic imaging, will be conducted without the Bi-filter. The objective was achieved through a foil activation measurement at the current SANRAD facility and MCNP calculations. Several Au foilswere imbedded at different thicknesses(two at each position) of shielding material up to 80 cm thick to track the attenuation of the neutron beam over distance within the shielding material. The neutron flux and subsequently the associated dose rates were calculated from the activation levels of the Au foils. The concrete shielding material was found to provide adequate shielding for all energies of neutrons emerging from beam port no-2 of the SAFARI-1 research reactorwithin a thickness of 40 cm of concrete.

  8. Morphometric analysis of septal aperture of humerus

    Directory of Open Access Journals (Sweden)

    Raghavendra K, Anil kumar Reddy Y, Shirol VS, Daksha Dixit, Desai SP

    2014-04-01

    Full Text Available Introduction: Lower end of humerus shows olecranon and coronoid fossae separated by a thin bony septum, sometimes it may deficient and shows foramen which communicates both the fossae called Septal aperture, which is commonly referred as supratrochlear foramen (STF. Materials & Methods: We have studied 260 humeri (126 right side and 134 left side, measurements were taken by using vernier caliper, translucency septum was observed by keeping the lower end of humerus against the x-ray lobby. Results: A clear cut STF was observed in 19.2% bones, translucency septum was observed in 99 (91.6% humeri on the right side and 95 (93.1% humeri on the left sides respectively (Table – 1. Clinical significance: The presence of STF is always associated with the narrow medullary canal at the lower end of humerus, Supracondylar fracture of humerus is most common in paediatric age group, medullary nailing is done to treat the fractures in those cases the knowledge about the STF is very important for treating the fractures. It has been observed in x-ray of lower end of the humerus the STF is comparatively radiolucent, it is commonly seen as a type of ‘pseudolesions’ in an x-ray of the lower end of humerus and it may mistake for an osteolytic or cystic lesions. Conclusion: The present study can add data into anthropology and anatomy text books regarding STF and it gives knowledge of understanding anatomical variation of distal end of the humerus, which is significant for anthropologists, orthopaedic surgeons and radiologists in habitual clinical practice.

  9. Investigation of novel fractal shape of the nano-aperture as a metasurface for bio sensing application

    Energy Technology Data Exchange (ETDEWEB)

    Heydari, Samaneh [Sama Technical and Vocational Training College, Islamic Azad University, Isfahan Branch, Khorasgan (Iran, Islamic Republic of); Rastan, Iman; Parvin, Amin [Faculty of Eng., Science and Research Branch, Islamic Azad University, Shiraz (Iran, Islamic Republic of); Pirooj, Azadeh [Faculty of Eng., Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Zarrabi, Ferdows B., E-mail: ferdows.zarrabi@yahoo.com [Young Researchers and Elite Club, Babol Branch, Islamic Azad University, Babol (Iran, Islamic Republic of)

    2017-01-23

    Recently, nano-aperture is noticed due to its good transmission in the optical regime. Also, the nano-apertures are developed at the metasurface design for circular polarization; for this aim, various shapes of the nano-aperture are suggested. To reach this objective, we have developed a novel Jerusalem cross fractal shape for a mid-infrared application. We have simulated various formations of the nano-fractal Jerusalem cross based on a simple cross to show the effect of nano-aperture shape on electrical field enhancement in the near-field which is important in spectroscopy and optical imaging. In addition, we have used a single layer graphene over the aperture as a coat for making reconfigurable characteristic also creating a membrane for placement of nano-particle over the aperture. Implementation of the graphene is an amendment to the transfer of the nano-apertures. The biological materials with a thickness of 80 nm have been placed over the graphene layer and the Figures of Merits (FOM) have been obtained. Additionally, the prototype of nano-antenna is independent from incident wave polarization. The Finite Difference Time Domain (FDTD) calculations have been implemented in the simulation and modeling the nano-apertures. - Highlights: • Nano-apertures are developed at the metasurface design for circular polarization. • We have developed a novel Jerusalem cross fractal shape for a mid-infrared application. • Effect of nano-aperture shape on near-field enhancement is noticed which is important in spectroscopy and optical imaging. • Single layer graphene over the aperture as a coat for making reconfigurable characteristic.

  10. Probing the Martian Subsurface with Synthetic Aperture Radar

    Science.gov (United States)

    Campbell, B. A.; Maxwell, T. A.; Freeman, A.

    2005-01-01

    Many regions of the martian surface are covered by fine-grained materials emplaced by volcanic, fluvial, or aeolian processes. These mantling deposits likely hide ancient channel systems (particularly at smaller scale lengths) and volcanic, impact, glacial, or shoreline features. Synthetic aperture radar (SAR) offers the capability to probe meters below the surface, with imaging resolution in the 10 s of m range, to reveal the buried terrain and enhance our understanding of Mars geologic and climate history. This presentation focuses on the practical applications of a Mars orbital SAR, methods for polarimetric and interferometric radar studies, and examples of such techniques for Mars-analog sites on the Moon and Earth.

  11. Aperture effects in squid jet propulsion.

    Science.gov (United States)

    Staaf, Danna J; Gilly, William F; Denny, Mark W

    2014-05-01

    Squid are the largest jet propellers in nature as adults, but as paralarvae they are some of the smallest, faced with the inherent inefficiency of jet propulsion at a low Reynolds number. In this study we describe the behavior and kinematics of locomotion in 1 mm paralarvae of Dosidicus gigas, the smallest squid yet studied. They swim with hop-and-sink behavior and can engage in fast jets by reducing the size of the mantle aperture during the contraction phase of a jetting cycle. We go on to explore the general effects of a variable mantle and funnel aperture in a theoretical model of jet propulsion scaled from the smallest (1 mm mantle length) to the largest (3 m) squid. Aperture reduction during mantle contraction increases propulsive efficiency at all squid sizes, although 1 mm squid still suffer from low efficiency (20%) because of a limited speed of contraction. Efficiency increases to a peak of 40% for 1 cm squid, then slowly declines. Squid larger than 6 cm must either reduce contraction speed or increase aperture size to maintain stress within maximal muscle tolerance. Ecological pressure to maintain maximum velocity may lead them to increase aperture size, which reduces efficiency. This effect might be ameliorated by nonaxial flow during the refill phase of the cycle. Our model's predictions highlight areas for future empirical work, and emphasize the existence of complex behavioral options for maximizing efficiency at both very small and large sizes.

  12. Instrumentation concepts and requirements for a space vacuum research facility. [molecular shield for spaceborne experiments

    Science.gov (United States)

    Norton, H. N.

    1979-01-01

    An earth-orbiting molecular shield that offers a unique opportunity for conducting physics, chemistry, and material processing experiments under a combination of environmental conditions that are not available in terrestrial laboratories is equipped with apparatus for forming a molecular beam from the freestream. Experiments are carried out using a moderate energy, high flux density, high purity atomic oxygen beam in the very low density environment within the molecular shield. As a minimum, the following instruments are required for the molecular shield: (1) a mass spectrometer; (2) a multifunction material analysis instrumentation system; and (3) optical spectrometry equipment. The design is given of a furlable molecular shield that allows deployment and retrieval of the system (including instrumentation and experiments) to be performed without contamination. Interfaces between the molecular shield system and the associated spacecraft are given. An in-flight deployment sequence is discussed that minimizes the spacecraft-induced contamination in the vicinity of the shield. Design approaches toward a precursor molecular shield system are shown.

  13. Electron Accelerator Shielding Design of KIPT Neutron Source Facility

    Directory of Open Access Journals (Sweden)

    Zhaopeng Zhong

    2016-06-01

    Full Text Available The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biological dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, ∼0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both

  14. Electron accelerator shielding design of KIPT neutron source facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Zhao Peng; Gohar, Yousry [Argonne National Laboratory, Argonne (United States)

    2016-06-15

    The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biological dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX) was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, ∼0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both neutron and photon dose

  15. Magnetic shield for turbomolecular pump of the Magnetized Plasma Linear Experimental device at Saha Institute of Nuclear Physics.

    Science.gov (United States)

    Biswas, Subir; Chattopadhyay, Monobir; Pal, Rabindranath

    2011-01-01

    The turbo molecular pump of the Magnetized Plasma Linear Experimental device is protected from damage by a magnetic shield. As the pump runs continuously in a magnetic field environment during a plasma physics experiment, it may get damaged owing to eddy current effect. For design and testing of the shield, first we simulate in details various aspects of magnetic shield layouts using a readily available field design code. The performance of the shield made from two half cylinders of soft iron material, is experimentally observed to agree very well with the simulation results.

  16. Neutron guide shielding for the BIFROST spectrometer at ESS

    Science.gov (United States)

    Mantulnikovs, K.; Bertelsen, M.; Cooper-Jensen, C. P.; Lefmann, K.; Klinkby, E. B.

    2016-09-01

    We report on the study of fast-neutron background for the BIFROST spectrometer at ESS. We investigate the effect of background radiation induced by the interaction of fast neutrons from the source with the material of the neutron guide and devise a reasonable fast, thermal/cold neutron shielding solution for the current guide geometry using McStas and MCNPX. We investigate the effectiveness of the steel shielding around the guide by running simulations with three different steel thicknesses. The same approach is used to study the efficiencies of the steel wall a flat cylinder pierced by the guide in the middle and the polyethylene layer. The final model presented here has a 3 cm thick steel shielding around the guide, 30 cm of polyethylene around the shielding, two 5 mm thick B4C layers and a steel wall at position Z = 38 m, being 1 m thick and 10 m in radius. The final model finally proves that it is sufficient to bring the background level below the cosmic neutron rate, which defines an order of magnitude of the lowest obtainable background in the instruments.

  17. X-ray lenses with large aperture; Roentgenlinsen mit grosser Apertur

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Markus

    2010-07-01

    Up to now, most X-ray imaging setups are based on absorption contrast imaging. There is a demand for focused X-rays in many X-ray analysis applications, either to increase the resolution of an imaging system, or, to reduce the time effort of an experiment through higher photon flux. For photon energies higher than 15 keV refractive X-ray optics are more efficient in comparison to non-refractive X-ray optics. The aim of this work was to develop X-ray lenses with large apertures and high transparency. By increasing the number of refracting surfaces while removing unnecessary lens material such lenses have been developed. Utilizing this approach the overall beam deflection angle is large with respect to the lens material it propagates through and so the transparency of the lens is increased. Within this work, X-ray lenses consisting of several thousands of prisms with an edge length in the range of micrometers have been developed and fabricated by deep X-ray lithography. Deep X-ray lithography enables high precision microstrucures with smooth sidewalls and large aspect ratios. The aperture of high-transparency X-ray lenses made this way is greater than 1 mm. They are suitable for photon energies in the range of 8 keV to 24 keV and offer a focal width of smaller than 10 {mu}m at a transparency of around 40%. Furthermore, rolled X-ray lenses have been developed, that are made out of a microstructured polyimide film, which is cut according to the requirements regarding focal length and photon energy. The microstructured film is fabricated by molding, using an anisotropically etched silicon wafer as molding tool. Its mean roughness is in the range of nanometers. The film features prismatic structures, its surface topology is similar to an asparagus field. The measured diameter of the point focus was 18 {mu}m to 31 {mu}m, the calculated opticla efficiency was 37%. Future work will concentrate on increasing the aspect ratio of Prism Lenses and on increasing the rolling

  18. Investigation of novel fractal shape of the nano-aperture as a metasurface for bio sensing application

    Science.gov (United States)

    Heydari, Samaneh; Rastan, Iman; Parvin, Amin; Pirooj, Azadeh; Zarrabi, Ferdows B.

    2017-01-01

    Recently, nano-aperture is noticed due to its good transmission in the optical regime. Also, the nano-apertures are developed at the metasurface design for circular polarization; for this aim, various shapes of the nano-aperture are suggested. To reach this objective, we have developed a novel Jerusalem cross fractal shape for a mid-infrared application. We have simulated various formations of the nano-fractal Jerusalem cross based on a simple cross to show the effect of nano-aperture shape on electrical field enhancement in the near-field which is important in spectroscopy and optical imaging. In addition, we have used a single layer graphene over the aperture as a coat for making reconfigurable characteristic also creating a membrane for placement of nano-particle over the aperture. Implementation of the graphene is an amendment to the transfer of the nano-apertures. The biological materials with a thickness of 80 nm have been placed over the graphene layer and the Figures of Merits (FOM) have been obtained. Additionally, the prototype of nano-antenna is independent from incident wave polarization. The Finite Difference Time Domain (FDTD) calculations have been implemented in the simulation and modeling the nano-apertures.

  19. Wide Aperture Multipole Magnets of Separator COMBAS

    CERN Document Server

    Artukh, A G; Gridnev, G F; Gruszecki, M; Koscielniak, F; Semchenkova, O V; Sereda, Yu M; Shchepunov, V A; Szmider, J; Teterev, Yu G; Severgin, Yu P; Rozhdestvensky, B V; Myasnikov, Yu A; Shilkin, N F; Lamzin, E A; Nagaenko, M G; Sytchevsky, S E; Vishnevski, I N

    2000-01-01

    The high-resolving wide aperture separator COMBAS has been designed and commissioned at the FLNR, JINR. Its magneto-optical structure is based on strong focusing principle. The magnetic fields of analysing magnets M_1, M_2, M_7, M_8, contain quadrupole components of alternating sign that provide necessary beam focusing. Besides, all the magnets M_1-M_8, contain sextupole and octupole field components, which minimizes the 2nd and 3rd order aberrations. All this allowed one to increase their apertures, to effectively form a beam of the required sizes, and to decrease the channel length. This implementation of wide aperture magnets with combined functions is unique for the separation technology. Three-components magnetic measurements of all the magnets were performed. The measured data allow reconstructing the 3D-distributions of the fields in all the magnets. 3D-maps are supposed to be used for particle trajectory simulations throughout the entire separator.

  20. Basic design of shield blocks for a spallation neutron source under the high-intensity proton accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Katsuhiko; Maekawa, Fujio; Takada, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Under the JAERI-KEK High-Intensity Proton Accelerator Project (J-PARC), a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed as a main part of the Materials and Life Science Facility. Overall dimensions of a biological shield of the neutron source had been determined by evaluation of shielding performance by Monte Carlo calculations. This report describes results of design studies on an optimum dividing scheme in terms of cost and treatment and mechanical strength of shield blocks for the biological shield. As for mechanical strength, it was studied whether the shield blocks would be stable, fall down or move to a horizontal direction in case of an earthquake of seismic intensity of 5.5 (250 Gal) as an abnormal load. For ceiling shielding blocks being supported by both ends of the long blocks, maximum bending moment and an amount of maximum deflection of their center were evaluated. (author)