WorldWideScience

Sample records for aperture real-time ultrasound

  1. Performance Evaluation of a Synthetic Aperture Real-Time Ultrasound System

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt

    2011-01-01

    This paper evaluates the signal-to-noise ratio, the time stability, and the phase difference of the sampling in the experimental ultrasound scanner SARUS: A synthetic aperture, real-time ultrasound system. SARUS has 1024 independent transmit and receive channels and is capable of handling 2D probes...... arrays (FPGAs) making it very flexible and allowing implementation of other real-time ultrasound processing methods in the future. For conventional B-mode imaging, a penetration depth around 7 cm for a 7 MHz transducer is obtained (signal-tonoise ratio of 0 dB), which is comparable to commercial...... for 3D ultrasound imaging. It samples at 12 bits per sample and has a sampling rate of 70 MHz with the possibility of decimating the sampling frequency at the input. SARUS is capable of advanced real-time computations such as synthetic aperture imaging. The system is built using fieldprogrammable gate...

  2. System Architecture of an Experimental Synthetic Aperture Real-Time Ultrasound System

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Hansen, Martin; Tomov, Borislav Gueorguiev

    2007-01-01

    is done using a parametric beam former. Code synthesized for a Xilinx V4FX100 speed grade 11 FPGA can operate at a maximum clock frequency of 167.8 MHz producing 1 billion I and Q samples/second sufficient for real time SA imaging. The system is currently in production, and all boards have been laid out......Synthetic Aperture (SA) ultrasound imaging has many advantages in terms of flexibility and accuracy. One of the major drawbacks is, however, that no system exists, which can implement SA imaging in real time due to the very high number of calculations amounting to roughly 1 billion complex focused...... samples per second per receive channel. Real time imaging is a key aspect in ultrasound, and to truly demonstrate the many advantages of SA imaging, a system usable in the clinic should be made. The paper describes a system capable of real time SA B-mode and vector flow imaging. The Synthetic Aperture...

  3. In Vivo Real Time Volumetric Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Rasmussen, Morten Fischer; Brandt, Andreas Hjelm

    2015-01-01

    Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological....... This paper investigates the in vivo applicability and sensitivity of volumetric SA imaging. Utilizing the transmit events to generate a set of virtual point sources, a frame rate of 25 Hz for a 90° x 90° field-of-view was achieved. Data were obtained using a 3.5 MHz 32 x 32 elements 2-D phased array...... transducer connected to the experimental scanner (SARUS). Proper scaling is applied to the excitation signal such that intensity levels are in compliance with the U.S. Food and Drug Administration regulations for in vivo ultrasound imaging. The measured Mechanical Index and spatial-peak- temporal...

  4. Non-linear Imaging using an Experimental Synthetic Aperture Real Time Ultrasound Scanner

    DEFF Research Database (Denmark)

    Rasmussen, Joachim; Du, Yigang; Jensen, Jørgen Arendt

    2011-01-01

    This paper presents the first non-linear B-mode image of a wire phantom using pulse inversion attained via an experimental synthetic aperture real-time ultrasound scanner (SARUS). The purpose of this study is to implement and validate non-linear imaging on SARUS for the further development of new...... non-linear techniques. This study presents non-linear and linear B-mode images attained via SARUS and an existing ultrasound system as well as a Field II simulation. The non-linear image shows an improved spatial resolution and lower full width half max and -20 dB resolution values compared to linear...

  5. Simulation Study of Real Time 3-D Synthetic Aperture Sequential Beamforming for Ultrasound Imaging

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Rasmussen, Morten Fischer; Stuart, Matthias Bo

    2014-01-01

    in the main system. The real-time imaging capability is achieved using a synthetic aperture beamforming technique, utilizing the transmit events to generate a set of virtual elements that in combination can generate an image. The two core capabilities in combination is named Synthetic Aperture Sequential......This paper presents a new beamforming method for real-time three-dimensional (3-D) ultrasound imaging using a 2-D matrix transducer. To obtain images with sufficient resolution and contrast, several thousand elements are needed. The proposed method reduces the required channel count from...... Beamforming (SASB). Simulations are performed to evaluate the image quality of the presented method in comparison to Parallel beamforming utilizing 16 receive beamformers. As indicators for image quality the detail resolution and Cystic resolution are determined for a set of scatterers at a depth of 90mm...

  6. Implementation of real-time duplex synthetic aperture ultrasonography

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Larsen, Lee; Kjeldsen, Thomas

    2015-01-01

    This paper presents a real-time duplex synthetic aperture imaging system, implemented on a commercially available tablet. This includes real-time wireless reception of ultrasound signals and GPU processing for B-mode and Color Flow Imaging (CFM). The objective of the work is to investigate the im...... and that the required bandwidth between the probe and processing unit is within the current Wi-Fi standards....

  7. Implementation of Synthetic Aperture Imaging in Medical Ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Kortbek, Jacob; Nikolov, Svetoslav

    2010-01-01

    The main advantage of medical ultrasound imaging is its real time capability, which makes it possible to visualize dynamic structures in the human body. Real time synthetic aperture imaging puts very high demands on the hardware, which currently cannot be met. A method for reducing the number...... of calculations and still retain the many advantages of SA imaging is described. It consists of a dual stage beamformer, where the first can be a simple fixed focus analog beamformer and the second an ordinary digital ultrasound beamformer. The performance and constrictions of the approach is described....

  8. Synthetic aperture tissue and flow ultrasound imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav

    imaging applied to medical ultrasound. It is divided into two major parts: tissue and blood flow imaging. Tissue imaging using synthetic aperture algorithms has been investigated for about two decades, but has not been implemented in medical scanners yet. Among the other reasons, the conventional scanning...... and beamformation methods are adequate for the imaging modalities in clinical use - the B-mode imaging of tissue structures, and the color mapping of blood flow. The acquisition time, however, is too long, and these methods fail to perform real-time three-dimensional scans. The synthetic transmit aperture......, on the other hand, can create a Bmode image with as little as 2 emissions, thus significantly speeding-up the scan procedure. The first part of the dissertation describes the synthetic aperture tissue imaging. It starts with an overview of the efforts previously made by other research groups. A classification...

  9. Experimental ultrasound system for real-time synthetic imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Holm, Ole; Jensen, Lars Joost

    1999-01-01

    Digital signal processing is being employed more and more in modern ultrasound scanners. This has made it possible to do dynamic receive focusing for each sample and implement other advanced imaging methods. The processing, however, has to be very fast and cost-effective at the same time. Dedicated...... for synthetic aperture imaging, 2D and 3D B-mode and velocity imaging. The system can be used with 128 element transducers and can excite 128 channels and receive and sample data from 64 channels simultaneously at 40 MHz with 12 bits precision. Data can be processed in real time using the system's 80 signal...... chips are used in order to do real time processing. This often makes it difficult to implement radically different imaging strategies on one platform and makes the scanners less accessible for research purposes. Here flexibility is the prime concern, and the storage of data from all transducer elements...

  10. Online 4D ultrasound guidance for real-time motion compensation by MLC tracking.

    Science.gov (United States)

    Ipsen, Svenja; Bruder, Ralf; O'Brien, Rick; Keall, Paul J; Schweikard, Achim; Poulsen, Per R

    2016-10-01

    With the trend in radiotherapy moving toward dose escalation and hypofractionation, the need for highly accurate targeting increases. While MLC tracking is already being successfully used for motion compensation of moving targets in the prostate, current real-time target localization methods rely on repeated x-ray imaging and implanted fiducial markers or electromagnetic transponders rather than direct target visualization. In contrast, ultrasound imaging can yield volumetric data in real-time (3D + time = 4D) without ionizing radiation. The authors report the first results of combining these promising techniques-online 4D ultrasound guidance and MLC tracking-in a phantom. A software framework for real-time target localization was installed directly on a 4D ultrasound station and used to detect a 2 mm spherical lead marker inside a water tank. The lead marker was rigidly attached to a motion stage programmed to reproduce nine characteristic tumor trajectories chosen from large databases (five prostate, four lung). The 3D marker position detected by ultrasound was transferred to a computer program for MLC tracking at a rate of 21.3 Hz and used for real-time MLC aperture adaption on a conventional linear accelerator. The tracking system latency was measured using sinusoidal trajectories and compensated for by applying a kernel density prediction algorithm for the lung traces. To measure geometric accuracy, static anterior and lateral conformal fields as well as a 358° arc with a 10 cm circular aperture were delivered for each trajectory. The two-dimensional (2D) geometric tracking error was measured as the difference between marker position and MLC aperture center in continuously acquired portal images. For dosimetric evaluation, VMAT treatment plans with high and low modulation were delivered to a biplanar diode array dosimeter using the same trajectories. Dose measurements with and without MLC tracking were compared to a static reference dose using 3%/3 mm and 2

  11. Ultrasound Research Scanner for Real-time Synthetic Aperture Data Acquisition

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Holm, Ole; Jensen, Lars Joost

    2005-01-01

    Conventional ultrasound systems acquire ultrasound data sequentially one image line at a time. The architecture of these systems is therefore also sequential in nature and processes most of the data in a sequential pipeline. This often makes it difficult to implement radically different imaging...... and 3D B-mode and velocity imaging using advanced coded emissions. The system can be used with 128 element transducers and can excite 128 transducer elements and receive and sample data from 64 channels simultaneously at 40 MHz with 12 bits precision. Two-to-one multiplexing in receive can be used...

  12. Improving the Image Quality of Synthetic Transmit Aperture Ultrasound Images - Achieving Real-Time In-Vivo Imaging

    DEFF Research Database (Denmark)

    Gammelmark, Kim

    in-vivo experiments, showed, that TMS imaging can increase the SNR by as much as 17 dB compared to the traditional imaging techniques, which improves the in-vivo image quality to a highly competitive level. An in-vivo evaluation of convex array TMS imaging for abdominal imaging applications......-vivo imaging, and that the obtained image quality is highly competitive with the techniques applied in current medical ultrasound scanners. Hereby, the goals of the PhD have been successfully achieved.......Synthetic transmit aperture (STA) imaging has the potential to increase the image quality of medical ultrasound images beyond the levels obtained by conventional imaging techniques (linear, phased, and convex array imaging). Currently, however, in-vivo applications of STA imaging is limited...

  13. TH-AB-202-05: BEST IN PHYSICS (JOINT IMAGING-THERAPY): First Online Ultrasound-Guided MLC Tracking for Real-Time Motion Compensation in Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ipsen, S; Bruder, R; Schweikard, A [University of Luebeck, Luebeck, DE (United States); O’Brien, R; Keall, P [University of Sydney, Sydney (Australia); Poulsen, P [Aarhus University Hospital, Aarhus (Denmark)

    2016-06-15

    Purpose: While MLC tracking has been successfully used for motion compensation of moving targets, current real-time target localization methods rely on correlation models with x-ray imaging or implanted electromagnetic transponders rather than direct target visualization. In contrast, ultrasound imaging yields volumetric data in real-time (4D) without ionizing radiation. We report the first results of online 4D ultrasound-guided MLC tracking in a phantom. Methods: A real-time tracking framework was installed on a 4D ultrasound station (Vivid7 dimension, GE) and used to detect a 2mm spherical lead marker inside a water tank. The volumetric frame rate was 21.3Hz (47ms). The marker was rigidly attached to a motion stage programmed to reproduce nine tumor trajectories (five prostate, four lung). The 3D marker position from ultrasound was used for real-time MLC aperture adaption. The tracking system latency was measured and compensated by prediction for lung trajectories. To measure geometric accuracy, anterior and lateral conformal fields with 10cm circular aperture were delivered for each trajectory. The tracking error was measured as the difference between marker position and MLC aperture in continuous portal imaging. For dosimetric evaluation, 358° VMAT fields were delivered to a biplanar diode array dosimeter using the same trajectories. Dose measurements with and without MLC tracking were compared to a static reference dose using a 3%/3 mm γ-test. Results: The tracking system latency was 170ms. The mean root-mean-square tracking error was 1.01mm (0.75mm prostate, 1.33mm lung). Tracking reduced the mean γ-failure rate from 13.9% to 4.6% for prostate and from 21.8% to 0.6% for lung with high-modulation VMAT plans and from 5% (prostate) and 18% (lung) to 0% with low modulation. Conclusion: Real-time ultrasound tracking was successfully integrated with MLC tracking for the first time and showed similar accuracy and latency as other methods while holding the

  14. Real-time image fusion involving diagnostic ultrasound

    DEFF Research Database (Denmark)

    Ewertsen, Caroline; Săftoiu, Adrian; Gruionu, Lucian G

    2013-01-01

    The aim of our article is to give an overview of the current and future possibilities of real-time image fusion involving ultrasound. We present a review of the existing English-language peer-reviewed literature assessing this technique, which covers technical solutions (for ultrasound...

  15. Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav; Gammelmark, Kim Løkke

    2006-01-01

    The paper describes the use of synthetic aperture (SA) imaging in medical ultrasound. SA imaging is a radical break with today's commercial systems, where the image is acquired sequentially one image line at a time. This puts a strict limit on the frame rate and the possibility of acquiring...... a sufficient amount of data for high precision flow estimation. These constrictions can be lifted by employing SA imaging. Here data is acquired simultaneously from all directions over a number of emissions, and the full image can be reconstructed from this data. The talk will demonstrate the many benefits...

  16. Wireless communication of real-time ultrasound data and control

    Science.gov (United States)

    Tobias, Richard J.

    2015-03-01

    The Internet of Things (IoT) is expected to grow to 26 billion connected devices by 2020, plus the PC, smart phone, and tablet segment that includes mobile Health (mHealth) connected devices is projected to account for another 7.3 billion units by 2020. This paper explores some of the real-time constraints on the data-flow and control of a wireless connected ultrasound machine. The paper will define an ultrasound server and the capabilities necessary for real-time use of the device. The concept of an ultrasound server wirelessly (or over any network) connected to multiple lightweight clients on devices like an iPad, iPhone, or Android-based tablet, smartphone and other network-attached displays (i.e., Google Glass) is explored. Latency in the ultrasound data stream is one of the key areas to measure and to focus on keeping as small as possible (20 frames-per-second on a properly configured wireless network. The ultrasound server needs to be designed to accept multiple ultrasound data clients and multiple control clients. A description of the server and some of its key features will be described.

  17. Real-time 3-dimensional contrast-enhanced ultrasound in detecting hemorrhage of blunt renal trauma.

    Science.gov (United States)

    Xu, Rui-Xue; Li, Ye-Kuo; Li, Ting; Wang, Sha-Sha; Yuan, Gui-Zhong; Zhou, Qun-Fang; Zheng, Hai-Rong; Yan, Fei

    2013-10-01

    The objective of this study is to evaluate the diagnostic value of real-time 3-dimensional contrast-enhanced ultrasound in the hemorrhage of blunt renal trauma. Eighteen healthy New Zealand white rabbits were randomly divided into 3 groups. Blunt renal trauma was performed on each group by using minitype striker. Ultrasonography, color Doppler flow imaging, and contrast-enhanced 2-dimensional and real-time 3-dimensional ultrasound were applied before and after the strike. The time to shock and blood pressure were subjected to statistical analysis. Then, a comparative study of ultrasound and pathology was carried out. All the struck kidneys were traumatic. In the ultrasonography, free fluid was found under the renal capsule. In the color Doppler flow imaging, active hemorrhage was not identified. In 2-dimensional contrast-enhanced ultrasound, active hemorrhage of the damaged kidney was characterized. Real-time 3-dimensional contrast-enhanced ultrasound showed a real-time and stereoscopic ongoing bleeding of the injured kidney. The wider the hemorrhage area in 4-dimensional contrast-enhanced ultrasound was, the faster the blood pressure decreased. Real-time 3-dimensional contrast-enhanced ultrasound is a promising noninvasive tool for stereoscopically and vividly detecting ongoing hemorrhage of blunt renal trauma in real time. © 2013.

  18. Real-Time Laser Ultrasound Tomography for Profilometry of Solids

    Science.gov (United States)

    Zarubin, V. P.; Bychkov, A. S.; Karabutov, A. A.; Simonova, V. A.; Kudinov, I. A.; Cherepetskaya, E. B.

    2018-01-01

    We studied the possibility of applying laser ultrasound tomography for profilometry of solids. The proposed approach provides high spatial resolution and efficiency, as well as profilometry of contaminated objects or objects submerged in liquids. The algorithms for the construction of tomograms and recognition of the profiles of studied objects using the parallel programming technology NDIVIA CUDA are proposed. A prototype of the real-time laser ultrasound profilometer was used to obtain the profiles of solid surfaces of revolution. The proposed method allows the real-time determination of the surface position for cylindrical objects with an approximation accuracy of up to 16 μm.

  19. Synthetic tracked aperture ultrasound imaging: design, simulation, and experimental evaluation.

    Science.gov (United States)

    Zhang, Haichong K; Cheng, Alexis; Bottenus, Nick; Guo, Xiaoyu; Trahey, Gregg E; Boctor, Emad M

    2016-04-01

    Ultrasonography is a widely used imaging modality to visualize anatomical structures due to its low cost and ease of use; however, it is challenging to acquire acceptable image quality in deep tissue. Synthetic aperture (SA) is a technique used to increase image resolution by synthesizing information from multiple subapertures, but the resolution improvement is limited by the physical size of the array transducer. With a large F-number, it is difficult to achieve high resolution in deep regions without extending the effective aperture size. We propose a method to extend the available aperture size for SA-called synthetic tracked aperture ultrasound (STRATUS) imaging-by sweeping an ultrasound transducer while tracking its orientation and location. Tracking information of the ultrasound probe is used to synthesize the signals received at different positions. Considering the practical implementation, we estimated the effect of tracking and ultrasound calibration error to the quality of the final beamformed image through simulation. In addition, to experimentally validate this approach, a 6 degree-of-freedom robot arm was used as a mechanical tracker to hold an ultrasound transducer and to apply in-plane lateral translational motion. Results indicate that STRATUS imaging with robotic tracking has the potential to improve ultrasound image quality.

  20. A real-time remote video streaming platform for ultrasound imaging.

    Science.gov (United States)

    Ahmadi, Mehdi; Gross, Warren J; Kadoury, Samuel

    2016-08-01

    Ultrasound is a viable imaging technology in remote and resources-limited areas. Ultrasonography is a user-dependent skill which depends on a high degree of training and hands-on experience. However, there is a limited number of skillful sonographers located in remote areas. In this work, we aim to develop a real-time video streaming platform which allows specialist physicians to remotely monitor ultrasound exams. To this end, an ultrasound stream is captured and transmitted through a wireless network into remote computers, smart-phones and tablets. In addition, the system is equipped with a camera to track the position of the ultrasound probe. The main advantage of our work is using an open source platform for video streaming which gives us more control over streaming parameters than the available commercial products. The transmission delays of the system are evaluated for several ultrasound video resolutions and the results show that ultrasound videos close to the high-definition (HD) resolution can be received and displayed on an Android tablet with the delay of 0.5 seconds which is acceptable for accurate real-time diagnosis.

  1. Applicable value of real time interventional ultrasound guidance in family planning reproduction operation

    International Nuclear Information System (INIS)

    Wu Guoping; Zou Dongfang; Sun Jian; Dong Weihua

    2007-01-01

    Objective: To determine the clinical value of real time interventional ultrasound guidance in family planning reproduction operation. Methods: Under the guidance of ultrasound monitoring, 522 cases with high risk and difficult uterine operation were undertaken in our department. Results: The abdominal endoscopic contraceptive uterine operation under real time ultrasound monitoring was carried out for 522 cases in 4 years, with successful rates for high risk pregnancy as 287/289 cases, high risk troublesome withdrawal of contraceptive ring as 129/130 cases and puzzling uterine operation as 103/103 cases. The total successful rate reached 99.42%, without uterine rupture and other complications. Conclusion: The former complex, blind and difficult uterine operations turn to be simple, safe and reliable under the guidance of real time ultrasound. (authors)

  2. Volumetric Synthetic Aperture Imaging with a Piezoelectric 2-D Row-Column Probe

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Engholm, Mathias; Christiansen, Thomas Lehrmann

    2016-01-01

    The synthetic aperture (SA) technique can be used for achieving real-time volumetric ultrasound imaging using 2-D row-column addressed transducers. This paper investigates SA volumetric imaging performance of an in-house prototyped 3 MHz λ/2-pitch 62+62 element piezoelectric 2-D row-column addres......The synthetic aperture (SA) technique can be used for achieving real-time volumetric ultrasound imaging using 2-D row-column addressed transducers. This paper investigates SA volumetric imaging performance of an in-house prototyped 3 MHz λ/2-pitch 62+62 element piezoelectric 2-D row...

  3. High resolution three-dimensional robotic synthetic tracked aperture ultrasound imaging: feasibility study

    Science.gov (United States)

    Zhang, Haichong K.; Fang, Ting Yun; Finocchi, Rodolfo; Boctor, Emad M.

    2017-03-01

    Three dimensional (3D) ultrasound imaging is becoming a standard mode for medical ultrasound diagnoses. Conventional 3D ultrasound imaging is mostly scanned either by using a two dimensional matrix array or by motorizing a one dimensional array in the elevation direction. However, the former system is not widely assessable due to its cost, and the latter one has limited resolution and field-of-view in the elevation axis. Here, we propose a 3D ultrasound imaging system based on the synthetic tracked aperture approach, in which a robotic arm is used to provide accurate tracking and motion. While the ultrasound probe is moved by a robotic arm, each probe position is tracked and can be used to reconstruct a wider field-of-view as there are no physical barriers that restrict the elevational scanning. At the same time, synthetic aperture beamforming provides a better resolution in the elevation axis. To synthesize the elevational information, the single focal point is regarded as the virtual element, and forward and backward delay-andsum are applied to the radio-frequency (RF) data collected through the volume. The concept is experimentally validated using a general ultrasound phantom, and the elevational resolution improvement of 2.54 and 2.13 times was measured at the target depths of 20 mm and 110 mm, respectively.

  4. Robotic 4D ultrasound solution for real-time visualization and teleoperation

    Directory of Open Access Journals (Sweden)

    Al-Badri Mohammed

    2017-09-01

    Full Text Available Automation of the image acquisition process via robotic solutions offer a large leap towards resolving ultrasound’s user-dependency. This paper, as part of a larger project aimed to develop a multipurpose 4d-ultrasonic force-sensitive robot for medical applications, focuses on achieving real-time remote visualisation for 4d ultrasound image transfer. This was possible through implementing our software modification on a GE Vivid 7 Dimension workstation, which operates a matrix array probe controlled by a KUKA LBR iiwa 7 7-DOF robotic arm. With the help of robotic positioning and the matrix array probe, fast volumetric imaging of target regions was feasible. By testing ultrasound volumes, which were roughly 880 kB in size, while using gigabit Ethernet connection, a latency of ∼57 ms was achievable for volume transfer between the ultrasound station and a remote client application, which as a result allows a frame count of 17.4 fps. Our modification thus offers for the first time real-time remote visualization, recording and control of 4d ultrasound data, which can be implemented in teleoperation.

  5. Real-Time Implementation of Medical Ultrasound Strain Imaging System

    International Nuclear Information System (INIS)

    Jeong, Mok Kun; Kwon, Sung Jae; Bae, Moo Ho

    2008-01-01

    Strain imaging in a medical ultrasound imaging system can differentiate the cancer or tumor in a lesion that is stiffer than the surrounding tissue. In this paper, a strain imaging technique using quasistatic compression is implemented that estimates the displacement between pre- and postcompression ultrasound echoes and obtains strain by differentiating it in the spatial direction. Displacements are computed from the phase difference of complex baseband signals obtained using their autocorrelation, and errors associated with converting the phase difference into time or distance are compensated for by taking into the center frequency variation. Also, to reduce the effect of operator's hand motion, the displacements of all scanlines are normalized with the result that satisfactory strain image quality has been obtained. These techniques have been incorporated into implementing a medical ultrasound strain imaging system that operates in real time.

  6. Toward a real-time system for temporal enhanced ultrasound-guided prostate biopsy.

    Science.gov (United States)

    Azizi, Shekoofeh; Van Woudenberg, Nathan; Sojoudi, Samira; Li, Ming; Xu, Sheng; Abu Anas, Emran M; Yan, Pingkun; Tahmasebi, Amir; Kwak, Jin Tae; Turkbey, Baris; Choyke, Peter; Pinto, Peter; Wood, Bradford; Mousavi, Parvin; Abolmaesumi, Purang

    2018-03-27

    We have previously proposed temporal enhanced ultrasound (TeUS) as a new paradigm for tissue characterization. TeUS is based on analyzing a sequence of ultrasound data with deep learning and has been demonstrated to be successful for detection of cancer in ultrasound-guided prostate biopsy. Our aim is to enable the dissemination of this technology to the community for large-scale clinical validation. In this paper, we present a unified software framework demonstrating near-real-time analysis of ultrasound data stream using a deep learning solution. The system integrates ultrasound imaging hardware, visualization and a deep learning back-end to build an accessible, flexible and robust platform. A client-server approach is used in order to run computationally expensive algorithms in parallel. We demonstrate the efficacy of the framework using two applications as case studies. First, we show that prostate cancer detection using near-real-time analysis of RF and B-mode TeUS data and deep learning is feasible. Second, we present real-time segmentation of ultrasound prostate data using an integrated deep learning solution. The system is evaluated for cancer detection accuracy on ultrasound data obtained from a large clinical study with 255 biopsy cores from 157 subjects. It is further assessed with an independent dataset with 21 biopsy targets from six subjects. In the first study, we achieve area under the curve, sensitivity, specificity and accuracy of 0.94, 0.77, 0.94 and 0.92, respectively, for the detection of prostate cancer. In the second study, we achieve an AUC of 0.85. Our results suggest that TeUS-guided biopsy can be potentially effective for the detection of prostate cancer.

  7. Volumetric real-time imaging using a CMUT ring array.

    Science.gov (United States)

    Choe, Jung Woo; Oralkan, Ömer; Nikoozadeh, Amin; Gencel, Mustafa; Stephens, Douglas N; O'Donnell, Matthew; Sahn, David J; Khuri-Yakub, Butrus T

    2012-06-01

    A ring array provides a very suitable geometry for forward-looking volumetric intracardiac and intravascular ultrasound imaging. We fabricated an annular 64-element capacitive micromachined ultrasonic transducer (CMUT) array featuring a 10-MHz operating frequency and a 1.27-mm outer radius. A custom software suite was developed to run on a PC-based imaging system for real-time imaging using this device. This paper presents simulated and experimental imaging results for the described CMUT ring array. Three different imaging methods--flash, classic phased array (CPA), and synthetic phased array (SPA)--were used in the study. For SPA imaging, two techniques to improve the image quality--Hadamard coding and aperture weighting--were also applied. The results show that SPA with Hadamard coding and aperture weighting is a good option for ring-array imaging. Compared with CPA, it achieves better image resolution and comparable signal-to-noise ratio at a much faster image acquisition rate. Using this method, a fast frame rate of up to 463 volumes per second is achievable if limited only by the ultrasound time of flight; with the described system we reconstructed three cross-sectional images in real-time at 10 frames per second, which was limited by the computation time in synthetic beamforming.

  8. Clinical evaluation of synthetic aperture sequential beamforming ultrasound in patients with liver tumors

    DEFF Research Database (Denmark)

    Hansen, Peter Møller; Hemmsen, Martin Christian; Brandt, Andreas Hjelm

    2014-01-01

    Medical ultrasound imaging using synthetic aperture sequential beamforming (SASB) has for the first time been used for clinical patient scanning. Nineteen patients with cancer of the liver (hepatocellular carcinoma or colorectal liver metastases) were scanned simultaneously with conventional...

  9. Synthetic aperture ultrasound Fourier beamformation using virtual sources

    DEFF Research Database (Denmark)

    Moghimirad, Elahe; Villagómez Hoyos, Carlos Armando; Mahloojifar, Ali

    2016-01-01

    An efficient Fourier beamformation algorithm is presented for multistatic synthetic aperture ultrasound imaging using virtual sources (FBV). The concept is based on the frequency domain wavenumber algorithm from radar and sonar and is extended to a multi-element transmit/receive configuration using...

  10. Strain measurement of abdominal aortic aneurysm with real-time 3D ultrasound speckle tracking.

    Science.gov (United States)

    Bihari, P; Shelke, A; Nwe, T H; Mularczyk, M; Nelson, K; Schmandra, T; Knez, P; Schmitz-Rixen, T

    2013-04-01

    Abdominal aortic aneurysm rupture is caused by mechanical vascular tissue failure. Although mechanical properties within the aneurysm vary, currently available ultrasound methods assess only one cross-sectional segment of the aorta. This study aims to establish real-time 3-dimensional (3D) speckle tracking ultrasound to explore local displacement and strain parameters of the whole abdominal aortic aneurysm. Validation was performed on a silicone aneurysm model, perfused in a pulsatile artificial circulatory system. Wall motion of the silicone model was measured simultaneously with a commercial real-time 3D speckle tracking ultrasound system and either with laser-scan micrometry or with video photogrammetry. After validation, 3D ultrasound data were collected from abdominal aortic aneurysms of five patients and displacement and strain parameters were analysed. Displacement parameters measured in vitro by 3D ultrasound and laser scan micrometer or video analysis were significantly correlated at pulse pressures between 40 and 80 mmHg. Strong local differences in displacement and strain were identified within the aortic aneurysms of patients. Local wall strain of the whole abdominal aortic aneurysm can be analysed in vivo with real-time 3D ultrasound speckle tracking imaging, offering the prospect of individual non-invasive rupture risk analysis of abdominal aortic aneurysms. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  11. Synthetic Aperture Imaging in Medical Ultrasound

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Gammelmark, Kim; Pedersen, Morten

    2004-01-01

    with high precision, and the imaging is easily extended to real-time 3D scanning. This paper presents the work done at the Center for Fast Ultrasound Imaging in the area of SA imaging. Three areas that benefit from SA imaging are described. Firstly a preliminary in-vivo evaluation comparing conventional B...

  12. Real-time ultrasound elastography: an assessment of enlarged cervical lymph nodes.

    Science.gov (United States)

    Lo, Wu-Chia; Cheng, Po-Wen; Wang, Chi-Te; Liao, Li-Jen

    2013-09-01

    To determine the efficacy of real-time elastography (RTE), compared with our previously proposed prediction model, in the detection of malignancy in cervical lymph nodes (LNs). One hundred and thirty-one patients underwent ultrasound-guided fine needle aspiration biopsy (ultrasound FNAB) after ultrasound and RTE evaluation. The formula of the RTE scoring system was a four-point visual scale, based on a previously determined model. The formula of the prediction model was: [Formula: see text]. An extended model was constructed with four previous predictors and elasticity scores, using a logistic regression model. Final histology revealed 77 benign and 54 malignant LNs. In the elasticity score system, sensitivity was 66.7 %, specificity was 57.1 %, the positive predictive value (PPV) was 52.2 % and the negative predictive value (NPV) was 71.0 %. In the prediction model system, sensitivity was 79.6 %, specificity was 92.2 %, the PPV was 87.8 % and the NPV was 86.6 %. When the extended and the original model were compared, the areas under the receiver operating characteristic curve (c-statistic) was 0.94 and 0.95, respectively (P > 0.05). Qualitative RTE offers no additional value over conventional ultrasound in predicting malignancy in cervical LNs. • An ultrasound system can help in the assessment of cervical lymph nodes. • Grey-scale and power Doppler ultrasound remain fundamental for neck nodal evaluation. • Qualitative real-time elastography provided no additional value compared with current prediction models.

  13. Three-dimensional real-time synthetic aperture imaging using a rotating phased array transducer

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Dufait, Remi; Schoisswohl, Armin

    2002-01-01

    phased array, which is rotated over the volume of interest. The data is acquired using coded signals and synthetic transmit aperture imaging. Only one group of elements transmits at a time. The delays are set such as to form a cylindrical wave. The back-scattered signal carries information not only from......Current 3D real-time imaging is done either with sparse 2D arrays, or with mechanically moved phased arrays. The former results in a poor resolution and contrast due to a limited amount of elements. The latter has the disadvantage of low frame rates due to the sequential acquisition of the volume...... line-by-line and plane-by-plane. This paper describes an approach which combines mechanically moved phased array with synthetic transmit aperture imaging, resulting in high volume acquisition rates without a trade-off in image quality. The scan method uses a conventional fully populated 64 element...

  14. Fourier beamformation of multistatic synthetic aperture ultrasound imaging

    DEFF Research Database (Denmark)

    Moghimirad, Elahe; Villagómez Hoyos, Carlos Armando; Mahloojifar, Ali

    2015-01-01

    A new Fourier beamformation (FB) algorithm is presented for multistatic synthetic aperture ultrasound imaging. It can reduce the number of computations by a factor of 20 compared to conventional Delay-and-Sum (DAS) beamformers. The concept is based on the wavenumber algorithm from radar and sonar...

  15. Real-time elastography in autonomously functioning thyroid nodules: relationship with TSH levels, scintigraphy, and ultrasound patterns.

    Science.gov (United States)

    Trimboli, Pierpaolo; Paone, Gaetano; Zatelli, Maria Chiara; Ceriani, Luca; Giovanella, Luca

    2017-12-01

    Real-time elastography has been proposed to increase the sensitivity of ultrasound and improve the detection of thyroid nodules at risk of malignancy. To date sparse data on real-time elastography assessment of autonomously functioning thyroid nodules exist. Here, we investigated the potential role of real-time elastography in autonomously functioning thyroid nodule assessment. Specifically, the correlation between serum hormones and real-time elastography score, as well as other clinical and ultrasound features, was analyzed. Patients with autonomously functioning thyroid nodule identified by I-123 scintigraphy from September 2015 to July 2016 and undergoing ultrasound, real-time elastography, and thyroid function evaluation were selected. All autonomously functioning thyroid nodule were classified as RTE I (prevalence of red or green color with blue in up to 25% of the nodule area), RTE II (blue in 25-75%), or RTE III (blue in more than 75%). The association between suppressed thyroid stimulating hormone and patient's age, nodule's size, ultrasound presentation, and real-time elastography scoring was analyzed by Odds Ratio in univariate fashion and multivariate model. A number of 47 subjects with single autonomously functioning thyroid nodule were enrolled. Median age of 63 years, median size of 2.0 cm, and suppressed thyroid stimulating hormone levels in 32% of cases were found. Those nodules classified by ultrasound at high risk underwent fine-needle aspiration cytology and cancer was excluded. At real-time elastography evaluation, a 45% of autonomously functioning thyroid nodule had a hard appearance (RTE III) and had thyroid stimulating hormone significantly lower than the other (p < 0.0001). A model of multivariate logistic regression including nodule's size, ultrasound characteristics, and elastographic presentation showed that only RTE III was significantly associated with suppressed thyroid stimulating hormone (Odds Ratio of 50). Autonomously

  16. Real-time ultrasound-guided spinal anaesthesia: a prospective observational study of a new approach.

    LENUS (Irish Health Repository)

    Conroy, P H

    2013-01-01

    Identification of the subarachnoid space has traditionally been achieved by either a blind landmark-guided approach or using prepuncture ultrasound assistance. To assess the feasibility of performing spinal anaesthesia under real-time ultrasound guidance in routine clinical practice we conducted a single center prospective observational study among patients undergoing lower limb orthopaedic surgery. A spinal needle was inserted unassisted within the ultrasound transducer imaging plane using a paramedian approach (i.e., the operator held the transducer in one hand and the spinal needle in the other). The primary outcome measure was the success rate of CSF acquisition under real-time ultrasound guidance with CSF being located in 97 out of 100 consecutive patients within median three needle passes (IQR 1-6). CSF was not acquired in three patients. Subsequent attempts combining landmark palpation and pre-puncture ultrasound scanning resulted in successful spinal anaesthesia in two of these patients with the third patient requiring general anaesthesia. Median time from spinal needle insertion until intrathecal injection completion was 1.2 minutes (IQR 0.83-4.1) demonstrating the feasibility of this technique in routine clinical practice.

  17. Tissue Harmonic Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Rasmussen, Joachim; Jensen, Jørgen Arendt

    2014-01-01

    Synthetic aperture sequential beamforming (SASB) and tissue har- monic imaging (THI) are combined to improve the image quality of medical ultrasound imaging. The technique is evaluated in a compar- ative study against dynamic receive focusing (DRF). The objective is to investigate if SASB combined...... with THI improves the image qual- ity compared to DRF-THI. The major benet of SASB is a reduced bandwidth between the probe and processing unit. A BK Medical 2202 Ultraview ultrasound scanner was used to acquire beamformed RF data for oine evaluation. The acquisition was made interleaved between methods......, and data were recorded with and without pulse inversion for tissue harmonic imaging. Data were acquired using a Sound Technol- ogy 192 element convex array transducer from both a wire phantom and a tissue mimicking phantom to investigate spatial resolution and pen- etration. In-vivo scans were also...

  18. Ultrasound Imaging Initiative

    Science.gov (United States)

    2003-01-01

    texture mapping hardware," IEEE Tranactions on Information Technology in Biomedicine, Submitted. [14] C.R. Castro Pareja , J.M. Jagadeesh and R. Shekhar...modulation in real-time three-dimensional sparse synthetic aperture ultrasound imaging systems "* Carlos R. Castro Pareja , Masters of Science, The Ohio...C.R. Castro Pareja , "An architecture for real-time image registration," M.S. Thesis, The Ohio State University, March 2002. 14. C.R. Castro Pareja , R

  19. Spatio-temporal encoding using narrow-band linear frequency modulated signals in synthetic aperture ultrasound imaging

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jensen, Jørgen Arendt

    2005-01-01

    In this paper a method for spatio-temporal encoding is presented for synthetic transmit aperture ultrasound imaging (STA). The purpose is to excite several transmitters at the same time in order to transmit more acoustic energy in every single transmission. When increasing the transmitted acousti...

  20. A multimodal instrument for real-time in situ study of ultrasound and cavitation mediated drug delivery.

    Science.gov (United States)

    Bian, Shuning; Seth, Anjali; Daly, Dan; Carlisle, Robert; Stride, Eleanor

    2017-03-01

    The development of a multimodal instrument capable of real-time in situ measurements of cavitation activity and effect in tissue mimicking phantoms during ultrasound and cavitation mediated drug delivery experiments is described here. The instrument features an acoustic arm that can expose phantoms to high-intensity focused-ultrasound while measuring cavitation activity and an optical arm that monitors cavitation effect using confocal microscopy. This combination of modalities allows real-time in situ characterisation of drug delivery in tissue and tissue mimicking phantoms during ultrasound and cavitation mediated drug delivery experiments. A representative result, obtained with a tissue mimicking phantom and acoustically activated droplets, is presented here as a demonstration of the instrument's capabilities and potential applications.

  1. Synthetic Aperture Beamforming in Ultrasound using Moving Arrays

    DEFF Research Database (Denmark)

    Andresen, Henrik

    Medical ultrasound (US) is widely used because it allows cheap real-time imaging of soft tissue with no known side-effects or hazards to either patients or operating personnel. US has existed since the 1960s and was originally adapted from the concept of radar and sonar. The development...

  2. Real-Time MRI Navigated Ultrasound for Preoperative Tumor Evaluation in Breast Cancer Patients: Technique and Clinical Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ah Young; Seo, Bo Kyoung [Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355 (Korea, Republic of)

    2016-11-01

    Real-time magnetic resonance imaging (MRI) navigated ultrasound is an image fusion technique to display the results of both MRI and ultrasonography on the same monitor. This system is a promising technique to improve lesion detection and analysis, to maximize advantages of each imaging modality, and to compensate the disadvantages of both MRI and ultrasound. In evaluating breast cancer stage preoperatively, MRI and ultrasound are the most representative imaging modalities. However, sometimes difficulties arise in interpreting and correlating the radiological features between these two different modalities. This pictorial essay demonstrates the technical principles of the real-time MRI navigated ultrasound, and clinical implementation of the system in preoperative evaluation of tumor extent, multiplicity, and nodal status in breast cancer patients.

  3. Real-time MRI navigated ultrasound for preoperative tumor evaluation in breast cancer patients: Technique and clinical implementation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ah Young; Seo, Bo Kyoung [Dept. of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan (Korea, Republic of)

    2016-09-15

    Real-time magnetic resonance imaging (MRI) navigated ultrasound is an image fusion technique to display the results of both MRI and ultrasonography on the same monitor. This system is a promising technique to improve lesion detection and analysis, to maximize advantages of each imaging modality, and to compensate the disadvantages of both MRI and ultrasound. In evaluating breast cancer stage preoperatively, MRI and ultrasound are the most representative imaging modalities. However, sometimes difficulties arise in interpreting and correlating the radiological features between these two different modalities. This pictorial essay demonstrates the technical principles of the real-time MRI navigated ultrasound, and clinical implementation of the system in preoperative evaluation of tumor extent, multiplicity, and nodal status in breast cancer patients.

  4. A multimodal instrument for real-time in situ study of ultrasound and cavitation mediated drug delivery

    OpenAIRE

    Bian, S; Seth, A; Daly, D; Carlisle, R; Stride, E

    2017-01-01

    The development of a multimodal instrument capable of real-time in situ measurements of cavitation activity and effect in tissue mimicking phantoms during ultrasound and cavitation mediated drug delivery experiments is described here. The instrument features an acoustic arm that can expose phantoms to high-intensity focused-ultrasound while measuring cavitation activity and an optical arm that monitors cavitation effect using confocal microscopy. This combination of modalities allows real-tim...

  5. MO-FG-CAMPUS-JeP3-04: Feasibility Study of Real-Time Ultrasound Monitoring for Abdominal Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Su, Lin; Kien Ng, Sook; Zhang, Ying; Herman, Joseph; Wong, John; Ding, Kai [Department of Radiation Oncology, John Hopkins University, Baltimore, MD (United States); Ji, Tianlong [Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, Liaoning (China); Iordachita, Iulian [Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD (United States); Tutkun Sen, H.; Kazanzides, Peter; Lediju Bell, Muyinatu A. [Department of Computer Science, Johns Hopkins University, Baltimore, MD (United States)

    2016-06-15

    Purpose: Ultrasound is ideal for real-time monitoring in radiotherapy with high soft tissue contrast, non-ionization, portability, and cost effectiveness. Few studies investigated clinical application of real-time ultrasound monitoring for abdominal stereotactic body radiation therapy (SBRT). This study aims to demonstrate the feasibility of real-time monitoring of 3D target motion using 4D ultrasound. Methods: An ultrasound probe holding system was designed to allow clinician to freely move and lock ultrasound probe. For phantom study, an abdominal ultrasound phantom was secured on a 2D programmable respiratory motion stage. One side of the stage was elevated than another side to generate 3D motion. The motion stage made periodic breath-hold movement. Phantom movement tracked by infrared camera was considered as ground truth. For volunteer study three healthy subjects underwent the same setup for abdominal SBRT with active breath control (ABC). 4D ultrasound B-mode images were acquired for both phantom and volunteers for real-time monitoring. 10 breath-hold cycles were monitored for each experiment. For phantom, the target motion tracked by ultrasound was compared with motion tracked by infrared camera. For healthy volunteers, the reproducibility of ABC breath-hold was evaluated. Results: Volunteer study showed the ultrasound system fitted well to the clinical SBRT setup. The reproducibility for 10 breath-holds is less than 2 mm in three directions for all three volunteers. For phantom study the motion between inspiration and expiration captured by camera (ground truth) is 2.35±0.02 mm, 1.28±0.04 mm, 8.85±0.03 mm in LR, AP, SI directly, respectively. The motion monitored by ultrasound is 2.21±0.07 mm, 1.32±0.12mm, 9.10±0.08mm, respectively. The motion monitoring error in any direction is less than 0.5 mm. Conclusion: The volunteer study proved the clinical feasibility of real-time ultrasound monitoring for abdominal SBRT. The phantom and volunteer ABC

  6. MO-FG-CAMPUS-JeP3-04: Feasibility Study of Real-Time Ultrasound Monitoring for Abdominal Stereotactic Body Radiation Therapy

    International Nuclear Information System (INIS)

    Su, Lin; Kien Ng, Sook; Zhang, Ying; Herman, Joseph; Wong, John; Ding, Kai; Ji, Tianlong; Iordachita, Iulian; Tutkun Sen, H.; Kazanzides, Peter; Lediju Bell, Muyinatu A.

    2016-01-01

    Purpose: Ultrasound is ideal for real-time monitoring in radiotherapy with high soft tissue contrast, non-ionization, portability, and cost effectiveness. Few studies investigated clinical application of real-time ultrasound monitoring for abdominal stereotactic body radiation therapy (SBRT). This study aims to demonstrate the feasibility of real-time monitoring of 3D target motion using 4D ultrasound. Methods: An ultrasound probe holding system was designed to allow clinician to freely move and lock ultrasound probe. For phantom study, an abdominal ultrasound phantom was secured on a 2D programmable respiratory motion stage. One side of the stage was elevated than another side to generate 3D motion. The motion stage made periodic breath-hold movement. Phantom movement tracked by infrared camera was considered as ground truth. For volunteer study three healthy subjects underwent the same setup for abdominal SBRT with active breath control (ABC). 4D ultrasound B-mode images were acquired for both phantom and volunteers for real-time monitoring. 10 breath-hold cycles were monitored for each experiment. For phantom, the target motion tracked by ultrasound was compared with motion tracked by infrared camera. For healthy volunteers, the reproducibility of ABC breath-hold was evaluated. Results: Volunteer study showed the ultrasound system fitted well to the clinical SBRT setup. The reproducibility for 10 breath-holds is less than 2 mm in three directions for all three volunteers. For phantom study the motion between inspiration and expiration captured by camera (ground truth) is 2.35±0.02 mm, 1.28±0.04 mm, 8.85±0.03 mm in LR, AP, SI directly, respectively. The motion monitored by ultrasound is 2.21±0.07 mm, 1.32±0.12mm, 9.10±0.08mm, respectively. The motion monitoring error in any direction is less than 0.5 mm. Conclusion: The volunteer study proved the clinical feasibility of real-time ultrasound monitoring for abdominal SBRT. The phantom and volunteer ABC

  7. Real-time Implementation of Synthetic Aperture Vector Flow Imaging on a Consumer-level Tablet

    DEFF Research Database (Denmark)

    di Ianni, Tommaso; Kjeldsen, Thomas Kim; Villagómez Hoyos, Carlos Armando

    2017-01-01

    In this work, a 2-D vector flow imaging (VFI) method based on synthetic aperture sequential beamforming (SASB) and directional transverse oscillation is implemented on a commercially available tablet. The SASB technique divides the beamforming process in two parts, whereby the required data rate ......’s built-in GPU (Nvidia Tegra K1) through the OpenGL ES 3.1 API. Real-time performance was achieved with rates up to 26 VFI frames per second (38 ms/frame) for concurrent processing and Wi-Fi transmission....

  8. Real-time three-dimensional ultrasound-assisted axillary plexus block defines soft tissue planes.

    Science.gov (United States)

    Clendenen, Steven R; Riutort, Kevin; Ladlie, Beth L; Robards, Christopher; Franco, Carlo D; Greengrass, Roy A

    2009-04-01

    Two-dimensional (2D) ultrasound is commonly used for regional block of the axillary brachial plexus. In this technical case report, we described a real-time three-dimensional (3D) ultrasound-guided axillary block. The difference between 2D and 3D ultrasound is similar to the difference between plain radiograph and computer tomography. Unlike 2D ultrasound that captures a planar image, 3D ultrasound technology acquires a 3D volume of information that enables multiple planes of view by manipulating the image without movement of the ultrasound probe. Observation of the brachial plexus in cross-section demonstrated distinct linear hyperechoic tissue structures (loose connective tissue) that initially inhibited the flow of the local anesthesia. After completion of the injection, we were able to visualize the influence of arterial pulsation on the spread of the local anesthesia. Possible advantages of this novel technology over current 2D methods are wider image volume and the capability to manipulate the planes of the image without moving the probe.

  9. Synthetic Aperture Sequential Beamforming implemented on multi-core platforms

    DEFF Research Database (Denmark)

    Kjeldsen, Thomas; Lassen, Lee; Hemmsen, Martin Christian

    2014-01-01

    This paper compares several computational ap- proaches to Synthetic Aperture Sequential Beamforming (SASB) targeting consumer level parallel processors such as multi-core CPUs and GPUs. The proposed implementations demonstrate that ultrasound imaging using SASB can be executed in real- time with ...... per second) on an Intel Core i7 2600 CPU with an AMD HD7850 and a NVIDIA GTX680 GPU. The fastest CPU and GPU implementations use 14% and 1.3% of the real-time budget of 62 ms/frame, respectively. The maximum achieved processing rate is 1265 frames/s....

  10. Multi-processor system for real-time deconvolution and flow estimation in medical ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jesper Lomborg; Jensen, Jørgen Arendt; Stetson, Paul F.

    1996-01-01

    of the algorithms. Many of the algorithms can only be properly evaluated in a clinical setting with real-time processing, which generally cannot be done with conventional equipment. This paper therefore presents a multi-processor system capable of performing 1.2 billion floating point operations per second on RF...... filter is used with a second time-reversed recursive estimation step. Here it is necessary to perform about 70 arithmetic operations per RF sample or about 1 billion operations per second for real-time deconvolution. Furthermore, these have to be floating point operations due to the adaptive nature...... interfaced to our previously-developed real-time sampling system that can acquire RF data at a rate of 20 MHz and simultaneously transmit the data at 20 MHz to the processing system via several parallel channels. These two systems can, thus, perform real-time processing of ultrasound data. The advantage...

  11. Preoperative magnetic resonance and intraoperative ultrasound fusion imaging for real-time neuronavigation in brain tumor surgery.

    Science.gov (United States)

    Prada, F; Del Bene, M; Mattei, L; Lodigiani, L; DeBeni, S; Kolev, V; Vetrano, I; Solbiati, L; Sakas, G; DiMeco, F

    2015-04-01

    Brain shift and tissue deformation during surgery for intracranial lesions are the main actual limitations of neuro-navigation (NN), which currently relies mainly on preoperative imaging. Ultrasound (US), being a real-time imaging modality, is becoming progressively more widespread during neurosurgical procedures, but most neurosurgeons, trained on axial computed tomography (CT) and magnetic resonance imaging (MRI) slices, lack specific US training and have difficulties recognizing anatomic structures with the same confidence as in preoperative imaging. Therefore real-time intraoperative fusion imaging (FI) between preoperative imaging and intraoperative ultrasound (ioUS) for virtual navigation (VN) is highly desirable. We describe our procedure for real-time navigation during surgery for different cerebral lesions. We performed fusion imaging with virtual navigation for patients undergoing surgery for brain lesion removal using an ultrasound-based real-time neuro-navigation system that fuses intraoperative cerebral ultrasound with preoperative MRI and simultaneously displays an MRI slice coplanar to an ioUS image. 58 patients underwent surgery at our institution for intracranial lesion removal with image guidance using a US system equipped with fusion imaging for neuro-navigation. In all cases the initial (external) registration error obtained by the corresponding anatomical landmark procedure was below 2 mm and the craniotomy was correctly placed. The transdural window gave satisfactory US image quality and the lesion was always detectable and measurable on both axes. Brain shift/deformation correction has been successfully employed in 42 cases to restore the co-registration during surgery. The accuracy of ioUS/MRI fusion/overlapping was confirmed intraoperatively under direct visualization of anatomic landmarks and the error was surgery and is less expensive and time-consuming than other intraoperative imaging techniques, offering high precision and

  12. ULA-OP 256: A 256-Channel Open Scanner for Development and Real-Time Implementation of New Ultrasound Methods.

    Science.gov (United States)

    Boni, Enrico; Bassi, Luca; Dallai, Alessandro; Guidi, Francesco; Meacci, Valentino; Ramalli, Alessandro; Ricci, Stefano; Tortoli, Piero

    2016-10-01

    Open scanners offer an increasing support to the ultrasound researchers who are involved in the experimental test of novel methods. Each system presents specific performance in terms of number of channels, flexibility, processing power, data storage capability, and overall dimensions. This paper reports the design criteria and hardware/software implementation details of a new 256-channel ultrasound advanced open platform. This system is organized in a modular architecture, including multiple front-end boards, interconnected by a high-speed (80 Gb/s) ring, capable of finely controlling all transmit (TX) and receive (RX) signals. High flexibility and processing power (equivalent to 2500 GFLOP) are guaranteed by the possibility of individually programming multiple digital signal processors and field programmable gate arrays. Eighty GB of on-board memory are available for the storage of prebeamforming, postbeamforming, and baseband data. The use of latest generation devices allowed to integrate all needed electronics in a small size ( 34 cm ×30 cm ×26 cm). The system implements a multiline beamformer that allows obtaining images of 96 lines by 2048 depths at a frame rate of 720 Hz (expandable to 3000 Hz). The multiline beamforming capability is also exploited to implement a real-time vector Doppler scheme in which a single TX and two independent RX apertures are simultaneously used to maintain the analysis over a full pulse repetition frequency range.

  13. Complex blood flow quantification using real-time in vivo vector flow ultrasound

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Per, Haugaard

    A new method to define and quantify complex blood flow is presented. The standard deviations of real-time in vivo vector flow angle estimates are used. Using vector flow ultrasound imaging both carotid bifurcations of two healthy volunteers were scanned. Scanning was performed with a 7.6 MHz linear...... transducer (8670, B-K Medical, Denmark) and a commercial vector flow ultrasound scanner (ProFocus 2202, B-K Medical). Eight video sequences of one cardiac cycle were obtained. In every frame boxes were placed to define the common carotid artery(box1) and the carotid bulb(box2). The standard deviation...... for the vector angle estimates was calculated for each box in every frame. For comparison three ultrasound experts evaluated the presence of complex flow in every box. The trial was blinded. For every sequence the mean standard deviation of the vector angle estimates were calculated for box1 {39...

  14. Quantification of complex blood flow using real-time in vivo vector flow ultrasound

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Haugaard, Per

    2010-01-01

    A quantitative method for distinguishing complex from non-complex flow patterns in ultrasound is presented. A new commercial BK Medical ultrasound scanner uses the Transverse Oscillation vector flow technique for visualising flow patterns in real-time. In vivo vector flow data of the blood flow...... patterns of the common carotid artery and the carotid bulb were obtained simultaneously as the basis for quantifying complex flow. The carotid bifurcation of two healthy volunteers were scanned. The presence of complex flow patterns from eight cardiac cycles were evaluated by three experts in medical...... for automatic detection of complex flow patterns....

  15. The use of real time ultrasound scanning as a teaching method of anatomy in an undergraduate sonography and medical imaging degree in an Australian university

    International Nuclear Information System (INIS)

    Bowman, A.; Lawson, C.; McKillup, S.

    2016-01-01

    Background: Real-time ultrasound scanning is increasing in popularity as a teaching tool for human anatomy because it is non-invasive, offers real-time 3-D anatomy and is cheaper than dissections. Aim: To assess real-time ultrasound scanning as a teaching method of human anatomy, and to determine what teaching methods medical imaging and sonography students consider effective for understanding human anatomy. Method: Surveys were distributed to two consecutive cohorts of first year medical imaging and medical sonography students at CQUniversity. Participation was voluntary. Comparisons among teaching methods were made using repeated measures ANOVA. Results: Real-time ultrasound scanning was the most preferred method of delivery for anatomy classes overall especially compared to computer programs, videos, 3-D radiological images and dissection. Specifically, students indicated that ultrasound scanning was the preferred method to encourage learning from experience (F 7,231  = 2.942, p = 0.006), to develop team skills (F 7,231  = 4.550, p < 0.006), to follow complex instructions (F 7,231  = 4.656 p < 0.001) and to appreciate anatomical variation (F 7,231  = 2.067, p = 0.048). Dissection was the least favoured teaching method. Conclusion: Real-time ultrasound scanning is a useful tool for teaching anatomy, and animal dissections are a poor substitute for the use of human cadavers. - Highlights: • Real-time ultrasound scanning is a valid teaching tool for human anatomy. • Real-time ultrasound is preferred by students compared to other teaching methods. • Dissection is the least favoured method to learn anatomy. • Ultrasound encourages learning from experience and develops team skills.

  16. Towards real-time 3D ultrasound planning and personalized 3D printing for breast HDR brachytherapy treatment

    International Nuclear Information System (INIS)

    Poulin, Eric; Gardi, Lori; Fenster, Aaron; Pouliot, Jean; Beaulieu, Luc

    2015-01-01

    Two different end-to-end procedures were tested for real-time planning in breast HDR brachytherapy treatment. Both methods are using a 3D ultrasound (3DUS) system and a freehand catheter optimization algorithm. They were found fast and efficient. We demonstrated a proof-of-concept approach for personalized real-time guidance and planning to breast HDR brachytherapy treatments

  17. SU-G-JeP4-12: Real-Time Organ Motion Monitoring Using Ultrasound and KV Fluoroscopy During Lung SBRT Delivery

    International Nuclear Information System (INIS)

    Omari, E; Tai, A; Li, X; Cooper, D; Lachaine, M

    2016-01-01

    Purpose: Real-time ultrasound monitoring during SBRT is advantageous in understanding and identifying motion irregularities which may cause geometric misses. In this work, we propose to utilize real-time ultrasound to track the diaphragm in conjunction with periodical kV fluoroscopy to monitor motion of tumor or landmarks during SBRT delivery. Methods: Transabdominal Ultrasound (TAUS) b-mode images were collected from 10 healthy volunteers using the Clarity Autoscan System (Elekta). The autoscan transducer, which has a center frequency of 5 MHz, was utilized for the scans. The acquired images were contoured using the Clarity Automatic Fusion and Contouring workstation software. Monitoring sessions of 5 minute length were observed and recorded. The position correlation between tumor and diaphragm could be established with periodic kV fluoroscopy periodically acquired during treatment with Elekta XVI. We acquired data using a tissue mimicking ultrasound phantom with embedded spheres placed on a motion stand using ultrasound and kV Fluoroscopy. MIM software was utilized for image fusion. Correlation of diaphragm and target motion was also validated using 4D-MRI and 4D-CBCT. Results: The diaphragm was visualized as a hyperechoic region on the TAUS b-mode images. Volunteer set-up can be adjusted such that TAUS probe will not interfere with treatment beams. A segment of the diaphragm was contoured and selected as our tracking structure. Successful monitoring sessions of the diaphragm were recorded. For some volunteers, diaphragm motion over 2 times larger than the initial motion has been observed during tracking. For the phantom study, we were able to register the 2D kV Fluoroscopy with the US images for position comparison. Conclusion: We demonstrated the feasibility of tracking the diaphragm using real-time ultrasound. Real-time tracking can help in identifying such irregularities in the respiratory motion which is correlated to tumor motion. We also showed the

  18. The feasibility of an infrared system for real-time visualization and mapping of ultrasound fields

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Adam; Nunn, John, E-mail: adam.shaw@npl.co.u [National Physical Laboratory, Teddington, Middlesex, TW11 0LW (United Kingdom)

    2010-06-07

    In treatment planning for ultrasound therapy, it is desirable to know the 3D structure of the ultrasound field. However, mapping an ultrasound field in 3D is very slow, with even a single planar raster scan taking typically several hours. Additionally, hydrophones that are used for field mapping are expensive and can be damaged in some therapy fields. So there is value in rapid methods which enable visualization and mapping of the ultrasound field in about 1 min. In this note we explore the feasibility of mapping the intensity distribution by measuring the temperature distribution produced in a thin sheet of absorbing material. A 0.2 mm thick acetate sheet forms a window in the wall of a water tank containing the transducer. The window is oriented at 45{sup 0} to the beam axis, and the distance from the transducer to the window can be varied. The temperature distribution is measured with an infrared camera; thermal images of the inclined plane could be viewed in real time or images could be captured for later analysis and 3D field reconstruction. We conclude that infrared thermography can be used to gain qualitative information about ultrasound fields. Thermal images are easily visualized with good spatial and thermal resolutions (0.044 mm and 0.05 {sup 0}C in our system). The focus and field structure such as side lobes can be identified in real time from the direct video output. 3D maps and image planes at arbitrary orientations to the beam axis can be obtained and reconstructed within a few minutes. In this note we are primarily interested in the technique for characterization of high intensity focused ultrasound (HIFU) fields, but other applications such as physiotherapy fields are also possible. (note)

  19. The feasibility of an infrared system for real-time visualization and mapping of ultrasound fields

    International Nuclear Information System (INIS)

    Shaw, Adam; Nunn, John

    2010-01-01

    In treatment planning for ultrasound therapy, it is desirable to know the 3D structure of the ultrasound field. However, mapping an ultrasound field in 3D is very slow, with even a single planar raster scan taking typically several hours. Additionally, hydrophones that are used for field mapping are expensive and can be damaged in some therapy fields. So there is value in rapid methods which enable visualization and mapping of the ultrasound field in about 1 min. In this note we explore the feasibility of mapping the intensity distribution by measuring the temperature distribution produced in a thin sheet of absorbing material. A 0.2 mm thick acetate sheet forms a window in the wall of a water tank containing the transducer. The window is oriented at 45 0 to the beam axis, and the distance from the transducer to the window can be varied. The temperature distribution is measured with an infrared camera; thermal images of the inclined plane could be viewed in real time or images could be captured for later analysis and 3D field reconstruction. We conclude that infrared thermography can be used to gain qualitative information about ultrasound fields. Thermal images are easily visualized with good spatial and thermal resolutions (0.044 mm and 0.05 0 C in our system). The focus and field structure such as side lobes can be identified in real time from the direct video output. 3D maps and image planes at arbitrary orientations to the beam axis can be obtained and reconstructed within a few minutes. In this note we are primarily interested in the technique for characterization of high intensity focused ultrasound (HIFU) fields, but other applications such as physiotherapy fields are also possible. (note)

  20. Does the real-time ultrasound guidance provide safer venipuncture in implantable venous port implantation?

    Science.gov (United States)

    Yıldırım, İlknur; Tütüncü, Ayşe Çiğdem; Bademler, Süleyman; Özgür, İlker; Demiray, Mukaddes; Karanlık, Hasan

    2018-03-01

    To examine whether the real-time ultrasound-guided venipuncture for implantable venous port placement is safer than the traditional venipuncture. The study analyzed the results of 2153 venous ports placed consecutively from January 2009 to January 2016. A total of 922 patients in group 1 and 1231 patients in group 2 were admitted with venous port placed using the traditional landmark subclavian approach and real-time ultrasound-guided axillary approach, respectively. Sociodemographic characteristics of patients, early (pneumothorax, pinch-off syndrome, arterial puncture, hematoma, and malposition arrhythmia) and late (deep vein thrombosis, obstruction, infection, erosion-dehiscence, and rotation of the port chamber) complications and the association of these complications with the implantation method were evaluated. There were no significant differences in the sociodemographic characteristics of the patients between the two groups. The overall and early complications in group 2 were significantly lower than those in group 1. Pinch-off syndrome only developed in group 1. Seven patients and two patients had pneumothorax in groups 1 and 2, respectively. Puncture number was significantly associated with the development of the overall complications. The ultrasound-guided axillary approach may be preferred as a method to reduce the risk of both early and late complications. Large, randomized, controlled prospective trials will be helpful in determining a safer implantable venous port implantation technique.

  1. Real Time Deconvolution of In-Vivo Ultrasound Images

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2013-01-01

    and two wavelengths. This can be improved by deconvolution, which increase the bandwidth and equalizes the phase to increase resolution under the constraint of the electronic noise in the received signal. A fixed interval Kalman filter based deconvolution routine written in C is employed. It uses a state...... resolution has been determined from the in-vivo liver image using the auto-covariance function. From the envelope of the estimated pulse the axial resolution at Full-Width-Half-Max is 0.581 mm corresponding to 1.13 l at 3 MHz. The algorithm increases the resolution to 0.116 mm or 0.227 l corresponding...... to a factor of 5.1. The basic pulse can be estimated in roughly 0.176 seconds on a single CPU core on an Intel i5 CPU running at 1.8 GHz. An in-vivo image consisting of 100 lines of 1600 samples can be processed in roughly 0.1 seconds making it possible to perform real-time deconvolution on ultrasound data...

  2. [Mobile hospital -real time mobile telehealthcare system with ultrasound and CT van using high-speed satellite communication-].

    Science.gov (United States)

    Takizawa, Masaomi; Miyashita, Toyohisa; Murase, Sumio; Kanda, Hirohito; Karaki, Yoshiaki; Yagi, Kazuo; Ohue, Toru

    2003-01-01

    A real-time telescreening system is developed to detect early diseases for rural area residents using two types of mobile vans with a portable satellite station. The system consists of a satellite communication system with 1.5Mbps of the JCSAT-1B satellite, a spiral CT van, an ultrasound imaging van with two video conference system, a DICOM server and a multicast communication unit. The video image and examination image data are transmitted from the van to hospitals and the university simultaneously. Physician in the hospital observes and interprets exam images from the van and watches the video images of the position of ultrasound transducer on screenee in the van. After the observation images, physician explains a results of the examination by the video conference system. Seventy lung CT screening and 203 ultrasound screening were done from March to June 2002. The trial of this real time screening suggested that rural residents are given better healthcare without visit to the hospital. And it will open the gateway to reduce the medical cost and medical divide between city area and rural area.

  3. Imaging of implant needles for real-time HDR-brachytherapy prostate treatment using biplane ultrasound transducers.

    Science.gov (United States)

    Siebert, Frank-André; Hirt, Markus; Niehoff, Peter; Kovács, György

    2009-08-01

    Ultrasound imaging is becoming increasingly important in prostate brachytherapy. In high-dose-rate (HDR) real-time planning procedures the definition of the implant needles is often performed by transrectal ultrasound. This article describes absolute measurements of the visibility and accuracy of manual detection of implant needle tips and compares measurement results of different biplane ultrasound systems in transversal and longitudinal (i.e., sagittal) ultrasound modes. To obtain a fixed coordinate system and stable conditions the measurements were carried out in a water tank using a dedicated marker system. Needles were manually placed in the phantom until the observer decided by the real-time ultrasound image that the zero position was reached. A comparison of three different ultrasound systems yielded an offset between 0.8 and 3.1 mm for manual detection of the needle tip in ultrasound images by one observer. The direction of the offset was discovered to be in the proximal direction, i.e., the actual needle position was located more distally compared to the ultrasound-based definition. In the second part of the study, the ultrasound anisotropy of trocar implant needles is reported. It was shown that the integrated optical density in a region of interest around the needle tip changes with needle rotation. Three peaks were observed with a phase angle of 120 degrees. Peaks appear not only in transversal but also in longitudinal ultrasound images, with a phase shift of 60 degrees. The third section of this study shows results of observer dependent influences on needle tip detection in sagittal ultrasound images considering needle rotation. These experiments were carried out using the marker system in a water tank. The needle tip was placed exactly at the position z=0 mm. It was found that different users tend to differently interpret the same ultrasound images. The needle tip was manually detected five times in the ultrasound images by three experienced observers

  4. SonoNet: Real-Time Detection and Localisation of Fetal Standard Scan Planes in Freehand Ultrasound.

    Science.gov (United States)

    Baumgartner, Christian F; Kamnitsas, Konstantinos; Matthew, Jacqueline; Fletcher, Tara P; Smith, Sandra; Koch, Lisa M; Kainz, Bernhard; Rueckert, Daniel

    2017-11-01

    Identifying and interpreting fetal standard scan planes during 2-D ultrasound mid-pregnancy examinations are highly complex tasks, which require years of training. Apart from guiding the probe to the correct location, it can be equally difficult for a non-expert to identify relevant structures within the image. Automatic image processing can provide tools to help experienced as well as inexperienced operators with these tasks. In this paper, we propose a novel method based on convolutional neural networks, which can automatically detect 13 fetal standard views in freehand 2-D ultrasound data as well as provide a localization of the fetal structures via a bounding box. An important contribution is that the network learns to localize the target anatomy using weak supervision based on image-level labels only. The network architecture is designed to operate in real-time while providing optimal output for the localization task. We present results for real-time annotation, retrospective frame retrieval from saved videos, and localization on a very large and challenging dataset consisting of images and video recordings of full clinical anomaly screenings. We found that the proposed method achieved an average F1-score of 0.798 in a realistic classification experiment modeling real-time detection, and obtained a 90.09% accuracy for retrospective frame retrieval. Moreover, an accuracy of 77.8% was achieved on the localization task.

  5. Cystic change in thyroid nodules: A confounding factor for real-time qualitative thyroid ultrasound elastography

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, K.S.S.; Rasalkar, D.P.; Lee, Y.P.; Wong, K.T.; King, A.D.; Yuen, H.Y. [Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin N.T, Hong Kong (Hong Kong); Ahuja, A.T., E-mail: aniltahuja@cuhk.edu.hk [Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin N.T, Hong Kong (Hong Kong)

    2011-09-15

    Objective: To evaluate real-time qualitative ultrasound elastography for focal thyroid masses undergoing fine-needle aspiration in a routine thyroid ultrasound clinic. Materials and methods: Ninety-four thyroid nodules scheduled for fine-needle aspiration cytology in a thyroid ultrasound clinic also underwent real-time freehand elastography. Colour-scaled elastograms were graded visually on the stiffness of the solid component of nodules relative to thyroid parenchyma using an elastography score (ES) scale from 1 (soft) to 4 (stiff). The ES for benign and malignant nodules and the influence of cystic change on ES were analysed using Chi-square with trend and Fishers exact tests, with a p < 0.05 used to indicate statistical significance. Results: There were 19 papillary carcinomas, five metastases, 57 hyperplastic nodules, and four follicular adenomas based on definitive cytology (n = 54) or histology (n = 31). Nine nodules were excluded due to indeterminate cytology and no histology. Of malignancies (all solid), two were ES = 1, four were ES = 2, eight were ES = 3, and 10 were ES = 4. Of benign nodules, 17 were ES = 1, 17 were ES = 2, 16 were ES = 3, and 11 were ES = 4. An ES > 2 was more common in benign nodules with predominant cystic components (17/18) than mildly cystic (3/12) or completely solid (7/31) benign nodules (p = 0.0004, p < 0.0001). The ES was not significantly different between benign and malignant nodules (p = 0.09) unless partially cystic nodules were excluded (p = 0.005). For solid nodules, an ES > 2 optimally predicted malignancy, achieving 74% sensitivity, 77% specificity, and 76% accuracy. Conclusion: Qualitative real-time thyroid elastography predicts malignancy only if predominantly cystic nodules are excluded, which may limit its utility in routine clinical practice.

  6. Real-time interpolation for true 3-dimensional ultrasound image volumes.

    Science.gov (United States)

    Ji, Songbai; Roberts, David W; Hartov, Alex; Paulsen, Keith D

    2011-02-01

    We compared trilinear interpolation to voxel nearest neighbor and distance-weighted algorithms for fast and accurate processing of true 3-dimensional ultrasound (3DUS) image volumes. In this study, the computational efficiency and interpolation accuracy of the 3 methods were compared on the basis of a simulated 3DUS image volume, 34 clinical 3DUS image volumes from 5 patients, and 2 experimental phantom image volumes. We show that trilinear interpolation improves interpolation accuracy over both the voxel nearest neighbor and distance-weighted algorithms yet achieves real-time computational performance that is comparable to the voxel nearest neighbor algrorithm (1-2 orders of magnitude faster than the distance-weighted algorithm) as well as the fastest pixel-based algorithms for processing tracked 2-dimensional ultrasound images (0.035 seconds per 2-dimesional cross-sectional image [76,800 pixels interpolated, or 0.46 ms/1000 pixels] and 1.05 seconds per full volume with a 1-mm(3) voxel size [4.6 million voxels interpolated, or 0.23 ms/1000 voxels]). On the basis of these results, trilinear interpolation is recommended as a fast and accurate interpolation method for rectilinear sampling of 3DUS image acquisitions, which is required to facilitate subsequent processing and display during operating room procedures such as image-guided neurosurgery.

  7. SUPRA: open-source software-defined ultrasound processing for real-time applications : A 2D and 3D pipeline from beamforming to B-mode.

    Science.gov (United States)

    Göbl, Rüdiger; Navab, Nassir; Hennersperger, Christoph

    2018-06-01

    Research in ultrasound imaging is limited in reproducibility by two factors: First, many existing ultrasound pipelines are protected by intellectual property, rendering exchange of code difficult. Second, most pipelines are implemented in special hardware, resulting in limited flexibility of implemented processing steps on such platforms. With SUPRA, we propose an open-source pipeline for fully software-defined ultrasound processing for real-time applications to alleviate these problems. Covering all steps from beamforming to output of B-mode images, SUPRA can help improve the reproducibility of results and make modifications to the image acquisition mode accessible to the research community. We evaluate the pipeline qualitatively, quantitatively, and regarding its run time. The pipeline shows image quality comparable to a clinical system and backed by point spread function measurements a comparable resolution. Including all processing stages of a usual ultrasound pipeline, the run-time analysis shows that it can be executed in 2D and 3D on consumer GPUs in real time. Our software ultrasound pipeline opens up the research in image acquisition. Given access to ultrasound data from early stages (raw channel data, radiofrequency data), it simplifies the development in imaging. Furthermore, it tackles the reproducibility of research results, as code can be shared easily and even be executed without dedicated ultrasound hardware.

  8. In-vivo synthetic aperture flow imaging in medical ultrasound

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2003-01-01

    A new method for acquiring flow images using synthetic aperture techniques in medical ultrasound is presented. The new approach makes it possible to have a continuous acquisition of flow data throughout the whole image simultaneously, and this can significantly improve blood velocity estimation.......2% and a mean relative bias of 3.4% using 24 pulse emissions at a flow angle of 45 degrees. The 24 emissions can be used for making a full-color flow map image. An in-vivo image of How in the carotid artery for a 29-year-old male also is presented. The full image is acquired using 24 emissions....

  9. Non-linear Ultrasound Imaging

    DEFF Research Database (Denmark)

    Du, Yigang

    .3% relative to the measurement from a 1 inch diameter transducer. A preliminary study for harmonic imaging using synthetic aperture sequential beamforming (SASB) has been demonstrated. A wire phantom underwater measurement is made by an experimental synthetic aperture real-time ultrasound scanner (SARUS......) with a linear array transducer. The second harmonic imaging is obtained by a pulse inversion technique. The received data is beamformed by the SASB using a Beamformation Toolbox. In the measurements the lateral resolution at -6 dB is improved by 66% compared to the conventional imaging algorithm. There is also...... a 35% improvement for the lateral resolution at -6 dB compared with the sole harmonic imaging and a 46% improvement compared with merely using the SASB....

  10. Real-time target tracking of soft tissues in 3D ultrasound images based on robust visual information and mechanical simulation.

    Science.gov (United States)

    Royer, Lucas; Krupa, Alexandre; Dardenne, Guillaume; Le Bras, Anthony; Marchand, Eric; Marchal, Maud

    2017-01-01

    In this paper, we present a real-time approach that allows tracking deformable structures in 3D ultrasound sequences. Our method consists in obtaining the target displacements by combining robust dense motion estimation and mechanical model simulation. We perform evaluation of our method through simulated data, phantom data, and real-data. Results demonstrate that this novel approach has the advantage of providing correct motion estimation regarding different ultrasound shortcomings including speckle noise, large shadows and ultrasound gain variation. Furthermore, we show the good performance of our method with respect to state-of-the-art techniques by testing on the 3D databases provided by MICCAI CLUST'14 and CLUST'15 challenges. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. 2D array transducers for real-time 3D ultrasound guidance of interventional devices

    Science.gov (United States)

    Light, Edward D.; Smith, Stephen W.

    2009-02-01

    We describe catheter ring arrays for real-time 3D ultrasound guidance of devices such as vascular grafts, heart valves and vena cava filters. We have constructed several prototypes operating at 5 MHz and consisting of 54 elements using the W.L. Gore & Associates, Inc. micro-miniature ribbon cables. We have recently constructed a new transducer using a braided wiring technology from Precision Interconnect. This transducer consists of 54 elements at 4.8 MHz with pitch of 0.20 mm and typical -6 dB bandwidth of 22%. In all cases, the transducer and wiring assembly were integrated with an 11 French catheter of a Cook Medical deployment device for vena cava filters. Preliminary in vivo and in vitro testing is ongoing including simultaneous 3D ultrasound and x-ray fluoroscopy.

  12. Visual detectability of elastic contrast in real-time ultrasound images

    Science.gov (United States)

    Miller, Naomi R.; Bamber, Jeffery C.; Doyley, Marvin M.; Leach, Martin O.

    1997-04-01

    Elasticity imaging (EI) has recently been proposed as a technique for imaging the mechanical properties of soft tissue. However, dynamic features, known as compressibility and mobility, are already employed to distinguish between different tissue types in ultrasound breast examination. This method, which involves the subjective interpretation of tissue motion seen in real-time B-mode images during palpation, is hereafter referred to as differential motion imaging (DMI). The purpose of this study was to develop the methodology required to perform a series of perception experiments to measure elastic lesion detectability by means of DMI and to obtain preliminary results for elastic contrast thresholds for different lesion sizes. Simulated sequences of real-time B-scans of tissue moving in response to an applied force were generated. A two-alternative forced choice (2-AFC) experiment was conducted and the measured contrast thresholds were compared with published results for lesions detected by EI. Although the trained observer was found to be quite skilled at the task of differential motion perception, it would appear that lesion detectability is improved when motion information is detected by computer processing and converted to gray scale before presentation to the observer. In particular, for lesions containing fewer than eight speckle cells, a signal detection rate of 100% could not be achieved even when the elastic contrast was very high.

  13. A deep learning approach for real time prostate segmentation in freehand ultrasound guided biopsy.

    Science.gov (United States)

    Anas, Emran Mohammad Abu; Mousavi, Parvin; Abolmaesumi, Purang

    2018-06-01

    Targeted prostate biopsy, incorporating multi-parametric magnetic resonance imaging (mp-MRI) and its registration with ultrasound, is currently the state-of-the-art in prostate cancer diagnosis. The registration process in most targeted biopsy systems today relies heavily on accurate segmentation of ultrasound images. Automatic or semi-automatic segmentation is typically performed offline prior to the start of the biopsy procedure. In this paper, we present a deep neural network based real-time prostate segmentation technique during the biopsy procedure, hence paving the way for dynamic registration of mp-MRI and ultrasound data. In addition to using convolutional networks for extracting spatial features, the proposed approach employs recurrent networks to exploit the temporal information among a series of ultrasound images. One of the key contributions in the architecture is to use residual convolution in the recurrent networks to improve optimization. We also exploit recurrent connections within and across different layers of the deep networks to maximize the utilization of the temporal information. Furthermore, we perform dense and sparse sampling of the input ultrasound sequence to make the network robust to ultrasound artifacts. Our architecture is trained on 2,238 labeled transrectal ultrasound images, with an additional 637 and 1,017 unseen images used for validation and testing, respectively. We obtain a mean Dice similarity coefficient of 93%, a mean surface distance error of 1.10 mm and a mean Hausdorff distance error of 3.0 mm. A comparison of the reported results with those of a state-of-the-art technique indicates statistically significant improvement achieved by the proposed approach. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Diaphragmatic paralysis evaluated by phrenic nerve stimulation during fluoroscopy or real-time ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    McCauley, R.G.K.; Labib, K.B.

    1984-10-01

    Stimulation of the phrenic nerve by supplying an electrical impulse to the neck during fluoroscopy or real-time ultrasound (sonoscopy) of the diaphragm allows more precise functional evaluation than fluoroscopy and/or sonoscopy alone. This is especially true of patients who are unable to cooperate because the are on a ventilator, unconscious, or very young. The authors cite cases in which diaphragmatic paralysis was diagnosed by conventional methods but stimulation of the phrenic nerve demonstrated good diaphragmatic motion, leading to a change in prognosis in some cases and a change in therapy in others.

  15. Diaphragmatic paralysis evaluated by phrenic nerve stimulation during fluoroscopy or real-time ultrasound

    International Nuclear Information System (INIS)

    McCauley, R.G.K.; Labib, K.B.

    1984-01-01

    Stimulation of the phrenic nerve by supplying an electrical impulse to the neck during fluoroscopy or real-time ultrasound (sonoscopy) of the diaphragm allows more precise functional evaluation than fluoroscopy and/or sonoscopy alone. This is especially true of patients who are unable to cooperate because the are on a ventilator, unconscious, or very young. The authors cite cases in which diaphragmatic paralysis was diagnosed by conventional methods but stimulation of the phrenic nerve demonstrated good diaphragmatic motion, leading to a change in prognosis in some cases and a change in therapy in others

  16. Real time elastography endoscopic ultrasound (RTE-EUS), a comprehensive review

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, C.F., E-mail: christoph.dietrich@ckbm.de [Med. Klinik 2, Caritas-Krankenhaus Bad Mergentheim (Germany); Department of Gastroenterology, Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova (Romania); Klinik für Innere Medizin, Krankenhaus Märkisch Oderland (Germany); Săftoiu, A.; Jenssen, C. [Med. Klinik 2, Caritas-Krankenhaus Bad Mergentheim (Germany); Department of Gastroenterology, Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova (Romania); Klinik für Innere Medizin, Krankenhaus Märkisch Oderland (Germany)

    2014-03-15

    Real-time elastography (RTE) performed during endoscopic ultrasound (EUS) is a relatively new technique which allows the evaluation of tissue stiffness, with the intent of better characterising lesions during EUS examinations. The aim of this comprehensive review was to describe the technique of RTE-EUS, as well as the clinical applications, including the study of pancreatic lesions, but also hepatobiliary, gastrointestinal (GI) tract pathology (including anal canal), lymph nodes, adrenal glands, lung and mediastinum, as well as urogenital applications. One of the advantages of the RTE-EUS technique is especially the possibility to be used in various locations accessible from the GI tract. Future developments are also briefly discussed, as elastography is a tissue characterising technique that will certainly not replace biopsy, but will rather be an adjunct during EUS examinations, due to its ease of use and low cost.

  17. Real time elastography endoscopic ultrasound (RTE-EUS), a comprehensive review

    International Nuclear Information System (INIS)

    Dietrich, C.F.; Săftoiu, A.; Jenssen, C.

    2014-01-01

    Real-time elastography (RTE) performed during endoscopic ultrasound (EUS) is a relatively new technique which allows the evaluation of tissue stiffness, with the intent of better characterising lesions during EUS examinations. The aim of this comprehensive review was to describe the technique of RTE-EUS, as well as the clinical applications, including the study of pancreatic lesions, but also hepatobiliary, gastrointestinal (GI) tract pathology (including anal canal), lymph nodes, adrenal glands, lung and mediastinum, as well as urogenital applications. One of the advantages of the RTE-EUS technique is especially the possibility to be used in various locations accessible from the GI tract. Future developments are also briefly discussed, as elastography is a tissue characterising technique that will certainly not replace biopsy, but will rather be an adjunct during EUS examinations, due to its ease of use and low cost

  18. Implementation of synthetic aperture imaging on a hand-held device

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Kjeldsen, Thomas; Larsen, Lee

    2014-01-01

    -held devices all with different chipsets and a BK Medical UltraView 800 ultrasound scanner emulating a wireless probe. The wireless transmission is benchmarked using an imaging setup consisting of 269 scan lines x 1472 complex samples (1.58 MB pr. frame, 16 frames per second). The measured data throughput...... reached an average of 28.8 MB/s using a LG G2 mobile device, which is more than the required data throughput of 25.3 MB/s. Benchmarking the processing performance for B-mode imaging showed a total processing time of 18.9 ms (53 frames/s), which is less than the acquisition time (62.5 ms).......This paper presents several implementations of Syn- thetic Aperture Sequential Beamforming (SASB) on commer- cially available hand-held devices. The implementations include real-time wireless reception of ultrasound radio frequency sig- nals and GPU processing for B-mode imaging. The proposed...

  19. The SAFT-UT (synthetic aperture focusing technique for ultrasonic testing) real-time inspection system: Operational principles and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Hall, T. E.; Reid, L. D.; Doctor, S. R.

    1988-06-01

    This document provides a technical description of the real-time imaging system developed for rapid flaw detection and characterization utilizing the synthetic aperture focusing technique for ultrasonic testing (SAFT-UT). The complete fieldable system has been designed to perform inservice inspection of light-water reactor components. Software was written on a DEC LSI 11/23 computer system to control data collection. The unprocessed data is transferred to a VAX 11/730 host computer to perform data processing and image display tasks. A parallel architecture peripheral to the host computer, referred to as the Real-Time SAFT Processor, rapidly performs the SAFT processing function. From the host's point of view, this device operates on the SAFT data in such a way that one may consider it to be a specialized or SAFT array processor. A guide to SAFT-UT theory and conventions is included, along with a detailed description of the operation of the software, how to install the software, and a detailed hardware description.

  20. Interlaced photoacoustic and ultrasound imaging system with real-time coregistration for ovarian tissue characterization

    Science.gov (United States)

    Alqasemi, Umar; Li, Hai; Yuan, Guangqian; Kumavor, Patrick; Zanganeh, Saeid; Zhu, Quing

    2014-07-01

    Coregistered ultrasound (US) and photoacoustic imaging are emerging techniques for mapping the echogenic anatomical structure of tissue and its corresponding optical absorption. We report a 128-channel imaging system with real-time coregistration of the two modalities, which provides up to 15 coregistered frames per second limited by the laser pulse repetition rate. In addition, the system integrates a compact transvaginal imaging probe with a custom-designed fiber optic assembly for in vivo detection and characterization of human ovarian tissue. We present the coregistered US and photoacoustic imaging system structure, the optimal design of the PC interfacing software, and the reconfigurable field programmable gate array operation and optimization. Phantom experiments of system lateral resolution and axial sensitivity evaluation, examples of the real-time scanning of a tumor-bearing mouse, and ex vivo human ovaries studies are demonstrated.

  1. Real-time contrast-enhanced ultrasound in diagnosing of focal spleen lesions

    International Nuclear Information System (INIS)

    Yu Xiaoling; Yu Jie; Liang Ping; Liu Fangyi

    2012-01-01

    Objective: To investigate the features of focal spleen lesions (FSLs) on contrast-enhanced ultrasound (CEUS) imaging. Materials and methods: CEUS with a blot injection of SonoVue was performed in 48 patients with 75 FSLs (median diameter 2.6 cm) and their perfusion characteristics were analyzed by using contrast pulse sequences (CPS) technique. Results: Among 19 malignant lesions (10 metastases, 7 lymphoma, 1 hemangiosarcoma, 1 epithelioid hemangioendothelioma) and 56 benign lesion (23 hemangiomas, 14 cysts, 8 infarctions, 4 splenic ruptures, 3 tuberculosis, 2 abscess, 1 pseudoaneurysm, 1 lymphangioma), 25 benign lesions were demonstrated nonenhancement. For malignancy, 50.0% (5/10) metastases and 57.1% (4/7) lymphomas were showed hypoenhancement in the arterial phase, and 18 (94.7%) of malignant lesions were hypo-enhancement in the parenchymal phase. Among 31 benign lesions with enhancement, 27 (87.1%) were showed isoenhancement or hyperenhancement in the arterial phase and 22 (71.0%) lesions were isoenhancement or hyperenhancement in the parenchymal phase. The sensitivity, specificity and accuracy of diagnosis for FSLs were 91.1%, 95.0% and 92.0% for CEUS and 75.0%, 84.2% and 77.3% respectively, for the conventional baseline ultrasound (BUS). Conclusion: Real-time CEUS can provide valuable information for the diagnosis and differential diagnosis of FSLs.

  2. Real-Time Ultrasound/MRI Fusion for Suprasacral Parallel Shift Approach to Lumbosacral Plexus Blockade and Analysis of Injectate Spread

    DEFF Research Database (Denmark)

    Strid, Jennie Maria Christin; Pedersen, Erik Morre; Al-Karradi, Sinan Naseer Hussain

    2017-01-01

    Fused real-time ultrasound and magnetic resonance imaging (MRI) may be used to improve the accuracy of advanced image guided procedures. However, its use in regional anesthesia is practically nonexistent. In this randomized controlled crossover trial, we aim to explore effectiveness, procedure-re...

  3. Real-time image-based B-mode ultrasound image simulation of needles using tensor-product interpolation.

    Science.gov (United States)

    Zhu, Mengchen; Salcudean, Septimiu E

    2011-07-01

    In this paper, we propose an interpolation-based method for simulating rigid needles in B-mode ultrasound images in real time. We parameterize the needle B-mode image as a function of needle position and orientation. We collect needle images under various spatial configurations in a water-tank using a needle guidance robot. Then we use multidimensional tensor-product interpolation to simulate images of needles with arbitrary poses and positions using collected images. After further processing, the interpolated needle and seed images are superimposed on top of phantom or tissue image backgrounds. The similarity between the simulated and the real images is measured using a correlation metric. A comparison is also performed with in vivo images obtained during prostate brachytherapy. Our results, carried out for both the convex (transverse plane) and linear (sagittal/para-sagittal plane) arrays of a trans-rectal transducer indicate that our interpolation method produces good results while requiring modest computing resources. The needle simulation method we present can be extended to the simulation of ultrasound images of other wire-like objects. In particular, we have shown that the proposed approach can be used to simulate brachytherapy seeds.

  4. Real-time ultrasound-tagging to track the 2D motion of the common carotid artery wall in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Zahnd, Guillaume, E-mail: g.zahnd@erasmusmc.nl [Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC, Rotterdam 3000 CA (Netherlands); Salles, Sébastien; Liebgott, Hervé; Vray, Didier [Université de Lyon, CREATIS, CNRS UMR 5220, INSERM U1044, INSA-Lyon, Université Lyon 1, Lyon 69100 (France); Sérusclat, André [Department of Radiology, Louis Pradel Hospital, Lyon 69500 (France); Moulin, Philippe [Department of Endocrinology, Louis Pradel Hospital, Hospices Civils de Lyon, Université Lyon 1, Lyon 69100, France and INSERM UMR 1060, Lyon 69500 (France)

    2015-02-15

    Purpose: Tracking the motion of biological tissues represents an important issue in the field of medical ultrasound imaging. However, the longitudinal component of the motion (i.e., perpendicular to the beam axis) remains more challenging to extract due to the rather coarse resolution cell of ultrasound scanners along this direction. The aim of this study is to introduce a real-time beamforming strategy dedicated to acquire tagged images featuring a distinct pattern in the objective to ease the tracking. Methods: Under the conditions of the Fraunhofer approximation, a specific apodization function was applied to the received raw channel data, in real-time during image acquisition, in order to introduce a periodic oscillations pattern along the longitudinal direction of the radio frequency signal. Analytic signals were then extracted from the tagged images, and subpixel motion tracking of the intima–media complex was subsequently performed offline, by means of a previously introduced bidimensional analytic phase-based estimator. Results: The authors’ framework was applied in vivo on the common carotid artery from 20 young healthy volunteers and 6 elderly patients with high atherosclerosis risk. Cine-loops of tagged images were acquired during three cardiac cycles. Evaluated against reference trajectories manually generated by three experienced analysts, the mean absolute tracking error was 98 ± 84 μm and 55 ± 44 μm in the longitudinal and axial directions, respectively. These errors corresponded to 28% ± 23% and 13% ± 9% of the longitudinal and axial amplitude of the assessed motion, respectively. Conclusions: The proposed framework enables tagged ultrasound images of in vivo tissues to be acquired in real-time. Such unconventional beamforming strategy contributes to improve tracking accuracy and could potentially benefit to the interpretation and diagnosis of biomedical images.

  5. Magnetic resonance imaging, ultrasound and real-time ultrasound elastography of the thigh muscles in congenital muscle dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Drakonaki, Eleni E. [University of Crete, Radiology Department, Heraklion (Greece); Allen, Gina M. [Green Templeton College, Oxford (United Kingdom)

    2010-04-15

    Congenital muscle dystrophy includes a range of genetic disorders characterized by muscle weakness and contractures. We report the magnetic resonance (MR), ultrasound (US) and real-time sonoelastography (RTE) imaging findings of the thigh muscles of a 15-year-old boy with Bethlem myopathy diagnosed with clinical, electromyographic and histopathological criteria. Ultrasound and MR showed hyperechoic appearance and high signal intensity on T1- and T2-weighted sequences respectively at the periphery of the vastus lateralis and the long head of the biceps femoris muscles, and at a central area within the rectus femoris muscles. RTE was employed to examine the elastic properties of the muscle. The elastograms were presented as colour-coded maps superimposed on the B-mode images and revealed that the elastographic pattern correlated with the MR and US pattern of involvement. The abnormal muscle areas were stiffer (blue) than the normal-appearing areas (green), a finding that probably correlates with the presence of dystrophic collagen at the affected areas. This report suggests that RTE could be used as an additional imaging tool to evaluate the pattern of muscle changes in congenital myopathy. Further studies are needed to investigate the specificity and clinical value of RTE in the diagnosis and monitoring of neuromuscular disease. (orig.)

  6. Magnetic resonance imaging, ultrasound and real-time ultrasound elastography of the thigh muscles in congenital muscle dystrophy

    International Nuclear Information System (INIS)

    Drakonaki, Eleni E.; Allen, Gina M.

    2010-01-01

    Congenital muscle dystrophy includes a range of genetic disorders characterized by muscle weakness and contractures. We report the magnetic resonance (MR), ultrasound (US) and real-time sonoelastography (RTE) imaging findings of the thigh muscles of a 15-year-old boy with Bethlem myopathy diagnosed with clinical, electromyographic and histopathological criteria. Ultrasound and MR showed hyperechoic appearance and high signal intensity on T1- and T2-weighted sequences respectively at the periphery of the vastus lateralis and the long head of the biceps femoris muscles, and at a central area within the rectus femoris muscles. RTE was employed to examine the elastic properties of the muscle. The elastograms were presented as colour-coded maps superimposed on the B-mode images and revealed that the elastographic pattern correlated with the MR and US pattern of involvement. The abnormal muscle areas were stiffer (blue) than the normal-appearing areas (green), a finding that probably correlates with the presence of dystrophic collagen at the affected areas. This report suggests that RTE could be used as an additional imaging tool to evaluate the pattern of muscle changes in congenital myopathy. Further studies are needed to investigate the specificity and clinical value of RTE in the diagnosis and monitoring of neuromuscular disease. (orig.)

  7. Real-time ultrasound image classification for spine anesthesia using local directional Hadamard features.

    Science.gov (United States)

    Pesteie, Mehran; Abolmaesumi, Purang; Ashab, Hussam Al-Deen; Lessoway, Victoria A; Massey, Simon; Gunka, Vit; Rohling, Robert N

    2015-06-01

    Injection therapy is a commonly used solution for back pain management. This procedure typically involves percutaneous insertion of a needle between or around the vertebrae, to deliver anesthetics near nerve bundles. Most frequently, spinal injections are performed either blindly using palpation or under the guidance of fluoroscopy or computed tomography. Recently, due to the drawbacks of the ionizing radiation of such imaging modalities, there has been a growing interest in using ultrasound imaging as an alternative. However, the complex spinal anatomy with different wave-like structures, affected by speckle noise, makes the accurate identification of the appropriate injection plane difficult. The aim of this study was to propose an automated system that can identify the optimal plane for epidural steroid injections and facet joint injections. A multi-scale and multi-directional feature extraction system to provide automated identification of the appropriate plane is proposed. Local Hadamard coefficients are obtained using the sequency-ordered Hadamard transform at multiple scales. Directional features are extracted from local coefficients which correspond to different regions in the ultrasound images. An artificial neural network is trained based on the local directional Hadamard features for classification. The proposed method yields distinctive features for classification which successfully classified 1032 images out of 1090 for epidural steroid injection and 990 images out of 1052 for facet joint injection. In order to validate the proposed method, a leave-one-out cross-validation was performed. The average classification accuracy for leave-one-out validation was 94 % for epidural and 90 % for facet joint targets. Also, the feature extraction time for the proposed method was 20 ms for a native 2D ultrasound image. A real-time machine learning system based on the local directional Hadamard features extracted by the sequency-ordered Hadamard transform for

  8. SARUS: A Synthetic Aperture Real-Time Ultrasound System

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Holten-Lund, Hans; Nilsson, Ronnie Thorup

    2013-01-01

    -resolution images/s. Both RF element data and beamformed data can be stored in the system for later storage and processing. The stored data can be transferred in parallel using the system’s sixty-four 1-Gbit Ethernet interfaces at a theoretical rate of 3.2 GB/s to a 144-core Linux cluster....

  9. Investigation of synthetic aperture methods in ultrasound surface imaging using elementary surface types.

    Science.gov (United States)

    Kerr, W; Pierce, S G; Rowe, P

    2016-12-01

    Synthetic aperture imaging methods have been employed widely in recent research in non-destructive testing (NDT), but uptake has been more limited in medical ultrasound imaging. Typically offering superior focussing power over more traditional phased array methods, these techniques have been employed in NDT applications to locate and characterise small defects within large samples, but have rarely been used to image surfaces. A desire to ultimately employ ultrasonic surface imaging for bone surface geometry measurement prior to surgical intervention motivates this research, and results are presented for initial laboratory trials of a surface reconstruction technique based on global thresholding of ultrasonic 3D point cloud data. In this study, representative geometry artefacts were imaged in the laboratory using two synthetic aperture techniques; the Total Focusing Method (TFM) and the Synthetic Aperture Focusing Technique (SAFT) employing full and narrow synthetic apertures, respectively. Three high precision metallic samples of known geometries (cuboid, sphere and cylinder) which featured a range of elementary surface primitives were imaged using a 5MHz, 128 element 1D phased array employing both SAFT and TFM approaches. The array was manipulated around the samples using a precision robotic positioning system, allowing for repeatable ultrasound derived 3D surface point clouds to be created. A global thresholding technique was then developed that allowed the extraction of the surface profiles, and these were compared with the known geometry samples to provide a quantitative measure of error of 3D surface reconstruction. The mean errors achieved with optimised SAFT imaging for the cuboidal, spherical and cylindrical samples were 1.3mm, 2.9mm and 2.0mm respectively, while those for TFM imaging were 3.7mm, 3.0mm and 3.1mm, respectively. These results were contrary to expectations given the higher information content associated with the TFM images. However, it was

  10. Real-time Monitoring of High Intensity Focused Ultrasound (HIFU) Ablation of In Vitro Canine Livers Using Harmonic Motion Imaging for Focused Ultrasound (HMIFU).

    Science.gov (United States)

    Grondin, Julien; Payen, Thomas; Wang, Shutao; Konofagou, Elisa E

    2015-11-03

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a technique that can perform and monitor high-intensity focused ultrasound (HIFU) ablation. An oscillatory motion is generated at the focus of a 93-element and 4.5 MHz center frequency HIFU transducer by applying a 25 Hz amplitude-modulated signal using a function generator. A 64-element and 2.5 MHz imaging transducer with 68kPa peak pressure is confocally placed at the center of the HIFU transducer to acquire the radio-frequency (RF) channel data. In this protocol, real-time monitoring of thermal ablation using HIFU with an acoustic power of 7 W on canine livers in vitro is described. HIFU treatment is applied on the tissue during 2 min and the ablated region is imaged in real-time using diverging or plane wave imaging up to 1,000 frames/second. The matrix of RF channel data is multiplied by a sparse matrix for image reconstruction. The reconstructed field of view is of 90° for diverging wave and 20 mm for plane wave imaging and the data are sampled at 80 MHz. The reconstruction is performed on a Graphical Processing Unit (GPU) in order to image in real-time at a 4.5 display frame rate. 1-D normalized cross-correlation of the reconstructed RF data is used to estimate axial displacements in the focal region. The magnitude of the peak-to-peak displacement at the focal depth decreases during the thermal ablation which denotes stiffening of the tissue due to the formation of a lesion. The displacement signal-to-noise ratio (SNRd) at the focal area for plane wave was 1.4 times higher than for diverging wave showing that plane wave imaging appears to produce better displacement maps quality for HMIFU than diverging wave imaging.

  11. Real-time control of focused ultrasound heating based on rapid MR thermometry.

    Science.gov (United States)

    Vimeux, F C; De Zwart, J A; Palussiére, J; Fawaz, R; Delalande, C; Canioni, P; Grenier, N; Moonen, C T

    1999-03-01

    Real-time control of the heating procedure is essential for hyperthermia applications of focused ultrasound (FUS). The objective of this study is to demonstrate the feasibility of MRI-controlled FUS. An automatic control system was developed using a dedicated interface between the MR system control computer and the FUS wave generator. Two algorithms were used to regulate FUS power to maintain the focal point temperature at a desired level. Automatic control of FUS power level was demonstrated ex vivo at three target temperature levels (increase of 5 degrees C, 10 degrees C, and 30 degrees C above room temperature) during 30-minute hyperthermic periods. Preliminary in vivo results on rat leg muscle confirm that necrosis estimate, calculated on-line during FUS sonication, allows prediction of tissue damage. CONCLUSIONS. The feasibility of fully automatic FUS control based on MRI thermometry has been demonstrated.

  12. Ultrasound contrast agent imaging: Real-time imaging of the superharmonics

    Energy Technology Data Exchange (ETDEWEB)

    Peruzzini, D.; Viti, J. [MSD lab, Department of Information Engineering, Univ of Florence, Via S.Marta, 3, 50139 Firenze (Italy); Erasmus MC, ’s-Gravendijkwal 230, Faculty Building, Ee 2302, 3015 CE Rotterdam (Netherlands); Tortoli, P. [MSD lab, Department of Information Engineering, Univ of Florence, Via S.Marta, 3, 50139 Firenze (Italy); Verweij, M. D. [Acoustical Wavefield Imaging, ImPhys, Delft Univ Technology, van der Waalsweg 8, 2628 CH Delft (Netherlands); Jong, N. de; Vos, H. J., E-mail: h.vos@erasmusmc.nl [Erasmus MC, ’s-Gravendijkwal 230, Faculty Building, Ee 2302, 3015 CE Rotterdam (Netherlands); Acoustical Wavefield Imaging, ImPhys, Delft Univ Technology, van der Waalsweg 8, 2628 CH Delft (Netherlands)

    2015-10-28

    Currently, in medical ultrasound contrast agent (UCA) imaging the second harmonic scattering of the microbubbles is regularly used. This scattering is in competition with the signal that is caused by nonlinear wave propagation in tissue. It was reported that UCA imaging based on the third or higher harmonics, i.e. “superharmonic” imaging, shows better contrast. However, the superharmonic scattering has a lower signal level compared to e.g. second harmonic signals. This study investigates the contrast-to-tissue ratio (CTR) and signal to noise ratio (SNR) of superharmonic UCA scattering in a tissue/vessel mimicking phantom using a real-time clinical scanner. Numerical simulations were performed to estimate the level of harmonics generated by the microbubbles. Data were acquired with a custom built dual-frequency cardiac phased array probe. Fundamental real-time images were produced while beam formed radiofrequency (RF) data was stored for further offline processing. The phantom consisted of a cavity filled with UCA surrounded by tissue mimicking material. The acoustic pressure in the cavity of the phantom was 110 kPa (MI = 0.11) ensuring non-destructivity of UCA. After processing of the acquired data from the phantom, the UCA-filled cavity could be clearly observed in the images, while tissue signals were suppressed at or below the noise floor. The measured CTR values were 36 dB, >38 dB, and >32 dB, for the second, third, and fourth harmonic respectively, which were in agreement with those reported earlier for preliminary contrast superharmonic imaging. The single frame SNR values (in which ‘signal’ denotes the signal level from the UCA area) were 23 dB, 18 dB, and 11 dB, respectively. This indicates that noise, and not the tissue signal, is the limiting factor for the UCA detection when using the superharmonics in nondestructive mode.

  13. Real-Time Spaceborne Synthetic Aperture Radar Float-Point Imaging System Using Optimized Mapping Methodology and a Multi-Node Parallel Accelerating Technique

    Science.gov (United States)

    Li, Bingyi; Chen, Liang; Yu, Wenyue; Xie, Yizhuang; Bian, Mingming; Zhang, Qingjun; Pang, Long

    2018-01-01

    With the development of satellite load technology and very large-scale integrated (VLSI) circuit technology, on-board real-time synthetic aperture radar (SAR) imaging systems have facilitated rapid response to disasters. A key goal of the on-board SAR imaging system design is to achieve high real-time processing performance under severe size, weight, and power consumption constraints. This paper presents a multi-node prototype system for real-time SAR imaging processing. We decompose the commonly used chirp scaling (CS) SAR imaging algorithm into two parts according to the computing features. The linearization and logic-memory optimum allocation methods are adopted to realize the nonlinear part in a reconfigurable structure, and the two-part bandwidth balance method is used to realize the linear part. Thus, float-point SAR imaging processing can be integrated into a single Field Programmable Gate Array (FPGA) chip instead of relying on distributed technologies. A single-processing node requires 10.6 s and consumes 17 W to focus on 25-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384. The design methodology of the multi-FPGA parallel accelerating system under the real-time principle is introduced. As a proof of concept, a prototype with four processing nodes and one master node is implemented using a Xilinx xc6vlx315t FPGA. The weight and volume of one single machine are 10 kg and 32 cm × 24 cm × 20 cm, respectively, and the power consumption is under 100 W. The real-time performance of the proposed design is demonstrated on Chinese Gaofen-3 stripmap continuous imaging. PMID:29495637

  14. Real-time co-registered ultrasound and photoacoustic imaging system based on FPGA and DSP architecture

    Science.gov (United States)

    Alqasemi, Umar; Li, Hai; Aguirre, Andres; Zhu, Quing

    2011-03-01

    Co-registering ultrasound (US) and photoacoustic (PA) imaging is a logical extension to conventional ultrasound because both modalities provide complementary information of tumor morphology, tumor vasculature and hypoxia for cancer detection and characterization. In addition, both modalities are capable of providing real-time images for clinical applications. In this paper, a Field Programmable Gate Array (FPGA) and Digital Signal Processor (DSP) module-based real-time US/PA imaging system is presented. The system provides real-time US/PA data acquisition and image display for up to 5 fps* using the currently implemented DSP board. It can be upgraded to 15 fps, which is the maximum pulse repetition rate of the used laser, by implementing an advanced DSP module. Additionally, the photoacoustic RF data for each frame is saved for further off-line processing. The system frontend consists of eight 16-channel modules made of commercial and customized circuits. Each 16-channel module consists of two commercial 8-channel receiving circuitry boards and one FPGA board from Analog Devices. Each receiving board contains an IC† that combines. 8-channel low-noise amplifiers, variable-gain amplifiers, anti-aliasing filters, and ADC's‡ in a single chip with sampling frequency of 40MHz. The FPGA board captures the LVDSξ Double Data Rate (DDR) digital output of the receiving board and performs data conditioning and subbeamforming. A customized 16-channel transmission circuitry is connected to the two receiving boards for US pulseecho (PE) mode data acquisition. A DSP module uses External Memory Interface (EMIF) to interface with the eight 16-channel modules through a customized adaptor board. The DSP transfers either sub-beamformed data (US pulse-echo mode or PAI imaging mode) or raw data from FPGA boards to its DDR-2 memory through the EMIF link, then it performs additional processing, after that, it transfer the data to the PC** for further image processing. The PC code

  15. Novel real-time feedback and integrated simulation model for teaching and evaluating ultrasound-guided regional anesthesia skills in pediatric anesthesia trainees.

    Science.gov (United States)

    Moore, David L; Ding, Lili; Sadhasivam, Senthilkumar

    2012-09-01

    To assess, teach, and improve core competencies and skills sets associated with ultrasound-guided regional anesthesia (UGRA) of pediatric anesthesia trainees. To effectively assess and improve UGRA-associated cognitive and technical skills and proficiency of pediatric anesthesia trainees using simulators and real-time feedback. Ultrasound usage has been increasingly adopted by anesthesiologists to perform regional anesthesia. Pediatric UGRA performance significantly lags behind adult UGRA practice. Lack of effective UGRA training is the major reason for this unfortunate lag. Integration of ultrasound imaging, target location, and needling skills are crucial in safely performing UGRA. However, there are no standards to ensure proficiency in practice, nor in training. We implemented an UGRA instructional program for all trainees, in two parts. First, we used a unique training model for initial assessment and training of technical skills. Second, we used an instructional program that encompasses UGRA and equipment-associated cognitive skills. After baseline assessment at 0 months, we retested these trainees at 6 and 12 months to identify progression of proficiency over time. Cognitive and technical UGRA skills of trainees improved significantly over the course of time. UGRA performance average accuracy improved to 79% at 12 months from the baseline accuracy of 57%. Cognitive UGRA-related skills of trainees improved from baseline results of 52.5-79.2% at 12 months. Implementing a multifaceted assessment and real-time feedback-based training has significantly improved UGRA-related cognitive and technical skills and proficiency of pediatric anesthesia trainees. © 2012 Blackwell Publishing Ltd.

  16. Ultrasound beam transmission using a discretely orthogonal Gaussian aperture basis

    Science.gov (United States)

    Roberts, R. A.

    2018-04-01

    Work is reported on development of a computational model for ultrasound beam transmission at an arbitrary geometry transmission interface for generally anisotropic materials. The work addresses problems encountered when the fundamental assumptions of ray theory do not hold, thereby introducing errors into ray-theory-based transmission models. Specifically, problems occur when the asymptotic integral analysis underlying ray theory encounters multiple stationary phase points in close proximity, due to focusing caused by concavity on either the entry surface or a material slowness surface. The approach presented here projects integrands over both the transducer aperture and the entry surface beam footprint onto a Gaussian-derived basis set, thereby distributing the integral over a summation of second-order phase integrals which are amenable to single stationary phase point analysis. Significantly, convergence is assured provided a sufficiently fine distribution of basis functions is used.

  17. Defocus morphing in real aperture images.

    Science.gov (United States)

    Chaudhuri, Subhasis

    2005-11-01

    A new concept called defocus morphing in real aperture images is introduced. View morphing is an existing example of shape-preserving image morphing based on the motion cue. It is proved that images can also be morphed based on the depth-related defocus cue. This illustrates that the morphing operation is not necessarily a geometric process alone; one can also perform a photometry-based morphing wherein the shape information is implicitly buried in the image intensity field. A theoretical understanding of the defocus morphing process is presented. It is shown mathematically that, given two observations of a three-dimensional scene for different camera parameter settings, we can obtain a virtual observation for any camera parameter setting through a simple nonlinear combination of these observations.

  18. Tissue Harmonic Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Joachim

    The main purpose of this PhD project is to develop an ultrasonic method for tissue harmonic synthetic aperture imaging. The motivation is to advance the field of synthetic aperture imaging in ultrasound, which has shown great potentials in the clinic. Suggestions for synthetic aperture tissue...... system complexity compared to conventional synthetic aperture techniques. In this project, SASB is sought combined with a pulse inversion technique for 2nd harmonic tissue harmonic imaging. The advantages in tissue harmonic imaging (THI) are expected to further improve the image quality of SASB...

  19. Fast leaf-fitting with generalized underdose/overdose constraints for real-time MLC tracking

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Douglas, E-mail: douglas.moore@utsouthwestern.edu; Sawant, Amit [Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas 75390 (United States); Ruan, Dan [Department of Radiation Oncology, University of California, Los Angeles, California 90095 (United States)

    2016-01-15

    Purpose: Real-time multileaf collimator (MLC) tracking is a promising approach to the management of intrafractional tumor motion during thoracic and abdominal radiotherapy. MLC tracking is typically performed in two steps: transforming a planned MLC aperture in response to patient motion and refitting the leaves to the newly generated aperture. One of the challenges of this approach is the inability to faithfully reproduce the desired motion-adapted aperture. This work presents an optimization-based framework with which to solve this leaf-fitting problem in real-time. Methods: This optimization framework is designed to facilitate the determination of leaf positions in real-time while accounting for the trade-off between coverage of the PTV and avoidance of organs at risk (OARs). Derived within this framework, an algorithm is presented that can account for general linear transformations of the planned MLC aperture, particularly 3D translations and in-plane rotations. This algorithm, together with algorithms presented in Sawant et al. [“Management of three-dimensional intrafraction motion through real-time DMLC tracking,” Med. Phys. 35, 2050–2061 (2008)] and Ruan and Keall [Presented at the 2011 IEEE Power Engineering and Automation Conference (PEAM) (2011) (unpublished)], was applied to apertures derived from eight lung intensity modulated radiotherapy plans subjected to six-degree-of-freedom motion traces acquired from lung cancer patients using the kilovoltage intrafraction monitoring system developed at the University of Sydney. A quality-of-fit metric was defined, and each algorithm was evaluated in terms of quality-of-fit and computation time. Results: This algorithm is shown to perform leaf-fittings of apertures, each with 80 leaf pairs, in 0.226 ms on average as compared to 0.082 and 64.2 ms for the algorithms of Sawant et al., Ruan, and Keall, respectively. The algorithm shows approximately 12% improvement in quality-of-fit over the Sawant et al

  20. Fast leaf-fitting with generalized underdose/overdose constraints for real-time MLC tracking

    International Nuclear Information System (INIS)

    Moore, Douglas; Sawant, Amit; Ruan, Dan

    2016-01-01

    Purpose: Real-time multileaf collimator (MLC) tracking is a promising approach to the management of intrafractional tumor motion during thoracic and abdominal radiotherapy. MLC tracking is typically performed in two steps: transforming a planned MLC aperture in response to patient motion and refitting the leaves to the newly generated aperture. One of the challenges of this approach is the inability to faithfully reproduce the desired motion-adapted aperture. This work presents an optimization-based framework with which to solve this leaf-fitting problem in real-time. Methods: This optimization framework is designed to facilitate the determination of leaf positions in real-time while accounting for the trade-off between coverage of the PTV and avoidance of organs at risk (OARs). Derived within this framework, an algorithm is presented that can account for general linear transformations of the planned MLC aperture, particularly 3D translations and in-plane rotations. This algorithm, together with algorithms presented in Sawant et al. [“Management of three-dimensional intrafraction motion through real-time DMLC tracking,” Med. Phys. 35, 2050–2061 (2008)] and Ruan and Keall [Presented at the 2011 IEEE Power Engineering and Automation Conference (PEAM) (2011) (unpublished)], was applied to apertures derived from eight lung intensity modulated radiotherapy plans subjected to six-degree-of-freedom motion traces acquired from lung cancer patients using the kilovoltage intrafraction monitoring system developed at the University of Sydney. A quality-of-fit metric was defined, and each algorithm was evaluated in terms of quality-of-fit and computation time. Results: This algorithm is shown to perform leaf-fittings of apertures, each with 80 leaf pairs, in 0.226 ms on average as compared to 0.082 and 64.2 ms for the algorithms of Sawant et al., Ruan, and Keall, respectively. The algorithm shows approximately 12% improvement in quality-of-fit over the Sawant et al

  1. Prostate Ultrasound

    Medline Plus

    Full Text Available ... ultrasound images are captured in real-time, they can show the structure and movement of the body's ... Because ultrasound provides real-time images, it also can be used to guide procedures such as needle ...

  2. Prostate Ultrasound

    Medline Plus

    Full Text Available ... patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... test result. difficulty urinating. Because ultrasound provides real-time images, it also can be used to guide ...

  3. Advanced 3-D Ultrasound Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer

    The main purpose of the PhD project was to develop methods that increase the 3-D ultrasound imaging quality available for the medical personnel in the clinic. Acquiring a 3-D volume gives the medical doctor the freedom to investigate the measured anatomy in any slice desirable after the scan has...... been completed. This allows for precise measurements of organs dimensions and makes the scan more operator independent. Real-time 3-D ultrasound imaging is still not as widespread in use in the clinics as 2-D imaging. A limiting factor has traditionally been the low image quality achievable using...... a channel limited 2-D transducer array and the conventional 3-D beamforming technique, Parallel Beamforming. The first part of the scientific contributions demonstrate that 3-D synthetic aperture imaging achieves a better image quality than the Parallel Beamforming technique. Data were obtained using both...

  4. Prostate Ultrasound

    Medline Plus

    Full Text Available ... the patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... blood test result. difficulty urinating. Because ultrasound provides real-time images, it also can be used to guide ...

  5. Compact Beamformer Design with High Frame Rate for Ultrasound Imaging

    Directory of Open Access Journals (Sweden)

    Jun Luo

    2014-04-01

    Full Text Available In medical field, two-dimension ultrasound images are widely used in clinical diagnosis. Beamformer is critical in determining the complexity and performance of an ultrasound imaging system. Different from traditional means implemented with separated chips, a compact beamformer with 64 effective channels in a single moderate Field Programmable Gate Array has been presented in this paper. The compactness is acquired by employing receive synthetic aperture, harmonic imaging, time sharing and linear interpolation. Besides that, multi-beams method is used to improve the frame rate of the ultrasound imaging system. Online dynamic configuration is employed to expand system’s flexibility to two kinds of transducers with multi-scanning modes. The design is verified on a prototype scanner board. Simulation results have shown that on-chip memories can be saved and the frame rate can be improved on the case of 64 effective channels which will meet the requirement of real-time application.

  6. Real-time registration of 3D to 2D ultrasound images for image-guided prostate biopsy.

    Science.gov (United States)

    Gillies, Derek J; Gardi, Lori; De Silva, Tharindu; Zhao, Shuang-Ren; Fenster, Aaron

    2017-09-01

    During image-guided prostate biopsy, needles are targeted at tissues that are suspicious of cancer to obtain specimen for histological examination. Unfortunately, patient motion causes targeting errors when using an MR-transrectal ultrasound (TRUS) fusion approach to augment the conventional biopsy procedure. This study aims to develop an automatic motion correction algorithm approaching the frame rate of an ultrasound system to be used in fusion-based prostate biopsy systems. Two modes of operation have been investigated for the clinical implementation of the algorithm: motion compensation using a single user initiated correction performed prior to biopsy, and real-time continuous motion compensation performed automatically as a background process. Retrospective 2D and 3D TRUS patient images acquired prior to biopsy gun firing were registered using an intensity-based algorithm utilizing normalized cross-correlation and Powell's method for optimization. 2D and 3D images were downsampled and cropped to estimate the optimal amount of image information that would perform registrations quickly and accurately. The optimal search order during optimization was also analyzed to avoid local optima in the search space. Error in the algorithm was computed using target registration errors (TREs) from manually identified homologous fiducials in a clinical patient dataset. The algorithm was evaluated for real-time performance using the two different modes of clinical implementations by way of user initiated and continuous motion compensation methods on a tissue mimicking prostate phantom. After implementation in a TRUS-guided system with an image downsampling factor of 4, the proposed approach resulted in a mean ± std TRE and computation time of 1.6 ± 0.6 mm and 57 ± 20 ms respectively. The user initiated mode performed registrations with in-plane, out-of-plane, and roll motions computation times of 108 ± 38 ms, 60 ± 23 ms, and 89 ± 27 ms, respectively, and corresponding

  7. Hybrid Photoacoustic/Ultrasound Tomograph for Real-Time Finger Imaging.

    Science.gov (United States)

    Oeri, Milan; Bost, Wolfgang; Sénégond, Nicolas; Tretbar, Steffen; Fournelle, Marc

    2017-10-01

    We report a target-enclosing, hybrid tomograph with a total of 768 elements based on capacitive micromachined ultrasound transducer technology and providing fast, high-resolution 2-D/3-D photoacoustic and ultrasound tomography tailored to finger imaging. A freely programmable ultrasound beamforming platform sampling data at 80 MHz was developed to realize plane wave transmission under multiple angles. A multiplexing unit enables the connection and control of a large number of elements. Fast image reconstruction is provided by GPU processing. The tomograph is composed of four independent and fully automated movable arc-shaped transducers, allowing imaging of all three finger joints. The system benefits from photoacoustics, yielding high optical contrast and enabling visualization of finger vascularization, and ultrasound provides morphologic information on joints and surrounding tissue. A diode-pumped, Q-switched Nd:YAG laser and an optical parametric oscillator are used to broaden the spectrum of emitted wavelengths to provide multispectral imaging. Custom-made optical fiber bundles enable illumination of the region of interest in the plane of acoustic detection. Precision in positioning of the probe in motion is ensured by use of a motor-driven guide slide. The current position of the probe is encoded by the stage and used to relate ultrasound and photoacoustic signals to the corresponding region of interest of the suspicious finger joint. The system is characterized in phantoms and a healthy human finger in vivo. The results obtained promise to provide new opportunities in finger diagnostics and establish photoacoustic/ultrasound-tomography in medical routine. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  8. Preliminary In-vivo Results For Spatially Coded Synthetic Transmit Aperture Ultrasound Based On Frequency Division

    DEFF Research Database (Denmark)

    Gran, Fredrik; Hansen, Kristoffer Lindskov; Jensen, Jørgen Arendt

    2006-01-01

    This paper investigates the possibility of using spatial coding based on frequency division for in-vivo synthetic transmit aperture (STA) ultrasound imaging. When using spatial encoding for STA, it is possible to use several transmitters simultaneously and separate the signals at the receiver....... This increases the maximum transmit power compared to conventional STA, where only one transmitter can be active. The signal-to-noise-ratio can therefore he increased and better penetration can be obtained. For frequency division, the coding is achieved by designing a number of transmit waveforms with disjoint...... spectral support, spanning the passband of the ultrasound transducer. The signals can therefore he separated at the receiver using matched filtering. The method is tested using a commercial linear array transducer with a center frequency of 9 MHz and 68% fractional bandwidth. In this paper, the transmit...

  9. Clinical evaluation of synthetic aperture sequential beamforming

    DEFF Research Database (Denmark)

    Hansen, Peter Møller; Hemmsen, Martin Christian; Lange, Theis

    2012-01-01

    In this study clinically relevant ultrasound images generated with synthetic aperture sequential beamforming (SASB) is compared to images generated with a conventional technique. The advantage of SASB is the ability to produce high resolution ultrasound images with a high frame rate and at the same...... time massively reduce the amount of generated data. SASB was implemented in a system consisting of a conventional ultrasound scanner connected to a PC via a research interface. This setup enables simultaneous recording with both SASB and conventional technique. Eighteen volunteers were ultrasound...... scanned abdominally, and 84 sequence pairs were recorded. Each sequence pair consists of two simultaneous recordings of the same anatomical location with SASB and conventional B-mode imaging. The images were evaluated in terms of spatial resolution, contrast, unwanted artifacts, and penetration depth...

  10. Real-time synthetic aperture imaging: opportunities and challenges

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt

    2006-01-01

    the development and implementation of the signal processing stages employed in SA imaging: compression of received data acquired using codes, and beamforming. The goal was to implement the system using commercially available field programmable gate arrays. The compression filter operates on frequency modulated...... pulses with duration of up to 50 mus sampled at 70 MHz. The beamformer can process data from 256 channels at a pulse repetition frequency of 5000 Hz and produces 192 lines of 1024 complex samples in real time. The lines are described by their origin, direction, length and distance between two samples...

  11. Comparison of a GPS needle-tracking system, multiplanar imaging and 2D imaging for real-time ultrasound-guided epidural anaesthesia: A randomized, comparative, observer-blinded study on phantoms.

    Science.gov (United States)

    Menacé, Cécilia; Choquet, Olivier; Abbal, Bertrand; Bringuier, Sophie; Capdevila, Xavier

    2017-04-01

    The real-time ultrasound-guided paramedian sagittal oblique approach for neuraxial blockade is technically demanding. Innovative technologies have been developed to improve nerve identification and the accuracy of needle placement. The aim of this study was to evaluate three types of ultrasound scans during ultrasound-guided epidural lumbar punctures in a spine phantom. Eleven sets of 20 ultrasound-guided epidural punctures were performed with 2D, GPS, and multiplanar ultrasound machines (660 punctures) on a spine phantom using an in-plane approach. For all punctures, execution time, number of attempts, bone contacts, and needle redirections were noted by an independent physician. Operator comfort and visibility of the needle (tip and shaft) were measured using a numerical scale. The use of GPS significantly decreased the number of punctures, needle repositionings, and bone contacts. Comfort of the physician was also significantly improved with the GPS system compared with the 2D and multiplanar systems. With the multiplanar system, the procedure was not facilitated and execution time was longer compared with 2D imaging after Bonferroni correction but interaction between the type of ultrasound system and mean execution time was not significant in a linear mixed model. There were no significant differences regarding needle tip and shaft visibility between the systems. Multiplanar and GPS needle-tracking systems do not reduce execution time compared with 2D imaging using a real-time ultrasound-guided paramedian sagittal oblique approach in spine phantoms. The GPS needle-tracking system can improve performance in terms of operator comfort, the number of attempts, needle redirections and bone contacts. Copyright © 2016 Société française d'anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.

  12. Pseudo real-time imaging systems with nonredundant pinhole arrays

    International Nuclear Information System (INIS)

    Han, K.S.; Berzins, G.J.; Roach, W.H.

    1976-01-01

    Coded aperture techniques, because of their efficiency and three-dimensional information content, represent potentially powerful tools for LMFBR safety experiment diagnostics. These techniques should be even more powerful if the data can be interpreted in real time or in pseudo real time. For example, to satisfy the stated goals for LMFBR diagnostics (1-ms time resolution and 1-mm spatial resolution), it is conceivable that several hundred frames of coded data would be recorded. To unscramble all of this information into reconstructed images could be a laborious, time-consuming task. A way to circumvent the tedium is with the use of the described hybrid digital/analog real-time imaging system. Some intermediate results are described briefly

  13. SU-G-BRA-01: A Real-Time Tumor Localization and Guidance Platform for Radiotherapy Using US and MRI

    International Nuclear Information System (INIS)

    Bednarz, B; Culberson, W; Bassetti, M; McMillan, A; Matrosic, C; Shepard, A; Zagzebski, J; Smith, S; Lee, W; Mills, D; Cao, K; Wang, B; Fiveland, E; Darrow, R; Foo, T

    2016-01-01

    Purpose: To develop and validate a real-time motion management platform for radiotherapy that directly tracks tumor motion using ultrasound and MRI. This will be a cost-effective and non-invasive real-time platform combining the excellent temporal resolution of ultrasound with the excellent soft-tissue contrast of MRI. Methods: A 4D planar ultrasound acquisition during the treatment that is coupled to a pre-treatment calibration training image set consisting of a simultaneous 4D ultrasound and 4D MRI acquisition. The image sets will be rapidly matched using advanced image and signal processing algorithms, allowing the display of virtual MR images of the tumor/organ motion in real-time from an ultrasound acquisition. Results: The completion of this work will result in several innovations including: a (2D) patch-like, MR and LINAC compatible 4D planar ultrasound transducer that is electronically steerable for hands-free operation to provide real-time virtual MR and ultrasound imaging for motion management during radiation therapy; a multi- modal tumor localization strategy that uses ultrasound and MRI; and fast and accurate image processing algorithms that provide real-time information about the motion and location of tumor or related soft-tissue structures within the patient. Conclusion: If successful, the proposed approach will provide real-time guidance for radiation therapy without degrading image or treatment plan quality. The approach would be equally suitable for image-guided proton beam or heavy ion-beam therapy. This work is partially funded by NIH grant R01CA190298

  14. SU-G-BRA-01: A Real-Time Tumor Localization and Guidance Platform for Radiotherapy Using US and MRI

    Energy Technology Data Exchange (ETDEWEB)

    Bednarz, B; Culberson, W; Bassetti, M; McMillan, A; Matrosic, C; Shepard, A; Zagzebski, J [University of Wisconsin, Madison, WI (United States); Smith, S; Lee, W; Mills, D; Cao, K; Wang, B; Fiveland, E; Darrow, R; Foo, T [GE Global Research Center, Niskayuna, NY (United States)

    2016-06-15

    Purpose: To develop and validate a real-time motion management platform for radiotherapy that directly tracks tumor motion using ultrasound and MRI. This will be a cost-effective and non-invasive real-time platform combining the excellent temporal resolution of ultrasound with the excellent soft-tissue contrast of MRI. Methods: A 4D planar ultrasound acquisition during the treatment that is coupled to a pre-treatment calibration training image set consisting of a simultaneous 4D ultrasound and 4D MRI acquisition. The image sets will be rapidly matched using advanced image and signal processing algorithms, allowing the display of virtual MR images of the tumor/organ motion in real-time from an ultrasound acquisition. Results: The completion of this work will result in several innovations including: a (2D) patch-like, MR and LINAC compatible 4D planar ultrasound transducer that is electronically steerable for hands-free operation to provide real-time virtual MR and ultrasound imaging for motion management during radiation therapy; a multi- modal tumor localization strategy that uses ultrasound and MRI; and fast and accurate image processing algorithms that provide real-time information about the motion and location of tumor or related soft-tissue structures within the patient. Conclusion: If successful, the proposed approach will provide real-time guidance for radiation therapy without degrading image or treatment plan quality. The approach would be equally suitable for image-guided proton beam or heavy ion-beam therapy. This work is partially funded by NIH grant R01CA190298.

  15. Pseudo real-time coded aperture imaging system with intensified vidicon cameras

    International Nuclear Information System (INIS)

    Han, K.S.; Berzins, G.J.

    1977-01-01

    A coded image displayed on a TV monitor was used to directly reconstruct a decoded image. Both the coded and the decoded images were viewed with intensified vidicon cameras. The coded aperture was a 15-element nonredundant pinhole array. The coding and decoding were accomplished simultaneously during the scanning of a single 16-msec TV frame

  16. Adaptive Beamforming for Medical Ultrasound Imaging

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund

    This dissertation investigates the application of adaptive beamforming for medical ultrasound imaging. The investigations have been concentrated primarily on the Minimum Variance (MV) beamformer. A broadband implementation of theMV beamformer is described, and simulated data have been used...... to demonstrate the performance. The MV beamformer has been applied to different sets of ultrasound imaging sequences; synthetic aperture ultrasound imaging and plane wave ultrasound imaging. And an approach for applying MV optimized apodization weights on both the transmitting and the receiving apertures...

  17. Real-time non-rigid target tracking for ultrasound-guided clinical interventions

    Science.gov (United States)

    Zachiu, C.; Ries, M.; Ramaekers, P.; Guey, J.-L.; Moonen, C. T. W.; de Senneville, B. Denis

    2017-10-01

    Biological motion is a problem for non- or mini-invasive interventions when conducted in mobile/deformable organs due to the targeted pathology moving/deforming with the organ. This may lead to high miss rates and/or incomplete treatment of the pathology. Therefore, real-time tracking of the target anatomy during the intervention would be beneficial for such applications. Since the aforementioned interventions are often conducted under B-mode ultrasound (US) guidance, target tracking can be achieved via image registration, by comparing the acquired US images to a separate image established as positional reference. However, such US images are intrinsically altered by speckle noise, introducing incoherent gray-level intensity variations. This may prove problematic for existing intensity-based registration methods. In the current study we address US-based target tracking by employing the recently proposed EVolution registration algorithm. The method is, by construction, robust to transient gray-level intensities. Instead of directly matching image intensities, EVolution aligns similar contrast patterns in the images. Moreover, the displacement is computed by evaluating a matching criterion for image sub-regions rather than on a point-by-point basis, which typically provides more robust motion estimates. However, unlike similar previously published approaches, which assume rigid displacements in the image sub-regions, the EVolution algorithm integrates the matching criterion in a global functional, allowing the estimation of an elastic dense deformation. The approach was validated for soft tissue tracking under free-breathing conditions on the abdomen of seven healthy volunteers. Contact echography was performed on all volunteers, while three of the volunteers also underwent standoff echography. Each of the two modalities is predominantly specific to a particular type of non- or mini-invasive clinical intervention. The method demonstrated on average an accuracy of

  18. Feasibility of Remote Real-Time Guidance of a Cardiac Examination Performed by Novices Using a Pocket-Sized Ultrasound Device

    Directory of Open Access Journals (Sweden)

    Tuan V. Mai

    2013-01-01

    Full Text Available Background. The potential of pocket-sized ultrasound devices (PUDs to improve global healthcare delivery is limited by the lack of a suitable imaging protocol and trained users. Therefore, we investigated the feasibility of performing a brief, evidence-based cardiac limited ultrasound exam (CLUE through wireless guidance of novice users. Methods. Three trainees applied PUDs on 27 subjects while directed by an off-site cardiologist to obtain a CLUE to screen for LV systolic dysfunction (LVSD, LA enlargement (LAE, ultrasound lung comets (ULC+, and elevated CVP (eCVP. Real-time remote audiovisual guidance and interpretation by the cardiologist were performed using the iPhone 4/iPod (FaceTime, Apple, Inc. attached to the PUD and transmitted data wirelessly. Accuracy and technical quality of transmitted images were compared to on-site, gold-standard echo thresholds. Results. Novice versus sonographer imaging yielded technically adequate views in 122/135 (90% versus 130/135 (96% (. CLUE’s combined SN, SP, and ACC were 0.67, 0.96, and 0.90. Technical adequacy (% and accuracy for each abnormality ( were LVSD (85%, 0.93, , LAE (89%, 0.74, , ULC+ (100%, 0.94, , and eCVP (78%, 0.91, . Conclusion. A novice can perform the CLUE using PUD when wirelessly guided by an expert. This method could facilitate PUD use for off-site bedside medical decision making and triaging of patients.

  19. Motion Detection in Ultrasound Image-Sequences Using Tensor Voting

    Science.gov (United States)

    Inba, Masafumi; Yanagida, Hirotaka; Tamura, Yasutaka

    2008-05-01

    Motion detection in ultrasound image sequences using tensor voting is described. We have been developing an ultrasound imaging system adopting a combination of coded excitation and synthetic aperture focusing techniques. In our method, frame rate of the system at distance of 150 mm reaches 5000 frame/s. Sparse array and short duration coded ultrasound signals are used for high-speed data acquisition. However, many artifacts appear in the reconstructed image sequences because of the incompleteness of the transmitted code. To reduce the artifacts, we have examined the application of tensor voting to the imaging method which adopts both coded excitation and synthetic aperture techniques. In this study, the basis of applying tensor voting and the motion detection method to ultrasound images is derived. It was confirmed that velocity detection and feature enhancement are possible using tensor voting in the time and space of simulated ultrasound three-dimensional image sequences.

  20. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ultrasound images are captured in real-time, they can show the structure and movement of the body's ... Obstetrical Ultrasound page for more information . Ultrasound examinations can help diagnose symptoms experienced by women such as: ...

  1. Optimal transcostal high-intensity focused ultrasound with combined real-time 3D movement tracking and correction

    International Nuclear Information System (INIS)

    Marquet, F; Aubry, J F; Pernot, M; Fink, M; Tanter, M

    2011-01-01

    Recent studies have demonstrated the feasibility of transcostal high intensity focused ultrasound (HIFU) treatment in liver. However, two factors limit thermal necrosis of the liver through the ribs: the energy deposition at focus is decreased by the respiratory movement of the liver and the energy deposition on the skin is increased by the presence of highly absorbing bone structures. Ex vivo ablations were conducted to validate the feasibility of a transcostal real-time 3D movement tracking and correction mode. Experiments were conducted through a chest phantom made of three human ribs immersed in water and were placed in front of a 300 element array working at 1 MHz. A binarized apodization law introduced recently in order to spare the rib cage during treatment has been extended here with real-time electronic steering of the beam. Thermal simulations have been conducted to determine the steering limits. In vivo 3D-movement detection was performed on pigs using an ultrasonic sequence. The maximum error on the transcostal motion detection was measured to be 0.09 ± 0.097 mm on the anterior–posterior axis. Finally, a complete sequence was developed combining real-time 3D transcostal movement correction and spiral trajectory of the HIFU beam, allowing the system to treat larger areas with optimized efficiency. Lesions as large as 1 cm in diameter have been produced at focus in excised liver, whereas no necroses could be obtained with the same emitted power without correcting the movement of the tissue sample.

  2. Analysis of contact stiffness in ultrasound atomic force microscopy: three-dimensional time-dependent ultrasound modeling

    International Nuclear Information System (INIS)

    Piras, Daniele; Sadeghian, Hamed

    2017-01-01

    Ultrasound atomic force microscopy (US-AFM) has been used for subsurface imaging of nanostructures. The contact stiffness variations have been suggested as the origin of the image contrast. Therefore, to analyze the image contrast, the local changes in the contact stiffness due to the presence of subsurface features should be calculated. So far, only static simulations have been conducted to analyze the local changes in the contact stiffness and, consequently, the contrast in US-AFM. Such a static approach does not fully represent the real US-AFM experiment, where an ultrasound wave is launched either into the sample or at the tip, which modulates the contact stiffness. This is a time-dependent nonlinear dynamic problem rather than a static and stationary one. This paper presents dynamic 3D ultrasound analysis of contact stiffness in US-AFM (in contrast to static analysis) to realistically predict the changes in contact stiffness and thus the changes in the subsurface image contrast. The modulation frequency also influences the contact stiffness variations and, thus, the image contrast. The three-dimensional time-dependent ultrasound analysis will greatly aid in the contrast optimization of subsurface nano imaging with US-AFM. (paper)

  3. SU-D-BRF-06: A Brachytherapy Simulator with Realistic Haptic Force Feedback and Real-Time Ultrasounds Image Simulation for Training and Teaching

    International Nuclear Information System (INIS)

    Beaulieu, L; Carette, A; Comtois, S; Lavigueur, M; Cardou, P; Laurendeau, D

    2014-01-01

    Purpose: Surgical procedures require dexterity, expertise and repetition to reach optimal patient outcomes. However, efficient training opportunities are usually limited. This work presents a simulator system with realistic haptic force-feedback and full, real-time ultrasounds image simulation. Methods: The simulator is composed of a custom-made Linear-DELTA force-feedback robotic platform. The needle tip is mounted on a force gauge at the end effector of the robot, which responds to needle insertion by providing reaction forces. 3D geometry of the tissue is using a tetrahedral finite element mesh (FEM) mimicking tissue properties. As the needle is inserted/retracted, tissue deformation is computed using a mass-tensor nonlinear visco-elastic FEM. The real-time deformation is fed to the L-DELTA to take into account the force imparted to the needle, providing feedback to the end-user when crossing tissue boundaries or needle bending. Real-time 2D US image is also generated synchronously showing anatomy, needle insertion and tissue deformation. The simulator is running on an Intel I7 6- core CPU at 3.26 MHz. 3D tissue rendering and ultrasound display are performed on a Windows 7 computer; the FEM computation and L-DELTA control are executed on a similar PC using the Neutrino real-time OS. Both machines communicate through an Ethernet link. Results: The system runs at 500 Hz for a 8333-tetrahedron tissue mesh and a 100-node angular spring needle model. This frame rate ensures a relatively smooth displacement of the needle when pushed or retracted (±20 N in all directions at speeds of up to 2 m/s). Unlike commercially-available haptic platforms, the oblong workspace of the L-DELTA robot complies with that required for brachytherapy needle displacements of 0.1m by 0.1m by 0.25m. Conclusion: We have demonstrated a real-life, realistic brachytherapy simulator developed for prostate implants (LDR/HDR). The platform could be adapted to other sites or training for other

  4. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... help to distract the child and make the time pass quickly. The ultrasound exam room may have ...

  5. Real time processor for array speckle interferometry

    International Nuclear Information System (INIS)

    Chin, G.; Florez, J.; Borelli, R.; Fong, W.; Miko, J.; Trujillo, C.

    1989-01-01

    With the construction of several new large aperture telescopes and the development of large format array detectors in the near IR, the ability to obtain diffraction limited seeing via IR array speckle interferometry offers a powerful tool. We are constructing a real-time processor to acquire image frames, perform array flat-fielding, execute a 64 x 64 element 2D complex FFT, and to average the power spectrum all within the 25 msec coherence time for speckles at near IR wavelength. The processor is a compact unit controlled by a PC with real time display and data storage capability. It provides the ability to optimize observations and obtain results on the telescope rather than waiting several weeks before the data can be analyzed and viewed with off-line methods

  6. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... vomiting in young infants Because ultrasound provides real-time images, images that are renewed continuously, it also ...

  7. Dual-mode photoacoustic and ultrasound system for real-time in-vivo ovarian cancer imaging

    Science.gov (United States)

    Mostafa, Atahar; Nandy, Sreyankar; Amidi, Eghbal; Zhu, Quing

    2018-02-01

    More than 80% of the ovarian cancers are diagnosed at late stages and the survival rate is less than 50%. Currently, there is no effective screening technique available and transvaginal US can only tell if the ovaries are enlarged or not. We have developed a new real-time co-registered US and photoacoustic system for in vivo imaging and characterization of ovaries. US is used to localize ovaries and photoacoustic imaging provides functional information about ovarian tissue angiogenesis and oxygenation saturation. The system consists of a tunable laser and a commercial US system from Alpinion Inc. The Alpinion system is cable of providing channel data for both US pulse-echo and photoacoustic imaging and can be programmed as a computer terminal for display US and photoacoustic images side by side or in coregistered mode. A transvaginal ultrasound probe of 6-MHz center frequency and bandwidth of 3-10 MHz is coupled with four optical fibers surrounded the US probe to deliver the light to tissue. The light from optical fibers is homogenized to ensure the power delivered to the tissue surface is below the FDA required limit. Physicians can easily navigate the probe and use US to look for ovaries and then turn on photoacoustic mode to provide real-time tumor vasculature and So2 saturation maps. With the optimized system, we have successfully imaged first group of 7 patients of malignant, abnormal and benign ovaries. The results have shown that both photoacoustic signal strength and spatial distribution are different between malignant and abnormal and benign ovaries.

  8. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... the patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... of vomiting in young infants Because ultrasound provides real-time images, images that are renewed continuously, it also ...

  9. Real-time images of tidal recruitment using lung ultrasound.

    Science.gov (United States)

    Tusman, Gerardo; Acosta, Cecilia M; Nicola, Marco; Esperatti, Mariano; Bohm, Stephan H; Suarez-Sipmann, Fernando

    2015-12-01

    Ventilator-induced lung injury is a form of mechanical damage leading to a pulmonary inflammatory response related to the use of mechanical ventilation enhanced by the presence of atelectasis. One proposed mechanism of this injury is the repetitive opening and closing of collapsed alveoli and small airways within these atelectatic areas-a phenomenon called tidal recruitment. The presence of tidal recruitment is difficult to detect, even with high-resolution images of the lungs like CT scan. The purpose of this article is to give evidence of tidal recruitment by lung ultrasound. A standard lung ultrasound inspection detected lung zones of atelectasis in mechanically ventilated patients. With a linear probe placed in the intercostal oblique position. We observed tidal recruitment within atelectasis as an improvement in aeration at the end of inspiration followed by the re-collapse at the end of expiration. This mechanism disappeared after the performance of a lung recruitment maneuver. Lung ultrasound was helpful in detecting the presence of atelectasis and tidal recruitment and in confirming their resolution after a lung recruitment maneuver.

  10. Pulsed cavitational ultrasound for non-invasive chordal cutting guided by real-time 3D echocardiography.

    Science.gov (United States)

    Villemain, Olivier; Kwiecinski, Wojciech; Bel, Alain; Robin, Justine; Bruneval, Patrick; Arnal, Bastien; Tanter, Mickael; Pernot, Mathieu; Messas, Emmanuel

    2016-10-01

    Basal chordae surgical section has been shown to be effective in reducing ischaemic mitral regurgitation (IMR). Achieving this section by non-invasive mean can considerably decrease the morbidity of this intervention on already infarcted myocardium. We investigated in vitro and in vivo the feasibility and safety of pulsed cavitational focused ultrasound (histotripsy) for non-invasive chordal cutting guided by real-time 3D echocardiography. Experiments were performed on 12 sheep hearts, 5 in vitro on explanted sheep hearts and 7 in vivo on beating sheep hearts. In vitro, the mitral valve (MV) apparatus including basal and marginal chordae was removed and fixed on a holder in a water tank. High-intensity ultrasound pulses were emitted from the therapeutic device (1-MHz focused transducer, pulses of 8 µs duration, peak negative pressure of 17 MPa, repetition frequency of 100 Hz), placed at a distance of 64 mm under 3D echocardiography guidance. In vivo, after sternotomy, the same therapeutic device was applied on the beating heart. We analysed MV coaptation and chordae by real-time 3D echocardiography before and after basal chordal cutting. After sacrifice, the MV apparatus were harvested for anatomical and histological post-mortem explorations to confirm the section of the chordae. In vitro, all chordae were completely cut after a mean procedure duration of 5.5 ± 2.5 min. The procedure duration was found to increase linearly with the chordae diameter. In vivo, the central basal chordae of the anterior leaflet were completely cut. The mean procedure duration was 20 ± 9 min (min = 14, max = 26). The sectioned chordae was visible on echocardiography, and MV coaptation remained normal with no significant mitral regurgitation. Anatomical and histological post-mortem explorations of the hearts confirmed the section of the chordae. Histotripsy guided by 3D echo achieved successfully to cut MV chordae in vitro and in vivo in beating heart. We hope that this technique will

  11. Impact of ultrasound video transfer on the practice of ultrasound

    Science.gov (United States)

    Duerinckx, Andre J.; Hayrapetian, Alek S.; Grant, Edward G.; Valentino, Daniel J.; Rahbar, Darius; Kiszonas, Mike; Franco, Ricky; Melany, Michelle; Narin, Sherelle L.; Ragavendra, Nagesh

    1996-05-01

    Sonography can be highly dependent on real-time imaging and as such is highly physician intensive. Such situations arise mostly during complicated ultrasound radiology studies or echocardiology examinations. Under those circumstances it would be of benefit to transmit real-time images beyond the immediate area of the ultrasound laboratory when a physician is not on location. We undertook this study to determine if both static and dynamic image transfer to remote locations might be accomplished using an ultrafast ATM network and PACS. Image management of the local image files was performed by a commercial PACS from AGFA corporation. The local network was Ethernet based, and the global network was based on Asynchronous Transfer Mode (ATM, rates up to 100 Mbits/sec). Real-time image transfer involved two teaching hospitals, one of which had 2 separate ultrasound facilities. Radiologists consulted with technologists via telephone while the examinations were being performed. The applications of ATM network providing real time video for ultrasound imaging in a clinical environment and its potential impact on health delivery and clinical teaching. This technology increased technologist and physician productivity due to the elimination of commute time for physicians and waiting time for technologists and patients. Physician confidence in diagnosis increased compared to reviewing static images alone. This system provided instant access for radiologists to real-time scans from remote sites. Image quality and frame rate were equivalent to the original. The system increased productivity by allowing physicians to monitor studies at multiple sites simultaneously.

  12. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... modality for the diagnosis and monitoring of pregnant women and their unborn babies. Ultrasound provides real-time ...

  13. Fast decoding algorithms for coded aperture systems

    International Nuclear Information System (INIS)

    Byard, Kevin

    2014-01-01

    Fast decoding algorithms are described for a number of established coded aperture systems. The fast decoding algorithms for all these systems offer significant reductions in the number of calculations required when reconstructing images formed by a coded aperture system and hence require less computation time to produce the images. The algorithms may therefore be of use in applications that require fast image reconstruction, such as near real-time nuclear medicine and location of hazardous radioactive spillage. Experimental tests confirm the efficacy of the fast decoding techniques

  14. Real-Time 3-Dimensional Ultrasound-Assisted Infraclavicular Brachial Plexus Catheter Placement: Implications of a New Technology

    Directory of Open Access Journals (Sweden)

    Steven R. Clendenen

    2010-01-01

    Full Text Available Background. There are a variety of techniques for targeting placement of an infraclavicular blockade; these include eliciting paresthesias, nerve stimulation, and 2-dimensional (2D ultrasound (US guidance. Current 2D US allows direct visualization of a “flat” image of the advancing needle and neurovascular structures but without the ability to extensively analyze multidimensional data and allow for real-time manipulation. Three-dimensional (3D ultrasonography has gained popularity and usefulness in many clinical specialties such as obstetrics and cardiology. We describe some of the potential clinical applications of 3D US in regional anesthesia. Methods. This case represents an infraclavicular catheter placement facilitated by 3D US, which demonstrates 360-degree spatial relationships of the entire anatomic region. Results. The block needle, peripheral nerve catheter, and local anesthetic diffusion were observed in multiple planes of view without manipulation of the US probe. Conclusion. Advantages of 3D US may include the ability to confirm correct needle and catheter placement prior to the injection of local anesthetic. The spread of local anesthetic along the length of the nerve can be easily observed while manipulating the 3D images in real-time by simply rotating the trackball on the US machine to provide additional information that cannot be identified with 2D US alone.

  15. Comparative studies on permanent prostate brachytherapy: pre-plan and real-time transrectal ultrasound guided iodine-125 seed implants at Korle-Bu Teaching Hospital, Ghana

    International Nuclear Information System (INIS)

    Kalolo, L.T.

    2013-06-01

    This research was carried out to investigate and compare the real-time and pre-plan implant at the Radiotherapy Department of the Korle Bu Teaching Hospital, Ghana. Prowess Panther 4.5 treatment planning system and variseed 7.2 software were used for pre-plan and real-time implant respectively. The study was conducted for eighty three (83) patients treated for prostate cancer through real-time implant brachytherapy between september, 2008 to April, 2013. Thirty one patients (31) patients whose ultrasound images were available were selected for the pre-plan study. The slices of ultrasound images were re-drawn on transparent A-4 sheets and later on scanned, contoured and registered in the treatment planning system (prowess 4.5). After planning, the volume to be implanted, total number of needles, seeds and the total activity of the source were displayed. Comparison was done withe the pre-plan and real-time implant. In both cases the variation was below 5% as recommended in dosimetry. About 30% - 40% of the imported seeds were left un-used due to over-estimation of seeds ordered from the manufacturer (BARD Company-USA). Hence this work (pre-plan) aims to solve this problem. The comparison for dosimetric parameters was assessed for prostate, urethra and rectum as (V 95%, V 100%, V 150%, D90Gy, D90%), (D90Gy, D90%, D30Gy, D30% ) and (V 100%, D30Gy and D30%) respectively and the variation were within the limit of ± 5%. Comparison of dosimetric values for this work were done with other institutions, like Karolinska university hospital, Sweden, The institute of Curie/ hospital Cochin Group Paris-France and European recommendations. The values reported at Korle - Bu teaching hospital (this work) were in good agreement with the international guidelines. (au)

  16. Comparison between different encoding schemes for synthetic aperture imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2002-01-01

    and spatio-temporal encoding was investigated. Experiments on wire phantom in water were carried out to quantify the gain from the different encodings. The gain in SNR using an FM modulated pulse is 12 dB. The penetration depth of the images was studied using tissue mimicking phantom with frequency dependent......Synthetic transmit aperture ultrasound (STAU) imaging can create images with as low as 2 emissions, making it attractive for 3D real-time imaging. Two are the major problems to be solved: (1) complexity of the hardware involved, and (2) poor image quality due to low signal to noise ratio (SNR). We...... attenuation of 0.5 dB/(cm MHz). The combination of spatial and temporal encoding have highest penetration depth. Images to a depth of 110 mm, can successfully be made with contrast resolution comparable to that of a linear array image. The in-vivo scans show that the motion artifacts do not significantly...

  17. Real-time contrast imaging: a new method to monitor capillary recruitment in human forearm skeletal muscle.

    NARCIS (Netherlands)

    Mulder, A.H.; Dijk, A.P.J. van; Smits, P.; Tack, C.J.J.

    2008-01-01

    OBJECTIVE: Muscle capillary perfusion can be measured by contrast-enhanced ultrasound. We examined whether a less time-consuming ultrasound technique, called "real-time imaging," could be used to measure capillary recruitment in human forearm skeletal muscle. METHODS: We measured microvascular blood

  18. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... insertion. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... modality for the diagnosis and monitoring of pregnant women and their unborn babies. Ultrasound provides real-time ...

  19. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Ultrasound provides real-time imaging, making it a good tool for guiding minimally invasive procedures such as ... bowel (rectum) removed during prior surgery are not good candidates for ultrasound of the prostate gland because ...

  20. Computer tomography urography assisted real-time ultrasound-guided percutaneous nephrolithotomy on renal calculus.

    Science.gov (United States)

    Fang, You-Qiang; Wu, Jie-Ying; Li, Teng-Cheng; Zheng, Hao-Feng; Liang, Guan-Can; Chen, Yan-Xiong; Hong, Xiao-Bin; Cai, Wei-Zhong; Zang, Zhi-Jun; Di, Jin-Ming

    2017-06-01

    This study aimed to assess the role of pre-designed route on computer tomography urography (CTU) in the ultrasound-guided percutaneous nephrolithotomy (PCNL) for renal calculus.From August 2013 to May 2016, a total of 100 patients diagnosed with complex renal calculus in our hospital were randomly divided into CTU group and control group (without CTU assistance). CTU was used to design a rational route for puncturing in CTU group. Ultrasound was used in both groups to establish a working trace in the operation areas. Patients' perioperative parameters and postoperative complications were recorded.All operations were successfully performed, without transferring to open surgery. Time of channel establishment in CTU group (6.5 ± 4.3 minutes) was shorter than the control group (10.0 ± 6.7 minutes) (P = .002). In addition, there was shorter operation time, lower rates of blood transfusion, secondary operation, and less establishing channels. The incidence of postoperative complications including residual stones, sepsis, severe hemorrhage, and perirenal hematoma was lower in CTU group than in control group.Pre-designing puncture route on CTU images would improve the puncturing accuracy, lessen establishing channels as well as improve the security in the ultrasound-guided PCNL for complex renal calculus, but at the cost of increased radiation exposure.

  1. Near real-time geocoding of SAR imagery with orbit error removal.

    NARCIS (Netherlands)

    Smith, A.J.E.

    2003-01-01

    When utilizing knowledge of the spacecraft trajectory for near real-time geocoding of Synthetic Aperture Radar (SAR) images, the main problem is that predicted satellite orbits have to be used, which may be in error by several kilometres. As part of the development of a Dutch autonomous mobile

  2. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... the patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... by a computer, which in turn creates a real-time picture on the monitor. One or more frames ...

  3. Apertures

    CERN Document Server

    Hansen, R C

    2014-01-01

    Microwave Scanning Antennas, Volume I: Apertures is a comprehensive account of phased arrays, multiple beam arrays, time domain and synthetic apertures, and adaptive antennas. Advances in continuous apertures and near field theory are discussed. Low noise and monopulse apertures, optical scanners, and large radomes are also covered, along with radio astronomy instruments and associated theory.Comprised of five chapters, this volume begins with an overview of aperture theory as well as aperture distributions and near field theory. The second and third chapters deal with mechanically steered and

  4. Real-Time Ultrasound-Guided Catheter Navigation for Approaching Deep-Seated Brain Lesions: Role of Intraoperative Neurosonography with and without Fusion with Magnetic Resonance Imaging.

    Science.gov (United States)

    Manjila, Sunil; Karhade, Aditya; Phi, Ji Hoon; Scott, R Michael; Smith, Edward R

    2017-01-01

    Brain shift during the exposure of cranial lesions may reduce the accuracy of frameless stereotaxy. We describe a rapid, safe, and effective method to approach deep-seated brain lesions using real-time intraoperative ultrasound placement of a catheter to mark the dissection trajectory to the lesion. With Institutional Review Board approval, we retrospectively reviewed the radiographic, pathologic, and intraoperative data of 11 pediatric patients who underwent excision of 12 lesions by means of this technique. Full data sets were available for 12 lesions in 11 patients. Ten lesions were tumors and 2 were cavernous malformations. Lesion locations included the thalamus (n = 4), trigone (n = 3), mesial temporal lobe (n = 3), and deep white matter (n = 2). Catheter placement was successful in all patients, and the median time required for the procedure was 3 min (range 2-5 min). There were no complications related to catheter placement. The median diameter of surgical corridors on postresection magnetic resonance imaging was 6.6 mm (range 3.0-12.1 mm). Use of real-time ultrasound guidance to place a catheter to aid in the dissection to reach a deep-seated brain lesion provides advantages complementary to existing techniques, such as frameless stereotaxy. The catheter insertion technique described here provides a quick, accurate, and safe method for reaching deep-seated lesions. © 2017 S. Karger AG, Basel.

  5. Synthetic Aperture Beamformation using the GPU

    DEFF Research Database (Denmark)

    Hansen, Jens Munk; Schaa, Dana; Jensen, Jørgen Arendt

    2011-01-01

    A synthetic aperture ultrasound beamformer is implemented for a GPU using the OpenCL framework. The implementation supports beamformation of either RF signals or complex baseband signals. Transmit and receive apodization can be either parametric or dynamic using a fixed F-number, a reference...

  6. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers

    Science.gov (United States)

    Tsai, Chih-Hung; Zhang, Jia-Wei; Liao, Yi-Yi; Liu, Hao-Li

    2016-04-01

    Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a

  7. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers

    International Nuclear Information System (INIS)

    Tsai, Chih-Hung; Zhang, Jia-Wei; Liao, Yi-Yi; Liu, Hao-Li

    2016-01-01

    Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a

  8. A new method to study changes in microvascular blood volume in muscle and adipose tissue: Real time imaging in humans and rat

    DEFF Research Database (Denmark)

    Sjøberg, Kim Anker; Rattigan, Stephen; Hiscock, Natalie J

    2011-01-01

    We employed and evaluated a new application of contrast enhanced ultrasound for real time imaging of changes in microvascular blood volume (MVB) in tissues in females, males and rat. Continuous real time imaging was performed using contrast enhanced ultrasound to quantify infused gas filled micro...

  9. Enabling real-time ultrasound imaging of soft tissue mechanical properties by simplification of the shear wave motion equation.

    Science.gov (United States)

    Engel, Aaron J; Bashford, Gregory R

    2015-08-01

    Ultrasound based shear wave elastography (SWE) is a technique used for non-invasive characterization and imaging of soft tissue mechanical properties. Robust estimation of shear wave propagation speed is essential for imaging of soft tissue mechanical properties. In this study we propose to estimate shear wave speed by inversion of the first-order wave equation following directional filtering. This approach relies on estimation of first-order derivatives which allows for accurate estimations using smaller smoothing filters than when estimating second-order derivatives. The performance was compared to three current methods used to estimate shear wave propagation speed: direct inversion of the wave equation (DIWE), time-to-peak (TTP) and cross-correlation (CC). The shear wave speed of three homogeneous phantoms of different elastic moduli (gelatin by weight of 5%, 7%, and 9%) were measured with each method. The proposed method was shown to produce shear speed estimates comparable to the conventional methods (standard deviation of measurements being 0.13 m/s, 0.05 m/s, and 0.12 m/s), but with simpler processing and usually less time (by a factor of 1, 13, and 20 for DIWE, CC, and TTP respectively). The proposed method was able to produce a 2-D speed estimate from a single direction of wave propagation in about four seconds using an off-the-shelf PC, showing the feasibility of performing real-time or near real-time elasticity imaging with dedicated hardware.

  10. Automatic Ultrasound Scanning

    DEFF Research Database (Denmark)

    Moshavegh, Ramin

    on the user adjustments on the scanner interface to optimize the scan settings. This explains the huge interest in the subject of this PhD project entitled “AUTOMATIC ULTRASOUND SCANNING”. The key goals of the project have been to develop automated techniques to minimize the unnecessary settings...... on the scanners, and to improve the computer-aided diagnosis (CAD) in ultrasound by introducing new quantitative measures. Thus, four major issues concerning automation of the medical ultrasound are addressed in this PhD project. They touch upon gain adjustments in ultrasound, automatic synthetic aperture image...

  11. Real time automatic discriminating of ultrasonic flaws

    International Nuclear Information System (INIS)

    Suhairy Sani; Mohd Hanif Md Saad; Marzuki Mustafa; Mohd Redzwan Rosli

    2009-01-01

    This paper is concerned with the real time automatic discriminating of flaws from two categories; i. cracks (planar defect) and ii. Non-cracks (volumetric defect such as cluster porosity and slag) using pulse-echo ultrasound. The raw ultrasonic flaws signal were collected from a computerized robotic plane scanning system over the whole of each reflector as the primary source of data. The signal is then filtered and the analysis in both time and frequency domain were executed to obtain the selected feature. The real time feature analysis techniques measured the number of peaks, maximum index, pulse duration, rise time and fall time. The obtained features could be used to distinguish between quantitatively classified flaws by using various tools in artificial intelligence such as neural networks. The proposed algorithm and complete system were implemented in a computer software developed using Microsoft Visual BASIC 6.0 (author)

  12. Real-time 2-D Phased Array Vector Flow Imaging

    DEFF Research Database (Denmark)

    Holbek, Simon; Hansen, Kristoffer Lindskov; Fogh, Nikolaj

    2018-01-01

    Echocardiography examination of the blood flow is currently either restricted to 1-D techniques in real-time or experimental off-line 2-D methods. This paper presents an implementation of transverse oscillation for real-time 2-D vector flow imaging (VFI) on a commercial BK Ultrasound scanner....... A large field-of-view (FOV) sequence for studying flow dynamics at 11 frames per second (fps) and a sequence for studying peak systolic velocities (PSV) with a narrow FOV at 36 fps were validated. The VFI sequences were validated in a flow-rig with continuous laminar parabolic flow and in a pulsating flow...

  13. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... the patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... by a computer, which in turn creates a real-time picture on the monitor. One or more frames ...

  14. Prostate Ultrasound

    Science.gov (United States)

    ... be able to give a clearer picture of soft tissues that do not show up well on x-ray images. Ultrasound causes no health problems and may be repeated as often as is necessary if medically indicated. Ultrasound provides real-time imaging, making it a good tool for guiding ...

  15. Comparison of a novel real-time SonixGPS needle-tracking ultrasound technique with traditional ultrasound for vascular access in a phantom gel model.

    Science.gov (United States)

    Kopac, Daniel S; Chen, Jerry; Tang, Raymond; Sawka, Andrew; Vaghadia, Himat

    2013-09-01

    Ultrasound-guided percutaneous vascular access for endovascular procedures is well established in surgical practice. Despite this, rates of complications from venous and arterial access procedures remain a significant cause of morbidity. We hypothesized that the use of a new technique of vascular access using an ultrasound with a novel needle-guidance positioning system (GPS) would lead to improved success rates of vascular puncture for both in-plane and out-of-plane techniques compared with traditional ultrasound. A prospective, randomized crossover study of medical students from all years of medical school was conducted using a phantom gel model. Each medical student performed three ultrasound-guided punctures with each of the four modalities (in-plane no GPS, in-plane with GPS, out-of-plane no GPS, out-of-plane with GPS) for a total of 12 attempts. The success or failure was judged by the ability to aspirate a simulated blood solution from the model. The time to successful puncture was also recorded. A poststudy validated NASA Task Load Index workload questionnaire was conducted to assess the student's perceptions of the two different techniques. A total of 30 students completed the study. There was no significant difference seen in the mean times of vascular access for each of the modalities. Higher success rates for vascular access using the GPS for both the in-plane (94% vs 91%) and the out-of-plane (86% vs 70%) views were observed; however, this was not statistically significant. The students perceived the mental demand (median 12.0 vs 14.00; P = .035) and effort to be lower (mean 11.25 vs 14.00; P = .044) as well as the performance to be higher (mean 15.50 vs 14.00; P = .041) for the GPS vs the traditional ultrasound-guided technique. Students also perceived their ability to access vessels increased with the aid of the GPS (7.00 vs 6.50; P = .007). The majority of students expressed a preference for GPS (26/30, 87%) as opposed to the traditional counterpart

  16. Real Time Grouting Control Method. Development and application using Aespoe HRL data

    International Nuclear Information System (INIS)

    Kobayashi, Shinji; Stille, Haakan; Gustafson, Gunnar; Stille, Bjoern

    2008-10-01

    theories for grout spread. The stop criterion can with this method be related to achieved grout spread such as the fact that grouting is completed when the grout penetration for the smallest fracture that has to be sealed is above a certain minimum value (target value) or before the grout penetration for the largest fracture aperture reaches a certain maximum value (limiting value). Based on the calculated penetration length it might be possible to add certain other options to the method, such as estimation of joint aperture, prediction of grout flow and grout penetration, calculation of the risk of uplift, and prediction of water leakage to the tunnel. In order to verify the 'Real Time Grouting Control Method', the field data from the grouting field experiment at the 450 m level in the Aespoe HRL has been used. The calculated flow dimensionality, the calculated fracture apertures and the calculated grout flows were quite close to those measured. This indicates that the 'Real Time Grouting Control Method' may be applicable to real grouting design and control

  17. Non-invasive estimation of temperature using diagnostic ultrasound during HIFU therapy

    Science.gov (United States)

    Georg, O.; Wilkens, V.

    2017-03-01

    The use of HIFU for thermal ablation of human tissues requires safe real-time monitoring of the lesion formation during the treatment to avoid damage of the surrounding healthy tissues and to control temperature rise. Besides MR imaging, several methods have been proposed for temperature imaging using diagnostic ultrasound, and echoshift estimation (using speckle tracking) is the most promising and commonly used technique. It is based on the thermal dependence of the ultrasound echo that accounts for two different physical phenomena: local change in speed of sound and thermal expansion of the propagating medium due to changes in temperature. In our experiments we have used two separate transducers: HIFU exposure was performed using a 1.06 MHz single element focusing transducer of 64 mm aperture and 63.2 mm focal length; the ultrasound diagnostic probe of 11 MHz operated in B-mode for image guidance. The temperature measurements were performed in an agar-based tissue-mimicking phantom. To verify the obtained results, numerical modeling of the acoustic and temperature fields was carried out using KZK and Pennes Bioheat equations, as well as measurements with thermocouples were performed.

  18. Prostate Ultrasound

    Medline Plus

    Full Text Available ... be able to give a clearer picture of soft tissues that do not show up well on x-ray images. Ultrasound causes no health problems and may be repeated as often as is necessary if medically indicated. Ultrasound provides real-time imaging, making it a good tool for guiding ...

  19. Intraoperative Ultrasound for Peripheral Nerve Applications.

    Science.gov (United States)

    Willsey, Matthew; Wilson, Thomas J; Henning, Phillip Troy; Yang, Lynda J-S

    2017-10-01

    Offering real-time, high-resolution images via intraoperative ultrasound is advantageous for a variety of peripheral nerve applications. To highlight the advantages of ultrasound, its extraoperative uses are reviewed. The current intraoperative uses, including nerve localization, real-time evaluation of peripheral nerve tumors, and implantation of leads for peripheral nerve stimulation, are reviewed. Although intraoperative peripheral nerve localization has been performed previously using guide wires and surgical dyes, the authors' approach using ultrasound-guided instrument clamps helps guide surgical dissection to the target nerve, which could lead to more timely operations and shorter incisions. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Comparison of Real-Time Intraoperative Ultrasound-Based Dosimetry With Postoperative Computed Tomography-Based Dosimetry for Prostate Brachytherapy

    International Nuclear Information System (INIS)

    Nag, Subir; Shi Peipei; Liu Bingren; Gupta, Nilendu; Bahnson, Robert R.; Wang, Jian Z.

    2008-01-01

    Purpose: To evaluate whether real-time intraoperative ultrasound (US)-based dosimetry can replace conventional postoperative computed tomography (CT)-based dosimetry in prostate brachytherapy. Methods and Materials: Between December 2001 and November 2002, 82 patients underwent 103 Pd prostate brachytherapy. An interplant treatment planning system was used for real-time intraoperative transrectal US-guided treatment planning. The dose distribution was updated according to the estimated seed position to obtain the dose-volume histograms. Postoperative CT-based dosimetry was performed a few hours later using the Theraplan-Plus treatment planning system. The dosimetric parameters obtained from the two imaging modalities were compared. Results: The results of this study revealed correlations between the US- and CT-based dosimetry. However, large variations were found in the implant-quality parameters of the two modalities, including the doses covering 100%, 90%, and 80% of the prostate volume and prostate volumes covered by 100%, 150%, and 200% of the prescription dose. The mean relative difference was 38% and 16% for doses covering 100% and 90% of the prostate volume and 10% and 21% for prostate volumes covered by 100% and 150% of the prescription dose, respectively. The CT-based volume covered by 200% of the prescription dose was about 30% greater than the US-based one. Compared with CT-based dosimetry, US-based dosimetry significantly underestimated the dose to normal organs, especially for the rectum. The average US-based maximal dose and volume covered by 100% of the prescription dose for the rectum was 72 Gy and 0.01 cm 3 , respectively, much lower than the 159 Gy and 0.65 cm 3 obtained using CT-based dosimetry. Conclusion: Although dosimetry using intraoperative US-based planning provides preliminary real-time information, it does not accurately reflect the postoperative CT-based dosimetry. Until studies have determined whether US-based dosimetry or

  1. Volumetric Real-Time Imaging Using a CMUT Ring Array

    OpenAIRE

    Choe, Jung Woo; Oralkan, Ömer; Nikoozadeh, Amin; Gencel, Mustafa; Stephens, Douglas N.; O’Donnell, Matthew; Sahn, David J.; Khuri-Yakub, Butrus T.

    2012-01-01

    A ring array provides a very suitable geometry for forward-looking volumetric intracardiac and intravascular ultrasound imaging. We fabricated an annular 64-element capacitive micromachined ultrasonic transducer (CMUT) array featuring a 10-MHz operating frequency and a 1.27-mm outer radius. A custom software suite was developed to run on a PC-based imaging system for real-time imaging using this device.

  2. Synthetic Aperture Sequential Beamformation applied to medical imaging

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Hansen, Jens Munk; Jensen, Jørgen Arendt

    2012-01-01

    Synthetic Aperture Sequential Beamforming (SASB) is applied to medical ultrasound imaging using a multi element convex array transducer. The main motivation for SASB is to apply synthetic aperture techniques without the need for storing RF-data for a number of elements and hereby devise a system...... with a reduced system complexity. Using a 192 element, 3.5 MHz, λ-pitch transducer, it is demonstrated using tissue-phantom and wire-phantom measurements, how the speckle size and the detail resolution is improved compared to conventional imaging....

  3. In Vivo Evaluation of Synthetic Aperture Sequential Beamforming

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Hansen, Peter Møller; Lange, Theis

    2012-01-01

    Ultrasound in vivo imaging using synthetic aperture sequential beamformation (SASB) is compared with conventional imaging in a double blinded study using side-by-side comparisons. The objective is to evaluate if the image quality in terms of penetration depth, spatial resolution, contrast...

  4. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... women and their unborn babies. Ultrasound provides real-time imaging, making it a good tool for guiding minimally invasive procedures such as needle biopsies and fluid aspiration. Risks For standard diagnostic ultrasound , there are no known harmful effects on humans. top of page What are the ...

  5. Two-dimensional random arrays for real time volumetric imaging

    DEFF Research Database (Denmark)

    Davidsen, Richard E.; Jensen, Jørgen Arendt; Smith, Stephen W.

    1994-01-01

    real time volumetric imaging system, which employs a wide transmit beam and receive mode parallel processing to increase image frame rate. Depth-of-field comparisons were made from simulated on-axis and off-axis beamplots at ranges from 30 to 160 mm for both coaxial and offset transmit and receive......Two-dimensional arrays are necessary for a variety of ultrasonic imaging techniques, including elevation focusing, 2-D phase aberration correction, and real time volumetric imaging. In order to reduce system cost and complexity, sparse 2-D arrays have been considered with element geometries...... selected ad hoc, by algorithm, or by random process. Two random sparse array geometries and a sparse array with a Mills cross receive pattern were simulated and compared to a fully sampled aperture with the same overall dimensions. The sparse arrays were designed to the constraints of the Duke University...

  6. Sparse dictionary for synthetic transmit aperture medical ultrasound imaging.

    Science.gov (United States)

    Wang, Ping; Jiang, Jin-Yang; Li, Na; Luo, Han-Wu; Li, Fang; Cui, Shi-Gang

    2017-07-01

    It is possible to recover a signal below the Nyquist sampling limit using a compressive sensing technique in ultrasound imaging. However, the reconstruction enabled by common sparse transform approaches does not achieve satisfactory results. Considering the ultrasound echo signal's features of attenuation, repetition, and superposition, a sparse dictionary with the emission pulse signal is proposed. Sparse coefficients in the proposed dictionary have high sparsity. Images reconstructed with this dictionary were compared with those obtained with the three other common transforms, namely, discrete Fourier transform, discrete cosine transform, and discrete wavelet transform. The performance of the proposed dictionary was analyzed via a simulation and experimental data. The mean absolute error (MAE) was used to quantify the quality of the reconstructions. Experimental results indicate that the MAE associated with the proposed dictionary was always the smallest, the reconstruction time required was the shortest, and the lateral resolution and contrast of the reconstructed images were also the closest to the original images. The proposed sparse dictionary performed better than the other three sparse transforms. With the same sampling rate, the proposed dictionary achieved excellent reconstruction quality.

  7. A Diagnostic Ultrasound Imaging System

    International Nuclear Information System (INIS)

    Lee, Seong Woo

    1999-01-01

    The ability to see the internal organs of the human body in a noninvasive way is a powerful diagnostic tool of modern medicine. Among these imaging modalities such as X-ray, MRI, and ultrasound. MRI and ultrasound are presenting much less risk of undesirable damage of both patient and examiner. In fact, no deleterious effects have been reported as a result of clinical examination by using MRI and ultrasound diagnostic equipment. As a result, their market volume has been rapidly increased. MRI has a good resolution. but there are a few disadvantages such as high price. non-real-time imaging capability. and expensive diagnostic cost. On the other hand, the ultrasound imaging system has inherently poor resolution as compared with X-ray and MRI. In spite of its poor resolution, the ultrasound diagnostic equipment is lower in price and has an ability of real-time imaging as compared with the others. As a result, the ultrasound imaging system has become general and essential modality for imaging the internal organs of human body. In this review various researches and developments to enhance the resolution of the ultrasound images are explained and future trends of the ultrasound imaging technology are described

  8. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... radiation. Ultrasound scanning gives a clear picture of soft tissues that do not show up well on x-ray images. Ultrasound provides real-time imaging, making it a good tool for guiding ...

  9. Real-time contrast ultrasound muscle perfusion imaging with intermediate-power imaging coupled with acoustically durable microbubbles.

    Science.gov (United States)

    Seol, Sang-Hoon; Davidson, Brian P; Belcik, J Todd; Mott, Brian H; Goodman, Reid M; Ammi, Azzdine; Lindner, Jonathan R

    2015-06-01

    There is growing interest in limb contrast-enhanced ultrasound (CEU) perfusion imaging for the evaluation of peripheral artery disease. Because of low resting microvascular blood flow in skeletal muscle, signal enhancement during limb CEU is prohibitively low for real-time imaging. The aim of this study was to test the hypothesis that this obstacle can be overcome by intermediate- rather than low-power CEU when performed with an acoustically resilient microbubble agent. Viscoelastic properties of Definity and Sonazoid were assessed by measuring bulk modulus during incremental increases in ambient pressure to 200 mm Hg. Comparison of in vivo microbubble destruction and signal enhancement at a mechanical index (MI) of 0.1 to 0.4 was performed by sequential reduction in pulsing interval from 10 to 0.05 sec during limb CEU at 7 MHz in mice and 1.8 MHz in dogs. Destruction was also assessed by broadband signal generation during passive cavitation detection. Real-time CEU perfusion imaging with destruction-replenishment was then performed at 1.8 MHz in dogs using an MI of 0.1, 0.2, or 0.3. Sonazoid had a higher bulk modulus than Definity (66 ± 12 vs 29 ± 2 kPa, P = .02) and exhibited less inertial cavitation (destruction) at MIs ≥ 0.2. On in vivo CEU, maximal signal intensity increased incrementally with MI for both agents and was equivalent between agents except at an MI of 0.1 (60% and 85% lower for Sonazoid at 7 and 1.8 MHz, respectively, P power imaging coupled with a durable microbubble contrast agent. Copyright © 2015 American Society of Echocardiography. All rights reserved.

  10. Parameter Optimization of Multi-Element Synthetic Aperture Imaging Systems

    Directory of Open Access Journals (Sweden)

    Vera Behar

    2007-03-01

    Full Text Available In conventional ultrasound imaging systems with phased arrays, the further improvement of lateral resolution requires enlarging of the number of array elements that in turn increases both, the complexity and the cost, of imaging systems. Multi-element synthetic aperture focusing (MSAF systems are a very good alternative to conventional systems with phased arrays. The benefit of the synthetic aperture is in reduction of the system complexity, cost and acquisition time. In a MSAF system considered in the paper, a group of elements transmit and receive signals simultaneously, and the transmit beam is defocused to emulate a single element response. The echo received at each element of a receive sub-aperture is recorded in the computer memory. The process of transmission/reception is repeated for all positions of a transmit sub-aperture. All the data recordings associated with each corresponding pair "transmit-receive sub-aperture" are then focused synthetically producing a low-resolution image. The final high-resolution image is formed by summing of the all low-resolution images associated with transmit/receive sub-apertures. A problem of parameter optimization of a MSAF system is considered in this paper. The quality of imaging (lateral resolution and contrast is expressed in terms of the beam characteristics - beam width and side lobe level. The comparison between the MSAF system described in the paper and an equivalent conventional phased array system shows that the MSAF system acquires images of equivalent quality much faster using only a small part of the power per image.

  11. First Clinical Investigations of New Ultrasound Techniques in Three Patient Groups: Patients with Liver Tumors, Arteriovenous Fistulas, and Arteriosclerotic Femoral Arteries

    DEFF Research Database (Denmark)

    Hansen, Peter Møller

    In this PhD project two newer ultrasound techniques are for the first time used for clinical scans of patients with malignant liver tumors (Study I), arteriovenous fistulas for hemodialysis (Study II) and arteriosclerotic femoral arteries (Study III). The same commercial ultrasound scanner was us...... of the new ultrasound techniques in selected groups of patients. For all three studies the results are promising, and hopefully the techniques will find their way into everyday clinical practice for the benefit of both patients and healthcare practitioners.......In this PhD project two newer ultrasound techniques are for the first time used for clinical scans of patients with malignant liver tumors (Study I), arteriovenous fistulas for hemodialysis (Study II) and arteriosclerotic femoral arteries (Study III). The same commercial ultrasound scanner was used...... in all three studies. Study I was a comparative study of B-mode ultrasound images obtained with conventional technique and the experimental technique Synthetic Aperture Sequential Beamforming (SASB). SASB is a datareducing version of the technique synthetic aperture, which has the potential to produce...

  12. Velocity estimation using synthetic aperture imaging [blood flow

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2001-01-01

    Presented an approach for synthetic aperture blood flow ultrasound imaging. Estimates with a low bias and standard deviation can be obtained with as few as eight emissions. The performance of the new estimator is verified using both simulations and measurements. The results demonstrate that a fully...

  13. The Danish real-time SAR processor: first results

    DEFF Research Database (Denmark)

    Dall, Jørgen; Jørgensen, Jørn Hjelm; Netterstrøm, Anders

    1993-01-01

    A real-time processor (RTP) for the Danish airborne Synthetic Aperture Radar (SAR) has been designed and constructed at the Electromagnetics Institute. The implementation was completed in mid 1992, and since then the RTP has been operated successfully on several test and demonstration flights....... The processor is capable of focusing the entire swath of the raw SAR data into full resolution, and depending on the choice made by the on-board operator, either a high resolution one-look zoom image or a spatially multilooked overview image is displayed. After a brief design review, the paper addresses various...

  14. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound images are captured in real-time, they can show the structure and movement of the body's ... kidneys bladder testicles ovaries uterus Abdominal ultrasound images can be used to help diagnose appendicitis in children. ...

  15. Prostate Ultrasound

    Medline Plus

    Full Text Available ... nodule felt by a physician during a routine physical exam or prostate cancer screening exam. an elevated blood test result. difficulty urinating. Because ultrasound provides real-time ...

  16. Improving near-real time deforestation monitoring in tropical dry forests by combining dense Sentinel-1 time series with Landsat and ALOS-2 PALSAR-2

    NARCIS (Netherlands)

    Reiche, Johannes; Hamunyela, Eliakim; Verbesselt, Jan; Hoekman, Dirk; Herold, Martin

    2018-01-01

    Combining observations from multiple optical and synthetic aperture radar (SAR) satellites can provide temporally dense and regular information at medium resolution scale, independently of weather, season, and location. This has the potential to improve near real-time deforestation monitoring in dry

  17. Digital filtering and reconstruction of coded aperture images

    International Nuclear Information System (INIS)

    Tobin, K.W. Jr.

    1987-01-01

    The real-time neutron radiography facility at the University of Virginia has been used for both transmission radiography and computed tomography. Recently, a coded aperture system has been developed to permit the extraction of three dimensional information from a low intensity field of radiation scattered by an extended object. Short wave-length radiations (e.g. neutrons) are not easily image because of the difficulties in achieving diffraction and refraction with a conventional lens imaging system. By using a coded aperture approach, an imaging system has been developed that records and reconstructs an object from an intensity distribution. This system has a signal-to-noise ratio that is proportional to the total open area of the aperture making it ideal for imaging with a limiting intensity radiation field. The main goal of this research was to develope and implement the digital methods and theory necessary for the reconstruction process. Several real-time video systems, attached to an Intellect-100 image processor, a DEC PDP-11 micro-computer, and a Convex-1 parallel processing mainframe were employed. This system, coupled with theoretical extensions and improvements, allowed for retrieval of information previously unobtainable by earlier optical methods. The effect of thermal noise, shot noise, and aperture related artifacts were examined so that new digital filtering techniques could be constructed and implemented. Results of image data filtering prior to and following the reconstruction process are reported. Improvements related to the different signal processing methods are emphasized. The application and advantages of this imaging technique to the field of non-destructive testing are also discussed

  18. Rapidly-steered single-element ultrasound for real-time volumetric imaging and guidance

    Science.gov (United States)

    Stauber, Mark; Western, Craig; Solek, Roman; Salisbury, Kenneth; Hristov, Dmitre; Schlosser, Jeffrey

    2016-03-01

    Volumetric ultrasound (US) imaging has the potential to provide real-time anatomical imaging with high soft-tissue contrast in a variety of diagnostic and therapeutic guidance applications. However, existing volumetric US machines utilize "wobbling" linear phased array or matrix phased array transducers which are costly to manufacture and necessitate bulky external processing units. To drastically reduce cost, improve portability, and reduce footprint, we propose a rapidly-steered single-element volumetric US imaging system. In this paper we explore the feasibility of this system with a proof-of-concept single-element volumetric US imaging device. The device uses a multi-directional raster-scan technique to generate a series of two-dimensional (2D) slices that were reconstructed into three-dimensional (3D) volumes. At 15 cm depth, 90° lateral field of view (FOV), and 20° elevation FOV, the device produced 20-slice volumes at a rate of 0.8 Hz. Imaging performance was evaluated using an US phantom. Spatial resolution was 2.0 mm, 4.7 mm, and 5.0 mm in the axial, lateral, and elevational directions at 7.5 cm. Relative motion of phantom targets were automatically tracked within US volumes with a mean error of -0.3+/-0.3 mm, -0.3+/-0.3 mm, and -0.1+/-0.5 mm in the axial, lateral, and elevational directions, respectively. The device exhibited a mean spatial distortion error of 0.3+/-0.9 mm, 0.4+/-0.7 mm, and -0.3+/-1.9 in the axial, lateral, and elevational directions. With a production cost near $1000, the performance characteristics of the proposed system make it an ideal candidate for diagnostic and image-guided therapy applications where form factor and low cost are paramount.

  19. A method for real-time three-dimensional vector velocity imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav

    2003-01-01

    The paper presents an approach for making real-time three-dimensional vector flow imaging. Synthetic aperture data acquisition is used, and the data is beamformed along the flow direction to yield signals usable for flow estimation. The signals are cross-related to determine the shift in position...... are done using 16 × 16 = 256 elements at a time and the received signals from the same elements are sampled. Access to the individual elements is done through 16-to-1 multiplexing, so that only a 256 channels transmitting and receiving system are needed. The method has been investigated using Field II...

  20. A parallelizable real-time motion tracking algorithm with applications to ultrasonic strain imaging

    International Nuclear Information System (INIS)

    Jiang, J; Hall, T J

    2007-01-01

    Ultrasound-based mechanical strain imaging systems utilize signals from conventional diagnostic ultrasound systems to image tissue elasticity contrast that provides new diagnostically valuable information. Previous works (Hall et al 2003 Ultrasound Med. Biol. 29 427, Zhu and Hall 2002 Ultrason. Imaging 24 161) demonstrated that uniaxial deformation with minimal elevation motion is preferred for breast strain imaging and real-time strain image feedback to operators is important to accomplish this goal. The work reported here enhances the real-time speckle tracking algorithm with two significant modifications. One fundamental change is that the proposed algorithm is a column-based algorithm (a column is defined by a line of data parallel to the ultrasound beam direction, i.e. an A-line), as opposed to a row-based algorithm (a row is defined by a line of data perpendicular to the ultrasound beam direction). Then, displacement estimates from its adjacent columns provide good guidance for motion tracking in a significantly reduced search region to reduce computational cost. Consequently, the process of displacement estimation can be naturally split into at least two separated tasks, computed in parallel, propagating outward from the center of the region of interest (ROI). The proposed algorithm has been implemented and optimized in a Windows (registered) system as a stand-alone ANSI C++ program. Results of preliminary tests, using numerical and tissue-mimicking phantoms, and in vivo tissue data, suggest that high contrast strain images can be consistently obtained with frame rates (10 frames s -1 ) that exceed our previous methods

  1. Realization of a video-rate distributed aperture millimeter-wave imaging system using optical upconversion

    Science.gov (United States)

    Schuetz, Christopher; Martin, Richard; Dillon, Thomas; Yao, Peng; Mackrides, Daniel; Harrity, Charles; Zablocki, Alicia; Shreve, Kevin; Bonnett, James; Curt, Petersen; Prather, Dennis

    2013-05-01

    Passive imaging using millimeter waves (mmWs) has many advantages and applications in the defense and security markets. All terrestrial bodies emit mmW radiation and these wavelengths are able to penetrate smoke, fog/clouds/marine layers, and even clothing. One primary obstacle to imaging in this spectrum is that longer wavelengths require larger apertures to achieve the resolutions desired for many applications. Accordingly, lens-based focal plane systems and scanning systems tend to require large aperture optics, which increase the achievable size and weight of such systems to beyond what can be supported by many applications. To overcome this limitation, a distributed aperture detection scheme is used in which the effective aperture size can be increased without the associated volumetric increase in imager size. This distributed aperture system is realized through conversion of the received mmW energy into sidebands on an optical carrier. This conversion serves, in essence, to scale the mmW sparse aperture array signals onto a complementary optical array. The side bands are subsequently stripped from the optical carrier and recombined to provide a real time snapshot of the mmW signal. Using this technique, we have constructed a real-time, video-rate imager operating at 75 GHz. A distributed aperture consisting of 220 upconversion channels is used to realize 2.5k pixels with passive sensitivity. Details of the construction and operation of this imager as well as field testing results will be presented herein.

  2. Integration of multidisciplinary technologies for real time target visualization and verification for radiotherapy

    Directory of Open Access Journals (Sweden)

    Chang WC

    2014-06-01

    Full Text Available Wen-Chung Chang,1,* Chin-Sheng Chen,2,* Hung-Chi Tai,3 Chia-Yuan Liu,4,5 Yu-Jen Chen3 1Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan; 2Graduate Institute of Automation Technology, National Taipei University of Technology, Taipei, Taiwan; 3Department of Radiation Oncology, Mackay Memorial Hospital, Taipei, Taiwan; 4Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan; 5Department of Medicine, Mackay Medical College, New Taipei City, Taiwan  *These authors contributed equally to this work Abstract: The current practice of radiotherapy examines target coverage solely from digitally reconstructed beam's eye view (BEV in a way that is indirectly accessible and that is not in real time. We aimed to visualize treatment targets in real time from each BEV. The image data of phantom or patients from ultrasound (US and computed tomography (CT scans were captured to perform image registration. We integrated US, CT, US/CT image registration, robotic manipulation of US, a radiation treatment planning system, and a linear accelerator to constitute an innovative target visualization system. The performance of this algorithm segmented the target organ in CT images, transformed and reconstructed US images to match each orientation, and generated image registration in real time mode with acceptable accuracy. This image transformation allowed physicians to visualize the CT image-reconstructed target via a US probe outside the BEV that was non-coplanar to the beam's plane. It allowed the physicians to remotely control the US probe that was equipped on a robotic arm to dynamically trace and real time monitor the coverage of the target within the BEV during a simulated beam-on situation. This target visualization system may provide a direct remotely accessible and real time way to visualize, verify, and ensure tumor targeting during radiotherapy. Keywords: ultrasound, computerized tomography

  3. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound images are captured in real-time, they can show the structure and movement of the body's ... time, rather than as a color picture. It can also convert blood flow information into a distinctive ...

  4. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... terms of the distance traveled per unit of time, rather than as a color picture. It can ...

  5. Ultrasound-Guided Cannulation: Time to Bring Subclavian Central Lines Back

    Directory of Open Access Journals (Sweden)

    Talayeh Rezayat, DO, MPH

    2016-03-01

    Full Text Available Despite multiple advantages, subclavian vein (SCV cannulation via the traditional landmark approach has become less used in comparison to ultrasound (US guided internal jugular catheterization due to a higher rate of mechanical complications. A growing body of evidence indicates that SCV catheterization with real-time US guidance can be accomplished safely and efficiently. While several cannulation approaches with real-time US guidance have been described, available literature suggests that the infraclavicular, longitudinal “in-plane” technique may be preferred. This approach allows for direct visualization of needle advancement, which reduces risk of complications and improves successful placement. Infraclavicular SCV cannulation requires simultaneous use of US during needle advancement, but for an inexperienced operator, it is more easily learned compared to the traditional landmark approach. In this article, we review the evidence supporting the use of US guidance for SCV catheterization and discuss technical aspects of the procedure itself.

  6. Synthetic Aperture Compound Imaging

    DEFF Research Database (Denmark)

    Hansen, Jens Munk

    and the limiting factor is the amount of memory IO resources available. An equally high demand for memory throughput is found in the computer gaming industry, where a large part of the processing takes place on the graphics processing unit (GPU). Using the GPU, a framework for synthetic aperture imaging......Medical ultrasound imaging is used for many purposes, e.g. for localizing and classifying cysts, lesions, and other processes. Almost any mass is first observed using B-mode imaging and later classified using e.g. color flow, strain, or attenuation imaging. It is therefore important that the B......-mode images have high contrast. Like all imaging modalities, ultrasound is subject to a number of inherent artifacts that compromise image quality. The most prominent artifact is the degradation by coherent wave interference, known as “speckle”, which gives a granular appearance to an otherwise homogeneous...

  7. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... abdomen, arms, legs, neck and/or brain (in infants and children) or within various body organs such ... and monitoring of pregnant women and their unborn babies. Ultrasound provides real-time imaging, making it a ...

  8. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... use different transducers (with different capabilities) during a single exam. The transducer sends out high-frequency sound ... modality for the diagnosis and monitoring of pregnant women and their unborn babies. Ultrasound provides real-time ...

  9. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... be necessary. Your doctor will explain the exact reason why another exam is requested. Sometimes a follow- ... Ultrasound provides real-time imaging, making it a good tool for guiding minimally invasive procedures such as ...

  10. Prostate Ultrasound

    Medline Plus

    Full Text Available ... be necessary. Your doctor will explain the exact reason why another exam is requested. Sometimes a follow- ... Ultrasound provides real-time imaging, making it a good tool for guiding minimally invasive procedures such as ...

  11. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... the exam. Bringing books, small toys, music or games can help to distract the child and make ... modality for the diagnosis and monitoring of pregnant women and their unborn babies. Ultrasound provides real-time ...

  12. Thin-film sparse boundary array design for passive acoustic mapping during ultrasound therapy.

    Science.gov (United States)

    Coviello, Christian M; Kozick, Richard J; Hurrell, Andrew; Smith, Penny Probert; Coussios, Constantin-C

    2012-10-01

    A new 2-D hydrophone array for ultrasound therapy monitoring is presented, along with a novel algorithm for passive acoustic mapping using a sparse weighted aperture. The array is constructed using existing polyvinylidene fluoride (PVDF) ultrasound sensor technology, and is utilized for its broadband characteristics and its high receive sensitivity. For most 2-D arrays, high-resolution imagery is desired, which requires a large aperture at the cost of a large number of elements. The proposed array's geometry is sparse, with elements only on the boundary of the rectangular aperture. The missing information from the interior is filled in using linear imaging techniques. After receiving acoustic emissions during ultrasound therapy, this algorithm applies an apodization to the sparse aperture to limit side lobes and then reconstructs acoustic activity with high spatiotemporal resolution. Experiments show verification of the theoretical point spread function, and cavitation maps in agar phantoms correspond closely to predicted areas, showing the validity of the array and methodology.

  13. Prostate Ultrasound

    Medline Plus

    Full Text Available ... difficulty urinating or an elevated blood test result. It’s also used to investigate a nodule found during ... difficulty urinating. Because ultrasound provides real-time images, it also can be used to guide procedures such ...

  14. Real-time systems

    OpenAIRE

    Badr, Salah M.; Bruztman, Donald P.; Nelson, Michael L.; Byrnes, Ronald Benton

    1992-01-01

    This paper presents an introduction to the basic issues involved in real-time systems. Both real-time operating sys and real-time programming languages are explored. Concurrent programming and process synchronization and communication are also discussed. The real-time requirements of the Naval Postgraduate School Autonomous Under Vehicle (AUV) are then examined. Autonomous underwater vehicle (AUV), hard real-time system, real-time operating system, real-time programming language, real-time sy...

  15. Real-time non-rigid target tracking for ultrasound-guided clinical interventions

    NARCIS (Netherlands)

    Zachiu, Cornel; Ries, Mario G; Ramaekers, Pascal; Guey, Jean-Luc; Moonen, Chrit T W; de Senneville, Baudouin Denis

    2017-01-01

    Biological motion is a problem for non- or mini-invasive interventions when conducted in mobile/deformable organs due to the targeted pathology moving/deforming with the organ. This may lead to high miss rates and/or incomplete treatment of the pathology. Therefore, real-time tracking of the target

  16. Core review: physician-performed ultrasound: the time has come for routine use in acute care medicine.

    Science.gov (United States)

    Royse, Colin F; Canty, David J; Faris, John; Haji, Darsim L; Veltman, Michael; Royse, Alistair

    2012-11-01

    The use of ultrasound in the acute care specialties of anesthesiology, intensive care, emergency medicine, and surgery has evolved from discrete, office-based echocardiographic examinations to the real-time or point-of-care clinical assessment and interventions. "Goal-focused" transthoracic echocardiography is a limited scope (as compared with comprehensive examination) echocardiographic examination, performed by the treating clinician in acute care medical practice, and is aimed at addressing specific clinical concerns. In the future, the practice of surface ultrasound will be integrated into the everyday clinical practice as ultrasound-assisted examination and ultrasound-guided procedures. This evolution should start at the medical student level and be reinforced throughout specialist training. The key to making ultrasound available to every physician is through education programs designed to facilitate uptake, rather than to prevent access to this technology and education by specialist craft groups. There is evidence that diagnosis is improved with ultrasound examination, yet data showing change in management and improvement in patient outcome are few and an important area for future research.

  17. Prostate Ultrasound

    Medline Plus

    Full Text Available ... symptoms such as difficulty urinating or an elevated blood test result. It’s also used to investigate a nodule ... exam or prostate cancer screening exam. an elevated blood test result. difficulty urinating. Because ultrasound provides real-time ...

  18. ultrasound-guided shoulder arthrogram injection

    African Journals Online (AJOL)

    2008-10-15

    Oct 15, 2008 ... Using an aseptic technique and without moving the ultrasound transducer from the desired transverse plane, the needle is advanced into the joint space through the rotator cuff interval, using real-time ultrasound guidance (Fig.2). The needle is inserted into the shoulder approximately midway between the ...

  19. Non-invasive and real-time passive acoustic mapping of ultrasound-mediated drug delivery

    International Nuclear Information System (INIS)

    Choi, James J; Carlisle, Robert C; Coviello, Christian; Coussios, Constantin-C; Seymour, Len

    2014-01-01

    New classes of biologically active materials, such as viruses, siRNA, antibodies and a wide range of engineered nanoparticles have emerged as potent agents for diagnosing and treating diseases, yet many of these agents fail because there is no effective route of delivery to their intended targets. Focused ultrasound and its ability to drive microbubble-seeded cavitation have been shown to facilitate drug delivery. However, cavitation is difficult to control temporally and spatially, making prediction of therapeutic outcomes deep in the body difficult. Here, we utilized passive acoustic mapping in vivo to understand how ultrasound parameters influence cavitation dynamics and to correlate spatial maps of cavitation to drug delivery. Focused ultrasound (center frequency: 0.5 MHz, peak-rarefactional pressure: 1.2 MPa, pulse length: 25 cycles or 50,000 cycles, pulse repetition interval: 0.02, 0.2, 1 or 3 s, number of pulses: 80 pulses) was applied to murine xenograft-model tumors in vivo during systemic injection of microbubbles with and without cavitation-sensitive liposomes or type 5 adenoviruses. Analysis of in vivo cavitation dynamics through several pulses revealed that cavitation was more efficiently produced at a lower pulse repetition frequency of 1 Hz than at 50 Hz. Within a pulse, inertial cavitation activity was shown to persist but reduced to 50% and 25% of its initial magnitude in 4.3 and 29.3 ms, respectively. Both through several pulses and within a pulse, the spatial distribution of cavitation was shown to change in time due to variations in microbubble distribution present in tumors. Finally, we demonstrated that the centroid of the mapped cavitation activity was within 1.33  ±  0.6 mm and 0.36 mm from the centroid location of drug release from liposomes and expression of the reporter gene encoded by the adenovirus, respectively. Thus passive acoustic mapping not only unraveled key mechanisms whereby a successful outcome is

  20. Micromachined silicon parallel acoustic delay lines as time-delayed ultrasound detector array for real-time photoacoustic tomography

    Science.gov (United States)

    Cho, Y.; Chang, C.-C.; Wang, L. V.; Zou, J.

    2016-02-01

    This paper reports the development of a new 16-channel parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT). The PADLs were directly fabricated from single-crystalline silicon substrates using deep reactive ion etching. Compared with other acoustic delay lines (e.g., optical fibers), the micromachined silicon PADLs offer higher acoustic transmission efficiency, smaller form factor, easier assembly, and mass production capability. To demonstrate its real-time photoacoustic imaging capability, the silicon PADL array was interfaced with one single-element ultrasonic transducer followed by one channel of data acquisition electronics to receive 16 channels of photoacoustic signals simultaneously. A PAT image of an optically-absorbing target embedded in an optically-scattering phantom was reconstructed, which matched well with the actual size of the imaged target. Because the silicon PADL array allows a signal-to-channel reduction ratio of 16:1, it could significantly simplify the design and construction of ultrasonic receivers for real-time PAT.

  1. Micromachined silicon parallel acoustic delay lines as time-delayed ultrasound detector array for real-time photoacoustic tomography

    International Nuclear Information System (INIS)

    Cho, Y; Chang, C-C; Zou, J; Wang, L V

    2016-01-01

    This paper reports the development of a new 16-channel parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT). The PADLs were directly fabricated from single-crystalline silicon substrates using deep reactive ion etching. Compared with other acoustic delay lines (e.g., optical fibers), the micromachined silicon PADLs offer higher acoustic transmission efficiency, smaller form factor, easier assembly, and mass production capability. To demonstrate its real-time photoacoustic imaging capability, the silicon PADL array was interfaced with one single-element ultrasonic transducer followed by one channel of data acquisition electronics to receive 16 channels of photoacoustic signals simultaneously. A PAT image of an optically-absorbing target embedded in an optically-scattering phantom was reconstructed, which matched well with the actual size of the imaged target. Because the silicon PADL array allows a signal-to-channel reduction ratio of 16:1, it could significantly simplify the design and construction of ultrasonic receivers for real-time PAT. (paper)

  2. Contrast enhanced ultrasound in liver imaging

    International Nuclear Information System (INIS)

    Nielsen, Michael Bachmann; Bang, Nanna

    2004-01-01

    Ultrasound contrast agents were originally introduced to enhance the Doppler signals when detecting vessels with low velocity flow or when imaging conditions were sub-optimal. Contrast agents showed additional properties, it was discovered that a parenchymal enhancement phase in the liver followed the enhancement of the blood pool. Contrast agents have made ultrasound scanning more accurate in detection and characterization of focal hepatic lesions and the sensitivity is now comparable with CT and MRI scanning. Further, analysis of the transit time of contrast agent through the liver seems to give information on possible hepatic involvement, not only from focal lesions but also from diffuse benign parenchymal disease. The first ultrasound contrast agents were easily destroyed by the energy from the sound waves but newer agents have proved to last for longer time and hereby enable real-time scanning and make contrast enhancement suitable for interventional procedures such as biopsies and tissue ablation. Also, in monitoring the effect of tumour treatment contrast agents have been useful. A brief overview is given on some possible applications and on different techniques using ultrasound contrast agents in liver imaging. At present, the use of an ultrasound contrast agent that allows real-time scanning with low mechanical index is to be preferred

  3. Parametric Beamformer for Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt

    2006-01-01

    . The beamformer consists of a number of identical beamforming blocks, each processing data from several channels and producing part of the image. A number of these blocks can be accommodated in a modern field-programmable gate array device (FPGA), and a whole synthetic aperture system can be implemented using...... with 255 levels. A beamforming block uses input data from 4 elements and produces a set of 10 lines. Linear interpolation is used to implement sub-sample delays. The VHDL code for the beamformer has been synthesized for a Xilinx V4FX100 speed grade 11 FPGA, where it can operate at a maximum clock frequency...

  4. Evaluation of human muscle hardness after dynamic exercise with ultrasound real-time tissue elastography: A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Yanagisawa, O., E-mail: o.yanagisawa@aoni.waseda.jp [Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama (Japan); Niitsu, M. [Department of Radiological Science, Faculty of Health Sciences, Tokyo Metropolitan University, Arakawa-ku, Tokyo (Japan); Kurihara, T. [Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga (Japan); Fukubayashi, T. [Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama (Japan)

    2011-09-15

    Aim: To assess the feasibility of ultrasound real-time tissue elastography (RTE) for measuring exercise-induced changes in muscle hardness and to compare the findings of RTE with those of a tissue hardness meter for semi-quantitative assessment of the hardness of exercised muscles. Materials and methods: Nine male participants performed an arm-curl exercise. RTE measurements were performed by manually applying repetitive compression with the transducer on the scan position before exercise, immediately after exercise, and at 30 min after exercise; strain ratios between muscle and a reference material (hydrogel) were calculated (muscle strain/material strain). A tissue hardness meter was also used to evaluate muscle hardness. The intraclass correlation coefficients (ICCs) for the three repeated measurements at each measurement time were calculated to evaluate the intra-observer reproducibility of each technique. Results: Immediately after exercise, the strain ratio and the value obtained using the tissue hardness meter significantly decreased (from 1.65 to 1.35) and increased (from 51.8 to 54.3), respectively. Both parameters returned to their pre-exercise value 30 min after exercise. The ICCs of the RTE (and the ICCs of the muscle hardness meter) were 0.971 (0.816) before exercise, 0.939 (0.776) immediately after exercise, and 0.959 (0.882) at 30 min after exercise. Conclusion: Similar to the muscle hardness meter, RTE revealed the exercise-induced changes of muscle hardness semi-quantitatively. The intra-observer reproducibility of RTE was very high at each measurement time. These findings suggest that RTE is a clinically useful technique for assessing hardness of specific exercised muscles.

  5. Evaluation of human muscle hardness after dynamic exercise with ultrasound real-time tissue elastography: A feasibility study

    International Nuclear Information System (INIS)

    Yanagisawa, O.; Niitsu, M.; Kurihara, T.; Fukubayashi, T.

    2011-01-01

    Aim: To assess the feasibility of ultrasound real-time tissue elastography (RTE) for measuring exercise-induced changes in muscle hardness and to compare the findings of RTE with those of a tissue hardness meter for semi-quantitative assessment of the hardness of exercised muscles. Materials and methods: Nine male participants performed an arm-curl exercise. RTE measurements were performed by manually applying repetitive compression with the transducer on the scan position before exercise, immediately after exercise, and at 30 min after exercise; strain ratios between muscle and a reference material (hydrogel) were calculated (muscle strain/material strain). A tissue hardness meter was also used to evaluate muscle hardness. The intraclass correlation coefficients (ICCs) for the three repeated measurements at each measurement time were calculated to evaluate the intra-observer reproducibility of each technique. Results: Immediately after exercise, the strain ratio and the value obtained using the tissue hardness meter significantly decreased (from 1.65 to 1.35) and increased (from 51.8 to 54.3), respectively. Both parameters returned to their pre-exercise value 30 min after exercise. The ICCs of the RTE (and the ICCs of the muscle hardness meter) were 0.971 (0.816) before exercise, 0.939 (0.776) immediately after exercise, and 0.959 (0.882) at 30 min after exercise. Conclusion: Similar to the muscle hardness meter, RTE revealed the exercise-induced changes of muscle hardness semi-quantitatively. The intra-observer reproducibility of RTE was very high at each measurement time. These findings suggest that RTE is a clinically useful technique for assessing hardness of specific exercised muscles.

  6. Synthetic Aperture Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando

    The main objective of this project was to continue the development of a synthetic aperture vector flow estimator. This type of estimator is capable of overcoming two of the major limitations in conventional ultrasound systems: 1) the inability to scan large region of interest with high temporal......, this thesis showed that novel information can be obtained with vector velocity methods providing quantitative estimates of blood flow and insight into the complexity of the hemodynamics dynamics. This could give the clinician a new tool in assessment and treatment of a broad range of diseases....

  7. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... use different transducers (with different capabilities) during a single exam. The transducer sends out high-frequency sound ... modality for the diagnosis and monitoring of pregnant women and their unborn babies. Ultrasound provides real-time ...

  8. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... be necessary. Your doctor will explain the exact reason why another exam is requested. Sometimes a follow- ... Ultrasound provides real-time imaging, making it a good tool for guiding minimally invasive procedures such as ...

  9. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... and be made aware of food and drink restrictions that may be needed prior to sedation. Once ... modality for the diagnosis and monitoring of pregnant women and their unborn babies. Ultrasound provides real-time ...

  10. First evaluation of the feasibility of MLC tracking using ultrasound motion estimation

    Energy Technology Data Exchange (ETDEWEB)

    Fast, Martin F., E-mail: martin.fast@icr.ac.uk; O’Shea, Tuathan P., E-mail: tuathan.oshea@nhs.net; Nill, Simeon; Oelfke, Uwe; Harris, Emma J. [Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom)

    2016-08-15

    Purpose: To quantify the performance of the Clarity ultrasound (US) imaging system (Elekta AB, Stockholm, Sweden) for real-time dynamic multileaf collimator (MLC) tracking. Methods: The Clarity calibration and quality assurance phantom was mounted on a motion platform moving with a periodic sine wave trajectory. The detected position of a 30 mm hypoechogenic sphere within the phantom was continuously reported via Clarity’s real-time streaming interface to an in-house tracking and delivery software and subsequently used to adapt the MLC aperture. A portal imager measured MV treatment field/MLC apertures and motion platform positions throughout each experiment to independently quantify system latency and geometric error. Based on the measured range of latency values, a prostate stereotactic body radiation therapy (SBRT) delivery was performed with three realistic motion trajectories. The dosimetric impact of system latency on MLC tracking was directly measured using a 3D dosimeter mounted on the motion platform. Results: For 2D US imaging, the overall system latency, including all delay times from the imaging and delivery chain, ranged from 392 to 424 ms depending on the lateral sector size. For 3D US imaging, the latency ranged from 566 to 1031 ms depending on the elevational sweep. The latency-corrected geometric root-mean squared error was below 0.75 mm (2D US) and below 1.75 mm (3D US). For the prostate SBRT delivery, the impact of a range of system latencies (400–1000 ms) on the MLC tracking performance was minimal in terms of gamma failure rate. Conclusions: Real-time MLC tracking based on a noninvasive US input is technologically feasible. Current system latencies are higher than those for x-ray imaging systems, but US can provide full volumetric image data and the impact of system latency was measured to be small for a prostate SBRT case when using a US-like motion input.

  11. First evaluation of the feasibility of MLC tracking using ultrasound motion estimation

    International Nuclear Information System (INIS)

    Fast, Martin F.; O’Shea, Tuathan P.; Nill, Simeon; Oelfke, Uwe; Harris, Emma J.

    2016-01-01

    Purpose: To quantify the performance of the Clarity ultrasound (US) imaging system (Elekta AB, Stockholm, Sweden) for real-time dynamic multileaf collimator (MLC) tracking. Methods: The Clarity calibration and quality assurance phantom was mounted on a motion platform moving with a periodic sine wave trajectory. The detected position of a 30 mm hypoechogenic sphere within the phantom was continuously reported via Clarity’s real-time streaming interface to an in-house tracking and delivery software and subsequently used to adapt the MLC aperture. A portal imager measured MV treatment field/MLC apertures and motion platform positions throughout each experiment to independently quantify system latency and geometric error. Based on the measured range of latency values, a prostate stereotactic body radiation therapy (SBRT) delivery was performed with three realistic motion trajectories. The dosimetric impact of system latency on MLC tracking was directly measured using a 3D dosimeter mounted on the motion platform. Results: For 2D US imaging, the overall system latency, including all delay times from the imaging and delivery chain, ranged from 392 to 424 ms depending on the lateral sector size. For 3D US imaging, the latency ranged from 566 to 1031 ms depending on the elevational sweep. The latency-corrected geometric root-mean squared error was below 0.75 mm (2D US) and below 1.75 mm (3D US). For the prostate SBRT delivery, the impact of a range of system latencies (400–1000 ms) on the MLC tracking performance was minimal in terms of gamma failure rate. Conclusions: Real-time MLC tracking based on a noninvasive US input is technologically feasible. Current system latencies are higher than those for x-ray imaging systems, but US can provide full volumetric image data and the impact of system latency was measured to be small for a prostate SBRT case when using a US-like motion input.

  12. Satellite on-board real-time SAR processor prototype

    Science.gov (United States)

    Bergeron, Alain; Doucet, Michel; Harnisch, Bernd; Suess, Martin; Marchese, Linda; Bourqui, Pascal; Desnoyers, Nicholas; Legros, Mathieu; Guillot, Ludovic; Mercier, Luc; Châteauneuf, François

    2017-11-01

    A Compact Real-Time Optronic SAR Processor has been successfully developed and tested up to a Technology Readiness Level of 4 (TRL4), the breadboard validation in a laboratory environment. SAR, or Synthetic Aperture Radar, is an active system allowing day and night imaging independent of the cloud coverage of the planet. The SAR raw data is a set of complex data for range and azimuth, which cannot be compressed. Specifically, for planetary missions and unmanned aerial vehicle (UAV) systems with limited communication data rates this is a clear disadvantage. SAR images are typically processed electronically applying dedicated Fourier transformations. This, however, can also be performed optically in real-time. Originally the first SAR images were optically processed. The optical Fourier processor architecture provides inherent parallel computing capabilities allowing real-time SAR data processing and thus the ability for compression and strongly reduced communication bandwidth requirements for the satellite. SAR signal return data are in general complex data. Both amplitude and phase must be combined optically in the SAR processor for each range and azimuth pixel. Amplitude and phase are generated by dedicated spatial light modulators and superimposed by an optical relay set-up. The spatial light modulators display the full complex raw data information over a two-dimensional format, one for the azimuth and one for the range. Since the entire signal history is displayed at once, the processor operates in parallel yielding real-time performances, i.e. without resulting bottleneck. Processing of both azimuth and range information is performed in a single pass. This paper focuses on the onboard capabilities of the compact optical SAR processor prototype that allows in-orbit processing of SAR images. Examples of processed ENVISAT ASAR images are presented. Various SAR processor parameters such as processing capabilities, image quality (point target analysis), weight and

  13. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... organs and to examine a baby in pregnant women and the brain and hips in infants. It’s ... modality for the diagnosis and monitoring of pregnant women and their unborn babies. Ultrasound provides real-time ...

  14. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... of the reflected sound waves (called the Doppler effect). A computer collects and processes the sounds and creates graphs ... Ultrasound provides real-time imaging, making it a good tool for guiding minimally ... known harmful effects on humans. top of page What are the ...

  15. Real-time Ultrasound Assessment of Astronaut Spinal Anatomy and Disorders on the International Space Station.

    Science.gov (United States)

    Garcia, Kathleen M; Harrison, Michael F; Sargsyan, Ashot E; Ebert, Douglas; Dulchavsky, Scott A

    2018-04-01

    Back pain is one of the most common conditions of astronauts during spaceflight and is hypothesized to be attributed to pathologic anatomic changes. Ultrasound (US) represents the only available imaging modality on the International Space Station, but a formal US protocol for imaging the structures of the spinal column does not exist. This investigation developed a method of acquiring diagnostic-quality images of the anterior lumbar and cervical regions of the spine during long-duration spaceflight. Comprehensive spinal US examinations were conducted on 7 long-duration spaceflight astronauts before flight, in flight, and after flight and compared to preflight and postflight magnetic resonance imaging data. In-flight scans were conducted after just-in-time training assisted by remote expert tele-US guidance. Novice users were able to obtain diagnostic-quality spinal images with a 92.5% success rate. Thirty-three anomalous or pathologic findings were identified during the preflight US analysis, and at least 14 new findings or progressions were identified during the postflight US analysis. Common findings included disk desiccation, osteophytes, and qualitative changes in the intervertebral disk height and angle. Ultrasound has proven efficacy as a portable and versatile diagnostic imaging modality under austere conditions. We demonstrated a potential role for US to evaluate spinal integrity and alterations in the extreme environment of space on the International Space Station. Further investigations should be performed to corroborate this imaging technique and to create a larger database related to in-flight spinal conditions during long-duration spaceflight. © 2017 by the American Institute of Ultrasound in Medicine.

  16. Analysis of intra-fraction prostate motion and derivation of duration-dependent margins for radiotherapy using real-time 4D ultrasound

    Directory of Open Access Journals (Sweden)

    Eric Pei Ping Pang

    2018-01-01

    be applied in the presence of prolonged imaging and verification time. Keywords: Prostate, Intra-fraction movement, 4D Clarity ultrasound system, Real-time tracking, Margins

  17. Analog Gradient Beamformer for a Wireless Ultrasound Scanner

    DEFF Research Database (Denmark)

    di Ianni, Tommaso; Hemmsen, Martin Christian; Bagge, Jan Peter

    2016-01-01

    This paper presents a novel beamformer architecture for a low-cost receiver front-end, and investigates if the image quality can be maintained. The system is oriented to the development of a hand-held wireless ultrasound probe based on Synthetic Aperture Sequential Beamforming, and has the advant......This paper presents a novel beamformer architecture for a low-cost receiver front-end, and investigates if the image quality can be maintained. The system is oriented to the development of a hand-held wireless ultrasound probe based on Synthetic Aperture Sequential Beamforming, and has...... the advantage of effectively reducing circuit complexity and power dissipation. The array of transducers is divided into sub-apertures, in which the signals from the single channels are aligned through a network of cascaded gradient delays, and summed in the analog domain before A/D conversion. The delay values...... are quantized to simplify the shifting unit, and a single A/D converter is needed for each sub-aperture yielding a compact, low-power architecture that can be integrated in a single chip. A simulation study was performed using a 3.75 MHz convex array, and the point spread function (PSF) for different...

  18. Near Real Time Ship Detection Experiments

    Science.gov (United States)

    Brusch, S.; Lehner, S.; Schwarz, E.; Fritz, T.

    2010-04-01

    A new Near Real Time (NRT) ship detection processor SAINT (SAR AIS Integrated Toolbox) was developed in the framework of the ESA project MARISS. Data are received at DLRs ground segment DLR-BN (Neustrelitz, Germany). Results of the ship detection are available on ftp server within 30 min after the acquisition started. The detectability of ships on Synthetic Aperture Radar (SAR) ERS-2, ENVISAT ASAR and TerraSAR-X (TS-X) images is validated by coastal (live) AIS and space AIS. The monitoring areas chosen for surveillance are the North-, Baltic Sea, and Cape Town. The detectability in respect to environmental parameters like wind field, sea state, currents and changing coastlines due to tidal effects is investigated. In the South Atlantic a tracking experiment of the German research vessel Polarstern has been performed. Issues of piracy in particular in respect to ships hijacked at the Somali coast are discussed. Some examples using high resolution images from TerraSAR-X are given.

  19. SU-G-JeP3-08: Robotic System for Ultrasound Tracking in Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlemann, I [University of Luebeck, Luebeck (Germany); Graduate School for Computing in Medicine and Life Sciences, University of Luebeck (Germany); Jauer, P; Schweikard, A; Ernst, F [University of Luebeck, Luebeck (Germany)

    2016-06-15

    Purpose: For safe and accurate real-time tracking of tumors for IGRT using 4D ultrasound, it is necessary to make use of novel, high-end force-sensitive lightweight robots designed for human-machine interaction. Such a robot will be integrated into an existing robotized ultrasound system for non-invasive 4D live tracking, using a newly developed real-time control and communication framework. Methods: The new KUKA LWR iiwa robot is used for robotized ultrasound real-time tumor tracking. Besides more precise probe contact pressure detection, this robot provides an additional 7th link, enhancing the dexterity of the kinematic and the mounted transducer. Several integrated, certified safety features create a safe environment for the patients during treatment. However, to remotely control the robot for the ultrasound application, a real-time control and communication framework has to be developed. Based on a client/server concept, client-side control commands are received and processed by a central server unit and are implemented by a client module running directly on the robot’s controller. Several special functionalities for robotized ultrasound applications are integrated and the robot can now be used for real-time control of the image quality by adjusting the transducer position, and contact pressure. The framework was evaluated looking at overall real-time capability for communication and processing of three different standard commands. Results: Due to inherent, certified safety modules, the new robot ensures a safe environment for patients during tumor tracking. Furthermore, the developed framework shows overall real-time capability with a maximum average latency of 3.6 ms (Minimum 2.5 ms; 5000 trials). Conclusion: The novel KUKA LBR iiwa robot will advance the current robotized ultrasound tracking system with important features. With the developed framework, it is now possible to remotely control this robot and use it for robotized ultrasound tracking

  20. SU-G-JeP3-08: Robotic System for Ultrasound Tracking in Radiation Therapy

    International Nuclear Information System (INIS)

    Kuhlemann, I; Jauer, P; Schweikard, A; Ernst, F

    2016-01-01

    Purpose: For safe and accurate real-time tracking of tumors for IGRT using 4D ultrasound, it is necessary to make use of novel, high-end force-sensitive lightweight robots designed for human-machine interaction. Such a robot will be integrated into an existing robotized ultrasound system for non-invasive 4D live tracking, using a newly developed real-time control and communication framework. Methods: The new KUKA LWR iiwa robot is used for robotized ultrasound real-time tumor tracking. Besides more precise probe contact pressure detection, this robot provides an additional 7th link, enhancing the dexterity of the kinematic and the mounted transducer. Several integrated, certified safety features create a safe environment for the patients during treatment. However, to remotely control the robot for the ultrasound application, a real-time control and communication framework has to be developed. Based on a client/server concept, client-side control commands are received and processed by a central server unit and are implemented by a client module running directly on the robot’s controller. Several special functionalities for robotized ultrasound applications are integrated and the robot can now be used for real-time control of the image quality by adjusting the transducer position, and contact pressure. The framework was evaluated looking at overall real-time capability for communication and processing of three different standard commands. Results: Due to inherent, certified safety modules, the new robot ensures a safe environment for patients during tumor tracking. Furthermore, the developed framework shows overall real-time capability with a maximum average latency of 3.6 ms (Minimum 2.5 ms; 5000 trials). Conclusion: The novel KUKA LBR iiwa robot will advance the current robotized ultrasound tracking system with important features. With the developed framework, it is now possible to remotely control this robot and use it for robotized ultrasound tracking

  1. [Basics of emergency ultrasound].

    Science.gov (United States)

    Schellhaas, S; Breitkreutz, R

    2012-09-05

    Focused ultrasound is a key methodology of critical care medicine. By referencing few ultrasound differential diagnosis, it is possible to identifying in real-time the reason of the critical state of a patient. Therefore typical focused ultrasound protocols were developed. The well known Focused Assessment with Sonography for trauma (FAST) was incorporated into the Advanced Trauma Life Support (ATLS) for shock room. Focused echocardiographic evaluation in life support (FEEL) has been designed to be conformed with the universal Advanced Life Support (ALS) algorithm and to identify treatable conditions such as acute right ventricular pressure overload in pulmonary embolism, hypovolemia, or pericardial effusion/tamponade. Using lung ultrasound one can differentiate pulmonary edema, pleural effusion or pneumothorax.

  2. Ultrasound fields in an attenuating medium

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Gandhi,, D; O'Brien,, W.D., Jr.

    1993-01-01

    of the rectangles and sums all contributions to arrive at the spatial impulse response for the aperture and field point. This approach makes it possible to model all transducer apertures, and the program can readily calculate the emitted, pulse-echo and continuous wave field. Attenuation is included by splitting...... it into a frequency dependent part and frequency independent part. The latter results in an attenuation factor that is multiplied onto the responses from the individual elements, and the frequency dependent part is handled by attenuating the basic one-dimensional pulse. The influence on ultrasound fields from......Ultrasound fields propagating in tissue will undergo changes in shape not only due to diffraction, but also due to the frequency dependent attenuation. Linear fields can be fairly well predicted for a non-attenuating medium like water by using the Tupholme-Stepanishen method for calculating...

  3. Research interface on a programmable ultrasound scanner.

    Science.gov (United States)

    Shamdasani, Vijay; Bae, Unmin; Sikdar, Siddhartha; Yoo, Yang Mo; Karadayi, Kerem; Managuli, Ravi; Kim, Yongmin

    2008-07-01

    Commercial ultrasound machines in the past did not provide the ultrasound researchers access to raw ultrasound data. Lack of this ability has impeded evaluation and clinical testing of novel ultrasound algorithms and applications. Recently, we developed a flexible ultrasound back-end where all the processing for the conventional ultrasound modes, such as B, M, color flow and spectral Doppler, was performed in software. The back-end has been incorporated into a commercial ultrasound machine, the Hitachi HiVision 5500. The goal of this work is to develop an ultrasound research interface on the back-end for acquiring raw ultrasound data from the machine. The research interface has been designed as a software module on the ultrasound back-end. To increase the amount of raw ultrasound data that can be spooled in the limited memory available on the back-end, we have developed a method that can losslessly compress the ultrasound data in real time. The raw ultrasound data could be obtained in any conventional ultrasound mode, including duplex and triplex modes. Furthermore, use of the research interface does not decrease the frame rate or otherwise affect the clinical usability of the machine. The lossless compression of the ultrasound data in real time can increase the amount of data spooled by approximately 2.3 times, thus allowing more than 6s of raw ultrasound data to be acquired in all the modes. The interface has been used not only for early testing of new ideas with in vitro data from phantoms, but also for acquiring in vivo data for fine-tuning ultrasound applications and conducting clinical studies. We present several examples of how newer ultrasound applications, such as elastography, vibration imaging and 3D imaging, have benefited from this research interface. Since the research interface is entirely implemented in software, it can be deployed on existing HiVision 5500 ultrasound machines and may be easily upgraded in the future. The developed research

  4. Computer-assisted assessment of ultrasound real-time elastography: initial experience in 145 breast lesions.

    Science.gov (United States)

    Zhang, Xue; Xiao, Yang; Zeng, Jie; Qiu, Weibao; Qian, Ming; Wang, Congzhi; Zheng, Rongqin; Zheng, Hairong

    2014-01-01

    To develop and evaluate a computer-assisted method of quantifying five-point elasticity scoring system based on ultrasound real-time elastography (RTE), for classifying benign and malignant breast lesions, with pathologic results as the reference standard. Conventional ultrasonography (US) and RTE images of 145 breast lesions (67 malignant, 78 benign) were performed in this study. Each lesion was automatically contoured on the B-mode image by the level set method and mapped on the RTE image. The relative elasticity value of each pixel was reconstructed and classified into hard or soft by the fuzzy c-means clustering method. According to the hardness degree inside lesion and its surrounding tissue, the elasticity score of the RTE image was computed in an automatic way. Visual assessments of the radiologists were used for comparing the diagnostic performance. Histopathologic examination was used as the reference standard. The Student's t test and receiver operating characteristic (ROC) curve analysis were performed for statistical analysis. Considering score 4 or higher as test positive for malignancy, the diagnostic accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were 93.8% (136/145), 92.5% (62/67), 94.9% (74/78), 93.9% (62/66), and 93.7% (74/79) for the computer-assisted scheme, and 89.7% (130/145), 85.1% (57/67), 93.6% (73/78), 92.0% (57/62), and 88.0% (73/83) for manual assessment. Area under ROC curve (Az value) for the proposed method was higher than the Az value for visual assessment (0.96 vs. 0.93). Computer-assisted quantification of classical five-point scoring system can significantly eliminate the interobserver variability and thereby improve the diagnostic confidence of classifying the breast lesions to avoid unnecessary biopsy. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Computer-assisted assessment of ultrasound real-time elastography: Initial experience in 145 breast lesions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xue; Xiao, Yang [Shenzhen Key Lab for Molecular Imaging, Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen (China); Zeng, Jie [Department of Medical Ultrasonics, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou (China); Qiu, Weibao; Qian, Ming; Wang, Congzhi [Shenzhen Key Lab for Molecular Imaging, Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen (China); Zheng, Rongqin, E-mail: zhengronggin@hotmail.com [Department of Medical Ultrasonics, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou (China); Zheng, Hairong, E-mail: hr.zheng@siat.ac.cn [Shenzhen Key Lab for Molecular Imaging, Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen (China)

    2014-01-15

    Purpose: To develop and evaluate a computer-assisted method of quantifying five-point elasticity scoring system based on ultrasound real-time elastography (RTE), for classifying benign and malignant breast lesions, with pathologic results as the reference standard. Materials and methods: Conventional ultrasonography (US) and RTE images of 145 breast lesions (67 malignant, 78 benign) were performed in this study. Each lesion was automatically contoured on the B-mode image by the level set method and mapped on the RTE image. The relative elasticity value of each pixel was reconstructed and classified into hard or soft by the fuzzy c-means clustering method. According to the hardness degree inside lesion and its surrounding tissue, the elasticity score of the RTE image was computed in an automatic way. Visual assessments of the radiologists were used for comparing the diagnostic performance. Histopathologic examination was used as the reference standard. The Student's t test and receiver operating characteristic (ROC) curve analysis were performed for statistical analysis. Results: Considering score 4 or higher as test positive for malignancy, the diagnostic accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were 93.8% (136/145), 92.5% (62/67), 94.9% (74/78), 93.9% (62/66), and 93.7% (74/79) for the computer-assisted scheme, and 89.7% (130/145), 85.1% (57/67), 93.6% (73/78), 92.0% (57/62), and 88.0% (73/83) for manual assessment. Area under ROC curve (A{sub z} value) for the proposed method was higher than the A{sub z} value for visual assessment (0.96 vs. 0.93). Conclusion: Computer-assisted quantification of classical five-point scoring system can significantly eliminate the interobserver variability and thereby improve the diagnostic confidence of classifying the breast lesions to avoid unnecessary biopsy.

  6. Prostate Ultrasound

    Medline Plus

    Full Text Available ... exam or prostate cancer screening exam. an elevated blood test result. difficulty urinating. Because ultrasound provides real-time images, it also can be used to guide procedures such as needle biopsies , in which a needle is used to sample cells (tissue) from an abnormal area in the ...

  7. [Comparison of two quantitative methods of endobronchial ultrasound real-time elastography for evaluating intrathoracic lymph nodes].

    Science.gov (United States)

    Mao, X W; Yang, J Y; Zheng, X X; Wang, L; Zhu, L; Li, Y; Xiong, H K; Sun, J Y

    2017-06-12

    Objective: To compare the clinical value of two quantitative methods in analyzing endobronchial ultrasound real-time elastography (EBUS-RTE) images for evaluating intrathoracic lymph nodes. Methods: From January 2014 to April 2014, EBUS-RTE examination was performed in patients who received EBUS-TBNA examination in Shanghai Chest Hospital. Each intrathoracic lymph node had a selected EBUS-RTE image. Stiff area ratio and mean hue value of region of interest (ROI) in each image were calculated respectively. The final diagnosis of lymph node was based on the pathologic/microbiologic results of EBUS-TBNA, pathologic/microbiologic results of other examinations and clinical following-up. The sensitivity, specificity, positive predictive value, negative predictive value and accuracy were evaluated for distinguishing malignant and benign lesions. Results: Fifty-six patients and 68 lymph nodes were enrolled in this study, of which 35 lymph nodes were malignant and 33 lymph nodes were benign. The stiff area ratio and mean hue value of benign and malignant lesions were 0.32±0.29, 0.62±0.20 and 109.99±28.13, 141.62±17.52, respectively, and statistical differences were found in both of those two methods ( t =-5.14, P methods can be used for analyzing EBUS-RTE images quantitatively, having the value of differentiating benign and malignant intrathoracic lymph nodes, and the stiff area ratio is better than the mean hue value between the two methods.

  8. Telescope aperture optimization for spacebased coherent wind lidar

    Science.gov (United States)

    Ge, Xian-ying; Zhu, Jun; Cao, Qipeng; Zhang, Yinchao; Yin, Huan; Dong, Xiaojing; Wang, Chao; Zhang, Yongchao; Zhang, Ning

    2015-08-01

    Many studies have indicated that the optimum measurement approach for winds from space is a pulsed coherent wind lidar, which is an active remote sensing tool with the characteristics that high spatial and temporal resolutions, real-time detection, high mobility, facilitated control and so on. Because of the significant eye safety, efficiency, size, and lifetime advantage, 2μm wavelength solid-state laser lidar systems have attracted much attention in spacebased wind lidar plans. In this paper, the theory of coherent detection is presented and a 2μm wavelength solid-state laser lidar system is introduced, then the ideal aperture is calculated from signal-to-noise(SNR) view at orbit 400km. However, considering real application, even if the lidar hardware is perfectly aligned, the directional jitter of laser beam, the attitude change of the lidar in the long round trip time of the light from the atmosphere and other factors can bring misalignment angle. So the influence of misalignment angle is considered and calculated, and the optimum telescope diameter(0.45m) is obtained as the misalignment angle is 4 μrad. By the analysis of the optimum aperture required for spacebased coherent wind lidar system, we try to present the design guidance for the telescope.

  9. Multi-processor system for real-time flow estimation in medical ultrasound imaging

    DEFF Research Database (Denmark)

    Stetson, Paul F.; Jensen, Jesper Lomborg; Antonius, Peter

    1997-01-01

    the processed data. The generous bandwidth of the links makes it easy to balance the computational load among the processors.In order to manage the shared system memory and to make use of the parallel processing capabilities of the system, a real-time multitasking kernel has been developed. The kernel uses...

  10. Remotely supported prehospital ultrasound: A feasibility study of real-time image transmission and expert guidance to aid diagnosis in remote and rural communities.

    Science.gov (United States)

    Eadie, Leila; Mulhern, John; Regan, Luke; Mort, Alasdair; Shannon, Helen; Macaden, Ashish; Wilson, Philip

    2017-01-01

    Introduction Our aim is to expedite prehospital assessment of remote and rural patients using remotely-supported ultrasound and satellite/cellular communications. In this paradigm, paramedics are remotely-supported ultrasound operators, guided by hospital-based specialists, to record images before receiving diagnostic advice. Technology can support users in areas with little access to medical imaging and suboptimal communications coverage by connecting to multiple cellular networks and/or satellites to stream live ultrasound and audio-video. Methods An ambulance-based demonstrator system captured standard trauma and novel transcranial ultrasound scans from 10 healthy volunteers at 16 locations across the Scottish Highlands. Volunteers underwent brief scanning training before receiving expert guidance via the communications link. Ultrasound images were streamed with an audio/video feed to reviewers for interpretation. Two sessions were transmitted via satellite and 21 used cellular networks. Reviewers rated image and communication quality, and their utility for diagnosis. Transmission latency and bandwidth were recorded, and effects of scanner and reviewer experience were assessed. Results Appropriate views were provided in 94% of the simulated trauma scans. The mean upload rate was 835/150 kbps and mean latency was 114/2072 ms for cellular and satellite networks, respectively. Scanning experience had a significant impact on time to achieve a diagnostic image, and review of offline scans required significantly less time than live-streamed scans. Discussion This prehospital ultrasound system could facilitate early diagnosis and streamlining of treatment pathways for remote emergency patients, being particularly applicable in rural areas worldwide with poor communications infrastructure and extensive transport times.

  11. Spaceborne L-band Radiometers: Push-broom or Synthetic Aperture?

    DEFF Research Database (Denmark)

    Skou, Niels

    2004-01-01

    L-band radiometers can measure ocean salinity and soil moisture from space. A synthetic aperture radiometer system, SMOS, is under development by ESA for launch in 2007. A real aperture push-broom system, Aquarius, has been approved by NASA for launch in 2008. Pros et cons of the two fundamentally...

  12. Real Time Revisited

    Science.gov (United States)

    Allen, Phillip G.

    1985-12-01

    The call for abolishing photo reconnaissance in favor of real time is once more being heard. Ten years ago the same cries were being heard with the introduction of the Charge Coupled Device (CCD). The real time system problems that existed then and stopped real time proliferation have not been solved. The lack of an organized program by either DoD or industry has hampered any efforts to solve the problems, and as such, very little has happened in real time in the last ten years. Real time is not a replacement for photo, just as photo is not a replacement for infra-red or radar. Operational real time sensors can be designed only after their role has been defined and improvements made to the weak links in the system. Plodding ahead on a real time reconnaissance suite without benefit of evaluation of utility will allow this same paper to be used ten years from now.

  13. High-dynamic range compressive spectral imaging by grayscale coded aperture adaptive filtering

    Directory of Open Access Journals (Sweden)

    Nelson Eduardo Diaz

    2015-09-01

    Full Text Available The coded aperture snapshot spectral imaging system (CASSI is an imaging architecture which senses the three dimensional informa-tion of a scene with two dimensional (2D focal plane array (FPA coded projection measurements. A reconstruction algorithm takes advantage of the compressive measurements sparsity to recover the underlying 3D data cube. Traditionally, CASSI uses block-un-block coded apertures (BCA to spatially modulate the light. In CASSI the quality of the reconstructed images depends on the design of these coded apertures and the FPA dynamic range. This work presents a new CASSI architecture based on grayscaled coded apertu-res (GCA which reduce the FPA saturation and increase the dynamic range of the reconstructed images. The set of GCA is calculated in a real-time adaptive manner exploiting the information from the FPA compressive measurements. Extensive simulations show the attained improvement in the quality of the reconstructed images when GCA are employed.  In addition, a comparison between traditional coded apertures and GCA is realized with respect to noise tolerance.

  14. Combined ultrasound and MR imaging to guide focused ultrasound therapies in the brain

    Science.gov (United States)

    Arvanitis, Costas D.; Livingstone, Margaret S.; McDannold, Nathan

    2013-07-01

    Several emerging therapies with potential for use in the brain, harness effects produced by acoustic cavitation—the interaction between ultrasound and microbubbles either generated during sonication or introduced into the vasculature. Systems developed for transcranial MRI-guided focused ultrasound (MRgFUS) thermal ablation can enable their clinical translation, but methods for real-time monitoring and control are currently lacking. Acoustic emissions produced during sonication can provide information about the location, strength and type of the microbubble oscillations within the ultrasound field, and they can be mapped in real-time using passive imaging approaches. Here, we tested whether such mapping can be achieved transcranially within a clinical brain MRgFUS system. We integrated an ultrasound imaging array into the hemisphere transducer of the MRgFUS device. Passive cavitation maps were obtained during sonications combined with a circulating microbubble agent at 20 targets in the cingulate cortex in three macaques. The maps were compared with MRI-evident tissue effects. The system successfully mapped microbubble activity during both stable and inertial cavitation, which was correlated with MRI-evident transient blood-brain barrier disruption and vascular damage, respectively. The location of this activity was coincident with the resulting tissue changes within the expected resolution limits of the system. While preliminary, these data clearly demonstrate, for the first time, that it is possible to construct maps of stable and inertial cavitation transcranially, in a large animal model, and under clinically relevant conditions. Further, these results suggest that this hybrid ultrasound/MRI approach can provide comprehensive guidance for targeted drug delivery via blood-brain barrier disruption and other emerging ultrasound treatments, facilitating their clinical translation. We anticipate that it will also prove to be an important research tool that will

  15. Combined ultrasound and MR imaging to guide focused ultrasound therapies in the brain

    International Nuclear Information System (INIS)

    Arvanitis, Costas D; McDannold, Nathan; Livingstone, Margaret S

    2013-01-01

    Several emerging therapies with potential for use in the brain, harness effects produced by acoustic cavitation—the interaction between ultrasound and microbubbles either generated during sonication or introduced into the vasculature. Systems developed for transcranial MRI-guided focused ultrasound (MRgFUS) thermal ablation can enable their clinical translation, but methods for real-time monitoring and control are currently lacking. Acoustic emissions produced during sonication can provide information about the location, strength and type of the microbubble oscillations within the ultrasound field, and they can be mapped in real-time using passive imaging approaches. Here, we tested whether such mapping can be achieved transcranially within a clinical brain MRgFUS system. We integrated an ultrasound imaging array into the hemisphere transducer of the MRgFUS device. Passive cavitation maps were obtained during sonications combined with a circulating microbubble agent at 20 targets in the cingulate cortex in three macaques. The maps were compared with MRI-evident tissue effects. The system successfully mapped microbubble activity during both stable and inertial cavitation, which was correlated with MRI-evident transient blood–brain barrier disruption and vascular damage, respectively. The location of this activity was coincident with the resulting tissue changes within the expected resolution limits of the system. While preliminary, these data clearly demonstrate, for the first time, that it is possible to construct maps of stable and inertial cavitation transcranially, in a large animal model, and under clinically relevant conditions. Further, these results suggest that this hybrid ultrasound/MRI approach can provide comprehensive guidance for targeted drug delivery via blood–brain barrier disruption and other emerging ultrasound treatments, facilitating their clinical translation. We anticipate that it will also prove to be an important research tool that

  16. Lumbar ultrasound: useful gadget or time-consuming gimmick?

    Science.gov (United States)

    Gambling, D R

    2011-10-01

    Despite widespread enthusiasm for using lumbar ultrasound in obstetrics, there are some who believe it is expensive and time-consuming, with undetermined risks and uncertain benefits. For decades, anesthesiologists have striven to perfect the identification and cannulation of the epidural space using skills learned during training and early clinical practice. These skills include knowledge of the relevant anatomy and detection of subtle tactile clues that aid successful placement of an epidural catheter. Indeed, obstetric anesthesiologists have managed to do this with great success without using imaging techniques. There is a long learning curve associated with lumbar ultrasound and it is unclear from the literature if the success rates associated with its use are superior to clinical skill alone. Is it only a matter of time before regulators insist that lumbar ultrasound is used before inserting an epidural? Indeed, this has already happened for central vein catheters. The United States spent $2.2 trillion on health care in 2007, nearly twice the average of other developed nations. If rapid health cost growth persists, one out of every four dollars in the US national economy will be tied up in the health system by 2025. Do obstetric anesthesiologists want to add to these costs by using unnecessary and expensive equipment? Although many feel that diagnostic ultrasound in obstetrics is safe, some argue that we have yet to perform an appropriate risk analysis for lumbar ultrasound during pregnancy. The issue of ultrasound bio-safety needs to be considered before we all jump on the ultrasound bandwagon. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Portable Ultrasound Imaging

    DEFF Research Database (Denmark)

    di Ianni, Tommaso

    This PhD project investigates hardware strategies and imaging methods for hand-held ultrasound systems. The overall idea is to use a wireless ultrasound probe linked to general-purpose mobile devices for the processing and visualization. The approach has the potential to reduce the upfront costs...... beamforming strategies are simulated from a system-level perspective. The quality of the B-mode image is evaluated and the minimum specifications are derived for the design of a portable probe with integrated electronics in-handle. The system is based on a synthetic aperture sequential beamforming approach...... that allows to significantly reduce the data rate between the probe and processing unit. The second part investigates the feasibility of vector flow imaging in a hand-held ultrasound system. Vector flow imaging overcomes the limitations of conventional imaging methods in terms of flow angle compensation...

  18. Intraluminal laser atherectomy with ultrasound and electromagnetic guidance

    Science.gov (United States)

    Gregory, Kenton W.; Aretz, H. Thomas; Martinelli, Michael A.; LeDet, Earl G.; Hatch, G. F.; Gregg, Richard E.; Sedlacek, Tomas; Haase, Wayne C.

    1991-05-01

    The MagellanTM coronary laser atherectomy system is described. It uses high- resolution ultrasound imaging and electromagnetic sensing to provide real-time guidance and control of laser therapy in the coronary arteries. The system consists of a flexible catheter, an electromagnetic navigation antenna, a sensor signal processor and a computer for image processing and display. The small, flexible catheter combines an ultrasound transducer and laser delivery optics, aimed at the artery wall, and an electromagnetic receiving sensor. An extra-corporeal electromagnetic transmit antenna, in combination with catheter sensors, locates the position of the ultrasound and laser beams in the artery. Navigation and ultrasound data are processed electronically to produce real-time, transverse, and axial cross-section images of the artery wall at selected locations. By exploiting the ability of ultrasound to image beneath the surface of artery walls, it is possible to identify candidate treatment sites and perform safe radial laser debulking of atherosclerotic plaque with reduced danger of perforation. The utility of the system in plaque identification and ablation is demonstrated with imaging and experimental results.

  19. Review of Safety of Diagnostic Ultrasound in Medical Practice ...

    African Journals Online (AJOL)

    In Nigeria, there is a dearth of scientific literature about the safety of ultrasound as a diagnostic modality. Because of its low cost, real-time image display and lack of evidence of bio-effects, ultrasound is a fast growing imaging modality. The impact of ultrasound in the care of women and children is most obvious. Information ...

  20. Portable high-intensity focused ultrasound system with 3D electronic steering, real-time cavitation monitoring, and 3D image reconstruction algorithms: a preclinical study in pigs

    International Nuclear Information System (INIS)

    Choi, Jin Woo; Lee, Jae Young; Hwang, Eui Jin; Hwang, In Pyeong; Woo, Sung Min; Lee, Chang Joo; Park, Eun Joo; Choi, Byung Ihn

    2014-01-01

    The aim of this study was to evaluate the safety and accuracy of a new portable ultrasonography-guided high-intensity focused ultrasound (USg-HIFU) system with a 3-dimensional (3D) electronic steering transducer, a simultaneous ablation and imaging module, real-time cavitation monitoring, and 3D image reconstruction algorithms. To address the accuracy of the transducer, hydrophones in a water chamber were used to assess the generation of sonic fields. An animal study was also performed in five pigs by ablating in vivo thighs by single-point sonication (n=10) or volume sonication (n=10) and ex vivo kidneys by single-point sonication (n=10). Histological and statistical analyses were performed. In the hydrophone study, peak voltages were detected within 1.0 mm from the targets on the y- and z-axes and within 2.0-mm intervals along the x-axis (z-axis, direction of ultrasound propagation; y- and x-axes, perpendicular to the direction of ultrasound propagation). Twenty-nine of 30 HIFU sessions successfully created ablations at the target. The in vivo porcine thigh study showed only a small discrepancy (width, 0.5-1.1 mm; length, 3.0 mm) between the planning ultrasonograms and the pathological specimens. Inordinate thermal damage was not observed in the adjacent tissues or sonic pathways in the in vivo thigh and ex vivo kidney studies. Our study suggests that this new USg-HIFU system may be a safe and accurate technique for ablating soft tissues and encapsulated organs.

  1. Portable high-intensity focused ultrasound system with 3D electronic steering, real-time cavitation monitoring, and 3D image reconstruction algorithms: a preclinical study in pigs

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Woo; Lee, Jae Young; Hwang, Eui Jin; Hwang, In Pyeong; Woo, Sung Min; Lee, Chang Joo; Park, Eun Joo; Choi, Byung Ihn [Dept. of Radiology and Institute of Radiation Medicine, Seoul National University Hospital, Seoul (Korea, Republic of)

    2014-10-15

    The aim of this study was to evaluate the safety and accuracy of a new portable ultrasonography-guided high-intensity focused ultrasound (USg-HIFU) system with a 3-dimensional (3D) electronic steering transducer, a simultaneous ablation and imaging module, real-time cavitation monitoring, and 3D image reconstruction algorithms. To address the accuracy of the transducer, hydrophones in a water chamber were used to assess the generation of sonic fields. An animal study was also performed in five pigs by ablating in vivo thighs by single-point sonication (n=10) or volume sonication (n=10) and ex vivo kidneys by single-point sonication (n=10). Histological and statistical analyses were performed. In the hydrophone study, peak voltages were detected within 1.0 mm from the targets on the y- and z-axes and within 2.0-mm intervals along the x-axis (z-axis, direction of ultrasound propagation; y- and x-axes, perpendicular to the direction of ultrasound propagation). Twenty-nine of 30 HIFU sessions successfully created ablations at the target. The in vivo porcine thigh study showed only a small discrepancy (width, 0.5-1.1 mm; length, 3.0 mm) between the planning ultrasonograms and the pathological specimens. Inordinate thermal damage was not observed in the adjacent tissues or sonic pathways in the in vivo thigh and ex vivo kidney studies. Our study suggests that this new USg-HIFU system may be a safe and accurate technique for ablating soft tissues and encapsulated organs.

  2. Integration of multidisciplinary technologies for real time target visualization and verification for radiotherapy.

    Science.gov (United States)

    Chang, Wen-Chung; Chen, Chin-Sheng; Tai, Hung-Chi; Liu, Chia-Yuan; Chen, Yu-Jen

    2014-01-01

    The current practice of radiotherapy examines target coverage solely from digitally reconstructed beam's eye view (BEV) in a way that is indirectly accessible and that is not in real time. We aimed to visualize treatment targets in real time from each BEV. The image data of phantom or patients from ultrasound (US) and computed tomography (CT) scans were captured to perform image registration. We integrated US, CT, US/CT image registration, robotic manipulation of US, a radiation treatment planning system, and a linear accelerator to constitute an innovative target visualization system. The performance of this algorithm segmented the target organ in CT images, transformed and reconstructed US images to match each orientation, and generated image registration in real time mode with acceptable accuracy. This image transformation allowed physicians to visualize the CT image-reconstructed target via a US probe outside the BEV that was non-coplanar to the beam's plane. It allowed the physicians to remotely control the US probe that was equipped on a robotic arm to dynamically trace and real time monitor the coverage of the target within the BEV during a simulated beam-on situation. This target visualization system may provide a direct remotely accessible and real time way to visualize, verify, and ensure tumor targeting during radiotherapy.

  3. Usefulness of emergency ultrasound in nontraumatic cardiac arrest.

    Science.gov (United States)

    Volpicelli, Giovanni

    2011-02-01

    Treatment of nontraumatic cardiac arrest in the hospital setting depends on the recognition of heart rhythm and differential diagnosis of the underlying condition while maintaining a constant oxygenated blood flow by ventilation and chest compression. Diagnostic process relies only on patient's history, physical findings, and active electrocardiography. Ultrasound is not currently scheduled in the resuscitation guidelines. Nevertheless, the use of real-time ultrasonography during resuscitation has the potential to improve diagnostic accuracy and allows the physician a greater confidence in deciding aggressive life-saving therapeutic procedures. This article reviews the current opinions and literature about the use of emergency ultrasound during resuscitation of nontraumatic cardiac arrest. Cardiac and lung ultrasound have a great potential in identifying the reversible mechanical causes of pulseless electrical activity or asystole. Brief examination of the heart can even detect a real cardiac standstill regardless of electrical activity displayed on the monitor, which is a crucial prognostic indicator. Moreover, ultrasound can be useful to verify and monitor the tracheal tube placement. Limitation to the use of ultrasound is the need to minimize the no-flow intervals during mechanical cardiopulmonary resuscitation. However, real-time ultrasound can be successfully applied during brief pausing of chest compression and first pulse-check. Finally, lung sonographic examination targeted to the detection of signs of pulmonary congestion has the potential to allow hemodynamic noninvasive monitoring before and after mechanical cardiopulmonary maneuvers. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Preliminary study of synthetic aperture tissue harmonic imaging on in-vivo data

    DEFF Research Database (Denmark)

    Rasmussen, Joachim Hee; Hemmsen, Martin Christian; Sloth Madsen, Signe

    2013-01-01

    . Results from the image quality study show, that in the current configuration on the UltraView system, where no transmit apodization was applied, SASB-THI and DRF-THI produced equally good images. It is expected that given the use of transmit apodization, SASB-THI could be further improved.......A method for synthetic aperture tissue harmonic imaging is investigated. It combines synthetic aperture sequential beamforming (SASB) with tissue harmonic imaging (THI) to produce an increased and more uniform spatial resolution and improved side lobe reduction compared to conventional B......-mode imaging. Synthetic aperture sequential beamforming tissue harmonic imaging (SASB-THI) was implemented on a commercially available BK 2202 Pro Focus UltraView ultrasound system and compared to dynamic receive focused tissue harmonic imaging (DRF-THI) in clinical scans. The scan sequence...

  5. Synthetic aperture focusing technique in real-time and tandem operation for thick section steels

    International Nuclear Information System (INIS)

    Doctor, S.R.; Hall, T.E.; Reid, L.D.; Mart, G.A.

    1988-01-01

    The authors report on a program underway at Pacific Northwest Laboratory (PNL) to move the synthetic aperture focusing technique (SAFT) from the laboratory into the field for the purpose of inspecting light-water reactor (LWR) components. The SAFT technology was developed to produce high-resolution and high signal-to-noise ratio images of ultrasonic anomalies in materials. Other researchers have been involved in developing the 2-D or line SAFT technology, but the one thing that has limited the acceptance of 38-D SAFT is the slow processing rates. This paper describes how a special purpose processor can be used to achieve processing rates of 10 A-scans/second or larger. The tandem mode has been successfully used with SAFT but only on this materials. This paper also describes how to effectively implement the tandem mode for thick section materials

  6. Passive cavitation imaging with ultrasound arrays.

    Science.gov (United States)

    Salgaonkar, Vasant A; Datta, Saurabh; Holland, Christy K; Mast, T Douglas

    2009-12-01

    A method is presented for passive imaging of cavitational acoustic emissions using an ultrasound array, with potential application in real-time monitoring of ultrasound ablation. To create such images, microbubble emissions were passively sensed by an imaging array and dynamically focused at multiple depths. In this paper, an analytic expression for a passive image is obtained by solving the Rayleigh-Sommerfield integral, under the Fresnel approximation, and passive images were simulated. A 192-element array was used to create passive images, in real time, from 520-kHz ultrasound scattered by a 1-mm steel wire. Azimuthal positions of this target were accurately estimated from the passive images. Next, stable and inertial cavitation was passively imaged in saline solution sonicated at 520 kHz. Bubble clusters formed in the saline samples were consistently located on both passive images and B-scans. Passive images were also created using broadband emissions from bovine liver sonicated at 2.2 MHz. Agreement was found between the images and source beam shape, indicating an ability to map therapeutic ultrasound beams in situ. The relation between these broadband emissions, sonication amplitude, and exposure conditions are discussed.

  7. Filled aperture concepts for the Terrestrial Planet Finder

    Science.gov (United States)

    Ridgway, Stephen T.

    2003-02-01

    Filled aperture telescopes can deliver a real, high Strehl image which is well suited for discrimination of faint planets in the vicinity of bright stars and against an extended exo-zodiacal light. A filled aperture offers a rich variety of PSF control and diffraction suppression techniques. Filled apertures are under consideration for a wide spectral range, including visible and thermal-IR, each of which offers a significant selection of biomarker molecular bands. A filled aperture visible TPF may be simpler in several respects than a thermal-IR nuller. The required aperture size (or baseline) is much smaller, and no cryogenic systems are required. A filled aperture TPF would look and act like a normal telescope - vendors and users alike would be comfortable with its design and operation. Filled aperture telescopes pose significant challenges in production of large primary mirrors, and in very stringent wavefront requirements. Stability of the wavefront control, and hence of the PSF, is a major issue for filled aperture systems. Several groups have concluded that these and other issues can be resolved, and that filled aperture options are competitive for a TPF precursor and/or for the full TPF mission. Ball, Boeing-SVS and TRW have recently returned architecture reviews on filled aperture TPF concepts. In this paper, I will review some of the major considerations underlying these filled aperture concepts, and suggest key issues in a TPF Buyers Guide.

  8. Survey of coded aperture imaging

    International Nuclear Information System (INIS)

    Barrett, H.H.

    1975-01-01

    The basic principle and limitations of coded aperture imaging for x-ray and gamma cameras are discussed. Current trends include (1) use of time varying apertures, (2) use of ''dilute'' apertures with transmission much less than 50%, and (3) attempts to derive transverse tomographic sections, unblurred by other planes, from coded images

  9. Intraoperative registered transrectal ultrasound guidance for robot-assisted laparoscopic radical prostatectomy.

    Science.gov (United States)

    Mohareri, Omid; Ischia, Joseph; Black, Peter C; Schneider, Caitlin; Lobo, Julio; Goldenberg, Larry; Salcudean, Septimiu E

    2015-01-01

    To provide unencumbered real-time ultrasound image guidance during robot-assisted laparoscopic radical prostatectomy, we developed a robotic transrectal ultrasound system that tracks the da Vinci® Surgical System instruments. We describe our initial clinical experience with this system. After an evaluation in a canine model, 20 patients were enrolled in the study. During each procedure the transrectal ultrasound transducer was manually positioned using a brachytherapy stabilizer to provide good imaging of the prostate. Then the transrectal ultrasound was registered to the da Vinci robot by a previously validated procedure. Finally, automatic rotation of the transrectal ultrasound was enabled such that the transrectal ultrasound imaging plane safely tracked the tip of the da Vinci instrument controlled by the surgeon, while real-time transrectal ultrasound images were relayed to the surgeon at the da Vinci console. Tracking was activated during all critical stages of the surgery. The transrectal ultrasound robot was easy to set up and use, adding 7 minutes (range 5 to 14) to the procedure. It did not require an assistant or additional control devices. Qualitative feedback was acquired from the surgeons, who found transrectal ultrasound useful in identifying the urethra while passing the dorsal venous complex suture, defining the prostate-bladder interface during bladder neck dissection, identifying the seminal vesicles and their location with respect to the rectal wall, and identifying the distal prostate boundary at the apex. Real-time, registered robotic transrectal ultrasound guidance with automatic instrument tracking during robot-assisted laparoscopic radical prostatectomy is feasible and potentially useful. The results justify further studies to establish whether the approach can improve procedure outcomes. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  10. TU-EF-210-03: Real-Time Ablation Monitoring and Lesion Quantification Using Harmonic Motion Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Konofagou, E. [Columbia University (United States)

    2015-06-15

    The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imaging Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare.

  11. TU-EF-210-03: Real-Time Ablation Monitoring and Lesion Quantification Using Harmonic Motion Imaging

    International Nuclear Information System (INIS)

    Konofagou, E.

    2015-01-01

    The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imaging Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare

  12. A system for EPID-based real-time treatment delivery verification during dynamic IMRT treatment.

    Science.gov (United States)

    Fuangrod, Todsaporn; Woodruff, Henry C; van Uytven, Eric; McCurdy, Boyd M C; Kuncic, Zdenka; O'Connor, Daryl J; Greer, Peter B

    2013-09-01

    To design and develop a real-time electronic portal imaging device (EPID)-based delivery verification system for dynamic intensity modulated radiation therapy (IMRT) which enables detection of gross treatment delivery errors before delivery of substantial radiation to the patient. The system utilizes a comprehensive physics-based model to generate a series of predicted transit EPID image frames as a reference dataset and compares these to measured EPID frames acquired during treatment. The two datasets are using MLC aperture comparison and cumulative signal checking techniques. The system operation in real-time was simulated offline using previously acquired images for 19 IMRT patient deliveries with both frame-by-frame comparison and cumulative frame comparison. Simulated error case studies were used to demonstrate the system sensitivity and performance. The accuracy of the synchronization method was shown to agree within two control points which corresponds to approximately ∼1% of the total MU to be delivered for dynamic IMRT. The system achieved mean real-time gamma results for frame-by-frame analysis of 86.6% and 89.0% for 3%, 3 mm and 4%, 4 mm criteria, respectively, and 97.9% and 98.6% for cumulative gamma analysis. The system can detect a 10% MU error using 3%, 3 mm criteria within approximately 10 s. The EPID-based real-time delivery verification system successfully detected simulated gross errors introduced into patient plan deliveries in near real-time (within 0.1 s). A real-time radiation delivery verification system for dynamic IMRT has been demonstrated that is designed to prevent major mistreatments in modern radiation therapy.

  13. Ultrasound Instrumentation for Beam Diagnostics and Accelerating Structures Control

    CERN Document Server

    Moiseev, V I

    2005-01-01

    Sensitive elements and electronics for ultrasound measurements at conducting walls of beam pipes and accelerating structures are described. Noise protected instrumentation provides ultrasound spectra analysis in a wide frequency range up to 5 MHz.In circular accelerators, ultrasound fields in conducting walls of beam pipe represent the space-time characteristics of circulating beams. In accelerating structures, real high power operation modes of structure can be studied by outer ultrasound monitors. The experimental results at KSRS accelerators are discussed.

  14. Real-time soft x-ray imaging on composite materials

    International Nuclear Information System (INIS)

    Polichar, R.

    1985-01-01

    The increased use of composite materials in aircraft structures has emphasized many of the unique and difficult aspects of the inspection of such components. Ultrasound has been extensively applied to certain configurations since it is relatively sensitive to laminar discontinuities in structure. Conversely, the use of conventional x-ray examination has been severely hampered by the fact that these composite materials are virtually transparent to the x-ray energies commonly encountered in industrial radiography (25 kv and above). To produce images with contrast approaching conventional radiography, one must use x-ray beams with average energies below 10 KEV where the absorption coefficients begin to rise rapidly for these low atomic number materials. This new regime of soft x-rays presents a major challenge to real-time imaging components. Special screen and window technology is required if these lower energy x-rays are to be effectively detected. Moreover, conventional x-ray tubes become very inefficient for generating the required x-ray flux at potentials much below 29 kv and the increased operating currents put significant limitations on conventional power sources. The purpose of this paper is to explore these special problems related to soft x-ray real-time imaging and to define the optimal technologies. Practical results obtained with the latest commerical and developmental instruments for real-time imaging will be shown. These instruments include recently developed imaging systems, new x-ray tubes and various approaches to generator design. The measured results convincingly demonstrate the effectiveness practicality of real-time soft x-ray imaging. They also indicate the major changes in technology and approach that must be taken for practical systems to be truly effective

  15. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... abdomen, arms, legs, neck and/or brain (in infants and children) or within various body organs such ... abdomen help determine causes of vomiting in young infants Because ultrasound provides real-time images, images that ...

  16. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... a follow-up exam is done because a potential abnormality needs further evaluation with additional views or ... of soft tissues that do not show up well on x-ray images. Ultrasound provides real-time ...

  17. Position tracking of moving liver lesion based on real-time registration between 2D ultrasound and 3D preoperative images

    International Nuclear Information System (INIS)

    Weon, Chijun; Hyun Nam, Woo; Lee, Duhgoon; Ra, Jong Beom; Lee, Jae Young

    2015-01-01

    Purpose: Registration between 2D ultrasound (US) and 3D preoperative magnetic resonance (MR) (or computed tomography, CT) images has been studied recently for US-guided intervention. However, the existing techniques have some limits, either in the registration speed or the performance. The purpose of this work is to develop a real-time and fully automatic registration system between two intermodal images of the liver, and subsequently an indirect lesion positioning/tracking algorithm based on the registration result, for image-guided interventions. Methods: The proposed position tracking system consists of three stages. In the preoperative stage, the authors acquire several 3D preoperative MR (or CT) images at different respiratory phases. Based on the transformations obtained from nonrigid registration of the acquired 3D images, they then generate a 4D preoperative image along the respiratory phase. In the intraoperative preparatory stage, they properly attach a 3D US transducer to the patient’s body and fix its pose using a holding mechanism. They then acquire a couple of respiratory-controlled 3D US images. Via the rigid registration of these US images to the 3D preoperative images in the 4D image, the pose information of the fixed-pose 3D US transducer is determined with respect to the preoperative image coordinates. As feature(s) to use for the rigid registration, they may choose either internal liver vessels or the inferior vena cava. Since the latter is especially useful in patients with a diffuse liver disease, the authors newly propose using it. In the intraoperative real-time stage, they acquire 2D US images in real-time from the fixed-pose transducer. For each US image, they select candidates for its corresponding 2D preoperative slice from the 4D preoperative MR (or CT) image, based on the predetermined pose information of the transducer. The correct corresponding image is then found among those candidates via real-time 2D registration based on a

  18. Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes

    DEFF Research Database (Denmark)

    Perch-Nielsen, I.; Rodrigo, P.J.; Glückstad, J.

    2005-01-01

    The generalized phase contrast (GPC) method has been applied to transform a single TEM00 beam into a manifold of counterpropagating-beam traps capable of real-time interactive manipulation of multiple microparticles in three dimensions (3D). This paper reports on the use of low numerical aperture...... for imaging through each of the two opposing objective lenses. As a consequence of the large working distance, simultaneous monitoring of the trapped particles in a second orthogonal observation plane is demonstrated. (C) 2005 Optical Society of America....

  19. Real-time generation of images with pixel-by-pixel spectra for a coded aperture imager with high spectral resolution

    International Nuclear Information System (INIS)

    Ziock, K.P.; Burks, M.T.; Craig, W.; Fabris, L.; Hull, E.L.; Madden, N.W.

    2003-01-01

    The capabilities of a coded aperture imager are significantly enhanced when a detector with excellent energy resolution is used. We are constructing such an imager with a 1.1 cm thick, crossed-strip, planar detector which has 38 strips of 2 mm pitch in each dimension followed by a large coaxial detector. Full value from this system is obtained only when the images are 'fully deconvolved' meaning that the energy spectrum is available from each pixel in the image. The large number of energy bins associated with the spectral resolution of the detector, and the fixed pixel size, present significant computational challenges in generating an image in a timely manner at the conclusion of a data acquisition. The long computation times currently preclude the generation of intermediate images during the acquisition itself. We have solved this problem by building the images on-line as each event comes in using pre-imaged arrays of the system response. The generation of these arrays and the use of fractional mask-to-detector pixel sampling is discussed

  20. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... do not use ionizing radiation (as used in x-rays ), thus there is no radiation exposure to the ... tissues that do not show up well on x-ray images. Ultrasound provides real-time imaging, making it ...

  1. Parameters for HL-LHC aperture calculations and comparison with aperture measurements

    CERN Document Server

    Bruce, R; Fartoukh, S; Giovannozzi, M; Redaelli, S; Tomas, R; Wenninger, J

    2014-01-01

    When β∗ is squeezed to smaller values in the LHC, the beam size in the inner triplet increases so that the aperture risks to be exposed to unwanted beam losses. A 2D calculation model was used during the design stage to study the aperture margins, both there and at other potential bottlenecks. Based on assumptions on orbit and optics errors, as well as mechanical tolerances, it gives the available aperture in units of the RMS beam size, which can be compared with what can be protected by the collimation system. During the LHC Run I in 2010-2013, several of the error tolerances have been found smaller than the design assumptions. Furthermore, the aperture has been measured with beam several times and the results are compatible with a very well aligned machine, with results close to the design values. In this report, we therefore review the assumptions in the model and propose an updated set of input parameters to be used for aperture calculations at top energy in HL-LHC. The new parameter set is based on th...

  2. Ultrasound-guided nerve blocks--is documentation and education feasible using only text and pictures?

    Directory of Open Access Journals (Sweden)

    Bjarne Skjødt Worm

    Full Text Available PURPOSE: With the advancement of ultrasound-guidance for peripheral nerve blocks, still pictures from representative ultrasonograms are increasingly used for clinical procedure documentation of the procedure and for educational purposes in textbook materials. However, little is actually known about the clinical and educational usefulness of these still pictures, in particular how well nerve structures can be identified compared to real-time ultrasound examination. We aimed to quantify gross visibility or ultrastructure using still picture sonograms compared to real time ultrasound for trainees and experts, for large or small nerves, and discuss the clinical or educational relevance of these findings. MATERIALS AND METHODS: We undertook a clinical study to quantify the maximal gross visibility or ultrastructure of seven peripheral nerves identified by either real time ultrasound (clinical cohort, n = 635 or by still picture ultrasonograms (clinical cohort, n = 112. In addition, we undertook a study on test subjects (n = 4 to quantify interobserver variations and potential bias among expert and trainee observers. RESULTS: When comparing real time ultrasound and interpretation of still picture sonograms, gross identification of large nerves was reduced by 15% and 40% by expert and trainee observers, respectively, while gross identification of small nerves was reduced by 29% and 66%. Identification of within-nerve ultrastructure was even less. For all nerve sizes, trainees were unable to identify any anatomical structure in 24 to 34%, while experts were unable to identify anything in 9 to 10%. CONCLUSION: Exhaustive ultrasonography experience and real time ultrasound measurements seem to be keystones in obtaining optimal nerve identification. In contrast the use of still pictures appears to be insufficient for documentation as well as educational purposes. Alternatives such as video clips or enhanced picture technology are encouraged

  3. Molecular ultrasound imaging: current status and future directions

    International Nuclear Information System (INIS)

    Deshpande, N.; Needles, A.; Willmann, J.K.

    2010-01-01

    Targeted contrast-enhanced ultrasound (molecular ultrasound) is an emerging imaging strategy that combines ultrasound technology with novel molecularly-targeted ultrasound contrast agents for assessing biological processes at the molecular level. Molecular ultrasound contrast agents are nano- or micro-sized particles that are targeted to specific molecular markers by adding high-affinity binding ligands onto the surface of the particles. Following intravenous administration, these targeted ultrasound contrast agents accumulate at tissue sites overexpressing specific molecular markers, thereby enhancing the ultrasound imaging signal. High spatial and temporal resolution, real-time imaging, non-invasiveness, relatively low costs, lack of ionising irradiation and wide availability of ultrasound systems are advantages compared to other molecular imaging modalities. In this article we review current concepts and future directions of molecular ultrasound imaging, including different classes of molecular ultrasound contrast agents, ongoing technical developments of pre-clinical and clinical ultrasound systems, the potential of molecular ultrasound for imaging different diseases at the molecular level, and the translation of molecular ultrasound into the clinic.

  4. A system for EPID-based real-time treatment delivery verification during dynamic IMRT treatment

    Energy Technology Data Exchange (ETDEWEB)

    Fuangrod, Todsaporn [Faculty of Engineering and Built Environment, School of Electrical Engineering and Computer Science, the University of Newcastle, NSW 2308 (Australia); Woodruff, Henry C.; O’Connor, Daryl J. [Faculty of Science and IT, School of Mathematical and Physical Sciences, the University of Newcastle, NSW 2308 (Australia); Uytven, Eric van; McCurdy, Boyd M. C. [Division of Medical Physics, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada); Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Department of Radiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Kuncic, Zdenka [School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Greer, Peter B. [Faculty of Science and IT, School of Mathematical and Physical Sciences, the University of Newcastle, NSW 2308, Australia and Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Locked Bag 7, Hunter region Mail Centre, Newcastle, NSW 2310 (Australia)

    2013-09-15

    Purpose: To design and develop a real-time electronic portal imaging device (EPID)-based delivery verification system for dynamic intensity modulated radiation therapy (IMRT) which enables detection of gross treatment delivery errors before delivery of substantial radiation to the patient.Methods: The system utilizes a comprehensive physics-based model to generate a series of predicted transit EPID image frames as a reference dataset and compares these to measured EPID frames acquired during treatment. The two datasets are using MLC aperture comparison and cumulative signal checking techniques. The system operation in real-time was simulated offline using previously acquired images for 19 IMRT patient deliveries with both frame-by-frame comparison and cumulative frame comparison. Simulated error case studies were used to demonstrate the system sensitivity and performance.Results: The accuracy of the synchronization method was shown to agree within two control points which corresponds to approximately ∼1% of the total MU to be delivered for dynamic IMRT. The system achieved mean real-time gamma results for frame-by-frame analysis of 86.6% and 89.0% for 3%, 3 mm and 4%, 4 mm criteria, respectively, and 97.9% and 98.6% for cumulative gamma analysis. The system can detect a 10% MU error using 3%, 3 mm criteria within approximately 10 s. The EPID-based real-time delivery verification system successfully detected simulated gross errors introduced into patient plan deliveries in near real-time (within 0.1 s).Conclusions: A real-time radiation delivery verification system for dynamic IMRT has been demonstrated that is designed to prevent major mistreatments in modern radiation therapy.

  5. A system for EPID-based real-time treatment delivery verification during dynamic IMRT treatment

    International Nuclear Information System (INIS)

    Fuangrod, Todsaporn; Woodruff, Henry C.; O’Connor, Daryl J.; Uytven, Eric van; McCurdy, Boyd M. C.; Kuncic, Zdenka; Greer, Peter B.

    2013-01-01

    Purpose: To design and develop a real-time electronic portal imaging device (EPID)-based delivery verification system for dynamic intensity modulated radiation therapy (IMRT) which enables detection of gross treatment delivery errors before delivery of substantial radiation to the patient.Methods: The system utilizes a comprehensive physics-based model to generate a series of predicted transit EPID image frames as a reference dataset and compares these to measured EPID frames acquired during treatment. The two datasets are using MLC aperture comparison and cumulative signal checking techniques. The system operation in real-time was simulated offline using previously acquired images for 19 IMRT patient deliveries with both frame-by-frame comparison and cumulative frame comparison. Simulated error case studies were used to demonstrate the system sensitivity and performance.Results: The accuracy of the synchronization method was shown to agree within two control points which corresponds to approximately ∼1% of the total MU to be delivered for dynamic IMRT. The system achieved mean real-time gamma results for frame-by-frame analysis of 86.6% and 89.0% for 3%, 3 mm and 4%, 4 mm criteria, respectively, and 97.9% and 98.6% for cumulative gamma analysis. The system can detect a 10% MU error using 3%, 3 mm criteria within approximately 10 s. The EPID-based real-time delivery verification system successfully detected simulated gross errors introduced into patient plan deliveries in near real-time (within 0.1 s).Conclusions: A real-time radiation delivery verification system for dynamic IMRT has been demonstrated that is designed to prevent major mistreatments in modern radiation therapy

  6. The Role of Airway and Endobronchial Ultrasound in Perioperative Medicine

    Directory of Open Access Journals (Sweden)

    Jiri Votruba

    2015-01-01

    Full Text Available Recent years have witnessed an increased use of ultrasound in evaluation of the airway and the lower parts of the respiratory system. Ultrasound examination is fast and reliable and can be performed at the bedside and does not carry the risk of exposure to ionizing radiation. Apart from use in diagnostics it may also provide safe guidance for invasive and semi-invasive procedures. Ultrasound examination of the oral cavity structures, epiglottis, vocal cords, and subglottic space may help in the prediction of difficult intubation. Preoperative ultrasound may diagnose vocal cord palsy or deviation or stenosis of the trachea. Ultrasonography can also be used for confirmation of endotracheal tube, double-lumen tube, or laryngeal mask placement. This can be achieved by direct examination of the tube inside the trachea or by indirect methods evaluating lung movements. Postoperative airway ultrasound may reveal laryngeal pathology or subglottic oedema. Conventional ultrasound is a reliable real-time navigational tool for emergency cricothyrotomy or percutaneous dilational tracheostomy. Endobronchial ultrasound is a combination of bronchoscopy and ultrasonography and is used for preoperative examination of lung cancer and solitary pulmonary nodules. The method is also useful for real-time navigated biopsies of such pathological structures.

  7. Ultrasound-guided nerve blocks - is documentation and education feasible using only text and pictures?

    DEFF Research Database (Denmark)

    Worm, Bjarne Skjødt; Krag, Mette; Jensen, Kenneth

    2014-01-01

    With the advancement of ultrasound-guidance for peripheral nerve blocks, still pictures from representative ultrasonograms are increasingly used for clinical procedure documentation of the procedure and for educational purposes in textbook materials. However, little is actually known about...... the clinical and educational usefulness of these still pictures, in particular how well nerve structures can be identified compared to real-time ultrasound examination. We aimed to quantify gross visibility or ultrastructure using still picture sonograms compared to real time ultrasound for trainees...... and experts, for large or small nerves, and discuss the clinical or educational relevance of these findings....

  8. Synthetic Aperture Flow Imaging Using a Dual Beamformer Approach

    DEFF Research Database (Denmark)

    Li, Ye

    Color flow mapping systems have become widely used in clinical applications. It provides an opportunity to visualize the velocity profile over a large region in the vessel, which makes it possible to diagnose, e.g., occlusion of veins, heart valve deficiencies, and other hemodynamic problems....... However, while the conventional ultrasound imaging of making color flow mapping provides useful information in many circumstances, the spatial velocity resolution and frame rate are limited. The entire velocity distribution consists of image lines from different directions, and each image line...... on the current commercial ultrasound scanner. The motivation for this project is to develop a method lowering the amount of calculations and still maintaining beamforming quality sufficient for flow estimation. Synthetic aperture using a dual beamformer approach is investigated using Field II simulations...

  9. Comparison of transient arterial occlusion and muscle exercise provocation for assessment of perfusion reserve in skeletal muscle with real-time contrast-enhanced ultrasound

    International Nuclear Information System (INIS)

    Krix, Martin; Krakowski-Roosen, Holger; Armarteifio, Erick; Fuerstenberger, Susanne; Delorme, Stefan; Kauczor, Hans-Ulrich; Weber, Marc-Andre

    2011-01-01

    Objective: Contrast-enhanced ultrasound (CEUS) is able to quantify muscle perfusion and changes in perfusion due to muscle exercise in real-time. However, reliable measurement of standardized muscle exercise is difficult to perform in clinical examinations. We compared perfusion reserve assessed by CEUS after transient arterial occlusion and exercise to find the most suitable measurement for clinical application. Methods: Contrast pulse sequencing (7 MHz) during continuous IV infusion of SonoVue (4.8 mL/300 s) was used in 8 healthy volunteers to monitor muscle perfusion of the gastrocnemius muscle during transient (1 min) arterial occlusion produced by a thigh cuff of a venous occlusion plethysmograph. Isometric muscle exercise (50% of individual maximum strength for 20 s) was subsequently performed during the same examination, and several CEUS parameters obtained from ultrasound-signal-intensity-time curves and its calculation errors were compared. Results: The mean maximum local blood volume after occlusion was 13.9 [∼mL] (range, 4.5-28.8 [∼mL]), and similar values were measured after sub-maximum exercise 13.8 [∼mL], (range, 4.6-22.2 [∼mL]. The areas under the curve during reperfusion vs. recovery were also similar (515.2 ± 257.5 compared to 482.2 ± 187.5 [∼mL s]) with a strong correlation (r = 0.65), as were the times to maximum (15.3 s vs. 15.9 s), with a significantly smaller variation for the occlusion method (±2.1 s vs. ±9.0 s, p = 0.03). The mean errors for all calculated CEUS parameters were lower for the occlusion method than for the exercise test. Conclusions: CEUS muscle perfusion measurements can be easily performed after transient arterial occlusion. It delivers data which are comparable to CEUS measurements after muscle exercise but with a higher robustness. This method can be easily applied in clinical examination of patients with e.g. PAOD or diabetic microvessel diseases to assess perfusion reserve.

  10. Real-Time GPU Implementation of Transverse Oscillation Vector Velocity Flow Imaging

    DEFF Research Database (Denmark)

    Bradway, David; Pihl, Michael Johannes; Krebs, Andreas

    2014-01-01

    Rapid estimation of blood velocity and visualization of complex flow patterns are important for clinical use of diagnostic ultrasound. This paper presents real-time processing for two-dimensional (2-D) vector flow imaging which utilizes an off-the-shelf graphics processing unit (GPU). In this work...... vector flow acquisition takes 2.3 milliseconds seconds on an Advanced Micro Devices Radeon HD 7850 GPU card. The detected velocities are accurate to within the precision limit of the output format of the display routine. Because this tool was developed as a module external to the scanner’s built...

  11. Visually and memory-guided grasping: aperture shaping exhibits a time-dependent scaling to Weber's law.

    Science.gov (United States)

    Holmes, Scott A; Mulla, Ali; Binsted, Gordon; Heath, Matthew

    2011-09-01

    The 'just noticeable difference' (JND) represents the minimum amount by which a stimulus must change to produce a noticeable variation in one's perceptual experience and is related to initial stimulus magnitude (i.e., Weber's law). The goal of the present study was to determine whether aperture shaping for visually derived and memory-guided grasping elicit a temporally dependent or temporally independent adherence to Weber's law. Participants were instructed to grasp differently sized objects (20, 30, 40, 50 and 60mm) in conditions wherein vision of the grasping environment was available throughout the response (i.e., closed-loop), when occluded at movement onset (i.e., open-loop), and when occluded for a brief (i.e., 0ms) or longer (i.e., 2000ms) delay in advance of movement onset. Within-participant standard deviations of grip aperture (i.e., the JNDs) computed at decile increments of normalized grasping time were used to determine participant's sensitivity to detecting changes in object size. Results showed that JNDs increased linearly with increasing object size from 10% to 40% of grasping time; that is, the trial-to-trial stability (i.e., visuomotor certainty) of grip aperture (i.e., the comparator) decreased with increasing object size (i.e., the initial stimulus). However, a null JND/object size scaling was observed during the middle and late stages of the response (i.e., >50% of grasping time). Most notably, the temporal relationship between JNDs and object size scaling was similar across the different visual conditions used here. Thus, our results provide evidence that aperture shaping elicits a time-dependent early, but not late, adherence to the psychophysical principles of Weber's law. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Dynamic ultrasound of peroneal tendon instability.

    Science.gov (United States)

    Pesquer, Lionel; Guillo, Stéphane; Poussange, Nicolas; Pele, Eric; Meyer, Philippe; Dallaudière, Benjamin

    2016-07-01

    Ankle snapping may be caused by peroneal tendon instability. Anterior instability occurs after traumatic superior peroneal retinaculum injury, whereas peroneal tendon intrasheath subluxation is atraumatic. Whereas subluxation is mainly dynamic, ultrasound allows for the diagnosis and classification of peroneal instability because it allows for real-time exploration. The purpose of this review is to describe the anatomic and physiologic bases for peroneal instability and to heighten the role of dynamic ultrasound in the diagnosis of snapping.

  13. Real-time shadows

    CERN Document Server

    Eisemann, Elmar; Assarsson, Ulf; Wimmer, Michael

    2011-01-01

    Important elements of games, movies, and other computer-generated content, shadows are crucial for enhancing realism and providing important visual cues. In recent years, there have been notable improvements in visual quality and speed, making high-quality realistic real-time shadows a reachable goal. Real-Time Shadows is a comprehensive guide to the theory and practice of real-time shadow techniques. It covers a large variety of different effects, including hard, soft, volumetric, and semi-transparent shadows.The book explains the basics as well as many advanced aspects related to the domain

  14. Dependable Real-Time Systems

    Science.gov (United States)

    1991-09-30

    0196 or 413 545-0720 PI E-mail Address: krithi@nirvan.cs.umass.edu, stankovic(ocs.umass.edu Grant or Contract Title: Dependable Real - Time Systems Grant...Dependable Real - Time Systems " Grant or Contract Number: N00014-85-k-0398 L " Reporting Period: 1 Oct 87 - 30 Sep 91 , 2. Summary of Accomplishments ’ 2.1 Our...in developing a sound approach to scheduling tasks in complex real - time systems , (2) developed a real-time operating system kernel, a preliminary

  15. LabVIEW Real-Time

    CERN Multimedia

    CERN. Geneva; Flockhart, Ronald Bruce; Seppey, P

    2003-01-01

    With LabVIEW Real-Time, you can choose from a variety of RT Series hardware. Add a real-time data acquisition component into a larger measurement and automation system or create a single stand-alone real-time solution with data acquisition, signal conditioning, motion control, RS-232, GPIB instrumentation, and Ethernet connectivity. With the various hardware options, you can create a system to meet your precise needs today, while the modularity of the system means you can add to the solution as your system requirements grow. If you are interested in Reliable and Deterministic systems for Measurement and Automation, you will profit from this seminar. Agenda: Real-Time Overview LabVIEW RT Hardware Platforms - Linux on PXI Programming with LabVIEW RT Real-Time Operating Systems concepts Timing Applications Data Transfer

  16. Concepts of real time and semi-real time material control

    International Nuclear Information System (INIS)

    Lovett, J.E.

    1975-01-01

    After a brief consideration of the traditional material balance accounting on an MBA basis, this paper explores the basic concepts of real time and semi-real time material control, together with some of the major problems to be solved. Three types of short-term material control are discussed: storage, batch processing, and continuous processing. (DLC)

  17. Real Time Systems

    DEFF Research Database (Denmark)

    Christensen, Knud Smed

    2000-01-01

    Describes fundamentals of parallel programming and a kernel for that. Describes methods for modelling and checking parallel problems. Real time problems.......Describes fundamentals of parallel programming and a kernel for that. Describes methods for modelling and checking parallel problems. Real time problems....

  18. Real time expert systems

    International Nuclear Information System (INIS)

    Asami, Tohru; Hashimoto, Kazuo; Yamamoto, Seiichi

    1992-01-01

    Recently, aiming at the application to the plant control for nuclear reactors and traffic and communication control, the research and the practical use of the expert system suitable to real time processing have become conspicuous. In this report, the condition for the required function to control the object that dynamically changes within a limited time is presented, and the technical difference between the real time expert system developed so as to satisfy it and the expert system of conventional type is explained with the actual examples and from theoretical aspect. The expert system of conventional type has the technical base in the problem-solving equipment originating in STRIPS. The real time expert system is applied to the fields accompanied by surveillance and control, to which conventional expert system is hard to be applied. The requirement for the real time expert system, the example of the real time expert system, and as the techniques of realizing real time processing, the realization of interruption processing, dispersion processing, and the mechanism of maintaining the consistency of knowledge are explained. (K.I.)

  19. Development and validation of a real-time SAFT-UT system for inservice inspection of LWRs

    International Nuclear Information System (INIS)

    Doctor, S.R.; Reid, L.D.; Hall, T.E.; Littlefield, R.J.; Gilbert, R.W.; Crawford, S.L.; Baldwin, A.J.; Bowey, R.E.

    1985-10-01

    A multi-year program is underway at Pacific Northwest Laboratory (PNL) to move the synthetic aperture focusing technique from the Laboratory into the field to inspect light water reactor components. This report is a summary of highlights from the third year's efforts. The work presented here includes: scanner development, SAFT-UT signal processing techniques, SAFT-UT graphics package development, SAFT-UT real-time processor, SAFT-UT field system integration, SAFT-UT evaluation on CCSS, a field trip demonstrating in-field SAFT data processing, and future work. 11 figs

  20. Adaptive digital image processing in real time: First clinical experiences

    International Nuclear Information System (INIS)

    Andre, M.P.; Baily, N.A.; Hier, R.G.; Edwards, D.K.; Tainer, L.B.; Sartoris, D.J.

    1986-01-01

    The promise of computer image processing has generally not been realized in radiology, partly because the methods advanced to date have been expensive, time-consuming, or inconvenient for clinical use. The authors describe a low-cost system which performs complex image processing operations on-line at video rates. The method uses a combination of unsharp mask subtraction (for low-frequency suppression) and statistical differencing (which adjusts the gain at each point of the image on the basis of its variation from a local mean). The operator interactively adjusts aperture size, contrast gain, background subtraction, and spatial noise reduction. The system is being evaluated for on-line fluoroscopic enhancement, for which phantom measurements and clinical results, including lithotripsy, are presented. When used with a video camera, postprocessing of radiographs was advantageous in a variety of studies, including neonatal chest studies. Real-time speed allows use of the system in the reading room as a ''variable view box.''

  1. Review and discussion of the development of synthetic aperture focusing technique for ultrasonic testing (SAFT-UT)

    International Nuclear Information System (INIS)

    Busse, L.J.; Collins, H.D.; Doctor, S.R.

    1984-03-01

    The development and capabilities of synthetic aperture focusing techniques for ultrasonic testing (SAFT-UT) are presented. The purpose of SAFT-UT is to produce high-resolution images of the interior of opaque objects. The goal of this work is to develop and implement methods which can be used to detect and to quantify the extent of defects and cracks in critical components of nuclear reactors (pressure vessels, primary piping systems, and nozzles). This report places particular emphasis upon the practical experimental results that have been obtained using SAFT-UT as well as the theoretical background that underlies synthetic aperture focusing. A discussion regarding high-speed and real-time implementations of two- and three-dimensional synthetic aperture focusing is also presented

  2. FPGA-based reconfigurable processor for ultrafast interlaced ultrasound and photoacoustic imaging.

    Science.gov (United States)

    Alqasemi, Umar; Li, Hai; Aguirre, Andrés; Zhu, Quing

    2012-07-01

    In this paper, we report, to the best of our knowledge, a unique field-programmable gate array (FPGA)-based reconfigurable processor for real-time interlaced co-registered ultrasound and photoacoustic imaging and its application in imaging tumor dynamic response. The FPGA is used to control, acquire, store, delay-and-sum, and transfer the data for real-time co-registered imaging. The FPGA controls the ultrasound transmission and ultrasound and photoacoustic data acquisition process of a customized 16-channel module that contains all of the necessary analog and digital circuits. The 16-channel module is one of multiple modules plugged into a motherboard; their beamformed outputs are made available for a digital signal processor (DSP) to access using an external memory interface (EMIF). The FPGA performs a key role through ultrafast reconfiguration and adaptation of its structure to allow real-time switching between the two imaging modes, including transmission control, laser synchronization, internal memory structure, beamforming, and EMIF structure and memory size. It performs another role by parallel accessing of internal memories and multi-thread processing to reduce the transfer of data and the processing load on the DSP. Furthermore, because the laser will be pulsing even during ultrasound pulse-echo acquisition, the FPGA ensures that the laser pulses are far enough from the pulse-echo acquisitions by appropriate time-division multiplexing (TDM). A co-registered ultrasound and photoacoustic imaging system consisting of four FPGA modules (64-channels) is constructed, and its performance is demonstrated using phantom targets and in vivo mouse tumor models.

  3. Real-time vision, tactile cues, and visual form agnosia in pantomimed grasping: removing haptic feedback induces a switch from natural to pantomime-like grasps

    Directory of Open Access Journals (Sweden)

    Robert Leslie Whitwell

    2015-05-01

    Full Text Available Investigators study the kinematics of grasping movements (prehension under a variety of conditions to probe visuomotor function in normal and brain-damaged individuals. When patient DF, who suffers from visual form agnosia, performs natural grasps, her in-flight hand aperture is scaled to the widths of targets ('grip scaling' that she cannot discriminate amongst. In contrast, when DF's pantomime grasps are based on a memory of a previewed object, her grip scaling is very poor. Her failure on this task has been interpreted as additional support for the dissociation between the use of object vision for action and object vision for perception. Curiously, however, when DF directs her pantomimed grasps towards a displaced imagined copy of a visible object where her fingers make contact with the surface of the table, her grip scaling does not appear to be particularly poor. In the first of two experiments, we revisit this previous work and show that her grip scaling in this real-time pantomime grasping task does not differ from controls, suggesting that terminal tactile feedback from a proxy of the target can maintain DF's grip scaling. In a second experiment with healthy participants, we tested a recent variant of a grasping task in which no tactile feedback is available (i.e. no haptic feedback by comparing the kinematics of target-directed grasps with and without haptic feedback to those of real-time pantomime grasps without haptic feedback. Compared to natural grasps, removing haptic feedback increased RT, slowed the velocity of the reach, reduced grip aperture, sharpened the slopes relating grip aperture to target width, and reduced the final grip aperture. All of these effects were also observed in the pantomime grasping task. Taken together, these results provide compelling support for the view that removing haptic feedback induces a switch from real-time visual control to one that depends more on visual perception and cognitive supervision.

  4. Development and validation of real-time SAFT-UT system for inservice inspection of LWRs

    International Nuclear Information System (INIS)

    Doctor, S.R.; Hall, T.E.; Reid, L.D.; Mart, G.A.

    1988-01-01

    The Pacific Northwest Laboratory is working to design, fabricate, and evaluate a real-time flaw detection and characterization system based on the synthetic aperture focusing technique for ultrasonic testing (SAFT-UT). The system is designed to perform inservice inspection of light-water reactor components. Included objectives of this program for the Nuclear Regulatory Commission are to develop procedures for system calibration and field operation, to validate the system through laboratory and field inspections, and to generate an engineering database to support ASME Code acceptance of the technology. This progress report covers the programmatic work from October 1986 through September 1987. (author)

  5. Real-Time Measurements and Modelling on Dynamic Behaviour of SonoVue Bubbles Based on Light Scattering Technology

    International Nuclear Information System (INIS)

    Juan, Tu; Rongjue, Wei; Guan, J. F.; Matula, T. J.; Crum, L. A.

    2008-01-01

    The dynamic behaviour of SonoVue microbubbles, a new generation ultrasound contrast agent, is investigated in real time with light scattering method. Highly diluted SonoVue microbubbles are injected into a diluted gel made of xanthan gum and water. The responses of individual SonoVue bubbles to driven ultrasound pulses are measured. Both linear and nonlinear bubble oscillations are observed and the results suggest that SonoVue microbubbles can generate strong nonlinear responses. By fitting the experimental data of individual bubble responses with Sarkar's model, the shell coating parameter of the bubbles and dilatational viscosity is estimated to be 7.0 nm·s·Pa

  6. The Pointing Self-calibration Algorithm for Aperture Synthesis Radio Telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, S.; Cornwell, T. J., E-mail: sbhatnag@nrao.edu [National Radio Astronomy Observatory, 1003 Lopezville Road, Socorro, NM 87801 (United States)

    2017-11-01

    This paper is concerned with algorithms for calibration of direction-dependent effects (DDE) in aperture synthesis radio telescopes (ASRT). After correction of direction-independent effects (DIE) using self-calibration, imaging performance can be limited by the imprecise knowledge of the forward gain of the elements in the array. In general, the forward gain pattern is directionally dependent and varies with time due to a number of reasons. Some factors, such as rotation of the primary beam with Parallactic Angle for Azimuth–Elevation mount antennas are known a priori. Some, such as antenna pointing errors and structural deformation/projection effects for aperture-array elements cannot be measured a priori. Thus, in addition to algorithms to correct for DD effects known a priori, algorithms to solve for DD gains are required for high dynamic range imaging. Here, we discuss a mathematical framework for antenna-based DDE calibration algorithms and show that this framework leads to computationally efficient optimal algorithms that scale well in a parallel computing environment. As an example of an antenna-based DD calibration algorithm, we demonstrate the Pointing SelfCal (PSC) algorithm to solve for the antenna pointing errors. Our analysis show that the sensitivity of modern ASRT is sufficient to solve for antenna pointing errors and other DD effects. We also discuss the use of the PSC algorithm in real-time calibration systems and extensions for antenna Shape SelfCal algorithm for real-time tracking and corrections for pointing offsets and changes in antenna shape.

  7. The Pointing Self-calibration Algorithm for Aperture Synthesis Radio Telescopes

    Science.gov (United States)

    Bhatnagar, S.; Cornwell, T. J.

    2017-11-01

    This paper is concerned with algorithms for calibration of direction-dependent effects (DDE) in aperture synthesis radio telescopes (ASRT). After correction of direction-independent effects (DIE) using self-calibration, imaging performance can be limited by the imprecise knowledge of the forward gain of the elements in the array. In general, the forward gain pattern is directionally dependent and varies with time due to a number of reasons. Some factors, such as rotation of the primary beam with Parallactic Angle for Azimuth-Elevation mount antennas are known a priori. Some, such as antenna pointing errors and structural deformation/projection effects for aperture-array elements cannot be measured a priori. Thus, in addition to algorithms to correct for DD effects known a priori, algorithms to solve for DD gains are required for high dynamic range imaging. Here, we discuss a mathematical framework for antenna-based DDE calibration algorithms and show that this framework leads to computationally efficient optimal algorithms that scale well in a parallel computing environment. As an example of an antenna-based DD calibration algorithm, we demonstrate the Pointing SelfCal (PSC) algorithm to solve for the antenna pointing errors. Our analysis show that the sensitivity of modern ASRT is sufficient to solve for antenna pointing errors and other DD effects. We also discuss the use of the PSC algorithm in real-time calibration systems and extensions for antenna Shape SelfCal algorithm for real-time tracking and corrections for pointing offsets and changes in antenna shape.

  8. A low-cost test-bed for real-time landmark tracking

    Science.gov (United States)

    Csaszar, Ambrus; Hanan, Jay C.; Moreels, Pierre; Assad, Christopher

    2007-04-01

    A low-cost vehicle test-bed system was developed to iteratively test, refine and demonstrate navigation algorithms before attempting to transfer the algorithms to more advanced rover prototypes. The platform used here was a modified radio controlled (RC) car. A microcontroller board and onboard laptop computer allow for either autonomous or remote operation via a computer workstation. The sensors onboard the vehicle represent the types currently used on NASA-JPL rover prototypes. For dead-reckoning navigation, optical wheel encoders, a single axis gyroscope, and 2-axis accelerometer were used. An ultrasound ranger is available to calculate distance as a substitute for the stereo vision systems presently used on rovers. The prototype also carries a small laptop computer with a USB camera and wireless transmitter to send real time video to an off-board computer. A real-time user interface was implemented that combines an automatic image feature selector, tracking parameter controls, streaming video viewer, and user generated or autonomous driving commands. Using the test-bed, real-time landmark tracking was demonstrated by autonomously driving the vehicle through the JPL Mars yard. The algorithms tracked rocks as waypoints. This generated coordinates calculating relative motion and visually servoing to science targets. A limitation for the current system is serial computing-each additional landmark is tracked in order-but since each landmark is tracked independently, if transferred to appropriate parallel hardware, adding targets would not significantly diminish system speed.

  9. Defect testing of large aperture optics based on high resolution CCD camera

    International Nuclear Information System (INIS)

    Cheng Xiaofeng; Xu Xu; Zhang Lin; He Qun; Yuan Xiaodong; Jiang Xiaodong; Zheng Wanguo

    2009-01-01

    A fast testing method on inspecting defects of large aperture optics was introduced. With uniform illumination by LED source at grazing incidence, the image of defects on the surface of and inside the large aperture optics could be enlarged due to scattering. The images of defects were got by high resolution CCD camera and microscope, and the approximate mathematical relation between viewing dimension and real dimension of defects was simulated. Thus the approximate real dimension and location of all defects could be calculated through the high resolution pictures. (authors)

  10. Time-reversal acoustics and ultrasound-assisted convection-enhanced drug delivery to the brain.

    Science.gov (United States)

    Olbricht, William; Sistla, Manjari; Ghandi, Gaurav; Lewis, George; Sarvazyan, Armen

    2013-08-01

    Time-reversal acoustics is an effective way of focusing ultrasound deep inside heterogeneous media such as biological tissues. Convection-enhanced delivery is a method of delivering drugs into the brain by infusing them directly into the brain interstitium. These two technologies are combined in a focusing system that uses a "smart needle" to simultaneously infuse fluid into the brain and provide the necessary feedback for focusing ultrasound using time-reversal acoustics. The effects of time-reversal acoustics-focused ultrasound on the spatial distribution of infused low- and high-molecular weight tracer molecules are examined in live, anesthetized rats. Results show that exposing the rat brain to focused ultrasound significantly increases the penetration of infused compounds into the brain. The addition of stabilized microbubbles enhances the effect of ultrasound exposure.

  11. Integrated High-Speed Digital Optical True-Time-Delay Modules for Synthetic Aperture Radars, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Crystal Research, Inc. proposes an integrated high-speed digital optical true-time-delay module for advanced synthetic aperture radars. The unique feature of this...

  12. A real-time prediction model for post-irradiation malignant cervical lymph nodes.

    Science.gov (United States)

    Lo, W-C; Cheng, P-W; Shueng, P-W; Hsieh, C-H; Chang, Y-L; Liao, L-J

    2018-04-01

    To establish a real-time predictive scoring model based on sonographic characteristics for identifying malignant cervical lymph nodes (LNs) in cancer patients after neck irradiation. One-hundred forty-four irradiation-treated patients underwent ultrasonography and ultrasound-guided fine-needle aspirations (USgFNAs), and the resultant data were used to construct a real-time and computerised predictive scoring model. This scoring system was further compared with our previously proposed prediction model. A predictive scoring model, 1.35 × (L axis) + 2.03 × (S axis) + 2.27 × (margin) + 1.48 × (echogenic hilum) + 3.7, was generated by stepwise multivariate logistic regression analysis. Neck LNs were considered to be malignant when the score was ≥ 7, corresponding to a sensitivity of 85.5%, specificity of 79.4%, positive predictive value (PPV) of 82.3%, negative predictive value (NPV) of 83.1%, and overall accuracy of 82.6%. When this new model and the original model were compared, the areas under the receiver operating characteristic curve (c-statistic) were 0.89 and 0.81, respectively (P real-time sonographic predictive scoring model was constructed to provide prompt and reliable guidance for USgFNA biopsies to manage cervical LNs after neck irradiation. © 2017 John Wiley & Sons Ltd.

  13. Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery

    Directory of Open Access Journals (Sweden)

    Vera ePaefgen

    2015-09-01

    Full Text Available Ultrasound is one of the most frequently used diagnostic methods. It is a non-invasive, comparably inexpensive imaging method with a broad spectrum of applications, which can be increased even more by using bubbles as contrast agents. There are various different types of bubbles: filled with different gases, composed of soft- or hard-shell materials, and ranging in size from nano- to micrometers. These intravascular contrast agents enable functional analyses, e.g. to acquire organ perfusion in real-time. Molecular analyses are achieved by coupling specific ligands to the bubbles’ shell, which bind to marker molecules in the area of interest. Bubbles can also be loaded with or attached to drugs, peptides or genes and can be destroyed by ultrasound pulses to locally release the entrapped agent. Recent studies show that ultrasound contrast agents are also valuable tools in hyperthermia-induced ablation therapy of tumors, or can increase cellular uptake of locally released drugs by enhancing membrane permeability. This review summarizes important steps in the development of ultrasound contrast agents and introduces the current clinical applications of contrast-enhanced ultrasound. Additionally, an overview of the recent developments in ultrasound probe design for functional and molecular diagnosis as well as for drug delivery is given.

  14. Airship Sparse Array Antenna Radar Real Aperture Imaging Based on Compressed Sensing and Sparsity in Transform Domain

    Directory of Open Access Journals (Sweden)

    Li Liechen

    2016-02-01

    Full Text Available A conformal sparse array based on combined Barker code is designed for airship platform. The performance of the designed array such as signal-to-noise ratio is analyzed. Using the hovering characteristics of the airship, interferometry operation can be applied on the real aperture imaging results of two pulses, which can eliminate the random backscatter phase and make the image sparse in the transform domain. Building the relationship between echo and transform coefficients, the Compressed Sensing (CS theory can be introduced to solve the formula and achieving imaging. The image quality of the proposed method can reach the image formed by the full array imaging. The simulation results show the effectiveness of the proposed method.

  15. Process algebra with timing : real time and discrete time

    NARCIS (Netherlands)

    Baeten, J.C.M.; Middelburg, C.A.; Bergstra, J.A.; Ponse, A.J.; Smolka, S.A.

    2001-01-01

    We present real time and discrete time versions of ACP with absolute timing and relative timing. The starting-point is a new real time version with absolute timing, called ACPsat, featuring urgent actions and a delay operator. The discrete time versions are conservative extensions of the discrete

  16. Process algebra with timing: Real time and discrete time

    NARCIS (Netherlands)

    Baeten, J.C.M.; Middelburg, C.A.

    1999-01-01

    We present real time and discrete time versions of ACP with absolute timing and relative timing. The startingpoint is a new real time version with absolute timing, called ACPsat , featuring urgent actions and a delay operator. The discrete time versions are conservative extensions of the discrete

  17. Ultrasound Imaging and its modeling

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2002-01-01

    Modern medical ultrasound scanners are used for imaging nearly all soft tissue structures in the body. The anatomy can be studied from gray-scale B-mode images, where the reflectivity and scattering strength of the tissues are displayed. The imaging is performed in real time with 20 to 100 images...

  18. Accurate 3D reconstruction of bony surfaces using ultrasonic synthetic aperture techniques for robotic knee arthroplasty.

    Science.gov (United States)

    Kerr, William; Rowe, Philip; Pierce, Stephen Gareth

    2017-06-01

    Robotically guided knee arthroplasty systems generally require an individualized, preoperative 3D model of the knee joint. This is typically measured using Computed Tomography (CT) which provides the required accuracy for preoperative surgical intervention planning. Ultrasound imaging presents an attractive alternative to CT, allowing for reductions in cost and the elimination of doses of ionizing radiation, whilst maintaining the accuracy of the 3D model reconstruction of the joint. Traditional phased array ultrasound imaging methods, however, are susceptible to poor resolution and signal to noise ratios (SNR). Alleviating these weaknesses by offering superior focusing power, synthetic aperture methods have been investigated extensively within ultrasonic non-destructive testing. Despite this, they have yet to be fully exploited in medical imaging. In this paper, the ability of a robotic deployed ultrasound imaging system based on synthetic aperture methods to accurately reconstruct bony surfaces is investigated. Employing the Total Focussing Method (TFM) and the Synthetic Aperture Focussing Technique (SAFT), two samples were imaged which were representative of the bones of the knee joint: a human-shaped, composite distal femur and a bovine distal femur. Data were captured using a 5MHz, 128 element 1D phased array, which was manipulated around the samples using a robotic positioning system. Three dimensional surface reconstructions were then produced and compared with reference models measured using a precision laser scanner. Mean errors of 0.82mm and 0.88mm were obtained for the composite and bovine samples, respectively, thus demonstrating the feasibility of the approach to deliver the sub-millimetre accuracy required for the application. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  19. Real-time radiography

    International Nuclear Information System (INIS)

    Bossi, R.H.; Oien, C.T.

    1981-01-01

    Real-time radiography is used for imaging both dynamic events and static objects. Fluorescent screens play an important role in converting radiation to light, which is then observed directly or intensified and detected. The radiographic parameters for real-time radiography are similar to conventional film radiography with special emphasis on statistics and magnification. Direct-viewing fluoroscopy uses the human eye as a detector of fluorescent screen light or the light from an intensifier. Remote-viewing systems replace the human observer with a television camera. The remote-viewing systems have many advantages over the direct-viewing conditions such as safety, image enhancement, and the capability to produce permanent records. This report reviews real-time imaging system parameters and components

  20. Real-time vision systems

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.; Hernandez, J.E.; Lu, Shin-yee [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Many industrial and defence applications require an ability to make instantaneous decisions based on sensor input of a time varying process. Such systems are referred to as `real-time systems` because they process and act on data as it occurs in time. When a vision sensor is used in a real-time system, the processing demands can be quite substantial, with typical data rates of 10-20 million samples per second. A real-time Machine Vision Laboratory (MVL) was established in FY94 to extend our years of experience in developing computer vision algorithms to include the development and implementation of real-time vision systems. The laboratory is equipped with a variety of hardware components, including Datacube image acquisition and processing boards, a Sun workstation, and several different types of CCD cameras, including monochrome and color area cameras and analog and digital line-scan cameras. The equipment is reconfigurable for prototyping different applications. This facility has been used to support several programs at LLNL, including O Division`s Peacemaker and Deadeye Projects as well as the CRADA with the U.S. Textile Industry, CAFE (Computer Aided Fabric Inspection). To date, we have successfully demonstrated several real-time applications: bullet tracking, stereo tracking and ranging, and web inspection. This work has been documented in the ongoing development of a real-time software library.

  1. Characterization of controlled bone defects using 2D and 3D ultrasound imaging techniques

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, Biren J; Longsine, Whitney; Han, Arum; Righetti, Raffaella [Department of Electrical and Computer Engineering, Dwight Look College of Engineering, Texas A and M University, College Station, TX (United States); Sabonghy, Eric P [OneOrtho Orthopedic Surgery Clinic, Houston, TX (United States); Tasciotti, Ennio; Ferrari, Mauro [Department of Nanomedicine and Biomedical Engineering, University of Texas Health Science Center at Houston, Houston, TX (United States); Weiner, Bradley K, E-mail: righetti@ece.tamu.ed [Division of Spinal Surgery, Department of Orthopaedic Surgery, Methodist Hospital, Houston, TX 77030 (United States)

    2010-08-21

    Ultrasound is emerging as an attractive alternative modality to standard x-ray and CT methods for bone assessment applications. As of today, however, there is a lack of systematic studies that investigate the performance of diagnostic ultrasound techniques in bone imaging applications. This study aims at understanding the performance limitations of new ultrasound techniques for imaging bones in controlled experiments in vitro. Experiments are performed on samples of mammalian and non-mammalian bones with controlled defects with size ranging from 400 {mu}m to 5 mm. Ultrasound findings are statistically compared with those obtained from the same samples using standard x-ray imaging modalities and optical microscopy. The results of this study demonstrate that it is feasible to use diagnostic ultrasound imaging techniques to assess sub-millimeter bone defects in real time and with high accuracy and precision. These results also demonstrate that ultrasound imaging techniques perform comparably better than x-ray imaging and optical imaging methods, in the assessment of a wide range of controlled defects both in mammalian and non-mammalian bones. In the future, ultrasound imaging techniques might provide a cost-effective, real-time, safe and portable diagnostic tool for bone imaging applications.

  2. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Nonlinear acoustics, synthetic aperture imaging

    International Nuclear Information System (INIS)

    Lingvall, Fredrik; Ping Wu; Stepinski, Tadeusz

    2003-03-01

    This report contains results concerning inspection of copper canisters for spent nuclear fuel by means of ultrasound obtained at Signals and Systems, Uppsala University in year 2001/2002. The first chapter presents results of an investigation of a new method for synthetic aperture imaging. The new method presented here takes the form of a 2D filter based on minimum mean squared error (MMSE) criteria. The filter, which varies with the target position in two dimensions includes information about spatial impulse response (SIR) of the imaging system. Spatial resolution of the MMSE method is investigated and compared experimentally to that of the classical SAFT and phased array imaging. It is shown that the resolution of the MMSE algorithm, evaluated for imaging immersed copper specimen is superior to that observed for the two above-mentioned methods. Extended experimental and theoretical research concerning the potential of nonlinear waves and material harmonic imaging is presented in the second chapter. An experimental work is presented that was conducted using the RITEC RAM-5000 ultrasonic system capable of providing a high power tone-burst output. A new method for simulation of nonlinear acoustic waves that is a combination of the angular spectrum approach and the Burger's equation is also presented. This method was used for simulating nonlinear elastic waves radiated by the annular transducer that was used in the experiments

  3. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Nonlinear acoustics, synthetic aperture imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lingvall, Fredrik; Ping Wu; Stepinski, Tadeusz [Uppsala Univ., (Sweden). Dept. of Materials Science

    2003-03-01

    This report contains results concerning inspection of copper canisters for spent nuclear fuel by means of ultrasound obtained at Signals and Systems, Uppsala University in year 2001/2002. The first chapter presents results of an investigation of a new method for synthetic aperture imaging. The new method presented here takes the form of a 2D filter based on minimum mean squared error (MMSE) criteria. The filter, which varies with the target position in two dimensions includes information about spatial impulse response (SIR) of the imaging system. Spatial resolution of the MMSE method is investigated and compared experimentally to that of the classical SAFT and phased array imaging. It is shown that the resolution of the MMSE algorithm, evaluated for imaging immersed copper specimen is superior to that observed for the two above-mentioned methods. Extended experimental and theoretical research concerning the potential of nonlinear waves and material harmonic imaging is presented in the second chapter. An experimental work is presented that was conducted using the RITEC RAM-5000 ultrasonic system capable of providing a high power tone-burst output. A new method for simulation of nonlinear acoustic waves that is a combination of the angular spectrum approach and the Burger's equation is also presented. This method was used for simulating nonlinear elastic waves radiated by the annular transducer that was used in the experiments.

  4. Real-time elastography with a novel quantitative technology for assessment of liver fibrosis in chronic hepatitis B

    International Nuclear Information System (INIS)

    Wang Juan; Guo Long; Shi Xiuying; Pan Wenqian; Bai Yunfei; Ai Hong

    2012-01-01

    Background: The accurate evaluation of liver fibrosis stage is important in determining the treatment strategy. The limitations of percutaneous liver biopsy as the gold standard are obvious for invasion. Real-time elastography with conventional ultrasound probes and a new quantitative technology for diffuse histological lesion is a novel approach for staging of liver fibrosis. Purpose: This study aimed to evaluate the value of real-time tissue elastography with a new quantitative technology for the assessment of liver fibrosis stage. Materials and methods: Real-time elastography was performed in 55 patients with liver fibrosis and chronic hepatitis B and in 20 healthy volunteers. Eleven parameters for every patient in colorcode image obtained from the real-time elastography were analyzed with principal components analysis. We analyzed the correlation between elasticity index and liver fibrosis stage and the accuracy of real-time elastography for liver fibrosis staging. Additionally, aspartate transaminase-to-platelet ratio index was also included in the analysis. Results: The Spearman's correlation coefficient between the elasticity index and the histologic fibrosis stage was 0.81, which is highly significant (p 0.05), respectively. Conclusions: Real-time elastography with a new quantitative technology for diffuse histological lesion is a new and promising sonography-based noninvasive method for the assessment of liver fibrosis in patients with chronic hepatitis B.

  5. Memory controllers for real-time embedded systems predictable and composable real-time systems

    CERN Document Server

    Akesson, Benny

    2012-01-01

      Verification of real-time requirements in systems-on-chip becomes more complex as more applications are integrated. Predictable and composable systems can manage the increasing complexity using formal verification and simulation.  This book explains the concepts of predictability and composability and shows how to apply them to the design and analysis of a memory controller, which is a key component in any real-time system. This book is generally intended for readers interested in Systems-on-Chips with real-time applications.   It is especially well-suited for readers looking to use SDRAM memories in systems with hard or firm real-time requirements. There is a strong focus on real-time concepts, such as predictability and composability, as well as a brief discussion about memory controller architectures for high-performance computing. Readers will learn step-by-step how to go from an unpredictable SDRAM memory, offering highly variable bandwidth and latency, to a predictable and composable shared memory...

  6. Synthetic aperture integration (SAI) algorithm for SAR imaging

    Science.gov (United States)

    Chambers, David H; Mast, Jeffrey E; Paglieroni, David W; Beer, N. Reginald

    2013-07-09

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  7. TerraSAR-X precise orbit determination with real-time GPS ephemerides

    Science.gov (United States)

    Wermuth, Martin; Hauschild, Andre; Montenbruck, Oliver; Kahle, Ralph

    TerraSAR-X is a German Synthetic Aperture Radar (SAR) satellite, which was launched in June 2007 from Baikonour. Its task is to acquire radar images of the Earth's surface. In order to locate the radar data takes precisely, the satellite is equipped with a high-quality dual-frequency GPS receiver -the Integrated Geodetic and Occultation Receiver (IGOR) provided by the GeoForschungsZentrum Potsdam (GFZ). Using GPS observations from the IGOR instrument in a reduced dynamic precise orbit determination (POD), the German Space Operations Center (DLR/GSOC) is computing rapid and science orbit products on a routine basis. The rapid orbit products arrive with a latency of about one hour after data reception with an accuracy of 10-20 cm. Science orbit products are computed with a latency of five days achieving an accuracy of about 5cm (3D-RMS). For active and future Earth observation missions, the availability of near real-time precise orbit information is becoming more and more important. Other applications of near real-time orbit products include the processing of GNSS radio occulation measurements for atmospheric sounding as well as altimeter measurements of ocean surface heights, which are nowadays employed in global weather and ocean circulation models with short latencies. For example after natural disasters it is necessary to evaluate the damage by satellite images as soon as possible. The latency and quality of POD results is mainly driven by the availability of precise GPS ephemerides. In order to have high-quality GPS ephemerides available at real-time, GSOC has developed the real-time clock estimation system RETICLE. The system receives NTRIP-data streams with GNSS observations from the global tracking network of IGS in real-time. Using the known station position, RETICLE estimates precise GPS satellite clock offsets and drifts based on the most recent available IGU predicted orbits. The clock offset estimates have an accuracy of better than 0.3 ns and are

  8. Ultrasound-Guided real-time pterygopalatine block for analgesia in an oral cancer patient

    Directory of Open Access Journals (Sweden)

    Nishkarsh Gupta

    2018-01-01

    Full Text Available Oral cancers are one of the most common cancers in India. These patients have pain during the course of the disease. Various drugs including opioid and nonsteroidal anti-inflammatory drug have been used to manage pain. However, these are associated with side effects such as constipation and vomiting. An early interventional block may decrease the requirement for analgesics and improve the overall quality of life. We describe a case of oral carcinoma successfully managed with ultrasound-guided pterygopalatine block.

  9. Five-dimensional ultrasound system for soft tissue visualization.

    Science.gov (United States)

    Deshmukh, Nishikant P; Caban, Jesus J; Taylor, Russell H; Hager, Gregory D; Boctor, Emad M

    2015-12-01

    A five-dimensional ultrasound (US) system is proposed as a real-time pipeline involving fusion of 3D B-mode data with the 3D ultrasound elastography (USE) data as well as visualization of these fused data and a real-time update capability over time for each consecutive scan. 3D B-mode data assist in visualizing the anatomy of the target organ, and 3D elastography data adds strain information. We investigate the feasibility of such a system and show that an end-to-end real-time system, from acquisition to visualization, can be developed. We present a system that consists of (a) a real-time 3D elastography algorithm based on a normalized cross-correlation (NCC) computation on a GPU; (b) real-time 3D B-mode acquisition and network transfer; (c) scan conversion of 3D elastography and B-mode volumes (if acquired by 4D wobbler probe); and (d) visualization software that fuses, visualizes, and updates 3D B-mode and 3D elastography data in real time. We achieved a speed improvement of 4.45-fold for the threaded version of the NCC-based 3D USE versus the non-threaded version. The maximum speed was 79 volumes/s for 3D scan conversion. In a phantom, we validated the dimensions of a 2.2-cm-diameter sphere scan-converted to B-mode volume. Also, we validated the 5D US system visualization transfer function and detected 1- and 2-cm spherical objects (phantom lesion). Finally, we applied the system to a phantom consisting of three lesions to delineate the lesions from the surrounding background regions of the phantom. A 5D US system is achievable with real-time performance. We can distinguish between hard and soft areas in a phantom using the transfer functions.

  10. Recursive ultrasound imaging

    DEFF Research Database (Denmark)

    2000-01-01

    A method and an apparatus for recursive ultrasound imaging is presented. The method uses a Synthetic Transmit Aperture, but unlike previous approaches a new frame is created at every pulse emission. In receive, parallel beam forming is implemented. The beam formed RF data is added to the previously...... created RF lines. To keep the level of the signal, the RF data obtained previously, when emitting with the same element is subtracted from the RF lines. Up to 5000 frames/sec can be achieved for a tissue depth of 15 cm with a speed of sound of c = 1540 m/s. The high frame rate makes continuous imaging...... data possible, which can significantly enhance flow imaging. A point spread function 2° wide at -6 dB and grating lobes of $m(F) -50 dB is obtained with a 64 elements phased array with a central frequency ƒ¿0? = 3 MHz using a sparse transmit aperture using only 10 elements (N¿xmt? = 10) during pulse...

  11. Electromagnetic-Tracked Biopsy under Ultrasound Guidance: Preliminary Results

    International Nuclear Information System (INIS)

    Hakime, Antoine; Deschamps, Frederic; Marques De Carvalho, Enio Garcia; Barah, Ali; Auperin, Anne; Baere, Thierry De

    2012-01-01

    Purpose: This study was designed to evaluate the accuracy and safety of electromagnetic needle tracking for sonographically guided percutaneous liver biopsies. Methods: We performed 23 consecutive ultrasound-guided liver biopsies for liver nodules with an electromagnetic tracking of the needle. A sensor placed at the tip of a sterile stylet (18G) inserted in a coaxial guiding trocar (16G) used for biopsy was localized in real time relative to the ultrasound imaging plane, thanks to an electromagnetic transmitter and two sensors on the ultrasound probe. This allows for electronic display of the needle tip location and the future needle path overlaid on the real-time ultrasound image. Distance between needle tip position and its electronic display, number of needle punctures, number of needle pull backs for redirection, technical success (needle positioned in the target), diagnostic success (correct histopathology result), procedure time, and complication were evaluated according to lesion sizes, depth and location, operator experience, and “in-plane” or “out-of-plane” needle approach. Results: Electronic display was always within 2 mm from the real position of the needle tip. The technical success rate was 100%. A single needle puncture without repuncture was used in all patients. Pull backs were necessary in six patients (26%) to obtain correct needle placement. The overall diagnostic success rate was 91%. The overall true-positive, true-negative, false-negative, and failure rates of the biopsy were 100% (19/19) 100% (2/2), 0% (0/23), and 9% (2/23). The median total procedure time from the skin puncture to the needle in the target was 30 sec (from 5–60 s). Lesion depth and localizations, operator experience, in-plane or out-of-plane approach did not affect significantly the technical, diagnostic success, or procedure time. Even when the tumor size decreased, the procedure time did not increase. Conclusions: Electromagnetic-tracked biopsy is accurate to

  12. Non-invasive characterization of real-time bladder sensation using accelerated hydration and a novel sensation meter: An initial experience.

    Science.gov (United States)

    Nagle, Anna S; Speich, John E; De Wachter, Stefan G; Ghamarian, Peter P; Le, David M; Colhoun, Andrew F; Ratz, Paul H; Barbee, Robert W; Klausner, Adam P

    2017-06-01

    The purpose of this investigation was to develop a non-invasive, objective, and unprompted method to characterize real-time bladder sensation. Volunteers with and without overactive bladder (OAB) were prospectively enrolled in a preliminary accelerated hydration study. Participants drank 2L Gatorade-G2® and recorded real-time sensation (0-100% scale) and standardized verbal sensory thresholds using a novel, touch-screen "sensation meter." 3D bladder ultrasound images were recorded throughout fillings for a subset of participants. Sensation data were recorded for two consecutive complete fill-void cycles. Data from 14 normal and 12 OAB participants were obtained (ICIq-OAB-5a = 0 vs. ≥3). Filling duration decreased in fill2 compared to fill1, but volume did not significantly change. In normals, adjacent verbal sensory thresholds (within fill) showed no overlap, and identical thresholds (between fill) were similar, demonstrating effective differentiation between degrees of %bladder capacity. In OAB, within-fill overlaps and between-fill differences were identified. Real-time %capacity-sensation curves left shifted from fill1 to fill2 in normals, consistent with expected viscoelastic behavior, but unexpectedly right shifted in OAB. 3D ultrasound volume data showed that fill rates started slowly and ramped up with variable end points. This study establishes a non-invasive means to evaluate real-time bladder sensation using a two-fill accelerated hydration protocol and a sensation meter. Verbal thresholds were inconsistent in OAB, and the right shift in OAB %capacity-sensation curve suggests potential biomechanical and/or sensitization changes. This methodology could be used to gain valuable information on different forms of OAB in a completely non-invasive way. © 2016 Wiley Periodicals, Inc.

  13. Essays in real-time forecasting

    OpenAIRE

    Liebermann, Joelle

    2012-01-01

    This thesis contains three essays in the field of real-time econometrics, and more particularlyforecasting.The issue of using data as available in real-time to forecasters, policymakers or financialmarkets is an important one which has only recently been taken on board in the empiricalliterature. Data available and used in real-time are preliminary and differ from ex-postrevised data, and given that data revisions may be quite substantial, the use of latestavailable instead of real-time can s...

  14. In-vivo studies of new vector velocity and adaptive spectral estimators in medical ultrasound

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov

    In this PhD project new ultrasound techniques for blood flow measurements have been investigated in-vivo. The focus has mainly been on vector velocity techniques and four different approaches have been examined: Transverse Oscillation, Synthetic Transmit Aperture, Directional Beamforming and Plane...... in conventional Doppler ultrasound. That is angle dependency, reduced temporal resolution and low frame rate. Transverse Oscillation, Synthetic Transmit Aperture and Directional Beamforming can estimate the blood velocity angle independently. The three methods were validated in-vivo against magnetic resonance...... phase contrast angiography when measuring stroke volumes in simple vessel geometry on 11 volunteers. Using linear regression and Bland-Altman analyses good agreements were found, indicating that vector velocity methods can be used for quantitative blood flow measurements. Plane Wave Excitation can...

  15. Ovation Prime Real-Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ovation Prime Real-Time (OPRT) product is a real-time forecast and nowcast model of auroral power and is an operational implementation of the work by Newell et...

  16. Image-guided focused ultrasound ablation of breast cancer: current status, challenges, and future directions

    NARCIS (Netherlands)

    Schmitz, A.C.; Gianfelice, D.; Daniel, B.L.; Mali, W.P.T.M.; Bosch, M.A.A.J. van den

    2008-01-01

    Image-guided focussed ultrasound (FUS) ablation is a noninvasive procedure that has been used for treatment of benign or malignant breast tumours. Image-guidance during ablation is achieved either by using real-time ultrasound (US) or magnetic resonance imaging (MRI). The past decade phase I

  17. Musculoskeletal ultrasound: how to treat calcific tendinitis of the rotator cuff by ultrasound-guided single-needle lavage technique.

    Science.gov (United States)

    Lee, Kenneth S; Rosas, Humberto G

    2010-09-01

    The purpose of this video article is to illustrate the ultrasound appearance of calcium deposition in the rotator cuff and provide a detailed step-by-step protocol for performing the ultrasound-guided single-needle lavage technique for the treatment of calcific tendinitis with emphasis on patient positioning, necessary supplies, real-time lavage technique, and steroid injection into the subacromial subdeltoid bursa. Musculoskeletal ultrasound is well established as a safe, cost-effective imaging tool in diagnosing and treating common musculoskeletal disorders. Calcific tendinitis of the rotator cuff is a common disabling cause of shoulder pain. Although most cases are self-limiting, a subset of patients is refractory to conservative therapy and requires treatment intervention. Ultrasound-guided lavage is an effective and safe minimally-invasive treatment not readily offered in the United States as an alternative to surgery, perhaps because of the limited prevalence of musculoskeletal ultrasound programs and limited training. On completion of this video article, the participant should be able to develop an appropriate diagnostic and therapeutic algorithm for the treatment of calcific tendinitis of the rotator cuff using ultrasound.

  18. [Relevance of contrast ultrasound with microbubbles in vascular medecine].

    Science.gov (United States)

    Erdmann, Andreas; Ney, Barbara; Alatri, Adriano; Calanca, Luca; Mazzolai, Lucia

    2016-12-07

    Application of ultrasound contrast media has become a standard in diagnostic imaging in cardiology and in the characterization of focal lesions in multiple organs, especially of the liver. In the past years there was a growing body of evidence for their usefulness in vascular medicine. The development of contrast media, microbubbles with a stabilizing envelope and filled with gaz, small enough to pass through pulmonary capillaries made real-time imaging of organ perfusion possible. Ultrasound contrast media are rapidly eliminated by exhalation and can safely be administered to patients with renal failure. The objective of this review is to describe the basic principles of ultrasound contrast imaging and to inform about vascular applications of contrast ultrasound.

  19. Advances in the early diagnosis of congenital hip dysplasia by real-time sonography

    Energy Technology Data Exchange (ETDEWEB)

    Brockmann, W.P.; Wilmsdorf, H.v.; Weh, L.; Korn, U.

    1984-05-01

    Twenty-four infants and children aged five days to three years had their hips examined by ultrasound, and in 17 the findings were compared with the radiographic appearances. Real-time sonography, because of its flexibility, is a suitable screening method for the early diagnosis of hip dysplasia. It has the typical characteristics of a screening method: so far there have been no false negative findings. False positive results are rare, but cannot be completely excluded. The patients examined so far were mostly abnormal, and a final assessment of false positive findings will have to await larger clinical material, including normals. 6 figs.

  20. VERSE - Virtual Equivalent Real-time Simulation

    Science.gov (United States)

    Zheng, Yang; Martin, Bryan J.; Villaume, Nathaniel

    2005-01-01

    Distributed real-time simulations provide important timing validation and hardware in the- loop results for the spacecraft flight software development cycle. Occasionally, the need for higher fidelity modeling and more comprehensive debugging capabilities - combined with a limited amount of computational resources - calls for a non real-time simulation environment that mimics the real-time environment. By creating a non real-time environment that accommodates simulations and flight software designed for a multi-CPU real-time system, we can save development time, cut mission costs, and reduce the likelihood of errors. This paper presents such a solution: Virtual Equivalent Real-time Simulation Environment (VERSE). VERSE turns the real-time operating system RTAI (Real-time Application Interface) into an event driven simulator that runs in virtual real time. Designed to keep the original RTAI architecture as intact as possible, and therefore inheriting RTAI's many capabilities, VERSE was implemented with remarkably little change to the RTAI source code. This small footprint together with use of the same API allows users to easily run the same application in both real-time and virtual time environments. VERSE has been used to build a workstation testbed for NASA's Space Interferometry Mission (SIM PlanetQuest) instrument flight software. With its flexible simulation controls and inexpensive setup and replication costs, VERSE will become an invaluable tool in future mission development.

  1. Equipment and methods for synthetic aperture anatomic and flow imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav; Misaridis, Thanassis

    2002-01-01

    Conventional ultrasound imaging is done by sequentially probing in each image direction. The frame rate is, thus, limited by the speed of sound and the number of lines necessary to form an image. This is especially limiting in flow imaging, since multiple lines are used for flow estimation. Another...... problem is that each receiving transducer element must be connected to a receiver, which makes the expansion of the number of receive channels expensive. Synthetic aperture (SA) imaging is a radical change from the sequential image formation. Here ultrasound is emitted in all directions and the image...... is formed in all directions simultaneously over a number of acquisitions. SA images can therefore be perfectly focused in both transmit and receive for all depths, thus significantly improving image quality. A further advantage is that very fast imaging can be done, since only a few emissions are needed...

  2. ISTTOK real-time architecture

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Ivo S., E-mail: ivoc@ipfn.ist.utl.pt; Duarte, Paulo; Fernandes, Horácio; Valcárcel, Daniel F.; Carvalho, Pedro J.; Silva, Carlos; Duarte, André S.; Neto, André; Sousa, Jorge; Batista, António J.N.; Hekkert, Tiago; Carvalho, Bernardo B.

    2014-03-15

    Highlights: • All real-time diagnostics and actuators were integrated in the same control platform. • A 100 μs control cycle was achieved under the MARTe framework. • Time-windows based control with several event-driven control strategies implemented. • AC discharges with exception handling on iron core flux saturation. • An HTML discharge configuration was developed for configuring the MARTe system. - Abstract: The ISTTOK tokamak was upgraded with a plasma control system based on the Advanced Telecommunications Computing Architecture (ATCA) standard. This control system was designed to improve the discharge stability and to extend the operational space to the alternate plasma current (AC) discharges as part of the ISTTOK scientific program. In order to accomplish these objectives all ISTTOK diagnostics and actuators relevant for real-time operation were integrated in the control system. The control system was programmed in C++ over the Multi-threaded Application Real-Time executor (MARTe) which provides, among other features, a real-time scheduler, an interrupt handler, an intercommunications interface between code blocks and a clearly bounded interface with the external devices. As a complement to the MARTe framework, the BaseLib2 library provides the foundations for the data, code introspection and also a Hypertext Transfer Protocol (HTTP) server service. Taking advantage of the modular nature of MARTe, the algorithms of each diagnostic data processing, discharge timing, context switch, control and actuators output reference generation, run on well-defined blocks of code named Generic Application Module (GAM). This approach allows reusability of the code, simplified simulation, replacement or editing without changing the remaining GAMs. The ISTTOK control system GAMs run sequentially each 100 μs cycle on an Intel{sup ®} Q8200 4-core processor running at 2.33 GHz located in the ATCA crate. Two boards (inside the ATCA crate) with 32 analog

  3. ISTTOK real-time architecture

    International Nuclear Information System (INIS)

    Carvalho, Ivo S.; Duarte, Paulo; Fernandes, Horácio; Valcárcel, Daniel F.; Carvalho, Pedro J.; Silva, Carlos; Duarte, André S.; Neto, André; Sousa, Jorge; Batista, António J.N.; Hekkert, Tiago; Carvalho, Bernardo B.

    2014-01-01

    Highlights: • All real-time diagnostics and actuators were integrated in the same control platform. • A 100 μs control cycle was achieved under the MARTe framework. • Time-windows based control with several event-driven control strategies implemented. • AC discharges with exception handling on iron core flux saturation. • An HTML discharge configuration was developed for configuring the MARTe system. - Abstract: The ISTTOK tokamak was upgraded with a plasma control system based on the Advanced Telecommunications Computing Architecture (ATCA) standard. This control system was designed to improve the discharge stability and to extend the operational space to the alternate plasma current (AC) discharges as part of the ISTTOK scientific program. In order to accomplish these objectives all ISTTOK diagnostics and actuators relevant for real-time operation were integrated in the control system. The control system was programmed in C++ over the Multi-threaded Application Real-Time executor (MARTe) which provides, among other features, a real-time scheduler, an interrupt handler, an intercommunications interface between code blocks and a clearly bounded interface with the external devices. As a complement to the MARTe framework, the BaseLib2 library provides the foundations for the data, code introspection and also a Hypertext Transfer Protocol (HTTP) server service. Taking advantage of the modular nature of MARTe, the algorithms of each diagnostic data processing, discharge timing, context switch, control and actuators output reference generation, run on well-defined blocks of code named Generic Application Module (GAM). This approach allows reusability of the code, simplified simulation, replacement or editing without changing the remaining GAMs. The ISTTOK control system GAMs run sequentially each 100 μs cycle on an Intel ® Q8200 4-core processor running at 2.33 GHz located in the ATCA crate. Two boards (inside the ATCA crate) with 32 analog

  4. Shifted knife-edge aperture digital in-line holography for fluid velocimetry.

    Science.gov (United States)

    Palero, Virginia; Lobera, Julia; Andrés, Nieves; Arroyo, M Pilar

    2014-06-01

    We describe a digital holography technique that, with the simplicity of an in-line configuration, produces holograms where the real and virtual images are completely separated, as in an off-axis configuration. An in-line setup, in which the object is imaged near the sensor, is modified by placing a shifted knife-edge aperture that blocks half the frequency spectrum at the focal plane of the imaging lens. This simple modification of the in-line holographic configuration allows discriminating the virtual and real images. As a fluid velocimetry technique, the use of this aperture removes the minimum defocusing distance requisite and reduces the out-of-plane velocity measurement errors of classical in-line holography. Results with different test objects are shown.

  5. SOUND-SPEED TOMOGRAPHY USING FIRST-ARRIVAL TRANSMISSION ULTRASOUND FOR A RING ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    HUANG, LIANJIE [Los Alamos National Laboratory; QUAN, YOULI [Los Alamos National Laboratory

    2007-01-31

    Sound-speed tomography images can be used for cancer detection and diagnosis. Tumors have generally higher sound speeds than the surrounding tissue. Quality and resolution of tomography images are primarily determined by the insonification/illumination aperture of ultrasound and the capability of the tomography method for accurately handling heterogeneous nature of the breast. We investigate the capability of an efficient time-of-flight tomography method using transmission ultrasound from a ring array for reconstructing sound-speed images of the breast. The method uses first arrival times of transmitted ultrasonic signals emerging from non-beamforming ultrasound transducers located around a ring. It properly accounts for ray bending within the breast by solving the eikonal equation using a finite-difference scheme. We test and validate the time-of-flight transmission tomography method using synthetic data for numerical breast phantoms containing various objects. In our simulation, the objects are immersed in water within a ring array. Two-dimensional synthetic data are generated using a finite-difference scheme to solve acoustic-wave equation in heterogeneous media. We study the reconstruction accuracy of the tomography method for objects with different sizes and shapes as well as different perturbations from the surrounding medium. In addition, we also address some specific data processing issues related to the tomography. Our tomography results demonstrate that the first-arrival transmission tomography method can accurately reconstruct objects larger than approximately five wavelengths of the incident ultrasound using a ring array.

  6. Coarse Resolution SAR Imagery to Support Flood Inundation Models in Near Real Time

    Science.gov (United States)

    Di Baldassarre, Giuliano; Schumann, Guy; Brandimarte, Luigia; Bates, Paul

    2009-11-01

    In recent years, the availability of new emerging data (e.g. remote sensing, intelligent wireless sensors, etc) has led to a sudden shift from a data-sparse to a data-rich environment for hydrological and hydraulic modelling. Furthermore, the increased socioeconomic relevance of river flood studies has motivated the development of complex methodologies for the simulation of the hydraulic behaviour of river systems. In this context, this study aims at assessing the capability of coarse resolution SAR (Synthetic Aperture Radar) imagery to support and quickly validate flood inundation models in near real time. A hydraulic model of a 98km reach of the River Po (Italy), previously calibrated on a high-magnitude flood event with extensive and high quality field data, is tested using a SAR flood image, acquired and processed in near real time, during the June 2008 low-magnitude event. Specifically, the image is an acquisition by the ENVISAT-ASAR sensor in wide swath mode and has been provided through ESA (European Space Agency) Fast Registration system at no cost 24 hours after the acquisition. The study shows that the SAR image enables validation and improvement of the model in a time shorter than the flood travel time. This increases the reliability of model predictions (e.g. water elevation and inundation width along the river reach) and, consequently, assists flood management authorities in undertaking the necessary prevention activities.

  7. Real-time millimeter-wave imaging radiometer for avionic synthetic vision

    Science.gov (United States)

    Lovberg, John A.; Chou, Ri-Chee; Martin, Christopher A.

    1994-07-01

    ThermoTrex Corporation (TTC) has developed an imaging radiometer, the passive microwave camera (PMC), that uses an array of frequency-scanned antennas coupled to a multi-channel acousto-optic (Bragg cell) spectrum analyzer to form visible images of a scene through acquisition of thermal blackbody radiation in the millimeter-wave spectrum. The output of the Bragg cell is imaged by a standard video camera and passed to a computer for normalization and display at real-time frame rates. One application of this system could be its incorporation into an enhanced vision system to provide pilots with a clear view of the runway during fog and other adverse weather conditions. The unique PMC system architecture will allow compact large-aperture implementations because of its flat antenna sensor. Other potential applications include air traffic control, all-weather area surveillance, fire detection, and security. This paper describes the architecture of the TTC PMC and shows examples of images acquired with the system.

  8. Third trimester ultrasound for fetal macrosomia: optimal timing and institutional specific accuracy.

    Science.gov (United States)

    Parikh, Laura I; Iqbal, Sara N; Jelin, Angie C; Overcash, Rachael T; Tefera, Eshetu; Fries, Melissa H

    2017-11-28

    To determine the performance of third trimester ultrasound in women with suspected fetal macrosomia. We performed a retrospective cohort study of fetal ultrasounds from January 2004 to December 2014 with estimated fetal weight (EFW) between 4000 and 5000 g. We determined accuracy of birth weight prediction for ultrasound performed at less than and greater than 38 weeks, accounting for diabetic status and time between ultrasound and delivery. There were 405 ultrasounds evaluated. One hundred and twelve (27.7%) were performed at less than 38 weeks, 293 (72.3%) at greater than 38 weeks, and 91 (22.5%) were performed in diabetics. Sonographic identification of EFW over 4000 g at less than 38 weeks was associated with higher correlation between EFW and birth weight than ultrasound performed after 38 weeks (71.5 versus 259.4 g, p < .024). EFW to birth weight correlation was within 1.7% of birth weight for ultrasound performed less than 38 weeks and within 6.5% of birth weight for ultrasound performed at greater than 38 weeks. Identification of EFW with ultrasound performed less than 38 weeks has greater reliability of predicting fetal macrosomia at birth than measurements performed later in gestation. EFW to birth weight correlation was more accurate than previous reports.

  9. Efficient scatter model for simulation of ultrasound images from computed tomography data

    Science.gov (United States)

    D'Amato, J. P.; Lo Vercio, L.; Rubi, P.; Fernandez Vera, E.; Barbuzza, R.; Del Fresno, M.; Larrabide, I.

    2015-12-01

    Background and motivation: Real-time ultrasound simulation refers to the process of computationally creating fully synthetic ultrasound images instantly. Due to the high value of specialized low cost training for healthcare professionals, there is a growing interest in the use of this technology and the development of high fidelity systems that simulate the acquisitions of echographic images. The objective is to create an efficient and reproducible simulator that can run either on notebooks or desktops using low cost devices. Materials and methods: We present an interactive ultrasound simulator based on CT data. This simulator is based on ray-casting and provides real-time interaction capabilities. The simulation of scattering that is coherent with the transducer position in real time is also introduced. Such noise is produced using a simplified model of multiplicative noise and convolution with point spread functions (PSF) tailored for this purpose. Results: The computational efficiency of scattering maps generation was revised with an improved performance. This allowed a more efficient simulation of coherent scattering in the synthetic echographic images while providing highly realistic result. We describe some quality and performance metrics to validate these results, where a performance of up to 55fps was achieved. Conclusion: The proposed technique for real-time scattering modeling provides realistic yet computationally efficient scatter distributions. The error between the original image and the simulated scattering image was compared for the proposed method and the state-of-the-art, showing negligible differences in its distribution.

  10. Improvement of life time of SCC in type 304 stainless steel by ultrasound irradiation

    International Nuclear Information System (INIS)

    Tokiwai, Moriyasu; Kimura, Hideo

    1985-01-01

    It is well known that the susceptibility to stress corrosion cracking (SCC) is controled by compressive stress such as shot-peening treatment. In this study, the effects of ultrasound irradiation to type 304 stainless upon SCC were investigated. The main findings are as follows; (1) Ultrasound irradiation produces the high level compressive stress on the surface of metals. This compressive stress was induced by the cavitation phenomenon. (2) In U-bent specimen, the initial tensile stress was mitigated and converted to compressive stress by ultrasound irradiation. (3) Type 304 stainless steel was subjected to SCC test using sodium thyosulfate solution. It was definitely demonstrated that the ultrasound irradiation was effective for the mitigation of SCC life time. (4) Ultrasound irradiation time was one of the most important factors in irradiation conditions. (author)

  11. A deconvolution method for deriving the transit time spectrum for ultrasound propagation through cancellous bone replica models.

    Science.gov (United States)

    Langton, Christian M; Wille, Marie-Luise; Flegg, Mark B

    2014-04-01

    The acceptance of broadband ultrasound attenuation for the assessment of osteoporosis suffers from a limited understanding of ultrasound wave propagation through cancellous bone. It has recently been proposed that the ultrasound wave propagation can be described by a concept of parallel sonic rays. This concept approximates the detected transmission signal to be the superposition of all sonic rays that travel directly from transmitting to receiving transducer. The transit time of each ray is defined by the proportion of bone and marrow propagated. An ultrasound transit time spectrum describes the proportion of sonic rays having a particular transit time, effectively describing lateral inhomogeneity of transit times over the surface of the receiving ultrasound transducer. The aim of this study was to provide a proof of concept that a transit time spectrum may be derived from digital deconvolution of input and output ultrasound signals. We have applied the active-set method deconvolution algorithm to determine the ultrasound transit time spectra in the three orthogonal directions of four cancellous bone replica samples and have compared experimental data with the prediction from the computer simulation. The agreement between experimental and predicted ultrasound transit time spectrum analyses derived from Bland-Altman analysis ranged from 92% to 99%, thereby supporting the concept of parallel sonic rays for ultrasound propagation in cancellous bone. In addition to further validation of the parallel sonic ray concept, this technique offers the opportunity to consider quantitative characterisation of the material and structural properties of cancellous bone, not previously available utilising ultrasound.

  12. 1.0 T open-configuration magnetic resonance-guided microwave ablation of pig livers in real time

    Science.gov (United States)

    Dong, Jun; Zhang, Liang; Li, Wang; Mao, Siyue; Wang, Yiqi; Wang, Deling; Shen, Lujun; Dong, Annan; Wu, Peihong

    2015-01-01

    The current fastest frame rate of each single image slice in MR-guided ablation is 1.3 seconds, which means delayed imaging for human at an average reaction time: 0.33 seconds. The delayed imaging greatly limits the accuracy of puncture and ablation, and results in puncture injury or incomplete ablation. To overcome delayed imaging and obtain real-time imaging, the study was performed using a 1.0-T whole-body open configuration MR scanner in the livers of 10 Wuzhishan pigs. A respiratory-triggered liver matrix array was explored to guide and monitor microwave ablation in real-time. We successfully performed the entire ablation procedure under MR real-time guidance at 0.202 s, the fastest frame rate for each single image slice. The puncture time ranged from 23 min to 3 min. For the pigs, the mean puncture time was shorted to 4.75 minutes and the mean ablation time was 11.25 minutes at power 70 W. The mean length and widths were 4.62 ± 0.24 cm and 2.64 ± 0.13 cm, respectively. No complications or ablation related deaths during or after ablation were observed. In the current study, MR is able to guide microwave ablation like ultrasound in real-time guidance showing great potential for the treatment of liver tumors. PMID:26315365

  13. Physics of Ultrasound. Chapter 12

    Energy Technology Data Exchange (ETDEWEB)

    Lacefield, J. C. [University of Western Ontario, London (Canada)

    2014-09-15

    Ultrasound is the most commonly used diagnostic imaging modality, accounting for approximately 25% of all imaging examinations performed worldwide at the beginning of the 21st century. The success of ultrasound may be attributed to a number of attractive characteristics, including the relatively low cost and portability of an ultrasound scanner, the non-ionizing nature of ultrasound waves, the ability to produce real time images of blood flow and moving structures such as the beating heart, and the intrinsic contrast among soft tissue structures that is achieved without the need for an injected contrast agent. The latter characteristic enables ultrasound to be used for a wide range of medical applications, which historically have primarily included cardiac and vascular imaging, imaging of the abdominal organs and, most famously, in utero imaging of the developing fetus. Ongoing technological improvements continue to expand the use of ultrasound for many applications, including cancer imaging, musculoskeletal imaging, ophthalmology and others. The term ultrasound refers specifically to acoustic waves at frequencies greater than the maximum frequency audible to humans, which is nominally 20 kHz. Diagnostic imaging is generally performed using ultrasound in the frequency range of 2–15 MHz. The choice of frequency is dictated by a trade off between spatial resolution and penetration depth, since higher frequency waves can be focused more tightly but are attenuated more rapidly by tissue. The information contained in an ultrasonic image is influenced by the physical processes underlying propagation, reflection and attenuation of ultrasound waves in tissue.

  14. Measurements of pore-scale flow through apertures

    Energy Technology Data Exchange (ETDEWEB)

    Chojnicki, Kirsten [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Pore-scale aperture effects on flow in pore networks was studied in the laboratory to provide a parameterization for use in transport models. Four cases were considered: regular and irregular pillar/pore alignment with and without an aperture. The velocity field of each case was measured and simulated, providing quantitatively comparable results. Two aperture effect parameterizations were considered: permeability and transmission. Permeability values varied by an order of magnitude between the cases with and without apertures. However, transmission did not correlate with permeability. Despite having much greater permeability the regular aperture case permitted less transmission than the regular case. Moreover, both irregular cases had greater transmission than the regular cases, a difference not supported by the permeabilities. Overall, these findings suggest that pore-scale aperture effects on flow though a pore-network may not be adequately captured by properties such as permeability for applications that are interested in determining particle transport volume and timing.

  15. Digital detection system of surface defects for large aperture optical elements

    International Nuclear Information System (INIS)

    Fan Yong; Chen Niannian; Gao Lingling; Jia Yuan; Wang Junbo; Cheng Xiaofeng

    2009-01-01

    Based on the light defect images against the dark background in a scattering imaging system, a digital detection system of surface defects for large aperture optical elements has been presented. In the system, the image is segmented by a multi-area self-adaptive threshold segmentation method, then a pixel labeling method based on replacing arrays is adopted to extract defect features quickly, and at last the defects are classified through back-propagation neural networks. Experiment results show that the system can achieve real-time detection and classification. (authors)

  16. Mid-level image representations for real-time heart view plane classification of echocardiograms.

    Science.gov (United States)

    Penatti, Otávio A B; Werneck, Rafael de O; de Almeida, Waldir R; Stein, Bernardo V; Pazinato, Daniel V; Mendes Júnior, Pedro R; Torres, Ricardo da S; Rocha, Anderson

    2015-11-01

    In this paper, we explore mid-level image representations for real-time heart view plane classification of 2D echocardiogram ultrasound images. The proposed representations rely on bags of visual words, successfully used by the computer vision community in visual recognition problems. An important element of the proposed representations is the image sampling with large regions, drastically reducing the execution time of the image characterization procedure. Throughout an extensive set of experiments, we evaluate the proposed approach against different image descriptors for classifying four heart view planes. The results show that our approach is effective and efficient for the target problem, making it suitable for use in real-time setups. The proposed representations are also robust to different image transformations, e.g., downsampling, noise filtering, and different machine learning classifiers, keeping classification accuracy above 90%. Feature extraction can be performed in 30 fps or 60 fps in some cases. This paper also includes an in-depth review of the literature in the area of automatic echocardiogram view classification giving the reader a through comprehension of this field of study. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A real-time architecture for time-aware agents.

    Science.gov (United States)

    Prouskas, Konstantinos-Vassileios; Pitt, Jeremy V

    2004-06-01

    This paper describes the specification and implementation of a new three-layer time-aware agent architecture. This architecture is designed for applications and environments where societies of humans and agents play equally active roles, but interact and operate in completely different time frames. The architecture consists of three layers: the April real-time run-time (ART) layer, the time aware layer (TAL), and the application agents layer (AAL). The ART layer forms the underlying real-time agent platform. An original online, real-time, dynamic priority-based scheduling algorithm is described for scheduling the computation time of agent processes, and it is shown that the algorithm's O(n) complexity and scalable performance are sufficient for application in real-time domains. The TAL layer forms an abstraction layer through which human and agent interactions are temporally unified, that is, handled in a common way irrespective of their temporal representation and scale. A novel O(n2) interaction scheduling algorithm is described for predicting and guaranteeing interactions' initiation and completion times. The time-aware predicting component of a workflow management system is also presented as an instance of the AAL layer. The described time-aware architecture addresses two key challenges in enabling agents to be effectively configured and applied in environments where humans and agents play equally active roles. It provides flexibility and adaptability in its real-time mechanisms while placing them under direct agent control, and it temporally unifies human and agent interactions.

  18. Towards Real-Time Argumentation

    Directory of Open Access Journals (Sweden)

    Vicente JULIÁN

    2016-07-01

    Full Text Available In this paper, we deal with the problem of real-time coordination with the more general approach of reaching real-time agreements in MAS. Concretely, this work proposes a real-time argumentation framework in an attempt to provide agents with the ability of engaging in argumentative dialogues and come with a solution for their underlying agreement process within a bounded period of time. The framework has been implemented and evaluated in the domain of a customer support application. Concretely, we consider a society of agents that act on behalf of a group of technicians that must solve problems in a Technology Management Centre (TMC within a bounded time. This centre controls every process implicated in the provision of technological and customer support services to private or public organisations by means of a call centre. The contract signed between the TCM and the customer establishes penalties if the specified time is exceeded.

  19. Velocity vector estimation in synthetic aperture flow and B-mode imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2004-01-01

    A method for determining both velocity magnitude and angle in a synthetic aperture ultrasound system is described. The approach uses directional beamforming along the flow direction and cross-correlation to determine velocity magnitude. The angle of the flow is determined from the maximum normali...... with a precision of 0.36 % (60°) and 1.2 % (90°), respectively. The 60° angle is estimated with a bias of 0.54° and a standard deviation of 2.1°. For 90° the bias is 0.0003° and standard deviation 1.32°....

  20. Real-time PCR in virology.

    Science.gov (United States)

    Mackay, Ian M; Arden, Katherine E; Nitsche, Andreas

    2002-03-15

    The use of the polymerase chain reaction (PCR) in molecular diagnostics has increased to the point where it is now accepted as the gold standard for detecting nucleic acids from a number of origins and it has become an essential tool in the research laboratory. Real-time PCR has engendered wider acceptance of the PCR due to its improved rapidity, sensitivity, reproducibility and the reduced risk of carry-over contamination. There are currently five main chemistries used for the detection of PCR product during real-time PCR. These are the DNA binding fluorophores, the 5' endonuclease, adjacent linear and hairpin oligoprobes and the self-fluorescing amplicons, which are described in detail. We also discuss factors that have restricted the development of multiplex real-time PCR as well as the role of real-time PCR in quantitating nucleic acids. Both amplification hardware and the fluorogenic detection chemistries have evolved rapidly as the understanding of real-time PCR has developed and this review aims to update the scientist on the current state of the art. We describe the background, advantages and limitations of real-time PCR and we review the literature as it applies to virus detection in the routine and research laboratory in order to focus on one of the many areas in which the application of real-time PCR has provided significant methodological benefits and improved patient outcomes. However, the technology discussed has been applied to other areas of microbiology as well as studies of gene expression and genetic disease.

  1. Real time programming environment for Windows

    Energy Technology Data Exchange (ETDEWEB)

    LaBelle, D.R. [LaBelle (Dennis R.), Clifton Park, NY (United States)

    1998-04-01

    This document provides a description of the Real Time Programming Environment (RTProE). RTProE tools allow a programmer to create soft real time projects under general, multi-purpose operating systems. The basic features necessary for real time applications are provided by RTProE, leaving the programmer free to concentrate efforts on his specific project. The current version supports Microsoft Windows{trademark} 95 and NT. The tasks of real time synchronization and communication with other programs are handled by RTProE. RTProE includes a generic method for connecting a graphical user interface (GUI) to allow real time control and interaction with the programmer`s product. Topics covered in this paper include real time performance issues, portability, details of shared memory management, code scheduling, application control, Operating System specific concerns and the use of Computer Aided Software Engineering (CASE) tools. The development of RTProE is an important step in the expansion of the real time programming community. The financial costs associated with using the system are minimal. All source code for RTProE has been made publicly available. Any person with access to a personal computer, Windows 95 or NT, and C or FORTRAN compilers can quickly enter the world of real time modeling and simulation.

  2. An In-Home Digital Network Architecture for Real-Time and Non-Real-Time Communication

    NARCIS (Netherlands)

    Scholten, Johan; Jansen, P.G.; Hanssen, F.T.Y.; Hattink, Tjalling

    2002-01-01

    This paper describes an in-home digital network architecture that supports both real-time and non-real-time communication. The architecture deploys a distributed token mechanism to schedule communication streams and to offer guaranteed quality-ofservice. Essentially, the token mechanism prevents

  3. ultrasound reflecting the morphological properties in soft tissue

    DEFF Research Database (Denmark)

    Lorentzen, Torben; Larsen, Torben; Court-Payen, Michel

    2014-01-01

    Ultrasound (US) is an image modality providing the examiner with real-time images which reflect the morphological properties in soft tissue. Different types of transducers are used for different kind of exams. US is cheap, fast, and safe. US is widely used in abdominal imaging including obstetrics...

  4. MARTe: A Multiplatform Real-Time Framework

    Science.gov (United States)

    Neto, André C.; Sartori, Filippo; Piccolo, Fabio; Vitelli, Riccardo; De Tommasi, Gianmaria; Zabeo, Luca; Barbalace, Antonio; Fernandes, Horacio; Valcarcel, Daniel F.; Batista, Antonio J. N.

    2010-04-01

    Development of real-time applications is usually associated with nonportable code targeted at specific real-time operating systems. The boundary between hardware drivers, system services, and user code is commonly not well defined, making the development in the target host significantly difficult. The Multithreaded Application Real-Time executor (MARTe) is a framework built over a multiplatform library that allows the execution of the same code in different operating systems. The framework provides the high-level interfaces with hardware, external configuration programs, and user interfaces, assuring at the same time hard real-time performances. End-users of the framework are required to define and implement algorithms inside a well-defined block of software, named Generic Application Module (GAM), that is executed by the real-time scheduler. Each GAM is reconfigurable with a set of predefined configuration meta-parameters and interchanges information using a set of data pipes that are provided as inputs and required as output. Using these connections, different GAMs can be chained either in series or parallel. GAMs can be developed and debugged in a non-real-time system and, only once the robustness of the code and correctness of the algorithm are verified, deployed to the real-time system. The software also supplies a large set of utilities that greatly ease the interaction and debugging of a running system. Among the most useful are a highly efficient real-time logger, HTTP introspection of real-time objects, and HTTP remote configuration. MARTe is currently being used to successfully drive the plasma vertical stabilization controller on the largest magnetic confinement fusion device in the world, with a control loop cycle of 50 ?s and a jitter under 1 ?s. In this particular project, MARTe is used with the Real-Time Application Interface (RTAI)/Linux operating system exploiting the new ?86 multicore processors technology.

  5. Ultrasound imaging in the diagnosis of periapical lesions

    Directory of Open Access Journals (Sweden)

    Christo Naveen Prince

    2012-01-01

    Full Text Available Background and Objectives: To assess the diagnostic capability of real-time ultrasound imaging, together with the application of color power Doppler in the identification and differential diagnosis of the periapical lesions. Materials and Methods: Fifteen patients with periapical lesions of pulpal origin, diagnosed with clinical and conventional radiographic examination, were examined further using ultrasonography. The results from the biopsies of the lesions were compared and statistically analyzed. Results: The differential diagnosis between periapical granulomas and cystic lesions, which were based on the ultrasonographic findings, were confirmed by the results of the histopathologic examination in 13 (86.7% of 15 cases, one being granuloma and 14 being cystic lesion. Interpretation and Conclusion: Ultrasound real-time imaging is a technique that may help make a differential diagnosis between cysts and granulomas by revealing the nature of the content of a bony lesion. This technique may have further applications in the study of other lesions of the jaws.

  6. Real-Time and Real-Fast Performance of General-Purpose and Real-Time Operating Systems in Multithreaded Physical Simulation of Complex Mechanical Systems

    Directory of Open Access Journals (Sweden)

    Carlos Garre

    2014-01-01

    Full Text Available Physical simulation is a valuable tool in many fields of engineering for the tasks of design, prototyping, and testing. General-purpose operating systems (GPOS are designed for real-fast tasks, such as offline simulation of complex physical models that should finish as soon as possible. Interfacing hardware at a given rate (as in a hardware-in-the-loop test requires instead maximizing time determinism, for which real-time operating systems (RTOS are designed. In this paper, real-fast and real-time performance of RTOS and GPOS are compared when simulating models of high complexity with large time steps. This type of applications is usually present in the automotive industry and requires a good trade-off between real-fast and real-time performance. The performance of an RTOS and a GPOS is compared by running a tire model scalable on the number of degrees-of-freedom and parallel threads. The benchmark shows that the GPOS present better performance in real-fast runs but worse in real-time due to nonexplicit task switches and to the latency associated with interprocess communication (IPC and task switch.

  7. GNSS global real-time augmentation positioning: Real-time precise satellite clock estimation, prototype system construction and performance analysis

    Science.gov (United States)

    Chen, Liang; Zhao, Qile; Hu, Zhigang; Jiang, Xinyuan; Geng, Changjiang; Ge, Maorong; Shi, Chuang

    2018-01-01

    Lots of ambiguities in un-differenced (UD) model lead to lower calculation efficiency, which isn't appropriate for the high-frequency real-time GNSS clock estimation, like 1 Hz. Mixed differenced model fusing UD pseudo-range and epoch-differenced (ED) phase observations has been introduced into real-time clock estimation. In this contribution, we extend the mixed differenced model for realizing multi-GNSS real-time clock high-frequency updating and a rigorous comparison and analysis on same conditions are performed to achieve the best real-time clock estimation performance taking the efficiency, accuracy, consistency and reliability into consideration. Based on the multi-GNSS real-time data streams provided by multi-GNSS Experiment (MGEX) and Wuhan University, GPS + BeiDou + Galileo global real-time augmentation positioning prototype system is designed and constructed, including real-time precise orbit determination, real-time precise clock estimation, real-time Precise Point Positioning (RT-PPP) and real-time Standard Point Positioning (RT-SPP). The statistical analysis of the 6 h-predicted real-time orbits shows that the root mean square (RMS) in radial direction is about 1-5 cm for GPS, Beidou MEO and Galileo satellites and about 10 cm for Beidou GEO and IGSO satellites. Using the mixed differenced estimation model, the prototype system can realize high-efficient real-time satellite absolute clock estimation with no constant clock-bias and can be used for high-frequency augmentation message updating (such as 1 Hz). The real-time augmentation message signal-in-space ranging error (SISRE), a comprehensive accuracy of orbit and clock and effecting the users' actual positioning performance, is introduced to evaluate and analyze the performance of GPS + BeiDou + Galileo global real-time augmentation positioning system. The statistical analysis of real-time augmentation message SISRE is about 4-7 cm for GPS, whlile 10 cm for Beidou IGSO/MEO, Galileo and about 30 cm

  8. Development of an Anthropomorphic Breast Phantom for Combined PET, B-Mode Ultrasound and Elastographic Imaging

    OpenAIRE

    Dang, J; Lecoq, P; Tavernier, S; Lasaygues, P; Mensah, S; Zhang, D C; Auffray, E; Frisch, B; Varela, J; Wan, M X; Felix, N

    2011-01-01

    International audience; Combining the advantages of different imaging modalities leads to improved clinical results. For example, ultrasound provides good real-time structural information without any radiation and PET provides sensitive functional information. For the ongoing ClearPEM-Sonic project combining ultrasound and PET for breast imaging, we developed a dual-modality PET/Ultrasound (US) phantom. The phantom reproduces the acoustic and elastic properties of human breast tissue and allo...

  9. A prospective comparison between auto-registration and manual registration of real-time ultrasound with MR images for percutaneous ablation or biopsy of hepatic lesions.

    Science.gov (United States)

    Cha, Dong Ik; Lee, Min Woo; Song, Kyoung Doo; Oh, Young-Taek; Jeong, Ja-Yeon; Chang, Jung-Woo; Ryu, Jiwon; Lee, Kyong Joon; Kim, Jaeil; Bang, Won-Chul; Shin, Dong Kuk; Choi, Sung Jin; Koh, Dalkwon; Seo, Bong Koo; Kim, Kyunga

    2017-06-01

    To compare the accuracy and required time for image fusion of real-time ultrasound (US) with pre-procedural magnetic resonance (MR) images between positioning auto-registration and manual registration for percutaneous radiofrequency ablation or biopsy of hepatic lesions. This prospective study was approved by the institutional review board, and all patients gave written informed consent. Twenty-two patients (male/female, n = 18/n = 4; age, 61.0 ± 7.7 years) who were referred for planning US to assess the feasibility of radiofrequency ablation (n = 21) or biopsy (n = 1) for focal hepatic lesions were included. One experienced radiologist performed the two types of image fusion methods in each patient. The performance of auto-registration and manual registration was evaluated. The accuracy of the two methods, based on measuring registration error, and the time required for image fusion for both methods were recorded using in-house software and respectively compared using the Wilcoxon signed rank test. Image fusion was successful in all patients. The registration error was not significantly different between the two methods (auto-registration: median, 3.75 mm; range, 1.0-15.8 mm vs. manual registration: median, 2.95 mm; range, 1.2-12.5 mm, p = 0.242). The time required for image fusion was significantly shorter with auto-registration than with manual registration (median, 28.5 s; range, 18-47 s, vs. median, 36.5 s; range, 14-105 s, p = 0.026). Positioning auto-registration showed promising results compared with manual registration, with similar accuracy and even shorter registration time.

  10. In-vivo studies of new vector velocity and adaptive spectral estimators in medical ultrasound

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov

    2010-01-01

    New ultrasound techniques for blood flow estimation have been investigated in-vivo. These are vector velocity estimators (Transverse Oscillation, Synthetic Transmit Aperture, Directional Beamforming and Plane Wave Excitation) and adaptive spectral estimators (Blood spectral Power Capon and Blood...

  11. Reproducibility of phantom-based quality assurance parameters in real-time ultrasound imaging.

    Science.gov (United States)

    Sipilä, Outi; Blomqvist, Päivi; Jauhiainen, Mervi; Kilpeläinen, Tiina; Malaska, Paula; Mannila, Vilma; Vinnurva-Jussila, Tuula; Virsula, Sari

    2011-07-01

    In a large radiological center, the ultrasound (US) quality assurance (QA) program involves several professionals. Although the operator and the parameters utilized can contribute to the results, the selected QA parameters should still reflect the quality of the US scanner, not the measuring process. To evaluate the reproducibility of recommended phantom-based US QA parameters in a realistic environment. Six sonographers measured six high-end US scanners with 20 transducers using a general purpose phantom. Every transducer was measured altogether seven times, using one frequency per transducer. The QA parameters studied were homogeneity, visualization depth, vertical and horizontal distance measurements, axial and lateral resolution, and the correct visibility of anechoic and high-contrast masses. The evaluation of the homogeneity was based on visual observations. Inter-observer interquartile ranges were computed for the grading of the masses. For the other QA parameters, the mean inter- and intra-observer coefficients of variation (CoV) were calculated. In addition, the symmetry of the reverberations when imaging air with a clean transducer was checked. The mean inter-observer CoVs were: visualization depth 11 ± 4%, vertical distance 1.7 ± 0.4%, horizontal distance 1.4 ± 0.6%, axial resolution 22 ± 7%, and lateral resolution 16 ± 8%. The mean intra-observer values were about half of these values with similar standard deviations. The visual evaluation of the homogeneity and the symmetry of the reverberations produced false-positive findings in 5% of the cases, but were found useful in detecting a defective transducer. The grading of the masses had mean interquartile ranges of 20-30% of the grading scale. The inter-observer variability in measuring phantom-based QA parameters can be relatively high. This should be considered when implementing a phantom-based QA protocol and evaluating the results.

  12. Scalable Real-Time Negotiation Toolkit

    National Research Council Canada - National Science Library

    Lesser, Victor

    2004-01-01

    ... to implement an adaptive distributed sensor network. These activities involved the development of a distributed soft, real-time heuristic resource allocation protocol, the development of a domain-independent soft, real time agent architecture...

  13. Minimum Variance Beamforming for High Frame-Rate Ultrasound Imaging

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund; Gran, Fredrik; Jensen, Jørgen Arendt

    2007-01-01

    , a 7 MHz, 128-element, phased array transducer with lambda/2-spacing was used. Data is obtained using a single element as the transmitting aperture and all 128 elements as the receiving aperture. A full SA sequence consisting of 128 emissions was simulated by gliding the active transmitting element...... weights for each frequency sub-band. As opposed to the conventional, Delay and Sum (DS) beamformer, this approach is dependent on the specific data. The performance of the proposed MV beamformer is tested on simulated synthetic aperture (SA) ultrasound data, obtained using Field II. For the simulations...... across the array. Data for 13 point targets and a circular cyst with a radius of 5 mm were simulated. The performance of the MV beamformer is compared to DS using boxcar weights and Hanning weights, and is quantified by the Full Width at Half Maximum (FWHM) and the peak-side-lobe level (PSL). Single...

  14. Ultrasound as a Screening Tool for Central Venous Catheter Positioning and Exclusion of Pneumothorax.

    Science.gov (United States)

    Amir, Rabia; Knio, Ziyad O; Mahmood, Feroze; Oren-Grinberg, Achikam; Leibowitz, Akiva; Bose, Ruma; Shaefi, Shahzad; Mitchell, John D; Ahmed, Muneeb; Bardia, Amit; Talmor, Daniel; Matyal, Robina

    2017-07-01

    Although real-time ultrasound guidance during central venous catheter insertion has become a standard of care, postinsertion chest radiograph remains the gold standard to confirm central venous catheter tip position and rule out associated lung complications like pneumothorax. We hypothesize that a combination of transthoracic echocardiography and lung ultrasound is noninferior to chest radiograph when used to accurately assess central venous catheter positioning and screen for pneumothorax. All operating rooms and surgical and trauma ICUs at the institution. Single-center, prospective noninferiority study. Patients receiving ultrasound-guided subclavian or internal jugular central venous catheters. During ultrasound-guided central venous catheter placement, correct positioning of central venous catheter was accomplished by real-time visualization of the guide wire and positive right atrial swirl sign using the subcostal four-chamber view. After insertion, pneumothorax was ruled out by the presence of lung sliding and seashore sign on M-mode. Data analysis was done for 137 patients. Chest radiograph ruled out pneumothorax in 137 of 137 patients (100%). Lung ultrasound was performed in 123 of 137 patients and successfully screened for pneumothorax in 123 of 123 (100%). Chest radiograph approximated accurate catheter tip position in 136 of 137 patients (99.3%). Adequate subcostal four-chamber views could not be obtained in 13 patients. Accurate positioning of central venous catheter with ultrasound was then confirmed in 121 of 124 patients (97.6%) as described previously. Transthoracic echocardiography and lung ultrasound are noninferior to chest x-ray for screening of pneumothorax and accurate central venous catheter positioning. Thus, the point of care use of ultrasound can reduce central venous catheter insertion to use time, exposure to radiation, and improve patient safety.

  15. Model Checking Real-Time Systems

    DEFF Research Database (Denmark)

    Bouyer, Patricia; Fahrenberg, Uli; Larsen, Kim Guldstrand

    2018-01-01

    This chapter surveys timed automata as a formalism for model checking real-time systems. We begin with introducing the model, as an extension of finite-state automata with real-valued variables for measuring time. We then present the main model-checking results in this framework, and give a hint...

  16. Modular specification of real-time systems

    DEFF Research Database (Denmark)

    Inal, Recep

    1994-01-01

    Duration Calculus, a real-time interval logic, has been embedded in the Z specification language to provide a notation for real-time systems that combines the modularisation and abstraction facilities of Z with a logic suitable for reasoning about real-time properties. In this article the notation...

  17. Hard Real-Time Networking on Firewire

    NARCIS (Netherlands)

    Zhang, Yuchen; Orlic, Bojan; Visser, Peter; Broenink, Jan

    2005-01-01

    This paper investigates the possibility of using standard, low-cost, widely used FireWire as a new generation fieldbus medium for real-time distributed control applications. A real-time software subsys- tem, RT-FireWire was designed that can, in combination with Linux-based real-time operating

  18. Large-aperture hybrid photo-detector

    International Nuclear Information System (INIS)

    Kawai, Y.; Nakayama, H.; Kusaka, A.; Kakuno, H.; Abe, T.; Iwasaki, M.; Aihara, H.; Tanaka, M.; Shiozawa, M.; Kyushima, H.; Suyama, M.

    2007-01-01

    We have developed the first complete large-aperture (13-inch diameter) hybrid photo-detector (HPD). The withstanding voltage problem has been overcome and we were able to attain an HPD operating voltage of +20 kV. Adoption of our newly developed backside illumination avalanche diode (AD) was also critical in successfully countering the additional problem of an increase in AD leakage after the activation process. We observed single photon signal timing jitter of under 450 ps in FWHM, electron transit time of ∼12 ns, and clear pulse height separation up to several photoelectron peaks, all greatly superior to the performance of any conventional large-aperture photomultiplier tubes (PMTs). In addition, our HPD has a much simpler structure than conventional large-aperture PMTs, which simplifies mass production and lowers manufacturing cost. We believe that these attributes position our HPD as the most suitable photo-detector for the next generation mega-ton class water-Cherenkov detector, which is expected to be more than 20x larger than the Super-Kamiokande (SK) detector

  19. Temporal comparison of ultrasound vs. auscultation and capnography in verification of endotracheal tube placement.

    Science.gov (United States)

    Pfeiffer, P; Rudolph, S S; Børglum, J; Isbye, D L

    2011-11-01

    This study compared the time consumption of bilateral lung ultrasound with auscultation and capnography for verifying endotracheal intubation. A prospective, paired, and investigator-blinded study carried out in the operating theatre. Twenty-five adult patients requiring endotracheal intubation were included. During intubation, transtracheal ultrasound was performed to visualize passage of the endotracheal tube. During bag ventilation, bilateral lung ultrasound was performed for the detection of lung sliding as a sign of ventilation simultaneous with capnography and auscultation of the epigastrium and chest. Primary outcome measure was time difference to confirmed endotracheal intubation between ultrasound and auscultation alone. Secondary outcome measure was time difference between ultrasound and auscultation combined with capnography. Both methods verified endotracheal tube placement in all patients. In 68% of patients, endotracheal tube placement was visualized by real-time transtracheal ultrasound. Comparing ultrasound with the combination of auscultation and capnography, there was a significant difference between the two methods. Median time for ultrasound was 40 s [interquartile range (IQR) 35-48 s] vs. 48 s (IQR 45-53 s), P auscultation alone. Median time for auscultation alone was 42 s (IQR 37-47 s), P = 0.6, with a mean difference of -0.88 s in favour of ultrasound (95% CI -4.2-2.5 s). Verification of endotracheal tube placement with ultrasound is as fast as auscultation alone and faster than the standard method of auscultation and capnography. © 2011 The Authors. Acta Anaesthesiologica Scandinavica © 2011 The Acta Anaesthesiologica Scandinavica Foundation.

  20. Clinical value of real time 3D sonohysterography and 2D sonohysterography in comparison to hysteroscopy with subsequent histopathological examination in perimenopausal women with abnormal uterine bleeding.

    Science.gov (United States)

    Kowalczyk, Dariusz; Guzikowski, Wojciech; Więcek, Jacek; Sioma-Markowska, Urszula

    2012-01-01

    In many publications the transvaginal ultrasound is regarded as the first step to diagnose the cause of uterine bleeding in perimenopausal women. In order to improve the sensitivity and specificity of the conventional ultrasound physiological saline solution was administered to the uterine cavity and after expansion of its walls the interior uterine cavity was examined. And this procedure is called 2D sonohysterography (SIS 2D). By the ultrasound scanners which enable to get 3D real time image a spatial evaluation of the uterine cavity is possible. Clinical value of the real time 3D sonohysterography and 2D sonohysterography compared to hysteroscopy with histopathological examination in perimenopausal women. The study concerned a group of 97 perimenopausal women with abnormal uterine bleeding. In all of them after a standard transvaginal ultrasonography a catheter was inserted into the uterine cavity. After expansion of the uterine walls by administering about 10 ml of 0,9% saline solution the uterine cavity was examined by conventional sonohysterography. Then a 3D imaging mode was activated and the uterine interior was examined by real time 3D ultrasonography. The ultrasound results were verified by hysteroscopy, the endometrial lesions were removed and underwent a histopathological examination. In two cases the SIS examination was impossible because of uterine cervix atresion. In the rest of examined group the SIS 2D sensitivity and specificity came up to 72 and 96% respectively. In the group of SIS 3D the sensitivity and specificity reached 83 and 99% respectively. Adding SIS 3D, a minimally invasive method, to conventional sonohysterography improves the precision of diagnosis of endometrial pathology, allows to get three-dimensional image of the uterine cavity and enables examination of endometrial lesions. The diagnostic precision of this procedure is similar to the results achieved by hysteroscopy.

  1. Multiprocessor scheduling for real-time systems

    CERN Document Server

    Baruah, Sanjoy; Buttazzo, Giorgio

    2015-01-01

    This book provides a comprehensive overview of both theoretical and pragmatic aspects of resource-allocation and scheduling in multiprocessor and multicore hard-real-time systems.  The authors derive new, abstract models of real-time tasks that capture accurately the salient features of real application systems that are to be implemented on multiprocessor platforms, and identify rules for mapping application systems onto the most appropriate models.  New run-time multiprocessor scheduling algorithms are presented, which are demonstrably better than those currently used, both in terms of run-time efficiency and tractability of off-line analysis.  Readers will benefit from a new design and analysis framework for multiprocessor real-time systems, which will translate into a significantly enhanced ability to provide formally verified, safety-critical real-time systems at a significantly lower cost.

  2. Implementation and optimization of ultrasound signal processing algorithms on mobile GPU

    Science.gov (United States)

    Kong, Woo Kyu; Lee, Wooyoul; Kim, Kyu Cheol; Yoo, Yangmo; Song, Tai-Kyong

    2014-03-01

    A general-purpose graphics processing unit (GPGPU) has been used for improving computing power in medical ultrasound imaging systems. Recently, a mobile GPU becomes powerful to deal with 3D games and videos at high frame rates on Full HD or HD resolution displays. This paper proposes the method to implement ultrasound signal processing on a mobile GPU available in the high-end smartphone (Galaxy S4, Samsung Electronics, Seoul, Korea) with programmable shaders on the OpenGL ES 2.0 platform. To maximize the performance of the mobile GPU, the optimization of shader design and load sharing between vertex and fragment shader was performed. The beamformed data were captured from a tissue mimicking phantom (Model 539 Multipurpose Phantom, ATS Laboratories, Inc., Bridgeport, CT, USA) by using a commercial ultrasound imaging system equipped with a research package (Ultrasonix Touch, Ultrasonix, Richmond, BC, Canada). The real-time performance is evaluated by frame rates while varying the range of signal processing blocks. The implementation method of ultrasound signal processing on OpenGL ES 2.0 was verified by analyzing PSNR with MATLAB gold standard that has the same signal path. CNR was also analyzed to verify the method. From the evaluations, the proposed mobile GPU-based processing method has no significant difference with the processing using MATLAB (i.e., PSNRe., 11.31). From the mobile GPU implementation, the frame rates of 57.6 Hz were achieved. The total execution time was 17.4 ms that was faster than the acquisition time (i.e., 34.4 ms). These results indicate that the mobile GPU-based processing method can support real-time ultrasound B-mode processing on the smartphone.

  3. Role of ultrasound in rotator cuff tears

    International Nuclear Information System (INIS)

    Siddiqi, H.A.; Mirza, T.

    2010-01-01

    The study was designed to evaluate the efficacy of ultrasound in rotator cuff tears and to compare it with MRI. Total number of patients was thirty. All of these were above thirty years of age and were referred by clinicians, with shoulder pain for diagnostic workup. Post operative patients were excluded. Ultrasound and Magnetic Resonance Imaging (MRI) were performed on each patient. Same operator performed ultrasound in all patients. Ultrasound (US) and Magnetic Resonance Imaging (MRI) detected equal number of full thickness tears while two partial thickness tears were missed on US. Hypoechoic defect was the most important primary sign while cortical irregularity and fluid in subacromial and subdeltroid busra were the most important secondary signs on US. US was equally effective to MRI in detection of rotator cuff tears. It should be the primary investigation because of its availability, cost effective and real time evaluation provided significant expertise is developed, as it is highly operator dependent. (author)

  4. A class of kernel based real-time elastography algorithms.

    Science.gov (United States)

    Kibria, Md Golam; Hasan, Md Kamrul

    2015-08-01

    In this paper, a novel real-time kernel-based and gradient-based Phase Root Seeking (PRS) algorithm for ultrasound elastography is proposed. The signal-to-noise ratio of the strain image resulting from this method is improved by minimizing the cross-correlation discrepancy between the pre- and post-compression radio frequency signals with an adaptive temporal stretching method and employing built-in smoothing through an exponentially weighted neighborhood kernel in the displacement calculation. Unlike conventional PRS algorithms, displacement due to tissue compression is estimated from the root of the weighted average of the zero-lag cross-correlation phases of the pair of corresponding analytic pre- and post-compression windows in the neighborhood kernel. In addition to the proposed one, the other time- and frequency-domain elastography algorithms (Ara et al., 2013; Hussain et al., 2012; Hasan et al., 2012) proposed by our group are also implemented in real-time using Java where the computations are serially executed or parallely executed in multiple processors with efficient memory management. Simulation results using finite element modeling simulation phantom show that the proposed method significantly improves the strain image quality in terms of elastographic signal-to-noise ratio (SNRe), elastographic contrast-to-noise ratio (CNRe) and mean structural similarity (MSSIM) for strains as high as 4% as compared to other reported techniques in the literature. Strain images obtained for the experimental phantom as well as in vivo breast data of malignant or benign masses also show the efficacy of our proposed method over the other reported techniques in the literature. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Ultrasound-guided peripheral and truncal blocks in pediatric patients

    Directory of Open Access Journals (Sweden)

    Mohamed Bilal Delvi

    2011-01-01

    Full Text Available Ultrasound has added a feather in the cap of the anesthesiologists as real-time nerve localization and drug deposition around the nerve structure under real-time guidance is now a reality, as the saying "seeing is believing" has been proven true with the advent of ultrasound in anesthesia. Pediatric patients are a unique group regarding their anatomical and physiological features in comparison with adults; regional blocks in adults with the anatomical landmark and surface marking are almost uniform across the adult population. The landmark technique in pediatric patients is not reliable in all patients due to the variability in the age and size; the advent of ultrasound in assisting nerve localization has changed the way regional blocks are achieved in children and the range of blocks performed on adults can now be performed on pediatric patients; with advances in the technology and dexterity of ultrasound equipment, the chances of success of blocks has increased with a smaller dose of the local anesthetic in comparison to the traditional methods. Anesthesiologists are now able to perform blocks with more accuracy and avoid complications like intravascular injection and injury to the pleura and peritoneum during routine practice with the assistance of high-frequency transducers and top of the range portable ultrasound machines; catheters can be inserted to provide a continuous analgesia in the postoperative period. This review article describes the common peripheral blocks in pediatric patients; the readers are encouraged to gain experience by attending workshops, hands-on practice under supervision, and conduct random controlled trials pertaining to ultrasound-guided blocks in the pediatric age group. The recent literature is encouraging and further research is promising; a wide range of blocks being described in detail by many prominent experts from all over the world.

  6. Prototyping real-time systems

    OpenAIRE

    Clynch, Gary

    1994-01-01

    The traditional software development paradigm, the waterfall life cycle model, is defective when used for developing real-time systems. This thesis puts forward an executable prototyping approach for the development of real-time systems. A prototyping system is proposed which uses ESML (Extended Systems Modelling Language) as a prototype specification language. The prototyping system advocates the translation of non-executable ESML specifications into executable LOOPN (Language of Object ...

  7. Software Design Methods for Real-Time Systems

    Science.gov (United States)

    1989-12-01

    This module describes the concepts and methods used in the software design of real time systems . It outlines the characteristics of real time systems , describes...the role of software design in real time system development, surveys and compares some software design methods for real - time systems , and

  8. Efficacy of an artificial neural network-based approach to endoscopic ultrasound elastography in diagnosis of focal pancreatic masses

    DEFF Research Database (Denmark)

    Săftoiu, Adrian; Vilmann, Peter; Gorunescu, Florin

    2012-01-01

    By using strain assessment, real-time endoscopic ultrasound (EUS) elastography provides additional information about a lesion's characteristics in the pancreas. We assessed the accuracy of real-time EUS elastography in focal pancreatic lesions using computer-aided diagnosis by artificial neural...... network analysis....

  9. Real-time Pricing in Power Markets

    DEFF Research Database (Denmark)

    Boom, Anette; Schwenen, Sebastian

    We examine welfare e ects of real-time pricing in electricity markets. Before stochastic energy demand is known, competitive retailers contract with nal consumers who exogenously do not have real-time meters. After demand is realized, two electricity generators compete in a uniform price auction...... to satisfy demand from retailers acting on behalf of subscribed customers and from consumers with real-time meters. Increasing the number of consumers on real-time pricing does not always increase welfare since risk-averse consumers dislike uncertain and high prices arising through market power...

  10. Real-time Pricing in Power Markets

    DEFF Research Database (Denmark)

    Boom, Anette; Schwenen, Sebastian

    We examine welfare eects of real-time pricing in electricity markets. Before stochastic energy demand is known, competitive retailers contract with nal consumers who exogenously do not have real-time meters. After demand is realized, two electricity generators compete in a uniform price auction...... to satisfy demand from retailers acting on behalf of subscribed customers and from consumers with real-time meters. Increasing the number of consumers on real-time pricing does not always increase welfare since risk-averse consumers dislike uncertain and high prices arising through market power...

  11. Babinet's principle in the Fresnel regime studied using ultrasound

    Science.gov (United States)

    Hitachi, Akira; Takata, Momo

    2010-07-01

    The diffraction of ultrasound by a circular disk and an aperture of the same size has been investigated as a demonstration of Babinet's principle in the Fresnel regime. The amplitude and the phase of the diffracted ultrasonic waves are measured and a graphical treatment of the results is performed by drawing vectors in the complex plane. The results verify Babinet's principle. It is also found that the incident wave is π /2 behind the phase of the wave passing through on the central axis of a circular aperture. Because both waves travel the same path and the same distance, they should be in phase. This paradox has previously been regarded as a defect of Fresnel's theory.

  12. Distributed, Embedded and Real-time Java Systems

    CERN Document Server

    Wellings, Andy

    2012-01-01

    Research on real-time Java technology has been prolific over the past decade, leading to a large number of corresponding hardware and software solutions, and frameworks for distributed and embedded real-time Java systems.  This book is aimed primarily at researchers in real-time embedded systems, particularly those who wish to understand the current state of the art in using Java in this domain.  Much of the work in real-time distributed, embedded and real-time Java has focused on the Real-time Specification for Java (RTSJ) as the underlying base technology, and consequently many of the Chapters in this book address issues with, or solve problems using, this framework. Describes innovative techniques in: scheduling, memory management, quality of service and communication systems supporting real-time Java applications; Includes coverage of multiprocessor embedded systems and parallel programming; Discusses state-of-the-art resource management for embedded systems, including Java’s real-time garbage collect...

  13. Research of real-time communication software

    Science.gov (United States)

    Li, Maotang; Guo, Jingbo; Liu, Yuzhong; Li, Jiahong

    2003-11-01

    Real-time communication has been playing an increasingly important role in our work, life and ocean monitor. With the rapid progress of computer and communication technique as well as the miniaturization of communication system, it is needed to develop the adaptable and reliable real-time communication software in the ocean monitor system. This paper involves the real-time communication software research based on the point-to-point satellite intercommunication system. The object-oriented design method is adopted, which can transmit and receive video data and audio data as well as engineering data by satellite channel. In the real-time communication software, some software modules are developed, which can realize the point-to-point satellite intercommunication in the ocean monitor system. There are three advantages for the real-time communication software. One is that the real-time communication software increases the reliability of the point-to-point satellite intercommunication system working. Second is that some optional parameters are intercalated, which greatly increases the flexibility of the system working. Third is that some hardware is substituted by the real-time communication software, which not only decrease the expense of the system and promotes the miniaturization of communication system, but also aggrandizes the agility of the system.

  14. Ultrasound in gynecological cancer: is it time for re-evaluation of its uses?

    Science.gov (United States)

    Fischerova, Daniela; Cibula, David

    2015-06-01

    Ultrasound is the primary imaging modality in gynecological oncology. Over the last decade, there has been a massive technology development which led to a dramatic improvement in the quality ultrasound imaging. If performed by an experienced sonographer, ultrasound has an invaluable role in the primary diagnosis of gynecological cancer, in the assessment of tumor extent in the pelvis and abdominal cavity, in the evaluation of the treatment response, and in follow-up. Ultrasound is also a valuable procedure for monitoring patients treated with fertility-sparing surgery. Furthermore, it is an ideal technique to guide tru-cut biopsy for the collection of material for histology. Taking into consideration that besides its accuracy, the ultrasound is a commonly available, non-invasive, and inexpensive imaging method that can be carried out without any risk or discomfort to the patient; it is time to reconsider its role in gynecologic oncology and to allocate resources for a specialized education of future experts in ultrasound imaging in gynecology.

  15. Quasi-real-time end-to-end simulations of ELT-scale adaptive optics systems on GPUs

    Science.gov (United States)

    Gratadour, Damien

    2011-09-01

    Our team has started the development of a code dedicated to GPUs for the simulation of AO systems at the E-ELT scale. It uses the CUDA toolkit and an original binding to Yorick (an open source interpreted language) to provide the user with a comprehensive interface. In this paper we present the first performance analysis of our simulation code, showing its ability to provide Shack-Hartmann (SH) images and measurements at the kHz scale for VLT-sized AO system and in quasi-real-time (up to 70 Hz) for ELT-sized systems on a single top-end GPU. The simulation code includes multiple layers atmospheric turbulence generation, ray tracing through these layers, image formation at the focal plane of every sub-apertures of a SH sensor using either natural or laser guide stars and centroiding on these images using various algorithms. Turbulence is generated on-the-fly giving the ability to simulate hours of observations without the need of loading extremely large phase screens in the global memory. Because of its performance this code additionally provides the unique ability to test real-time controllers for future AO systems under nominal conditions.

  16. Accelerated Air-coupled Ultrasound Imaging of Wood Using Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Yiming Fang

    2015-12-01

    Full Text Available Air-coupled ultrasound has shown excellent sensitivity and specificity for the nondestructive imaging of wood-based material. However, it is time-consuming, due to the high scanning density limited by the Nyquist law. This study investigated the feasibility of applying compressed sensing techniques to air-coupled ultrasound imaging, aiming to reduce the number of scanning lines and then accelerate the imaging. Firstly, an undersampled scanning strategy specified by a random binary matrix was proposed to address the limitation of the compressed sensing framework. The undersampled scanning can be easily implemented, while only minor modification was required for the existing imaging system. Then, discrete cosine transform was selected experimentally as the representation basis. Finally, orthogonal matching pursuit algorithm was utilized to reconstruct the wood images. Experiments on three real air-coupled ultrasound images indicated the potential of the present method to accelerate air-coupled ultrasound imaging of wood. The same quality of ACU images can be obtained with scanning time cut in half.

  17. Near Real-Time Use of Optical Remote Sensing and Synthetic Aperture Radar for Response to Central U.S. Flooding in Late April-Early May 2017

    Science.gov (United States)

    Bell, J. R.; Schultz, L. A.; Jones, M.; Molthan, A.; Arko, S. A.; Hogenson, K.; Meyer, F. J.

    2017-12-01

    In late April and early May 2017, heavy rainfall across Missouri led to extensive flooding along the Missouri and Mississippi River basins in the Central United States. Determining the extent of flooding is critical for response organizations to properly deploy personnel and other assets involved in preparedness, mitigation, response, and recovery efforts. The Federal Emergency Management Agency (FEMA) relies on geospatial flood extent data, among other data, to estimate the impacts to population and infrastructure in order to prepare and engage response activities in support of the affected states and communities. To assist FEMA in mapping flood extent in a near real-time, the NASA Earth Science Disasters Program coordinates a multi-NASA center response to provide satellite imagery and products to FEMA during major flood events to supplement their analysis tools and capabilities. Scientists at the NASA Short-term Prediction Research and Transition (SPoRT) Center at Marshall Space Flight Center, who led this particular response, have been working with the Alaska Satellite Facility (ASF) at the University of Alaska Fairbanks to provide synthetic aperture radar (SAR) imagery and derived flood products to FEMA's geospatial response team in support of flooding events. Combined, these efforts helped to provide preliminary flood mapping to FEMA from a broad constellation of remote sensors. The presentation will describe the various products available throughout the response event, post-event collaborations examining these products in comparison to additional modeling and data collection by FEMA, training needs to improve product use, and more efficient methods for data delivery. Lessons learned will highlight opportunities for future work and improvement, and guide other ongoing efforts to develop collaborations that would also support other domestic emergency response activities, such as those led by the National Guard Bureau, which assists individual state Guard units.

  18. Integration of MDSplus in real-time systems

    International Nuclear Information System (INIS)

    Luchetta, A.; Manduchi, G.; Taliercio, C.

    2006-01-01

    RFX-mod makes extensive usage of real-time systems for feedback control and uses MDSplus to interface them to the main Data Acquisition system. For this purpose, the core of MDSplus has been ported to VxWorks, the operating system used for real-time control in RFX. Using this approach, it is possible to integrate real-time systems, but MDSplus is used only for non-real-time tasks, i.e. those tasks which are executed before and after the pulse and whose performance does not affect the system time constraints. More extensive use of MDSplus in real-time systems is foreseen, and a real-time layer for MDSplus is under development, which will provide access to memory-mapped pulse files, shared by the tasks running on the same CPU. Real-time communication will also be integrated in the MDSplus core to provide support for distributed memory-mapped pulse files

  19. CT and Ultrasound Guided Stereotactic High Intensity Focused Ultrasound (HIFU)

    Science.gov (United States)

    Wood, Bradford J.; Yanof, J.; Frenkel, V.; Viswanathan, A.; Dromi, S.; Oh, K.; Kruecker, J.; Bauer, C.; Seip, R.; Kam, A.; Li, K. C. P.

    2006-05-01

    animals and humans for HIFU-induced ablation and drug delivery. Integrated CT-guided focused ultrasound holds promise for tissue ablation, enhancing local drug delivery, and CT thermometry for monitoring ablation in near real-time.

  20. Dense time discretization technique for verification of real time systems

    International Nuclear Information System (INIS)

    Makackas, Dalius; Miseviciene, Regina

    2016-01-01

    Verifying the real-time system there are two different models to control the time: discrete and dense time based models. This paper argues a novel verification technique, which calculates discrete time intervals from dense time in order to create all the system states that can be reached from the initial system state. The technique is designed for real-time systems specified by a piece-linear aggregate approach. Key words: real-time system, dense time, verification, model checking, piece-linear aggregate

  1. An ultrasound-driven needle-insertion robot for percutaneous cholecystostomy

    International Nuclear Information System (INIS)

    Hong, J; Dohi, T; Hashizume, M; Konishi, K; Hata, N

    2004-01-01

    A real-time ultrasound-guided needle-insertion medical robot for percutaneous cholecystostomy has been developed. Image-guided interventions have become widely accepted because they are consistent with minimal invasiveness. However, organ or abnormality displacement due to involuntary patient motion may undesirably affect the intervention. The proposed instrument uses intraoperative images and modifies the needle path in real time by using a novel ultrasonic image segmentation technique. In phantom and volunteer experiments, the needle path updating time was 130 and 301 ms per cycle, respectively. In animal experiments, the needle could be placed accurately in the target

  2. Design and realization of the real-time spectrograph controller for LAMOST based on FPGA

    Science.gov (United States)

    Wang, Jianing; Wu, Liyan; Zeng, Yizhong; Dai, Songxin; Hu, Zhongwen; Zhu, Yongtian; Wang, Lei; Wu, Zhen; Chen, Yi

    2008-08-01

    A large Schmitt reflector telescope, Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST), is being built in China, which has effective aperture of 4 meters and can observe the spectra of as many as 4000 objects simultaneously. To fit such a large amount of observational objects, the dispersion part is composed of a set of 16 multipurpose fiber-fed double-beam Schmidt spectrographs, of which each has about ten of moveable components realtimely accommodated and manipulated by a controller. An industrial Ethernet network connects those 16 spectrograph controllers. The light from stars is fed to the entrance slits of the spectrographs with optical fibers. In this paper, we mainly introduce the design and realization of our real-time controller for the spectrograph, our design using the technique of System On Programmable Chip (SOPC) based on Field Programmable Gate Array (FPGA) and then realizing the control of the spectrographs through NIOSII Soft Core Embedded Processor. We seal the stepper motor controller as intellectual property (IP) cores and reuse it, greatly simplifying the design process and then shortening the development time. Under the embedded operating system μC/OS-II, a multi-tasks control program has been well written to realize the real-time control of the moveable parts of the spectrographs. At present, a number of such controllers have been applied in the spectrograph of LAMOST.

  3. WE-B-210-02: The Advent of Ultrafast Imaging in Biomedical Ultrasound

    International Nuclear Information System (INIS)

    Tanter, M.

    2015-01-01

    In the last fifteen years, the introduction of plane or diverging wave transmissions rather than line by line scanning focused beams has broken the conventional barriers of ultrasound imaging. By using such large field of view transmissions, the frame rate reaches the theoretical limit of physics dictated by the ultrasound speed and an ultrasonic map can be provided typically in tens of micro-seconds (several thousands of frames per second). Interestingly, this leap in frame rate is not only a technological breakthrough but it permits the advent of completely new ultrasound imaging modes, including shear wave elastography, electromechanical wave imaging, ultrafast doppler, ultrafast contrast imaging, and even functional ultrasound imaging of brain activity (fUltrasound) introducing Ultrasound as an emerging full-fledged neuroimaging modality. At ultrafast frame rates, it becomes possible to track in real time the transient vibrations – known as shear waves – propagating through organs. Such “human body seismology” provides quantitative maps of local tissue stiffness whose added value for diagnosis has been recently demonstrated in many fields of radiology (breast, prostate and liver cancer, cardiovascular imaging, …). Today, Supersonic Imagine company is commercializing the first clinical ultrafast ultrasound scanner, Aixplorer with real time Shear Wave Elastography. This is the first example of an ultrafast Ultrasound approach surpassing the research phase and now widely spread in the clinical medical ultrasound community with an installed base of more than 1000 Aixplorer systems in 54 countries worldwide. For blood flow imaging, ultrafast Doppler permits high-precision characterization of complex vascular and cardiac flows. It also gives ultrasound the ability to detect very subtle blood flow in very small vessels. In the brain, such ultrasensitive Doppler paves the way for fUltrasound (functional ultrasound imaging) of brain activity with unprecedented

  4. WE-B-210-02: The Advent of Ultrafast Imaging in Biomedical Ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Tanter, M. [Laboratoire Ondes et Acoustique (France)

    2015-06-15

    In the last fifteen years, the introduction of plane or diverging wave transmissions rather than line by line scanning focused beams has broken the conventional barriers of ultrasound imaging. By using such large field of view transmissions, the frame rate reaches the theoretical limit of physics dictated by the ultrasound speed and an ultrasonic map can be provided typically in tens of micro-seconds (several thousands of frames per second). Interestingly, this leap in frame rate is not only a technological breakthrough but it permits the advent of completely new ultrasound imaging modes, including shear wave elastography, electromechanical wave imaging, ultrafast doppler, ultrafast contrast imaging, and even functional ultrasound imaging of brain activity (fUltrasound) introducing Ultrasound as an emerging full-fledged neuroimaging modality. At ultrafast frame rates, it becomes possible to track in real time the transient vibrations – known as shear waves – propagating through organs. Such “human body seismology” provides quantitative maps of local tissue stiffness whose added value for diagnosis has been recently demonstrated in many fields of radiology (breast, prostate and liver cancer, cardiovascular imaging, …). Today, Supersonic Imagine company is commercializing the first clinical ultrafast ultrasound scanner, Aixplorer with real time Shear Wave Elastography. This is the first example of an ultrafast Ultrasound approach surpassing the research phase and now widely spread in the clinical medical ultrasound community with an installed base of more than 1000 Aixplorer systems in 54 countries worldwide. For blood flow imaging, ultrafast Doppler permits high-precision characterization of complex vascular and cardiac flows. It also gives ultrasound the ability to detect very subtle blood flow in very small vessels. In the brain, such ultrasensitive Doppler paves the way for fUltrasound (functional ultrasound imaging) of brain activity with unprecedented

  5. Precise Time-of-Flight Calculation For 3-D Synthetic Aperture Focusing

    DEFF Research Database (Denmark)

    Andresen, Henrik; Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2009-01-01

    in elevation can be achieved by applying synthetic aperture (SA) focusing to the beamformed in-plane RF-data. The proposed method uses a virtual source (VS) placed at the elevation focus for postbeamforming. This has previously been done in two steps, in plane focusing followed by SA post-focusing in elevation......, because of a lack of a simple expression for the exact time of flight (ToF). This paper presents a new method for calculating the ToF for a 3D case in a single step using a linear array. This method is more flexible than the previously proposed method and is able to beamform a fewer number of points much...

  6. Storm real-time processing cookbook

    CERN Document Server

    Anderson, Quinton

    2013-01-01

    A Cookbook with plenty of practical recipes for different uses of Storm.If you are a Java developer with basic knowledge of real-time processing and would like to learn Storm to process unbounded streams of data in real time, then this book is for you.

  7. Detection and Evaluation of Renal Injury in Burst Wave Lithotripsy Using Ultrasound and Magnetic Resonance Imaging.

    Science.gov (United States)

    May, Philip C; Kreider, Wayne; Maxwell, Adam D; Wang, Yak-Nam; Cunitz, Bryan W; Blomgren, Philip M; Johnson, Cynthia D; Park, Joshua S H; Bailey, Michael R; Lee, Donghoon; Harper, Jonathan D; Sorensen, Mathew D

    2017-08-01

    Burst wave lithotripsy (BWL) is a transcutaneous technique with potential to safely and effectively fragment renal stones. Preclinical investigations of BWL require the assessment of potential renal injury. This study evaluates the capabilities of real-time ultrasound and MRI to detect and evaluate BWL injury that was induced in porcine kidneys. Ten kidneys from five female farm pigs were treated with either a 170 or 335 kHz BWL transducer using variable treatment parameters and monitored in real-time with ultrasound. Eight kidneys were perfusion fixed and scanned with a 3-Tesla MRI scanner (T1-weighted, T2-weighted, and susceptibility-weighted imaging), followed by processing via an established histomorphometric technique for injury quantification. In addition, two kidneys were separately evaluated for histologic characterization of injury quality. Observed B-mode hyperechoes on ultrasound consistent with cavitation predicted the presence of BWL-induced renal injury with a sensitivity and specificity of 100% in comparison to the histomorphometric technique. Similarly, MRI detected renal injury with a sensitivity of 90% and specificity of 100% and was able to identify the scale of lesion volumes. The injuries purposefully generated with BWL were histologically similar to those formed by shock wave lithotripsy. BWL-induced renal injury can be detected with a high degree of sensitivity and specificity by real-time ultrasound and post-treatment ex vivo MRI. No injury occurred in this study without cavitation detected on ultrasound. Such capabilities for injury detection and lesion volume quantification on MRI can be used for preclinical testing of BWL.

  8. A time-domain synthetic aperture ultrasound imaging method for material flaw quantification with validations on small-scale artificial and natural flaws.

    Science.gov (United States)

    Guan, Xuefei; He, Jingjing; Rasselkorde, El Mahjoub

    2015-02-01

    A direct time-domain reconstruction and sizing method of synthetic aperture focusing technique (SAFT) is developed to improve the spatial resolution and sizing accuracy for phased-array ultrasonic inspections. The basic idea of the reconstruction algorithm is to coherently superimpose multiple A-scan measurements, incorporating the phase information of the sampling points. The algorithm involves data mapping and in-phase summation according to time-of-flight (TOF). Data mapping refers to the process of placing each of the sampling points to a two-/three-dimensional grid that represents the geometry model of the object being inspected. The value for each of the cells of the grid is a summation of all sampling points mapped into the cell. A sizing method based on the concept of 6 dB-drop is proposed to characterize the flaw boundary. The extents, orientation and the shape of the flaw can then be inferred to provide more information for life assessment calculations. Lab experiments are performed using a 10 MHz phased-array ultrasonic transducer to collect data from a cylinder material block with closely spaced artificial flaws and from a material block with a natural flaw. The developed method is used to process the experimental data to characterize the flaws. Using the developed method, the improvement of spatial resolution is observed. Results indicate that four closely spaced 0.794 mm-diameter flat-bottomed holes are clearly identified, and the quantification of size and orientation of the natural flaw is very close to the actual measurement made from digital microscopy after cutting the testing piece apart. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Mixed - mode Operating System for Real - time Performance

    Directory of Open Access Journals (Sweden)

    Hasan M. M.

    2017-11-01

    Full Text Available The purpose of the mixed-mode system research is to handle devices with the accuracy of real-time systems and at the same time, having all the benefits and facilities of a matured Graphic User Interface(GUIoperating system which is typicallynon-real-time. This mixed-mode operating system comprising of a real-time portion and a non-real-time portion was studied and implemented to identify the feasibilities and performances in practical applications (in the context of scheduled the real-time events. In this research an i8751 microcontroller-based hardware was used to measure the performance of the system in real-time-only as well as non-real-time-only configurations. The real-time portion is an 486DX-40 IBM PC system running under DOS-based real-time kernel and the non-real-time portion is a Pentium IIIbased system running under Windows NT. It was found that mixed-mode systems performed as good as a typical real-time system and in fact, gave many additional benefits such as simplified/modular programming and load tolerance.

  10. Real-Time, Interactive Echocardiography Over High-Speed Networks: Feasibility and Functional Requirements

    Science.gov (United States)

    Bobinsky, Eric A.

    1998-01-01

    Real-time, Interactive Echocardiography Over High Speed Networks: Feasibility and Functional Requirements is an experiment in advanced telemedicine being conducted jointly by the NASA Lewis Research Center, the NASA Ames Research Center, and the Cleveland Clinic Foundation. In this project, a patient undergoes an echocardiographic examination in Cleveland while being diagnosed remotely by a cardiologist in California viewing a real-time display of echocardiographic video images transmitted over the broadband NASA Research and Education Network (NREN). The remote cardiologist interactively guides the sonographer administering the procedure through a two-way voice link between the two sites. Echocardiography is a noninvasive medical technique that applies ultrasound imaging to the heart, providing a "motion picture" of the heart in action. Normally, echocardiographic examinations are performed by a sonographer and cardiologist who are located in the same medical facility as the patient. The goal of telemedicine is to allow medical specialists to examine patients located elsewhere, typically in remote or medically underserved geographic areas. For example, a small, rural clinic might have access to an echocardiograph machine but not a cardiologist. By connecting this clinic to a major metropolitan medical facility through a communications network, a minimally trained technician would be able to carry out the procedure under the supervision and guidance of a qualified cardiologist.

  11. Imaging with rotating slit apertures and rotating collimators

    International Nuclear Information System (INIS)

    Gindi, G.R.; Arendt, J.; Barrett, H.H.; Chiu, M.Y.; Ervin, A.; Giles, C.L.; Kujoory, M.A.; Miller, E.L.; Simpson, R.G.

    1982-01-01

    The statistical quality of conventional nuclear medical imagery is limited by the small signal collect through low-efficiency conventional apertures. Coded-aperture imaging overcomes this by employing a two-step process in which the object is first efficiently detected as an ''encoded'' form which does not resemble the object, and then filtered (or ''decoded'') to form an image. We present here the imaging properties of a class of time-modulated coded apertures which, unlike most coded apertures, encode projections of the object rather than the object itself. These coded apertures can reconstruct a volume object nontomographically, tomographically (one plane focused), or three-dimensionally. We describe a new decoding algorithm that reconstructs the object from its planar projections. Results of noise calculations are given, and the noise performance of these coded-aperture systems is compared to that of conventional counterparts. A hybrid slit-pinhole system which combines the imaging advantages of a rotating slit and a pinhole is described. A new scintillation detector which accurately measures the position of an event in one dimension only is presented, and its use in our coded-aperture system is outlined. Finally, results of imaging test objects and animals are given

  12. Imaging with rotating slit apertures and rotating collimators

    International Nuclear Information System (INIS)

    Gindi, G.R.; Arendt, J.; Barrett, H.H.; Chiu, M.Y.; Ervin, A.; Giles, C.L.; Kujoory, M.A.; Miller, E.L.; Simpson, R.G.

    1982-01-01

    The statistical quality of conventional nuclear medical imagery is limited by the small signal collected through low-efficiency conventional apertures. Coded-aperture imaging overcomes this by employing a two-step process in which the object is first efficiently detected as an encoded form which does not resemble the object, and then filtered (or decoded) to form an image. We present here the imaging properties of a class of time-modulated coded apertures which, unlike most coded apertures, encode projections of the object rather than the object itself. These coded apertures can reconstruct a volume object nontomographically, tomographically (one plane focused), or three-dimensionally. We describe a new decoding algorithm that reconstructs the object from its planar projections. Results of noise calculations are given, and the noise performance of these coded-aperture systems is compared to that of conventional counterparts. A hybrid slit-pinhole system which combines the imaging advantages of a rotating slit and a pinhole is described. A new scintillation detector which accurately measures the position of an event in one dimension only is presented, and its use in our coded-aperture system is outlined. Finally, results of imaging test objects and animals are given

  13. An improved tracking framework for ultrasound probe localization in image-guided radiosurgery

    Directory of Open Access Journals (Sweden)

    Ipsen Svenja

    2016-09-01

    Full Text Available Real-time target localization with ultrasound holds high potential for image guidance and motion compensation in radiosurgery due to its non-invasive image acquisition free from ionizing radiation. However, a two-step localization has to be performed when integrating ultrasound into the existing radiosurgery workflow. In addition to target localization inside the ultrasound volume, the probe itself has to be localized in order to transform the target position into treatment room coordinates. By adapting existing camera calibration tools, we have developed a method to extend the stereoscopic X-ray tracking system of a radiosurgery platform in order to locate objects such as marker geometries with six degrees of freedom. The calibration was performed with 0.1 mm reprojection error. By using the full area of the flat-panel detectors without pre-processing the extended software increased the tracking volume and resolution by up to 80%, substantially improving patient localization and marker detectability. Furthermore, marker-tracking showed sub-millimeter accuracy and rotational errors below 0.1°. This demonstrates that the developed extension framework can accurately localize marker geometries using an integrated X-ray system, establishing the link for the integration of real-time ultrasound image guidance into the existing system.

  14. Evaluation of automatic time gain compensated in-vivo ultrasound sequences

    DEFF Research Database (Denmark)

    Axelsen, Martin Christian; Røeboe, Kristian Frostholm; Hemmsen, Martin Christian

    2010-01-01

    algorithm for automatic time gain compensation (TGC) on in-vivo ultrasound sequences. Forty ultrasound sequences were recorded from the abdomen of two healthy volunteers. Each sequence of 5 sec was recorded with 40 frames/sec. Post processing each frame, a mask is created wherein anechoic and hyper echoic...... regions are mapped. Near field hyper intensity and deep areas with low signal strength are also included in the mask. The algorithm uses this mask to create a parallel image where anechoic and hyper echoic regions are eliminated. From this, the mean power is calculated as a function of depth. The power...

  15. Research in Distributed Real-Time Systems

    Science.gov (United States)

    Mukkamala, R.

    1997-01-01

    This document summarizes the progress we have made on our study of issues concerning the schedulability of real-time systems. Our study has produced several results in the scalability issues of distributed real-time systems. In particular, we have used our techniques to resolve schedulability issues in distributed systems with end-to-end requirements. During the next year (1997-98), we propose to extend the current work to address the modeling and workload characterization issues in distributed real-time systems. In particular, we propose to investigate the effect of different workload models and component models on the design and the subsequent performance of distributed real-time systems.

  16. Real-time data access layer for MDSplus

    International Nuclear Information System (INIS)

    Manduchi, G.; Luchetta, A.; Taliercio, C.; Fredian, T.; Stillerman, J.

    2008-01-01

    Recent extensions to MDSplus allow data handling in long discharges and provide a real-time data access and communication layer. The real-time data access layer is an additional component of MDSplus: it is possible to use the traditional MDSplus API during normal operation, and to select a subset of data items to be used in real time. Real-time notification is provided by a communication layer using a publish-subscribe pattern. The notification covers processes sharing the same data items even running on different machines, thus allowing the implementation of distributed control systems. The real-time data access layer has been developed for Windows, Linux, and VxWorks; it is currently being ported to Linux RTAI. In order to quantify the fingerprint of the presented system, the performance of the real-time access layer approach is compared with that of an ad hoc, manually optimized program in a sample real-time application

  17. A Real-Time Systems Symposium Preprint.

    Science.gov (United States)

    1983-09-01

    Real - Time Systems Symposium Preprint Interim Tech...estimate of the occurence of the error. Unclassii ledSECUqITY CLASSIF’ICA T" NO MI*IA If’ inDI /’rrd erter for~~ble. ’Corrputnqg A REAL - TIME SYSTEMS SYMPOSIUM...ABSTRACT This technical report contains a preprint of a paper accepted for presentation at the REAL - TIME SYSTEMS SYMPOSIUM, Arlington,

  18. Benefits of real-time gas management

    International Nuclear Information System (INIS)

    Nolty, R.; Dolezalek, D. Jr.

    1994-01-01

    In today's competitive gas gathering, processing, storage and transportation business environment, the requirements to do business are continually changing. These changes arise from government regulations such as the amendments to the Clean Air Act concerning the environment and FERC Order 636 concerning business practices. Other changes are due to advances in technology such as electronic flow measurement (EFM) and real-time communications capabilities within the gas industry. Gas gathering, processing, storage and transportation companies must be flexible in adapting to these changes to remain competitive. These dynamic requirements can be met with an open, real-time gas management computer information system. Such a system provides flexible services with a variety of software applications. Allocations, nominations management and gas dispatching are examples of applications that are provided on a real-time basis. By providing real-time services, the gas management system enables operations personnel to make timely adjustments within the current accounting period. Benefits realized from implementing a real-time gas management system include reduced unaccountable gas, reduced imbalance penalties, reduced regulatory violations, improved facility operations and better service to customers. These benefits give a company the competitive edge. This article discusses the applications provided, the benefits from implementing a real-time gas management system, and the definition of such a system

  19. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry.

    Science.gov (United States)

    Bandura, Dmitry R; Baranov, Vladimir I; Ornatsky, Olga I; Antonov, Alexei; Kinach, Robert; Lou, Xudong; Pavlov, Serguei; Vorobiev, Sergey; Dick, John E; Tanner, Scott D

    2009-08-15

    A novel instrument for real time analysis of individual biological cells or other microparticles is described. The instrument is based on inductively coupled plasma time-of-flight mass spectrometry and comprises a three-aperture plasma-vacuum interface, a dc quadrupole turning optics for decoupling ions from neutral components, an rf quadrupole ion guide discriminating against low-mass dominant plasma ions, a point-to-parallel focusing dc quadrupole doublet, an orthogonal acceleration reflectron analyzer, a discrete dynode fast ion detector, and an 8-bit 1 GHz digitizer. A high spectrum generation frequency of 76.8 kHz provides capability for collecting multiple spectra from each particle-induced transient ion cloud, typically of 200-300 micros duration. It is shown that the transients can be resolved and characterized individually at a peak frequency of 1100 particles per second. Design considerations and optimization data are presented. The figures of merit of the instrument are measured under standard inductively coupled plasma (ICP) operating conditions ( 900 for m/z = 159, the sensitivity with a standard sample introduction system of >1.4 x 10(8) ion counts per second per mg L(-1) of Tb and an abundance sensitivity of (6 x 10(-4))-(1.4 x 10(-3)) (trailing and leading masses, respectively) are shown. The mass range (m/z = 125-215) and abundance sensitivity are sufficient for elemental immunoassay with up to 60 distinct available elemental tags. When 500) can be used, which provides >2.4 x 10(8) cps per mg L(-1) of Tb, at (1.5 x 10(-3))-(5.0 x 10(-3)) abundance sensitivity. The real-time simultaneous detection of multiple isotopes from individual 1.8 microm polystyrene beads labeled with lanthanides is shown. A real time single cell 20 antigen expression assay of model cell lines and leukemia patient samples immuno-labeled with lanthanide-tagged antibodies is presented.

  20. Endobronchial ultrasound elastography: a new method in endobronchial ultrasound-guided transbronchial needle aspiration.

    Science.gov (United States)

    Jiang, Jun-Hong; Turner, J Francis; Huang, Jian-An

    2015-12-01

    TBNA through the flexible bronchoscope is a 37-year-old technology that utilizes a TBNA needle to puncture the bronchial wall and obtain specimens of peribronchial and mediastinal lesions through the flexible bronchoscope for the diagnosis of benign and malignant diseases in the mediastinum and lung. Since 2002, the Olympus Company developed the first generation ultrasound equipment for use in the airway, initially utilizing an ultrasound probe introduced through the working channel followed by incoroporation of a fixed linear ultrasound array at the distal tip of the bronchoscope. This new bronchoscope equipped with a convex type ultrasound probe on the tip was subsequently introduced into clinical practice. The convex probe (CP)-EBUS allows real-time endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) of mediastinal and hilar lymph nodes. EBUS-TBNA is a minimally invasive procedure performed under local anesthesia that has been shown to have a high sensitivity and diagnostic yield for lymph node staging of lung cancer. In 10 years of EBUS development, the Olympus Company developed the second generation EBUS bronchoscope (BF-UC260FW) with the ultrasound image processor (EU-M1), and in 2013 introduced a new ultrasound image processor (EU-M2) into clinical practice. FUJI company has also developed a curvilinear array endobronchial ultrasound bronchoscope (EB-530 US) that makes it easier for the operator to master the operation of the ultrasonic bronchoscope. Also, the new thin convex probe endobronchial ultrasound bronchoscope (TCP-EBUS) is able to visualize one to three bifurcations distal to the current CP-EBUS. The emergence of EBUS-TBNA has also been accompanied by innovation in EBUS instruments. EBUS elastography is, then, a new technique for describing the compliance of structures during EBUS, which may be of use in the determination of metastasis to the mediastinal and hilar lymph nodes. This article describes these new EBUS

  1. Making real-time reactive systems reliable

    Science.gov (United States)

    Marzullo, Keith; Wood, Mark

    1990-01-01

    A reactive system is characterized by a control program that interacts with an environment (or controlled program). The control program monitors the environment and reacts to significant events by sending commands to the environment. This structure is quite general. Not only are most embedded real time systems reactive systems, but so are monitoring and debugging systems and distributed application management systems. Since reactive systems are usually long running and may control physical equipment, fault tolerance is vital. The research tries to understand the principal issues of fault tolerance in real time reactive systems and to build tools that allow a programmer to design reliable, real time reactive systems. In order to make real time reactive systems reliable, several issues must be addressed: (1) How can a control program be built to tolerate failures of sensors and actuators. To achieve this, a methodology was developed for transforming a control program that references physical value into one that tolerates sensors that can fail and can return inaccurate values; (2) How can the real time reactive system be built to tolerate failures of the control program. Towards this goal, whether the techniques presented can be extended to real time reactive systems is investigated; and (3) How can the environment be specified in a way that is useful for writing a control program. Towards this goal, whether a system with real time constraints can be expressed as an equivalent system without such constraints is also investigated.

  2. Ultrasound-Assisted Extraction: Effect of Extraction Time and Solvent ...

    African Journals Online (AJOL)

    Purpose: To investigate the influence of extraction conditions assisted by ultrasound on the quality of extracts obtained from Mesembryanthemum edule shoots. Methods: The extraction procedure was carried out in an ultrasonic bath. The effect of two solvents (methanol and ethanol) and two extraction times (5 and 10 min) ...

  3. Space Weather and Real-Time Monitoring

    Directory of Open Access Journals (Sweden)

    S Watari

    2009-04-01

    Full Text Available Recent advance of information and communications technology enables to collect a large amount of ground-based and space-based observation data in real-time. The real-time data realize nowcast of space weather. This paper reports a history of space weather by the International Space Environment Service (ISES in association with the International Geophysical Year (IGY and importance of real-time monitoring in space weather.

  4. Research Directions in Real-Time Systems.

    Science.gov (United States)

    1996-09-01

    This report summarizes a survey of published research in real time systems . Material is presented that provides an overview of the topic, focusing on...communications protocols and scheduling techniques. It is noted that real - time systems deserve special attention separate from other areas because of...formal tools for design and analysis of real - time systems . The early work on applications as well as notable theoretical advances are summarized

  5. Diagnostic instrumentation aboard ISS: just-in-time training for non-physician crewmembers

    Science.gov (United States)

    Foale, C. Michael; Kaleri, Alexander Y.; Sargsyan, Ashot E.; Hamilton, Douglas R.; Melton, Shannon; Martin, David; Dulchavsky, Scott A.

    2005-01-01

    INTRODUCTION: The performance of complex tasks on the International Space Station (ISS) requires significant preflight crew training commitments and frequent skill and knowledge refreshment. This report documents a recently developed "just-in-time" training methodology, which integrates preflight hardware familiarization and procedure training with an on-orbit CD-ROM-based skill enhancement. This "just-in-time" concept was used to support real-time remote expert guidance to complete ultrasound examinations using the ISS Human Research Facility (HRF). METHODS: An American and Russian ISS crewmember received 2 h of "hands on" ultrasound training 8 mo prior to the on-orbit ultrasound exam. A CD-ROM-based Onboard Proficiency Enhancement (OPE) interactive multimedia program consisting of memory enhancing tutorials, and skill testing exercises, was completed by the crewmember 6 d prior to the on-orbit ultrasound exam. The crewmember was then remotely guided through a thoracic, vascular, and echocardiographic examination by ultrasound imaging experts. RESULTS: Results of the CD-ROM-based OPE session were used to modify the instructions during a complete 35-min real-time thoracic, cardiac, and carotid/jugular ultrasound study. Following commands from the ground-based expert, the crewmember acquired all target views and images without difficulty. The anatomical content and fidelity of ultrasound video were adequate for clinical decision making. CONCLUSIONS: Complex ultrasound experiments with expert guidance were performed with high accuracy following limited preflight training and multimedia based in-flight review, despite a 2-s communication latency. In-flight application of multimedia proficiency enhancement software, coupled with real-time remote expert guidance, facilitates the successful performance of ultrasound examinations on orbit and may have additional terrestrial and space applications.

  6. Experimental performance assessment of the sub-band minimum variance beamformer for ultrasound imaging

    DEFF Research Database (Denmark)

    Diamantis, Konstantinos; Greenaway, Alan H.; Anderson, Tom

    2017-01-01

    Recent progress in adaptive beamforming techniques for medical ultrasound has shown that current resolution limits can be surpassed. One method of obtaining improved lateral resolution is the Minimum Variance (MV) beamformer. The frequency domain implementation of this method effectively divides...... the broadband ultrasound signals into sub-bands (MVS) to conform with the narrow-band assumption of the original MV theory. This approach is investigated here using experimental Synthetic Aperture (SA) data from wire and cyst phantoms. A 7 MHz linear array transducer is used with the SARUS experimental...

  7. Point-of-Care Ultrasound: A Trend in Health Care.

    Science.gov (United States)

    Buerger, Anita M; Clark, Kevin R

    2017-11-01

    To discuss the current and growing use of point-of-care (POC) ultrasound in the management and care of patients. Several electronic research databases were searched to find articles that emphasized the use of POC ultrasound by health care providers who manage and treat critically ill or injured patients. Thirty-five relevant peer-reviewed journal articles were selected for this literature review. Common themes identified in the literature included the use of POC ultrasound in emergency medicine, military medicine, and remote care; comparison of POC ultrasound to other medical imaging modalities; investigation of the education and training required for nonimaging health care professionals who perform POC ultrasound in their practices; and discussion of the financial implications and limitations of POC ultrasound. POC ultrasound provides clinicians with real-time information to better manage and treat critically ill or injured patients in emergency medicine, military medicine, and remote care. In addition to providing immediate bedside diagnostic information, use of POC ultrasound has increased because of concerns regarding radiation protection. Finally, the expansion of POC ultrasound to other specialty areas requires nonimaging health care professionals to perform bedside ultrasound examinations and interpret the resulting images. Because POC ultrasound is user-dependent, adequate training is essential for all who perform and interpret the examinations. Research involving POC ultrasound will continue as innovations and confidence in ultrasound applications advance. Future research should continue to examine the broad use of POC ultrasound in patient care and management. ©2017 American Society of Radiologic Technologists.

  8. Experimental study on ablating goat liver tissue with ultrasound imaging guided percutaneous irreversible electroporation

    Directory of Open Access Journals (Sweden)

    Ying LIU

    2011-03-01

    Full Text Available Objective To investigate the proper method of percutaneous irreversible electroporation(IRE to ablate goat liver tissue under ultrasonic guidance,and observe the features of ultrasound imaging and histological changes.Methods The pulse electric fields(PEFs with permanent duration(100 μs,frequency(1Hz,voltage(2000V and pulses(120 pieces were applied to the electrodes,and the electrodes were placed into goats’ liver under ultrasound guidance through the animal skin to the target area.The treated area was observed by real-time ultrasound scanning,and the histopathological changes were assessed by hematoxylin and eosin(HE staining under light microscope at the time of 0h and 24h after IRE ablation.The circumscribed ablated area was compared with that of finite element modeling(FEM calculation method.Results Ultrasound imaging guidance was accurate in focusing on the target area.Imaging captured by the ultrasound after IRE procedure was quite different from that of the normal liver imaging.Complete hepatic cell death with a sharp demarcation between the ablated zone and the non-ablated zone was well visualized 24 hours after the procedure.Necrospy-based measurement demonstrated a high consistence with FEM-anticipated ablation zones.Conclusion With real-time monitoring by ultrasonography and well-controlled ablation of the target tissue,percutaneous IRE can provide a novel and unique ablative method for cancer treatment.The present paper provides a fundamental experimental work for future studies on clinical application of IRE.

  9. Real-Time MENTAT programming language and architecture

    Science.gov (United States)

    Grimshaw, Andrew S.; Silberman, Ami; Liu, Jane W. S.

    1989-01-01

    Real-time MENTAT, a programming environment designed to simplify the task of programming real-time applications in distributed and parallel environments, is described. It is based on the same data-driven computation model and object-oriented programming paradigm as MENTAT. It provides an easy-to-use mechanism to exploit parallelism, language constructs for the expression and enforcement of timing constraints, and run-time support for scheduling and exciting real-time programs. The real-time MENTAT programming language is an extended C++. The extensions are added to facilitate automatic detection of data flow and generation of data flow graphs, to express the timing constraints of individual granules of computation, and to provide scheduling directives for the runtime system. A high-level view of the real-time MENTAT system architecture and programming language constructs is provided.

  10. Real Time Conference 2016 Overview

    Science.gov (United States)

    Luchetta, Adriano

    2017-06-01

    This is a special issue of the IEEE Transactions on Nuclear Science containing papers from the invited, oral, and poster presentation of the 20th Real Time Conference (RT2016). The conference was held June 6-10, 2016, at Centro Congressi Padova “A. Luciani,” Padova, Italy, and was organized by Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA) and the Istituto Nazionale di Fisica Nucleare. The Real Time Conference is multidisciplinary and focuses on the latest developments in real-time techniques in high-energy physics, nuclear physics, astrophysics and astroparticle physics, nuclear fusion, medical physics, space instrumentation, nuclear power instrumentation, general radiation instrumentation, and real-time security and safety. Taking place every second year, it is sponsored by the Computer Application in Nuclear and Plasma Sciences technical committee of the IEEE Nuclear and Plasma Sciences Society. RT2016 attracted more than 240 registrants, with a large proportion of young researchers and engineers. It had an attendance of 67 students from many countries.

  11. Intraoperative real-time planned conformal prostate brachytherapy: Post-implantation dosimetric outcome and clinical implications

    International Nuclear Information System (INIS)

    Zelefsky, Michael J.; Yamada, Yoshiya; Cohen, Gil'ad N.; Sharma, Neha; Shippy, Alison M.; Fridman, David; Zaider, Marco

    2007-01-01

    Purpose: To report the dosimetric outcome of patients with clinically localized prostate cancer treated with I-125 permanent implantation using an intraoperative real-time conformal planning technique. Methods and materials: Five hundred and sixty-two patients with prostate cancer were treated with I-125 permanent interstitial implantation using a transrectal ultrasound-guided approach. Real-time intraoperative treatment planning software that incorporates inverse planning optimization was used. Dose-volume constraints for this inverse-planning system included: prostate V100 ≥95%, maximal urethral dose ≤120%, and average rectal dose 3 of the rectum was exposed to the prescription dose, the incidence of late grade 2 toxicity rectal toxicity was 9% compared to 4% for smaller volumes of the rectum exposed to similar doses (p = 0.003). No dosimetric parameter in these patients with tight dose confines for the urethra influenced acute or late urinary toxicity. Conclusion: Real-time intraoperative planning was associated with a 90% consistency of achieving the planned intraoperative dose constraints for target coverage and maintaining planned urethral and rectal constraints in a high percentage of implants. Rectal volumes of ≥2.5 cm 3 exposed to the prescription doses were associated with an increased incidence of grade 2 rectal bleeding. Further enhancements in imaging guidance for optimal seed deposition are needed to guarantee optimal dose distribution for all patients. Whether such improvements lead to further reduction in acute and late morbidities associated with therapy requires further study

  12. Time-dependent change of blood flow in the prostate treated with high-intensity focused ultrasound.

    Science.gov (United States)

    Shoji, Sunao; Tonooka, Akiko; Hashimoto, Akio; Nakamoto, Masahiko; Tomonaga, Tetsuro; Nakano, Mayura; Sato, Haruhiro; Terachi, Toshiro; Koike, Junki; Uchida, Toyoaki

    2014-09-01

    Avascular areas on contrast-enhanced magnetic resonance imaging have been considered to be areas of localized prostate cancer successfully treated by high-intensity focused ultrasound. However, the optimal timing of magnetic resonance imaging has not been discussed. The thermal effect of high-intensity focused ultrasound is degraded by regional prostatic blood flow. Conversely, the mechanical effect of high-intensity focused ultrasound (cavitation) is not affected by blood flow, and can induce vessel damage. In this series, the longitudinal change of blood flow on contrast-enhanced magnetic resonance imaging was observed from postoperative day 1 to postoperative day 14 in 10 patients treated with high-intensity focused ultrasound. The median rates of increase in the non-enhanced volume of the whole gland, transition zone and peripheral zone from postoperative day 1 to postoperative day 14 were 36%, 39%, and 34%, respectively. In another pathological analysis of the prostate tissue of 17 patients immediately after high-intensity focused ultrasound without neoadjuvant hormonal therapy, we observed diffuse coagulative degeneration and partial non-coagulative prostate tissue around arteries with vascular endothelial cell detachment. These observations on contrast-enhanced magnetic resonance imaging support a time-dependent change of the blood flow in the prostate treated with high-intensity focused ultrasound. Additionally, our pathological findings support the longitudinal changes of these magnetic resonance imaging findings. Further large-scale studies will investigate the most appropriate timing of contrast-enhanced magnetic resonance imaging for evaluation of the effectiveness of high-intensity focused ultrasound for localized prostate cancer. © 2014 The Japanese Urological Association.

  13. Run-time middleware to support real-time system scenarios

    NARCIS (Netherlands)

    Goossens, K.; Koedam, M.; Sinha, S.; Nelson, A.; Geilen, M.

    2015-01-01

    Systems on Chip (SOC) are powerful multiprocessor systems capable of running multiple independent applications, often with both real-time and non-real-time requirements. Scenarios exist at two levels: first, combinations of independent applications, and second, different states of a single

  14. Endoscopic ultrasound duplex scanning for measurement of portal venous flow. Validation against transit time ultrasound flowmetry in pigs

    DEFF Research Database (Denmark)

    Hansen, E F; Strandberg, C; Bendtsen, F

    1999-01-01

    with that of transit time ultrasound (TTU) in healthy pigs. The ability of EUS to detect changes in the portal venous flow after pharmacologic intervention was also investigated. METHODS: Six anaesthetized pigs were studied. Portal venous flow was measured simultaneously by EUS duplex scanning, using a Pentax FG-32UA...... echoendoscope connected to a Hitachi EUB 515-A ultrasound scanner, and by TTU with a Cardiomed CM 4000 flowmeter probe placed on the portal vein. Terlipressin, 1 mg, and placebo were administered in a blind, randomized, crossover design. Measurements were taken at base line and 30 min after each drug...

  15. Advanced real-time manipulation of video streams

    CERN Document Server

    Herling, Jan

    2014-01-01

    Diminished Reality is a new fascinating technology that removes real-world content from live video streams. This sensational live video manipulation actually removes real objects and generates a coherent video stream in real-time. Viewers cannot detect modified content. Existing approaches are restricted to moving objects and static or almost static cameras and do not allow real-time manipulation of video content. Jan Herling presents a new and innovative approach for real-time object removal with arbitrary camera movements.

  16. Comparisons of coded aperture imaging using various apertures and decoding methods

    International Nuclear Information System (INIS)

    Chang, L.T.; Macdonald, B.; Perez-Mendez, V.

    1976-07-01

    The utility of coded aperture γ camera imaging of radioisotope distributions in Nuclear Medicine is in its ability to give depth information about a three dimensional source. We have calculated imaging with Fresnel zone plate and multiple pinhole apertures to produce coded shadows and reconstruction of these shadows using correlation, Fresnel diffraction, and Fourier transform deconvolution. Comparisons of the coded apertures and decoding methods are made by evaluating their point response functions both for in-focus and out-of-focus image planes. Background averages and standard deviations were calculated. In some cases, background subtraction was made using combinations of two complementary apertures. Results using deconvolution reconstruction for finite numbers of events are also given

  17. Distributed management system of a scanning robot programmed real time in APL language

    International Nuclear Information System (INIS)

    Liabot, M.-J.

    1980-08-01

    The aim of this work is to propose an original solution in order to implement the control operating system of a robot designed to travel between the main tank and the safety tank of the SUPERPHENIX reactor for scanning up the welding by ultrasound measurements. The system consists of: - a MITRA mini-computer programmed in APL, that manages the driving unit and defines the scanning strategy (visual unit, cheking board...). - a microprocessor that realizes the connection between the MITRA and the robot on wich the motor commands and the safety fonctions are placed. Such a solution allows to limit input output volume in the MITRA and gives the possibility to program the system in real time in APL language [fr

  18. Archtecture of distributed real-time systems

    OpenAIRE

    Wing Leung, Cheuk

    2013-01-01

    CRAFTERS (Constraint and Application Driven Framework for Tailoring Embedded Real-time System) project aims to address the problem of uncertainty and heterogeneity in a distributed system by providing seamless, portable connectivity and middleware. This thesis contributes to the project by investigating the techniques that can be used in a distributed real-time embedded system. The conclusion is that, there is a list of specifications to be meet in order to provide a transparent and real-time...

  19. Knee ultrasound from research to real practice: a systematic literature review of adult knee ultrasound assessment feasibility studies.

    Science.gov (United States)

    Peltea, Alexandra; Berghea, Florian; Gudu, Tania; Ionescu, Ruxandra

    2016-12-05

    To identify and analyse existing data regarding knee ultrasound (US) feasibility in clinical practice. Material and methods: A systematic literature review was performed using the terms: ("knee") AND ("ultrasound" OR "ultrasonography") AND ("feasibility" OR "pilot" OR "proof of concept"). Feasibility studies regarding knee US or US aided maneuver involving knee joint, published during 2005-2015, were selected and evaluated against a complex framework constructed around mandatory key areas for feasibility studies: acceptability, demand, implementation, practicality, adaptation, integration and expansion. One hundred and fifty-nine publications were identified, of which 9 were included in the final analysis: 6 dealt with the development and implementation of novel US scores, while the rest focused on implementing MSUS in clinical practice, evaluating the usefulness of articular cartilage US assessment and the feasibility of sonography for intra-articular knee injections, respectively. Six studies quantified feasibility as time spent for the evaluation, with only two addressing areassuch as acceptability, implementation and practicality, although none of these systematically assessed all feasibility domains. Knee US feasibility is still poorly addressed; the time required for US assessment is the main area addressed. This information gap should be properly addressed in future works, in order to ensure the right place for this technique.

  20. The real-time price elasticity of electricity

    NARCIS (Netherlands)

    Lijesen, M.G.

    2007-01-01

    The real-time price elasticity of electricity contains important information on the demand response of consumers to the volatility of peak prices. Despite the importance, empirical estimates of the real-time elasticity are hardly available. This paper provides a quantification of the real-time

  1. High-resolution ultrasound imaging and noninvasive optoacoustic monitoring of blood variables in peripheral blood vessels

    Science.gov (United States)

    Petrov, Irene Y.; Petrov, Yuriy; Prough, Donald S.; Esenaliev, Rinat O.

    2011-03-01

    Ultrasound imaging is being widely used in clinics to obtain diagnostic information non-invasively and in real time. A high-resolution ultrasound imaging platform, Vevo (VisualSonics, Inc.) provides in vivo, real-time images with exceptional resolution (up to 30 microns) using high-frequency transducers (up to 80 MHz). Recently, we built optoacoustic systems for probing radial artery and peripheral veins that can be used for noninvasive monitoring of total hemoglobin concentration, oxyhemoglobin saturation, and concentration of important endogenous and exogenous chromophores (such as ICG). In this work we used the high-resolution ultrasound imaging system Vevo 770 for visualization of the radial artery and peripheral veins and acquired corresponding optoacoustic signals from them using the optoacoustic systems. Analysis of the optoacoustic data with a specially developed algorithm allowed for measurement of blood oxygenation in the blood vessels as well as for continuous, real-time monitoring of arterial and venous blood oxygenation. Our results indicate that: 1) the optoacoustic technique (unlike pure optical approaches and other noninvasive techniques) is capable of accurate peripheral venous oxygenation measurement; and 2) peripheral venous oxygenation is dependent on skin temperature and local hemodynamics. Moreover, we performed for the first time (to the best of our knowledge) a comparative study of optoacoustic arterial oximetry and a standard pulse oximeter in humans and demonstrated superior performance of the optoacoustic arterial oximeter, in particular at low blood flow.

  2. Implementing Run-Time Evaluation of Distributed Timing Constraints in a Real-Time Environment

    DEFF Research Database (Denmark)

    Kristensen, C. H.; Drejer, N.

    1994-01-01

    In this paper we describe a solution to the problem of implementing run-time evaluation of timing constraints in distributed real-time environments......In this paper we describe a solution to the problem of implementing run-time evaluation of timing constraints in distributed real-time environments...

  3. Aperture Photometry Tool

    Science.gov (United States)

    Laher, Russ R.; Gorjian, Varoujan; Rebull, Luisa M.; Masci, Frank J.; Fowler, John W.; Helou, George; Kulkarni, Shrinivas R.; Law, Nicholas M.

    2012-07-01

    Aperture Photometry Tool (APT) is software for astronomers and students interested in manually exploring the photometric qualities of astronomical images. It is a graphical user interface (GUI) designed to allow the image data associated with aperture photometry calculations for point and extended sources to be visualized and, therefore, more effectively analyzed. The finely tuned layout of the GUI, along with judicious use of color-coding and alerting, is intended to give maximal user utility and convenience. Simply mouse-clicking on a source in the displayed image will instantly draw a circular or elliptical aperture and sky annulus around the source and will compute the source intensity and its uncertainty, along with several commonly used measures of the local sky background and its variability. The results are displayed and can be optionally saved to an aperture-photometry-table file and plotted on graphs in various ways using functions available in the software. APT is geared toward processing sources in a small number of images and is not suitable for bulk processing a large number of images, unlike other aperture photometry packages (e.g., SExtractor). However, APT does have a convenient source-list tool that enables calculations for a large number of detections in a given image. The source-list tool can be run either in automatic mode to generate an aperture photometry table quickly or in manual mode to permit inspection and adjustment of the calculation for each individual detection. APT displays a variety of useful graphs with just the push of a button, including image histogram, x and y aperture slices, source scatter plot, sky scatter plot, sky histogram, radial profile, curve of growth, and aperture-photometry-table scatter plots and histograms. APT has many functions for customizing the calculations, including outlier rejection, pixel “picking” and “zapping,” and a selection of source and sky models. The radial-profile-interpolation source

  4. REAL TIME SYSTEM OPERATIONS 2006-2007

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph H.; Parashar, Manu; Lewis, Nancy Jo

    2008-08-15

    The Real Time System Operations (RTSO) 2006-2007 project focused on two parallel technical tasks: (1) Real-Time Applications of Phasors for Monitoring, Alarming and Control; and (2) Real-Time Voltage Security Assessment (RTVSA) Prototype Tool. The overall goal of the phasor applications project was to accelerate adoption and foster greater use of new, more accurate, time-synchronized phasor measurements by conducting research and prototyping applications on California ISO's phasor platform - Real-Time Dynamics Monitoring System (RTDMS) -- that provide previously unavailable information on the dynamic stability of the grid. Feasibility assessment studies were conducted on potential application of this technology for small-signal stability monitoring, validating/improving existing stability nomograms, conducting frequency response analysis, and obtaining real-time sensitivity information on key metrics to assess grid stress. Based on study findings, prototype applications for real-time visualization and alarming, small-signal stability monitoring, measurement based sensitivity analysis and frequency response assessment were developed, factory- and field-tested at the California ISO and at BPA. The goal of the RTVSA project was to provide California ISO with a prototype voltage security assessment tool that runs in real time within California ISO?s new reliability and congestion management system. CERTS conducted a technical assessment of appropriate algorithms, developed a prototype incorporating state-of-art algorithms (such as the continuation power flow, direct method, boundary orbiting method, and hyperplanes) into a framework most suitable for an operations environment. Based on study findings, a functional specification was prepared, which the California ISO has since used to procure a production-quality tool that is now a part of a suite of advanced computational tools that is used by California ISO for reliability and congestion management.

  5. A study of real-time content marketing : formulating real-time content marketing based on content, search and social media

    OpenAIRE

    Nguyen, Thi Kim Duyen

    2015-01-01

    The primary objective of this research is to understand profoundly the new concept of content marketing – real-time content marketing on the aspect of the digital marketing experts. Particularly, the research will focus on the real-time content marketing theories and how to build real-time content marketing strategy based on content, search and social media. It also finds out how marketers measure and keep track of conversion rates of their real-time content marketing plan. Practically, th...

  6. Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe

    Science.gov (United States)

    Fehm, Thomas Felix; Deán-Ben, Xosé Luís; Razansky, Daniel

    2014-10-01

    Ultrasonography and optoacoustic imaging share powerful advantages related to the natural aptitude for real-time image rendering with high resolution, the hand-held operation, and lack of ionizing radiation. The two methods also possess very different yet highly complementary advantages of the mechanical and optical contrast in living tissues. Nonetheless, efficient integration of these modalities remains challenging owing to the fundamental differences in the underlying physical contrast, optimal signal acquisition, and image reconstruction approaches. We report on a method for hybrid acquisition and reconstruction of three-dimensional pulse-echo ultrasound and optoacoustic images in real time based on passive ultrasound generation with an optical absorber, thus avoiding the hardware complexity of active ultrasound generation. In this way, complete hybrid datasets are generated with a single laser interrogation pulse, resulting in simultaneous rendering of ultrasound and optoacoustic images at an unprecedented rate of 10 volumetric frames per second. Performance is subsequently showcased in phantom experiments and in-vivo measurements from a healthy human volunteer, confirming general clinical applicability of the method.

  7. Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe

    International Nuclear Information System (INIS)

    Fehm, Thomas Felix; Razansky, Daniel; Deán-Ben, Xosé Luís

    2014-01-01

    Ultrasonography and optoacoustic imaging share powerful advantages related to the natural aptitude for real-time image rendering with high resolution, the hand-held operation, and lack of ionizing radiation. The two methods also possess very different yet highly complementary advantages of the mechanical and optical contrast in living tissues. Nonetheless, efficient integration of these modalities remains challenging owing to the fundamental differences in the underlying physical contrast, optimal signal acquisition, and image reconstruction approaches. We report on a method for hybrid acquisition and reconstruction of three-dimensional pulse-echo ultrasound and optoacoustic images in real time based on passive ultrasound generation with an optical absorber, thus avoiding the hardware complexity of active ultrasound generation. In this way, complete hybrid datasets are generated with a single laser interrogation pulse, resulting in simultaneous rendering of ultrasound and optoacoustic images at an unprecedented rate of 10 volumetric frames per second. Performance is subsequently showcased in phantom experiments and in-vivo measurements from a healthy human volunteer, confirming general clinical applicability of the method.

  8. Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe

    Energy Technology Data Exchange (ETDEWEB)

    Fehm, Thomas Felix; Razansky, Daniel, E-mail: dr@tum.de [Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg (Germany); Faculty of Medicine, Technische Universität München, Munich (Germany); Deán-Ben, Xosé Luís [Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg (Germany)

    2014-10-27

    Ultrasonography and optoacoustic imaging share powerful advantages related to the natural aptitude for real-time image rendering with high resolution, the hand-held operation, and lack of ionizing radiation. The two methods also possess very different yet highly complementary advantages of the mechanical and optical contrast in living tissues. Nonetheless, efficient integration of these modalities remains challenging owing to the fundamental differences in the underlying physical contrast, optimal signal acquisition, and image reconstruction approaches. We report on a method for hybrid acquisition and reconstruction of three-dimensional pulse-echo ultrasound and optoacoustic images in real time based on passive ultrasound generation with an optical absorber, thus avoiding the hardware complexity of active ultrasound generation. In this way, complete hybrid datasets are generated with a single laser interrogation pulse, resulting in simultaneous rendering of ultrasound and optoacoustic images at an unprecedented rate of 10 volumetric frames per second. Performance is subsequently showcased in phantom experiments and in-vivo measurements from a healthy human volunteer, confirming general clinical applicability of the method.

  9. A Formalized Three-Year Emergency Medicine Residency Ultrasound Education Curriculum

    Directory of Open Access Journals (Sweden)

    Andrew King

    2016-09-01

    Full Text Available Audience and type of curriculum: The Ohio State University Wexner Medical Center Emergency Medicine Residency Program Ultrasound Education Curriculum is a three-year curriculum for PGY-1 to PGY-3 learners. Introduction/Background: Each year of the three-year The Ohio State University Wexner Medical Center Emergency Medicine Ultrasound Curriculum focuses on different aspects of emergency ultrasonography, thereby promoting progressive understanding and utilization of point-of-care ultrasound in medical decision-making during residency training. Ultrasound is an invaluable bedside tool for emergency physicians; this skill must be mastered by resident learners during residency training, and ultrasound competency is a required ACGME milestone.1 The American College of Emergency Physicians (ACEP currently recommends that 11 applications of emergency ultrasound be part of the core skills of an emergency physician.2 This curriculum acknowledges the standards developed by ACEP and the ACGME. Objectives: Learners will 1 know the indications for each the 11 ACEP point-of-care ultrasound (POCUS applications; 2 perform each of the 11 ACEP POCUS applications; 3 integrate POCUS into medical decision-making. Methods: The educational strategies used in this curriculum include: independent, self-directed learning (textbook and literature reading, brief didactic sessions describing indications and technique for each examination, hands-on ultrasound scanning under the direct supervision of ultrasound faculty with real-time feedback, and quality assurance review of ultrasound images. Residents are expected to perform a minimum of 150 ultrasound examinations with associated quality assurance during the course of their residency training. The time requirements, reading material, and ultrasound techniques taught vary depending on the year of training. Length of curriculum: The entirety of the curriculum is three years; however, each year of residency training has

  10. Application of XML in real-time data warehouse

    Science.gov (United States)

    Zhao, Yanhong; Wang, Beizhan; Liu, Lizhao; Ye, Su

    2009-07-01

    At present, XML is one of the most widely-used technologies of data-describing and data-exchanging, and the needs for real-time data make real-time data warehouse a popular area in the research of data warehouse. What effects can we have if we apply XML technology to the research of real-time data warehouse? XML technology solves many technologic problems which are impossible to be addressed in traditional real-time data warehouse, and realize the integration of OLAP (On-line Analytical Processing) and OLTP (Online transaction processing) environment. Then real-time data warehouse can truly be called "real time".

  11. Three-dimensional (3D) real-time conformal brachytherapy - a novel solution for prostate cancer treatment Part I. Rationale and method

    International Nuclear Information System (INIS)

    Fijalkowski, M.; Bialas, B.; Maciejewski, B.; Bystrzycka, J.; Slosarek, K.

    2005-01-01

    Recently, the system for conformal real-time high-dose-rate brachytherapy has been developed and dedicated in general for the treatment of prostate cancer. The aim of this paper is to present the 3D-conformal real-time brachytherapy technique introduced to clinical practice at the Institute of Oncology in Gliwice. Equipment and technique of 3D-conformal real time brachytherapy (3D-CBRT) is presented in detail and compared with conventional high-dose-rate brachytherapy. Step-by-step procedures of treatment planning are described, including own modifications. The 3D-CBRT offers the following advantages: (1) on-line continuous visualization of the prostate and acquisition of the series of NS images during the entire procedure of planning and treatment; (2) high precision of definition and contouring the target volume and the healthy organs at risk (urethra, rectum, bladder) based on 3D transrectal continuous ultrasound images; (3) interactive on-line dose optimization with real-time corrections of the dose-volume histograms (DVHs) till optimal dose distribution is achieved; (4) possibility to overcome internal prostate motion and set-up inaccuracies by stable positioning of the prostate with needles fixed to the template; (5) significant shortening of overall treatment time; (6) cost reduction - the treatment can be provided as an outpatient procedure. The 3D- real time CBRT can be advertised as an ideal conformal boost dose technique integrated or interdigitated with pelvic conformal external beam radiotherapy or as a monotherapy for prostate cancer. (author)

  12. Mixed - mode Operating System for Real - time Performance

    OpenAIRE

    Hasan M. M.; Sultana S.; Foo C.K.

    2017-01-01

    The purpose of the mixed-mode system research is to handle devices with the accuracy of real-time systems and at the same time, having all the benefits and facilities of a matured Graphic User Interface(GUI)operating system which is typicallynon-real-time. This mixed-mode operating system comprising of a real-time portion and a non-real-time portion was studied and implemented to identify the feasibilities and performances in practical applications (in the context of scheduled the real-time e...

  13. Preliminary study of synthetic aperture tissue harmonic imaging on in-vivo data

    Science.gov (United States)

    Rasmussen, Joachim H.; Hemmsen, Martin C.; Madsen, Signe S.; Hansen, Peter M.; Nielsen, Michael B.; Jensen, Jørgen A.

    2013-03-01

    A method for synthetic aperture tissue harmonic imaging is investigated. It combines synthetic aperture sequen- tial beamforming (SASB) with tissue harmonic imaging (THI) to produce an increased and more uniform spatial resolution and improved side lobe reduction compared to conventional B-mode imaging. Synthetic aperture sequential beamforming tissue harmonic imaging (SASB-THI) was implemented on a commercially available BK 2202 Pro Focus UltraView ultrasound system and compared to dynamic receive focused tissue harmonic imag- ing (DRF-THI) in clinical scans. The scan sequence that was implemented on the UltraView system acquires both SASB-THI and DRF-THI simultaneously. Twenty-four simultaneously acquired video sequences of in-vivo abdominal SASB-THI and DRF-THI scans on 3 volunteers of 4 different sections of liver and kidney tissues were created. Videos of the in-vivo scans were presented in double blinded studies to two radiologists for image quality performance scoring. Limitations to the systems transmit stage prevented user defined transmit apodization to be applied. Field II simulations showed that side lobes in SASB could be improved by using Hanning transmit apodization. Results from the image quality study show, that in the current configuration on the UltraView system, where no transmit apodization was applied, SASB-THI and DRF-THI produced equally good images. It is expected that given the use of transmit apodization, SASB-THI could be further improved.

  14. A functional probe with bowtie aperture and bull's eye structure for nanolithograph

    International Nuclear Information System (INIS)

    Wang Shuo; Wang Qiao; Guo Ying-Yan; Pan Shi; Li Xu-Feng

    2012-01-01

    The bowtie aperture surrounded by concentric gratings (the bull's eye structure) integrated on the near-field scanning optical microscopy (NSOM) probe (aluminum coated fiber tip) for nanolithography has been investigated using the finite-difference time domain (FDTD) method. By modifying the parameters of the bowtie aperture and the concentric gratings, a maximal field enhancement factor of 391.69 has been achieved, which is 18 times larger than that obtained from the single bowtie aperture. Additionally, the light spot depends on the gap size of the bowtie aperture and can be confined to sub-wavelength. The superiority of the combination of the bowtie aperture and the bull's eye structure is confirmed, and the mechanism for the electric field enhancement in this derived structure is analyzed

  15. A functional probe with bowtie aperture and bull's eye structure for nanolithograph

    Science.gov (United States)

    Wang, Shuo; Li, Xu-Feng; Wang, Qiao; Guo, Ying-Yan; Pan, Shi

    2012-10-01

    The bowtie aperture surrounded by concentric gratings (the bull's eye structure) integrated on the near-field scanning optical microscopy (NSOM) probe (aluminum coated fiber tip) for nanolithography has been investigated using the finite-difference time domain (FDTD) method. By modifying the parameters of the bowtie aperture and the concentric gratings, a maximal field enhancement factor of 391.69 has been achieved, which is 18 times larger than that obtained from the single bowtie aperture. Additionally, the light spot depends on the gap size of the bowtie aperture and can be confined to sub-wavelength. The superiority of the combination of the bowtie aperture and the bull's eye structure is confirmed, and the mechanism for the electric field enhancement in this derived structure is analyzed.

  16. Mixed-mode Operating System for Real-time Performance

    Directory of Open Access Journals (Sweden)

    M.M. Hasan

    2017-11-01

    Full Text Available The purpose of the mixed-mode system research is to handle devices with the accuracy of real-time systems and at the same time, having all the benefits and facilities of a matured Graphic User Interface (GUI operating system which is typically nonreal-time. This mixed-mode operating system comprising of a real-time portion and a non-real-time portion was studied and implemented to identify the feasibilities and performances in practical applications (in the context of scheduled the real-time events. In this research an i8751 microcontroller-based hardware was used to measure the performance of the system in real-time-only as well as non-real-time-only configurations. The real-time portion is an 486DX-40 IBM PC system running under DOS-based realtime kernel and the non-real-time portion is a Pentium III based system running under Windows NT. It was found that mixed-mode systems performed as good as a typical realtime system and in fact, gave many additional benefits such as simplified/modular programming and load tolerance.

  17. A single FPGA-based portable ultrasound imaging system for point-of-care applications.

    Science.gov (United States)

    Kim, Gi-Duck; Yoon, Changhan; Kye, Sang-Bum; Lee, Youngbae; Kang, Jeeun; Yoo, Yangmo; Song, Tai-kyong

    2012-07-01

    We present a cost-effective portable ultrasound system based on a single field-programmable gate array (FPGA) for point-of-care applications. In the portable ultrasound system developed, all the ultrasound signal and image processing modules, including an effective 32-channel receive beamformer with pseudo-dynamic focusing, are embedded in an FPGA chip. For overall system control, a mobile processor running Linux at 667 MHz is used. The scan-converted ultrasound image data from the FPGA are directly transferred to the system controller via external direct memory access without a video processing unit. The potable ultrasound system developed can provide real-time B-mode imaging with a maximum frame rate of 30, and it has a battery life of approximately 1.5 h. These results indicate that the single FPGA-based portable ultrasound system developed is able to meet the processing requirements in medical ultrasound imaging while providing improved flexibility for adapting to emerging POC applications.

  18. Synthetic aperture lidar as a future tool for earth observation

    Science.gov (United States)

    Turbide, Simon; Marchese, Linda; Terroux, Marc; Bergeron, Alain

    2017-11-01

    Synthetic aperture radar (SAR) is a tool of prime importance for Earth observation; it provides day and night capabilities in various weather conditions. State-of-the-art satellite SAR systems are a few meters in height and width and achieve resolutions of less than 1 m with revisit times on the order of days. Today's Earth observation needs demand higher resolution imaging together with timelier data collection within a compact low power consumption payload. Such needs are seen in Earth Observation applications such as disaster management of earthquakes, landslides, forest fires, floods and others. In these applications the availability of timely reliable information is critical to assess the extent of the disaster and to rapidly and safely deploy rescue teams. Synthetic aperture lidar (SAL) is based on the same basic principles as SAR. Both rely on the acquisition of multiple electromagnetic echoes to emulate a large antenna aperture providing the ability to produce high resolution images. However, in SAL, much shorter optical wavelengths (1.5 μm) are used instead of radar ones (wavelengths around 3 cm). Resolution being related to the wavelength, multiple orders of magnitude of improvement could be theoretically expected. Also, the sources, the detector, and the components are much smaller in optical domain than those for radar. The resulting system can thus be made compact opening the door to deployment onboard small satellites, airborne platforms and unmanned air vehicles. This has a strong impact on the time required to develop, deploy and use a payload. Moreover, in combination with airborne deployment, revisit times can be made much smaller and accessibility to the information can become almost in real-time. Over the last decades, studies from different groups have been done to validate the feasibility of a SAL system for 2D imagery and more recently for 3D static target imagery. In this paper, an overview of the advantages of this emerging technology will

  19. High intensity focused ultrasound treatment of small renal masses: Clinical effectiveness and technological advances

    Science.gov (United States)

    Nabi, G.; Goodman, C.; Melzer, A.

    2010-01-01

    The review summarises the technological advances in the application of high-intensity focused ultrasound for small renal masses presumed to be cancer including the systematic review of its clinical application. Current progress in the area of magnetic resonance image guided ultrasound ablation is also appraised. Specifically, organ tracking and real time monitoring of temperature changes during the treatment are discussed. Finally, areas of future research interest are outlined. PMID:21116349

  20. High intensity focused ultrasound treatment of small renal masses: Clinical effectiveness and technological advances

    OpenAIRE

    Nabi, G.; Goodman, C.; Melzer, A.

    2010-01-01

    The review summarises the technological advances in the application of high-intensity focused ultrasound for small renal masses presumed to be cancer including the systematic review of its clinical application. Current progress in the area of magnetic resonance image guided ultrasound ablation is also appraised. Specifically, organ tracking and real time monitoring of temperature changes during the treatment are discussed. Finally, areas of future research interest are outlined.

  1. Acoustically accessible window determination for ultrasound mediated treatment of glycogen storage disease type Ia patients

    Science.gov (United States)

    Wang, Shutao; Raju, Balasundar I.; Leyvi, Evgeniy; Weinstein, David A.; Seip, Ralf

    2012-10-01

    Glycogen storage disease type Ia (GSDIa) is caused by an inherited single-gene defect resulting in an impaired glycogen to glucose conversion pathway. Targeted ultrasound mediated delivery (USMD) of plasmid DNA (pDNA) to liver in conjunction with microbubbles may provide a potential treatment for GSDIa patients. As the success of USMD treatments is largely dependent on the accessibility of the targeted tissue by the focused ultrasound beam, this study presents a quantitative approach to determine the acoustically accessible liver volume in GSDIa patients. Models of focused ultrasound beam profiles for transducers of varying aperture and focal lengths were applied to abdomen models reconstructed from suitable CT and MRI images. Transducer manipulations (simulating USMD treatment procedures) were implemented via transducer translations and rotations with the intent of targeting and exposing the entire liver to ultrasound. Results indicate that acoustically accessible liver volumes can be as large as 50% of the entire liver volume for GSDIa patients and on average 3 times larger compared to a healthy adult group due to GSDIa patients' increased liver size. Detailed descriptions of the evaluation algorithm, transducer-and abdomen models are presented, together with implications for USMD treatments of GSDIa patients and transducer designs for USMD applications.

  2. Volume navigation with contrast enhanced ultrasound and image fusion for percutaneous interventions: first results.

    Directory of Open Access Journals (Sweden)

    Ernst Michael Jung

    Full Text Available OBJECTIVE: Assessing the feasibility and efficiency of interventions using ultrasound (US volume navigation (V Nav with real time needle tracking and image fusion with contrast enhanced (ce CT, MRI or US. METHODS: First an in vitro study on a liver phantom with CT data image fusion was performed, involving the puncture of a 10 mm lesion in a depth of 5 cm performed by 15 examiners with US guided freehand technique vs. V Nav for the purpose of time optimization. Then 23 patients underwent ultrasound-navigated biopsies or interventions using V Nav image fusion of live ultrasound with ceCT, ceMRI or CEUS, which were acquired before the intervention. A CEUS data set was acquired in all patients. Image fusion was established for CEUS and CT or CEUS and MRI using anatomical landmarks in the area of the targeted lesion. The definition of a virtual biopsy line with navigational axes targeting the lesion was achieved by the usage of sterile trocar with a magnetic sensor embedded in its distal tip employing a dedicated navigation software for real time needle tracking. RESULTS: The in vitro study showed significantly less time needed for the simulated interventions in all examiners when V Nav was used (p<0.05. In the study involving patients, in all 10 biopsies of suspect lesions of the liver a histological confirmation was achieved. We also used V Nav for a breast biopsy (intraductal carcinoma, for a biopsy of the abdominal wall (metastasis of ovarial carcinoma and for radiofrequency ablations (4 ablations. In 8 cases of inflammatory abdominal lesions 9 percutaneous drainages were successfully inserted. CONCLUSION: Percutaneous biopsies and drainages, even of small lesions involving complex access pathways, can be accomplished with a high success rate by using 3D real time image fusion together with real time needle tracking.

  3. Testing of real-time-software

    International Nuclear Information System (INIS)

    Friesland, G.; Ovenhausen, H.

    1975-05-01

    The situation in the area of testing real-time-software is unsatisfactory. During the first phase of the project PROMOTE (prozessorientiertes Modul- und Gesamttestsystem) an analysis of the momentary situation took place, results of which are summarized in the following study about some user interviews and an analysis of relevant literature. 22 users (industry, software-houses, hardware-manufacturers, and institutes) have been interviewed. Discussions were held about reliability of real-time software with special interest to error avoidance, testing, and debugging. Main aims of the analysis of the literature were elaboration of standard terms, comparison of existing test methods and -systems, and the definition of boundaries to related areas. During the further steps of this project some means and techniques will be worked out to systematically test real-time software. (orig.) [de

  4. Validation and Assessment of Multi-GNSS Real-Time Precise Point Positioning in Simulated Kinematic Mode Using IGS Real-Time Service

    Directory of Open Access Journals (Sweden)

    Liang Wang

    2018-02-01

    Full Text Available Precise Point Positioning (PPP is a popular technology for precise applications based on the Global Navigation Satellite System (GNSS. Multi-GNSS combined PPP has become a hot topic in recent years with the development of multiple GNSSs. Meanwhile, with the operation of the real-time service (RTS of the International GNSS Service (IGS agency that provides satellite orbit and clock corrections to broadcast ephemeris, it is possible to obtain the real-time precise products of satellite orbits and clocks and to conduct real-time PPP. In this contribution, the real-time multi-GNSS orbit and clock corrections of the CLK93 product are applied for real-time multi-GNSS PPP processing, and its orbit and clock qualities are investigated, first with a seven-day experiment by comparing them with the final multi-GNSS precise product ‘GBM’ from GFZ. Then, an experiment involving real-time PPP processing for three stations in the Multi-GNSS Experiment (MGEX network with a testing period of two weeks is conducted in order to evaluate the convergence performance of real-time PPP in a simulated kinematic mode. The experimental result shows that real-time PPP can achieve a convergence performance of less than 15 min for an accuracy level of 20 cm. Finally, the real-time data streams from 12 globally distributed IGS/MGEX stations for one month are used to assess and validate the positioning accuracy of real-time multi-GNSS PPP. The results show that the simulated kinematic positioning accuracy achieved by real-time PPP on different stations is about 3.0 to 4.0 cm for the horizontal direction and 5.0 to 7.0 cm for the three-dimensional (3D direction.

  5. Detailed IR aperture measurements

    CERN Document Server

    Bruce, Roderik; Garcia Morales, Hector; Giovannozzi, Massimo; Hermes, Pascal Dominik; Mirarchi, Daniele; Quaranta, Elena; Redaelli, Stefano; Rossi, Carlo; Skowronski, Piotr Krzysztof; Wretborn, Sven Joel; CERN. Geneva. ATS Department

    2016-01-01

    MD 1673 was carried out on October 5 2016, in order to investigate in more detail the available aperture in the LHC high-luminosity insertions at 6.5 TeV and β∗=40 cm. Previous aperture measurements in 2016 during commissioning had shown that the available aperture is at the edge of protection, and that the aperture bottleneck at β∗=40 cm in certain cases is found in the separation plane instead of in the crossing plane. Furthermore, the bottlenecks were consistently found in close to the upstream end of Q3 on the side of the incoming beam, and not in Q2 on the outgoing beam as expected from calculations. Therefore, this MD aimed at measuring IR1 and IR5 separately (at 6.5 TeV and β∗=40 cm, for 185 µrad half crossing angle), to further localize the bottlenecks longitudinally using newly installed BLMs, investigate the difference in aperture between Q2 and Q3, and to see if any aperture can be gained using special orbit bumps.

  6. The FERMI-Elettra distributed real-time framework

    International Nuclear Information System (INIS)

    Pivetta, L.; Gaio, G.; Passuello, R.; Scalamera, G.

    2012-01-01

    FERMI-Elettra is a Free Electron Laser (FEL) based on a 1.5 GeV linac. The pulsed operation of the accelerator and the necessity to characterize and control each electron bunch requires synchronous acquisition of the beam diagnostics together with the ability to drive actuators in real-time at the linac repetition rate. The Adeos/Xenomai real-time extensions have been adopted in order to add real-time capabilities to the Linux based control system computers running the Tango software. A software communication protocol based on Gigabit Ethernet and known as Network Reflective Memory (NRM) has been developed to implement a shared memory across the whole control system, allowing computers to communicate in real-time. The NRM architecture, the real-time performance and the integration in the control system are described. (authors)

  7. Phyocyanin extraction from microalgae Spirulina platensis assisted by ultrasound irradiation: effect of time and temperature

    Directory of Open Access Journals (Sweden)

    Hadiyanto

    2016-08-01

    Full Text Available This research was aimed to extract phycocyanin from microalgae Spirulina platensis using an extraction assisted by ultrasound irradiation. The extraction was conducted by using variable of extraction time, temperature and ultrasound frequency, while ethanol was used as solvent. The results show that the yield of phycocyanin extract was 15.97% at constant frequency of 42 kHz and 11.24% at constant frequency of 28 kHz, while the soxhlet extraction method obtained yield at 11.13%. The ultrasound could reduce the extraction time from 4 hrs (conventional to 20 minutes, while the optimum temperature of extraction was found at 55°C.

  8. Real-time video quality monitoring

    Science.gov (United States)

    Liu, Tao; Narvekar, Niranjan; Wang, Beibei; Ding, Ran; Zou, Dekun; Cash, Glenn; Bhagavathy, Sitaram; Bloom, Jeffrey

    2011-12-01

    The ITU-T Recommendation G.1070 is a standardized opinion model for video telephony applications that uses video bitrate, frame rate, and packet-loss rate to measure the video quality. However, this model was original designed as an offline quality planning tool. It cannot be directly used for quality monitoring since the above three input parameters are not readily available within a network or at the decoder. And there is a great room for the performance improvement of this quality metric. In this article, we present a real-time video quality monitoring solution based on this Recommendation. We first propose a scheme to efficiently estimate the three parameters from video bitstreams, so that it can be used as a real-time video quality monitoring tool. Furthermore, an enhanced algorithm based on the G.1070 model that provides more accurate quality prediction is proposed. Finally, to use this metric in real-world applications, we present an example emerging application of real-time quality measurement to the management of transmitted videos, especially those delivered to mobile devices.

  9. Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre

    Science.gov (United States)

    Leite, Ivo T.; Turtaev, Sergey; Jiang, Xin; Šiler, Martin; Cuschieri, Alfred; Russell, Philip St. J.; Čižmár, Tomáš

    2018-01-01

    Holographic optical tweezers (HOT) hold great promise for many applications in biophotonics, allowing the creation and measurement of minuscule forces on biomolecules, molecular motors and cells. Geometries used in HOT currently rely on bulk optics, and their exploitation in vivo is compromised by the optically turbid nature of tissues. We present an alternative HOT approach in which multiple three-dimensional (3D) traps are introduced through a high-numerical-aperture multimode optical fibre, thus enabling an equally versatile means of manipulation through channels having cross-section comparable to the size of a single cell. Our work demonstrates real-time manipulation of 3D arrangements of micro-objects, as well as manipulation inside otherwise inaccessible cavities. We show that the traps can be formed over fibre lengths exceeding 100 mm and positioned with nanometric resolution. The results provide the basis for holographic manipulation and other high-numerical-aperture techniques, including advanced microscopy, through single-core-fibre endoscopes deep inside living tissues and other complex environments.

  10. Heterogeneous Embedded Real-Time Systems Environment

    Science.gov (United States)

    2003-12-01

    AFRL-IF-RS-TR-2003-290 Final Technical Report December 2003 HETEROGENEOUS EMBEDDED REAL - TIME SYSTEMS ENVIRONMENT Integrated...HETEROGENEOUS EMBEDDED REAL - TIME SYSTEMS ENVIRONMENT 6. AUTHOR(S) Cosmo Castellano and James Graham 5. FUNDING NUMBERS C - F30602-97-C-0259

  11. Mechanical scanning in intravascular ultrasound imaging: Artifacts and driving mechanisms

    NARCIS (Netherlands)

    H. ten Hoff (H.); E.J. Gussenhoven (Elma); C.M. Korbijn (Carin); F. Mastik (Frits); C.T. Lancée (Charles); N. Bom (Klaas)

    1995-01-01

    textabstractObjective: Currently, intravascular ultrasound (US) imaging catheters are developed and produced to provide a complementary diagnostic method in the treatment of blood vessel obstructive disease. Typical catheter dimensions are a diameter of 1–2.5 mm and a length of 1–1.5 m. A real-time

  12. Temporal Proof Methodologies for Real-Time Systems,

    Science.gov (United States)

    1990-09-01

    real time systems that communicate either through shared variables or by message passing and real time issues such as time-outs, process priorities (interrupts) and process scheduling. The authors exhibit two styles for the specification of real - time systems . While the first approach uses bounded versions of temporal operators the second approach allows explicit references to time through a special clock variable. Corresponding to two styles of specification the authors present and compare two fundamentally different proof

  13. Real-time communication protocols: an overview

    NARCIS (Netherlands)

    Hanssen, F.T.Y.; Jansen, P.G.

    2003-01-01

    This paper describes several existing data link layer protocols that provide real-time capabilities on wired networks, focusing on token-ring and Carrier Sense Multiple Access based networks. Existing modifications to provide better real-time capabilities and performance are also described. Finally

  14. Self-Organization in Embedded Real-Time Systems

    CERN Document Server

    Brinkschulte, Uwe; Rettberg, Achim

    2013-01-01

    This book describes the emerging field of self-organizing, multicore, distributed and real-time embedded systems.  Self-organization of both hardware and software can be a key technique to handle the growing complexity of modern computing systems. Distributed systems running hundreds of tasks on dozens of processors, each equipped with multiple cores, requires self-organization principles to ensure efficient and reliable operation. This book addresses various, so-called Self-X features such as self-configuration, self-optimization, self-adaptation, self-healing and self-protection. Presents open components for embedded real-time adaptive and self-organizing applications; Describes innovative techniques in: scheduling, memory management, quality of service, communications supporting organic real-time applications; Covers multi-/many-core embedded systems supporting real-time adaptive systems and power-aware, adaptive hardware and software systems; Includes case studies of open embedded real-time self-organizi...

  15. Real-time systems scheduling fundamentals

    CERN Document Server

    Chetto, Maryline

    2014-01-01

    Real-time systems are used in a wide range of applications, including control, sensing, multimedia, etc.  Scheduling is a central problem for these computing/communication systems since responsible of software execution in a timely manner. This book provides state of knowledge in this domain with special emphasis on the key results obtained within the last decade. This book addresses foundations as well as the latest advances and findings in Real-Time Scheduling, giving all references to important papers. But nevertheless the chapters will be short and not overloaded with confusing details.

  16. Correlation of B-mode ultrasound imaging and arteriography with pathologic findings at carotid endarterectomy.

    Science.gov (United States)

    O'Donnell, T F; Erdoes, L; Mackey, W C; McCullough, J; Shepard, A; Heggerick, P; Isner, J; Callow, A D

    1985-04-01

    Presently most noninvasive methods for assessing extracranial carotid disease have relied on hemodynamic change associated with significant stenosis. Recent evidence has suggested that both ulceration and/or plaque hemorrhage may frequently play an important role in the pathophysiology of carotid disease. To assess the ability of B-mode ultrasound to provide this anatomic information, in a prospective blinded manner we compared B-mode ultrasound and selective four-vessel arteriography to pathologic specimens obtained at the time of 89 carotid endarterectomies. The presence of ulceration, plaque characteristics (particularly hemorrhage), and luminal diameter were described for each modality. While arteriography detected only 16 of 27 ulcerations (sensitivity, 59%), B-mode ultrasound had a greater sensitivity (24/27, 89%). Both modalities had comparable specificities (arteriography, 73%; B-mode ultrasound, 87%). Moreover, B-mode ultrasound was highly sensitive for demonstrating plaque hemorrhage (27/29, 93%), as well as being quite specific (84%). Assessment of luminal reduction by B-mode ultrasound improved with technologist/interpreter experience and was significantly improved by adding real-time spectral analysis. Because of B-mode ultrasound's sensitivity for imaging ulceration and plaque hemorrhage, it offers significant advantages for the noninvasive detection of extracranial carotid disease.

  17. Development of a method for measuring femoral torsion using real-time ultrasound

    International Nuclear Information System (INIS)

    Hafiz, Eliza; Hiller, Claire E; Nightingale, E Jean; Eisenhuth, John P; Refshauge, Kathryn M; Nicholson, Leslie L; Clarke, Jillian L; Grimaldi, Alison

    2014-01-01

    Excessive femoral torsion has been associated with various musculoskeletal and neurological problems. To explore this relationship, it is essential to be able to measure femoral torsion in the clinic accurately. Computerized tomography (CT) and magnetic resonance imaging (MRI) are thought to provide the most accurate measurements but CT involves significant radiation exposure and MRI is expensive. The aim of this study was to design a method for measuring femoral torsion in the clinic, and to determine the reliability of this method. Details of design process, including construction of a jig, the protocol developed and the reliability of the method are presented. The protocol developed used ultrasound to image a ridge on the greater trochanter, and a customized jig placed on the femoral condyles as reference points. An inclinometer attached to the customized jig allowed quantification of the degree of femoral torsion. Measurements taken with this protocol had excellent intra- and inter-rater reliability (ICC 2,1  = 0.98 and 0.97, respectively). This method of measuring femoral torsion also permitted measurement of femoral torsion with a high degree of accuracy. This method is applicable to the research setting and, with minor adjustments, will be applicable to the clinical setting. (paper)

  18. Real-time specifications

    DEFF Research Database (Denmark)

    David, A.; Larsen, K.G.; Legay, A.

    2015-01-01

    A specification theory combines notions of specifications and implementations with a satisfaction relation, a refinement relation, and a set of operators supporting stepwise design. We develop a specification framework for real-time systems using Timed I/O Automata as the specification formalism......, with the semantics expressed in terms of Timed I/O Transition Systems. We provide constructs for refinement, consistency checking, logical and structural composition, and quotient of specifications-all indispensable ingredients of a compositional design methodology. The theory is implemented in the new tool Ecdar...

  19. Real-time, transcranial monitoring of safe blood-brain barrier opening in non-human primates.

    Directory of Open Access Journals (Sweden)

    Fabrice Marquet

    Full Text Available The delivery of drugs to specific neural targets faces two fundamental problems: (1 most drugs do not cross the blood-brain barrier, and (2 those that do, spread to the entire brain. To date, there exists only one non-invasive methodology with the potential to solve these problems: selective blood-brain barrier (BBB opening using micro-bubble enhanced focused ultrasound. We have recently developed a single-element 500-kHz spherical transducer ultrasound setup for targeted BBB opening in the non-human primate that does not require simultaneous MRI monitoring. So far, however, the targeting accuracy that can be achieved with this system has not been quantified systematically. In this paper, the accuracy of this system was tested by targeting caudate nucleus and putamen of the basal ganglia in two macaque monkeys. The average lateral targeting error of the system was ∼2.5 mm while the axial targeting error, i.e., along the ultrasound path, was ∼1.5 mm. We have also developed a real-time treatment monitoring technique based on cavitation spectral analysis. This technique also allowed for delineation of a safe and reliable acoustic parameter window for BBB opening. In summary, the targeting accuracy of the system was deemed to be suitable to reliably open the BBB in specific sub-structures of the basal ganglia even in the absence of MRI-based verification of opening volume and position. This establishes the method and the system as a potentially highly useful tool for brain drug delivery.

  20. On Real-Time Systems Using Local Area Networks.

    Science.gov (United States)

    1987-07-01

    87-35 July, 1987 CS-TR-1892 On Real - Time Systems Using Local Area Networks*I VShem-Tov Levi Department of Computer Science Satish K. Tripathit...1892 On Real - Time Systems Using Local Area Networks* Shem-Tov Levi Department of Computer Science Satish K. Tripathit Department of Computer Science...constraints and the clock systems that feed the time to real - time systems . A model for real-time system based on LAN communication is presented in

  1. A tele-operated mobile ultrasound scanner using a light-weight robot.

    Science.gov (United States)

    Delgorge, Cécile; Courrèges, Fabien; Al Bassit, Lama; Novales, Cyril; Rosenberger, Christophe; Smith-Guerin, Natalie; Brù, Concepció; Gilabert, Rosa; Vannoni, Maurizio; Poisson, Gérard; Vieyres, Pierre

    2005-03-01

    This paper presents a new tele-operated robotic chain for real-time ultrasound image acquisition and medical diagnosis. This system has been developed in the frame of the Mobile Tele-Echography Using an Ultralight Robot European Project. A light-weight six degrees-of-freedom serial robot, with a remote center of motion, has been specially designed for this application. It holds and moves a real probe on a distant patient according to the expert gesture and permits an image acquisition using a standard ultrasound device. The combination of mechanical structure choice for the robot and dedicated control law, particularly nearby the singular configuration allows a good path following and a robotized gesture accuracy. The choice of compression techniques for image transmission enables a compromise between flow and quality. These combined approaches, for robotics and image processing, enable the medical specialist to better control the remote ultrasound probe holder system and to receive stable and good quality ultrasound images to make a diagnosis via any type of communication link from terrestrial to satellite. Clinical tests have been performed since April 2003. They used both satellite or Integrated Services Digital Network lines with a theoretical bandwidth of 384 Kb/s. They showed the tele-echography system helped to identify 66% of lesions and 83% of symptomatic pathologies.

  2. Approaching near real-time biosensing: microfluidic microsphere based biosensor for real-time analyte detection.

    Science.gov (United States)

    Cohen, Noa; Sabhachandani, Pooja; Golberg, Alexander; Konry, Tania

    2015-04-15

    In this study we describe a simple lab-on-a-chip (LOC) biosensor approach utilizing well mixed microfluidic device and a microsphere-based assay capable of performing near real-time diagnostics of clinically relevant analytes such cytokines and antibodies. We were able to overcome the adsorption kinetics reaction rate-limiting mechanism, which is diffusion-controlled in standard immunoassays, by introducing the microsphere-based assay into well-mixed yet simple microfluidic device with turbulent flow profiles in the reaction regions. The integrated microsphere-based LOC device performs dynamic detection of the analyte in minimal amount of biological specimen by continuously sampling micro-liter volumes of sample per minute to detect dynamic changes in target analyte concentration. Furthermore we developed a mathematical model for the well-mixed reaction to describe the near real time detection mechanism observed in the developed LOC method. To demonstrate the specificity and sensitivity of the developed real time monitoring LOC approach, we applied the device for clinically relevant analytes: Tumor Necrosis Factor (TNF)-α cytokine and its clinically used inhibitor, anti-TNF-α antibody. Based on the reported results herein, the developed LOC device provides continuous sensitive and specific near real-time monitoring method for analytes such as cytokines and antibodies, reduces reagent volumes by nearly three orders of magnitude as well as eliminates the washing steps required by standard immunoassays. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. High intensity focused ultrasound technology, its scope and applications in therapy and drug delivery.

    Science.gov (United States)

    Phenix, Christopher Peter; Togtema, Melissa; Pichardo, Samuel; Zehbe, Ingeborg; Curiel, Laura

    2014-01-01

    Ultrasonography is a safe, inexpensive and wide-spread diagnostic tool capable of producing real-time non-invasive images without significant biological effects. However, the propagation of higher energy, intensity and frequency ultrasound waves through living tissues can induce thermal, mechanical and chemical effects useful for a variety of therapeutic applications. With the recent development of clinically approved High Intensity Focused Ultrasound (HIFU) systems, therapeutic ultrasound is now a medical reality. Indeed, HIFU has been used for the thermal ablation of pathological lesions; localized, minimally invasive ultrasound-mediated drug delivery through the transient formation of pores on cell membranes; the temporary disruption of skin and the blood brain barrier; the ultrasound induced break-down of blood clots; and the targeted release of drugs using ultrasound and temperature sensitive drug carriers. This review seeks to engage the pharmaceutical research community by providing an overview on the biological effects of ultrasound as well as highlighting important therapeutic applications, current deficiencies and future directions.

  4. Mixed-mode Operating System for Real-time Performance

    OpenAIRE

    M.M. Hasan; S. Sultana; C.K. Foo

    2017-01-01

    The purpose of the mixed-mode system research is to handle devices with the accuracy of real-time systems and at the same time, having all the benefits and facilities of a matured Graphic User Interface (GUI) operating system which is typically nonreal-time. This mixed-mode operating system comprising of a real-time portion and a non-real-time portion was studied and implemented to identify the feasibilities and performances in practical applications (in the context of scheduled the real-time...

  5. Linux real-time framework for fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Andre [Associacao Euratom-IST, Instituto de Plasmas e Fusao Nuclear, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)], E-mail: andre.neto@cfn.ist.utl.pt; Sartori, Filippo; Piccolo, Fabio [Euratom-UKAEA, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Barbalace, Antonio [Euratom-ENEA Association, Consorzio RFX, 35127 Padova (Italy); Vitelli, Riccardo [Dipartimento di Informatica, Sistemi e Produzione, Universita di Roma, Tor Vergata, Via del Politecnico 1-00133, Roma (Italy); Fernandes, Horacio [Associacao Euratom-IST, Instituto de Plasmas e Fusao Nuclear, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2009-06-15

    A new framework for the development and execution of real-time codes is currently being developed and commissioned at JET. The foundations of the system are Linux, the Real Time Application Interface (RTAI) and a wise exploitation of the new i386 multi-core processors technology. The driving motivation was the need to find a real-time operating system for the i386 platform able to satisfy JET Vertical Stabilisation Enhancement project requirements: 50 {mu}s cycle time. Even if the initial choice was the VxWorks operating system, it was decided to explore an open source alternative, mostly because of the costs involved in the commercial product. The work started with the definition of a precise set of requirements and milestones to achieve: Linux distribution and kernel versions to be used for the real-time operating system; complete characterization of the Linux/RTAI real-time capabilities; exploitation of the multi-core technology; implementation of all the required and missing features; commissioning of the system. Latency and jitter measurements were compared for Linux and RTAI in both user and kernel-space. The best results were attained using the RTAI kernel solution where the time to reschedule a real-time task after an external interrupt is of 2.35 {+-} 0.35 {mu}s. In order to run the real-time codes in the kernel-space, a solution to provide user-space functionalities to the kernel modules had to be designed. This novel work provided the most common functions from the standard C library and transparent interaction with files and sockets to the kernel real-time modules. Kernel C++ support was also tested, further developed and integrated in the framework. The work has produced very convincing results so far: complete isolation of the processors assigned to real-time from the Linux non real-time activities, high level of stability over several days of benchmarking operations and values well below 3 {mu}s for task rescheduling after external interrupt. From

  6. Linux real-time framework for fusion devices

    International Nuclear Information System (INIS)

    Neto, Andre; Sartori, Filippo; Piccolo, Fabio; Barbalace, Antonio; Vitelli, Riccardo; Fernandes, Horacio

    2009-01-01

    A new framework for the development and execution of real-time codes is currently being developed and commissioned at JET. The foundations of the system are Linux, the Real Time Application Interface (RTAI) and a wise exploitation of the new i386 multi-core processors technology. The driving motivation was the need to find a real-time operating system for the i386 platform able to satisfy JET Vertical Stabilisation Enhancement project requirements: 50 μs cycle time. Even if the initial choice was the VxWorks operating system, it was decided to explore an open source alternative, mostly because of the costs involved in the commercial product. The work started with the definition of a precise set of requirements and milestones to achieve: Linux distribution and kernel versions to be used for the real-time operating system; complete characterization of the Linux/RTAI real-time capabilities; exploitation of the multi-core technology; implementation of all the required and missing features; commissioning of the system. Latency and jitter measurements were compared for Linux and RTAI in both user and kernel-space. The best results were attained using the RTAI kernel solution where the time to reschedule a real-time task after an external interrupt is of 2.35 ± 0.35 μs. In order to run the real-time codes in the kernel-space, a solution to provide user-space functionalities to the kernel modules had to be designed. This novel work provided the most common functions from the standard C library and transparent interaction with files and sockets to the kernel real-time modules. Kernel C++ support was also tested, further developed and integrated in the framework. The work has produced very convincing results so far: complete isolation of the processors assigned to real-time from the Linux non real-time activities, high level of stability over several days of benchmarking operations and values well below 3 μs for task rescheduling after external interrupt. From being the

  7. Real-time virtual sonography for navigation during targeted prostate biopsy using magnetic resonance imaging data

    International Nuclear Information System (INIS)

    Miyagawa, Tomoaki; Ishikawa, Satoru; Kimura, Tomokazu; Suetomi, Takahiro; Tsutsumi, Masakazu; Irie, Toshiyuki; Kondoh, Masanao; Mitake, Tsuyoshi

    2010-01-01

    The objective of this study was to evaluate the effectiveness of the medical navigation technique, namely, Real-time Virtual Sonography (RVS), for targeted prostate biopsy. Eighty-five patients with suspected prostate cancer lesions using magnetic resonance imaging (MRI) were included in this study. All selected patients had at least one negative result on the previous transrectal biopsies. The acquired MRI volume data were loaded onto a personal computer installed with RVS software, which registers the volumes between MRI and real-time ultrasound data for real-time display. The registered MRI images were displayed adjacent to the ultrasonographic sagittal image on the same computer monitor. The suspected lesions on T2-weighted images were marked with a red circle. At first suspected lesions were biopsied transperineally under real-time navigation with RVS and then followed by the conventional transrectal and transperineal biopsy under spinal anesthesia. The median age of the patients was 69 years (56-84 years), and the prostate-specific antigen level and prostate volume were 9.9 ng/mL (4.0-34.2) and 37.2 mL (18-141), respectively. Prostate cancer was detected in 52 patients (61%). The biopsy specimens obtained using RVS revealed 45/52 patients (87%) positive for prostate cancer. A total of 192 biopsy cores were obtained using RVS. Sixty-two of these (32%) were positive for prostate cancer, whereas conventional random biopsy revealed cancer only in 75/833 (9%) cores (P<0.01). Targeted prostate biopsy with RVS is very effective to diagnose lesions detected with MRI. This technique only requires additional computer and RVS software and thus is cost-effective. Therefore, RVS-guided prostate biopsy has great potential for better management of prostate cancer patients. (author)

  8. Static Schedulers for Embedded Real-Time Systems

    Science.gov (United States)

    1989-12-01

    Because of the need for having efficient scheduling algorithms in large scale real time systems , software engineers put a lot of effort on developing...provide static schedulers for he Embedded Real Time Systems with single processor using Ada programming language. The independent nonpreemptable...support the Computer Aided Rapid Prototyping for Embedded Real Time Systems so that we determine whether the system, as designed, meets the required

  9. Real-time motional Stark effect in jet

    International Nuclear Information System (INIS)

    Alves, D.; Stephen, A.; Hawkes, N.; Dalley, S.; Goodyear, A.; Felton, R.; Joffrin, E.; Fernandes, H.

    2004-01-01

    The increasing importance of real-time measurements and control systems in JET experiments, regarding e.g. Internal Transport Barrier (ITB) and q-profile control, has motivated the development of a real-time motional Stark effect (MSE) system. The MSE diagnostic allows the measurement of local magnetic fields in different locations along the neutral beam path providing, therefore, local measurement of the current and q-profiles. Recently in JET, an upgrade of the MSE diagnostic has been implemented, incorporating a totally new system which allows the use of this diagnostic as a real-time control tool as well as an extended data source for off-line analysis. This paper will briefly describe the technical features of the real-time diagnostic with main focus on the system architecture, which consists of a VME crate hosting three PowerPC processor boards and a fast ADC, all connected via Front Panel Data Port (FPDP). The DSP algorithm implements a lockin-amplifier required to demodulate the JET MSE signals. Some applications for the system will be covered such as: feeding the real-time equilibrium reconstruction code (EQUINOX) and allowing the full coverage analysis of the Neutral Beam time window. A brief comparison between the real-time MSE analysis and the off-line analysis will also be presented

  10. Three- and four-dimensional ultrasound in fetal echocardiography: an up-to-date overview

    NARCIS (Netherlands)

    Adriaanse, B.M.; Vugt, J.M.G. van; Haak, M.C.

    2016-01-01

    Congenital heart diseases (CHD) are the most commonly overlooked lesions in prenatal screening programs. Real-time two-dimensional ultrasound (2DUS) is the conventionally used tool for fetal echocardiography. Although continuous improvements in the hardware and post-processing software have resulted

  11. Scala for Real-Time Systems?

    DEFF Research Database (Denmark)

    Schoeberl, Martin

    2015-01-01

    Java served well as a general-purpose language. However, during its two decades of constant change it has gotten some weight and legacy in the language syntax and the libraries. Furthermore, Java's success for real-time systems is mediocre. Scala is a modern object-oriented and functional language...... with interesting new features. Although a new language, it executes on a Java virtual machine, reusing that technology. This paper explores Scala as language for future real-time systems....

  12. Towards exascale real-time RFI mitigation

    NARCIS (Netherlands)

    van Nieuwpoort, R.V.

    2016-01-01

    We describe the design and implementation of an extremely scalable real-time RFI mitigation method, based on the offline AOFlagger. All algorithms scale linearly in the number of samples. We describe how we implemented the flagger in the LOFAR real-time pipeline, on both CPUs and GPUs. Additionally,

  13. Windowed time-reversal music technique for super-resolution ultrasound imaging

    Science.gov (United States)

    Huang, Lianjie; Labyed, Yassin

    2018-05-01

    Systems and methods for super-resolution ultrasound imaging using a windowed and generalized TR-MUSIC algorithm that divides the imaging region into overlapping sub-regions and applies the TR-MUSIC algorithm to the windowed backscattered ultrasound signals corresponding to each sub-region. The algorithm is also structured to account for the ultrasound attenuation in the medium and the finite-size effects of ultrasound transducer elements.

  14. Time-Optimal Real-Time Test Case Generation using UPPAAL

    DEFF Research Database (Denmark)

    Hessel, Anders; Larsen, Kim Guldstrand; Nielsen, Brian

    2004-01-01

    Testing is the primary software validation technique used by industry today, but remains ad hoc, error prone, and very expensive. A promising improvement is to automatically generate test cases from formal models of the system under test. We demonstrate how to automatically generate real...... test purposes or generated automatically from various coverage criteria of the model.......-time conformance test cases from timed automata specifications. Specifically we demonstrate how to fficiently generate real-time test cases with optimal execution time i.e test cases that are the fastest possible to execute. Our technique allows time optimal test cases to be generated using manually formulated...

  15. The Effects of Ultrasound on Biological Systems: Site

    Science.gov (United States)

    El-Karmi, Anan M.

    Earlier studies (Dinno et al., Ultrasound Med. Biol. 15:461 -470; 1989) demonstrated that ultrasound at therapeutic intensities causes large increases in total conductance (G_{rm t}) of frog skin. These changes were attributed to non-thermal mechanisms, primarily, cavitation. In this study, the site(s) and mechanism(s) of action of ultrasound for the increase in G_{rm t} were examined. The reversible changes in G_{rm t } and sodium current were monitored in real time as a function of ultrasound exposure. Amiloride, a sodium channel blocker, was used to differentiate between cellular (G_{rm c}) and paracellular (G_{rm s}) pathways in the presence and absence of ultrasound. No significant changes were detected in G_ {rm c}. However, changes in G _{rm s} were significant. These results demonstrate that most of the increase in G _{rm t} due to ultrasound is taking place in the paracellular pathways. Sodium channels were not significantly affected by ultrasound. Thus, the changes in G_{rm c} are not specific. The effects of ultrasound were examined in the presence of radical scavengers and antioxidants. The increase in G_{rm t} due to ultrasound was significantly minimized in the presence of cystamine, cysteamine, and sodium ascorbate. This demonstrates that free radicals and other reactive species generated by cavitation are causing the increase in G_ {rm t}, possibly by acting from inside the cells. Radical scavengers and antioxidants are providing protection from oxidative damage but are not involved in the recovery of G_{ rm t} towards steady state values after sonication. The role of Ca^{2+} in the effects of ultrasound was examined since many of the cellular reactions involved in tissue recovery are dependent on the intracellular availability of free Ca^{2+}. The percentage increase in G_{rm t} in the presence of Ca^{2+} was larger than in its absence (140% vs. 27%). The time constant for G_{rm t} to return to steady state was longer in calcium-free solutions (122

  16. Performance evaluation of near-real-time accounting systems

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Examples are given illustrating the application of near-real-time accounting concepts and principles to actual nuclear facilities. Experience with prototypical systems at the AGNS reprocessing plant and the Los Alamos plutonium facility is described using examples of actual data to illustrate the performance and effectiveness of near-real-time systems. The purpose of the session is to enable participants to: (1) identify the major components of near-real-time accounting systems; (2) describe qualitatively the advantages, limitations, and performance of such systems in real nuclear facilities; (3) identify process and facility design characteristics that affect the performance of near-real-time systems; and (4) describe qualitatively the steps necessary to implement a near-real-time accounting and control system in a nuclear facility

  17. Real-time ultrasound imaging of irreversible electroporation in a porcine liver model adequately characterizes the zone of cellular necrosis.

    Science.gov (United States)

    Schmidt, Carl R; Shires, Peter; Mootoo, Mary

    2012-02-01

      Irreversible electroporation (IRE) is a largely non-thermal method for the ablation of solid tumours. The ability of ultrasound (US) to measure the size of the IRE ablation zone was studied in a porcine liver model.   Three normal pig livers were treated in vivo with a total of 22 ablations using IRE. Ultrasound was used within minutes after ablation and just prior to liver harvest at either 6 h or 24 h after the procedure. The area of cellular necrosis was measured after staining with nitroblue tetrazolium and the percentage of cell death determined by histomorphometry.   Visible changes in the hepatic parenchyma were apparent by US after all 22 ablations using IRE. The mean maximum diameter of the ablation zone measured by US during the procedure was 20.1 ± 2.7 mm. This compared with a mean cellular necrosis zone maximum diameter of 20.3 ± 2.9 mm as measured histologically. The mean percentage of dead cells within the ablation zone was 77% at 6 h and 98% at 24 h after ablation.   Ultrasound is a useful modality for measuring the ablation zone within minutes of applying IRE to normal liver tissue. The area of parenchymal change measured by US correlates with the area of cellular necrosis. © 2011 International Hepato-Pancreato-Biliary Association.

  18. A Numerical Investigation of the Time Reversal Mirror Technique for Trans-skull Brain Cancer Ultrasound Surgery

    Directory of Open Access Journals (Sweden)

    H. Zahedmanesh

    2007-06-01

    Full Text Available Introduction: The medical applications of ultrasound on human brain are highly limited by the phase and amplitude aberrations induced by the heterogeneities of the skull. However, it has been shown that time reversing coupled with amplitude compensation can overcome these aberrations. In this work, a model for 2D simulation of the time reversal mirror technique is proposed to study the possibility of targeting any point within the brain without the need for craniotomy and to calculate the acoustic pressure field and the resulting temperature distribution within the skull and brain during a High Intensity Focused Ultrasound (HIFU transcranial therapy. Materials and Methods: To overcome the sensitivity of the wave pattern to the heterogeneous geometry of the skull, a real MRI derived 2D model is constructed. The model should include the real geometry of brain and skull. The model should also include the couplant medium which has the responsibility of coupling the transducer to the skull for the penetration of ultrasound. The clinical substance used as the couplant is water. The acoustic and thermal parameters are derived from the references. Next, the wave propagation through the skull is computed based on the Helmholtz equation, with a 2D finite element analysis. The acoustic simulation is combined with a 2D thermal diffusion analysis based on Pennes Bioheat equation and the temperature elevation inside the skull and brain is computed. The numerical simulations were performed using the FEMLAB 3.2 software on a PC having 8 GB RAM and a 2.4 MHz dual CPU. Results: It is seen that the ultrasonic waves are exactly focalized at the location where the hydrophone has been previously implanted. There is no penetration into the sinuses and the waves are reflected from their surface because of the high discrepancy between the speed of sound in bone and air.  Under the focal pressure of 2.5 MPa and after 4 seconds of sonication the temperature at the focus

  19. APT: Aperture Photometry Tool

    Science.gov (United States)

    Laher, Russ

    2012-08-01

    Aperture Photometry Tool (APT) is software for astronomers and students interested in manually exploring the photometric qualities of astronomical images. It has a graphical user interface (GUI) which allows the image data associated with aperture photometry calculations for point and extended sources to be visualized and, therefore, more effectively analyzed. Mouse-clicking on a source in the displayed image draws a circular or elliptical aperture and sky annulus around the source and computes the source intensity and its uncertainty, along with several commonly used measures of the local sky background and its variability. The results are displayed and can be optionally saved to an aperture-photometry-table file and plotted on graphs in various ways using functions available in the software. APT is geared toward processing sources in a small number of images and is not suitable for bulk processing a large number of images, unlike other aperture photometry packages (e.g., SExtractor). However, APT does have a convenient source-list tool that enables calculations for a large number of detections in a given image. The source-list tool can be run either in automatic mode to generate an aperture photometry table quickly or in manual mode to permit inspection and adjustment of the calculation for each individual detection. APT displays a variety of useful graphs, including image histogram, and aperture slices, source scatter plot, sky scatter plot, sky histogram, radial profile, curve of growth, and aperture-photometry-table scatter plots and histograms. APT has functions for customizing calculations, including outlier rejection, pixel “picking” and “zapping,” and a selection of source and sky models. The radial-profile-interpolation source model, accessed via the radial-profile-plot panel, allows recovery of source intensity from pixels with missing data and can be especially beneficial in crowded fields.

  20. Mastering Apple Aperture

    CERN Document Server

    Fitzgerald, Thomas

    2013-01-01

    Written in a conversational style, the author will share his knowledge on advanced Aperture topics with detailed discussions of advanced topics, the theory behind some of those topics and lots of hints and tips for ways to improve your workflow.Photographer's who have a basic understanding of Aperture

  1. Distributed Issues for Ada Real-Time Systems

    Science.gov (United States)

    1990-07-23

    NUMBERS Distributed Issues for Ada Real - Time Systems MDA 903-87- C- 0056 S. AUTHOR(S) Thomas E. Griest 7. PERFORMING ORGANiZATION NAME(S) AND ADORESS(ES) 8...considerations. I Adding to the problem of distributed real - time systems is the issue of maintaining a common sense of time among all of the processors...because -omeone is waiting for the final output of a very large set of computations. However in real - time systems , consistent meeting of short-term

  2. Design Specifications for Adaptive Real-Time Systems

    Science.gov (United States)

    1991-12-01

    TICfl \\ E CT E Design Specifications for JAN’\\ 1992 Adaptive Real - Time Systems fl Randall W. Lichota U, Alice H. Muntz - December 1991 \\ \\\\/ 0 / r...268-2056 Technical Report CMU/SEI-91-TR-20 ESD-91-TR-20 December 1991 Design Specifications for Adaptive Real - Time Systems Randall W. Lichota Hughes...Design Specifications for Adaptive Real - Time Systems Abstract: The design specification method described in this report treats a software

  3. Design Recovery Technology for Real-Time Systems.

    Science.gov (United States)

    1995-10-01

    RL-TR-95-208 Final Technical Report October 1995 DESIGN RECOVERY TECHNOLOGY FOR REAL TIME SYSTEMS The MITRE Corporation Lester J. Holtzblatt...92 - Jan 95 4. TTTLE AND SUBTITLE DESIGN RECOVERY TECHNOLOGY FOR REAL - TIME SYSTEMS 6. AUTHOR(S) Lester J. Holtzblatt, Richard Piazza, and Susan...behavior of real - time systems in general, our initial efforts have centered on recovering this information from one system in particular, the Modular

  4. Implementation of Tissue Harmonic Synthetic Aperture Imaging on a Commercial Ultrasound System

    DEFF Research Database (Denmark)

    Rasmussen, Joachim; Hemmsen, Martin Christian; Madsen, Signe Sloth

    2012-01-01

    at 80 mm and an F# of 3 is applied. For DRF imaging, default scanner settings are used, which are a focus at 85 mm and F# of 5.7 in transmit and a dynamic receive aperture with an F# of 0.8. In all cases a 2.14 MHz one-and-ahalf cycle excitation transmit waveform is used. A BK 8820e 192 element convex...... array transducer is used to conduct scans of wire phantoms. The -6 dB and -20 dB lateral resolution is measured for each wire in the phantom. Results show that the -6 dB lateral resolution for SASB-THI is as good as for DRF-THI except at the point of the virtual source. SASB-THI even shows 7% reduction...

  5. [Real time 3D echocardiography

    Science.gov (United States)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  6. Automatic bone detection and soft tissue aware ultrasound-CT registration for computer-aided orthopedic surgery.

    Science.gov (United States)

    Wein, Wolfgang; Karamalis, Athanasios; Baumgartner, Adrian; Navab, Nassir

    2015-06-01

    The transfer of preoperative CT data into the tracking system coordinates within an operating room is of high interest for computer-aided orthopedic surgery. In this work, we introduce a solution for intra-operative ultrasound-CT registration of bones. We have developed methods for fully automatic real-time bone detection in ultrasound images and global automatic registration to CT. The bone detection algorithm uses a novel bone-specific feature descriptor and was thoroughly evaluated on both in-vivo and ex-vivo data. A global optimization strategy aligns the bone surface, followed by a soft tissue aware intensity-based registration to provide higher local registration accuracy. We evaluated the system on femur, tibia and fibula anatomy in a cadaver study with human legs, where magnetically tracked bone markers were implanted to yield ground truth information. An overall median system error of 3.7 mm was achieved on 11 datasets. Global and fully automatic registration of bones aquired with ultrasound to CT is feasible, with bone detection and tracking operating in real time for immediate feedback to the surgeon.

  7. Real-time communication for distributed plasma control systems

    Energy Technology Data Exchange (ETDEWEB)

    Luchetta, A. [Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Corso Stati Uniti 4, Padova 35127 (Italy)], E-mail: adriano.luchetta@igi.cnr.it; Barbalace, A.; Manduchi, G.; Soppelsa, A.; Taliercio, C. [Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Corso Stati Uniti 4, Padova 35127 (Italy)

    2008-04-15

    Real-time control applications will benefit in the near future from the enhanced performance provided by multi-core processor architectures. Nevertheless real-time communication will continue to be critical in distributed plasma control systems where the plant under control typically is distributed over a wide area. At RFX-mod real-time communication is crucial for hard real-time plasma control, due to the distributed architecture of the system, which consists of several VMEbus stations. The system runs under VxWorks and uses Gigabit Ethernet for sub-millisecond real-time communication. To optimize communication in the system, a set of detailed measurements has been carried out on the target platforms (Motorola MVME5100 and MVME5500) using either the VxWorks User Datagram Protocol (UDP) stack or raw communication based on the data link layer. Measurements have been carried out also under Linux, using its UDP stack or, in alternative, RTnet, an open source hard real-time network protocol stack. RTnet runs under Xenomai or RTAI, two popular real-time extensions based on the Linux kernel. The paper reports on the measurements carried out and compares the results, showing that the performance obtained by using open source code is suitable for sub-millisecond real-time communication in plasma control.

  8. Ultrasound of skeletal muscle injury.

    Science.gov (United States)

    Koh, Eamon Su Chun; McNally, Eugene G

    2007-06-01

    The professional and recreational demands of modern society make the treatment of muscle injury an increasingly important clinical problem, particularly in the athletic population. In the elite athlete, significant financial and professional pressures may also exist that emphasize the need for accurate diagnosis and treatment. With new advances in ultrasound technology, images of exquisite detail allow diagnosis of muscle injury that matches the accuracy of magnetic resonance imaging (MRI). Furthermore, the benefits of real-time and Doppler imaging, ability to perform interventional procedures, and relative cost benefits compared with MRI place ultrasound at the forefront for investigation for these injuries in many circumstances. Muscle injury may be divided into acute and chronic pathology, with muscle strain injury the most common clinical problem presenting to sports physicians. This article reviews the spectrum of acute and chronic muscle injuries, with particular attention to clinical features and some common or important muscle strain injuries.

  9. Aperture area measurement facility

    Data.gov (United States)

    Federal Laboratory Consortium — NIST has established an absolute aperture area measurement facility for circular and near-circular apertures use in radiometric instruments. The facility consists of...

  10. Ultrasound elastography for imaging tendons and muscles

    Directory of Open Access Journals (Sweden)

    Elena Drakonaki

    2012-06-01

    Full Text Available Ultrasound elastography is a recently developed ultrasound-based method which allows the qualitative or quantitative evaluation of the mechanical properties of tissue. Strain (compression ultrasound elastography is the commonest technique performed by ap‑ plying mild compression with the hand-held transducer to create real-time strain dis‑ tribution maps, which are color-coded and superimposed on the B-mode images. There is increasing evidence that ultrasound elastography can be used in the investigation of muscle, tendon and soft tissue disease in the clinical practice, as a supplementary tool to conventional ultrasound examination. Based on preliminary data, potential clinical appli‑ cations include early diagnosis, staging, and guiding interventions musculotendinous and neuromuscular disease as well as monitoring disease during rehabilitation. Ultrasound elastography could also be used for research into the biomechanics and pathophysiology of musculotendinous disease. Despite the great interest in the technique, there is still limited evidence in the literature and there are several technical issues which limit the reproducibility of the method, including differences in quantification methods, artefacts, limitations and variation in the application of the technique by different users. This re‑ view presents the published evidence on musculoskeletal applications of strain elastogra‑ phy, discusses the technical issues and future perspectives of this method and emphasizes the need for standardization and further research.

  11. Real-time quasi-3D tomographic reconstruction

    Science.gov (United States)

    Buurlage, Jan-Willem; Kohr, Holger; Palenstijn, Willem Jan; Joost Batenburg, K.

    2018-06-01

    Developments in acquisition technology and a growing need for time-resolved experiments pose great computational challenges in tomography. In addition, access to reconstructions in real time is a highly demanded feature but has so far been out of reach. We show that by exploiting the mathematical properties of filtered backprojection-type methods, having access to real-time reconstructions of arbitrarily oriented slices becomes feasible. Furthermore, we present , software for visualization and on-demand reconstruction of slices. A user of can interactively shift and rotate slices in a GUI, while the software updates the slice in real time. For certain use cases, the possibility to study arbitrarily oriented slices in real time directly from the measured data provides sufficient visual and quantitative insight. Two such applications are discussed in this article.

  12. An algorithm for learning real-time automata

    NARCIS (Netherlands)

    Verwer, S.E.; De Weerdt, M.M.; Witteveen, C.

    2007-01-01

    We describe an algorithm for learning simple timed automata, known as real-time automata. The transitions of real-time automata can have a temporal constraint on the time of occurrence of the current symbol relative to the previous symbol. The learning algorithm is similar to the redblue fringe

  13. Enhanced transmission of transverse electric waves through periodic arrays of structured subwavelength apertures

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Peng, Liang; Mortensen, Asger

    2010-01-01

    Transmission through sub-wavelength apertures in perfect metals is expected to be strongly suppressed. However, by structural engineering of the apertures, we numerically demonstrate that the transmission of transverse electric waves through periodic arrays of subwavelength apertures in a thin...... metallic film can be significantly enhanced. Based on equivalent circuit theory analysis, periodic arrays of square structured subwavelength apertures are obtained with a 1900-fold transmission enhancement factor when the side length a of the apertures is 10 times smaller than the wavelength (a/λ =0...

  14. De toekomst van Real Time Intelligence

    NARCIS (Netherlands)

    Broek, J. van den; Berg, C.H. van den

    2013-01-01

    Al direct vanaf de start van de Nationale Politie is gewerkt aan het opzetten van tien real-time intelligence centra in Nederland. Van daaruit worden 24 uur per dag en zeven dagen in de week agenten op straat actief ondersteund met real-time informatie bij de melding waar ze op af gaan. In de visie

  15. Real-Time Parameter Identification

    Data.gov (United States)

    National Aeronautics and Space Administration — Armstrong researchers have implemented in the control room a technique for estimating in real time the aerodynamic parameters that describe the stability and control...

  16. Generation of real-time mode high-resolution water vapor fields from GPS observations

    Science.gov (United States)

    Yu, Chen; Penna, Nigel T.; Li, Zhenhong

    2017-02-01

    Pointwise GPS measurements of tropospheric zenith total delay can be interpolated to provide high-resolution water vapor maps which may be used for correcting synthetic aperture radar images, for numeral weather prediction, and for correcting Network Real-time Kinematic GPS observations. Several previous studies have addressed the importance of the elevation dependency of water vapor, but it is often a challenge to separate elevation-dependent tropospheric delays from turbulent components. In this paper, we present an iterative tropospheric decomposition interpolation model that decouples the elevation and turbulent tropospheric delay components. For a 150 km × 150 km California study region, we estimate real-time mode zenith total delays at 41 GPS stations over 1 year by using the precise point positioning technique and demonstrate that the decoupled interpolation model generates improved high-resolution tropospheric delay maps compared with previous tropospheric turbulence- and elevation-dependent models. Cross validation of the GPS zenith total delays yields an RMS error of 4.6 mm with the decoupled interpolation model, compared with 8.4 mm with the previous model. On converting the GPS zenith wet delays to precipitable water vapor and interpolating to 1 km grid cells across the region, validations with the Moderate Resolution Imaging Spectroradiometer near-IR water vapor product show 1.7 mm RMS differences by using the decoupled model, compared with 2.0 mm for the previous interpolation model. Such results are obtained without differencing the tropospheric delays or water vapor estimates in time or space, while the errors are similar over flat and mountainous terrains, as well as for both inland and coastal areas.

  17. Real time process algebra with time-dependent conditions

    NARCIS (Netherlands)

    Baeten, J.C.M.; Middelburg, C.A.

    We extend the main real time version of ACP presented in [6] with conditionals in which the condition depends on time. This extension facilitates flexible dependence of proccess behaviour on initialization time. We show that the conditions concerned generalize the conditions introduced earlier

  18. Compiling models into real-time systems

    International Nuclear Information System (INIS)

    Dormoy, J.L.; Cherriaux, F.; Ancelin, J.

    1992-08-01

    This paper presents an architecture for building real-time systems from models, and model-compiling techniques. This has been applied for building a real-time model-based monitoring system for nuclear plants, called KSE, which is currently being used in two plants in France. We describe how we used various artificial intelligence techniques for building it: a model-based approach, a logical model of its operation, a declarative implementation of these models, and original knowledge-compiling techniques for automatically generating the real-time expert system from those models. Some of those techniques have just been borrowed from the literature, but we had to modify or invent other techniques which simply did not exist. We also discuss two important problems, which are often underestimated in the artificial intelligence literature: size, and errors. Our architecture, which could be used in other applications, combines the advantages of the model-based approach with the efficiency requirements of real-time applications, while in general model-based approaches present serious drawbacks on this point

  19. Compiling models into real-time systems

    International Nuclear Information System (INIS)

    Dormoy, J.L.; Cherriaux, F.; Ancelin, J.

    1992-08-01

    This paper presents an architecture for building real-time systems from models, and model-compiling techniques. This has been applied for building a real-time model-base monitoring system for nuclear plants, called KSE, which is currently being used in two plants in France. We describe how we used various artificial intelligence techniques for building it: a model-based approach, a logical model of its operation, a declarative implementation of these models, and original knowledge-compiling techniques for automatically generating the real-time expert system from those models. Some of those techniques have just been borrowed from the literature, but we had to modify or invent other techniques which simply did not exist. We also discuss two important problems, which are often underestimated in the artificial intelligence literature: size, and errors. Our architecture, which could be used in other applications, combines the advantages of the model-based approach with the efficiency requirements of real-time applications, while in general model-based approaches present serious drawbacks on this point

  20. Toward real-time temperature monitoring in fat and aqueous tissue during magnetic resonance-guided high-intensity focused ultrasound using a three-dimensional proton resonance frequency T1 method.

    Science.gov (United States)

    Diakite, Mahamadou; Odéen, Henrik; Todd, Nick; Payne, Allison; Parker, Dennis L

    2014-07-01

    To present a three-dimensional (3D) segmented echoplanar imaging (EPI) pulse sequence implementation that provides simultaneously the proton resonance frequency shift temperature of aqueous tissue and the longitudinal relaxation time (T1 ) of fat during thermal ablation. The hybrid sequence was implemented by combining a 3D segmented flyback EPI sequence, the extended two-point Dixon fat and water separation, and the double flip angle T1 mapping techniques. High-intensity focused ultrasound (HIFU) heating experiments were performed at three different acoustic powers on excised human breast fat embedded in ex vivo porcine muscle. Furthermore, T1 calibrations with temperature in four different excised breast fat samples were performed, yielding an estimate of the average and variation of dT1 /dT across subjects. The water only images were used to mask the complex original data before computing the proton resonance frequency shift. T1 values were calculated from the fat-only images. The relative temperature coefficients were found in five fat tissue samples from different patients and ranged from 1.2% to 2.6%/°C. The results demonstrate the capability of real-time simultaneous temperature mapping in aqueous tissue and T1 mapping in fat during HIFU ablation, providing a potential tool for treatment monitoring in organs with large fat content, such as the breast. Copyright © 2013 Wiley Periodicals, Inc.