WorldWideScience

Sample records for aperture masking interferometry

  1. Synthetic aperture interferometry: error analysis

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Amiya; Coupland, Jeremy

    2010-07-10

    Synthetic aperture interferometry (SAI) is a novel way of testing aspherics and has a potential for in-process measurement of aspherics [Appl. Opt.42, 701 (2003)].APOPAI0003-693510.1364/AO.42.000701 A method to measure steep aspherics using the SAI technique has been previously reported [Appl. Opt.47, 1705 (2008)].APOPAI0003-693510.1364/AO.47.001705 Here we investigate the computation of surface form using the SAI technique in different configurations and discuss the computational errors. A two-pass measurement strategy is proposed to reduce the computational errors, and a detailed investigation is carried out to determine the effect of alignment errors on the measurement process.

  2. Synthetic aperture interferometry: error analysis

    International Nuclear Information System (INIS)

    Biswas, Amiya; Coupland, Jeremy

    2010-01-01

    Synthetic aperture interferometry (SAI) is a novel way of testing aspherics and has a potential for in-process measurement of aspherics [Appl. Opt.42, 701 (2003)].APOPAI0003-693510.1364/AO.42.000701 A method to measure steep aspherics using the SAI technique has been previously reported [Appl. Opt.47, 1705 (2008)].APOPAI0003-693510.1364/AO.47.001705 Here we investigate the computation of surface form using the SAI technique in different configurations and discuss the computational errors. A two-pass measurement strategy is proposed to reduce the computational errors, and a detailed investigation is carried out to determine the effect of alignment errors on the measurement process.

  3. Exploitation of distributed scatterers in synthetic aperture radar interferometry

    NARCIS (Netherlands)

    Samiei Esfahany, S.

    2017-01-01

    During the last decades, time-series interferometric synthetic aperture radar (InSAR) has emerged as a powerful technique to measure various surface deformation phenomena of the earth. Early generations of time-series InSAR methodologies, i.e. Persistent Scatterer Interferometry (PSI), focused on

  4. Random mask optimization for fast neutron coded aperture imaging

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, Kyle [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Univ. of California, Los Angeles, CA (United States); Marleau, Peter [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Brubaker, Erik [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-05-01

    In coded aperture imaging, one of the most important factors determining the quality of reconstructed images is the choice of mask/aperture pattern. In many applications, uniformly redundant arrays (URAs) are widely accepted as the optimal mask pattern. Under ideal conditions, thin and highly opaque masks, URA patterns are mathematically constructed to provide artifact-free reconstruction however, the number of URAs for a chosen number of mask elements is limited and when highly penetrating particles such as fast neutrons and high-energy gamma-rays are being imaged, the optimum is seldom achieved. In this case more robust mask patterns that provide better reconstructed image quality may exist. Through the use of heuristic optimization methods and maximum likelihood expectation maximization (MLEM) image reconstruction, we show that for both point and extended neutron sources a random mask pattern can be optimized to provide better image quality than that of a URA.

  5. MEGARA Optics: Sub-aperture Stitching Interferometry for Large Surfaces

    Science.gov (United States)

    Aguirre-Aguirre, Daniel; Carrasco, Esperanza; Izazaga-Pérez, Rafael; Páez, Gonzalo; Granados-Agustín, Fermín; Percino-Zacarías, Elizabeth; Gil de Paz, Armando; Gallego, Jesús; Iglesias-Páramo, Jorge; Villalobos-Mendoza, Brenda

    2018-04-01

    In this work, we present a detailed analysis of sub-aperture interferogram stitching software to test circular and elliptical clear apertures with diameters and long axes up to 272 and 180 mm, respectively, from the Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía (MEGARA). MEGARA is a new spectrograph for the Gran Telescopio Canarias (GTC). It offers a resolution between 6000 and 20000 via the use of volume phase holographic gratings. It has an integral field unit and a set of robots for multi-object spectroscopy at the telescope focal plane. The output end of the fibers forms the spectrograph pseudo-slit. The fixed geometry of the collimator and camera configuration requires prisms in addition to the flat windows of the volume phase holographic gratings. There are 73 optical elements of large aperture and high precision manufactured in Mexico at the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) and the Centro de Investigaciones en Óptica (CIO). The principle of stitching interferometry is to divide the surface being tested into overlapping small sections, which allows an easier analysis (Kim & Wyant 1981). This capability is ideal for non-contact tests for unique and large optics as required by astronomical instruments. We show that the results obtained with our sub-aperture stitching algorithm were consistent with other methods that analyze the entire aperture. We used this method to analyze the 24 MEGARA prisms that could not be tested otherwise. The instrument has been successfully commissioned at GTC in all the spectral configurations. The fulfillment of the irregularity specifications was one of the necessary conditions to comply with the spectral requirements.

  6. Mask design and fabrication in coded aperture imaging

    International Nuclear Information System (INIS)

    Shutler, Paul M.E.; Springham, Stuart V.; Talebitaher, Alireza

    2013-01-01

    We introduce the new concept of a row-spaced mask, where a number of blank rows are interposed between every pair of adjacent rows of holes of a conventional cyclic difference set based coded mask. At the cost of a small loss in signal-to-noise ratio, this can substantially reduce the number of holes required to image extended sources, at the same time increasing mask strength uniformly across the aperture, as well as making the mask automatically self-supporting. We also show that the Finger and Prince construction can be used to wrap any cyclic difference set onto a two-dimensional mask, regardless of the number of its pixels. We use this construction to validate by means of numerical simulations not only the performance of row-spaced masks, but also the pixel padding technique introduced by in ’t Zand. Finally, we provide a computer program CDSGEN.EXE which, on a fast modern computer and for any Singer set of practical size and open fraction, generates the corresponding pattern of holes in seconds

  7. AN IMAGE-PLANE ALGORITHM FOR JWST'S NON-REDUNDANT APERTURE MASK DATA

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, Alexandra Z. [Johns Hopkins University Department of Physics and Astronomy 3400 North Charles, Baltimore, MD 21218 (United States); Pueyo, Laurent; Sivaramakrishnan, Anand [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Lacour, Sylvestre [LESIA, CNRS/UMR-8109, Observatoire de Paris, UPMC, Université Paris Diderot 5 place Jules Janssen, 92195 Meudon (France)

    2015-01-10

    The high angular resolution technique of non-redundant masking (NRM) or aperture masking interferometry (AMI) has yielded images of faint protoplanetary companions of nearby stars from the ground. AMI on James Webb Space Telescope (JWST)'s Near Infrared Imager and Slitless Spectrograph (NIRISS) has a lower thermal background than ground-based facilities and does not suffer from atmospheric instability. NIRISS AMI images are likely to have 90%-95% Strehl ratio between 2.77 and 4.8 μm. In this paper we quantify factors that limit the raw point source contrast of JWST NRM. We develop an analytic model of the NRM point spread function which includes different optical path delays (pistons) between mask holes and fit the model parameters with image plane data. It enables a straightforward way to exclude bad pixels, is suited to limited fields of view, and can incorporate effects such as intra-pixel sensitivity variations. We simulate various sources of noise to estimate their effect on the standard deviation of closure phase, σ{sub CP} (a proxy for binary point source contrast). If σ{sub CP} < 10{sup –4} radians—a contrast ratio of 10 mag—young accreting gas giant planets (e.g., in the nearby Taurus star-forming region) could be imaged with JWST NIRISS. We show the feasibility of using NIRISS' NRM with the sub-Nyquist sampled F277W, which would enable some exoplanet chemistry characterization. In the presence of small piston errors, the dominant sources of closure phase error (depending on pixel sampling, and filter bandwidth) are flat field errors and unmodeled variations in intra-pixel sensitivity. The in-flight stability of NIRISS will determine how well these errors can be calibrated by observing a point source. Our results help develop efficient observing strategies for space-based NRM.

  8. Synthetic Aperture Interferometry: In-Process Measurement of Aspheric Optics

    Science.gov (United States)

    Tomlinson, Richard; Coupland, Jeremy M.; Petzing, Jon

    2003-02-01

    A scanning probe consisting of a source and receive fiber pair is used to measure the phase difference between wave fronts scattered from the front and rear surfaces of an aspheric optic. This system can be thought of as a classical interferometer with an aperture synthesized from the data collected along the path of the probe. If the form of either surface is known, the other can be deduced. In contrast with classical interferometers, the method does not need test or null plates and has the potential to be integrated into the manufacturing process.

  9. Seamless Synthetic Aperture Radar Archive for Interferometry Analysis

    Science.gov (United States)

    Baker, S.; Baru, C.; Bryson, G.; Buechler, B.; Crosby, C.; Fielding, E.; Meertens, C.; Nicoll, J.; Youn, C.

    2014-11-01

    The NASA Advancing Collaborative Connections for Earth System Science (ACCESS) seamless synthetic aperture radar (SAR) archive (SSARA) project is a collaboration between UNAVCO, the Alaska Satellite Facility (ASF), the Jet Propulsion Laboratory (JPL), and OpenTopography at the San Diego Supercomputer Center (SDSC) to design and implement a seamless distributed access system for SAR data and derived interferometric SAR (InSAR) data products. A unified application programming interface (API) has been created to search the SAR archives at ASF and UNAVCO, 30 and 90-m SRTM DEM data available through OpenTopography, and tropospheric data from the NASA OSCAR project at JPL. The federated query service provides users a single access point to search for SAR granules, InSAR pairs, and corresponding DEM and tropospheric data products from the four archives, as well as the ability to search and download pre-processed InSAR products from ASF and UNAVCO.

  10. Aperture Mask for Unambiguous Parity Determination in Long Wavelength Imagers

    Science.gov (United States)

    Bos, Brent

    2011-01-01

    A document discusses a new parity pupil mask design that allows users to unambiguously determine the image space coordinate system of all the James Webb Space Telescope (JWST) science instruments by using two out-of-focus images. This is an improvement over existing mask designs that could not completely eliminate the coordinate system parity ambiguity at a wavelength of 5.6 microns. To mitigate the problem of how the presence of diffraction artifacts can obscure the pupil mask detail, this innovation has been created with specifically designed edge features so that the image space coordinate system parity can be determined in the presence of diffraction, even at long wavelengths.

  11. Design criteria for small coded aperture masks in gamma-ray astronomy

    International Nuclear Information System (INIS)

    Sembay, S.; Gehrels, N.

    1990-01-01

    Most theoretical work on coded aperture masks in X-ray and low-energy γ-ray astronomy has concentrated on masks with large numbers of elements. For γ-ray spectrometers in the MeV range, the detector plane usually has only a few discrete elements, so that masks with small numbers of elements are called for. For this case it is feasible to analyse by computer all the possible mask patterns of given dimension to find the ones that best satisfy the desired performance criteria. In this paper we develop a particular set of performance criteria for comparing the flux sensitivities, source positioning accuracies and transparencies of different mask patterns. We then present the results of such a computer analysis for masks up to dimension 5x5 unit cell and conclude that there is a great deal of flexibility in one's choice of mask pattern for each dimension. (orig.)

  12. Medium and Small Aperture Speckle Interferometry for Geostationary On-Orbit-Servicing Space Surveillance

    Science.gov (United States)

    Scott, R.

    On-Orbit-Servicing (OOS) in Geostationary Equatorial Orbit (GEO) is likely to become a space mission reality provoking new problems for the optical space surveillance community. OOS’ close-proximity flight of servicer and client satellites with separations less than 1 kilometer in GEO challenge the metric measurement capabilities of medium and small aperture space surveillance instruments. This paper describes an OOS monitoring technique based on Cross-Spectrum speckle interferometry to compensate for atmospheric turbulence and measure the OOS satellites’ differential relative position. Cross-Spectrum speckle interferometry, an astronomical technique developed to measure the astrometric positions of binary stars, was adapted to the geostationary OOS problem and was tested using Sloan i’ observations of co-located geostationary satellites. Medium (1.6m) and small (0.35m) aperture telescopes were used to observe these satellites undergoing optical conjunctions where their apparent line-of-sight separation narrowed within 5 arcseconds. During the initial development of the Cross-Spectrum approach some weaknesses were identified where particle strikes, faint background stars, anomalous fringe orientation angles and high relative angular rates corrupt the relative position measurement process. In this paper, newly adjusted compensation techniques to remedy these issues are described and the data is reprocessed. The Cross-Spectrum’s performance is shown to work well on closely-spaced GEO satellites with separations less than 3 arcseconds and evidence is shown suggesting the technique can measure satellite separations within 1.8 arcseconds.

  13. Hybrid coded aperture and Compton imaging using an active mask

    International Nuclear Information System (INIS)

    Schultz, L.J.; Wallace, M.S.; Galassi, M.C.; Hoover, A.S.; Mocko, M.; Palmer, D.M.; Tornga, S.R.; Kippen, R.M.; Hynes, M.V.; Toolin, M.J.; Harris, B.; McElroy, J.E.; Wakeford, D.; Lanza, R.C.; Horn, B.K.P.; Wehe, D.K.

    2009-01-01

    The trimodal imager (TMI) images gamma-ray sources from a mobile platform using both coded aperture (CA) and Compton imaging (CI) modalities. In this paper we will discuss development and performance of image reconstruction algorithms for the TMI. In order to develop algorithms in parallel with detector hardware we are using a GEANT4 [J. Allison, K. Amako, J. Apostolakis, H. Araujo, P.A. Dubois, M. Asai, G. Barrand, R. Capra, S. Chauvie, R. Chytracek, G. Cirrone, G. Cooperman, G. Cosmo, G. Cuttone, G. Daquino, et al., IEEE Trans. Nucl. Sci. NS-53 (1) (2006) 270] based simulation package to produce realistic data sets for code development. The simulation code incorporates detailed detector modeling, contributions from natural background radiation, and validation of simulation results against measured data. Maximum likelihood algorithms for both imaging methods are discussed, as well as a hybrid imaging algorithm wherein CA and CI information is fused to generate a higher fidelity reconstruction.

  14. Extended averaging phase-shift schemes for Fizeau interferometry on high-numerical-aperture spherical surfaces

    Science.gov (United States)

    Burke, Jan

    2010-08-01

    Phase-shifting Fizeau interferometry on spherical surfaces is impaired by phase-shift errors increasing with the numerical aperture, unless a custom optical set-up or wavelength shifting is used. This poses a problem especially for larger numerical apertures, and requires good error tolerance of the phase-shift method used; but it also constitutes a useful testing facility for phase-shift formulae, because a vast range of phase-shift intervals can be tested in a single measurement. In this paper I show how the "characteristic polynomials" method can be used to generate a phase-shifting method for the actual numerical aperture, and analyse residual cyclical phase errors by comparing a phase map from an interferogram with a few fringes to a phase mpa from a nulled fringe. Unrelated to the phase-shift miscalibration, thirdharmonic error fringes are found. These can be dealt with by changing the nominal phase shift from 90°/step to 60°/step and re-tailoring the evaluation formula for third-harmonic rejection. The residual error has the same frequency as the phase-shift signal itself, and can be removed by averaging measurements. Some interesting features of the characteristic polynomials for the averaged formulae emerge, which also shed some light on the mechanism that generates cyclical phase errors.

  15. Three-dimensional coastal geomorphology deformation modelling using differential synthetic aperture interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Marghany, Maged [Universiti Teknologi Malaysia, Skudai, Johor Bahru (Malaysia). Inst. for Science and Technology Geospatial (INSTeG)

    2012-06-15

    This work presents a new approach for three-dimensional (3D) coastal deformation simulation using differential synthetic aperture interferometry (DInSAR). In doing so, conventional InSAR procedures are implemented to three repeat passes of RADARSAT-1 SAR fine mode data (F1). Further, the DInSAR method is implemented with the phase unwrapping technique. Consequently, DInSAR is used to eliminate the phase decorrelation impact from the interferograms. The study shows the accurate performance of DInSAR with a root mean square error of 0.02 {+-} 0.21 m and 90% confidence intervals. In conclusion, the DInSAR technique produces an accurate 3D coastal geomorphology reconstruction. (orig.)

  16. Stitching interferometry of high numerical aperture cylindrical optics without using a fringe-nulling routine.

    Science.gov (United States)

    Peng, Junzheng; Wang, Qingquan; Peng, Xiang; Yu, Yingjie

    2015-11-01

    Stitching interferometry is a common method for measuring the figure error of high numerical aperture optics. However, subaperture measurement usually requires a fringe-nulling routine, thus making the stitching procedure complex and time-consuming. The challenge when measuring a surface without a fringe-nulling routine is that the rays no longer perpendicularly hit the surface. This violation of the null-test condition can lead to high fringe density and introduce high-order misalignment aberrations into the measurement result. This paper demonstrates that the high-order misalignment aberrations can be characterized by low-order misalignment aberrations; then, an efficient method is proposed to separate the high-order misalignment aberrations from subaperture data. With the proposed method, the fringe-nulling routine is not required. Instead, the subaperture data is measured under a nonzero fringe pattern. Then, all possible misalignment aberrations are removed with the proposed method. Finally, the full aperture map is acquired by connecting all subaperture data together. Experimental results showing the feasibility of the proposed procedure are presented.

  17. Generation of large-scale digital elevation models via synthetic aperture radar interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Fornaro, G.; Lanari, R.; Sansosti, E. [Consiglio Nazionale delle Ricerche, Istituto di Ricerca per l' Elettromagnetismo ed i componenti elettronici, Naples (Italy); Tesauro, M.; Franceschetti, G. [Naples Univ. Federico 2., Naples (Italy). Dipt. di Ingegneria Elettronica e delle Telecomunicazioni

    2001-02-01

    It is investigated the possibility to generate a large-scale Digital Elevation Model by applying the Synthetic Aperture Radar interferometry technique and using tandem data acquired by the ERS-1/ERS-2 sensors. The presented study is mainly focused on the phase unwrapping step that represents the most critical point of the overall processing chain. In particular, it is concentrated on the unwrapping problems related to the use of a large ERS tandem data set that, in order to be unwrapped, must be partitioned. The paper discusses the inclusion of external information (even rough) of the scene topography, the application of a region growing unwrapping technique and the insertion of possible constraints on the phase to be retrieved in order to minimize the global unwrapping errors. The main goal is the generation of a digital elevation model relative to an area of 300 km by 100 km located in the southern part of Italy. Comparisons between the achieved result and a precise digital terrain model, relative to a smaller area, are also included.

  18. Reconfigurable mask for adaptive coded aperture imaging (ACAI) based on an addressable MOEMS microshutter array

    Science.gov (United States)

    McNie, Mark E.; Combes, David J.; Smith, Gilbert W.; Price, Nicola; Ridley, Kevin D.; Brunson, Kevin M.; Lewis, Keith L.; Slinger, Chris W.; Rogers, Stanley

    2007-09-01

    Coded aperture imaging has been used for astronomical applications for several years. Typical implementations use a fixed mask pattern and are designed to operate in the X-Ray or gamma ray bands. More recent applications have emerged in the visible and infra red bands for low cost lens-less imaging systems. System studies have shown that considerable advantages in image resolution may accrue from the use of multiple different images of the same scene - requiring a reconfigurable mask. We report on work to develop a novel, reconfigurable mask based on micro-opto-electro-mechanical systems (MOEMS) technology employing interference effects to modulate incident light in the mid-IR band (3-5μm). This is achieved by tuning a large array of asymmetric Fabry-Perot cavities by applying an electrostatic force to adjust the gap between a moveable upper polysilicon mirror plate supported on suspensions and underlying fixed (electrode) layers on a silicon substrate. A key advantage of the modulator technology developed is that it is transmissive and high speed (e.g. 100kHz) - allowing simpler imaging system configurations. It is also realised using a modified standard polysilicon surface micromachining process (i.e. MUMPS-like) that is widely available and hence should have a low production cost in volume. We have developed designs capable of operating across the entire mid-IR band with peak transmissions approaching 100% and high contrast. By using a pixelated array of small mirrors, a large area device comprising individually addressable elements may be realised that allows reconfiguring of the whole mask at speeds in excess of video frame rates.

  19. Apertures

    CERN Document Server

    Hansen, R C

    2014-01-01

    Microwave Scanning Antennas, Volume I: Apertures is a comprehensive account of phased arrays, multiple beam arrays, time domain and synthetic apertures, and adaptive antennas. Advances in continuous apertures and near field theory are discussed. Low noise and monopulse apertures, optical scanners, and large radomes are also covered, along with radio astronomy instruments and associated theory.Comprised of five chapters, this volume begins with an overview of aperture theory as well as aperture distributions and near field theory. The second and third chapters deal with mechanically steered and

  20. Modeling surface deformation observed with synthetic aperture radar interferometry at Campi Flegrei caldera

    NARCIS (Netherlands)

    Lundgren, P.; Usai, S.; Sansosti, E.; Lanari, R.; Tesauro, M.; Fornaro, G.; Berardino, P.

    2001-01-01

    Satellite radar interferometry of Campi Flegrei caldera, Italy, reveals a pattern of subsidence during the period 1993–1998. Interferograms spanning the first half of the observation period (1993–1995) have a lower amplitude and average rate of subsidence than those spanning either the second half

  1. MeV ion beam lithography of biocompatible halogenated Parylenes using aperture masks

    Science.gov (United States)

    Whitlow, Harry J.; Norarat, Rattanaporn; Roccio, Marta; Jeanneret, Patrick; Guibert, Edouard; Bergamin, Maxime; Fiorucci, Gianni; Homsy, Alexandra; Laux, Edith; Keppner, Herbert; Senn, Pascal

    2015-07-01

    Parylenes are poly(p-xylylene) polymers that are widely used as moisture barriers and in biomedicine because of their good biocompatibility. We have investigated MeV ion beam lithography using 16O+ ions for writing defined patterns in Parylene-C, which is evaluated as a coating material for the Cochlear Implant (CI) electrode array, a neuroprosthesis to treat some forms of deafness. Parylene-C and -F on silicon and glass substrates as well as 50 μm thick PTFE were irradiated to different fluences (1 ×1013 - 1 ×1016 1 MeV 16O+ ions cm-2) through aperture masks under high vacuum and a low pressure (determine the proliferation of murine spiral ganglion cells. The results reveal that an oxygen ion beam can be used to pattern Parylene-C and -F without using a liquid solvent developer in a similar manner to PTFE but with a ∼25× smaller removal rate. Biocompatibility tests showed no difference in cell adhesion between irradiated and unirradiated areas or ion fluence dependence. Coating the Parylene surface with an adhesion-promoting protein mixture had a much greater effect on cell proliferation.

  2. Synthetic Aperture Radar (SAR Interferometry for Assessing Wenchuan Earthquake (2008 Deforestation in the Sichuan Giant Panda Site

    Directory of Open Access Journals (Sweden)

    Fulong Chen

    2014-07-01

    Full Text Available Synthetic aperture radar (SAR has been an unparalleled tool in cloudy and rainy regions as it allows observations throughout the year because of its all-weather, all-day operation capability. In this paper, the influence of Wenchuan Earthquake on the Sichuan Giant Panda habitats was evaluated for the first time using SAR interferometry and combining data from C-band Envisat ASAR and L-band ALOS PALSAR data. Coherence analysis based on the zero-point shifting indicated that the deforestation process was significant, particularly in habitats along the Min River approaching the epicenter after the natural disaster, and as interpreted by the vegetation deterioration from landslides, avalanches and debris flows. Experiments demonstrated that C-band Envisat ASAR data were sensitive to vegetation, resulting in an underestimation of deforestation; in contrast, L-band PALSAR data were capable of evaluating the deforestation process owing to a better penetration and the significant coherence gain on damaged forest areas. The percentage of damaged forest estimated by PALSAR decreased from 20.66% to 17.34% during 2009–2010, implying an approximate 3% recovery rate of forests in the earthquake impacted areas. This study proves that long-wavelength SAR interferometry is promising for rapid assessment of disaster-induced deforestation, particularly in regions where the optical acquisition is constrained.

  3. Coseismic Deformation of Chi-Chi Earthquake as Detected by Differential Synthetic Aperture Radar Interferometry and GPS Data

    Directory of Open Access Journals (Sweden)

    Chia-Sheng Hsieh Tian-Yuan Shih

    2006-01-01

    Full Text Available A rupture in the Chelungpu fault caused an Mw 7.6 earthquake on 21 September 1999 near Chi-Chi in central Taiwan. This earthquake was the most destructive experienced in Taiwan for the past century along this fault. In this study, we examined the earthquake-induced surface deformation pattern using differential synthetic aperture radar interferometry (D-InSAR combined with global positioning system (GPS data regarding the footwall of the Chelungpu fault. Six synthetic aperture radar (SAR scenes, approximately 100 × 100 km each, recorded by the European Remote Sensing Satellite 2 (ERS-2, spanning the rupture area, were selected for study. The data were used to generate a high-resolution, wide-area map of displacements in flat or semi-flat areas. Interferograms show radar line contours indicating line-of-sight (LOS changes corresponding to surface displacements caused by earthquake ruptures. These results were compared to synthetic interferograms generated from GPS data. Displacements shown by GPS data were interpolated onto wide-area maps and transformed to coincide with the radar LOS direction. The resulting coseismic displacement contour map showed a lobed pattern consistent with the precise GPSbased displacement field. Highly accurate vertical displacement was determined using D-InSAR data using the coordinate transform method, while GPS data was effective in showing the horizontal component. Thus, this study confirmed the effectiveness of the D-InSAR method for determining the coseismic deformation caused by the Chi-Chi earthquake at the footwall of the Chelungpu fault.

  4. Very-Long-Baseline Radio Interferometry: The Mark III System for Geodesy, Astrometry, and Aperture Synthesis.

    Science.gov (United States)

    Rogers, A E; Cappallo, R J; Hinteregger, H F; Levine, J I; Nesman, E F; Webber, J C; Whitney, A R; Clark, T A; Ma, C; Ryan, J; Corey, B E; Counselman, C C; Herring, T A; Shapiro, I I; Knight, C A; Shaffer, D B; Vandenberg, N R; Lacasse, R; Mauzy, R; Rayhrer, B; Schupler, B R; Pigg, J C

    1983-01-07

    The Mark III very-long-baseline interferometry (VLBI) system allows recording and later processing of up to 112 megabits per second from each radio telescope of an interferometer array. For astrometric and geodetic measurements, signals from two radio-frequency bands (2.2 to 2.3 and 8.2 to 8.6 gigahertz) are sampled and recorded simultaneously at all antenna sites. From these dual-band recordings the relative group delays of signals arriving at each pair of sites can be corrected for the contributions due to the ionosphere. For many radio sources for which the signals are sufficiently intense, these group delays can be determined with uncertainties under 50 picoseconds. Relative positions of widely separated antennas and celestial coordinates of radio sources have been determined from such measurements with 1 standard deviation uncertainties of about 5 centimeters and 3 milliseconds of arc, respectively. Sample results are given for the lengths of baselines between three antennas in the United States and three in Europe as well as for the arc lengths between the positions of six extragalactic radio sources. There is no significant evidence of change in any of these quantities. For mapping the brightness distribution of such compact radio sources, signals of a given polarization, or of pairs of orthogonal polarizations, can be recorded in up to 28 contiguous bands each nearly 2 megahertz wide. The ability to record large bandwidths and to link together many large radio telescopes allows detection and study of compact sources with flux densities under 1 millijansky.

  5. Synthetic Aperture Radar Interferometry Analysis of Ground Deformation within the Coso Geothermal Site, California

    Science.gov (United States)

    Brawner, Erik

    Earth's surface movement may cause as a potential hazard to infrastructure and people. Associated earthquake hazards pose a potential side effect of geothermal activity. Modern remote sensing techniques known as Interferometric Synthetic Aperture Radar (InSAR) can measure surface change with a high degree of precision to mm scale movements. Previous work has identified a deformation anomaly within the Coso Geothermal site in eastern California. Surface changes have not been analyzed since the 1990s, allowing a decade of geothermal production impact to occur since previously assessed. In this study, InSAR data was acquired and analyzed between the years 2005 and 2010. Acquired by the ENVISAT satellite from both ascending and descending modes. This provides an independent dataset from previous work. Incorporating data generated from a new sensor covering a more modern temporal study period. Analysis of this time period revealed a subsidence anomaly in correlation with the extents of the geothermal production area under current operation. Maximum subsidence rates in the region reached approximately 3.8 cm/yr. A similar rate assessed from previous work throughout the 1990s. The correlation of subsidence patterns suggests a linear source of deformation from measurements spanning multiple decades. Regions of subsidence branch out from the main anomaly to the North-Northeast and to the South where additional significant peaks of subsidence occurring. The extents of the deformation anomaly directly correlate with the dispersal of geothermal production well site locations. Depressurization within the geothermal system provides a leading cause to surface subsidence from excessive extraction of hydrothermal fluids. As a result of minimal reinjection of production fluids.

  6. Rapid Ice Loss at Vatnajokull,Iceland Since Late 1990s Constrained by Synthetic Aperture Radar Interferometry

    Science.gov (United States)

    Zhao, W.; Amelung, F.; Dixon, T. H.; Wdowinski, S.

    2012-12-01

    Synthetic aperture radar interferometry time series is applied over Vatnajokull, Iceland by using 15 years ERS data. Ice loss at Vatnajokull accelerates since late 1990s especially after 21th century. Clear uplift signal due to ice mass loss is detected. The rebound signal is generally linear and increases a little bit after 2000. The relative annual velocity (GPS station 7485 as reference) is about 12 mm/yr at the ice cap edge, which matches the previous studies using GPS. The standard deviation compared to 11 GPS stations in this area is about 2 mm/yr. A relative-value modeling method ignoring the effect of viscous flow is chosen assuming elastic half space earth. The final ice loss estimation - 83 cm/yr - matches the climatology model with ground observations. Small Baseline Subsets is applied for time series analysis. Orbit error coupling with long wavelength phase trend due to horizontal plate motion is removed based on a second polynomial model. For simplicity, we do not consider atmospheric delay in this area because of no complex topography and small-scale turbulence is eliminated well after long-term average when calculating the annual mean velocity. Some unwrapping error still exits because of low coherence. Other uncertainties can be the basic assumption of ice loss pattern and spatial variation of the elastic parameters. It is the first time we apply InSAR time series for ice mass balance study and provide detailed error and uncertainty analysis. The successful of this application proves InSAR as an option for mass balance study and it is also important for validation of different ice loss estimation techniques.

  7. Temporal Decorrelation Effect in Carbon Stocks Estimation Using Polarimetric Interferometry Synthetic Aperture Radar (PolInSAR (Case Study: Southeast Sulawesi Tropical Forest

    Directory of Open Access Journals (Sweden)

    Laode M Golok Jaya

    2017-07-01

    Full Text Available This paper was aimed to analyse the effect of temporal decorrelation in carbon stocks estimation. Estimation of carbon stocks plays important roles particularly to understand the global carbon cycle in the atmosphere regarding with climate change mitigation effort. PolInSAR technique combines the advantages of Polarimetric Synthetic Aperture Radar (PolSAR and Interferometry Synthetic Aperture Radar (InSAR technique, which is evidenced to have significant contribution in radar mapping technology in the last few years. In carbon stocks estimation, PolInSAR provides information about vertical vegetation structure to estimate carbon stocks in the forest layers. Two coherence Synthetic Aperture Radar (SAR images of ALOS PALSAR full-polarimetric with 46 days temporal baseline were used in this research. The study was carried out in Southeast Sulawesi tropical forest. The research method was by comparing three interferometric phase coherence images affected by temporal decorrelation and their impacts on Random Volume over Ground (RvoG model. This research showed that 46 days temporal baseline has a significant impact to estimate tree heights of the forest cover where the accuracy decrease from R2=0.7525 (standard deviation of tree heights is 2.75 meters to R2=0.4435 (standard deviation 4.68 meters and R2=0.3772 (standard deviation 3.15 meters respectively. However, coherence optimisation can provide the best coherence image to produce a good accuracy of carbon stocks.

  8. Astronomical optical interferometry, I: Methods and instrumentation

    Directory of Open Access Journals (Sweden)

    Jankov S.

    2010-01-01

    Full Text Available Previous decade has seen an achievement of large interferometric projects including 8-10m telescopes and 100m class baselines. Modern computer and control technology has enabled the interferometric combination of light from separate telescopes also in the visible and infrared regimes. Imaging with milli-arcsecond (mas resolution and astrometry with micro-arcsecond (µas precision have thus become reality. Here, I review the methods and instrumentation corresponding to the current state in the field of astronomical optical interferometry. First, this review summarizes the development from the pioneering works of Fizeau and Michelson. Next, the fundamental observables are described, followed by the discussion of the basic design principles of modern interferometers. The basic interferometric techniques such as speckle and aperture masking interferometry, aperture synthesis and nulling interferometry are discussed as well. Using the experience of past and existing facilities to illustrate important points, I consider particularly the new generation of large interferometers that has been recently commissioned (most notably, the CHARA, Keck, VLT and LBT Interferometers. Finally, I discuss the longer-term future of optical interferometry, including the possibilities of new large-scale ground-based projects and prospects for space interferometry.

  9. Astronomical Optical Interferometry. I. Methods and Instrumentation

    Directory of Open Access Journals (Sweden)

    Jankov, S.

    2010-12-01

    Full Text Available Previous decade has seen an achievement of large interferometricprojects including 8-10m telescopes and 100m class baselines. Modern computerand control technology has enabled the interferometric combination of lightfrom separate telescopes also in the visible and infrared regimes. Imagingwith milli-arcsecond (mas resolution and astrometry with micro-arcsecond($mu$as precision have thus become reality. Here, I review the methods andinstrumentation corresponding to the current state in the field ofastronomical optical interferometry. First, this review summarizes thedevelopment from the pioneering works of Fizeau and Michelson. Next, thefundamental observables are described, followed by the discussion of the basicdesign principles of modern interferometers. The basic interferometrictechniques such as speckle and aperture masking interferometry, aperture synthesisand nulling interferometry are disscused as well. Using the experience ofpast and existing facilities to illustrate important points, I considerparticularly the new generation of large interferometers that has beenrecently commissioned (most notably, the CHARA, Keck, VLT and LBTInterferometers. Finally, I discuss the longer-term future of opticalinterferometry, including the possibilities of new large-scale ground-based projects and prospects for space interferometry.

  10. Lithology-controlled subsidence and seasonal aquifer response in the Bandung basin, Indonesia, observed by synthetic aperture radar interferometry

    Science.gov (United States)

    Khakim, Mokhamad Yusup Nur; Tsuji, Takeshi; Matsuoka, Toshifumi

    2014-10-01

    Land subsidence in the Bandung basin, West Java, Indonesia, is characterized based on differential interferometric synthetic aperture radar (DInSAR) and interferometric point target analysis (IPTA). We generated interferograms from 21 ascending SAR images over the period 1 January 2007 to 3 March 2011. The estimated subsidence history shows that subsidence continuously increased reaching a cumulative 45 cm during this period, and the linear subsidence rate reached ∼12 cm/yr. This significant subsidence occurred in the industrial and densely populated residential regions of the Bandung basin where large amounts of groundwater are consumed. However, in several areas the subsidence patterns do not correlate with the distribution of groundwater production wells and mapped aquifer degradation. We conclude that groundwater production controls subsidence, but lithology is a counteracting factor for subsidence in the Bandung basin. Moreover, seasonal trends of nonlinear surface deformations are highly related with the variation of rainfall. They indicate that there is elastic expansion (rebound) of aquifer system response to seasonal-natural recharge during rainy season.

  11. Synthetic aperture radar interferometry observations of the M = 6.0 Orta earthquake of 6 June 2000 (NW Turkey): Reactivation of a listric fault

    Science.gov (United States)

    Cakir, Ziyadin; Akoglu, Ahmet Murat

    2008-08-01

    We study the coseismic surface displacement field due to the Orta earthquake of 6 June 2000, a moderate-sized (Mw 6.0) oblique-slip event that took place on a previously unknown fault located about 70 km north of the capital, Ankara (Turkey), and about 35 km south of the North Anatolian Fault. We use European Space Agency ERS synthetic aperture radar (SAR) data to generate high-resolution maps of the surface displacements by a two-pass differential SAR interferometry method. The surface displacement field reaching up to 15 cm line of sight subsidence is captured in several coseismic interferograms from descending orbits and is inverted to determine the source parameters of the earthquake using elastic dislocations on rectangular fault surfaces with a nonlinear minimization procedure based on simulating annealing algorithm. Modeling of the coseismic interferograms indicates that the earthquake was associated with a shallow (<6 km) left-lateral oblique normal displacement that occurred on a north-south striking, eastward dipping, listric fault trending at a high angle to the plate boundary, right-lateral strike-slip North Anatolian fault. Careful analyses of multiple interferograms together with the field observations allow us to infer the rupture geometry in fine detail. Modeling shows that coseismic slip occurs nearly only on the lower portion of the listric fault at a centroid depth of about 5 km but partially reaches to the surface along the surface trace of the Dodurga fault, in agreement with the field observations. We show that in the absence of field observations, additional measurements, or multiple interferograms that capture the surface deformation from different look angles, SAR interferometry alone may not be sufficient to constrain earthquake rupture geometry if there is no clear surface faulting. The results suggest that the Dodurga fault developed most probably as a result of a restraining bend along the North Anatolian fault and its left

  12. Modeling Collapse Chimney and Spall Zone Settlement as a Source of Post-Shot Subsidence Detected by Synthetic Aperture Radar Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Foxwall, W.

    2000-07-24

    Ground surface subsidence resulting from the March 1992 JUNCTION underground nuclear test at the Nevada Test Site (NTS) imaged by satellite synthetic aperture radar interferometry (InSAR) wholly occurred during a period of several months after the shot (Vincent et al., 1999) and after the main cavity collapse event. A significant portion of the subsidence associated with the small (less than 20 kt) GALENA and DIVIDER tests probably also occurred after the shots, although the deformation detected in these cases contains additional contributions from coseismic processes, since the radar scenes used to construct the deformation interferogram bracketed these two later events, The dimensions of the seas of subsidence resulting from all three events are too large to be solely accounted for by processes confined to the damage zone in the vicinity of the shot point or the collapse chimney. Rather, the subsidence closely corresponds to the span dimensions predicted by Patton's (1990) empirical relationship between spall radius and yield. This suggests that gravitational settlement of damaged rock within the spall zone is an important source of post-shot subsidence, in addition to settlement of the rubble within the collapse chimney. These observations illustrate the potential power of InSAR as a tool for Comprehensive Nuclear-Test-Ban Treaty (CTBT) monitoring and on-site inspection in that the relatively broad ({approx} 100 m to 1 km) subsidence signatures resulting from small shots detonated at normal depths of burial (or even significantly overburied) are readily detectable within large geographical areas (100 km x 100 km) under favorable observing conditions. Furthermore, the present results demonstrate the flexibility of the technique in that the two routinely gathered satellite radar images used to construct the interferogram need not necessarily capture the event itself, but can cover a time period up to several months following the shot.

  13. Instruments of RT-2 experiment onboard CORONAS-PHOTON and their test and evaluation III: Coded Aperture Mask and Fresnel Zone Plates in RT-2/CZT payload

    Science.gov (United States)

    Nandi, Anuj; Palit, S.; Debnath, D.; Chakrabarti, Sandip K.; Kotoch, T. B.; Sarkar, R.; Yadav, Vipin K.; Girish, V.; Rao, A. R.; Bhattacharya, D.

    2011-02-01

    Imaging in hard X-rays of any astrophysical source with high angular resolution is a challenging job. Shadow-casting technique is one of the most viable options for imaging in hard X-rays. We have used two different types of shadow-casters, namely, Coded Aperture Mask (CAM) and Fresnel Zone Plate (FZP) pair and two types of pixellated solid-state detectors, namely, CZT and CMOS in RT-2/CZT payload, the hard X-ray imaging instrument onboard the CORONAS-PHOTON satellite. In this paper, we present the results of simulations with different combinations of coders (CAM & FZP) and detectors that are employed in the RT-2/CZT payload. We discuss the possibility of detecting transient Solar flares with good angular resolution for various combinations. Simulated results are compared with laboratory experiments to verify the consistency of the designed configuration.

  14. Synthetic aperture imaging in astronomy and aerospace: introduction.

    Science.gov (United States)

    Creech-Eakman, Michelle J; Carney, P Scott; Buscher, David F; Shao, Michael

    2017-05-01

    Aperture synthesis methods allow the reconstruction of images with the angular resolutions exceeding that of extremely large monolithic apertures by using arrays of smaller apertures together in combination. In this issue we present several papers with techniques relevant to amplitude interferometry, laser radar, and intensity interferometry applications.

  15. High-contrast Nulling Interferometry Techniques Project

    Data.gov (United States)

    National Aeronautics and Space Administration — "We are developing rotating-baseline nulling-interferometry techniques and algorithms on the single-aperture Hale and Keck telescopes at near-infrared wavelengths,...

  16. Novel Polarimetric SAR Interferometry Algorithms, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Polarimetric SAR interferometry (PolInSAR) is a recently developed synthetic aperture radar (SAR) imaging mode that combines the capabilities of radar polarimetry...

  17. Transverse beam profile reconstruction using synchrotron radiation interferometry

    Directory of Open Access Journals (Sweden)

    L. Torino

    2016-12-01

    Full Text Available Transverse beam size measurements in new generation of synchrotron light sources is a challenging task due to their characteristic small beam emittances and low couplings. Since the late 1990s, synchrotron radiation interferometry (SRI has been used in many accelerators to measure the beam size through the analysis of the spatial coherence of the synchrotron light. However, the standard SRI using a double-aperture system provides the beam size projection in a given direction. For this reason, the beam shape is not fully characterized because information about possible transverse beam tilts is not determined. In this report, we describe a technique to fully reconstruct the transverse beam profile based on a rotating double-pinhole mask, together with experimental results obtained at ALBA under different beam couplings. We also discuss how this method allows us to infer ultrasmall beam sizes in case of limitations of the standard SRI.

  18. Sparse aperture masking at the VLT. II. Detection limits for the eight debris disks stars β Pic, AU Mic, 49 Cet, η Tel, Fomalhaut, g Lup, HD 181327 and HR 8799

    Science.gov (United States)

    Gauchet, L.; Lacour, S.; Lagrange, A.-M.; Ehrenreich, D.; Bonnefoy, M.; Girard, J. H.; Boccaletti, A.

    2016-10-01

    Context. The formation of planetary systems is a common, yet complex mechanism. Numerous stars have been identified to possess a debris disk, a proto-planetary disk or a planetary system. The understanding of such formation process requires the study of debris disks. These targets are substantial and particularly suitable for optical and infrared observations. Sparse aperture masking (SAM) is a high angular resolution technique strongly contributing to probing the region from 30 to 200 mas around the stars. This area is usually unreachable with classical imaging, and the technique also remains highly competitive compared to vortex coronagraphy. Aims: We aim to study debris disks with aperture masking to probe the close environment of the stars. Our goal is either to find low-mass companions, or to set detection limits. Methods: We observed eight stars presenting debris disks (β Pictoris, AU Microscopii, 49 Ceti, η Telescopii, Fomalhaut, g Lupi, HD 181327, and HR 8799) with SAM technique on the NaCo instrument at the Very Large Telescope (VLT). Results: No close companions were detected using closure phase information under 0.5'' of separation from the parent stars. We obtained magnitude detection limits that we converted to Jupiter masses detection limits using theoretical isochrones from evolutionary models. Conclusions: We derived upper mass limits on the presence of companions in the area of a few times the telescope's diffraction limits around each target star. Based on observations collected at the European Southern Observatory (ESO) during runs 087.C-0450(A), 087.C-0450(B) 087.C-0750(A), 088.C-0358(A).All magnitude detection limits maps are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A31

  19. Nanolithography using nanoscale ridge apertures

    Science.gov (United States)

    Wang, Liang

    There is a continuous effort to develop techniques for nanoscale feature definition below the diffraction limit. Nanolithography has been a key technique because of its precision and cost effective. A sub-wavelength hole in an opaque screen can be used to provide a small light source with the optical resolution beyond the diffraction limit in the near field. However, a nanometer-sized hole in circular or square shapes is plagued by low transmission and poor contrast. This drawback limits the nanoscale apertures from being employed in nanolithography applications. Ridge apertures in C, H and bowtie shapes, on the other hand, have been numerically and experimentally demonstrated to show the ability of achieving both enhanced light transmission and sub-wavelength optical resolution down to nanometer domain benefiting from the existence of waveguide propagation mode confined in the gap between the ridges. In this report, the detailed field distributions in contact nanolithography are analyzed using finite difference time domain (FDTD) simulations. It was found that the high imaging contrast, which is necessary for successful lithography, is achieved close to the mask exit plane and decays quickly with the increase of the distance from the mask exit plane. Simulations are also performed for comparable regular shaped apertures and different shape bowtie apertures. Design rules are proposed to optimize the bowtie aperture for producing a sub-wavelength, high transmission field with high imaging contrast. High resolution contact nanolithography was carried on a home constructed lithography setup. It has been experimentally demonstrated that nanoscale bowtie and C apertures can be used for contact lithography to achieve nanometer scale resolution due to its intrinsic advantages of achieving enhanced optical transmission and concentrating light far beyond the diffraction limit. It also has shown the advantages of bowtie and C apertures over conventional apertures in both

  20. Speckle interferometry

    Science.gov (United States)

    Sirohi, Rajpal S.

    2002-03-01

    Illumination of a rough surface by a coherent monochromatic wave creates a grainy structure in space termed a speckle pattern. It was considered a special kind of noise and was the bane of holographers. However, its information-carrying property was soon discovered and the phenomenon was used for metrological applications. The realization that a speckle pattern carried information led to a new measurement technique known as speckle interferometry (SI). Although the speckle phenomenon in itself is a consequence of interference among numerous randomly dephased waves, a reference wave is required in SI. Further, it employs an imaging geometry. Initially SI was performed mostly by using silver emulsions as the recording media. The double-exposure specklegram was filtered to extract the desired information. Since SI can be configured so as to be sensitive to the in-plane displacement component, the out-of-plane displacement component or their derivatives, the interferograms corresponding to these were extracted from the specklegram for further analysis. Since the speckle size can be controlled by the F number of the imaging lens, it was soon realized that SI could be performed with electronic detection, thereby increasing its accuracy and speed of measurement. Furthermore, a phase-shifting technique can also be incorporated. This technique came to be known as electronic speckle pattern interferometry (ESPI). It employed the same experimental configurations as SI. ESPI found many industrial applications as it supplements holographic interferometry. We present three examples covering diverse areas. In one application it has been used to measure residual stress in a blank recordable compact disk. In another application, microscopic ESPI has been used to study the influence of relative humidity on paint-coated figurines and also the effect of a conservation agent applied on top of this. The final application is to find the defects in pipes. These diverse applications

  1. Aperture Synthesis Methods and Applications to Optical Astronomy

    CERN Document Server

    Saha, Swapan Kumar

    2011-01-01

    Over the years long baseline optical interferometry has slowly gained in importance and today it is a powerful tool. This timely book sets out to highlight the basic principles of long baseline optical interferometry. The book addresses the fundamentals of stellar interferometry with emphasis on aperture synthesis using an array of telescopes particularly at optical/IR wavelengths. It discusses the fundamentals of electromagnetic fields, wave optics, interference, diffraction, and imaging at length. There is a chapter dedicated to radio and intensity interferometry corroborating with basic mathematical steps. The basic principle of optical interferometry and its requirements, its limitations and the technical challenges it poses, are also covered in depth. Assisted by illustrations and footnotes, the book examines the basic tricks of the trade, current trends and methods, and it points to the potential of true interferometry both from the ground and space.

  2. Speckle Interferometry

    Science.gov (United States)

    Chiang, F. P.; Jin, F.; Wang, Q.; Zhu, N.

    Before the milestone work of Leedertz in 1970 coherent speckles generated from a laser illuminated object are considered noise to be eliminated or minimized. Leedertz shows that coherent speckles are actually information carriers. Since then the speckle technique has found many applications to fields of mechanics, metrology, nondestructive evaluation and material sciences. Speckles need not be coherent. Artificially created socalled white light speckles can also be used as information carriers. In this paper we present two recent developments of speckle technique with applications to micromechanics problems using SIEM (Speckle Interferometry with Electron Microscopy), to nondestructive evaluation of crevice corrosion and composite disbond and vibration of large structures using TADS (Time-Average Digital Specklegraphy).

  3. Implementation of adaptive coded aperture imaging using a digital micro-mirror device for defocus deblurring

    CSIR Research Space (South Africa)

    Chiranjan, Ashill

    2016-12-01

    Full Text Available Digital image processing (DIP) and computational photography are ever growing fields with new focuses on coded aperture imaging and its real world applications. Traditional coded aperture imaging systems consisted of statically coded masks that were...

  4. Quantum Interferometry

    Science.gov (United States)

    Dowling, Jonathan P.

    2000-01-01

    Recently, several researchers, including yours truly, have been able to demonstrate theoretically that quantum photon entanglement has the potential to also revolutionize the entire field of optical interferometry, by providing many orders of magnitude improvement in interferometer sensitivity. The quantum entangled photon interferometer approach is very general and applies to many types of interferometers. In particular, without nonlocal entanglement, a generic classical interferometer has a statistical-sampling shot-noise limited sensitivity that scales like 1/Sqrt[N], where N is the number of particles (photons, electrons, atoms, neutrons) passing through the interferometer per unit time. However, if carefully prepared quantum correlations are engineered between the particles, then the interferometer sensitivity improves by a factor of Sqrt[N] (square root of N) to scale like 1/N, which is the limit imposed by the Heisenberg Uncertainty Principle. For optical (laser) interferometers operating at milliwatts of optical power, this quantum sensitivity boost corresponds to an eight-order-of-magnitude improvement of signal to noise. Applications are to tests of General Relativity such as ground and orbiting optical interferometers for gravity wave detection, Laser Interferometer Gravity Observatory (LIGO) and the European Laser Interferometer Space Antenna (LISA), respectively.

  5. Aperture area measurement facility

    Data.gov (United States)

    Federal Laboratory Consortium — NIST has established an absolute aperture area measurement facility for circular and near-circular apertures use in radiometric instruments. The facility consists of...

  6. Life masks and death masks.

    Science.gov (United States)

    Meschutt, D; Taff, M L; Boglioli, L R

    1992-12-01

    The death of a relative or anyone in a small, tightly knit community with closely shared cultural and religious values has great social impact. As part of the grieving process, people wish to preserve the memory of a loved one or a community leader. Life masks and death masks have been used as art forms to mark life passages, offering permanent reminders of family and continuity with the past. This article discusses the history and technique of life and death masks and their role in 19th-century American culture.

  7. Shadow mask evaporation through monolayer modified nanostencils

    NARCIS (Netherlands)

    Kolbel, M.; Tjerkstra, R.W.; Brugger, J.P.; van Rijn, C.J.M.; Nijdam, W.; Huskens, Jurriaan; Reinhoudt, David

    2002-01-01

    Gradual clogging of the apertures of nanostencils used as miniature shadow masks in metal evaporations can be reduced by coating the stencil with self-assembled monolayers (SAM). This is quantified by the dimensions (height and volume) of gold features obtained by nanostencil evaporation as measured

  8. Principles of Stellar Interferometry

    CERN Document Server

    Glindemann, Andreas

    2011-01-01

    Over the last decade, stellar interferometry has developed from a specialist tool to a mainstream observing technique, attracting scientists whose research benefits from milliarcsecond angular resolution. Stellar interferometry has become part of the astronomer’s toolbox, complementing single-telescope observations by providing unique capabilities that will advance astronomical research. This carefully written book is intended to provide a solid understanding of the principles of stellar interferometry to students starting an astronomical research project in this field or to develop instruments and to astronomers using interferometry but who are not interferometrists per se. Illustrated by excellent drawings and calculated graphs the imaging process in stellar interferometers is explained starting from first principles on light propagation and diffraction wave propagation through turbulence is described in detail using Kolmogorov statistics the impact of turbulence on the imaging process is discussed both f...

  9. Taking a SHARP look at mask 3D effects

    Science.gov (United States)

    Benk, Markus P.; Chao, Weilun; Miyakawa, Ryan; Goldberg, Kenneth; Naulleau, Patrick

    2017-10-01

    Mask 3D effects are an area of active research in EUV mask technology. Mask-side numerical aperture, illumination, feature size and absorber thickness are key factors modulating mask 3D effects and affecting printability and process window. Variable mask-side NA and flexible illumination make the SHARP actinic EUV microscope a powerful instrument for the study of mask 3D effects. We show an application example, comparing mask 3D effects for a standard Tantalum Nitride absorber and a thinner, 40-nm Nickel absorber. Data is presented for 0.33 4xNA and anamorphic 0.55 4x/8xNA. The influence of different illumination settings on mask 3D effects is discussed.

  10. Clay Mask Workshop

    Science.gov (United States)

    Gamble, David L.

    2012-01-01

    Masks can represent so many things, such as emotions (happy, sad, fearful) and power. The familiar "comedy and tragedy" masks, derived from ancient Greek theater, are just one example from mask history. Death masks from the ancient Egyptians influenced the ancient Romans into creating similar masks for their departed. Masks can represent many…

  11. High-performance 3D waveguide architecture for astronomical pupil-remapping interferometry.

    Science.gov (United States)

    Norris, Barnaby; Cvetojevic, Nick; Gross, Simon; Jovanovic, Nemanja; Stewart, Paul N; Charles, Ned; Lawrence, Jon S; Withford, Michael J; Tuthill, Peter

    2014-07-28

    The detection and characterization of extra-solar planets is a major theme driving modern astronomy. Direct imaging of exoplanets allows access to a parameter space complementary to other detection methods, and potentially the characterization of exoplanetary atmospheres and surfaces. However achieving the required levels of performance with direct imaging from ground-based telescopes (subject to Earth's turbulent atmosphere) has been extremely challenging. Here we demonstrate a new generation of photonic pupil-remapping devices which build upon the Dragonfly instrument, a high contrast waveguide-based interferometer. This new generation overcomes problems caused by interference from unguided light and low throughput. Closure phase measurement scatter of only ∼ 0.2° has been achieved, with waveguide throughputs of > 70%. This translates to a maximum contrast-ratio sensitivity between star and planet at 1λ/D (1σ detection) of 5.3 × 10(-4) (with a conventional adaptive-optics system) or 1.8 × 10(-4) (with 'extreme-AO'), improving even further when random error is minimized by averaging over multiple exposures. This is an order of magnitude beyond conventional pupil-segmenting interferometry techniques (such as aperture masking), allowing a previously inaccessible part of the star to planet contrast-separation parameter space to be explored.

  12. Smoke Mask

    Science.gov (United States)

    2003-01-01

    Smoke inhalation injury from the noxious products of fire combustion accounts for as much as 80 percent of fire-related deaths in the United States. Many of these deaths are preventable. Smoke Mask, Inc. (SMI), of Myrtle Beach, South Carolina, is working to decrease these casualties with its line of life safety devices. The SMI personal escape hood and the Guardian Filtration System provide respiratory protection that enables people to escape from hazardous and unsafe conditions. The breathing filter technology utilized in the products is specifically designed to supply breathable air for 20 minutes. In emergencies, 20 minutes can mean the difference between life and death.

  13. venice: Mask utility

    Science.gov (United States)

    Coupon, Jean

    2018-02-01

    venice reads a mask file (DS9 or fits type) and a catalogue of objects (ascii or fits type) to create a pixelized mask, find objects inside/outside a mask, or generate a random catalogue of objects inside/outside a mask. The program reads the mask file and checks if a point, giving its coordinates, is inside or outside the mask, i.e. inside or outside at least one polygon of the mask.

  14. LISA Long-Arm Interferometry

    Science.gov (United States)

    Thorpe, James I.

    2009-01-01

    An overview of LISA Long-Arm Interferometry is presented. The contents include: 1) LISA Interferometry; 2) Constellation Design; 3) Telescope Design; 4) Constellation Acquisition; 5) Mechanisms; 6) Optical Bench Design; 7) Phase Measurement Subsystem; 8) Phasemeter Demonstration; 9) Time Delay Interferometry; 10) TDI Limitations; 11) Active Frequency Stabilization; 12) Spacecraft Level Stabilization; 13) Arm-Locking; and 14) Embarassment of Riches.

  15. Theory of supervirtual refraction interferometry

    KAUST Repository

    Bharadwaj, Pawan

    2012-01-01

    Inverting for the subsurface velocity distribution by refraction traveltime tomography is a well-accepted imaging method by both the exploration and earthquake seismology communities. A significant drawback, however, is that the recorded traces become noisier with increasing offset from the source position, and so accurate picking of traveltimes in far-offset traces is often prevented. To enhance the signal-to-noise ratio (SNR) of the far-offset traces, we present the theory of supervirtual refraction interferometry where the SNR of far-offset head-wave arrivals can be theoretically increased by a factor proportional to; here, N is the number of receiver or source positions associated with the recording and generation of the head-wave arrival. There are two steps to this methodology: correlation and summation of the data to generate traces with virtual head-wave arrivals, followed by the convolution of the data with the virtual traces to create traces with supervirtual head-wave arrivals. This method is valid for any medium that generates head-wave arrivals recorded by the geophones. Results with both synthetic traces and field data demonstrate the feasibility of this method. There are at least four significant benefits of supervirtual interferometry: (1) an enhanced SNR of far-offset traces so the first-arrival traveltimes of the noisy far-offset traces can be more reliably picked to extend the useful aperture of the data, (2) the SNR of head waves in a trace that arrive later than the first arrival can be enhanced for accurate traveltime picking and subsequent inversion by later-arrival traveltime tomography, (3) common receiver-pair gathers can be analysed to detect the presence of diving waves in the first arrivals, which can be used to assess the nature of the refracting boundary, and (4) the source statics term is eliminated in the correlation operations so that the timing of the virtual traces is independent of the source excitation time. This suggests the

  16. Quantum synthetic aperture radar

    Science.gov (United States)

    Lanzagorta, Marco; Jitrik, Oliverio; Uhlmann, Jeffrey; Venegas-Andraca, Salvador E.

    2017-05-01

    Synthetic aperture radar (SAR) uses sensor motion to generate finer spatial resolution of a given target area. In this paper we explore the theoretical potential of quantum synthetic aperture quantum radar (QSAR). We provide theoretical analysis and simulation results which suggest that QSAR can provide improved detection performance over classical SAR in the high-noise low-brightness regime.

  17. Mastering Apple Aperture

    CERN Document Server

    Fitzgerald, Thomas

    2013-01-01

    Written in a conversational style, the author will share his knowledge on advanced Aperture topics with detailed discussions of advanced topics, the theory behind some of those topics and lots of hints and tips for ways to improve your workflow.Photographer's who have a basic understanding of Aperture

  18. Radar Interferometry Detection of Hinge Line Migration on Rutford Ice Stream and Carlson Inlet, Antarctica

    Science.gov (United States)

    Rignot, Eric

    1997-01-01

    Satellite synthetic-aperture radar (SAR) Interferometry is employed to map the hinge line, or limit of tidal flexing, of Rutford Ice Stream and Carlson Inlet, Antarctica, and detect its migration between 1992 and 1996. The hinge line is mapped using a model fit from an elastic beam theory.

  19. Two-Sided Coded Aperture Imaging Without a Detector Plane

    International Nuclear Information System (INIS)

    Ziock, Klaus-Peter; Cunningham, Mark F.; Fabris, Lorenzo

    2008-01-01

    We introduce a novel design for a two-sided, coded-aperture, gamma-ray imager suitable for use in stand off detection of orphan radioactive sources. The design is an extension of an active-mask imager that would have three active planes of detector material, a central plane acting as the detector for two (active) coded-aperture mask planes, one on either side of the detector plane. In the new design the central plane is removed and the mask on the left (right) serves as the detector plane for the mask on the right (left). This design reduces the size, mass, complexity, and cost of the overall instrument. In addition, if one has fully position-sensitive detectors, then one can use the two planes as a classic Compton camera. This enhances the instrument's sensitivity at higher energies where the coded-aperture efficiency is decreased by mask penetration. A plausible design for the system is found and explored with Monte Carlo simulations

  20. Simultaneous Immersion Mirau Interferometry

    Science.gov (United States)

    Lyulko, Oleksandra

    The present work describes a novel imaging technique for label-free no-UV vibration-insensitive imaging of live cells in an epi-illumination geometry. This technique can be implemented in a variety of imaging applications. For example, it can be used for cell targeting as a part of a platform for targeted cell irradiations - single-cell microbeam. The goal of microbeam facilities is to provide biological researchers with tools to study the effects of ionizing radiation on live cells. A common way of cell labeling - fluorescent staining - may alter cellular metabolism and UV illumination presents potential damage for the genetic material. The new imaging technique will allow the researchers to separate radiation-induced effects from the effects caused by confounding factors like fluorescent staining or UV light. Geometry of irradiation endstations at some microbeam facilities precludes the use of transmitted light, e.g. in the Columbia University's Radiological Research Accelerator Facility microbeam endstation, where the ion beam exit window is located just below the sample. Imaging techniques used at such endstations must use epi-illumination. Mirau Interferometry is an epi-illumination, non-stain imaging modality suitable for implementation at a microbeam endstation. To facilitate interferometry and to maintain cell viability, it is desirable that cells stay in cell growth medium during the course of an experiment. To accommodate the use of medium, Immersion Mirau Interferometry has been developed. A custom attachment for a microscope objective has been designed and built for interferometric imaging with the possibility of immersion of the apparatus into cell medium. The implemented data collection algorithm is based on the principles of Phase-Shifting Interferometry. The largest limitation of Phase-Shifting Interferometry is its sensitivity to the vertical position of the sample. In environments where vibration isolation is difficult, this makes image

  1. Astronomical optical interferometry, II: Astrophysical results

    Directory of Open Access Journals (Sweden)

    Jankov S.

    2011-01-01

    Full Text Available Optical interferometry is entering a new age with several ground- based long-baseline observatories now making observations of unprecedented spatial resolution. Based on a great leap forward in the quality and quantity of interferometric data, the astrophysical applications are not limited anymore to classical subjects, such as determination of fundamental properties of stars; namely, their effective temperatures, radii, luminosities and masses, but the present rapid development in this field allowed to move to a situation where optical interferometry is a general tool in studies of many astrophysical phenomena. Particularly, the advent of long-baseline interferometers making use of very large pupils has opened the way to faint objects science and first results on extragalactic objects have made it a reality. The first decade of XXI century is also remarkable for aperture synthesis in the visual and near-infrared wavelength regimes, which provided image reconstructions from stellar surfaces to Active Galactic Nuclei. Here I review the numerous astrophysical results obtained up to date, except for binary and multiple stars milliarcsecond astrometry, which should be a subject of an independent detailed review, taking into account its importance and expected results at microarcsecond precision level. To the results obtained with currently available interferometers, I associate the adopted instrumental settings in order to provide a guide for potential users concerning the appropriate instruments which can be used to obtain the desired astrophysical information.

  2. Shadow-mask evaporation through monolayer-modified nanostencils

    OpenAIRE

    Kolbel, M; Tjerkstra, RW; Brugger, J; van Rijn, CJM; Nijdam, W; Huskens, J; Reinhoudt, DN

    2002-01-01

    Gradual clogging of the apertures of nanostencils used as miniature shadow masks in metal evaporations can be reduced by coating the stencil with self-assembled monolayers (SAM). This is quantified by the dimensions (height and volume) of gold features obtained by nanostencil evaporation as measured by scanning electron microscopy (SEM) and atomic force microscopy (AFM). An increase in material deposition through the apertures by more than 100% can be achieved with SAM-coated stencils, which ...

  3. Iterative supervirtual refraction interferometry

    KAUST Repository

    Al-Hagan, Ola

    2014-05-02

    In refraction tomography, the low signal-to-noise ratio (S/N) can be a major obstacle in picking the first-break arrivals at the far-offset receivers. To increase the S/N, we evaluated iterative supervirtual refraction interferometry (ISVI), which is an extension of the supervirtual refraction interferometry method. In this method, supervirtual traces are computed and then iteratively reused to generate supervirtual traces with a higher S/N. Our empirical results with both synthetic and field data revealed that ISVI can significantly boost up the S/N of far-offset traces. The drawback is that using refraction events from more than one refractor can introduce unacceptable artifacts into the final traveltime versus offset curve. This problem can be avoided by careful windowing of refraction events.

  4. Parsimonious Surface Wave Interferometry

    KAUST Repository

    Li, Jing

    2017-10-24

    To decrease the recording time of a 2D seismic survey from a few days to one hour or less, we present a parsimonious surface-wave interferometry method. Interferometry allows for the creation of a large number of virtual shot gathers from just two reciprocal shot gathers by crosscoherence of trace pairs, where the virtual surface waves can be inverted for the S-wave velocity model by wave-equation dispersion inversion (WD). Synthetic and field data tests suggest that parsimonious wave-equation dispersion inversion (PWD) gives S-velocity tomograms that are comparable to those obtained from a full survey with a shot at each receiver. The limitation of PWD is that the virtual data lose some information so that the resolution of the S-velocity tomogram can be modestly lower than that of the S-velocity tomogram inverted from a conventional survey.

  5. Scope of neutron interferometry

    International Nuclear Information System (INIS)

    Rauch, H.

    1978-01-01

    This paper deals with the interferometry of well separated coherent beams, where the phase of the beams can be manipulated individually. The basic equation of the dynamical neutron diffraction theory are recalled. The various contributions to the interaction of as low neutron with its surroundings are discussed: the various terms denote the nuclear, magnetic, electromagnetic, intrinsic, gravitational, and weak interaction respectively. Applications to nuclear physics, fundamental physics and solid state physics are successively envisaged

  6. Coal fire interferometry

    International Nuclear Information System (INIS)

    Van Genderen, J.L.; Prakash, A.; Gens, R.; Van Veen, B.; Liding, Chen; Tao, Tang Xiao; Feng, Guan

    2000-07-01

    This BCRS project demonstrates the use of SAR interferometry for measuring and monitoring land subsidence caused by underground coal fires and underground mining in a remote area of north west China. China is the largest producer and consumer of coal in the world. Throughout the N.W., N. and N.E. of China, the coal-seams are very susceptible to spontaneous combustion, causing underground coal fires. As the thick coal seams are burned out, the overburden collapses, causing land subsidence, and producing new cracks and fissures, which allow more air to penetrate and continue the fire to spread. SAR interferometry, especially differential interferometry has been shown to be able to measure small differences in surface height caused by such land subsidence. This report describes the problems, the test area, the procedures and techniques used and the results obtained. It concludes with a description of some of the problems encountered during the project plus provides some general conclusions and recommendations. 127 refs

  7. Detailed IR aperture measurements

    CERN Document Server

    Bruce, Roderik; Garcia Morales, Hector; Giovannozzi, Massimo; Hermes, Pascal Dominik; Mirarchi, Daniele; Quaranta, Elena; Redaelli, Stefano; Rossi, Carlo; Skowronski, Piotr Krzysztof; Wretborn, Sven Joel; CERN. Geneva. ATS Department

    2016-01-01

    MD 1673 was carried out on October 5 2016, in order to investigate in more detail the available aperture in the LHC high-luminosity insertions at 6.5 TeV and β∗=40 cm. Previous aperture measurements in 2016 during commissioning had shown that the available aperture is at the edge of protection, and that the aperture bottleneck at β∗=40 cm in certain cases is found in the separation plane instead of in the crossing plane. Furthermore, the bottlenecks were consistently found in close to the upstream end of Q3 on the side of the incoming beam, and not in Q2 on the outgoing beam as expected from calculations. Therefore, this MD aimed at measuring IR1 and IR5 separately (at 6.5 TeV and β∗=40 cm, for 185 µrad half crossing angle), to further localize the bottlenecks longitudinally using newly installed BLMs, investigate the difference in aperture between Q2 and Q3, and to see if any aperture can be gained using special orbit bumps.

  8. Visual masking & schizophrenia

    Directory of Open Access Journals (Sweden)

    Michael H. Herzog

    2015-06-01

    Full Text Available Visual masking is a frequently used tool in schizophrenia research. Visual masking has a very high sensitivity and specificity and masking paradigms have been proven to be endophenotypes. Whereas masking is a powerful technique to study schizophrenia, the underlying mechanisms are discussed controversially. For example, for more than 25 years, masking deficits of schizophrenia patients were mainly attributed to a deficient magno-cellular system (M-system. Here, we show that there is very little evidence that masking deficits are magno-cellular deficits. We will discuss the magno-cellular and other approaches in detail and highlight their pros and cons.

  9. Antihydrogen Experiment Gravity Interferometry Spectroscopy

    CERN Multimedia

    Trezzi, D; Dassa, L; Rienacker, B; Khalidova, O; Ferrari, G; Krasnicky, D; Perini, D; Cerchiari, G; Belov, A; Boscolo, I; Sacerdoti, M G; Ferragut, R O; Nedelec, P; Hinterberger, A; Al-qaradawi, I; Malbrunot, C L S; Brusa, R S; Prelz, F; Manuzio, G; Riccardi, C; Fontana, A; Genova, P; Haider, S; Haug, F; Turbabin, A; Castelli, F; Testera, G; Lagomarsino, V E; Doser, M; Penasa, L; Gninenko, S; Cataneo, F; Zenoni, A; Cabaret, L; Comparat, D P; Zmeskal, J; Scampoli, P; Nesteruk, K P; Dudarev, A; Kellerbauer, A G; Mariazzi, S; Carraro, C; Zavatarelli, S M

    The AEGIS experiment (Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy) has the aim of carrying out the first measurement of the gravitational interaction of antimatter to a precision of 1%, by applying techniques from atomic physics, laser spectroscopy and interferometry to a beam of antihydrogen atoms. A further goal of the experiment is to carry out spectroscopy of the antihydrogen atoms in flight.

  10. Basics of interferometry

    CERN Document Server

    Hariharan, P

    1992-01-01

    This book is for those who have some knowledge of optics, but little or no previous experience in interferometry. Accordingly, the carefully designed presentation helps readers easily find and assimilate the interferometric techniques they need for precision measurements. Mathematics is held to a minimum, and the topics covered are also summarized in capsule overviews at the beginning and end of each chapter. Each chapter also contains a set of worked problems that give a feel for numbers.The first five chapters present a clear tutorial review of fundamentals. Chapters six and seven discus

  11. Coded aperture optimization using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Martineau, A.; Rocchisani, J.M.; Moretti, J.L.

    2010-01-01

    Coded apertures using Uniformly Redundant Arrays (URA) have been unsuccessfully evaluated for two-dimensional and three-dimensional imaging in Nuclear Medicine. The images reconstructed from coded projections contain artifacts and suffer from poor spatial resolution in the longitudinal direction. We introduce a Maximum-Likelihood Expectation-Maximization (MLEM) algorithm for three-dimensional coded aperture imaging which uses a projection matrix calculated by Monte Carlo simulations. The aim of the algorithm is to reduce artifacts and improve the three-dimensional spatial resolution in the reconstructed images. Firstly, we present the validation of GATE (Geant4 Application for Emission Tomography) for Monte Carlo simulations of a coded mask installed on a clinical gamma camera. The coded mask modelling was validated by comparison between experimental and simulated data in terms of energy spectra, sensitivity and spatial resolution. In the second part of the study, we use the validated model to calculate the projection matrix with Monte Carlo simulations. A three-dimensional thyroid phantom study was performed to compare the performance of the three-dimensional MLEM reconstruction with conventional correlation method. The results indicate that the artifacts are reduced and three-dimensional spatial resolution is improved with the Monte Carlo-based MLEM reconstruction.

  12. Keeping African Masks Real

    Science.gov (United States)

    Waddington, Susan

    2012-01-01

    Art is a good place to learn about our multicultural planet, and African masks are prized throughout the world as powerfully expressive artistic images. Unfortunately, multicultural education, especially for young children, can perpetuate stereotypes. Masks taken out of context lose their meaning and the term "African masks" suggests that there is…

  13. Time-Delay Interferometry

    Directory of Open Access Journals (Sweden)

    Massimo Tinto

    2014-08-01

    Full Text Available Equal-arm detectors of gravitational radiation allow phase measurements many orders of magnitude below the intrinsic phase stability of the laser injecting light into their arms. This is because the noise in the laser light is common to both arms, experiencing exactly the same delay, and thus cancels when it is differenced at the photo detector. In this situation, much lower level secondary noises then set the overall performance. If, however, the two arms have different lengths (as will necessarily be the case with space-borne interferometers, the laser noise experiences different delays in the two arms and will hence not directly cancel at the detector. In order to solve this problem, a technique involving heterodyne interferometry with unequal arm lengths and independent phase-difference readouts has been proposed. It relies on properly time-shifting and linearly combining independent Doppler measurements, and for this reason it has been called time-delay interferometry (TDI. This article provides an overview of the theory, mathematical foundations, and experimental aspects associated with the implementation of TDI. Although emphasis on the application of TDI to the Laser Interferometer Space Antenna (LISA mission appears throughout this article, TDI can be incorporated into the design of any future space-based mission aiming to search for gravitational waves via interferometric measurements. We have purposely left out all theoretical aspects that data analysts will need to account for when analyzing the TDI data combinations.

  14. Complex master slave interferometry.

    Science.gov (United States)

    Rivet, Sylvain; Maria, Michael; Bradu, Adrian; Feuchter, Thomas; Leick, Lasse; Podoleanu, Adrian

    2016-02-08

    A general theoretical model is developed to improve the novel Spectral Domain Interferometry method denoted as Master/Slave (MS) Interferometry. In this model, two functions, g and h are introduced to describe the modulation chirp of the channeled spectrum signal due to nonlinearities in the decoding process from wavenumber to time and due to dispersion in the interferometer. The utilization of these two functions brings two major improvements to previous implementations of the MS method. A first improvement consists in reducing the number of channeled spectra necessary to be collected at Master stage. In previous MSI implementation, the number of channeled spectra at the Master stage equated the number of depths where information was selected from at the Slave stage. The paper demonstrates that two experimental channeled spectra only acquired at Master stage suffice to produce A-scans from any number of resolved depths at the Slave stage. A second improvement is the utilization of complex signal processing. Previous MSI implementations discarded the phase. Complex processing of the electrical signal determined by the channeled spectrum allows phase processing that opens several novel avenues. A first consequence of such signal processing is reduction in the random component of the phase without affecting the axial resolution. In previous MSI implementations, phase instabilities were reduced by an average over the wavenumber that led to reduction in the axial resolution.

  15. Vector wave diffraction pattern of slits masked by polarizing devices

    Indian Academy of Sciences (India)

    This calls for a systematic study of diffraction properties of different apertures using polarization-sensitive devices. In the present paper, we have studied the Fraunhofer diffraction pattern of slits masked by different kinds of polarizing devices which introduce a phase difference between the two orthogonal components of the ...

  16. 3-color photometry of a sunspot using speckle masking techniques

    NARCIS (Netherlands)

    Wiehr, E.; Sütterlin, P.

    1998-01-01

    A three-colour photometry is used to deduce the temperature of sunspot fine-structures. Using the Speckle-Masking method for image restoration, the resulting images (one per colour and burst) have a spatial resolution only limited by the telescope's aperture, i.e. 95km (blue), 145 km (red) and

  17. Synthetic Aperture Sequential Beamforming

    DEFF Research Database (Denmark)

    Kortbek, Jacob; Jensen, Jørgen Arendt; Gammelmark, Kim Løkke

    2008-01-01

    A synthetic aperture focusing (SAF) technique denoted Synthetic Aperture Sequential Beamforming (SASB) suitable for 2D and 3D imaging is presented. The technique differ from prior art of SAF in the sense that SAF is performed on pre-beamformed data contrary to channel data. The objective...... is stored. The second stage applies the focused image lines from the first stage as input data. The SASB method has been investigated using simulations in Field II and by off-line processing of data acquired with a commercial scanner. The performance of SASB with a static image object is compared with DRF...

  18. Generation of interferogram for D-InSAR based on contoured correlation interferometry

    Science.gov (United States)

    Long, Xuejun; Fu, Sihua; Yu, Qifeng; Yang, Xia

    2009-10-01

    Synthetic Aperture Radar interferometry (InSAR) is a rapidly developing technique for earth observation. Differential InSAR (D-InSAR) technique, based on InSAR, is a new method for earthquake deformation detection and land subsidence monitoring. In this paper, an innovative method of generation of interferogram for D-InSAR based on contoured correlation interferometry (CCI) is presented, which may directly generate interferogram with almost no speckle noise or blurring. The data processing results of the Mani earthquake indicate that D-InSAR CCI method can effectively reduce or even remove the decorrelation noise, even in the area with serious decorrelation.

  19. Utilization of InSAR differential interferometry for surface deformation detection caused by mining

    Energy Technology Data Exchange (ETDEWEB)

    Yang, F. [Liaoning Technical Univ., Fuxin (China). School of Geomatics; Shao, Y. [Liaoning Technical Univ., Fuxin (China). Dept. of Foreign Language; Guichen, M. [Gifu Univ., Yanagido, Gifu (Japan). Dept. of Civil Engineering

    2010-07-01

    In China, the surface deformation of ground has been a significant geotechnical problem as a result of cracks in the ground surface, collapsing of house, and subsidence of roads. A powerful technology for detecting surface deformation in the ground is differential interferometry using synthetic aperture radar (INSAR). The technology enables the analysis from different phase of micro-wave between two observed data by synthetic aperture radar (SAR) of surface deformation of ground such as ground subsidence, land slide, and slope failure. In January 2006, the advanced land observing satellite was launched by the Japan Aerospace Exploration Agency. This paper presented an analytical investigation to detect ground subsidence or change caused by mining, overuse of ground water, and disaster. Specifically, the paper discussed the INSAR monitoring technology of the mine slope, including INSAR data sources and processing software; the principle of synthetic aperture radar interferometry; principles of differential SAR interferometry; and INSAR technology to slope monitoring of the Haizhou open pit mine. The paper also discussed the Haizhou strip mine side slope INSAR monitoring results and tests. It was concluded that the use of synthetic aperture radar interferometer technique was the optimal technique to provide three-dimensional spatial information and minimal change from ground surface by spatial remote sensing device. 18 refs., 5 figs.

  20. Mask industry assessment: 2004

    Science.gov (United States)

    Shelden, Gilbert V.; Hector, Scott D.

    2004-12-01

    Microelectronics industry leaders routinely name mask cost and cycle time as top issues of concern. A survey was created with support from International SEMATECH (ISMT) and administered by SEMI North America to gather information about the mask industry as an objective assessment of its overall condition. The survey is designed with the input of mask technologists from semiconductor manufacturers, merchant mask suppliers, and makers of equipment for mask fabrication. This year's assessment is the third in the current series of annual reports and is intended to be used as a baseline for the mask industry and the microelectronics industry to gain a perspective on the technical and business status of the mask industry. This report will continue to serve as a valuable reference to identify the strengths and opportunities of the mask industry. The results may be used to guide future investments on critical path issues. This year's survey builds upon the 2003 survey to provide an ongoing database using the same questions as a baseline with only a few minor changes or additions. Questions are grouped into categories: general business profile information, data processing, yields and yield loss mechanisms, delivery times, returns and services. Within each category are a many questions that create a detailed profile of both the business and technical status of the mask industry. This assessment includes inputs from ten major global merchant and captive mask manufacturers whose revenue represents approximately 85% of the global mask market.

  1. 2013 mask industry survey

    Science.gov (United States)

    Malloy, Matt

    2013-09-01

    A comprehensive survey was sent to merchant and captive mask shops to gather information about the mask industry as an objective assessment of its overall condition. 2013 marks the 12th consecutive year for this process. Historical topics including general mask profile, mask processing, data and write time, yield and yield loss, delivery times, maintenance, and returns were included and new topics were added. Within each category are multiple questions that result in a detailed profile of both the business and technical status of the mask industry. While each year's survey includes minor updates based on feedback from past years and the need to collect additional data on key topics, the bulk of the survey and reporting structure have remained relatively constant. A series of improvements is being phased in beginning in 2013 to add value to a wider audience, while at the same time retaining the historical content required for trend analyses of the traditional metrics. Additions in 2013 include topics such as top challenges, future concerns, and additional details in key aspects of mask masking, such as the number of masks per mask set per ground rule, minimum mask resolution shipped, and yield by ground rule. These expansions beyond the historical topics are aimed at identifying common issues, gaps, and needs. They will also provide a better understanding of real-life mask requirements and capabilities for comparison to the International Technology Roadmap for Semiconductors (ITRS).

  2. Fabrication of high-aspect-ratio nano structures using a nano x-ray shadow mask

    International Nuclear Information System (INIS)

    Kim, Yong Chul; Lee, Seung S

    2008-01-01

    This paper describes a novel method for the fabrication of high-aspect-ratio nano structures (HAR-nano structures) using a nano x-ray shadow mask and deep x-ray lithography (DXRL). The nano x-ray shadow mask is fabricated by depositing an x-ray absorber layer (Au, 3 µm) onto the back side of a nano shadow mask. The nano shadow mask is produced with nano-sized apertures whose dimensions are reduced to several tens of nanometers by the accumulation of low-stress silicon nitride (Si x N y ) using the LPCVD process on the shadow mask. A shadow mask containing apertures with a size of 1 µm is fabricated on a bulk micromachined Si x N y membrane. The thickness of an absorber layer must be in the range of several tens of micrometers in order to obtain a contrast of more than 100 for the conventional DXRL process at the Pohang Light Source (PLS). However, a 3 µm thick absorber layer can provide a sufficient contrast if the modified DXRL of the central beam-stop method is used, which blocks high-energy x-rays. A nano shadow mask with 30 nm sized apertures is fabricated and a nano x-ray shadow mask with 250 nm sized apertures is fabricated by depositing a 3 µm thick absorber layer on a nano shadow mask with 500 nm sized apertures. HAR-nano structures (circles with a diameter of 420 nm and lines with a width of 274 nm) with aspect ratios of over 10:1 on a 3.2 µm SU-8 are successfully fabricated by using the nano x-ray shadow mask and the central beam-stop method

  3. Optical synthetic aperture radar

    Science.gov (United States)

    Ilovitsh, Asaf; Zach, Shlomo; Zalevsky, Zeev

    2013-06-01

    A method is proposed for increasing the resolution of an object and overcoming the diffraction limit of an optical system installed on top of a moving imaging system, such as an airborne platform or satellite. The resolution improvement is obtained via a two-step process. First, three low resolution differently defocused images are captured and the optical phase is retrieved using an improved iterative Gershberg-Saxton based algorithm. The phase retrieval allows numerical back propagation of the field to the aperture plane. Second, the imaging system is shifted and the first step is repeated. The obtained optical fields at the aperture plane are combined and a synthetically increased lens aperture is generated along the direction of movement, yielding higher imaging resolution. The method resembles a well-known approach from the microwave regime called the synthetic aperture radar in which the antenna size is synthetically increased along the platform propagation direction. The proposed method is demonstrated via Matlab simulation as well as through laboratory experiment.

  4. Parsimonious refraction interferometry

    KAUST Repository

    Hanafy, Sherif

    2016-09-06

    We present parsimonious refraction interferometry where a densely populated refraction data set can be obtained from just two shot gathers. The assumptions are that the first arrivals are comprised of head waves and direct waves, and a pair of reciprocal shot gathers is recorded over the line of interest. The refraction traveltimes from these reciprocal shot gathers can be picked and decomposed into O(N2) refraction traveltimes generated by N virtual sources, where N is the number of geophones in the 2D survey. This enormous increase in the number of virtual traveltime picks and associated rays, compared to the 2N traveltimes from the two reciprocal shot gathers, allows for increased model resolution and better condition numbers in the normal equations. Also, a reciprocal survey is far less time consuming than a standard refraction survey with a dense distribution of sources.

  5. High Annular Resolution Stellar Interferometry.

    Science.gov (United States)

    1985-07-31

    Double- Scar Interferometry and l:s Lessons Astrophys. and Space Sci. 11, 13-19 (1971) Finsen, W. S. Interferometer Observation of Binary Stars Astron. J...Interferometry Sky and Telescope 53, 346-350 (1977) McAlister, H. A. Speckle Interferometric Measurements of Binary Scars IV Astrophys. J. 230, 497-501...Ergebn. Exacten. Naturwiss. 10, 84-96 (1931) Pease, F.G. The Fifty-foot rnterferometer Telescope Armour Engineer, , 125-130 (1925) Perrier, C. An

  6. Phase referencing in optical interferometry

    OpenAIRE

    Filho, Mercedes E; Garcia, Paulo; Duvert, Gilles; Duchene, Gaspard; Thiebaut, Eric; Young, John; Absil, Olivier; Berger, Jean-Phillipe; Beckert, Thomas; Hoenig, Sebastian; Schertl, Dieter; Weigelt, Gerd; Testi, Leonardo; Tatuli, Eric; Borkowski, Virginie

    2008-01-01

    One of the aims of next generation optical interferometric instrumentation is to be able to make use of information contained in the visibility phase to construct high dynamic range images. Radio and optical interferometry are at the two extremes of phase corruption by the atmosphere. While in radio it is possible to obtain calibrated phases for the science objects, in the optical this is currently not possible. Instead, optical interferometry has relied on closure phase techniques to produce...

  7. Survey of coded aperture imaging

    International Nuclear Information System (INIS)

    Barrett, H.H.

    1975-01-01

    The basic principle and limitations of coded aperture imaging for x-ray and gamma cameras are discussed. Current trends include (1) use of time varying apertures, (2) use of ''dilute'' apertures with transmission much less than 50%, and (3) attempts to derive transverse tomographic sections, unblurred by other planes, from coded images

  8. Congenital pyriform aperture stenosis

    International Nuclear Information System (INIS)

    Osovsky, Micky; Aizer-Danon, Anat; Horev, Gadi; Sirota, Lea

    2007-01-01

    Nasal airway obstruction is a potentially life-threatening condition in the newborn. Neonates are obligatory nasal breathers. The pyriform aperture is the narrowest, most anterior bony portion of the nasal airway, and a decrease in its cross-sectional area will significantly increase nasal airway resistance. Congenital nasal pyriform aperture stenosis (CNPAS) is a rare, unusual form of nasal obstruction. It should be considered in the differential diagnosis of any neonate or infant with signs and symptoms of upper airway compromise. It is important to differentiate this level of obstruction from the more common posterior choanal stenosis or atresia. CNPAS presents with symptoms of nasal airway obstruction, which are often characterized by episodic apnea and cyclical cyanosis. (orig.)

  9. Aperture center energy showcase

    Energy Technology Data Exchange (ETDEWEB)

    Torres, J. J.

    2012-03-01

    Sandia and Forest City have established a Cooperative Research and Development Agreement (CRADA), and the partnership provides a unique opportunity to take technology research and development from demonstration to application in a sustainable community. A project under that CRADA, Aperture Center Energy Showcase, offers a means to develop exhibits and demonstrations that present feedback to community members, Sandia customers, and visitors. The technologies included in the showcase focus on renewable energy and its efficiency, and resilience. These technologies are generally scalable, and provide secure, efficient solutions to energy production, delivery, and usage. In addition to establishing an Energy Showcase, support offices and conference capabilities that facilitate research, collaboration, and demonstration were created. The Aperture Center project focuses on establishing a location that provides outreach, awareness, and demonstration of research findings, emerging technologies, and project developments to Sandia customers, visitors, and Mesa del Sol community members.

  10. Black silicon integrated aperture

    Science.gov (United States)

    Liu, Tianbo; Dickensheets, David L.

    2017-10-01

    This paper describes the incorporation of nanotextured black silicon as an optical absorbing material into silicon-based micro-optoelectromechanical systems devices to reduce stray light and increase optical contrast during imaging. Black silicon is created through a maskless dry etch process and characterized for two different etch conditions, a cold etch performed at 0°C and a cryogenic etch performed at -110°C. We measure specular reflection at visible wavelengths to be black velvet paint used to coat optical baffles and compare favorably with other methods to produce black surfaces from nanotextured silicon or using carbon nanotubes. We illustrate the use of this material by integrating a black silicon aperture around the perimeter of a deformable focus-control mirror. Imaging results show a significant improvement in contrast and image fidelity due to the effective reduction in stray light achieved with the self-aligned black aperture.

  11. Congenital pyriform aperture stenosis

    Energy Technology Data Exchange (ETDEWEB)

    Osovsky, Micky [Schneider Pediatric Hospital, Department of Neonatology, Petach Tikvah (Israel); Rabin Medical Center, Department of Neonatology, Schneider Children' s Medical Center of Israel, Beilinson Campus, Petah Tikvah (Israel); Aizer-Danon, Anat; Horev, Gadi [Schneider Pediatric Hospital, Department of Pediatric Radiology, Petach Tikvah (Israel); Sirota, Lea [Schneider Pediatric Hospital, Department of Neonatology, Petach Tikvah (Israel)

    2007-01-15

    Nasal airway obstruction is a potentially life-threatening condition in the newborn. Neonates are obligatory nasal breathers. The pyriform aperture is the narrowest, most anterior bony portion of the nasal airway, and a decrease in its cross-sectional area will significantly increase nasal airway resistance. Congenital nasal pyriform aperture stenosis (CNPAS) is a rare, unusual form of nasal obstruction. It should be considered in the differential diagnosis of any neonate or infant with signs and symptoms of upper airway compromise. It is important to differentiate this level of obstruction from the more common posterior choanal stenosis or atresia. CNPAS presents with symptoms of nasal airway obstruction, which are often characterized by episodic apnea and cyclical cyanosis. (orig.)

  12. Mask industry assessment: 2003

    Science.gov (United States)

    Kimmel, Kurt R.

    2003-12-01

    Microelectronics industry leaders routinely name mask technology and mask supply issues of cost and cycle time as top issues of concern. A survey was initiated in 2002 with support from International SEMATECH (ISMT) and administered by SEMI North America to gather information about the mask industry as an objective assessment of its overall condition.1 This paper presents the results of the second annual survey which is an enhanced version of the inaugural survey building upon its strengths and improving the weak points. The original survey was designed with the input of member company mask technologists, merchant mask suppliers, and industry equipment makers. The assessment is intended to be used as a baseline for the mask industry and the microelectronics industry to gain a perspective on the technical and business status of the critical mask industry. An objective is to create a valuable reference to identify strengths and opportunities and to guide investments on critical-path issues. As subsequent years are added, historical profiles can also be created. This assessment includes inputs from ten major global merchant and captive mask manufacturers representing approximately 80% of the global mask market (using revenue as the measure) and making this the most comprehensive mask industry survey ever. The participating companies are: Compugraphics, Dai Nippon Printing, Dupont Photomask, Hoya, IBM, Infineon, Intel, Taiwan Mask Company, Toppan, and TSMC. Questions are grouped into five categories: General Business Profile Information; Data Processing; Yields and Yield loss Mechanisms; Delivery Time; and Returns and Services. Within each category are a multitude of questions that create a detailed profile of both the business and technical status of the mask industry.

  13. Integrated electrochromic aperture diaphragm

    Science.gov (United States)

    Deutschmann, T.; Oesterschulze, E.

    2014-05-01

    In the last years, the triumphal march of handheld electronics with integrated cameras has opened amazing fields for small high performing optical systems. For this purpose miniaturized iris apertures are of practical importance because they are essential to control both the dynamic range of the imaging system and the depth of focus. Therefore, we invented a micro optical iris based on an electrochromic (EC) material. This material changes its absorption in response to an applied voltage. A coaxial arrangement of annular rings of the EC material is used to establish an iris aperture without need of any mechanical moving parts. The advantages of this device do not only arise from the space-saving design with a thickness of the device layer of 50μm. But it also benefits from low power consumption. In fact, its transmission state is stable in an open circuit, phrased memory effect. Only changes of the absorption require a voltage of up to 2 V. In contrast to mechanical iris apertures the absorption may be controlled on an analog scale offering the opportunity for apodization. These properties make our device the ideal candidate for battery powered and space-saving systems. We present optical measurements concerning control of the transmitted intensity and depth of focus, and studies dealing with switching times, light scattering, and stability. While the EC polymer used in this study still has limitations concerning color and contrast, the presented device features all functions of an iris aperture. In contrast to conventional devices it offers some special features. Owing to the variable chemistry of the EC material, its spectral response may be adjusted to certain applications like color filtering in different spectral regimes (UV, optical range, infrared). Furthermore, all segments may be switched individually to establish functions like spatial Fourier filtering or lateral tunable intensity filters.

  14. Novel large aperture EBCCD

    Science.gov (United States)

    Suzuki, Atsumu; Aoki, Shigeki; Haba, Junji; Sakuda, Makoto; Suyama, Motohiro

    2011-02-01

    A novel large aperture electron bombardment charge coupled device (EBCCD) has been developed. The diameter of its photocathode is 10 cm and it is the first EBCCD with such a large aperture. Its gain shows good linearity as a function of applied voltage up to -12 kV, where the gain is 2400. The spatial resolution was measured using ladder pattern charts. It is better than 2 line pairs/mm, which corresponds to 3.5 times the CCD pixel size. The spatial resolution was also measured with a copper foil pattern on a fluorescent screen irradiated with X-rays (14 and 18 keV) and a 60 keV gamma-ray from an americium source. The result was consistent with the measurement using ladder pattern charts. The output signal as a function of input light intensity shows better linearity than that of image intensifier tubes (IIT) as expected. We could detect cosmic rays passing through a scintillating fiber block and a plastic scintillator as a demonstration for a practical use in particle physics experiments. This kind of large aperture EBCCD can, for example, be used as an image sensor for a detector with a large number of readout channels and is expected to be additionally applied to other physics experiments.

  15. Mask R-CNN

    OpenAIRE

    He, Kaiming; Gkioxari, Georgia; Dollár, Piotr; Girshick, Ross

    2017-01-01

    We present a conceptually simple, flexible, and general framework for object instance segmentation. Our approach efficiently detects objects in an image while simultaneously generating a high-quality segmentation mask for each instance. The method, called Mask R-CNN, extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition. Mask R-CNN is simple to train and adds only a small overhead to Faster R-CNN, running at 5 f...

  16. Extreme ultraviolet interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Kenneth A. [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1997-12-01

    EUV lithography is a promising and viable candidate for circuit fabrication with 0.1-micron critical dimension and smaller. In order to achieve diffraction-limited performance, all-reflective multilayer-coated lithographic imaging systems operating near 13-nm wavelength and 0.1 NA have system wavefront tolerances of 0.27 nm, or 0.02 waves RMS. Owing to the highly-sensitive resonant reflective properties of multilayer mirrors and extraordinarily tight tolerances set forth for their fabrication, EUV optical systems require at-wavelength EUV interferometry for final alignment and qualification. This dissertation discusses the development and successful implementation of high-accuracy EUV interferometric techniques. Proof-of-principle experiments with a prototype EUV point-diffraction interferometer for the measurement of Fresnel zoneplate lenses first demonstrated sub-wavelength EUV interferometric capability. These experiments spurred the development of the superior phase-shifting point-diffraction interferometer (PS/PDI), which has been implemented for the testing of an all-reflective lithographic-quality EUV optical system. Both systems rely on pinhole diffraction to produce spherical reference wavefronts in a common-path geometry. Extensive experiments demonstrate EUV wavefront-measuring precision beyond 0.02 waves RMS. EUV imaging experiments provide verification of the high-accuracy of the point-diffraction principle, and demonstrate the utility of the measurements in successfully predicting imaging performance. Complementary to the experimental research, several areas of theoretical investigation related to the novel PS/PDI system are presented. First-principles electromagnetic field simulations of pinhole diffraction are conducted to ascertain the upper limits of measurement accuracy and to guide selection of the pinhole diameter. Investigations of the relative merits of different PS/PDI configurations accompany a general study of the most significant sources

  17. Mask industry assessment: 2005

    Science.gov (United States)

    Shelden, Gilbert; Hector, Scott

    2005-11-01

    Microelectronics industry leaders routinely name mask cost and cycle time as top issues of concern. A survey was created with support from International SEMATECH (ISMT) and administered by SEMI North America to gather information about the mask industry as an objective assessment of its overall condition. The survey is designed with the input of mask technologists from semiconductor manufacturers, merchant mask suppliers, and makers of equipment for mask fabrication. This year's assessment is the fourth in the current series of annual reports and is intended to be used as a baseline for the mask industry and the microelectronics industry to gain a perspective on the technical and business status of the mask industry. This report will continue to serve as a valuable reference to identify the strengths and opportunities of the mask industry. The results may be used to guide future investments on critical path issues. This year's survey contains all of the 2004 survey questions to provide an ongoing database. Additional questions were added to the survey covering operating cost factors and equipment utilization. Questions are grouped into categories: general business profile information, data processing, yields and yield loss mechanisms, delivery times, returns and services, operating cost factors and equipment utilization. Within each category are a many questions that create a detailed profile of both the business and technical status of the mask industry. This assessment includes inputs from eight major global merchant and captive mask manufacturers whose revenue represents approximately 85% of the global mask market. This participation rate is reduced by one captive from 2004. Note: Toppan, DuPont Photomasks Inc and AMTC (new) were consolidated into one input therefore the 2004 and 2005 surveys are basically equivalent.

  18. Shaken Lattice Interferometry

    Science.gov (United States)

    Weidner, Carrie; Yu, Hoon; Anderson, Dana

    2015-05-01

    This work introduces a method to perform interferometry using atoms trapped in an optical lattice. Starting at t = 0 with atoms in the ground state of a lattice potential V(x) =V0cos [ 2 kx + ϕ(t) ] , we show that it is possible to transform from one atomic wavefunction to another by a prescribed shaking of the lattice, i.e., by an appropriately tailored time-dependent phase shift ϕ(t) . In particular, the standard interferometer sequence of beam splitting, propagation, reflection, reverse propagation, and recombination can be achieved via a set of phase modulation operations {ϕj(t) } . Each ϕj(t) is determined using a learning algorithm, and the split-step method calculates the wavefunction dynamics. We have numerically demonstrated an interferometer in which the shaken wavefunctions match the target states to better than 1 % . We carried out learning using a genetic algorithm and optimal control techniques. The atoms remain trapped in the lattice throughout the full interferometer sequence. Thus, the approach may be suitable for use in an dynamic environment. In addition to the general principles, we discuss aspects of the experimental implementation. Supported by the Office of Naval Research (ONR) and Northrop Grumman.

  19. Preview of Blackbeard interferometry

    Science.gov (United States)

    Carter, M. J.

    Blackbeard is a broadband VHF measurement satellite experiment designed and built by the Space Science and Technology Division of the Los Alamos National Laboratory. Blackbeard is a piggy-back experiment on the ALEXIS satellite to be launched into a 70 degree inclination orbit at an altitude of 750 km. The satellite experimental operation and data retrieval are controlled through a telemetry link from the Satellite Operations Center (SOC) located at Los Alamos, NM. The primary experimental objectives of Blackbeard are three-fold: (1) Study the dispersion of broad-band impulsive electromagnetic signals -- in particular, the higher-order amplitude and phase distortion due to propagation through the ionosphere. These depend on ionospheric conditions and irregularities. (2) Utilize RF interferometry and scintillation techniques in the low VHF-band to determine the size and extent of ionospheric irregularities and wave structure -- both natural and artificially induced. This narrow-band data will be used to categorize the ionospheric media as undisturbed, oscillatory, or turbulent. These parameters will then be input into transfer function simulations for broad-band propagation and compared with broad-band propagation data from Blackbeard. (3) Survey and characterize background noise in the VHF-band-consisting of (1) cataloging broadcast amplitudes and signatures and mapping their global pattern, and (2) cataloging the signatures of lightning events. Also, correlate emissions in the visible and VHF bands in an attempt to confirm broad-band RF emissions assumed to be associated with lightning.

  20. How the global layout of the mask influences masking strength.

    Science.gov (United States)

    Ghose, Tandra; Hermens, Frouke; Herzog, Michael H

    2012-12-10

    In visual backward masking, the perception of a target is influenced by a trailing mask. Masking is usually explained by local interactions between the target and the mask representations. However, recently it has been shown that the global spatial layout of the mask rather than its local structure determines masking strength (Hermens & Herzog, 2007). Here, we varied the mask layout by spatial, luminance, and temporal cues. We presented a vernier target followed by a mask with 25 elements. Performance deteriorated when the length of the two mask elements neighboring the target vernier was doubled. However, when the length of every second mask element was doubled, performance improved. When the luminance of the neighboring elements was doubled, performance also deteriorated but no improvement in performance was observed when every second element had a double luminance. For temporal manipulations, a complex nonmonotonic masking function was observed. Hence, changes in the mask layout by spatial, luminance, and temporal cues lead to highly different results.

  1. The Moody Mask Model

    DEFF Research Database (Denmark)

    Larsen, Bjarke Alexander; Andkjær, Kasper Ingdahl; Schoenau-Fog, Henrik

    2015-01-01

    This paper proposes a new relation model, called "The Moody Mask model", for Interactive Digital Storytelling (IDS), based on Franceso Osborne's "Mask Model" from 2011. This, mixed with some elements from Chris Crawford's Personality Models, is a system designed for dynamic interaction between ch...

  2. Binary Masking & Speech Intelligibility

    DEFF Research Database (Denmark)

    Boldt, Jesper

    The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either experime......The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either...... experiments under ideal conditions or as experiments under more realistic conditions useful for real-life applications such as hearing aids. In the experiments under ideal conditions, the previously defined ideal binary mask is evaluated using hearing impaired listeners, and a novel binary mask -- the target...... binary mask -- is introduced. The target binary mask shows the same substantial increase in intelligibility as the ideal binary mask and is proposed as a new reference for binary masking. In the category of real-life applications, two new methods are proposed: a method for estimation of the ideal binary...

  3. Mask materials in powderblasting

    NARCIS (Netherlands)

    Wensink, H.; Berenschot, Johan W.; Jansen, Henricus V.; Elwenspoek, Michael Curt

    1999-01-01

    Powderblasting has the opportunity to become a standard technology in micromachining. To machine small details with powderbalsting, it is necessary to use a suiabled mask. In this paper four mask types ares examined. BF400 resist foil is most suitable for standard use in powderblasting for reason of

  4. The transparent face mask.

    Science.gov (United States)

    Rivers, E A; Strate, R G; Solem, L D

    1979-02-01

    Fabrication of an accurate transparent mask for total contact pressure to the healed burned face proved helpful in controlling scarring. Wearing the mask for 20 hours daily, secured by elastic straps giving 35-mmHG pressure to the scar, can prevent the original facial contours from being distorted by contracting scar tissue.

  5. Mask industry assessment: 2006

    Science.gov (United States)

    Shelden, Gilbert; Marmillion, Patricia

    2006-10-01

    Microelectronics industry leaders routinely name the cost and cycle time of mask technology and mask supply as top critical issues. A survey was created with support from SEMATECH and administered by SEMI North America to gather information about the mask industry as an objective assessment of its overall condition. The survey is designed with the input of semiconductor company mask technologists, merchant mask suppliers, and industry equipment makers. This year's assessment is the fifth in the current series of annual reports. With continued industry support, the report can be used as a baseline to gain perspective on the technical and business status of the mask and microelectronics industries. The report will continue to serve as a valuable reference to identify the strengths and opportunities of the mask industry. The results will be used to guide future investments pertaining to critical path issues. This year's survey is basically the same as the 2005 survey. Questions are grouped into categories: General Business Profile Information, Data Processing, Yields and Yield Loss Mechanisms, Delivery Times, Returns and Services, Operating Cost Factors, and Equipment Utilization. Within each category is a multitude of questions that create a detailed profile of both the business and technical status of the critical mask industry.

  6. Mask industry assessment: 2009

    Science.gov (United States)

    Hughes, Greg; Yun, Henry

    2009-10-01

    Microelectronics industry leaders routinely name the cost and cycle time of mask technology and mask supply as top critical issues. A survey was created with support from SEMATECH and administered by David Powell Consulting to gather information about the mask industry as an objective assessment of its overall condition. The survey is designed with the input of semiconductor company mask technologists and merchant mask suppliers. This year's assessment is the eighth in the current series of annual reports. With ongoing industry support, the report can be used as a baseline to gain perspective on the technical and business status of the mask and microelectronics industries. The report will continue to serve as a valuable reference to identify the strengths and opportunities of the mask industry. The results will be used to guide future investments pertaining to critical path issues. This year's survey is basically the same as the 2005 through 2008 surveys. Questions are grouped into categories: General Business Profile Information, Data Processing, Yields and Yield Loss Mechanisms, Delivery Times, Returns, and Services. Within each category is a multitude of questions that create a detailed profile of both the business and technical status of the critical mask industry. This in combination with the past surveys represents a comprehensive view of changes in the industry.

  7. Mask Industry Assessment: 2007

    Science.gov (United States)

    Shelden, Gilbert; Marmillion, Patricia; Hughes, Greg

    2007-10-01

    Microelectronics industry leaders routinely name the cost and cycle time of mask technology and mask supply as top critical issues. A survey was created with support from SEMATECH and administered by SEMI North America to gather information about the mask industry as an objective assessment of its overall condition. The survey is designed with the input of semiconductor company mask technologists, merchant mask suppliers, and industry equipment makers. This year's assessment is the sixth in the current series of annual reports. With ongoing industry support, the report can be used as a baseline to gain perspective on the technical and business status of the mask and microelectronics industries. The report will continue to serve as a valuable reference to identify the strengths and opportunities of the mask industry. The results will be used to guide future investments pertaining to critical path issues. This year's survey is basically the same as the 2005 and 2006 surveys. Questions are grouped into categories: General Business Profile Information, Data Processing, Yields and Yield Loss Mechanisms, Delivery Times, Returns and Services, Operating Cost Factors, and Equipment Utilization. Within each category is a multitude of questions that create a detailed profile of both the business and technical status of the critical mask industry.

  8. Mask industry assessment: 2008

    Science.gov (United States)

    Hughes, Greg; Yun, Henry

    2008-10-01

    Microelectronics industry leaders routinely name the cost and cycle time of mask technology and mask supply as top critical issues. A survey was created with support from SEMATECH and administered by David Powell Consulting to gather information about the mask industry as an objective assessment of its overall condition. The survey is designed with the input of semiconductor company mask technologists, merchant mask suppliers, and industry equipment makers. This year's assessment is the seventh in the current series of annual reports. With ongoing industry support, the report can be used as a baseline to gain perspective on the technical and business status of the mask and microelectronics industries. The report will continue to serve as a valuable reference to identify the strengths and opportunities of the mask industry. The results will be used to guide future investments pertaining to critical path issues. This year's survey is basically the same as the 2005 through 2007 surveys. Questions are grouped into categories: General Business Profile Information, Data Processing, Yields and Yield Loss Mechanisms, Delivery Times, Returns, and Services. Within each category is a multitude of questions that create a detailed profile of both the business and technical status of the critical mask industry.

  9. Landau-Zener-Stueckelberg interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Shevchenko, S.N., E-mail: sshevchenko@ilt.kharkov.u [B.Verkin Institute for Low Temperature Physics and Engineering, Kharkov (Ukraine); RIKEN Advanced Science Institute, Wako-shi, Saitama (Japan); Ashhab, S.; Nori, Franco [RIKEN Advanced Science Institute, Wako-shi, Saitama (Japan); Department of Physics, The University of Michigan, Ann Arbor, MI (United States)

    2010-07-15

    A transition between energy levels at an avoided crossing is known as a Landau-Zener transition. When a two-level system (TLS) is subject to periodic driving with sufficiently large amplitude, a sequence of transitions occurs. The phase accumulated between transitions (commonly known as the Stueckelberg phase) may result in constructive or destructive interference. Accordingly, the physical observables of the system exhibit periodic dependence on the various system parameters. This phenomenon is often referred to as Landau-Zener-Stueckelberg (LZS) interferometry. Phenomena related to LZS interferometry occur in a variety of physical systems. In particular, recent experiments on LZS interferometry in superconducting TLSs (qubits) have demonstrated the potential for using this kind of interferometry as an effective tool for obtaining the parameters characterizing the TLS as well as its interaction with the control fields and with the environment. Furthermore, strong driving could allow for fast and reliable control of the quantum system. Here we review recent experimental results on LZS interferometry, and we present related theory.

  10. What's in a mask? Information masking with forward and backward visual masks.

    Science.gov (United States)

    Davis, Chris; Kim, Jeesun

    2011-10-01

    Three experiments tested how the physical format and information content of forward and backward masks affected the extent of visual pattern masking. This involved using different types of forward and backward masks with target discrimination measured by percentage correct in the first experiment (with a fixed target duration) and by an adaptive threshold procedure in the last two. The rationale behind the manipulation of the content of the masks stemmed from masking theories emphasizing attentional and/or conceptual factors rather than visual ones. Experiment 1 used word masks and showed that masking was reduced (a masking reduction effect) when the forward and backward masks were the same word (although in different case) compared to when the masks were different words. Experiment 2 tested the extent to which a reduction in masking might occur due to the physical similarity between the forward and backward masks by comparing the effect of the same content of the masks in the same versus different case. The result showed a significant reduction in masking for same content masks but no significant effect of case. The last experiment examined whether the reduction in masking effect would be observed with nonword masks--that is, having no high-level representation. No reduction in masking was found from same compared to different nonword masks (Experiment 3). These results support the view that the conscious perception of a rapidly displayed target stimulus is in part determined by high-level perceptual/cognitive factors concerned with masking stimulus grouping and attention.

  11. Hybrid mask for deep etching

    KAUST Repository

    Ghoneim, Mohamed T.

    2017-08-10

    Deep reactive ion etching is essential for creating high aspect ratio micro-structures for microelectromechanical systems, sensors and actuators, and emerging flexible electronics. A novel hybrid dual soft/hard mask bilayer may be deposited during semiconductor manufacturing for deep reactive etches. Such a manufacturing process may include depositing a first mask material on a substrate; depositing a second mask material on the first mask material; depositing a third mask material on the second mask material; patterning the third mask material with a pattern corresponding to one or more trenches for transfer to the substrate; transferring the pattern from the third mask material to the second mask material; transferring the pattern from the second mask material to the first mask material; and/or transferring the pattern from the first mask material to the substrate.

  12. Phase estimation in optical interferometry

    CERN Document Server

    Rastogi, Pramod

    2014-01-01

    Phase Estimation in Optical Interferometry covers the essentials of phase-stepping algorithms used in interferometry and pseudointerferometric techniques. It presents the basic concepts and mathematics needed for understanding the phase estimation methods in use today. The first four chapters focus on phase retrieval from image transforms using a single frame. The next several chapters examine the local environment of a fringe pattern, give a broad picture of the phase estimation approach based on local polynomial phase modeling, cover temporal high-resolution phase evaluation methods, and pre

  13. 2012 Mask Industry Survey

    Science.gov (United States)

    Malloy, Matt; Litt, Lloyd C.

    2012-11-01

    A survey supported by SEMATECH and administered by David Powell Consulting was sent to semiconductor industry leaders to gather information about the mask industry as an objective assessment of its overall condition. The survey was designed with the input of semiconductor company mask technologists and merchant mask suppliers. 2012 marks the 11th consecutive year for the mask industry survey. This year's survey and reporting structure are similar to those of the previous years with minor modifications based on feedback from past years and the need to collect additional data on key topics. Categories include general mask information, mask processing, data and write time, yield and yield loss, delivery times, and maintenance and returns. Within each category are multiple questions that result in a detailed profile of both the business and technical status of the mask industry. Results, initial observations, and key comparisons between the 2011 and 2012 survey responses are shown here, including multiple indications of a shift towards the manufacturing of higher end photomasks.

  14. MASKED AREAS IN SHEAR PEAK STATISTICS: A FORWARD MODELING APPROACH

    Energy Technology Data Exchange (ETDEWEB)

    Bard, D. [KIPAC, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Kratochvil, J. M. [Astrophysics and Cosmology Research Unit, University of KwaZulu-Natal, Westville, Durban 4000 (South Africa); Dawson, W., E-mail: djbard@slac.stanford.edu [Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA 94550 (United States)

    2016-03-10

    The statistics of shear peaks have been shown to provide valuable cosmological information beyond the power spectrum, and will be an important constraint of models of cosmology in forthcoming astronomical surveys. Surveys include masked areas due to bright stars, bad pixels etc., which must be accounted for in producing constraints on cosmology from shear maps. We advocate a forward-modeling approach, where the impacts of masking and other survey artifacts are accounted for in the theoretical prediction of cosmological parameters, rather than correcting survey data to remove them. We use masks based on the Deep Lens Survey, and explore the impact of up to 37% of the survey area being masked on LSST and DES-scale surveys. By reconstructing maps of aperture mass the masking effect is smoothed out, resulting in up to 14% smaller statistical uncertainties compared to simply reducing the survey area by the masked area. We show that, even in the presence of large survey masks, the bias in cosmological parameter estimation produced in the forward-modeling process is ≈1%, dominated by bias caused by limited simulation volume. We also explore how this potential bias scales with survey area and evaluate how much small survey areas are impacted by the differences in cosmological structure in the data and simulated volumes, due to cosmic variance.

  15. Assessing natural hazards in NE Colombia using Sentinel-1 interferometry

    Science.gov (United States)

    Olen, Stephanie; Bookhagen, Bodo

    2017-04-01

    The DIGENTI project (Digitaler Entscheidertisch für das Naturgefahrenmanagement auf Basis von Satellitendaten und VGI (Volunteered Geographic Information)) aims to assess the natural hazard threat to the Cesar and La Guajira departments of northeast Colombia as guidance for decision makers and disaster relief workers. As members of the DIGENTI project, we use Sentinel-1 synthetic aperture radar (SAR) interferometry to detect hillslope movements, delineate settlements, and monitor damage to urban areas. Our study area, located in the remote Serranía del Perijá mountain range on the border of Colombia and Venezuela, is mountainous, highly vegetated, and experiences high and spatially variable rainfall (between 1 and 4 m a-1). The remote nature of the region, coupled with the favorable conditions for mass movements and other hillslope instabilities, make it an ideal location to employ remote sensing techniques to monitor potential natural hazards. In the highly vegetated Serranía del Perijá mountain range, traditional damage proxy mapping is complicated by vegetation-related coherence loss between SAR scenes. Cross-referencing existing maps, we define regions of consistently high coherence as settled or urban areas. Using the spatial extent of settled or urban areas as a mask, we establish an algorithm to use coherence loss only in these regions as a damage proxy in urban areas where the local population will be most affected. Outside of settlements, hillslope instabilities and movements are quantified and mapped using a two-prong approach: (1) Horizontal ground displacement is be calculated by dense amplitude cross-correlation using the topsOffsetApp in the InSAR Scientific Computing Environment (ISCE). This allows the location, direction, and magnitude of mass movements and hillslope instabilities to be identified and mapped; (2) We use a timeseries of interferograms to quantify vertical ground deformation (e.g., as caused by landsliding) during the Sentinel-1

  16. Diagnostic for dynamic aperture

    Energy Technology Data Exchange (ETDEWEB)

    Morton, P.L.; Pellegrin, J.L.; Raubenheimer, T.; Rivkin, L.; Ross, M.; Ruth, R.D.; Spence, W.L.

    1985-04-01

    In large accelerators and low beta colliding beam storage rings, the strong sextupoles, which are required to correct the chromatic effects, produce strong nonlinear forces which act on particles in the beam. In addition in large hadron storage rings the superconducting magnets have significant nonlinear fields. To understand the effects of these nonlinearities on the particle motion there is currently a large theoretical effort using both analytic techniques and computer tracking. This effort is focused on the determination of the 'dynamic aperture' (the stable acceptance) of both present and future accelerators and storage rings. A great deal of progress has been made in understanding nonlinear particle motion, but very little experimental verification of the theoretical results is available. In this paper we describe 'dynamic tracking', a method being studied at the SPEAR storage ring, which can be used to obtain experimental results which are in a convenient form to be compared with the theoretical predictions.

  17. Synthetic Aperture Compound Imaging

    DEFF Research Database (Denmark)

    Hansen, Jens Munk

    Medical ultrasound imaging is used for many purposes, e.g. for localizing and classifying cysts, lesions, and other processes. Almost any mass is first observed using B-mode imaging and later classified using e.g. color flow, strain, or attenuation imaging. It is therefore important that the B......, it is demonstrated through theoretical considerations that the compound effect achieved is close to a theoretical maximum for the amount of compounding attainable and using a -pitch convex array transducer, the first in-vivo images are created. The computational demands for an implementation are massive...... and the limiting factor is the amount of memory IO resources available. An equally high demand for memory throughput is found in the computer gaming industry, where a large part of the processing takes place on the graphics processing unit (GPU). Using the GPU, a framework for synthetic aperture imaging...

  18. Transionospheric synthetic aperture imaging

    CERN Document Server

    Gilman, Mikhail; Tsynkov, Semyon

    2017-01-01

    This landmark monograph presents the most recent mathematical developments in the analysis of ionospheric distortions of SAR images and offers innovative new strategies for their mitigation. As a prerequisite to addressing these topics, the book also discusses the radar ambiguity theory as it applies to synthetic aperture imaging and the propagation of radio waves through the ionospheric plasma, including the anisotropic and turbulent cases. In addition, it covers a host of related subjects, such as the mathematical modeling of extended radar targets (as opposed to point-wise targets) and the scattering of radio waves off those targets, as well as the theoretical analysis of the start-stop approximation, which is used routinely in SAR signal processing but often without proper justification. The mathematics in this volume is clean and rigorous – no assumptions are hidden or ambiguously stated. The resulting work is truly interdisciplinary, providing both a comprehensive and thorough exposition of the field,...

  19. Masked Photocathode for Photoinjector

    International Nuclear Information System (INIS)

    Qiang, Ji

    2010-01-01

    In this research note, we propose a scheme to insert a photocathode inside a photoinjector for generating high brightness electron beam. Instead of mounting the photocathode onto the electrode, a masked electrode with small hole is used to shield the photocathode from the accelerating vacuum chamber. Using such a masked photocathode will make the replacement of photocathode material very simple by rotating the photocathode behind the mask into the hole. This will significantly increase the usage lifetime of a photocathode. Furthermore, this also helps reduce the dark current or secondary electron emission from the photocathode. The hole on the mask also provides a transverse cut-off to the Gaussian laser profile which can be beneficial from the beam dynamics point of view.

  20. Speckle fields in holographic interferometry

    Science.gov (United States)

    Lockshin, Gennady R.; Kozel, Stanislav M.; Bielonuchkin, V. E.

    1990-07-01

    The objects which are investigated which are investigated with the help of the holographic interferometry methods as a rule scatter light diffusely, therefore the two-expositional hologram reconstructs the result of interference of the speckle-fields f ('4 and f() scattered by th object at the initial (1) and final (2) states.

  1. New mask technology challenges

    Science.gov (United States)

    Kimmel, Kurt R.

    2001-09-01

    Mask technology development has accelerated dramatically in recent years from the glacial pace of the last three decades to the rapid and sometimes simultaneous introductions of new wavelengths and mask-based resolution enhancement techniques. The nature of the semiconductor business has also become one driven by time-to-market as an overwhelming factor in capturing market share and profit. These are among the factors that have created enormous stress on the mask industry to produce masks with enhanced capabilities, such as phase-shifting attenuators, sub-resolution assist bars, and optical proximity correction (OPC) features, while maintaining or reducing cost and cycle time. The mask can no longer be considered a commodity item that is purchased form the lowest-cost supplier. Instead, it must now be promoted as an integral part of the technical and business case for a total lithographic solution. Improving partnership between designer, mask-maker, and wafer lithographer will be the harbinger of success in finding a profitable balance of capability, cost, and cycle time. Likewise for equipment infrastructure development, stronger partnership on the international level is necessary to control development cost and mitigate schedule and technical risks.

  2. Mask Industry Assessment: 2011

    Science.gov (United States)

    Chan, Y. David

    2011-11-01

    A survey supported by SEMATECH and administered by David Powell Consulting was sent to microelectronics industry leaders to gather information about the mask industry as an objective assessment of its overall condition. The survey was designed with the input of semiconductor company mask technologists and merchant mask suppliers. This year's assessment is the tenth in the current series of annual reports. With ongoing industry support, the report has been used as one of the baselines to gain perspective on the technical and business status of the mask and microelectronics industries. It continues to serve as a valuable reference to identify the strengths and opportunities of the mask industry. The results will be used to guide future investments pertaining to critical path issues. This year's survey was essentially the same as the 2005 through 2010 surveys. Questions are grouped into following categories: General Business Profile Information, Data Processing, Yields and Yield Loss Mechanisms, Delivery Times, Returns, and Services. Within each category are multiple questions that result in a detailed profile of both the business and technical status of the critical mask industry. This profile combined with the responses to past surveys represents a comprehensive view of changes in the industry.

  3. Mask Industry Assessment: 2010

    Science.gov (United States)

    Hughes, Greg; Chan, David Y.

    2010-09-01

    A survey created supported by SEMATECH and administered by David Powell Consulting was sent to microelectronics industry leaders to gather information about the mask industry as an objective assessment of its overall condition. The survey was designed with the input of semiconductor company mask technologists and merchant mask suppliers. This year's assessment is the ninth in the current series of annual reports. With ongoing industry support, the report can be used as a baseline to gain perspective on the technical and business status of the mask and microelectronics industries. It will continue to serve as a valuable reference to identify the strengths and opportunities of the mask industry. The results will be used to guide future investments pertaining to critical path issues. This year's survey was basically the same as the 2005 through 2009 surveys. Questions are grouped into categories: General Business Profile Information, Data Processing, Yields and Yield Loss Mechanisms, Delivery Times, Returns, and Services. Within each category are multiple questions that result in a detailed profile of both the business and technical status of the critical mask industry. This profile combined with the responses to past surveys represents a comprehensive view of changes in the industry.

  4. Masks: The Artist in Me

    Science.gov (United States)

    Skophammer, Karen

    2009-01-01

    Whether masks are made from cardboard, papier-mache, metal, wood, leather, fabric, clay or any combination of these materials, they bring out the artist in people. Young children like to wear masks when they play to pretend they were another person or animal. Masks let them fantasize and be creative. The author's students made masks representing…

  5. Phase retrieval for interferometry imaging from microlens array

    Science.gov (United States)

    Zhu, Zhihao; Qiu, Minpu

    2018-03-01

    It was considered to get interferometry data from microlens array and reconstruct initial image through it directly, while which used to be taken to calculate the phase difference to get the structure of objects in measurement technology. It broke through the depend of resolution improvement on the size of apertures, reducing the volume of image system vastly. Nevertheless, on account of the phase deficiency, this method could not show the details well enough to be generally used in measurement and control systems. Through support estimation of the target, with the feature extraction technology, the deconvolution function could be got, by which the sidelobe and pinniform structure in the "ditry" image caused by the lack of frequency could be eliminated, and phase retrieval was done. Simulation did the reconstruction experiment, yet had got relatively good detail presentations.

  6. RHIC prefire protection masks

    International Nuclear Information System (INIS)

    Drees, A.; Biscardi, C.; Curcio, T.; Gassner, D.; DeSanto, L.; Fu, W.; Liaw, C. J.; Montag, C.; Thieberger, P.; Yip, K.

    2015-01-01

    The protection of the RHIC experimental detectors from damage due to beam hitting close upstream elements in cases of abort kicker prefires requires some dedicated precautionary measures with two general options: to bring the beam close to a limiting aperture (i.e. the beam pipe wall), as far upstream of the detector components as possible or, alternatively, to bring a limiting aperture close to the circulating beam. Spontaneous and random prefires of abort kicker modules (Pulse Forming Network, PFN) have a history as long as RHIC is being operated. The abort system consist of 5 kickers in per ring, each of them equipped with its own dedicated PFN.

  7. Coded aperture tomography revisited

    International Nuclear Information System (INIS)

    Bizais, Y.; Rowe, R.W.; Zubal, I.G.; Bennett, G.W.; Brill, A.B.

    1983-01-01

    Coded aperture (CA) Tomography never achieved wide spread use in Nuclear Medicine, except for the degenerate case of Seven Pinhole tomagraphy (7PHT). However it enjoys several attractive features (high sensitivity and tomographic ability with a statis detector). On the other hand, resolution is usually poor especially along the depth axis and the reconstructed volume is rather limited. Arguments are presented justifying the position that CA tomography can be useful for imaging time-varying 3D structures, if its major drawbacks (poor longitudinal resolution and difficulty in quantification) are overcome. Poor results obtained with 7PHT can be explained by both a very limited angular range sampled and a crude modelling of the image formation process. Therefore improvements can be expected by the use of a dual-detector system, along with a better understanding of its sampling properties and the use of more powerful reconstruction algorithms. Non overlapping multipinhole plates, because they do not involve a decoding procedure, should be considered first for practical applications. Use of real CA should be considered for cases in which non overlapping multipinhole plates do not lead to satisfactory solutions. We have been and currently are carrying out theoretical and experimental works, in order to define the factors which limit CA imaging and to propose satisfactory solutions for Dynamic Emission Tomography

  8. Orion Emergency Mask Approach

    Science.gov (United States)

    Tuan, George C.; Graf, John C.

    2009-01-01

    Emergency mask approach on Orion poses a challenge to the traditional Shuttle or Station approaches. Currently, in the case of a fire or toxic spill event, the crew utilizes open loop oxygen masks that provide the crew with oxygen to breath, but also dumps the exhaled oxygen into the cabin. For Orion, with a small cabin volume, the extra oxygen will exceed the flammability limit within a short period of time, unless a nitrogen purge is also provided. Another approach to a fire or toxic spill event is the use of a filtering emergency masks. These masks utilize some form of chemical beds to scrub the air clean of toxic providing the crew safe breathing air for a period without elevating the oxygen level in the cabin. Using the masks and a form of smoke-eater filter, it may be possible to clean the cabin completely or to a level for safe transition to a space suit to perform a cabin purge. Issues with filters in the past have been the reaction time, breakthroughs, and high breathing resistance. Development in a new form of chemical filters has shown promise to make the filtering approach feasible.

  9. Super-virtual refraction interferometry: Theory

    KAUST Repository

    Bharadwaj, Pawan

    2011-01-01

    Inverting for the subsurface velocity distribution by refraction traveltime tomography is a well-accepted imaging method by both the exploration and earthquake seismology communities. A significant drawback, however, is that the recorded traces become noisier with increasing offset from the source position, and so prevents accurate picking of traveltimes in far-offset traces. To enhance the signal-to-noise ratio of the far-offset traces, we present the theory of super-virtual refraction interferometry where the signal-to-noise ratio (SNR) of far-offset head-wave arrivals can be theoretically increased by a factor proportional to N; here, N is the number of receiver and source positions associated with the recording and generation of the head-wave arrival. There are two steps to this methodology: correlation and summation of the data to generate traces with virtual head-wave arrivals, followed by the convolution of the data with the virtual traces to create traces with super-virtual head-wave arrivals. This method is valid for any medium that generates head-wave arrivals. There are at least three significant benefits to this methodology: 1). enhanced SNR of far-offset traces so the first-arrival traveltimes of the noisy far-offset traces can be more reliably picked to extend the useful aperture of data, 2). the SNR of head waves in a trace that arrive after the first arrival can be enhanced for accurate traveltime picking and subsequent inversion by traveltime tomography, and 3). common receiver-pair gathers can be analyzed to detect the presence of diving waves in the first arrivals, which can be used to assess the nature of the refracting boundary. © 2011 Society of Exploration Geophysicists.

  10. Complex Pupil Masks for Aberrated Imaging of Closely Spaced Objects

    Science.gov (United States)

    Reddy, A. N. K.; Sagar, D. K.; Khonina, S. N.

    2017-12-01

    Current approach demonstrates the suppression of optical side-lobes and the contraction of the main lobe in the composite image of two object points of the optical system under the influence of defocusing effect when an asymmetric phase edges are imposed over the apodized circular aperture. The resolution of two point sources having different intensity ratio is discussed in terms of the modified Sparrow criterion, functions of the degree of coherence of the illumination, the intensity difference and the degree of asymmetric phase masking. Here we have introduced and explored the effects of focus aberration (defect-of-focus) on the two-point resolution of the optical systems. Results on the aberrated composite image of closely spaced objects with amplitude mask and asymmetric phase masks forms a significant contribution in astronomical and microscopic observations.

  11. Precision Geodesy via Radio Interferometry.

    Science.gov (United States)

    Hinteregger, H F; Shapiro, I I; Robertson, D S; Knight, C A; Ergas, R A; Whitney, A R; Rogers, A E; Moran, J M; Clark, T A; Burke, B F

    1972-10-27

    Very-long-baseline interferometry experiments, involving observations of extragalactic radio sources, were performed in 1969 to determine the vector separations between antenna sites in Massachusetts and West Virginia. The 845.130-kilometer baseline was estimated from two separate experiments. The results agreed with each other to within 2 meters in all three components and with a special geodetic survey to within 2 meters in length; the differences in baseline direction as determined by the survey and by interferometry corresponded to discrepancies of about 5 meters. The experiments also yielded positions for nine extragalactic radio sources, most to within 1 arc second, and allowed the hydrogen maser clocks at the two sites to be synchronized a posteriori with an uncertainty of only a few nanoseconds.

  12. Angular-domain scattering interferometry.

    Science.gov (United States)

    Shipp, Dustin W; Qian, Ruobing; Berger, Andrew J

    2013-11-15

    We present an angular-scattering optical method that is capable of measuring the mean size of scatterers in static ensembles within a field of view less than 20 μm in diameter. Using interferometry, the method overcomes the inability of intensity-based models to tolerate the large speckle grains associated with such small illumination areas. By first estimating each scatterer's location, the method can model between-scatterer interference as well as traditional single-particle Mie scattering. Direct angular-domain measurements provide finer angular resolution than digitally transformed image-plane recordings. This increases sensitivity to size-dependent scattering features, enabling more robust size estimates. The sensitivity of these angular-scattering measurements to various sizes of polystyrene beads is demonstrated. Interferometry also allows recovery of the full complex scattered field, including a size-dependent phase profile in the angular-scattering pattern.

  13. Individuals and Their Masks

    Directory of Open Access Journals (Sweden)

    Belén Altuna

    2009-08-01

    Full Text Available This essay works on the opposition between face and mask, where ‘face’ is understood as that which makes every human being singular, and makes visible her or his unique worth, while ‘mask’ is understood as whatever hides that singularity, and refers to a category, stereotype or cliché. The etymological history that relates face and mask to the concept of person, and the history of modern portrait painting, which alternates representations of face and mask, both lead to a discussion with authors who diagnose a contemporary “defeat of the face” as a result of the crisis of humanism and of ethical individualism, which give meaning and dignity to that face.

  14. Radar interferometry persistent scatterer technique

    CERN Document Server

    Kampes, Bert M

    2014-01-01

    This volume is devoted to the Persistent Scatterer Technique, the latest development in radar interferometric data processing. It is the only book on Permanent Scatterer (PS) technique of radar interferometry, and it details a newly developed stochastic model and estimator algorithm to cope with possible problems for the application of the PS technique. The STUN (spatio-temporal unwrapping network) algorithm, developed to cope with these issues in a robust way, is presented and applied to two test sites.

  15. Statistical analysis for coded aperture γ-ray telescope

    International Nuclear Information System (INIS)

    Ducros, G.; Ducros, R.

    1984-01-01

    We have developed a statistical analysis of the image recorded by a position sensitive detector associated with a coded mask for the French gamma ray satellite SIGMA, in the energy range (20-2 000 keV). The aperture of the telescope is not limited to the size of the mask. In the first part, we described the principle of the image analysis based on the least squares method with a fit function generated and tested term after term. The statistical test is performed on the F distribution followed by the relative improvement of chi 2 when the fit function has an additional term. The second part deals with digital processing aspects: the adjustment of the method to reduce computation time, and the analysis results of two simulated images. (orig.)

  16. Holographic interferometry in construction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hartikainen, T.

    1995-12-31

    In this work techniques for visualizing phase and opaque objects by ruby laser interferometry are introduced. A leakage flow as a phase object is studied by holographic interferometry and the intensity distribution of the interferograms presenting the leakage flow are computer-simulated. A qualitative and quantitative analysis of the leakage flow is made. The analysis is based on the experimental and theoretical results presented in this work. The holographic setup and the double pass method for visualizing leakage flow are explained. A vibrating iron plate is the opaque object. Transient impact waves are generated by a pistol bullet on the iron plate and visualized by holographic interferometry. An apparatus with the capability of detecting and calculating the delays necessary for laser triggering is introduced. A time series of interferograms presenting elastic wave formation in an iron plate is shown. A computer-simulation of the intensity distributions of these interferograms is made. An analysis based on the computer-simulation and the experimental data of the transient elastic wave is carried out and the results are presented. (author)

  17. Holographic interferometry of high pressure

    International Nuclear Information System (INIS)

    McIlwain, M.E.

    1987-01-01

    Measurements in turbulent flows have been historically performed using various types of probes and optical diagnostic methods. In general, probes suffer from plasma perturbation effects and are single point determination methods. Optical methods appear to be better suited to determinations in turbulent flows, however interpretation of the resulting data can often be complex. Methods such as laser Doppler anemometry, which relies on entrained particles, suffers from the fact that particles small enough to be swept along by the plasma are usually melted or sublimed in the plasma. Light refraction or diffraction methods such as shadow photography, interferometry, and holography have also been used to observe plasma flows. These methods typically suffer from the difficulty of interpreting line of sight images and obtaining quantitative data. A new method based on multi-pass holographic interferometry will be discussed. This method has certain advantages which can significantly simplify the complexity of line of sight interferometry image deconvolution. When the method employs high speed cinematography, time resolved images of the plasma flow can be obtained. This method has been applied to both transferred and non-transferred arcs and various types of DC-plasma torch produced jets. These studies and conclusions as to the usefulness of the technique are presented

  18. Bistatic synthetic aperture radar

    Science.gov (United States)

    Yates, Gillian

    Synthetic aperture radar (SAR) allows all-weather, day and night, surface surveillance and has the ability to detect, classify and geolocate objects at long stand-off ranges. Bistatic SAR, where the transmitter and the receiver are on separate platforms, is seen as a potential means of countering the vulnerability of conventional monostatic SAR to electronic countermeasures, particularly directional jamming, and avoiding physical attack of the imaging platform. As the receiving platform can be totally passive, it does not advertise its position by RF emissions. The transmitter is not susceptible to jamming and can, for example, operate at long stand-off ranges to reduce its vulnerability to physical attack. This thesis examines some of the complications involved in producing high-resolution bistatic SAR imagery. The effect of bistatic operation on resolution is examined from a theoretical viewpoint and analytical expressions for resolution are developed. These expressions are verified by simulation work using a simple 'point by point' processor. This work is extended to look at using modern practical processing engines for bistatic geometries. Adaptations of the polar format algorithm and range migration algorithm are considered. The principal achievement of this work is a fully airborne demonstration of bistatic SAR. The route taken in reaching this is given, along with some results. The bistatic SAR imagery is analysed and compared to the monostatic imagery collected at the same time. Demonstrating high-resolution bistatic SAR imagery using two airborne platforms represents what I believe to be a European first and is likely to be the first time that this has been achieved outside the US (the UK has very little insight into US work on this topic). Bistatic target characteristics are examined through the use of simulations. This also compares bistatic imagery with monostatic and gives further insight into the utility of bistatic SAR.

  19. Tissue Harmonic Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Joachim

    The main purpose of this PhD project is to develop an ultrasonic method for tissue harmonic synthetic aperture imaging. The motivation is to advance the field of synthetic aperture imaging in ultrasound, which has shown great potentials in the clinic. Suggestions for synthetic aperture tissue...... system complexity compared to conventional synthetic aperture techniques. In this project, SASB is sought combined with a pulse inversion technique for 2nd harmonic tissue harmonic imaging. The advantages in tissue harmonic imaging (THI) are expected to further improve the image quality of SASB....... The first part of the scientific contribution investigates an implementation of pulse inversion for THI on the experimental ultrasound system SARUS. The technique is initially implemented for linear array transducers and then expanded for convex array transducers. The technique is evaluated based on spatial...

  20. Compounding in synthetic aperture imaging

    DEFF Research Database (Denmark)

    Hansen, J. M.; Jensen, J. A.

    2012-01-01

    from multiple spherical emissions to synthesize multiple transmit and receive apertures, corresponding to imaging the tissue from multiple directions. The many images are added incoherently, to produce a single compound image. Using a 192-element, 3.5-MHz, λ-pitch transducer, it is demonstrated from...... tissue-phantom measurements that the speckle is reduced and the contrast resolution improved when applying synthetic aperture compound imaging. At a depth of 4 cm, the size of the synthesized apertures is optimized for lesion detection based on the speckle information density. This is a performance...... measure for tissue contrast resolution which quantifies the tradeoff between resolution loss and speckle reduction. The speckle information density is improved by 25% when comparing synthetic aperture compounding to a similar setup for compounding using dynamic receive focusing. The cystic resolution...

  1. Large aperture optical switching devices

    International Nuclear Information System (INIS)

    Goldhar, J.; Henesian, M.A.

    1983-01-01

    We have developed a new approach to constructing large aperture optical switches for next generation inertial confinement fusion lasers. A transparent plasma electrode formed in low pressure ionized gas acts as a conductive coating to allow the uniform charging of the optical faces of an electro-optic material. In this manner large electric fields can be applied longitudinally to large aperture, high aspect ratio Pockels cells. We propose a four-electrode geometry to create the necessary high conductivity plasma sheets, and have demonstrated fast (less than 10 nsec) switching in a 5x5 cm aperture KD*P Pockels cell with such a design. Detaid modelling of Pockels cell performance with plasma electrodes has been carried out for 15 and 30 cm aperture designs

  2. Low-redundancy linear arrays in mirrored interferometric aperture synthesis.

    Science.gov (United States)

    Zhu, Dong; Hu, Fei; Wu, Liang; Li, Jun; Lang, Liang

    2016-01-15

    Mirrored interferometric aperture synthesis (MIAS) is a novel interferometry that can improve spatial resolution compared with that of conventional IAS. In one-dimensional (1-D) MIAS, antenna array with low redundancy has the potential to achieve a high spatial resolution. This Letter presents a technique for the direct construction of low-redundancy linear arrays (LRLAs) in MIAS and derives two regular analytical patterns that can yield various LRLAs in short computation time. Moreover, for a better estimation of the observed scene, a bi-measurement method is proposed to handle the rank defect associated with the transmatrix of those LRLAs. The results of imaging simulation demonstrate the effectiveness of the proposed method.

  3. Pre-eruptive ground deformation of Azerbaijan mud volcanoes detected through satellite radar interferometry (DInSAR)

    OpenAIRE

    Monserrat, Oriol; Bonini, Marco; Luzi, Guido; Feyzullayev, Akper; Antonielli, Benedetta; Righini, Gaia; Sani, Federico; Aliyev, Chingiz S.

    2014-01-01

    Mud volcanism is a process that leads to the extrusion of subsurface mud, fragments of country rocks, saline waters and gases. This mechanism is typically linked to hydrocarbon traps, and the extrusion of this material builds up a variety of conical edifices with a similar morphology to those of magmatic volcanoes, though smaller in size. The Differential Interferometry Synthetic Aperture Radar (DInSAR) technique has been used to investigate the ground deformation related to the activity of t...

  4. Bubble masks for time-encoded imaging of fast neutrons.

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, Erik; Brennan, James S.; Marleau, Peter; Nowack, Aaron B.; Steele, John T.; Sweany, Melinda; Throckmorton, Daniel J.

    2013-09-01

    Time-encoded imaging is an approach to directional radiation detection that is being developed at SNL with a focus on fast neutron directional detection. In this technique, a time modulation of a detected neutron signal is inducedtypically, a moving mask that attenuates neutrons with a time structure that depends on the source position. An important challenge in time-encoded imaging is to develop high-resolution two-dimensional imaging capabilities; building a mechanically moving high-resolution mask presents challenges both theoretical and technical. We have investigated an alternative to mechanical masks that replaces the solid mask with a liquid such as mineral oil. Instead of fixed blocks of solid material that move in pre-defined patterns, the oil is contained in tubing structures, and carefully introduced air gapsbubblespropagate through the tubing, generating moving patterns of oil mask elements and air apertures. Compared to current moving-mask techniques, the bubble mask is simple, since mechanical motion is replaced by gravity-driven bubble propagation; it is flexible, since arbitrary bubble patterns can be generated by a software-controlled valve actuator; and it is potentially high performance, since the tubing and bubble size can be tuned for high-resolution imaging requirements. We have built and tested various single-tube mask elements, and will present results on bubble introduction and propagation as a function of tubing size and cross-sectional shape; real-time bubble position tracking; neutron source imaging tests; and reconstruction techniques demonstrated on simple test data as well as a simulated full detector system.

  5. COAs: Behind the Masks.

    Science.gov (United States)

    Birke, Szifra

    1993-01-01

    Provides information on alcoholism and codependency to help teachers identify and respond to children of alcoholics (COAs). Discusses characteristics of alcoholic homes and problems encountered by children and adult COAs. Examines survival "masks" of COAs, including hero, rebel, adjustor, clown, and caretaker. Lists organizational,…

  6. Transmission and signal loss in mask designs for a dual neutron and gamma imager applied to mobile standoff detection

    International Nuclear Information System (INIS)

    Ayaz-Maierhafer, Birsen; Hayward, Jason P.; Ziock, Klaus P.; Blackston, Matthew A.; Fabris, Lorenzo

    2013-01-01

    In order to design a next-generation, dual neutron and gamma imager for mobile standoff detection which uses coded aperture imaging as its primary detection modality, the following design parameters have been investigated for gamma and neutron radiation incident upon a hybrid, coded mask: (1) transmission through mask elements for various mask materials and thicknesses; and (2) signal attenuation in the mask versus angle of incidence. Each of these parameters directly affects detection significance, as quantified by the signal-to-noise ratio. The hybrid mask consists of two or three layers: organic material for fast neutron attenuation and scattering, Cd for slow neutron absorption (if applied), and one of three of the following photon or photon and slow neutron attenuating materials—Linotype alloy, CLYC, or CZT. In the MCNP model, a line source of gamma rays (100–2500 keV), fast neutrons (1000–10,000 keV) or thermal neutrons was positioned above the hybrid mask. The radiation penetrating the mask was simply tallied at the surface of an ideal detector, which was located below the surface of the last mask layer. The transmission was calculated as the ratio of the particles transmitted through the fixed aperture to the particles passing through the closed mask. In order to determine the performance of the mask considering relative motion between the source and detector, simulations were used to calculate the signal attenuation for incident radiation angles of 0–50°. The results showed that a hybrid mask can be designed to sufficiently reduce both transmission through the mask and signal loss at large angles of incidence, considering both gamma ray and fast neutron radiations. With properly selected material thicknesses, the signal loss of a hybrid mask, which is necessarily thicker than the mask required for either single mode imaging, is not a setback to the system's detection significance

  7. Competing for Consciousness: Prolonged Mask Exposure Reduces Object Substitution Masking

    Science.gov (United States)

    Goodhew, Stephanie C.; Visser, Troy A. W.; Lipp, Ottmar V.; Dux, Paul E.

    2011-01-01

    In object substitution masking (OSM) a sparse, temporally trailing 4-dot mask impairs target identification, even though it has different contours from, and does not spatially overlap with the target. Here, we demonstrate a previously unknown characteristic of OSM: Observers show reduced masking at prolonged (e.g., 640 ms) relative to intermediate…

  8. Monitoring of Land-Surface Deformation in the Karamay Oilfield, Xinjiang, China, Using SAR Interferometry

    Directory of Open Access Journals (Sweden)

    Yusupujiang Aimaiti

    2017-07-01

    Full Text Available Synthetic Aperture Radar (SAR interferometry is a technique that provides high-resolution measurements of the ground displacement associated with various geophysical processes. To investigate the land-surface deformation in Karamay, a typical oil-producing city in the Xinjiang Uyghur Autonomous Region, China, Advanced Land Observing Satellite (ALOS Phased Array L-band Synthetic Aperture Radar (PALSAR data were acquired for the period from 2007 to 2009, and a two-pass differential SAR interferometry (D-InSAR process was applied. The experimental results showed that two sites in the north-eastern part of the city exhibit a clear indication of land deformation. For a further evaluation of the D-InSAR result, the Persistent Scatterer (PS and Small Baseline Subset (SBAS-InSAR techniques were applied for 21 time series Environmental Satellite (ENVISAT C-band Advanced Synthetic Aperture Radar (ASAR data from 2003 to 2010. The comparison between the D-InSAR and SBAS-InSAR measurements had better agreement than that from the PS-InSAR measurement. The maximum deformation rate attributed to subsurface water injection for the period from 2003 to 2010 was up to approximately 33 mm/year in the line of sight (LOS direction. The interferometric phase change from November 2007 to June 2010 showed a clear deformation pattern, and the rebound center has been expanding in scale and increasing in quantity.

  9. An imaging interferometry capability for the EISCAT Svalbard Radar

    Directory of Open Access Journals (Sweden)

    T. Grydeland

    2005-01-01

    Full Text Available Interferometric imaging (aperture synthesis imaging is a technique used by radio astronomers to achieve angular resolution that far surpasses what is possible with a single large aperture. A similar technique has been used for radar imaging studies of equatorial ionospheric phenomena at the Jicamarca Radio Observatory. We present plans for adding an interferometric imaging capability to the EISCAT Svalbard Radar (ESR, a capability which will contribute significantly to several areas of active research, including naturally and artificially enhanced ion-acoustic echoes and their detailed relation in space and time to optical phenomena, polar mesospheric summer echoes (PMSE, and meteor studies. Interferometry using the two antennas of the ESR has demonstrated the existence of extremely narrow, field-aligned scattering structures, but having only a single baseline is a severe limitation for such studies. Building additional IS-class antennas at the ESR is not a trivial task. However, the very high scattering levels in enhanced ion-acoustic echoes and PMSE means that a passive receiver antenna of more modest gain should still be capable of detecting these echoes. In this paper we present simulations of what an imaging interferometer will be capable of observing for different antenna configurations and brightness distributions, under ideal conditions, using two different image inversion algorithms. We also discuss different antenna and receiver technologies.

  10. An imaging interferometry capability for the EISCAT Svalbard Radar

    Directory of Open Access Journals (Sweden)

    T. Grydeland

    2005-01-01

    Full Text Available Interferometric imaging (aperture synthesis imaging is a technique used by radio astronomers to achieve angular resolution that far surpasses what is possible with a single large aperture. A similar technique has been used for radar imaging studies of equatorial ionospheric phenomena at the Jicamarca Radio Observatory. We present plans for adding an interferometric imaging capability to the EISCAT Svalbard Radar (ESR, a capability which will contribute significantly to several areas of active research, including naturally and artificially enhanced ion-acoustic echoes and their detailed relation in space and time to optical phenomena, polar mesospheric summer echoes (PMSE, and meteor studies.

    Interferometry using the two antennas of the ESR has demonstrated the existence of extremely narrow, field-aligned scattering structures, but having only a single baseline is a severe limitation for such studies. Building additional IS-class antennas at the ESR is not a trivial task. However, the very high scattering levels in enhanced ion-acoustic echoes and PMSE means that a passive receiver antenna of more modest gain should still be capable of detecting these echoes.

    In this paper we present simulations of what an imaging interferometer will be capable of observing for different antenna configurations and brightness distributions, under ideal conditions, using two different image inversion algorithms. We also discuss different antenna and receiver technologies.

  11. Enhancing core-diffracted arrivals by supervirtual interferometry

    KAUST Repository

    Bharadwaj, P.

    2013-12-03

    A supervirtual interferometry (SVI) method is presented that can enhance the signal-to-noise ratio (SNR) of core diffracted waveforms by as much as O( √ N), where N is the number of inline receivers that record the core-mantle boundary (CMB) diffractions from more than one event. Here, the events are chosen to be approximately inline with the receivers along the same great circle. Results with synthetic and teleseismic data recorded by USArray stations demonstrate that formerly unusable records with low SNR can be transformed to high SNR records with clearly visible CMB diffractions. Another benefit is that SVI allows for the recording of a virtual earthquake at stations not deployed during the time of the earthquake. This means that portable arrays such as USArray can extend the aperture of one recorded earthquake from the West coast to the East coast, even though the teleseism might have only been recorded during theWest coast deployment. In summary, SVI applied to teleseismic data can significantly enlarge the catalogue of usable records both in SNR and available aperture for analysing CMB diffractions. A potential drawback of this method is that it generally provides the correct kinematics of CMB diffractions, but does not necessarily preserve correct amplitude information. © The Authors 2013. Published by Oxford University Press on behalf of The Royal Astronomical Society.

  12. Digital Moiré based transient interferometry and its application in optical surface measurement

    Science.gov (United States)

    Hao, Qun; Tan, Yifeng; Wang, Shaopu; Hu, Yao

    2017-10-01

    Digital Moiré based transient interferometry (DMTI) is an effective non-contact testing methods for optical surfaces. In DMTI system, only one frame of real interferogram is experimentally captured for the transient measurement of the surface under test (SUT). When combined with partial compensation interferometry (PCI), DMTI is especially appropriate for the measurement of aspheres with large apertures, large asphericity or different surface parameters. Residual wavefront is allowed in PCI, so the same partial compensator can be applied to the detection of multiple SUTs. Excessive residual wavefront aberration results in spectrum aliasing, and the dynamic range of DMTI is limited. In order to solve this problem, a method based on wavelet transform is proposed to extract phase from the fringe pattern with spectrum aliasing. Results of simulation demonstrate the validity of this method. The dynamic range of Digital Moiré technology is effectively expanded, which makes DMTI prospective in surface figure error measurement for intelligent fabrication of aspheric surfaces.

  13. Operational Monitoring of Mines by COSMO-SkyMed PSP SAR Interferometry

    Science.gov (United States)

    Costantini, Mario; Malvarosa, Fabio; Miniati, Federico; de Assis, Luciano Mozer

    2016-08-01

    Synthetic aperture radar (SAR) interferometry is a powerful technology for detection and monitoring of slow ground surface movements. Monitoring of ground deformations in mining structures is an important application, particularly difficult because the scene changes with time. The persistent scatterer pair (PSP) approach, recently proposed to overcome some limitations of standard persistent scatter interferometry, proved to be effective also for mine monitoring. In this work, after resuming the main ideas of the PSP method, we describe the PSP measurements obtained from high- resolution X-band COSMO-SkyMed data over a large mining area in Minas Gerais state, Brazil. The outcomes demonstrate that dense and accurate ground deformation measurements can be obtained on the mining area and its structures (such as open pits, waste dumps, conveyor belts, water and tailings dams, etc.), achieving a consistent global view including also areas where field instruments are not installed.

  14. Rule of Thumb Proposing the Size of Aperture Expected to be Sufficient to Resolve Double Stars with Given Parameters

    Science.gov (United States)

    Knapp, Wilfried

    2018-01-01

    Visual observation of double stars is an anachronistic passion especially attractive for amateurs looking for sky objects suitable for visual observation even in light polluted areas. Session planning then requires a basic idea which objects might be suitable for a given equipment—this question is a long term issue for visual double star observers and obviously not easy to answer, especially for unequal bright components. Based on a reasonably large database with limited aperture observations (done with variable aperture equipment iris diaphragm or aperture masks) a heuristic approach is used to derive a statistically well founded Rule of Thumb formula.

  15. CURIE: Cubesat Radio Interferometry Experiment

    Science.gov (United States)

    Sundkvist, D. J.; Saint-Hilaire, P.; Bain, H. M.; Bale, S. D.; Bonnell, J. W.; Hurford, G. J.; Maruca, B.; Martinez Oliveros, J. C.; Pulupa, M.

    2016-12-01

    The CUbesat Radio Interferometry Experiment (CURIE) is a proposed two-element radio interferometer, based on proven and developed digital radio receivers and designed to fit within a Cubesat platform. CURIE will launch as a 6U Cubesat and then separate into two 3U Cubesats once in orbit. CURIE measures radio waves from 0.1-19MHz, which must be measured from space, as those frequencies fall below the cutoff imposed by Earth's ionosphere. The principal science objective for CURIE is to use radio interferometry to study radio burst emissions from solar eruptive events such as flares and coronal mass ejections (CMEs) in the inner heliosphere, providing observations important for our understanding of the heliospheric space weather environment. The influence of space weather can be felt at Earth and other planets, as radiation levels increase and lead to auroral activity and geomagnetic effects. CURIE will be able to determine the location and size of radio burst source regions and then to track their movement outward from the Sun. In addition to the primary objective CURIE will measure the gradients of the local ionospheric density and electron temperature on the spatial scale of a few kilometers, as well as create an improved map of the radio sky at these unexplored frequencies. A space based radio interferometry observatory has long been envisioned, in orbit around the Earth or the Moon, or on the far side of the Moon. Beyond its important science objectives, CURIE will prove that the concept of a dedicated space-based interferometer can be realized by using relatively cheap Cubesats. CURIE will therefore not only provide new important science results but also serve as a pathfinder in the development of new space-based radio observation techniques for helio- and astro-physics.

  16. Masked multichannel analyzer

    Science.gov (United States)

    Winiecki, A.L.; Kroop, D.C.; McGee, M.K.; Lenkszus, F.R.

    1984-01-01

    An analytical instrument and particularly a time-of-flight-mass spectrometer for processing a large number of analog signals irregularly spaced over a spectrum, with programmable masking of portions of the spectrum where signals are unlikely in order to reduce memory requirements and/or with a signal capturing assembly having a plurality of signal capturing devices fewer in number than the analog signals for use in repeated cycles within the data processing time period.

  17. Binary Masking & Speech Intelligibility

    OpenAIRE

    Boldt, Jesper

    2010-01-01

    The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either experiments under ideal conditions or as experiments under more realistic conditions useful for real-life applications such as hearing aids. In the experiments under ideal conditions, the previously defined i...

  18. RET masks for patterning 45nm node contact hole using ArF immersion lithography

    Science.gov (United States)

    Hsu, Michael; Chen, J. Fung; Van Den Broeke, Doug; En Tszng, Shih; Shieh, Jason; Hsu, Stephen; Shi, Xuelong

    2006-05-01

    Immersion exposure system with the numerical aperture (NA) greater than unity effectively extends the printing resolution limit without the need of shrinking the exposure wavelength. From the perspective of imaging contact hole mask, we are convinced that a mature ArF immersion exposure system will be able to meet 45nm node manufacturing requirement. However, from a full-chip mask data processing point of view, a more challenging question could be: how to ensure the intended RET mask to best achieve a production worthy solution? At 45nm, we are using one-fourth of the exposure wavelength for the patterning; there is very little room for error. For full-chip, especially for contact hole mask, we need a robust RET mask strategy to ensure sufficient CD control. A production-worthy RET mask technology should have good imaging performance with advanced exposure system; and, it should base on currently available mask blank material and be compatible with the existing mask making process. In this work, we propose a new type of contact hole RET masks that is capable of 45nm node full-chip manufacturing. Three types of potential RET masks are studied. The 1st type is the conventional 6% attenuated PSM (attPSM) with 0-phase Scattering Bars (SB). The 2nd type is to use CPL mask with both 0- and π-phase SB, and their relative placements are based on interference mapping lithography (IML) under optimized illumination. The 3rd type, here named as 6% CPL, can be thought of as a CPL mask type with 6% transmission on the background but with π-phase SB only. Of those three RET masks, 6% CPL mask has the best performance for printing 45nm contact and via masks. To implement 6% CPL for contact and via mask design, we study several critical process steps starting from the illumination optimization, model-based SB OPC, 3D mask effect, quartz etch depth optimization, side-lobe printability verification, and then to the mask making flow. Additionally, we investigate printability for

  19. Current Development in Airborne Repeat-pass Interferometric Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Zhong Xue-lian

    2013-09-01

    Full Text Available Due to its agility, flexibility and accuracy, airborne repeat-pass Interferometric Synthetic Aperture Radar (InSAR is capable of overcoming the disadvantages of long revisit time and low resolution in space-borne SAR interferometry, and play an irreplaceable role in monitoring the deformation of landslides, volcanoes, earthquakes, etc. In this paper, the history and status in the world wide about the technology of airborne repeat-pass SAR interferometry are reviewed detailedly. Then after the accuracy of this technology is analyzed, its key problems in practice are presented, and the related researches in this field are also introduced comprehensively. The development trend and the prospect of this technology are also described in this paper. Finally, it is pointed that several problems still need to be studied further for accurate parameter inversion.

  20. Masking and manipulation.

    Science.gov (United States)

    Ventura, Rosa; Segura, Jordi

    2010-01-01

    The list of prohibited substances in sports includes a group of masking agents that are forbidden in both in- and out-of-competition doping tests. This group consists of a series of compounds that are misused in sports to mask the administration of other doping agents, and includes: diuretics, used to reduce the concentration in urine of other doping agents either by increasing the urine volume or by reducing the excretion of basic doping agents by increasing the urinary pH; probenecid, used to reduce the concentration in urine of acidic compounds, such as glucuronoconjugates of some doping agents; 5alpha-reductase inhibitors, used to reduce the formation of 5alpha-reduced metabolites of anabolic androgenic steroids; plasma expanders, used to maintain the plasma volume after misuse of erythropoietin or red blood cells concentrates; and epitestosterone, used to mask the detection of the administration of testosterone. Diuretics may be also misused to achieve acute weight loss before competition in sports with weight categories. In this chapter, pharmacological modes of action, intended pharmacological effects for doping purposes, main routes of biotransformation and analytical procedures used for anti-doping controls to screen and confirm these substances will be reviewed and discussed.

  1. Mask strategy at International SEMATECH

    Science.gov (United States)

    Kimmel, Kurt R.

    2002-08-01

    International SEMATECH (ISMT) is a consortium consisting of 13 leading semiconductor manufacturers from around the globe. Its objective is to develop the infrastructure necessary for its member companies to realize the International Technology Roadmap for Semiconductors (ITRS) through efficiencies of shared development resources and knowledge. The largest area of effort is lithography, recognized as a crucial enabler for microelectronics technology progress. Within the Lithography Division, most of the efforts center on mask-related issues. The development strategy at International SEMATCH will be presented and the interlock of lithography projects clarified. Because of the limited size of the mask production equipment market, the business case is weak for aggressive investment commensurate with the pace of the International Technology Roadmap for Semiconductors. With masks becoming the overwhelming component of lithography cost, new ways of reducing or eliminating mask costs are being explored. Will mask technology survive without a strong business case? Will the mask industry limit the growth of the semiconductor industry? Are advanced masks worth their escalating cost? An analysis of mask cost from the perspective of mask value imparted to the user is presented with examples and generic formulas for the reader to apply independently. A key part to the success for both International SEMATECH and the industry globally will be partnerships on both the local level between mask-maker and mask-user, and the macro level where global collaborations will be necessary to resolve technology development cost challenges.

  2. Focusing optical waves with a rotationally symmetric sharp-edge aperture

    Science.gov (United States)

    Hu, Yanwen; Fu, Shenhe; Li, Zhen; Yin, Hao; Zhou, Jianying; Chen, Zhenqiang

    2018-04-01

    While there has been various kinds of patterned structures proposed for wave focusing, these patterned structures usually involve complicated lithographic techniques since the element size of the patterned structures should be precisely controlled in microscale or even nanoscale. Here we propose a new and straightforward method for focusing an optical plane wave in free space with a rotationally symmetric sharp-edge aperture. The focusing phenomenon of wave is realized by superposition of a portion of the higher-order symmetric plane waves generated from the sharp edges of the apertures, in contrast to previously focusing techniques which usually depend on a curved phase. We demonstrate both experimentally and theoretically the focusing effect with a series of apertures having different rotational symmetry, and find that the intensity of the hotspots could be controlled by the symmetric strength of the sharp-edge apertures. The presented results would advance the conventional wisdom that light would diffract in all directions and become expanding when it propagates through an aperture. The proposed method is easy to be processed, and might open potential applications in interferometry, image, and superresolution.

  3. Attosecond electron wave packet interferometry

    International Nuclear Information System (INIS)

    Remetter, T.; Ruchon, T.; Johnsson, P.; Varju, K.; Gustafsson, E.

    2006-01-01

    Complete test of publication follows. The well controlled generation and characterization of attosecond XUV light pulses provide an unprecedented tool to study electron wave packets (EWPs). Here a train of attosecond pulses is used to create and study the phase of an EWP in momentum space. There is a clear analogy between electronic wave functions and optical fields. In optics, methods like SPIDER or wave front shearing interferometry, allow to measure the spectral or spatial phase of a light wave. These two methods are based on the same principle: an interferogram is produced when recombining two sheared replica of a light pulse, spectrally (SPIDER) or spatially (wave front shearing interferometry). This enables the comparison of two neighbouring different spectral or spatial slices of the original wave packet. In the experiment, a train of attosecond pulses is focused in an Argon atomic gas jet. EWPs are produced from the single XUV photon ionization of Argon atoms. If an IR beam is synchronized to the EWPs, it is possible to introduce a shear in momentum space between two consecutive s wave packets. A Velocity Map Imaging Spectrometer (VMIS) enables us to detect the interference pattern. An analysis of the interferograms will be presented leading to a conclusion about the symmetry of the studied wave packet.

  4. Mask industry assessment trend analysis

    Science.gov (United States)

    Shelden, Gilbert; Hector, Scott; Marmillion, Pat; Lercel, Michael

    2006-06-01

    Microelectronics industry leaders routinely name mask cost and cycle time as top issues of concern. In 2002, a survey was created with support from SEMATECH and administered by SEMI North America to gather information about the mask industry as an objective assessment of its overall condition. The survey is designed with the input of mask technologists from semiconductor manufacturers, merchant mask suppliers, and makers of mask equipment. The 2005 survey was the fourth in the current series of annual surveys. The survey data can be used as a baseline for the mask industry and the microelectronics industry to gain a perspective on the technical and business status of the mask industry. The results may be used to guide future investments on critical path issues. Questions are grouped into categories: general business profile information, data processing, yields and yield loss mechanisms, delivery times, returns and services, operating cost factors, and equipment utilization. Because the questions covering operating cost factors and equipment utilization were just added to the survey, no trend analysis is possible. Within each category are many questions that together create a detailed profile of both the business and technical status of the mask industry. The assessment participation has changed from year to year. The 2005 survey, for example, includes inputs from eight major global merchant and captive mask manufacturers whose revenue represents approximately 85% of the global mask market.

  5. Future of synthetic aperture radar

    Science.gov (United States)

    Barath, F. T.

    1978-01-01

    The present status of the applications of Synthetic Aperture Radars (SARs) is reviewed, and the technology state-of-the art as represented by the Seasat-A and SIR-A SARs examined. The potential of SAR applications, and the near- and longer-term technology trends are assessed.

  6. Ultrasound fields from triangular apertures

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1996-01-01

    The pulsed field from a triangular aperture mounted in an infinite, rigidbaffle is calculated. The approach of spatial impulse responses,as developed by Tupholme and Stepanishen, is used. By this both the emitted and received pulsed ultrasound field can be found for any transducerexcitation...

  7. Imaging with Synthetic Aperture Radar

    CERN Document Server

    Massonnet, Didier

    2008-01-01

    Describing a field that has been transformed by the recent availability of data from a new generation of space and airborne systems, the authors offer a synthetic geometrical approach to the description of synthetic aperture radar, one that addresses physicists, radar specialists, as well as experts in image processing.  

  8. Masks of the Universe

    Science.gov (United States)

    Harrison, Edward

    2011-11-01

    Preface; Introducing the masks; Part I. Worlds in the Making: 1. The magic Universe; 2. The mythic Universe; 3. The geometric Universe; 4. The medieval Universe; 5. The infinite Universe; 6. The mechanistic Universe; Part II. The Heart Divine: 7. Dance of the atoms and waves; 8. Fabric of space and time; 9. Nearer to the heart's desire; 10. The cosmic tide; 11. Do dreams ever come true?; Part III. The Cloud of Unknowing: 12. The witch universe; 13. The spear of Archytas; 14. All that is made; 15. The cloud of unknowing; 16. Learned ignorance.

  9. Mask fabrication process

    Science.gov (United States)

    Cardinale, Gregory F.

    2000-01-01

    A method for fabricating masks and reticles useful for projection lithography systems. An absorber layer is conventionally patterned using a pattern and etch process. Following the step of patterning, the entire surface of the remaining top patterning photoresist layer as well as that portion of an underlying protective photoresist layer where absorber material has been etched away is exposed to UV radiation. The UV-exposed regions of the protective photoresist layer and the top patterning photoresist layer are then removed by solution development, thereby eliminating the need for an oxygen plasma etch and strip and chances for damaging the surface of the substrate or coatings.

  10. X-ray masks

    International Nuclear Information System (INIS)

    Greenwood, J.C.; Satchell, D.W.

    1984-01-01

    In semiconductor manufacture, where X-ray irradiation is used, a thin silicon membrane can be used as an X-ray mask. This membrane has areas on which are patterns to define the regions to be irradiated. These regions are of antireflection material. With the thin, in the order of 3 microns, membranes used, fragility is a problem. Hence a number of ribs of silicon are formed integral with the membrane, and which are relatively thick, 5 to 10 microns. The ribs may be formed by localised deeper boron deposition followed by a selective etch. (author)

  11. Mask alignment system for semiconductor processing

    Science.gov (United States)

    Webb, Aaron P.; Carlson, Charles T.; Weaver, William T.; Grant, Christopher N.

    2017-02-14

    A mask alignment system for providing precise and repeatable alignment between ion implantation masks and workpieces. The system includes a mask frame having a plurality of ion implantation masks loosely connected thereto. The mask frame is provided with a plurality of frame alignment cavities, and each mask is provided with a plurality of mask alignment cavities. The system further includes a platen for holding workpieces. The platen may be provided with a plurality of mask alignment pins and frame alignment pins configured to engage the mask alignment cavities and frame alignment cavities, respectively. The mask frame can be lowered onto the platen, with the frame alignment cavities moving into registration with the frame alignment pins to provide rough alignment between the masks and workpieces. The mask alignment cavities are then moved into registration with the mask alignment pins, thereby shifting each individual mask into precise alignment with a respective workpiece.

  12. Two particle interferometry at RHIC

    CERN Document Server

    Laue, F

    2002-01-01

    We present preliminary results from a pion interferometry analysis of Au+Au collisions at square root (S/sub NN/)=130 GeV, recorded with the STAR (Solenoidal Tracker At RHIC) detector at the Relativistic Heavy Ion Collider (RHIC). The evaluation of three-dimensional correlation functions indicates increasing source sizes with increasing event centrality. The dependence of the calculated HBT radii on transverse momentum is attributed to strong space-momentum correlations (transverse flow). In the study presented in this paper we have not observed anomalously large source sizes as have been predicted as a signal for quark-qluon plasma formation. However, the measured HBT radii seem to follow the trend established at lower energies (AGS/SPS). We find the ratio R/sub o//R/sub s/ approximately =1, suggesting a short duration of pion emission. The "universal" pion phase space density, observed at AGS/SPS, seems to hold also at RHIC. (26 refs).

  13. The JWST/NIRCam Coronagraph: Mask Design and Fabrication

    Science.gov (United States)

    Krista, John E.; Balasubramanian, Kunjithapatha; Beichman, Charles A.; Echternach, Pierre M.; Green, Joseph J.; Liewer, Kurt M.; Muller, Richard E.; Serabyn, Eugene; Shaklan, Stuart B.; Trauger, John T.; hide

    2009-01-01

    The NIRCam instrument on the James Webb Space Telescope will provide coronagraphic imaging from lambda =1-5 microns of high contrast sources such as extrasolar planets and circumstellar disks. A Lyot coronagraph with a variety of circular and wedge-shaped occulting masks and matching Lyot pupil stops will be implemented. The occulters approximate grayscale transmission profiles using halftone binary patterns comprising wavelength-sized metal dots on anti-reflection coated sapphire substrates. The mask patterns are being created in the Micro Devices Laboratory at the Jet Propulsion Laboratory using electron beam lithography. Samples of these occulters have been successfully evaluated in a coronagraphic testbed. In a separate process, the complex apertures that form the Lyot stops will be deposited onto optical wedges. The NIRCam coronagraph flight components are expected to be completed this year.

  14. Some applications of holographic interferometry in biomechanics

    Science.gov (United States)

    Ebbeni, Jean P. L.

    1992-03-01

    Holographic interferometry is well adapted for the determination of 2D strain fields in osseous structures. The knowledge of those strain fields is important for the understanding of structure behavior such as arthrosis.

  15. Space Interferometry Mission Instrument Mechanical Layout

    Science.gov (United States)

    Aaron, K.; Stubbs, D.; Kroening, K.

    2000-01-01

    The Space Interferometry Mission, planned for launch in 2006, will measure the positions of celestial objects to an unprecedented accuracy of 4x10 to the power of negative six arc (about 1 billionth of a degree).

  16. Fundamental physics research and neutron interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Ioffe, A. [Hahn-Meitner-Institut Berlin GmbH (Germany)

    1996-08-01

    The possibility of the use of an extremely sensitive neutron interferometry technique for the study of electromagnetic structure of the neutron and the parity non-conservative effects in neutron spin rotation is discussed. (author)

  17. Novel Polarimetric SAR Interferometry Algorithms, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Polarimetric radar interferometry (PolInSAR) is a new SAR imaging mode that is rapidly becoming an important technique for bare earth topographic mapping, tree...

  18. Speckle Shearing Interferometry And Its Application

    Science.gov (United States)

    Jingtang, Ke; Hongqing, Zhang; Yeling, He; Yanfu, Chang

    1983-12-01

    The paper deals with experiments made to verify the theory of bending of plates and related problems by method of speckle shearing interferometry, which is proved to be highly sensitive. Tests carried out on rubber products: (such as tires)and thin-walled containers have demonstrated the prospects of using image-shearing camera in nondestructive in-situ testing of industrial products, suggesting a potentiality still wider than that of holographic interferometry.

  19. Large-Aperture Grating Tiling by Interferometry for Petawatt Chirped-Pulse--Amplification Systems

    International Nuclear Information System (INIS)

    Qiao, J.; Kalb, A.; Guardalben, M.J.; King, G.; Canning. D.; Kelly, J.H.

    2007-01-01

    A tiled-grating assembly with three large-scale gratings is developed with real-time interferometric tiling control for the OMEGA EP Laser Facility. An automatic tiling method is achieved and used to tile a three-tile grating assembly with the overall wavefront reconstructed. Tiling parameters sensitivity and focal-spot degradation from all combined tiling errors are analyzed for a pulse compressor composed of four such assemblies

  20. Monte Carlo simulation of a coded-aperture thermal neutron camera

    International Nuclear Information System (INIS)

    Dioszegi, I.; Salwen, C.; Forman, L.

    2011-01-01

    We employed the MCNPX Monte Carlo code to simulate image formation in a coded-aperture thermal-neutron camera. The camera, developed at Brookhaven National Laboratory (BNL), consists of a 20 x 17 cm 2 active area 3 He-filled position-sensitive wire chamber in a cadmium enclosure box. The front of the box is a coded-aperture cadmium mask (at present with three different resolutions). We tested the detector experimentally with various arrangements of moderated point-neutron sources. The purpose of using the Monte Carlo modeling was to develop an easily modifiable model of the device to predict the detector's behavior using different mask patterns, and also to generate images of extended-area sources or large numbers (up to ten) of them, that is important for nonproliferation and arms-control verification, but difficult to achieve experimentally. In the model, we utilized the advanced geometry capabilities of the MCNPX code to simulate the coded aperture mask. Furthermore, the code simulated the production of thermal neutrons from fission sources surrounded by a thermalizer. With this code we also determined the thermal-neutron shadow cast by the cadmium mask; the calculations encompassed fast- and epithermal-neutrons penetrating into the detector through the mask. Since the process of signal production in 3 He-filled position-sensitive wire chambers is well known, we omitted this part from our modeling. Simplified efficiency values were used for the three (thermal, epithermal, and fast) neutron-energy regions. Electronic noise and the room's background were included as a uniform irradiation component. We processed the experimental- and simulated-images using identical LabVIEW virtual instruments. (author)

  1. SEMATECH EUVL mask program status

    Science.gov (United States)

    Yun, Henry; Goodwin, Frank; Huh, Sungmin; Orvek, Kevin; Cha, Brian; Rastegar, Abbas; Kearney, Patrick

    2009-04-01

    As we approach the 22nm half-pitch (hp) technology node, the industry is rapidly running out of patterning options. Of the several lithography techniques highlighted in the International Technology Roadmap for Semiconductors (ITRS), the leading contender for the 22nm hp insertion is extreme ultraviolet lithography (EUVL). Despite recent advances with EUV resist and improvements in source power, achieving defect free EUV mask blank and enabling the EUV mask infrastructure still remain critical issues. To meet the desired EUV high volume manufacturing (HVM) insertion target date of 2013, these obstacles must be resolved on a timely bases. Many of the EUV mask related challenges remain in the pre-competitive stage and a collaborative industry based consortia, such as SEMATECH can play an important role to enable the EUVL landscape. SEMATECH based in Albany, NY is an international consortium representing several of the largest manufacturers in the semiconductor market. Full members include Intel, Samsung, AMD, IBM, Panasonic, HP, TI, UMC, CNSE (College of Nanoscience and Engineering), and Fuller Road Management. Within the SEMATECH lithography division a major thrust is centered on enabling the EUVL ecosystem from mask development, EUV resist development and addressing EUV manufacturability concerns. An important area of focus for the SEMATECH mask program has been the Mask Blank Development Center (MBDC). At the MBDC key issues in EUV blank development such as defect reduction and inspection capabilities are actively pursued together with research partners, key suppliers and member companies. In addition the mask program continues a successful track record of working with the mask community to manage and fund critical mask tools programs. This paper will highlight recent status of mask projects and longer term strategic direction at the MBDC. It is important that mask technology be ready to support pilot line development HVM by 2013. In several areas progress has been

  2. Aperture measurements with AC dipole

    CERN Document Server

    Fuster Martinez, Nuria; Dilly, Joschua Werner; Nevay, Laurence James; Bruce, Roderik; Tomas Garcia, Rogelio; Redaelli, Stefano; Persson, Tobias Hakan Bjorn; CERN. Geneva. ATS Department

    2018-01-01

    During the MDs performed on the 15th of September and 29th of November 2017, we measured the LHC global aperture at injection with a new AC dipole method as well as using the Transverse Damper (ADT) blow-up method used during the 2017 LHC commissioning for benchmarking. In this note, the MD procedure is presented as well as the analysis of the comparison between the two methods. The possible benefits of the new method are discussed.

  3. The application of satellite differential SAR interferometry-derived ground displacements in hydrogeology

    Science.gov (United States)

    Galloway, D.L.; Hoffmann, J.

    2007-01-01

    The application of satellite differential synthetic aperture radar (SAR) interferometry, principally coherent (InSAR) and to a lesser extent, persistent-scatterer (PSI) techniques to hydrogeologic studies has improved capabilities to map, monitor, analyze, and simulate groundwater flow, aquifer-system compaction and land subsidence. A number of investigations over the previous decade show how the spatially detailed images of ground displacements measured with InSAR have advanced hydrogeologic understanding, especially when a time series of images is used in conjunction with histories of changes in water levels and management practices. Important advances include: (1) identifying structural or lithostratigraphic boundaries (e.g. faults or transitional facies) of groundwater flow and deformation; (2) defining the material and hydraulic heterogeneity of deforming aquifer-systems; (3) estimating system properties (e.g. storage coefficients and hydraulic conductivities); and (4) constraining numerical models of groundwater flow, aquifer-system compaction, and land subsidence. As a component of an integrated approach to hydrogeologic monitoring and characterization of unconsolidated alluvial groundwater basins differential SAR interferometry contributes unique information that can facilitate improved management of groundwater resources. Future satellite SAR missions specifically designed for differential interferometry will enhance these contributions. ?? Springer-Verlag 2006.

  4. Dynamic Deformation of ETNA Volcano Observed by GPS and SAR Interferometry

    Science.gov (United States)

    Lundgren, P.; Rosen, P.; Webb, F.; Tesauro, M.; Lanari, R.; Sansosi, E.; Puglisi, G.; Bonforte, A.; Coltelli, M.

    1999-01-01

    Synthetic aperture radar (SAR) interferometry and GPS have shown that during the quiescent period from 1993-1995 Mt. Etna volcano, Italy, inflated. Since the initiation of eruptive activity since late 1995 the deformation has been more contentious. We will explore the detailed deformation during the period from 1995-1996 spanning the late stages of inflation and the beginning of eruptive activity. We use SAR interferometry and GPS data to measure the volcano deformation. We invert the observed deformation for both simple point source. le crack elastic sources or if warranted for a spheroidal pressure So In particular, we will examine the evolution of the inflation and the transition to a lesser deflation observed at the end of 1995. We use ERS-1/2 SAR data from both ascending and descending passes to allow for dense temporal 'sampling of the deformation and to allow us to critically assess atmospheric noise. Preliminary results from interferometry suggest that the inflation rate accelerated prior to resumption of activity in 1995, while GPS data suggest a more steady inflation with some fluctuation following the start of activity. This study will compare and contrast the interferometric SAR and GPS results and will address the strengths and weaknesses of each technique towards volcano deformation studies.

  5. APPLICATION OF VORONOI DIAGRAM TO MASK-BASED INTERCEPTING PHASE-SPACE MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [Fermilab; Ha, G. [POSTECH

    2017-05-19

    Intercepting multi-aperture masks (e.g. pepper pot or multislit mask) combined with a downstream transversedensity diagnostics (e.g. based on optical transition radiation or employing scintillating media) are commonly used for characterizing the phase space of charged particle beams and the associated emittances. The required data analysis relies on precise calculation of the RMS sizes and positions of the beamlets originated from the mask which drifted up to the analyzing diagnostics. Voronoi diagram is an efficient method for splitting a plane into subsets according to the distances between given vortices. The application of the method to analyze data from pepper pot and multislit mask based measurement is validated via numerical simulation and applied to experimental data acquired at the Argonne Wakefield Accelerator (AWA) facility. We also discuss the application of the Voronoi diagrams to quantify transverselymodulated beams distortion.

  6. 2. Interferometry and polarimetry. 2.1. Principle of interferometry and polarimetry

    International Nuclear Information System (INIS)

    Kawahata, Kazuo; Okajima, Shigeki

    2000-01-01

    Laser interferometry and polarimetry are useful diagnostics for measuring electron density and the internal magnetic field distribution in the plasma. In this section, principles of interferometry and polarimetry and their applications to plasma diagnostics on LHD (section 2.2) and JT-60 (section 2.3) are descried. (author)

  7. Mask industry assessment trend analysis

    Science.gov (United States)

    Hughes, Greg; Yun, Henry

    2009-01-01

    Microelectronics industry leaders routinely name the cost and cycle time of mask technology and mask supply as top critical issues. A survey was created with support from SEMATECH to gather information about the mask industry as an objective assessment of its overall condition. This year's survey data were presented in detail at BACUS and the detailed trend analysis presented at EMLC. The survey is designed with the input of semiconductor company mask technologists and merchant mask suppliers. This year's assessment is the seventh in the current series of annual reports. With continued industry support, the report can be used as a baseline to gain perspective on the technical and business status of the mask and microelectronics industries. The report will continue to serve as a valuable reference to identify the strengths and opportunities of the mask industry. The results will be used to guide future investments on critical path issues. This year's survey is basically the same as the surveys in 2005 through 2007. Questions are grouped into seven categories: General Business Profile Information, Data Processing, Yields and Yield Loss, Mechanisms, Delivery Times, Returns, and Services. (Examples are given below). Within each category is a multitude of questions that creates a detailed profile of both the business and technical status of the critical mask industry.

  8. Effective EUVL mask cleaning technology solutions for mask manufacturing and in-fab mask maintenance

    Science.gov (United States)

    Dietze, Uwe; Dress, Peter; Waehler, Tobias; Singh, Sherjang; Jonckheere, Rik; Baudemprez, Bart

    2011-03-01

    Extreme Ultraviolet Lithography (EUVL) is considered the leading lithography technology choice for semiconductor devices at 16nm HP node and beyond. However, before EUV Lithography can enter into High Volume Manufacturing (HVM) of advanced semiconductor devices, the ability to guarantee mask integrity at point-of-exposure must be established. Highly efficient, damage free mask cleaning plays a critical role during the mask manufacturing cycle and throughout the life of the mask, where the absence of a pellicle to protect the EUV mask increases the risk of contamination during storage, handling and use. In this paper, we will present effective EUVL mask cleaning technology solutions for mask manufacturing and in-fab mask maintenance, which employs an intelligent, holistic approach to maximize Mean Time Between Cleans (MBTC) and extend the useful life span of the reticle. The data presented will demonstrate the protection of the capping and absorber layers, preservation of pattern integrity as well as optical and mechanical properties to avoid unpredictable CD-linewidth and overlay shifts. Experiments were performed on EUV blanks and pattern masks using various process conditions. Conditions showing high particle removal efficiency (PRE) and minimum surface layer impact were then selected for durability studies. Surface layer impact was evaluated over multiple cleaning cycles by means of UV reflectivity metrology XPS analysis and wafer prints. Experimental results were compared to computational models. Mask life time predictions where made using the same computational models. The paper will provide a generic overview of the cleaning sequence which yielded best results, but will also provide recommendations for an efficient in-fab mask maintenance scheme, addressing handling, storage, cleaning and inspection.

  9. EUV mask manufacturing readiness in the merchant mask industry

    Science.gov (United States)

    Green, Michael; Choi, Yohan; Ham, Young; Kamberian, Henry; Progler, Chris; Tseng, Shih-En; Chiou, Tsann-Bim; Miyazaki, Junji; Lammers, Ad; Chen, Alek

    2017-10-01

    As nodes progress into the 7nm and below regime, extreme ultraviolet lithography (EUVL) becomes critical for all industry participants interested in remaining at the leading edge. One key cost driver for EUV in the supply chain is the reflective EUV mask. As of today, the relatively few end users of EUV consist primarily of integrated device manufactures (IDMs) and foundries that have internal (captive) mask manufacturing capability. At the same time, strong and early participation in EUV by the merchant mask industry should bring value to these chip makers, aiding the wide-scale adoption of EUV in the future. For this, merchants need access to high quality, representative test vehicles to develop and validate their own processes. This business circumstance provides the motivation for merchants to form Joint Development Partnerships (JDPs) with IDMs, foundries, Original Equipment Manufacturers (OEMs) and other members of the EUV supplier ecosystem that leverage complementary strengths. In this paper, we will show how, through a collaborative supplier JDP model between a merchant and OEM, a novel, test chip driven strategy is applied to guide and validate mask level process development. We demonstrate how an EUV test vehicle (TV) is generated for mask process characterization in advance of receiving chip maker-specific designs. We utilize the TV to carry out mask process "stress testing" to define process boundary conditions which can be used to create Mask Rule Check (MRC) rules as well as serve as baseline conditions for future process improvement. We utilize Advanced Mask Characterization (AMC) techniques to understand process capability on designs of varying complexity that include EUV OPC models with and without sub-resolution assist features (SRAFs). Through these collaborations, we demonstrate ways to develop EUV processes and reduce implementation risks for eventual mass production. By reducing these risks, we hope to expand access to EUV mask capability for

  10. Parsimonious Refraction Interferometry and Tomography

    KAUST Repository

    Hanafy, Sherif

    2017-02-04

    We present parsimonious refraction interferometry and tomography where a densely populated refraction data set can be obtained from two reciprocal and several infill shot gathers. The assumptions are that the refraction arrivals are head waves, and a pair of reciprocal shot gathers and several infill shot gathers are recorded over the line of interest. Refraction traveltimes from these shot gathers are picked and spawned into O(N2) virtual refraction traveltimes generated by N virtual sources, where N is the number of geophones in the 2D survey. The virtual traveltimes can be inverted to give the velocity tomogram. This enormous increase in the number of traveltime picks and associated rays, compared to the many fewer traveltimes from the reciprocal and infill shot gathers, allows for increased model resolution and a better condition number with the system of normal equations. A significant benefit is that the parsimonious survey and the associated traveltime picking is far less time consuming than that for a standard refraction survey with a dense distribution of sources.

  11. Spectral Interferometry with Electron Microscopes.

    Science.gov (United States)

    Talebi, Nahid

    2016-09-21

    Interference patterns are not only a defining characteristic of waves, but also have several applications; characterization of coherent processes and holography. Spatial holography with electron waves, has paved the way towards space-resolved characterization of magnetic domains and electrostatic potentials with angstrom spatial resolution. Another impetus in electron microscopy has been introduced by ultrafast electron microscopy which uses pulses of sub-picosecond durations for probing a laser induced excitation of the sample. However, attosecond temporal resolution has not yet been reported, merely due to the statistical distribution of arrival times of electrons at the sample, with respect to the laser time reference. This is however, the very time resolution which will be needed for performing time-frequency analysis. These difficulties are addressed here by proposing a new methodology to improve the synchronization between electron and optical excitations through introducing an efficient electron-driven photon source. We use focused transition radiation of the electron as a pump for the sample. Due to the nature of transition radiation, the process is coherent. This technique allows us to perform spectral interferometry with electron microscopes, with applications in retrieving the phase of electron-induced polarizations and reconstructing dynamics of the induced vector potential.

  12. LED driver for stroboscopic interferometry

    Science.gov (United States)

    Paulin, T.; Heikkinen, V.; Kassamakov, I.; Hæggström, E.

    2012-04-01

    Three different types of white light emitting diodes (LEDs) and three types of single color LEDs were tested as light sources for stroboscopic scanning white light interferometry (SSWLI) for dynamic (MEMS) characterization. Short, intense, light pulses and low duty cycle (DC-10 MHz), and can drive single LEDs at 5A peak current (0.7% duty cycle at 1 MHz). The shortest measured electrical pulses were 6.2 +/- 0.1 ns FDHM. The minimum measured Full Duration at Half Maximum (FDHM) of the optical pulse was 8.4 +/- 0.1 ns using nonphosphor white LED and 32.1 +/- 0.1 ns using white phosphor-converted LED (0.7 % duty cycle at 1 MHz in both cases). The minimum optical pulse FDHM for a single color blue/green LED was 6.4 +/- 0.1 ns. The maximum intensity of these pulses was 630 +/- 40 μW and 540 +/- 30 μW, respectively. All types of white LEDs could be used for stroboscopic SWLI measurements at frequencies up to 2 MHz. For higher frequencies, non-phosphor white LEDs must be used together with a cyan LED to avoid ringing in the SWLI interferogram.

  13. Masks for extreme ultraviolet lithography

    International Nuclear Information System (INIS)

    Cardinale, G; Goldsmith, J; Kearney, P A; Larson, C; Moore, C E; Prisbrey, S; Tong, W; Vernon, S P; Weber, F; Yan, P-Y.

    1998-01-01

    In extreme ultraviolet lithography (EUVL), the technology specific requirements on the mask are a direct consequence of the utilization of radiation in the spectral region between 10 and 15 nm. At these wavelengths, all condensed materials are highly absorbing and efficient radiation transport mandates the use of all-reflective optical systems. Reflectivity is achieved with resonant, wavelength-matched multilayer (ML) coatings on all of the optical surfaces - including the mask. The EUV mask has a unique architecture - it consists of a substrate with a highly reflective ML coating (the mask blank) that is subsequently over-coated with a patterned absorber layer (the mask). Particulate contamination on the EUVL mask surface, errors in absorber definition and defects in the ML coating all have the potential to print in the lithographic process. While highly developed technologies exist for repair of the absorber layer, no viable strategy for the repair of ML coating defects has been identified. In this paper the state-of-the-art in ML deposition technology, optical inspection of EUVL mask blank defects and candidate absorber patterning approaches are reviewed

  14. Slit aperture technique for mammography

    International Nuclear Information System (INIS)

    Friedrich, M.

    1984-01-01

    Following a discussion of various principles used in the elimination of scatter, the prototype of a simple slit aperture mammography apparatus is described (modified Mammomat, Siemens). The main advantage of this technique compared with grid mammography is a halving of the radiation dose for identical image quality, using an identical film system. The technical requirements (heavy duty tube, new generator) are, however, considerable. If the film-screen systems currently in use are to remain the common systems for the future, then the development of a multi-lamellar slit diaphragm technique carries much promise for mammography. (orig.) [de

  15. Synthetic Aperture Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando

    The main objective of this project was to continue the development of a synthetic aperture vector flow estimator. This type of estimator is capable of overcoming two of the major limitations in conventional ultrasound systems: 1) the inability to scan large region of interest with high temporal......, this thesis showed that novel information can be obtained with vector velocity methods providing quantitative estimates of blood flow and insight into the complexity of the hemodynamics dynamics. This could give the clinician a new tool in assessment and treatment of a broad range of diseases....

  16. Synthetic Aperture Vector Flow Imaging

    DEFF Research Database (Denmark)

    Oddershede, Niels

    2008-01-01

    of the thesis considers a method for estimating the two-dimensional velocity vector within the image plane. This method, called synthetic aperture vector flow imaging, is first shortly reviewed. The main contribution of this work is partly an analysis of the method with respect to focusing effects, motion...... estimation. The method can be used for increasing the frame rate of color flow maps or alternatively for a new imaging modality entitled quadroplex imaging, featuring a color flow map and two independent spectrograms at a high frame rate. The second is an alternative method for ultrasonic vector velocity...

  17. SAMSI: An orbiting spatial interferometer for micro-arc second astronomical observations. [Spacecraft Array for Michelson Spatial Interferometry (SAMSI)

    Science.gov (United States)

    Stachnik, R. V.; Gezari, D. Y.

    1985-01-01

    The concept and performance of (SAMSI) Spacecraft Array for Michelson Spatial Interferometry, an orbiting spatial interferometer comprised of three free-flying spacecraft, two collector telescopes and a central mixing station are described. In the one-dimensional interferometry mode orbits exist which provide natural scanning of the baseline. These orbits place extremely small demands on thrusters and fuel consumption. Resolution of 0.00001 arcsecond and magnitude limits of mv = 15 to 20 are achievable in a single orbit. In the imaging mode, SAMSI could synthesize images equivalent to those produced by equal diameter filled apertures in space, making use of the fuel resupply capability of a space station. Simulations indicate that image reconstruction can be performed with milliarcsecond resolution to a visual magnitude 12 in 12 hr of spiral scanning integration time.

  18. Hg-Mask Coronagraph

    Science.gov (United States)

    Bourget, P.; Veiga, C. H.; Vieira Martins, R.; Assus, P.; Colas, F.

    In order to optimize the occulting process of a Lyot coronagraph and to provide a high dynamic range imaging, a new kind of occulting disk has been developed at the National Observatory of Rio de Janeiro. A mercury (Hg) drop glued onto an optical window by molecular cohesion and compressed by a pellicle film is used as the occulting disk. The minimum of the superficial tension potential function provides an optical precision (lambda/100) of the toric free surface of the mercury. This process provides a size control for the adaptation to the seeing conditions and to the apparent diameter of a resolved object, and in the case of adaptive optics, to the Airy diameter fraction needed. The occultation is a three dimensional process near the focal plane on the toric free surface that provides an apodization of the occultation. The Hg-Mask coronagraph has been projected for astrometric observations of faint satellites near to Jovian planets and works since 2000 at the 1.6 m telescope of the Pico dos Dias Observatory (OPD - Brazil).

  19. Mechanical alignment of substrates to a mask

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Aaron P.; Carlson, Charles T.; Honan, Michael; Amato, Luigi G.; Grant, Christopher Neil; Strassner, James D.

    2016-11-08

    A plurality of masks is attached to the underside of a mask frame. This attachment is made such that each mask can independently move relative to the mask frame in three directions. This relative movement allows each mask to adjust its position to align with respective alignment pins disposed on a working surface. In one embodiment, each mask is attached to the mask frame using fasteners, where the fasteners have a shaft with a diameter smaller than the diameter of the mounting hole disposed on the mask. A bias element may be used to allow relative movement between the mask and the mask frame in the vertical direction. Each mask may also have kinematic features to mate with the respective alignment pins on the working surface.

  20. Super Unit Cells in Aperture-Based Metamaterials

    Directory of Open Access Journals (Sweden)

    Dragan Tanasković

    2015-01-01

    Full Text Available An important class of electromagnetic metamaterials are aperture-based metasurfaces. Examples include extraordinary optical transmission arrays and double fishnets with negative refractive index. We analyze a generalization of such metamaterials where a simple aperture is now replaced by a compound object formed by superposition of two or more primitive objects (e.g., rectangles, circles, and ellipses. Thus obtained “super unit cell” shows far richer behavior than the subobjects that comprise it. We show that nonlocalities introduced by overlapping simple subobjects can be used to produce large deviations of spectral dispersion even for small additive modifications of the basic geometry. Technologically, some super cells may be fabricated by simple spatial shifting of the existing photolithographic masks. In our investigation we applied analytical calculations and ab initio finite element modeling to prove the possibility to tailor the dispersion including resonances for plasmonic nanocomposites by adjusting the local geometry and exploiting localized interactions at a subwavelength level. Any desired form could be defined using simple primitive objects, making the situation a geometrical analog of the case of series expansion of a function. Thus an additional degree of tunability of metamaterials is obtained. The obtained designer structures can be applied in different fields like waveguiding and sensing.

  1. Aperture averaging in strong oceanic turbulence

    Science.gov (United States)

    Gökçe, Muhsin Caner; Baykal, Yahya

    2018-04-01

    Receiver aperture averaging technique is employed in underwater wireless optical communication (UWOC) systems to mitigate the effects of oceanic turbulence, thus to improve the system performance. The irradiance flux variance is a measure of the intensity fluctuations on a lens of the receiver aperture. Using the modified Rytov theory which uses the small-scale and large-scale spatial filters, and our previously presented expression that shows the atmospheric structure constant in terms of oceanic turbulence parameters, we evaluate the irradiance flux variance and the aperture averaging factor of a spherical wave in strong oceanic turbulence. Irradiance flux variance variations are examined versus the oceanic turbulence parameters and the receiver aperture diameter are examined in strong oceanic turbulence. Also, the effect of the receiver aperture diameter on the aperture averaging factor is presented in strong oceanic turbulence.

  2. Wide band interferometry for thickness measurement

    Science.gov (United States)

    Costantino, Santiago; Martinez, Oscar E.; Torga, Jorge R.

    2003-04-01

    In this work we present the concept of wide band interferometry as opposed to white-light interferometry to introduce a thickness measurement method that gains precision when the bandwidth is reduced to an adequate compromise in order to avoid the distortions arising from the material dispersion. The use of the widest possible band is a well established dogma when the highest resolution is desired in distance measurements with white-light interferometry. We will show that the dogma falls when thickness measurements must be carried out due to material dispersion. In fact the precise knowledge of the frequency dependence of the refractive index is essential for adequate thickness retrieval from the optical experiments. The device we present is also useful to obtain the group refractive index that is necessary to calculate the absolute thickness value. As an example, we show the spreading of a silicone oil on a reference surface in real time.

  3. Demonstration of X-ray talbot interferometry

    CERN Document Server

    Momose, A; Kawamoto, S; Hamaishi, Y; Takai, K; Suzuki, Y

    2003-01-01

    First Talbot interferometry in the hard X-ray region was demonstrated using a pair of transmission gratings made by forming gold stripes on glass plates. By aligning the gratings on the optical axis of X-rays with a separation that caused the Talbot effect by the first grating, moire fringes were produced inclining one grating slightly against the other around the optical axis. A phase object placed in front of the first grating was detected by moire-fringe bending. Using the technique of phase-shifting interferometry, the differential phase corresponding to the phase object could also be measured. This result suggests that X-ray Talbot interferometry is a novel and simple method for phase-sensitive X-ray radiography. (author)

  4. 5cm aperture dipole studies

    International Nuclear Information System (INIS)

    McInturff, A.D.; Bossert, R.; Carson, J.; Fisk, H.E.; Hanft, R.; Kuchnir, M.; Lundy, R.; Mantech, P.; Strait, J.

    1986-01-01

    The results obtained during the evolution of the design, construction, and testing program of the design ''B'' dipole are presented here. Design ''B'' is one of the original three competing designs for the Superconducting Super Collider ''SSC'' arc dipoles. The final design parameters were as follows: air cored (less than a few percent of the magnetic field derived from any iron present), aluminum collared, two layered winding, 5.5T maximum operating field, and a 5 cm cold aperture. There have been fourteen 64 cm long 5 cm aperture model dipoles cold tested (at 4.3K and less) in this program so far. There was a half length full size (6m) mechanical analog (M-10) built and tested to check the cryostat's mechanical design under ramping and quench conditions. Several deviations from the ''Tevatron'' dipole fabrication technique were incorporated, for example the use of aluminum collars instead of stainless steel. The winding technique variations explored were ''dry welding,'' a technique with the cable covered with Kapton insulation only and ''wet winding'' where the Kapton was covered with a light coat of ''B'' stage epoxy. Test data include quench currents, field quality (Fourier multipole co-efficients), coil magnetization, conductor current performance, and coil loading. Quench current, loss per cycle, and harmonics were measured as a function of the magnitude and rate of change of the magnetic field, and helium bath temperature

  5. Moire interferometry at high temperatures

    Science.gov (United States)

    Wu, Jau-Je

    1992-01-01

    The objective of this study was to provide an optical technique allowing full-field in-plane deformation measurements at high temperature by using high-sensitivity moire interferometry. This was achieved by a new approach of performing deformation measurements at high temperatures in a vacuum oven using an achromatic interferometer. The moire system setup was designed with particular consideration for the stability, compactness, flexibility, and ease of control. A vacuum testing environment was provided to minimize the instability of the patterns by protecting the optical instruments from the thermal convection currents. Also, a preparation procedure for the high-temperature specimen grating was developed with the use of the plasma-etched technique. Gold was used as a metallic layer in this procedure. This method was demonstrated on a ceramic block, metal/matrix composite, and quartz. Thermal deformation of a quartz specimen was successfully measured in vacuum at 980 degrees Celsius, with the sensitivity of 417 nm per fringe. The stable and well-defined interference patterns confirmed the feasibility of the developments, including the high-temperature moire system and high-temperature specimen grating. The moire system was demonstrated to be vibration-insensitive. Also, the contrast of interference fringes at high temperature was enhanced by means of a spatial filter and a narrow band interference filter to minimize the background noise from the flow of the specimen and heater. The system was verified by a free thermal expansion test of an aluminum block. Good agreement demonstrated the validity of the optical design. The measurements of thermal deformation mismatch were performed on a graphite/epoxy composite, a metal/matrix composite equipped with an optical fiber, and a cutting tool bit. A high-resolution data-reduction technique was used to measure the strain distribution of the cutting tool bit.

  6. Influence of mask type and mask position on the effectiveness of bag-mask ventilation in a neonatal manikin.

    Science.gov (United States)

    Deindl, Philipp; O'Reilly, Megan; Zoller, Katharina; Berger, Angelika; Pollak, Arnold; Schwindt, Jens; Schmölzer, Georg M

    2014-01-01

    Anatomical face mask with an air cushion rim might be placed accidentally in a false orientation on the newborn's face or filled with various amounts of air during neonatal resuscitation. Both false orientation as well as variable filling may reduce a tight seal and therefore hamper effective positive pressure ventilation (PPV). We aimed to measure the influence of mask type and mask position on the effectiveness of PPV. Twenty neonatal staff members delivered PPV to a modified, leak-free manikin. Resuscitation parameters were recorded using a self-inflatable bag PPV with an Intersurgical anatomical air cushion rim face mask (IS) and a size 0/1 Laerdal round face mask. Three different positions of the IS were tested: correct position, 90° and 180° rotation in reference to the midline of the face. IS masks in each correct position on the face but with different inflation of the air cushion (empty, 10, 20 and 30 mL). Mask leak was similar with mask rotation to either 90° or 180° but significantly increased from 27 (13-73) % with an adequate filled IS mask compared to 52 (16-83) % with an emptied air cushion rim. Anatomical-shaped face mask had similar mask leaks compared to round face mask. A wrongly positioned anatomical-shaped mask does not influence mask leak. Mask leak significantly increased once the air cushion rim was empty, which may cause failure in mask PPV.

  7. Vibrotactile masking through the body.

    Science.gov (United States)

    D'Amour, Sarah; Harris, Laurence R

    2014-09-01

    Touches on one hand or forearm can affect tactile sensitivity at contralateral locations on the opposite side of the body. These interactions suggest an intimate connection between the two sides of the body. Here, we explore the effect of masking not across the body but through the body by measuring the effect of a masking stimulus on the back on the tactile sensitivity of the corresponding point on the front. Tactile sensitivity was measured on each side of the stomach, while vibrotactile masking stimulation was applied to one side of the front and to points on the back including the point directly behind the test point on the front. Results were compared to sensitivity, while vibrotactile stimulation was applied to a control site on the shoulder. A reduction in sensitivity of about .8 dB was found that required the masking stimulus to be within about 2 cm of the corresponding point on the back.

  8. Image differencing using masked CCD

    International Nuclear Information System (INIS)

    Rushbrooke, J.G.; Ansorge, R.E.; Webber, C.J. St. J.

    1987-01-01

    A charge coupled device has some of its ''pixels'' masked by a material which is opaque to the radiation to which the device is to be exposed, each masked region being employed as a storage zone into which the charge pattern from the unmasked pixels can be transferred to enable a subsequent charge pattern to be established on further exposure of the unmasked pixels. The components of the resulting video signal corresponding to the respective charge patterns read-out from the CCD are subtracted to produce a video signal corresponding to the difference between the two images which formed the respective charge patterns. Alternate rows of pixels may be masked, or chequer-board pattern masking may be employed. In an X-ray imaging system the CCD is coupled to image intensifying and converting means. (author)

  9. Event Localization in Bulk Scintillator Crystals Using Coded Apertures

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, Klaus-Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics and Astronomy; Braverman, Joshua B. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics and Astronomy; Fabris, Lorenzo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hornback, Donald Eric [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Newby, Jason [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-01

    The localization of radiation interactions in bulk scintillators is generally limited by the size of the light distribution at the readout surface of the crystal/light-pipe system. By finding the centroid of the light spot, which is typically of order centimeters across, practical single-event localization is limited to ~2 mm/cm of crystal thickness. Similar resolution can also be achieved for the depth of interaction by measuring the size of the light spot. Through the use of near-field coded-aperture techniques applied to the scintillation light, light transport simulations show that for 3-cm-thick crystals, more than a five-fold improvement (millimeter spatial resolution) can be achieved both laterally and in event depth. At the core of the technique is the requirement to resolve the shadow from an optical mask placed in the scintillation light path between the crystal and the readout. In this paper, experimental results are presented that demonstrate the overall concept using a 1D shadow mask, a thin-scintillator crystal and a light pipe of varying thickness to emulate a 2.2-cm-thick crystal. Spatial resolutions of ~ 1 mm in both depth and transverse to the readout face are obtained over most of the crystal depth.

  10. Meniscus-Mask Lithography

    Science.gov (United States)

    Abramova, Vera

    This dissertation describes meniscus-mask lithography (MML): a planar top-down method for the fabrication of precisely positioned narrow graphene nanoribbons (GNRs) and metallic and semiconducting nanowires. The method does not require demanding high resolution lithography tools. The mechanism behind the method involves masking by atmospheric water adsorbed at the edge of the lithography pattern written on top of the target material. Chapter 1 describes the fabrication of sub-10 nm GNR from graphene sheets using MML technique. The electronic properties of resulting GNRs depend on the graphene etching method with argon reactive ion etching yielding remarkably consistent results. The influence of the most common substrates (Si/SiO2 and BN) on the electronic properties of GNRs is demonstrated. The MML technique is also shown to be applicable for fabrication of narrow metallic wires, underscoring the generality of MML for narrow features on diverse materials. In chapter 2 the MML method is shown to be effective for fabrication of narrow wires in a variety of materials. Si, SiO2, Au, Cr, W, Ti, TiO2, Al nanowires are fabricated and characterized. A wide range of materials and etching processes are used and the generality of approach suggests possible applicability of MML to a majority of materials used in modern planar technology. High reproducibility of MML method is shown and some fabrication issues specific to MML are addressed. Crossbar structures produced by MML demonstrate that junctions of nanowires could be fabricated as well, providing all the building blocks required for fabrication of nanowire structures of any complex planar geometry. Chapter 3 is focused on nanoscale menisci behavior and provides additional insights into the mechanism of MML. The width of structures formed by the MML process in concave corners is found to be much more sensitive to changes in the process than the width of MML nanowires. The possibility of change in lateral dimensions of

  11. Ion mobility spectrometer with virtual aperture grid

    Science.gov (United States)

    Pfeifer, Kent B.; Rumpf, Arthur N.

    2010-11-23

    An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

  12. Cosmic Masks Still Dance

    Science.gov (United States)

    Block, David L.; Puerari, Ivânio; Frogel, Jay A.; Eskridge, Paul B.; Stockton, Alan; Fuchs, Burkhard

    The Hubble classification scheme of galaxies is based on their optical appearance or `masks'. As one goes from early to late type spirals, both barred and unbarred, the optical appearance will be dominated more and more by the young Population I, i.e., blue stars and dust. Atlases reveal the rich variety of responses of the Population I component of gas and dust (the mask) to the underlying, older, stellar population. However, the gaseous Population I component, may only constitute 5 percent of the dynamical mass of the galaxy. Masks of negligible mass may conceal the human face - and that of galaxy. In the near-infrared, the morphology of older star-dominated disk indicates a simple classification scheme: the dominant Fourier m-mode in the dust penetrated regime, and the associated pitch angle. A ubiquity of low m=1 and m=2 modes is confirmed. On the basis of deprojected H (1.65 μm) and K' (2.1μm) images, we propose that the evolved stellar disks may be grouped into three principal dust penetrated archetypes: those with tightly wound stellar arms characterised by pitch angles at K' of ~ 10^° (the α class), an intermediate group with pitch angles of ~ 25^° (the β class) and thirdly, those with open spirals demarcated by pitch angles at K' of ~ 40^° (the γ bin). Flat or falling rotation curves give rise to the tightly wound α class; rising rotation curves are associated with the open γ class. The observed dust penetrated classes are inextricably related to the rate of shear in the stellar disk, as determined by A/ω. Here A is the first Oort constant andω denotes the angular velocity. There is no correlation between our dust penetrated classes and optical Hubble binning; the Hubble tuning fork does not constrain the morphology of the old stellar Population II disks. NGC 3223 and NGC 7083 (both SbI-II and almost the same absolute blue magnitude) have identical Hubble types and identical luminosity classes; the dust penetrated disk of NGC 3223 has tightly

  13. Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation

    Directory of Open Access Journals (Sweden)

    Davide O. Nitti

    2015-07-01

    Full Text Available This study explores the potential of Synthetic Aperture Radar (SAR to aid Unmanned Aerial Vehicle (UAV navigation when Inertial Navigation System (INS measurements are not accurate enough to eliminate drifts from a planned trajectory. This problem can affect medium-altitude long-endurance (MALE UAV class, which permits heavy and wide payloads (as required by SAR and flights for thousands of kilometres accumulating large drifts. The basic idea is to infer position and attitude of an aerial platform by inspecting both amplitude and phase of SAR images acquired onboard. For the amplitude-based approach, the system navigation corrections are obtained by matching the actual coordinates of ground landmarks with those automatically extracted from the SAR image. When the use of SAR amplitude is unfeasible, the phase content can be exploited through SAR interferometry by using a reference Digital Terrain Model (DTM. A feasibility analysis was carried out to derive system requirements by exploring both radiometric and geometric parameters of the acquisition setting. We showed that MALE UAV, specific commercial navigation sensors and SAR systems, typical landmark position accuracy and classes, and available DTMs lead to estimated UAV coordinates with errors bounded within ±12 m, thus making feasible the proposed SAR-based backup system.

  14. Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation.

    Science.gov (United States)

    Nitti, Davide O; Bovenga, Fabio; Chiaradia, Maria T; Greco, Mario; Pinelli, Gianpaolo

    2015-07-28

    This study explores the potential of Synthetic Aperture Radar (SAR) to aid Unmanned Aerial Vehicle (UAV) navigation when Inertial Navigation System (INS) measurements are not accurate enough to eliminate drifts from a planned trajectory. This problem can affect medium-altitude long-endurance (MALE) UAV class, which permits heavy and wide payloads (as required by SAR) and flights for thousands of kilometres accumulating large drifts. The basic idea is to infer position and attitude of an aerial platform by inspecting both amplitude and phase of SAR images acquired onboard. For the amplitude-based approach, the system navigation corrections are obtained by matching the actual coordinates of ground landmarks with those automatically extracted from the SAR image. When the use of SAR amplitude is unfeasible, the phase content can be exploited through SAR interferometry by using a reference Digital Terrain Model (DTM). A feasibility analysis was carried out to derive system requirements by exploring both radiometric and geometric parameters of the acquisition setting. We showed that MALE UAV, specific commercial navigation sensors and SAR systems, typical landmark position accuracy and classes, and available DTMs lead to estimated UAV coordinates with errors bounded within ±12 m, thus making feasible the proposed SAR-based backup system.

  15. Nuclear medicine image registration by spatially noncoherent interferometry.

    Science.gov (United States)

    Scheiber, C; Malet, Y; Sirat, G; Grucker, D

    2000-02-01

    This article introduces a technique for obtaining high-resolution body contour data in the same coordinate frame as that of a rotating gamma camera, using a miniature range finder, the conoscope, mounted on the camera gantry. One potential application of the technique is accurate coregistration in longitudinal brain SPECT studies, using the face of the patient (or "mask"), instead of SPECT slices, to coregister subsequent acquisitions involving the brain. Conoscopic holography is an interferometry technique that relies on spatially incoherent light interference in birefringent crystals. In this study, the conoscope was used to measure the absolute distance (Z) between a light source reflected from the skin and its observation plane. This light was emitted by a 0.2-mW laser diode. A scanning system was used to image the face during SPECT acquisition. The system consisted of a motor-driven mirror (Y axis) and the gamma-camera gantry (1 profile was obtained for each rotation step, X axis). The system was calibrated to place the conoscopic measurements and SPECT slices in the same coordinate frame. Through a simple and robust calibration of the system, the SE for measurements performed on geometric shapes was less than 2 mm, i.e., less than the actual pixel size of the SPECT data. Biometric measurements of an anthropomorphic brain phantom were within 3%-5% of actual values. The mask data were used to register images of a brain phantom and of a volunteer's brain, respectively. The rigid transformation that allowed the merging of masks by visual inspection was applied to the 2 sets of SPECT slices to perform the fusion of the data. At the cost of an additional low-cost setup integrated into the gamma-camera gantry, real-time data about the surface of the head were obtained. As in all other surface-based techniques (as opposed to volume-based techniques), this method allows the match of data independently from the dataset of interest and facilitates further registration

  16. Spherical aberration compensation method for long focal-length measurement based on Talbot interferometry

    Science.gov (United States)

    Luo, Yupeng; Huang, Xiao; Bai, Jian; Du, Juan; Liu, Qun; Luo, Yujie; Luo, Jia

    2017-08-01

    Large-aperture and long focal-length lens is widely used in high energy laser system. The method based on Talbot interferometry is a reliable method to measure the focal length of such elements. By employing divergent beam and two gratings of different periods, this method could realize full-aperture measurement, higher accuracy and better repeatability. However, it does not take into account the spherical aberration of the measured lens resulting in the moiré fringes bending, which will introduce measurement error. Furthermore, in long-focal measurement with divergent beam, this error is an important factor affecting the measurement accuracy. In this paper, we propose a new spherical aberration compensation method, which could significantly reduce the measurement error. Characterized by central-symmetric scanning window, the proposed method is based on the relationship between spherical aberration and the lens aperture. Angle data of moiré fringes in each scanning window is retrieved by Fourier analysis and statistically fitted to estimate a globally optimum value for spherical-aberration-free focal length calculation. Simulation and experiment have been carried out. Compared to the previous work, the proposed method is able to reduce the relative measurement error by 50%. The effect of scanning window size and shift step length on the results is also discussed.

  17. A Coded Aperture Compressive Imaging Array and Its Visual Detection and Tracking Algorithms for Surveillance Systems

    Directory of Open Access Journals (Sweden)

    Hanxiao Wu

    2012-10-01

    Full Text Available In this paper, we propose an application of a compressive imaging system to the problem of wide-area video surveillance systems. A parallel coded aperture compressive imaging system is proposed to reduce the needed high resolution coded mask requirements and facilitate the storage of the projection matrix. Random Gaussian, Toeplitz and binary phase coded masks are utilized to obtain the compressive sensing images. The corresponding motion targets detection and tracking algorithms directly using the compressive sampling images are developed. A mixture of Gaussian distribution is applied in the compressive image space to model the background image and for foreground detection. For each motion target in the compressive sampling domain, a compressive feature dictionary spanned by target templates and noises templates is sparsely represented. An l1 optimization algorithm is used to solve the sparse coefficient of templates. Experimental results demonstrate that low dimensional compressed imaging representation is sufficient to determine spatial motion targets. Compared with the random Gaussian and Toeplitz phase mask, motion detection algorithms using a random binary phase mask can yield better detection results. However using random Gaussian and Toeplitz phase mask can achieve high resolution reconstructed image. Our tracking algorithm can achieve a real time speed that is up to 10 times faster than that of the l1 tracker without any optimization.

  18. Pixelated source and mask optimization for immersion lithography.

    Science.gov (United States)

    Ma, Xu; Han, Chunying; Li, Yanqiu; Dong, Lisong; Arce, Gonzalo R

    2013-01-01

    Immersion lithography systems with hyper-numerical aperture (hyper-NA) (NA>1) have become indispensable in nanolithography for technology nodes of 45 nm and beyond. Source and mask optimization (SMO) has emerged as a key technique used to further improve the imaging performance of immersion lithography. Recently, a set of pixelated gradient-based SMO approaches were proposed under the scalar imaging models, which are inaccurate for hyper-NA settings. This paper focuses on developing pixelated gradient-based SMO algorithms based on a vector imaging model that is accurate for current immersion lithography. To achieve this goal, an integrative and analytic vector imaging model is first used to formulate the simultaneous SMO (SISMO) and sequential SMO (SESMO) frameworks. A gradient-based algorithm is then exploited to jointly optimize the source and mask. Subsequently, this paper studies and compares the performance of individual source optimization (SO), individual mask optimization (MO), SISMO, and SESMO. Finally, a hybrid SMO (HSMO) approach is proposed to take full advantage of SO, SISMO, and MO, consequently achieving superior performance.

  19. Cold neutron interferometry and its application. 2. Coherency and cold neutron spin interferometry

    International Nuclear Information System (INIS)

    Achiwa, Norio; Ebisawa, Toru

    1998-03-01

    The second workshop entitled 'Interference studies and cold neutron spin interferometry' was held on 10 and 11 March 1998 at KUR (Kyoto University Research Reactor Institute, Kumatori). Cold neutron spin interferometry is a new field. So it is very important for its development to learn the studies of X-ray and neutron optics which are rapidly developing with long history. In the workshop, the issues related to interference were reviewed such as experimental studies on cold neutron spin interferometry, theoretical and experimental approach on tunneling time, interference experiments by neutrons and its application, interference studies using synchrotron radiation, topics on silicon interferometry and quantum measurement problem and cold neutron interference experiment related to quantum measurement problem. The 8 of the presented papers are indexed individually. (J.P.N.)

  20. Interferometry to Image Surface Spots

    Science.gov (United States)

    Perrin, Guy

    2016-04-01

    I present in this lecture the technique of interferometric imaging at optical/infrared wavelengths. The technique has matured since the pioneering work of Michelson at the end of the XIXth—beginning of the XXth when he first resolved the surface of a star, Betelgeuse, with his colleague Pease. Images were obtained for the first time 20 years ago with the COAST instrument and interferometers have made constant progress to reach the minimum level where blind image reconstruction can be achieved. I briefly introduce the topic to recall why studying the surface and close environment of stars is important in some fields of stellar physics. I introduce the theory of imaging with telescopes and interferometers. I discuss the nature of interferometric data in this wavelength domain and give a few insights on the importance of getting access to visibility phases to obtain information on asymmetries of stellar surfaces. I then present the issue of aperture synthesis with a small number of telescopes, a signature of optical/infrared interferometers compared to the radio domain. Despite the impossibility to measure the phase of visibilities because of turbulence I show that useful information can be recovered from the closure phase. I eventually introduce the principles of image reconstruction and I discuss some recent results on several types of stars.

  1. Precision measurements with atom interferometry

    Science.gov (United States)

    Schubert, Christian; Abend, Sven; Schlippert, Dennis; Ertmer, Wolfgang; Rasel, Ernst M.

    2017-04-01

    Interferometry with matter waves enables precise measurements of rotations, accelerations, and differential accelerations [1-5]. This is exploited for determining fundamental constants [2], in fundamental science as e.g. testing the universality of free fall [3], and is applied for gravimetry [4], and gravity gradiometry [2,5]. At the Institut für Quantenoptik in Hannover, different approaches are pursued. A large scale device is designed and currently being set up to investigate the gain in precision for gravimetry, gradiometry, and fundamental tests on large baselines [6]. For field applications, a compact and transportable device is being developed. Its key feature is an atom chip source providing a collimated high flux of atoms which is expected to mitigate systematic uncertainties [7,8]. The atom chip technology and miniaturization benefits from microgravity experiments in the drop tower in Bremen and sounding rocket experiments [8,9] which act as pathfinders for space borne operation [10]. This contribution will report about our recent results. The presented work is supported by the CRC 1227 DQ-mat, the CRC 1128 geo-Q, the RTG 1729, the QUEST-LFS, and by the German Space Agency (DLR) with funds provided by the Federal Ministry of Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant No. DLR 50WM1552-1557. [1] P. Berg et al., Phys. Rev. Lett., 114, 063002, 2015; I. Dutta et al., Phys. Rev. Lett., 116, 183003, 2016. [2] J. B. Fixler et al., Science 315, 74 (2007); G. Rosi et al., Nature 510, 518, 2014. [3] D. Schlippert et al., Phys. Rev. Lett., 112, 203002, 2014. [4] A. Peters et al., Nature 400, 849, 1999; A. Louchet-Chauvet et al., New J. Phys. 13, 065026, 2011; C. Freier et al., J. of Phys.: Conf. Series 723, 012050, 2016. [5] J. M. McGuirk et al., Phys. Rev. A 65, 033608, 2002; P. Asenbaum et al., arXiv:1610.03832. [6] J. Hartwig et al., New J. Phys. 17, 035011, 2015. [7] H. Ahlers et al., Phys. Rev. Lett. 116, 173601

  2. A masking index for quantifying hidden glitches

    OpenAIRE

    Berti-Equille, Laure; Loh, J. M.; Dasu, T.

    2015-01-01

    Data glitches are errors in a dataset. They are complex entities that often span multiple attributes and records. When they co-occur in data, the presence of one type of glitch can hinder the detection of another type of glitch. This phenomenon is called masking. In this paper, we define two important types of masking and propose a novel, statistically rigorous indicator called masking index for quantifying the hidden glitches. We outline four cases of masking: outliers masked by missing valu...

  3. Seismic interferometry-turning noise into signal

    NARCIS (Netherlands)

    Curtis, A.; Gerstoft, P.; Sato, H.; Snieder, R.; Wapenaar, C.P.A.

    2006-01-01

    Turning noise into useful data—every geophysicist's dream? And now it seems possible. The field of seismic interferometry has at its foundation a shift in the way we think about the parts of the signal that are currently filtered out of most analyses—complicated seismic codas (the multiply scattered

  4. Monitoring civil infrastructure using satellite radar interferometry

    NARCIS (Netherlands)

    Chang, L.

    2015-01-01

    Satellite radar interferometry (InSAR) is a precise and efficient technique to monitor deformation on Earth with millimeter precision. Most InSAR applications focus on geophysical phenomena, such as earthquakes, volcanoes, or subsidence. Monitoring civil infrastructure with InSAR is relatively new,

  5. Photopolymer for Optical Holography and Holographic Interferometry

    Czech Academy of Sciences Publication Activity Database

    Květoň, M.; Lédl, Vít; Havránek, A.; Fiala, P.

    2010-01-01

    Roč. 295, č. 1 (2010), s. 107-113 ISSN 1022-1360 Institutional research plan: CEZ:AV0Z20430508 Keywords : holographic interferometry * holography * photopolymerization * recording material * refractive index Subject RIV: BH - Optics, Masers, Lasers http://onlinelibrary.wiley.com/doi/10.1002/masy.200900093/pdf

  6. Synthetic aperture radar: principles and applications

    International Nuclear Information System (INIS)

    Khan, N.A.; Yahya, K.M.

    2003-01-01

    In this paper an introduction to synthetic aperture radar is presented. Synthetic aperture radar is a relatively new remote sensing platform and the technology has matured a lot in the last two decades. This paper introduces the concepts behind SAR principles as well as the major areas where this new technology has shown additional information. (author)

  7. Contralateral tactile masking between forearms.

    Science.gov (United States)

    D'Amour, Sarah; Harris, Laurence R

    2014-03-01

    Masking effects have been demonstrated in which tactile sensitivity is affected when one touch is close to another on the body surface. Such effects are likely a result of local lateral inhibitory circuits that sharpen the spatial tuning of a given tactile receptor. Mutually inhibitory pathways have also been demonstrated between cortical tactile maps of the two halves of the body. Occasional reports have indicated that touches on one hand or forearm can affect tactile sensitivity at contralateral locations. Here, we measure the spatial tuning and effect of posture on this contralateral masking effect. Tactile sensitivity was measured on one forearm, while vibrotactile masking stimulation was applied to the opposite arm. Results were compared to sensitivity while vibrotactile stimulation was applied to a control site on the right shoulder. Sensitivity on the forearm was reduced by over 3 dB when the arms were touching and by 0.52 dB when they were held parallel. The masking effect depended on the position of the masking stimulus. Its effectiveness fell off by 1 STD when the stimulus was 29 % of arm length from the corresponding contralateral point. This long-range inhibitory effect in the tactile system suggests a surprisingly intimate relationship between the two sides of the body.

  8. Self-Rescue Mask Training

    CERN Multimedia

    2013-01-01

    Nine new self-rescue mask instructors have been trained since early 2013, which provides CERN with a total of 26 self-rescue mask instructors to date. This will allow us to meet the increasing training needs caused by the Long Shut Down LS1.   The self-rescue mask instructors have trained 1650 persons in 2012 and about 500 persons since the beginning of the year on how to wear the masks properly. We thank all the instructors and all the persons that made this training possible. Please remember that the self-rescue masks training sessions are scheduled as follows: Basic course: Tuesday and Thursday mornings (2 sessions – 8.30 AM and 10.30 AM), duration:  1.30 hour, in French and English – registration via CERN online training catalogue – Course code 077Y00. Refresher training : Monday mornings (2 sessions – 8.30 AM and 10.30 AM), duration: 1.30 hour , in French and English – registration via CERN online training catalogue &...

  9. Laser Micromachining and Information Discovery Using a Dual Beam Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Theppakuttaikomaraswamy, Senthil P. [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Lasers have proven to be among the most promising tools for micromachining because they can process features down to the size of the laser wavelength (smaller than 1 micrometer) and they provide a non-contact technology for machining. The demand for incorporating in-situ diagnostics technology into the micromachining environment is driven by the increasing need for producing micro-parts of high quality and accuracy. Laser interferometry can be used as an on-line monitoring tool and it is the aim of this work to enhance the understanding and application of Michelson interferometry principle for the in-situ diagnostics of the machining depth on the sub-micron and micron scales. micromachining is done on two different materials and a comprehensive investigation is done to control the width and depth of the machined feature. To control the width of the feature, laser micromachining is done on copper and a detailed analysis is performed. The objective of this experiment is to make a precision mask for sputtering with an array of holes on it using an Nd:YAG laser of 532 nm wavelength. The diameter of the hole is 50 μm and the spacing between holes (the distance between the centers) is 100 μm. Michelson interferometer is integrated with a laser machining system to control the depth of machining. An excimer laser of 308 nm wavelength is used for micromachining. A He-Ne laser of 632.8 nm wavelength is used as the light source for the interferometer. Interference patterns are created due to the change in the path length between the two interferometer arms. The machined depth information is obtained from the interference patterns on an oscilloscope detected by a photodiode. To compare the predicted depth by the interferometer with the true machining depth, a surface profilometer is used to measure the actual machining depth on the silicon. It is observed that the depths of machining obtained by the surface profile measurement are in accordance with the interferometer

  10. Future Looks Bright for Interferometry

    Science.gov (United States)

    2008-09-01

    First Light for the PRIMA instrument The PRIMA instrument [1] of the ESO Very Large Telescope Interferometer (VLTI) recently saw "first light" at its new home atop Cerro Paranal in Chile. When fully operational, PRIMA will boost the capabilities of the VLTI to see sources much fainter than any previous interferometers, and enable astrometric precision unmatched by any other existing astronomical facility. PRIMA will be a unique tool for the detection of exoplanets. First Light of the PRIMA Instrument ESO PR Photo 29a/08 Preparing for PRIMA "PRIMA is specifically designed to see if one star 'wobbles' to and fro because it is has unseen planetary companions", says instrument scientist Gerard van Belle. "This allows us to not only detect exoplanets, but to measure their mass." PRIMA's expected astrometric precision of tens of micro-arcseconds is unmatched by any other existing astronomical facility, whether on the ground or in orbit [2]. In addition to taking astrometric measurements PRIMA will be the key to the imaging of faint sources with the VLTI using the science instruments AMBER and MIDI. Interferometry combines the light received by two or more telescopes, concentrating on tiny differences between the signals to measure angles with exquisite precision. Using this technique PRIMA can pick out details as sharply as a single telescope with a diameter equivalent to the largest distance between the telescopes. For the VLTI, the distance between the two telescope elements is about 200 metres. The PRIMA instrument is unique amongst the VLTI instruments, in that it is effectively two interferometers in one. PRIMA will take data from two sources on the sky simultaneously: the brighter source can be used for tracking, allowing the interferometer to "stare" at the fainter source for longer than is now possible with conventional interferometers. Although there have been earlier pathfinder experiments to test this technique, PRIMA represents the first facility

  11. Electrostatic mask for active targets

    International Nuclear Information System (INIS)

    Pancin, J; Gangnant, P; Libin, J-F; Raabe, R; Roger, T; Roussel-Chomaz, P; Gibelin, J; Goth, M

    2012-01-01

    Active gas targets have been used in nuclear physics since 30 years. They are promising systems in view of the new exotic beams soon available at facilities like SPIRAL2 or FAIR, but the system can still be improved. One of the main limitation is the dynamic range in energy deposition. The energy deposited per unit length can be 3 decades higher for the beam than for the light reaction products and the risk to saturate the electronics or that the detector spark are not negligible. A simple solution using a wire plane to mask partially the beam is presented here. Some simulation has been realized and some experimental results are shown confirming the feasibility of this wire tunable mask. The mask can be used from full transparency to full opacity without degrading neither the drift electric field of the chamber nor the performances of detection of the beam or the light products.

  12. Masked Hypertension in Diabetes Mellitus

    Science.gov (United States)

    Franklin, Stanley S.; Thijs, Lutgarde; Li, Yan; Hansen, Tine W.; Boggia, José; Liu, Yanping; Asayama, Kei; Björklund-Bodegård, Kristina; Ohkubo, Takayoshi; Jeppesen, Jørgen; Torp-Pedersen, Christian; Dolan, Eamon; Kuznetsova, Tatiana; Stolarz-Skrzypek, Katarzyna; Tikhonoff, Valérie; Malyutina, Sofia; Casiglia, Edoardo; Nikitin, Yuri; Lind, Lars; Sandoya, Edgardo; Kawecka-Jaszcz, Kalina; Filipovský, Jan; Imai, Yutaka; Wang, Jiguang; Ibsen, Hans; O’Brien, Eoin; Staessen, Jan A.

    2013-01-01

    Although distinguishing features of masked hypertension in diabetics are well known, the significance of antihypertensive treatment on clinical practice decisions has not been fully explored. We analyzed 9691 subjects from the population-based 11-country International Database on Ambulatory Blood Pressure in Relation to Cardiovascular Outcomes. Prevalence of masked hypertension in untreated normotensive participants was higher (Phypertensives tended to be higher than in normotensives (hazard rate [HR], 1.96; 95% confidence interval [CI], 0.97–3.97; P=0.059), similar to untreated stage 1 hypertensives (HR, 1.07; CI, 0.58–1.98; P=0.82), but less than stage 2 hypertensives (HR, 0.53; CI, 0.29–0.99; P=0.048). In contrast, cardiovascular risk was not significantly different in antihypertensive-treated diabetic-masked hypertensives, as compared with the normotensive comparator group (HR, 1.13; CI, 0.54–2.35; P=0.75), stage 1 hypertensives (HR, 0.91; CI, 0.49–1.69; P=0.76), and stage 2 hypertensives (HR, 0.65; CI, 0.35–1.20; P=0.17). In the untreated diabetic-masked hypertensive population, mean conventional systolic/diastolic blood pressure was 129.2±8.0/76.0±7.3 mm Hg, and mean daytime systolic/diastolic blood pressure 141.5±9.1/83.7±6.5 mm Hg. In conclusion, masked hypertension occurred in 29% of untreated diabetics, had comparable cardiovascular risk as stage 1 hypertension, and would require considerable reduction in conventional blood pressure to reach daytime ambulatory treatment goal. Importantly, many hypertensive diabetics when receiving antihypertensive therapy can present with normalized conventional and elevated ambulatory blood pressure that mimics masked hypertension. PMID:23478096

  13. Results from a multi aperture Fizeau interferometer ground testbed: demonstrator for a future space-based interferometer

    Science.gov (United States)

    Baccichet, Nicola; Caillat, Amandine; Rakotonimbahy, Eddy; Dohlen, Kjetil; Savini, Giorgio; Marcos, Michel

    2016-08-01

    In the framework of the European FP7-FISICA (Far Infrared Space Interferometer Critical Assessment) program, we developed a miniaturized version of the hyper-telescope to demonstrate multi-aperture interferometry on ground. This setup would be ultimately integrated into a CubeSat platform, therefore providing the first real demonstrator of a multi aperture Fizeau interferometer in space. In this paper, we describe the optical design of the ground testbed and the data processing pipeline implemented to reconstruct the object image from interferometric data. As a scientific application, we measured the Sun diameter by fitting a limb-darkening model to our data. Finally, we present the design of a CubeSat platform carrying this miniature Fizeau interferometer, which could be used to monitor the Sun diameter over a long in-orbit period.

  14. SAR interferometry applications on active volcanoes. State of the art and perspectives for volcano monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Puglisi, G.; Coltelli, M. [Istituto Nazionale di Geofisica e Vulcanologia, Catania (Italy)

    2001-02-01

    In this paper the application of the Synthetic Aperture Radar Interferometry (INSAR) on volcanology is analysed. Since it is not a real novelty among the different applications of INSAR in Earth Observation activities, at the beginning of this paper it is analysed the state of the art of the researches in this field. During the discussion, the point of view of volcanologists is favoured because it is considered that the first applications were often badly aimed. Consequently, the initial INSAR performances in volcanology were overrated with respect to the real capabilities of this technique. This fact lead to discover some unexpected limitations in INSAR usage in volcano monitoring, but, at the same time, spurred on scientists to overcome these drawbacks. The results achieved recently allow to better apply SAR to volcanology; in the paper a possible operative work-plan aimed at introducing INSAR in the volcano monitoring system is presented.

  15. Capabilities and prospects of the East Asia Very Long Baseline Interferometry Network

    Science.gov (United States)

    An, T.; Sohn, B. W.; Imai, H.

    2018-02-01

    The very long baseline interferometry (VLBI) technique offers angular resolutions superior to any other instruments at other wavelengths, enabling unique science applications of high-resolution imaging of radio sources and high-precision astrometry. The East Asia VLBI Network (EAVN) is a collaborative effort in the East Asian region. The EAVN currently consists of 21 telescopes with diverse equipment configurations and frequency setups, allowing flexible subarrays for specific science projects. The EAVN provides the highest resolution of 0.5 mas at 22 GHz, allowing the fine imaging of jets in active galactic nuclei, high-accuracy astrometry of masers and pulsars, and precise spacecraft positioning. The soon-to-be-operational Five-hundred-meter Aperture Spherical radio Telescope (FAST) will open a new era for the EAVN. This state-of-the-art VLBI array also provides easy access to and crucial training for the burgeoning Asian astronomical community. This Perspective summarizes the status, capabilities and prospects of the EAVN.

  16. Walking through Apertures in Individuals with Stroke.

    Directory of Open Access Journals (Sweden)

    Daisuke Muroi

    Full Text Available Walking through a narrow aperture requires unique postural configurations, i.e., body rotation in the yaw dimension. Stroke individuals may have difficulty performing the body rotations due to motor paralysis on one side of their body. The present study was therefore designed to investigate how successfully such individuals walk through apertures and how they perform body rotation behavior.Stroke fallers (n = 10, stroke non-fallers (n = 13, and healthy controls (n = 23 participated. In the main task, participants walked for 4 m and passed through apertures of various widths (0.9-1.3 times the participant's shoulder width. Accidental contact with the frame of an aperture and kinematic characteristics at the moment of aperture crossing were measured. Participants also performed a perceptual judgment task to measure the accuracy of their perceived aperture passability.Stroke fallers made frequent contacts on their paretic side; however, the contacts were not frequent when they penetrated apertures from their paretic side. Stroke fallers and non-fallers rotated their body with multiple steps, rather than a single step, to deal with their motor paralysis. Although the minimum passable width was greater for stroke fallers, the body rotation angle was comparable among groups. This suggests that frequent contact in stroke fallers was due to insufficient body rotation. The fact that there was no significant group difference in the perceived aperture passability suggested that contact occurred mainly due to locomotor factors rather than perceptual factors. Two possible explanations (availability of vision and/or attention were provided as to why accidental contact on the paretic side did not occur frequently when stroke fallers penetrated the apertures from their paretic side.

  17. Fast Parametric Beamformer for Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt; Tomov, Borislav Gueorguiev

    2008-01-01

    This paper describes the design and implementation of a real-time delay-and-sum synthetic aperture beamformer. The beamforming delays and apodization coefficients are described parametrically. The image is viewed as a set of independent lines that are defined in 3-D by their origin, direction....... The implementation of the beamformer is optimized with respect to the architecture of a novel synthetic aperture real-time ultrasound scanner (SARUS), in which 4 channels are processed by the same set of field-programmable gate arrays (FPGA). In synthetic transmit aperture imaging, low-resolution images are formed...

  18. Forest canopy height estimation using double-frequency repeat pass interferometry

    Science.gov (United States)

    Karamvasis, Kleanthis; Karathanassi, Vassilia

    2015-06-01

    In recent years, many efforts have been made in order to assess forest stand parameters from remote sensing data, as a mean to estimate the above-ground carbon stock of forests in the context of the Kyoto protocol. Synthetic aperture radar interferometry (InSAR) techniques have gained traction in last decade as a viable technology for vegetation parameter estimation. Many works have shown that forest canopy height, which is a critical parameter for quantifying the terrestrial carbon cycle, can be estimated with InSAR. However, research is still needed to understand further the interaction of SAR signals with forest canopy and to develop an operational method for forestry applications. This work discusses the use of repeat pass interferometry with ALOS PALSAR (L band) HH polarized and COSMO Skymed (X band) HH polarized acquisitions over the Taxiarchis forest (Chalkidiki, Greece), in order to produce accurate digital elevation models (DEMs) and estimate canopy height with interferometric processing. The effect of wavelength-dependent penetration depth into the canopy is known to be strong, and could potentially lead to forest canopy height mapping using dual-wavelength SAR interferometry at X- and L-band. The method is based on scattering phase center separation at different wavelengths. It involves the generation of a terrain elevation model underneath the forest canopy from repeat-pass L-band InSAR data as well as the generation of a canopy surface elevation model from repeat pass X-band InSAR data. The terrain model is then used to remove the terrain component from the repeat pass interferometric X-band elevation model, so as to enable the forest canopy height estimation. The canopy height results were compared to a field survey with 6.9 m root mean square error (RMSE). The effects of vegetation characteristics, SAR incidence angle and view geometry, and terrain slope on the accuracy of the results have also been studied in this work.

  19. Advanced subsidence monitoring using persistent scatterer interferometry for Jharia Coal Field, Dhanbad, India

    Science.gov (United States)

    Thapa, Shailaja; Chatterjee, R. S.; Kumar, Dheeraj; Singh, K. B.; Sengar, Vivek

    2017-10-01

    This paper presents a spatiotemporal study of surface subsidence over urban area due to coal mining using Persistent scatterer interferometry. In the past few years Differential Interferometric Synthetic Aperture Radar has emerged as a very useful remote sensing technique for measuring land subsidence. It plays a vital role in insitu subsidence prediction of coal mining area. However there are some limitation viz. atmospheric decorrelation, temporal decorrelation and spatial decorrelation with conventional D-InSAR techniques, which can be overcome up to certain extent by using multiinterferogram framework approach. The Persistent Scatterer interferometry technique comprises of more number of SAR datasets, it only concentrates over the pixel which remain coherent over long time period. Persistent Scatterer interferometry makes deformation measurement on permanent scattering location for the targeted ground surface. Mainly, these permanent scatterer are manmade features like metallic bridges, dams, antennae roof of buildings etc. apart that some permanent scatterer may comprise of prominent stable natural targets. The results obtained from PS-InSAR gives more precised measurement of surface deformation. Total eight ALOS PALSAR scenes covering the time period from 2007 to 2010 have been utilized to produce ground deformation map using PSInSAR techniques for Jharia Coal field, Dhanbad. This is proven technique, which helps to identify the persistent land surface movement .The results were analyzed Sijua area in Jharia coalfield. The subsidence fringes were demarcated over the entire study area. The PSInSAR results were validated using precision leveling data provided by mining authorities. The results demonstrates that PSInSAR can be used as potential tool to highlight the subsidence prone area depending upon the spatial and temporal coherency of SAR data.

  20. Methodology for heritage conservation in Belgium based on multi-temporal interferometry

    Science.gov (United States)

    Bejarano-Urrego, L.; Verstrynge, E.; Shimoni, M.; Lopez, J.; Walstra, J.; Declercq, P.-Y.; Derauw, D.; Hayen, R.; Van Balen, K.

    2017-09-01

    Soil differential settlements that cause structural damage to heritage buildings are precipitating cultural and economic value losses. Adequate damage assessment as well as protection and preservation of the built patrimony are priorities at national and local levels, so they require advanced integration and analysis of environmental, architectural and historical parameters. The GEPATAR project (GEotechnical and Patrimonial Archives Toolbox for ARchitectural conservation in Belgium) aims to create an online interactive geo-information tool that allows the user to view and to be informed about the Belgian heritage buildings at risk due to differential soil settlements. Multi-temporal interferometry techniques (MTI) have been proven to be a powerful technique for analyzing earth surface deformation patterns through time series of Synthetic Aperture Radar (SAR) images. These techniques allow to measure ground movements over wide areas at high precision and relatively low cost. In this project, Persistent Scatterer Synthetic Aperture Radar Interferometry (PS-InSAR) and Multidimensional Small Baseline Subsets (MSBAS) are used to measure and monitor the temporal evolution of surface deformations across Belgium. This information is integrated with the Belgian heritage data by means of an interactive toolbox in a GIS environment in order to identify the level of risk. At country scale, the toolbox includes ground deformation hazard maps, geological information, location of patrimony buildings and land use; while at local scale, it includes settlement rates, photographic and historical surveys as well as architectural and geotechnical information. Some case studies are investigated by means of on-site monitoring techniques and stability analysis to evaluate the applied approaches. This paper presents a description of the methodology being implemented in the project together with the case study of the Saint Vincent's church which is located on a former colliery zone. For

  1. Masked hypertension in diabetes mellitus

    DEFF Research Database (Denmark)

    Franklin, Stanley S; Thijs, Lutgarde; Li, Yan

    2013-01-01

    Although distinguishing features of masked hypertension in diabetics are well known, the significance of antihypertensive treatment on clinical practice decisions has not been fully explored. We analyzed 9691 subjects from the population-based 11-country International Database on Ambulatory Blood...

  2. Gamma camera with reflectivity mask

    International Nuclear Information System (INIS)

    Stout, K.J.

    1980-01-01

    In accordance with the present invention there is provided a radiographic camera comprising: a scintillator; a plurality of photodectors positioned to face said scintillator; a plurality of masked regions formed upon a face of said scintillator opposite said photdetectors and positioned coaxially with respective ones of said photodetectors for decreasing the amount of internal reflection of optical photons generated within said scintillator. (auth)

  3. Investigating the creeping section of the San Andreas Fault using ALOS PALSAR interferometry

    Science.gov (United States)

    Agram, P. S.; Wortham, C.; Zebker, H. A.

    2010-12-01

    In recent years, time-series InSAR techniques have been used to study the temporal characteristics of various geophysical phenomena that produce surface deformation including earthquakes and magma migration in volcanoes. Conventional InSAR and time-series InSAR techniques have also been successfully used to study aseismic creep across faults in urban areas like the Northern Hayward Fault in California [1-3]. However, application of these methods to studying the time-dependent creep across the Central San Andreas Fault using C-band ERS and Envisat radar satellites has resulted in limited success. While these techniques estimate the average long-term far-field deformation rates reliably, creep measurement close to the fault (J. Sukhatme, Slip along the Hayward fault, California, estimated from space-based synthetic aperture radar interferometry, Geology,26, 559-562, 1998. [2] Ferretti, A., C. Prati and F. Rocca, Permanent Scatterers in SAR Interferometry, IEEE Trans. Geosci. Remote Sens., 39, 8-20, 2001. [3] Lanari, R.,F. Casu, M. Manzo, and P. Lundgren, Application of SBAS D- InSAR technique to fault creep: A case study of the Hayward Fault, California. Remote Sensing of Environment, 109(1), 20-28, 2007. [4] Shanker, A. P., and H. Zebker, Edgelist phase unwrapping algorithm for time-series InSAR. J. Opt. Soc. Am. A, 37(4), 2010.

  4. Calculation and Error Analysis of a Digital Elevation Model of Hofsjokull, Iceland from SAR Interferometry

    Science.gov (United States)

    Barton, Jonathan S.; Hall, Dorothy K.; Sigurosson, Oddur; Williams, Richard S., Jr.; Smith, Laurence C.; Garvin, James B.

    1999-01-01

    Two ascending European Space Agency (ESA) Earth Resources Satellites (ERS)-1/-2 tandem-mode, synthetic aperture radar (SAR) pairs are used to calculate the surface elevation of Hofsjokull, an ice cap in central Iceland. The motion component of the interferometric phase is calculated using the 30 arc-second resolution USGS GTOPO30 global digital elevation product and one of the ERS tandem pairs. The topography is then derived by subtracting the motion component from the other tandem pair. In order to assess the accuracy of the resultant digital elevation model (DEM), a geodetic airborne laser-altimetry swath is compared with the elevations derived from the interferometry. The DEM is also compared with elevations derived from a digitized topographic map of the ice cap from the University of Iceland Science Institute. Results show that low temporal correlation is a significant problem for the application of interferometry to small, low-elevation ice caps, even over a one-day repeat interval, and especially at the higher elevations. Results also show that an uncompensated error in the phase, ramping from northwest to southeast, present after tying the DEM to ground-control points, has resulted in a systematic error across the DEM.

  5. Mapping three-dimensional surface deformation caused by the 2010 Haiti earthquake using advanced satellite radar interferometry.

    Directory of Open Access Journals (Sweden)

    Hyung-Sup Jung

    Full Text Available Mapping three-dimensional (3D surface deformation caused by an earthquake is very important for the environmental, cultural, economic and social sustainability of human beings. Synthetic aperture radar (SAR systems made it possible to measure precise 3D deformations by combining SAR interferometry (InSAR and multiple aperture interferometry (MAI. In this paper, we retrieve the 3D surface deformation field of the 2010 Haiti earthquake which occurred on January 12, 2010 by a magnitude 7.0 Mw by using the advanced interferometric technique that integrates InSAR and MAI data. The surface deformation has been observed by previous researchers using the InSAR and GPS method, but 3D deformation has not been measured yet due to low interferometric coherence. The combination of InSAR and MAI were applied to the ALOS PALSAR ascending and descending pairs, and were validated with the GPS in-situ measurements. The archived measurement accuracy was as little as 1.85, 5.49 and 3.08 cm in the east, north and up directions, respectively. This result indicates that the InSAR/MAI-derived 3D deformations are well matched with the GPS deformations. The 3D deformations are expected to allow us to improve estimation of the area affected by the 2010 Haiti earthquake.

  6. Mapping three-dimensional surface deformation caused by the 2010 Haiti earthquake using advanced satellite radar interferometry.

    Science.gov (United States)

    Jung, Hyung-Sup; Hong, Soo-Min

    2017-01-01

    Mapping three-dimensional (3D) surface deformation caused by an earthquake is very important for the environmental, cultural, economic and social sustainability of human beings. Synthetic aperture radar (SAR) systems made it possible to measure precise 3D deformations by combining SAR interferometry (InSAR) and multiple aperture interferometry (MAI). In this paper, we retrieve the 3D surface deformation field of the 2010 Haiti earthquake which occurred on January 12, 2010 by a magnitude 7.0 Mw by using the advanced interferometric technique that integrates InSAR and MAI data. The surface deformation has been observed by previous researchers using the InSAR and GPS method, but 3D deformation has not been measured yet due to low interferometric coherence. The combination of InSAR and MAI were applied to the ALOS PALSAR ascending and descending pairs, and were validated with the GPS in-situ measurements. The archived measurement accuracy was as little as 1.85, 5.49 and 3.08 cm in the east, north and up directions, respectively. This result indicates that the InSAR/MAI-derived 3D deformations are well matched with the GPS deformations. The 3D deformations are expected to allow us to improve estimation of the area affected by the 2010 Haiti earthquake.

  7. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knox, Hunter Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); James, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lee, Rebekah [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cole, Chris [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry) are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.

  8. Joint Multi-baseline SAR Interferometry

    Directory of Open Access Journals (Sweden)

    S. Tebaldini

    2005-12-01

    Full Text Available We propose a technique to provide interferometry by combining multiple images of the same area. This technique differs from the multi-baseline approach in literature as (a it exploits all the images simultaneously, (b it performs a spectral shift preprocessing to remove most of the decorrelation, and (c it exploits distributed targets. The technique is mainly intended for DEM generation at centimetric accuracy, as well as for differential interferometry. The problem is framed in the contest of single-input multiple-output (SIMO channel estimation via the cross-relations (CR technique and the resulting algorithm provides significant improvements with respect to conventional approaches based either on independent analysis of single interferograms or multi-baselines phase analysis of single pixels of current literature, for those targets that are correlated in all the images, like for long-term coherent areas, or for acquisitions taken with a short revisit time (as those gathered with future satellite constellations.

  9. Kinetic Titration Series with Biolayer Interferometry

    Science.gov (United States)

    Frenzel, Daniel; Willbold, Dieter

    2014-01-01

    Biolayer interferometry is a method to analyze protein interactions in real-time. In this study, we illustrate the usefulness to quantitatively analyze high affinity protein ligand interactions employing a kinetic titration series for characterizing the interactions between two pairs of interaction patterns, in particular immunoglobulin G and protein G B1 as well as scFv IC16 and amyloid beta (1–42). Kinetic titration series are commonly used in surface plasmon resonance and involve sequential injections of analyte over a desired concentration range on a single ligand coated sensor chip without waiting for complete dissociation between the injections. We show that applying this method to biolayer interferometry is straightforward and i) circumvents problems in data evaluation caused by unavoidable sensor differences, ii) saves resources and iii) increases throughput if screening a multitude of different analyte/ligand combinations. PMID:25229647

  10. Optical interferometry for biology and medicine

    CERN Document Server

    Nolte, David D

    2012-01-01

    This book presents the fundamental physics of optical interferometry as applied to biophysical, biological and medical research. Interference is at the core of many types of optical detection and is a powerful probe of cellular and tissue structure in interfererence microscopy and in optical coherence tomography. It is also the root cause of speckle and other imaging artefacts that limit range and resolution. For biosensor applications, the inherent sensitivity of interferometry enables ultrasensitive detection of molecules in biological samples for medical diagnostics. In this book, emphasis is placed on the physics of light scattering, beginning with the molecular origins of refraction as light propagates through matter, and then treating the stochastic nature of random fields that ultimately dominate optical imaging in cells and tissue. The physics of partial coherence plays a central role in the text, with a focus on coherence detection techniques that allow information to be selectively detected out of ...

  11. "The Mask Who Wasn't There": Visual Masking Effect with the Perceptual Absence of the Mask

    Science.gov (United States)

    Rey, Amandine Eve; Riou, Benoit; Muller, Dominique; Dabic, Stéphanie; Versace, Rémy

    2015-01-01

    Does a visual mask need to be perceptually present to disrupt processing? In the present research, we proposed to explore the link between perceptual and memory mechanisms by demonstrating that a typical sensory phenomenon (visual masking) can be replicated at a memory level. Experiment 1 highlighted an interference effect of a visual mask on the…

  12. Fabry-Perot interferometry: astronomical applications

    International Nuclear Information System (INIS)

    Pismis, P.

    1982-01-01

    Some properties of the interference of light are presented with emphasis on interferometry by means of a Fabry-Perot etalon. The application of the etalon with a focal reducer to astronomical problems is discussed related in particular to the determination of radial velocities of extended emission objects, in galactic and extragalactic nebulae. Mention is also made of the work carried out in Mexico in this field as well as of developments under way. (author)

  13. Laser interferometry for the Big Bang Observer

    International Nuclear Information System (INIS)

    Harry, Gregory M; Fritschel, Peter; Shaddock, Daniel A; Folkner, William; Phinney, E Sterl

    2006-01-01

    The Big Bang Observer is a proposed space-based gravitational-wave detector intended as a follow on mission to the Laser Interferometer Space Antenna (LISA). It is designed to detect the stochastic background of gravitational waves from the early universe. We discuss how the interferometry can be arranged between three spacecraft for this mission and what research and development on key technologies are necessary to realize this scheme

  14. Refining molecular potentials using atom interferometry

    International Nuclear Information System (INIS)

    Forrey, R.C.; Kharchenko, V.; Dalgarno, A.; You, L.

    1997-01-01

    We present a theoretical study of the index of refraction of argon for the propagation of sodium matter waves. The sensitivity of the index of refraction to the details of the molecular potential curve is analyzed. Our calculations reveal velocity-dependent oscillations in the index of refraction that may be detectable, particularly at low temperatures, in atom interferometry measurements. A procedure for refining molecular potential curves is outlined. copyright 1997 The American Physical Society

  15. Monitoring civil infrastructure using satellite radar interferometry

    OpenAIRE

    Chang, L.

    2015-01-01

    Satellite radar interferometry (InSAR) is a precise and efficient technique to monitor deformation on Earth with millimeter precision. Most InSAR applications focus on geophysical phenomena, such as earthquakes, volcanoes, or subsidence. Monitoring civil infrastructure with InSAR is relatively new, with potential for operational applications, but currently not exploited to full advantage. Here we investigate how to optimally assess and monitor the structural health of civil infrastructure usi...

  16. Laser interferometry for the Big Bang Observer

    OpenAIRE

    Harry, Gregory M.; Fritschel, Peter; Shaddock, Daniel A.; Folkner, William; Phinney, E. Sterl

    2006-01-01

    The Big Bang Observer is a proposed space-based gravitational-wave detector intended as a follow on mission to the Laser Interferometer Space Antenna (LISA). It is designed to detect the stochastic background of gravitational waves from the early universe. We discuss how the interferometry can be arranged between three spacecraft for this mission and what research and development on key technologies are necessary to realize this scheme.

  17. Laser interferometry for the Big Bang Observer

    Energy Technology Data Exchange (ETDEWEB)

    Harry, Gregory M [LIGO Laboratory, Massachusetts Institute of Technology, NW17-161, Cambridge, MA 02139 (United States); Fritschel, Peter [LIGO Laboratory, Massachusetts Institute of Technology, NW17-161, Cambridge, MA 02139 (United States); Shaddock, Daniel A [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Folkner, William [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Phinney, E Sterl [California Institute of Technology, Pasadena, CA 91125 (United States)

    2006-08-07

    The Big Bang Observer is a proposed space-based gravitational-wave detector intended as a follow on mission to the Laser Interferometer Space Antenna (LISA). It is designed to detect the stochastic background of gravitational waves from the early universe. We discuss how the interferometry can be arranged between three spacecraft for this mission and what research and development on key technologies are necessary to realize this scheme.

  18. Sinusoidal masks for single channel speech separation

    DEFF Research Database (Denmark)

    Mowlaee, Pejman; Christensen, Mads Græsbøll; Jensen, Søren Holdt

    2010-01-01

    In this paper we present a new approach for binary and soft masks used in single-channel speech separation. We present a novel approach called the sinusoidal mask (binary mask and Wiener filter) in a sinusoidal space. Theoretical analysis is presented for the proposed method, and we show that the......In this paper we present a new approach for binary and soft masks used in single-channel speech separation. We present a novel approach called the sinusoidal mask (binary mask and Wiener filter) in a sinusoidal space. Theoretical analysis is presented for the proposed method, and we show...... that the proposed method is able to minimize the target speech distortion while suppressing the crosstalk to a predetermined threshold. It is observed that compared to the STFTbased masks, the proposed sinusoidal masks improve the separation performance in terms of objective measures (SSNR and PESQ) and are mostly...

  19. Physiological functioning of the ear and masking

    Science.gov (United States)

    1984-01-01

    The physiological functions of the ear and the role masking plays in speech communication are examined. Topics under investigation include sound analysis of the ear, the aural reflex, and various types of noise masking.

  20. ULYSSES JUPITER HISCALE COMPOSITION APERTURE ION COUNTS

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of HISCALE Composition Aperture (WARTD) ion counts. These measurements were taken during the Ulysses Jupiter encounter 1991-12-31 to...

  1. Beam Combination for Sparse Aperture Telescopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for funding to continue development of an alternative beam combiner for Stellar Imager (SI), a 30-aperture, interferometric telescope chosen as one...

  2. Interferometry and synthesis in radio astronomy

    CERN Document Server

    Thompson, A Richard; Swenson Jr , George W

    2017-01-01

    This book is open access under a CC BY-NC 4.0 license. The third edition of this indispensable book in radio interferometry provides extensive updates to the second edition, including results and technical advances from the past decade; discussion of arrays that now span the full range of the radio part of the electromagnetic spectrum observable from the ground, 10 MHz to 1 THz; an analysis of factors that affect array speed; and an expanded discussion of digital signal-processing techniques and of scintillation phenomena and the effects of atmospheric water vapor on image distortion, among many other topics. With its comprehensiveness and detailed exposition of all aspects of the theory and practice of radio interferometry and synthesis imaging, this book has established itself as a standard reference in the field. It begins with an overview of the basic principles of radio astronomy, a short history of the development of radio interferometry, and an elementary discussion of the operation of an interferomete...

  3. 3D-printed coded apertures for x-ray backscatter radiography

    Science.gov (United States)

    Muñoz, André A. M.; Vella, Anna; Healy, Matthew J. F.; Lane, David W.; Jupp, Ian; Lockley, David

    2017-09-01

    Many different mask patterns can be used for X-ray backscatter imaging using coded apertures, which can find application in the medical, industrial and security sectors. While some of these patterns may be considered to have a self-supporting structure, this is not the case for some of the most frequently used patterns such as uniformly redundant arrays or any pattern with a high open fraction. This makes mask construction difficult and usually requires a compromise in its design by drilling holes or adopting a no two holes touching version of the original pattern. In this study, this compromise was avoided by 3D printing a support structure that was then filled with a radiopaque material to create the completed mask. The coded masks were manufactured using two different methods, hot cast and cold cast. Hot casting involved casting a bismuth alloy at 80°C into the 3D printed acrylonitrile butadiene styrene mould which produced an absorber with density of 8.6 g cm-3. Cold casting was undertaken at room temperature, when a tungsten/epoxy composite was cast into a 3D printed polylactic acid mould. The cold cast procedure offered a greater density of around 9.6 to 10 g cm-3 and consequently greater X-ray attenuation. It was also found to be much easier to manufacture and more cost effective. A critical review of the manufacturing procedure is presented along with some typical images. In both cases the 3D printing process allowed square apertures to be created avoiding their approximation by circular holes when conventional drilling is used.

  4. Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, J. T., E-mail: jtleona01@gmail.com; Yonkee, B. P.; Cohen, D. A.; Megalini, L.; Speck, J. S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Lee, S. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States); DenBaars, S. P.; Nakamura, S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States)

    2016-01-18

    We demonstrate a III-nitride nonpolar vertical-cavity surface-emitting laser (VCSEL) with a photoelectrochemically (PEC) etched aperture. The PEC lateral undercut etch is used to selectively remove the multi-quantum well (MQW) region outside the aperture area, defined by an opaque metal mask. This PEC aperture (PECA) creates an air-gap in the passive area of the device, allowing one to achieve efficient electrical confinement within the aperture, while simultaneously achieving a large index contrast between core of the device (the MQW within the aperture) and the lateral cladding of the device (the air-gap formed by the PEC etch), leading to strong lateral confinement. Scanning electron microscopy and focused ion-beam analysis is used to investigate the precision of the PEC etch technique in defining the aperture. The fabricated single mode PECA VCSEL shows a threshold current density of ∼22 kA/cm{sup 2} (25 mA), with a peak output power of ∼180 μW, at an emission wavelength of 417 nm. The near-field emission profile shows a clearly defined single linearly polarized (LP) mode profile (LP{sub 12,1}), which is in contrast to the filamentary lasing that is often observed in III-nitride VCSELs. 2D mode profile simulations, carried out using COMSOL, give insight into the different mode profiles that one would expect to be displayed in such a device. The experimentally observed single mode operation is proposed to be predominantly a result of poor current spreading in the device. This non-uniform current spreading results in a higher injected current at the periphery of the aperture, which favors LP modes with high intensities near the edge of the aperture.

  5. Comparing Laser Interferometry and Atom Interferometry Approaches to Space-Based Gravitational-Wave Measurement

    Science.gov (United States)

    Baker, John; Thorpe, Ira

    2012-01-01

    Thoroughly studied classic space-based gravitational-wave missions concepts such as the Laser Interferometer Space Antenna (LISA) are based on laser-interferometry techniques. Ongoing developments in atom-interferometry techniques have spurred recently proposed alternative mission concepts. These different approaches can be understood on a common footing. We present an comparative analysis of how each type of instrument responds to some of the noise sources which may limiting gravitational-wave mission concepts. Sensitivity to laser frequency instability is essentially the same for either approach. Spacecraft acceleration reference stability sensitivities are different, allowing smaller spacecraft separations in the atom interferometry approach, but acceleration noise requirements are nonetheless similar. Each approach has distinct additional measurement noise issues.

  6. Apodised aperture assembly for high power lasers

    International Nuclear Information System (INIS)

    Bliss, E.S.; Speck, D.R.

    1975-01-01

    An apodized aperture assembly using absorbing liquid or solid to vary transmission over the cross section thereof is used to minimize deleterious diffraction effects in high power lasers. By employing, for example, an absorbing liquid of varying optical density to obtain the transmission profile, a circular aperture of this type can be used to minimize diffraction effects, thereby substantially improving the performance of a high power laser system. (U.S.)

  7. Parametric Transverse Patterns in Broad Aperture Lasers

    DEFF Research Database (Denmark)

    Grigorieva, E.V.; Kashchenko, S.A.; Mosekilde, Erik

    1998-01-01

    Parametrically generated optical patterns are investigated for finite and large-scale transverse aperture lasers. Standing and rotating patterns as well as periodic and chaotic pattern alternations are described in the framework of the amplitude equation formalism. Sensitive dependence on the geo......Parametrically generated optical patterns are investigated for finite and large-scale transverse aperture lasers. Standing and rotating patterns as well as periodic and chaotic pattern alternations are described in the framework of the amplitude equation formalism. Sensitive dependence...

  8. Improved achromatization of phase mask coronagraphs using colored apodization

    Science.gov (United States)

    N'diaye, M.; Dohlen, K.; Cuevas, S.; Soummer, R.; Sánchez-Pérez, C.; Zamkotsian, F.

    2012-02-01

    Context. For direct imaging of exoplanets, a stellar coronagraph helps to remove the image of an observed bright star by attenuating the diffraction effects caused by the telescope aperture of diameter D. The dual zone phase mask (DZPM) coronagraph constitutes a promising concept since it theoretically offers a small inner working angle (IWA ~ λ0/D where λ0 denotes the central wavelength of the spectral range Δλ), good achromaticity, and high starlight rejection, typically reaching a 106 contrast at 5 λ0/D from the star over a spectral bandwidth Δλ/λ0 of 25% (similar to H-band). This last value proves to be encouraging for broadband imaging of young and warm Jupiter-like planets. Aims: Contrast levels higher than 106 are, however, required for observing older and/or less massive companions over a finite spectral bandwidth. An achromatization improvement of the DZPM coronagraph is therefore mandatory to reach such good performance. Methods: In its design, the DZPM coronagraph uses a gray (or achromatic) apodization. We replaced it by a colored apodization to increase the performance of this coronagraphic system over a wide spectral range. This innovative concept, called colored apodizer phase mask (CAPM) coronagraph, is defined to reach the highest contrast in the exoplanet search area. Once this has been done, we study the performance of the CAPM coronagraph in the presence of different errors to evaluate the sensitivity of our concept. Results: A 2.5 contrast gain is estimated from the performance provided by the CAPM coronagraph with respect to that of the DZPM coronagraph. A 2.2 × 10-8 intensity level at 5 λ0/D separation is then theoretically achieved with the CAPM coronagraph in the presence of a clear circular aperture and a 25% bandwidth. In addition, our studies show that our concept is less sensitive to low than to high-order aberrations for a given value of rms wavefront errors.

  9. Quantum Interferometry in Phase Space Theory and Applications

    CERN Document Server

    Suda, Martin

    2006-01-01

    Quantum Interferometry in Phase Space is primarily concerned with quantum-mechanical distribution functions and their applications in quantum optics and neutron interferometry. In the first part of the book, the author describes the phase-space representation of quantum optical phenomena such as coherent and squeezed states. Applications to interferometry, e.g. in beam splitters and fiber networks, are also presented. In the second part of the book, the theoretical formalism is applied to neutron interferometry, including the dynamical theory of diffraction, coherence properties of superposed beams, and dephasing effects.

  10. Computational mask defect review for contamination and haze inspections

    Science.gov (United States)

    Morgan, Paul; Rost, Daniel; Price, Daniel; Corcoran, Noel; Satake, Masaki; Hu, Peter; Peng, Danping; Yonenaga, Dean; Tolani, Vikram; Wolf, Yulian; Shah, Pinkesh

    2013-09-01

    As optical lithography continues to extend into sub-0.35 k1 regime, mask defect inspection and subsequent review has become tremendously challenging, and indeed the largest component to mask manufacturing cost. The routine use of various resolution enhancement techniques (RET) have resulted in complex mask patterns, which together with the need to detect even smaller defects due to higher MEEFs, now requires an inspection engineer to use combination of inspection modes. This is achieved in 193nm AeraTM mask inspection systems wherein masks are not only inspected at their scanner equivalent aerial exposure conditions, but also at higher Numerical Aperture resolution, and special reflected-light, and single-die contamination modes, providing better coverage over all available patterns, and defect types. Once the required defects are detected by the inspection system, comprehensively reviewing and dispositioning each defect then becomes the Achilles heel of the overall mask inspection process. Traditionally, defects have been reviewed manually by an operator, which makes the process error-prone especially given the low-contrast in the convoluted aerial images. Such manual review also limits the quality and quantity of classifications in terms of the different types of characterization and number of defects that can practically be reviewed by a person. In some ways, such manual classification limits the capability of the inspection tool itself from being setup to detect smaller defects since it often results in many more defects that need to be then manually reviewed. Paper 8681-109 at SPIE Advanced Lithography 2013 discussed an innovative approach to actinic mask defect review using computational technology, and focused on Die-to-Die transmitted aerial and high-resolution inspections. In this approach, every defect is characterized in two different ways, viz., quantitatively in terms of its print impact on wafer, and qualitatively in terms of its nature and origin in

  11. Ergonomic evaluation of pilot oxygen mask designs

    NARCIS (Netherlands)

    Lee, W.; Yang, Xiaopeng; Jung, Daehan; Park, Seikwon; Kim, Heeeun; You, Heecheon

    2018-01-01

    A revised pilot oxygen mask design was developed for better fit to the Korean Air Force pilots’ faces. The present study compared an existing pilot oxygen mask and a prototype of the revised mask design with 88 Korean Air Force pilots in terms of subjective discomfort, facial contact pressure,

  12. 21 CFR 868.5570 - Nonrebreathing mask.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nonrebreathing mask. 868.5570 Section 868.5570...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5570 Nonrebreathing mask. (a) Identification. A nonrebreathing mask is a device fitting over a patient's face to administer oxygen. It utilizes...

  13. 21 CFR 868.5600 - Venturi mask.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Venturi mask. 868.5600 Section 868.5600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5600 Venturi mask. (a) Identification. A venturi mask is a...

  14. 21 CFR 868.5580 - Oxygen mask.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oxygen mask. 868.5580 Section 868.5580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5580 Oxygen mask. (a) Identification. An oxygen mask is a device...

  15. 21 CFR 868.5590 - Scavenging mask.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Scavenging mask. 868.5590 Section 868.5590 Food... DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5590 Scavenging mask. (a) Identification. A scavenging mask is a device positioned over a patient's nose to deliver anesthetic or analgesic gases to the...

  16. Use of Synthetic Aperture Radar in Cold Climate Flood Response

    Science.gov (United States)

    Yarbrough, L. D.

    2009-12-01

    The purpose of this study was to investigate the usefulness of Synthetic Aperture Radar (SAR) satellite images during a cold climate disaster response event. There were 15 European Space Agency (ESA) Advanced Synthetic Aperture Radar ASAR scenes, five Japan Aerospace Exploration Agency (JAXA) Phased Array type L-band Synthetic Aperture Radar (PALSAR) scenes, one RADARSAT2 scene, and numerous optical sensor data. These data were primarily used to indentify floodwater inundation polygons and flow vectors. However, in cold climate flooding, there are complicating factors such as frazil ice, ice jams, and snow-covered, frozen flood waters that are not present during warmer flooding events. The imagery was obtained through the International Charter "Space and Major Disasters.” The Charter aims at providing a unified system of space data acquisition and delivery to those affected by natural or man-made disasters through Authorized Users. Each member agency has committed resources to support the provisions of the Charter, and thus is helping to mitigate the effects of disasters on human life and property. On 25 March 2009, the Charter was activated in response to the flooding along the Red River of the North in the states of North Dakota and Minnesota of the United States. The delivery time of a single SAR scene from a Charter participant was less than 12 hours from the time of acquisition. This expedited service allowed additional time for creating image-based derivations, field checking and delivery to a decision maker or emergency responder. SAR-derived data sets include identification of river ice and saturated ground conditions. This data could be provided to experts in river ice engineering for use in the development of plans to reduce ice jamming, its effect on water levels and additional stresses on river infrastructure. During disaster response applications, SAR data was found to very useful in indentifying open water and the front of ice jams. Using a river

  17. Adding New Colours to Interferometry

    Science.gov (United States)

    2004-04-01

    Another vital step has been accomplished as planned towards full operation of the ESO Very Large Telescope Interferometer (VLTI) at the Paranal Observatory in Chile, one of the world's foremost astronomical facilities. In the night of March 20-21, 2004, a team of astronomers and engineers from France, Italy, Germany and ESO celebrated the successful assembly and completion of the first on-line tests of the latest of the first-generation VLTI instruments, the Astronomical Multiple BEam Recombiner (AMBER). They combined the two beams of light from the southern star Theta Centauri from two test telescopes ("siderostats" with 40-cm aperture, cf. ESO PR 06/01) to produce strong and clear interferometric fringes. Equally successful observations were then obtained on the bright star Sirius, and consistently repeated during the following nights. A joint project This is the most promising result of about 7 years of dedicated work by a team of over 40 astronomers and engineers. The AMBER instrument has been developed by a European consortium of seven research institutes in three ESO member countries, the main partners being: Laboratoire d'Astrophysique de Grenoble (LAOG), Laboratoire Universitaire d'Astrophysique de Nice (LUAN) and Observatoire de la Côte d'Azur in France, Max-Planck-Institut für Radioastronomie (MPIfR) in Bonn, Germany, and Osservatorio Astrofisico di Arcetri (OAA; part of INAF, the Italian National Institute for Astrophysics) in Florence, Italy. The total cost of AMBER is of the order of 5.9 million Euros, mostly contributed by the members of the consortium. It was built through an agreement with ESO, which rewards the consortium solely with guaranteed observing time. According to the contract, the consortium will receive 60 observing nights to be spread among two or three of the four 8.2-m VLT Unit Telescopes and 130 nights with the four Auxiliary Telescopes over a period of eight years. AMBER: soon to join three light beams at once ESO PR Photo 09a/04

  18. Structural colour printing from a reusable generic nanosubstrate masked for the target image

    International Nuclear Information System (INIS)

    Rezaei, M; Jiang, H; Kaminska, B

    2016-01-01

    Structural colour printing has advantages over traditional pigment-based colour printing. However, the high fabrication cost has hindered its applications in printing large-area images because each image requires patterning structural pixels in nanoscale resolution. In this work, we present a novel strategy to print structural colour images from a pixelated substrate which is called a nanosubstrate. The nanosubstrate is fabricated only once using nanofabrication tools and can be reused for printing a large quantity of structural colour images. It contains closely packed arrays of nanostructures from which red, green, blue and infrared structural pixels can be imprinted. To print a target colour image, the nanosubstrate is first covered with a mask layer to block all the structural pixels. The mask layer is subsequently patterned according to the target colour image to make apertures of controllable sizes on top of the wanted primary colour pixels. The masked nanosubstrate is then used as a stamp to imprint the colour image onto a separate substrate surface using nanoimprint lithography. Different visual colours are achieved by properly mixing the red, green and blue primary colours into appropriate ratios controlled by the aperture sizes on the patterned mask layer. Such a strategy significantly reduces the cost and complexity of printing a structural colour image from lengthy nanoscale patterning into high throughput micro-patterning and makes it possible to apply structural colour printing in personalized security features and data storage. In this paper, nanocone array grating pixels were used as the structural pixels and the nanosubstrate contains structures to imprint the nanocone arrays. Laser lithography was implemented to pattern the mask layer with submicron resolution. The optical properties of the nanocone array gratings are studied in detail. Multiple printed structural colour images with embedded covert information are demonstrated. (paper)

  19. Shadows alter facial expressions of Noh masks.

    Directory of Open Access Journals (Sweden)

    Nobuyuki Kawai

    Full Text Available BACKGROUND: A Noh mask, worn by expert actors during performance on the Japanese traditional Noh drama, conveys various emotional expressions despite its fixed physical properties. How does the mask change its expressions? Shadows change subtly during the actual Noh drama, which plays a key role in creating elusive artistic enchantment. We here describe evidence from two experiments regarding how attached shadows of the Noh masks influence the observers' recognition of the emotional expressions. METHODOLOGY/PRINCIPAL FINDINGS: In Experiment 1, neutral-faced Noh masks having the attached shadows of the happy/sad masks were recognized as bearing happy/sad expressions, respectively. This was true for all four types of masks each of which represented a character differing in sex and age, even though the original characteristics of the masks also greatly influenced the evaluation of emotions. Experiment 2 further revealed that frontal Noh mask images having shadows of upward/downward tilted masks were evaluated as sad/happy, respectively. This was consistent with outcomes from preceding studies using actually tilted Noh mask images. CONCLUSIONS/SIGNIFICANCE: Results from the two experiments concur that purely manipulating attached shadows of the different types of Noh masks significantly alters the emotion recognition. These findings go in line with the mysterious facial expressions observed in Western paintings, such as the elusive qualities of Mona Lisa's smile. They also agree with the aesthetic principle of Japanese traditional art "yugen (profound grace and subtlety", which highly appreciates subtle emotional expressions in the darkness.

  20. Scanning White light interferometry: calibration and application to roughness assesment

    DEFF Research Database (Denmark)

    Bariani, Paolo

    This report refers to an experimental investigation recently completed. The aim was to gain some knowledge of the application of white light interferometry to surface metrology. The following issues were addressed by the present work: • How a white light interferometry microscope works, what...

  1. Powertrain engineering using holographic/electronic speckle pattern interferometry

    Science.gov (United States)

    Chen, Fang; Marchi, Mitchell M.; Allen, Thomas E.

    2002-06-01

    Novel applications of computer aided holographic interferometry and electronic speckle pattern interferometry in automotive powertrain engineering are presented. Four applications are described: engine manifold/cylinder head interface deformation measurement, engine camcover strain analysis, throttle bore deformation measurement, and alternator modal characterization.

  2. Method and device for carrying out speckle interferometry

    NARCIS (Netherlands)

    Somers, P.A.A.

    2005-01-01

    Device and method for obtaining a series of interference patterns from an interferometry device, comprising processing means (21) that are connected to detection means (2) of the interferometry device (1). The processing means (21) comprise computing means (22) and memory means (23) connected to the

  3. Atom Interferometry for Fundamental Physics and Gravity Measurements in Space

    Science.gov (United States)

    Kohel, James M.

    2012-01-01

    Laser-cooled atoms are used as freefall test masses. The gravitational acceleration on atoms is measured by atom-wave interferometry. The fundamental concept behind atom interferometry is the quantum mechanical particle-wave duality. One can exploit the wave-like nature of atoms to construct an atom interferometer based on matter waves analogous to laser interferometers.

  4. Large-aperture subwavelength grating couplers.

    Science.gov (United States)

    Qi, Fan; Ma, Qingyan; Wang, Yufei; Zheng, Wanhua

    2016-04-10

    Subwavelength nanostructure grating couplers fabricated on silicon-on-insulator substrates are used to simplify the fabrication process while maintaining high coupling efficiency. The main obstacle for their application in photonic integrated circuits is the small aperture size of the nanostructure when TE polarization is involved, since they are difficult to achieve with 193 nm deep-ultraviolet lithography and cause problems in inductively coupled plasma etching. A larger lateral period has been used to increase the aperture size. Here, we propose that decreasing the effective index of the nanostructure can also enlarge the aperture size. We analyze the two methods in detail with a rectangle-hole nanostructure and 220 nm thick waveguide layer, aiming at TE polarization centered at 1560 nm. We find performance degenerations for large lateral periods, and this can be simply compensated by adjusting the width of the rectangle hole. The minimum linewidth of the nanostructure can reach 240 nm, while the coupling efficiency is just slightly decreased. The backreflections of a large-aperture grating increase but stay in the same order with ordinary ones, and we also show that this can be overcome by apodizing the grating structure. Finally, we experimentally demonstrate the designed large-aperture grating couplers and the coupling efficiencies are higher than 35%, and reach a rectangle-hole width.

  5. Fabry-Perot interferometry for microplasma diagnostics

    International Nuclear Information System (INIS)

    Hojo, H.; Mase, A.

    2006-01-01

    A new method for determining the electron density of a thin plasma by means of Fabry-Perot interferometry is proposed. The interferometer consists of two plasma layers and dielectric material surrounded by two plasma layers. The transmittance of electromagnetic waves across the interferometer is calculated, and Fabry-Perot resonances are demonstrated. It is shown that the electron density can be determined from the measurement of the Fabry-Perot resonance frequencies. This method can also be applied to the measurement of conduction electron density in semiconductor films

  6. Ten Years of Speckle Interferometry at SOAR

    Science.gov (United States)

    Tokovinin, Andrei

    2018-03-01

    Since 2007, close binary and multiple stars are observed by speckle interferometry at the 4.1 m Southern Astrophysical Research (SOAR) telescope. The HRCam instrument, observing strategy and planning, data processing and calibration methods, developed and improved during ten years, are presented here in a concise way. Thousands of binary stars were measured with diffraction-limited resolution (29 mas at 540 nm wavelength) and a high accuracy reaching 1 mas; 200 new pairs or subsystems were discovered. To date, HRCam has performed over 11,000 observations with a high efficiency (up to 300 stars per night). An overview of the main results delivered by this instrument is given.

  7. Measuring Interfacial Polymerization Kinetics Using Microfluidic Interferometry.

    Science.gov (United States)

    Nowbahar, Arash; Mansard, Vincent; Mecca, Jodi M; Paul, Mou; Arrowood, Tina; Squires, Todd M

    2018-03-07

    A range of academic and industrial fields exploit interfacial polymerization in producing fibers, capsules, and films. Although widely used, measurements of reaction kinetics remain challenging and rarely reported, due to film thinness and reaction rapidity. Here, polyamide film formation is studied using microfluidic interferometry, measuring monomer concentration profiles near the interface during the reaction. Our results reveal that the reaction is initially controlled by a reaction-diffusion boundary layer within the organic phase, which allows the first measurements of the rate constant for this system.

  8. Probing dark energy with atom interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Burrage, Clare; Copeland, Edmund J. [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Hinds, E.A., E-mail: Clare.Burrage@nottingham.ac.uk, E-mail: Edmund.Copeland@nottingham.ac.uk, E-mail: Ed.Hinds@imperial.ac.uk [Centre for Cold Matter, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom)

    2015-03-01

    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry.

  9. Probing dark energy with atom interferometry

    International Nuclear Information System (INIS)

    Burrage, Clare; Copeland, Edmund J.; Hinds, E.A.

    2015-01-01

    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry

  10. Frequency scanning interferometry for CLIC component fiducialisation

    CERN Document Server

    Kamugasa, Solomon William; Mainaud Durand, Helene; CERN. Geneva. ATS Department

    2016-01-01

    We present a strategy for the fiducialisation of CLIC’s Main Beam Quadrupole (MBQ) magnets using Frequency Scanning Interferometry (FSI). We have developed complementary device for a commercial FSI system to enable coordinate determination via multilateration. Using spherical high index glass retroreflectors with a wide acceptance angle, we optimise the geometry of measurement stations with respect to fiducials -- thus improving the precision of coordinates. We demonstrate through simulations that the 10 μm uncertainty required in the vertical and lateral axes for the fiducialisation of the MBQ can be attained using FSI multilateration.

  11. Synthetic aperture tissue and flow ultrasound imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav

    imaging applied to medical ultrasound. It is divided into two major parts: tissue and blood flow imaging. Tissue imaging using synthetic aperture algorithms has been investigated for about two decades, but has not been implemented in medical scanners yet. Among the other reasons, the conventional scanning...... and beamformation methods are adequate for the imaging modalities in clinical use - the B-mode imaging of tissue structures, and the color mapping of blood flow. The acquisition time, however, is too long, and these methods fail to perform real-time three-dimensional scans. The synthetic transmit aperture......, on the other hand, can create a Bmode image with as little as 2 emissions, thus significantly speeding-up the scan procedure. The first part of the dissertation describes the synthetic aperture tissue imaging. It starts with an overview of the efforts previously made by other research groups. A classification...

  12. Solar energy apparatus with apertured shield

    Science.gov (United States)

    Collings, Roger J. (Inventor); Bannon, David G. (Inventor)

    1989-01-01

    A protective apertured shield for use about an inlet to a solar apparatus which includesd a cavity receiver for absorbing concentrated solar energy. A rigid support truss assembly is fixed to the periphery of the inlet and projects radially inwardly therefrom to define a generally central aperture area through which solar radiation can pass into the cavity receiver. A non-structural, laminated blanket is spread over the rigid support truss in such a manner as to define an outer surface area and an inner surface area diverging radially outwardly from the central aperture area toward the periphery of the inlet. The outer surface area faces away from the inlet and the inner surface area faces toward the cavity receiver. The laminated blanket includes at least one layer of material, such as ceramic fiber fabric, having high infra-red emittance and low solar absorption properties, and another layer, such as metallic foil, of low infra-red emittance properties.

  13. A novel multi-aperture based sun sensor based on a fast multi-point MEANSHIFT (FMMS) algorithm.

    Science.gov (United States)

    You, Zheng; Sun, Jian; Xing, Fei; Zhang, Gao-Fei

    2011-01-01

    With the current increased widespread interest in the development and applications of micro/nanosatellites, it was found that we needed to design a small high accuracy satellite attitude determination system, because the star trackers widely used in large satellites are large and heavy, and therefore not suitable for installation on micro/nanosatellites. A Sun sensor + magnetometer is proven to be a better alternative, but the conventional sun sensor has low accuracy, and cannot meet the requirements of the attitude determination systems of micro/nanosatellites, so the development of a small high accuracy sun sensor with high reliability is very significant. This paper presents a multi-aperture based sun sensor, which is composed of a micro-electro-mechanical system (MEMS) mask with 36 apertures and an active pixels sensor (APS) CMOS placed below the mask at a certain distance. A novel fast multi-point MEANSHIFT (FMMS) algorithm is proposed to improve the accuracy and reliability, the two key performance features, of an APS sun sensor. When the sunlight illuminates the sensor, a sun spot array image is formed on the APS detector. Then the sun angles can be derived by analyzing the aperture image location on the detector via the FMMS algorithm. With this system, the centroid accuracy of the sun image can reach 0.01 pixels, without increasing the weight and power consumption, even when some missing apertures and bad pixels appear on the detector due to aging of the devices and operation in a harsh space environment, while the pointing accuracy of the single-aperture sun sensor using the conventional correlation algorithm is only 0.05 pixels.

  14. A Novel Multi-Aperture Based Sun Sensor Based on a Fast Multi-Point MEANSHIFT (FMMS Algorithm

    Directory of Open Access Journals (Sweden)

    Gao-Fei Zhang

    2011-03-01

    Full Text Available With the current increased widespread interest in the development and applications of micro/nanosatellites, it was found that we needed to design a small high accuracy satellite attitude determination system, because the star trackers widely used in large satellites are large and heavy, and therefore not suitable for installation on micro/nanosatellites. A Sun sensor + magnetometer is proven to be a better alternative, but the conventional sun sensor has low accuracy, and cannot meet the requirements of the attitude determination systems of micro/nanosatellites, so the development of a small high accuracy sun sensor with high reliability is very significant. This paper presents a multi-aperture based sun sensor, which is composed of a micro-electro-mechanical system (MEMS mask with 36 apertures and an active pixels sensor (APS CMOS placed below the mask at a certain distance. A novel fast multi-point MEANSHIFT (FMMS algorithm is proposed to improve the accuracy and reliability, the two key performance features, of an APS sun sensor. When the sunlight illuminates the sensor, a sun spot array image is formed on the APS detector. Then the sun angles can be derived by analyzing the aperture image location on the detector via the FMMS algorithm. With this system, the centroid accuracy of the sun image can reach 0.01 pixels, without increasing the weight and power consumption, even when some missing apertures and bad pixels appear on the detector due to aging of the devices and operation in a harsh space environment, while the pointing accuracy of the single-aperture sun sensor using the conventional correlation algorithm is only 0.05 pixels.

  15. Multi-antenna synthetic aperture radar

    CERN Document Server

    Wang, Wen-Qin

    2013-01-01

    Synthetic aperture radar (SAR) is a well-known remote sensing technique, but conventional single-antenna SAR is inherently limited by the minimum antenna area constraint. Although there are still technical issues to overcome, multi-antenna SAR offers many benefits, from improved system gain to increased degrees-of-freedom and system flexibility. Multi-Antenna Synthetic Aperture Radar explores the potential and challenges of using multi-antenna SAR in microwave remote sensing applications. These applications include high-resolution imaging, wide-swath remote sensing, ground moving target indica

  16. High frame rate synthetic aperture duplex imaging

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Tomov, Borislav Gueorguiev; Pihl, Michael Johannes

    2013-01-01

    aperture flow imaging as demonstrated in this paper. Synthetic aperture, directional beamforming, and cross-correlation are used to produce B-mode and vector velocity images at high frame rates. The frame rate equals the effective pulse repetition frequency of each imaging mode. Emissions for making the B...... is determined by estimating the flow velocity in all directions and choosing the one with the strongest correlation. The method works for all angles, including fully axial and fully transverse flows. Field II simulations with a 192 element, 7 MHz linear array are made of laminar, transverse flow profiles...

  17. Synthetic aperture radar capabilities in development

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  18. Synthetic Aperture Ladar Imaging and Atmospheric Turbulence

    Science.gov (United States)

    2016-06-09

    coherence factor for every retro-pair Ladar Heater Target 0 200 400 600 800 1000 1200 1400 0 50 100 150 200 250 Time [sec] In te n s it y Heater On...c) 0 200 400 600 800 1000 1200 1400 10 -13 10 -12 10 -11 C n 2 time [sec] 0.5 m 2 m 4 m 6 m 7.5 m DISTRIBUTION A: Distribution approved for...optical synthetic aperture radar,” US6879279 B2, 12- Apr - 2005. [10] Z. W. Barber and J. R. Dahl, “Synthetic aperture ladar imaging demonstrations and

  19. Three-dimensional surface velocities of Storstrømmen glacier, Greenland, derived from radar interferometry and ice-sounding radar measurements

    DEFF Research Database (Denmark)

    Reeh, Niels; Mohr, Johan Jacob; Madsen, Søren Nørvang

    2003-01-01

    in substantial errors (up to 20%) also on the south-north component of horizontal velocities derived by satellite synthetic aperture radar interferometry (InSAR) measurements. In many glacier environments, the steady-state vertical velocity component required to balance the annual ablation rate is 5-10 m a(-1...... tracks with airborne ice-sounding radar measurement of ice thickness. The results are compared to InSAR velocities previously derived by using the SPF assumption, and to velocities obtained by in situ global positioning system (GPS) measurements. The velocities derived by using the MC principle...

  20. Application of satellite radar interferometry to the examination of the areas of mining exploitation; Anwendung der Radarinterferometrie fuer die Untersuchung von Bergbauregionen

    Energy Technology Data Exchange (ETDEWEB)

    Popiolek, E.; Hejmanowski, R.; Krawczyk, A. [Department of Mining Area' s Protection, University of Mining and Metallurgy, Krakow (Poland); Perski, Z. [Department of Geological Mapping, University of Silesia, Sosnowiec (Poland)

    2002-03-01

    A constant development of remote sensing technology makes it possible to get more diverse information about phenomena, which used to be the focus of other scientific disciplines. One of such techniques is SAR (Synthetic Aperture Radar) Interferometry, InSAR in short. The image obtained thanks to this method (the interferogram) enabled us to observe the height changes of the terrain surface. At first, interferograms were used to observe the movements of the Earth crust caused by the deformations of continental plates edges and earthquakes. The usefulness of the interferometric images in observation of the changes in the terrain of underground exploitation has been proved very early. (orig.)

  1. Sub-aperture stitching test of a cylindrical mirror with large aperture

    Science.gov (United States)

    Xue, Shuai; Chen, Shanyong; Shi, Feng; Lu, Jinfeng

    2016-09-01

    Cylindrical mirrors are key optics of high-end equipment of national defense and scientific research such as high energy laser weapons, synchrotron radiation system, etc. However, its surface error test technology develops slowly. As a result, its optical processing quality can not meet the requirements, and the developing of the associated equipment is hindered. Computer Generated-Hologram (CGH) is commonly utilized as null for testing cylindrical optics. However, since the fabrication process of CGH with large aperture is not sophisticated yet, the null test of cylindrical optics with large aperture is limited by the aperture of the CGH. Hence CGH null test combined with sub-aperture stitching method is proposed to break the limit of the aperture of CGH for testing cylindrical optics, and the design of CGH for testing cylindrical surfaces is analyzed. Besides, the misalignment aberration of cylindrical surfaces is different from that of the rotational symmetric surfaces since the special shape of cylindrical surfaces, and the existing stitching algorithm of rotational symmetric surfaces can not meet the requirements of stitching cylindrical surfaces. We therefore analyze the misalignment aberrations of cylindrical surfaces, and study the stitching algorithm for measuring cylindrical optics with large aperture. Finally we test a cylindrical mirror with large aperture to verify the validity of the proposed method.

  2. Diffusion in solids with holographic interferometry

    Science.gov (United States)

    Liu, Dingyu

    1996-12-01

    It is of great importance for the formation of p-n junction in semiconductors by penetrating some impurities through the depth near the surface, so it has long been paid attention to control the concentration distribution of impurities during the diffusion process. In recent years, ionic carburizing, and ion bombardment penetration etc. for the treatment of metal surface have also attracted by material sciences. It requires that the diffusion depth and the diffusion time of the impurities should be under precise control. Different methods, such as the method of radioisotopic detection and the method of chemical analysis have been adopted, however, the reports of different workers are very different, especially in the real time measurement, so, finding new method is never ending. In 1984, H. Fenichel have performed experiments on the solutions of table salt and sugar with the method of holographic interferometry. As for metals which are opaque for the visible light, but they become transparent by making them into a very thin film so that, in principle, the diffusion of atoms within a film is capable of measure by holographic interferometry. Alternatively, the electromagnetic waves within 1 - 70 micrometers wavelengths may be utilized, some materials, such as high purified germanium and silicon are good materials for infrared transmission. Some fluorides of alkaline-earth metals have high transmittance in the range of 1 - 8 micrometers , the concentration of impurities in the semiconductor and metal surface treatment are of 1015 - 1020 atoms per cubic cm, which is capable of detection.

  3. Observations of binary stars by speckle interferometry

    International Nuclear Information System (INIS)

    Morgan, B.L.; Beckmann, G.K.; Scaddan, R.J.

    1980-01-01

    This is the second paper in a series describing observations of binary stars using the technique of speckle interferometry. Observations were made using the 2.5-m Isaac Newton Telescope and the 1-m telescope of the Royal Greenwich Observatory and the 1.9-m telescope of the South African Astronomical Observatory. The classical Rayleigh diffraction limits are 0.050 arcsec for the 2.5-m telescope, 0.065 arcsec for the 1.9-m telescope and 0.125 arcsec for the 1-m telescope, at a wavelength of 500 nm. The results of 29 measurements of 26 objects are presented. The objects include long period spectroscopic binaries from the 6th Catalogue of Batten, close visual binary systems from the 3rd Catalogue of Finsen and Worley and variable stars. Nine of the objects have not been previously resolved by speckle interferometry. New members are detected in the systems β Cep, p Vel and iota UMa. (author)

  4. GLINT. Gravitational-wave laser INterferometry triangle

    Science.gov (United States)

    Aria, Shafa; Azevedo, Rui; Burow, Rick; Cahill, Fiachra; Ducheckova, Lada; Holroyd, Alexa; Huarcaya, Victor; Järvelä, Emilia; Koßagk, Martin; Moeckel, Chris; Rodriguez, Ana; Royer, Fabien; Sypniewski, Richard; Vittori, Edoardo; Yttergren, Madeleine

    2017-11-01

    When the universe was roughly one billion years old, supermassive black holes (103-106 solar masses) already existed. The occurrence of supermassive black holes on such short time scales are poorly understood in terms of their physical or evolutionary processes. Our current understanding is limited by the lack of observational data due the limits of electromagnetic radiation. Gravitational waves as predicted by the theory of general relativity have provided us with the means to probe deeper into the history of the universe. During the ESA Alpach Summer School of 2015, a group of science and engineering students devised GLINT (Gravitational-wave Laser INterferometry Triangle), a space mission concept capable of measuring gravitational waves emitted by black holes that have formed at the early periods after the big bang. Morespecifically at redshifts of 15 big bang) in the frequency range 0.01 - 1 Hz. GLINT design strain sensitivity of 5× 10^{-24} 1/√ { {Hz}} will theoretically allow the study of early black holes formations as well as merging events and collapses. The laser interferometry, the technology used for measuring gravitational waves, monitors the separation of test masses in free-fall, where a change of separation indicates the passage of a gravitational wave. The test masses will be shielded from disturbing forces in a constellation of three geocentric orbiting satellites.

  5. Coded aperture systems as non-conventional lensless imagers for the visible and infrared

    Science.gov (United States)

    Slinger, Chris; Gordon, Neil; Lewis, Keith; McDonald, Gregor; McNie, Mark; Payne, Doug; Ridley, Kevin; Strens, Malcolm; De Villiers, Geoff; Wilson, Rebecca

    2007-10-01

    Coded aperture imaging (CAI) has been used extensively at gamma- and X-ray wavelengths, where conventional refractive and reflective techniques are impractical. CAI works by coding optical wavefronts from a scene using a patterned aperture, detecting the resulting intensity distribution, then using inverse digital signal processing to reconstruct an image. This paper will consider application of CAI to the visible and IR bands. Doing so has a number of potential advantages over existing imaging approaches at these longer wavelengths, including low mass, low volume, zero aberrations and distortions and graceful failure modes. Adaptive coded aperture (ACAI), facilitated by the use of a reconfigurable mask in a CAI configuration, adds further merits, an example being the ability to implement agile imaging modes with no macroscopic moving parts. However, diffraction effects must be considered and photon flux reductions can have adverse consequences on the image quality achievable. An analysis of these benefits and limitations is described, along with a description of a novel micro optical electro mechanical (MOEMS) microshutter technology for use in thermal band infrared ACAI systems. Preliminary experimental results are also presented.

  6. Challenges of anamorphic high-NA lithography and mask making

    Science.gov (United States)

    Hsu, Stephen D.; Liu, Jingjing

    2017-06-01

    Chip makers are actively working on the adoption of 0.33 numerical aperture (NA) EUV scanners for the 7-nm and 5-nm nodes (B. Turko, S. L. Carson, A. Lio, T. Liang, M. Phillips, et al., in `Proc. SPIE9776, Extreme Ultraviolet (EUV) Lithography VII', vol. 977602 (2016) doi: 10.1117/12.2225014; A. Lio, in `Proc. SPIE9776, Extreme Ultraviolet (EUV) Lithography VII', vol. 97760V (2016) doi: 10.1117/12.2225017). In the meantime, leading foundries and integrated device manufacturers are starting to investigate patterning options beyond the 5-nm node (O. Wood, S. Raghunathan, P. Mangat, V. Philipsen, V. Luong, et al., in `Proc. SPIE. 9422, Extreme Ultraviolet (EUV) Lithography VI', vol. 94220I (2015) doi: 10.1117/12.2085022). To minimize the cost and process complexity of multiple patterning beyond the 5-nm node, EUV high-NA single-exposure patterning is a preferred method over EUV double patterning (O. Wood, S. Raghunathan, P. Mangat, V. Philipsen, V. Luong, et al., in `Proc. SPIE. 9422, Extreme Ultraviolet (EUV) Lithography VI', vol. 94220I (2015) doi: 10.1117/12.2085022; J. van Schoot, K. van Ingen Schenau, G. Bottiglieri, K. Troost, J. Zimmerman, et al., `Proc. SPIE. 9776, Extreme Ultraviolet (EUV) Lithography VII', vol. 97761I (2016) doi: 10.1117/12.2220150). The EUV high-NA scanner equipped with a projection lens of 0.55 NA is designed to support resolutions below 10 nm. The high-NA system is beneficial for enhancing resolution, minimizing mask proximity correction bias, improving normalized image log slope (NILS), and controlling CD uniformity (CDU). However, increasing NA from 0.33 to 0.55 reduces the depth of focus (DOF) significantly. Therefore, the source mask optimization (SMO) with sub-resolution assist features (SRAFs) are needed to increase DOF to meet the demanding full chip process control requirements (S. Hsu, R. Howell, J. Jia, H.-Y. Liu, K. Gronlund, et al., EUV `Proc. SPIE9048, Extreme Ultraviolet (EUV) Lithography VI', (2015) doi: 10

  7. Revolutionary Astrophysics using an Incoherent Synthetic Optical Aperture

    Science.gov (United States)

    Rafanelli, Gerard L.; Cosner, Christopher M.; Spencer, Susan B.; Wolfe, Douglas w.; Newman, Arthur M.; Polidan, Ronald S.; Chakrabarti, Supriya

    2018-01-01

    We describe a paradigm shift for astronomical observatories that would replace circular apertures with rotating synthetic apertures. Rotating Synthetic Aperture (RSA) observatories can enable high value science measurements for the lowest mass to orbit, have superior performance relative to all sparse apertures, can provide resolution of 20m to 30m apertures having the collecting area of 8m to 12m telescopes with much less mass, risk, schedule, and cost. RSA is based on current, or near term technology and can be launched on a single, current launch vehicle to L2. Much larger apertures are possible using the NASA Space Launch System.

  8. Calibration of circular aperture area using vision probe at inmetro

    Directory of Open Access Journals (Sweden)

    Costa Pedro Bastos

    2016-01-01

    Full Text Available Circular aperture areas are standards of high importance for the realization of photometric and radiometric measurements, where the accuracy of these measures is related to the accuracy of the circular aperture area calibrations. In order to attend the requirement for traceability was developed in Brazilian metrology institute, a methodology for circular aperture area measurement as requirements from the radiometric and photometric measurements. In the developed methodology apertures are measured by non-contact measurement through images of the aperture edges captured by a camera. These images are processed using computer vision techniques and then the values of the circular aperture area are determined.

  9. Jig Aligns Shadow Mask On CCD

    Science.gov (United States)

    Matus, Carlos V.

    1989-01-01

    Alignment viewed through microscope. Alignment jig positions shadow mask on charge-coupled device (CCD) so metal film deposited on it precisely. Allows CCD package to be inserted and removed without disturbing alignment of mask. Holds CCD packages securely and isolates it electrostatically while providing electrical contact to each of its pins. When alignment jig assembled with CCD, used to move mask under micrometer control.

  10. A Masked Photocathode in a Photoinjector

    OpenAIRE

    Qiang, Ji

    2011-01-01

    In this paper, we propose a masked photocathode inside a photoinjector for generating high brightness electron beam. Instead of mounting the photocathode onto an electrode, an electrode with small hole is used as a mask to shield the photocathode from the accelerating vacuum chamber. Using such a masked photocathode will make the replacement of photocathode material easy by rotating the photocathode behind the electrode into the hole. Furthermore, this helps reduce the dark current or seconda...

  11. Use of simulation to optimize the pinhole diameter and mask thickness for an x-ray backscatter imaging system

    Science.gov (United States)

    Vella, A.; Munoz, Andre; Healy, Matthew J. F.; Lane, David; Lockley, D.

    2017-08-01

    The PENELOPE Monte Carlo simulation code was used to determine the optimum thickness and aperture diameter of a pinhole mask for X-ray backscatter imaging in a security application. The mask material needs to be thick enough to absorb most X-rays, and the pinhole must be wide enough for sufficient field of view whilst narrow enough for sufficient image spatial resolution. The model consisted of a fixed geometry test object, various masks with and without pinholes, and a 1040 x 1340 pixels' area detector inside a lead lined camera housing. The photon energy distribution incident upon masks was flat up to selected energy limits. This artificial source was used to avoid the optimisation being specific to any particular X-ray source technology. The pixelated detector was modelled by digitising the surface area represented by the PENELOPE phase space file and integrating the energies of the photons impacting within each pixel; a MATLAB code was written for this. The image contrast, signal to background ratio, spatial resolution, and collimation effect were calculated at the simulated detector as a function of pinhole diameter and various thicknesses of mask made of tungsten, tungsten/epoxy composite or bismuth alloy. A process of elimination was applied to identify suitable masks for a viable X-ray backscattering security application.

  12. Optimization of Synthetic Aperture Image Quality

    DEFF Research Database (Denmark)

    Moshavegh, Ramin; Jensen, Jonas; Villagómez Hoyos, Carlos Armando

    2016-01-01

    Synthetic Aperture (SA) imaging produces high-quality images and velocity estimates of both slow and fast flow at high frame rates. However, grating lobe artifacts can appear both in transmission and reception. These affect the image quality and the frame rate. Therefore optimization of parameter...

  13. Diffraction contrast imaging using virtual apertures

    International Nuclear Information System (INIS)

    Gammer, Christoph; Burak Ozdol, V.; Liebscher, Christian H.; Minor, Andrew M.

    2015-01-01

    Two methods on how to obtain the full diffraction information from a sample region and the associated reconstruction of images or diffraction patterns using virtual apertures are demonstrated. In a STEM-based approach, diffraction patterns are recorded for each beam position using a small probe convergence angle. Similarly, a tilt series of TEM dark-field images is acquired. The resulting datasets allow the reconstruction of either electron diffraction patterns, or bright-, dark- or annular dark-field images using virtual apertures. The experimental procedures of both methods are presented in the paper and are applied to a precipitation strengthened and creep deformed ferritic alloy with a complex microstructure. The reconstructed virtual images are compared with conventional TEM images. The major advantage is that arbitrarily shaped virtual apertures generated with image processing software can be designed without facing any physical limitations. In addition, any virtual detector that is specifically designed according to the underlying crystal structure can be created to optimize image contrast. - Highlights: • A dataset containing all structural information of a given position is recorded. • The dataset allows reconstruction of virtual diffraction patterns or images. • Specific virtual apertures are designed to image precipitates in a complex alloy. • Virtual diffraction patterns from arbitrarily small regions can be established. • Using STEM diffraction to record the dataset is more efficient than TEM dark-field

  14. Automated Change Detection for Synthetic Aperture Sonar

    Science.gov (United States)

    2014-01-01

    2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Automated Change Detection for Synthetic Aperture Sonar...R. Azimi-Sadjadi and S. Srinivasan, “Coherent Change Detection and Classification in Synthetic Aper - ture Radar Imagery Using Canonical Correlation

  15. Parametric Transverse Patterns in Broad Aperture Lasers

    DEFF Research Database (Denmark)

    Grigorieva, E.V.; Kashchenko, S.A.; Mosekilde, Erik

    1998-01-01

    Parametrically generated optical patterns are investigated for finite and large-scale transverse aperture lasers. Standing and rotating patterns as well as periodic and chaotic pattern alternations are described in the framework of the amplitude equation formalism. Sensitive dependence...... on the geometrical size of the system is demonstrated even in the case of large-scale systems....

  16. Dynamic Aperture Studies for SPEAR 3

    International Nuclear Information System (INIS)

    Nosochkov, Yuri

    1999-01-01

    The SSRL is investigating an accelerator upgrade project to replace the present 130 nm.rad FODO lattice with an 18 nm.rad double bend achromat lattice: SPEAR 3. In this paper, we review the methods used to maximize the SPEAR 3 dynamic aperture including optimization of linear optics, betatron tune, chromaticity and coupling correction, and effects of machine errors and insertion devices

  17. MD2725: 16L2 aperture measurement

    CERN Document Server

    Mirarchi, Daniele; Rossi, Roberto; CERN. Geneva. ATS Department

    2018-01-01

    Dumps induced by sudden increase of losses in the half-cell 16L2 have been a serious machine limitation during the 2017 run. The aim of this MD was to perform local aperture measurements in order to assess differences after the beam screen regeneration, compared to first measurements in 2017.

  18. Wind energy applications of synthetic aperture radar

    DEFF Research Database (Denmark)

    Badger, Merete

    Synthetic aperture radars (SAR), mounted on satellites or aircraft, have proven useful for ocean wind mapping. Wind speeds at the height 10 m may be retrieved from measurements of radar backscatter using empirical model functions. The resulting windfields are valuable in offshore wind energy...

  19. Optical trapping at low numerical aperture

    NARCIS (Netherlands)

    Stallinga, S.

    2011-01-01

    A theory of optical trapping at low Numerical Aperture (NA) is presented. The theory offers an analytical description of the competition between the stabilizing gradient and destabilizing scattering force. The trade-off can be characterized by a single dimensionless trapping parameter, which

  20. Monitoring gas reservoirs by seismic interferometry

    Science.gov (United States)

    Grigoli, Francesco; Cesca, Simone; Sens-Schoenfelder, Christoph; Priolo, Enrico

    2014-05-01

    Ambient seismic noise can be used to image spatial anomalies in the subsurface, without the need of recordings from seismic sources, such as earthquakes or explosions. Furthermore, the temporal variation of ambient seismic noise's can be used to infer temporal changes of the seismic velocities in the investigated medium. Such temporal variations can reflect changes of several physical properties/conditions in the medium. For example, they may be consequence of stress changes, variation of hydrogeological parameters, pore pressure and saturation changes due to fluid injection or extraction. Passive image interferometry allows to continuously monitor small temporal changes of seismic velocities in the subsurface, making it a suitable tool to monitor time-variant systems such as oil and gas reservoirs or volcanic environments. The technique does not require recordings from seismic sources in the classical sense, but is based on the processing of noise records. Moreover, it requires only data from one or two seismic stations, their locations constraining the sampled target area. Here we apply passive image interferometry to monitor a gas storage reservoir in northern Italy. The Collalto field (Northern Italy) is a depleted gas reservoir located at 1500 m depth, now used as a gas storage facility. The reservoir experience a significant temporal variation in the amount of stored gas: the injection phases mainly occur in the summer, while the extraction take place mostly in winter. In order to monitor induced seismicity related to gas storage operations, a seismic network (the Collalto Seismic Network) has been deployed in 2011. The Collalto Seismic Network is composed by 10 broadband stations, deployed within an area of about 20 km x 20 km, and provides high-quality continuous data since January 1st, 2012. In this work we present preliminary results from ambient noise interferometry using a two-months sample of continuous seismic data, i.e. from October 1st, 2012, to the

  1. Set Size and Mask Duration Do Not Interact in Object-Substitution Masking

    Science.gov (United States)

    Argyropoulos, Ioannis; Gellatly, Angus; Pilling, Michael; Carter, Wakefield

    2013-01-01

    Object-substitution masking (OSM) occurs when a mask, such as four dots that surround a brief target item, onsets simultaneously with the target and offsets a short time after the target, rather than simultaneously with it. OSM is a reduction in accuracy of reporting the target with the temporally trailing mask, compared with the simultaneously…

  2. Mask process correction (MPC) modeling and its application to EUV mask for electron beam mask writer EBM-7000

    Science.gov (United States)

    Kamikubo, Takashi; Ohnishi, Takayuki; Hara, Shigehiro; Anze, Hirohito; Hattori, Yoshiaki; Tamamushi, Shuichi; Bai, Shufeng; Wang, Jen-Shiang; Howell, Rafael; Chen, George; Li, Jiangwei; Tao, Jun; Wiley, Jim; Kurosawa, Terunobu; Saito, Yasuko; Takigawa, Tadahiro

    2010-09-01

    In electron beam writing on EUV mask, it has been reported that CD linearity does not show simple signatures as observed with conventional COG (Cr on Glass) masks because they are caused by scattered electrons form EUV mask itself which comprises stacked heavy metals and thick multi-layers. To resolve this issue, Mask Process Correction (MPC) will be ideally applicable. Every pattern is reshaped in MPC. Therefore, the number of shots would not increase and writing time will be kept within reasonable range. In this paper, MPC is extended to modeling for correction of CD linearity errors on EUV mask. And its effectiveness is verified with simulations and experiments through actual writing test.

  3. Plasma diagnostics by resonant interferometry and holography

    Energy Technology Data Exchange (ETDEWEB)

    Dreiden, G.V.; Zaidel, A.N.; Ostrovskaya, G.V.; Ostrovskii, Yu.I.; Pobedonostseva, N.A.; Tanin, L.V.; Filippov, V.N.; Shedova, E.N.

    1975-01-01

    The methods of resonant interferometry and holography are discussed, and their ranges of applicability are estimated. Resonant methods enjoy a high sensitivity and a high selectivity in comparison with ordinary interferometric and holographic methods. Their primary field of application is with dense plasmas, although in individual cases it is possible to determine atomic densities down to N/sub a/ = 10/sup 9/ cm/sup -3/ and below. For a plasma with N/sub a/ = 10/sup 18/-10/sup 19/ cm/sup -3/ the minimum detectable atomic density is about N/sub a/ = 10/sup 14/ cm/sup -3/. The specific requirements on light sources and methods for studying them are described. The capabilities of these methods are demonstrated for the cases of potassium, sodium, lithium, and hydrogen plasmas; the atomic and electron densities are determined, and the plasma dynamics is studied.

  4. Atom interferometry using a shaken optical lattice

    Science.gov (United States)

    Weidner, C. A.; Yu, Hoon; Kosloff, Ronnie; Anderson, Dana Z.

    2017-04-01

    We introduce shaken lattice interferometry with atoms trapped in a one-dimensional optical lattice. By phase modulating (shaking) the lattice, we control the momentum state of the atoms. Through a sequence of shaking functions, the atoms undergo an interferometer sequence of splitting, propagation, reflection, reverse propagation, and recombination. Each shaking function in the sequence is optimized with a genetic algorithm to achieve the desired momentum state transitions. As with conventional atom interferometers, the sensitivity of the shaken lattice interferometer increases with interrogation time. The shaken lattice interferometer may also be optimized to sense signals of interest while rejecting others, such as the measurement of an ac inertial signal in the presence of an unwanted dc signal.

  5. Compressed-sensing wavenumber-scanning interferometry

    Science.gov (United States)

    Bai, Yulei; Zhou, Yanzhou; He, Zhaoshui; Ye, Shuangli; Dong, Bo; Xie, Shengli

    2018-01-01

    The Fourier transform (FT), the nonlinear least-squares algorithm (NLSA), and eigenvalue decomposition algorithm (EDA) are used to evaluate the phase field in depth-resolved wavenumber-scanning interferometry (DRWSI). However, because the wavenumber series of the laser's output is usually accompanied by nonlinearity and mode-hop, FT, NLSA, and EDA, which are only suitable for equidistant interference data, often lead to non-negligible phase errors. In this work, a compressed-sensing method for DRWSI (CS-DRWSI) is proposed to resolve this problem. By using the randomly spaced inverse Fourier matrix and solving the underdetermined equation in the wavenumber domain, CS-DRWSI determines the nonuniform sampling and spectral leakage of the interference spectrum. Furthermore, it can evaluate interference data without prior knowledge of the object. The experimental results show that CS-DRWSI improves the depth resolution and suppresses sidelobes. It can replace the FT as a standard algorithm for DRWSI.

  6. Active SU(1,1) atom interferometry

    Science.gov (United States)

    Linnemann, D.; Schulz, J.; Muessel, W.; Kunkel, P.; Prüfer, M.; Frölian, A.; Strobel, H.; Oberthaler, M. K.

    2017-12-01

    Active interferometers use amplifying elements for beam splitting and recombination. We experimentally implement such a device by using spin exchange in a Bose-Einstein condensate. The two interferometry modes are initially empty spin states that get spontaneously populated in the process of parametric amplification. This nonlinear mechanism scatters atoms into both modes in a pairwise fashion and generates a non-classical state. Finally, a matched second period of spin exchange is performed that nonlinearly amplifies the output signal and maps the phase onto readily detectable first moments. Depending on the accumulated phase this nonlinear readout can reverse the initial dynamics and deamplify the entangled state back to empty spin states. This sequence is described in the framework of SU(1,1) mode transformations and compared to the SU(2) angular momentum description of passive interferometers.

  7. Atom-surface potentials and atom interferometry

    International Nuclear Information System (INIS)

    Babb, J.F.

    1998-01-01

    Long-range atom-surface potentials characterize the physics of many actual systems and are now measurable spectroscopically in deflection of atomic beams in cavities or in reflection of atoms in atomic fountains. For a ground state, spherically symmetric atom the potential varies as -1/R 3 near the wall, where R is the atom-surface distance. For asymptotically large distances the potential is weaker and goes as -1/R 4 due to retardation arising from the finite speed of light. This diminished interaction can also be interpreted as a Casimir effect. The possibility of measuring atom-surface potentials using atomic interferometry is explored. The particular cases studied are the interactions of a ground-state alkali-metal atom and a dielectric or a conducting wall. Accurate descriptions of atom-surface potentials in theories of evanescent-wave atomic mirrors and evanescent wave-guided atoms are also discussed. (author)

  8. Edge effects in composites by moire interferometry

    Science.gov (United States)

    Czarnek, R.; Post, D.; Herakovich, C.

    1983-01-01

    The very high sensitivity of moire interferometry has permitted the present edge effect experiments to be conducted at a low average stress and strain level, assuring linear and elastic behavior in the composite material samples tested. Sensitivity corresponding to 2450 line/mm moire was achieved with a 0.408 micron/fringe. Simultaneous observations of the specimen face and edge displacement fields showed good fringe definition despite the 1-mm thickness of the specimens and the high gradients, and it is noted that the use of a carrier pattern and optical filtering was effective in even these conditions. Edge effects and dramatic displacement gradients were confirmed in angle-ply composite laminates.

  9. Externally Dispersed Interferometry for Precision Radial Velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, D J; Muterspaugh, M W; Edelstein, J; Lloyd, J; Herter, T; Feuerstein, W M; Muirhead, P; Wishnow, E

    2007-03-27

    Externally Dispersed Interferometry (EDI) is the series combination of a fixed-delay field-widened Michelson interferometer with a dispersive spectrograph. This combination boosts the spectrograph performance for both Doppler velocimetry and high resolution spectroscopy. The interferometer creates a periodic spectral comb that multiplies against the input spectrum to create moire fringes, which are recorded in combination with the regular spectrum. The moire pattern shifts in phase in response to a Doppler shift. Moire patterns are broader than the underlying spectral features and more easily survive spectrograph blurring and common distortions. Thus, the EDI technique allows lower resolution spectrographs having relaxed optical tolerances (and therefore higher throughput) to return high precision velocity measurements, which otherwise would be imprecise for the spectrograph alone.

  10. Forest biomass estimation from polarimetric SAR interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Mette, T.

    2007-07-01

    Polarimetric SAR interferometry (Pol-InSAR) is a radar remote sensing technique that allows extracting forest heights by means of model-based inversions. Forest biomass is closely related to forest height, and can be derived from it with allometric relations. This work investigates the combination of the two methods to estimate forest biomass from Pol-InSAR. It develops a concept for the use of height-biomass allometry, and outlines the Pol-InSAR height inversion. The methodology is validated against a set of forest inventory data and Pol-InSAR data at L-band of the test site Traunstein. The results allow drawing conclusions on the potential of Pol-InSAR forest biomass missions. (orig.)

  11. Multi-Axis Heterodyne Interferometry (MAHI)

    Science.gov (United States)

    Thorpe, James

    The detection and measurement of gravitational waves represents humanity’s next, and final, opportunity to open an entirely new spectrum with which to view the universe. The first steps of this process will likely take place later this decade when the second-generation ground-based instruments such as Advanced LIGO approach design sensitivity. While these events will be historic, it will take a space-based detector to access the milliHertz gravitational wave frequency band, a band that is rich in both number and variety of sources. The Laser Interferometer Space Antenna (LISA) concept has been developed over the past two decades in the US and Europe to provide access to this band. The European Space Agency recently selected The Gravitational Universe as the science theme for the 3rd Large-class mission in the Cosmic Visions Programme, with the assumption that a LISA-like instrument would be implemented for launch in 2034. NASA has expressed interest in partnering on this effort and the US community has made its own judgment on the scientific potential of a space-based gravitational wave observatory through the selection of LISA as the 3rd flagship mission in the 2010 Decadal Survey. Much of the effort has been in retiring risk for the unique technologies that comprise a gravitational wave detector. A prime focus of this effort is LISA Pathfinder (LPF), a dedicated technology demonstrator mission led by ESA with contributions from NASA and several member states. LPF’s primary objective is to validate drag-free flight as an approach to realizing an inertial reference mass. Along the way, several important technologies will be demonstrated, including picometer-level heterodyne interferometry. However, there are several important differences between the interferometry design for LISA and that for LPF. These mostly result from the fact that LISA interferometry involves multiple lasers on separate spacecraft whereas LPF can use a single laser on a single spacecraft

  12. Speckle interferometry of asteroids. I - 433 Eros

    Science.gov (United States)

    Drummond, J. D.; Cocke, W. J.; Hege, E. K.; Strittmatter, P. A.; Lambert, J. V.

    1985-01-01

    Analytical expressions are derived for the semimajor and semiminor axes and orientation angle of the ellipse projected by a triaxial asteroid, and the results are applied speckle-interferometry observations of the 433 Eros asteroid. The expressions were calculated as functions of the dimensions and pole of the body and of the asterocentric position of the earth and the sun. On the basis of the analytical expressions, the dimensions of 433 Eros are obtained. The light curve from December 18, 1981 is compared to the dimensions to obtain a geometric albedo of 0.156 (+ or - 0.010). A series of two-dimensional power spectra and autocorrelation functions for 433 Eros show that it is spinning in space.

  13. Ipsilateral masking between acoustic and electric stimulations.

    Science.gov (United States)

    Lin, Payton; Turner, Christopher W; Gantz, Bruce J; Djalilian, Hamid R; Zeng, Fan-Gang

    2011-08-01

    Residual acoustic hearing can be preserved in the same ear following cochlear implantation with minimally traumatic surgical techniques and short-electrode arrays. The combined electric-acoustic stimulation significantly improves cochlear implant performance, particularly speech recognition in noise. The present study measures simultaneous masking by electric pulses on acoustic pure tones, or vice versa, to investigate electric-acoustic interactions and their underlying psychophysical mechanisms. Six subjects, with acoustic hearing preserved at low frequencies in their implanted ear, participated in the study. One subject had a fully inserted 24 mm Nucleus Freedom array and five subjects had Iowa/Nucleus hybrid implants that were only 10 mm in length. Electric masking data of the long-electrode subject showed that stimulation from the most apical electrodes produced threshold elevations over 10 dB for 500, 625, and 750 Hz probe tones, but no elevation for 125 and 250 Hz tones. On the contrary, electric stimulation did not produce any electric masking in the short-electrode subjects. In the acoustic masking experiment, 125-750 Hz pure tones were used to acoustically mask electric stimulation. The acoustic masking results showed that, independent of pure tone frequency, both long- and short-electrode subjects showed threshold elevations at apical and basal electrodes. The present results can be interpreted in terms of underlying physiological mechanisms related to either place-dependent peripheral masking or place-independent central masking.

  14. Fourier phasing with phase-uncertain mask

    International Nuclear Information System (INIS)

    Fannjiang, Albert; Liao, Wenjing

    2013-01-01

    Fourier phasing is the problem of retrieving Fourier phase information from Fourier intensity data. The standard Fourier phase retrieval (without a mask) is known to have many solutions which cause the standard phasing algorithms to stagnate and produce wrong or inaccurate solutions. In this paper Fourier phase retrieval is carried out with the introduction of a randomly fabricated mask in measurement and reconstruction. Highly probable uniqueness of solution, up to a global phase, was previously proved with exact knowledge of the mask. Here the uniqueness result is extended to the case where only rough information about the mask’s phases is assumed. The exponential probability bound for uniqueness is given in terms of the uncertainty-to-diversity ratio of the unknown mask. New phasing algorithms alternating between the object update and the mask update are systematically tested and demonstrated to have the capability of recovering both the object and the mask (within the object support) simultaneously, consistent with the uniqueness result. Phasing with a phase-uncertain mask is shown to be robust with respect to the correlation in the mask as well as the Gaussian and Poisson noises. (paper)

  15. Chemical modification of colloidal masks for nanolithography

    NARCIS (Netherlands)

    Vossen, D.L.J.; Penninkhof, J.J.; van Blaaderen, A.

    2008-01-01

    A method is presented to tune the holes in colloidal masks used for nanolithography. Using a simple wet-chemical method, a thin layer of silica is grown on masks of silica particles. The size of the holes is controlled by the amount of tetraethoxysilane (TEOS) added. More accurate tuning of the hole

  16. Electrostatic mask protection for extreme ultraviolet lithography

    NARCIS (Netherlands)

    Moors, R.; Heerens, G.J.

    2002-01-01

    Electrostatic protection of mask for extreme ultraviolet lithography (EUVL) was discussed. Both charged and neutral particles could be prevented from moving towards the mask by choosing a nonuniform electrical field. Benefits of electrostatic protection are that it does not affect the EUV beam and

  17. Computing Challenges in Coded Mask Imaging

    Science.gov (United States)

    Skinner, Gerald

    2009-01-01

    This slide presaentation reviews the complications and challenges in developing computer systems for Coded Mask Imaging telescopes. The coded mask technique is used when there is no other way to create the telescope, (i.e., when there are wide fields of view, high energies for focusing or low energies for the Compton/Tracker Techniques and very good angular resolution.) The coded mask telescope is described, and the mask is reviewed. The coded Masks for the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) instruments are shown, and a chart showing the types of position sensitive detectors used for the coded mask telescopes is also reviewed. Slides describe the mechanism of recovering an image from the masked pattern. The correlation with the mask pattern is described. The Matrix approach is reviewed, and other approaches to image reconstruction are described. Included in the presentation is a review of the Energetic X-ray Imaging Survey Telescope (EXIST) / High Energy Telescope (HET), with information about the mission, the operation of the telescope, comparison of the EXIST/HET with the SWIFT/BAT and details of the design of the EXIST/HET.

  18. Mask industry assessment trend analysis 2006

    Science.gov (United States)

    Shelden, Gilbert; Marmillion, Patricia

    2007-02-01

    Microelectronics industry leaders routinely name the cost and cycle time of mask technology and mask supply as top critical issues. A survey was created with support from SEMATECH and administered by SEMI North America to gather information about the mask industry as an objective assessment of its overall condition. This year's survey data was presented at BACUS and a detailed trend analysis is presented here. The annual survey is designed with the input of semiconductor company mask technologists, merchant mask suppliers and industry equipment makers. This year's assessment is the fifth in the current series of annual reports. With continued industry support the report can be used as a baseline to gain perspective on the technical and business status of the mask and microelectronics industries. The report will continue to serve as a valuable reference to identify trends in the mask industry. The results will be used to guide future investments on critical path issues. This year's survey is basically the same as the 2005 survey. Questions are grouped into categories: General Business Profile Information, Data Processing, Yields and Yield Loss, Mechanisms, Delivery Times, Returns and Services, Operating Cost Factors, and Equipment Utilization. Within each category is a multitude of questions that create a detailed profile of both the business and technical status of the critical mask industry. Note: the questions covering operating cost factors and equipment utilization were only added to the survey in 2005; therefore meaningful trend analysis is not yet available.

  19. Mask industry assessment trend analysis: 2010

    Science.gov (United States)

    Hughes, Greg; Yun, Henry

    2010-05-01

    Microelectronics industry leaders consistently cite the cost and cycle time of mask technology and mask supply as top critical issues. A survey was designed with input from semiconductor company mask technologists and merchant mask suppliers and support from SEMATECH to gather information about the mask industry as an objective assessment of its overall condition. This year's assessment was the eighth in the current series of annual reports. Its data were presented in detail at BACUS, and the detailed trend analysis is presented at EMLC. With continued industry support, the report can be used as a baseline to gain perspective on the technical and business status of the mask and microelectronics industries. The report will continue to serve as a valuable reference to identify the strengths and opportunities of the mask industry. Its results will be used to guide future investments on critical path issues. This year's survey is basically the same as the surveys in 2005 through 2009. Questions are grouped into six categories: General Business Profile Information, Data Processing, Yields and Yield Loss Mechanisms, Delivery Times, Returns, and Services. Within each category is a multitude of questions that creates a detailed profile of both the business and technical status of the critical mask industry.

  20. Fractal characteristics of fracture roughness and aperture data

    International Nuclear Information System (INIS)

    Kumar, S.; Boernge, J.

    1991-05-01

    In this study mathematical expressions are developed for the characteristics of apertures between rough surfaces. It has shown that the correlation between the opposite surfaces influences the aperture properties and different models are presented for these different surface correlations. Fracture and apertures profiles measured from intact fractures are evaluated and it is found that they qualitatively follow the mathematically predicted trends

  1. Unmasking Zorro: functional importance of the facial mask in the Masked Shrike (Lanius nubicus)

    OpenAIRE

    Reuven Yosef; Piotr Zduniak; Piotr Tryjanowski

    2012-01-01

    The facial mask is a prominent feature in the animal kingdom. We hypothesized that the facial mask of shrikes allows them to hunt into the sun, which accords them detection and surprise-attack capabilities. We conducted a field experiment to determine whether the mask facilitated foraging while facing into the sun. Male shrikes with white-painted masks hunted facing away from the sun more than birds with black-painted masks, which are the natural color, and more than individuals in the contro...

  2. A mask manufacturer's perspective on maskless lithography

    Science.gov (United States)

    Buck, Peter; Biechler, Charles; Kalk, Franklin

    2005-11-01

    Maskless Lithography (ML2) is again being considered for use in mainstream CMOS IC manufacturing. Sessions at technical conferences are being devoted to ML2. A multitude of new companies have been formed in the last several years to apply new concepts to breaking the throughput barrier that has in the past prevented ML2 from achieving the cost and cycle time performance necessary to become economically viable, except in rare cases. Has Maskless Lithography's (we used to call it "Direct Write Lithography") time really come? If so, what is the expected impact on the mask manufacturer and does it matter? The lithography tools used today in mask manufacturing are similar in concept to ML2 except for scale, both in throughput and feature size. These mask tools produce highly accurate lithographic images directly from electronic pattern files, perform multi-layer overlay, and mix-n-match across multiple tools, tool types and sites. Mask manufacturers are already accustomed to the ultimate low volume - one substrate per design layer. In order to achieve the economically required throughput, proposed ML2 systems eliminate or greatly reduce some of the functions that are the source of the mask writer's accuracy. Can these ML2 systems meet the demanding lithographic requirements without these functions? ML2 may eliminate the reticle but many of the processes and procedures performed today by the mask manufacturer are still required. Examples include the increasingly complex mask data preparation step and the verification performed to ensure that the pattern on the reticle is accurately representing the design intent. The error sources that are fixed on a reticle are variable with time on an ML2 system. It has been proposed that if ML2 is successful it will become uneconomical to be in the mask business - that ML2, by taking the high profit masks will take all profitability out of mask manufacturing and thereby endanger the entire semiconductor industry. Others suggest that a

  3. Investigation of surface deformations by double exposure holographic interferometry

    International Nuclear Information System (INIS)

    Ecevit, F.N.; Guven, H.; Aydin, R.

    1990-01-01

    Surface deformations of rigid bodies produced by thermal as well as mechanical strains have been investigated using double-exposure holographic interferometry. The recorded interference fringes have been discussed qualitatively. (author). 9 refs, 4 figs

  4. Range Surveillance Using Radio Interferometry and TDOA Techniques Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation will utilize a small network of remote sensors to perform Radio Interferometry (RI) and Time Difference of Arrival (TDOA) techniques to...

  5. The digital holographic interferometry in resonant acoustic spectroscopy

    International Nuclear Information System (INIS)

    GAPONOV, V.E.; AZAMATOV, Z.T.; REDKORECHEV, V.I.; ISAEV, A.M.

    2014-01-01

    The opportunities of application of digital holographic interferometry method for studies of shapes of resonant modes in resonant acoustic spectroscopy are shown. The results of experimental measurements and analytical calculations are submitted. (authors)

  6. Observational Model for Precision Astrometry with the Space Interferometry Mission

    National Research Council Canada - National Science Library

    Turyshev, Slava G; Milman, Mark H

    2000-01-01

    The Space Interferometry Mission (SIM) is a space-based 10-m baseline Michelson optical interferometer operating in the visible waveband that is designed to achieve astrometric accuracy in the single digits of the microarcsecond domain...

  7. High Gain, Very Low Areal Density, Scalable RF Apertures Enabled by Membrane Aperture Shell Technology (MAST), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose that the Membrane Aperture Shell Technology (MAST) approach be expanded with a specific focus on space exploration orbiting comm network RF aperture...

  8. Tilt shift determinations with spatial-carrier phase-shift method in temporal phase-shift interferometry

    International Nuclear Information System (INIS)

    Liu, Qian; Wang, Yang; He, Jianguo; Ji, Fang; Wang, Baorui

    2014-01-01

    An algorithm is proposed to deal with tilt-shift errors in temporal phase-shift interferometry (PSI). In the algorithm, the tilt shifts are detected with the spatial-carrier phase-shift (SCPS) method and then the tilt shifts are applied as priori information to the least-squares fittings of phase retrieval. The algorithm combines the best features of the SCPS and the temporal PSI. The algorithm could be applied to interferograms of arbitrary aperture without data extrapolation for the Fourier transform is not involved. Simulations and experiments demonstrate the effectiveness of the algorithm. The statistics of simulation results show a satisfied accuracy in detecting tilt-shift errors. Comparisons of the measurements with and without environmental vibration show that the proposed algorithm could compensate tilt-shift errors and retrieve wavefront phase accurately. The algorithm provides an approach to retrieve wavefront phase for the temporal PSI in vibrating environment. (paper)

  9. Using Optical Interferometry for GEO Satellites Imaging: An Update

    Science.gov (United States)

    2016-05-27

    Using Optical Interferometry for GEO satellites imaging: an update Sergio R. Restainoa,J. Thomas Armstronga, Ellyn K. Bainesa, Henrique R. Schmitta...of a geostationary satellite using the Navy Precision Optical Inter- ferometer (NPOI) during the glint season of March 2015. We succeeded in detecting...detection of a satellite . Keywords: geostationary satellites , optical interferometry, imaging, telescope arrays 1. INTRODUCTION Developing the ability to

  10. Coded aperture imaging using imperfect detector systems

    International Nuclear Information System (INIS)

    Byard, K.; Ramsden, D.

    1994-01-01

    The imaging properties of a gamma-ray telescope which employs a coded aperture in conjunction with a modular detection plane has been investigated. Gaps in the detection plane, which arise as a consequence of the design of the position sensitive detector used, produce artifacts in the deconvolved images which reduce the signal to noise ratio for the detection of point sources. The application of an iterative image processing algorithm is shown to restore the image quality to that expected from an ideal detector. The efficiency of image processing has enabled its subsequent application to a general coded aperture system in order to gain a significant improvement in the field of view without compromising the angular resolution. (orig.)

  11. Miniature synthetic-aperture radar system

    Science.gov (United States)

    Stockton, Wayne; Stromfors, Richard D.

    1990-11-01

    Loral Defense Systems-Arizona has developed a high-performance synthetic-aperture radar (SAR) for small aircraft and unmanned aerial vehicle (UAV) reconnaissance applications. This miniature radar, called Miniature Synthetic-Aperture Radar (MSAR), is packaged in a small volume and has low weight. It retains key features of large SAR systems, including high-resolution imaging and all-weather operation. The operating frequency of MSAR can optionally be selected to provide foliage penetration capability. Many imaging radar configurations can be derived using this baseline system. MSAR with a data link provides an attractive UAV sensor. MSAR with a real-time image formation processor is well suited to installations where onboard processing and immediate image analysis are required. The MSAR system provides high-resolution imaging for short-to-medium range reconnaissance applications.

  12. Dynamic Aperture Studies for SPEAR 3

    International Nuclear Information System (INIS)

    Corbett, William

    1998-01-01

    The Stanford Synchrotron Radiation Laboratory is investigating an accelerator upgrade project that would replace the present 130 nm rad FODO lattice with an 18 nm rad double bend achromat (DBA) lattice: SPEAR 3. The low emittance design yields a high brightness beam, but the stronger focusing in the DBA lattice increases chromaticity and beam sensitivity to machine errors. To ensure efficient injection and long Touschek lifetime, an optimization of the design lattice and dynamic aperture has been performed. In this paper, we review the methods used to maximize the SPEAR 3 dynamic aperture including necessary optics modifications, choice of tune and phase advance, optimization of sextupole and coupling correction, and modeling effects of machine errors, wigglers and lattice periodicity

  13. Dynamic aperture studies for SPEAR 3

    International Nuclear Information System (INIS)

    Nosochkov, Y.; Corbett, J.

    1999-01-01

    The Stanford Synchrotron Radiation Laboratory is investigating an accelerator upgrade project that would replace the present 130 nm·rad FODO lattice with an 18 nm·rad double bend achromat (DBA) lattice: SPEAR 3. The low emittance design yields a high brightness beam, but the stronger focusing in the DBA lattice increases chromaticity and beam sensitivity to machine errors. To ensure efficient injection and long Touschek lifetime, an optimization of the design lattice and dynamic aperture has been performed. In this paper, we review the methods used to maximize the SPEAR 3 dynamic aperture including necessary optics modifications, choice of tune and phase advance, optimization of sextupole and coupling correction, and modeling effects of machine errors, wigglers and lattice periodicity

  14. IR aperture measurement at β*=40 cm

    CERN Document Server

    Bruce, Roderik; Hermes, Pascal Dominik; Kwee-Hinzmann, Regina; Mereghetti, Alessio; Mirarchi, Daniele; Redaelli, Stefano; Salvachua Ferrando, Belen Maria; Skowronski, Piotr Krzysztof; Valentino, Gianluca; Valloni, Alessandra; CERN. Geneva. ATS Department

    2015-01-01

    This note summarizes MD 307, performed on August 27 2015, during which we measured with beam the global apertures at 6.5 TeV with IR1 and IR5 squeezed to β* =40 cm and a half crossing angle of 205 rad. The measurement technique involved opening collimators in steps, while inducing beam losses at each step, until the main loss location moved from the collimators to the global bottleneck in one of the triplets. Measurements were performed in both beams and planes, and each measurement gave the minimum triplet aperture over IR1 and IR5. The results are in very good agreement with theoretical predictions. At the end of the MD, an asynchronous beam dump test was performed with all collimators moved in to so-called 2-σ retraction settings. This MD is one in a series meant to address various open points for the reach in β* in Run II.

  15. Sentinel-1 TOPS interferometry for geophysical applications: Dyke intrusion imaged during 2014 Pico do Fogo eruption

    Science.gov (United States)

    Gonzalez, Pablo J.; Marinkovic, Petar; Samsonov, Sergey; Hooper, Andrew; Larsen, Yngvar; Wright, Tim

    2015-04-01

    Since the inception of the European Space Agency ERS Synthetic Aperture Radar (SAR) mission in the 1990s, radar interferometry has become an indispensable geophysical tool for measuring surface ground deformation over wide areas with high precision. Ground deformation is a key observation to study and monitoring multiple applications in geophysics such as earthquake and tectonics, volcano, land subsidence and landslides study and monitoring. Therefore, the frequent acquisition of SAR data to compute differential interferograms is a long standing goal in observational geodesy. A new mission designed by ESA, the Sentinel-1 mission would provide routinely frequent acquisitions (every 12 days) over larger areas (250-350 km). In April 2014, the first of expected four successive and overlapping similar spacecrafts was launched to start a total 20-year continuous operational mission. Terrain observation by progressive scans (TOPS) is a new radar acquisition mode, which provides with high quality radiometric radar amplitude images. TOPS mode allows us to acquire radar data over much wider areas than previous classical stripmap mode, and it is the default mode of acquisition of ESA Sentinel-1 satellite. However, due to a variable steering (ground scanning) of the antenna pattern, the corregistration of TOPSAR images result in a much higher demanding processing step. The higher precision azimuth SAR image corregistration and variable line-of-sight along azimuth direction intersect with the fact that image disparities on the order to a thousand of a pixel size also characterizes multiple geophysical phenomena (such as landslide dynamics, coseismic earthquake, fault creep or volcanic intrusions). In this paper, we present the first results using Sentinel-1 TOPS interferometry to measure an important deformation event. We successfully compute Sentinel-1 TOPS-InSAR and tested the effect of variable line-of-sight in azimuth, during the estimation of geophysical parameters. We

  16. Integrated Optical Synthetic Aperture Radar Processor.

    Science.gov (United States)

    1987-09-01

    tion Processing for Aerospace Applications. II, Langley, Virginia, (1983). Appendix C I. Abramov , Y. Owechko, A. R. Tanguay, Jr., and T. J. 45...1983). 3. I. Abramov , Y. Owechko, A. R. Tanguay, Jr., and T. J. Bicknell, "Real Time Synthetic Aperture Image Formation Utilizing an Electrooptic...LIGHT MODULATOR I. Abramov , Y. Owechko, and A.R. Tanguay, Jr. Departments of Electrical Engineering and Materials Science, and Image Processing

  17. Synthetic aperture ladar concept for infrastructure monitoring

    Science.gov (United States)

    Turbide, Simon; Marchese, Linda; Terroux, Marc; Bergeron, Alain

    2014-10-01

    Long range surveillance of infrastructure is a critical need in numerous security applications, both civilian and military. Synthetic aperture radar (SAR) continues to provide high resolution radar images in all weather conditions from remote distances. As well, Interferometric SAR (InSAR) and Differential Interferometric SAR (D-InSAR) have become powerful tools adding high resolution elevation and change detection measurements. State of the art SAR systems based on dual-use satellites are capable of providing ground resolutions of one meter; while their airborne counterparts obtain resolutions of 10 cm. D-InSAR products based on these systems could produce cm-scale vertical resolution image products. Deformation monitoring of railways, roads, buildings, cellular antennas, power structures (i.e., power lines, wind turbines, dams, or nuclear plants) would benefit from improved resolution, both in the ground plane and vertical direction. The ultimate limitation to the achievable resolution of any imaging system is its wavelength. State-of-the art SAR systems are approaching this limit. The natural extension to improve resolution is to thus decrease the wavelength, i.e. design a synthetic aperture system in a different wavelength regime. One such system offering the potential for vastly improved resolution is Synthetic Aperture Ladar (SAL). This system operates at infrared wavelengths, ten thousand times smaller than radar wavelengths. This paper presents a laboratory demonstration of a scaled-down infrastructure deformation monitoring with an Interferometric Synthetic Aperture Ladar (IFSAL) system operating at 1.5 μm. Results show sub-millimeter precision on the deformation applied to the target.

  18. Pumped-Up SU(1,1) Interferometry.

    Science.gov (United States)

    Szigeti, Stuart S; Lewis-Swan, Robert J; Haine, Simon A

    2017-04-14

    Although SU(1,1) interferometry achieves Heisenberg-limited sensitivities, it suffers from one major drawback: Only those particles outcoupled from the pump mode contribute to the phase measurement. Since the number of particles outcoupled to these "side modes" is typically small, this limits the interferometer's absolute sensitivity. We propose an alternative "pumped-up" approach where all the input particles participate in the phase measurement and show how this can be implemented in spinor Bose-Einstein condensates and hybrid atom-light systems-both of which have experimentally realized SU(1,1) interferometry. We demonstrate that pumped-up schemes are capable of surpassing the shot-noise limit with respect to the total number of input particles and are never worse than conventional SU(1,1) interferometry. Finally, we show that pumped-up schemes continue to excel-both absolutely and in comparison to conventional SU(1,1) interferometry-in the presence of particle losses, poor particle-resolution detection, and noise on the relative phase difference between the two side modes. Pumped-up SU(1,1) interferometry therefore pushes the advantages of conventional SU(1,1) interferometry into the regime of high absolute sensitivity, which is a necessary condition for useful quantum-enhanced devices.

  19. 47 CFR 25.134 - Licensing provisions of Very Small Aperture Terminal (VSAT) and C-band Small Aperture Terminal...

    Science.gov (United States)

    2010-10-01

    ... Terminal (VSAT) and C-band Small Aperture Terminal (CSAT) networks. 25.134 Section 25.134 Telecommunication... Applications and Licenses Earth Stations § 25.134 Licensing provisions of Very Small Aperture Terminal (VSAT) and C-band Small Aperture Terminal (CSAT) networks. (a)(1) VSAT networks operating in the 12/14 GHz...

  20. Coded-aperture imaging in nuclear medicine

    Science.gov (United States)

    Smith, Warren E.; Barrett, Harrison H.; Aarsvold, John N.

    1989-11-01

    Coded-aperture imaging is a technique for imaging sources that emit high-energy radiation. This type of imaging involves shadow casting and not reflection or refraction. High-energy sources exist in x ray and gamma-ray astronomy, nuclear reactor fuel-rod imaging, and nuclear medicine. Of these three areas nuclear medicine is perhaps the most challenging because of the limited amount of radiation available and because a three-dimensional source distribution is to be determined. In nuclear medicine a radioactive pharmaceutical is administered to a patient. The pharmaceutical is designed to be taken up by a particular organ of interest, and its distribution provides clinical information about the function of the organ, or the presence of lesions within the organ. This distribution is determined from spatial measurements of the radiation emitted by the radiopharmaceutical. The principles of imaging radiopharmaceutical distributions with coded apertures are reviewed. Included is a discussion of linear shift-variant projection operators and the associated inverse problem. A system developed at the University of Arizona in Tucson consisting of small modular gamma-ray cameras fitted with coded apertures is described.

  1. Synthetic aperture radar processing with tiered subapertures

    Science.gov (United States)

    Doerry, A. W.

    1994-06-01

    Synthetic aperture radar (SAR) is used to form images that are maps of radar reflectivity of some scene of interest, from range soundings taken over some spatial aperture. Additionally, the range soundings are typically synthesized from a sampled frequency aperture. Efficient processing of the collected data necessitates using efficient digital signal processing techniques such as vector multiplies and fast implementations of the discrete fourier transform. Inherent in image formation algorithms that use these is a trade-off between the size of the scene that can be acceptably imaged and the resolution with which the image can be made. These limits arise from migration errors and spatially variant phase errors, and different algorithms mitigate these to varying degrees. Two fairly successful algorithms for airborne SARs are polar format processing and overlapped subaperture (OSA) processing. This report introduces and summarizes the analysis of generalized tiered subaperture (TSA) techniques that are a superset of both polar format processing and OSA processing. It is shown how tiers of subapertures in both azimuth and range can effectively mitigate both migration errors and spatially variant phase errors to allow virtually arbitrary scene sizes, even in a dynamic motion environment.

  2. Towards Very Large Aperture Massive MIMO

    DEFF Research Database (Denmark)

    Oliveras Martínez, Àlex; De Carvalho, Elisabeth; Nielsen, Jesper Ødum

    2014-01-01

    Massive MIMO is a new technique for wireless communications that claims to offer very high system throughput and energy efficiency in multi-user scenarios. The cost is to add a very large number of antennas at the base station. Theoretical research has probed these benefits, but very few measurem......Massive MIMO is a new technique for wireless communications that claims to offer very high system throughput and energy efficiency in multi-user scenarios. The cost is to add a very large number of antennas at the base station. Theoretical research has probed these benefits, but very few...... measurements have showed the potential of Massive MIMO in practice. We investigate the properties of measured Massive MIMO channels in a large indoor venue. We describe a measurement campaign using 3 arrays having different shape and aperture, with 64 antennas and 8 users with 2 antennas each. We focus...... on the impact of the array aperture which is the main limiting factor in the degrees of freedom available in the multiple antenna channel. We find that performance is improved as the aperture increases, with an impact mostly visible in crowded scenarios where the users are closely spaced. We also test MIMO...

  3. Coded-aperture imaging in nuclear medicine

    Science.gov (United States)

    Smith, Warren E.; Barrett, Harrison H.; Aarsvold, John N.

    1989-01-01

    Coded-aperture imaging is a technique for imaging sources that emit high-energy radiation. This type of imaging involves shadow casting and not reflection or refraction. High-energy sources exist in x ray and gamma-ray astronomy, nuclear reactor fuel-rod imaging, and nuclear medicine. Of these three areas nuclear medicine is perhaps the most challenging because of the limited amount of radiation available and because a three-dimensional source distribution is to be determined. In nuclear medicine a radioactive pharmaceutical is administered to a patient. The pharmaceutical is designed to be taken up by a particular organ of interest, and its distribution provides clinical information about the function of the organ, or the presence of lesions within the organ. This distribution is determined from spatial measurements of the radiation emitted by the radiopharmaceutical. The principles of imaging radiopharmaceutical distributions with coded apertures are reviewed. Included is a discussion of linear shift-variant projection operators and the associated inverse problem. A system developed at the University of Arizona in Tucson consisting of small modular gamma-ray cameras fitted with coded apertures is described.

  4. Technical Progress in Research of Multibeam Synthetic Aperture Sonar

    Directory of Open Access Journals (Sweden)

    LI Haisen

    2017-10-01

    Full Text Available Recently, detailed underwater target detection and imaging sonar technology has become a research hotpot with the urgent need of marine research. Multibeam synthetic aperture sonar technology has been proposed combining the both technological advantages in this paper, owing to the emphatically analyses of the technology trends of multibeam bathymetric sonar and synthetic aperture sonar. The research progress in the key technologies of multibeam synthetic aperture sonar has been discussed in this paper, the effectiveness of multibeam synthetic aperture sonar detection mechanism is preliminary verified by the experiments. The potential that the multibeam synthetic aperture technique can effectively enhance the underwater target resolution has aslo been proved through the contrast experiment.

  5. Filled aperture concepts for the Terrestrial Planet Finder

    Science.gov (United States)

    Ridgway, Stephen T.

    2003-02-01

    Filled aperture telescopes can deliver a real, high Strehl image which is well suited for discrimination of faint planets in the vicinity of bright stars and against an extended exo-zodiacal light. A filled aperture offers a rich variety of PSF control and diffraction suppression techniques. Filled apertures are under consideration for a wide spectral range, including visible and thermal-IR, each of which offers a significant selection of biomarker molecular bands. A filled aperture visible TPF may be simpler in several respects than a thermal-IR nuller. The required aperture size (or baseline) is much smaller, and no cryogenic systems are required. A filled aperture TPF would look and act like a normal telescope - vendors and users alike would be comfortable with its design and operation. Filled aperture telescopes pose significant challenges in production of large primary mirrors, and in very stringent wavefront requirements. Stability of the wavefront control, and hence of the PSF, is a major issue for filled aperture systems. Several groups have concluded that these and other issues can be resolved, and that filled aperture options are competitive for a TPF precursor and/or for the full TPF mission. Ball, Boeing-SVS and TRW have recently returned architecture reviews on filled aperture TPF concepts. In this paper, I will review some of the major considerations underlying these filled aperture concepts, and suggest key issues in a TPF Buyers Guide.

  6. Reflective masks for extreme ultraviolet lithography

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Khanh Bao [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    Extreme ultraviolet lithographic masks are made by patterning multilayer reflective coatings with high normal incidence reflectivity. Masks can be patterned by depositing a patterned absorber layer above the coating or by etching the pattern directly into the coating itself. Electromagnetic simulations showed that absorber-overlayer masks have superior imaging characteristics over etched masks (less sensitive to incident angles and pattern profiles). In an EUVL absorber overlayer mask, defects can occur in the mask substrate, reflective coating, and absorber pattern. Electromagnetic simulations showed that substrate defects cause the most severe image degradation. A printability study of substrate defects for absorber overlayer masks showed that printability of 25 nm high substrate defects are comparable to defects in optical lithography. Simulations also indicated that the manner in which the defects are covered by multilayer reflective coatings can affect printability. Coverage profiles that result in large lateral spreading of defect geometries amplify the printability of the defects by increasing their effective sizes. Coverage profiles of Mo/Si coatings deposited above defects were studied by atomic force microscopy and TEM. Results showed that lateral spread of defect geometry is proportional to height. Undercut at defect also increases the lateral spread. Reductions in defect heights were observed for 0.15 μm wide defect lines. A long-term study of Mo/Si coating reflectivity revealed that Mo/Si coatings with Mo as the top layer suffer significant reductions in reflectivity over time due to oxidation.

  7. Mask industry assessment trend analysis: 2012

    Science.gov (United States)

    Chan, Y. David

    2012-02-01

    Microelectronics industry leaders consistently cite the cost and cycle time of mask technology and mask supply among the top critical issues for lithography. A survey was designed by SEMATECH with input from semiconductor company mask technologists and merchant mask suppliers to objectively assess the overall conditions of the mask industry. With the continued support of the industry, this year's assessment was the tenth in the current series of annual reports. This year's survey is basically the same as the 2005 through 2011 surveys. Questions are grouped into six categories: General Business Profile Information, Data Processing, Yields and Yield Loss Mechanisms, Delivery Times, Returns, and Services. Within each category is a multitude of questions that ultimately produce a detailed profile of both the business and technical status of the critical mask industry. We received data from 11 companies this year, which was a record high since the beginning of the series. The responding companies represented more than 96% of the volume shipped and about 90% of the 2011 revenue for the photomask industry. These survey reports are often used as a baseline to gain perspective on the technical and business status of the mask and microelectronics industries. They will continue to serve as a valuable reference to identify strengths and opportunities. Results can also be used to guide future investments in critical path issues.

  8. Airship Sparse Array Antenna Radar Real Aperture Imaging Based on Compressed Sensing and Sparsity in Transform Domain

    Directory of Open Access Journals (Sweden)

    Li Liechen

    2016-02-01

    Full Text Available A conformal sparse array based on combined Barker code is designed for airship platform. The performance of the designed array such as signal-to-noise ratio is analyzed. Using the hovering characteristics of the airship, interferometry operation can be applied on the real aperture imaging results of two pulses, which can eliminate the random backscatter phase and make the image sparse in the transform domain. Building the relationship between echo and transform coefficients, the Compressed Sensing (CS theory can be introduced to solve the formula and achieving imaging. The image quality of the proposed method can reach the image formed by the full array imaging. The simulation results show the effectiveness of the proposed method.

  9. Cryptosystem based on two-step phase-shifting interferometry and the RSA public-key encryption algorithm

    Science.gov (United States)

    Meng, X. F.; Peng, X.; Cai, L. Z.; Li, A. M.; Gao, Z.; Wang, Y. R.

    2009-08-01

    A hybrid cryptosystem is proposed, in which one image is encrypted to two interferograms with the aid of double random-phase encoding (DRPE) and two-step phase-shifting interferometry (2-PSI), then three pairs of public-private keys are utilized to encode and decode the session keys (geometrical parameters, the second random-phase mask) and interferograms. In the stage of decryption, the ciphered image can be decrypted by wavefront reconstruction, inverse Fresnel diffraction, and real amplitude normalization. This approach can successfully solve the problem of key management and dispatch, resulting in increased security strength. The feasibility of the proposed cryptosystem and its robustness against some types of attack are verified and analyzed by computer simulations.

  10. Modulation analysis in spatial phase shifting electronic speckle pattern interferometry and application for automated data selection on biological specimens

    Science.gov (United States)

    Knoche, Sabine; Kemper, Björn; Wernicke, Günther; von Bally, Gert

    2007-02-01

    In electronic speckle pattern interferometry (ESPI), for a fast and objective analysis of measurement data which occur with a high repetition rate, an automated data processing is of particular advantage. For this reason, investigations were carried out to determine if the modulation of speckle interferograms can be applied as a quality parameter for the selection of suitable interferogram data for further evaluation e.g. phase unwrapping when spatial phase shifting (SPS) is performed. Six methods for determining the modulation of speckle interferograms are characterised and compared. The applicability of the speckle interferogram modulation as a parameter for mask generation in the unwrapping process of the phase difference is demonstrated by the evaluation of measurement data obtained from experiments with a spatial phase shifting endoscopic ESPI system on a technical surface and on a human gastrectomy specimen.

  11. Mapping Forest Height in Gabon Using UAVSAR Multi-Baseline Polarimetric SAR Interferometry and Lidar Fusion

    Science.gov (United States)

    Simard, M.; Denbina, M. W.

    2017-12-01

    Using data collected by NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) and Land, Vegetation, and Ice Sensor (LVIS) lidar, we have estimated forest canopy height for a number of study areas in the country of Gabon using a new machine learning data fusion approach. Using multi-baseline polarimetric synthetic aperture radar interferometry (PolInSAR) data collected by UAVSAR, forest heights can be estimated using the random volume over ground model. In the case of multi-baseline UAVSAR data consisting of many repeat passes with spatially separated flight tracks, we can estimate different forest height values for each different image pair, or baseline. In order to choose the best forest height estimate for each pixel, the baselines must be selected or ranked, taking care to avoid baselines with unsuitable spatial separation, or severe temporal decorrelation effects. The current baseline selection algorithms in the literature use basic quality metrics derived from the PolInSAR data which are not necessarily indicative of the true height accuracy in all cases. We have developed a new data fusion technique which treats PolInSAR baseline selection as a supervised classification problem, where the classifier is trained using a sparse sampling of lidar data within the PolInSAR coverage area. The classifier uses a large variety of PolInSAR-derived features as input, including radar backscatter as well as features based on the PolInSAR coherence region shape and the PolInSAR complex coherences. The resulting data fusion method produces forest height estimates which are more accurate than a purely radar-based approach, while having a larger coverage area than the input lidar training data, combining some of the strengths of each sensor. The technique demonstrates the strong potential for forest canopy height and above-ground biomass mapping using fusion of PolInSAR with data from future spaceborne lidar missions such as the upcoming Global Ecosystems

  12. Using Seismic Interferometry to Investigate Seismic Swarms

    Science.gov (United States)

    Matzel, E.; Morency, C.; Templeton, D. C.

    2017-12-01

    Seismicity provides a direct means of measuring the physical characteristics of active tectonic features such as fault zones. Hundreds of small earthquakes often occur along a fault during a seismic swarm. This seismicity helps define the tectonically active region. When processed using novel geophysical techniques, we can isolate the energy sensitive to the fault, itself. Here we focus on two methods of seismic interferometry, ambient noise correlation (ANC) and the virtual seismometer method (VSM). ANC is based on the observation that the Earth's background noise includes coherent energy, which can be recovered by observing over long time periods and allowing the incoherent energy to cancel out. The cross correlation of ambient noise between a pair of stations results in a waveform that is identical to the seismogram that would result if an impulsive source located at one of the stations was recorded at the other, the Green function (GF). The calculation of the GF is often stable after a few weeks of continuous data correlation, any perturbations to the GF after that point are directly related to changes in the subsurface and can be used for 4D monitoring.VSM is a style of seismic interferometry that provides fast, precise, high frequency estimates of the Green's function (GF) between earthquakes. VSM illuminates the subsurface precisely where the pressures are changing and has the potential to image the evolution of seismicity over time, including changes in the style of faulting. With hundreds of earthquakes, we can calculate thousands of waveforms. At the same time, VSM collapses the computational domain, often by 2-3 orders of magnitude. This allows us to do high frequency 3D modeling in the fault region. Using data from a swarm of earthquakes near the Salton Sea, we demonstrate the power of these techniques, illustrating our ability to scale from the far field, where sources are well separated, to the near field where their locations fall within each other

  13. Nanostructure Secondary-Mirror Apodizing Mask for Transmitter Signal Suppression in a Duplex Telescope

    Science.gov (United States)

    Hagopian, John; Livas, Jeffrey; Shiri, Shahram; Getty, Stephanie; Tveekrem, June; Butler, James

    2012-01-01

    A document discusses a nanostructure apodizing mask, made of multi-walled carbon nanotubes, that is applied to the centers (or in and around the holes) of the secondary mirrors of telescopes that are used to interferometrically measure the strain of space-time in response to gravitational waves. The shape of this ultra-black mask can be adjusted to provide a smooth transition to the clear aperture of the secondary mirror to minimize diffracted light. Carbon nanotubes grown on silicon are a viable telescope mirror substrate, and can absorb significantly more light than other black treatments. The hemispherical reflectance of multi-walled carbon nanotubes grown at GSFC is approximately 3 to 10 times better than a standard aerospace paint used for stray light control. At the LISA (Laser Interferometer Space Antenna) wavelength of 1 micron, the advantage over paint is a factor of 10. Primarily, in the center of the secondary mirror (in the region of central obscuration, where no received light is lost) a black mask is applied to absorb transmitted light that could be reflected back into the receiver. In the LISA telescope, this is in the center couple of millimeters. The shape of this absorber is critical to suppress diffraction at the edge. By using the correct shape, the stray light can be reduced by approximately 10 to the 9 orders of magnitude versus no center mask. The effect of the nanotubes has been simulated in a stray-light model. The effect of the apodizing mask has been simulated in a near-field diffraction model. Specifications are geometry-dependent, but the baseline design for the LISA telescope has been modeled as well. The coatings are somewhat fragile, but work is continuing to enhance adhesion.

  14. Efficient narrowband interference suppression method for synthetic aperture radar-based on variational mode decomposition

    Science.gov (United States)

    Lu, Xingyu; Su, Weimin; Yang, Jianchao; Gu, Hong

    2017-10-01

    The narrowband interference (NBI) can degrade the synthetic aperture radar (SAR) imaging quality severely. This paper proposes an NBI mitigation method using the variational mode decomposition (VMD). The coarse estimation of NBI is obtained by decomposing the real part and imaginary part of the complex-valued raw echoes into a number of modes by VMD independently. Next, modes that correspond to NBI are refined by the mask technique in the frequency domain. Then the interference is mitigated by subtracting the refined estimated NBI components from the echoes, and a well-focused SAR image is obtained by conventional imaging schemes. The proposed method outperforms other time-varying NBI mitigation methods with smaller effective data loss and less impact on the focusing performance of images. Results of simulated and measured data prove the validity of the proposed method.

  15. An experimental infrared sensor using adaptive coded apertures for enhanced resolution

    Science.gov (United States)

    Gordon, Neil T.; de Villiers, Geoffrey D.; Ridley, Kevin D.; Bennett, Charlotte R.; McNie, Mark E.; Proudler, Ian K.; Russell, Lee; Slinger, Christopher W.; Gilholm, Kevin

    2010-08-01

    Adaptive coded aperture imaging (ACAI) has the potential to enhance greatly the performance of sensing systems by allowing sub detector pixel image and tracking resolution. A small experimental system has been set up to allow the practical demonstration of these benefits in the mid infrared, as well as investigating the calibration and stability of the system. The system can also be used to test modeling of similar ACAI systems in the infrared. The demonstrator can use either a set of fixed masks or a novel MOEMS adaptive transmissive spatial light modulator. This paper discusses the design and testing of the system including the development of novel decoding algorithms and some initial imaging results are presented.

  16. A study of defects on EUV mask using blank inspection, patterned mask inspection, and wafer inspection

    Energy Technology Data Exchange (ETDEWEB)

    Huh, S.; Ren, L.; Chan, D.; Wurm, S.; Goldberg, K. A.; Mochi, I.; Nakajima, T.; Kishimoto, M.; Ahn, B.; Kang, I.; Park, J.-O.; Cho, K.; Han, S.-I.; Laursen, T.

    2010-03-12

    The availability of defect-free masks remains one of the key challenges for inserting extreme ultraviolet lithography (EUVL) into high volume manufacturing. yet link data is available for understanding native defects on real masks. In this paper, a full-field EUV mask is fabricated to investigate the printability of various defects on the mask. The printability of defects and identification of their source from mask fabrication to handling were studied using wafer inspection. The printable blank defect density excluding particles and patterns is 0.63 cm{sup 2}. Mask inspection is shown to have better sensitivity than wafer inspection. The sensitivity of wafer inspection must be improved using through-focus analysis and a different wafer stack.

  17. 3D super-virtual refraction interferometry

    KAUST Repository

    Lu, Kai

    2014-08-05

    Super-virtual refraction interferometry enhances the signal-to-noise ratio of far-offset refractions. However, when applied to 3D cases, traditional 2D SVI suffers because the stationary positions of the source-receiver pairs might be any place along the recording plane, not just along a receiver line. Moreover, the effect of enhancing the SNR can be limited because of the limitations in the number of survey lines, irregular line geometries, and azimuthal range of arrivals. We have developed a 3D SVI method to overcome these problems. By integrating along the source or receiver lines, the cross-correlation or the convolution result of a trace pair with the source or receiver at the stationary position can be calculated without the requirement of knowing the stationary locations. In addition, the amplitudes of the cross-correlation and convolution results are largely strengthened by integration, which is helpful to further enhance the SNR. In this paper, both synthetic and field data examples are presented, demonstrating that the super-virtual refractions generated by our method have accurate traveltimes and much improved SNR.

  18. Laser Wakefield diagnostic using holographic longitudinal interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Volfbeyn, P.; Esarey, E.; Leemans, W.P.

    1999-03-26

    We propose a diagnostic technique for wakefield measurement in plasma channels. A new technique for plasma channel creation, the Ignitor Heater scheme was proposed and experimentally tested in hydrogen and nitrogen previously. It makes use of two laser pulses. The Ignitor, an ultrashort (sub 100 fs) laser pulse, is brought to a line focus using a cylindrical lens to ionize the gas. The Heater pulse (160 ps long) is used to heat the existing spark via in-verse Bremsstrahlung. The hydrodynamic shock expansion creates a partially evacuated plasma channel with a density minimum on axis. Such a channel has properties of an optical waveguide. This technique allows creation of plasma channels in low atomic number gases, such as hydrogen, which is of importance for guiding of highly intense laser pulses. Laser pulses injected into such plasma channels produce a plasma wake that has a phase velocity close to the speed of light. A discussion of plasma wake measurements, using a Longitudinal Interferometry Wakefield Diagnostic Based on Time Domain Rayleigh Refractometry with Holographic Inversion, will be presented.

  19. General Relativistic Effects in Atom Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Dimopoulos, Savas; /Stanford U., Phys. Dept.; Graham, Peter W.; /SLAC /Stanford U., Phys. Dept.; Hogan, Jason M.; Kasevich, Mark A.; /Stanford U., Phys. Dept.

    2008-03-17

    Atom interferometry is now reaching sufficient precision to motivate laboratory tests of general relativity. We begin by explaining the non-relativistic calculation of the phase shift in an atom interferometer and deriving its range of validity. From this we develop a method for calculating the phase shift in general relativity. This formalism is then used to find the relativistic effects in an atom interferometer in a weak gravitational field for application to laboratory tests of general relativity. The potentially testable relativistic effects include the non-linear three-graviton coupling, the gravity of kinetic energy, and the falling of light. We propose experiments, one currently under construction, that could provide a test of the principle of equivalence to 1 part in 10{sup 15} (300 times better than the present limit), and general relativity at the 10% level, with many potential future improvements. We also consider applications to other metrics including the Lense-Thirring effect, the expansion of the universe, and preferred frame and location effects.

  20. White light interferometry applications in nanometrology

    Science.gov (United States)

    Damian, V. S.; Bojan, M.; Schiopu, P.; Iordache, I.; Ionita, B.; Apostol, D.

    2009-01-01

    Precise three-dimensional (3D) information is demanded by many new industries such as: semiconductor, photonics, MEMS, communications, microprocessing etc. [1, 2]. The problem is to select the proper measurement methods for material characteristics in the measurement field, from the point of view of the measurement accuracy and errors that can appear [1, 4, 3, 5]. There are several optical 3D measurements approaches, e.g.: triangulation, grating projection with phase shift, moiré with phase shift, confocal and (white light) interferometry (WLI) [2, 3]. They can measures: surface profile, roughness, step height, microstructure, and other surface parameters. The white light interferometers allows generally surface profiling with high accuracy with no phase ambiguity errors, making them more suitable for profiling stepped or discontinuous surfaces. WLI technique to determine the thickness of thin coating on reflective materials is very effective. One of the first techniques to utilize the short coherence of the white light source was the scanning interference microscope. There are on the market a variety of scanning white light interferometers. Measurement calibration is done using the short coherence feature of white light. Some of the presented applications in nanometrology are thin films thickness measurements of: carbons films on glass, metallic films on Silicon, ablated small holes diameter, and profiles of micro / nanostructure.

  1. Multifrequency perturbations in matter-wave interferometry

    Science.gov (United States)

    Günther, A.; Rembold, A.; Schütz, G.; Stibor, A.

    2015-11-01

    High-contrast matter-wave interferometry is essential in various fundamental quantum mechanical experiments as well as for technical applications. Thereby, contrast and sensitivity are typically reduced by decoherence and dephasing effects. While decoherence accounts for a general loss of quantum information in a system due to entanglement with the environment, dephasing is due to collective time-dependent external phase shifts, which can be related to temperature drifts, mechanical vibrations, and electromagnetic oscillations. In contrast to decoherence, dephasing can, in principle, be reversed. Here, we demonstrate in experiment and theory a method for the analysis and reduction of the influence of dephasing noise and perturbations consisting of several external frequencies in an electron interferometer. This technique uses the high spatial and temporal resolution of a delay-line detector to reveal and remove dephasing perturbations by second-order correlation analysis. It allows matter-wave experiments under perturbing laboratory conditions and can be applied, in principle, to electron, atom, ion, neutron, and molecule interferometers.

  2. Bounding the Higgs boson width through interferometry.

    Science.gov (United States)

    Dixon, Lance J; Li, Ye

    2013-09-13

    We study the change in the diphoton-invariant-mass distribution for Higgs boson decays to two photons, due to interference between the Higgs resonance in gluon fusion and the continuum background amplitude for gg→γγ. Previously, the apparent Higgs mass was found to shift by around 100 MeV in the standard model in the leading-order approximation, which may potentially be experimentally observable. We compute the next-to-leading-order QCD corrections to the apparent mass shift, which reduce it by about 40%. The apparent mass shift may provide a way to measure, or at least bound, the Higgs boson width at the Large Hadron Collider through "interferometry." We investigate how the shift depends on the Higgs width, in a model that maintains constant Higgs boson signal yields. At Higgs widths above 30 MeV, the mass shift is over 200 MeV and increases with the square root of the width. The apparent mass shift could be measured by comparing with the ZZ* channel, where the shift is much smaller. It might be possible to measure the shift more accurately by exploiting its strong dependence on the Higgs transverse momentum.

  3. High-Speed Interferometry Under Impacting Drops

    KAUST Repository

    Langley, Kenneth R.

    2017-08-31

    Over the last decade the rapid advances in high-speed video technology, have opened up to study many multi-phase fluid phenomena, which tend to occur most rapidly on the smallest length-scales. One of these is the entrapment of a small bubble under a drop impacting onto a solid surface. Here we have gone from simply observing the presence of the bubble to detailed imaging of the formation of a lubricating air-disc under the drop center and its subsequent contraction into the bubble. Imaging the full shape-evolution of the air-disc has required μm and sub-μs space and time resolutions. Time-resolved 200 ns interferometry with monochromatic light, has allowed us to follow individual fringes to obtain absolute air-layer thicknesses, based on the eventual contact with the solid. We can follow the evolution of the dimple shape as well as the compression of the gas. The improved imaging has also revealed new levels of detail, like the nature of the first contact which produces a ring of micro-bubbles, highlighting the influence of nanometric surface roughness. Finally, for impacts of ultra-viscous drops we see gliding on ~100 nm thick rarified gas layers, followed by extreme wetting at numerous random spots.

  4. Evaluation of Criteria to Detect Masked Hypertension

    Science.gov (United States)

    Booth, John N.; Muntner, Paul; Diaz, Keith M.; Viera, Anthony J.; Bello, Natalie A.; Schwartz, Joseph E.; Shimbo, Daichi

    2016-01-01

    The prevalence of masked hypertension, out-of-clinic daytime systolic/diastolic blood pressure (SBP/DBP)≥135/85 mmHg on ambulatory blood pressure monitoring (ABPM) among adults with clinic SBP/DBPABPM testing criterion. In a derivation cohort (n=695), the index was clinic SBP+1.3*clinic DBP. In an external validation cohort (n=675), the sensitivity for masked hypertension using an index ≥190 mmHg and ≥217 mmHg and prehypertension status was 98.5%, 71.5% and 82.5%, respectively. Using NHANES data (n=11,778), we estimated that these thresholds would refer 118.6, 44.4 and 59.3 million US adults, respectively, to ABPM screening for masked hypertension. In conclusion, the CBP index provides a useful approach to identify candidates for masked hypertension screening using ABPM. PMID:27126770

  5. Nablus mask-like facial syndrome

    DEFF Research Database (Denmark)

    Allanson, Judith; Smith, Amanda; Hare, Heather

    2012-01-01

    Nablus mask-like facial syndrome (NMLFS) has many distinctive phenotypic features, particularly tight glistening skin with reduced facial expression, blepharophimosis, telecanthus, bulky nasal tip, abnormal external ear architecture, upswept frontal hairline, and sparse eyebrows. Over the last fe...

  6. Imaging of spatially extended hot spots with coded apertures for intra-operative nuclear medicine applications

    Science.gov (United States)

    Kaissas, I.; Papadimitropoulos, C.; Potiriadis, C.; Karafasoulis, K.; Loukas, D.; Lambropoulos, C. P.

    2017-01-01

    Coded aperture imaging transcends planar imaging with conventional collimators in efficiency and Field of View (FOV). We present experimental results for the detection of 141 keV and 122 keV γ-photons emitted by uniformly extended 99mTc and 57Co hot-spots along with simulations of uniformly and normally extended 99mTc hot-spots. These results prove that the method can be used for intra-operative imaging of radio-traced sentinel nodes and thyroid remnants. The study is performed using a setup of two gamma cameras, each consisting of a coded-aperture (or mask) of Modified Uniformly Redundant Array (MURA) of rank 19 positioned on top of a CdTe detector. The detector pixel pitch is 350 μm and its active area is 4.4 × 4.4 cm2, while the mask element size is 1.7 mm. The detectable photon energy ranges from 15 keV up to 200 keV with an energy resolution of 3-4 keV FWHM. Triangulation is exploited to estimate the 3D spatial coordinates of the radioactive spots within the system FOV. Two extended sources, with uniform distributed activity (11 and 24 mm in diameter, respectively), positioned at 16 cm from the system and with 3 cm distance between their centers, can be resolved and localized with accuracy better than 5%. The results indicate that the estimated positions of spatially extended sources lay within their volume size and that neighboring sources, even with a low level of radioactivity, such as 30 MBq, can be clearly distinguished with an acquisition time about 3 seconds.

  7. Fast parametric beamformer for synthetic aperture imaging.

    Science.gov (United States)

    Nikolov, Svetoslav Ivanov; Jensen, Jørgen Arendt; Tomov, Borislav Gueorguiev

    2008-08-01

    This paper describes the design and implementation of a real-time delay-and-sum synthetic aperture beamformer. The beamforming delays and apodization coefficients are described parametrically. The image is viewed as a set of independent lines that are defined in 3D by their origin, direction, and inter-sample distance. The delay calculation is recursive and inspired by the coordinate rotation digital computer (CORDIC) algorithm. Only 3 parameters per channel and line are needed for their generation. The calculation of apodization coefficients is based on a piece- wise linear approximation. The implementation of the beamformer is optimized with respect to the architecture of a novel synthetic aperture real-time ultrasound scanner (SARUS), in which 4 channels are processed by the same set of field-programmable gate arrays (FPGA). In synthetic transmit aperture imaging, low-resolution images are formed after every emission. Summing all low-resolution images produces a perfectly focused high-resolution image. The design of the beamformer is modular, and a single beamformation unit can produce 4600 low-resolution images per second, each consisting of 32 lines and 1024 complex samples per line. In its present incarnation, 3 such modules fit in a single device. The summation of low-resolution images is performed internally in the FPGA to reduce the required bandwidth. The delays are calculated with a precision of 1/16th of a sample, and the apodization coefficients with 7-bit precision. The accumulation of low-resolution images is performed with 24-bit precision. The level of the side- and grating lobes, introduced by the use of integer numbers in the calculations and truncation of intermediate results, is below -86 dB from the peak.

  8. Design of Data Masking Architecture and Analysis of Data Masking Techniques for Testing

    OpenAIRE

    Ravikumar G K,; Manjunath T. N,; Ravindra S. Hegadi,; Archana.R.A

    2011-01-01

    Data masking is the process of obscuring-masking, specific data elements within data stores. It ensures that sensitive data is replaced with realistic but not real data. The goal is that sensitive customer information is not available outside of the authorized environment. Data masking is typically done while provisioning nonproduction environments so that copies created to support test and development processes are not exposing sensitive information and thus avoiding risks of leaking. Maskin...

  9. Effects of hard mask etch on final topography of advanced phase shift masks

    Science.gov (United States)

    Hortenbach, Olga; Rolff, Haiko; Lajn, Alexander; Baessler, Martin

    2017-07-01

    Continuous shrinking of the semiconductor device dimensions demands steady improvements of the lithographic resolution on wafer level. These requirements challenge the photomask industry to further improve the mask quality in all relevant printing characteristics. In this paper topography of the Phase Shift Masks (PSM) was investigated. Effects of hard mask etch on phase shift uniformity and mask absorber profile were studied. Design of experiments method (DoE) was used for the process optimization, whereas gas composition, bias power of the hard mask main etch and bias power of the over-etch were varied. In addition, influence of the over-etch time was examined at the end of the experiment. Absorber depth uniformity, sidewall angle (SWA), reactive ion etch lag (RIE lag) and through pitch (TP) dependence were analyzed. Measurements were performed by means of Atomic-force microscopy (AFM) using critical dimension (CD) mode with a boot-shaped tip. Scanning electron microscope (SEM) cross-section images were prepared to verify the profile quality. Finally CD analysis was performed to confirm the optimal etch conditions. Significant dependence of the absorber SWA on hard mask (HM) etch conditions was observed revealing an improvement potential for the mask absorber profile. It was found that hard mask etch can leave a depth footprint in the absorber layer. Thus, the etch depth uniformity of hard mask etch is crucial for achieving a uniform phase shift over the active mask area. The optimized hard mask etch process results in significantly improved mask topography without deterioration of tight CD specifications.

  10. From master slave interferometry to complex master slave interferometry: theoretical work

    Science.gov (United States)

    Rivet, Sylvain; Bradu, Adrian; Maria, Michael; Feuchter, Thomas; Leick, Lasse; Podoleanu, Adrian

    2018-03-01

    A general theoretical framework is described to obtain the advantages and the drawbacks of two novel Fourier Domain Optical Coherence Tomography (OCT) methods denoted as Master/Slave Interferometry (MSI) and its extension denoted as Complex Master/Slave Interferometry (CMSI). Instead of linearizing the digital data representing the channeled spectrum before a Fourier transform can be applied to it (as in OCT standard methods), channeled spectrum is decomposed on the basis of local oscillations. This replaces the need for linearization, generally time consuming, before any calculation of the depth profile in the range of interest. In this model two functions, g and h, are introduced. The function g describes the modulation chirp of the channeled spectrum signal due to nonlinearities in the decoding process from wavenumber to time. The function h describes the dispersion in the interferometer. The utilization of these two functions brings two major improvements to previous implementations of the MSI method. The paper details the steps to obtain the functions g and h, and represents the CMSI in a matrix formulation that enables to implement easily this method in LabVIEW by using parallel programming with multi-cores.

  11. Optimization of Spatiotemporal Apertures in Channel Sounding

    DEFF Research Database (Denmark)

    Pedersen, Troels; Pedersen, Claus; Yin, Xuefeng

    2008-01-01

    In this paper we investigate the impact of the spatio-temporal aperture of a channel sounding system equipped with antenna arrays at the transmitter and receiver on the accuracy of joint estimation of Doppler frequency and bi-direction. The contribution of this work is three-fold. Firstly, we state...... a spatiotemporal model which can describe parallel as well as switched sounding systems. The proposed model is applicable for arbitrary layouts of the spatial arrays. To simplify the derivations we investigate the special case of linear spatial arrays. However, the results obtained for linear arrays can...

  12. Tissue Harmonic Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Rasmussen, Joachim; Jensen, Jørgen Arendt

    2014-01-01

    Synthetic aperture sequential beamforming (SASB) and tissue har- monic imaging (THI) are combined to improve the image quality of medical ultrasound imaging. The technique is evaluated in a compar- ative study against dynamic receive focusing (DRF). The objective is to investigate if SASB combined......, and data were recorded with and without pulse inversion for tissue harmonic imaging. Data were acquired using a Sound Technol- ogy 192 element convex array transducer from both a wire phantom and a tissue mimicking phantom to investigate spatial resolution and pen- etration. In-vivo scans were also...

  13. VELO aperture considerations for the LHCb Upgrade

    CERN Document Server

    Appleby, RB; Ferro-Luzzi, M; Giovannozzi, M; Holzer, B

    2012-01-01

    In Long Shutdown 2 the VELO detectors will be replaced by new modules compatible with the LHCb Upgrade 40 MHz read-out system. A smaller inner radius of the VELO RF foil and of the silicon sensor active area will allow LHCb to considerably improve the impact parameter resolution. Here, a limit of the minimum VELO aperture during physics (Stable Beams) is discussed. A value of 3.5 mm for the nominal radius of the inner edge fo the RF foil seems acceptable.

  14. Synthetic aperture radar autofocus via semidefinite relaxation.

    Science.gov (United States)

    Liu, Kuang-Hung; Wiesel, Ami; Munson, David C

    2013-06-01

    The autofocus problem in synthetic aperture radar imaging amounts to estimating unknown phase errors caused by unknown platform or target motion. At the heart of three state-of-the-art autofocus algorithms, namely, phase gradient autofocus, multichannel autofocus (MCA), and Fourier-domain multichannel autofocus (FMCA), is the solution of a constant modulus quadratic program (CMQP). Currently, these algorithms solve a CMQP by using an eigenvalue relaxation approach. We propose an alternative relaxation approach based on semidefinite programming, which has recently attracted considerable attention in other signal processing problems. Experimental results show that our proposed methods provide promising performance improvements for MCA and FMCA through an increase in computational complexity.

  15. Masked Uncontrolled Hypertension in CKD.

    Science.gov (United States)

    Agarwal, Rajiv; Pappas, Maria K; Sinha, Arjun D

    2016-03-01

    Masked uncontrolled hypertension (MUCH) is diagnosed in patients treated for hypertension who are normotensive in the clinic but hypertensive outside. In this study of 333 veterans with CKD, we prospectively evaluated the prevalence of MUCH as determined by ambulatory BP monitoring using three definitions of hypertension (daytime hypertension ≥135/85 mmHg; either nighttime hypertension ≥120/70 mmHg or daytime hypertension; and 24-hour hypertension ≥130/80 mmHg) or by home BP monitoring (hypertension ≥135/85 mmHg). The prevalence of MUCH was 26.7% by daytime ambulatory BP, 32.8% by 24-hour ambulatory BP, 56.1% by daytime or night-time ambulatory BP, and 50.8% by home BP. To assess the reproducibility of the diagnosis, we repeated these measurements after 4 weeks. Agreement in MUCH diagnosis by ambulatory BP was 75-78% (κ coefficient for agreement, 0.44-0.51), depending on the definition used. In contrast, home BP showed an agreement of only 63% and a κ coefficient of 0.25. Prevalence of MUCH increased with increasing clinic systolic BP: 2% in the 90-110 mmHg group, 17% in the 110-119 mmHg group, 34% in the 120-129 mmHg group, and 66% in the 130-139 mmHg group. Clinic BP was a good determinant of MUCH (receiver operating characteristic area under the curve 0.82; 95% confidence interval 0.76-0.87). In diagnosing MUCH, home BP was not different from clinic BP. In conclusion, among people with CKD, MUCH is common and reproducible, and should be suspected when clinic BP is in the prehypertensive range. Confirmation of MUCH diagnosis should rely on ambulatory BP monitoring. Copyright © 2016 by the American Society of Nephrology.

  16. Modulation cues influence binaural masking-level difference in masking-pattern experiments.

    Science.gov (United States)

    Nitschmann, Marc; Verhey, Jesko L

    2012-03-01

    Binaural masking patterns show a steep decrease in the binaural masking-level difference (BMLD) when masker and signal have no frequency component in common. Experimental threshold data are presented together with model simulations for a diotic masker centered at 250 or 500 Hz and a bandwidth of 10 or 100 Hz masking a sinusoid interaurally in phase (S(0)) or in antiphase (S(π)). Simulations with a binaural model, including a modulation filterbank for the monaural analysis, indicate that a large portion of the decrease in the BMLD in remote-masking conditions may be due to an additional modulation cue available for monaural detection. © 2012 Acoustical Society of America

  17. Masking Period Patterns & Forward Masking for Speech-Shaped Noise: Age-related effects

    Science.gov (United States)

    Grose, John H.; Menezes, Denise C.; Porter, Heather L.; Griz, Silvana

    2015-01-01

    Objective The purpose of this study was to assess age-related changes in temporal resolution in listeners with relatively normal audiograms. The hypothesis was that increased susceptibility to non-simultaneous masking contributes to the hearing difficulties experienced by older listeners in complex fluctuating backgrounds. Design Participants included younger (n = 11), middle-aged (n = 12), and older (n = 11) listeners with relatively normal audiograms. The first phase of the study measured masking period patterns for speech-shaped noise maskers and signals. From these data, temporal window shapes were derived. The second phase measured forward-masking functions, and assessed how well the temporal window fits accounted for these data. Results The masking period patterns demonstrated increased susceptibility to backward masking in the older listeners, compatible with a more symmetric temporal window in this group. The forward-masking functions exhibited an age-related decline in recovery to baseline thresholds, and there was also an increase in the variability of the temporal window fits to these data. Conclusions This study demonstrated an age-related increase in susceptibility to non-simultaneous masking, supporting the hypothesis that exacerbated non-simultaneous masking contributes to age-related difficulties understanding speech in fluctuating noise. Further support for this hypothesis comes from limited speech-in-noise data suggesting an association between susceptibility to forward masking and speech understanding in modulated noise. PMID:26230495

  18. Masking Period Patterns and Forward Masking for Speech-Shaped Noise: Age-Related Effects.

    Science.gov (United States)

    Grose, John H; Menezes, Denise C; Porter, Heather L; Griz, Silvana

    2016-01-01

    The purpose of this study was to assess age-related changes in temporal resolution in listeners with relatively normal audiograms. The hypothesis was that increased susceptibility to nonsimultaneous masking contributes to the hearing difficulties experienced by older listeners in complex fluctuating backgrounds. Participants included younger (n = 11), middle-age (n = 12), and older (n = 11) listeners with relatively normal audiograms. The first phase of the study measured masking period patterns for speech-shaped noise maskers and signals. From these data, temporal window shapes were derived. The second phase measured forward-masking functions and assessed how well the temporal window fits accounted for these data. The masking period patterns demonstrated increased susceptibility to backward masking in the older listeners, compatible with a more symmetric temporal window in this group. The forward-masking functions exhibited an age-related decline in recovery to baseline thresholds, and there was also an increase in the variability of the temporal window fits to these data. This study demonstrated an age-related increase in susceptibility to nonsimultaneous masking, supporting the hypothesis that exacerbated nonsimultaneous masking contributes to age-related difficulties understanding speech in fluctuating noise. Further support for this hypothesis comes from limited speech-in-noise data, suggesting an association between susceptibility to forward masking and speech understanding in modulated noise.

  19. Supreme Laryngeal Mask Airway versus Face Mask during Neonatal Resuscitation: A Randomized Controlled Trial.

    Science.gov (United States)

    Trevisanuto, Daniele; Cavallin, Francesco; Nguyen, Loi Ngoc; Nguyen, Tien Viet; Tran, Linh Dieu; Tran, Chien Dinh; Doglioni, Nicoletta; Micaglio, Massimo; Moccia, Luciano

    2015-08-01

    To assess the effectiveness of supreme laryngeal mask airway (SLMA) over face mask ventilation for preventing need for endotracheal intubation at birth. We report a prospective, randomized, parallel 1:1, unblinded, controlled trial. After a short-term educational intervention on SLMA use, infants ≥34-week gestation and/or expected birth weight ≥1500 g requiring positive pressure ventilation (PPV) at birth were randomized to resuscitation by SLMA or face mask. The primary outcome was the success rate of the resuscitation devices (SLMA or face mask) defined as the achievement of an effective PPV preventing the need for endotracheal intubation. We enrolled 142 patients (71 in SLMA and 71 in face mask group, respectively). Successful resuscitation rate was significantly higher with the SLMA compared with face mask ventilation (91.5% vs 78.9%; P = .03). Apgar score at 5 minutes was significantly higher in SLMA than in face mask group (P = .02). Neonatal intensive care unit admission rate was significantly lower in SLMA than in face mask group (P = .02). No complications related to the procedure occurred. In newborns with gestational age ≥34 weeks and/or expected birth weight ≥1500 g needing PPV at birth, the SLMA is more effective than face mask to prevent endotracheal intubation. The SLMA is effective in clinical practice after a short-term educational intervention. Registered with ClinicalTrials.gov: NCT01963936. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Destabilization of Masjed-Soleyman rockfill dam observed by satellite radar interferometry

    Science.gov (United States)

    Haghshenas Haghighi, Mahmud; Motagh, Mahdi; Emadali, Lotfollah

    2017-04-01

    Differential interferometry using Envisat, ALOS, ALOS-2, TerraSAR-X and Sentinel-1 data, and terrestrial geodetic surveys are used to assess post-construction settlement of the Masjed-Soleyman embankment dam, southwest Iran. The Masjed-Soleyman dam, a rockfill dam with a vertical central clay core, was constructed between 1995 and 2000 on the Karoun River, which is one of the largest and longest rivers in Iran (length 950 km) and one of the most important surface water resources in the country. Soon after the first impoundment of the dam in December 2000, cross and longitudinal cracks developed in the dam crest, especially at the junction of concrete or steel elements to the rockfill dam shell, causing growing concern that dam might be at risk of failure. Therefore, geodetic monitoring of Masjed-Soleyman dam became particularly important. In this paper, we report on the detection and analysis of ongoing destabilization of this dam from both space-based synthetic aperture radar (SAR) measurements and ground-based terrestrial survey and evaluate the potential of various space technologies and processing algorithms for efficient monitoring of this infrastructure.

  1. Health Diagnosis of Major Transportation Infrastructures in Shanghai Metropolis Using High-Resolution Persistent Scatterer Interferometry.

    Science.gov (United States)

    Qin, Xiaoqiong; Yang, Tianliang; Yang, Mengshi; Zhang, Lu; Liao, Mingsheng

    2017-11-29

    Since the Persistent Scatterer Synthetic Aperture Radar (SAR) Interferometry (PSI) technology allows the detection of ground subsidence with millimeter accuracy, it is becoming one of the most powerful and economical means for health diagnosis of major transportation infrastructures. However, structures of different types may suffer from various levels of localized subsidence due to the different structural characteristics and subsidence mechanisms. Moreover, in the complex urban scenery, some segments of these infrastructures may be sheltered by surrounding buildings in SAR images, obscuring the desirable signals. Therefore, the subsidence characteristics on different types of structures should be discussed separately and the accuracy of persistent scatterers (PSs) should be optimized. In this study, the PSI-based subsidence mapping over the entire transportation network of Shanghai (more than 10,000 km) is illustrated, achieving the city-wide monitoring specifically along the elevated roads, ground highways and underground subways. The precise geolocation and structural characteristics of infrastructures were combined to effectively guide more accurate identification and separation of PSs along the structures. The experimental results from two neighboring TerraSAR-X stacks from 2013 to 2016 were integrated by joint estimating the measurements in the overlapping area, performing large-scale subsidence mapping and were validated by leveling data, showing highly consistent in terms of subsidence velocities and time-series displacements. Spatial-temporal subsidence patterns on each type of infrastructures are strongly dependent on the operational durations and structural characteristics, as well as the variation of the foundation soil layers.

  2. Status of a UAVSAR designed for repeat pass interferometry for deformation measurements

    Science.gov (United States)

    Hensley, Scott; Wheeler, Kevin; Sadowy, Greg; Miller, Tim; Shaffer, Scott; Muellerschoen, Ron; Jones, Cathleen; Zebker, Howard; Madsen, Soren; Paul, Rose

    2005-01-01

    NASA's Jet Propulsion Laboratory is currently implementing a reconfigurable polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track interferometric (RTI) SAR data, also known as differential interferometric measurements. Differential interferometry can provide key deformation measurements, important for the scientific studies of Earthquakes and volcanoes. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The expected performance of the flight control system will constrain the flight path to be within a 10 m diameter tube about the desired flight track. The radar wilI be designed to operate on a UAV (Unpiloted Aria1 Vehicle) but will initially be demonstrated on a minimally piloted vehicle (MPV), such as the Proteus buitt by Scaled Composites or on a NASA Gulfstream III. The radar design is a fully polarimetric with an 80 MHz bandwidth (2 m range resolution) and 16 km range swath. The antenna is an electronically steered along track to assure that the actual antenna pointing can be controlled independent of the wind direction and speed. Other features supported by the antenna include an elevation monopulse option and a pulse-to-pulse resteering capability that will enable some novel modes of operation. The system will nominally operate at 45,000 ft (13800 m). The program began out as an Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).

  3. Long term SAR interferometry monitoring for assessing changing levels of slope instability hazards

    Science.gov (United States)

    Wasowski, J.; Ferretti, A.

    The population growth with increasing impact of man on the environment and urbanisation of areas susceptible to slope failures coupled with the ongoing change in climate patterns will require a shift in the approaches to landslide hazard reduction Indeed there is evidence that landslide activity and related socio-economic loss are increasing in both rich and less developed countries throughout the world Because of this and because the urbanisation of hillside and mountain slopes prone to failure will likely continue in the future the protection of new and pre-existing developed areas via traditional engineering stabilisation works and in situ monitoring is not considered economically feasible Furthermore in most cases the ground control systems are installed post-factum and for short term monitoring and hence their role in preventing disasters is limited Considering the global dimension of the slope instability problem a sustainable road to landslide hazard reduction seems to be via exploitation of EO systems with focus on early detection long term monitoring and early warning Thanks to the wide-area coverage regular schedule and improving resolution of space-borne sensors the EO can foster the auspicious shift from a culture of repair to a culture of awarness and prevention Under this scenario the space-borne synthetic aperture radar differential interferometry DInSAR is attractive because of its capability to provide both wide-area and spatially dense information on surface displacements Since the presence of movements represents a direct evidence of

  4. Health Diagnosis of Major Transportation Infrastructures in Shanghai Metropolis Using High-Resolution Persistent Scatterer Interferometry

    Directory of Open Access Journals (Sweden)

    Xiaoqiong Qin

    2017-11-01

    Full Text Available Since the Persistent Scatterer Synthetic Aperture Radar (SAR Interferometry (PSI technology allows the detection of ground subsidence with millimeter accuracy, it is becoming one of the most powerful and economical means for health diagnosis of major transportation infrastructures. However, structures of different types may suffer from various levels of localized subsidence due to the different structural characteristics and subsidence mechanisms. Moreover, in the complex urban scenery, some segments of these infrastructures may be sheltered by surrounding buildings in SAR images, obscuring the desirable signals. Therefore, the subsidence characteristics on different types of structures should be discussed separately and the accuracy of persistent scatterers (PSs should be optimized. In this study, the PSI-based subsidence mapping over the entire transportation network of Shanghai (more than 10,000 km is illustrated, achieving the city-wide monitoring specifically along the elevated roads, ground highways and underground subways. The precise geolocation and structural characteristics of infrastructures were combined to effectively guide more accurate identification and separation of PSs along the structures. The experimental results from two neighboring TerraSAR-X stacks from 2013 to 2016 were integrated by joint estimating the measurements in the overlapping area, performing large-scale subsidence mapping and were validated by leveling data, showing highly consistent in terms of subsidence velocities and time-series displacements. Spatial-temporal subsidence patterns on each type of infrastructures are strongly dependent on the operational durations and structural characteristics, as well as the variation of the foundation soil layers.

  5. Digital Double-Pulse Holographic Interferometry for Vibration Analysis

    Directory of Open Access Journals (Sweden)

    H.J. Tiziani

    1996-01-01

    Full Text Available Different arrangements for double-pulsed holographic and speckle interferometry for vibration analysis will be described. Experimental results obtained with films (classical holographic interferometry and CCD cameras (digital holographic interferometry as storage materials are presented. In digital holography, two separate holograms of an object under test are recorded within a few microseconds using a CCD camera and are stored in a frame grabber. The phases of the two reconstructed wave fields are calculated from the complex amplitudes. The deformation is obtained from the phase difference. In the case of electronic speckle pattern interferometry (or image plane hologram, the phase can be calculated by using the sinusoid-fitting method. In the case of digital holographic interferometry, the phase is obtained by digital reconstruction of the complex amplitudes of the wave fronts. Using three directions of illumination and one direction of observation, all the information necessary for the reconstruction of the 3-dimensional deformation vector can be recorded at the same time. Applications of the method for measuring rotating objects are discussed where a derotator needs to be used.

  6. Geohazard monitoring and modelling using Persistent Scatterer Interferometry in the framework of the European project Terrafirma

    Science.gov (United States)

    Cooksley, Geraint; Arnaud, Alain; Banwell, Marie-Josée

    2013-04-01

    Increasingly, geohazard risk managers are looking to satellite observations as a promising option for supporting their risk management and mitigation strategies. The Terrafirma project, aimed at supporting civil protection agencies, local authorities in charge of risk assessment and mitigation is a pan-European ground motion information service funded by the European Space Agency's Global Monitoring for Environment and Security initiative. Over 100 services were delivered to organizations over the last ten years. Terrafirma promotes the use of Synthetic Aperture Radar Interferometry (InSAR) and Persistent Scatterer InSAR (PSI) within three thematic areas for terrain motion analysis: Tectonics, Flooding and Hydrogeology (ground water, landslides and inactive mines), as well as the innovative Wide Area mapping service, aimed at measuring land deformation over very large areas. Terrafirma's thematic services are based on advanced satellite interferometry products; however they exploit additional data sources, including non-EO, coupled with expert interpretation specific to each thematic line. Based on the combination of satellite-derived ground-motion information products with expert motion interpretation, a portfolio of services addressing geo-hazard land motion issues was made available to users. Although not a thematic in itself, the Wide Area mapping product constitutes the fourth quarter of the Terrafirma activities. The wide area processing chain is nearly fully automatic and requires only a little operator interaction. The service offers an operational PSI processing for wide-area mapping with mm accuracy of ground-deformation measurement at a scale of 1:250,000 (i.e. one cm in the map corresponds to 2.5 Km on the ground) on a country or continent level. The WAP was demonstrated using stripmap ERS data however it is foreseen to be a standard for the upcoming Sentinel-1 mission that will be operated in Terrain Observation by Progressive Scan (TOPS) mode. Within

  7. Analysis and test of laws for backward (metacontrast) masking

    NARCIS (Netherlands)

    Francis, G.; Rothmayer, M.; Hermens, F.

    2004-01-01

    In backward visual masking, it is common to find that the mask has its biggest effect when it follows the target by several tens of milliseconds. Research in the 1960s and 1970s suggested that masking effects were best characterized by the stimulus onset asynchrony (SOA) between the target and mask.

  8. Orientation tuning of contrast masking caused by motion streaks.

    Science.gov (United States)

    Apthorp, Deborah; Cass, John; Alais, David

    2010-08-01

    We investigated whether the oriented trails of blur left by fast-moving dots (i.e., "motion streaks") effectively mask grating targets. Using a classic overlay masking paradigm, we varied mask contrast and target orientation to reveal underlying tuning. Fast-moving Gaussian blob arrays elevated thresholds for detection of static gratings, both monoptically and dichoptically. Monoptic masking at high mask (i.e., streak) contrasts is tuned for orientation and exhibits a similar bandwidth to masking functions obtained with grating stimuli (∼30 degrees). Dichoptic masking fails to show reliable orientation-tuned masking, but dichoptic masks at very low contrast produce a narrowly tuned facilitation (∼17 degrees). For iso-oriented streak masks and grating targets, we also explored masking as a function of mask contrast. Interestingly, dichoptic masking shows a classic "dipper"-like TVC function, whereas monoptic masking shows no dip and a steeper "handle". There is a very strong unoriented component to the masking, which we attribute to transiently biased temporal frequency masking. Fourier analysis of "motion streak" images shows interesting differences between dichoptic and monoptic functions and the information in the stimulus. Our data add weight to the growing body of evidence that the oriented blur of motion streaks contributes to the processing of fast motion signals.

  9. 42 CFR 84.117 - Gas mask containers; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Gas mask containers; minimum requirements. 84.117... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Gas Masks § 84.117 Gas mask containers; minimum requirements. (a) Gas masks shall be equipped with a substantial...

  10. 37 CFR 211.3 - Mask work fees.

    Science.gov (United States)

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Mask work fees. 211.3 Section... PROCEDURES MASK WORK PROTECTION § 211.3 Mask work fees. (a) Section 201.3 of this chapter prescribes the fees or charges established by the Register of Copyrights for services relating to mask works. (b) Section...

  11. 21 CFR 868.5560 - Gas mask head strap.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gas mask head strap. 868.5560 Section 868.5560...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5560 Gas mask head strap. (a) Identification. A gas mask head strap is a device used to hold an anesthetic gas mask in position on a patient's...

  12. High speed microfluidic prototyping by programmable proximity aperture MeV ion beam lithography

    Energy Technology Data Exchange (ETDEWEB)

    Puttaraksa, Nitipon [Department of Biological and Environmental Science and NanoScience Center, University of Jyväskylä (Finland); Department of Physics, University of Jyväskylä (Finland); Napari, Mari [Department of Physics, University of Jyväskylä (Finland); Meriläinen, Leena [Department of Biological and Environmental Science and NanoScience Center, University of Jyväskylä (Finland); Whitlow, Harry J.; Sajavaara, Timo [Department of Physics, University of Jyväskylä (Finland); Gilbert, Leona, E-mail: leona.k.gilbert@jyu.fi [Department of Biological and Environmental Science and NanoScience Center, University of Jyväskylä (Finland)

    2013-07-01

    Microfluidics refers to the science and technology for controlling and manipulating fluids that flow along microchannels. For the development of complex prototypes, many microfluidic test structures are required first. Normally, these devices are fabricated via photolithography. This technique requires a photomask for transferring a pattern to photoresists by exposing with UV light. However, this method can be slow when a new structure is required to change. This is because a series of photomasks are needed, which is time consuming and costly. Here, we present a programmable proximity aperture lithography (PPAL) technique for the development of microfluidic prototype in poly(methyl methacrylate) or PMMA. This method is based on using a mask made up of two movable L-shaped apertures in close proximity to the target. The PPAL allows microfluidic chips that are designed with complex components having large and small (∼1 μm – ∼500 μm) pattern elements to be fabricated rapidly. In this paper, the fabrication process with test examples of microfluidic circuit designs is presented. Experimental results show that new patterns can be changed and produced in a few hours demonstrating that the PPAL technique is a rapid method for development of microfluidic prototypes in PMMA.

  13. Measurements of pore-scale flow through apertures

    Energy Technology Data Exchange (ETDEWEB)

    Chojnicki, Kirsten [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Pore-scale aperture effects on flow in pore networks was studied in the laboratory to provide a parameterization for use in transport models. Four cases were considered: regular and irregular pillar/pore alignment with and without an aperture. The velocity field of each case was measured and simulated, providing quantitatively comparable results. Two aperture effect parameterizations were considered: permeability and transmission. Permeability values varied by an order of magnitude between the cases with and without apertures. However, transmission did not correlate with permeability. Despite having much greater permeability the regular aperture case permitted less transmission than the regular case. Moreover, both irregular cases had greater transmission than the regular cases, a difference not supported by the permeabilities. Overall, these findings suggest that pore-scale aperture effects on flow though a pore-network may not be adequately captured by properties such as permeability for applications that are interested in determining particle transport volume and timing.

  14. Rotatable Aperture Coronagraph for Exoplanetary Studies (RACES)

    Science.gov (United States)

    Chakrabarti, Supriya; Mendillo, Christopher; Mukherjee, Sunip; Martel, Jason; Cook, Timothy; Polidan, Ronald S.; Rafanelli, Gerard L.; Spencer, Susan B.; Wolfe, Douglas w.

    2018-01-01

    We present the design and expected performance of RACES, a suborbital mission concept to directly image exo-Jupiters with a rotatable non-circular aperture telescope. By using a high-aspect ratio elliptical or rectangular primary mirror (2.3m x 0.6m), this mission achieves the same angular resolution and inner working angle as a 2.3m dia telescope. Such an elliptical or rectangular system would fill the volume of a cylindrical launch vehicle more efficiently and by choosing the aspect ratio one can appropriately tailor its light gathering power. RACES can therefore serve as a pathfinder for future larger missions for exoplanetary explorations. For example, the system described here approaches the collecting area of the well studied EXO-C concept and exceeds its angular resolution. The mission concept, design studies, observation strategy and expected target yield for RACES will be presented, as well as simulations of the high contrast vector vortex coronagraph operating with an un-obscured elliptical aperture.

  15. Validation and intercomparison of Persistent Scatterers Interferometry: PSIC4 project results

    NARCIS (Netherlands)

    Raucoules, D.; Bourgine, B.; Michele, M. de; Le Cozannet, G.; Closset, L.; Bremmer, C.; Veldkamp, H.; Tragheim, D.; Bateson, L.; Crosetto, M.; Agudo, M.; Engdahl, M.

    2009-01-01

    This article presents the main results of the Persistent Scatterer Interferometry Codes Cross Comparison and Certification for long term differential interferometry (PSIC4) project. The project was based on the validation of the PSI (Persistent Scatterer Interferometry) data with respect to

  16. Progress in electron- and ion-interferometry

    International Nuclear Information System (INIS)

    Hasselbach, Franz

    2010-01-01

    In the 1970s the prominent goal was to overcome the limitations of electron microscopy caused by aberrations of electron lenses by the development of electron holography. In the meantime this problem has been solved, not only in the roundabout way of holography, but directly by correcting the aberrations of the lenses. Nevertheless, many quantitative electron microscopical measurement methods-e.g. mapping and visualization of electric and magnetic fields-were developed within the context of holography and have become fields of their own. In this review we focus on less popular electron interferometric experiments which complement the field of electron holography. The paper is organized as follows. After a short sketch of the development of electron biprism interferometry after its invention in 1954, recent advances in technology are discussed that made electron biprism interferometry an indispensable tool for solving fundamental and applied questions in physics: the development and preparation of conventional and single-atom field electron and field ion sources with their extraordinary properties. Single- and few-atom sources exhibit spectacular features: their brightness at 100 keV exceeds that of conventional field emitters by two orders in magnitude. Due to the extremely small aberrations of diode field emitter extraction optics, the virtual source size of single-atom tips is on the order of 0.2 nm. As a consequence it illuminates an area 7 cm in diameter on a screen at a distance of 15 cm coherently. Projection electron micrographs taken with these sources reach spatial resolutions of atomic dimensions and in-line holograms are-due to the absence of lenses with their aberrations-not blurred. Their reconstruction is straightforward. By addition of a carbon nanotube biprism into the beam path of a projection microscope a lensless electron interferometer has been realized. In extremely ultrahigh vacuum systems flicker noise is practically absent in the new sources

  17. Optical Ground Terminals Using Multi Aperture Digital Coherent Combining

    Science.gov (United States)

    2017-10-01

    advantages of a multi-aperture OGT are summarized in [4]. III. EXPERIMENTAL RESULTS A first experimental validation of multi-aperture digital coherent...Optical Ground Terminals Using Multi-Aperture Digital Coherent Combining (Invited Paper) D. J. Geisler, T. M. Yarnall, C. M. Schieler, M. L. Stevens...B. S. Robinson, and S. A. Hamilton Massachusetts Institute of Technology Lincoln Laboratory 244 Wood Street, Lexington, MA, USA 02420 Email

  18. Absolute marine gravimetry with matter-wave interferometry.

    Science.gov (United States)

    Bidel, Y; Zahzam, N; Blanchard, C; Bonnin, A; Cadoret, M; Bresson, A; Rouxel, D; Lequentrec-Lalancette, M F

    2018-02-12

    Measuring gravity from an aircraft or a ship is essential in geodesy, geophysics, mineral and hydrocarbon exploration, and navigation. Today, only relative sensors are available for onboard gravimetry. This is a major drawback because of the calibration and drift estimation procedures which lead to important operational constraints. Atom interferometry is a promising technology to obtain onboard absolute gravimeter. But, despite high performances obtained in static condition, no precise measurements were reported in dynamic. Here, we present absolute gravity measurements from a ship with a sensor based on atom interferometry. Despite rough sea conditions, we obtained precision below 10 -5  m s -2 . The atom gravimeter was also compared with a commercial spring gravimeter and showed better performances. This demonstration opens the way to the next generation of inertial sensors (accelerometer, gyroscope) based on atom interferometry which should provide high-precision absolute measurements from a moving platform.

  19. Pipeline monitoring with interferometry in non-arid regions

    Energy Technology Data Exchange (ETDEWEB)

    McCardle, Adrian; Rabus, Bernhard; Ghuman, Parwant [MacDonald Dettwiler, Richmond, BC (Canada); Freymueller, Jeff T. [University of Alaska, Fairbanks (United States)

    2005-07-01

    Interferometry has become a proven technique for accurately measuring ground movements caused by subsidence, landslides, earthquakes and volcanoes. Using space borne sensors such as the ERS, ENVISAT and RADARSAT satellites, ground deformation can be monitored on a millimeter level. Traditionally interferometry has been limited to arid areas however new technology has allowed for successful monitoring in vegetated regions and areas of changing land-cover. Analysis of ground movement of the Trans-Alaskan pipeline demonstrates how these techniques can offer pipeline engineers a new tool for observing potential dangers to pipeline integrity. Results from Interferometric Point Target Analysis were compared with GPS measurements and speckle tracking interferometry was demonstrated to measure a major earthquake. (author)

  20. Practical optical interferometry imaging at visible and infrared wavelengths

    CERN Document Server

    Buscher, David F

    2015-01-01

    Optical interferometry is a powerful technique to make images on angular scales hundreds of times smaller than is possible with the largest telescopes. This concise guide provides an introduction to the technique for graduate students and researchers who want to make interferometric observations and acts as a reference for technologists building new instruments. Starting from the principles of interference, the author covers the core concepts of interferometry, showing how the effects of the Earth's atmosphere can be overcome using closure phase, and the complete process of making an observation, from planning to image reconstruction. This rigorous approach emphasizes the use of rules-of-thumb for important parameters such as the signal-to-noise ratios, requirements for sampling the Fourier plane and predicting image quality. The handbook is supported by web resources, including the Python source code used to make many of the graphs, as well as an interferometry simulation framework, available at www.cambridg...

  1. Integrated Optics Achromatic Nuller for Stellar Interferometry

    Science.gov (United States)

    Ksendzov, Alexander

    2012-01-01

    This innovation will replace a beam combiner, a phase shifter, and a mode conditioner, thus simplifying the system design and alignment, and saving weight and space in future missions. This nuller is a dielectric-waveguide-based, four-port asymmetric coupler. Its nulling performance is based on the mode-sorting property of adiabatic asymmetric couplers that are intrinsically achromatic. This nuller has been designed, and its performance modeled, in the 6.5-micrometer to 9.25-micrometer spectral interval (36% bandwidth). The calculated suppression of starlight for this 15-cm-long device is 10(exp -5) or better through the whole bandwidth. This is enough to satisfy requirements of a flagship exoplanet-characterization mission. Nulling interferometry is an approach to starlight suppression that will allow the detection and spectral characterization of Earth-like exoplanets. Nulling interferometers separate the light originating from a dim planet from the bright starlight by placing the star at the bottom of a deep, destructive interference fringe, where the starlight is effectively cancelled, or nulled, thus allowing the faint off-axis light to be much more easily seen. This process is referred to as nulling of the starlight. Achromatic nulling technology is a critical component that provides the starlight suppression in interferometer-based observatories. Previously considered space-based interferometers are aimed at approximately 6-to-20-micrometer spectral range. While containing the spectral features of many gases that are considered to be signatures of life, it also offers better planet-to-star brightness ratio than shorter wavelengths. In the Integrated Optics Achromatic Nuller (IOAN) device, the two beams from the interferometer's collecting telescopes pass through the same focusing optic and are incident on the input of the nuller.

  2. Intracavity interferometry using synchronously pumped OPO

    Science.gov (United States)

    Zavadilová, Alena; Vyhlídal, David; Kubeček, Václav; Šulc, Jan; Navrátil, Petr

    2016-12-01

    The concept of system for intracavity interferometry based on the beat note detection in subharmonic synchronously intracavity pumped optical parametrical oscillator (OPO) is presented. The system consisted of SESAM-modelocked, picosecond, diode pumped Nd:YVO4 laser, operating at wavelength 1.06 μm and tunable linear intracavity pumped OPO based on MgO:PPLN crystal, widely tunable in 1.5 μm able to deliver two independent trains of picosecond pulses. The optical length of the OPO cavity was set to be exactly twice the pumping cavity length. In this configuration the OPO produces signal pulses with the same repetition frequency as the pump laser but the signal consists of two completely independent pulse trains. For purpose of pump probe measurements the setup signal with half repetition rate and scalable amplitude was derived from the OPO signal using RF signal divider, electropotical modulator and fiber amplifier. The impact of one pump beam on the sample is detected by one probing OPO train, the other OPO train is used as a reference. The beat note measured using the intracavity interferometer is proportional to phase modulation caused by the pump beam. The bandwidth of observed beat-note was less than 1 Hz (FWHM), it corresponds to a phase shift measurement error of less than 1.5 × 10-7 rad without any active stabilization. Such compact low-cost system could be used for ultra-sensitive phase-difference measurements (e.g. nonlinear refractive index measurement) for wide range of material especially in spectral range important for telecom applications.

  3. Photon exchange and decoherence in neutron interferometry

    International Nuclear Information System (INIS)

    Sulyok, G.

    2011-01-01

    The general subject of the present work concerns the action of time-dependent, spatially restricted magnetic fields on the wave function of a neutron. Special focus lies on their application in neutron interferometry. For arbitrary time-periodic fields, the corresponding Schroedinger equation is solved analytically. It is then shown, how the occurring exchange of energy quanta between the neutron and the modes of the magnetic field appears in the temporal modulation of the interference pattern between the original wavefunction and the wavefunction altered by the magnetic field. By Fourier analysis of the time-resolved interference pattern, the transition probabilities for all possible energy transfers are deducible. Experimental results for fields consisting of up to five modes are presented. Extending the theoretical approach by quantizing the magnetic field allows deeper insights on the underlying physical processes. For a coherent field state with a high mean photon number, the results of the calculation with classical fields is reproduced. By increasing the number of field modes whose relative phases are randomly distributed, one approaches the noise regime which offers the possibility of modelling decoherence in the neutron interferometer. Options and limitations of this modelling procedure are investigated in detail both theoretically and experimentally. Noise sources are applied in one or both interferometer path, and their strength, frequency bandwidth and position to each other is varied. In addition, the influence of increasing spatial separation of the neutron wave packet is examined, since the resulting Schroedinger cat-like states play an important role in decoherence theory. (author) [de

  4. Functionalized apertures for the detection of chemical and biological materials

    Science.gov (United States)

    Letant, Sonia E.; van Buuren, Anthony W.; Terminello, Louis J.; Thelen, Michael P.; Hope-Weeks, Louisa J.; Hart, Bradley R.

    2010-12-14

    Disclosed are nanometer to micron scale functionalized apertures constructed on a substrate made of glass, carbon, semiconductors or polymeric materials that allow for the real time detection of biological materials or chemical moieties. Many apertures can exist on one substrate allowing for the simultaneous detection of numerous chemical and biological molecules. One embodiment features a macrocyclic ring attached to cross-linkers, wherein the macrocyclic ring has a biological or chemical probe extending through the aperture. Another embodiment achieves functionalization by attaching chemical or biological anchors directly to the walls of the apertures via cross-linkers.

  5. Extended Aperture Photometry of K2 RR Lyrae stars

    Science.gov (United States)

    Plachy, Emese; Klagyivik, Péter; Molnár, László; Sódor, Ádám; Szabó, Róbert

    2017-10-01

    We present the method of the Extended Aperture Photometry (EAP) that we applied on K2 RR Lyrae stars. Our aim is to minimize the instrumental variations of attitude control maneuvers by using apertures that cover the positional changes in the field of view thus contain the stars during the whole observation. We present example light curves that we compared to the light curves from the K2 Systematics Correction (K2SC) pipeline applied on the automated Single Aperture Photometry (SAP) and on the Pre-search Data Conditioning Simple Aperture Photometry (PDCSAP) data.

  6. Extended Aperture Photometry of K2 RR Lyrae stars

    Directory of Open Access Journals (Sweden)

    Plachy Emese

    2017-01-01

    Full Text Available We present the method of the Extended Aperture Photometry (EAP that we applied on K2 RR Lyrae stars. Our aim is to minimize the instrumental variations of attitude control maneuvers by using apertures that cover the positional changes in the field of view thus contain the stars during the whole observation. We present example light curves that we compared to the light curves from the K2 Systematics Correction (K2SC pipeline applied on the automated Single Aperture Photometry (SAP and on the Pre-search Data Conditioning Simple Aperture Photometry (PDCSAP data.

  7. Enhanced Spectral Modeling of Sparse Aperture Imaging Systems

    National Research Council Canada - National Science Library

    Introne, Robert

    2005-01-01

    .... Unfortunately, spaceborne applications frequently encounter launch vehicle fairing and weight constraints that limit the size of the primarily aperture that can be utilized for a given application...

  8. Phase analysis of amplitude binary mask structures

    Science.gov (United States)

    Puthankovilakam, Krishnaparvathy; Scharf, Toralf; Herzig, Hans Peter; Vogler, Uwe; Bramati, Arianna; Voelkel, Reinhard

    2016-03-01

    Shaping of light behind masks using different techniques is the milestone of the printing industry. The aerial image distribution or the intensity distribution at the printing distances defines the resolution of the structure after printing. Contrast and phase are the two parameters that play a major role in shaping of light to get the desired intensity pattern. Here, in contrast to many other contributions that focus on intensity, we discuss the phase evolution for different structures. The amplitude or intensity characteristics of the structures in a binary mask at different proximity gaps have been analyzed extensively for many industrial applications. But the phase evolution from the binary mask having OPC structures is not considered so far. The mask we consider here is the normal amplitude binary mask but having high resolution Optical Proximity Correction (OPC) structures for corners. The corner structures represent a two dimensional problem which is difficult to handle with simple rules of phase masks design and therefore of particular interest. The evolution of light from small amplitude structures might lead to high contrast by creating sharp phase changes or phase singularities which are points of zero intensity. We show the phase modulation at different proximity gaps and can visualize the shaping of light according to the phase changes. The analysis is done with an instrument called High Resolution Interference Microscopy (HRIM), a Mach-Zehnder interferometer that gives access to three-dimensional phase and amplitude images. The current paper emphasizes on the phase measurement of different optical proximity correction structures, and especially on corners of a binary mask.

  9. An etching mask and a method to produce an etching mask

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to an etching mask comprising silicon containing block copolymers produced by self-assembly techniques onto silicon or graphene substrate. Through the use of the etching mask, nanostructures having long linear features having sub-10 nm width can be produced....

  10. The Intervenor Effect in Masked Priming: How Does Masked Priming Survive across an Intervening Word?

    Science.gov (United States)

    Forster, Kenneth I.

    2009-01-01

    Four masked priming experiments are reported investigating the effect of inserting an unrelated word between the masked prime and the target. When the intervening word is visible, identity priming is reduced to the level of one-letter-different form priming, but form priming is largely unaffected. However, when the intervening word is itself…

  11. Interferometry correlations in central p+Pb collisions

    Science.gov (United States)

    Bożek, Piotr; Bysiak, Sebastian

    2018-01-01

    We present results on interferometry correlations for pions emitted in central p+Pb collisions at √{s_{NN}}=5.02 TeV in a 3+1-dimensional viscous hydrodynamic model with initial conditions from the Glauber Monte Carlo model. The correlation function is calculated as a function of the pion pair rapidity. The extracted interferometry radii show a weak rapidity dependence, reflecting the lack of boost invariance of the pion distribution. A cross term between the out and long directions is found to be nonzero. The results obtained in the hydrodynamic model are in fair agreement with recent data of the ATLAS Collaboration.

  12. Stern Gerlach interferometry with metastable argon atoms: an immaterial mask modulating the profile of a supersonic beam

    CERN Document Server

    Viaris De Lesegno, B; Perales, F; Mainos, C; Reinhardt, J; Baudon, J; Grancharova, D; Durt, T; Robert, J; Boustimi, M; Bocvarski, V; Dos Santos, F P; Durt, T; Haberland, H

    2003-01-01

    A new Stern Gerlach interferometer operating with a nozzle beam of metastable argon atoms Ar* (3p sup 5 4s, sup 3 P sub 2) is described. The selection of incoming (polarisation) and outgoing (analysis) Zeeman sublevels is achieved by use of laser induced transitions at two wavelengths, 811.5 nm (closed J 2 -> J = 3 transition) and 801.5 nm (open J = 2 -> J = 2 transition). Linear superpositions of Zeeman sublevels, just beyond the polarizer and just before the analyser, are prepared by means of two zones where Majorana transitions take place. In between, a controlled magnetic field configuration (the phase object) is produced within a triple mu-metal shielding. Standard interference patterns are obtained by scanning the field and detecting the atoms by secondary electron emission from a Faraday cup. When a static radial magnetic gradient is used, the beam profile is modulated by interference. The transverse pattern. which can be translated at will by adding a homogeneous field, is observed for the first time ...

  13. [Recognition of visual objects under forward masking. Effects of cathegorial similarity of test and masking stimuli].

    Science.gov (United States)

    Gerasimenko, N Iu; Slavutskaia, A V; Kalinin, S A; Kulikov, M A; Mikhaĭlova, E S

    2013-01-01

    In 38 healthy subjects accuracy and response time were examined during recognition of two categories of images--animals andnonliving objects--under forward masking. We revealed new data that masking effects depended of categorical similarity of target and masking stimuli. The recognition accuracy was the lowest and the response time was the most slow, when the target and masking stimuli belongs to the same category, that was combined with high dispersion of response times. The revealed effects were more clear in the task of animal recognition in comparison with the recognition of nonliving objects. We supposed that the revealed effects connected with interference between cortical representations of the target and masking stimuli and discussed our results in context of cortical interference and negative priming.

  14. Endogenous cueing attenuates object substitution masking.

    Science.gov (United States)

    Germeys, Filip; Pomianowska, I; De Graef, P; Zaenen, P; Verfaillie, K

    2010-07-01

    Object substitution masking (OSM) is a form of visual masking in which a briefly presented target surrounded by four small dots is masked by the continuing presence of the four dots after target offset. A major parameter in the prediction of OSM is the time required for attention to be directed to the target following its onset. Object substitution theory (Di Lollo et al. in J Exp Psychol Gen 129:481-507, 2000) predicts that the sooner attention can be focused at the target's location, the less masking will ensue. However, recently Luiga and Bachmann (Psychol Res 71:634-640, 2007) presented evidence that precueing of attention to the target location prior to target-plus-mask onset by means of a central (endogenous) arrow cue does not reduce OSM. When attention was cued exogenously, OSM was attenuated. Based on these results, Luiga and Bachmann argued that object substitution theory should be adapted by differentiating the ways of directing attention to the target location. The goal of the present study was to further examine the dissociation between the effects of endogenous and exogenous precueing on OSM. Contrary to Luiga and Bachmann, our results show that prior shifts of attention to the target location initiated by both exogenous and endogenous cues reduce OSM as predicted by object substitution theory and its computational model CMOS.

  15. EUV mask process specifics and development challenges

    Science.gov (United States)

    Nesladek, Pavel

    2014-07-01

    EUV lithography is currently the favorite and most promising candidate among the next generation lithography (NGL) technologies. Decade ago the NGL was supposed to be used for 45 nm technology node. Due to introduction of immersion 193nm lithography, double/triple patterning and further techniques, the 193 nm lithography capabilities was greatly improved, so it is expected to be used successfully depending on business decision of the end user down to 10 nm logic. Subsequent technology node will require EUV or DSA alternative technology. Manufacturing and especially process development for EUV technology requires significant number of unique processes, in several cases performed at dedicated tools. Currently several of these tools as e.g. EUV AIMS or actinic reflectometer are not available on site yet. The process development is done using external services /tools with impact on the single unit process development timeline and the uncertainty of the process performance estimation, therefore compromises in process development, caused by assumption about similarities between optical and EUV mask made in experiment planning and omitting of tests are further reasons for challenges to unit process development. Increased defect risk and uncertainty in process qualification are just two examples, which can impact mask quality / process development. The aim of this paper is to identify critical aspects of the EUV mask manufacturing with respect to defects on the mask with focus on mask cleaning and defect repair and discuss the impact of the EUV specific requirements on the experiments needed.

  16. Defocus morphing in real aperture images.

    Science.gov (United States)

    Chaudhuri, Subhasis

    2005-11-01

    A new concept called defocus morphing in real aperture images is introduced. View morphing is an existing example of shape-preserving image morphing based on the motion cue. It is proved that images can also be morphed based on the depth-related defocus cue. This illustrates that the morphing operation is not necessarily a geometric process alone; one can also perform a photometry-based morphing wherein the shape information is implicitly buried in the image intensity field. A theoretical understanding of the defocus morphing process is presented. It is shown mathematically that, given two observations of a three-dimensional scene for different camera parameter settings, we can obtain a virtual observation for any camera parameter setting through a simple nonlinear combination of these observations.

  17. Terahertz Imaging Systems With Aperture Synthesis Techniques

    DEFF Research Database (Denmark)

    Krozer, Viktor; Löffler, Torsten; Dall, Jørgen

    2010-01-01

    imaging systems are reviewed in terms of the employed architecture and data processing strategies. Active multichannel measurement method is found to be promising for real-time applications among the various terahertz imaging techniques and is chosen as a basis for the imaging instruments presented......This paper presents the research and development of two terahertz imaging systems based on photonic and electronic principles, respectively. As part of this study, a survey of ongoing research in the field of terahertz imaging is provided focusing on security applications. Existing terahertz...... in this paper. An active system operation allows for a wide dynamic range, which is important for image quality. The described instruments employ a multichannel high-sensitivity heterodyne architecture and aperture filling techniques, with close to real-time image acquisition time. In the case of the photonic...

  18. Large aperture nanocomposite deformable mirror technology

    Science.gov (United States)

    Chen, Peter C.; Hale, Richard D.

    2007-12-01

    We report progress in the development of deformable mirrors (DM) using nanocomposite materials. For the extremely large telescopes (ELTs) currently being planned, a new generation of DMs with unprecedented performance is a critical path item. The DMs need to have large apertures (meters), continuous surfaces, and low microroughness. Most importantly, they must have excellent static optical figures and yet be sufficiently thin (1-2 mm) and flexible to function with small, low powered actuators. Carbon fiber reinforced plastics (CFRP) have the potential to fulfill these requirements. However, CFRP mirrors made using direct optical replication have encountered a number of problems. Firstly, it is difficult if not impossible for a CFRP mirror to maintain a good static optical figure if a small number of plies are used, but adding more plies to the laminate tends to make the substrate too thick and stiff. Secondly, direct optical replication requires precision mandrels, the costs of which become prohibitive at multi-meter apertures. We report development of a new approach. By using a combination of a novel support structure, selected fibers, and binding resins infused with nanoparticles, it is possible to make millimeter thick optical mirrors that can both maintain good static optical figures and yet still have the required flexibility for actuation. Development and refinement of a non-contact, deterministic process of fine figuring permits generation of accurate optical surfaces without the need for precision optical mandrels. We present data from tests that have been carried out to demonstrate these new processes. A number of flat DMs have been fabricated, as well as concave and convex DMs in spherical, parabolic, and other forms.

  19. Common aperture multispectral spotter camera: Spectro XR

    Science.gov (United States)

    Petrushevsky, Vladimir; Freiman, Dov; Diamant, Idan; Giladi, Shira; Leibovich, Maor

    2017-10-01

    The Spectro XRTM is an advanced color/NIR/SWIR/MWIR 16'' payload recently developed by Elbit Systems / ELOP. The payload's primary sensor is a spotter camera with common 7'' aperture. The sensor suite includes also MWIR zoom, EO zoom, laser designator or rangefinder, laser pointer / illuminator and laser spot tracker. Rigid structure, vibration damping and 4-axes gimbals enable high level of line-of-sight stabilization. The payload's list of features include multi-target video tracker, precise boresight, strap-on IMU, embedded moving map, geodetic calculations suite, and image fusion. The paper describes main technical characteristics of the spotter camera. Visible-quality, all-metal front catadioptric telescope maintains optical performance in wide range of environmental conditions. High-efficiency coatings separate the incoming light into EO, SWIR and MWIR band channels. Both EO and SWIR bands have dual FOV and 3 spectral filters each. Several variants of focal plane array formats are supported. The common aperture design facilitates superior DRI performance in EO and SWIR, in comparison to the conventionally configured payloads. Special spectral calibration and color correction extend the effective range of color imaging. An advanced CMOS FPA and low F-number of the optics facilitate low light performance. SWIR band provides further atmospheric penetration, as well as see-spot capability at especially long ranges, due to asynchronous pulse detection. MWIR band has good sharpness in the entire field-of-view and (with full HD FPA) delivers amount of detail far exceeding one of VGA-equipped FLIRs. The Spectro XR offers level of performance typically associated with larger and heavier payloads.

  20. Mechanical Strain Measurement from Coda Wave Interferometry

    Science.gov (United States)

    Azzola, J.; Schmittbuhl, J.; Zigone, D.; Masson, F.; Magnenet, V.

    2017-12-01

    Coda Wave Interferometry (CWI) aims at tracking small changes in solid materials like rocks where elastic waves are diffusing. They are intensively sampling the medium, making the technique much more sensitive than those relying on direct wave arrivals. Application of CWI to ambient seismic noise has found a large range of applications over the past years like for multiscale imaging but also for monitoring complex structures such as regional faults or reservoirs (Lehujeur et al., 2015). Physically, observed changes are typically interpreted as small variations of seismic velocities. However, this interpretation remains questionable. Here, a specific focus is put on the influence of the elastic deformation of the medium on CWI measurements. The goal of the present work is to show from a direct numerical and experimental modeling that deformation signal also exists in CWI measurements which might provide new outcomes for the technique.For this purpose, we model seismic wave propagation within a diffusive medium using a spectral element approach (SPECFEM2D) during an elastic deformation of the medium. The mechanical behavior is obtained from a finite element approach (Code ASTER) keeping the mesh grid of the sample constant during the whole procedure to limit numerical artifacts. The CWI of the late wave arrivals in the synthetic seismograms is performed using both a stretching technique in the time domain and a frequency cross-correlation method. Both show that the elastic deformation of the scatters is fully correlated with time shifts of the CWI differently from an acoustoelastic effect. As an illustration, the modeled sample is chosen as an effective medium aiming to mechanically and acoustically reproduce a typical granitic reservoir rock.Our numerical approach is compared to experimental results where multi-scattering of an acoustic wave through a perforated loaded Au4G (Dural) plate is performed at laboratory scale. Experimental and numerical results of the

  1. Laser interferometry of radiation driven gas jets

    Science.gov (United States)

    Swanson, Kyle James; Ivanov, Vladimir; Mancini, Roberto; Mayes, Daniel C.

    2017-06-01

    In a series of experiments performed at the 1MA Zebra pulsed power accelerator of the Nevada Terawatt Facility nitrogen gas jets were driven with the broadband x-ray flux produced during the collapse of a wire-array z-pinch implosion. The wire arrays were comprised of 4 and 8, 10μm-thick gold wires and 17μm-thick nickel wires, 2cm and 3cm tall, and 0.3cm in diameter. They radiated 12kJ to 16kJ of x-ray energy, most of it in soft x-ray photons of less than 1keV of energy, in a time interval of 30ns. This x-ray flux was used to drive a nitrogen gas jet located at 0.8cm from the axis of the z-pinch radiation source and produced with a supersonic nozzle. The x-ray flux ionizes the nitrogen gas thus turning it into a photoionized plasma. We used laser interferometry to probe the ionization of the plasma. To this end, a Mach-Zehnder interferometer at the wavelength of 266 nm was set up to extract the atom number density profile of the gas jet just before the Zebra shot, and air-wedge interferometers at 266 and 532 nm were used to determine the electron number density of the plasma right during the Zebra shot. The ratio of electron to atom number densities gives the distribution of average ionization state of the plasma. A python code was developed to perform the image data processing, extract phase shift spatial maps, and obtain the atom and electron number densities via Abel inversion. Preliminary results from the experiment are promising and do show that a plasma has been created in the gas jet driven by the x-ray flux, thus demonstrating the feasibility of a new experimental platform to study photoionized plasmas in the laboratory. These plasmas are found in astrophysical scenarios including x-ray binaries, active galactic nuclei, and the accretion disks surrounding black holes1. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451.1R. C. Mancini et al, Phys. Plasmas 16, 041001 (2009)

  2. Polymer Masks for nanostructuring of graphene

    DEFF Research Database (Denmark)

    Shvets, Violetta

    This PhD project is a part of Center for Nanostructured Graphene (CNG) activities. The aim of the project is to develop a new lithography method for creation of highly ordered nanostructures with as small as possible feature and period sizes. The method should be applicable for graphene...... polymer masks is developed. Mask fabrication is realized by microtoming of 30-60 nm thin sections from pre-aligned polymer monoliths with different morphologies. The resulting polymer masks are then transferred to both silicon and graphene substrates. Hexagonally packed hole patterns with 10 nm hole...... diameter and 20 nm periodicity are successfully transferred to both substrates. The method allowed to realize the first ever transfer of moiré patterns to silicon. Furthermore, in collaboration with CNG, device with nanostructured graphene are fabricated and electrical measurements made on these devices...

  3. The fastest saccadic responses escape visual masking

    DEFF Research Database (Denmark)

    Crouzet, Sébastien M.; Overgaard, Morten; Busch, Niko A.

    2014-01-01

    visual processing while the initial feedforward processing is thought to be left intact. We tested a prediction derived from this hypothesis: the fastest responses, being triggered before the beginning of reentrant processing, should escape the OSM interference. In a saccadic choice reaction time task......, which gives access to very early stages of visual processing, target visibility was reduced either by OSM, conventional backward masking, or low stimulus contrast. A general reduction of performance was observed in all three conditions. However, the fastest saccades did not show any sign of interference...... under either OSM or backward masking, as they did under the low-contrast condition. This finding supports the hypothesis that masking interferes mostly with reentrant processing at later stages, while leaving early feedforward processing largely intact....

  4. The technique of death masks making.

    Science.gov (United States)

    Jansen, H H; Leist, P

    1977-12-01

    In taking death-masks two different techniques are used. In the technique using a plaster matrix the plaster mash is brought on the face. When the plaster-cast has dried it is filled with plaster mash. Later the matrix is removed in order to lay open the mask. In the technique using a plastic matrix the plastic powder Palgat is brought on the face after mixing it rapidly with icewater until it appears pappy. After that a layer of several centimeters of plaster mash follows in order to stabilize the delicate plastic matrix. Likewise the matrix is filled with plaster mash. The mask can be furnished with a collar and a fixation and the surface can be prepared. The skin relief of the face is reproduced finer using the cast of a plastic matrix.

  5. Effective masking bandwidths at low frequencies.

    Science.gov (United States)

    Fidell, S; Horonjeff, R; Teffeteller, S; Green, D M

    1983-02-01

    Masking of low-frequency sinusoids of varying durations by Gaussian noise of varying spectral shape was measured in three different studies. Common solutions to technical problems associated with control and specification of low-frequency signals were used in the three studies. If interpreted in terms of Fletcher's critical ratio assumptions, data from the first study lead to the inference that the masking bandwidth is inversely related to signal frequency below about 200 Hz. Data from the second study rule out the likelihood that the apparent increase in masking bandwidth is attributable to changes in auditory integration times at low frequencies. The data of the third study suggest that the apparent increase in auditory filter bandwidth at low frequencies is more adequately explained by a decrease in observers' detection efficiency than by broadening of the filter bandpass.

  6. Effect of mask dead space and occlusion of mask holes on delivery of nebulized albuterol.

    Science.gov (United States)

    Berlinski, Ariel

    2014-08-01

    Infants and children with respiratory conditions are often prescribed bronchodilators. Face masks are used to facilitate the administration of nebulized therapy in patients unable to use a mouthpiece. Masks incorporate holes into their design, and their occlusion during aerosol delivery has been a common practice. Masks are available in different sizes and different dead volumes. The aim of this study was to compare the effect of different degrees of occlusion of the mask holes and different mask dead space on the amount of nebulized albuterol available at the mouth opening in a model of a spontaneously breathing child. A breathing simulator mimicking infant (tidal volume [VT] = 50 mL, breathing frequency = 30 breaths/min, inspiratory-expiratory ratio [I:E] = 1:3), child (VT = 155 mL, breathing frequency = 25 breaths/min, I:E = 1:2), and adult (VT = 500 mL, breathing frequency = 15 breaths/min, I:E = 1:2) breathing patterns was connected to a collection filter hidden behind a face plate. A pediatric size mask and an adult size mask connected to a continuous output jet nebulizer were sealed to the face plate. Three nebulizers were loaded with albuterol sulfate (2.5 mg/3 mL) and operated with 6 L/min compressed air for 5 min. Experiments were repeated with different degrees of occlusion (0%, 50%, and 90%). Albuterol was extracted from the filter and measured with a spectrophotometer at 276 nm. Occlusion of the holes in the large mask did not increase the amount of albuterol in any of the breathing patterns. The amount of albuterol captured at the mouth opening did not change when the small mask was switched to the large mask, except with the breathing pattern of a child, and when the holes in the mask were 50% occluded (P = .02). Neither decreasing the dead space of the mask nor occluding the mask holes increased the amount of nebulized albuterol captured at the mouth opening.

  7. Individual differences in metacontrast masking regarding sensitivity and response bias.

    Science.gov (United States)

    Albrecht, Thorsten; Mattler, Uwe

    2012-09-01

    In metacontrast masking target visibility is modulated by the time until a masking stimulus appears. The effect of this temporal delay differs across participants in such a way that individual human observers' performance shows distinguishable types of masking functions which remain largely unchanged for months. Here we examined whether individual differences in masking functions depend on different response criteria in addition to differences in discrimination sensitivity. To this end we reanalyzed previously published data and conducted a new experiment for further data analyses. Our analyses demonstrate that a distinction of masking functions based on the type of masking stimulus is superior to a distinction based on the target-mask congruency. Individually different masking functions are based on individual differences in discrimination sensitivities and in response criteria. Results suggest that individual differences in metacontrast masking result from individually different criterion contents. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Metacontrast masking is processed before grapheme-color synesthesia.

    Science.gov (United States)

    Bacon, Michael Patrick; Bridgeman, Bruce; Ramachandran, Vilayanur S

    2013-01-01

    We investigated the physiological mechanism of grapheme-color synesthesia using metacontrast masking. A metacontrast target is rendered invisible by a mask that is delayed by about 60 ms; the target and mask do not overlap in space or time. Little masking occurs, however, if the target and mask are simultaneous. This effect must be cortical, because it can be obtained dichoptically. To compare the data for synesthetes and controls, we developed a metacontrast design in which nonsynesthete controls showed weaker dichromatic masking (i.e., the target and mask were in different colors) than monochromatic masking. We accomplished this with an equiluminant target, mask, and background for each observer. If synesthetic color affected metacontrast, synesthetes should show monochromatic masking more similar to the weak dichromatic masking among controls, because synesthetes could add their synesthetic color to the monochromatic condition. The target-mask pairs used for each synesthete were graphemes that elicited strong synesthetic colors. We found stronger monochromatic than dichromatic U-shaped metacontrast for both synesthetes and controls, with optimal masking at an asynchrony of 66 ms. The difference in performance between the monochromatic and dichromatic conditions in the synesthetes indicates that synesthesia occurs at a later processing stage than does metacontrast masking.

  9. Second harmonic imaging using synthetic aperture sequential beamforming

    DEFF Research Database (Denmark)

    Du, Yigang; Rasmussen, Joachim; Jensen, Henrik

    2011-01-01

    The paper investigates Second Harmonic Imaging (SHI) using Synthetic Aperture Sequential Beamforming (SASB). The investigation is made by an experimental Synthetic Aperture Real-time Ultrasound System (SARUS). A linear array transducer is used to scan 4 wires at the image depths of f22.5, 47.5, 72...

  10. The sonar aperture and its neural representation in bats.

    Science.gov (United States)

    Heinrich, Melina; Warmbold, Alexander; Hoffmann, Susanne; Firzlaff, Uwe; Wiegrebe, Lutz

    2011-10-26

    As opposed to visual imaging, biosonar imaging of spatial object properties represents a challenge for the auditory system because its sensory epithelium is not arranged along space axes. For echolocating bats, object width is encoded by the amplitude of its echo (echo intensity) but also by the naturally covarying spread of angles of incidence from which the echoes impinge on the bat's ears (sonar aperture). It is unclear whether bats use the echo intensity and/or the sonar aperture to estimate an object's width. We addressed this question in a combined psychophysical and electrophysiological approach. In three virtual-object playback experiments, bats of the species Phyllostomus discolor had to discriminate simple reflections of their own echolocation calls differing in echo intensity, sonar aperture, or both. Discrimination performance for objects with physically correct covariation of sonar aperture and echo intensity ("object width") did not differ from discrimination performances when only the sonar aperture was varied. Thus, the bats were able to detect changes in object width in the absence of intensity cues. The psychophysical results are reflected in the responses of a population of units in the auditory midbrain and cortex that responded strongest to echoes from objects with a specific sonar aperture, regardless of variations in echo intensity. Neurometric functions obtained from cortical units encoding the sonar aperture are sufficient to explain the behavioral performance of the bats. These current data show that the sonar aperture is a behaviorally relevant and reliably encoded cue for object size in bat sonar.

  11. Shadow Enhancement in Synthetic Aperture Sonar Using Fixed Focusing

    NARCIS (Netherlands)

    Groen, J.; Hansen, R.E.; Callow, H.J.; Sabel, J.C.; Sæbø, T.O.

    2009-01-01

    Abstract—A shadow cast by an object on the seafloor is important information for target recognition in synthetic aperture sonar (SAS) images. Synthetic aperture imaging causes a fundamental limitation to shadow clarity because the illuminator is moved during the data collection. This leads to a

  12. Thermal front propagation in variable aperture fracture–matrix ...

    Indian Academy of Sciences (India)

    Keywords. Thermal front; variable aperture; rock-matrix; geothermal reservoir; numerical model, liquid dominated. Abstract. A numerical study on the effect of complex fracture aperture geometry on propagation of thermal front in a coupled single fracture-matrix system has been carried out. Sinusoidal and logarithmic ...

  13. Reconfigurable metasurface aperture for security screening and microwave imaging

    Science.gov (United States)

    Sleasman, Timothy; Imani, Mohammadreza F.; Boyarsky, Michael; Pulido-Mancera, Laura; Reynolds, Matthew S.; Smith, David R.

    2017-05-01

    Microwave imaging systems have seen growing interest in recent decades for applications ranging from security screening to space/earth observation. However, hardware architectures commonly used for this purpose have not seen drastic changes. With the advent of metamaterials a wealth of opportunities have emerged for honing metasurface apertures for microwave imaging systems. Recent thrusts have introduced dynamic reconfigurability directly into the aperture layer, providing powerful capabilities from a physical layer with considerable simplicity. The waveforms generated from such dynamic metasurfaces make them suitable for application in synthetic aperture radar (SAR) and, more generally, computational imaging. In this paper, we investigate a dynamic metasurface aperture capable of performing microwave imaging in the K-band (17.5-26.5 GHz). The proposed aperture is planar and promises an inexpensive fabrication process via printed circuit board techniques. These traits are further augmented by the tunability of dynamic metasurfaces, which provides the dexterity necessary to generate field patterns ranging from a sequence of steered beams to a series of uncorrelated radiation patterns. Imaging is experimentally demonstrated with a voltage-tunable metasurface aperture. We also demonstrate the aperture's utility in real-time measurements and perform volumetric SAR imaging. The capabilities of a prototype are detailed and the future prospects of general dynamic metasurface apertures are discussed.

  14. Thermal front propagation in variable aperture fracture–matrix system

    Indian Academy of Sciences (India)

    heat transfer from rock matrix to fracture for the case of the parallel plate model is greatly dependent on the rock thermal conductivity (λm) as compared to variable aper- ture model. Further, the thermal front propagation for both parallel plate model and variable aperture model is sensitive to changes in fracture aperture.

  15. Flash thermography with a periodic mask: profile evaluation of the principal diffusivities for the control of composite materials

    Science.gov (United States)

    Spagnolo, Leonardo; Krapez, Jean-Claude; Friess, Martin; Maier, Hans-Peter; Neuer, Guenther

    2003-04-01

    Recently we proposed a modification of the classical flash thermography method for diffusivity measurement: by putting a mask having a periodic pattern of apertures between the flash lamp and the orthotropic material to be tested, one can obtain simultaneously the out-of-plane diffusivity and the in-plane diffusivity of the material. Here we present two examples where the measurement of the thermal properties is made at a local level: the experiment is performed with a large grid mask, however the parameter identification is made on a sliding window whose width corresponds to one-period of the mask. By this way, one can get a profile for each diffusivity. By applying this procedure, one can expect detecting localised variations of the thermal properties, as well as cracks. We controlled by this way a series of C/C-SiC dog-bone samples during a tensile test. We systematically observed a rather uniform and linear decrease of about 0.1%/MPa for the in-plane diffusivity. This behaviour is related with the fact that a stress increase induces a gradual increase of the microcracks density. The second example deals with carbon disk brakes control. By using a circular mask, one can get in about two minutes the circumferential profile of both in-plane and out of plane diffusivities of the composite piece.

  16. The pros and cons of masked priming.

    Science.gov (United States)

    Forster, K I

    1998-03-01

    Masked priming paradigms offer the promise of tapping automatic, strategy-free lexical processing, as evidenced by the lack of expectancy disconfirmation effects, and proportionality effects in semantic priming experiments. But several recent findings suggest the effects may be prelexical. These findings concern nonword priming effects in lexical decision and naming, the effects of mixed-case presentation on nonword priming, and the dependence of priming on the nature of the distractors in lexical decision, suggesting possible strategy effects. The theory underlying each of these effects is discussed, and alternative explanations are developed that do not preclude a lexical basis for masked priming effects.

  17. Matter wave interferometry in the light of Schroedinger's wave mechanics

    International Nuclear Information System (INIS)

    1987-01-01

    This is a pre-conference abstracts collection for 67 oral presentations and posters, 62 of them are in INIS scope and are treated individually. The subject matters are interferometers (mainly neutron), interferometry experiments and the related interpretation - and epistemological problems of quantum theory. (qui)

  18. Phase knife-edge laser Schlieren diffraction interferometry with ...

    Indian Academy of Sciences (India)

    The use of phase knife-edge as viewing diaphragm in Schlieren diffraction interferometry not only enhances the fringe contrast but also avoids the loss in phase information as it lets through light from all parts of the test object and its thin interfacing makes the method suitable even for studying weak disturbances. Keywords.

  19. Distinguishing between Dirac and Majorana neutrinos withtwo-particle interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, Thomas D.

    2006-03-02

    Two-particle interferometry, a second-order interferenceeffect, is explored as another possible tool to distinguish betweenmassive Dirac and Majorana neutrinos. A simple theoretical framework isdiscussed in the context of several gedanken experiments. The method canin principle provide both the mass scale and the quantum nature of theneutrino for a certain class of incoherent left-handed sourcecurrents.

  20. North and northeast Greenland ice discharge from satellite radar interferometry

    DEFF Research Database (Denmark)

    Rignot, E.J.; Gogineni, S.P.; Krabill, W.B.

    1997-01-01

    Ice discharge from north and northeast Greenland calculated from satellite radar interferometry data of 14 outlet glaciers is 3.5 times that estimated from iceberg production. The satellite estimates, obtained at the grounding line of the outlet glaciers, differ from those obtained at the glacier...

  1. Time-lapse controlled-source electromagnetics using interferometry

    NARCIS (Netherlands)

    Hunziker, J.W.; Slob, E.C.; Wapenaar, C.P.A.

    In time-lapse controlled-source electromagnetics, it is crucial that the source and the receivers are positioned at exactly the same location at all times of measurement. We use interferometry by multidimensional deconvolution (MDD) to overcome problems in repeatability of the source location.

  2. Microquake seismic interferometry with SVD-enhanced Green's function recovery

    OpenAIRE

    Melo, Gabriela; Malcolm, Alison E.

    2011-01-01

    The conditions under which seismic interferometry (SI) leads to the exact Green's function (GF) are rarely met in practice. As a result, we generally recover only estimates of the true GF. This raises the questions: How good an approximation to the GF can SI give? Can we improve this estimated GF?

  3. Application of Persistent Scatterer Interferometry (PSI) in monitoring ...

    Indian Academy of Sciences (India)

    Keywords. Slope instability; landslide; Lesser Himalaya; remote sensing; radar interferometry. Abstract. Orogenic movements and sub-tropical climate have rendered the slopes of the Himalayan region intensely deformed and weathered. As a result, the incidences of slope failure are quite common all along the Himalayan ...

  4. Radio astronomical interferometry and x-ray's computerized tomography

    International Nuclear Information System (INIS)

    Rodriguez, L.F.

    1982-01-01

    Radio astronomical interferometry and computerized tomography are techniques of great importance for astronomy and medicine, respectively. In this paper we emphasize that both techniques are based on the same mathematical principles, and present them as an example of interaction between basic and applied science. (author)

  5. A new polarized neutron interferometry facility at the NCNR

    Energy Technology Data Exchange (ETDEWEB)

    Shahi, C.B. [Physics and Engineering Physics Department, Tulane University, New Orleans, LA 70188 (United States); Arif, M. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Cory, D.G. [Department of Chemistry, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada N2L 2Y5 (Canada); Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Canadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8 (Canada); Mineeva, T. [Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Canadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8 (Canada); Nsofini, J.; Sarenac, D. [Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Williams, C.J. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Huber, M.G., E-mail: michael.huber@nist.gov [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Pushin, D.A., E-mail: dmitry.pushin@uwaterloo.ca [Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada)

    2016-03-21

    A new monochromatic beamline and facility has been installed at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR) devoted to neutron interferometry in the research areas of spin control, spin manipulation, quantum mechanics, quantum information science, spintronics, and material science. This facility is possible in part because of advances in decoherence free subspace interferometer designs that have demonstrated consistent contrast in the presence of vibrational noise; a major environmental constraint that has prevented neutron interferometry from being applied at other neutron facilities. Neutron interferometry measures the phase difference between a neutron wave function propagating along two spatially separated paths. It is a practical example of self interference and due to its modest path separation of a few centimeters allows the insertion of samples and macroscopic neutron spin rotators. Phase shifts can be caused by gravitational, magnetic and nuclear interactions as well as purely quantum mechanical effects making interferometer a robust tool in neutron research. This new facility is located in the guide hall of the NCNR upstream of the existing Neutron Interferometry and Optics Facility (NIOF) and has several advantages over the NIOF including higher incident flux, better neutron polarization, and increased accessibility. The long term goal for the new facility is to be a user supported beamline and makes neutron interferometer more generally available to the scientific community. This paper addresses both the capabilities and characteristics of the new facility.

  6. Application of interferometry to studies of glacier dynamics

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob

    1996-01-01

    Multi baseline repeat track interferometry (RTI) can potentially be used to measure both velocities and the micro topography of glaciers. The Danish Center for Remote Sensing (DCRS) in corporation with the Danish Polar Center (DPC) has established a test cite for studies of glacier dynamics on th...

  7. Pion interferometry theory for the hydrodynamic stage of multiple processes

    International Nuclear Information System (INIS)

    Makhlin, A.N.; Sinyukov, Yu.M.

    1986-01-01

    The double pion inclusive cross section for identical particles is described in hydrodynamical theory of multiparticle production. The pion interferometry theory is developed for the case when secondary particles are generated against the background of internal relativistic motion of radiative hadron matter. The connection between correlation functions in various schemes of experiment is found within the framework of relativistic Wigner functions formalism

  8. Micro-Gal level gravity measurements with cold atom interferometry

    International Nuclear Information System (INIS)

    Zhou Min-Kang; Duan Xiao-Chun; Chen Le-Le; Luo Qin; Xu Yao-Yao; Hu Zhong-Kun

    2015-01-01

    Developments of the micro-Gal level gravimeter based on atom interferometry are reviewed, and the recent progress and results of our group are also presented. Atom interferometric gravimeters have shown high resolution and accuracy for gravity measurements. This kind of quantum sensor has excited world-wide interest for both practical applications and fundamental research. (topical review)

  9. Global-scale seismic interferometry : Theory and numerical examples

    NARCIS (Netherlands)

    Ruigrok, E.N.; Draganov, D.S.; Wapenaar, K.

    2008-01-01

    Progress in the imaging of the mantle and core is partially limited by the sparse distribution of natural sources; the earthquake hypocenters are mainly along the active lithospheric plate boundaries. This problem can be approached with seismic interferometry. In recent years, there has been

  10. Michelson wide-field stellar interferometry : Principles and experimental verification

    NARCIS (Netherlands)

    Montilla, I.; Pereira, S.F.; Braat, J.J.M.

    2005-01-01

    A new interferometric technique for Michelson wide-field interferometry is presented that consists of a Michelson pupil-plane combination scheme in which a wide field of view can be achieved in one shot. This technique uses a stair-shaped mirror in the intermediate image plane of each telescope in

  11. Microfabricated high-bandpass foucault aperture for electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Glaeser, Robert; Cambie, Rossana; Jin, Jian

    2014-08-26

    A variant of the Foucault (knife-edge) aperture is disclosed that is designed to provide single-sideband (SSB) contrast at low spatial frequencies but retain conventional double-sideband (DSB) contrast at high spatial frequencies in transmission electron microscopy. The aperture includes a plate with an inner open area, a support extending from the plate at an edge of the open area, a half-circle feature mounted on the support and located at the center of the aperture open area. The radius of the half-circle portion of reciprocal space that is blocked by the aperture can be varied to suit the needs of electron microscopy investigation. The aperture is fabricated from conductive material which is preferably non-oxidizing, such as gold, for example.

  12. Influence of pressure change during hydraulic tests on fracture aperture.

    Science.gov (United States)

    Ji, Sung-Hoon; Koh, Yong-Kwon; Kuhlman, Kristopher L; Lee, Moo Yul; Choi, Jong Won

    2013-03-01

    In a series of field experiments, we evaluate the influence of a small water pressure change on fracture aperture during a hydraulic test. An experimental borehole is instrumented at the Korea Atomic Energy Research Institute (KAERI) Underground Research Tunnel (KURT). The target fracture for testing was found from the analyses of borehole logging and hydraulic tests. A double packer system was developed and installed in the test borehole to directly observe the aperture change due to water pressure change. Using this packer system, both aperture and flow rate are directly observed under various water pressures. Results indicate a slight change in fracture hydraulic head leads to an observable change in aperture. This suggests that aperture change should be considered when analyzing hydraulic test data from a sparsely fractured rock aquifer. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.

  13. Cosmic Ballet or Devil's Mask?

    Science.gov (United States)

    2004-04-01

    Stars like our Sun are members of galaxies, and most galaxies are themselves members of clusters of galaxies. In these, they move around among each other in a mostly slow and graceful ballet. But every now and then, two or more of the members may get too close for comfort - the movements become hectic, sometimes indeed dramatic, as when galaxies end up colliding. ESO PR Photo 12/04 shows an example of such a cosmic tango. This is the superb triple system NGC 6769-71, located in the southern Pavo constellation (the Peacock) at a distance of 190 million light-years. This composite image was obtained on April 1, 2004, the day of the Fifth Anniversary of ESO's Very Large Telescope (VLT). It was taken in the imaging mode of the VIsible Multi-Object Spectrograph (VIMOS) on Melipal, one of the four 8.2-m Unit Telescopes of the VLT at the Paranal Observatory (Chile). The two upper galaxies, NGC 6769 (upper right) and NGC 6770 (upper left), are of equal brightness and size, while NGC 6771 (below) is about half as bright and slightly smaller. All three galaxies possess a central bulge of similar brightness. They consist of elderly, reddish stars and that of NGC 6771 is remarkable for its "boxy" shape, a rare occurrence among galaxies. Gravitational interaction in a small galaxy group NGC 6769 is a spiral galaxy with very tightly wound spiral arms, while NGC 6770 has two major spiral arms, one of which is rather straight and points towards the outer disc of NGC 6769. NGC 6770 is also peculiar in that it presents two comparatively straight dark lanes and a fainter arc that curves towards the third galaxy, NGC 6771 (below). It is also obvious from this new VLT photo that stars and gas have been stripped off NGC 6769 and NGC 6770, starting to form a common envelope around them, in the shape of a Devil's Mask. There is also a weak hint of a tenuous bridge between NGC 6769 and NGC 6771. All of these features testify to strong gravitational interaction between the three galaxies

  14. Parallel Reduction of Large Radar Interferometry Scenes on a Mid-scale, Symmetric Multiprocessor Mainframe Computer

    Science.gov (United States)

    Harcke, L. J.; Zebker, H. A.

    2006-12-01

    We report on experiences in processing repeat-orbit interferometry data sets on a mid-scale multiprocessor mainframe computer. Newer applications of interferometric and polarimetric data processing, such as permanent scatterer deformation monitoring, require the generation of many tens of repeat-pass interferometry data pairs, perhaps 30 to 50, to provide sufficient input to the deformation model. Moving existing radar processing techniques toward massively parallel computation provides a path to coping with such large data sets, which can consist of 30 to 50 gigabytes (GB) of raw data. In June 2006, the Stanford School of Earth Sciences dedicated a new computation center for general research use. Two large machines compose the center: a single-node, symmetric multiprocessor (SMP) machine with 48 processor cores and a single 192~GB memory, and a 64 node distributed cluster containing 128 processor cores with at least 2~GB of memory per node. Distributed processing of the matched filter for synthetic aperture radar image formation requires a high communication-to-computation ratio. Experiments performed over a decade ago on distributed memory supercomputers, and repeated a half-decade ago on commodity workstation clusters, both demonstrated saturation of inter-node communication links. For this reason, we chose to parallelize the interferometric processor on the shared memory computer using the OpenMP programming standard. We find, not unexpectedly, that the input/output stage of processing standard 100-by-100~kilometer ERS-1 scenes quickly dominates the total computation time, and that only modest increases in processing time are achieved after 8 to 16 processor cores are brought to bear on a single data set. The input and output data sit in single, serially accessed disk files, creating a bottleneck for overall throughput. This points to a scheme for efficient partitioning of mid-size (24 to 48~core) machines for reducing large Earth science data sets, where 3 to

  15. Are Masking-Based Models of Risk Useful?

    Science.gov (United States)

    Gisiner, Robert C

    2016-01-01

    As our understanding of directly observable effects from anthropogenic sound exposure has improved, concern about "unobservable" effects such as stress and masking have received greater attention. Equal energy models of masking such as power spectrum models have the appeal of simplicity, but do they offer biologically realistic assessments of the risk of masking? Data relevant to masking such as critical ratios, critical bandwidths, temporal resolution, and directional resolution along with what is known about general mammalian antimasking mechanisms all argue for a much more complicated view of masking when making decisions about the risk of masking inherent in a given anthropogenic sound exposure scenario.

  16. High quality mask storage in an advanced Logic-Fab

    Science.gov (United States)

    Jähnert, Carmen; Fritsche, Silvio

    2012-02-01

    High efficient mask logistics as well as safe and high quality mask storage are essential requirements within an advanced lithography area of a modern logic waferfab. Fast operational availability of the required masks at the exposure tool with excellent mask condition requires a safe mask handling, safeguarding of high mask quality over the whole mask usage time without any quality degradation and an intelligent mask logistics. One big challenge is the prevention of haze on high advanced phase shift masks used in a high volume production line for some thousands of 248nm or 193nm exposures. In 2008 Infineon Dresden qualified a customer specific developed semi-bare mask storage system from DMSDynamic Micro Systems in combination with a high advanced mask handling and an interconnected complex logistic system. This high-capacity mask storage system DMS M1900.22 for more than 3000 masks with fully automated mask and box handling as well as full-blown XCDA purge has been developed and adapted to the Infineon Lithotoollandscape using Nikon and SMIF reticle cases. Advanced features for ESD safety and mask security, mask tracking via RFID and interactions with the exposure tools were developed and implemented. The stocker is remote controlled by the iCADA-RSM system, ordering of the requested mask directly from the affected exposure tool allows fast access. This paper discusses the advantages and challenges for this approach as well as the practical experience gained during the implementation of the new system which improves the fab performance with respect to mask quality, security and throughput. Especially the realization of an extremely low and stable humidity level in addition with a well controlled air flow at each mask surface, preventing masks from haze degradation and particle contamination, turns out to be a notable technical achievement. The longterm stability of haze critical masks has been improved significantly. Relevant environmental parameters like

  17. Future prospects for stellar intensity interferometry

    International Nuclear Information System (INIS)

    Lake, R.J.W.

    2002-01-01

    Full text: The technique of Stellar Intensity lnterferometry (SII) was first successfully demonstrated by Hanbury-Brown in 1956 at Jodrell Bank. SII uses the correlation in intensity fluctuations of starlight as a function of observational baseline to determine angular diameters and other gross features of main sequence stars. In 1962 an observatory was established by Hanbury-Brown in Narrabri NSW. Between 1965 and 1972 the angular diameters of 32 stars covering the spectral range O to F were measured. Orbital parameters of several unresolved binary stars were also determined and attempts were made by the author to directly measure the limb darkening of Sirius and the rotational distortion of Altair. Following the success of the Narrabri SII the Australian Federal Government provided a grant to Sydney University to develop a Very Large SII capable of making observational measurements on about a thousand stars. The development of this VLSII was however shelved in preference to the development of a potentially more sensitive long baseline Michelson Stellar Interferometer. This latter instrument known as SUSI (Sydney University Stellar Interferometer) has been in operation at Narrabri since 1995. Encouraged by the early results of SUSI and their own efforts in the use of active optics to reduce the effects of atmospheric scintillation a number of international observatories are now active in the development of long baseline or large aperture Michelson Stellar Interferometers. However SII while sacrificing sensitivity has a number of technical advantages over MSI as SII is far less sensitive to atmospheric effects and can be readily developed to work over very long baselines. This paper through technical review and theoretical modeling examines how a modern VLSII could be constructed and operated and addresses the limitations to its sensitivity. In particular it examines how existing Australian industry could contribute to the development of a VLSII with sufficient

  18. Oronasal Masks Require a Higher Pressure than Nasal and Nasal Pillow Masks for the Treatment of Obstructive Sleep Apnea.

    Science.gov (United States)

    Deshpande, Sheetal; Joosten, Simon; Turton, Anthony; Edwards, Bradley A; Landry, Shane; Mansfield, Darren R; Hamilton, Garun S

    2016-09-15

    Oronasal masks are frequently used for continuous positive airway pressure (CPAP) treatment in patients with obstructive sleep apnea (OSA). The aim of this study was to (1) determine if CPAP requirements are higher for oronasal masks compared to nasal mask interfaces and (2) assess whether polysomnography and patient characteristics differed among mask preference groups. Retrospective analysis of all CPAP implementation polysomnograms between July 2013 and June 2014. Prescribed CPAP level, polysomnography results and patient data were compared according to mask type (n = 358). Oronasal masks were used in 46%, nasal masks in 35% and nasal pillow masks in 19%. There was no difference according to mask type for baseline apnea-hypopnea index (AHI), body mass index (BMI), waist or neck circumference. CPAP level was higher for oronasal masks, 12 (10-15.5) cm H2O compared to nasal pillow masks, 11 (8-12.5) cm H2O and nasal masks, 10 (8-12) cm H2O, p CPAP pressure (p CPAP ≥ 15 cm H2O, there was an odds ratio of 4.5 (95% CI 2.5-8.0) for having an oronasal compared to a nasal or nasal pillow mask. Residual median AHI was higher for oronasal masks (11.3 events/h) than for nasal masks (6.4 events/h) and nasal pillows (6.7 events/h), p nasal mask types, oronasal masks are associated with higher CPAP pressures (particularly pressures ≥ 15 cm H2O) and a higher residual AHI. Further evaluation with a randomized control trial is required to definitively establish the effect of mask type on pressure requirements. A commentary on this article appears in this issue on page 1209. © 2016 American Academy of Sleep Medicine.

  19. Adaptation to different noninvasive ventilation masks in critically ill patients

    Directory of Open Access Journals (Sweden)

    Renata Matos da Silva

    2013-06-01

    Full Text Available OBJECTIVE: To identify which noninvasive ventilation (NIV masks are most commonly used and the problems related to the adaptation to such masks in critically ill patients admitted to a hospital in the city of São Paulo, Brazil. METHODS: An observational study involving patients ≥ 18 years of age admitted to intensive care units and submitted to NIV. The reason for NIV use, type of mask, NIV regimen, adaptation to the mask, and reasons for non-adaptation to the mask were investigated. RESULTS: We evaluated 245 patients, with a median age of 82 years. Acute respiratory failure was the most common reason for NIV use (in 71.3%. Total face masks were the most commonly used (in 74.7%, followed by full face masks and near-total face masks (in 24.5% and 0.8%, respectively. Intermittent NIV was used in 82.4% of the patients. Adequate adaptation to the mask was found in 76% of the patients. Masks had to be replaced by another type of mask in 24% of the patients. Adequate adaptation to total face masks and full face masks was found in 75.5% and 80.0% of the patients, respectively. Non-adaptation occurred in the 2 patients using near-total facial masks. The most common reason for non-adaptation was the shape of the face, in 30.5% of the patients. CONCLUSIONS: In our sample, acute respiratory failure was the most common reason for NIV use, and total face masks were the most commonly used. The most common reason for non-adaptation to the mask was the shape of the face, which was resolved by changing the type of mask employed.

  20. Evaluation of a new pediatric positive airway pressure mask.

    Science.gov (United States)

    Kushida, Clete A; Halbower, Ann C; Kryger, Meir H; Pelayo, Rafael; Assalone, Valerie; Cardell, Chia-Yu; Huston, Stephanie; Willes, Leslee; Wimms, Alison J; Mendoza, June

    2014-09-15

    The choice and variety of pediatric masks for continuous positive airway pressure (CPAP) is limited in the US. Therefore, clinicians often prescribe modified adult masks. Until recently a mask for children aged mask for children aged 2-7 years (Pixi; ResMed Ltd, Sydney, Australia). Patients aged 2-7 years were enrolled and underwent in-lab baseline polysomnography (PSG) using their previous mask, then used their previous mask and the VPAP III ST-A flow generator for ≥ 10 nights at home. Thereafter, patients switched to the Pixi mask for ≥ 2 nights before returning for a PSG during PAP therapy via the Pixi mask. Patients then used the Pixi mask at home for ≥ 21 nights. Patients and their parents/guardians returned to the clinic for follow-up and provided feedback on the Pixi mask versus their previous mask. AHI with the Pixi mask was 1.1 ± 1.5/h vs 2.6 ± 5.4/h with the previous mask (p = 0.3538). Parents rated the Pixi mask positively for: restfulness of the child's sleep, trouble in getting the child to sleep, and trouble in having the child stay asleep. The Pixi mask was also rated highly for leaving fewer or no marks on the upper lip and under the child's ears, and being easy to remove. The Pixi mask is suitable for children aged 2-7 years and provides an alternative to other masks available for PAP therapy in this age group. © 2014 American Academy of Sleep Medicine.

  1. Micropatterning on cylindrical surfaces via electrochemical etching using laser masking

    International Nuclear Information System (INIS)

    Cho, Chull Hee; Shin, Hong Shik; Chu, Chong Nam

    2014-01-01

    Highlights: • Various micropatterns were fabricated on the cylindrical surface of a stainless steel shaft. • Selective electrochemical dissolution was achieved via a series process of laser masking and electrochemical etching. • Laser masking characteristics on the non-planar surface were investigated. • A uniform mask layer was formed on the cylindrical surface via synchronized laser line scanning with a rotary system. • The characteristics of electrochemical etching on the non-planar surface were investigated. - Abstract: This paper proposes a method of selective electrochemical dissolution on the cylindrical surfaces of stainless steel shafts. Selective electrochemical dissolution was achieved via electrochemical etching using laser masking. A micropatterned recast layer was formed on the surface via ytterbium-doped pulsed fiber laser irradiation. The micropatterned recast layer could be used as a mask layer during the electrochemical etching process. Laser masking condition to form adequate mask layer on the planar surface for etching cannot be used directly on the non-planar surface. Laser masking condition changes depending on the morphological surface. The laser masking characteristics were investigated in order to form a uniform mask layer on the cylindrical surface. To minimize factors causing non-uniformity in the mask layer on the cylindrical surface, synchronized laser line scanning with a rotary system was applied during the laser masking process. Electrochemical etching characteristics were also investigated to achieve deeper etched depth, without collapsing the recast layer. Consequently, through a series process of laser masking and electrochemical etching, various micropatternings were successfully performed on the cylindrical surfaces

  2. X-ray lenses with large aperture

    International Nuclear Information System (INIS)

    Simon, Markus

    2010-01-01

    Up to now, most X-ray imaging setups are based on absorption contrast imaging. There is a demand for focused X-rays in many X-ray analysis applications, either to increase the resolution of an imaging system, or, to reduce the time effort of an experiment through higher photon flux. For photon energies higher than 15 keV refractive X-ray optics are more efficient in comparison to non-refractive X-ray optics. The aim of this work was to develop X-ray lenses with large apertures and high transparency. By increasing the number of refracting surfaces while removing unnecessary lens material such lenses have been developed. Utilizing this approach the overall beam deflection angle is large with respect to the lens material it propagates through and so the transparency of the lens is increased. Within this work, X-ray lenses consisting of several thousands of prisms with an edge length in the range of micrometers have been developed and fabricated by deep X-ray lithography. Deep X-ray lithography enables high precision microstrucures with smooth sidewalls and large aspect ratios. The aperture of high-transparency X-ray lenses made this way is greater than 1 mm. They are suitable for photon energies in the range of 8 keV to 24 keV and offer a focal width of smaller than 10 μm at a transparency of around 40%. Furthermore, rolled X-ray lenses have been developed, that are made out of a microstructured polyimide film, which is cut according to the requirements regarding focal length and photon energy. The microstructured film is fabricated by molding, using an anisotropically etched silicon wafer as molding tool. Its mean roughness is in the range of nanometers. The film features prismatic structures, its surface topology is similar to an asparagus field. The measured diameter of the point focus was 18 μm to 31 μm, the calculated opticla efficiency was 37%. Future work will concentrate on increasing the aspect ratio of Prism Lenses and on increasing the rolling accuracy

  3. Testing Tactile Masking between the Forearms.

    Science.gov (United States)

    D'Amour, Sarah; Harris, Laurence R

    2016-02-10

    Masking, in which one stimulus affects the detection of another, is a classic technique that has been used in visual, auditory, and tactile research, usually using stimuli that are close together to reveal local interactions. Masking effects have also been demonstrated in which a tactile stimulus alters the perception of a touch at a distant location. Such effects can provide insight into how components of the body's representations in the brain may be linked. Occasional reports have indicated that touches on one hand or forearm can affect tactile sensitivity at corresponding contralateral locations. To explore the matching of corresponding points across the body, we can measure the spatial tuning and effect of posture on contralateral masking. Careful controls are required to rule out direct effects of the remote stimulus, for example by mechanical transmission, and also attention effects in which thresholds may be altered by the participant's attention being drawn away from the stimulus of interest. The use of this technique is beneficial as a behavioural measure for exploring which parts of the body are functionally connected and whether the two sides of the body interact in a somatotopic representation. This manuscript describes a behavioural protocol that can be used for studying contralateral tactile masking.

  4. Posleslovije k "Zolotoi maske" / Boris Tuch

    Index Scriptorium Estoniae

    Tuch, Boris, 1946-

    2005-01-01

    Vene draamafestivali "Kuldne mask Eestis" lavastusest : "September.doc", lav. Mihhail Ugarov, I. Võrõpajevi "Hapnik" lav. Viktor Rõzhakov Teatr.doc esituses, Sophoklese "Kuningas Oidipus" lav. Andrei Prikotenko Peterburi Teatri Liteinõi esituses, M. Ugarovi lavastus "OblomOFF"

  5. Pattern inspection of etched multilayer EUV mask

    Science.gov (United States)

    Iida, Susumu; Hirano, Ryoichi; Amano, Tsuyoshi; Watanabe, Hidehiro

    2015-10-01

    Patterned mask inspection for an etched multilayer (ML) EUV mask was investigated. In order to optimize the mask structure from the standpoint of not only a pattern inspection by using a projection electron microscope (PEM), but also by considering the other fabrication processes using electron beam (EB) techniques such as CD metrology and mask repair, we employed a conductive layer between the ML and substrate. By measuring the secondary electron emission coefficients (SEECs) of the candidate materials for conductive layer, we evaluated the image contrast and the influence of charging effect. In the cases of 40-pair-ML, 16 nm sized extrusion and intrusion defects were found to be detectable more than 10 sigma in hp 44 nm, 40 nm, and 32 nm line and space (L/S) patterns. Reducing 40-pair-ML to 20-pair-ML degraded the image contrast and the defect detectability. However, by selecting B4C as a conductive layer, 16 nm sized defects remained detectable. These defects were also detected after the etched part was refilled with Si. Moreover, the simulation shows a high sensitivity for detecting the residual-type defects (etching residues). A double layer structure with 2.5-nm-thik B4C on metal film used as a conductive layer was found to have sufficient conductivity and also was found to be free from the surface charging effect and influence of native oxide.

  6. Method for coating substrates and mask holder

    NARCIS (Netherlands)

    Bijkerk, Frederik; Yakshin, Andrey; Louis, Eric; Kessels, M.J.H.; Maas, Edward Lambertus Gerardus; Bruineman, Caspar

    2004-01-01

    When coating substrates it is frequently desired that the layer thickness should be a certain function of the position on the substrate to be coated. To control the layer thickness a mask is conventionally arranged between the coating particle source and the substrate. This leads to undesirable

  7. Progressive Dysphagia Post Laryngeal Mask Airway Intubation ...

    African Journals Online (AJOL)

    The laryngeal mask airway (LMA) is an important addition to the anaesthetic equipments; however its use may involve some important complications. We report an unusual and potentially serious complication arising from the use of this equipment. A 58 year old man underwent cataract surgery under general anaesthesia ...

  8. Mask cycle time reduction for foundry projects

    Science.gov (United States)

    Balasinski, A.

    2011-11-01

    One of key deliverables of foundry based manufacturing is low cycletime. Building new and enhancing existing products by mask changes involves significant logistical effort, which could be reduced by standardizing data management and communication procedures among design house, mask shop, and foundry (fab) [1]. As an example, a typical process of taping out can take up to two weeks in addition to technical effort, for database handling, mask form completion, management approval, PO signoff and JDV review, translating into loss of revenue. In order to reduce this delay, we are proposing to develop a unified online system which should assist with the following functions: database edits, final verifications, document approvals, mask order entries, and JDV review with engineering signoff as required. This would help a growing number of semiconductor products to be flexibly manufactured at different manufacturing sites. We discuss how the data architecture based on a non-relational database management system (NRDMBS) extracted into a relational one (RDMBS) should provide quality information [2], to reduce cycle time significantly beyond 70% for an example 2 week tapeout schedule.

  9. Data Reduction and Image Reconstruction Techniques for Non-redundant Masking

    Science.gov (United States)

    Sallum, S.; Eisner, J.

    2017-11-01

    The technique of non-redundant masking (NRM) transforms a conventional telescope into an interferometric array. In practice, this provides a much better constrained point-spread function than a filled aperture and thus higher resolution than traditional imaging methods. Here, we describe an NRM data reduction pipeline. We discuss strategies for NRM observations regarding dithering patterns and calibrator selection. We describe relevant image calibrations and use example Large Binocular Telescope data sets to show their effects on the scatter in the Fourier measurements. We also describe the various ways to calculate Fourier quantities, and discuss different calibration strategies. We present the results of image reconstructions from simulated observations where we adjust prior images, weighting schemes, and error bar estimation. We compare two imaging algorithms and discuss implications for reconstructing images from real observations. Finally, we explore how the current state of the art compares to next-generation Extremely Large Telescopes.

  10. Wafer fab mask qualification techniques and limitations

    Science.gov (United States)

    Poock, Andre; Maelzer, Stephanie; Spence, Chris; Tabery, Cyrus; Lang, Michael; Schnasse, Guido; Peikert, Milko; Bhattacharyya, Kaustuve

    2006-10-01

    Mask inspection and qualification is a must for wafer fabs to ensure and guarantee high and stable yields. Single defect events can easily cause a million dollar loss through a defect duplicating onto the wafer. Several techniques and methods for mask qualification within a wafer fab are known but not all of them are neither used nor understood regarding their limitations. Increasing effort on existing tool platforms is necessary to detect the defects of interest which are at the limit of the tools specification - On the other hand next generation tools are very sensitive and therefore consume only a negligible amount of time for recipe optimization. Knowing the limits of each inspection tool helps to balance between effort and benefit. Masks with programmed defects of 90nm and 65nm design rule were used in order to compare the different available inspection techniques. During the course of this technical work, the authors concentrate mainly on two inspection techniques. The first one inspects the reticle itself using KLA-Tencor's SLF27 (TeraStar) and SL536 (TeraScan) tools. As the reticle gets inspected itself this is the so called "direct" mask defect inspection. The second inspection technique discussed is the "indirect" mask defect inspection which consists of printing the pattern on a blank wafer and use KLA-Tencor's bright-field wafer inspection tool (2xxx series) to inspect the wafer. Data of this work will include description of the techniques, inspection results, defect maps, sensitivity analysis, effort estimation as well as limitations for both techniques for the used design rule.

  11. Secondary Fault Activity of the North Anatolian Fault near Avcilar, Southwest of Istanbul: Evidence from SAR Interferometry Observations

    Directory of Open Access Journals (Sweden)

    Faqi Diao

    2016-10-01

    Full Text Available Strike-slip faults may be traced along thousands of kilometers, e.g., the San Andreas Fault (USA or the North Anatolian Fault (Turkey. A closer look at such continental-scale strike faults reveals localized complexities in fault geometry, associated with fault segmentation, secondary faults and a change of related hazards. The North Anatolian Fault displays such complexities nearby the mega city Istanbul, which is a place where earthquake risks are high, but secondary processes are not well understood. In this paper, long-term persistent scatterer interferometry (PSI analysis of synthetic aperture radar (SAR data time series was used to precisely identify the surface deformation pattern associated with the faulting complexity at the prominent bend of the North Anatolian Fault near Istanbul city. We elaborate the relevance of local faulting activity and estimate the fault status (slip rate and locking depth for the first time using satellite SAR interferometry (InSAR technology. The studied NW-SE-oriented fault on land is subject to strike-slip movement at a mean slip rate of ~5.0 mm/year and a shallow locking depth of <1.0 km and thought to be directly interacting with the main fault branch, with important implications for tectonic coupling. Our results provide the first geodetic evidence on the segmentation of a major crustal fault with a structural complexity and associated multi-hazards near the inhabited regions of Istanbul, with similarities also to other major strike-slip faults that display changes in fault traces and mechanisms.

  12. Motion measurement for synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Synthetic Aperture Radar (SAR) measures radar soundings from a set of locations typically along the flight path of a radar platform vehicle. Optimal focusing requires precise knowledge of the sounding source locations in 3-D space with respect to the target scene. Even data driven focusing techniques (i.e. autofocus) requires some degree of initial fidelity in the measurements of the motion of the radar. These requirements may be quite stringent especially for fine resolution, long ranges, and low velocities. The principal instrument for measuring motion is typically an Inertial Measurement Unit (IMU), but these instruments have inherent limi ted precision and accuracy. The question is %22How good does an IMU need to be for a SAR across its performance space?%22 This report analytically relates IMU specifications to parametric requirements for SAR. - 4 - Acknowledgements Th e preparation of this report is the result of a n unfunded research and development activity . Although this report is an independent effort, it draws heavily from limited - release documentation generated under a CRADA with General Atomics - Aeronautical System, Inc. (GA - ASI), and under the Joint DoD/DOE Munitions Program Memorandum of Understanding. Sandia National Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of En ergy's National Nuclear Security Administration under contract AC04-94AL85000.

  13. Parametric Beamformer for Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt

    2006-01-01

    . The beamformer consists of a number of identical beamforming blocks, each processing data from several channels and producing part of the image. A number of these blocks can be accommodated in a modern field-programmable gate array device (FPGA), and a whole synthetic aperture system can be implemented using...... several FPGAs. For the current implementation, the input data is sampled at 4 times the center frequency of the excitation pulse and is match-filtered in the frequency domain. In-phase and quadrature data are beamformed with a sub-sample precision of the focusing delays of 1/16th of the sampling period...... with 255 levels. A beamforming block uses input data from 4 elements and produces a set of 10 lines. Linear interpolation is used to implement sub-sample delays. The VHDL code for the beamformer has been synthesized for a Xilinx V4FX100 speed grade 11 FPGA, where it can operate at a maximum clock frequency...

  14. Adaptive synthetic aperture radar image enhancement

    Science.gov (United States)

    Cheng, Hua; Tian, Jinwen

    2009-10-01

    An adaptive SAR image enhancement method is presented for reducing the speckle noise and increasing the contrast of synthetic aperture radar (SAR) images. First, a fuzzy logic based filter, employing fuzzy edge to weight the contributions of pixel values in filter window, is used to filter the speckles. Second, the original SAR image is decomposed into lowfrequency component and high-frequency component. The fuzzy filtered image is viewed as the low-frequency component, and the contrast limited adaptive histogram equalization algorithm is used to increase its contrast. The highfrequency component is obtained by subtracting the low-frequency component from the original image, and its gain is controlled by fuzzy structural which employed to express the degree of a pixel belonging to structures. After processed one after the other, the two components are added together to form the final enhanced SAR image. Experimental results show the excellent effect of the proposed method by visual observation and numerical measurement. Many fine structures and little speckle noise can be seen from the enhanced SAR images.

  15. Deep Learning for Passive Synthetic Aperture Radar

    Science.gov (United States)

    Yonel, Bariscan; Mason, Eric; Yazici, Birsen

    2018-02-01

    We introduce a deep learning (DL) framework for inverse problems in imaging, and demonstrate the advantages and applicability of this approach in passive synthetic aperture radar (SAR) image reconstruction. We interpret image recon- struction as a machine learning task and utilize deep networks as forward and inverse solvers for imaging. Specifically, we design a recurrent neural network (RNN) architecture as an inverse solver based on the iterations of proximal gradient descent optimization methods. We further adapt the RNN architecture to image reconstruction problems by transforming the network into a recurrent auto-encoder, thereby allowing for unsupervised training. Our DL based inverse solver is particularly suitable for a class of image formation problems in which the forward model is only partially known. The ability to learn forward models and hyper parameters combined with unsupervised training approach establish our recurrent auto-encoder suitable for real world applications. We demonstrate the performance of our method in passive SAR image reconstruction. In this regime a source of opportunity, with unknown location and transmitted waveform, is used to illuminate a scene of interest. We investigate recurrent auto- encoder architecture based on the 1 and 0 constrained least- squares problem. We present a projected stochastic gradient descent based training scheme which incorporates constraints of the unknown model parameters. We demonstrate through extensive numerical simulations that our DL based approach out performs conventional sparse coding methods in terms of computation and reconstructed image quality, specifically, when no information about the transmitter is available.

  16. Summation versus suppression in metacontrast masking: On the potential pitfalls of using metacontrast masking to assess perceptual-motor dissociation.

    Science.gov (United States)

    Cardoso-Leite, Pedro; Waszak, Florian

    2014-07-01

    A briefly flashed target stimulus can become "invisible" when immediately followed by a mask-a phenomenon known as backward masking, which constitutes a major tool in the cognitive sciences. One form of backward masking is termed metacontrast masking. It is generally assumed that in metacontrast masking, the mask suppresses activity on which the conscious perception of the target relies. This assumption biases conclusions when masking is used as a tool-for example, to study the independence between perceptual detection and motor reaction. This is because other models can account for reduced perceptual performance without requiring suppression mechanisms. In this study, we used signal detection theory to test the suppression model against an alternative view of metacontrast masking, referred to as the summation model. This model claims that target- and mask-related activations fuse and that the difficulty in detecting the target results from the difficulty to discriminate this fused response from the response produced by the mask alone. Our data support this alternative view. This study is not a thorough investigation of metacontrast masking. Instead, we wanted to point out that when a different model is used to account for the reduced perceptual performance in metacontrast masking, there is no need to postulate a dissociation between perceptual and motor responses to account for the data. Metacontrast masking, as implemented in the Fehrer-Raab situation, therefore is not a valid method to assess perceptual-motor dissociations.

  17. Mask_explorer: A tool for exploring brain masks in fMRI group analysis.

    Science.gov (United States)

    Gajdoš, Martin; Mikl, Michal; Mareček, Radek

    2016-10-01

    Functional magnetic resonance imaging (fMRI) studies of the human brain are appearing in increasing numbers, providing interesting information about this complex system. Unique information about healthy and diseased brains is inferred using many types of experiments and analyses. In order to obtain reliable information, it is necessary to conduct consistent experiments with large samples of subjects and to involve statistical methods to confirm or reject any tested hypotheses. Group analysis is performed for all voxels within a group mask, i.e. a common space where all of the involved subjects contribute information. To our knowledge, a user-friendly interface with the ability to visualize subject-specific details in a common analysis space did not yet exist. The purpose of our work is to develop and present such interface. Several pitfalls have to be avoided while preparing fMRI data for group analysis. One such pitfall is spurious non-detection, caused by inferring conclusions in the volume of a group mask that has been corrupted due to a preprocessing failure. We describe a MATLAB toolbox, called the mask_explorer, designed for prevention of this pitfall. The mask_explorer uses a graphical user interface, enables a user-friendly exploration of subject masks and is freely available. It is able to compute subject masks from raw data and create lists of subjects with potentially problematic data. It runs under MATLAB with the widely used SPM toolbox. Moreover, we present several practical examples where the mask_explorer is usefully applied. The mask_explorer is designed to quickly control the quality of the group fMRI analysis volume and to identify specific failures related to preprocessing steps and acquisition. It helps researchers detect subjects with potentially problematic data and consequently enables inspection of the data. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Oral mask ventilation is more effective than face mask ventilation after nasal surgery.

    Science.gov (United States)

    Yazicioğlu, Dilek; Baran, Ilkay; Uzumcugil, Filiz; Ozturk, Ibrahim; Utebey, Gulten; Sayın, M Murat

    2016-06-01

    To evaluate and compare the face mask (FM) and oral mask (OM) ventilation techniques during anesthesia emergence regarding tidal volume, leak volume, and difficult mask ventilation (DMV) incidence. Prospective, randomized, crossover study. Operating room, training and research hospital. American Society of Anesthesiologists physical status I and II adult patients scheduled for nasal surgery. Patients in group FM-OM received FM ventilation first, followed by OM ventilation, and patients in group OM-FM received OM ventilation first, followed by FM ventilation, with spontaneous ventilation after deep extubation. The FM ventilation was applied with the 1-handed EC-clamp technique. The OM was placed only over the mouth, and the 1-handed EC-clamp technique was used again. A child's size FM was used for the OM ventilation technique, the mask was rotated, and the inferior part of the mask was placed toward the nose. The leak volume (MVleak), mean airway pressure (Pmean), and expired tidal volume (TVe) were assessed with each mask technique for 3 consecutive breaths. A mask ventilation grade ≥3 was considered DMV. DMV occurred more frequently during FM ventilation (75% with FM vs 8% with OM). In the FM-first sequence, the mean TVe was 249±61mL with the FM and 455±35mL with the OM (P=.0001), whereas in the OM-first sequence, it was 276±81mL with the FM and 409±37mL with the OM (P=.0001). Regardless of the order used, the OM technique significantly decreased the MVleak and increased the TVe when compared to the FM technique. During anesthesia emergence after nasal surgery the OM may offer an effective ventilation method as it decreases the incidence of DMV and the gas leak around the mask and provides higher tidal volume delivery compared with FM ventilation. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Automated mask creation from a 3D model using Faethm.

    Energy Technology Data Exchange (ETDEWEB)

    Schiek, Richard Louis; Schmidt, Rodney Cannon

    2007-11-01

    We have developed and implemented a method which given a three-dimensional object can infer from topology the two-dimensional masks needed to produce that object with surface micro-machining. The masks produced by this design tool can be generic, process independent masks, or if given process constraints, specific for a target process. This design tool calculates the two-dimensional mask set required to produce a given three-dimensional model by investigating the vertical topology of the model.

  20. R-band host galaxy contamination of TeV γ-ray blazar Mrk 501: effects of aperture size and seeing

    Science.gov (United States)

    Feng, Hai-Cheng; Liu, Hong-Tao; Zhao, Ying-He; Bai, Jin-Ming; Wang, Fang; Fan, Xu-Liang

    2018-02-01

    We simulated the R-band contribution of the host galaxy of TeV γ-ray BL Lac object Mrk 501 in different aperture sizes and seeing conditions. An intensive set of observations was acquired with the 1.02 m optical telescope, managed by Yunnan Observatories, from 2010 May 15 to 18. Based on the host subtraction data usually used in the literature, the subtraction of host galaxy contamination results in significant seeing-brightness correlations. These correlations would lead to illusive large amplitude variations at short timescales, which will mask the intrinsic microvariability, thus giving rise to difficulty in detecting the intrinsic microvariability. Both aperture size and seeing condition influence the flux measurements, but the aperture size impacts the result more significantly. Based on the parameters of an elliptical galaxy provided in the literature, we simulated the host contributions of Mrk 501 in different aperture sizes and seeing conditions. Our simulation data of the host galaxy obviously weaken these significant seeing-brightness correlations for the host-subtracted brightness of Mrk 501, and can help us discover the intrinsic short timescale microvariability. The pure nuclear flux is ∼8.0mJy in the R band, i.e., the AGN has a magnitude of R ∼ 13.96 mag.