WorldWideScience

Sample records for aperture deuterium gas

  1. Rotating Aperture System

    Science.gov (United States)

    Rusnak, Brian; Hall, James M.; Shen, Stewart; Wood, Richard L.

    2005-01-18

    A rotating aperture system includes a low-pressure vacuum pumping stage with apertures for passage of a deuterium beam. A stator assembly includes holes for passage of the beam. The rotor assembly includes a shaft connected to a deuterium gas cell or a crossflow venturi that has a single aperture on each side that together align with holes every rotation. The rotating apertures are synchronized with the firing of the deuterium beam such that the beam fires through a clear aperture and passes into the Xe gas beam stop. Portions of the rotor are lapped into the stator to improve the sealing surfaces, to prevent rapid escape of the deuterium gas from the gas cell.

  2. Process for the production of hydrogen/deuterium-containing gas

    International Nuclear Information System (INIS)

    A process for the production of hydrogen/deuterium-containing gas is described in which the enriched condensate obtained from the production of a hydrogen/deuterium-containing gas mixture is collected and subjected to a direct exchange of isotopes with the feedsteam admitted to the process. Such condensate can be brought into direct exchange of isotopes with the gas water vapor mixture within the process, viz. ahead of the CO conversion section. The exchange of isotopes may be performed according to the counter-current principle. If it is intended to maintain in the hydrogen/deuterium-containing gas a certain definite content of water vapor whose phase condition is superior to the condition achieved when using normal cooling water, this gas, at least 0.6 kg/m3 of gas, is subjected to an exchange of isotopes with the water fed additionally into the process

  3. Gas swelling and deuterium distribution in beryllium implanted with deuterium ions

    Energy Technology Data Exchange (ETDEWEB)

    Chernikov, V.N.; Alimov, V.Kh.; Zakharov, A.P. [Institute of Physical Chemistry, Moscow (Russian Federation)

    1995-09-01

    An extensive TEM study of the microstructure of Be TIP-30 irradiated with 3 and 10 keV D ions up to fluences, {Phi}, in the range from 3 x 10{sup 20} to 8 x 10{sup 21} D/m{sup 2} at temperatures T{sub irr} = 300 K, 500 K and 700 K has been carried out. Depth distributions of deuterium in the form of separate D atoms and D{sub 2} molecules have been investigated by means of SIMS and RGA methods, correspondingly. D ion irradiation is accompanied by blistering and gives rise to different kind of destructions depending mainly on the irradiation temperature. Irradiation with D ions at 300 K leads to the formation of tiny highly pressurized D{sub 2} bubbles reminiscent of He bubbles in Be. Under 3 keV D ion irradiation D{sub 2} bubbles ({bar r}{sub b} {approx} 0.7 nm) appear at a fluence as low as 3x10{sup 20} D/m{sup 2}. Irradiation at 500 K results in the development, along with relatively small facetted bubbles, of larger oblate gas-filled cavities accumulating most of injected D atoms and providing for much higher gas swelling values as compared to irradiation at 300 K. The increase of D and/or T{sub irr}, to 700 K causes the further coarsening of large cavities which are transformed into sub-surface labyrinth structures. D and He ion implantation leads to the enhanced growth of porous microcrystalline layers of c.p.h.-BeO oxide with a microstructure which differs considerably from that of oxide layers on electropolished surfaces of Be. Based on the analysis of experimental data questions of deuterium reemission, thermal desorption and trapping in Be have been discussed in detail.

  4. Apertures

    CERN Document Server

    Hansen, R C

    2014-01-01

    Microwave Scanning Antennas, Volume I: Apertures is a comprehensive account of phased arrays, multiple beam arrays, time domain and synthetic apertures, and adaptive antennas. Advances in continuous apertures and near field theory are discussed. Low noise and monopulse apertures, optical scanners, and large radomes are also covered, along with radio astronomy instruments and associated theory.Comprised of five chapters, this volume begins with an overview of aperture theory as well as aperture distributions and near field theory. The second and third chapters deal with mechanically steered and

  5. Comparison of Deuterium-Deuterium-Deuterium and Neon-Deuterium-Deuterium Triple Shell Gas-Puff Z-pinch on the Level of 3 MA

    Science.gov (United States)

    Rezac, K.; Klir, Daniel; Kubes, P.; Kravarik, J.; Shishlov, A.; Labetsky, A.; Ratakhin, N.

    2012-10-01

    The experiments of a triple shell gas-puff Z-pinch were carried out on the GIT-12 generator at IHCE in Tomsk during the April-May-June campaign in 2012. We diagnosed 17 Z-pinch shots where the triple D2-D2-D2 (with the linear mass in the range of 50 - 255 μg/cm) and Ne-D2-D2 (with the linear mass in the range of 110 - 285 μg/cm) gas-puffs with diameter of 160 mm / 80 mm / 30 mm were mostly used as loads. This contribution is focused on the comparison of the results obtained by X-ray and neutron diagnostics, especially to the difference in reconstructed neutron energy spectra and obtained neutron yields (with the maximum of 3.3 x10^11 neutrons/shot on a current level of 2.5 MA). The time correlations with other diagnostics such as electrical characteristics, a visible streak camera and MCP frames are also presented.

  6. Pion transfer from hydrogen to deuterium in H2+D2 gas mixtures

    International Nuclear Information System (INIS)

    The transfer of negative pions from pionic hydrogen to deuterium has been investigated in gas mixtures of H2 and D2 as a function of the D2 concentration. The concentration dependence of the transfer rate was fitted using a phenomenological model with two parameters. For C → ∞ (32±3)% of the pions undergo transfer. The fitted parameters reflect the ratio of pion capture to pion transfer in collisions of pionic hydrogen with protons or deuterons. No pressure dependence for pion transfer was found. (Author) 33 refs., 3 tabs., 7 figs

  7. Two-chamber hydrogen generation and application: access to pressurized deuterium gas.

    Science.gov (United States)

    Modvig, Amalie; Andersen, Thomas L; Taaning, Rolf H; Lindhardt, Anders T; Skrydstrup, Troels

    2014-06-20

    Hydrogen and deuterium gas were produced and directly applied in a two-chamber system. These gaseous reagents were generated by the simple reaction of metallic zinc with HCl in water for H2 and DCl in deuterated water for D2. The setup proved efficient in classical Pd-catalyzed reductions of ketones, alkynes, alkenes, etc. in near-quantitative yields. The method was extended to the synthesis and isotope labeling of quinoline and 1,2,3,4-tetrahydroquinoline derivatives. Finally, CX-546 and Olaparib underwent efficient Ir-catalyzed hydrogen isotope exchange reactions. PMID:24870212

  8. Deuterium Gas-Puff Z-Pinch on GIT-12 Generator

    Science.gov (United States)

    Klir, Daniel; Kravarik, Jozef; Kubes, Pavel; Rezac, Karel; Shishlov, Alexander; Kokshenev, Vladimir; Ratakhin, Nicolai; Kovalchuk, Boris; Labetsky, Aleksey; Kurmaev, Nikolay; Fursov, Fedor

    2011-10-01

    Deuterium gas-puff experiments have been carried out on the GIT-12 generator at the High Current Electronics Institute in Tomsk. During the initial experiment in May 2011, we used mainly double shell gas puffs with the outer and inner diameter of 100 and 30 mm, respectively. Single shell and shell-on-solid fill gas puffs were, however, also tested. The linear mass density of deuterium varied between 50 and 80 μg/cm. When a plasma-opening-switch (POS) was used, the current reached the peak of above 2.5 MA within 300 ns. The peak neutron yield from D(d,n)3He reactions exceeded 1011. In all shots, the neutron emission started during the stagnation. At the beginning of the neutron production, there was the correlation between the neutron emission and soft X-rays. Nevertheless, the peak of the neutron emission occurred 50 ns after the soft X-ray peak. At this very moment, hard X-rays above 1 MeV were detected. In the case of POS, > 800 keV widths of side-on neutron spectra implied > 200 keV deuterons moving in the radial direction. Work supported by the MSMT grants LA08024, ME09087, LC528.

  9. Deuterium gas puff Z-pinch at currents of 2 to 3 mega-ampere

    Science.gov (United States)

    Klir, D.; Shishlov, A. V.; Kubes, P.; Rezac, K.; Fursov, F. I.; Kokshenev, V. A.; Kovalchuk, B. M.; Kravarik, J.; Kurmaev, N. E.; Labetsky, A. Yu.; Ratakhin, N. A.

    2012-03-01

    Deuterium gas-puff experiments have been carried out on the GIT-12 generator at the Institute of High Current Electronics in Tomsk. The emphasis was put on the study of plasma dynamics and neutron production in double shell gas puffs. A linear mass density of deuterium (D2) varied between 50 and 85 μg/cm. Somewhat problematic was a spread of the D2 gas at a large diameter in the central anode-cathode region. The generator operated in two regimes, with and without a plasma opening switch (POS). When the POS was used, a current reached a peak of 2.7 MA with a 200 ns rise time. Without the POS, a current rise time approached 1500 ns. The influence of different current rise times on neutron production was researched. Obtained results were important for comparison of fast deuterium Z-pinches with plasma foci. Average DD neutron yields with and without the POS were about 1011. The neutron yield seems to be dependent on a peak voltage at the Z-pinch load. In all shots, the neutron emission started during stagnation. At the beginning of the neutron production, the neutron emission correlated with soft x-rays and a significant fraction of neutrons could be explained by the thermonuclear mechanism. Nevertheless, a peak of the neutron emission occurred 40 ns after a soft x-ray peak. At this very moment, hard x-rays above 1 MeV were detected and a rapid expansion with a velocity of 3×105 m/s was observed. In the case of the POS, 1 MeV widths of radial neutron spectra implied that there are deuterons with the energy above 200 keV moving in the radial direction. On the basis of D2 gas puff experiments in the 0.3-17 MA region, the neutron yield dependence on a current as Y∝I3.0±0.2 was proposed.

  10. Spectral Characteristics of Deuterium-, Helium- and Gas-Mixture-Discharges within PF-1000 Facility

    International Nuclear Information System (INIS)

    The paper reports on spectroscopic studies of high-current plasma discharges performed at different gas fillings within the large PF-1000 facility. To study visible radiation (VR) the use was made of a MECHELLE registered 900-spectrometer equipped with the CCD readout. The observations of a PF pinch column were performed at an angle of about 65 deg. to the z-axis, and the viewing field was at a distance of 40-50 mm from the electrode ends. Optical measurements were carried out at 0.5-μs exposition synchronized with a chosen period of the investigated discharge. Differences in the optical spectra, recorded at various deuterium-helium mixtures, were analyzed. Intensities of HeI lines were computed for an assumed electron temperature and compared with the experiment. Estimated plasma concentration in pure-deuterium discharges amounted to 8x1018 cm-3, while that in pure helium shots was (4-7)x1017 cm-3 only. Estimates of the electron temperature, from the ratio of intensities of the chosen spectral lines and the continuum, gave values ranging from 5 eV to 50 eV. The paper presents also some spectra from 'weak shots', which show distinct impurity lines caused by different reasons

  11. The HERMES Polarized Hydrogen and Deuterium Gas Target in the HERA Electron Storage Ring

    CERN Document Server

    Airapetian, A; Akopov, Z; Amarian, M; Ammosov, V V; Andrus, A; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetisian, A; Avetissian, E; Bailey, P; Baturin, V; Baumgarten, C; Beckmann, M; Belostotskii, S; Bernreuther, S; Bianchi, N; Blok, H P; Böttcher, Helmut B; Borisov, A; Bouwhuis, M; Brack, J; Brüll, A; Bryzgalov, V V; Capitani, G P; Chiang, H C; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; De Leo, R; De Nardo, L; De Sanctis, E; Devitsin, E G; Di Nezza, P; Düren, M; Ehrenfried, M; Elalaoui-Moulay, A; Elbakian, G M; Ellinghaus, F; Elschenbroich, U; Ely, J; Fabbri, R; Fantoni, A; Feshchenko, A; Felawka, L; Fox, B; Franz, J; Frullani, S; Gärber, Y; Gapienko, G; Gapienko, V; Garibaldi, F; Garrow, K; Garutti, E; Gaskell, D; Gavrilov, G E; Karibian, V; Graw, G; Grebenyuk, O; Greeniaus, L G; Hafidi, K; Hartig, M; Hasch, D; Heesbeen, D; Henoch, M; Hertenberger, R; Hesselink, W H A; Hillenbrand, A; Hoek, M; Holler, Y; Hommez, B; Iarygin, G; Ivanilov, A; Izotov, A; Jackson, H E; Jgoun, A; Kaiser, R; Kinney, E; Kiselev, A; Königsmann, K C; Kopytin, M; Korotkov, V A; Kozlov, V; Krauss, B; Krivokhizhin, V G; Lagamba, L; Lapikas, L; Laziev, A; Lenisa, P; Liebing, P; Lindemann, T; Lipka, K; Lorenzon, W; Lü, J; Maiheu, B; Makins, N C R; Marianski, B; Marukyan, H O; Masoli, F; Mexner, V; Meyners, N; Miklukho, O; Miller, C A; Miyachi, Y; Muccifora, V; Nagaitsev, A; Nappi, E; Naryshkin, Yu; Nass, A; Negodaev, M A; Nowak, Wolf-Dieter; Oganessyan, K; Ohsuga, H; Orlandi, G; Pickert, N; Potashov, S Yu; Potterveld, D H; Raithel, M; Reggiani, D; Reimer, P E; Reischl, A; Reolon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubacek, L; Ryckbosch, D; Salomatin, Yu I; Sanjiev, I; Savin, I; Scarlett, C; Schäfer, A; Schill, C; Schnell, G; Schüler, K P; Schwind, A; Seele, J; Seidl, R; Seitz, B; Shanidze, R G; Shearer, C; Shibata, T A; Shutov, V B; Simani, M C; Sinram, K; Stancari, M D; Statera, M; Steffens, E; Steijger, J J M; Stewart, J; Stösslein, U; Tait, P; Tanaka, H; Taroian, S P; Tchuiko, B; Terkulov, A R; Tkabladze, A V; Trzcinski, A; Tytgat, M; Vandenbroucke, A; Van der Nat, P B; van der Steenhoven, G; Vetterli, Martin C; Vikhrov, V; Vincter, M G; Visser, J; Vogel, C; Vogt, M; Volmer, J; Weiskopf, C; Wendland, J; Wilbert, J; Ybeles-Smit, G V; Yen, S; Zihlmann, B; Zohrabyan, H G; Zupranski, P

    2004-01-01

    The HERMES hydrogen and deuterium nuclear-polarized gas targets have been in use since 1996 with the polarized electron beam of HERA at DESY to study the spin structure of the nucleon. Polarized atoms from a Stern-Gerlach Atomic Beam Source are injected into a storage cell internal to the HERA electron ring. Atoms diffusing from the center of the storage cell into a side tube are analyzed to determine the atomic fraction and the atomic polarizations. The atoms have a nuclear polarization, the axis of which is defined by an external magnetic holding field. The holding field was longitudinal during 1996-2000, and was changed to transverse in 2001. The design of the target is described, the method for analyzing the target polarization is outlined, and the performance of the target in the various running periods is presented.

  12. Development of a hydrogen and deuterium polarized gas target for application in storage rings

    International Nuclear Information System (INIS)

    Polarized gas targets of atomic hydrogen and deuterium have significant advantages over conventional polarized targets, e.g. chemical and isotopic purity, large polarization including deuteron tensor polarization, absence of strong magnetic fields, rapid polarization reversal. While in principle the beam of polarized atoms from an atomic beam source (Stern-Gerlach spin separation) can be used as a polarized target, the target thickness achieved is too small for most applications. We propose to increase the target thickness by injecting the polarized atoms into a storage cell. Provided the atoms survive several hundred wall collisions without losing their polarization, it will be possible to achieve a target thickness of 1013 to 1014 atoms/cm2 by injection of polarized atoms from an atomic-beam source into suitable cells. Such targets are very attractive as internal targets in storage rings

  13. Gas-phase hydrogen/deuterium exchange in a travelling wave ion guide for the examination of protein conformations

    OpenAIRE

    Rand, Kasper D.; Pringle, Steven D.; Murphy, James P.; Fadgen, Keith E.; Brown, Jeff; Engen, John R.

    2009-01-01

    Accumulating evidence suggests that solution-phase conformations of small globular proteins and large molecular protein assemblies can be preserved for milliseconds after electrospray ionization. Thus, the study of proteins in the gas-phase on this time-scale is highly desirable. Here we demonstrate that a travelling wave ion guide (TWIG) of a Synapt mass spectrometer offers a highly suitable environment for rapid and efficient gas-phase hydrogen/deuterium exchange (HDX). Gaseous ND3 was intr...

  14. Long-Implosion-Time Z-pinch Experiments with Deuterium Gas-Puffs on the GIT-12 Generator

    Science.gov (United States)

    Klir, D.; Kubes, P.; Rezac, K.; Cikhardt, J.; Kravarik, J.; Shishlov, A.; Labetsky, A.; Fursov, F.; Kokshenev, V.; Kovalchuk, B.; Kurmaev, N.; Ratakhin, N.

    2012-10-01

    Experiments with deuterium triple shell gas-puffs have been carried out on the GIT-12 generator at the IHCE in Tomsk. Outer, middle, and inner nozzle diameters were 160 mm, 80 mm and 30 mm, respectively. The influence of the mass of deuterium shells on neutron emission times, neutron yields and neutron spectra was studied. The linear mass density of deuterium varied between 50 and 270 μg/cm. Gas puffs imploded onto the axis before the peak of a generator current at 700-1100 ns. The first neutron peak occurred during the stagnation. Most of the neutrons were emitted during the second neutron pulse after the development of instabilities. In lower mass gas puffs, neutron energies of up to 4.4 MeV gave the evidence of 1 MeV deuterons. The peak neutron yield from D(d,n)^3He reactions reached 3x10^11 on a current level of 2.5 MA. Secondary DT neutrons were measured by BDS-10000 bubble detectors. An average neutron yield ratio Y>10 MeV/Y2.5 MeV exceeded (6±3)x10-4. Ne-Ne-D2 and Ne-D2-D2 gas puffs produced 3 times lower neutron yields but the first neutron pulse during the stagnation was nearly the same as with D2-D2-D2 gas puffs.

  15. Deuterium High Pressure Target

    CERN Document Server

    Perevozchikov, V; Vinogradov, Yu I; Vikharev, M D; Ganchuk, N S; Golubkov, A N; Grishenchkin, S K; Demin, A M; Demin, D L; Zinov, V G; Kononenko, A A; Lobanov, V N; Malkov, I L; Yukhimchuk, S A

    2001-01-01

    The design of the deuterium high-pressure target is presented. The target having volume of 76 cm^3 serves to provide the experimental research of muon catalyzed fusion reactions in ultra-pure deuterium in the temperature range 80-800 K under pressures of up to 150 MPa. The operation of the main systems of the target is described: generation and purification of deuterium gas, refrigeration, heating, evacuation, automated control system and data collection system.

  16. Deuterium high pressure target

    International Nuclear Information System (INIS)

    The design of the deuterium high-pressure target is presented. The target having volume of 76 cm3 serves to provide the experimental research of muon catalyzed fusion reactions in ultra-pure deuterium in the temperature range 80-800 K under pressures of up to 150 MPa. The operation of the main systems of the target is described: generation and purification of deuterium gas, refrigeration, heating, evacuation, automated control system and data collection system

  17. Diagnostics of deuterium gas-puff z-pinch experiments on the GIT-12 generator

    Science.gov (United States)

    Cikhardt, J.; Klir, D.; Rezac, K.; Kubes, P.; Kravarik, J.; Batobolotova, B.; Sila, O.; Turek, K.; Shishlov, A.; Labetsky, A.; Kokshenev, V.; Chedizov, R.; Ratakhin, N.; Varlachev, V.; Garapatsky, A.; Dudkin, G.; Padalko, V.; GIT-12 Team

    2014-10-01

    Z-pinch experiments with a deuterium gas-puff and an outer plasma shell generated by plasma guns were carried out on the GIT-12 generator at the IHCE in Tomsk. Using this novel configuration of the load, the neutron yields from the DD reaction were significantly increased from 2×1011 up to 3×1012 neutrons per shot at the current level of about 3 MA. In addition to recent experiments, the threshold activation detectors were used in order to get the information about the energy spectrum of the generated neutrons. The copper, indium, and lead samples were irradiated by the pulse of the neutrons generated during the experimental shot. The decay radiation of the products from the reactions 63Cu(n,2n)62Cu, 115In(n, γ) 116 mIn and 206Pb (n,3n)204mPb was observed using gamma spectrometer. According to the used neutron ToF scintillation detectors, the energy of neutrons reaches up to 20 MeV. The work was supported by the MSMT of the Czech Republic research Programs No. ME090871, No. LG13029, by the GACR Grant No. P205/12/0454, Grant CRA IAEA No. 17088 and RFBR research Project No. 13-08-00479-a.

  18. Experimental Results from Plasma Shell on Deuterium Gas-puff Z-pinch on the Current Level of 3 MA

    Science.gov (United States)

    Rezac, K.; Klir, D.; Kubes, P.; Kravarik, J.; Shishlov, A.; Labetsky, A.; Kokshenev, V.; Ratakhin, N.; GIT-12 Team

    2013-10-01

    The experiments with a plasma shell on deuterium gas-puff Z-pinch were carried out on the GIT-12 generator at IHCE in Tomsk. We diagnosed Z-pinch shots with deuterium linear mass of about 100 μg/cm. The outer shell of the load was formed by 48 plasma guns positioned on diameter of 350 mm, the diameter of the nozzle producing deuterium inner shell gas-puff was 80 mm. Results obtained from X-ray and neutron diagnostics, especially neutron time-of-flight signals, where 15 MeV neutrons (in radial direction) and 22 MeV neutrons (in axial direction) were registered, are presented. Obtained implosion velocity of the gas-puff had the value of 4 . 5 ×107 cm/s, neutron yield from D(d,n)3He reaction was in order of 1012 neutrons/shot on a current level of about 2.7 MA. The time correlations of the TOF diagnostics with other diagnostics such as electrical characteristics, an MCP frames, and a visible streak camera are also presented. Work supported by MEYS CR research programs No. ME090871, No. LG13029, by GACR grant No. P205/12/0454, grant CRA IAEA No. 17088 and RFBR research project No. 13-08-00479-a.

  19. Mechanochemical synthesis in the Li-Mg-N-D system under deuterium gas: a neutron diffraction study.

    Science.gov (United States)

    Li, Z; Zhang, J; Latroche, M; Wang, S; Jiang, L; Du, J; Cuevas, F

    2016-09-14

    The Mg(NH2)2/2LiH mixture is considered as one of the most valuable reversible hydrogen storage systems for feeding PEM fuel cells. In this paper, we investigate the mechanochemical synthesis in the Li-Mg-N-H system under deuterium gas, using Li3N and Mg as reactants, and the structural and sorption properties of the intermediate and final products mainly by means of neutron powder diffraction. Mechanochemistry leads to the end formation of amorphous Mg(ND2)2, which crystallizes upon heating above 425 K. During synthesis, a novel cation-mixed nitride/imide phase of simplified composition Li3MgN2D has been unveiled as the intermediate phase. It crystallizes in the cubic disordered anti-fluorite type structure (S.G. Fm3[combining macron]m) with a lattice parameter of 4.996 Å at room temperature. Deuterium absorption in this compound occurs through an original solid solution type mechanism ending with the imide compound β-Li2MgN2D2. The conjoint use of mechanochemistry under deuterium gas and in situ neutron diffraction techniques offers new avenues for better characterization of the efficient hydrogen storage materials. In particular, this work highlights the unexpected role of intermediate nitride/imide phases in the Li-Mg-N-H system.

  20. Characterization of neutron emission from mega-ampere deuterium gas puff Z-pinch at microsecond implosion times

    Science.gov (United States)

    Klir, D.; Shishlov, A. V.; Kokshenev, V. A.; Kubes, P.; Labetsky, A. Yu; Rezac, K.; Cikhardt, J.; Fursov, F. I.; Kovalchuk, B. M.; Kravarik, J.; Kurmaev, N. E.; Ratakhin, N. A.; Sila, O.; Stodulka, J.

    2013-08-01

    Experiments with deuterium (D2) triple shell gas puffs were carried out on the GIT-12 generator at a 3 MA current level and microsecond implosion times. The outer, middle and inner nozzle diameters were 160 mm, 80 mm and 30 mm, respectively. The influence of the mass of deuterium shells on neutron emission times, neutron yields and neutron energy spectra was studied. The injected linear mass of deuterium varied between 50 and 255 µg cm-1. Gas puffs imploded onto the axis before the peak of generator current at 700-1100 ns. Most of the neutrons were emitted during the second neutron pulse after the development of instabilities. Despite higher currents, heavier gas puffs produced lower neutron yields. Optimal mass and a short time delay between the valve opening and the generator triggering were more important than the better coincidence of stagnation with peak current. The peak neutron yield from D(d, n)3He reactions reached 3 × 1011 at 2.8 MA current, 90 µg cm-1 injected linear mass and 37 mm anode-cathode gap. In the case of lower mass shots, a large number of 10 MeV neutrons were produced either by secondary DT reactions or by DD reactions of deuterons with energies above 7 MeV. The average neutron yield ratio Y>10 MeV/Y2.5 MeV reached (6 ± 3) × 10-4. Such a result can be explained by a power law distribution for deuterons as \\rmd N_d/\\rmd E_d\\propto E_d^{-3} . The optimization of a D2 gas puff Z-pinch and similarities to a plasma focus and its drive parameter are described.

  1. Compact large-aperture Fabry-Perot interferometer modules for gas spectroscopy at mid-IR

    Science.gov (United States)

    Kantojärvi, Uula; Varpula, Aapo; Antila, Tapani; Holmlund, Christer; Mäkynen, Jussi; Näsilä, Antti; Mannila, Rami; Rissanen, Anna; Antila, Jarkko; Disch, Rolf J.; Waldmann, Torsten A.

    2014-03-01

    VTT has developed Fabry-Pérot Interferometers (FPI) for visible and infrared wavelengths since 90's. Here we present two new platforms for mid-infrared gas spectroscopy having a large optical aperture to provide high optical throughput but still enabling miniaturized instrument size. First platform is a tunable filter that replaces a traditional filter wheel, which operates between wavelengths of 4-5 um. Second platform is for correlation spectroscopy where the interferometer provides a comb-like transmission pattern mimicking absorption of diatomic molecules at the wavelength range of 4.7-4.8 um. The Bragg mirrors have 2-4 thin layers of polysilicon and silicon oxide.

  2. Tritium analysis in deuterium gas and deuterated metals of the IVb group

    International Nuclear Information System (INIS)

    In the study of the possibility of D-D nuclear fusion reaction in metallic lattices, tritium detection is one of the ways to demonstrate that such a reaction has taken place. In the tests based on heavy water electrolysis tritium production has been ascertained. It seemed worthwhile to look if, also in the process of metals deuteration, tritium is being produced. In order to detect a possible production it is necessary to analyze both the deuterium used for the operation and the deuterated metals. A system based on the oxidation of deuterium and tritium to water, trapping in a cold trap and finally counting in a scintillation spectrometer has been set up. The possible source of error are discussed. 2 tabs., 3 figs., 13 refs

  3. Extreme methane deuterium, nitrogen and helium enrichment in natural gas from the Homorod seep (Romania)

    OpenAIRE

    Etiope, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; Baciu, C.; Babes-Bolyai University, Faculty of Environmental Sciences, Cluj-Napoca, Romania; Schoell, M.; GasConsult International Inc., Berkeley, USA

    2011-01-01

    Methane (CH4) in terrestrial environments, whether microbial, thermogenic, or abiogenic, exhibits a large variance in C and H stable isotope ratios due to primary processes of formation. Isotopic variability can be broadened through secondary, post-genetic processes, such as mixing and isotopic fractionation by oxidation. The highest and lowest 13C and 2H (or D, deuterium) concentrations in CH4 found in various geologic environments to date, are defined as “natural” terrestrial extremes. W...

  4. The reaction of nitromethane with hydrogen and deuterium atoms in the gas phase. A mechanistic study

    DEFF Research Database (Denmark)

    Lund Thomsen, E.; Nielsen, O.J.; Egsgaard, H.

    1993-01-01

    The mechanism of the reaction between H and CH3NO2, has been studied in a discharge flow system using electron paramagnetic resonance and modulated molecular beam mass spectrometry for the detection of reactants and products. Deuterium atoms have, in addition to CD3NO2, been used to support...... the proposed reaction mechanism. The reaction was studied with the atomic reactant in slight excess at 298 K and a total pressure of 2 Torr. Two concurrent reaction channels: (1a) H+CH3NO2-->HONO+.CH3 and (1b) H+CH3NO2-->CH3NO+.OH were observed. The branching ratio, k1a/(k1a+k1b), is 0.7+/-0.2....

  5. DEVELOPMENT OF A HYDROGEN AND DEUTERIUM POLARIZED GAS TARGET FOR APPLICATION IN STORAGE RINGS

    Energy Technology Data Exchange (ETDEWEB)

    Willy Haeberli

    2009-06-18

    The exploration of spin degrees of freedom in nuclear and high-energy interactions requires the use of spin-polarized projectiles and/or spin-polarized targets. During the last two decades, the use of external beams from cyclotrons has to a large extent been supplanted by use of circulating beams stored in storage rings. In these experiments, the circulating particles pass millions of times through targets internal to the ring. Thus the targets need to be very thin to avoid beam loss by scattering out of the acceptance aperture of the ring.

  6. Acceleration of Hydrogen Ions up to 30 MeV and Generation of 3 × 1012 Neutrons in Megaampere Deuterium Gas-Puff Z-Pinch

    Science.gov (United States)

    Klir, D.; Cikhardt, J.; Kravarik, J.; Kubes, P.; Rezac, K.; Sila, O.; Shishlov, A.; Cherdizov, R.; Fursov, F.; Kokshenev, V.; Kovalchuk, B.; Kurmaev, N.; Labetsky, A.; Ratakhin, N.; Orcikova, H.; Turek, K.

    2013-10-01

    Fusion neutrons were produced with a deuterium gas-puff z-pinch on the GIT-12 generator at the Institute of High Current Electronics in Tomsk. The peak neutron yield from DD reactions reached Yn = (2 . 9 +/- 0 . 3) ×1012 at 100 μg/cm linear mass density of deuterium, 700 ns implosion time and 2.7 MA current. Such a neutron yield means that the scaling law of deuterium z-pinches Yn ~I4 was extended to 3 MA currents. The further increase of neutron yields up to (3 . 7 +/- 0 . 4) ×1012 was achieved by placing a deuterated polyethylene catcher onto the axis. Maximum neutron energies of 15 and 22 MeV were observed by radial and axial nToF detectors, respectively. A stack of CR-39 track detectors showed up to 40 MeV deuterons (or 30 MeV protons) on the z-pinch axis. Since the energy input into plasmas was 70 kJ, the number of DD neutrons per one joule of stored plasma energy exceeded the value of 5 ×107 . This value implies that deuterium gas-puff z-pinches belong to the most efficient plasma-based sources of DD neutrons. This work was partially supported by the GACR grant No. P205/12/0454 and by the RFBR research project No. 13-08-00479-a.

  7. Deuterium migration in nuclear graphite: consequences for the behavior of tritium in Gas Cooled Reactors and for the decontamination of irradiated graphite waste

    International Nuclear Information System (INIS)

    In France, 23 000 t of irradiated graphite that will be generated by the decommissioning of the first generation Uranium Naturel-Graphite-Gaz (UNGG) nuclear reactors are waiting for a long term management solution. This work focuses on the behavior of tritium, which is one of the main contributors to the radiological inventory of graphite waste after reactor shutdown. In order to anticipate tritium release during dismantling or waste management, it is mandatory to collect data on its migration, location and inventory. Our study is based on the simulation of tritium by implantation of approximately 3 at. % of deuterium up to around 3 μm in a virgin nuclear graphite. This material was then annealed up to 300 h and 1300 C in inert atmosphere, UNGG coolant gas and humid gas, aiming to reproduce thermal conditions close to those encountered in reactor and during waste management operations. The deuterium profiles and spatial distribution were analyzed using the nuclear reaction 2H(3He,p)4He. The main results evidence a thermal release of implanted deuterium occurring essentially through three regimes controlled by the detrapping of atomic deuterium located in superficial or interstitial sites. The extrapolation of our data to tritium suggests that its purely thermal release during reactor operations may have been lower than 30 % and would be located close to the graphite free surfaces. Consequently, most of the tritium inventory after reactor shutdown could be trapped deeply within the irradiated graphite structure. Decontamination of graphite waste should then require temperatures higher than 1300 C, and would be more efficient in dry inert gas than in humid gas. (author)

  8. Acceleration of Deuterons to Multi-MeV Energies in Deuterium Gas-Puff Z-Pinch

    Science.gov (United States)

    Klir, D.; Cikhardt, J.; Cikhardtova, B.; Kravarik, J.; Kubes, P.; Rezac, K.; Sila, O.; Shishlov, A.; Cherdizov, R.; Fursov, F.; Kokshenev, V.; Kovalchuk, B.; Kurmaev, N.; Labetsky, A.; Ratakhin, N.; Krasa, J.; Turek, K.

    2015-11-01

    A novel configuration of a deuterium gas-puff z-pinch has been used to generate a short (approx. 20 ns) pulse of multi-MeV ions and neutrons. Even though ion acceleration in z-pinches has not been researched to such an extent as in laser-based sources, obtained results show that z-pinches can reach values comparable to those of state-of-the-art lasers. On the 3 MA GIT-12 generator, the peak neutron yield was 3.6x1012. When a neutron-producing sample was placed onto the axis below a cathode mesh, the neutron yield was increased up to 1013. The emission time of 20 ns implied the neutron production rate of 5x1020 n/s. Neutron energies reached the maximum value of 33 MeV. The comprehensive set of ion diagnostics provided unique information about ion acceleration mechanism. The ion emission was highly anisotropic. Deuterons were trapped in the radial direction whereas a lot of fast ions escaped the z-pinch along the axis. On the axis, the total number of >1 MeV and >25 MeV deuterons was 1016 and 5x1012, respectively. Utilizing these ions offers a real possibility of various applications including the production of short-lived isotopes or fast neutron radiography. This work was supported by the MSMT grants LH13283, LD14089.

  9. Deuterium Gas-Puff Z-pinch as a Source of Fast Ions Producing Intensive Pulse of Neutrons

    Science.gov (United States)

    Rezac, K.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Kubes, P.; Sila, O.; Shishlov, A.; Cherdizov, R.; Fursov, F.; Kokshenev, V.; Kovalchuk, B.; Kurmaev, N.; Labetsky, A.; Ratakhin, N.; Turek, K.

    2015-11-01

    A deuterium gas-puff with outer plasma shell has been examined on GIT-12 generator (on the current level of 3 MA) since 2013. Such a configuration caused more stable implosion at final stage of z-pinch. The consequence of this was a production of intensive pulses of fast ions. During last 4 campaigns in 2013-2015, fast ions were examined by several in-chamber diagnostics such as: stack detector (ion energy), pinhole camera (location of ion source), multi-pinhole camera (asymmetry and anisotropy of ion emission), and ion beam detector (dynamics of ion pulses). A CR-39 track detectors and also GAFCHROMIC HD-V2 films from these diagnostics will be presented. On the basis of obtained results, the solid sample for increasing of neutron yield up to 1e13 could be placed below the cathode mesh. Except of neutron yield, other properties such as: neutron energies (up to 33 MeV), neutron emission time (about 20 ns), and emission anisotropy of neutrons were measured. Such a short and intensive neutron pulse provides various applications. This work was supported by the MSMT project LH13283.

  10. Neutron Diagnostics of a Deuterium Gas-Puff Z-pinch on the Level of 3 MA

    Science.gov (United States)

    Rezac, Karel; Klir, Daniel; Kubes, Pavel; Kravarik, Jozef; Shishlov, Alexander; Labetsky, Aleksey; Ratakhin, Nicolai; GIT-12 Team

    2011-10-01

    The diagnostics of a deuterium gas-puff Z-pinch (outer shell with diam. of 100 or 80 mm, inner annular with diam. of 30 mm or solid-fill shell with diam. of 20 mm with linear mass varied in each shell in the range of 25 - 40 μg/cm) is presented. The experiments were carried out on the GIT-12 generator at IHCE in Tomsk (2.5 MJ bank energy, load current of 2.8 MA with the rise time of 250 ns) during the April-May campaign in 2011. Results from the neutron time-of-flight diagnostics including the determination of the neutron production time and reconstructed radial energy spectra are shown. Several methods which provided measurement of the total neutron yield indicated the number of neutrons in order of 1011 per one shot. The time correlations with other diagnostics such as electrical characteristics, soft X-rays, hard X-rays and a visible streak camera are also presented. Work supported by MEYS research programs No. LA08024, No. ME09087, No. LC528, by GACR grants No. 202-08-H057 and grant CRA IAEA No. 14817.

  11. Neutron production in deuterium gas-puff z-pinch with outer plasma shell at current of 3 MA

    Science.gov (United States)

    Cikhardt, J.; Klir, D.; Rezac, K.; Cikhardtova, B.; Kravarik, J.; Kubes, P.; Sila, O.; Shishlov, A. V.; Cherdizov, R. K.; Frusov, F. I.; Kokshenev, V. A.; Kurmaev, N. E.; Labetsky, A. Yu.; Ratakhin, N. A.; Dudkin, G. N.; Garapatsky, A. A.; Padalko, V. N.; Varlachev, V. A.; Turek, K.; Krasa, J.

    2015-11-01

    Z-pinch experiments at the current of about 3 MA were carried out on the GIT-12 generator. The outer plasma shell of deuterium gas-puff was generated by the system of 48 plasma guns. This configuration exhibits a high efficiency of the production of DD fusion neutrons with the yield of above 1012 neutrons produced in a single shot with the duration of about 20 ns. The maximum energy of the neutrons produced in this pulse exceeded 30 MeV. The neutron radiation was measured using scintillation TOF detectors, CR-39 nuclear track detectors, bubble detectors BD-PND and BDS-10000 and by several types of nuclear activation detectors. These diagnostic tools were used to measure the anisotropy of neutron fluence and neutron energy spectra. It allows us to estimate the total number of DD neutrons, the contribution of other nuclear reactions, the amount of scattered neutrons, and other parameters of neutron production. This work was supported by the MSMT grants LH13283, LD14089.

  12. Deuterium chemistry of dense gas in the vicinity of low-mass and massive star-forming regions

    OpenAIRE

    Awad, Z.; Viti, S.; Bayet, E.; Caselli, P.

    2014-01-01

    The standard interstellar ratio of deuterium to hydrogen (D/H) atoms is $\\sim 1.5 \\times 10^{-5}$. However, the deuterium fractionation is in fact found to be enhanced, to different degrees, in cold, dark cores, hot cores around massive star forming regions, lukewarm cores, and warm cores ({\\it hereafter}, hot corinos) around low-mass star forming regions. In this paper, we investigate the overall differences in the deuterium chemistry between hot cores and hot corinos. We have modelled the c...

  13. The new technology on creation of multiatmispheric wide aperture high power gas lasers

    International Nuclear Information System (INIS)

    Review is presented about the series of works on creation of 10-atmospheric wide aperture (with active volume 5x5x55 cm3 preionized by x-ray source) CO2-amplifier which was used as main unit of picosecond laser system Picasso [1-4]. The success was reached on putting in operation of this laser system with out put laser energy 22 J and fulfilling of the first experiments on hot plasma ignition by the train of 100 picosecond laser pulses. The new phenomenon was discovered: penetration through metallic shields by the fast (less than 1 nanosecond) magnetic field pulses generated in hot plasma in opposite to long magnetic field pulses which were unable to do this. Author is analyzing the main technologic problem on creation of such multiatmospheric wide aperture (MAWA) lasers and amplifiers – the necessity to create the large complicated window (10x70 cm2 size in case of Picasso facility) on the glass-plastic cylindrical body of the amplifier. This window consists of the pair of metallic flanges with ∼ 300 holes (of 10 mm diameter) in every one of them and 50 µm thick aluminum foil between flanges for x-ray entrance into laser volume for its preionization. Such a system would to provide high flux of x-rays and both evacuation of the amplifier’s chamber up to 0.1 torr and its safety operation at excess pressures not less than 10 atm. However, during the all time of the system’s operation the problem was existed on amplifier’s volume pressurization and aluminum foil’s safeness. There for it was impossible to increase further the gas pressure in amplifier. Author arrived to an idea which can allow the excluding fully the use of such large complicated window system with a foil on MAWA amplifier. According calculations the application of the new proposed approach can provide at least 10-fold increase of the x-ray flux for preionization of laser active volume, - it has the principal important meaning for reaching of stabile volume self sustained discharge for

  14. Low-background measurements of neutron emission from Ti metal in pressurized deuterium gas

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, H.O.; Paciotti, M.A.; Claytor, T.N.; Tuggle, D.G.

    1991-01-01

    A wide variety of neutron detector systems have been used at various research facilities to search for anomalous neutron emission from deuterated metals. Some of these detector systems are summarized here together with possible sources of spurious signals from electronic noise. During the past two years, we have performed experiments to measure neutron emission from pressurized D{sub 2} gas mixed with various forms of titanium metal chips and sponge. Details concerning the neutron detectors, experimental procedures, and results have been reported previously. Our recent experiments have focused on increasing the low-level neutron emission and finding a way to trigger the emission. To improve our detection sensitivity, we have increased the shielding in our counting laboratory, changed to low-background {sup 3}He tubes, and set up additional detector systems in deep underground counting stations. This report is an update on this experimental work. 7 refs., 5 figs., 4 tabs.

  15. Chemical composition and structural phase changes of novel synthesized structure and of Pd sample under γ-quanta irradiation in dense deuterium gas

    International Nuclear Information System (INIS)

    Studies have been carried out into the element composition of Pd and brass with associated materials and of synthesized novel structure (ANNAWIT), placed in dense deuterium gas in a special high-pressure chamber (HPC) under the pressure of 3 kbar and irradiated with γ-quanta of energy up to 8.8 MeV. Using the methods of scanning electron microscopy, microelement chemical analysis and X-ray diffraction, it was determined that in the absence of all HPC-forming materials in the chamber volume and walls, the synthesized structure is largely composed of alumosilicates and Al and Si oxides with high content of Ti compounds as rutile TiO2, Pd1.5D2. Considerable anomalies in the chemical composition were found both on the surface and at large depth in a Pd specimen. The entire Pd surface turned into a structure comprised of Pd clusters, Cu and Zn compounds, with a notable content of Mg, Al, S, Si, K, Ca, Ti, and Fe compounds. Results of evaluative calculations, including computation of the Q-value, are presented for nuclear reactions produced in a saturated with deuterium Pd specimen and dense deuterium gas under the action of γ-quanta, neutrons and protons of energies up to En+Ep ≅ Eγ - ΔW MeV generated by deuteron fission. The obtained results can be explained by 'collective effects' as chain reactions caused by deuteron fission induced by protons (Ep > 3.39 MeV) and neutrons (En > 2.25 MeV), as well as by thermonuclear synthesis of deuterium atoms elastically scattered by protons of energies up to EP γ - ΔW MeV

  16. Enhanced performance of a wide-aperture copper vapour laser with hydrogen additive in neon buffer gas

    Indian Academy of Sciences (India)

    Bijendra Singh; V V Subramaniam; S R Daultabad; Ashim Chakraboty

    2010-11-01

    A wide-aperture copper vapour laser was demonstrated at ∼ 10 kHz rep-rate with hydrogen additive in its buffer gas. Maximum power in excess of ∼ 50 W (at 10 kHz) was achieved by adding 1.96% hydrogen to the neon buffer gas at 20 mbar total gas pressure. This increase in output power was about 70% as compared to ∼ 30 W achieved with pure neon at 5.5 kHz rep-rate. The 70% enhancement achieved was significantly higher than the maximum reported value of 50% so far in the literature. The enhancement was much higher (about 150%) as compared to its 20 W power at 10 kHz rep-rate using pure neon as the standard CVL operation.

  17. Seismic characterization of a gas hydrate system in the Gulf of Mexico using wide-aperture data

    Energy Technology Data Exchange (ETDEWEB)

    Jaiswal, P.; Zelt, C.A. [Rice Univ., Houston, TX (United States). Dept. of Earth Science; Pecher, I.A. [Institute of Geological and Nuclear Sciences, Lower Hutt (New Zealand)

    2006-04-15

    Gas hydrates were discovered in a mud mound in the lease block Mississippi Canyon 798, Gulf of Mexico, through piston coring. Subsequently, a seismic experiment was carried out to investigate the dynamics behind the hydrate formation. During the experiment, high-resolution multichannel seismic reflection data using a 24-channel, 240 m long streamer and wide-aperture data using six ocean bottom seismometers were collected along five lines. High-reflectivity zones (HRZs) are present in the reflection data along all lines. To better constrain the interpretation of the reflection data, the traveltimes from the multichannel and wide-aperture data sets were jointly inverted to estimate a 2-D P-wave layered velocity model for each line. A minimum-parameter/minimum-structure modelling approach yielded simple models and a comparison of the models at their intersection points shows they are consistent to within {+-}10 m s{sup -1} in velocity and {+-}20 m in depth. In the final P-wave velocity models, the HRZs are associated with a lowering of velocity. In the reflection data, the top of the HRZs show a polarity reversal with respect to the seafloor. Presence of free gas in the HRZs best explains the velocity lowering and polarity reversal. It is speculated that the gas has deeper sources and migrates upwards through conduits formed by salt movement in the vicinity. The upward migrating gas accumulates in the axis of a channel complex and manifests itself as HRZs in the reflection data. The fluids circulating along the conduits push the base of the hydrate stability zone close to the seafloor. From the channel axis, the free gas migrates further upwards and close to the seafloor, and as it comes within the gas hydrate stability zone, it forms hydrates. (author)

  18. Pionic deuterium

    CERN Document Server

    Strauch, Th; Anagnostopoulos, D; Bühler, P; Covita, D S; Gorke, H; Gotta, D; Gruber, A; Hirtl, A; Indelicato, P; Bigot, E -O Le; Nekipelov, M; Santos, J M F dos; Schmid, Ph; Schlesser, S; Simons, L M; Trassinelli, M; Veloso, J F C A; Zmeskal, J

    2010-01-01

    The strong interaction shift $\\epsilon$ and broadening {\\Gamma} in pionic deuterium have been determined in a high statistics study of the {\\pi}D(3p - 1s) X-ray transition using a high-resolution crystal spectrometer. The pionic deuterium shift will provide constraints for the pion-nucleon isospin scattering lengths extracted from measurements of shift and broadening in pionic hydrogen. The hadronic broadening is related to pion absorption and production at threshold. The results are \\epsilon = (-2356 {\\pm} 31)meV (repulsive) and {\\Gamma}1s = (1171+23/-49) meV yielding for the complex {\\pi}D scattering length a = [-(24.99 {\\pm} 0.33) + i (6.22+0.12/-0.26 )]x10-3/m{\\pi}. From the imaginary part, the threshold parameter for pion production is obtained to be {\\alpha} = (251 +5/-11) {\\mu}b. This allows, in addition, and by using results from pion absorption in 3He at threshold, the determination of the effective couplings g0 and g1 for s-wave pion absorption on isoscalar and isovector NN pairs.

  19. Pionic deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Strauch, T.; Gotta, D.; Nekipelov, M. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Amaro, F.D.; Santos, J.M.F. dos [Coimbra University, Department of Physics, Coimbra (Portugal); Anagnostopoulos, D.F. [University of Ioannina, Department of Materials Science and Engineering, Ioannina (Greece); Buehler, P.; Gruber, A.; Hirtl, A.; Schmid, P.; Zmeskal, J. [Austrian Academy of Sciences, Stefan Meyer Institut for Subatomic Physics, Vienna (Austria); Covita, D.S. [Coimbra University, Department of Physics, Coimbra (Portugal); Paul Scherrer Institut, Laboratory for Particle Physics, Villigen (Switzerland); Gorke, H. [Forschungszentrum Juelich GmbH, Zentralinstitut fuer Elektronik, Juelich (Germany); Indelicato, P.; Le Bigot, E.O.; Schlesser, S.; Trassinelli, M. [UPMC-Paris 6, ENS, CNRS, Laboratoire Kastler Brossel, Paris (France); Simons, L.M. [Paul Scherrer Institut, Laboratory for Particle Physics, Villigen (Switzerland); Veloso, J.F.C.A. [Aveiro University, I3N, Department of Physics, Aveiro (Portugal)

    2011-07-15

    The strong-interaction shift {epsilon}{sub 1s}{sup {pi}}{sup D} and broadening {gamma}{sub 1s}{sup {pi}}{sup D} in pionic deuterium have been determined in a high statistics study of the {pi}D(3p-1s) X-ray transition using a high-resolution crystal spectrometer. The pionic deuterium shift will provide constraints for the pion-nucleon isospin scattering lengths extracted from measurements of shift and broadening in pionic hydrogen. The hadronic broadening is related to pion absorption and production at threshold. The results are {epsilon}{sub 1s}{sup {pi}}{sup D}=(-2356 {+-} 31) meV (repulsive) and {gamma}{sub 1s}{sup {pi}}{sup D} meV yielding for the complex {pi}D scattering length a{sub {pi}}{sub D}=[-(24.99 {+-}0.33)+i(6.22{sub -0.26} {sup +0.12}) ]x 10{sup -3} m{sub {pi}}{sup -1}. From the imaginary part, the threshold parameter for pion production is obtained to be {alpha} = (251{sub -11} {sup +5}){mu}b. This allows, in addition, and by using results from pion absorption in {sup 3}He at threshold, the determination of the effective couplings g{sub 0} and g{sub 1} for s-wave pion absorption on isoscalar and isovector NN pairs. (orig.)

  20. Low Energy Nuclear Transmutation in Condensed Matter Induced by D2 Gas Permeation Through pd Complexes:. Correlation Between Deuterium Flux and Nuclear Products

    Science.gov (United States)

    Iwamura, Y.; Itoh, T.; Sakano, M.; Sakai, S.; Kuribayashi, S.

    2005-12-01

    Observations of low energy nuclear reactions induced by D2 gas permeation through Pd complexes (Pd/CaO/Pd) were presented at ICCF-91 and in a paper2 published in the Japanese Journal of Applied Physics. When Cs was added on the surface of a Pd complex, Pr emerged on the surface while Cs decreased after the Pd complex was subjected to D2 gas permeation. When Sr was added to the surface, Mo emerged while the Sr decreased after D2 gas permeation. The isotopic composition of the detected Mo was different from the natural abundance. In this paper, recent progress of our research is described. The detected Pr was confirmed by various methods such as TOF-SIMS, XANES, X-ray Fluorescence Spectrometry and ICP-MS. Analysis of the depth profile of Pr indicated that a very thin surface region up to 100 Å was the active transmutation zone. Many experimental results showed that the quantity of Pr was proportional to the deuterium flux through Pd complex. The cross-section of transmutation of Cs into Pr can be roughly estimated at 1 barn if we consider the deuterium flux as an ultra low energy deuteron beam.

  1. Enhanced Gas Sensitivity and Selectivity on Aperture-Controllable 3D Interconnected Macro-Mesoporous ZnO Nanostructures.

    Science.gov (United States)

    Liu, Jing; Huang, Huawen; Zhao, Heng; Yan, Xiaoting; Wu, Sijia; Li, Yu; Wu, Min; Chen, Lihua; Yang, Xiaoyu; Su, Bao-Lian

    2016-04-01

    Three-dimensional (3D) macro-mesoporous structures demonstrate effective performance for gas sensing. In this work, we have designed and successfully prepared aperture-controllable three-dimensional interconnected macro-mesoporous ZnO (3D-IMM-ZnO) nanostructures by template-based layer-by-layer filtration deposition. XRD, SEM, and TEM have been used to characterize the obtained hexagonal wurzite 3D-IMM-ZnO nanostructures. Owing to its special 3D interconnected hierarchically porous structure, the 3D-IMM-ZnO nanostructures exhibit excellent gas sensing performances toward acetone and methanol. The 3D-IMM-ZnO nanostructure with the largest macropore demonstrates the best gas sensitivity owing to its largest cavity providing enough space for gas diffusion. On the basis of the results and analyses, we propose that the synergistic effect of electron liberation and electron density of acetone and the special structure make the 3D-IMM-ZnO nanostructures demonstrate better gas sensing properties than many other porous ZnO nanostructures and preferred selectivity to acetone.

  2. Effect of deposited tungsten on deuterium accumulation in beryllium in contact with atomic deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Sharapov, V.M.; Gavrilov, L.E. [Institute of Physical Chemistry, Russian Academy of Sciences, Moscow (Russian Federation); Kulikauskas, V.S.

    1998-01-01

    Usually ion or plasma beam is used for the experiment with beryllium which simulates the interaction of plasma with first wall in fusion devices. However, the use of thermal or subthermal atoms of hydrogen isotopes seems to be useful for that purpose. Recently, the authors have studied the deuterium accumulation in beryllium in contact with atomic deuterium. The experimental setup is shown, and is explained. By means of elastic recoil detection (ERD) technique, it was shown that in the exposure to D atoms at 740 K, deuterium is distributed deeply into the bulk, and is accumulated up to higher concentration than the case of the exposure to molecular deuterium. The depth and concentration of deuterium distribution depend on the exposure time, and those data are shown. During the exposure to atomic deuterium, oxide film grew on the side of a sample facing plasma. In order to understand the mechanism of deuterium trapping, the experiment was performed using secondary ion mass spectrometry (SIMS) and residual gas analysis (RGA). The influence that the tungsten deposit from the heated cathode exerted to the deuterium accumulation in beryllium in contact with atomic deuterium was investigated. These results are reported. (K.I.)

  3. Quantitative analysis of deuterium in zircaloy using double-pulse laser-induced breakdown spectrometry (LIBS) and helium gas plasma without a sample chamber.

    Science.gov (United States)

    Suyanto, H; Lie, Z S; Niki, H; Kagawa, K; Fukumoto, K; Rinda, Hedwig; Abdulmadjid, S N; Marpaung, A M; Pardede, M; Suliyanti, M M; Hidayah, A N; Jobiliong, E; Lie, T J; Tjia, M O; Kurniawan, K H

    2012-03-01

    A crucial safety measure to be strictly observed in the operation of heavy-water nuclear power plants is the mandatory regular inspection of the concentration of deuterium penetrated into the zircaloy fuel vessels. The existing standard method requires a tedious, destructive, and costly sample preparation process involving the removal of the remaining fuel in the vessel and melting away part of the zircaloy pipe. An alternative method of orthogonal dual-pulse laser-induced breakdown spectrometry (LIBS) is proposed by employing flowing atmospheric helium gas without the use of a sample chamber. The special setup of ps and ns laser systems, operated for the separate ablation of the sample target and the generation of helium gas plasma, respectively, with properly controlled relative timing, has succeeded in producing the desired sharp D I 656.10 nm emission line with effective suppression of the interfering H I 656.28 nm emission by operating the ps ablation laser at very low output energy of 26 mJ and 1 μs ahead of the helium plasma generation. Under this optimal experimental condition, a linear calibration line is attained with practically zero intercept and a 20 μg/g detection limit for D analysis of zircaloy sample while creating a crater only 10 μm in diameter. Therefore, this method promises its potential application for the practical, in situ, and virtually nondestructive quantitative microarea analysis of D, thereby supporting the more-efficient operation and maintenance of heavy-water nuclear power plants. Furthermore, it will also meet the anticipated needs of future nuclear fusion power plants, as well as other important fields of application in the foreseeable future. PMID:22283593

  4. Deuterium Substitution used as a Tool for Investigating Mechanisms of Gas-Phase Free-Radical Reactions

    Science.gov (United States)

    Wine, P. H.; Hynes, A. J.; Nicovich, J. M.

    1997-01-01

    Results are presented and discussed for a number of gas phase free radical reactions where H/D isotope effects provide valuable mechanistic insights. The cases considered are (1) the reactions of OH, NO3, and Cl with atmospheric reduced sulfur compounds, (2) the reactions of OH and OD with CH3CN and CD3CN, and (3) the reactions of alkyl radicals with HBr and DBr.

  5. Tritium catalyzed deuterium tokamaks

    International Nuclear Information System (INIS)

    A preliminary assessment of the promise of the Tritium Catalyzed Deuterium (TCD) tokamak power reactors relative to that of deuterium-tritium (D-T) and catalyzed deuterium (Cat-D) tokamaks is undertaken. The TCD mode of operation is arrived at by converting the 3He from the D(D,n)3He reaction into tritium, by neutron capture in the blanket; the tritium thus produced is fed into the plasma. There are three main parts to the assessment: blanket study, reactor design and economic analysis and an assessment of the prospects for improvements in the performance of TCD reactors (and in the promise of the TCD mode of operation, in general)

  6. The primordial abundance of deuterium: ionization correction

    Science.gov (United States)

    Cooke, Ryan; Pettini, Max

    2016-01-01

    We determine the relative ionization of deuterium and hydrogen in low metallicity damped Lyman α (DLA) and sub-DLA systems using a detailed suite of photoionization simulations. We model metal-poor DLAs as clouds of gas in pressure equilibrium with a host dark matter halo, exposed to the Haardt & Madau background radiation of galaxies and quasars at redshift z ≃ 3. Our results indicate that the deuterium ionization correction correlates with the H I column density and the ratio of successive ion stages of the most commonly observed metals. The N(N II)/N(N I) column density ratio provides the most reliable correction factor, being essentially independent of the gas geometry, H I column density, and the radiation field. We provide a series of convenient fitting formulae to calculate the deuterium ionization correction based on observable quantities. The ionization correction typically does not exceed 0.1 per cent for metal-poor DLAs, which is comfortably below the current measurement precision (2 per cent). However, the deuterium ionization correction may need to be applied when a larger sample of D/H measurements becomes available.

  7. Injection of Deuterium Pellets

    DEFF Research Database (Denmark)

    Sørensen, H.; Andersen, P.; Andersen, S. A.;

    1984-01-01

    to velocities above 1400 m/s, deuterium pellets to velocities above 1300 m/s and neon pellets to velocities above 500 m/s. Finally, a new acceleration method where a pellet should be accelerated by means of a magnetically stabilised electrical discharge is discussed, and a set up for measuring of the pellet...

  8. Observation of increased space-charge limited thermionic electron emission current by neutral gas ionization in a weakly-ionized deuterium plasma

    International Nuclear Information System (INIS)

    The thermionic electron emission current emitted from a laser-produced hot spot on a tungsten target in weakly-ionized deuterium plasma is measured. It is found to be one to two orders of magnitude larger than expected for bipolar space charge limited thermionic emission current assuming an unperturbed background plasma. This difference is attributed to the plasma being modified by ionization of background neutrals by the emitted electrons. This result indicates that the allowable level of emitted thermionic electron current can be significantly enhanced in weakly-ionized plasmas due to the presence of large neutral densities

  9. Production of hydrogen and deuterium negative ions in an electron cyclotron resonance driven plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dougar-Jabon, V.D. [Industrial Univ. of Santander, Bucaramanga (Colombia)

    2001-04-01

    An electron cyclotron resonance source with driven plasma rings for hydrogen isotope ion production is studied. Extracted currents of positive and negative ions depending on gas pressure, microwave power value and extraction voltage are obtained. The study shows that the negative ion yield is an order of magnitude higher than the yield of positive particles when a driven ring is in contact with the surface of the plasma electrode. The production of negative ions of deuterium, D{sup -}, is close to the production of negative ions of light hydrogen isotope, H{sup -}. The comparison of the experimental data with the calculated ones shows that the most probable process of the H{sup -} and D{sup -} ion formation in the electron cyclotron driven plasma is dissociative attachment of electrons to molecules in high Rydberg states. For hydrogen ions and ions of deuterium, the negative current at a microwave power of 200 W through a 3-mm aperture and 8 kV extraction voltage are 4.7 mA and 3.1 mA respectively. (orig.)

  10. Deuterium labeled cannabinoids

    International Nuclear Information System (INIS)

    Complex reactions involving ring opening, ring closure and rearrangements hamper complete understanding of the fragmentation processes in the mass spectrometric fragmentation patterns of cannabinoids. Specifically labelled compounds are very powerful tools for obtaining more insight into fragmentation mechanisms and ion structures and therefore the synthesis of specifically deuterated cannabinoids was undertaken. For this, it was necessary to investigate the preparation of cannabinoids, appropriately functionalized for specific introduction of deuterium atom labels. The results of mass spectrometry with these labelled cannabinoids are described. (Auth.)

  11. Primordial Deuterium Abundance and Cosmic Baryon Density

    OpenAIRE

    Hogan, Craig J.

    1994-01-01

    The comparison of cosmic abundances of the light elements with the density of baryonic stars and gas in the universe today provides a critical test of big bang theory and a powerful probe of the nature of dark matter. A new technique allows determination of cosmic deuterium abundances in quasar absorption clouds at large redshift, allowing a new test of big bang homogeneity in diverse, very distant systems. The first results of these studies are summarized, along with their implications. The ...

  12. Molecular dynamics simulation of deuterium trapping and bubble formation in tungsten

    International Nuclear Information System (INIS)

    Highlights: ► Deuterium tungsten interaction was simulated using classical molecular dynamic methods. ► Low energy deuterium atoms tend to affix to high temperature tungsten surface. ► Tungsten substrate temperature barely affects the low energy deuterium implantation depth. ► Deuterium bubble formation resulting from near surface super-saturation was predicted. -- Abstract: The interaction between plasma particles and tungsten as plasma facing material is one of the critical issues in successfully using tungsten in Tokamak reactors environment. The deuterium bombardment of monocrystalline tungsten was modeled by molecular dynamics simulation using LAMMPS code and Tersoff type interatomic potential. The deuterium trapping rate, implantation depth, and the stopping time in tungsten at several temperatures ranging from 600 to 2000 K bombarded by 5–100 eV deuterium atoms were simulated. Deuterium bubble formation at near tungsten surface was also studied. Irradiated monocrystalline tungsten became amorphous state prior to deuterium cluster formation, and gas bubbles were observed in the 600, 900, and 1200 K tungsten samples. The formation of gas bubbles were caused by the near surface deuterium super-saturation region and the subsequent plastic deformation induced by the local high gas pressure

  13. Experimental study on the influence of charge exchange on the stopping power in the interaction of chlorine with a gas and a deuterium plasma; Etude experimentale de l`influence des echanges de charges sur le pouvoir d`arret dans l`interaction d`ions chlore avec un gaz et un plasma de deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Nectoux, Marie [Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)

    1998-01-06

    This thesis is placed in the context of the physics of energy deposition of a multicharged heavy ion beam in matter at intermediate energies. The experiment gave measurements of energy loss as a function of final charge state for chlorine ions at 1.7 MeV/u in deuterium gas or plasma. In this way, we explore the influence of charge state evolution, depending on experimentally measured capture and ionization cross sections and the electron density of the target, on energy loss. The target is cylindrical and enclosed by two fast valves. The plasma is created in the gas by a discharge, which induces a magnetic perturbation of the beam (lens effect). This effect induces a divergent and misaligned outgoing beam. A simulation including charge state and velocity evolution of the projectile in flight in the magnetic field has been made in order to optimize beam analysis, to reach a precision better than 10{sup -3} in energy measurement. This study led to removal of the target to the `Split Pole`, a refocusing magnetic spectrometer. The first results obtained clearly show the dependence of energy loss on exit charge and especially on its evolution in the target. This is explained in terms of the lengths covered by the projectile in its successive charge states in the target, which depends on target electron density and the medium considered. In plasma, we observed an energy distribution with exit charge twice that observed in gas, because of a strong decrease of charge exchange. A comparison of data obtained in gas with stopping power calculated from Bethe-Bloch-Barkas theory leads to the necessity of including spatial extension of the projectile charge in the theory. (author) 81 refs., 62 figs., 5tabs.

  14. Heterogeneous Catalysis: Deuterium Exchange Reactions of Hydrogen and Methane

    Science.gov (United States)

    Mirich, Anne; Miller, Trisha Hoette; Klotz, Elsbeth; Mattson, Bruce

    2015-01-01

    Two gas phase deuterium/hydrogen exchange reactions are described utilizing a simple inexpensive glass catalyst tube containing 0.5% Pd on alumina through which gas mixtures can be passed and products collected for analysis. The first of these exchange reactions involves H[subscript 2] + D[subscript 2], which proceeds at temperatures as low as 77…

  15. The Primordial Abundance of Deuterium: Ionization correction

    CERN Document Server

    Cooke, Ryan

    2015-01-01

    We determine the relative ionization of deuterium and hydrogen in low metallicity damped Lyman-alpha (DLA) and sub-DLA systems using a detailed suite of photoionization simulations. We model metal-poor DLAs as clouds of gas in pressure equilibrium with a host dark matter halo, exposed to the Haardt & Madau (2012) background radiation of galaxies and quasars at redshift z~3. Our results indicate that the deuterium ionization correction correlates with the H I column density and the ratio of successive ion stages of the most commonly observed metals. The N(N II) / N(N I) column density ratio provides the most reliable correction factor, being essentially independent of the gas geometry, H I column density, and the radiation field. We provide a series of convenient fitting formulae to calculate the deuterium ionization correction based on observable quantities. The ionization correction typically does not exceed 0.1 per cent for metal-poor DLAs, which is comfortably below the current measurement precision (2...

  16. Counter-diffusion and -permeation of deuterium and hydrogen through metals

    Energy Technology Data Exchange (ETDEWEB)

    Kizu, Kaname; Tanabe; Tetsuo [Nagoya Univ. (Japan)

    1998-03-01

    The first experiments for counter-diffusion and -permeation of deuterium and hydrogen through palladium were performed. Deuterium permeation rates against D{sub 2} pressure were measured under the condition where hydrogen permeated to opposite direction by supplying H{sub 2} gas at the permeated side of D{sub 2}. It was found that not a small amount of deuterium was clearly permeated even if the deuterium pressure was much smaller than the hydrogen pressure. Deuterium permeation rate was gradually reduced by increasing the counter H permeation. The deuterium permeation rate under the counter H permeation is well represented by a simple model in which the ratio of the deuterium permeation rates with and without the counter H permeation was proportional to the fractional concentration of deuterium in the bulk. As increasing the hydrogen counter flow, however, the deuterium permeation rate deviates from the model. This means that adsorption (absorption) of D{sub 2} from gas phase is inhibited and surface recombination of deuterium is blocked by hydrogen. (author)

  17. 多孔钯块材的脉冲烧结制备及其气体载氘行为%Pulse Sintering Preparation of Porous Palladium Bulk and Its Deuterium Gas Loading Behavior

    Institute of Scientific and Technical Information of China (English)

    李梦; 杨文锋; 刘颖; 陆光达; 涂铭旌

    2008-01-01

    High-speed deuterium loading in palladium is of great importance in the research of Metal-Hydrogen isotope system and applications of hydrogen energy.In this paper,porous Pd bulk prepared by a new pulse sintering technology is studied.The microstructure and phase of the porous Pd bulk are characterized by SEM and XRD.In addition,the deuterium gas loading behavior of the porous Pd bulk is investigated.The results show that clean porous Pd bulk with porosity of 81.6% can be prepared.The initial loading rate of deuterium in the porous Pd bulk is high but drops quickly.90%of the loading can be completed within the initial 80S.The loading rate comes to a very low level and decreases slowly about 10S after the beginning ofthe loading.%钯材的高速载氘对金属-氢同位素系统和氢能应用领域的研究具有重要的意义.本文研究了以海绵钯粉为原料通过脉冲烧结制备多孔钯块材的新工艺,用SEM和XRD分析了制备的多孔钯块材的微观结构形貌和相组成,并进一步研究了多孔钯块材的气体载氘行为.结果表明,采用脉冲烧结工艺可制备出孔隙率为81.6%的纯净多孔钯块材,氘在该钯材中的初始载入速度较高但迅速降低,80 s内即可完成约90%氘的载入;载氘开始约10 s后,氘的载入速度下降到较低的水平并缓慢衰减.

  18. Properties of thick GEM in low-pressure deuterium

    International Nuclear Information System (INIS)

    Deuteron inelastic scattering (d, d') provides a promising spectroscopic tool to study nuclear incompressibility. In studies of deuteron inelastic scattering of unstable nuclei, measurements of low-energy recoiled particles is very important. In order to perform these measurements, we are developing a GEM-TPC based gaseous active target, called CAT (Center for nuclear study Active Target), operated with pure deuterium gas. The CAT has been tested with deuterium gas at 1 atm and 100-μm-thick GEMs. The low-pressure operation of CAT is planned in order to improve the detection capability for lower-energy recoil particles. A 400 μm-thick gas electron multiplier (THGEM) was chosen for the low-pressure operation of CAT. However, the properties of THGEM in low-pressure deuterium are currently undocumented. In this work, the performance of THGEM with low-pressure pure deuterium gas has been investigated. The effective gas gain of THGEM has been measured in various conditions using a 5.5-MeV 241Am alpha source. The effective gas gain was measured for 0.2-, 0.3- and 0.4-atm deuterium gas and a gas gain of about 103 was achieved by a double THGEM structure at 0.2 atm. The maximum achieved gain decreased with increasing gas pressure. The dependences of the effective gas gain on the electric field strengths of the drift, transfer and induction regions were investigated. The gain stability as a function of time in hydrogen gas was also tested and a relaxation time of THGEM of about 60 hours was observed with a continuous irradiation of alpha particles, which is significantly longer than previous studies have reported. We have tried to evaluate the gas gain of THGEM in deuterium gas by considering only the Townsend ionization process; however, it turned out that more phenomenological aspects, such as transfer efficiency, should be included in the evaluation. The basic properties of THGEM in low-pressure deuterium have been investigated for the first time

  19. Aperture optical antennas

    CERN Document Server

    Wenger, Jerome

    2014-01-01

    This contribution reviews the studies on subwavelength aperture antennas in the optical regime, paying attention to both the fundamental investigations and the applications. Section 2 reports on the enhancement of light-matter interaction using three main types of aperture antennas: single subwavelength aperture, single aperture surrounded by shallow surface corrugations, and subwavelength aperture arrays. A large fraction of nanoaperture applications is devoted to the field of biophotonics to improve molecular sensing, which are reviewed in Section 3. Lastly, the applications towards nano-optics (sources, detectors and filters) are discussed in Section 4.

  20. Deuterium Fractionation in the Ophiuchus Molecular Cloud

    CERN Document Server

    Punanova, A; Pon, A; Belloche, A; André, Ph

    2015-01-01

    Aims. We measure the deuterium fraction, RD, and the CO-depletion factor, fd, toward a number of starless and protostellar cores in the L1688 region of the Ophiuchus molecular cloud complex and search for variations based upon environmental differences across L1688. The kinematic properties of the dense gas traced by the N2H+ and N2D+ (1-0) lines are also discussed. Methods. RD has been measured via observations of the J=1-0 transition of N2H+ and N2D+ toward 33 dense cores in different regions of L1688. fd estimates have been done using C17O(1-0) and 850 micron dust continuum emission from the SCUBA survey. All line observations were carried out with the IRAM 30 meter antenna. Results. The dense cores show large (2-40%) deuterium fractions, with significant variations between the sub-regions of L1688. The CO-depletion factor also varies from one region to another (1-7). Two different correlations are found between deuterium fraction and CO-depletion factor: cores in regions A, B2 and I show increasing RD wit...

  1. Measurement of gluconeogenesis using glucose fragments and mass spectrometry after ingestion of deuterium oxide

    NARCIS (Netherlands)

    Chacko, Shaji K.; Sunehag, Agneta L.; Sharma, Susan; Sauer, Pieter J. J.; Haymond, Morey W.

    2008-01-01

    We report a new method to measure the fraction of glucose derived from gluconeogenesis using gas chromatography-mass spectrometry and positive chemical ionization. After ingestion of deuterium oxide by subjects, glucose derived from gluconeogenesis is labeled with deuterium. Our calculations of gluc

  2. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 3. Estimating Surface Area Exposure by Deuterium Uptake.

    Science.gov (United States)

    Khakinejad, Mahdiar; Kondalaji, Samaneh Ghassabi; Donohoe, Gregory C; Valentine, Stephen J

    2016-03-01

    Gas-phase hydrogen deuterium exchange (HDX), collision cross section (CCS) measurement, and molecular dynamics simulation (MDS) techniques were utilized to develop and compare three methods for estimating the relative surface area exposure of separate peptide chains within bovine insulin ions. Electrosprayed [M - 3H](3-) and [M - 5H](5-) insulin ions produced a single conformer type with respective collision cross sections of 528 ± 5 Å(2) and 808 ± 2 Å(2). [M - 4H](4-) ions were comprised of more compact (Ω = 676 ± 3 Å(2)) and diffuse (i.e., more elongated, Ω = 779 ± 3 Å(2)) ion conformer types. Ions were subjected to HDX in the drift tube using D2O as the reagent gas. Collision-induced dissociation was used to fragment mobility-selected, isotopically labeled [M - 4H](4-) and [M - 5H](5-) ions into the protein subchains. Deuterium uptake levels of each chain can be explained by limited inter-chain isotopic scrambling upon collisional activation. Using nominal ion structures from MDS and a hydrogen accessibility model, the deuterium uptake for each chain was correlated to its exposed surface area. In separate experiments, the per-residue deuterium content for the protonated and deprotonated ions of the synthetic peptide KKDDDDDIIKIIK were compared. The differences in deuterium content indicated the regional HDX accessibility for cations versus anions. Using ions of similar conformational type, this comparison highlights the complementary nature of HDX data obtained from positive- and negative-ion analysis. PMID:26620531

  3. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 3. Estimating Surface Area Exposure by Deuterium Uptake

    Science.gov (United States)

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Donohoe, Gregory C.; Valentine, Stephen J.

    2016-03-01

    Gas-phase hydrogen deuterium exchange (HDX), collision cross section (CCS) measurement, and molecular dynamics simulation (MDS) techniques were utilized to develop and compare three methods for estimating the relative surface area exposure of separate peptide chains within bovine insulin ions. Electrosprayed [M - 3H]3- and [M - 5H]5- insulin ions produced a single conformer type with respective collision cross sections of 528 ± 5 Å2 and 808 ± 2 Å2. [M - 4H]4- ions were comprised of more compact (Ω = 676 ± 3 Å2) and diffuse (i.e., more elongated, Ω = 779 ± 3 Å2) ion conformer types. Ions were subjected to HDX in the drift tube using D2O as the reagent gas. Collision-induced dissociation was used to fragment mobility-selected, isotopically labeled [M - 4H]4- and [M - 5H]5- ions into the protein subchains. Deuterium uptake levels of each chain can be explained by limited inter-chain isotopic scrambling upon collisional activation. Using nominal ion structures from MDS and a hydrogen accessibility model, the deuterium uptake for each chain was correlated to its exposed surface area. In separate experiments, the per-residue deuterium content for the protonated and deprotonated ions of the synthetic peptide KKDDDDDIIKIIK were compared. The differences in deuterium content indicated the regional HDX accessibility for cations versus anions. Using ions of similar conformational type, this comparison highlights the complementary nature of HDX data obtained from positive- and negative-ion analysis.

  4. Neutron-induced background by an alpha-beam incident on a deuterium gas target and its implications for the study of the 2H(alpha,gamma)6Li reaction at LUNA

    CERN Document Server

    Anders, M; Bellini, A; Aliotta, M; Bemmerer, D; Broggini, C; Caciolli, A; Costantini, H; Corvisiero, P; Davinson, T; Elekes, Z; Erhard, M; Formicola, A; Fülöp, Zs; Gervino, G; Guglielmetti, A; Gustavino, C; Gyürky, Gy; Junker, M; Lemut, A; Marta, M; Mazzocchi, C; Menegazzo, R; Prati, P; Alvarez, C Rossi; Scott, D; Somorjai, E; Straniero, O; Szücs, T

    2013-01-01

    The production of the stable isotope Li-6 in standard Big Bang nucleosynthesis has recently attracted much interest. Recent observations in metal-poor stars suggest that a cosmological Li-6 plateau may exist. If true, this plateau would come in addition to the well-known Spite plateau of Li-7 abundances and would point to a predominantly primordial origin of Li-6, contrary to the results of standard Big Bang nucleosynthesis calculations. Therefore, the nuclear physics underlying Big Bang Li-6 production must be revisited. The main production channel for Li-6 in the Big Bang is the 2H(alpha,gamma)6Li reaction. The present work reports on neutron-induced effects in a high-purity germanium detector that were encountered in a new study of this reaction. In the experiment, an {\\alpha}-beam from the underground accelerator LUNA in Gran Sasso, Italy, and a windowless deuterium gas target are used. A low neutron flux is induced by energetic deuterons from elastic scattering and, subsequently, the 2H(d,n)3He reaction....

  5. Primordial Deuterium Abundance Measurements

    CERN Document Server

    Levshakov, S A; Takahara, F; Levshakov, Sergei A.; Kegel, Wilhelm H.; Takahara, Fumio

    1997-01-01

    Deuterium abundances measured recently from QSO absorption-line systems lie in the range from 3 10^{-5} to 3 10^{-4}, which shed some questions on standard big bang theory. We show that this discordance may simply be an artifact caused by inadequate analysis ignoring spatial correlations in the velocity field in turbulent media. The generalized procedure (accounting for such correlations) is suggested to reconcile the D/H measurements. An example is presented based on two high-resolution observations of Q1009+2956 (low D/H) [1,2] and Q1718+4807 (high D/H) [8,9]. We show that both observations are compatible with D/H = 4.1 - 4.6 10^{-5}, and thus support SBBN. The estimated mean value = 4.4 10^{-5} corresponds to the baryon-to-photon ratio during SBBN eta = 4.4 10^{-10} which yields the present-day baryon density Omega_b h^2 = 0.015.

  6. Deuterium absorption and material phase characteristics of Zr2Fe

    International Nuclear Information System (INIS)

    Scanning electron microscope (SEM) images of polished surfaces, electron probe microanalysis, and X-ray powder diffractometry indicated the presence of a continuous Zr2Fe phase with secondary phases of ZrFe2, Zr5FeSn, α-Zr, and Zr6Fe3O. A statistically-designed experiment to determine the effects of temperature, time, and vacuum quality On activation of St 198 revealed that when activated at low temperature (350 degrees C) deuterium absorption rate was slower when the vacuum quality was pwr (2.5 Pa vs. 3x10-4 Pa). However, at higher activation temperature (500 degrees C), deuterium absorption rate was fast and was independent of vacuum quality. Deuterium pressure-composition-temperature (P-C-T) data are reported for St 198 in the temperature range 200--500 degrees C. The P-C-T data over the full range of deuterium loading and at temperatures of 350 degrees C and below is described by: K0e-(ΔHα/RT)=PD2q2/(q*-q)2 where ΔHα and K0 have values of 101.8 kJ·mole-1 and 3.24x10-8Pa-1, and q* is 15.998 kPa·L-1·g-1. At higher temperatures, one or more secondary reactions in the solid phase occur that slowly consume D2 from the gas phase. XRD suggests these reactions to be: 2 Zr2FeDx → x ZrD2 + x/3 ZrFe2 + (2 - 2/3x) Zr2Fe and Zr2FeDx + (2 -1/2x) D2 → ZrD2 + Fe, where 0 < x < 3. Reaction between gas phase deuterium and Zr2FC formed in the first reaction accounts for the observed consumption of deuterium from the gas phase by this reaction

  7. Variable-aperture screen

    Science.gov (United States)

    Savage, George M.

    1991-01-01

    Apparatus for separating material into first and second portions according to size including a plurality of shafts, a plurality of spaced disks radiating outwardly from each of the shafts to define apertures and linkage interconnecting the shafts for moving the shafts toward or away from one another to vary the size of the apertures while the apparatus is performing the separating function.

  8. Mastering Apple Aperture

    CERN Document Server

    Fitzgerald, Thomas

    2013-01-01

    Written in a conversational style, the author will share his knowledge on advanced Aperture topics with detailed discussions of advanced topics, the theory behind some of those topics and lots of hints and tips for ways to improve your workflow.Photographer's who have a basic understanding of Aperture

  9. Internal polarized deuterium target with cryogenic atomic beam source

    CERN Document Server

    Dyug, M V; Lazarenko, B A; Mishnev, S I; Nikolenko, D M; Rachek, Igor A; Shestakov, Yu V; Sadykov, R S; Toporkov, D K; Zevakov, S A; Osipov, A V; Stibunov, V N

    2002-01-01

    Description of the polarized deuterium gas target used at the VEPP-3 electron storage ring for experiments on elastic and inelastic ed scattering is given. Superconducting sextupole magnets with the pole tip magnetic field up to 4.8 T are used in atomic beam source (ABS) to focus atoms. The flux of polarized atoms injected into the storage cell was measured to be 8.2x10 sup 1 sup 6 at/s for deuterium and 7.9x10 sup 1 sup 6 at/s for hydrogen. The measured target thickness 8x10 sup 1 sup 3 at/cm sup 2 is consistent with the thickness calculated from the measured beam intensity. The effective tensor polarization of the deuterium target during the experiment was found to be P sub z sub z =0.397. Further improvements of the target and possible limitation of the beam intensity from ABS are discussed.

  10. Core Deuterium Fusion and Radius Inflation in Hot Jupiters

    Science.gov (United States)

    Jaikumar, Prashanth; Rachid Ouyed

    2016-06-01

    Several laboratory-based studies have shown that the Deuterium fusion cross-section is enhanced in a solid deuterated target as compared to a gas target, attributable to enhanced mobility of deuterons in a metal lattice. As an application, we propose that, for core temperatures and compositions characterizing hot Jupiters, screened Deuterium fusion can occur deep in the interior, and show that the amount of radius inflation from this effect can be important if there is sufficient rock-ice in the core. The mechanism of screened Deuterium fusion, operating in the above temperature range, is generally consistent with the trend in radius anomaly with planetary equilibrium temperature. We also explore the trend with planetary mass using a simple analytic model.

  11. Mass separation of deuterium and helium with conventional quadrupole mass spectrometer by using varied ionization energy

    Science.gov (United States)

    Yu, Yaowei; Hu, Jiansheng; Wan, Zhao; Wu, Jinhua; Wang, Houyin; Cao, Bin

    2016-03-01

    Deuterium pressure in deuterium-helium mixture gas is successfully measured by a common quadrupole mass spectrometer (model: RGA200) with a resolution of ˜0.5 atomic mass unit (AMU), by using varied ionization energy together with new developed software and dedicated calibration for RGA200. The new software is developed by using MATLAB with the new functions: electron energy (EE) scanning, deuterium partial pressure measurement, and automatic data saving. RGA200 with new software is calibrated in pure deuterium and pure helium 1.0 × 10-6-5.0 × 10-2 Pa, and the relation between pressure and ion current of AMU4 under EE = 25 eV and EE = 70 eV is obtained. From the calibration result and RGA200 scanning with varied ionization energy in deuterium and helium mixture gas, both deuterium partial pressures (PD2) and helium partial pressure (PHe) could be obtained. The result shows that deuterium partial pressure could be measured if PD2 > 10-6 Pa (limited by ultimate pressure of calibration vessel), and helium pressure could be measured only if PHe/PD2 > 0.45, and the measurement error is evaluated as 15%. This method is successfully employed in EAST 2015 summer campaign to monitor deuterium outgassing/desorption during helium discharge cleaning.

  12. Influence of circular aperture on high-order harmonic generation

    Institute of Scientific and Technical Information of China (English)

    Tingting Liu(刘婷婷); Weixin Lu(陆伟新); Dawei Wang(王大威); Hong Yang(杨宏); Qihuang Gong(龚旗煌)

    2003-01-01

    The influence of circular aperture on the intensity of high-order harmonic generation (HHG) with intense femtosecond laser pulse was studied both experimentally and theoretically. The intensity variety of HHG with the diameter of circular aperture was observed in pulsed Ar gas. The result was discussed and interpreted in terms of the theory of Hankel transform. It is found that using the Gaussian beam truncated by an aperture could enhance the conversion efficiency of HHG at certain conditions.

  13. Neutron-induced background by an {alpha}-beam incident on a deuterium gas target and its implications for the study of the {sup 2}H({alpha},{gamma}){sup 6}Li reaction at LUNA

    Energy Technology Data Exchange (ETDEWEB)

    Anders, M.; Bemmerer, D.; Elekes, Z.; Marta, M. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Trezzi, D.; Mazzocchi, C. [INFN, Sezione di Milano, Milano (Italy); Bellini, A.; Costantini, H.; Corvisiero, P.; Lemut, A.; Prati, P. [Universita di Genova (Italy); INFN, Sezione di Genova, Dipartimento di Fisica, Genova (Italy); Aliotta, M.; Davinson, T.; Scott, D. [University of Edinburgh, SUPA, School of Physics and Astronomy, Edinburgh (United Kingdom); Broggini, C.; Caciolli, A.; Erhard, M.; Menegazzo, R.; Rossi Alvarez, C. [INFN, Sezione di Padova, Padova (Italy); Formicola, A.; Junker, M. [Laboratori Nazionali del Gran Sasso, INFN, Assergi (Italy); Fueloep, Zs.; Gyuerky, G.; Somorjai, E.; Szuecs, T. [Institute of Nuclear Research (ATOMKI), Debrecen (Hungary); Gervino, G. [Universita di Torino (Italy); INFN, Dipartimento di Fisica Sperimentale, Torino (Italy); Guglielmetti, A. [INFN, Sezione di Milano, Milano (Italy); Universita degli Studi di Milano, Milano (Italy); Gustavino, C. [INFN, Sezione di Roma ' ' La Sapienza' ' , Roma (Italy); Straniero, O. [INFN, Sezione di Napoli, Napoli (Italy); Osservatorio Astronomico di Collurania, Teramo (Italy); Collaboration: LUNA Collaboration

    2013-02-15

    The production of the stable isotope {sup 6}Li in standard Big Bang nucleosynthesis has recently attracted much interest. Recent observations in metal-poor stars suggest that a cosmological {sup 6}Li plateau may exist. If true, this plateau would come in addition to the well-known Spite plateau of {sup 7}Li abundances and would point to a predominantly primordial origin of {sup 6}Li, contrary to the results of standard Big Bang nucleosynthesis calculations. Therefore, the nuclear physics underlying Big Bang {sup 6}Li production must be revisited. The main production channel for {sup 6}Li in the Big Bang is the {sup 2}H({alpha},{gamma}){sup 6}Li reaction. The present work reports on neutron-induced effects in a high-purity germanium detector that were encountered in a new study of this reaction. In the experiment, an {alpha}-beam from the underground accelerator LUNA in Gran Sasso, Italy, and a windowless deuterium gas target are used. A low neutron flux is induced by energetic deuterons from elastic scattering and, subsequently, the {sup 2}H(d,n){sup 3}He reaction. Due to the ultra-low laboratory neutron background at LUNA, the effect of this weak flux of 2-3 MeV neutrons on well-shielded high-purity germanium detectors has been studied in detail. Data have been taken at 280 and 400keV {alpha}-beam energy and for comparison also using an americium-beryllium neutron source. (orig.)

  14. APT: Aperture Photometry Tool

    Science.gov (United States)

    Laher, Russ

    2012-08-01

    Aperture Photometry Tool (APT) is software for astronomers and students interested in manually exploring the photometric qualities of astronomical images. It has a graphical user interface (GUI) which allows the image data associated with aperture photometry calculations for point and extended sources to be visualized and, therefore, more effectively analyzed. Mouse-clicking on a source in the displayed image draws a circular or elliptical aperture and sky annulus around the source and computes the source intensity and its uncertainty, along with several commonly used measures of the local sky background and its variability. The results are displayed and can be optionally saved to an aperture-photometry-table file and plotted on graphs in various ways using functions available in the software. APT is geared toward processing sources in a small number of images and is not suitable for bulk processing a large number of images, unlike other aperture photometry packages (e.g., SExtractor). However, APT does have a convenient source-list tool that enables calculations for a large number of detections in a given image. The source-list tool can be run either in automatic mode to generate an aperture photometry table quickly or in manual mode to permit inspection and adjustment of the calculation for each individual detection. APT displays a variety of useful graphs, including image histogram, and aperture slices, source scatter plot, sky scatter plot, sky histogram, radial profile, curve of growth, and aperture-photometry-table scatter plots and histograms. APT has functions for customizing calculations, including outlier rejection, pixel “picking” and “zapping,” and a selection of source and sky models. The radial-profile-interpolation source model, accessed via the radial-profile-plot panel, allows recovery of source intensity from pixels with missing data and can be especially beneficial in crowded fields.

  15. Thermal desorption of deuterium implanted into beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Markin, A.V.; Chernikov, V.N.; Zakharov, A.P. [Institute of Physical Chemistry, Moscow (Russian Federation)] [and others

    1995-09-01

    By means of TDS measurements it is shown that the desorption of deuterium from Be implanted with 5 keV D ions to fluences, {Phi}, from 1x10{sup 20} D/m{sup 2} to 1x10{sup 21} D/m{sup 2} proceeds in one high temperature stage B, while at {Phi} {ge} 1.2x10{sup 21}D/m{sup 2} one more stage A is added. The desorption maximum A is narrow and consists of two peaks A{sub 1} and A{sub 2} at about 460 K and 490 K, respectively. Peak A{sub 1} is attributed to the desorption of deuterium from the walls of opened channels formed under D ion implantation. Peak {sub A}2 is a consequence of the opening of a part of closed bubbles/channels to the outer surface. The position of maximum B shifts noticeably and nonsteadily on the fluence in a range from 850 to 1050 K. The origin of this maximum is the liberation of D atoms bound at vacancy complexes discussed previously by Wampler. The dependence of Tm(B) on the fluence is governed by the interaction of freely migrating D atoms with partly opened or fully closed gas cavity arrangements which are created under temperature ramping, but differently in specimens implanted with D ions to different fluences.

  16. Deuterium burning in Jupiter interior

    OpenAIRE

    Coraddu, Massimo; Lissia, Marcello; Mezzorani, Giuseppe; Quarati, Piero

    2001-01-01

    We show that moderate deviations from the Maxwell-Boltzmann energy distribution can increase deuterium reaction rates enough to contribute to the heating of Jupiter. These deviations are compatible with the violation of extensivity expected from temperature and density conditions inside Jupiter.

  17. Modified Toepler pump for small-scale halogen-deuterium exchange reactions

    Energy Technology Data Exchange (ETDEWEB)

    Bindal, R.D.

    1987-04-06

    A modified version of the Toepler pump/microhydrogenator apparatus for the preparation of tritium labelled oestrogenic compounds using deuterium gas for halogen-tritium exchange, is described. The modifications allow the transferred gas to maintain atmospheric pressure during the course of the reaction and it allows small volumes of gas uptake to be followed. (U.K.).

  18. Confocal coded aperture imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, Jr., Kenneth William (Harriman, TN); Thomas, Jr., Clarence E. (Knoxville, TN)

    2001-01-01

    A method for imaging a target volume comprises the steps of: radiating a small bandwidth of energy toward the target volume; focusing the small bandwidth of energy into a beam; moving the target volume through a plurality of positions within the focused beam; collecting a beam of energy scattered from the target volume with a non-diffractive confocal coded aperture; generating a shadow image of said aperture from every point source of radiation in the target volume; and, reconstructing the shadow image into a 3-dimensional image of the every point source by mathematically correlating the shadow image with a digital or analog version of the coded aperture. The method can comprise the step of collecting the beam of energy scattered from the target volume with a Fresnel zone plate.

  19. Synthetic Aperture Sequential Beamforming

    DEFF Research Database (Denmark)

    Kortbek, Jacob; Jensen, Jørgen Arendt; Gammelmark, Kim Løkke

    2008-01-01

    A synthetic aperture focusing (SAF) technique denoted Synthetic Aperture Sequential Beamforming (SASB) suitable for 2D and 3D imaging is presented. The technique differ from prior art of SAF in the sense that SAF is performed on pre-beamformed data contrary to channel data. The objective...... is stored. The second stage applies the focused image lines from the first stage as input data. The SASB method has been investigated using simulations in Field II and by off-line processing of data acquired with a commercial scanner. The performance of SASB with a static image object is compared with DRF...

  20. Aperture Photometry Tool

    Science.gov (United States)

    Laher, Russ R.; Gorjian, Varoujan; Rebull, Luisa M.; Masci, Frank J.; Fowler, John W.; Helou, George; Kulkarni, Shrinivas R.; Law, Nicholas M.

    2012-07-01

    Aperture Photometry Tool (APT) is software for astronomers and students interested in manually exploring the photometric qualities of astronomical images. It is a graphical user interface (GUI) designed to allow the image data associated with aperture photometry calculations for point and extended sources to be visualized and, therefore, more effectively analyzed. The finely tuned layout of the GUI, along with judicious use of color-coding and alerting, is intended to give maximal user utility and convenience. Simply mouse-clicking on a source in the displayed image will instantly draw a circular or elliptical aperture and sky annulus around the source and will compute the source intensity and its uncertainty, along with several commonly used measures of the local sky background and its variability. The results are displayed and can be optionally saved to an aperture-photometry-table file and plotted on graphs in various ways using functions available in the software. APT is geared toward processing sources in a small number of images and is not suitable for bulk processing a large number of images, unlike other aperture photometry packages (e.g., SExtractor). However, APT does have a convenient source-list tool that enables calculations for a large number of detections in a given image. The source-list tool can be run either in automatic mode to generate an aperture photometry table quickly or in manual mode to permit inspection and adjustment of the calculation for each individual detection. APT displays a variety of useful graphs with just the push of a button, including image histogram, x and y aperture slices, source scatter plot, sky scatter plot, sky histogram, radial profile, curve of growth, and aperture-photometry-table scatter plots and histograms. APT has many functions for customizing the calculations, including outlier rejection, pixel "picking" and "zapping," and a selection of source and sky models. The radial-profile-interpolation source model

  1. Laser spectroscopy of muonic deuterium

    Science.gov (United States)

    Pohl, Randolf; Nez, François; Fernandes, Luis M. P.; Amaro, Fernando D.; Biraben, François; Cardoso, João M. R.; Covita, Daniel S.; Dax, Andreas; Dhawan, Satish; Diepold, Marc; Giesen, Adolf; Gouvea, Andrea L.; Graf, Thomas; Hänsch, Theodor W.; Indelicato, Paul; Julien, Lucile; Knowles, Paul; Kottmann, Franz; Le Bigot, Eric-Olivier; Liu, Yi-Wei; Lopes, José A. M.; Ludhova, Livia; Monteiro, Cristina M. B.; Mulhauser, Françoise; Nebel, Tobias; Rabinowitz, Paul; dos Santos, Joaquim M. F.; Schaller, Lukas A.; Schuhmann, Karsten; Schwob, Catherine; Taqqu, David; Veloso, João F. C. A.; Antognini, Aldo

    2016-08-01

    The deuteron is the simplest compound nucleus, composed of one proton and one neutron. Deuteron properties such as the root-mean-square charge radius rd and the polarizability serve as important benchmarks for understanding the nuclear forces and structure. Muonic deuterium μd is the exotic atom formed by a deuteron and a negative muon μ–. We measured three 2S-2P transitions in μd and obtain rd = 2.12562(78) fm, which is 2.7 times more accurate but 7.5σ smaller than the CODATA-2010 value rd = 2.1424(21) fm. The μd value is also 3.5σ smaller than the rd value from electronic deuterium spectroscopy. The smaller rd, when combined with the electronic isotope shift, yields a “small” proton radius rp, similar to the one from muonic hydrogen, amplifying the proton radius puzzle.

  2. High Energy, Narrow Linewidth 1572nm Eryb-Fiber Based MOPA for a Multi-Aperture CO2 Trace-Gas Laser Space Transmitter

    Science.gov (United States)

    Engin, Doruk; Mathason, Brian; Stephen, Mark; Yu, Anthony; Cao, He; Fouron, Jean-Luc; Storm, Mark

    2016-01-01

    Accurate global measurements of tropospheric CO2 mixing ratios are needed to study CO2 emissions and CO2 exchange with the land and oceans. NASA Goddard Space Flight Center (GSFC) is developing a pulsed lidar approach for an integrated path differential absorption (IPDA) lidar to allow global measurements of atmospheric CO2 column densities from space. Our group has developed, and successfully flown, an airborne pulsed lidar instrument that uses two tunable pulsed laser transmitters allowing simultaneous measurement of a single CO2 absorption line in the 1570 nm band, absorption of an O2 line pair in the oxygen A-band (765 nm), range, and atmospheric backscatter profiles in the same path. Both lasers are pulsed at 10 kHz, and the two absorption line regions are sampled at typically a 300 Hz rate. A space-based version of this lidar must have a much larger lidar power-area product due to the x40 longer range and faster along track velocity compared to airborne instrument. Initial link budget analysis indicated that for a 400 km orbit, a 1.5 m diameter telescope and a 10 second integration time, a 2 mJ laser energy is required to attain the precision needed for each measurement. To meet this energy requirement, we have pursued parallel power scaling efforts to enable space-based lidar measurement of CO2 concentrations. These included a multiple aperture approach consists of multi-element large mode area fiber amplifiers and a single-aperture approach consists of a multi-pass Er:Yb:Phosphate glass based planar waveguide amplifier (PWA). In this paper we will present our laser amplifier design approaches and preliminary results.

  3. Stereochemistry of reductive dehalogenation with deuterium gas

    Energy Technology Data Exchange (ETDEWEB)

    Kaspersen, F.M.; Sperling, E.M.

    1986-06-01

    The stereochemistry of reductive debromination and deiodination of 4-haloprolines and 2- or 7-bromo-cholesterols with /sup 2/H/sub 2/ catalyzed by Pd was investigated using /sup 2/H NMR. The reactions are stereoselective but not stereospecific.

  4. Synthetic Aperture Radar Interferometry

    Science.gov (United States)

    Rosen, P. A.; Hensley, S.; Joughin, I. R.; Li, F.; Madsen, S. N.; Rodriguez, E.; Goldstein, R. M.

    1998-01-01

    Synthetic aperture radar interferometry is an imaging technique for measuring the topography of a surface, its changes over time, and other changes in the detailed characteristics of the surface. This paper reviews the techniques of interferometry, systems and limitations, and applications in a rapidly growing area of science and engineering.

  5. Apodizer aperture for lasers

    Science.gov (United States)

    Jorna, Siebe; Siebert, Larry D.; Brueckner, Keith A.

    1976-11-09

    An aperture attenuator for use with high power lasers which includes glass windows shaped and assembled to form an annulus chamber which is filled with a dye solution. The annulus chamber is shaped such that the section in alignment with the axis of the incident beam follows a curve which is represented by the equation y = (r - r.sub.o).sup.n.

  6. Single crystal diamond detector measurements of deuterium-deuterium and deuterium-tritium neutrons in Joint European Torus fusion plasmas

    Science.gov (United States)

    Cazzaniga, C.; Sundén, E. Andersson; Binda, F.; Croci, G.; Ericsson, G.; Giacomelli, L.; Gorini, G.; Griesmayer, E.; Grosso, G.; Kaveney, G.; Nocente, M.; Cippo, E. Perelli; Rebai, M.; Syme, B.; Tardocchi, M.

    2014-04-01

    First simultaneous measurements of deuterium-deuterium (DD) and deuterium-tritium neutrons from deuterium plasmas using a Single crystal Diamond Detector are presented in this paper. The measurements were performed at JET with a dedicated electronic chain that combined high count rate capabilities and high energy resolution. The deposited energy spectrum from DD neutrons was successfully reproduced by means of Monte Carlo calculations of the detector response function and simulations of neutron emission from the plasma, including background contributions. The reported results are of relevance for the development of compact neutron detectors with spectroscopy capabilities for installation in camera systems of present and future high power fusion experiments.

  7. Deuterium content variation of human blood serum

    International Nuclear Information System (INIS)

    We report, for the first time, the variation of deuterium content of blood serum of the patients with cancer disease. The tumorous cell, because of the higher growth speed , is deuterium consuming. The deuterium content of blood serum of cancerous human is diminished by about 5-7 ppm compared with that of the healthy individual. This effect is in accordance with some previous results. The replacement of tap water with deuterium depleted water in a drinking water of tumorous mice diminished the growth rate of tumors and the slight increase in the deuterium concentration stimulates growth because it is more easy for the cells to elevate the intracellular deuterium concentration up to the threshold level. (authors)

  8. Radiation induced deuterium absorption for RB-SiC, HP-SiC, silicon and graphite loaded during electron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, T.; Moroño, A., E-mail: morono@ciemat.es; Hodgson, E.R.; Malo, M.; Verdú, M.; Sánchez, F.J.

    2014-11-15

    Highlights: • Radiation enhanced deuterium absorption occurs for RB-SiC. • This type of radiation enhanced absorption is related to Si rather than to C. • Most of the radiation induced absorbed deuterium is released at about the foreseen blanket operation temperature. - Abstract: Absorption, diffusion, and desorption of hydrogen isotopes are expected to occur during operation in future fusion reactors and these processes will strongly depend on the irradiation conditions, neutron flux and purely ionizing radiation. The main aim of the work is to address the electron irradiation induced absorption of hydrogen isotopes in RB-SiC. Deuterium loading was carried out with both the sample and the surrounding deuterium gas exposed to 1.8 MeV electron irradiation in order to evaluate the radiation enhanced deuterium absorption. Thermo stimulated desorption (TSD) measurements were carried out for both electron irradiated and unirradiated samples in order to evaluate the possible radiation enhanced retention of the previously loaded deuterium. The materials subjected to the deuterium loading process were also studied by SIMS. Noticeable radiation enhanced deuterium absorption was observed. Most of the deuterium absorbed during irradiation was thermally released at about 600 °C.

  9. Deuterium transport and trapping in aluminum alloys

    International Nuclear Information System (INIS)

    A simple model of diffusion and evolution of the density of deuterium in metals is presented. A model of the deuterium evolution in the presence of uniform and nonuniform distributions of traps, as well as perfectly reflecting and partially permeable boundary conditions is discussed. Computers are compared with experimental results describe deuterium distribution after fatigue crack growth of 2219 and 7075 aluminum alloys in a D2O water vapor environment and after ion implantation

  10. Effect of deuterium on polystyrene degradation

    Energy Technology Data Exchange (ETDEWEB)

    Korshak, V.V.; Pavlova, S.S.A.; Gribkova, P.N.; Kozyreva, N.M.; Balykova, T.N.; Kirilin, A.I.

    1988-01-01

    The effect of replacing hydrogen by deuterium in polystyrene was studied on resistance to oxidative and thermal degradation. Polystyrene, polydeutero-styrene-D/sub 8/ containing 98-99 at.% deuterium, and a series of their statistical copolymers containing various proportions of deuterated and undeuterated monomer units were synthesized. The replacement of hydrogen by deuterium in polystyrene caused some increase in its resistance to thermal and oxidative destruction. A table shows that at all test temperatures, an increase in the fraction of deuterated monomer units in copolymer decreases the amounts of absorbed oxygen and evolved carbon oxides which is evidence for retadation of polystyrene oxidation when hydrogen is replaced by deuterium.

  11. Complex Aperture Networks

    CERN Document Server

    Owladeghaffari, Hamed

    2009-01-01

    A complex network approach on a rough fracture is developed. In this manner, some hidden metric spaces (similarity measurements) between apertures profiles are set up and a general evolutionary network in two directions (in parallel and perpendicular to the shear direction) is constructed. Evaluation of the emerged network shows the connectivity degree (distribution) of network, after a transition step; fall in to the stable states which are coincided with the Gaussian distribution. Based on this event and real observations of the complex network changes, an algorithm (COmplex Networks on Apertures: CONA) is proposed in which evolving of a network is accomplished using preferential detachments and attachments of edges (based on a competition and game manner) while the number of nodes is fixed. Also, evolving of clustering coefficients and number of edges display similar patterns as well as are appeared in shear stress, hydraulic conductivity and dilation changes, which can be engaged to estimate shear strengt...

  12. Configurable Aperture Space Telescope

    Science.gov (United States)

    Ennico, Kimberly; Bendek, Eduardo

    2015-01-01

    In December 2014, we were awarded Center Innovation Fund to evaluate an optical and mechanical concept for a novel implementation of a segmented telescope based on modular, interconnected small sats (satlets). The concept is called CAST, a Configurable Aperture Space Telescope. With a current TRL is 2 we will aim to reach TLR 3 in Sept 2015 by demonstrating a 2x2 mirror system to validate our optical model and error budget, provide straw man mechanical architecture and structural damping analyses, and derive future satlet-based observatory performance requirements. CAST provides an alternative access to visible and/or UV wavelength space telescope with 1-meter or larger aperture for NASA SMD Astrophysics and Planetary Science community after the retirement of HST

  13. Synthetic Aperture Radiometer Systems

    Science.gov (United States)

    LeVine, David M.

    1999-01-01

    Aperture synthesis is a new technology for passive microwave remote sensing from space which has the potential to overcome the limitations set in the past by antenna size. This is an interferometric technique in which pairs of small antennas and signal processing are used to obtain the resolution of a single large antenna. The technique has been demonstrated successfully at L-band with the aircraft prototype instrument, ESTAR. Proposals have been submitted to demonstrate this technology in space (HYDROSTAR and MIRAS).

  14. Cryogenic distillation facility for isotopic purification of protium and deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, I.; Arkhipov, Ev.; Bondarenko, S.; Fedorchenko, O.; Ganzha, V.; Ivshin, K.; Kravtsov, P., E-mail: pkravt@gmail.com; Trofimov, V.; Vasilyev, A.; Vasyanina, T.; Vorobyov, A.; Vznuzdaev, M. [National Research Center “Kurchatov Institute” Petersburg Nuclear Physics Institute (NRC “Kurchatov Institute” PNPI), 188300 Gatchina (Russian Federation); Kammel, P. [Department of Physics, University of Washington, Seattle, Washington 98195 (United States); Petitjean, C. [Paul Scherrer Institut (PSI), CH-5232 Villigen (Switzerland)

    2015-12-15

    Isotopic purification of the protium and deuterium is an important requirement of many physics experiments. A cryogenic facility for high-efficiency separation of hydrogen isotopes with a cryogenic distillation column as the main element is described. The instrument is portable, so that it can be used at the experimental site. It was designed and built at the Petersburg Nuclear Physics Institute, Gatchina, Russia. Fundamental operating parameters have been measured including a liquid holdup in the column packing, the pressure drops across the column and the purity of the product at different operating modes. A mathematical model describes expected profiles of hydrogen isotope concentration along the distillation column. An analysis of ortho-parahydrogen isomeric composition by gas chromatography was used for evaluation of the column performance during the tuning operations. The protium content during deuterium purification (≤100 ppb) was measured using gas chromatography with accumulation of the protium in the distillation column. A high precision isotopic measurement at the Institute of Particle Physics, ETH-Zurich, Switzerland, provided an upper bound of the deuterium content in protium (≤6 ppb), which exceeds all commercially available products.

  15. Anomalously High Isotope Ratio 3He/4He and Tritium in Deuterium-Loaded Metal: Evidence for Nuclear Reaction in Metal Hydrides at Low Temperature

    Institute of Scientific and Technical Information of China (English)

    JIANG Song-Sheng; HE Ming; WU Shao-Yong; QI Bu-Jia

    2012-01-01

    Anomalous 3He/4He ratios in deuterium-loaded titanium samples are observed to be about 1-4x10-1, much greater than the values (<10~4) in natural objects. Control experiments with the deuterium-unloaded titanium sample and original industrial deuterium gas are also carried out, but no anomalous 3He/4He values are observed. In addition, anomalous tritium in deuterium-loaded titanium samples are also observed. To explain the excess 3He and tritium in the deuterium-loaded titanium samples, it is required that the deuteron-induced nuclear reaction occurs in the samples at low temperature.%Anomalous 3He/4He ratios in deuterium-loaded titanium samples are observed to be about 1-4×10-1,much greater than the values (≤10-4) in natural objects.Control experiments with the deuterium-unloaded titanium sample and original industrial deuterium gas are also carried out,but no anomalous 3He/4He values are observed.In addition,anomalous tritium in deuterium-loaded titanium samples are also observed.To explain the excess 3He and tritium in the deuterium-loaded titanium samples,it is required that the deuteron-induced nuclear reaction occurs in the samples at low temperature.

  16. Capabilities of nitrogen admixed cryogenic deuterium pellets

    Energy Technology Data Exchange (ETDEWEB)

    Sharov, Igor; Sergeev, Vladimir [SPU, Saint-Petersburg (Russian Federation); Lang, Peter; Ploeckl, Bernhard; Cavedon, Marco [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Kocsis, Gabor; Szepesi, Tamas [Wigner RCP RMI, Budapest (Hungary); Collaboration: ASDEX Upgrade Team

    2015-05-01

    Operation at high core density with high energy confinement - as foreseen in a future fusion reactor like DEMO - is being investigated at ASDEX Upgrade tokamak. The efficiency of pellet fuelling from the high-field side usually increases with increasing injection speed. Due to the fragile nature of the deuterium ice, however, the increment of pellet mass losses and subsequent pellet fragmentations take place when the speed is increased. Studies show, that admixing of a small amount of nitrogen (N{sub 2}) into D{sub 2} gas can be favorable for the mechanical stability of pellets. This might be helpful for deeper pellet penetration. Besides, seeding by N{sub 2} can enhance plasma performance due to both increasing the energy confinement time and reducing the divertor heat load in the envisaged ELMy H-mode plasma scenario. Fuelling efficiency of N{sub 2}-admixed solid D{sub 2} pellets and their nitrogen seeding capabilities were investigated. It was found that both the overall plasma density increase and the measured averaged pellet penetration depth were smaller in case of the admixed (1% mol. in the gas resulting in about 0.8% in the ice) pellet fuelling. Possibility of the N{sub 2}-seeding by admixed pellets was confirmed by CXRS measurements of N{sup 7+} content in plasma.

  17. Synthesis of deuterium labeled plant ethylene precursor

    Energy Technology Data Exchange (ETDEWEB)

    Nam, K.C. [Chonnam National Univ., Kwangju (Korea, Republic of). Dept. of Chemistry; Rapoport, H. [California Univ., Berkeley, CA (United States). Dept. of Chemistry

    1995-12-31

    Synthetic methods for the preparation of {beta}-deuterium labeled 2-keto-4-methylbutyric acid were investigated. Vinyl chloride was first reacted with the ethyl oxalyl chloride moiety using aluminum chloride as condensing agent and the addition of methyl mercaptan followed. Deuterium labeling was achieved by using NaBD{sub 4} reduction in pyridine. (author).

  18. 基于LMD包络谱熵及SVM的天然气管道微小泄漏孔径识别%Gas Pipeline Small Leak Aperture Classification Based on Local Mean Decomposition Envelope Spectrum Entropy and SVM

    Institute of Scientific and Technical Information of China (English)

    孙洁娣; 肖启阳; 温江涛; 王飞

    2014-01-01

    When small leak occurs in the natural gas pipeline, it is difficult to identify the leak scale and aperture. It is proposed a small leak aperture recognition method based on local mean decomposition(LMD) envelope spectrum entropy and SVM. The leakage signals are decomposed into a number of production functions(PFs) components which have physical significance instantaneous frequencies. And then calculate the PFs kurtosis values and according to this select the principal PF components which contain most of leakage information. Further the wavelet packet decomposition and band energy distribution method are used to analyze the principal PF components and then reconstruct them. The Hilbert transform is applied to these reconstructed principal PF components and the corresponding envelope spectrums are obtained. Combining the concept of information entropy, the envelope spectrum entropy is proposed and calculates the entropy values. The normalized envelope spectrum entropy as the leakage feature is input the support vector machine(SVM) and the leak aperture classification is accomplished. By analyzing the acquired pipeline leakage signals in the field experiments, the results show that this method can effectively identify the different leak apertures.%针对管道泄漏信号的非平稳特征以及管道泄漏孔径大小难以识别的问题,提出一种基于局域均值分解包络谱熵及支持向量机的识别方法。该方法对管道泄漏信号进行局域均值分解,得到若干个瞬时频率具有物理意义的乘积函数(production Function, PF)分量;计算各PF分量的峭度值并据此选出包含主要泄漏信息的分量作为主PF分量,对这些分量进一步采用小波包分解能量法进行分析并重构;再对重构后的主PF分量进行希尔伯特变换求取包络谱,结合信息熵的概念提出包络谱熵并计算熵值;将归一化包络谱熵作为泄漏信号特征输入支持向量机分类器中,用以区

  19. The equation of state for the mixtures of dense hydrogen and deuterium

    International Nuclear Information System (INIS)

    The Hugoniot data and shock temperatures for the mixtures of dense hydrogen and deuterium were measured in the shock pressure range 75-140 MPa and temperature range 3400-3900 K by means of a two-stage light-gas gun and instantaneous optical pyrometer. The dense gas mixtures were shocked from environmental temperature and two initial pressures 0.6 and 1.2 MPa. Spectral radiance histories from the shocked mixtures of condensed hydrogen and deuterium were recorded by using a pyrometer. Shock wave velocity was measured and particle velocity was determined by the method of shock impedance matching. The data are discussed in terms of the Saha model

  20. Self characterization of a coded aperture array for neutron source imaging

    International Nuclear Information System (INIS)

    The neutron imaging system at the National Ignition Facility (NIF) is an important diagnostic tool for measuring the two-dimensional size and shape of the neutrons produced in the burning deuterium-tritium plasma during the stagnation stage of inertial confinement fusion implosions. Since the neutron source is small (∼100 μm) and neutrons are deeply penetrating (>3 cm) in all materials, the apertures used to achieve the desired 10-μm resolution are 20-cm long, triangular tapers machined in gold foils. These gold foils are stacked to form an array of 20 apertures for pinhole imaging and three apertures for penumbral imaging. These apertures must be precisely aligned to accurately place the field of view of each aperture at the design location, or the location of the field of view for each aperture must be measured. In this paper we present a new technique that has been developed for the measurement and characterization of the precise location of each aperture in the array. We present the detailed algorithms used for this characterization and the results of reconstructed sources from inertial confinement fusion implosion experiments at NIF

  1. Compounding in synthetic aperture imaging.

    Science.gov (United States)

    Hansen, Jens Munk; Jensen, Jørgen Arendt

    2012-09-01

    A method for obtaining compound images using synthetic aperture data is investigated using a convex array transducer. The new approach allows spatial compounding to be performed for any number of angles without reducing the frame rate or temporal resolution. This important feature is an intrinsic property of how the compound images are constructed using synthetic aperture data and an improvement compared with how spatial compounding is obtained using conventional methods. The synthetic aperture compound images are created by exploiting the linearity of delay-and-sum beamformation for data collected from multiple spherical emissions to synthesize multiple transmit and receive apertures, corresponding to imaging the tissue from multiple directions. The many images are added incoherently, to produce a single compound image. Using a 192-element, 3.5-MHz, λ-pitch transducer, it is demonstrated from tissue-phantom measurements that the speckle is reduced and the contrast resolution improved when applying synthetic aperture compound imaging. At a depth of 4 cm, the size of the synthesized apertures is optimized for lesion detection based on the speckle information density. This is a performance measure for tissue contrast resolution which quantifies the tradeoff between resolution loss and speckle reduction. The speckle information density is improved by 25% when comparing synthetic aperture compounding to a similar setup for compounding using dynamic receive focusing. The cystic resolution and clutter levels are measured using a wire phantom setup and compared with conventional application of the array, as well as to synthetic aperture imaging without compounding. If the full aperture is used for synthetic aperture compounding, the cystic resolution is improved by 41% compared with conventional imaging, and is at least as good as what can be obtained using synthetic aperture imaging without compounding. PMID:23007781

  2. Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav; Gammelmark, Kim Løkke;

    2006-01-01

    The paper describes the use of synthetic aperture (SA) imaging in medical ultrasound. SA imaging is a radical break with today's commercial systems, where the image is acquired sequentially one image line at a time. This puts a strict limit on the frame rate and the possibility of acquiring...... of SA imaging. Due to the complete data set, it is possible to have both dynamic transmit and receive focusing to improve contrast and resolution. It is also possible to improve penetration depth by employing codes during ultrasound transmission. Data sets for vector flow imaging can be acquired using...... short imaging sequences, whereby both the correct velocity magnitude and angle can be estimated. A number of examples of both phantom and in-vivo SA images will be presented measured by the experimental ultrasound scanner RASMUS to demonstrate the many benefits of SA imaging....

  3. Electron transfer dissociation facilitates the measurement of deuterium incorporation into selectively labeled peptides with single residue resolution

    DEFF Research Database (Denmark)

    Zehl, Martin; Rand, Kasper D; Jensen, Ole N;

    2008-01-01

    the gas-phase structure and fragmentation mechanisms of polypeptide ions. Despite considerable effort in recent years, there is no widely established mass spectrometric method to localize the incorporated deuterium to single amino acid residues, and typically, only the overall deuterium content...... before fragmentation. In contrast, decomposition of radical gas-phase peptide cations upon electron capture dissociation was recently demonstrated to proceed with a very low level of amide hydrogen scrambling. Employing model peptides developed to enable sensitive detection of hydrogen scrambling, we...... show in the present study that electron transfer dissociation in a 3D-quadrupole ion trap retains the site-specific solution-phase deuterium incorporation pattern and allows for localization of incorporated deuterium with single residue resolution. Furthermore, we exploit this finding to monitor how...

  4. Precision measurement of antiprotonic hydrogen and deuterium X-rays

    Science.gov (United States)

    Heitlinger, K.; Bacher, R.; Badertscher, A.; Blüm, P.; Eades, J.; Egger, J.; Elsener, K.; Gotta, D.; Morenzoni, E.; Simons, L. M.

    1992-09-01

    X-rays from antiprotonic hydrogen and deuterium have been measured at low pressures. Using the cyclotron trap, a 105 MeV/c antiproton beam from LEAR was stopped with an efficiency of 86% in 30 mbar hydrogen gas in a volume of only 100 cm3. The X-rays were measured with Si(Li) detectors and a Xe-CH4 drift chamber. The strong interaction shift and broadening of the Lyman α transition and the spin-averaged 2p width in antiprotonic hydrogen was measured with unprecedented accuracy. The triplet component of the ground state in antiprotonic hydrogen was determined for the first time.

  5. Fusion product diagnostics planned for Large Helical Device deuterium experiment

    International Nuclear Information System (INIS)

    Deuterium experiment on the Large Helical Device (LHD) is now being planned at the National Institute for Fusion Science. The fusion product diagnostics systems currently considered for installation on LHD are described in this paper. The systems will include a time-resolved neutron yield monitor based on neutron gas counters, a time-integrated neutron yield monitor based on activation techniques, a multicollimator scintillation detector array for diagnosing spatial distribution of neutron emission rate, 2.5 MeV neutron spectrometer, 14 MeV neutron counter, and prompt γ-ray diagnostics.

  6. Sequential Beamforming Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Kortbek, Jacob; Jensen, Jørgen Arendt; Gammelmark, Kim Løkke

    2013-01-01

    Synthetic aperture sequential beamforming (SASB) is a novel technique which allows to implement synthetic aperture beamforming on a system with a restricted complexity, and without storing RF-data. The objective is to improve lateral resolution and obtain a more depth independent resolution...

  7. Continuous-Flow Synthesis of Deuterium-Labeled Antidiabetic Chalcones: Studies towards the Selective Deuteration of the Alkynone Core

    OpenAIRE

    Sándor B. Ötvös; Chi-Ting Hsieh; Yang-Chang Wu; Jih-Heng Li; Fang-Rong Chang; Ferenc Fülöp

    2016-01-01

    Flow chemistry-based syntheses of deuterium-labeled analogs of important antidiabetic chalcones were achieved via highly controlled partial C≡C bond deuteration of the corresponding 1,3-diphenylalkynones. The benefits of a scalable continuous process in combination with on-demand electrolytic D2 gas generation were exploited to suppress undesired over-reactions and to maximize reaction rates simultaneously. The novel deuterium-containing chalcone derivatives may have interesting biological ef...

  8. Energy Levels of Hydrogen and Deuterium

    Science.gov (United States)

    SRD 142 Energy Levels of Hydrogen and Deuterium (Web, free access)   This database provides theoretical values of energy levels of hydrogen and deuterium for principle quantum numbers n = 1 to 200 and all allowed orbital angular momenta l and total angular momenta j. The values are based on current knowledge of the revelant theoretical contributions including relativistic, quantum electrodynamic, recoil, and nuclear size effects.

  9. The phases of deuterium at extreme densities

    OpenAIRE

    Bedaque, Paulo F.; Buchoff, Michael I.; Cherman, Aleksey

    2010-01-01

    We consider deuterium compressed to higher than atomic, but lower than nuclear densities. At such densities deuterium is a superconducting quantum liquid. Generically, two superconducting phases compete, a "ferromagnetic" and a "nematic" one. We provide a power counting argument suggesting that the dominant interactions in the deuteron liquid are perturbative (but screened) Coulomb interactions. At very high densities the ground state is determined by very small nuclear interaction effects th...

  10. Sparse synthetic aperture radar imaging with optimized azimuthal aperture

    Institute of Scientific and Technical Information of China (English)

    ZENG Cao; WANG MinHang; LIAO GuiSheng; ZHU ShengQi

    2012-01-01

    To counter the problem of acquiring and processing huge amounts of data for synthetic aperture radar (SAR) using traditional sampling techniques,a method for sparse SAR imaging with an optimized azimuthal aperture is presented.The equivalence of an azimuthal match filter and synthetic array beamforming is shown so that optimization of the azimuthal sparse aperture can be converted to optimization of synthetic array beamforming.The azimuthal sparse aperture,which is composed of a middle aperture and symmetrical bilateral apertures,can be obtained by optimization algorithms (density weighting and simulated annealing algorithms,respectively).Furthermore,sparse imaging of spectrum analysis SAR based on the optimized sparse aperture is achieved by padding zeros at null samplings and using a non-uniform Taylor window. Compared with traditional sampling,this method has the advantages of reducing the amount of sampling and alleviating the computational burden with acceptable image quality.Unlike periodic sparse sampling,the proposed method exhibits no image ghosts.The results obtained from airborne measurements demonstrate the effectiveness and superiority of the proposed method.

  11. Deuterium inventory in Tore Supra: Contribution of carbon deposits outgassing

    Energy Technology Data Exchange (ETDEWEB)

    Panayotis, S., E-mail: stephanie.panayotis@cea.fr [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Pégourié, B.; Caprin, E.; Douai, D.; Hatchressian, J.-C.; Negrier, V.; Pascal, J.-Y.; Vartanian, S.; Bucalossi, J.; Monier-Garbet, P. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)

    2013-07-15

    In carbon dominated devices, the in vessel D inventory obtained from post-mortem analyses of plasma facing component samples is generally smaller by a factor of ∼4 than that estimated from gas balance measurements. However, for an accurate evaluation of the wall inventory, gas balance measurements must be done not only during discharges and conditioning procedures, but also in between discharges and during vents. From the analysis of the whole Tore Supra database for the 2002–2007 period, we show that long term outgassing during nights, weekends and vents is essential for evaluating the deuterium release. Taking these contributions into account reconciles the gas balance and post-mortem estimations of fuel retention.

  12. Tissue Harmonic Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Joachim

    The main purpose of this PhD project is to develop an ultrasonic method for tissue harmonic synthetic aperture imaging. The motivation is to advance the field of synthetic aperture imaging in ultrasound, which has shown great potentials in the clinic. Suggestions for synthetic aperture tissue....... Clinical scans were conducted in collaboration with medical professionals at Copenhagen University. In a series of double blinded trials, image quality and recognition of pathology using SASB with THI was compared with conventional THI. The results of the clinical trial documented, that SASB with THI...

  13. Fluence dependence of deuterium retention in oxidized SS-316

    Science.gov (United States)

    Oya, Yasuhisa; Suzuki, Sachiko; Matsuyama, Masao; Hayashi, Takumi; Yamanishi, Toshihiko; Asakura, Yamato; Okuno, Kenji

    2011-10-01

    The ion fluence dependence of deuterium retention in SS-316 during oxidation at a temperature of 673 K was studied to evaluate the dynamics of deuterium retention in the oxide layer of SS-316. The correlation between the chemical state of stainless steel and deuterium retention was evaluated using XPS and TDS. It was found that the major deuterium desorption temperatures were located at around 660 K and 935 K, which correspond to the desorption of deuterium trapped as hydroxide. The deuterium retention increased with increasing deuterium ion fluence, since the deuterium retention as hydroxide increased significantly. However, retention saturated at an ion fluence of ˜2.5 × 10 21 D + m -2. The XPS result showed that FeOOD was formed on the surface, although pure Fe also remained in the oxide layer. These facts indicate the nature of the oxide layer have a key role in deuterium trapping behavior.

  14. Deuterium enrichment of interstellar dusts

    Science.gov (United States)

    Das, Ankan; Chakrabarti, Sandip Kumar; Majumdar, Liton; Sahu, Dipen

    2016-07-01

    High abundance of some abundant and simple interstellar species could be explained by considering the chemistry that occurs on interstellar dusts. Because of its simplicity, the rate equation method is widely used to study the surface chemistry. However, because the recombination efficiency for the formation of any surface species is highly dependent on various physical and chemical parameters, the Monte Carlo method is best suited for addressing the randomness of the processes. We carry out Monte-Carlo simulation to study deuterium enrichment of interstellar grain mantle under various physical conditions. Based on the physical properties, various types of clouds are considered. We find that in diffuse cloud regions, very strong radiation fields persists and hardly a few layers of surface species are formed. In translucent cloud regions with a moderate radiation field, significant number of layers would be produced and surface coverage is mainly dominated by photo-dissociation products such as, C, CH_3, CH_2D, OH and OD. In the intermediate dense cloud regions (having number density of total hydrogen nuclei in all forms ˜2 × 10^4 cm^{-3}), water and methanol along with their deuterated derivatives are efficiently formed. For much higher density regions (˜10^6 cm^{-3}), water and methanol productions are suppressed but surface coverage of CO, CO_2, O_2, O_3 are dramatically increased. We find a very high degree of fractionation of water and methanol. Observational results support a high fractionation of methanol but surprisingly water fractionation is found to be low. This is in contradiction with our model results indicating alternative routes for de-fractionation of water.

  15. Calculation Method and Distribution Characteristics of Fracture Hydraulic Aperture from Field Experiments in Fractured Granite Area

    Science.gov (United States)

    Cao, Yang-Bing; Feng, Xia-Ting; Yan, E.-Chuan; Chen, Gang; Lü, Fei-fei; Ji, Hui-bin; Song, Kuang-Yin

    2016-05-01

    Knowledge of the fracture hydraulic aperture and its relation to the mechanical aperture and normal stress is urgently needed in engineering construction and analytical research at the engineering field scale. A new method based on the in situ borehole camera measurement and borehole water-pressure test is proposed for the calculation of the fracture hydraulic aperture. This method comprises six steps. The first step is to obtain the equivalent hydraulic conductivity of the test section from borehole water-pressure tests. The second step is a tentative calculation to obtain the qualitative relation between the reduction coefficient and the mechanical aperture obtained from borehole camera measurements. The third step is to choose the preliminary reduction coefficient for obtaining the initial hydraulic aperture. The remaining three steps are to optimize, using the genetic algorithm, the hydraulic apertures of fractures with high uncertainty. The method is then applied to a fractured granite engineering area whose purpose is the construction of an underground water-sealed storage cavern for liquefied petroleum gas. The probability distribution characteristics of the hydraulic aperture, the relationship between the hydraulic aperture and the mechanical aperture, the hydraulic aperture and the normal stress, and the differences between altered fractures and fresh fractures are all analyzed. Based on the effects of the engineering applications, the method is proved to be feasible and reliable. More importantly, the results of the hydraulic aperture obtained in this paper are different from those results elicited from laboratory tests, and the reasons are discussed in the paper.

  16. Optimizing Synthetic Aperture Compound Imaging

    DEFF Research Database (Denmark)

    Hansen, Jens Munk; Jensen, Jørgen Arendt

    2012-01-01

    Spatial compound images are constructed from synthetic aperture data acquired using a linear phased-array transducer. Compound images of wires, tissue, and cysts are created using a method, which allows both transmit and receive compounding without any loss in temporal resolution. Similarly to...... optimal for lesion detection. Synthetic aperture data are acquired from unfocused emissions and 154 compound images are constructed by synthesizing different aperture configurations with more or less compounding, all maintaining a constant resolution across depth corresponding to an f-number of 2.0 for...... transmit and receive. The same configurations are used for scanning a phantom with cysts, and it is demonstrated how an improved cysts contrast follows from an aperture configuration, which gives a higher value for the performance measure extracted from the phantom without cysts. A correlation value R = 0...

  17. Synthetic Aperture Radar - Hardware Development

    OpenAIRE

    Rosner, V.; Seller, R.; L. Dudas; Kazi, K.; Miko, G.

    2009-01-01

    Experimental real and synthetic aperture radar are developed from the base-band digital unit to the analogue RF parts, based on solid state units, using pulse compression for radar imaging. Proper QPSK code is found for matched filter.

  18. Compounding in synthetic aperture imaging

    DEFF Research Database (Denmark)

    Hansen, J. M.; Jensen, J. A.

    2012-01-01

    A method for obtaining compound images using synthetic aperture data is investigated using a convex array transducer. The new approach allows spatial compounding to be performed for any number of angles without reducing the frame rate or temporal resolution. This important feature is an intrinsic...... from multiple spherical emissions to synthesize multiple transmit and receive apertures, corresponding to imaging the tissue from multiple directions. The many images are added incoherently, to produce a single compound image. Using a 192-element, 3.5-MHz, λ-pitch transducer, it is demonstrated from...... tissue-phantom measurements that the speckle is reduced and the contrast resolution improved when applying synthetic aperture compound imaging. At a depth of 4 cm, the size of the synthesized apertures is optimized for lesion detection based on the speckle information density. This is a performance...

  19. Validation of the deuterium oxide method for measuring average daily milk intake in infants

    International Nuclear Information System (INIS)

    The deuterium oxide elimination method for measuring average daily milk intake was validated against measured formula intake in 16 studies of 11 infants in a metabolic ward. Deuterium oxide (approximately 0.10 g/kg body wt) was given orally. Deuterium enrichment was measured in urine samples collected predose, as available for 6-h postdose for TBW determination, and at 24 h and 5-10 d postdose for HDO elimination calculated according to the two-point method. Urine samples were vacuum distilled, water was reduced to hydrogen gas, and deuterium enrichment was measured by isotope-ratio mass spectrometry. Milk intake was measured throughout the elimination period from prefeeding and postfeeding bottle weights (n = 12) or volumes (n = 4). Without corrections for atmospheric water influx, milk intake was overestimated by 76 g/d (6%). With corrections for estimated metabolic water production, isotopic fractionation, and atmospheric water influx, deuterium measured 98% +/- 3% or 1300 g milk intake/d compared with actual milk intake of 1329 +/- 206 g/d

  20. Synthetic aperture controlled source electromagnetics

    OpenAIRE

    Fan, Y.; Snieder, R.; Slob, E.; Hunziker, J.W.; Singer, J.; Sheiman, J.; Rosenquist, M.

    2010-01-01

    Controlled‐source electromagnetics (CSEM) has been used as a de‐risking tool in the hydrocarbon exploration industry. Although there have been successful applications of CSEM, this technique is still not widely used in the industry because the limited types of hydrocarbon reservoirs CSEM can detect. In this paper, we apply the concept of synthetic aperture to CSEM data. Synthetic aperture allows us to design sources with specific radiation patterns for different purposes. The ability to detec...

  1. Deuterium absorption and material phase characteristics of SAES St 198 Zr-Fe Alloy

    International Nuclear Information System (INIS)

    This document reports deuterium absorption and material phase characteristics of SAES St 198 Zr-Fe Alloy (76.5% Zr). Scanning electron microscope images of polished surfaces, electron probe microanalysis, and x-ray powder diffractometry indicated the presence of a primary Zr2Fe phase with secondary phases of ZrFe2, Zr5FeSn, α-Zr, and Zr6Fe3O. A statistically designed experiment to determine the effects of temperature, time, and vacuum quality on activation of St 198 revealed that, when activated at low temperature (350C), deuterium absorption rate was slower when the vacuum quality was poor (2.5 Pa vs. 3 x 10-4 Pa). However, at higher activation temperature (500C), deuterium absorption rate was fast and was independent of vacuum quality. Deuterium pressure-composition-temperature (P-C-T) data are reported for St 198 in the temperature range 200 to 500C. The P-C-T data over the full range of deuterium loading and at temperatures of 350C and below is described an expression. At higher temperatures, one or more secondary reactions in the solid phase occur that slowly consume D2 from the gas phase. X-ray diffraction and other data suggest these reactions to be: 2 Zr2FeDx → xZrD2 + x/3 ZrFe2 + (2 - 2/3x) Zr2Fe and Zr2FeDx + (2 - 1/2x) D2 → 2 ZrD2 + Fe, where 0 2Fe formed in the first reaction accounts for the observed consumption of deuterium from the gas phase by this reaction

  2. Deuterium NMR, induced and intrinsic cholesteric lyomesophases

    International Nuclear Information System (INIS)

    Induced and intrinsic cholesteric lyotropic mesophases were studied. Induced cholesteric lyomesophases based on potassium laurate (KL) system, with small amounts of cholesterol added, were studied by deuterium NMR and by polarizing microscopy. Order profiles obtained from deuterium NMR of KL perdenderated chains in both induced cholesteric and normal mesophases were compared. The intrinsic cholesteric lyotropic mesophases were based on the amphiphile potassium N-lauroyl serinate (KLNS) in the resolved levo form. The study of the type I intrinsic cholesteric mesophase was made by optical microscopy under polarized light and the type II intrinsic cholesteric lyomesophase was characterized by deuterium NMR. The new texture was explained by the use of the theory of disclinations developed for thermotropic liquid crystals, specially for cholesteric type. (M.J.C.)

  3. Neutrino and Antineutrino Interactions in Deuterium

    CERN Multimedia

    2002-01-01

    This experiment uses BEBC filled with deuterium and exposed to the wide-band neutrino beam N1. The use of deuterium as the target material allows to study interactions on both neutrons and protons. The charge of the target nucleon can be inferred from the number of positive and negative particles in the final state. \\\\ \\\\ Some of the physics aims of this experiment are to measure separately the cross sections @s^n and @s^p on neutrons and protons to determine the structure functions F|n(x,Q|2) and F|p(x,Q|2), the fragmentation functions D(z,Q|2) and the ratio of neutral to charged current interactions. \\\\ \\\\ Additional problems under investigation are the production of nucleon isobars, and of resonances in general, the production of strange and of charmed particles, and the problems of deuterium structure.

  4. Continuum emission from irradiated solid deuterium

    DEFF Research Database (Denmark)

    Forrest, J.A.; Brooks, R.L.; Hunt, J.L.;

    1992-01-01

    A new emission feature from the spectrum of irradiated solid deuterium has been observed in the very near-infrared spectral region. Experiments from three laboratories, using different excitation conditions, have confirmed the observation. Comparison of the timing and temperature dependence...... of the spectral feature to the information previously available from electron spin resonance studies of solid deuterium, points to atomic association as the underlying cause. We shall show the connection of this emission to the occurrence of thermal spikes and optical flashes, previously observed in solid...

  5. Cold neutron scattering in imperfect deuterium crystals

    CERN Document Server

    Adamczak, Andrzej

    2010-01-01

    The differential cross sections for cold neutron scattering in mosaic deuterium crystals have been calculated for various target temperatures. The theoretical results are compared with the recent experimental data for the neutron wavelengths $\\lambda\\approx$~1--9~\\AA. It is shown that the structures of observed Bragg peaks can be explained by the mosaic spread of about $3^{\\circ}$ and contributions from a~limited number of crystal orientations. Such a~crystal structure should be also taken into account in ultracold neutron upscattering due to the coherent phonon annihilation in solid deuterium.

  6. NPS high resolution synthetic aperture sonar

    OpenAIRE

    Welter, Joseph Donald

    1995-01-01

    This thesis investigated the use of synthetic aperture techniques to achieve a long effective aperture, high resolution, imaging sonar. The approach included a full simulation of the system using the MATLAB programming environment that provided a model for developing six data processing algorithms and a working 25KHz, 1 m baseline, air medium synthetic aperture sonar. The six azimuthal processing techniques included: (1) a normal, real aperture, (2) an unfocussed synthetic aperture, (3) a hyb...

  7. Influence of deuterium on the design of the JET water detritiation system

    Energy Technology Data Exchange (ETDEWEB)

    Cristescu, I. [Forschungszentrum Karlsruhe, TLK, P.O. Box 3640, 76021 Karlsruhe (Germany)]. E-mail: ion.cristescu@hvt.fzk.de; Cristescu, I.-R. [Forschungszentrum Karlsruhe, TLK, P.O. Box 3640, 76021 Karlsruhe (Germany); Doerr, L. [Forschungszentrum Karlsruhe, TLK, P.O. Box 3640, 76021 Karlsruhe (Germany); Glugla, M. [Forschungszentrum Karlsruhe, TLK, P.O. Box 3640, 76021 Karlsruhe (Germany); Bell, A. [JET, UKAEA, Culham Science Center, Abigdon, Oxon OX14 3DB (United Kingdom); Brennan, D. [JET, UKAEA, Culham Science Center, Abigdon, Oxon OX14 3DB (United Kingdom); Murdoch, D. [EFDA-CSU Boltzmannstrasse 2, D-85748 Garching (Germany)

    2005-11-15

    The water detritiation system (WDS) for JET is based on the combined electrolysis catalytic exchange (CECE) process employing a liquid phase catalytic exchange (LPCE) column. The final goal of WDS is to convert tritiated water to tritium-deuterium-hydrogen mixture for further enrichment of tritium by cryogenic distillation (CD), followed by recovery of high quality tritium in the gas chromatography (GC) from active gas handling system (AGHS) of JET. A tritium decontamination factor (DF) of 10{sup 4} is required along the striping section of the LPCE column in order to discharge essentially tritium free molecular hydrogen product into the environment. A detailed analysis of the combination CECE-CD processes revealed the necessity to consider also the deuterium content in the water to be processed. Based on deuterium content measured in tritiated water collected at JET, the interface between the CECE and CD was evaluated in detail and the optimum values for deuterium and tritium composition at this interface have been established.

  8. Measurement of anomalous neutron from deuterium/solid system

    International Nuclear Information System (INIS)

    A series of experiments on both D2O electrolysis and thermal cycle of deuterium absorbed Ti Turnings are designed to examine the anomalous phenomena in Deuterium/Solid System. A neutron detector containing 16 BF3 tubes with a detection limit of 0.38 n/s for two hour counting is used for electrolysis experiments. No neutron counting rate statistically higher than detection limit is observed from Fleischmann and Pons type experiments. An HLNCC-II neutron detector equipped with 18 3He tubes and a JSR-11 shift register unit with a detection limit of 0.20 n/s for a two hour run are employed to study the neutron signals in D2 gas experiments. Ten batches of dry fusion samples are tested, among them, seven batches with neutron burst signals occur roughly at the temperature from -100 degrees centigrade to near room temperature. In the first four runs of a typical sample batch, seven neutron bursts are observed with neutron numbers from 15 to 482,which are 3 and 75 times, respectively, higher than the uncertainty of background. However, no bursts happened for H2 dummy samples running in between and afterwards and for sample batch after certain runs

  9. Measurement of anomalous neutron from deuterium/solid system

    International Nuclear Information System (INIS)

    A series of experiments on both D2O electrolysis and thermal cycle of deuterium absorbed Ti Turnings are designed to examine the anomalous phenomena in Deuterium/Solid System. A neutron detector containing 16 BF3 tubes with a detection limit of 0.38 n/s for two hour counting is used for electrolysis experiments. No neutron counting rate statistically higher than detection limit is observed from Fleischmann and Pons type experiments. An HLNCC-II neutron detector equipped with 18 3He tubes and JSR-11 shift register unit with a detection limit of 0.20 n/s for a two hour run are employed to study the neutron signals in D2 gas experiments. Ten batches of dry fusion samples are tested, among them, seven batches with neutron burst signals occur roughly at the temperature from -100 degrees centigrade to near room temperature. In the first four runs of a typical sample batch, seven neutron bursts are observed with neutron numbers from 15 to 482, which are 3 and 75 times, respectively, higher than the uncertainty of background. However, no bursts happened for H2 dummy samples running in-between and afterwards and for sample batch after certain runs

  10. Codeposition of deuterium ions with beryllium oxide at elevated temperatures

    CERN Document Server

    Markin, A V; Gorodetsky, A E; Negodaev, M A; Rozhanskii, N V; Scaffidi-Argentina, F; Werle, H; Wu, C H; Zalavutdinov, R K; Zakharov, A P

    2000-01-01

    Deuterium-loaded BeO films were produced by sputtering the beryllium target with 10 keV Ne ions in D sub 2 gas at a pressure of approximately 1 Pa. The sputtered beryllium reacts - on the substrate surface - with the residual oxygen, thus forming a beryllium oxide layer. Biasing the substrate negatively with respect to the target provides the simultaneous bombardment of the growing film surface with D ions formed by Ne-D sub 2 collisions. Substrate potential governs the maximum energy of ions striking the growing film surface while its size governs the flux density. According to X-ray photoelectron spectroscopy (XPS), electron probe microanalysis (EPMA) and reflection high energy electron diffraction (RHEED) data, the beryllium is deposited in the form of polycrystalline hcp-BeO layers with negligible (about 1 at.%) carbon and neon retention. Thermal desorption spectroscopy (TDS) data shows a strong deuterium bonding, with a desorption peak at 950 K, in the films deposited at -50 and -400 V substrate potentia...

  11. Evidence for hydrogen-deuterium exchange in viral particles

    Institute of Scientific and Technical Information of China (English)

    MAO Jiangsen; LIU Ziyang; TANG Caihua; HE Yihui; ZHU Jiahong; WANG Chengyu; CHAI Shaoai; CHEN Yueqing; QIAN Wen

    2004-01-01

    Heavy water (D2O) could enhance thermostability of some viruses. However, the underlying mechanism is not clear. Here we report the development of a matrix-aided gas-isotope-ratio mass spectrometry method that allows direct determination of deuterium/hydrogen (D/H) ratio in D2O-treated Japanese encephalitis virus (JEV), hepatitis A virus (HAV) and RNA from D2O-treated HAV. The D/H ratio was expressed as δDSMOW. Our experiments showed that δDSMOW values increased significantly in D2O-treated viral samples compared to normal controls, and increment in δDSMOW of D2O, treated viral samples was in a fine linear relationship with increment in amount of samples loaded in BSA matrix. Our experiments also indicated that increased δDSMOW of D2O-treated virus correlated well with its enhanced thermostability. The results suggested that hydrogen-deuterium exchange occurred in viral particles and its RNA structure as a result of D2O-treatment. Furthermore, such exchange could cause changes in viral phenotype, such as enhanced thermostability.

  12. High density polarized hydrogen/deuterium internal target

    CERN Document Server

    Van Buuren, L D; Van der Brand, J F J; Bulten, H J; Ferro-Luzzi, M; Kolster, H; Lang, J; Simani, M C; Mul, F

    2000-01-01

    We present a high-density polarized hydrogen/deuterium internal gas target. The apparatus is based on a setup that was previously used in electron scattering experiments with tensor-polarized deuterium [1]. The target was upgraded by implementing state-of-the-art permanent sextupole magnets in the Atomic Beam Source (ABS) and by using a longer (60 cm) and colder (approx 70 K) cylindrical storage cell. This resulted in an increase of the target figure-of-merit, (polarization) sup 2 x luminosity, by about one order of magnitude. The target was used in combination with a 720 MeV polarized electron beam stored in the AmPS ring (NIKHEF) to measure spin observables in electron-proton and electron-deuteron scattering. Scattered electrons were detected in a large acceptance magnetic spectrometer. Ejected hadrons were detected in a single time-of-flight scintillator array. The product of beam and target polarization was determined from the known e'p (quasi) elastic asymmetry. We achieved a target thickness of 1.1 x 10...

  13. Deuterium in New Zealand rivers and streams

    International Nuclear Information System (INIS)

    Over 750 deuterium measurements on rivers and streams in New Zealand are reported. Monthly samples were collected for periods of several years from a number of representative rivers. These show irregular storm-to-storm as well as seasonal deuterium variations. The seasonal variations range from as low as 1 per mille for lake-fed rivers to 8-10 per mille for rivers with large spring snow-melt contributions. Variations in mean annual ΔD values are believed to reflect changes in climatic variables; the present data will be used to compare with future changes. The bulk of the data are single samples; these show a geographic variation related to the altitude, latitude and climatic character of the catchments, with the highest deuterium contents (ΔD = -20 per mille) occurring in the far north, and lowest contents (-80 per mille) in the inland Otago region. Regression equations derived for the ΔD dependence on altitude (h) and latitude (l), are ΔD = -0.0169 h - 30.2 and westerly influence. Eastern climatic zones have lower deuterium contents because of rainout effects on the axial ranges. Contours of constant

  14. Photochemical deuterium separation: problems and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Marling, J.B.; Herman, I.P.

    1978-09-01

    Photochemical separation of deuterium is examined to determine if either an ultraviolet or an infrared laser-based technology offers greater promise for development into an industrially viable heavy water production process. The three systems to be discussed are multiple-photon dissociation of organic molecules by pulsed CO/sub 2/ laser; CO or CO/sub 2/ laser-induced bimolecular reactions; and single-photon induced molecular dissociation by ultraviolet laser. Multiple-photon dissociation by CO/sub 2/ laser is attractive, since it utilizes an already developed high-power and efficient laser technology. Furthermore, single-step deuterium enrichment factors exceeding 1000-fold have been observed in the CF/sub 2/ = CFD photo-product from multiple-photon dissociation of dichlorotrifluoroethane, satisfying the high isotopic selectivity for economically viable photochemical deuterium separation. Its major drawback at present is the need to operate at low pressure. IR laser-induced bimolecular reactions may permit operation at higher pressure, and attractive processes include the methane + halogen and acetylene + hydrogen halide reaction systems. Single-photon induced ultraviolet dissociation using formaldehyde permits relatively high pressure operation, high single-step deuterium enrichment factors, and near-unity quantum yield. However, uv laser average power, efficiency, and lifetime, even based on the new XeCl or KrF excimer systems, still need substantial development to be used in an industrially viable process.

  15. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 2. Assessing Charge Site Location and Isotope Scrambling

    Science.gov (United States)

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Donohoe, Gregory C.; Valentine, Stephen J.

    2016-03-01

    Ion mobility spectrometry (IMS) coupled with gas-phase hydrogen deuterium exchange (HDX)-mass spectrometry (MS) and molecular dynamic simulations (MDS) has been used for structural investigation of anions produced by electrospraying a sample containing a synthetic peptide having the sequence KKDDDDDIIKIIK. In these experiments the potential of the analytical method for locating charge sites on ions as well as for utilizing collision-induced dissociation (CID) to reveal the degree of deuterium uptake within specific amino acid residues has been assessed. For diffuse (i.e., more elongated) [M - 2H]2- ions, decreased deuterium content along with MDS data suggest that the D4 and D6 residues are charge sites, whereas for the more diffuse [M - 3H]3- ions, the data suggest that the D4, D7, and the C-terminus are deprotonated. Fragmentation of mobility-selected, diffuse [M - 2H]2- ions to determine deuterium uptake at individual amino acid residues reveals a degree of deuterium retention at incorporation sites. Although the diffuse [M - 3H]3- ions may show more HD scrambling, it is not possible to clearly distinguish HD scrambling from the expected deuterium uptake based on a hydrogen accessibility model. The capability of the IMS-HDX-MS/MS approach to provide relevant details about ion structure is discussed. Additionally, the ability to extend the approach for locating protonation sites on positively-charged ions is presented.

  16. High resolution non-iterative aperture synthesis.

    Science.gov (United States)

    Kraczek, Jeffrey R; McManamon, Paul F; Watson, Edward A

    2016-03-21

    The maximum resolution of a multiple-input multiple-output (MIMO) imaging system is determined by the size of the synthetic aperture. The synthetic aperture is determined by a coordinate shift using the relative positions of the illuminators and receive apertures. Previous methods have shown non-iterative phasing for multiple illuminators with a single receive aperture for intra-aperture synthesis. This work shows non-iterative phasing with both multiple illuminators and multiple receive apertures for inter-aperture synthesis. Simulated results show that piston, tip, and tilt can be calculated using inter-aperture phasing after intra-aperture phasing has been performed. Use of a fourth illuminator for increased resolution is shown. The modulation transfer function (MTF) is used to quantitatively judge increased resolution. PMID:27136816

  17. Ion beam characteristics of the controlatron/zetatron family of the gas filled neutron tubes

    Energy Technology Data Exchange (ETDEWEB)

    Berg, R.S.; Shope, L.A.; O' Neal, M.L.; Boers, J.E.; Bickes, R.W. Jr.

    1981-03-01

    A gas filled tube used to produce a neutron flux with the D(T,He/sup 4/)n reaction is described. Deuterium and tritium ions generated in a reflex discharge are extracted and accelerated to 100 keV by means of an accelerator electrode onto a deutero-tritide target electrode. The electrodes are designed to focus the ion beam onto the target. Total tube currents consisting of extracted ions, unsuppressed secondary electrons, and ions generated by interactions with the background gas are typically 100 mA. The characteristics of the extracted ion beam are discussed. Accelerating voltages greater than 50 kV are required to focus the beam through the accelerator aperture for configurations that give beams with the proper energy density onto the target. The perveance of the beam is discussed. Maximum perveance values are 2 to 20 nanopervs. Tube focusing and neutron production characteristics are described.

  18. Synthetic Aperture Radar - Hardware Development

    Directory of Open Access Journals (Sweden)

    V. Rosner

    2009-06-01

    Full Text Available Experimental real and synthetic aperture radar are developed from the base-band digital unit to the analogue RF parts, based on solid state units, using pulse compression for radar imaging. Proper QPSK code is found for matched filter.

  19. Ultrasound fields from triangular apertures

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1996-01-01

    The pulsed field from a triangular aperture mounted in an infinite, rigidbaffle is calculated. The approach of spatial impulse responses,as developed by Tupholme and Stepanishen, is used. By this both the emitted and received pulsed ultrasound field can be found for any transducerexcitation...

  20. Precision measurement of antiprotonic hydrogen and deuterium X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Heitlinger, K.; Bluem, P. (Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Kernphysik Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Experimentelle Kernphysik); Bacher, R.; Badertscher, A.; Egger, J.; Morenzoni, E.; Simons, L.M. (Paul Scherrer Inst. (PSI), Villigen (Switzerland)); Eades, J.; Elsener, K. (European Organization for Nuclear Research, Geneva (Switzerland)); Gotta, D. (Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik)

    1992-05-01

    X-rays from antiprotonic hydrogen and deuterium have been measured at low pressures. Using the cylcotron trap, a 105 MeV/c antiproton beam from LEAR was stopped with an efficiency of 86% in 30 mbar hydrogen gas in a volume of only 100 cm{sup 3}. The X-rays were measured with Si(Li) detectors and a Xe-CH{sub 4} drift chamber. The strong interaction shift and broadening of the Lyman {alpha} transition and the spin-averaged 2p width in antiprotonic hydrogen was measured with unprecedented accuracy. The triplet component of the ground state in antiprotonic hydrogen was determined for the first time. (orig.).

  1. Hydrogen-deuterium substitution in solid ethanol by surface reactions at low temperatures

    Science.gov (United States)

    Oba, Yasuhiro; Osaka, Kazuya; Chigai, Takeshi; Kouchi, Akira; Watanabe, Naoki

    2016-10-01

    Ethanol (CH3CH2OH) is one of the most abundant complex organic molecules in star-forming regions. Despite its detection in the gas phase only, ethanol is believed to be formed by low-temperature grain-surface reactions. Methanol, the simplest alcohol, has been a target for observational, experimental, and theoretical studies in view of its deuterium enrichment in the interstellar medium; however, the deuterium chemistry of ethanol has not yet been an area of focus. Recently, deuterated dimethyl ether, a structural isomer of ethanol, was found in star-forming regions, indicating that deuterated ethanol can also be present in those environments. In this study, we performed laboratory experiments on the deuterium fractionation of solid ethanol at low temperatures through a reaction with deuterium (D) atoms at 10 K. Hydrogen (H)-D substitution, which increases the deuteration level, was found to occur on the ethyl group but not on the hydroxyl group. In addition, when deuterated ethanol (e.g. CD3CD2OD) solid was exposed to H atoms at 10 K, D-H substitution that reduced the deuteration level occurred on the ethyl group. Based on the results, it is likely that deuterated ethanol is present even under H-atom-dominant conditions in the interstellar medium.

  2. Preparations for deuterium--tritium experiments on the Tokamak Fusion Test Reactor*

    Energy Technology Data Exchange (ETDEWEB)

    Hawryluk, R.J.; Adler, H.; Alling, P.; Ancher, C.; Anderson, H.; Anderson, J.L.; Anderson, J.W.; Arunasalam, V.; Ascione, G.; Aschroft, D.; Barnes, C.W.; Barnes, G.; Batchelor, D.B.; Bateman, G.; Batha, S.; Baylor, L.A.; Beer, M.; Bell, M.G.; Biglow, T.S.; Bitter, M.; Blanchard, W.; Bonoli, P.; Bretz, N.L.; Brunkhorst, C.; Budny, R.; Burgess, T.; Bush, H.; Bush, C.E.; Camp, R.; Caorlin, M.; Carnevale, H.; Chang, Z.; Chen, L.; Cheng, C.Z.; Chrzanowski, J.; Collazo, I.; Collins, J.; Coward, G.; Cowley, S.; Cropper, M.; Darrow, D.S.; Daugert, R.; DeLooper, J.; Duong, H.; Dudek, L.; Durst, R.; Efthimion, P.C.; Ernst, D.; Faunce, J.; Fonck, R.J.; Fredd, E.; Fredrickson, E.; Fromm, N.; Fu, G.Y.; Furth, H.P.; Garzotto, V.; Gentile, C.; Gettelfinger, G.; Gilbert, J.; Gioia, J.; Goldfinger, R.C.; Golian, T.; Gorelenkov, N.; Gouge, M.J.; Grek, B.; Grisham, L.R.; Hammett, G.; Hanson, G.R.; Heidbrink, W.; Hermann, H.W.; Hill, K.W.; Hirshman, S.; Hoffman, D.J.; Hosea, J.; Hulse, R.A.; Hsuan, H.; Ja

    1994-05-01

    The final hardware modifications for tritium operation have been completed for the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. [bold 21], 1324 (1992)]. These activities include preparation of the tritium gas handling system, installation of additional neutron shielding, conversion of the toroidal field coil cooling system from water to a Fluorinert[sup TM] system, modification of the vacuum system to handle tritium, preparation, and testing of the neutral beam system for tritium operation and a final deuterium--deuterium (D--D) run to simulate expected deuterium--tritium (D--T) operation. Testing of the tritium system with low concentration tritium has successfully begun. Simulation of trace and high power D--T experiments using D--D have been performed. The physics objectives of D--T operation are production of [approx]10 MW of fusion power, evaluation of confinement, and heating in deuterium--tritium plasmas, evaluation of [alpha]-particle heating of electrons, and collective effects driven by alpha particles and testing of diagnostics for confined [alpha] particles. Experimental results and theoretical modeling in support of the D--T experiments are reviewed.

  3. The Deuterium Fractionation Timescale in Dense Cloud Cores: A Parameter Space Exploration

    CERN Document Server

    Kong, Shuo; Tan, Jonathan C; Wakelam, Valentine

    2013-01-01

    The deuterium fraction of simple species such as N$_2$H$^+$ can be easily measured and can provide information about the age of dense and cold material, important to compare with dynamical models of cloud core formation and evolution. Here we perform a parameter space exploration using a gas-phase chemical model which includes deuterium chemistry and the spin states of H$_2$ and H$_3^+$ isotopologues. This allows us to study the effect of various poorly known parameters on the timescale to achieve the deuterium fractions observed in starless cores and clumps in various star-forming regions. We conclude that for a broad range of parameters, the relatively large deuterium fractions ($\\gtrsim$ 0.1) observed towards both low- and high-mass starless cores require core ages to be at least a few times longer than the free-fall timescale. This condition could be relaxed if cosmic ray ionization rates are very high $\\gtrsim 10^{-16}\\:{\\rm s}^{-1}$ or initial ortho-to-para ratios of $\\rm H_2$ are very low ($\\lesssim 10...

  4. Preparations for deuterium tritium experiments on the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    The final hardware modifications for tritium operation have been completed for the Tokamak Fusion Test Reactor (TFTR). These activities include preparation of the tritium gas handling system, installation of additional neutron shielding, conversion of the toroidal field coil cooling system from water to a Fluorinettrademark system, modification of the vacuum system to handle tritium, preparation and testing of the neutral beam system for tritium operation and a final deuterium-deuterium (D-D) run to simulate expected deuterium-tritium (D-T) operation. Testing of the tritium system with low concentration tritium has successfully begun. Simulation of trace and high power D-T experiments using D-D have been performed. The physics objectives of D-T operation are production of ∼ 10 megawatts (MW) of fusion power, evaluation of confinement and heating in deuterium-tritium plasmas, evaluation of α-particle heating of electrons, and collective effects driven by alpha particles and testing of diagnostics for confined α-particles. Experimental results and theoretical modeling in support of the D-T experiments are reviewed

  5. The primordial deuterium abundance problems and prospects

    CERN Document Server

    Levshakov, S A; Kegel, W H; Levshakov, Sergei A.; Takahara, Fumio; Kegel, Wilhelm H.

    1997-01-01

    The current status of extragalactic deuterium abundance is discussed using two examples of `low' and `high' D/H measurements. We show that the discordance of these two types of D abundances may be a consequence of the spatial correlations in the stochastic velocity field. Within the framework of the generalized procedure (accounting for such effects) one finds good agreement between different observations and the theoretical predictions for standard big bang nucleosynthesis (SBBN). In particular, we show that the deuterium absorption seen at z = 2.504 toward Q1009+2956 and the H+D Ly-alpha profile observed at z = 0.701 toward Q1718+4807 are compatible with D/H $\\sim 4.1 - 4.6\\times10^{-5}$. This result supports SBBN and, thus, no inhomogeneity is needed. The problem of precise D/H measurements is discussed.

  6. The Deuterium Fractionation Timescale in Dense Cloud Cores: A Parameter Space Exploration

    OpenAIRE

    Kong, Shuo; Caselli, Paola; Tan, Jonathan C.; Wakelam, Valentine; Sipilä, Olli

    2013-01-01

    The deuterium fraction [N$_2$D$^+$]/[N$_2$H$^+$], may provide information about the ages of dense, cold gas structures, important to compare with dynamical models of cloud core formation and evolution. Here we introduce a complete chemical network with species containing up to three atoms, with the exception of the Oxygen chemistry, where reactions involving H$_3$O$^+$ and its deuterated forms have been added, significantly improving the consistency with comprehensive chemical networks. Deute...

  7. Deuterium chemistry in the Orion Bar PDR - "warm" chemistry starring CH2D+

    OpenAIRE

    Parise, B.; Leurini, S.; Schilke, P.; Roueff, E.; Thorwirth, S.; Lis, D.C.

    2009-01-01

    Context. High levels of deuterium fractionation in gas-phase molecules are usually associated with cold regions, such as prestellar cores. Significant fractionation ratios are also observed in hot environments such as hot cores or hot corinos, where they are believed to be produced by the evaporation of the icy mantles surrounding dust grains, and are thus remnants of a previous cold (either gasphase or grain surface) chemistry. The recent detection of DCN towards the Orion Bar, in a clump at...

  8. Muon transfer from deuterium to helium

    CERN Document Server

    Augsburger, M A; Breunlich, W H; Cargnelli, M; Chatellard, D; Egger, J P; Gartner, B; Hartmann, F J; Huot, O; Jacot-Guillarmod, R; Kammel, P; King, R; Knowles, P; Kosak, A; Lauss, B; Marton, J; Mühlbauer, M; Mulhauser, F; Petitjean, C; Prymas, W; Schaller, L A; Schellenberg, L; Schneuwly, H; Tresch, S; Von Egidy, T; Zmeskal, J

    2003-01-01

    We report on an experiment at the Paul Scherrer Institute, Villigen, Switzerland measuring x rays from muon transfer from deuterium to helium. Both the ground state transfer via the exotic dmu3,4He* molecules and the excited state transfer from mud* were measured. The use of CCD detectors allowed x rays from 1.5 keV to 11 keV to be detected with sufficient energy resolution to separate the transitions to different final states in both deuterium and helium. The x-ray peaks of the dmu3He* and dmu4He* molecules were measured with good statistics. For the D2+3He mixture, the peak has its maximum at E_dmu3He = 6768 +- 12 eV with FWHM Gamma_dmu3He = 863 +- 10 eV. Furthermore the radiative branching ratio was found to be kappa_dmu3He = 0.301 +- 0.061. For the D_2+4He mixture, the maximum of the peak lies at E_dmu4He = 6831 +- 8 eV and the FWHM is Gamma_dmu4He = 856 +- 10 eV. The radiative branching ratio is kappa_dmu4He = 0.636 +- 0.097. The excited state transfer is limited by the probability to reach the deuterium...

  9. The study on aperture configuration of optical synthetic aperture imaging system

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A model based on Fourier domain consideration on aperture configuration of optical synthetic aperture imaging system is introduced in this paper. The derivation of the model is directly linked to the restoration error of the original object from the recorded image. The aperture configuration is a function of the maximum frequency of interest, and takes into account the diameter of the aperture. The simulative results of genetic algorithms illustrate the usefulness of this model for designing a synthetic aperture optical imaging system, and the aperture configuration of a good synthetic aperture optical imaging system should be non-redundant.

  10. Deuterium-tritium experiments on TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Bretz, N.L.; Adler, H.; Alling, P.; Ancher, C.; Anderson, H.; Anderson, J.W.; Arunasalam, V.; Ascione, G.; Barnes, C.W.; Barnes, G.; Batha, S.; Bateman, G.; Beer, M.; Bell, M.G.; Bell, R.; Bitter, M.; Blanchard, W.; Brunkhorst, C.; Budny, R.; Bush, C.E.; Camp, R.; Caorlin, M.; Carnevale, H.; Cauffman, S.; Chang, Z.; Cheng, C.; Chrzanowski, J.; Collins, J.; Coward, G.; Cropper, M.; Darrow, D.S.; Daugert, R.; DeLooper, J.; Dorland, W.; Dudek, L.; Duong, H.; Durst, R.; Efthimion, P.C.; Ernst, D.; Evensen, H.; Fisch, N.; Fisher, R.; Fonck, R.J.; Fredd, E.; Fredrickson, E.; Fromm, R.; Fu, G.; Fujita, T.; Furth, H.P.; Garzotto, V.; Gentile, C.; Gilbert, J.; Giola, J.; Gorelenkov, N.; Grek, B.; Grisham, L.R.; Hammett, G.; Hanson, G.R.; Hawryluk, R.J.; Heidbrink, W.; Herrmann, H.W.; Hill, K.W.; Hosea, J.; Hsuan, H.; Hughes, M.; Hulse, R.; Janos, A.; Jassby, D.L.; Jobes, F.C.; Johnson, D.W.; Johnson, L.C.; Kalish, M.; Kamperschroer, J.; Kesner, J.; Kugel, H.; Labik, G.; Lam, N.T.; LaMarche, P.H.; Lawson, E.; LeBlanc, B.; Levine, J.; Levinton, F.M.; Loesser, D.; Long, D.; Loughlin, M.J.; Machuzak, J.; Majeski, R.; Mansfield, D.K.; Marmar, E.; Marsala, R.; Martin, A.; Martin, G.; Mauel, M.; Mazzucato, E.; McCarthy, M.P.; McChesney, J.; McCormack, B.; McCune, D.C.; McGuire, K.M.; McKee, G.; Meade, D.M.; Medley, S.S.; Mikkelsen, D.R.; Mirnov, S.V.; Mueller, D.; Murakami, M.; Murphy, J.A.; Nagy, A.; Navratil, G.A.; Nazikian, R.; Newman, R.; Norris, M.; OConnor, T.; Oldaker, M.; Ongena, J.; Osakabe, M.; Owens, D.K.; Park, H.; Park, W.; Parks, P.; Paul, S.F.; Pearson, G.; Perry, E.; Persing, R.; Petrov, M.; Phillips, C.K.; Phillips, M.; Pitcher, S.; Pysher, R.; Qualls, A.L.; Raftapoulos, S.; Ramakrishnan, S.; Ramsey, A.; Rasmunsen, D.A.; Redi, M.H.; Renda, G.; Rewoldt, G.; Roberts, D.; Rogers, J.; Rossmassler, R.; Roquemore, A.L.; Ruskov, E.; Sabbaugh, S.A.; Sasao, M.; Schilling, G.; Schivell, J.; Schmidt, G.L.; Scillia, R.; Scott, S.D.; Semenov, I.; Senko, T.

    1995-09-01

    A peak fusion power production of 9.3{plus_minus}0.7 MW has been achieved on the Tokamak Fusion Test Reactor (TFTR) in deuterium plasmas heated by co and counter injected deuterium and tritium neutral beams with a total power of 33.7 MW. The ratio of fusion power output to heating power input is 0.27. At the time of the highest neutron flux the plasma conditions are: {ital T}{sub {ital e}}(0)=11.5 keV, {ital T}{sub {ital i}}(0)=44 keV, {ital n}{sub {ital e}}(0)=8.5{times}10{sup 19} m{sup {minus}3}, and {l_angle}{ital Z}{sub eff}{r_angle}=2.2 giving {tau}{sub {ital E}}=0.24 s. These conditions are similar to those found in the highest confinement deuterium plasmas. The measured D-T neutron yield is within 7% of computer code estimates based on profile measurements and within experimental uncertainties. These plasmas have an inferred central fusion alpha fraction of 0.2% and central fusion power density of 2 MW/m{sup 3} similar to that expected in a fusion reactor. Even though the alpha velocity exceeds the Alfven velocity throughout the time of high neutron output in most high power plasmas, MHD activity is similar to that in comparable deuterium plasmas and Alfven wave activity is low. The measured loss rate of energetic alpha particles is about 3% of the total as expected from alphas which are born on unconfined orbits. Compared to pure deuterium plasmas with similar externally applied conditions, the stored energy in electrons and ions is about 25% higher indicating improvements in confinement associated with D-T plasmas and consistent with modest electron heating expected from alpha particles. ICRF heating of D-T plasmas using up to 5.5 MW has resulted in 10 keV increases in central ion and 2.5 keV increases in central electron temperatures in relatively good agreement with code predictions. In these cases heating on the magnetic axis at 2{Omega}{sub {ital T}} gave up to 80% of the ICRF energy to ions. {copyright} {ital 1995 American Institute of Physics.}

  11. Deuterium-tritium experiments on TFTR

    International Nuclear Information System (INIS)

    A peak fusion power production of 9.3±0.7 MW has been achieved on the Tokamak Fusion Test Reactor (TFTR) in deuterium plasmas heated by co and counter injected deuterium and tritium neutral beams with a total power of 33.7 MW. The ratio of fusion power output to heating power input is 0.27. At the time of the highest neutron flux the plasma conditions are: Te(0)=11.5 keV, Ti(0)=44 keV, ne(0)=8.5x1019 m-3, and left-angle Zeff right-angle=2.2 giving τE=0.24 s. These conditions are similar to those found in the highest confinement deuterium plasmas. The measured D-T neutron yield is within 7% of computer code estimates based on profile measurements and within experimental uncertainties. These plasmas have an inferred central fusion alpha fraction of 0.2% and central fusion power density of 2 MW/m3 similar to that expected in a fusion reactor. Even though the alpha velocity exceeds the Alfven velocity throughout the time of high neutron output in most high power plasmas, MHD activity is similar to that in comparable deuterium plasmas and Alfven wave activity is low. The measured loss rate of energetic alpha particles is about 3% of the total as expected from alphas which are born on unconfined orbits. Compared to pure deuterium plasmas with similar externally applied conditions, the stored energy in electrons and ions is about 25% higher indicating improvements in confinement associated with D-T plasmas and consistent with modest electron heating expected from alpha particles. ICRF heating of D-T plasmas using up to 5.5 MW has resulted in 10 keV increases in central ion and 2.5 keV increases in central electron temperatures in relatively good agreement with code predictions. In these cases heating on the magnetic axis at 2ΩT gave up to 80% of the ICRF energy to ions. copyright 1995 American Institute of Physics

  12. Short term dynamic aperture with AC dipoles

    CERN Document Server

    Mönig, Saskia; Persson, Tobias Hakan Bjorn; Coello De Portugal, Jaime; Langner, Andy; Tomas, Rogelio; CERN. Geneva. ATS Department

    2015-01-01

    The dynamic aperture of an accelerator is determined by its non-linear components and errors. Control of the dynamic aperture is important for a good understanding and operation of the accelerator. The AC dipole, installed in the LHC for the diagnostic of linear and non-linear optics, could serve as a tool for the determination of the dynamic aperture. However, since the AC dipole itself modifies the non-linear dynamics, the dynamic aperture with and without AC dipole are expected to differ. The effect of the AC dipole on the dynamic aperture is studied within this note.

  13. Deuterium excess in precipitation and its climatological significance

    International Nuclear Information System (INIS)

    The climatological significance of the deuterium excess parameter for tracing precipitation processes is discussed with reference to data collected within the IAEA/WMO Global Network for Isotopes in Precipitation (GNIP) programme. Annual and monthly variations in deuterium excess, and their primary relationships with δ18O, temperature, vapour pressure and relative humidity are used to demonstrate fundamental controls on deuterium excess for selected climate stations and transects. The importance of deuterium excess signals arising from ocean sources versus signals arising from air mass modification during transport over the continents is reviewed and relevant theoretical development is presented. While deuterium excess shows considerable promise as a quantitative index of precipitation processes, the effectiveness of current applications using GNIP is largely dependent on analytical uncertainty (∼2.1 per mille), which could be improved to better than 1 per mille through basic upgrades in routine measurement procedures for deuterium analysis. (author)

  14. Evolution of dispersion in the cosmic deuterium abundance

    Science.gov (United States)

    Dvorkin, Irina; Vangioni, Elisabeth; Silk, Joseph; Petitjean, Patrick; Olive, Keith A.

    2016-05-01

    Deuterium is created during big bang nucleosynthesis, and, in contrast to the other light stable nuclei, can only be destroyed thereafter by fusion in stellar interiors. In this Letter, we study the cosmic evolution of the deuterium abundance in the interstellar medium (ISM) and its dispersion using realistic galaxy evolution models. We find that models that reproduce the observed metal abundance are compatible with observations of the deuterium abundance in the local ISM and z ˜ 3 absorption line systems. In particular, we reproduce the low astration factor which we attribute to a low global star formation efficiency. We calculate the dispersion in deuterium abundance arising from different structure formation histories in different parts of the Universe. Our model also predicts a tight correlation between deuterium and metal abundances which could be used to measure the primordial deuterium abundance.

  15. Continuous-Flow Synthesis of Deuterium-Labeled Antidiabetic Chalcones: Studies towards the Selective Deuteration of the Alkynone Core.

    Science.gov (United States)

    Ötvös, Sándor B; Hsieh, Chi-Ting; Wu, Yang-Chang; Li, Jih-Heng; Chang, Fang-Rong; Fülöp, Ferenc

    2016-01-01

    Flow chemistry-based syntheses of deuterium-labeled analogs of important antidiabetic chalcones were achieved via highly controlled partial C≡C bond deuteration of the corresponding 1,3-diphenylalkynones. The benefits of a scalable continuous process in combination with on-demand electrolytic D2 gas generation were exploited to suppress undesired over-reactions and to maximize reaction rates simultaneously. The novel deuterium-containing chalcone derivatives may have interesting biological effects and improved metabolic properties as compared with the parent compounds. PMID:26959006

  16. Continuous-Flow Synthesis of Deuterium-Labeled Antidiabetic Chalcones: Studies towards the Selective Deuteration of the Alkynone Core

    Directory of Open Access Journals (Sweden)

    Sándor B. Ötvös

    2016-03-01

    Full Text Available Flow chemistry-based syntheses of deuterium-labeled analogs of important antidiabetic chalcones were achieved via highly controlled partial C≡C bond deuteration of the corresponding 1,3-diphenylalkynones. The benefits of a scalable continuous process in combination with on-demand electrolytic D2 gas generation were exploited to suppress undesired over-reactions and to maximize reaction rates simultaneously. The novel deuterium-containing chalcone derivatives may have interesting biological effects and improved metabolic properties as compared with the parent compounds.

  17. Direct in vivo characterization of delta 5 desaturase activity in humans by deuterium labeling: Effect of insulin

    International Nuclear Information System (INIS)

    The conversion of dihomogamma linolenic acid (DHLA) into arachidonic acid (AA) was compared in normal subjects and diabetic patients before and after treatment with insulin. The kinetics of the incorporation of deuterium-labeled DHLA and its conversion product, deuterium-labeled AA, was determined in plasma triglycerides, plasma phospholipids, and platelet lipids of subjects after ingestion of 2 g of the labeled precursor. Analysis was performed by gas liquid chromatography-mass spectrometry using multiple ion detection. In normal subjects, the deuterium-labeled DHLA concentration rose to 24 to 69 mg/L in plasma triglycerides four to nine hours after ingestion and to 20 to 34 mg/L in plasma phospholipids about four hours later. Deuterium-labeled AA appeared at 12 hours, rose to 2.4 to 3.8 mg/L between 48 and 72 hours in plasma phospholipids, but remained at the limit of detection in plasma triglycerides and was undetectable in platelet lipids. In diabetic patients both before and after insulin treatment, the deuterium-labeled DHLA concentration in plasma triglycerides and in plasma phospholipids followed the same pattern as in normal subjects. However, the deuterium-labeled arachidonic acid concentration was below 1 mg/L in plasma phospholipids before insulin. After insulin treatment the patients recovered normal DHLA metabolism because deuterium-labeled AA rose in phospholipids to a mean value of 3.5 mg/L, which is in the same range as that observed in normal subjects (3.2 mg/L). The present data provide direct evidence for the conversion of DHLA into AA in humans. The effect of insulin and the data from the literature of animal studies suggest insulin dependence of delta 5 desaturase in humans

  18. Thermal behavior of deuterium implanted into nuclear graphite studied by NRA

    Science.gov (United States)

    Le Guillou, M.; Toulhoat, N.; Pipon, Y.; Moncoffre, N.; Bérerd, N.; Perrat-Mabilon, A.; Rapegno, R.

    2014-08-01

    This paper focuses on the thermal behavior of deuterium, simulating tritium, implanted into virgin nuclear graphite of French gas-cooled reactors, which are being decommissioned. Deuterium ions D+ were implanted into graphite (around 3 at.% at the projected range Rp) at two different depths (around 670 nm and 2.8 μm) and annealed up to about 300 h in a temperature range from 200 °C to 1200 °C under vacuum or argon flow. Before and after heat treatments, D distribution profiles in the samples were followed using the nuclear reaction D(3He,p)4He, with a millimetric beam at the 4 MV Van de Graaff accelerator of IPNL (Institut de Physique Nucléaire de Lyon, France). The results show that the deuterium release becomes significant at temperatures higher than 600 °C and is almost totally completed at 1200 °C. The comparison of the results, obtained for both implantation depths, points out the role of the porosity with respect to deuterium permeation. The release follows two stages: a rapid step where it occurs within a few hours, followed by a much slower step during which the release of deuterium saturates. The initial stage is characterized by an activation energy of 1.3 eV and might correspond to detrapping of D located at crystallite edges and its diffusion at the crystallite surfaces. We assume that the second stage kinetics corresponds to a very slow diffusion of D located inside the crystallites and chemisorbed to carbon atoms through sp2 or sp3 bonds.

  19. Thermal behavior of deuterium implanted into nuclear graphite studied by NRA

    Energy Technology Data Exchange (ETDEWEB)

    Le Guillou, M., E-mail: m.le-guillou@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3, UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon, 4 rue Enrico Fermi, F-69622 Villeurbanne cedex (France); Agence nationale pour la gestion des déchets radioactifs, 1-7 rue Jean Monnet, Parc de la Croix-Blanche, F-92298 Châtenay-Malabry cedex (France); Toulhoat, N., E-mail: nelly.toulhoat@univ-lyon1.fr [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3, UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon, 4 rue Enrico Fermi, F-69622 Villeurbanne cedex (France); Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/DEN, Centre de Saclay, F-91191 Gif-sur-Yvette cedex (France); Pipon, Y. [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3, UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon, 4 rue Enrico Fermi, F-69622 Villeurbanne cedex (France); Institut Universitaire Technologique, Université Claude Bernard Lyon 1, Université de Lyon, 43 boulevard du 11 novembre 1918, F-69622 Villeurbanne cedex (France); Moncoffre, N. [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3, UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon, 4 rue Enrico Fermi, F-69622 Villeurbanne cedex (France); and others

    2014-08-01

    This paper focuses on the thermal behavior of deuterium, simulating tritium, implanted into virgin nuclear graphite of French gas-cooled reactors, which are being decommissioned. Deuterium ions D{sup +} were implanted into graphite (around 3 at.% at the projected range R{sub p}) at two different depths (around 670 nm and 2.8 μm) and annealed up to about 300 h in a temperature range from 200 °C to 1200 °C under vacuum or argon flow. Before and after heat treatments, D distribution profiles in the samples were followed using the nuclear reaction D({sup 3}He,p){sup 4}He, with a millimetric beam at the 4 MV Van de Graaff accelerator of IPNL (Institut de Physique Nucléaire de Lyon, France). The results show that the deuterium release becomes significant at temperatures higher than 600 °C and is almost totally completed at 1200 °C. The comparison of the results, obtained for both implantation depths, points out the role of the porosity with respect to deuterium permeation. The release follows two stages: a rapid step where it occurs within a few hours, followed by a much slower step during which the release of deuterium saturates. The initial stage is characterized by an activation energy of 1.3 eV and might correspond to detrapping of D located at crystallite edges and its diffusion at the crystallite surfaces. We assume that the second stage kinetics corresponds to a very slow diffusion of D located inside the crystallites and chemisorbed to carbon atoms through sp{sup 2} or sp{sup 3} bonds.

  20. Deuterium trapping in carbon fiber composites exposed to D plasma

    Energy Technology Data Exchange (ETDEWEB)

    Airapetov, A. [Plasma Physics Department, Moscow Engineering and Physics Institute, Kashirskoe Shosse 31, Moscow 115409 (Russian Federation); Begrambekov, L., E-mail: lbb@plasma.mephi.r [Plasma Physics Department, Moscow Engineering and Physics Institute, Kashirskoe Shosse 31, Moscow 115409 (Russian Federation); Brosset, C.; Gunn, J.P.; Grisolia, C. [Association EURATOM-CEA, CEA/DSM/DRFC Cadarache, 13108 St. Paul lez Durance (France); Kuzmin, A. [Plasma Physics Department, Moscow Engineering and Physics Institute, Kashirskoe Shosse 31, Moscow 115409 (Russian Federation); Loarer, T.; Lipa, M.; Monier-Garbet, P. [Association EURATOM-CEA, CEA/DSM/DRFC Cadarache, 13108 St. Paul lez Durance (France); Shigin, P. [Plasma Physics Department, Moscow Engineering and Physics Institute, Kashirskoe Shosse 31, Moscow 115409 (Russian Federation); Tsitrone, E. [Association EURATOM-CEA, CEA/DSM/DRFC Cadarache, 13108 St. Paul lez Durance (France); Zakharov, A. [Plasma Physics Department, Moscow Engineering and Physics Institute, Kashirskoe Shosse 31, Moscow 115409 (Russian Federation)

    2009-06-15

    Deuterium trapping in carbon fiber composite N11 and pyrolitic graphite PG99 irradiated with plasma ions and electrons was examined with thermal desorption spectrometry. It has been found that the deuterium trapping takes place even at ion and electron energies of about 10 eV. For equal ion fluences, the deuterium retention and probability of CD{sub 4} formation are higher for ion irradiation at lower ion flux. Peculiarities of the deuterium retention and CD{sub 4} formation are explained; driving forces and mechanisms of the D trapping are discussed.

  1. Optimized baffle and aperture placement in neutral beamlines

    International Nuclear Information System (INIS)

    Most neutral beamlines contain an iron-core ion-bending magnet that requires shielding between the end of the neutralizer and this magnet. This shielding allows the gas pressure to drop prior to the beam entering the magnet and therefore reduces beam losses in this drift region. We have found that the beam losses can be reduced even further by eliminating the iron-core magnet and the magnetic shielding altogether. The required bending field can be supplied by current coils without the iron poles. In addition, placement of the baffles and apertures can affect the cold gas entering the plasma region and the losses in the neutral beam due to re-ionization. In our study we varied the placement of the baffles, which determine the amount of pumping in each chamber, and the apertures, which determine the beam loss. Our results indicate that a baffle/aperture configuration can be set for either minimum cold gas into the plasma region or minimum beam losses, but not both

  2. Effect of deuterium ion beam irradiation onto the mirror-like pulsed laser deposited thin films of rhodium

    Energy Technology Data Exchange (ETDEWEB)

    Mostako, A.T.T., E-mail: abu@iitg.ernet.in [Laser and Photonics Lab, Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Khare, Alika [Laser and Photonics Lab, Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Rao, C.V.S.; Vala, Sudhirsinh; Makwana, R.J.; Basu, T.K. [Neutronics Lab, Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2015-01-01

    Highlights: • Rh mirror like thin films are fabricated by PLD technique for FM application. • Rh thin film FMs are irradiated with 10, 20, and 30 keV D ion beam. • Effect of D ion beam irradiation on Rh FM’s reflectivity is investigated. - Abstract: The effect of deuterium ion beam irradiation on the reflectivity of mirror-like pulsed laser deposited (PLD) thin film of rhodium is reported. The deposition parameters; target-substrate distance and background helium gas pressure were optimized to obtain the good quality rhodium films, of higher thickness, oriented preferentially in (1 1 1) plane. The rhodium thin films deposited at optimum PLD parameters were exposed to 10, 20, and 30 keV deuterium ion beam. The changes in surface morphology and UV–Visible–FIR reflectivity of mirror-like rhodium thin films, as a function of energy of deuterium ion beam, after exposure are reported.

  3. Synthesis of pteroylglutamic acid-3',5'-2H2 by trifluoroacetic acid catalyzed exchange with deuterium oxide

    International Nuclear Information System (INIS)

    Pteroylglutamic acid (PGA) was deuterated by trifluoroacetic acid catalyzed exchange with deuterium oxide. The product, pteroylglutamic acid-3',5'-2H2, was specifically deuterated in the aromatic protons of the p-aminobenzoyl (PABA) moiety; the protons on C7 and C9 and in the glutamic acid residue were not exchanged. Deuterium incorporation was measured by chemical ionization mass spectrometry (CI-MS). Pteroylglutamates were cleaved by a base-catalyzed, oxidative hydrolysis to PABA, which was converted to the methyl ester, N-trifluoroacetate for analysis by gas chromatography-chemical ionization-mass spectrometry. Products from the exchange typically contained 1 percent 2H1 and 90 percent 2H2 species. The procedure may be used to label specifically various analogs of PGA with deuterium in the PABA portion of the molecule

  4. Aperture scanning Fourier ptychographic microscopy

    Science.gov (United States)

    Ou, Xiaoze; Chung, Jaebum; Horstmeyer, Roarke; Yang, Changhuei

    2016-01-01

    Fourier ptychographic microscopy (FPM) is implemented through aperture scanning by an LCOS spatial light modulator at the back focal plane of the objective lens. This FPM configuration enables the capturing of the complex scattered field for a 3D sample both in the transmissive mode and the reflective mode. We further show that by combining with the compressive sensing theory, the reconstructed 2D complex scattered field can be used to recover the 3D sample scattering density. This implementation expands the scope of application for FPM and can be beneficial for areas such as tissue imaging and wafer inspection. PMID:27570705

  5. Ultrasonic large aperture imaging system

    International Nuclear Information System (INIS)

    A new ultrasonic large aperture imaging technique is described. This device combines a focussed transducer as a transmitter, producing a small ultrasonic beam, with N transducers as receivers. We show that is possible to considerably reduce the number of receivers if, on the one hand, we limit the reconstitution process to the emitter beam area and, on the other hand, we ensure that the artefacts, caused by the spatial sampling of the reception, are outside this area. Under these conditions, the result is a high resolution image which does not require large reconstitution processing times. Theoretical and experimental results are given

  6. The Large Aperture GRB Observatory

    CERN Document Server

    Allard, D; Asorey, H; Barros, H; Bertou, X; Castillo, M; Chirinos, J M; De Castro, A; Flores, S; González, J; Berisso, M Gomez; Grajales, J; Guada, C; Day, W R Guevara; Ishitsuka, J; López, J A; Martínez, O; Melfo, A; Meza, E; Loza, P Miranda; Barbosa, E Moreno; Murrugarra, C; Núñez, L A; Ormachea, L J Otiniano; Pérez, G; Perez, Y; Ponce, E; Quispe, J; Quintero, C; Rivera, H; Rosales, M; Rovero, A C; Saavedra, O; Salazar, H; Tello, J C; Peralda, R Ticona; Varela, E; Velarde, A; Villaseñor, L; Wahl, D; Zamalloa, M A

    2009-01-01

    The Large Aperture GRB Observatory (LAGO) is aiming at the detection of the high energy (around 100 GeV) component of Gamma Ray Bursts, using the single particle technique in arrays of Water Cherenkov Detectors (WCD) in high mountain sites (Chacaltaya, Bolivia, 5300 m a.s.l., Pico Espejo, Venezuela, 4750 m a.s.l., Sierra Negra, Mexico, 4650 m a.s.l). WCD at high altitude offer a unique possibility of detecting low gamma fluxes in the 10 GeV - 1 TeV range. The status of the Observatory and data collected from 2007 to date will be presented.

  7. Experiments on palladium- and titanium-deuterium systems with reference to studies on ''cold fusion''

    International Nuclear Information System (INIS)

    The work performed at Risoe in connection with the claims of ''cold fusion'' is summarised in this report. The main purpose of the whole experiment was to analyse if structural anomalies of deuterated metals could support the occurrence of fusion processes in such systems by x-ray and neutron powder diffraction methods. Two types of systems were investigated. The first one was an electrolytic cell with palladium as electrode. No anomalous properties in the composition and positions of deuterium were found in this case. The other one was a titanium-deuterium-gas system which was studied in order to reproduce the ''Frascati experiment''. However, no neutrons above the background level were observed in spite of the very sensitive detector system. By neutron diffraction of this system a 70% titanium-dideuterium phase was found. (author)

  8. The influence of the nitrogen admixture on the evolution of a deuterium pinch column

    Science.gov (United States)

    Kubes, P.; Paduch, M.; Cikhardtova, B.; Cikhardt, J.; Klir, D.; Kravarik, J.; Rezac, K.; Kortanek, J.; Zielinska, E.; Sadowski, M. J.; Tomaszewski, K.

    2016-08-01

    The application of a mixture of nitrogen and deuterium for the gas-puffing along the anode axis in deuterium plasma-focus discharges, as carried out at megaampere-level currents, enabled observations of the filamentary structure, and the decrease in the transformation velocity of the plasma column to be performed. It made possible to investigate the instability evolution during the production of hard X-rays and fast neutrons in more detail. The constriction of a plasma column transforms itself during the final phase of the compression into one or more small dense plasmoid-like structures which are separated by narrow necks. During the next phase, these structures start to decay by an expansion, in which a part of the plasma volume maintains its compactness. This evolution is explained by an increase and later decrease in the internal poloidal current component by reconnections of the associated magnetic lines, which are responsible for the acceleration of electron and ion beams.

  9. Modeling deuterium fractionation in cold and warm molecular environments with large chemical networks

    CERN Document Server

    Albertsson, T; Henning, Th

    2013-01-01

    Observations of deuterated species have long proven essential to probe properties and thermal history of various astrophysical environments. We present an elaborated chemical model that includes tens of thousands of reactions with multi-deuterated species, both gas-phase and surface, in which the most recent information on deuterium chemistry is implemented. A detailed study of the chemical evolution under wide range of temperatures and densities typical of cold molecular cores, warm protostellar envelopes, and hot cores/corinos is performed. We consider two cases of initial abundances, with 1) mainly atomic composition and all deuterium locked in HD, and 2) molecular abundances accumulated at 1 Myr of the evolution of a cold prestellar core. We indicate deuterated species that are particularly sensitive to temperature gradients and initial chemical composition. Many multiply-deuterated species produced at 10 K by exothermic ion-molecule chemistry retain large abundances even when temperature rises above 100 ...

  10. Liquid deuterium neutron attenuator for broad-band photon beam facility

    International Nuclear Information System (INIS)

    The photo-production facility at Fermilab uses a two section liquid deuterium attenuator, 103 feet in length, to reduce the neutron flux and produce a pure high energy photon beam. The facility is located in the Proton East experimental hall, and includes nine 10 foot long sweeping magnets. A unique refrigeration system supplies mechanically refrigerated helium gas trace cooling to condense deuterium directly in a flask. The control system permits remote operation of the cryogenic system and also acts as an interface to the Proton Area operations computer. The computer can be used to monitor the operating parameters and for partial control of the system. The facility is presently in use as part of the Proton Area experimental program. (auth)

  11. Analysis of deuterium in V-Fe5at.% film by atom probe tomography (APT)

    KAUST Repository

    Gemma, Ryota

    2011-09-01

    V-Fe5at.% 2 and 10-nm thick single layered films were prepared by ion beam sputtering on W substrate. They were loaded with D from gas phase at 0.2 Pa and at 1 Pa, respectively. Both lateral and depth D distribution of these films was investigated in detail by atom probe tomography. The results of analysis are in good agreement between the average deuterium concentration and the value, expected from electromotive force measurement on a similar flat film. An enrichment of deuterium at the V/W interface was observed for both films. The origin of this D-accumulation was discussed in respect to electron transfer, mechanical stress and misfit dislocations. © 2010 Elsevier B.V. All rights reserved.

  12. Resonant Effects in Nanoscale Bowtie Apertures

    Science.gov (United States)

    Ding, Li; Qin, Jin; Guo, Songpo; Liu, Tao; Kinzel, Edward; Wang, Liang

    2016-06-01

    Nanoscale bowtie aperture antennas can be used to focus light well below the diffraction limit with extremely high transmission efficiencies. This paper studies the spectral dependence of the transmission through nanoscale bowtie apertures defined in a silver film. A realistic bowtie aperture is numerically modeled using the Finite Difference Time Domain (FDTD) method. Results show that the transmission spectrum is dominated by Fabry-Pérot (F-P) waveguide modes and plasmonic modes. The F-P resonance is sensitive to the thickness of the film and the plasmonic resonant mode is closely related to the gap distance of the bowtie aperture. Both characteristics significantly affect the transmission spectrum. To verify these numerical results, bowtie apertures are FIB milled in a silver film. Experimental transmission measurements agree with simulation data. Based on this result, nanoscale bowtie apertures can be optimized to realize deep sub-wavelength confinement with high transmission efficiency with applications to nanolithography, data storage, and bio-chemical sensing.

  13. Cryotarget Control Software for Liquid Deuterium

    Science.gov (United States)

    Brakman, David; Gilfoyle, Gerard; Cuevas, Chris; Christo, Steve; CLAS Collaboration

    2015-10-01

    One of the experiments in Hall B at Jefferson Lab will measure the neutron elastic magnetic form factor with a 12 GeV electron beam striking a liquid deuterium target (LD2) and measuring the resulting debris in the CEBAF Large Acceptance Spectrometer (CLAS12). A program was created that acts as a control system for the LD2 target. It will monitor the deuterium target and send data to the main control system and the shift workers monitoring the experiment in real time. The data include measurements of pressure, temperature, and liquid level. The system will also control setpoints for temperature, heater power, and other parameters as well as download calibration curves. The program was written in LabVIEW, a graphical programming language noted for readily interfacing with lab equipment. This project has completed two stages so far. Simulated data were generated within LabVIEW and passed to subroutines that send, log, and display data on a PC. In the second stage, the PC was connected to a data acquisition board, and test signals were read and analyzed to simulate the target sensors. Work supported by the University of Richmond and the US Department of Energy.

  14. Doppler synthetic aperture hitchhiker imaging

    International Nuclear Information System (INIS)

    In this paper we consider passive airborne receivers that use backscattered signals from sources of opportunity transmitting single-frequency or ultra-narrowband waveforms. Because of its combined passive synthetic aperture and the single-frequency nature of the transmitted waveforms, we refer to the system under consideration as Doppler synthetic aperture hitchhiker (DSAH). We present a novel image formation method for DSAH. Our method first correlates the windowed signal obtained from one receiver with the windowed, filtered, scaled and translated version of the received signal from another receiver. This processing removes the transmitter-related variables from the phase of the Fourier integral operator that maps the radiance of the scene to the correlated signal. Next, we use microlocal analysis to reconstruct the scene radiance by the weighted backprojection of the correlated signal. The image reconstruction method is applicable to both cooperative and non-cooperative sources of opportunity using one or more airborne receivers. It has the desirable property of preserving the visible edges of the scene radiance. Additionally, it is an analytic reconstruction technique that can be made computationally efficient. We present numerical simulations to demonstrate the performance of the image reconstruction method and to verify the theoretical results

  15. Advanced Multiple Aperture Seeing Profiler

    Science.gov (United States)

    Ren, Deqing; Zhao, Gang

    2016-10-01

    Measurements of the seeing profile of the atmospheric turbulence as a function of altitude are crucial for solar astronomical site characterization, as well as the optimized design and performance estimation of solar Multi-Conjugate Adaptive Optics (MCAO). Knowledge of the seeing distribution, up to 30 km, with a potential new solar observation site, is required for future solar MCAO developments. Current optical seeing profile measurement techniques are limited by the need to use a large facility solar telescope for such seeing profile measurements, which is a serious limitation on characterizing a site's seeing conditions in terms of the seeing profile. Based on our previous work, we propose a compact solar seeing profiler called the Advanced Multiple Aperture Seeing Profile (A-MASP). A-MASP consists of two small telescopes, each with a 100 mm aperture. The two small telescopes can be installed on a commercial computerized tripod to track solar granule structures for seeing profile measurement. A-MASP is extreme simple and portable, which makes it an ideal system to bring to a potential new site for seeing profile measurements.

  16. Sputtering of solid deuterium by He-ions

    DEFF Research Database (Denmark)

    Schou, Jørgen; Stenum, B.; Pedrys, R.

    2001-01-01

    Sputtering of solid deuterium by bombardment of 3He+ and 4He+ ions was studied. Some features are similar to hydrogen ion bombardment of solid deuterium, but for the He-ions a significant contribution of elastic processes to the total yield can be identified. The thin-film enhancement is more...

  17. Confinement and heating of a deuterium-tritium plasma

    International Nuclear Information System (INIS)

    The Tokamak Fusion Test Reactor (TFTR) has performed initial high-power experiments with the plasma fueled by deuterium and tritium to nominally equal densities. Compared to pure deuterium plasmas, the energy stored in the electron and ions increased by ∼20%. These increases indicate improvements in confinement associated with the use of tritium and possibly heating of electrons by α-particles

  18. Deuterium behavior in first-wall materials for nuclear fusion

    International Nuclear Information System (INIS)

    Plasma-wall interactions play an important part while choosing materials for the first wall in future fusion reactors. Moreover, the use of tritium as a fuel will impose safety limits regarding the total amount present in the tokamak. Previous analyses of first-wall samples exposed to fusion plasma highlighted an in-bulk migration of deuterium (as an analog to tritium) in carbon materials. Despite its limited value, this retention is problematic: contrary to co-deposited layers, it seems very unlikely to recover easily the deuterium retained in such a way. Because of the difficult access to in situ samples, most published studies on the subject were carried out using post-mortem sample analysis. In order to access to the dynamic of the phenomenon and come apart potential element redistribution during storage, we set up a bench intended for simultaneous low-energy ion implantation, reproducing the deuterium interaction with first-wall materials, and high-energy micro beam analysis. Nuclear reaction analysis performed at the micrometric scale (μNRA) allows to characterize deuterium repartition profiles in situ. This analysis technique was confirmed to be non-perturbative of the mechanisms studied. We observed on the experimental data set that the material surface (0-1 μm) display a high and nearly constant deuterium content, with a uniform distribution. On the contrary, in-bulk deuterium (1-11 μm) localizes in preferential trapping sites related to the material microstructure. In-bulk deuterium inventory seems to increase with the incident fluence, in spite of the wide data scattering attributed to the structure variation of studied areas. Deuterium saturation at the surface as well as in-depth migration are instantaneous; in-vacuum storage leads to a small deuterium global desorption. Observations made via μNRA were coupled with results from other characterization techniques. X-ray μtomography allowed to identify porosities as the preferential trapping sites

  19. Advanced Optics Experiments Using Nonuniform Aperture Functions

    CERN Document Server

    Wood, Lowell T

    2012-01-01

    A method to create instructive, nonuniform aperture functions using spatial frequency filtering is described. The diffraction from a single slit in the Fresnel limit and the interference from a double slit in the Fraunhofer limit are spatially filtered to create electric field distributions across an aperture to produce apodization, inverse apodization or super-resolution, and apertures with phase shifts across their widths. The diffraction effects from these aperture functions are measured and calculated. The excellent agreement between the experimental results and the calculated results makes the experiment ideal for use in an advanced undergraduate or graduate optics laboratory to illustrate experimentally several effects in Fourier optics.

  20. Practical Applications of Synthetic Aperture Imaging

    OpenAIRE

    Nikolov, Svetoslav Ivanov; Kortbek, Jacob; Jensen, Jørgen Arendt

    2010-01-01

    Synthetic aperture imaging has been a focus of research for almost 3 decades. The research carried out at the Center for Fast Ultrasound Imaging has demonstrated that synthetic aperture focusing not only can be used in-vivo, but that it also yields superior B-mode and blood flow images. In the last years synthetic aperture focusing has moved from the lab to commercial products. The implementations vary in their scope and purpose. Some scanners use synthetic aperture imaging to improve the det...

  1. Ion mobility spectrometer with virtual aperture grid

    Science.gov (United States)

    Pfeifer, Kent B.; Rumpf, Arthur N.

    2010-11-23

    An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

  2. Influence of tungsten microstructure and ion flux on deuterium plasma-induced surface modifications and deuterium retention

    NARCIS (Netherlands)

    Buzi, L.; De Temmerman, G.; Unterberg, B.; M. Reinhart,; Dittmar, T.; Matveev, D.; Linsmeier, C.; Breuer, U.; Kreter, A.; Van Oost, G.

    2015-01-01

    The influence of surface temperature, particle flux density and material microstructure on the surface morphology and deuterium retention was studied by exposing tungsten targets (20 μm and 40 μm grain size) to deuterium plasma at the same particle fluence (1026 m−2) and i

  3. Deuterium Abundance in Consciousness and Current Cosmology

    Science.gov (United States)

    Rauscher, Elizabeth A.

    We utilize the deuterium-hydrogen abundances and their role in setting limits on the mass and other conditions of cosmogenesis and cosmological evolution. We calculate the dependence of a set of physical variables such as density, temperature, energy mass, entropy and other physical variable parameters through the evolution of the universe under the Schwarzschild conditions as a function from early to present time. Reconciliation with the 3°K and missing mass is made. We first examine the Schwarzschild condition; second, the geometrical constraints of a multidimensional Cartesian space on closed cosmologies, and third we will consider the cosmogenesis and evolution of the universe in a multidimensional Cartesian space, obeying the Schwarzschild condition. Implications of this model for matter creation are made. We also examine experimental evidence for closed versus open cosmologies; x-ray detection of the "missing mass" density. Also the interstellar deuterium abundance, along with the value of the Hubble constant set a general criterion on the value of the curvature constant, k. Once the value of the Hubble constant, H is determined, the deuterium abundance sets stringent restrictions on the value of the curvature constant k by an detailed discussion is presented. The experimental evidences for the determination of H and the primary set of coupled equations to determine D abundance is given. 'The value of k for an open, closed, or flat universe will be discussed in terms of the D abundance which will affect the interpretation of the Schwarzschild, black hole universe. We determine cosmology solutions to Einstein's field obeying the Schwarzschild solutions condition. With this model, we can form a reconciliation of the black hole, from galactic to cosmological scale. Continuous creation occurs at the dynamic blackhole plasma field. We term this new model the multiple big bang or "little whimper model". We utilize the deuteriumhydrogen abundances and their role in

  4. Synthetic aperture interferometry: error analysis

    International Nuclear Information System (INIS)

    Synthetic aperture interferometry (SAI) is a novel way of testing aspherics and has a potential for in-process measurement of aspherics [Appl. Opt.42, 701 (2003)].APOPAI0003-693510.1364/AO.42.000701 A method to measure steep aspherics using the SAI technique has been previously reported [Appl. Opt.47, 1705 (2008)].APOPAI0003-693510.1364/AO.47.001705 Here we investigate the computation of surface form using the SAI technique in different configurations and discuss the computational errors. A two-pass measurement strategy is proposed to reduce the computational errors, and a detailed investigation is carried out to determine the effect of alignment errors on the measurement process.

  5. Channeling effect in polycrystalline deuterium-saturated CVD diamond target bombarded by deuterium ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Bagulya, A.V.; Dalkarov, O.D. [Lebedev Physical Institute RAS, Moscow (Russian Federation); Negodaev, M.A., E-mail: negodaev@sci.lebedev.ru [Lebedev Physical Institute RAS, Moscow (Russian Federation); Rusetskii, A.S., E-mail: rusets@lebedev.ru [Lebedev Physical Institute RAS, Moscow (Russian Federation); Chubenko, A.P. [Lebedev Physical Institute RAS, Moscow (Russian Federation); Ralchenko, V.G.; Bolshakov, A.P. [Prokhorov General Physics Institute RAS, Moscow (Russian Federation); National Research Nuclear University MEPhI, Moscow (Russian Federation)

    2015-07-15

    At the ion accelerator HELIS at LPI, the neutron yield is investigated in DD reactions within a strongly textured polycrystalline deuterium-saturated CVD diamond under irradiation by a deuterium ion beam with the energy of less than 30 keV. The measurements of the neutron flux in the beam direction are performed using a multichannel detector based on {sup 3}He counters, in dependence on the target angle, β, with respect to the beam axis. A significant anisotropy in the neutron yield is observed. At β = 0° the yield is higher by a factor of 3 as compared to that at β = ±45°. The possible reasons for the anisotropy, including ion channeling, are discussed.

  6. Channeling Effect in Polycrystalline Deuterium-Saturated CVD Diamond Target Bombarded by Deuterium Ion Beam

    CERN Document Server

    Bagulya, A V; Negodaev, M A; Rusetskii, A S; Chubenko, A P; Ralchenko, V G; Bolshakov, A P

    2014-01-01

    At the ion accelerator HELIS at the LPI, the neutron yield is investigated in DD reactions within a polycrystalline deuterium-saturated CVD diamond, during an irradiation of its surface by a deuterium ion beam with the energy less than 30 keV. The measurements of the neutron flux in the beam direction are performed in dependence on the target angle, \\b{eta}, with respect to the beam axis. These measurements are performed using a multichannel detector based on He3 counters. A significant anisotropy in neutron yield is observed, it was higher by a factor of 3 at \\b{eta}=0 compared to that at \\b{eta} = +-45{\\deg}. The possible reasons for the anisotropy, including ion channeling, are discussed.

  7. Oxidation and deuterium uptake of Zr-2.5Nb pressure tubes in CANDU-PHW reactors

    International Nuclear Information System (INIS)

    Oxidation and deuterium uptake in Zr-2.5Nb pressure tubes are being monitored by destructive examination of tubes removed from commercial Canadian deuterium uranium pressurized heavy-water (CANDU-PHW) stations and by analyses of microsamples, obtained in-situ, from the inside surface of tubes in the reactor. Unlike Zircaloy-2, there is no evidence for any acceleration in the oxidation rate for exposures up to about 4500 effective full power days. Changes towards a more equilibrium microstructure during irradiation may be partly responsible for maintaining the low oxidation rate, since thermal aging treatments, producing similar microstructural changes in initially cold worked tubes, were found to improve out-reactor corrosion resistance in 589 K water. With one exception, the deuterium uptake in Zr-2.5Nb tubes has been remarkably low and no greater than 3-mg/kg deuterium per year (0.39 mg/dm2 hydrogen per year) . The exception is the most recent surveillance tube removed from Pickering (NGS) Unit 3, which had a deuterium content near the outlet end about five times higher than that seen in the previous tube examined. Current investigations suggest that most of the uptake in that tube may have come from the gas annulus surrounding the tube where deuterium exists as an impurity, and oxidation has been insufficient to maintain a protective oxide film. Results from weight gain measurements, chemical analyses, metallography, scanning electron microscopy, and transmission electron microscopy of irradiated pressure tubes and of small coupons exposed out reactor are presented and discussed with respect to the observed corrosion and hydriding behavior of CANDU-PHW pressure tubes. (author)

  8. Deuterium treatment of low water peak fiber

    Institute of Scientific and Technical Information of China (English)

    Xinwei QIAN; Deming LIU; Feng TU

    2009-01-01

    The deuterium (D2) treatment of low water peak single-mode fiber (LWP-SMF) after drawing has been investigated. The D2 treatment time and concentra-tion have important effect on fiber's properties after D2 treatment. The insufficient treatment of D2 cannot ensure fiber resistant to hydrogen aging, whereas excessive treatment of D2 will result in excess loss on fiber at 13 83 nm. The optimization on viscosity match between the core and the cladding is helpful on problem solving of excess loss after the D2 treatment. However, by designing proper time and D2 concentration in the D2 treatment process, it can produce fiber with good hydrogen aging resistance and low excess loss and lower the cost of the D2 treatment process.

  9. Deuterium pellet injection in the TFR Tokamak

    International Nuclear Information System (INIS)

    Injecting fresh fuel deep inside the plasma of a thermonuclear reactor appears to be necessary; the only way to do that is to inject fast solid deuterium pellets. The existing theoretical, technical and experimental aspects of this method are presented. The experiments on TFR have confirmed that injecting pellets is technically feasible; a new kind of injector is presented. The injection does not degrade stability nor confinement of the plasma. The study of the transient phenomena occuring during the injection has proved to be an efficient way to investigate particles and energy transport in the discharge; in particular, a fast transport phenomenon, similar to those occuring during disruptions, has been studied in details. Conclusions about disruptions are drawn. (Ref 101)

  10. Catalyzed deuterium fueled tandem mirror reactor assessment

    International Nuclear Information System (INIS)

    This study was part of a Department of Energy supported alternate fusion fuels program at Science Applications International Corp. The purpose of this portion of the study is to perform an assessment of a conceptual tandem mirror reactor (TMR) that is fueled by the catalyzed-deuterium (Cat-d) fuel cycle with respect to the physics, technology, safety, and cost. Achievable stable betas and magnet configurations are found to be comparable for the Cat-d and d-t fueled TMR. A comparison with respect to cost, reactor performance, and technology requirements for a Cat-d fueled reactor and a comparable d-t fueled reactor such as MARS is also made

  11. Multiphoton dissociative ionization of molecular deuterium

    International Nuclear Information System (INIS)

    The kinetic energy spectra of deuterium ions produced from D2 arising from collision-free subpicosecond irradiation at 248 nm with intensities spanning the 10/sup 13/--10/sup 16/-W/cm2 range have been measured by time-of-flight analysis. The behaviors of the kinetic energy distributions of the fragments and the relative abundances of atomic (D+) and molecular (D2+) ions reveal the presence of two mechanisms of multiphoton dissociative ionization. Calibration of the energy scale for D+ is facilitated by comparison with He/sup 2+/. For intensities in the 10/sup 13/--10/sup 15/-W/cm2 region, intermediate three-photon resonances and the optical Stark shift play important roles. At an intensity /similar to/0/sup 16/ W/cm2, a direct transition from the molecular ground state to the dissociative ionic level appears as a significant channel. No evidence of direct double ionization was observed

  12. Highly spin-polarized deuterium atoms from the UV dissociation of Deuterium Iodide

    CERN Document Server

    Sofikitis, D; Koumarianou, G; Jiang, H; Bougas, L; Samartzis, P C; Andreev, A; Rakitzis, T P

    2016-01-01

    Hyperpolarisation of deuterium (D) and tritium (T) nuclear spins increases the D-T fusion reaction rate by ~50%, thus lowering the breakeven limit for the achievement of self-sustained fusion, and controls the emission direction of the reaction products for improved reactor efficiency. However, the important D-D polarization-dependent fusion reaction has not yet been measured, due to the low density of conventional polarized deuterium beams of ~10$^{12}$ cm$^{-3}$, limited by collisions on the ms-timescale of production. Here we demonstrate that hyperpolarised D atoms are produced by the 270 nm photodissociation of deuterium iodide (DI), yielding ~60% nuclear D polarization after ~1.6 ns, ~10$^6$ times faster than conventional methods, allowing collision-limited densities of ~10$^{18}$ cm$^{-3}$. Such ultrahigh densities of polarized D atoms open the way for the study of high-signal polarized D-D reactions. We discuss the possibility of the production of high-density pulsed polarized beams, and of polarized D...

  13. Deuterium depleted water. Present applications and prospects

    International Nuclear Information System (INIS)

    The deuterium depleted water, DDW, is distilled, microbiologically pure water with an isotopic concentration D/(D+H) under 145 ppm, the natural water value. At ICSI Rm Valcea a procedure was developed and a patent was recorded for the method and installation for obtaining DDW. The procedure consists in vacuum distillation of natural water on columns equipped with highly performing ordered packing. The system allows obtaining DDW at isotopic concentration within the range 20-120 ppm. Biological studies showed that treatment with this DDW reduced significantly the high rate in L929 linear fibroblast cells and annihilated the tumoral growth in xenotransplant. It was suggested that the deuterium occurring naturally has an essential in converting the signals regulating the cellular cycling. A vast program based on collaborations of ICSI with different specialized research institutes in Romania was initiated and important results already obtained among which one can mention: - DDW determines an increase of vascular reactivity seemingly endotelio-dependent and implying radical species (superoxides, nitric oxides); - immunity defense reaction represented by the opsonic, bactericide and phagocytic capacity are stimulated; - animals pre-treated with DDW present an increased resistance to both sub-lethal and lethal doses of gamma radiations, suggesting a radioprotective property; - study of artificial fecundation in fishes with fecundating solution containing an 1:1 mixture of DDW and distilled water showed the beneficent effects both in embryonal development and growth in alevins; - an increase of metabolism rate in aquatic macrophytes following the dilution of spectral energy of sea water mixed with DDW was observed; - studies on three genotypes of Zea mays showed significant effects on coleoptile growth. At present programs for studying prevention and treatment of tumors and various cancer forms are underway

  14. Deuterium depleted water. Romanian achievements and prospects

    International Nuclear Information System (INIS)

    The deuterium depleted water (DDW) is microbiologically pure distilled water with a deuterium content lower than that of natural waters which amounts to 140 - 150 ppm D/(D+H); variations depend on geographical zone and altitude. The procedure of obtaining DDW is based on isotopic separation of natural water by vacuum distillation. Isotope concentration can be chosen within 20 to 120 ppm D/(D+H). The ICSI at Rm. Valcea has patented the procedure and equipment for the production of DDW. According to the document SF-01-2002/INC-DTCI - ICSI Rm. Valcea, the product has a D/(D+H) isotope concentration of 25 ± 5. Studies and research for finding the effects and methods of application in different fields were initiated and developed in collaboration with different institutes in Romania. The following important results obtained so far could be mentioned: - absence of toxicity upon organisms; - activation of vascular reactivity; - enhancement of defence capacity of the organism through non-specific immunity activation; - increase of salmonid reproduction capacity and enhancement of the adaptability of alevins to the environmental conditions; - radioprotective effect to ionizing radiation; - maintaining meat freshness through osmotic shock; - stimulation of growth of aquatic macrophytes; - enhancement of culture plant development in certain ontogenetic stages. Mostly, the results and practical applications of the research were patented and awarded with gold medals at international invention fairs. At present, research-development programmes are undergoing to find active biological features of DDW in fighting cancer, on one hand, and its applicability as food additive of pets or performing animals, on the other hand

  15. On the Deuterium-to-Hydrogen Ratio of the Interstellar Medium

    CERN Document Server

    Weinberg, David H

    2016-01-01

    Observations show that the global deuterium-to-hydrogen ratio (D/H) in the local interstellar medium (ISM) is about 90% of the primordial ratio predicted by big bang nucleosynthesis. The high (D/H)$_{ISM}$ implies that only a small fraction of interstellar gas has been processed through stars, which destroy any deuterium they are born with. Using analytic arguments for one-zone chemical evolution models that include accretion and outflow, I show that the deuterium abundance is tightly coupled to the abundance of core collapse supernova (CCSN) elements such as oxygen. These models predict that the ratio of (D/H)$_{ISM}$ to the primordial abundance is $\\approx 1/(1+r Z_O/m_O)$, where r is the recycling fraction, $Z_O$ is the ISM oxygen mass fraction, and $m_O$ is the population averaged CCSN yield of oxygen. Using values $r=0.4$ and $m_O=0.015$ appropriate to a Kroupa (2001) initial mass function and recent CCSN yield calculations, solar oxygen abundance corresponds to an ISM (D/H) that is 87\\% of the primordia...

  16. Synthetic aperture radar: principles and applications

    International Nuclear Information System (INIS)

    In this paper an introduction to synthetic aperture radar is presented. Synthetic aperture radar is a relatively new remote sensing platform and the technology has matured a lot in the last two decades. This paper introduces the concepts behind SAR principles as well as the major areas where this new technology has shown additional information. (author)

  17. Towards Very Large Aperture Massive MIMO

    DEFF Research Database (Denmark)

    Oliveras Martínez, Àlex; De Carvalho, Elisabeth; Nielsen, Jesper Ødum

    2014-01-01

    on the impact of the array aperture which is the main limiting factor in the degrees of freedom available in the multiple antenna channel. We find that performance is improved as the aperture increases, with an impact mostly visible in crowded scenarios where the users are closely spaced. We also test MIMO...

  18. Practical Applications of Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav Ivanov; Kortbek, Jacob; Jensen, Jørgen Arendt

    2010-01-01

    Synthetic aperture imaging has been a focus of research for almost 3 decades. The research carried out at the Center for Fast Ultrasound Imaging has demonstrated that synthetic aperture focusing not only can be used in-vivo, but that it also yields superior B-mode and blood flow images. In the last...

  19. Isotopic effect in the radiolytic deuterium production in PHWR (pressurized heavy water reactors)

    International Nuclear Information System (INIS)

    The isotopic concentration factor α = (H atoms/D atoms)gas/(H atoms/D atoms)liquid was determined in the deuterium gas dissolved in the primary system of Atucha I Nuclear Station (CNA I) and in the cover gas of the moderator and feed water tank of the primary system in Embalse Nuclear Station (CNE). The applied gas chromatographic method allowed the determination of D2, HD and H2 in the samples. The following α values were found: 3.5 ± 1.3 for the D2 dissolved in the primary system of CNA I, and 15 ≤ 2 and 88 ± 58 for the cover gases of the feed water tank and the moderator of CNE respectively. A number of possible factors causing the changes in α were analyzed. (Author)

  20. Thermal emission by a subwavelength aperture

    Science.gov (United States)

    Joulain, Karl; Ezzahri, Younès; Carminati, Rémi

    2016-04-01

    We calculate, by means of fluctuational electrodynamics, the thermal emission of an aperture separating from the outside, vacuum or a material at temperature T. We show that thermal emission is very different whether the aperture size is large or small compared to the thermal wavelength. Subwavelength apertures separating vacuum from the outside have their thermal emission strongly decreased compared to classical blackbodies which have an aperture much larger than the wavelength. A simple expression of their emissivity can be calculated and their total emissive power scales as T8 instead of T4 for large apertures. Thermal emission of disk of materials with a size comparable to the wavelength is also discussed. It is shown in particular that emissivity of such a disk is increased when the material can support surface waves such as phonon polaritons.

  1. Deuterium fractionation in formaldehyde photolysis: chamber experiments and RRKM theory

    Directory of Open Access Journals (Sweden)

    E. J. K. Nilsson

    2013-04-01

    Full Text Available While isotope effects in formaldehyde photolysis are the key link between the δD of methane emissions with the δD of atmospheric in situ hydrogen production, the mechanism and the extent of their pressure dependencies is not adequately described. The pressure dependence of the photolysis rates of the mono- and di-deuterated formaldehyde isotopologues HDCO and D2CO relative to the parent isotopologue H2CO was investigated using RRKM theory and experiment. D2CO and H2CO were photolysed in a static reaction chamber at bath gas pressures of 50, 200, 400, 600 and 1000 mbar; these experiments compliment and extend our earlier work with HDCO vs. H2CO. The UV lamps used for photolysis emit light at wavelengths that mainly dissociate formaldehyde into molecular products, CO and H2 or D2. A model was constructed using RRKM theory to calculate the lifetime of excited formaldehyde on the S0 surface to describe the observed pressure dependent photolytic fractionation of deuterium. The effect of deuteration on the RRKM lifetime of the S0 state is not the main cause of the experimentally observed isotope effect. We propose that there is an additional previously unrecognised isotopic fractionation in the rate of transfer of population from the initially excited S1 state onto the S0 surface.

  2. Measurement of the ratio of hydrogen to deuterium at the KSTAR 2009 experimental campaign

    International Nuclear Information System (INIS)

    The control of the ratio of hydrogen to the deuterium is one of the very important issues for ion cyclotron range of frequency (ICRF) minority heating as well as the plasma wall interaction in the tokamak. The ratio of hydrogen to deuterium during the tokamak shot was deduced from the emission spectroscopy measurements during the KSTAR 2009 experimental campaign. Graphite tiles were used for the plasma facing components (PFCs) at KSTAR and its surface area exposed to the plasma was about 11 m2. The data showed that it remained as high as around 50% during the campaign period because graphite tiles were exposed to the air for about two months and the hydrogen contents at the tiles are not fully pumped out due to the lack of baking on the PFC in the 2009 campaign. The validation of the spectroscopy method was checked by using the Zeeman effects and the ratio of hydrogen to the deuterium is compared with results from the residual gas analysis. During the tokamak shot, the ratio is low below 10% initially and saturated after around 1 s. When there is a hydrogen injection to the vessel via ion cyclotron wall conditioning and the boronization process where the carbone is used, the ratio of the hydrogen to the deuterium is increased by up to 100% and it recovers to around 50% after one day of operation. However it does not decrease below 50% at the end of the experimental campaign. It was found that the full baking on the PFC (with a high temperature and sufficient vacuum pumping) is required for the ratio control which guarantees the efficient ICRF heating at the KSTAR 2010 experimental campaign.

  3. Diffusion, trapping, and isotope exchange of plasma implanted deuterium in ion beam damaged tungsten

    Science.gov (United States)

    Barton, Joseph Lincoln

    Tritium accumulation in nuclear fusion reactor materials is a major concern for practical and safe fusion energy. This work examines hydrogen isotope exchange as a tritium removal technique, analyzes the effects of neutron damage using high energy copper ion beams, and introduces a diffusion coefficient that is a function of the concentration of trapped atoms. Tungsten samples were irradiated with high energy (0.5 - 5 MeV) copper ions for controlled levels of damage - 10-3 to 10-1 displacements per atom (dpa) - at room temperature. Samples were then exposed to deuterium plasma at constant temperature (˜ 380 K) to a high fluence of 1024 ions/m2, where retention is at is maximized (i.e. saturated). By then subsequently exposing these samples to fractions of this fluence with hydrogen plasma, isotope exchange rates were observed. The resulting deuterium still trapped in the tungsten is then measured post mortem. Nuclear reaction analysis (NRA) gives the depth resolved deuterium retention profile with the 3He(D,p) 4He reaction, and thermal desorption spectroscopy (TDS) gives the total amount of deuterium trapped in the tungsten by heating a sample in vacuum up to 1200 K and measuring the evaporated gas molecules with a residual gas analyzer. Isotope exchange data show that hydrogen atoms can displace trapped deuterium atoms efficiently only up to the first few microns, but does not affect the atoms trapped at greater depths. In ion damaged tungsten, measurements showed a significant increase in retention in the damage region proportional to dpa 0.66, which results in a significant spike in total retention, and isotope exchange in damaged samples is still ineffective at depths greater than a few microns. Thus, isotope exchange is not an affective tritium removal technique; however, these experiments have shown that trapping in material defects greatly affects diffusion. These experiments lead to a simplified diffusion model with defect densities as the only free

  4. Directional synthetic aperture flow imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav

    2004-01-01

    . A plastic tube with an internal diameter of 17 mm was used with an EcoWatt 1 pump generating a laminar, stationary flow. The velocity profile was measured for flow angles of 90 and 60 degrees. The RASMUS research scanner was used for acquiring RF data from 128 elements of the array using 8 emissions with 11...... elements in each emission. A 20 us chirp was used during emission. The RF data were subsequently beamformed off-line and stationary echo canceling was performed. The 60 degrees flow with a peak velocity of 0.15 m/s was determined using 16 groups of 8 emissions and the relative standard deviation was 0......A method for flow estimation using synthetic aperture imaging and focusing along the flow direction is presented. The method can find the correct velocity magnitude for any flow angle and full color flow images can be measured using only 32 to 128 pulse emissions. The approach uses spherical wave...

  5. Pion Induced Pion Production on Deuterium.

    Science.gov (United States)

    Sossi, Vesna

    This thesis describes measurements of the pion induced pion production reaction pi^+ d to pi^{+} pi^{-}p p performed with a 280 MeV incident pi^{+} beam at TRIUMF. The data are compared with an improved version of the Oset and Vicente-Vacas theoretical model (12). The goal of the experiment and of the analysis was to provide a larger body of data for the free reaction and to test the validity of theoretical models. In the process, the ability to determine the values of the coupling constants C, f_Delta, g _{N*Delta_tau} within such a model framework would be explored. The knowledge of the precise value of these coupling constants would constrain N^* decay branching ratios and other pion induced reaction mechanisms like Double Charge Exchange. A previous experiment (23) had indicated that the pion induced pion production on deuterium is essentially a quasifree process with the reaction occurring on the neutron leaving the proton merely a spectator. The main difference with respect to the free reaction is the effect of Fermi motion of the neutron. Although we were interested in studying the free reaction (pi^ {-}p to pi^ {+}pi^{-}n), we chose a deuterium target so that the experiment could be run with a pi^+beam, since the pi^- beam flux is about 6 times lower than the flux of the positive pion beam at 280 MeV, the energy at which our experiment was performed. Such a flux would have required a much longer running time for the experiment in order to achieve the same statistical accuracy. The quasifree nature of the process was also confirmed in our experiment. This experiment involved a coincidence measurement of the quasifree process and as such provided four-fold differential cross section spectra of the reaction thus allowing for a microscopic comparison between data and theoretical models. In the theoretical description we incorporated additional amplitudes for the N^* to N(pipi)_{p-wave} diagrams required to describe the reaction cross section at T_pi = 280 Me

  6. Differential Mobility Spectrometry-Hydrogen Deuterium Exchange (DMS-HDX) as a Probe of Protein Conformation in Solution

    Science.gov (United States)

    Zhu, Shaolong; Campbell, J. Larry; Chernushevich, Igor; Le Blanc, J. C. Yves; Wilson, Derek J.

    2016-06-01

    Differential mobility spectrometry (DMS) is an ion mobility technique that has been adopted chiefly as a pre-filter for small- to medium-sized analytes (mobility spectroscopy (FAIMS)—the application of DMS to intact biomacromolecules remains largely unexplored. In this work, we employ DMS combined with gas-phase hydrogen deuterium exchange (DMS-HDX) to probe the gas-phase conformations generated from proteins that were initially folded, partially-folded, and unfolded in solution. Our findings indicate that proteins with distinct structural features in solution exhibit unique deuterium uptake profiles as function of their optimal transmission through the DMS. Ultimately we propose that DMS-HDX can, if properly implemented, provide rapid measurements of liquid-phase protein structural stability that could be of use in biopharmaceuticals development.

  7. Selective Deuterium Ion Acceleration Using the Vulcan PW Laser

    CERN Document Server

    Krygier, AG; Kar, S; Ahmed, H; Alejo, A; Clarke, R; Fuchs, J; Green, A; Jung, D; Kleinschmidt, A; Najmudin, Z; Nakamura, H; Norreys, P; Notley, M; Oliver, M; Roth, M; Vassura, L; Zepf, M; Borghesi, M; Freeman, RR

    2015-01-01

    We report on the successful demonstration of selective acceleration of deuterium ions by target-normal sheath acceleration (TNSA) with a high-energy petawatt laser. TNSA typically produces a multi-species ion beam that originates from the intrinsic hydrocarbon and water vapor contaminants on the target surface. Using the method first developed by Morrison, et al., \\cite{Morrison:POP2012} an ion beam with $>$99$\\%$ deuterium ions and peak energy 28 MeV is produced with a 200 J, 700fs, $>10^{20} W/cm^{2}$ laser pulse by cryogenically freezing heavy water (D$_{2}$O) vapor onto the rear surface of the target prior to the shot. The estimated total yield of deuterium ions in an assumed 10$^{\\circ}$ half-angle cone was 3.0 $\\mu$C (1.9 $\\times 10^{13}$ ions) with 6.6$\\%$ laser-to-deuterium ion energy conversion efficiency.

  8. A very light and thin liquid hydrogen/deuterium heat pipe target for COSY experiments

    Science.gov (United States)

    Abdel-Bary, M.; Abdel-Samad, S.; Kilian, K.

    2005-07-01

    A liquid hydrogen/deuterium heat pipe (HP) target is used at the COSY external experiments TOF, GEM and MOMO. The target liquid is produced at a cooled condenser and guided through a central tube assisted by gravitation into the target cell. An aluminum condenser is used instead of copper, which requires less material, improves conductivities and provides shorter cooling down time. Residual condenser temperature fluctuations in the order of ≈0.4 K are reduced by using thermal resistances between the cooling machine and the condenser of the heat pipe combined with a controlled heating power. A new design with only a 7-mm-diameter HP has been developed. The diameter of the condenser part remains at 16 mm to provide enough condensation area. The small amount of material ensures short cooling down times. A cold gas deuterium HP target has been designed and developed which allows protons with energy ⩽1 MeV to be measured. A 7-mm-diameter HP is used to fill a cooling jacket around the D 2 gas cell with LH 2. The D 2 gas is stabilized at 200 mbar to allow for thin windows. Its density is increased by factor 15 compared to room temperature.

  9. Deuterium depleted water. Current and potential applications

    International Nuclear Information System (INIS)

    Deuterium depleted water (DDW) is distilled, microbiologically pure water with a D/(D+H) isotopic content lower than the value 145 ppm of natural water. It is practically unnoxious, with a toxic potential pT 50 > 0.01 mol/kg c.m. At ICSI a procedure was worked out and patented and a facility was achieved for obtaining DDW. The procedure consists in continuous vacuum distillation of natural water on columns with highly performing ordered packings. DDW of controlled isotopic concentration D/(D+H) within the range 20-120 ppm, of quality similar to distilled water can be currently produced. Many studies were reported in literature evidencing the active biological properties of DDW. DDW lowered significantly the high division rate of the L929 linear fibroblast cell and blocked the tumoral growth in xenotransplants. It was suggested that the naturally occurring deuterium plays a prominent role in converting the signal implied in cellular cycle mechanism. Having in view the high significance of the experiments in this field, ICSI has promoted a programme of collaborations with Romanian institutes of various specialties to evaluate the biological effects of DDW with a D/(D+H) concentration of about 30 ppm. The following results obtained so far obtained should be highlighted: - DDW causes an increase of vascular reactivity both in rings isolated from thorax aorta and in vivo upon arterial pressure. The reactivity increase seems to be endothelium-depended and is achieved with participation of the radical species (superoxides, nitric oxide); - DDW stimulates the immunodefence reaction, as represented by the opsonic, bactericide and phagocytic capacity of the immunity system as well as by the increase of the number of polymorphonucleates; - animals pre-treated with DDW exhibit an increased resistance both to sublethal and lethal γ radiation doses, what suggests a radioprotective effect; - studies on artificial fecundation in fishes with fecundant solutions containing a 1

  10. Fast Parametric Beamformer for Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt; Tomov, Borislav Gueorguiev

    2008-01-01

    This paper describes the design and implementation of a real-time delay-and-sum synthetic aperture beamformer. The beamforming delays and apodization coefficients are described parametrically. The image is viewed as a set of independent lines that are defined in 3-D by their origin, direction, and...... implementation of the beamformer is optimized with respect to the architecture of a novel synthetic aperture real-time ultrasound scanner (SARUS), in which 4 channels are processed by the same set of field-programmable gate arrays (FPGA). In synthetic transmit aperture imaging, low-resolution images are formed...

  11. Three dimensional digital holographic aperture synthesis.

    Science.gov (United States)

    Crouch, Stephen; Kaylor, Brant M; Barber, Zeb W; Reibel, Randy R

    2015-09-01

    Aperture synthesis techniques are applied to temporally and spatially diverse digital holograms recorded with a fast focal-plane array. Because the technique fully resolves the downrange dimension using wide-bandwidth FMCW linear-chirp waveforms, extremely high resolution three dimensional (3D) images can be obtained even at very long standoff ranges. This allows excellent 3D image formation even when targets have significant structure or discontinuities, which are typically poorly rendered with multi-baseline synthetic aperture ladar or multi-wavelength holographic aperture ladar approaches. The background for the system is described and system performance is demonstrated through both simulation and experiments. PMID:26368474

  12. Chemical response of lithiated graphite with deuterium irradiation

    OpenAIRE

    Taylor, C N; B. Heim; Allain, Jean Paul

    2011-01-01

    Lithium wall conditioning has been found to enhance plasma performance for graphite walled fusion devices such as TFTR, CDX-U, T-11M, TJ-II and NSTX. Among observed plasma enhancements is a reduction in edge density and reduced deuterium recycling. The mechanism by which lithiated graphite retains deuterium is largely unknown. Under controlled laboratory conditions, X-ray photoelectron spectroscopy (XPS) is used to observe the chemical changes that occur on ATJ graphite after lithium depositi...

  13. Confinement and heating of a deuterium-tritium plasma

    International Nuclear Information System (INIS)

    The Tomamak Fusion Test reactor has performed initial high-power experiments with the plasma fueled with nominally equal densities of deuterium and tritium. Compared to pure deuterium plasmas, the energy stored in the electron and ions increased by ∼20%. These increases indicate improvements in confinement associated with the use of tritium and possibly heating of electrons by α particles created by the D-T fusion reactions

  14. Gaseous exchange reaction of deuterium between hydrogen and water on hydrophobic catalyst supporting platinum

    International Nuclear Information System (INIS)

    The deuterium exchange reaction between hydrogen and water in the gas phase where the fed hydrogen gas is saturated with water vapor is studied experimentally by use of the proper hydrophobic catalysts supporting platinum. It is found that the activities of those catalysts for this reaction system are very high compared with the other known ones for the systems in which gas and liquid should coexist on catalyst surfaces, and that the apparent catalytic activity becomes larger as the amount of platinum supported on a catalyst particle increases. By analyses of the data the following informations are obtained. The exchange reaction can be expressed by a first order reversible reaction kinetics. The pore diffusion in the catalyst particles has significant effect on the overall reaction mechanisms. (author)

  15. Equations of state for hydrogen and deuterium.

    Energy Technology Data Exchange (ETDEWEB)

    Kerley, Gerald Irwin (Kerley Technical Services, Appomattox, VA)

    2003-12-01

    This report describes the complete revision of a deuterium equation of state (EOS) model published in 1972. It uses the same general approach as the 1972 EOS, i.e., the so-called 'chemical model,' but incorporates a number of theoretical advances that have taken place during the past thirty years. Three phases are included: a molecular solid, an atomic solid, and a fluid phase consisting of both molecular and atomic species. Ionization and the insulator-metal transition are also included. The most important improvements are in the liquid perturbation theory, the treatment of molecular vibrations and rotations, and the ionization equilibrium and mixture models. In addition, new experimental data and theoretical calculations are used to calibrate certain model parameters, notably the zero-Kelvin isotherms for the molecular and atomic solids, and the quantum corrections to the liquid phase. The report gives a general overview of the model, followed by detailed discussions of the most important theoretical issues and extensive comparisons with the many experimental data that have been obtained during the last thirty years. Questions about the validity of the chemical model are also considered. Implications for modeling the 'giant planets' are also discussed.

  16. Deuterium enrichment of the interstellar grain mantle

    Science.gov (United States)

    Das, Ankan; Sahu, Dipen; Majumdar, Liton; Chakrabarti, Sandip K.

    2016-01-01

    We carry out Monte Carlo simulation to study deuterium enrichments of interstellar grain mantles under various physical conditions. Based on the physical properties, various types of clouds are considered. We find that in diffuse cloud regions, very strong radiation fields persists and hardly a few layers of surface species are formed. In translucent cloud regions with a moderate radiation field, significant number of layers would be produced and surface coverage is mainly dominated by photo-dissociation products such as, C, CH3, CH2D, OH and OD. In the intermediate dense cloud regions (having number density of total hydrogen nuclei in all forms ˜2 × 104 cm-3), water and methanol along with their deuterated derivatives are efficiently formed. For much higher density regions (˜106 cm-3), water and methanol productions are suppressed but surface coverages of CO, CO2, O2 and O3 are dramatically increased. We find a very high degree of fractionation of water and methanol. Observational results support a high fractionation of methanol but surprisingly water fractionation is found to be low. This is in contradiction with our model results indicating alternative routes for de-fractionation of water. Effects of various types of energy barriers are also studied. Moreover, we allow grain mantles to interact with various charged particles (such as H+, Fe+, S+ and C+) to study the stopping power and projected range of these charged particles on various target ices.

  17. Deuterium enrichment of the interstellar grain mantle

    CERN Document Server

    Das, Ankan; Chakrabarti, Sandip K

    2015-01-01

    We carry out Monte-Carlo simulation to study deuterium enrichment of interstellar grain mantles under various physical conditions. Based on the physical properties, various types of clouds are considered. We find that in diffuse cloud regions, very strong radiation fields persists and hardly a few layers of surface species are formed. In translucent cloud regions with a moderate radiation field, significant number of layers would be produced and surface coverage is mainly dominated by photo-dissociation products such as, C,CH_3,CH_2D,OH and OD. In the intermediate dense cloud regions (having number density of total hydrogen nuclei in all forms ~ 2 x 10^4 cm^-3), water and methanol along with their deuterated derivatives are efficiently formed. For much higher density regions (~ 10^6 cm^-3), water and methanol productions are suppressed but surface coverage of CO,CO_2,O_2,O_3 are dramatically increased. We find a very high degree of fractionation of water and methanol. Observational results support a high frac...

  18. What controls deuterium excess in global precipitation?

    Directory of Open Access Journals (Sweden)

    S. Pfahl

    2014-04-01

    Full Text Available The deuterium excess (d of precipitation is widely used in the reconstruction of past climatic changes from ice cores. However, its most common interpretation as moisture source temperature cannot directly be inferred from present-day water isotope observations. Here, we use a new empirical relation between d and near-surface relative humidity (RH together with reanalysis data to globally predict d of surface evaporation from the ocean. The very good quantitative agreement of the predicted hemispherically averaged seasonal cycle with observed d in precipitation indicates that moisture source relative humidity, and not sea surface temperature, is the main driver of d variability on seasonal timescales. Furthermore, we review arguments for an interpretation of long-term palaeoclimatic d changes in terms of moisture source temperature, and we conclude that there remains no sufficient evidence that would justify to neglect the influence of RH on such palaeoclimatic d variations. Hence, we suggest that either the interpretation of d variations in palaeorecords should be adapted to reflect climatic influences on RH during evaporation, in particular atmospheric circulation changes, or new arguments for an interpretation in terms of moisture source temperature will have to be provided based on future research.

  19. Deuterium retention in the carbon co-deposition layers deposited by magnetron sputtering in D2/He atmosphere

    International Nuclear Information System (INIS)

    Carbon was deposited on Si and W substrates using a D2/He plasma in a radio frequency magnetron sputtering system. The deposited layers were examined with ion beam analysis (IBA), Raman spectra analysis (RS) and scanning electron microscopy (SEM). The growth rate of the layers deposited at 2.5 Pa total pressure and 300 K decreased with increasing He fraction in the D2/He gas mixture. The deuterium concentration in the layers deposited on the Si substrate increased from 14% to 28% when the flow rate of the He gas relative to the D2 gas was varied from 0.125 to 0.5, but the deuterium concentration in the layers on a W substrate decreased from 24% to 14%. Deuterium or helium retention and the layer thickness all significantly decreased when the substrate temperature was increased from 423 K to 773 K. Raman analysis showed that the deposited layers were amorphous deuterated-carbon layers (named a-C: D layer) and the extent of bond disorder increased dramatically with the increasing helium content in the film. Blisters and bubbles occurred in the films for high helium content in the films, and surface cracking and exfoliation were also observed

  20. The Initial Conditions of Clustered Star Formation III. The Deuterium Fractionation of the Ophiuchus B2 Core

    CERN Document Server

    Friesen, R K; Myers, P C; Belloche, A; Shirley, Y L; Bourke, T L; André, P

    2010-01-01

    We present N2D+ 3-2 (IRAM) and H2D+ 1_11 - 1_10 and N2H+ 4-3 (JCMT) maps of the small cluster-forming Ophiuchus B2 core in the nearby Ophiuchus molecular cloud. In conjunction with previously published N2H+ 1-0 observations, the N2D+ data reveal the deuterium fractionation in the high density gas across Oph B2. The average deuterium fractionation R_D = N(N2D+)/N(N2H+) ~ 0.03 over Oph B2, with several small scale R_D peaks and a maximum R_D = 0.1. The mean R_D is consistent with previous results in isolated starless and protostellar cores. The column density distributions of both H2D+ and N2D+ show no correlation with total H2 column density. We find, however, an anticorrelation in deuterium fractionation with proximity to the embedded protostars in Oph B2 to distances >= 0.04 pc. Destruction mechanisms for deuterated molecules require gas temperatures greater than those previously determined through NH3 observations of Oph B2 to proceed. We present temperatures calculated for the dense core gas through the eq...

  1. Synthetic Aperture Radar Missions Study Report

    Science.gov (United States)

    Bard, S.

    2000-01-01

    This report reviews the history of the LightSAR project and summarizes actions the agency can undertake to support industry-led efforts to develop an operational synthetic aperture radar (SAR) capability in the United States.

  2. Beam Combination for Sparse Aperture Telescopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for funding to continue development of an alternative beam combiner for Stellar Imager (SI), a 30-aperture, interferometric telescope chosen as one...

  3. Thermal Emission by a Subwavelength Aperture

    CERN Document Server

    Joulain, Karl; Carminati, Rémi

    2015-01-01

    We calculate, by means of fluctuational electrodynamics, the thermal emission of an aperture filled by vacuum or a material at temperature T. We show that thermal emission is very different whether the aperture size is large or small compared to the thermal wavelength. Subwavelength apertures filled with vacuum (subwavelength blackbody) have their thermal emission strongly decreased compared to classical blackbodies. A simple expression of their emissivity can be calculated and their total emittance scales as T 8 instead of T 4 for large apertures. Thermal emission of disk of materials with a size comparable to the wavelength is also discussed. It is shown in particular that emissivity of such a disk is increased when the material can support surface waves such as phonon polaritons.

  4. Synthetic Aperture Techniques for Sonar Systems

    OpenAIRE

    Silva, S&#;rgio Rui; Cunha, S&#;rgio; Matos, An&#;bal; Cruz, Nuno

    2009-01-01

    As demonstrated, synthetic aperture sonar is a technique that enables attainment of high quality, high resolution underwater images. Autonomous surface vehicles provides several advantages for synthetic aperture imagery. Not only it is possible to control the boat motion in this way, it is also possible to obtain navigation measurements with precisions in the order of the wavelength used in high resolution sonar systems. Furthermore unsupervised surveillance applications that combine the high...

  5. An autonomous boat based Synthetic Aperture Sonar

    OpenAIRE

    Sergio Rui Silva; Sergio Cunha; Anibal Matos; Nuno Cruz

    2007-01-01

    This paper describes a Synthetic Aperture Sonar (SAS) system being developed at the University of Porto to be used in a small autonomous boat for the survey of shallow water environments, such as rivers, deltas, estuaries and dams. Its purpose is to obtain high resolution echo reflectivity maps through synthetic aperture techniques, taking advantage of the high precision navigation system of the boat. In the future the production of bottom tomography maps is also considered through the use of...

  6. Biomineral repair of Abalone shell apertures

    OpenAIRE

    Cusack, M.; Guo, D.; Chung, P.; Kamenos, N. A.

    2013-01-01

    The shell of the gastropod mollusc, abalone, is comprised of nacre with an outer prismatic layer that is composed of either calcite or aragonite or both, depending on the species. A striking characteristic of the abalone shell is the row of apertures along the dorsal margin. As the organism and shell grow, new apertures are formed and the preceding ones are filled in. Detailed investigations, using electron backscatter diffraction, of the infill in three species of abalone: Haliotis asinina, ...

  7. Compared studies of natural and artificial deuterium depleted water

    International Nuclear Information System (INIS)

    The biological influence of the deuterium on animals was studied insensitively in the last years. When animal cell cultures were analyzed it turned out an inhibition of the development, due to the reduced deuterium concentration. In the in vivo experiments a decreasing of the number of tumoral cells was pointed out when performing the depleted water treatment. It is obvious that the presence of deuterium in water is necessary for the development, especially for the tumoral cell proliferation. The aim of this work was to establish influence of the natural and artificial deuterium depleted water on the vegetal organisms development. For this purpose, the developmental stages of Lactuca sativa L. growth were followed. The experimental data were compared with the data obtained with distilled water. The birch, wine sap and some fruit juices are considered 'natural depleted' water sources because their deuterium content is smaller in comparison to natural water (D2=150 ppm). The effect of artificial deuterium depleted water (29 ppm D2) was analyzed in comparison to three types of wine saps, which also have a reduced deuterium concentration (125-130 ppm D2). If the deuterium depleted water was used, the germination percent and the root and shoot length were higher compared to control in the first stages. In wine sap it had a negative effect on germination and development. After three days the plants were transferred to soil and their development was followed. The foliage area was larger for all of the experimental variants compared to control. The differences were without significance when deuterium depleted water was tested but they were high and very significant in case of wine sap. The experiment pointed out a stimulative effect of the artificial deuterium depleted water. In case of wine sap the effect was negative when the contact was direct, but the growth was stimulated after the stress cessation. The first ontogenetic stages were represented by direct action on

  8. Deuterium Retention and Physical Sputtering of Low Activation Ferritic Steel

    Institute of Scientific and Technical Information of China (English)

    T. Hino; K. Yamaguchi; Y. Yamauchi; Y. Hirohata; K. Tsuzuki; Y.Kusama

    2005-01-01

    Low activation materials have to be developed toward fusion demonstration reactors. Ferritic steel, vanadium alloy and SiC/SiC composite are candidate materials of the first wall,vacuum vessel and blanket components, respectively. Although changes of mechanical-thermal properties owing to neutron irradiation have been investigated so far, there is little data for the plasma material interactions, such as fuel hydrogen retention and erosion. In the present study,deuterium retention and physical sputtering of low activation ferritic steel, F82H, were investigated by using deuterium ion irradiation apparatus.After a ferritic steel sample was irradiated by 1.7 kev D+ ions, the weight loss was measured to obtain the physical sputtering yield. The sputtering yield was 0.04, comparable to that of stainless steel. In order to obtain the retained amount of deuterium, technique of thermal desorption spectroscopy (TDS) was employed to the irradiated sample. The retained deuterium desorbed at temperature ranging from 450 K to 700 K, in the forms of DHO, D2, D2O and hydrocarbons. Hence, the deuterium retained can be reduced by baking with a relatively low temperature. The fluence dependence of retained amount of deuterium was measured by changing the ion fluence. In the ferritic steel without mechanical polish, the retained amount was large even when the fluence was low. In such a case, a large amount of deuterium was trapped in the surface oxide layer containing O and C. When the fluence was large, the thickness of surface oxide layer was reduced by the ion sputtering, and then the retained amount in the oxide layer decreased. In the case of a high fluence, the retained amount of deuterium became comparable to that of ferritic steel with mechanical polish or SS 316 L, and one order of magnitude smaller than that of graphite. When the ferritic steel is used, it is required to remove the surface oxide layer for reduction of fuel hydrogen retention.Ferritic steel sample was

  9. Resonant Effects in Nanoscale Bowtie Apertures

    Science.gov (United States)

    Ding, Li; Qin, Jin; Guo, Songpo; Liu, Tao; Kinzel, Edward; Wang, Liang

    2016-01-01

    Nanoscale bowtie aperture antennas can be used to focus light well below the diffraction limit with extremely high transmission efficiencies. This paper studies the spectral dependence of the transmission through nanoscale bowtie apertures defined in a silver film. A realistic bowtie aperture is numerically modeled using the Finite Difference Time Domain (FDTD) method. Results show that the transmission spectrum is dominated by Fabry-Pérot (F-P) waveguide modes and plasmonic modes. The F-P resonance is sensitive to the thickness of the film and the plasmonic resonant mode is closely related to the gap distance of the bowtie aperture. Both characteristics significantly affect the transmission spectrum. To verify these numerical results, bowtie apertures are FIB milled in a silver film. Experimental transmission measurements agree with simulation data. Based on this result, nanoscale bowtie apertures can be optimized to realize deep sub-wavelength confinement with high transmission efficiency with applications to nanolithography, data storage, and bio-chemical sensing. PMID:27250995

  10. Modeling of hydrogen/deuterium dynamics and heat generation on palladium nanoparticles for hydrogen storage and solid-state nuclear fusion.

    Science.gov (United States)

    Tanabe, Katsuaki

    2016-01-01

    We modeled the dynamics of hydrogen and deuterium adsorbed on palladium nanoparticles including the heat generation induced by the chemical adsorption and desorption, as well as palladium-catalyzed reactions. Our calculations based on the proposed model reproduce the experimental time-evolution of pressure and temperature with a single set of fitting parameters for hydrogen and deuterium injection. The model we generated with a highly generalized set of formulations can be applied for any combination of a gas species and a catalytic adsorbent/absorbent. Our model can be used as a basis for future research into hydrogen storage and solid-state nuclear fusion technologies. PMID:27441240

  11. Modeling of hydrogen/deuterium dynamics and heat generation on palladium nanoparticles for hydrogen storage and solid-state nuclear fusion.

    Science.gov (United States)

    Tanabe, Katsuaki

    2016-01-01

    We modeled the dynamics of hydrogen and deuterium adsorbed on palladium nanoparticles including the heat generation induced by the chemical adsorption and desorption, as well as palladium-catalyzed reactions. Our calculations based on the proposed model reproduce the experimental time-evolution of pressure and temperature with a single set of fitting parameters for hydrogen and deuterium injection. The model we generated with a highly generalized set of formulations can be applied for any combination of a gas species and a catalytic adsorbent/absorbent. Our model can be used as a basis for future research into hydrogen storage and solid-state nuclear fusion technologies.

  12. Shock timing measurements and analysis in deuterium-tritium-ice layered capsule implosions on NIF

    Energy Technology Data Exchange (ETDEWEB)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R.; Ross, J. S.; LePape, S.; Ralph, J. E.; Dewald, E. L.; Berzak Hopkins, L.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Landen, O. L.; Edwards, M. J. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Hohenberger, M.; Boehly, T. R. [Laboratory for Laser Energetics, Rochester, New York 14623 (United States); Nikroo, A. [General Atomics, San Diego, California 92196 (United States)

    2014-02-15

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion implosions [Boehly et al., Phys. Rev. Lett. 106, 195005 (2011); Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique. Comparison of the data with simulation shows good agreement for the timing of the first three shocks, but reveals a considerable discrepancy in the timing of the 4th shock in DT ice layered implosions. Electron preheat is examined as a potential cause of the observed discrepancy in the 4th shock timing.

  13. Selected bibliography on deuterium isotope effects and heavy water

    International Nuclear Information System (INIS)

    In recent years, there has been a great deal of interest in using deuterium and heavy water not only in nuclear industry but also in various fields of basic as well as applied research in physics, chemistry and biology. As a result, the literature is being enriched with a large number of research papers and technical reports published each year. Thus, to enable the scientists to have an easy reference to these works, an endeavour has been made in this selected bibliography, to enlist the publications related to these fields. Since the interest is concerned mainly with heavy water production processes, deuterium isotope effects etc., several aspects (e.g. nuclear) of deuterium have not been covered here. The material in this bibliography which cites 2388 references has been classified under six broad headings, viz. (1) Production of heavy water, (2) Study of deuterium isotope effects, (3) Analysis and Properties of heavy water, (4) Laser Separation of deuterium, (5) Isotopic exchange reactions, and (6) Miscellaneous. The sources of information used for this compilation are chemical abstracts, nuclear science abstracts, INIS Atomindex and also some scattered search through journals and reports available in the B.A.R.C. library. However, in spite of sincere attempts for a wide coverage, no claim is being made towards the exhaustiveness of this bibliography. (author)

  14. Radioprotective and Immunostimulating Effects of Deuterium-Depleted Water

    International Nuclear Information System (INIS)

    Full text: Mice fed during 15 days with Deuterium-Depleted Water (30 ppm deuterium) had a statistically significant increased survival compared with control groups fed with normal distilled water (150 ppm deuterium) after 8.5 Gy irradiation (61% survival in test group towards 25% in control group). Hematological picture showed maintaining of the normal WBC, RBC and platelet count in test groups. Immunological parameters (serum opsonic and bactericidal capacity, bactericidal capacity of the peritoneal macrophages) showed a marked increase in test groups compared to a severe decrease in the control groups. Auxiliary tests using chemical radiomimetics (hydrochloric embihine) and immunosupressors (cyclophosphamide) showed a strong protective effect of deuterium-depleted water against the decrease of the leukocyte counts and other immunologic parameters. In conditions of experimental inflammation with subcutaneous-implanted pellets, deuterium-depleted water feeding statistically significant increased inflammatory response, obviated by increased percentages of PMN and lymphocytes in the peripheral blood and increased phagocytic capacity of the peripheral blood PMN. Experimental infections with K. pneumoniae 506 and S. pneumoniae 558 in mice irradiated or treated with cyclophosphamide showed increased non-specific immunity parameters. All results show a marked intensification of the immune defenses and increased proliferation of the peripheral blood cells, probably accounting for the radioprotective effects. (author)

  15. Measurement of anomalous nuclear reaction in deuterium-loaded metal

    Institute of Scientific and Technical Information of China (English)

    Jiang Song-Sheng; Li Jing-Huai; Wang Jian-Qing; He Ming; Wu Shao-Yong; Zhang Hong-Tao; Yao Shun-He; Zhao Yong-Gang

    2009-01-01

    This paper reports on an experiment for testing natural nuclear fusion at low temperature searching for evidence of the origin of 3He from natural nuclear fusion in deep Earth.The experiment was carried out using deuterium-loaded titanium foil samples and powder sample.Detection of charged particle was carried out using a low-level charged particle spectrometer.An Al foil was used as an energy absorber for identification of charged particle.Although the counting rate is very low in the experiment,the emission of energetic particle from the sample is obscrved and the particle is identified as a proton having energy about 2.8 MeV after exiting the titanium sample.This work provides a positive result for the emission of charged particle in the deuterium-loaded titanium foil samples at low temperature,but a negative result for the deuterium-loaded titanium powder sample.The average reaction yield is deduced to be(0.46±0.08)protons/h for the foil samples.With the suggestion that the proton originates from d-d reaction,we of the deuterium-loaded titanium powder sample suggests that the reaction yield might be correlated with the density or microscopic variables of deuterium-loaded titanium materials.The negative result also indicates that d-d reaction catalysed by μ-meson from cosmic ray can be excluded in the samples in this experiment.

  16. Study of the pd→→n{pp}s charge-exchange reaction using a polarised deuterium target

    Directory of Open Access Journals (Sweden)

    B. Gou

    2015-02-01

    Full Text Available The vector and tensor analysing powers, Ay and Ayy, of the pd→→n{pp}s charge-exchange reaction have been measured at a beam energy of 600 MeV at the COSY-ANKE facility by using an unpolarised proton beam incident on an internal storage cell target filled with polarised deuterium gas. The low energy recoiling protons were measured in a pair of silicon tracking telescopes placed on either side of the target. Putting a cut of 3 MeV on the diproton excitation energy ensured that the two protons were dominantly in the S01 state, here denoted by {pp}s. The polarisation of the deuterium gas was established through measurements in parallel of proton–deuteron elastic scattering. By analysing events where both protons entered the same telescope, the charge-exchange reaction was measured for momentum transfers q≥160 MeV/c. These data provide a good continuation of the earlier results at q≤140 MeV/c obtained with a polarised deuteron beam. They are also consistent with impulse approximation predictions with little sign evident for any modifications due to multiple scatterings. These successful results confirm that the ANKE deuteron charge-exchange programme can be extended to much higher energies with a polarised deuterium target than can be achieved with a polarised deuteron beam.

  17. Warm water deuterium fractionation in IRAS 16293-2422. The high-resolution ALMA and SMA view

    DEFF Research Database (Denmark)

    Persson, Magnus Vilhelm; Jørgensen, J. K.; van Dishoeck, E. F.

    2013-01-01

    Context. Measuring the water deuterium fractionation in the inner warm regions of low-mass protostars has so far been hampered by poor angular resolution obtainable with single-dish ground- and space-based telescopes. Observations of water isotopologues using (sub)millimeter wavelength interferom......Context. Measuring the water deuterium fractionation in the inner warm regions of low-mass protostars has so far been hampered by poor angular resolution obtainable with single-dish ground- and space-based telescopes. Observations of water isotopologues using (sub)millimeter wavelength...... interferometers have the potential to shed light on this matter. Aims: To measure the water deuterium fractionation in the warm gas of the deeply-embedded protostellar binary IRAS 16293-2422. Methods: Observations toward IRAS 16293-2422 of the 53,2 - 44,1 transition of H218O at 692.07914 GHz from Atacama Large...... transitions the excitation temperature is estimated at 124 ± 12 K. The calculated HDO/H2O ratio is (9.2 ± 2.6) × 10-4 - significantly lower than previous estimates in the warm gas close to the source. It is also lower by a factor of ~5 than the ratio deduced in the outer envelope. Conclusions: Our...

  18. Aperture effects in squid jet propulsion.

    Science.gov (United States)

    Staaf, Danna J; Gilly, William F; Denny, Mark W

    2014-05-01

    Squid are the largest jet propellers in nature as adults, but as paralarvae they are some of the smallest, faced with the inherent inefficiency of jet propulsion at a low Reynolds number. In this study we describe the behavior and kinematics of locomotion in 1 mm paralarvae of Dosidicus gigas, the smallest squid yet studied. They swim with hop-and-sink behavior and can engage in fast jets by reducing the size of the mantle aperture during the contraction phase of a jetting cycle. We go on to explore the general effects of a variable mantle and funnel aperture in a theoretical model of jet propulsion scaled from the smallest (1 mm mantle length) to the largest (3 m) squid. Aperture reduction during mantle contraction increases propulsive efficiency at all squid sizes, although 1 mm squid still suffer from low efficiency (20%) because of a limited speed of contraction. Efficiency increases to a peak of 40% for 1 cm squid, then slowly declines. Squid larger than 6 cm must either reduce contraction speed or increase aperture size to maintain stress within maximal muscle tolerance. Ecological pressure to maintain maximum velocity may lead them to increase aperture size, which reduces efficiency. This effect might be ameliorated by nonaxial flow during the refill phase of the cycle. Our model's predictions highlight areas for future empirical work, and emphasize the existence of complex behavioral options for maximizing efficiency at both very small and large sizes. PMID:24501132

  19. Intense deuterium nuclear fusion of pycnodeuterium-lumps coagulated locally within highly deuterated atom clusters

    CERN Document Server

    Yoshiaki, A; Zhang, Y C

    2002-01-01

    Embedded nano-Pd particles of 5 nm in size instantly abundant D-atoms more than 250% in the atomic ratio against Pd-atoms at room temperature when they are kept in D sub 2 gas pressurized to less than 10 atm. In such ultrahigh densities, 2-4 D-atoms can be coagulated inside each octahedral space of Pd lattice (pycnodeuterium-lump). When a stimulation energy such as latticequake causing by ultrasonic wave was supplied to those highly deuterated Pd particles, intense deuterium nuclear fusion (''solid fusion'') was generated there and both excess heat and sup 4 He gas were abundantly produced. Naturally, these facts can not be realized at all in bulk Pd. The results show that the nuclear fusion occurs without any hazardous rays in pycnodeuterium-lumps coagulated locally inside the each cell of the host metal lattice. These unit cells correspond to minimum unit of the solid fusion reactor as a ''Lattice Reactor''. (author)

  20. Deuterium plasma-material wall interactions. Final report, 1 May 1979-30 September 1981

    International Nuclear Information System (INIS)

    During the final year of this program we completed our study of plasma interactions with material surfaces. Analysis of unipolar arc damage on the microstructure of Ti-6Al-4V was the final part of the study of plasma-metal interactions. Unipolar arcing was found to be the most severe damage mechanism for this alloy and the degree of damage was very sensitive to the metal microstructure. ATJ-S graphite specimens were exposed to hot deuterium plasma and were examined for surface damage. The residual gas in the plasma device was studied using a monopole gas analyzer so as to determine the type and quantity of hydrocarbon species produced by the plasma-graphite interaction

  1. Measurement of high-pressure shock waves in cryogenic deuterium-tritium ice layered capsule implosions on NIF.

    Science.gov (United States)

    Robey, H F; Moody, J D; Celliers, P M; Ross, J S; Ralph, J; Le Pape, S; Berzak Hopkins, L; Parham, T; Sater, J; Mapoles, E R; Holunga, D M; Walters, C F; Haid, B J; Kozioziemski, B J; Dylla-Spears, R J; Krauter, K G; Frieders, G; Ross, G; Bowers, M W; Strozzi, D J; Yoxall, B E; Hamza, A V; Dzenitis, B; Bhandarkar, S D; Young, B; Van Wonterghem, B M; Atherton, L J; Landen, O L; Edwards, M J; Boehly, T R

    2013-08-01

    The first measurements of multiple, high-pressure shock waves in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility have been performed. The strength and relative timing of these shocks must be adjusted to very high precision in order to keep the DT fuel entropy low and compressibility high. All previous measurements of shock timing in inertial confinement fusion implosions [T. R. Boehly et al., Phys. Rev. Lett. 106, 195005 (2011), H. F. Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] have been performed in surrogate targets, where the solid DT ice shell and central DT gas regions were replaced with a continuous liquid deuterium (D2) fill. This report presents the first experimental validation of the assumptions underlying this surrogate technique.

  2. Reduction of deuterium permeation through DIN 1.4914 stainless steel (MANET) by plasma-spray deposited aluminium

    Science.gov (United States)

    Perujo, A.; Forcey, K. S.; Sample, T.

    1993-12-01

    The paper describes the formation of a permeation barrier on DIN 1.4914 (MANET) martensitic stainless steel by plasma spraying aluminium on the surface of the steel, followed by heat treatment of the sample to form Al 3Fe and Al 5Fe 2. Vacuum plasma spraying was chosen because it ensures that the sample will be exposed to low temperatures during the Al layer deposition and will not interfere with the heat treatment that MANET has to undergo in order to produce a homogeneous, fully martensitic structure. Measurements of the permeation rate of deuterium in the bare and aluminium-deposited MANET were performed by a gas permeation technique over the temperature range 573-743 K and for driving deuterium pressures in the range 3-50 kPa. Such measurements showed a reduction of the permeation rate between two and three orders of magnitude and there was evidence that surface reactions were the rate governing process.

  3. A dosimetry study of deuterium-deuterium neutron generator-based in vivo neutron activation analysis

    Science.gov (United States)

    Sowers, Daniel A.

    A neutron irradiation cavity for in vivo Neutron Activation Analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator which produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 x 108 +/-30% s-1. A moderator/reflector/shielding (5 cm high density polyethylene (HDPE), 5.3 cm graphite & 5.7 cm borated HDPE) assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeter (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and photon dose by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10 min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 +/- 0.8 mSv for neutron and 4.2 +/- 0.2 mSv for photon for 10 mins; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population.

  4. Deuterium migration in nuclear graphite: Consequences for the behavior of tritium in CO{sub 2}-cooled reactors and for the decontamination of irradiated graphite waste

    Energy Technology Data Exchange (ETDEWEB)

    Le Guillou, M. [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon – 4, rue Enrico Fermi, F-69622 Villeurbanne cedex (France); Agence nationale pour la gestion des déchets radioactifs, DRD/CM – 1-7, rue Jean Monnet, Parc de la Croix-Blanche, F-92298 Châtenay-Malabry cedex (France); Toulhoat, N., E-mail: nelly.toulhoat@univ-lyon1.fr [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon – 4, rue Enrico Fermi, F-69622 Villeurbanne cedex (France); CEA/DEN – Centre de Saclay, F-91191 Gif-sur-Yvette cedex (France); Pipon, Y. [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon – 4, rue Enrico Fermi, F-69622 Villeurbanne cedex (France); Institut Universitaire Technologique, Université Claude Bernard Lyon 1, Université de Lyon – 43, boulevard du 11 novembre 1918, F-69622 Villeurbanne cedex (France); Moncoffre, N. [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon – 4, rue Enrico Fermi, F-69622 Villeurbanne cedex (France); Khodja, H. [Laboratoire d’Etude des Eléments Légers, CEA/DSM/IRAMIS/NIMBE, UMR 3299 SIS2M – Centre de Saclay, F-91191 Gif-sur-Yvette cedex (France)

    2015-06-15

    In this paper, we aim at understanding tritium behavior in the graphite moderator of French CO{sub 2}-cooled nuclear fission reactors (called UNGG for “Uranium Naturel-Graphite-Gaz”) to get information on its distribution and inventory in the irradiated graphite waste after their dismantling. These findings should be useful both to improve waste treatment processes and to foresee tritium behavior during reactor decommissioning and waste disposal operations. The purpose of the present work is to elucidate the effects of temperature on the behavior of tritium during reactor operation. Furthermore, it aims at exploring options of thermal decontamination. For both purposes, annealing experiments were carried out in inert atmosphere as well as in thermal conditions as close as possible to those encountered in UNGG reactors and in view of a potential decontamination in humid gas. D{sup +} ions were implanted into virgin nuclear graphite in order to simulate tritium displaced from its original structural site through recoil during reactor operation. The effect of thermal treatments on the mobility of the implanted deuterium was then investigated at temperatures ranging from 200 to 1200 °C, in inert atmosphere (vacuum or argon), in a gas simulating the UNGG coolant gas (mainly CO{sub 2}) or in humid nitrogen. Deuterium was analyzed by Nuclear Reaction Analysis (NRA) both at millimetric and micrometric scales. We have identified three main stages for the deuterium release. The first one corresponds to deuterium permeation through graphite open pores. The second and third ones are controlled by the progressive detrapping of deuterium located at different trapping sites and its successive migration through the crystallites and along crystallites and coke grains edges. Extrapolating the thermal behavior of deuterium to tritium, the results show that the release becomes significant above the maximum UNGG reactor temperature of 500 °C and should be lower than 30% of the

  5. Deuterium NMR Studies of the Structure and Dynamics of Gramicidin.

    Science.gov (United States)

    Hing, Andrew William

    1990-01-01

    The structure and dynamics of the membrane peptide gramicidin are investigated by deuterium NMR. A specific structural and dynamical question about the peptide backbone of gramicidin is investigated by deuterating the alpha carbon of the third alanine residue. Deuterium NMR experiments performed on this analog in oriented lipid bilayers indicate that the c_alpha- ^2H bond makes an angle relative to the helical axis that is in agreement with the bond angle predicted by the beta^{6.3} helical model. A second structural and dynamical question about the peptide backbone of gramicidin is investigated by deuterating the formyl group of two different analogs. Deuterium NMR experiments performed on these analogs show that the spectra of the two analogs are very similar. However, the analog possessing D-leucine as the second residue also appears to exist in a second, minor conformation which does not seem to exist for the analog possessing glycine as the second residue.

  6. Development of neutron spectrometer toward deuterium plasma diagnostics in LHD

    International Nuclear Information System (INIS)

    Neutron spectrometer based on coincident counting of associated particles has been developed for deuterium plasma diagnostics on Large Helical Device (LHD) at the National Institute for Fusion Science. Efficient detection of 2.5 MeV neutron with high energy resolution would be achievable by coincident detection of a scattered neutron and a recoiled proton associated with an elastic scattering of incident neutron in a plastic scintillator as a radiator. The calculated neutron spectra from deuterium plasma heated by neutral beam injection indicate that the energy resolution of better than 7% is required for the spectrometer to evaluate energetic deuterium confinement. By using a prototype of the proposed spectrometer, the energy resolution of 6.3% and the detection efficiency of 3.3x10-7 count/neutron were experimentally demonstrated for 2.5 MeV monoenergetic neutron, respectively.

  7. Hyperfine structure of P-states in muonic deuterium

    CERN Document Server

    Faustov, R N; Martynenko, G A; Sorokin, V V

    2015-01-01

    On the basis of quasipotential approach to the bound state problem in quantum electrodynamics we calculate hyperfine structure intervals Delta E^{hfs}(2P_{1/2}) and Delta E^{hfs}(2P_{3/2}) for P-states in muonic deuterium. The tensor method of projection operators for the calculation of the hyperfine structure of P-states with definite quantum numbers of total atomic momentum F and total muon momentum j in muonic deuterium is formulated. We take into account vacuum polarization, relativistic, quadruple and structure corrections of orders alpha^4, alpha^5 and alpha^6. The obtained numerical values of hyperfine splittings are useful for the analysis of new experimental data of the CREMA collaboration regarding to muonic deuterium.

  8. Carbon and deuterium nuclear magnetic resonance in solids

    International Nuclear Information System (INIS)

    Results are presented on a study of cross polarization dynamics, between protons and carbon-13 in adamantane, by the direct observation of the dilute, carbon-13 spins. A comparison is presented of the experimental and theoretical proton dipolar fluctuation correlation time tau/sub c/, which is experimentally 110 +- 15 μsec and theoretically 122 μsec for adamantane. An approach to high resolution NMR of deuterium in solids is described. The m = 1 → --1 transition is excited by a double quantum process and the decay of coherence Q(tau) is monitored. The carboxyl and the water deuterium shifts are resolved and the anisotropy of the carboxyl shielding tensor is estimated to be Δ sigma = 32 +- ppM. A complete theoretical analysis is presented. The extension of cross relaxation techniques, both direct and indirect, to proton-deuterium double resonance is also described

  9. Solar energy apparatus with apertured shield

    Science.gov (United States)

    Collings, Roger J. (Inventor); Bannon, David G. (Inventor)

    1989-01-01

    A protective apertured shield for use about an inlet to a solar apparatus which includesd a cavity receiver for absorbing concentrated solar energy. A rigid support truss assembly is fixed to the periphery of the inlet and projects radially inwardly therefrom to define a generally central aperture area through which solar radiation can pass into the cavity receiver. A non-structural, laminated blanket is spread over the rigid support truss in such a manner as to define an outer surface area and an inner surface area diverging radially outwardly from the central aperture area toward the periphery of the inlet. The outer surface area faces away from the inlet and the inner surface area faces toward the cavity receiver. The laminated blanket includes at least one layer of material, such as ceramic fiber fabric, having high infra-red emittance and low solar absorption properties, and another layer, such as metallic foil, of low infra-red emittance properties.

  10. CARBON AND DEUTERIUM NUCLEAR MAGNETIC RESONANCE IN SOLIDS

    Energy Technology Data Exchange (ETDEWEB)

    Shattuck, Thomas Wayne

    1976-07-01

    In Chapter I we present the results on a study of cross polarization dynamics, between protons and carbon-13 in adamantane, by the direct observation of the dilute, carbon-13, spins. These dynamics are an important consideration in the efficiency of proton enhancement double-resonance techniques and they also provide good experimental models for statistical theories of cross relaxation. In order to test these theories we present a comparison of the experimental and theoretical proton dipolar fluctuation correlation time {tau}{sub c}, which is experimentally 110 {+-} 15 {micro}sec and theoretically 122 {micro}sec for adamantane. These double resonance considerations provide the background for extensions to deuterium and double quantum effects discussed in Chapter II. In Chapter II an approach to high resolution nmr of deuterium in solids is described. The m = 1 {yields} -1 transition is excited by a double quantum process and the decay of coherence Q({tau}) is monitored. Fourier transformation yields a deuterium spectrum devoid of quadrupole splittings and broadening. If the deuterium nuclei are dilute and the protons are spin decoupled, the double-quantum spectrum is a high resolution one and yields information on the deuterium chemical shifts {Delta}{omega}. The relationship Q({tau}) {approx} cos 2{Delta}{omega}{tau} is checked and the technique is applied to a single crystal of oxalic acid dihydrate enriched to {approx} 10% in deuterium. The carboxyl and the water deuterium shifts are indeed resolved and the anisotropy of the carboxyl shielding tensor is estimated to be {Delta}{sigma} = 32 {+-} 3 ppm. A complete theoretical analysis is presented. The extension of cross relaxation techniques, both direct and indirect, to proton-deuterium double resonance is also described. The m = 1 {yields} -1 double quantum transition and the m = {+-} 1 {yields} 0 single quantum transitions may all be polarized and we present the derivation of the Hartmann-Hahn cross

  11. Production of secondary Deuterium in the atmosphere at various latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Papini, P. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Grimani, C. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); Stephens, S.A. [Tata Institute of Fundamental Research, Bombay (International Commission on Radiation Units and Measurements)

    1995-09-01

    Secondary deuterium in the atmosphere are produced in interactions by primary cosmic rays. The shape of their energy spectrum depends on the primary cosmic ray spectrum incident at the top of the atmosphere. At high energies, the spectral shape depends on the primary spectrum of helium and heavy nuclei. However, at very low energies, specially below the geomagnetic cut-off, the spectral shape depends on the evaporation and recoil processes and hence almost independent of the spectral shape of the primary radiation. It is undertaken a calculation of the secondary deuterium spectrum at small atmospheric depths at various latitudes and the results will be presented.

  12. Deuterium/hydrogen natural isotopic abundance in fruit juices

    International Nuclear Information System (INIS)

    Stable isotopic analyses of various elements such as carbon, hydrogen and oxygen are currently applied for the authentification of naturalness of fruit juices. Deuterium is particularly of interest because of the wide variation of its abundance. Due to evaporation-transpiration the deuterium content of the water in fruit juices is enriched compared to local ground water. In the case of our investigation on apple, another fractionation, originating in technological process, was observed. The concentrated juice water is enriched by 6o/oo as compared to natural fruit juice water. (authors)

  13. Deuterium isotope effects in propylene and ethylene ozonide

    Energy Technology Data Exchange (ETDEWEB)

    Jong-In Choe; Hyung-Soo Choi; Kuczkowski, R.L.

    1986-12-01

    The proton NMR spectra of four deuteriated species of propylene ozonide and five of ethylene ozonide were analysed. The deuterium isotope shifts were 0.0140 ppm (H gem to D), 0.0034 ppm (H trans to D) and 0.0015 ppm (H cis to D) for propylene ozonide. The same trends were observed in ethylene ozonide. The isotope shifts were not additive when two geminal protons were substituted by deuterium. The relative intensities of microwave rotational and proton NMR transitions were compared for propylene ozonide-d/sub 1/ prepared stereoselectively in order to assign unambiguously its chemical shifts and spin-spin splittings.

  14. Deuterium isotope effects in propylene and ethylene ozonide

    International Nuclear Information System (INIS)

    The proton NMR spectra of four deuteriated species of propylene ozonide and five of ethylene ozonide were analysed. The deuterium isotope shifts were 0.0140 ppm (H gem to D), 0.0034 ppm (H trans to D) and 0.0015 ppm (H cis to D) for propylene ozonide. The same trends were observed in ethylene ozonide. The isotope shifts were not additive when two geminal protons were substituted by deuterium. The relative intensities of microwave rotational and proton NMR transitions were compared for propylene ozonide-d1 prepared stereoselectively in order to assign unambiguously its chemical shifts and spin-spin splittings. (author)

  15. Transport of recycled deuterium to the plasma core in TFTR

    International Nuclear Information System (INIS)

    The authors report a study of the fueling of the plasma core by recycling in the Tokamak Fusion Test Reactor (TFTR). They have analyzed discharges fueled by deuterium recycled from the limiter and tritium-only neutral beam injection. In these plasmas, the DT neutron rate provides a measure of the deuterium influx into the core plasma. They find a reduced influx with plasmas using lithium pellet conditioning and with plasmas of reduced major (and minor) radius. Modeling with the DEGAS neutrals code shows that the dependence on radius can be related to the penetration of neutrals through the scrape-off layer

  16. Transport of recycled deuterium to the plasma core in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, C.H.; Bell, M.G.; Budny, R.V.; Jassby, D.L.; Park, H.; Ramsey, A.T.; Stotler, D.P.; Strachan, J.D.

    1997-10-01

    The authors report a study of the fueling of the plasma core by recycling in the Tokamak Fusion Test Reactor (TFTR). They have analyzed discharges fueled by deuterium recycled from the limiter and tritium-only neutral beam injection. In these plasmas, the DT neutron rate provides a measure of the deuterium influx into the core plasma. They find a reduced influx with plasmas using lithium pellet conditioning and with plasmas of reduced major (and minor) radius. Modeling with the DEGAS neutrals code shows that the dependence on radius can be related to the penetration of neutrals through the scrape-off layer.

  17. Transport of Recycled Deuterium to the Plasma Core in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Bell, M.G.; Budny, R.V.; Jassby, D.L.; Park, H.; Skinner, C.H.; et al

    1997-10-01

    We report a study of the fueling of the plasma core by recycling in the Tokamak Fusion Test Reactor (TFTR) [Phys. Plasmas 2, 2176 (1995)]. We have analyzed discharges fueled by deuterium recycled from the limiter and tritium-only neutral beam injection. In these plasmas, the DT neutron rate provides a measure of the deuterium influx into the core plasma. We find a reduced influx with plasmas using lithium pellet conditioning and with plasmas of reduced major (and minor) radius. Modeling with the DEGAS neutrals code shows that the dependence on radius can be related to the penetration of neutrals through the scrape-off layer.

  18. A Method for Synthetic Aperture Compounding

    DEFF Research Database (Denmark)

    Hansen, Jens Munk; Jensen, Jørgen Arendt

    2010-01-01

    An approach to perform ultrasound spatial compounding using synthetic aperture data is proposed. The approach allows compounding to be performed for any number of directions without reducing the frame rate or temporal resolution. It is demonstrated how the contrast is improved by compounding and...... obtained when using 5 images. Using the same RF data, a synthetic aperture image without compounding reveals a CNR of -0.36, -0.93, -1.23, and -1.61 dB for the four cysts, respectively....

  19. Large aperture calorimeter for fusion laser measurements

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, J.G.; Smith, P.A.

    The authors designed and constructed a large aperture calorimeter intended for laser fusion measurements on beams up to 20 cm diameter. The laser beam is absorbed in a glass disc backed by a disc carry a resistance wire. Although it performs essentially as expected with a noise equivalent energy of 20 mJ and a maximum energy of about 100 J, difficulties in construction give a 17% variation of sensitivity across the aperture. To overcome this problem it would probably be necessary to adopt an integral construction with the resistance bridge formed from an etched film on the back of the absorbing glass.

  20. Multi-antenna synthetic aperture radar

    CERN Document Server

    Wang, Wen-Qin

    2013-01-01

    Synthetic aperture radar (SAR) is a well-known remote sensing technique, but conventional single-antenna SAR is inherently limited by the minimum antenna area constraint. Although there are still technical issues to overcome, multi-antenna SAR offers many benefits, from improved system gain to increased degrees-of-freedom and system flexibility. Multi-Antenna Synthetic Aperture Radar explores the potential and challenges of using multi-antenna SAR in microwave remote sensing applications. These applications include high-resolution imaging, wide-swath remote sensing, ground moving target indica

  1. Synthetic aperture radar capabilities in development

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  2. IMPROVED SYNTHETIC APERTURE SONAR MOTION COMPENSATION COMBINED DPCA WITH SUB-APERTURE IMAGE CORRELATION

    Institute of Scientific and Technical Information of China (English)

    Liu Wei; Zhang Chunhua; Liu Jiyuan

    2009-01-01

    Estimation precision of Displaced Phase Center Algorithm (DPCA) is affected by the number of displaced phase center pairs, the bandwidth of transmitting signal and many other factors. Detailed analysis is made on DPCA's estimation precision. Analysis results show that the directional vector estimation precision of DPCA is low, which will produce accumulating errors when phase centers' track is estimated. Because of this reason, DPCA suffers from accumulating errors seriously. To overcome this problem, a method combining DPCA with Sub Aperture Image Correlation (SAIC) is presented. Large synthetic aperture is divided into sub-apertures. Micro errors in sub-aperture are estimated by DPCA and compensated to raw echo data. Bulk errors between sub-apertures are estimated by SAIC and compensated directly to sub-aperture images. After that, sub-aperture images are directly used to generate ultimate SAS image. The method is applied to the lake-trial dataset of a 20 kHz SAS prototype system. Results show the method can successfully remove the accumulating error and produce a better SAS image.

  3. Mass-Spectrometry, a method for determination of deuterium distribution in birds' body under the effect of water with low deuterium content

    International Nuclear Information System (INIS)

    Full text: Deuterium concentration in water is about 144 ppm D/(D + H). Many studies were carried out in order to investigate the influence of water deuterium concentration on the living matter. These studies have demonstrated that while the deuterium normal quantities don't have harmful effects, the increase of deuterium intrinsic concentrations with over 15-20% determine structural, metabolic and functional alterations in different grades, which can lead finally at organism death. At the opposite pole, the general aspect of modifications induced by the administration of deuterium depleted water was the stimulation of cellular reactivity and unspecific impunity, reduction of harmful effects of different noxious agents, noticing also an inhibitor effect on several types of cancer. Referring to the prolongated administration of deuterium depleting medium it was pursued, in the present research, the mode and the grade in which deuterium is exchanged with hydrogen in the mammals organism. The results show that in natural conditions, the organism have the tendency to accumulate deuterium. On the other hand, the grade of deuterium depletion seems to be under the influence both of specimen genotype and behavior, and also of deuterium depleting medium concentration. (author)

  4. Determination of gluconeogenesis in man by the use of deuterium-NMR-spectroscopy

    CERN Document Server

    Rosian, E

    2000-01-01

    The aim of this dissertation is the quantification of the deuterium--distribution in human glucose by the use of the deuterium NMR spectroscopy of deuteriated water. The glucose production in human organism is composed of gluconeogenesis and glycolysis. The quantification of the part of gluconeogenesis on the total glucose production was determined by the use of deuterium NMR spectroscopy. (boteke)

  5. High-Energy Ion Emission from Cooled Deuterium Clusters in 20 TW Laser Fields

    Institute of Scientific and Technical Information of China (English)

    LIU Hong-Jie; HUANG Wen-Zhong; WANG Guang-Chang; ZHOU Wei-Min; ZHANG Shuang-Gen; WANG Xiang-Xian; ZHOU Kai-Nan; WANG Xiao-Dong; HUANG Xiao-Jun; NI Guo-Quan; GU Yu-Qiu; WANG Hong-Bin; ZHENG Zhi-Jian; GE Fang-Fang; WEN Xian-Lun; JIAO Chun-Ye; HE Ying-Ling; WEN Tian-Shu

    2005-01-01

    @@ High-energy ion emission from intense-ultrashort (30fs) laser-pulse-cooled deuterium-cluster (80K) interaction is measured. The deuterium ions have an average energy 20 keV, which greatly exceeds Zweiback's expectation [Phys. Rev. Lett. 84 (2000) 2634]. These fast deuterium ions can be used to drive fusion and have a broad prospect.

  6. Deuterium contents in water of various tissues from different subtypes of C4 plants

    International Nuclear Information System (INIS)

    The work summarized here is concerned with the use of deuterium in evaluating the position of the NADP-malate enzyme subtype in the C4 plant maize (Zea mays). The results show a higher deuterium concentration in the biomass, resulting from the use in the Calvin cycle of intercostal water enriched in deuterium by evapotranspiration. 2 refs, 1 tab

  7. Experimental study on anomalous neutron production in deuterium/solid system

    International Nuclear Information System (INIS)

    A series of experiments on both D2O electrolysis and thermal cycle of deuterium absorbed Ti Turnings has been designed to examine the anomalous phenomena in Deuterium/Solid System. A neutron detector containing 16 BF3 tubes with a detection limit of 0.38 n/s for two hour counting was used for electrolysis experiments. No neutron counting rate statistically higher than detection limit was observed from Fleischmann ampersand Pons type experiments. An HLNCC neutron detector equipped with 18 3He tubes and a JSR-11 shift register unit with a detection limit of 0.20 n/s for a two hour run was employed to study the neutron signals in D2 gas experiments. Different material pretreatments were selected to review the changes in frequency and size of the neutron burst production. Experiment sequence was deliberately designed to distinguish the neutron burst from fake signals, e.g. electronic noise pickup, the cosmic rays and other sources of environmental background. Ten batches of dry fusion samples were tested, among them, seven batches with neutron burst signals occurred roughly at the temperature from -100 degree centigrade to near room temperature. In the first four runs of a typical sample batch, seven neutron bursts were observed with neutron numbers from 15 to 482, which are 3 and 75 times, respectively, higher than the uncertainty of background. However, no bursts happened for H2 dummy samples running in-between and afterwards and for sample batch after certain runs

  8. Analytic inversion in synthetic aperture radar.

    OpenAIRE

    Rothaus, O. S.

    1994-01-01

    A method of processing synthetic aperture radar signals that avoids some of the approximations currently in use that appear to be responsible for severe phase distortions is described. As a practical matter, this method requires N3 numerical operations, as opposed to the N2 ln N currently the case, but N3 is now easily managed, for N in the range of interest.

  9. Experiences on synthetic aperture focussing technique (SAFT)

    International Nuclear Information System (INIS)

    Imaging based on the synthetic aperture focussing technique (SAFT) improves the reliability of sizing and characterisation of structural discontinuities found in non-destructive testing of nuclear components. One of the main advantages of this technique is an improvement of signal-to-noise-ratio. The advantages are discussed in terms of practical applications and theory. (orig.)

  10. Compound imaging using Synthetic Aperture Sequential Beamformation

    DEFF Research Database (Denmark)

    Jensen, Casper Bo; Jensen, Jonas; Hemmsen, Martin Christian;

    2011-01-01

    Synthetic Aperture Sequential Beamforming (SASB) is a technique with low complexity and the ability to yield a more uniform lateral resolution with range. However, the presence of speckle artifacts in ultrasound images degrades the contrast. In conventional imaging speckle is reduced by using...

  11. Interferometric Synthetic Aperture Microwave Radiometers : an Overview

    Science.gov (United States)

    Colliander, Andreas; McKague, Darren

    2011-01-01

    This paper describes 1) the progress of the work of the IEEE Geoscience and Remote Sensing Society (GRSS) Instrumentation and Future Technologies Technical Committee (IFT-TC) Microwave Radiometer Working Group and 2) an overview of the development of interferometric synthetic aperture microwave radiometers as an introduction to a dedicated session.

  12. Parametric Beamformer for Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt

    2006-01-01

    In this paper a parametric beamformer, which can handle all imaging modalities including synthetic aperture imaging, is presented. The image lines and apodization coefficients are specified parametrically, and the lines can have arbitrary orientation and starting point in 3D coordinates. The beam...

  13. Parametric Transverse Patterns in Broad Aperture Lasers

    DEFF Research Database (Denmark)

    Grigorieva, E.V.; Kashchenko, S.A.; Mosekilde, Erik

    1998-01-01

    Parametrically generated optical patterns are investigated for finite and large-scale transverse aperture lasers. Standing and rotating patterns as well as periodic and chaotic pattern alternations are described in the framework of the amplitude equation formalism. Sensitive dependence on the...... geometrical size of the system is demonstrated even in the case of large-scale systems....

  14. A modular approach toward extremely large apertures

    Science.gov (United States)

    Woods, A. A., Jr.

    1981-02-01

    Modular antenna construction can provide a significant increase in reflector aperture size over deployable reflectors. The modular approach allows reflective mesh surfaces to be supported by a minimum of structure. The kinematics of the selected deployable design approach were validated by the subscale demonstration model. Further design refinements on the module structural/joints and design optimization on intermodule joints are needed.

  15. Optimization of Synthetic Aperture Image Quality

    DEFF Research Database (Denmark)

    Moshavegh, Ramin; Jensen, Jonas; Villagómez Hoyos, Carlos Armando;

    2016-01-01

    Synthetic Aperture (SA) imaging produces high-quality images and velocity estimates of both slow and fast flow at high frame rates. However, grating lobe artifacts can appear both in transmission and reception. These affect the image quality and the frame rate. Therefore optimization of parameter...

  16. Vowel Aperture and Syllable Segmentation in French

    Science.gov (United States)

    Goslin, Jeremy; Frauenfelder, Ulrich H.

    2008-01-01

    The theories of Pulgram (1970) suggest that if the vowel of a French syllable is open then it will induce syllable segmentation responses that result in the syllable being closed, and vice versa. After the empirical verification that our target French-speaking population was capable of distinguishing between mid-vowel aperture, we examined the…

  17. Dynamic metamaterial aperture for microwave imaging

    Science.gov (United States)

    Sleasman, Timothy; F. Imani, Mohammadreza; Gollub, Jonah N.; Smith, David R.

    2015-11-01

    We present a dynamic metamaterial aperture for use in computational imaging schemes at microwave frequencies. The aperture consists of an array of complementary, resonant metamaterial elements patterned into the upper conductor of a microstrip line. Each metamaterial element contains two diodes connected to an external control circuit such that the resonance of the metamaterial element can be damped by application of a bias voltage. Through applying different voltages to the control circuit, select subsets of the elements can be switched on to create unique radiation patterns that illuminate the scene. Spatial information of an imaging domain can thus be encoded onto this set of radiation patterns, or measurements, which can be processed to reconstruct the targets in the scene using compressive sensing algorithms. We discuss the design and operation of a metamaterial imaging system and demonstrate reconstructed images with a 10:1 compression ratio. Dynamic metamaterial apertures can potentially be of benefit in microwave or millimeter wave systems such as those used in security screening and through-wall imaging. In addition, feature-specific or adaptive imaging can be facilitated through the use of the dynamic aperture.

  18. Perceiving Affordances for Fitting through Apertures

    Science.gov (United States)

    Ishak, Shaziela; Adolph, Karen E.; Lin, Grace C.

    2008-01-01

    Affordances--possibilities for action--are constrained by the match between actors and their environments. For motor decisions to be adaptive, affordances must be detected accurately. Three experiments examined the correspondence between motor decisions and affordances as participants reached through apertures of varying size. A psychophysical…

  19. Optimization of Spatiotemporal Apertures in Channel Sounding

    DEFF Research Database (Denmark)

    Pedersen, Troels; Pedersen, Claus; Yin, Xuefeng;

    2008-01-01

    In this paper we investigate the impact of the spatio-temporal aperture of a channel sounding system equipped with antenna arrays at the transmitter and receiver on the accuracy of joint estimation of Doppler frequency and bi-direction. The contribution of this work is three-fold. Firstly, we sta...

  20. Interdisciplinary science with large aperture detectors

    Directory of Open Access Journals (Sweden)

    Wiencke Lawrence

    2013-06-01

    Full Text Available Large aperture detector systems to measure high energy cosmic rays also offer unique opportunities in other areas of science. Disciplines include geophysics such as seismic and volcanic activity, and atmospheric science ranging from clouds to lightning to aerosols to optical transients. This paper will discuss potential opportunities based on the ongoing experience of the Pierre Auger Observatory.

  1. Parametric Transverse Patterns in Broad Aperture Lasers

    DEFF Research Database (Denmark)

    Grigorieva, E.V.; Kashchenko, S.A.; Mosekilde, Erik

    1998-01-01

    Parametrically generated optical patterns are investigated for finite and large-scale transverse aperture lasers. Standing and rotating patterns as well as periodic and chaotic pattern alternations are described in the framework of the amplitude equation formalism. Sensitive dependence...... on the geometrical size of the system is demonstrated even in the case of large-scale systems....

  2. Dynamic metamaterial aperture for microwave imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sleasman, Timothy; Imani, Mohammadreza F.; Gollub, Jonah N.; Smith, David R. [Center for Metamaterials and Integrated Plasmonics, Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, 27708 (United States)

    2015-11-16

    We present a dynamic metamaterial aperture for use in computational imaging schemes at microwave frequencies. The aperture consists of an array of complementary, resonant metamaterial elements patterned into the upper conductor of a microstrip line. Each metamaterial element contains two diodes connected to an external control circuit such that the resonance of the metamaterial element can be damped by application of a bias voltage. Through applying different voltages to the control circuit, select subsets of the elements can be switched on to create unique radiation patterns that illuminate the scene. Spatial information of an imaging domain can thus be encoded onto this set of radiation patterns, or measurements, which can be processed to reconstruct the targets in the scene using compressive sensing algorithms. We discuss the design and operation of a metamaterial imaging system and demonstrate reconstructed images with a 10:1 compression ratio. Dynamic metamaterial apertures can potentially be of benefit in microwave or millimeter wave systems such as those used in security screening and through-wall imaging. In addition, feature-specific or adaptive imaging can be facilitated through the use of the dynamic aperture.

  3. Sonar path correction in synthetic aperture processing

    NARCIS (Netherlands)

    Groen, J.; Hansen, R.E.; Sabel, J.C.

    2003-01-01

    In the next generation of mine hunting sonars, in particular on Autonomous Underwater Vehicles (AUVs), Synthetic Aperture Sonar (SAS) will play an important role. The benefit of SAS is to increase resolution and signal-tonoise ratio by coherent processing of successive pings. A challenge in SAS is t

  4. Diffraction contrast imaging using virtual apertures

    Energy Technology Data Exchange (ETDEWEB)

    Gammer, Christoph, E-mail: cgammer@lbl.gov [National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory (United States); Department of Materials Science and Engineering, University of California, Berkeley (United States); Physics of Nanostructured Materials, Faculty of Physics, University of Vienna (Austria); Burak Ozdol, V. [National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory (United States); Liebscher, Christian H.; Minor, Andrew M. [National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory (United States); Department of Materials Science and Engineering, University of California, Berkeley (United States)

    2015-08-15

    Two methods on how to obtain the full diffraction information from a sample region and the associated reconstruction of images or diffraction patterns using virtual apertures are demonstrated. In a STEM-based approach, diffraction patterns are recorded for each beam position using a small probe convergence angle. Similarly, a tilt series of TEM dark-field images is acquired. The resulting datasets allow the reconstruction of either electron diffraction patterns, or bright-, dark- or annular dark-field images using virtual apertures. The experimental procedures of both methods are presented in the paper and are applied to a precipitation strengthened and creep deformed ferritic alloy with a complex microstructure. The reconstructed virtual images are compared with conventional TEM images. The major advantage is that arbitrarily shaped virtual apertures generated with image processing software can be designed without facing any physical limitations. In addition, any virtual detector that is specifically designed according to the underlying crystal structure can be created to optimize image contrast. - Highlights: • A dataset containing all structural information of a given position is recorded. • The dataset allows reconstruction of virtual diffraction patterns or images. • Specific virtual apertures are designed to image precipitates in a complex alloy. • Virtual diffraction patterns from arbitrarily small regions can be established. • Using STEM diffraction to record the dataset is more efficient than TEM dark-field.

  5. "excess Heat" Induced by Deuterium Flux in Palladium Film

    Science.gov (United States)

    Liu, Bin; Li, Xing Z.; Wei, Qing M.; Mueller, N.; Schoch, P.; Oehre, H.

    An early work at NASA, USA has repeated at INFICON Balzers, Liechtenstein in 2005. It is a confirmation of the correlation between excess heat and deuterium flux permeating through the Pd film. The maximum excess power density is of the order of 100 W/cm3 (Pd).

  6. Deuterium Fractionation and Ion-Molecule Reactions at Low Temperatures

    Science.gov (United States)

    Schlemmer, Stephan; Asvany, Oskar; Hugo, Edouard; Gerlich, Dieter

    2005-08-01

    Understanding deuterium fractionation is currently one of the greatest challenges in astrochemistry. In this contribution deuteration experiments of the series CH_n^+, n=2-5, in a low temperature 22-pole ion trap are used to systematically test a simple chemical rule predicting which molecular ion undergoes deuterium exchange in collisions with HD. CH_4^+ turns out to be a problem case, where prediction fails. The method of laser induced reaction (LIR) is used to determine the population ratio of the lowest ortho-to-para states of H_2D^+ relaxed in collisions with H_2. Preliminary results indicate that the ortho-to-para ratio of H_2D^+ is substantially reduced in para-H_2. This points at the important role of nuclear spin in deuterium fractionation, in particular at the destruction of ortho-H_2D^+ in collisions with ortho-H_2. More systematic LIR experiments are needed for a chemical model of deuterium fractionation including state-to-state modifications of the species involved.

  7. Sputtering of Thick Deuterium Films by KeV Electrons

    DEFF Research Database (Denmark)

    Thestrup Nielsen, Birgitte; Svendsen, Winnie Edith; Schou, Jørgen;

    1994-01-01

    Sputtering of thick films of solid deuterium up to several μm by keV electrons is reported for the first time. The sputtering yield increases within a narrow range of thicknesses around 1.6 μm by about 2 orders of magnitude for 1.5 keV electrons. A similar behavior has not been observed for ion...

  8. Use of 60 ppm deuterium depleted water in companionship animals

    International Nuclear Information System (INIS)

    There are presented the results of studies on the effects of deuterium depleted water in companionship animals. Based on these results, a new product was realized, 'Aqua Forte' that is a deuterium depleted potable water (60 ppm deuterium) with beneficial effects in animal's health maintaining. Aqua forte has prophylactic properties (in preventing diseases related to immune system) and therapeutic properties, as adjuvant in various therapeutic programs. The mechanism of action takes place at the cellular metabolism level by replacing the constitutional and free water of 150 ppm deuterium, this resulting in the stimulation of the immune cellular system and also of resistance at the onset of some pathological states. The non-specific stimulation implies performing both the humoral mediated immune reactions and of those cellularly mediated. Aqua forte is recommended in: - the feeding of the young weaned animals, the action being of growth stimulation, and increasing of the resistance against some diseases specific to the age; - as an adjuvant in some chronic diseases (hepatitis, pancreatitis, dermatological diseases, osteoarthropaties, hepato-renal syndrome, renal insufficiency, after surgical interventions, in antitumoral therapy); - in the feeding of the old animals for the quality of life improvement. (authors)

  9. Cavity-excited Huygens' metasurface antennas: near-unity aperture efficiency from arbitrarily-large apertures

    CERN Document Server

    Epstein, Ariel; Eleftheriades, George V

    2015-01-01

    One of the long-standing problems in antenna engineering is the realization of highly-directive beams using low-profile devices. In this paper we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source cavity excitation is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectrum typical to standard partially-reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern. As shown, a single semianalytical formalism can be followed to achieve control of a variety of radiation features, such as the d...

  10. Development of Approaches for Deuterium Incorporation in Plants

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Barbara R [ORNL

    2015-01-01

    Soon after the discovery of deuterium, efforts to utilize this stable isotope of hydrogen for labeling of plants began and have proven successful for natural abundance to 20% enrichment. However, isotopic labeling with deuterium (2H) in higher plants at the level of 40% and higher is complicated by both physiological responses, particularly water exchange through transpiration, and inhibitory effects of D2O on germination, rooting, and growth. The highest incorporation of 40 50% had been reported for photoheterotrophic cultivation of the duckweed Lemna. Higher substitution is desirable for certain applications using neutron scattering and nuclear magnetic resonance (NMR) techniques. 1H2H-NMR and mass spectroscopy are standard methods frequently used for determination of location and amount of deuterium substitution. The changes in infrared (IR) absorption observed for H to D substitution in hydroxyl and alkyl groups provide rapid initial evaluation of incorporation. Short-term experiments with cold-tolerant annual grasses can be carried out in enclosed growth containers to evaluate incorporation. Growth in individual chambers under continuous air perfusion with dried sterile-filtered air enables long-term cultivation of multiple plants at different D2O concentrations. Vegetative propagation from cuttings extends capabilities to species with low germination rates. Cultivation in 50% D2O of annual ryegrass and switchgrass following establishment of roots by growth in H2O produces samples with normal morphology and 30 40 % deuterium incorporation in the biomass. Winter grain rye (Secale cereale) was found to efficiently incorporate deuterium by photosynthetic fixation from 50% D2O but did not incorporate deuterated phenylalanine-d8 from the growth medium.

  11. Deuterium Burning in Massive Giant Planets and Low-Mass Brown Dwarfs formed by Core-Nucleated Accretion

    CERN Document Server

    Bodenheimer, Peter; Lissauer, Jack J; Fortney, Jonathan J; Saumon, Didier

    2013-01-01

    Formation of bodies near the deuterium-burning limit is considered by detailed numerical simulations according to the core-nucleated giant planet accretion scenario. The objects, with heavy-element cores in the range 5-30 Mearth, are assumed to accrete gas up to final masses of 10-15 Jupiter masses (Mjup). After the formation process, which lasts 1-5 Myr and which ends with a 'cold-start', low-entropy configuration, the bodies evolve at constant mass up to an age of several Gyr. Deuterium burning via proton capture is included in the calculation, and we determined the mass, M50, above which more than 50% of the initial deuterium is burned. This often-quoted borderline between giant planets and brown dwarfs is found to depend only slightly on parameters, such as core mass, stellar mass, formation location, solid surface density in the protoplanetary disk, disk viscosity, and dust opacity. The values for M50 fall in the range 11.6-13.6 Mjup, in agreement with previous determinations that do not take the formati...

  12. Wide-aperture electric-discharge nitrogen laser

    International Nuclear Information System (INIS)

    The parameters of a wide-aperture nitrogen laser pumped by a generator with the inductive energy storage and a SOS diode opening switch or a generator with the capacitive energy storage are studied. The gas preionisation was performed by soft X-rays. The size of the active volume of the laser was 10x6x100 cm. The output energy and power obtained at the 337.1-nm C 3Πu - B 3Πg transition are maximal for electric-discharge nitrogen lasers. The output energy in the second positive system of nitrogen in the N2-SF6 mixture achieved 110 mJ for a peak power of 6 MW. Due to an increase in voltage across the laser gap in nitrogen mixtures with NF3, the generation of ∼35-mJ, 100-ns pulses was obtained in the quasi-stationary stage of the discharge. (lasers)

  13. Multi-static synthetic aperture radar and inverse scattering

    OpenAIRE

    Gustafsson, Mats

    2004-01-01

    In this paper synthetic aperture radar is analyzed from an inverse scattering perspective. It is shown that the classical point scattering model can be generalized to a dipole scattering model. The dipole scattering model reduces to the point scattering model for small aperture angles. For large aperture angles or multiple illumination apertures the dipole model gives an anisotropic reflectivity such that orthogonal scattering processes are separated. Moreover, it is shown th...

  14. DEUTERIUM BURNING IN MASSIVE GIANT PLANETS AND LOW-MASS BROWN DWARFS FORMED BY CORE-NUCLEATED ACCRETION

    Energy Technology Data Exchange (ETDEWEB)

    Bodenheimer, Peter [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); D' Angelo, Gennaro; Lissauer, Jack J. [Space Science and Astrobiology Division, NASA-Ames Research Center, Moffett Field, CA 94035 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Saumon, Didier, E-mail: peter@ucolick.org, E-mail: gennaro.dangelo@nasa.gov, E-mail: Jack.J.Lissauer@nasa.gov, E-mail: jfortney@ucolick.org, E-mail: dsaumon@lanl.gov [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2013-06-20

    Using detailed numerical simulations, we study the formation of bodies near the deuterium-burning limit according to the core-nucleated giant planet accretion scenario. The objects, with heavy-element cores in the range 5-30 M{sub Circled-Plus }, are assumed to accrete gas up to final masses of 10-15 Jupiter masses (M{sub Jup}). After the formation process, which lasts 1-5 Myr and which ends with a ''cold-start'', low-entropy configuration, the bodies evolve at constant mass up to an age of several Gyr. Deuterium burning via proton capture is included in the calculation, and we determined the mass, M{sub 50}, above which more than 50% of the initial deuterium is burned. This often-quoted borderline between giant planets and brown dwarfs is found to depend only slightly on parameters, such as core mass, stellar mass, formation location, solid surface density in the protoplanetary disk, disk viscosity, and dust opacity. The values for M{sub 50} fall in the range 11.6-13.6 M{sub Jup}, in agreement with previous determinations that do not take the formation process into account. For a given opacity law during the formation process, objects with higher core masses form more quickly. The result is higher entropy in the envelope at the completion of accretion, yielding lower values of M{sub 50}. For masses above M{sub 50}, during the deuterium-burning phase, objects expand and increase in luminosity by one to three orders of magnitude. Evolutionary tracks in the luminosity versus time diagram are compared with the observed position of the companion to Beta Pictoris.

  15. Antenna-Aperture Synthesis for Hyperband SAR Antennas

    Science.gov (United States)

    Baum, C. E.

    This paper introduces an aperture synthesis procedure for producing a desired pulse shape, including the desired frequency spectrum of the pulse. This is accomplished by controlling the time-of-arrival of fields on the aperture plane, thereby synthesizing a delay as a function of radius for the arrival of a stop-function TEM-like wave on the aperture plane.

  16. High Gain, Very Low Areal Density, Scalable RF Apertures Enabled by Membrane Aperture Shell Technology (MAST) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose that the Membrane Aperture Shell Technology (MAST) approach be expanded with a specific focus on space exploration orbiting comm network RF aperture...

  17. Deuterium, oxygen-18 and tritium in precipitation, surface and groundwater in the far east of Russia

    Energy Technology Data Exchange (ETDEWEB)

    Chelnokov, George; Kharitonova, Natalia; Bragin, Ivan; Vasil' eva, Maria [Far East Geological Insitute Rus. Acad. of Sci., 690022, Prospect 100 letya 159, Vladivostok (Russian Federation)

    2013-07-01

    This is the first report describing the parallel measurement of deuterium (δD), tritium ({sup 3}H), and oxygen-18 (δ{sup 18}O) in precipitation, seawater, surface and groundwater in relation to the Russian Far East. dD and δ{sup 18}O demonstrate that the studied waters have a meteoric origin, and variations are the result of water-rock-gas interactions. All studied waters reveal obvious 'latitudinal' and 'continental' effects: there is a universal decrease in δ{sup 18}O and δD from the south to the north, and from the ocean inland. The background level of {sup 3}H is 20 TU in Amursky region's rivers, 13 TU in Primorsky region's rivers, and 5.5 TU in one of the Kuril Islands. The majority of studied groundwaters have short residence times. (authors)

  18. Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium

    Science.gov (United States)

    Knudson, M. D.; Desjarlais, M. P.; Becker, A.; Lemke, R. W.; Cochrane, K. R.; Savage, M. E.; Bliss, D. E.; Mattsson, T. R.; Redmer, R.

    2015-06-01

    Eighty years ago, it was proposed that solid hydrogen would become metallic at sufficiently high density. Despite numerous investigations, this transition has not yet been experimentally observed. More recently, there has been much interest in the analog of this predicted metallic transition in the dense liquid, due to its relevance to planetary science. Here, we show direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Experimental determination of the location of this transition provides a much-needed benchmark for theory and may constrain the region of hydrogen-helium immiscibility and the boundary-layer pressure in standard models of the internal structure of gas-giant planets.

  19. The deuterium/hydrogen distribution in chondritic organic matter attests to early ionizing irradiation.

    Science.gov (United States)

    Laurent, Boris; Roskosz, Mathieu; Remusat, Laurent; Robert, François; Leroux, Hugues; Vezin, Hervé; Depecker, Christophe; Nuns, Nicolas; Lefebvre, Jean-Marc

    2015-01-01

    Primitive carbonaceous chondrites contain a large array of organic compounds dominated by insoluble organic matter (IOM). A striking feature of this IOM is the systematic enrichment in deuterium compared with the solar hydrogen reservoir. This enrichment has been taken as a sign of low-temperature ion-molecule or gas-grain reactions. However, the extent to which Solar System processes, especially ionizing radiation, can affect D/H ratios is largely unknown. Here, we report the effects of electron irradiation on the hydrogen isotopic composition of organic precursors containing different functional groups. From an initial terrestrial composition, overall D-enrichments and differential intramolecular fractionations comparable with those measured in the Orgueil meteorite were induced. Therefore, ionizing radiation can quantitatively explain the deuteration of organics in some carbonaceous chondrites. For these meteorites, the precursors of the IOM may have had the same isotopic composition as the main water reservoirs of the inner Solar System. PMID:26461170

  20. Formation of β-PdD containing high deuterium concentration using electrolysis of heavy-water

    International Nuclear Information System (INIS)

    The limiting composition of β-PdD obtained during electrolytic loading results from a complex competition between diffusion of D atoms through any surface barrier, diffusion within the bulk sample, and loss of deuterium gas from surface-penetrating cracks. Reductions in surface-crack concentration and surface-barriers are essential steps to achieve high compositions. The highest compositions within any sample are located within the surface region as a complex patch-work of values. The open circuit voltage (OCV), referenced to platinum, is useful in understanding changes in the surface composition and structure. Values as high as -1.35 V have been observed for highly loaded β-PdD. Evidence for several new, possibly impurity stabilized structures is given. (orig.)

  1. Time-resolved pulsed hydrogen/deuterium exchange mass spectrometry probes gaseous proteins structural kinetics.

    Science.gov (United States)

    Rajabi, Khadijeh

    2015-01-01

    A pulsed hydrogen/deuterium exchange (HDX) method has been developed for rapid monitoring of the exchange kinetics of protein ions with D2O a few milliseconds after electrospray ionization (ESI). The stepwise gradual evolution of HDX of multiply charged protein ions was monitored using the pulsed HDX mass spectrometry technique. Upon introducing a very short pulse of D2O (in the μs to ms time scale) into the linear ion trap (LIT) of a time-of-flight (TOF) mass spectrometer, bimodal distributions were detected for the ions of cytochrome c and ubiquitin. Mechanistic details of HDX reactions for ubiquitin and cytochrome c in the gas phase were uncovered and the structural transitions were followed by analyzing the kinetics of HDX. PMID:25318698

  2. Performance limits for Synthetic Aperture Radar.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2006-02-01

    The performance of a Synthetic Aperture Radar (SAR) system depends on a variety of factors, many which are interdependent in some manner. It is often difficult to ''get your arms around'' the problem of ascertaining achievable performance limits, and yet those limits exist and are dictated by physics, no matter how bright the engineer tasked to generate a system design. This report identifies and explores those limits, and how they depend on hardware system parameters and environmental conditions. Ultimately, this leads to a characterization of parameters that offer optimum performance for the overall SAR system. For example, there are definite optimum frequency bands that depend on weather conditions and range, and minimum radar PRF for a fixed real antenna aperture dimension is independent of frequency. While the information herein is not new to the literature, its collection into a single report hopes to offer some value in reducing the ''seek time''.

  3. Flame Reconstruction Using Synthetic Aperture Imaging

    CERN Document Server

    Murray, Preston; Tree, Dale; Truscott, Tadd

    2011-01-01

    Flames can be formed by burning methane (CH4). When oxygen is scarce, carbon particles nucleate into solid particles called soot. These particles emit photons, making the flame yellow. Later, methane is pre-mixed with air forming a blue flame; burning more efficiently, providing less soot and light. Imaging flames and knowing their temperature are vital to maximizing efficiency and validating numerical models. Most temperature probes disrupt the flame and create differences leading to an inaccurate measurement of the flame temperature. We seek to image the flame in three dimensions using synthetic aperture imaging. This technique has already successfully measured velocity fields of a vortex ring [1]. Synthetic aperture imaging is a technique that views one scene from multiple cameras set at different angles, allowing some cameras to view objects that are obscured by others. As the resulting images are overlapped different depths of the scene come into and out of focus, known as focal planes, similar to tomogr...

  4. IR aperture measurement at β*=40 cm

    CERN Document Server

    Bruce, Roderik; Hermes, Pascal Dominik; Kwee-Hinzmann, Regina; Mereghetti, Alessio; Mirarchi, Daniele; Redaelli, Stefano; Salvachua Ferrando, Belen Maria; Skowronski, Piotr Krzysztof; Valentino, Gianluca; Valloni, Alessandra; CERN. Geneva. ATS Department

    2015-01-01

    This note summarizes MD 307, performed on August 27 2015, during which we measured with beam the global apertures at 6.5 TeV with IR1 and IR5 squeezed to β* =40 cm and a half crossing angle of 205 rad. The measurement technique involved opening collimators in steps, while inducing beam losses at each step, until the main loss location moved from the collimators to the global bottleneck in one of the triplets. Measurements were performed in both beams and planes, and each measurement gave the minimum triplet aperture over IR1 and IR5. The results are in very good agreement with theoretical predictions. At the end of the MD, an asynchronous beam dump test was performed with all collimators moved in to so-called 2-σ retraction settings. This MD is one in a series meant to address various open points for the reach in β* in Run II.

  5. Synthetic aperture tissue and flow ultrasound imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav

    at every emission, which makes it possible to average over a large number of lines. This makes stationary echo canceling easier and significantly improves the velocity estimates. Only 8 emissions per plane are necessary to create the color flow map. Scanning 12 cm in depth, up to 800 planes can be obtained...... imaging applied to medical ultrasound. It is divided into two major parts: tissue and blood flow imaging. Tissue imaging using synthetic aperture algorithms has been investigated for about two decades, but has not been implemented in medical scanners yet. Among the other reasons, the conventional scanning...... and beamformation methods are adequate for the imaging modalities in clinical use - the B-mode imaging of tissue structures, and the color mapping of blood flow. The acquisition time, however, is too long, and these methods fail to perform real-time three-dimensional scans. The synthetic transmit aperture...

  6. Heat generation above break-even from laser-induced fusion in ultra-dense deuterium

    International Nuclear Information System (INIS)

    Previous results from laser-induced processes in ultra-dense deuterium D(0) give conclusive evidence for ejection of neutral massive particles with energy >10 MeV u−1. Such particles can only be formed from nuclear processes like nuclear fusion at the low laser intensity used. Heat generation is of interest for future fusion energy applications and has now been measured by a small copper (Cu) cylinder surrounding the laser target. The temperature rise of the Cu cylinder is measured with an NTC resistor during around 5000 laser shots per measured point. No heating in the apparatus or the gas feed is normally used. The fusion process is suboptimal relative to previously published studies by a factor of around 10. The small neutral particles HN(0) of ultra-dense hydrogen (size of a few pm) escape with a substantial fraction of the energy. Heat loss to the D2 gas (at <1 mbar pressure) is measured and compensated for under various conditions. Heat release of a few W is observed, at up to 50% higher energy than the total laser input thus a gain of 1.5. This is uniquely high for the use of deuterium as fusion fuel. With a slightly different setup, a thermal gain of 2 is reached, thus clearly above break-even for all neutronicity values possible. Also including the large kinetic energy which is directly measured for MeV particles leaving through a small opening gives a gain of 2.3. Taking into account the lower efficiency now due to the suboptimal fusion process, previous studies indicate a gain of at least 20 during long periods

  7. Heat generation above break-even from laser-induced fusion in ultra-dense deuterium

    Directory of Open Access Journals (Sweden)

    Leif Holmlid

    2015-08-01

    Full Text Available Previous results from laser-induced processes in ultra-dense deuterium D(0 give conclusive evidence for ejection of neutral massive particles with energy >10 MeV u−1. Such particles can only be formed from nuclear processes like nuclear fusion at the low laser intensity used. Heat generation is of interest for future fusion energy applications and has now been measured by a small copper (Cu cylinder surrounding the laser target. The temperature rise of the Cu cylinder is measured with an NTC resistor during around 5000 laser shots per measured point. No heating in the apparatus or the gas feed is normally used. The fusion process is suboptimal relative to previously published studies by a factor of around 10. The small neutral particles HN(0 of ultra-dense hydrogen (size of a few pm escape with a substantial fraction of the energy. Heat loss to the D2 gas (at <1 mbar pressure is measured and compensated for under various conditions. Heat release of a few W is observed, at up to 50% higher energy than the total laser input thus a gain of 1.5. This is uniquely high for the use of deuterium as fusion fuel. With a slightly different setup, a thermal gain of 2 is reached, thus clearly above break-even for all neutronicity values possible. Also including the large kinetic energy which is directly measured for MeV particles leaving through a small opening gives a gain of 2.3. Taking into account the lower efficiency now due to the suboptimal fusion process, previous studies indicate a gain of at least 20 during long periods.

  8. Feasibility of Swept Synthetic Aperture Ultrasound Imaging.

    Science.gov (United States)

    Bottenus, Nick; Long, Will; Zhang, Haichong K; Jakovljevic, Marko; Bradway, David P; Boctor, Emad M; Trahey, Gregg E

    2016-07-01

    Ultrasound image quality is often inherently limited by the physical dimensions of the imaging transducer. We hypothesize that, by collecting synthetic aperture data sets over a range of aperture positions while precisely tracking the position and orientation of the transducer, we can synthesize large effective apertures to produce images with improved resolution and target detectability. We analyze the two largest limiting factors for coherent signal summation: aberration and mechanical uncertainty. Using an excised canine abdominal wall as a model phase screen, we experimentally observed an effective arrival time error ranging from 18.3 ns to 58 ns (root-mean-square error) across the swept positions. Through this clutter-generating tissue, we observed a 72.9% improvement in resolution with only a 3.75 dB increase in side lobe amplitude compared to the control case. We present a simulation model to study the effect of calibration and mechanical jitter errors on the synthesized point spread function. The relative effects of these errors in each imaging dimension are explored, showing the importance of orientation relative to the point spread function. We present a prototype device for performing swept synthetic aperture imaging using a conventional 1-D array transducer and ultrasound research scanner. Point target reconstruction error for a 44.2 degree sweep shows a reconstruction precision of 82.8 μm and 17.8 μm in the lateral and axial dimensions respectively, within the acceptable performance bounds of the simulation model. Improvements in resolution, contrast and contrast-to-noise ratio are demonstrated in vivo and in a fetal phantom. PMID:26863653

  9. Optimization of Synthetic Aperture Image Quality

    OpenAIRE

    Moshavegh, Ramin; Jensen, Jonas; Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo; Hemmsen, Martin Christian; Jensen, Jørgen Arendt

    2016-01-01

    Synthetic Aperture (SA) imaging produces high-quality images and velocity estimates of both slow and fast flow at high frame rates. However, grating lobe artifacts can appear both in transmission and reception. These affect the image quality and the frame rate. Therefore optimization of parameters effecting the image quality of SA is of great importance, and this paper proposes an advanced procedure for optimizing the parameters essential for acquiring an optimal image quality, while generati...

  10. Motion compensation of Synthetic Aperture Radar

    OpenAIRE

    Duncan, David; Long, David

    2003-01-01

    Synthetic aperture radar (SAR) is a digital signal processing technique which enhances the azimuth resolution of a radar image using the target doppler history created by the motion of the radar platform. If the platform deviates from a constant velocity, straight-line path then image quality is lost and image details become unfocused. Motion compensation (MOCO) is a technique in which the position and attitude of the platform is recorded or estimated and then used to correct the scene's dopp...

  11. Simultaneous Navigation and Synthetic Aperture Radar Focusing

    OpenAIRE

    Sjanic, Zoran; Gustafsson, Fredrik

    2015-01-01

    Synthetic aperture radar (SAR) equipment is a radar imaging system that can be used to create high-resolution images of a scene by utilizing the movement of a flying platform. Knowledge of the platforms trajectory is essential to get good and focused images. An emerging application field is real-time SAR imaging using small and cheap platforms where estimation errors in navigation systems imply unfocused images. This contribution investigates a joint estimation of the trajectory and SAR image...

  12. Urea and deuterium mixtures at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, M., E-mail: m.donnelly-2@sms.ed.ac.uk; Husband, R. J.; Frantzana, A. D.; Loveday, J. S. [Centre for Science at Extreme Conditions and School of Physics and Astronomy, The University of Edinburgh, Erskine Williamson Building, Peter Guthrie Tait Road, The King’s Buildings, Edinburgh EH9 3FD (United Kingdom); Bull, C. L. [ISIS, Rutherford Appleton Laboratory, Oxford Harwell, Didcot OX11 0QX (United Kingdom); Klotz, S. [IMPMC, CNRS UMR 7590, Université P and M Curie, 4 Place Jussieu, 75252 Paris (France)

    2015-03-28

    Urea, like many network forming compounds, has long been known to form inclusion (guest-host) compounds. Unlike other network formers like water, urea is not known to form such inclusion compounds with simple molecules like hydrogen. Such compounds if they existed would be of interest both for the fundamental insight they provide into molecular bonding and as potential gas storage systems. Urea has been proposed as a potential hydrogen storage material [T. A. Strobel et al., Chem. Phys. Lett. 478, 97 (2009)]. Here, we report the results of high-pressure neutron diffraction studies of urea and D{sub 2} mixtures that indicate no inclusion compound forms up to 3.7 GPa.

  13. Outdoor synthetic aperture acoustic ground target measurements

    Science.gov (United States)

    Bishop, Steven; Ngaya, Therese-Ann; Vignola, Joe; Judge, John; Marble, Jay; Gugino, Peter; Soumekh, Mehrdad; Rosen, Erik

    2010-04-01

    A novel outdoor synthetic aperture acoustic (SAA) system consists of a microphone and loudspeaker traveling along a 6.3-meter rail system. This is an extension from a prior indoor laboratory measurement system in which selected targets were insonified while suspended in air. Here, the loudspeaker and microphone are aimed perpendicular to their direction of travel along the rail. The area next to the rail is insonified and the microphone records the reflected acoustic signal, while the travel of the transceiver along the rail creates a synthetic aperture allowing imaging of the scene. Ground surfaces consisted of weathered asphalt and short grass. Several surface-laid objects were arranged on the ground for SAA imaging. These included rocks, concrete masonry blocks, grout covered foam blocks; foliage obscured objects and several spherical canonical targets such as a bowling ball, and plastic and metal spheres. The measured data are processed and ground targets are further analyzed for characteristics and features amenable for discrimination. This paper includes a description of the measurement system, target descriptions, synthetic aperture processing approach and preliminary findings with respect to ground surface and target characteristics.

  14. Biomineral repair of abalone shell apertures.

    Science.gov (United States)

    Cusack, Maggie; Guo, Dujiao; Chung, Peter; Kamenos, Nicholas A

    2013-08-01

    The shell of the gastropod mollusc, abalone, is comprised of nacre with an outer prismatic layer that is composed of either calcite or aragonite or both, depending on the species. A striking characteristic of the abalone shell is the row of apertures along the dorsal margin. As the organism and shell grow, new apertures are formed and the preceding ones are filled in. Detailed investigations, using electron backscatter diffraction, of the infill in three species of abalone: Haliotis asinina, Haliotis gigantea and Haliotis rufescens reveals that, like the shell, the infill is composed mainly of nacre with an outer prismatic layer. The infill prismatic layer has identical mineralogy as the original shell prismatic layer. In H. asinina and H. gigantea, the prismatic layer of the shell and infill are made of aragonite while in H. rufescens both are composed of calcite. Abalone builds the infill material with the same high level of biological control, replicating the structure, mineralogy and crystallographic orientation as for the shell. The infill of abalone apertures presents us with insight into what is, effectively, shell repair.

  15. Coded-aperture imaging in nuclear medicine

    Science.gov (United States)

    Smith, Warren E.; Barrett, Harrison H.; Aarsvold, John N.

    1989-01-01

    Coded-aperture imaging is a technique for imaging sources that emit high-energy radiation. This type of imaging involves shadow casting and not reflection or refraction. High-energy sources exist in x ray and gamma-ray astronomy, nuclear reactor fuel-rod imaging, and nuclear medicine. Of these three areas nuclear medicine is perhaps the most challenging because of the limited amount of radiation available and because a three-dimensional source distribution is to be determined. In nuclear medicine a radioactive pharmaceutical is administered to a patient. The pharmaceutical is designed to be taken up by a particular organ of interest, and its distribution provides clinical information about the function of the organ, or the presence of lesions within the organ. This distribution is determined from spatial measurements of the radiation emitted by the radiopharmaceutical. The principles of imaging radiopharmaceutical distributions with coded apertures are reviewed. Included is a discussion of linear shift-variant projection operators and the associated inverse problem. A system developed at the University of Arizona in Tucson consisting of small modular gamma-ray cameras fitted with coded apertures is described.

  16. Calibration of the TUD Ku-band Synthetic Aperture Radiometer

    DEFF Research Database (Denmark)

    Laursen, Brian; Skou, Niels

    1995-01-01

    The TUD Synthetic Aperture Radiometer is a 2-channel demonstration model that can simulate a thinned aperture radiometer having an unfilled aperture consisting of several small antenna elements. Aperture synthesis obtained by interferometric measurements using the antenna elements in pairs......, followed by an image reconstruction based on an inverse Fourier transform, results in an imaging instrument without the need of mechanical scan. The thinned aperture and the non-scanning feature make the technique attractive for low frequency spaceborne radiometer systems, e.g. at L-band. Initial...

  17. Jacobi-Bessel Analysis Of Antennas With Elliptical Apertures.

    Science.gov (United States)

    Rahmat-Samii, Y.

    1989-01-01

    Coordinate transformation improves convergence pattern analysis of elliptical-aperture antennas. Modified version of Jacobi-Bessel expansion for vector diffraction analysis of reflector antennas uses coordinate transformation to improve convergence with elliptical apertures. Expansion converges rapidly for antennas with circular apertures, but less rapidly for elliptical apertures. Difference in convergence behavior between circular and elliptical Jacobi-Bessel algorithms indicated by highest values of indices m, n, and p required to achieve same accuracy in computed radiation pattern of offset paraboloidal antenna with elliptical aperture.

  18. Effects of low-level deuterium enrichment on bacterial growth.

    Directory of Open Access Journals (Sweden)

    Xueshu Xie

    Full Text Available Using very precise (±0.05% measurements of the growth parameters for bacteria E. coli grown on minimal media, we aimed to determine the lowest deuterium concentration at which the adverse effects that are prominent at higher enrichments start to become noticeable. Such a threshold was found at 0.5% D, a surprisingly high value, while the ultralow deuterium concentrations (≤0.25% D showed signs of the opposite trend. Bacterial adaptation for 400 generations in isotopically different environment confirmed preference for ultralow (≤0.25% D enrichment. This effect appears to be similar to those described in sporadic but multiple earlier reports. Possible explanations include hormesis and isotopic resonance phenomena, with the latter explanation being favored.

  19. Biological Influence of Deuterium on Procariotic and Eukaryotic Cells

    Directory of Open Access Journals (Sweden)

    Oleg Mosin

    2014-03-01

    Full Text Available Biologic influence of deuterium (D on cells of various taxonomic groups of prokaryotic and eukaryotic microorganisms realizing methylotrophic, chemoheterotrophic, photo-organotrophic, and photosynthetic ways of assimilation of carbon substrates are investigated at growth on media with heavy water (D2О. The method of step by step adaptation technique of cells to D2О was developed, consisting in plating of cells on 2 % agarose nutrient media containing increasing gradient of concentration of D2О (from 0 up to 98 % D2O and the subsequent selection of stable to D2O cells. In the result of that technique were obtained adapted to maximum concentration of D2O cells, biological material of which instead of hydrogen contained deuterium with levels of enrichment 92–97,5 at.% D.

  20. Deuteride phase formation during implantation of deuterium into Ti

    International Nuclear Information System (INIS)

    The structure and kinetics of deuteride phase formation in samples of deuterium implanted into Ti for different doses were studied using secondary ion mass spectrometry and glancing incidence x-ray diffraction technique. It was observed that the deuterium after implantation at room temperature migrates towards the surface, from the implanted layer, until a saturation concentration is reached in the near surface region at a fluence of about 5 x 1017 D+ ions/cm2. On further implantation this layer grows inward producing rectangular type profiles. The maximum composition of this layer is around [D]/[Ti] (∼) 1. Glancing incidence XRD showed the presence of titanium deuteride phase having body centered tetragonal structure. The paper discusses the possible factors contributing to the deuteride phase formation at the surface. (author). 10 refs., 3 figs

  1. Theory of the n=2 levels in muonic deuterium

    CERN Document Server

    Krauth, Julian J; Franke, Beatrice; Antognini, Aldo; Kottmann, Franz; Pohl, Randolf

    2015-01-01

    The present knowledge of Lamb shift, fine- and hyperfine structure of the $\\mathrm{2S}$ and $\\mathrm{2P}$ states in muonic deuterium is reviewed in anticipation of the results of a first measurement of several $\\mathrm{2S-2P}$ transition frequencies in muonic deuterium ({\\mu}d). A term-by-term comparison of all available sources reveals reliable values and uncertainties of the QED and nuclear structure-dependent contributions to the Lamb shift, which are essential for a determination of the deuteron rms charge radius from {\\mu}d. Apparent discrepancies between different sources are resolved, in particular for the difficult two-photon exchange contributions. Problematic single-sourced terms are identified which require independent recalculation.

  2. Ion irradiated graphite exposed to fusion-relevant deuterium plasma

    Energy Technology Data Exchange (ETDEWEB)

    Deslandes, Alec, E-mail: acd@ansto.gov.au [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Sydney (Australia); Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Sydney (Australia); Guenette, Mathew C. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Sydney (Australia); Corr, Cormac S. [Plasma Research Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia); Karatchevtseva, Inna [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Sydney (Australia); Thomsen, Lars [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia); Ionescu, Mihail [Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Sydney (Australia); Lumpkin, Gregory R.; Riley, Daniel P. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Sydney (Australia)

    2014-12-01

    Graphite samples were irradiated with 5 MeV carbon ions to simulate the damage caused by collision cascades from neutron irradiation in a fusion environment. The ion irradiated graphite samples were then exposed to a deuterium plasma in the linear plasma device, MAGPIE, for a total ion fluence of ∼1 × 10{sup 24} ions m{sup −2}. Raman and near edge X-ray absorption fine structure (NEXAFS) spectroscopy were used to characterize modifications to the graphitic structure. Ion irradiation was observed to decrease the graphitic content and induce disorder in the graphite. Subsequent plasma exposure decreased the graphitic content further. Structural and surface chemistry changes were observed to be greatest for the sample irradiated with the greatest fluence of MeV ions. D retention was measured using elastic recoil detection analysis and showed that ion irradiation increased the amount of retained deuterium in graphite by a factor of four.

  3. Deuterium-depleted water. Short history and news

    International Nuclear Information System (INIS)

    Deuterium-depleted water represents water that has an isotopic content lower than 144 ppm D/(D+H) which is the natural isotopic content of water. DDW is a non-toxic product. Knowing that deuterium content of water has a significant influence on living organisms, since 1996 NIR-DCIT ICSTI at Rm. Valcea cooperated with Romanian specialized instititutes for biological effects' evaluation of DDW. The investigations lead to the conclusion that DDW caused a tendency towards the increase of the basal tone, accompanied by the intensification of the vasoconstrictor effects. Animals teated with DDW showed an increase of the resistance both to sub lethal and to lethal gamma radiation doses. DDW stimulates immune defense reactions. Investigations regarding artificial reproduction of fish with DDW fecundated solutions confirmed favorable influence in embryo growth stage and resistance in next growth stages. One can remark the favourable influence of DDW on biological process in plants in various ontogenetic stages. (authors)

  4. Two-Dimensional Synthetic-Aperture Radiometer

    Science.gov (United States)

    LeVine, David M.

    2010-01-01

    A two-dimensional synthetic-aperture radiometer, now undergoing development, serves as a test bed for demonstrating the potential of aperture synthesis for remote sensing of the Earth, particularly for measuring spatial distributions of soil moisture and ocean-surface salinity. The goal is to use the technology for remote sensing aboard a spacecraft in orbit, but the basic principles of design and operation are applicable to remote sensing from aboard an aircraft, and the prototype of the system under development is designed for operation aboard an aircraft. In aperture synthesis, one utilizes several small antennas in combination with a signal processing in order to obtain resolution that otherwise would require the use of an antenna with a larger aperture (and, hence, potentially more difficult to deploy in space). The principle upon which this system is based is similar to that of Earth-rotation aperture synthesis employed in radio astronomy. In this technology the coherent products (correlations) of signals from pairs of antennas are obtained at different antenna-pair spacings (baselines). The correlation for each baseline yields a sample point in a Fourier transform of the brightness-temperature map of the scene. An image of the scene itself is then reconstructed by inverting the sampled transform. The predecessor of the present two-dimensional synthetic-aperture radiometer is a one-dimensional one, named the Electrically Scanned Thinned Array Radiometer (ESTAR). Operating in the L band, the ESTAR employs aperture synthesis in the cross-track dimension only, while using a conventional antenna for resolution in the along-track dimension. The two-dimensional instrument also operates in the L band to be precise, at a frequency of 1.413 GHz in the frequency band restricted for passive use (no transmission) only. The L band was chosen because (1) the L band represents the long-wavelength end of the remote- sensing spectrum, where the problem of achieving adequate

  5. Fast-neutron, coded-aperture imager

    Energy Technology Data Exchange (ETDEWEB)

    Woolf, Richard S., E-mail: richard.woolf@nrl.navy.mil; Phlips, Bernard F., E-mail: bernard.phlips@nrl.navy.mil; Hutcheson, Anthony L., E-mail: anthony.hutcheson@nrl.navy.mil; Wulf, Eric A., E-mail: eric.wulf@nrl.navy.mil

    2015-06-01

    This work discusses a large-scale, coded-aperture imager for fast neutrons, building off a proof-of concept instrument developed at the U.S. Naval Research Laboratory (NRL). The Space Science Division at the NRL has a heritage of developing large-scale, mobile systems, using coded-aperture imaging, for long-range γ-ray detection and localization. The fast-neutron, coded-aperture imaging instrument, designed for a mobile unit (20 ft. ISO container), consists of a 32-element array of 15 cm×15 cm×15 cm liquid scintillation detectors (EJ-309) mounted behind a 12×12 pseudorandom coded aperture. The elements of the aperture are composed of 15 cm×15 cm×10 cm blocks of high-density polyethylene (HDPE). The arrangement of the aperture elements produces a shadow pattern on the detector array behind the mask. By measuring of the number of neutron counts per masked and unmasked detector, and with knowledge of the mask pattern, a source image can be deconvolved to obtain a 2-d location. The number of neutrons per detector was obtained by processing the fast signal from each PMT in flash digitizing electronics. Digital pulse shape discrimination (PSD) was performed to filter out the fast-neutron signal from the γ background. The prototype instrument was tested at an indoor facility at the NRL with a 1.8-μCi and 13-μCi 252Cf neutron/γ source at three standoff distances of 9, 15 and 26 m (maximum allowed in the facility) over a 15-min integration time. The imaging and detection capabilities of the instrument were tested by moving the source in half- and one-pixel increments across the image plane. We show a representative sample of the results obtained at one-pixel increments for a standoff distance of 9 m. The 1.8-μCi source was not detected at the 26-m standoff. In order to increase the sensitivity of the instrument, we reduced the fastneutron background by shielding the top, sides and back of the detector array with 10-cm-thick HDPE. This shielding configuration led

  6. Quantum Monte Carlo study of spin-polarized deuterium

    OpenAIRE

    Beslic, I.; Markic, L. Vranjes; Casulleras, J.; Boronat, J.

    2012-01-01

    The ground state properties of spin-polarized deuterium (D$\\downarrow$) at zero temperature are obtained by means of the diffusion Monte Carlo calculations within the fixed-node approximation. Three D$\\downarrow$ species have been investigated (D$\\downarrow_1$, D$\\downarrow_2$, D$\\downarrow_3$), corresponding respectively to one, two and three equally occupied nuclear spin states. Influence of the backflow correlations on the ground state energy of the systems is explored. The equilibrium den...

  7. Lattice dynamics of solid deuterium by inelastic neutron scattering

    DEFF Research Database (Denmark)

    Nielsen, Mourits; Bjerrum Møller, Hans

    1971-01-01

    The dispersion relations for phonons in solid ortho-deuterium have been measured at 5 °K by inelastic neutron scattering. The results are in good agreement with recent calculations in which quantum effects are taken into account. The data have been fitted to a third-neighbor general force model...... of states and the heat capacity is calculated and the Debye temperature is found to be θ0=114 °K....

  8. X-ray powder diffraction from solid deuterium

    CERN Document Server

    Kawamura, H; Umemoto, S; Takemura, K; Ohishi, Y; Shimomura, O

    2002-01-01

    X-ray powder diffraction from solid deuterium was first observed under high pressure at SPring-8. At pressures up to 62 GPa and room temperature, three diffraction lines (100, 002, 101) of the hcp lattice were observed. The derived cell volume and the c/a ratio were consistent with single-crystal data. At 83 K and 94 GPa, three diffraction lines were also obtained and assigned to the hcp lattice.

  9. Blankets for tritium catalyzed deuterium (TCD) fusion reactors

    International Nuclear Information System (INIS)

    The TCD fusion fuel cycle - where the 3He from the D(D,n)3He reaction is transmuted, by neutron capture in the blanket, into tritium which is fed back to the plasma - was recently recognized as being potentially more promising than the Catalyzed Deuterium (Cat-D) fuel cycle for tokamak power reactors. It is the purpose of the present work to assess the feasibility of, and to identify promising directions for designing blankets for TCD fusion reactors

  10. Deuterium Clusters Fusion Induced by the Intense Femtosecond Laser Pulse

    Institute of Scientific and Technical Information of China (English)

    LIU Hong-Jie; CHEN Jia-Bin; WANG Hong-Bin; JIAO Chun-Ye; HE Ying-Ling; WEN Tian-Shu; WEN Xian-Lun; CHEN Ming; ZHENG Zhi-Jian; GU Yu-Qiu; ZHANG Bao-Han; RHEE Yong-Joo; NAM Sung-Mo; HAN Jae-Min; RHEE Yong-Woo; YEA Kwon-Hae

    2007-01-01

    Neutrons (2.45 MeV) from deuterium cluster fusion induced by the intense femtosecond (30 fs) laser pulse are experimentally demonstrated. The average neutron yield 103 per shot is obtained. It is found that the yield slightly increases with the increasing laser spot size. No neutron can be observed when the laser intensity Ⅰ <4.3×1015 W/cm2.

  11. Deuteron charge radius from spectroscopy data in atomic deuterium

    CERN Document Server

    Pohl, Randolf; Udem, Thomas; Antognini, Aldo; Beyer, Axel; Fleurbaey, Hélène; Grinin, Alexey; Hänsch, Theodor W; Julien, Lucile; Kottmann, Franz; Krauth, Julian J; Maisenbacher, Lothar; Matveev, Arthur; Biraben, François

    2016-01-01

    We give a pedagogical description of the method to extract the charge radii and Rydberg constant from laser spectroscopy in regular hydrogen (H) and deuterium (D) atoms, that is part of the CODATA least-squares adjustment of the fundamental physical constants. We give a deuteron charge radius from D spectroscopy alone of 2.1415(45) fm. This value is independent of the proton charge radius, and five times more accurate than the value found in the CODATA Adjustment 10.

  12. Effects of deuterium depleted water on reproduction of Rainbow fish

    International Nuclear Information System (INIS)

    The paper refers to an isotopic composition used to prepare fecundating solutions for artificial reproduction of fish. The solution is constituted as a mixture of deuterium depleted water and natural water (whose isotopic concentration is of 85-90 ppm D/(D+H)) in which we can add activating and energizing substances. This fecundating solution ensures an improved fecundating level of fish roe, increase life index in the next growth up stages and increase fish resistance at special medium conditions. (authors)

  13. Influence of deuterium-depleted water on living organisms

    International Nuclear Information System (INIS)

    Deuterium-depleted water (DDW) production technique consists in the separation of deuterium from water by means of an continuos distillation process under a pressure value of about 133,3 mbar. Water that is used as basic material has an isotopic content of 144 ppm D/(D+H). DDW results as distillate with an isotopic deuterium content of 15-80 ppm, depending on the level we want to achieve. Beginning with 1996 NIR and DCIT Rm. Valcea, which is a DDW producer, co-operated with Romanian specialised institutes for biological effects' evaluation of DDW. These investigations led to the next conclusions: - DDW caused a tendency towards the increase of the basal tone, accompanied by the intensification of the vasoconstrictor effects of phenylefrine, noradrenaline and angiotensin; the increase of the basal tonus and vascular reactivity produced by the DDW persist after the removal of the vascular endothelium; - Animals treated with DDW showed an increase of the resistance both to sublethal and to lethal gamma radiation doses, suggesting a radioprotective action by the stimulation of non-specific immune defence mechanisms; - DDW stimulate immune defence reactions, represented by the opsonic, bactericidal and phagocyte capacity of the immune system, together with increase in the numbers of polymorphonuclear neutrophils; - Investigations regarding artificial reproduction of fish with DDW fecundated solutions confirmed favourable influence in embryo growth stage and resistance in next growth stages; - It was studied germination, growth and quantitative characters' variability at plants; one can remark the favourable influence of DDW on biological process at plants in various ontogenic stages. Further investigations are needed in order to establish the influence of deuterium-depleted water on living organisms. (authors)

  14. Deuterium thermal desorption from vacancy clusters in tungsten

    Science.gov (United States)

    Ryabtsev, S.; Gasparyan, Yu.; Zibrov, M.; Shubina, A.; Pisarev, A.

    2016-09-01

    Deuterium interaction with vacancy clusters in tungsten was studied by means of thermal desorption spectroscopy (TDS). A recrystallized W foil was used as a sample, and the vacancy clusters were formed in the bulk by irradiation with 10 keV/D ions to the fluence of 3 × 1019 D/m2 and subsequent annealing at the temperature of 800 K. Then the sample was loaded with deuterium (0.67 keV/D ions with a fluence of 1 × 1019 D/m2), and TDS measurements with varying heating rates β in the range of 0.25-4 K/s were performed. The high temperature peak with the maximum at around 700 K was attributed to deuterium desorption from vacancy clusters and the detrapping energy for this type of defects was determined from the slope of the Arrhenius-like plot ln (β / Tm2) versus 1 /Tm , where Tm is the peak position. The detrapping energy calculated this way is 2.10 ± 0.02 eV.

  15. Precision measures of the primordial abundance of deuterium

    CERN Document Server

    Cooke, Ryan; Jorgenson, Regina A; Murphy, Michael T; Steidel, Charles C

    2013-01-01

    We report the discovery of deuterium absorption in the very metal-poor ([Fe/H] = -2.87) damped Lyman-alpha system at z_abs = 3.06726 towards the QSO SDSS J1358+6522. On the basis of 13 resolved D I absorption lines and the damping wings of the H I Lyman alpha transition, we have obtained a new, precise measure of the primordial abundance of deuterium. Furthermore, to bolster the present statistics of precision D/H measures, we have reanalyzed all of the known deuterium absorption-line systems that satisfy a set of strict criteria. We have adopted a blind analysis strategy (to remove human bias), and developed a software package that is specifically designed for precision D/H abundance measurements. For this reanalyzed sample of systems, we obtain a weighted mean of (D/H)_p = (2.53 +/- 0.04) x 10^-5, corresponding to a Universal baryon density 100 Omega_b h^2 = 2.202 +/- 0.045 for the standard model of Big Bang Nucleosynthesis. By combining our measure of (D/H)_p with observations of the cosmic microwave backg...

  16. Electron Scattering From High-Momentum Neutrons in Deuterium

    CERN Document Server

    Klimenko, A V; Ambrozewicz, P; Anghinolo, M; Asryan, G; Avakian, H; Bagdasaryan, H; Baillie, N; Ball, J P; Baltzell, N A; Barrow, S; Batourine, V; Battaglieri, M; Bedlinskiy, I; Bektasoglu, M; Bellis, M; Benmouna, N; Biselli, A S; Bltmann, S; Boiarinov, S; Bouchigny, S; Bradford, R; Branford, D; Brooks, W K; Burkert, V D; Butuceanu, C; Calarco, J R; Careccia, S L; Carman, D S; Cazes, A; Chen, S; Cole, P L; Coltharp, P; Cords, D; Corvisiero, P; Crabb, D; Cummings, J P; Dashyan, N B; De Sanctis, E; De Vita, R; Degtyarenko, P V; Denizli, H; Dennis, L; Dharmawardane, K V; Djalali, C; Dodge, G E; Donnelly, J; Doughty, D; Dugger, M; Dytman, S; Dzyubak, O P; Egiyan, H; Egiyan, K S; Elouadrhiri, L; Eugenio, P; Fatemi, R; Fedotov, G; Fersch, R G; Feuerbach, R J; Funsten, H; Garçon, M; Gavalian, G; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Gonenc, A; Gordon, C I O; Gothe, R W; Grioen, K A; Guidal, M; Guillo, M; Guler, N; Guo, L; Gyurjyan, V; Hadjidakis, C; Hakobyan, R S; Hardie, J; Hersman, F W; Hicks, K; Hleiqawi, I; Holtrop, M; Hyde-Wright, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Ito, M M; Jenkins, D; Jo, H S; Joo, K; Jüngst, H G; Kellie, J D; Khandaker, M; Kim, W; Klein, A; Klein, F J; Kossov, M; Kramer, L H; Kubarovski, V; Kuhn, S E; Kuleshov, S V; Kühn, J; Lachniet, J; Laget, J M; Langheinrich, J; Lawrence, D; Li, J; Livingston, K; McAleer, S; McKinnon, B; McNabb, J W C; Mecking, B A; Mehrabyan, S S; Melone, J J; Mestayer, M D; Meyer, C A; Mibe, T; Mikhailov, K; Minehart, R C; Mirazita, M; Miskimen, R; Mokeev, V; Morand, L; Morrow, S A; Mutchler, G S; Müller, J; Nadel-Turonski, P; Napolitano, J; Nasseripour, R; Niccolai, S; Niculescu, G; Niculescu, I; Niczyporuk, B B; Niyazov, R A; Nozar, M; O'Rielly, G V; Osipenko, M; Ostrovidov, A I; Park, K; Pasyuk, E; Paterson, C; Pierce, J; Pivnyuk, N; Pocanic, D; Pogorelko, O I; Pozdniakov, S; Preedom, B M; Price, J W; Prok, Y; Protopopescu, D; Raue, B A; Riccardi, G; Ricco, G; Ripani, M; Ritchie, B G; Ronchetti, F; Rosner, G; Rossi, P; Sabatie, F; Salgado, C; Santoro, J P; Sapunenko, V; Schumacher, R A; Serov, V S; Sharabyan, Yu G; Skabelin, A V; Smith, E S; Smith, L C; Sober, D I; Stavinsky, A V; Stepanyan, S; Stokes, B E; Stoler, P; Strauch, S; Taiuti, M; Tedeschi, D J; Thoma, U; Tkabladze, A; Tkachenko, S I; Todor, L; Tur, C; Ungaro, M; Vineyard, M F; Vlassov, A V; Weinstein, L B; Weygand, D P; Williams, M; Wolin, E; Wood, M H; Yegneswaran, A; Zana, L; Zhang, J; Zhao, B

    2006-01-01

    We report results from an experiment measuring the semi-inclusive reaction $d(e,e'p_s)$ where the proton $p_s$ is moving at a large angle relative to the momentum transfer. If we assume that the proton was a spectator to the reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred. This method, known as spectator tagging, can be used to study electron scattering from high-momentum (off-shell) neutrons in deuterium. The data were taken with a 5.765 GeV electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CLAS detector. A reduced cross section was extracted for different values of final-state missing mass $W^{*}$, backward proton momentum $\\vec{p}_{s}$ and momentum transfer $Q^{2}$. The data are compared to a simple PWIA spectator model. A strong enhancement in the data observed at transverse kinematics is not reproduced by the PWIA model. This enhancement can likely be associated with the contribution of final state interactions (FSI) that ...

  17. High resolution deuterium NMR studies of bacterial metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo, J.B.; Gamcsik, M.P.; Dick, J.D.

    1988-12-25

    High resolution deuterium NMR spectra were obtained from suspensions of five bacterial strains: Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus aureus. Deuterium-labeled D-glucose at C-1, C-2, and C-6 was used to monitor dynamically anaerobic metabolism. The flux of glucose through the various bacterial metabolic pathways could be determined by following the disappearance of glucose and the appearance of the major end products in the 2H NMR spectrum. The presence of both labeled and unlabeled metabolites could be detected using 1H NMR spectroscopy since the proton resonances in the labeled species are shifted upfield due to an isotopic chemical shift effect. The 1H-1H scalar coupling observed in both the 2H and 1H NMR spectra was used to assign definitively the resonances of labeled species. An increase in the intensity of natural abundance deuterium signal of water can be used to monitor pathways in which a deuteron is lost from the labeled metabolite. The steps in which label loss can occur are outlined, and the influence these processes have on the ability of 2H NMR spectroscopy to monitor metabolism are assessed.

  18. Application of a Pyroprobe-Deuterium NMR System: Deuterium Tracing and Mechanistic Study of Upgrading Process for Lignin Model Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ben, Haoxi; Jarvis, Mark W.; Nimlos, Mark R.; Gjersing, Erica L.; Sturgeon, Matthew R.; Foust, Thomas D.; Ragauskas, Arthur J.; Biddy, Mary J.

    2016-04-21

    In this study, a pyroprobe-deuterium (2H) NMR system has been used to identify isotopomer products formed during the deuteration and ring opening of lignin model compounds. Several common model compounds for lignin and its upgraded products, including guaiacol, syringol, toluene, p-xylene, phenol, catechol, cyclohexane, methylcyclohexane, and methylcyclopentane, have been examined for selective ring opening. Similar pathways for upgrading of toluene and p-xylene has been found, which will undergo hydrogenation, methyl group elimination, and ring opening process, and benzene, cyclohexane, and methylcyclohexane have been found as major intermediates before ring opening. Very interestingly, the 2H NMR analysis for the deuterium-traced ring opening of catechol on Ir/..gamma..-Al2O3 is almost identical to the ring opening process for phenol. The ring opening processes for guaiacol and syringol appeared to be very complicated, as expected. Benzene, phenol, toluene, cyclohexane, and methylcyclohexane have been determined to be the major products.

  19. A method for measuring the deuterium separation factors in palladium-hydrogen systems in view of tritium separation evaluation

    International Nuclear Information System (INIS)

    Full text: Palladium has a relatively large negative thermodynamic isotope effect (implied in the enrichment of the heavy isotope in gas phase and of the light isotope in solid phase). The separation factor is a quantitative measure of the mentioned thermodynamic isotope effect. Palladium - hydrogen systems were studied for many years and a great deal of information was accumulated on their structure, thermodynamic and kinetic characteristics of the hydrogen sorption and separation phenomena, but there is limited data available from which to develop a correlation between separation factor, temperature and solid phase composition. Existing data cover the phase (hydrogen and palladium coexisting as solid solution) and the plateau phase (of the palladium - hydrogen phase diagram (PCT curve). The authors developed a method and an experimental installation to investigate hydrogen-deuterium separation factors over a wider range of temperatures and compositions, covering the phase (hydride palladium - no dissolved hydrogen, only combined hydrogen). The palladium used in this study is of powder form: Merck Palladium black, 99.9%, APS 1.0 to 1.5 microns. In order to determine the separation factors, there are used FENWAL small bead thermistors operating in the self-heating mode as thermal conductivity sensors to measure the gas composition. The self-heating allows a power balance to be made between the thermistor bead, the surrounding gas and the Wheatstone bridge circuit used to measure the separation factors. For hydrogen - tritium and deuterium - tritium systems, separation factors were measured by other authors in the range of 10-9 to 10-7 mol percent tritium. Due to the difficulties inherent to the work with hydrogen - tritium and deuterium - tritium systems at higher stoichiometries, we used the obtained results on hydrogen- deuterium separation factors to evaluate the tritium separation. The knowledge of tritium separation in palladium - hydrogen systems phenomenon

  20. Synthesis of deuterium-labelled compounds for FOTEK project; Syntese af deuterium-maerkede forbindelser til FOeTEK projektet

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, O.; Egsgaard, H.; Larsen, E. [Forskningscenter Risoe, Roskilde (Denmark)

    1996-06-01

    In the FoTech project there have been utilized labelled compounds of stable isotopes as internal standards. Some of these compounds are commercially available ({sup 13}C-labelled PCB congeners, {sup 13}C-labelled diethylstilbestrol for determination of anabolic steroids). Others, like D{sub 9}-clenbuterol, D{sub 3}-clenbuterol, D{sub 3}-zeramol and D{sub 3}-dimetridazol have been synthesized. General aspects of deuterium compounds labelling are considered. (EG).

  1. Structural Transformations in Austenitic Stainless Steel Induced by Deuterium Implantation: Irradiation at 295 K

    Science.gov (United States)

    Morozov, Oleksandr; Zhurba, Volodymir; Neklyudov, Ivan; Mats, Oleksandr; Progolaieva, Viktoria; Boshko, Valerian

    2016-02-01

    Deuterium thermal desorption spectra were investigated on the samples of austenitic steel 18Cr10NiTi pre-implanted at 295 K with deuterium ions in the dose range from 8 × 1014 to 2.7 × 1018 D/cm2. The kinetics of structural transformation development in the steel layer was traced from deuterium thermodesorption spectra as a function of deuterium concentration. Three characteristic regions with different low rates of deuterium amount desorption as the implantation dose increases were revealed: I—the linear region of low implantation doses (up to 1 × 1017 D/cm2); II—the nonlinear region of medium implantation doses (1 × 1017 to 8 × 1017 D/cm2); III—the linear region of high implantation doses (8 × 1017 to 2.7 × 1018 D/cm2). During the process of deuterium ion irradiation, the coefficient of deuterium retention in steel varies in discrete steps. Each of the discrete regions of deuterium retention coefficient variation corresponds to different implanted-matter states formed during deuterium ion implantation. The low-dose region is characterized by formation of deuterium-vacancy complexes and solid-solution phase state of deuterium in the steel. The total concentration of the accumulated deuterium in this region varies between 2.5 and 3 at.%. The medium-dose region is characterized by the radiation-induced action on the steel in the presence of deuterium with the resulting formation of the energy-stable nanosized crystalline structure of steel, having a developed network of intercrystalline boundaries. The basis for this developed network of intercrystalline boundaries is provided by the amorphous state, which manifests itself in the thermodesorption spectra as a widely temperature-scale extended region of deuterium desorption (structure formation with a varying activation energy). The total concentration of the accumulated deuterium in the region of medium implantation doses makes 7 to 8 at.%. The resulting structure shows stability against the action of

  2. Structural Transformations in Austenitic Stainless Steel Induced by Deuterium Implantation: Irradiation at 295 K.

    Science.gov (United States)

    Morozov, Oleksandr; Zhurba, Volodymir; Neklyudov, Ivan; Mats, Oleksandr; Progolaieva, Viktoria; Boshko, Valerian

    2016-12-01

    Deuterium thermal desorption spectra were investigated on the samples of austenitic steel 18Cr10NiTi pre-implanted at 295 K with deuterium ions in the dose range from 8 × 10(14) to 2.7 × 10(18) D/cm(2). The kinetics of structural transformation development in the steel layer was traced from deuterium thermodesorption spectra as a function of deuterium concentration. Three characteristic regions with different low rates of deuterium amount desorption as the implantation dose increases were revealed: I-the linear region of low implantation doses (up to 1 × 10(17) D/cm(2)); II-the nonlinear region of medium implantation doses (1 × 10(17) to 8 × 10(17) D/cm(2)); III-the linear region of high implantation doses (8 × 10(17) to 2.7 × 10(18) D/cm(2)). During the process of deuterium ion irradiation, the coefficient of deuterium retention in steel varies in discrete steps. Each of the discrete regions of deuterium retention coefficient variation corresponds to different implanted-matter states formed during deuterium ion implantation. The low-dose region is characterized by formation of deuterium-vacancy complexes and solid-solution phase state of deuterium in the steel. The total concentration of the accumulated deuterium in this region varies between 2.5 and 3 at.%. The medium-dose region is characterized by the radiation-induced action on the steel in the presence of deuterium with the resulting formation of the energy-stable nanosized crystalline structure of steel, having a developed network of intercrystalline boundaries. The basis for this developed network of intercrystalline boundaries is provided by the amorphous state, which manifests itself in the thermodesorption spectra as a widely temperature-scale extended region of deuterium desorption (structure formation with a varying activation energy). The total concentration of the accumulated deuterium in the region of medium implantation doses makes 7 to 8 at.%. The

  3. Influence of tungsten microstructure and ion flux on deuterium plasma-induced surface modifications and deuterium retention

    Energy Technology Data Exchange (ETDEWEB)

    Buzi, L., E-mail: l.buzi@fz-juelich.de [Forschungszentrum Jülich GmbH, Institut für Energie – und Klimaforschung - Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich (Germany); FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research, Partner in the Trilateral Euregio Cluster (Netherlands); Gent University, Sint-Pietersnieuwstraat 41, B-9000 Gent (Belgium); Université de Lorraine, Institut Jean Lamour, CNRS UMR 7198, Bvd. des Aiguillettes, F-54506 Vandoeuvre (France); De Temmerman, G. [FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research, Partner in the Trilateral Euregio Cluster (Netherlands); Unterberg, B.; Reinhart, M.; Dittmar, T.; Matveev, D.; Linsmeier, Ch. [Forschungszentrum Jülich GmbH, Institut für Energie – und Klimaforschung - Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich (Germany); Breuer, U. [Central Institute of Engineering, Electronics and Analytics, ZEA-3 Analytics, Research Centre Jülich GmbH, 52425 Jülich (Germany); Kreter, A. [Forschungszentrum Jülich GmbH, Institut für Energie – und Klimaforschung - Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich (Germany); Van Oost, G. [Gent University, Sint-Pietersnieuwstraat 41, B-9000 Gent (Belgium)

    2015-08-15

    The influence of surface temperature, particle flux density and material microstructure on the surface morphology and deuterium retention was studied by exposing tungsten targets (20 μm and 40 μm grain size) to deuterium plasma at the same particle fluence (10{sup 26} m{sup −2}) and incident ion energy (40 eV) to two different ion fluxes (low flux: 10{sup 22} m{sup −2} s{sup −1}, high flux: 10{sup 24} m{sup −2} s{sup −1}). The maximum of deuterium retention was observed at ∼630 K for low flux density and at ∼870 K for high flux density, as indicated from the thermal desorption spectroscopy data (TDS). Scanning electron microscopy observations revealed the presence of blisters with a diameter of up to 1 μm which were formed at high flux density and high temperature (1170 K) contrasting with previously reported surface modification results at such exposure conditions.

  4. Optimization of synthetic aperture image quality

    Science.gov (United States)

    Moshavegh, Ramin; Jensen, Jonas; Villagomez-Hoyos, Carlos A.; Stuart, Matthias B.; Hemmsen, Martin Christian; Jensen, Jørgen Arendt

    2016-04-01

    Synthetic Aperture (SA) imaging produces high-quality images and velocity estimates of both slow and fast flow at high frame rates. However, grating lobe artifacts can appear both in transmission and reception. These affect the image quality and the frame rate. Therefore optimization of parameters effecting the image quality of SA is of great importance, and this paper proposes an advanced procedure for optimizing the parameters essential for acquiring an optimal image quality, while generating high resolution SA images. Optimization of the image quality is mainly performed based on measures such as F-number, number of emissions and the aperture size. They are considered to be the most contributing acquisition factors in the quality of the high resolution images in SA. Therefore, the performance of image quality is quantified in terms of full-width at half maximum (FWHM) and the cystic resolution (CTR). The results of the study showed that SA imaging with only 32 emissions and maximum sweep angle of 22 degrees yields a very good image quality compared with using 256 emissions and the full aperture size. Therefore the number of emissions and the maximum sweep angle in the SA can be optimized to reach a reasonably good performance, and to increase the frame rate by lowering the required number of emissions. All the measurements are performed using the experimental SARUS scanner connected to a λ/2-pitch transducer. A wire phantom and a tissue mimicking phantom containing anechoic cysts are scanned using the optimized parameters for the transducer. Measurements coincide with simulations.

  5. The Configurable Aperture Space Telescope (CAST)

    Science.gov (United States)

    Ennico, Kimberly; Bendek, Eduardo A.; Lynch, Dana H.; Vassigh, Kenny K.; Young, Zion

    2016-07-01

    The Configurable Aperture Space Telescope, CAST, is a concept that provides access to a UV/visible-infrared wavelength sub-arcsecond imaging platform from space, something that will be in high demand after the retirement of the astronomy workhorse, the 2.4 meter diameter Hubble Space Telescope. CAST allows building large aperture telescopes based on small, compatible and low-cost segments mounted on autonomous cube-sized satellites. The concept merges existing technology (segmented telescope architecture) with emerging technology (smartly interconnected modular spacecraft, active optics, deployable structures). Requiring identical mirror segments, CAST's optical design is a spherical primary and secondary mirror telescope with modular multi-mirror correctors placed at the system focal plane. The design enables wide fields of view, up to as much as three degrees, while maintaining aperture growth and image performance requirements. We present a point design for the CAST concept based on a 0.6 meter diameter (3 x 3 segments) growing to a 2.6 meter diameter (13 x 13 segments) primary, with a fixed Rp=13,000 and Rs=8,750 mm curvature, f/22.4 and f/5.6, respectively. Its diffraction limited design uses a two arcminute field of view corrector with a 7.4 arcsec/mm platescale, and can support a range of platescales as fine as 0.01 arcsec/mm. Our paper summarizes CAST, presents a strawman optical design and requirements for the underlying modular spacecraft, highlights design flexibilities, and illustrates applications enabled by this new method in building space observatories.

  6. Cancellation of singularities for synthetic aperture radar

    International Nuclear Information System (INIS)

    In a basic model for synthetic aperture radar (SAR) imaging, one wishes to recover a function or distribution f from line integrals over circles whose centers lie on a given curve γ. In this paper, we consider the problem of recovering the singularities (wavefront set) of f given its SAR data, and specifically whether it is possible to choose a singular f whose singularities are hidden from γ, meaning that its SAR data is smooth. We show that f 's singularities can be hidden to leading order if a certain discrete reflection map is the identity, and give examples where this is the case. Finally, numerical experiments illustrate the hiding of singularities. (paper)

  7. Multibeam synthetic aperture radar for global oceanography

    Science.gov (United States)

    Jain, A.

    1979-01-01

    A single-frequency multibeam synthetic aperture radar concept for large swath imaging desired for global oceanography is evaluated. Each beam iilluminates a separate range and azimuth interval, and images for different beams may be separated on the basis of the Doppler spectrum of the beams or their spatial azimuth separation in the image plane of the radar processor. The azimuth resolution of the radar system is selected so that the Doppler spectrum of each beam does not interfere with the Doppler foldover due to the finite pulse repetition frequency of the radar system.

  8. Cancellation of singularities for synthetic aperture radar

    Science.gov (United States)

    Caday, Peter

    2015-01-01

    In a basic model for synthetic aperture radar (SAR) imaging, one wishes to recover a function or distribution f from line integrals over circles whose centers lie on a given curve γ. In this paper, we consider the problem of recovering the singularities (wavefront set) of f given its SAR data, and specifically whether it is possible to choose a singular f whose singularities are hidden from γ, meaning that its SAR data is smooth. We show that f 's singularities can be hidden to leading order if a certain discrete reflection map is the identity, and give examples where this is the case. Finally, numerical experiments illustrate the hiding of singularities.

  9. Digital exploitation of synthetic aperture radar

    Science.gov (United States)

    Wagner, H. L.; Shuchman, R. A.

    1977-01-01

    A digital processing and analysis scheme for use with digitized synthetic aperture radar data was developed. Using data from a four channel system, the imagery is preprocessed using specially designed software and then analyzed using preexisting facilities originally intended for use with MSS type data. Geometric and radiometric correction may be performed if desired, as well as classification analysis, Fast Fourier transform, filtering and level slice and display functions. The system provides low cost output in real time, permitting interactive imagery analysis. System information flow diagrams as well as sample output products are shown.

  10. Tissue Harmonic Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Rasmussen, Joachim; Jensen, Jørgen Arendt

    2014-01-01

    Synthetic aperture sequential beamforming (SASB) and tissue har- monic imaging (THI) are combined to improve the image quality of medical ultrasound imaging. The technique is evaluated in a compar- ative study against dynamic receive focusing (DRF). The objective is to investigate if SASB combined...... with THI improves the image qual- ity compared to DRF-THI. The major benet of SASB is a reduced bandwidth between the probe and processing unit. A BK Medical 2202 Ultraview ultrasound scanner was used to acquire beamformed RF data for oine evaluation. The acquisition was made interleaved between methods...

  11. Deuterium content of water increases depression susceptibility: the potential role of a serotonin-related mechanism.

    OpenAIRE

    Strekalova, T.; Evans, M.; Chernopiatko, A; Couch, Y.; Costa-Nunes, J; Cespuglio, R.; Chesson, L; Vignisse, J; Steinbusch, HW; Anthony, DC; Pomytkin, I; Lesch, KP.

    2015-01-01

    Environmental factors can significantly affect disease prevalence, including neuropsychiatric disorders such as depression. The ratio of deuterium to protium in water shows substantial geographical variation, which could affect disease susceptibility. Thus the link between deuterium content of water and depression was investigated, both epidemiologically, and in a mouse model of chronic mild stress. We performed a correlation analysis between deuterium content of tap water and rates of depres...

  12. Multi-mission, autonomous, synthetic aperture radar

    Science.gov (United States)

    Walls, Thomas J.; Wilson, Michael L.; Madsen, David; Jensen, Mark; Sullivan, Stephanie; Addario, Michael; Hally, Iain

    2014-05-01

    Unmanned aerial systems (UASs) have become a critical asset in current battlespaces and continue to play an increasing role for intelligence, surveillance and reconnaissance (ISR) missions. With the development of medium-to-low altitude, rapidly deployable aircraft platforms, the ISR community has seen an increasing push to develop ISR sensors and systems with real-time mission support capabilities. This paper describes recent flight demonstrations and test results of the RASAR (Real-time, Autonomous, Synthetic Aperture Radar) sensor system. RASAR is a modular, multi-band (L and X) synthetic aperture radar (SAR) imaging sensor designed for self-contained, autonomous, real-time operation with mission flexibility to support a wide range of ISR needs within the size, weight and power constraints of Group III UASs. The sensor command and control and real-time image formation processing are designed to allow integration of RASAR into a larger, multi-intelligence system of systems. The multi-intelligence architecture and a demonstration of real-time autonomous cross-cueing of a separate optical sensor will be presented.

  13. Sparse aperture mask wavefront sensor testbed results

    Science.gov (United States)

    Subedi, Hari; Zimmerman, Neil T.; Kasdin, N. Jeremy; Riggs, A. J. E.

    2016-07-01

    Coronagraphic exoplanet detection at very high contrast requires the estimation and control of low-order wave- front aberrations. At Princeton High Contrast Imaging Lab (PHCIL), we are working on a new technique that integrates a sparse-aperture mask (SAM) with a shaped pupil coronagraph (SPC) to make precise estimates of these low-order aberrations. We collect the starlight rejected from the coronagraphic image plane and interfere it using a sparse aperture mask (SAM) at the relay pupil to estimate the low-order aberrations. In our previous work we numerically demonstrated the efficacy of the technique, and proposed a method to sense and control these differential aberrations in broadband light. We also presented early testbed results in which the SAM was used to sense pointing errors. In this paper, we will briefly overview the SAM wavefront sensor technique, explain the design of the completed testbed, and report the experimental estimation results of the dominant low-order aberrations such as tip/tit, astigmatism and focus.

  14. Neutron production with mixture of deuterium and krypton in Sahand Filippov type plasma focus facility

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, M.A., E-mail: mohammadidorbash@yahoo.com [Department of Atomic and Molecular Physics, Faculty of Physics, University of Tabriz, Tabriz (Iran, Islamic Republic of); Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz (Iran, Islamic Republic of); Sobhanian, S. [Department of Atomic and Molecular Physics, Faculty of Physics, University of Tabriz, Tabriz (Iran, Islamic Republic of); Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz (Iran, Islamic Republic of); Rawat, R.S. [Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University (Singapore)

    2011-08-01

    This Letter reports the order of magnitude enhancement in neutron yield from Sahand plasma focus device with krypton seeded deuterium operation. The highest average neutron yield of 2.2x10{sup 9} neutrons per shot was achieved at 1.00 Torr deuterium with 3% krypton which is higher than the best average neutron yield of 3.18x10{sup 8} neutrons per shot for pure deuterium operation. Estimation of average neutron energy showed that the maximum and minimum average energies are 2.98±0.6 MeV at 16 kV in 0.25 Torr deuterium with 3% Kr and 2.07±0.2 MeV at 18 kV operation in 0.5 Torr deuterium with 3% Kr, respectively. The anisotropy of neutron emission from Sahand DPF showed that the neutrons are produced mainly by beam-target mechanisms. -- Highlights: → The highest average neutron yield of 2.2x10{sup 9} neutrons per shot was achieved at mixture of deuterium and krypton. → In the krypton seeding of deuterium also anisotropy of neutron emission deuterium is found. → The krypton seeding of deuterium made the neutron emission more reliable over wider operating pressure ranges.

  15. Long Term Retention of Deuterium and Tritium in Alcator C-Mod

    International Nuclear Information System (INIS)

    We estimate the total in-vessel deuterium retention in Alcator C-Mod from a run campaign of about 1090 plasmas. The estimate is based on measurements of deuterium retained on 22 molybdenum tiles from the inner wall and divertor. The areal density of deuterium on the tiles was measured by nuclear reaction analysis. From these data, the in-vessel deuterium inventory is estimated to be about 0.1 gram, assuming the deuterium coverage is toroidally symmetric. Most of the retained deuterium is on the walls of the main plasma chamber, only about 2.5% of the deuterium is in the divertor. The D coverage is consistent with a layer saturated by implantation with ions and charge-exchange neutrals from the plasma. This contrasts with tokamaks with carbon plasma-facing components (PFC's) where long-term retention of tritium and deuterium is large and mainly in the divertor due to codeposition with carbon eroded by the plasma. The low deuterium retention in the C-Mod divertor is mainly due to the absence of carbon PFC's in C-Mod and the low erosion rate of Mo

  16. Influence of Deuterium Treatments on the Polysilicon-Based Metal-Semiconductor-Metal Photodetector.

    Science.gov (United States)

    Lee, Jae-Sung

    2016-06-01

    The electrical behavior of metal-semiconductor-metal (MSM) Schottky barrier photodetector structure, depending on deuterium treatment, is analyzed by means of the dark current and the photocurrent measurements. Al/Ti bilayer was used as Schottky metal. The deuterium incorporation into the absorption layer, undoped polysilicon, was achieved with annealing process and with ion implantation process, respectively. In the photocurrent-to-dark current ratio measurement, deuterium-ion-implanted photodetector shows over hundred higher than the control device. It means that the heightening of the Schottky barrier and the passivation of grain boundary trap were achieved effectively through the deuterium ion implantation process.

  17. Influence of Deuterium Treatments on the Polysilicon-Based Metal-Semiconductor-Metal Photodetector.

    Science.gov (United States)

    Lee, Jae-Sung

    2016-06-01

    The electrical behavior of metal-semiconductor-metal (MSM) Schottky barrier photodetector structure, depending on deuterium treatment, is analyzed by means of the dark current and the photocurrent measurements. Al/Ti bilayer was used as Schottky metal. The deuterium incorporation into the absorption layer, undoped polysilicon, was achieved with annealing process and with ion implantation process, respectively. In the photocurrent-to-dark current ratio measurement, deuterium-ion-implanted photodetector shows over hundred higher than the control device. It means that the heightening of the Schottky barrier and the passivation of grain boundary trap were achieved effectively through the deuterium ion implantation process. PMID:27427689

  18. Ab Initio Calculations of Deuterium Isotope Effects on Chemical Shifts of Salt-Bridged Lysines

    DEFF Research Database (Denmark)

    Ullah, Saif; Ishimoto, Takayoshi; Williamson, Mike P.;

    2011-01-01

    Deuterium isotope effects measure the change in chemical shift on substitution of a proton by deuterium. They have been calculated by direct treatment of the H/D nuclear quantum effect using a multicomponent ab initio molecular orbital method based on a non-Born−Oppenheimer approximation. This me......Deuterium isotope effects measure the change in chemical shift on substitution of a proton by deuterium. They have been calculated by direct treatment of the H/D nuclear quantum effect using a multicomponent ab initio molecular orbital method based on a non-Born−Oppenheimer approximation...

  19. Production of polarized negative deuterium ion beam with dual optical pumping in KEK

    Energy Technology Data Exchange (ETDEWEB)

    Kinsho, M.; Ikegami, K.; Takagi, A. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Mori, Y.

    1997-02-01

    To obtain highly nuclear-spin vector polarized negative deuterium ion beam, a dual optically pumped polarized negative deuterium ion source has been developed at KEK. It is possible to select a pure nuclear-spin state with this scheme, and negative deuterium ion beam with 100% nuclear-spin vector polarization can be produced in principle. We have obtained about 70% of nuclear-spin vector polarized negative deuterium ion beam so far. This result may open up a new possibilities for the optically pumped polarized ion source. (author)

  20. Optical nanolithography with λ/15 resolution using bowtie aperture array

    Science.gov (United States)

    Wen, Xiaolei; Traverso, Luis M.; Srisungsitthisunti, Pornsak; Xu, Xianfan; Moon, Euclid E.

    2014-10-01

    We report optical parallel nanolithography using bowtie apertures with the help of the interferometric-spatial-phase-imaging (ISPI) technique. The ISPI system can detect and control the distance between the bowtie aperture, and photoresist with a resolution of sub-nanometer level. It overcomes the difficulties brought by the light divergence of bowtie apertures. Parallel nanolithography with feature size of 22 ± 5 nm is achieved. This technique combines high resolution, parallel throughput, and low cost, which is promising for practical applications.

  1. Magnetically tunable broadband transmission through a single small aperture

    OpenAIRE

    Ke Bi; Wenjun Liu; Yunsheng Guo; Guoyan Dong; Ming Lei

    2015-01-01

    Extraordinary transmission through a small aperture is of great interest. However, it faces a limitation that most of approaches can not realize the tunable transmission property, which is not benefit for the miniaturization of the microwave system. Here, we demonstrate a magnetically tunable broadband transmission through a small aperture. By placing two ferrite rods symmetrically on both sides of a single small aperture, the strongly localized electromagnetic fields are effectively coupled ...

  2. An Introduction of Aperture Coupled Microstrip Slot Antenna

    OpenAIRE

    Zarreen Aijaz; S.C Shrivastava

    2010-01-01

    A microstrip slot antenna is very small and lightweight still it has the problem of back radiation due to which power loss occurs and the SAR increases. To reduce the back lobe a technique introduces i.e. aperture coupled microstrip slot antenna which reduces the back lobe as well as increases the bandwidth of the antenna. Aperture coupled microstrip slot antenna couples the patch antenna with microstripline through an aperture.

  3. Jacobi-Bessel analysis of reflector antennas with elliptical apertures

    Science.gov (United States)

    Rahmat-Samii, Yahya

    1987-01-01

    Although many reflector antennas possess circular projected apertures, there are recent satellite and ground antenna applications for which it is desirable to employ reflectors with elliptical apertures. Here a modification of the Jacobi-Bessel expansion is presented for the diffraction analysis of reflectors with elliptical apertures. A comparative study is also performed between this modified Jacobi-Bessel algorithm and the one which uses the Jacobi-Bessel expansion over a circumscribing circular region. Numerical results are presented for offset reflectors with elliptical and circular apertures and the improved convergence properties of the modified algorithm are highlighted.

  4. A statistical model for the excitation of cavities through apertures

    CERN Document Server

    Gradoni, Gabriele; Anlage, Steven M; Ott, Edward

    2015-01-01

    In this paper, a statistical model for the coupling of electromagnetic radiation into enclosures through apertures is presented. The model gives a unified picture bridging deterministic theories of aperture radiation, and statistical models necessary for capturing the properties of irregular shaped enclosures. A Monte Carlo technique based on random matrix theory is used to predict and study the power transmitted through the aperture into the enclosure. Universal behavior of the net power entering the aperture is found. Results are of interest for predicting the coupling of external radiation through openings in irregular enclosures and reverberation chambers.

  5. Optical Phase Imaging Using Synthetic Aperture Illumination and Phase Retrieval

    CERN Document Server

    Lee, Dennis J

    2016-01-01

    We perform quantitative phase imaging using phase retrieval to implement synthetic aperture imaging. Compared to digital holography, the developed technique is simpler, less expensive, and more stable.

  6. Electron Scattering From High-Momentum Neutrons in Deuterium

    Energy Technology Data Exchange (ETDEWEB)

    A.V. Klimenko; S.E. Kuhn

    2005-10-12

    We report results from an experiment measuring the semi-inclusive reaction D(e,e'p{sub s}) where the proton p{sub s} is moving at a large angle relative to the momentum transfer. If we assume that the proton was a spectator to the reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred. This method, known as spectator tagging, can be used to study electron scattering from high-momentum (off-shell) neutrons in deuterium. The data were taken with a 5.765 GeV electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CLAS detector. A reduced cross section was extracted for different values of final-state missing mass W*, backward proton momentum {rvec p}{sub s} and momentum transfer Q{sup 2}. The data are compared to a simple PWIA spectator model. A strong enhancement in the data observed at transverse kinematics is not reproduced by the PWIA model. This enhancement can likely be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. A ''bound neutron structure function'' F{sub 2n}{sup eff} was extracted as a function of W* and the scaling variable x* at extreme backward kinematics, where effects of FSI appear to be smaller. For p{sub s} > 400 MeV/c, where the neutron is far off-shell, the model overestimates the value of F{sub 2n}{sup eff} in the region of x* between 0.25 and 0.6. A modification of the bound neutron structure function is one of possible effects that can cause the observed deviation.

  7. Diagnosing radiative shocks from deuterium and tritium implosions on NIF.

    Science.gov (United States)

    Pak, A; Divol, L; Weber, S; Döppner, T; Kyrala, G A; Kilne, J; Izumi, N; Glenn, S; Ma, T; Town, R P; Bradley, D K; Glenzer, S H

    2012-10-01

    During the recent ignition tuning campaign at the National Ignition Facility, layered cryogenic deuterium and tritium capsules were imploded via x-ray driven ablation. The hardened gated x-ray imager diagnostic temporally and spatially resolves the x-ray emission from the core of the capsule implosion at energies above ~8 keV. On multiple implosions, ~200-400 ps after peak compression a spherically expanding radiative shock has been observed. This paper describes the methods used to characterize the radial profile and rate of expansion of the shock induced x-ray emission.

  8. Preparation of labelled zt-1 with tritium and deuterium

    International Nuclear Information System (INIS)

    zt-1 is a potential drug for treatment of Alzheimer's disease. For the study of this drug, isotope labeled compounds should be prepared. After reduction of 5-chloro-o-vanillin with sodium boron deuteride and tritide, and condensation, zt-1 labeled with tritium and deuterium are prepared. UV absorption spectrum and Rf of tritium labeled zt-1 are the same as authentic sample. The radiochemical purity of 3H-zt-1 is more than 95%, and the specific radioactivity is 401.3 GBq/g

  9. The pion nucleon scattering lengths from pionic hydrogen and deuterium

    Science.gov (United States)

    Schröder, H.-Ch.; Badertscher, A.; Goudsmit, P. F. A.; Janousch, M.; Leisi, H. J.; Matsinos, E.; Sigg, D.; Zhao, Z. G.; Chatellard, D.; Egger, J.-P.; Gabathuler, K.; Hauser, P.; Simons, L. M.; Rusi El Hassani, A. J.

    2001-07-01

    This is the final publication of the ETH Zurich Neuchâtel PSI collaboration on the pionic hydrogen and deuterium precision X-ray experiments. We describe the recent hydrogen 3 p 1 s measurement, report on the determination of the Doppler effect correction to the transition line width, analyze the deuterium shift measurement and discuss implications of the combined hydrogen and deuterium results. From the pionic hydrogen 3 p 1 s transition experiments we obtain the strong-interaction energy level shift \\varepsilon_{1s} = -7.108±0.013 (stat.)±0.034 (syst.) eV and the total decay width Γ_{1s} = 0.868±0.040 (stat.)±0.038 (syst.) eV of the 1s state. Taking into account the electromagnetic corrections we find the hadronic π N s-wave scattering amplitude a_{π-prightarrowπ-p} = 0.0883±0.0008 m_{π}^{-1} for elastic scattering and a_{π-prightarrowπ0n} = -0.128±0.006 m_{π} ^{-1} for single charge exchange, respectively. We then combine the pionic hydrogen results with the 1 s level shift measurement on pionic deuterium and test isospin symmetry of the strong interaction: our data are still compatible with isospin symmetry. The isoscalar and isovector π N scattering lengths (within the framework of isospin symmetry) are found to be b_0 = -0.0001^{+0.0009}_{-0.0021} m_{π}^{-1} and b1 = -0.0885^{+0.0010}_{-0.0021} m_{π} ^{-1}, respectively. Using the GMO sum rule, we obtain from b_1 a new value of the π N coupling constant (g_{π N} = 13.21_{-0.05}^{+0.11}) from which follows the Goldberger Treiman discrepancy Δ_{{GT}} =0.027_{-0.008}^{+0.012}. The new values of b_0 and g_{π N} imply an increase of the nucleon sigma term by at least 9 MeV.

  10. Relativistic description of the Fermi motion effects on deuterium targets

    Energy Technology Data Exchange (ETDEWEB)

    Kusno, D.

    1979-12-01

    A comprehensive analysis of the inconsistencies of the conventional, non-relativistic approach, which has been used so far in the extraction of neutron data from deuterium targets, is given. A new approach dealing with the smearing effects, due to the nucleon's Fermi motion inside the deuteron, is developed as an alternative to the conventional one. This new approach is a spin-less, relativistic, simple and consistent approach. A new covariant model of the elastic electromagnetic form factors of the deuteron in the impulse approximation is also presented. The treatment includes spin and allows for a possibility of determining completely the two elastic structure functions.

  11. Relativistic description of the Fermi motion effects on deuterium targets

    International Nuclear Information System (INIS)

    A comprehensive analysis of the inconsistencies of the conventional, non-relativistic approach, which has been used so far in the extraction of neutron data from deuterium targets, is given. A new approach dealing with the smearing effects, due to the nucleon's Fermi motion inside the deuteron, is developed as an alternative to the conventional one. This new approach is a spin-less, relativistic, simple and consistent approach. A new covariant model of the elastic electromagnetic form factors of the deuteron in the impulse approximation is also presented. The treatment includes spin and allows for a possibility of determining completely the two elastic structure functions

  12. Visualization of deuterium dead layer by atom probe tomography

    KAUST Repository

    Gemma, Ryota

    2012-12-01

    The first direct observation, by atom probe tomography, of a deuterium dead layer is reported for Fe/V multilayered film loaded with D solute atoms. The thickness of the dead layers was measured to be 0.4-0.5 nm. The dead layers could be distinguished from chemically intermixed layers. The results suggest that the dead layer effect occurs even near the interface of the mixing layers, supporting an interpretation that the dead layer effect cannot be explained solely by electronic charge transfer but also involves a modulation of rigidity. © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Resonance Effects in Mixed Hydrogen-Deuterium Crystals

    DEFF Research Database (Denmark)

    Powell, B. M.; Nielsen, Mourits

    1975-01-01

    Neutron scattering measurements of the impurity induced resonance mode caused by orthodeuterium as a substitutional impurity in solid h.c.p. parahydrogen are found to be in qualitative agreement with simple mass defect theory predictions. The samples studied contained 11-, 10-, and 6 at.% deuterium...... and the observations were made along the [100] and the [110] directions in the basal plane. Some discrepancies are found to exist in the detailed quantitative comparison of the phonon shifts and widths and in the intensity of the resonance mode...

  14. Equation of state measurements in liquid deuterium to 100 GPa

    CERN Document Server

    Knudson, M D; Bailey, J E; Lemke, R W; Hall, C A; Deeney, C; Asay, J R

    2003-01-01

    Using intense magnetic pressure, a method was developed to launch flyer plates to velocities in excess of 20 km s sup - sup 1. This technique was used to perform plate-impact, shock wave experiments on cryogenic liquid deuterium (LD sub 2) to examine its high-pressure equation of state (EOS). Using an impedance matching method, Hugoniot measurements were obtained in the pressure range of 22-100 GPa. The results of these experiments disagree with the previously reported Hugoniot measurements of LD sub 2 in the pressure range above approx 40 GPa, but are in good agreement with first principles, ab initio models for hydrogen and its isotopes.

  15. Application of plasma focus installations for a study of the influence of deuterium cumulative flows on materials

    Indian Academy of Sciences (India)

    L I Ivanov; A I Dedyurin; I V Borovitskaya; O N Krokhin; V Ya Nikulin; S N Polukhin; A A Tikhomirov; A S Fedotov

    2003-12-01

    In this work, as an example of an application of the plasma focus (PF) device, we study the influence on alloys of vanadium of a cumulative flow producing in the PF device. The experiment was done in a 4-kJ PF device with various gas fillings and various anode shapes. It was found that the velocity of the axial cumulative flow depends on the type of gas and is about $5\\cdot 10^{7}$ cm/s for deuterium and $2\\cdot 10^{7}$ cm/s for argon fillings of plasma focus chamber; the shape of the flow is changed from a broad conical fly for deuterium to a quasi-one-directional stream for argon. The dynamics and structure of such flows are investigated by means of laser diagnostics and an image converter camera. The experiments show that cumulative flows produce various defects in tested samples. The appearance of a large number of cracks on the surface of vanadium under the impulse influence of deuterium plasma shows that pure vanadium cannot be used for the construction of thermonuclear fusion reactors. Such PF installations could also be used effectively for the study of other material and construction elements proposed for the use in thermonuclear machines.

  16. Wind energy applications of synthetic aperture radar

    DEFF Research Database (Denmark)

    Badger, Merete

    planning as a supplement to on site measurements, which are costly and sparse, and model wind fields, which are not fully validated. Two applications of SAR measurements in offshore wind energy planning areaddressed here: the study of wind farm wake effects and the potential of using SAR winds in offshore......Synthetic aperture radars (SAR), mounted on satellites or aircraft, have proven useful for ocean wind mapping. Wind speeds at the height 10 m may be retrieved from measurements of radar backscatter using empirical model functions. The resulting windfields are valuable in offshore wind energy...... in offshore wind resource assessment isinvestigated. The resource assessment is made through Weibull fitting to frequency observations of wind speed and requires at least 100 satellite observations per year for a given site of interest. Predictions of the energy density are very sensitive tothe wind speed...

  17. Ultrasonic synthetic aperture imaging of defects

    International Nuclear Information System (INIS)

    Current reactor systems have been generally designed with limited facility for in-service inspection. Where ultrasonic crack detection and sizing techniques have been applied they appear to be functioning adequately. The purpose of this paper is to introduce a modification to conventional ultrasonic defect sizing which yields acoustic measurements of the dimensions of the defect in its plane parallel to the inspection surface. The technique retains the simplicity of a single probe to collect data, but achieves the effect of multidepth focussing by a particular signal processing procedure. The subject is discussed under the headings: ultrasonic focussing procedures; the basic principle of linear synthetic aperture focussing; the mechanics of the system; the capability of the system; comments and conclusion. (U.K.)

  18. Mathematical Problems in Synthetic Aperture Radar

    CERN Document Server

    Klein, Jens

    2010-01-01

    This thesis is concerned with problems related to Synthetic Aperture Radar (SAR). The thesis is structured as follows: The first chapter explains what SAR is, and the physical and mathematical background is illuminated. The following chapter points out a problem with a divergent integral in a common approach and proposes an improvement. Numerical comparisons are shown that indicate that the improvements allow for a superior image quality. Thereafter the problem of limited data is analyzed. In a realistic SAR-measurement the data gathered from the electromagnetic waves reflected from the surface can only be collected from a limited area. However the reconstruction formula requires data from an infinite distance. The chapter gives an analysis of the artifacts which can obscure the reconstructed images due to this problem. Additionally, some numerical examples are shown that point to the severity of the problem. In chapter 4 the fact that data is available only from a limited area is used to propose a new invers...

  19. Terahertz Imaging Systems With Aperture Synthesis Techniques

    DEFF Research Database (Denmark)

    Krozer, Viktor; Löffler, Torsten; Dall, Jørgen;

    2010-01-01

    This paper presents the research and development of two terahertz imaging systems based on photonic and electronic principles, respectively. As part of this study, a survey of ongoing research in the field of terahertz imaging is provided focusing on security applications. Existing terahertz...... imaging systems are reviewed in terms of the employed architecture and data processing strategies. Active multichannel measurement method is found to be promising for real-time applications among the various terahertz imaging techniques and is chosen as a basis for the imaging instruments presented...... in this paper. An active system operation allows for a wide dynamic range, which is important for image quality. The described instruments employ a multichannel high-sensitivity heterodyne architecture and aperture filling techniques, with close to real-time image acquisition time. In the case of the photonic...

  20. Light-Regulated Stomatal Aperture in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Chen Chen; Yu-Guo Xiao; Xin Li; Min Ni

    2012-01-01

    The stomatal pores of plant leaves,situated in the epidermis and surrounded by a pair of guard cells,allow CO2 uptake for photosynthesis and water loss through transpiration.Blue light is one of the dominant environmental signals that control stomatal movements in leaves of plants in a natural environment.This blue light response is mediated by blue/UV A light-absorbing phototropins (phots) and cryptochromes (crys).Red/far-red light-absorbing phytochromes (phys) also play a role in the control of stomatal aperture.The signaling components that link the perception of light signals to the stomatal opening response are largely unknown.This review discusses a few newly discovered nuclear genes,their function with respect to the phot-,cry-,and phy-mediated signal transduction cascades,and possible involvement of circadian clock.

  1. Large aperture nanocomposite deformable mirror technology

    Science.gov (United States)

    Chen, Peter C.; Hale, Richard D.

    2007-12-01

    We report progress in the development of deformable mirrors (DM) using nanocomposite materials. For the extremely large telescopes (ELTs) currently being planned, a new generation of DMs with unprecedented performance is a critical path item. The DMs need to have large apertures (meters), continuous surfaces, and low microroughness. Most importantly, they must have excellent static optical figures and yet be sufficiently thin (1-2 mm) and flexible to function with small, low powered actuators. Carbon fiber reinforced plastics (CFRP) have the potential to fulfill these requirements. However, CFRP mirrors made using direct optical replication have encountered a number of problems. Firstly, it is difficult if not impossible for a CFRP mirror to maintain a good static optical figure if a small number of plies are used, but adding more plies to the laminate tends to make the substrate too thick and stiff. Secondly, direct optical replication requires precision mandrels, the costs of which become prohibitive at multi-meter apertures. We report development of a new approach. By using a combination of a novel support structure, selected fibers, and binding resins infused with nanoparticles, it is possible to make millimeter thick optical mirrors that can both maintain good static optical figures and yet still have the required flexibility for actuation. Development and refinement of a non-contact, deterministic process of fine figuring permits generation of accurate optical surfaces without the need for precision optical mandrels. We present data from tests that have been carried out to demonstrate these new processes. A number of flat DMs have been fabricated, as well as concave and convex DMs in spherical, parabolic, and other forms.

  2. Deuterium lamps as transfer standards for spectral radiance measurements

    International Nuclear Information System (INIS)

    This report describes the work carried out at NPL and PTB to improve the performance of a low pressure deuterium discharge lamp, so that it can be used as a transfer standard in the spectral range 120 to 350 nm. To this end it was necessary: - to replace the original quartz windows by magnesium fluoride single crystal plates, which were cut perpendicular to the c-axis of the crystal and which had to be free of impurities, - to construct the lamps in that way that the directional uniformity of the emitted radiation is within the demands, - to age the lamps and to preselect only those of which the irradiance was stable within ± 1% during a thirty minute period after warm-up, - to improve the commercially available electrical power supply to meet the operational needs of the lamps. Thus, the deuterium lamps drifted by about 3% over a period of 100 h at all wavelengths except at 250 nm, where the ageing increased to 4.5%. A liquid nitrogen trap has been developed which can be installed between the vacuum system and the lamp. This reduced to about 2% the decrease of the window's transmission during the first hour of operation, caused by the deposition of oil from the vacuum system

  3. Proton and deuterium NMR experiments in zero field

    International Nuclear Information System (INIS)

    High field solid-state NMR lineshapes suffer from inhomogeneous broadening since resonance frequencies are a function of molecular orientation. Time domain zero field NMR is a two-dimensional field-cycling technique which removes this broadening by probing the evolution of the spin system under zero applied field. The simplest version, the sudden transition experiment, induces zero field evolution by the sudden removal of the applied magnetic field. Theory and experimental results of this experiment and several variations using pulsed dc magnetic fuelds to initiate zero field evolution are presented. In particular, the pulsed indirect detection method allows detection of the zero field spectrum of one nuclear spin species via another (usually protons) by utilizing the level crossings which occur upon adiabatic demagnetization to zero field. Experimental examples of proton/deuteron systems are presented which demonstrate the method results in enhanced sensitivity relative to that obtained in sudden transition experiments performed directly on deuterium. High resolution 2H NQR spectra of a series of benzoic acid derivatives are obtained using the sudden transition and indirect detection methods. Librational oscillations in the water molecules of barium chlorate monohydrate are studied using proton and deuterium ZF experiments. 177 refs., 88 figs., 2 tabs

  4. Local defect structures of deuterium and nitrogen in niobium

    International Nuclear Information System (INIS)

    The local defect structures of deuterium as well as of nitrogen-deuterium pairs in niobium were investigated. This was done with the method of the coherent quasi-elastic, diffuse scattering of thermal neutrons in great distance to high Miller indices of Bragg reflections (intermediate reflex scattering), which was experimentally determined at NbD0.0170 monocrystals, NbN0.0143 monocrystals and NbN0.0143D0.0110 monocrystals. The influences of the lattice distortions in close vicinity to the defect can be proved for high scattering vectors in low-symmetrical directions. For the NbN0.0143 system, it was demonstrated that the static lattice distortions lead to a characteristic attenuation of the host lattice phonons. This loss of intensity (static Debye-Waller factor) was quantitatively determined for selected TA-phonons. It is shown that the combination of these measuring results with the results from the diffuse neutron scattering can supply valuable information about the defect structure. (orig./MM)

  5. Desorption process of deuterium from zircaloys and their oxides

    Energy Technology Data Exchange (ETDEWEB)

    Nakamichi, Haruo; Kinoshita, Chiken; Hara, Masahiro [Kyushu Univ., Fukuoka (Japan)

    1997-11-01

    It is well known that hydrogen behavior plays an important role on the oxidation process of zircaloys. We have investigated the desorption process of deuterium from three kinds of zircaloys (Zry-2, Zry-4 and high-Fe and Ni-Zry-2) and their oxides using thermal desorption spectrometry (TDS). The purpose of the present paper is to get insight into the effect of alloying elements on the desorption behavior of deuterium from the zircaloys and their oxides. We have also performed in-situ observations through TEM for getting the relation between the desorption process and microstructural evolution. The desorption of D{sub 2} implanted by an ion accelerator occurs in two stages; the first and the second stages appear at around 350 K and around 700 K for the metallic zircaloys, respectively. For their oxide films, on the other hand, the desorption rate of D{sub 2} is much higher than that for the metallic zircaloys. It is found that the desorption rate depends strongly on the kind of zircaloys, especially on the concentration of Fe and Ni. From TEM result, it is found that the first desorption stage for the metallic specimens is correlated to the dissolution of the hydrides. (author)

  6. The Deuterium Fraction in Massive Starless Cores and Dynamical Implications

    CERN Document Server

    Kong, Shuo; Caselli, Paola; Fontani, Francesco; Pillai, Thushara; Butler, Michael J; Shimajiri, Yoshito; Nakamura, Fumitaka; Sakai, Takeshi

    2015-01-01

    We study deuterium fractionation in two massive starless cores C1-N and C1-S in Infrared Dark Cloud (IRDC) G028.37+00.07, first identified by Tan et al. (2013) with ALMA. Line emission from multiple transitions of $\\rm N_2H^+$ and $\\rm N_2D^+$ were observed with the ALMA, CARMA, SMA, JCMT, NRO 45m and IRAM 30m telescopes. By simultaneously fitting the spectra, we estimate the excitation conditions and deuterium fraction, $D_{\\rm frac}^{\\rm N_2H^+} \\equiv [\\rm N_2D^+]/[N_2H^+]$, with values of $D_{\\rm frac}^{\\rm N_2H^+} \\simeq 0.2$--$0.7$, several orders of magnitude above the cosmic [D]/[H] ratio. Additional observations of o-H$_2$D$^+$ are also presented that help constrain the ortho-to-para ratio of $\\rm H_2$, which is a key quantity affecting the degree of deuteration. We then present chemodynamical modeling of the two cores, exploring especially the implications for the collapse rate relative to free-fall, $\\alpha_{\\rm ff}$. In order to reach the high level of observed deuteration of $\\rm N_2H^+$, we find...

  7. Exploring the Origins of Deuterium Enrichments in Solar Nebular Organics

    CERN Document Server

    Cleeves, L Ilsedore; Alexander, Conel M O'D; Du, Fujun; Graninger, Dawn; Öberg, Karin I; Harries, Tim J

    2016-01-01

    Deuterium-to-hydrogen (D/H) enrichments in molecular species provide clues about their original formation environment. The organic materials in primitive solar system bodies have generally higher D/H ratios and show greater D/H variation when compared to D/H in solar system water. We propose this difference arises at least in part due to 1) the availability of additional chemical fractionation pathways for organics beyond that for water, and 2) the higher volatility of key carbon reservoirs compared to oxygen. We test this hypothesis using detailed disk models, including a sophisticated, new disk ionization treatment with a low cosmic ray ionization rate, and find that disk chemistry leads to higher deuterium enrichment in organics compared to water, helped especially by fractionation via the precursors CH$_2$D$^+$/CH$_3^+$. We also find that the D/H ratio in individual species varies significantly depending on their particular formation pathways. For example, from $\\sim20-40$ AU, CH$_4$ can reach $\\rm{D/H\\si...

  8. Preparation and characterization of deuterium-labeled glycosaminoglycans.

    Science.gov (United States)

    Naggi, A; Casu, B; Crippa, B; Magnaghi, S; Silvestro, L; Torri, G

    1994-01-01

    Heparin, NAcHep, DS, and CS were labeled with deuterium by N-reacetylating, with the deuterated acetic anhydride (CD3CO)2O, GAGs previously N-deacetylated (by hydrazinolysis) to the desired extent. Degrees of deuteration of the present preparations, as determined by 2H- and 1H-NMR were 15%, 51%, 49%, and 79% for heparin, NAcHep, DS, and CS, respectively. The NMR analysis (including the 13C spectra) of the labeled products indicated that deuterium labeling did not involve any substantial modification of the GAG structures. Also NMR signals associated with specific sequences of heparin for antithrombin and of DS for heparin cofactor II were essentially the same in the unlabeled and in the deuterated GAGs. The substantial retention of the original structure was confirmed by data on the degree of sulfation (by conductimetry) and on the electrophoretic mobility in acid buffer. On the other hand, HPLC/SEC data indicated some depolymerization of heparin and DS in the N-deacetylation step of the labeling reactions. HPLC/MS spectrometry permitted a clear identification of disaccharide and tetrasaccharide fragments obtained from deuterated GAGs by enzymic (heparinase, chondroitinase ABC) or chemical depolymerization (deaminative cleavage, Smith degradation), opening new prospects for studies of human pharmacokinetics, with differentiation of exogenous from endogenous GAGs.

  9. Uptake of deuterium in partially D-depleted residual codeposits left on DIII-D tiles after laboratory thermo-oxidation experiments

    Science.gov (United States)

    Fitzpatrick, B. W. N.; Davis, J. W.; Haasz, A. A.

    2012-01-01

    Recent evidence has shown that tokamak carbon-based codeposits may become partially or fully depleted of hydrogen through thermo-oxidation, as the hydrogen content of the codeposits is removed more rapidly than the carbon content. In this study we examine the ability of such partially-depleted residual DIII-D divertor codeposits to uptake deuterium upon subsequent exposure to deuterium gas or deuterium plasmas. The partially D-depleted specimens used here were obtained from a previous study where DIII-D codeposits were oxidized for 2 h at 623 K (350 °C) and 267 Pa (2 Torr) O 2 [J.W. Davis et al., Thermo-oxidation of DIII-D codeposits on open surfaces and in simulated tile gaps, J. Nucl. Mater. 415 (2011) S789-S792]. In the present study some of these specimens, having undergone prior oxidation, were exposed to D 2 glow discharge plasmas or D 2 gas at 20 kPa (150 Torr) at 300 or 523 K. In the case of plasma exposure, no uptake of D was observed, while an increase in D content was seen following D 2 gas exposures. When the gas exposure took place at 300 K, heating the specimens in vacuum to 623 K for 15 min led to the release of all of the increased D content. For the gas exposure at 523 K, the increase in D content was found to require longer (8 h) vacuum baking to remove. However, in a reference codeposit specimen (from a closeby location on the tile), which had not been previously oxidized, there was a similar increase in D content following D 2 exposure at 523 K, but it could not be released even following 8 h vacuum baking at 623 K.

  10. Uptake of deuterium in partially D-depleted residual codeposits left on DIII-D tiles after laboratory thermo-oxidation experiments

    International Nuclear Information System (INIS)

    Recent evidence has shown that tokamak carbon-based codeposits may become partially or fully depleted of hydrogen through thermo-oxidation, as the hydrogen content of the codeposits is removed more rapidly than the carbon content. In this study we examine the ability of such partially-depleted residual DIII-D divertor codeposits to uptake deuterium upon subsequent exposure to deuterium gas or deuterium plasmas. The partially D-depleted specimens used here were obtained from a previous study where DIII-D codeposits were oxidized for 2 h at 623 K (350 °C) and 267 Pa (2 Torr) O2 [J.W. Davis et al., Thermo-oxidation of DIII-D codeposits on open surfaces and in simulated tile gaps, J. Nucl. Mater. 415 (2011) S789–S792]. In the present study some of these specimens, having undergone prior oxidation, were exposed to D2 glow discharge plasmas or D2 gas at 20 kPa (150 Torr) at 300 or 523 K. In the case of plasma exposure, no uptake of D was observed, while an increase in D content was seen following D2 gas exposures. When the gas exposure took place at 300 K, heating the specimens in vacuum to 623 K for 15 min led to the release of all of the increased D content. For the gas exposure at 523 K, the increase in D content was found to require longer (8 h) vacuum baking to remove. However, in a reference codeposit specimen (from a closeby location on the tile), which had not been previously oxidized, there was a similar increase in D content following D2 exposure at 523 K, but it could not be released even following 8 h vacuum baking at 623 K.

  11. Effect of neon plasma pre-irradiation on surface morphology and deuterium retention of tungsten

    NARCIS (Netherlands)

    Cheng, L.; De Temmerman, G.; van Emmichoven, P. A. Zeijlma; Ji, G.; Zhou, H. B.; Wang, B.; Yuan, Y.; Zhang, Y.; Lu, G. H.

    2015-01-01

    Neon and deuterium plasma irradiation of polycrystalline tungsten targets have been performed at high fluxes of ∼1024 ions m−2 s−1 to study the interaction of neon with tungsten and the influence of neon on deuterium retention. Tungsten exposure to neon plasma leads to the

  12. Modelling third harmonic ion cyclotron acceleration of deuterium beams for JET fusion product studies experiments

    DEFF Research Database (Denmark)

    Schneider, M.; Johnson, T.; Dumont, R.;

    2016-01-01

    Recent JET experiments have been dedicated to the studies of fusion reactions between deuterium (D) and Helium-3 (3He) ions using neutral beam injection (NBI) in synergy with third harmonic ion cyclotron radio-frequency heating (ICRH) of the beam. This scenario generates a fast ion deuterium tail...

  13. Influence of particle flux density and temperature on surface modifications of tungsten and deuterium retention

    NARCIS (Netherlands)

    Buzi, L.; De Temmerman, G.; Unterberg, B.; M. Reinhart,; Litnovsky, A.; Philipps, V.; Van Oost, G.; Möller, S.

    2014-01-01

    Systematic study of deuterium irradiation effects on tungsten was done under ITER - relevant high particle flux density, scanning a broad surface temperature range. Polycrystalline ITER - like grade tungsten samples were exposed in linear plasma devices to two different ranges of deuterium ion flux

  14. Development of positron annihilation spectroscopy for investigating deuterium decorated voids in neutron-irradiated tungsten

    International Nuclear Information System (INIS)

    The present work is a continuation of a recent research to develop and optimize positron annihilation spectroscopy (PAS) for characterizing neutron-irradiated tungsten. Tungsten samples were exposed to neutrons in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory and damaged to 0.025 and 0.3 dpa. Subsequently, they were exposed to deuterium plasmas in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory. The implanted deuterium was desorbed through sample heating to 900 °C, and Doppler broadening (DB)-PAS was performed both before and after heating. Results show that deuterium impregnated tungsten is identified as having a smaller S-parameter. The S-parameter increases after deuterium desorption. Microstructural changes also occur during sample heating. These effects can be isolated from deuterium desorption by comparing the S-parameters from the deuterium-free back face with the deuterium-implanted front face. The application of using DB-PAS to examine deuterium retention in tungsten is examined

  15. Synthetic Aperture Sequential Beamformation applied to medical imaging

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Hansen, Jens Munk; Jensen, Jørgen Arendt

    2012-01-01

    Synthetic Aperture Sequential Beamforming (SASB) is applied to medical ultrasound imaging using a multi element convex array transducer. The main motivation for SASB is to apply synthetic aperture techniques without the need for storing RF-data for a number of elements and hereby devise a system...

  16. Apparatus and method for velocity estimation in synthetic aperture imaging

    DEFF Research Database (Denmark)

    2003-01-01

    The invention relates to an apparatus for flow estimation using synthetic aperture imaging. The method uses a Synthetic Transmit Aperture, but unlike previous approaches a new frame is created after every pulse emission. In receive mode parallel beam forming is implemented. The beam formed RF data...

  17. Second harmonic imaging using synthetic aperture sequential beamforming

    DEFF Research Database (Denmark)

    Du, Yigang; Rasmussen, Joachim; Jensen, Henrik;

    2011-01-01

    The paper investigates Second Harmonic Imaging (SHI) using Synthetic Aperture Sequential Beamforming (SASB). The investigation is made by an experimental Synthetic Aperture Real-time Ultrasound System (SARUS). A linear array transducer is used to scan 4 wires at the image depths of f22.5, 47.5, 72...

  18. Velocity estimation using synthetic aperture imaging [blood flow

    OpenAIRE

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2001-01-01

    Presented an approach for synthetic aperture blood flow ultrasound imaging. Estimates with a low bias and standard deviation can be obtained with as few as eight emissions. The performance of the new estimator is verified using both simulations and measurements. The results demonstrate that a fully functioning synthetic aperture scanner can be made

  19. The sonar aperture and its neural representation in bats.

    Science.gov (United States)

    Heinrich, Melina; Warmbold, Alexander; Hoffmann, Susanne; Firzlaff, Uwe; Wiegrebe, Lutz

    2011-10-26

    As opposed to visual imaging, biosonar imaging of spatial object properties represents a challenge for the auditory system because its sensory epithelium is not arranged along space axes. For echolocating bats, object width is encoded by the amplitude of its echo (echo intensity) but also by the naturally covarying spread of angles of incidence from which the echoes impinge on the bat's ears (sonar aperture). It is unclear whether bats use the echo intensity and/or the sonar aperture to estimate an object's width. We addressed this question in a combined psychophysical and electrophysiological approach. In three virtual-object playback experiments, bats of the species Phyllostomus discolor had to discriminate simple reflections of their own echolocation calls differing in echo intensity, sonar aperture, or both. Discrimination performance for objects with physically correct covariation of sonar aperture and echo intensity ("object width") did not differ from discrimination performances when only the sonar aperture was varied. Thus, the bats were able to detect changes in object width in the absence of intensity cues. The psychophysical results are reflected in the responses of a population of units in the auditory midbrain and cortex that responded strongest to echoes from objects with a specific sonar aperture, regardless of variations in echo intensity. Neurometric functions obtained from cortical units encoding the sonar aperture are sufficient to explain the behavioral performance of the bats. These current data show that the sonar aperture is a behaviorally relevant and reliably encoded cue for object size in bat sonar.

  20. Shadow Enhancement in Synthetic Aperture Sonar Using Fixed Focusing

    NARCIS (Netherlands)

    Groen, J.; Hansen, R.E.; Callow, H.J.; Sabel, J.C.; Sæbø, T.O.

    2009-01-01

    Abstract—A shadow cast by an object on the seafloor is important information for target recognition in synthetic aperture sonar (SAS) images. Synthetic aperture imaging causes a fundamental limitation to shadow clarity because the illuminator is moved during the data collection. This leads to a blen

  1. SARUS: A Synthetic Aperture Real-Time Ultrasound System

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Holten-Lund, Hans; Nilsson, Ronnie Thorup;

    2013-01-01

    The Synthetic Aperture Real-time Ultrasound System (SARUS) for acquiring and processing synthetic aperture (SA) data for research purposes is described. The specifications and design of the system are detailed, along with its performance for SA, nonlinear, and 3-D flow estimation imaging. SARUS...

  2. Characteristics of Electromagnetic Pulse Coupling into Annular Apertures

    Directory of Open Access Journals (Sweden)

    Yan-Peng Sun

    2013-11-01

    Full Text Available Electromagnetic pulse (EMP coupling into the annular apertures can disturb or damage much electronic equipment. To enhance electronic system’s  capability of anti-electromagnetic interference, the finite difference time domain method (FDTD was employed to study the characteristics of electromagnetic pulse coupling into the cavity enclosures with annular apertures. The coupling characteristics of annular apertures with different shapes (rectangle, square and circle were discussed. It shows that, in the case of the same aperture area, the coupling energy of electromagnetic pulse into the circular annular aperture is smaller than that into the rectangular and the square ones. To the rectangular annular aperture, while the polarization direction of the incident electromagnetic pulse is perpendicular to the long side of the rectangular annular aperture, the coupling energy is larger when the aspect ratio of the rectangular annular aperture is larger. The coupling effect of incident pulse with short pulse width is obviously better than the one with longer pulse width. The resonance phenomenon of the coupled waveform occurs in the cavity.

  3. Calculation on diffraction aperture of cube corner retroreflector

    Institute of Scientific and Technical Information of China (English)

    Song Li; Bei Tang; Hui Zhou

    2008-01-01

    On the basis of optical property of cube corner retroreflector (CCR), a new perception and calculation approach for diffraction aperture of CCR in two different forms is presented. The relationship between diffraction apertures and incident light with six different combinations of reflection order and incident angle is established. Far-field diffraction patterns of CCR under various incident conditions are also provided.

  4. Differentiating the role of lithium and oxygen in retaining deuterium on lithiated graphite plasma-facing components

    Energy Technology Data Exchange (ETDEWEB)

    C.N. Taylor; J. P. Allain; P. S. Krstic; J. Dadras; C. H. Skinner; K. E. Luitjohan

    2013-11-01

    Laboratory experiments have been used to investigate the fundamental interactions responsible for deuterium retention in lithiated graphite. Oxygen was found to be present and play a key role in experiments that simulated NSTX lithium conditioning, where the atomic surface concentration can increase to >40% when deuterium retention chemistry is observed. Quantum-classical molecular dynamic simulations elucidated this oxygen-deuterium effect and showed that oxygen retains significantly more deuterium than lithium in a simulated matrix with 20% lithium, 20% oxygen, and 60% carbon. Simulations further show that deuterium retention is even higher when lithium is removed from the matrix. Experiments artificially increased the oxygen content in graphite to approximately 16% and then bombarded with deuterium. XPS showed depletion of the oxygen and no enhanced deuterium retention, thus demonstrating that lithium is essential in retaining the oxygen that thereby retains deuterium.

  5. Synthetic aperture radar imaging with motion estimation and autofocus

    International Nuclear Information System (INIS)

    We introduce from first principles a synthetic aperture radar (SAR) imaging and target motion estimation method that is combined with compensation for radar platform trajectory perturbations. The main steps of the method are (a) segmentation of the data into properly calibrated small apertures, (b) motion or platform trajectory perturbation estimation using the Wigner transform and the ambiguity function of the data in a complementary way and (c) combination of small aperture estimates and construction of high-resolution images over wide apertures. The analysis provides quantitative criteria for implementing the aperture segmentation and the parameter estimation process. X-band persistent surveillance SAR is a specific application that is covered by our analysis. Detailed numerical simulations illustrate the robust applicability of the theory and validate the theoretical resolution analysis. (paper)

  6. Microfabricated high-bandpass foucault aperture for electron microscopy

    Science.gov (United States)

    Glaeser, Robert; Cambie, Rossana; Jin, Jian

    2014-08-26

    A variant of the Foucault (knife-edge) aperture is disclosed that is designed to provide single-sideband (SSB) contrast at low spatial frequencies but retain conventional double-sideband (DSB) contrast at high spatial frequencies in transmission electron microscopy. The aperture includes a plate with an inner open area, a support extending from the plate at an edge of the open area, a half-circle feature mounted on the support and located at the center of the aperture open area. The radius of the half-circle portion of reciprocal space that is blocked by the aperture can be varied to suit the needs of electron microscopy investigation. The aperture is fabricated from conductive material which is preferably non-oxidizing, such as gold, for example.

  7. Coded Aperture Imaging for Fluorescent X-rays-Biomedical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Haboub, Abdel; MacDowell, Alastair; Marchesini, Stefano; Parkinson, Dilworth

    2013-06-01

    Employing a coded aperture pattern in front of a charge couple device pixilated detector (CCD) allows for imaging of fluorescent x-rays (6-25KeV) being emitted from samples irradiated with x-rays. Coded apertures encode the angular direction of x-rays and allow for a large Numerical Aperture x- ray imaging system. The algorithm to develop the self-supported coded aperture pattern of the Non Two Holes Touching (NTHT) pattern was developed. The algorithms to reconstruct the x-ray image from the encoded pattern recorded were developed by means of modeling and confirmed by experiments. Samples were irradiated by monochromatic synchrotron x-ray radiation, and fluorescent x-rays from several different test metal samples were imaged through the newly developed coded aperture imaging system. By choice of the exciting energy the different metals were speciated.

  8. Use of deuterium labelled glucose in evaluating the pathway of hepatic glycogen synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, M.N.; Masuoka, L.K.; deRopp, J.S.; Jones, A.D.

    1989-03-15

    Deuterium labelled glucose has been used to study the pathway of hepatic glycogen synthesis during the fasted-refed transition in rats. Deuterium enrichment of liver glycogen was determined using nuclear magnetic resonance as well as mass spectroscopy. Sixty minutes after oral administration of deuterated glucose to fasted rats, the portal vein blood was fully enriched with deuterated glucose. Despite this, less than half of the glucose molecules incorporated into liver glycogen contained deuterium. The loss of deuterium label from glucose is consistent with hepatic glycogen synthesis by an indirect pathway requiring prior metabolism of glucose. The use of deuterium labelled glucose may prove to be a useful probe to study hepatic glycogen metabolism. Its use may also find application in the study of liver glycogen metabolism in humans by a noninvasive means.

  9. Prompt gamma-ray neutron activation analysis of boron using Deuterium-Deuterium (D-D) neutron generator

    International Nuclear Information System (INIS)

    Prompt gamma-ray neutron activation analysis (PGNAA) is a nuclear analytical technique for the determination of trace and other elements in solid, liquid or gaseous samples. The method consists in observing gamma rays emitted by a sample during neutron irradiation. The PGNAA system was built using a moderated and shielded deuterium-deuterium (D-D) neutron generator. This facility has been developed to determine the chemical composition of materials. The neutron generator is composed of three major components: An RF-Induction Ion Source, the Secondary Electron Shroud, and the Diode Accelerator Structure and Target. The generator produces monoenergetic neutrons (2.5 MeV) with a yield of 1010 n/s using 25-50 mA of beam current and 125 kV of acceleration voltage. Prompt γ-ray neutron activation analysis of 10B concentrations in Si and SiO2 matrices was carried out using a germanium detector (HPGe) and the results obtained are compared with a PGNAA system using a NaI detector. Neutron flux and energy distribution from D-D neutron generator at the sample position was calculated using Monte Carlo simulation. The interaction properties of neutrons in a Germanium detector have been studied. (author)

  10. Numerical study of the ablative Richtmyer-Meshkov instability of laser-irradiated deuterium and deuterium-tritium targets

    Science.gov (United States)

    Marocchino, Alberto; Atzeni, Stefano; Schiavi, Angelo

    2010-11-01

    The Richtmyer-Meshkov instability (RMI) at the ablation front of laser-irradiated planar targets is investigated by two-dimensional numerical hydrodynamics simulations. The linear evolution of perturbations seeded either by surface roughness or target inhomogeneity is studied for perturbation wavelengths in the range 10≤λ≤400 μm and laser intensity 4×1012≤I≤4×1014 W/cm2 (with laser wavelength λlaser=0.35 μm). Thin and thick cryogenic deuterium or deuterium-tritium (DT) planar targets are considered. For targets irradiated at constant intensity, it is found that perturbations with wavelength below a given threshold perform damped oscillations, while perturbations above such a threshold are unstable and oscillate with growing amplitude. This is qualitatively in agreement with theoretical predictions by Goncharov et al. [Phys. Plasmas 13, 012702 (2006)], according to which ablation related processes stabilize perturbations with kDc≫1, where Dc is the distance between the ablation front and critical density for laser propagation. For kDcdamped after an initial growth. In a thin target, initial perturbations, either damped or amplified by RMI and LDI, seed the subsequent Rayleigh-Taylor instability. Finally, it is shown that RMI growth of fusion targets can be reduced by using laser pulses including an initial adiabat-shaping picket (originally proposed to reduce the growth of Rayleigh-Taylor instability).

  11. Insights into hydrological regime of Lake Vostok from differential behavior of deuterium and oxygen-18 in accreted ice

    Science.gov (United States)

    Ekaykin, A. A.; Lipenkov, V. Y.; Petit, J. R.; Johnsen, S.; Jouzel, J.; Masson-Delmotte, V.

    2010-05-01

    We use isotopic data (deuterium and oxygen-18) of the recently recovered deepest Vostok ice core section (down to 3650 m depth) to study processes leading to the formation of lake ice and the hydrological regime of subglacial Lake Vostok. The significant variability of the lake ice isotopic content implies fluctuations in physical conditions of ice formation (mainly, volume and/or growth rate of frazil ice crystals) as well as variations of the isotope composition of the freezing water. The latter implies a poor mixing of the source waters (glacier melt and hydrothermal water) with the water of the main lake body. Poor mixing within the lake may have important consequences for the lake's chemical and gas balance and, particularly, for its microbiological content. A poorly mixed lake may provide ecological niches where microbial life can hide from high oxygen concentrations likely typical for the lake. We also show that the isotopic content of the main lake's input (meltwater) significantly differs from that of the output (lake ice), which can be explained by the contribution of an additional (hydrothermal) source. This latter conclusion is supported by the observed noncovariant behavior of deuterium and oxygen-18 isotopes in the lake ice.

  12. Precision measures of the primordial abundance of deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, Ryan J. [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Pettini, Max [Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Jorgenson, Regina A. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Murphy, Michael T. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Steidel, Charles C., E-mail: rcooke@ucolick.org [California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States)

    2014-01-20

    We report the discovery of deuterium absorption in the very metal-poor ([Fe/H] = –2.88) damped Lyα system at z {sub abs} = 3.06726 toward the QSO SDSS J1358+6522. On the basis of 13 resolved D I absorption lines and the damping wings of the H I Lyα transition, we have obtained a new, precise measure of the primordial abundance of deuterium. Furthermore, to bolster the present statistics of precision D/H measures, we have reanalyzed all of the known deuterium absorption-line systems that satisfy a set of strict criteria. We have adopted a blind analysis strategy (to remove human bias) and developed a software package that is specifically designed for precision D/H abundance measurements. For this reanalyzed sample of systems, we obtain a weighted mean of (D/H){sub p} = (2.53 ± 0.04) × 10{sup –5}, corresponding to a universal baryon density 100 Ω{sub b,} {sub 0} h {sup 2} = 2.202 ± 0.046 for the standard model of big bang nucleosynthesis (BBN). By combining our measure of (D/H){sub p} with observations of the cosmic microwave background (CMB), we derive the effective number of light fermion species, N {sub eff} = 3.28 ± 0.28. We therefore rule out the existence of an additional (sterile) neutrino (i.e., N {sub eff} = 4.046) at 99.3% confidence (2.7σ), provided that the values of N {sub eff} and of the baryon-to-photon ratio (η{sub 10}) did not change between BBN and recombination. We also place a strong bound on the neutrino degeneracy parameter, independent of the {sup 4}He primordial mass fraction, Y {sub P}: ξ{sub D} = +0.05 ± 0.13 based only on the CMB+(D/H){sub p} observations. Combining this value of ξ{sub D} with the current best literature measure of Y {sub P}, we find a 2σ upper bound on the neutrino degeneracy parameter, |ξ| ≤ +0.062.

  13. Precision Measures of the Primordial Abundance of Deuterium

    Science.gov (United States)

    Cooke, Ryan J.; Pettini, Max; Jorgenson, Regina A.; Murphy, Michael T.; Steidel, Charles C.

    2014-01-01

    We report the discovery of deuterium absorption in the very metal-poor ([Fe/H] = -2.88) damped Lyα system at z abs = 3.06726 toward the QSO SDSS J1358+6522. On the basis of 13 resolved D I absorption lines and the damping wings of the H I Lyα transition, we have obtained a new, precise measure of the primordial abundance of deuterium. Furthermore, to bolster the present statistics of precision D/H measures, we have reanalyzed all of the known deuterium absorption-line systems that satisfy a set of strict criteria. We have adopted a blind analysis strategy (to remove human bias) and developed a software package that is specifically designed for precision D/H abundance measurements. For this reanalyzed sample of systems, we obtain a weighted mean of (D/H)p = (2.53 ± 0.04) × 10-5, corresponding to a universal baryon density 100 Ωb, 0 h 2 = 2.202 ± 0.046 for the standard model of big bang nucleosynthesis (BBN). By combining our measure of (D/H)p with observations of the cosmic microwave background (CMB), we derive the effective number of light fermion species, N eff = 3.28 ± 0.28. We therefore rule out the existence of an additional (sterile) neutrino (i.e., N eff = 4.046) at 99.3% confidence (2.7σ), provided that the values of N eff and of the baryon-to-photon ratio (η10) did not change between BBN and recombination. We also place a strong bound on the neutrino degeneracy parameter, independent of the 4He primordial mass fraction, Y P: ξD = +0.05 ± 0.13 based only on the CMB+(D/H)p observations. Combining this value of ξD with the current best literature measure of Y P, we find a 2σ upper bound on the neutrino degeneracy parameter, |ξ| <= +0.062. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (VLT program IDs: 68.B-0115(A), 70.A-0425(C), 078.A-0185(A), 085.A-0109(A)), and at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of

  14. Fracture-aperture alteration induced by calcite precipitation

    Science.gov (United States)

    Jones, T.; Detwiler, R. L.

    2013-12-01

    Mineral precipitation significantly alters the transport properties of fractured rock. Chemical solubility gradients that favor precipitation induce mineral growth, which decreases the local aperture and alters preferential flow paths. Understanding the resulting development of spatial heterogeneities is necessary to predict the evolution of transport properties in the subsurface. We present experimental results that quantify the relationship between mineral precipitation and aperture alteration in a transparent analog fracture, 7.62cm x 7.62cm, with a uniform aperture of ~200 μm. Prior to flow experiments, a pump circulated a super-saturated calcite solution over the bottom glass, coating the glass surface with calcite. This method of seeding resulted in clusters of calcite crystals with large reactive surface area and provided micro-scale variability in the aperture field. A continuous flow syringe pump injected a reactive fluid into the fracture at 0.5 ml/min. The fluid was a mixture of sodium bicarbonate (NaHCO3, 0.02M) and calcium chloride (CaCl2 0.0004M) with a saturation index, Ω, of 8.51 with respect to calcite. A strobed LED panel backlit the fracture and a high-resolution CCD camera monitored changes in transmitted light intensity. Light transmission techniques provided a quantitative measurement of fracture aperture over the flow field. Results from these preliminary experiments showed growth near the inlet of the fracture, with decreasing precipitation rates in the flow direction. Over a period of two weeks, the fracture aperture decreased by 17% within the first 4mm of the inlet. Newly precipitated calcite bridged individual crystal clusters and smoothed the reacting surface. This observation is an interesting contradiction to the expectation of surface roughening induced by mineral growth. Additionally, the aperture decreased uniformly across the width of the fracture due to the initial aperture distribution. Future experiments of precipitation

  15. Stereoscopic full aperture imaging in nuclear medicine

    Directory of Open Access Journals (Sweden)

    Sergio G. Strocovsky

    2011-06-01

    Full Text Available Images of planar scintigraphy and single photon emission computerized tomography (SPECT used in nuclear medicine are often low quality. They usually appear to be blurred and noisy. This problem is due to the low spatial resolution and poor sensitivity of the acquisition technique with the gamma camera (GC. Other techniques, such as coded aperture imaging (CAI reach higher spatial resolutions than GC. However, CAI is not frequently used for imaging in nuclear medicine, due to the decoding complexity of some images and the difficulty in controlling the noise magnitude. Summing up, the images obtained through GC are low quality and it is still difficult to implement CAI technique. A novel technique, full aperture Imaging (FAI, also uses gamma ray-encoding to obtain images, but the coding system and the method of images reconstruction are simpler than those used in CAI. In addition, FAI also reaches higher spatial resolution than GC. In this work, the principles of FAI technique and the method of images reconstruction are explained in detail. The FAI technique is tested by means of Monte Carlo simulations with filiform and spherical sources. Spatial resolution tests of GC versus FAI were performed using two different source-detector distances. First, simulations were made without interposing any material between the sources and the detector. Then, other more realistic simulations were made. In these, the sources were placed in the centre of a rectangular prismatic region, filled with water. A rigorous comparison was made between GC and FAI images of the linear filiform sources, by means of two methods: mean fluence profile graphs and correlation tests. Finally, three-dimensional capacity of FAI was tested with two spherical sources. The results show that FAI technique has greater sensitivity (>100 times and greater spatial resolution (>2.6 times than that of GC with LEHR collimator, in both cases, with and without attenuating material and long and

  16. Aperture-Tolerant, Chemical-Based Methods to Reduce Channeling

    Energy Technology Data Exchange (ETDEWEB)

    Randall S. Seright

    2007-09-30

    This final technical progress report describes work performed from October 1, 2004, through May 16, 2007, for the project, 'Aperture-Tolerant, Chemical-Based Methods to Reduce Channeling'. We explored the potential of pore-filling gels for reducing excess water production from both fractured and unfractured production wells. Several gel formulations were identified that met the requirements--i.e., providing water residual resistance factors greater than 2,000 and ultimate oil residual resistance factors (F{sub rro}) of 2 or less. Significant oil throughput was required to achieve low F{sub rro} values, suggesting that gelant penetration into porous rock must be small (a few feet or less) for existing pore-filling gels to provide effective disproportionate permeability reduction. Compared with adsorbed polymers and weak gels, strong pore-filling gels can provide greater reliability and behavior that is insensitive to the initial rock permeability. Guidance is provided on where relative-permeability-modification/disproportionate-permeability-reduction treatments can be successfully applied for use in either oil or gas production wells. When properly designed and executed, these treatments can be successfully applied to a limited range of oilfield excessive-water-production problems. We examined whether gel rheology can explain behavior during extrusion through fractures. The rheology behavior of the gels tested showed a strong parallel to the results obtained from previous gel extrusion experiments. However, for a given aperture (fracture width or plate-plate separation), the pressure gradients measured during the gel extrusion experiments were much higher than anticipated from rheology measurements. Extensive experiments established that wall slip and first normal stress difference were not responsible for the pressure gradient discrepancy. To explain the discrepancy, we noted that the aperture for gel flow (for mobile gel wormholing through concentrated

  17. Detection of breast microcalcifications using synthetic-aperture ultrasound

    Science.gov (United States)

    Huang, Lianjie; Labyed, Yassin; Lin, Youzuo; Zhang, Zhigang; Pohl, Jennifer; Sandoval, Daniel; Williamson, Michael

    2012-03-01

    Ultrasound could be an attractive imaging modality for detecting breast microcalcifications, but it requires significant improvement in image resolution and quality. Recently, we have used tissue-equivalent phantoms to demonstrate that synthetic-aperture ultrasound has the potential to detect small targets. In this paper, we study the in vivo imaging capability of a real-time synthetic-aperture ultrasound system for detecting breast microcalcifications. This LANL's (Los Alamos National Laboratory's) custom built synthetic-aperture ultrasound system has a maximum frame rate of 25 Hz, and is one of the very first medical devices capable of acquiring synthetic-aperture ultrasound data and forming ultrasound images in real time, making the synthetic-aperture ultrasound feasible for clinical applications. We recruit patients whose screening mammograms show breast microcalcifications, and use LANL's synthetic-aperture ultrasound system to scan the regions with microcalcifications. Our preliminary in vivo patient imaging results demonstrate that synthetic-aperture ultrasound is a promising imaging modality for detecting breast microcalcifications.

  18. Preliminary comparison of 3D synthetic aperture imaging with Explososcan

    Science.gov (United States)

    Rasmussen, Morten Fischer; Hansen, Jens Munk; Férin, Guillaume; Dufait, Rémi; Jensen, Jørgen Arendt

    2012-03-01

    Explososcan is the 'gold standard' for real-time 3D medical ultrasound imaging. In this paper, 3D synthetic aperture imaging is compared to Explososcan by simulation of 3D point spread functions. The simulations mimic a 32×32 element prototype transducer. The transducer mimicked is a dense matrix phased array with a pitch of 300 μm, made by Vermon. For both imaging techniques, 289 emissions are used to image a volume spanning 60° in both the azimuth and elevation direction and 150mm in depth. This results for both techniques in a frame rate of 18 Hz. The implemented synthetic aperture technique reduces the number of transmit channels from 1024 to 256, compared to Explososcan. In terms of FWHM performance, was Explososcan and synthetic aperture found to perform similar. At 90mm depth is Explososcan's FWHM performance 7% better than that of synthetic aperture. Synthetic aperture improved the cystic resolution, which expresses the ability to detect anechoic cysts in a uniform scattering media, at all depths except at Explososcan's focus point. Synthetic aperture reduced the cyst radius, R20dB, at 90mm depth by 48%. Synthetic aperture imaging was shown to reduce the number of transmit channels by four and still, generally, improve the imaging quality.

  19. Muon Catalyzed Fusion in 3 K Solid Deuterium

    CERN Document Server

    Knowles, P E; Bailey, J M; Beer, G A; Beveridge, J L; Fujiwara, M C; Huber, T M; Jacot-Guillarmod, R; Kammel, P; Kim, S K; Kunselman, A R; Marshall, G M; Martoff, C J; Mason, G R; Mulhauser, F; Olin, A; Petitjean, C; Porcelli, T A; Zmeskal, J; Zmeskal, and J.

    1997-01-01

    Muon catalyzed fusion in deuterium has traditionally been studied in gaseous and liquid targets. The TRIUMF solid-hydrogen-layer target system has been used to study the fusion reaction rates in the solid phase of D_2 at a target temperature of 3 K. Products of two distinct branches of the reaction were observed; neutrons by a liquid organic scintillator, and protons by a silicon detector located inside the target system. The effective molecular formation rate from the upper hyperfine state of $\\mu d$ and the hyperfine transition rate have been measured: $\\tilde{\\lambda}_(3/2)=2.71(7)_{stat.}(32)_{syst.} The molecular formation rate is consistent with other recent measurements, but not with the theory for isolated molecules. The discrepancy may be due to incomplete thermalization, an effect which was investigated by Monte Carlo calculations. Information on branching ratio parameters for the s and p wave d+d nuclear interaction has been extracted.

  20. Microstructural studies of hydrogen and deuterium in bcc refractory metals

    International Nuclear Information System (INIS)

    Over the past four years this research has been principally concerned with uncovering the microstructural atomic arrangements in alloys of hydrogen and deuterium with bcc refractory metals. Because these are interstitial phases in which the host metal lattice is substantially deformed by the incorporation of the H(D) atoms, there are pronounced x-ray scattering effects. X-ray diffraction has, therefore, been the main structural tool. A main objective of the project has been to determine the degree to which phase relations and solid solution properties in metal-hydride alloys depend upon the hydrogen-hydrogen interaction via the displacement field of the metal atoms. This has often included the elucidation of subtle thermodynamic properties which are revealed in structural studies

  1. Diffusion of hydrogen, deuterium, and tritium in niobium

    International Nuclear Information System (INIS)

    The diffusion of hydrogen in niobium was investigated over the temperature range 148 to 500 degrees Kelvin, using measurements of the elastic after effect caused by long range diffusion (the Gorsky Effect). Relaxation curves for pure annealed niobium were generally not of the single exponential form expected from the Gorsky Effect theory, but were described well by a sum of two exponential curves with different amplitudes and relaxation times. The effects of oxygen and nitrogen interstitials on the diffusion were studied and were not in agreement with conventional trapping models. Deuterium and tritium diffusion in niobium were also studied, and a non-classical isotope effect was observed. Hydrogen diffusion coefficients in several Nb-Ta alloys were measured, and the diffusivity in all these alloys exhibited a non-Arrhenius temperature dependence. Experimental results were compared to several models for diffusion and trapping. A model is presented which can account for the form of the relaxation curves observed in pure, annealed niobium

  2. In-medium modification of pion-pairs on deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Lugert, Stefan

    2007-11-23

    In this thesis the quasi free photo production of pion pairs on bound nucleons {gamma}+A{yields} {pi}{pi}(A-1)+N is analyzed for liquid Deuterium. A pioneering experiment with a photon beam was performed by the TAPS collaboration at the accelerator facility MAMI-B in Mainz in 1999. This measurement observed an invariant mass shift of the isoscalar {pi}{sup 0}{pi}{sup 0} channel with increasing atomic number as well. Due to the poor statistics, the significance of the data was however limited. The experiment described in this work reached a much higher statistical significance, allowing a review of the old data. In this experiment, the TAPS detector was used as a forward wall in combination with the Crystal Ball detector to achieve almost the complete 4{pi} solid angle coverage for particle detection at the MAMI accelerator facility. The installation of the experimental setup started at the end of 2003. The new readout electronics for the BaF{sub 2} crystals was used for the first time. Between June 2004 and April 2005 measurements on several targets were performed, including the lD{sub 2} data which has been analyzed in this work. The analysis of the Deuterium data is an essential contribution to understanding the ongoing processes for two reasons. Firstly, there is the possibility to compare the solid targets and Hydrogen to the lightest nucleus having Fermi motion included but the lowest possible nuclear volume, the Deuterium. For the second reason, there are no data for the mass differential cross section on the neutron available for the mentioned channels. Analyzing the Deuterium data and subtracting the published proton data, the cross section on the neutron gets accessible. An essential question for the theory is whether the cross section on neutron and proton are the same or how much they differ in the relevant energy regime. To determine the absolute cross section, the efficiency of the detector system is required. To provide this efficiency, I also

  3. Catalyzed deuterium fueled reversed-field pinch reactor assessment

    International Nuclear Information System (INIS)

    This study is part of a Department of Energy supported alternate fusion fuels program at Science Applications International Corporation. The purpose of this portion of the study is to perform an assessment of a conceptual compact reversed-field pinch reactor (CRFPR) that is fueled by the catalyzed-deuterium (Cat-d) fuel cycle with respect to physics, technology, safety, and cost. The Cat-d CRFPR is compared to a d-t fueled fusion reactor with respect to several issues in this study. The comparison includes cost, reactor performance, and technology requirements for a Cat-d fueled CRFPR and a comparable cost-optimized d-t fueled conceptual design developed by LANL

  4. Correlating Infall with Deuterium Fractionation in Dense Cores

    CERN Document Server

    Schnee, Scott; Di Francesco, James; Caselli, Paola; Friesen, Rachel; Johnstone, Doug; Pon, Andy

    2013-01-01

    We present a survey of HCO+ (3-2) observations pointed towards dense cores with previous measurements of N(N2D+)/N(N2H+). Of the 26 cores in this survey, five show the spectroscopic signature of outward motion, nine exhibit neither inward nor outward motion, eleven appear to be infalling, and one is not detected. We compare the degree of deuterium fractionation with infall velocities calculated from the HCO+ spectra and find that those cores with [D]/[H] > 0.1 are more likely to have the signature of inward motions than cores with smaller [D]/[H] ratios. Infall motions are also much more common in cores with masses exceeding their thermal Jeans masses. The fastest infall velocity measured belongs to one of the two protostellar cores in our survey, L1521F, and the observed motions are typically on the order of the sound speed.

  5. CORRELATING INFALL WITH DEUTERIUM FRACTIONATION IN DENSE CORES

    Energy Technology Data Exchange (ETDEWEB)

    Schnee, Scott; Brunetti, Nathan; Friesen, Rachel [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Di Francesco, James; Johnstone, Doug; Pon, Andy [National Research Council Canada, Herzberg Institute of Astrophysics, 5071 West Saanich Road Victoria, BC V9E 2E7 (Canada); Caselli, Paola, E-mail: sschnee@nrao.edu [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2013-11-10

    We present a survey of HCO{sup +} (3-2) observations pointed toward dense cores with previous measurements of N(N{sub 2}D{sup +})/N(N{sub 2}H{sup +}). Of the 26 cores in this survey, 5 show the spectroscopic signature of outward motion, 9 exhibit neither inward nor outward motion, 11 appear to be infalling, and 1 is not detected. We compare the degree of deuterium fractionation with infall velocities calculated from the HCO{sup +} spectra and find that those cores with [D]/[H] > 0.1 are more likely to have the signature of inward motions than cores with smaller [D]/[H] ratios. Infall motions are also much more common in cores with masses exceeding their thermal Jeans masses. The fastest infall velocity measured belongs to one of the two protostellar cores in our survey, L1521F, and the observed motions are typically on the order of the sound speed.

  6. Deuterium Retention by Implantation in Carbide-Doped Graphites

    Energy Technology Data Exchange (ETDEWEB)

    Balden, M.; Oyarzabal, E.; Juan Pardo, E. de; Durocher, K.; Roth, J. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Garcia-Rosales, C. [Univ. de Navarra, San Sebastian (Spain). Centro de Estudios e Investigaciones Tecnicas de Guipuzcoa and Escuela Superior de Ingenieros

    2003-04-01

    For fine-grain graphites with different final heat treatment, the influences of the porosity, degree of graphitization, and dopant (TiC, VC, WC, and ZrC) on the fluence dependence of the retention of 1 keV deuterium were investigated using thermal desorption spectroscopy. A strong decrease of the D retention for fluences higher than 10{sup 21} D/m{sup 2} was observed for the undoped graphites graphitized at temperatures above 2000K compared to material only calcined at 1270K. Due to the identical manufacturing processes for the carbide-doped graphites used in this study, the structure is comparable for all of them. The choice of dopant as well as the ratio of open to closed porosity show no influence on the D retention. Therefore, these properties of the graphites can be neglected for hydrogen retention estimations.

  7. Θ+ Search at HERMES with Deuterium and Hydrogen Targets

    Science.gov (United States)

    Wang, Siguang; Schnell, Gunar

    The previous search at HERMES for narrow baryon states excited in quasi-real photo-production, decaying through the channel Θ + to pKS0 to pπ + π - , has been extended. Improved decay-particle reconstruction, more advanced particle identification, and increased event samples are employed. The structure that was observed earlier at an invariant mass of 1528 MeV shifts to 1522 MeV in the new analysis of data with a deuterium target, with a drop of statistical significance to about 2σ. The number of events above background is 68 - 31 + 98(stat) ± 13(sys). No such structure is observed in the hydrogen data set.

  8. Path Integral Monte Carlo Calculation of the Deuterium Hugoniot

    International Nuclear Information System (INIS)

    Restricted path integral Monte Carlo simulations have been used to calculate the equilibrium properties of deuterium for two densities: 0.674 and 0.838 g cm -3 (rs=2.00 and 1.86) in the temperature range of 105≤T≤106 K . We carefully assess size effects and dependence on the time step of the path integral. Further, we compare the results obtained with a free particle nodal restriction with those from a self-consistent variational principle, which includes interactions and bound states. By using the calculated internal energies and pressures, we determine the shock Hugoniot and compare with recent laser shock wave experiments as well as other theories. (c) 2000 The American Physical Society

  9. In-medium modification of pion-pairs on deuterium

    International Nuclear Information System (INIS)

    In this thesis the quasi free photo production of pion pairs on bound nucleons γ+A→ ππ(A-1)+N is analyzed for liquid Deuterium. A pioneering experiment with a photon beam was performed by the TAPS collaboration at the accelerator facility MAMI-B in Mainz in 1999. This measurement observed an invariant mass shift of the isoscalar π0π0 channel with increasing atomic number as well. Due to the poor statistics, the significance of the data was however limited. The experiment described in this work reached a much higher statistical significance, allowing a review of the old data. In this experiment, the TAPS detector was used as a forward wall in combination with the Crystal Ball detector to achieve almost the complete 4π solid angle coverage for particle detection at the MAMI accelerator facility. The installation of the experimental setup started at the end of 2003. The new readout electronics for the BaF2 crystals was used for the first time. Between June 2004 and April 2005 measurements on several targets were performed, including the lD2 data which has been analyzed in this work. The analysis of the Deuterium data is an essential contribution to understanding the ongoing processes for two reasons. Firstly, there is the possibility to compare the solid targets and Hydrogen to the lightest nucleus having Fermi motion included but the lowest possible nuclear volume, the Deuterium. For the second reason, there are no data for the mass differential cross section on the neutron available for the mentioned channels. Analyzing the Deuterium data and subtracting the published proton data, the cross section on the neutron gets accessible. An essential question for the theory is whether the cross section on neutron and proton are the same or how much they differ in the relevant energy regime. To determine the absolute cross section, the efficiency of the detector system is required. To provide this efficiency, I also developed the MonteCarlo simulation using a

  10. Dislocation mechanism of deuterium retention in tungsten under plasma implantation

    International Nuclear Information System (INIS)

    We have developed a new theoretical model for deuterium (D) retention in tungsten-based alloys on the basis of its being trapped at dislocations and transported to the surface via the dislocation network with parameters determined by ab initio calculations. The model is used to explain experimentally observed trends of D retention under sub-threshold implantation, which does not produce stable lattice defects to act as traps for D in conventional models. Saturation of D retention with implantation dose and effects due to alloying of tungsten with, e.g. tantalum, are evaluated, and comparison of the model predictions with experimental observations under high-flux plasma implantation conditions is presented. (paper)

  11. Pion Electroproduction form Helium 3, Deuterium, and Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    S. Avery

    2002-05-01

    A series of measurements for pion electroproduction from helium-3, deuterium, and hydrogen were completed at the Thomas Jefferson National Accelerator Facility by the NucPi Collaboration. E91003 began taking data in February 1998 and was completed in April 1998. The longitudinal and transverse parts of the differential cross section were extracted, by means of a Rosenbluth type separation, in the direction parallel to the virtual photon, at Q 2 = 0.4 GeV 2 , for W = 1.15 and W = 1.6 GeV. The mass dependence of the longitudinal cross section should provide insight into the surprising apparent absence of any significant cross section enhancement due to excess pions in the nuclear medium.

  12. Measurement of deuterium ion temperature profiles at TEXTOR-94

    Energy Technology Data Exchange (ETDEWEB)

    Busche, E.; Euringer, H. [Forschungszentrum Juelich GmbH, EURATOM Association, Juelich (Germany). Inst. fuer Plasmaphysik; Jaspers, R. [FOM Inst. voor Plasmafysica `Rijnhuizen`, Association EURATOM-FOM, Nieuwegein (Netherlands)

    1997-09-01

    Charge-exchange recombination spectroscopy (CXRS) has been used to compare results on ion temperatures from several diagnostics at TEXTOR-94. The question of whether the typically measured width of impurity spectral lines is representative for the main ion temperature T{sub I}, is addressed by applying CXRS to the Balmer-alpha spectrum of deuterium. The importance of the halo effect is found not to be severe for the T{sub I} measurements. T{sub I} is lower than the impurity temperatures for low-density discharges with neutral beam heating. The time evolution of T{sub I} and the toroidal rotation were also measured during sawtooth oscillations. From this a lower bound for the ion heat diffusivity {chi}{sub I}{sup HP} of {approx} 2 m{sup 2} s{sup -1} has been deduced. (author).

  13. Synthetic aperture radar imaging exploiting multiple scattering

    International Nuclear Information System (INIS)

    In this paper, we consider an imaging scenario, where a bi-static synthetic aperture radar (SAR) system is used in a multiple scattering environment. We consider a ray-theoretic approximation to the Green function to model a multiple scattering environment. This allows us to incorporate the multiple paths followed by the transmitted signal, thereby providing different views of the object to be imaged. However, the received signal from the multiple paths and additive thermal noise may interfere and produce artifacts when standard backprojection-based reconstruction algorithms are used. We use microlocal analysis in a statistical setting to develop a novel filtered-backprojection type image reconstruction method that not only exploits the multi-paths leading to enhancement of the reconstructed image but also suppresses the artifacts due to interference. We assume a priori knowledge of the second-order statistics of the target and noise to suppress the artifacts due to interference in a mean-square error sense. We present numerical simulations to demonstrate the performance of our image reconstruction method. While the focus of this paper is on radar applications, our image formation method is also applicable to other problems arising in fields such as acoustic, geophysical and medical imaging

  14. Motion Measurement for Synthetic Aperture Radar.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W.

    2015-01-01

    Synthetic Aperture Radar (SAR) measures radar soundings from a set of locations typically along the flight path of a radar platform vehicle. Optimal focusing requires precise knowledge of the sounding source locations in 3 - D space with respect to the target scene. Even data driven focusing techniques (i.e. autofocus) requires some degree of initial fidelity in the measurements of the motion of the radar. These requirements may be quite stringent especially for fine resolution, long ranges, and low velocities. The principal instrument for measuring motion is typically an Inertial Measurement Unit (IMU), but these instruments have inherent limi ted precision and accuracy. The question is %22How good does an IMU need to be for a SAR across its performance space?%22 This report analytically relates IMU specifications to parametric requirements for SAR. - 4 - Acknowledgements Th e preparation of this report is the result of a n unfunded research and development activity . Although this report is an independent effort, it draws heavily from limited - release documentation generated under a CRADA with General Atomics - Aeronautical System, Inc. (GA - ASI), and under the Joint DoD/DOE Munitions Program Memorandum of Understanding. Sandia National Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of En ergy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000.

  15. High numerical aperture multilayer Laue lenses.

    Science.gov (United States)

    Morgan, Andrew J; Prasciolu, Mauro; Andrejczuk, Andrzej; Krzywinski, Jacek; Meents, Alke; Pennicard, David; Graafsma, Heinz; Barty, Anton; Bean, Richard J; Barthelmess, Miriam; Oberthuer, Dominik; Yefanov, Oleksandr; Aquila, Andrew; Chapman, Henry N; Bajt, Saša

    2015-01-01

    The ever-increasing brightness of synchrotron radiation sources demands improved X-ray optics to utilise their capability for imaging and probing biological cells, nanodevices, and functional matter on the nanometer scale with chemical sensitivity. Here we demonstrate focusing a hard X-ray beam to an 8 nm focus using a volume zone plate (also referred to as a wedged multilayer Laue lens). This lens was constructed using a new deposition technique that enabled the independent control of the angle and thickness of diffracting layers to microradian and nanometer precision, respectively. This ensured that the Bragg condition is satisfied at each point along the lens, leading to a high numerical aperture that is limited only by its extent. We developed a phase-shifting interferometric method based on ptychography to characterise the lens focus. The precision of the fabrication and characterisation demonstrated here provides the path to efficient X-ray optics for imaging at 1 nm resolution. PMID:26030003

  16. Motion measurement for synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Synthetic Aperture Radar (SAR) measures radar soundings from a set of locations typically along the flight path of a radar platform vehicle. Optimal focusing requires precise knowledge of the sounding source locations in 3-D space with respect to the target scene. Even data driven focusing techniques (i.e. autofocus) requires some degree of initial fidelity in the measurements of the motion of the radar. These requirements may be quite stringent especially for fine resolution, long ranges, and low velocities. The principal instrument for measuring motion is typically an Inertial Measurement Unit (IMU), but these instruments have inherent limi ted precision and accuracy. The question is %22How good does an IMU need to be for a SAR across its performance space?%22 This report analytically relates IMU specifications to parametric requirements for SAR. - 4 - Acknowledgements Th e preparation of this report is the result of a n unfunded research and development activity . Although this report is an independent effort, it draws heavily from limited - release documentation generated under a CRADA with General Atomics - Aeronautical System, Inc. (GA - ASI), and under the Joint DoD/DOE Munitions Program Memorandum of Understanding. Sandia National Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of En ergy's National Nuclear Security Administration under contract AC04-94AL85000.

  17. Oceanic eddies in synthetic aperture radar images

    Indian Academy of Sciences (India)

    Andrei Yu Ivanov; Anna I Ginzburg

    2002-09-01

    Continuous observations since 1991 by using synthetic aperture radar (SAR) on board the Almaz-1, ERS-1/2, JERS-1, and RADARSAT satellites support the well-known fact that oceanic eddies are distributed worldwide in the ocean. The paper is devoted to an evaluation of the potential of SAR for detection of eddies and vortical motions in the ocean. The classification of typical vortical features in the ocean detected in remote sensing images (visible, infrared, and SAR) is presented as well as available information on their spatial and temporal scales. Examples of the Almaz-1 and ERS-1/2 SAR images showing different eddy types, such as rings, spiral eddies of the open ocean, eddies behind islands and in bays, spin-off eddies and mushroom-like structures (vortex dipoles) are given and discussed. It is shown that a common feature for most of the eddies detected in the SAR images is a broad spectrum of spatial scales, spiral shape and shear nature. It is concluded that the spaceborne SARs give valuable information on ocean eddies, especially in combination with visible and infrared satellite data.

  18. The Deuterium Abundance toward Q1937-1009

    Science.gov (United States)

    Burles, Scott; Tytler, David

    1998-05-01

    We present a new measurement of the deuterium-to-hydrogen ratio (D/H) in the Lyman limit absorption system at z = 3.572 toward Q1937-1009. Tytler, Fan & Burles (TFB) made the first extragalactic detection of deuterium in this absorption system, which remains the best location for a high-accuracy measurement of primordial D/H. Their detailed analysis of Keck spectra gave a low value of D/H = 2.3 +/- 0.3 +/- 0.3 × 10-5 (1 σ statistical and systematic errors). Now we present a new method to measure D/H in QSO absorption systems. We avoid many of the assumptions adopted by TFB; we allow extra parameters to treat the continuum uncertainties, include a variety of new absorption models that allow for undetected velocity structure, and use the improved measurement of the total hydrogen column density by Burles & Tytler. We find that all models, including contamination, give an upper limit of D/H TFB, and a second measurement of D/H toward Q1009+2956. With calculations of standard big bang nucleosynthesis (SBBN) and the assumption that this measurement of D/H is representative of the primordial value, we find a high baryon-to-photon ratio, η = 5.3 +/- 0.4 × 10-10. This is consistent with primordial abundance determinations of 4He in H II regions and 7Li in the atmospheres of warm metal-poor Population II stars. We find a high value for the present-day baryon density, Ωbh2 = 0.0193 +/- 0.0014, which is consistent with other inventories of baryonic matter, from low to high redshift: clusters of galaxies, the Lyman alpha forest & the cosmic microwave background.

  19. Charged current neutrino and antineutrino interactions in hydrogen and deuterium

    International Nuclear Information System (INIS)

    In this dissertation results are presented of two different (anti-)neutrino experiments with the Big European Bubble Chamber (BEBC) filled with hydrogen and deuterium successively and exposed to the wide band (anti-)neutrino beam at the SPS at CERN. Chapter 1 contains the description of the experimental set-up and in chapter 2 results of the experiment with BEBC filled with deuterium and exposed to the antineutrino beam are presented. The multiplicity distributions of the charged hadron shower produced in (anti-)neutrino interactions with protons and neutrons are studied and compared with the results from hadron-hadron experiments. In chapter 3 a study of the exclusive reaction γp→μ-pπ+ is presented, data being obtained from an exposure of BEBC filled with hydrogen to the wide band neutrino beam. The absolute cross-section of the dominant subchannel γp→μ-Δ++(1232) averaged over an energy range of Esub(γ) = 20-200 GeV is measured to be sigma = (0.59 +- 0.06) . 10-38 cm2. This value is in good agreement with the results of other experiments. The differential cross-section dsigma/dQ2, the Δ++ decay angular distributions and the density matrix elements are determined. The value of the axial mass determined using the Schreiner-Von Hippel parametrization of the Adler model by fitting the total cross-section is Msub(A) = 0.85 +- 0.10 GeV/c2. (Auth.)

  20. Plasma deuterium oxide accumulation following ingestion of different carbohydrate beverages.

    Science.gov (United States)

    Currell, Kevin; Urch, Joanna; Cerri, Erika; Jentjens, Roy L P; Blannin, Andy K; Jeukendrup, Asker E

    2008-12-01

    Optimal fluid delivery from carbohydrate solutions such as oral rehydration solutions or sports drinks is essential. The aim of the study was to investigate whether a beverage containing glucose and fructose would result in greater fluid delivery than a beverage containing glucose alone. Six male subjects were recruited (average age (+/-SD): 22 +/- 2 y). Subjects entered the laboratory between 0700 h and 0900 h after an overnight fast. A 600 mL bolus of 1 of the 3 experimental beverages was then given. The experimental beverages were water (W), 75 g glucose (G), or 50 g glucose and 25 g fructose (GF); each beverage also contained 3.00 g of D2O. Following administration of the experimental beverage subjects remained in a seated position for 180 min. Blood and saliva samples were then taken every 5 min in the first hour and every 15 min thereafter. Plasma and saliva samples were analyzed for deuterium enrichment by isotope ratio mass spectrometry. Deuterium oxide enrichments were compared using a 2-way repeated measures analysis of variance. The water trial (33 +/- 3 min) showed a significantly shorter time to peak than either G (82 +/- 40 min) or GF (59 +/- 25 min), but the difference between G and GF did not reach statistical significance. There was a significantly greater AUC for GF (55 673 +/- 10 020 delta per thousand vs. Vienna Standard Mean Ocean Water (VSMOW).180 min) and W (60 497 +/- 9864 delta per thousand vs. VSMOW.180 min) compared with G (46 290 +/- 9622 delta per thousand vs. VSMOW.180 min); W and GF were not significantly different from each other. These data suggest that a 12.5% carbohydrate beverage containing glucose and fructose results in more rapid fluid delivery in the first 75 min than a beverage containing glucose alone.

  1. Residual stress in deuterium implanted nominal copper coatings

    International Nuclear Information System (INIS)

    The effects of deuterium (D) implantation on the residual stresses in Cu and CuAl2 phases present in nominal Cu coatings (containing Al) deposited on Al-alloy (Al-6061) substrates were measured using an x-ray diffraction technique. The coatings were deposited by radio frequency magnetron sputtering of a pure Cu target under identical conditions and Al was incorporated in the coatings during growth by diffusion from the substrate. Deuterium was implanted in the coatings at energies of 40 or 40+120 keV with fluences of 1x1021, 2x1021, or 3x1021 D+/m2. Pole figures of the Cu phase in the coatings prior to and after implantation indicated no effect of implantation on the fibrous texture. Triaxial stress analysis indicated the surface normal stress component to be negligible in Cu and slightly tensile in CuAl2 under all conditions. Furthermore, under all conditions, the in-plane residual stresses in both phases were found to be compressive and nearly isotropic. The magnitude of the isotropic compressive stress was always higher in CuAl2 as compared to Cu. The compressive residual stresses in the Cu phase changed only mildly with increasing coating weight, ion energy, and fluence. However, in the CuAl2 phase the compressive residual stresses changed markedly with increasing ion energy (initial decrease followed by leveling off) and increasing ion fluence (initial decrease followed by an increase), but remained unaffected by increasing coating weight. (c) 2000 American Institute of Physics

  2. Coherent processing for ISAR imaging with sparse apertures

    Institute of Scientific and Technical Information of China (English)

    SHENG JiaLian; ZHANG Lei; XU Gang; XING MengDao; BAO Zheng

    2012-01-01

    To implement target detection,tracking and imaging in a multifunctional radar system,the wideband measurements for inverse synthetic aperture radar (ISAR) imaging are usually sparsely recorded.Considering the incoherence problem in such sparse-aperture ISAR (SA-ISAR) systems,we concentrate on the study of a coherent processing method in this work.Based on an all-pole model,the incoherence parameters between abutting sub-apertures can be effectively estimated.After coherence compensation,an optimization-based SA-ISAR imaging approach is provided from the view of statistics.Simulation and real data experiments validate the feasibility and effectiveness of the proposals.

  3. Deuterium ordering in Laves phase deuteride YFe2D4.2

    Energy Technology Data Exchange (ETDEWEB)

    Proffen, Thomas Ernst [Los Alamos National Laboratory; Ropka, Joanna [UNIV OF GENEVA; Cerny, Radovan [UNIV OF GENEVA; Paul - Boncour, V [CNRS

    2009-01-01

    The structure of Laves phase deuteride YFe{sub 2}D{sub 4.2} has been investigated by synchrotron and neutron (ToF) powder diffraction experiments between 60 K and 370 K. YFe{sub 2}D{sub 4.2} crystallizes below 323K in fully ordered monoclinic structure (s.g. Pc, Z = 8, a = 5.50663(4), b = 11.4823(1), c = 9.42919(6) {angstrom}, {beta} = 122.3314(5){sup o}, V = 503.765(3) {angstrom}{sup 3} at 290K) containing 4 yttrium, 8 iron and 18 deuterium atoms. Most of D-D distances are within the precision of the diffraction experiment longer than 2.1 {angstrom}, the shortest ones are of 1.96 {angstrom}. Seven iron atoms from eight are coordinated by deuterium in a trigonal bipyramid, similar to that in TiFeD{sub 1.95-2}. The eights iron atom is coordinated by deuterium in a tetrahedral configuration. The iron coordination by deuterium, and iron-deuterium distances points to the importance of the directional bonding between iron and deuterium atoms. The lowering of crystal symmetry due to deuterium ordering occurs at much higher temperature than magnetic order, and is therefore one of the parameters which are at the origin of magnetic transition at lower temperatures.

  4. Influence of particle flux density and temperature on surface modifications of tungsten and deuterium retention

    Energy Technology Data Exchange (ETDEWEB)

    Buzi, Luxherta, E-mail: l.buzi@fz-juelich.de [Ghent University, Department of Applied Physics, Sint-Pietersnieuwstraat 41, B-9000 Ghent (Belgium); FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research, Edisonbaan 14, 3439 MN, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Institut für Energie und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Leo-Brandt-Straße, 52425 Jülich (Germany); Université de Lorraine, Institut Jean Lamour, CNRS UMR 7198, Bvd. des Aiguillettes, F-54506 Vandoeuvre (France); Temmerman, Greg De [FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research, Edisonbaan 14, 3439 MN, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Unterberg, Bernhard; Reinhart, Michael; Litnovsky, Andrey; Philipps, Volker [Institut für Energie und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Leo-Brandt-Straße, 52425 Jülich (Germany); Oost, Guido Van [Ghent University, Department of Applied Physics, Sint-Pietersnieuwstraat 41, B-9000 Ghent (Belgium); Möller, Sören [Institut für Energie und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Leo-Brandt-Straße, 52425 Jülich (Germany)

    2014-12-15

    Systematic study of deuterium irradiation effects on tungsten was done under ITER – relevant high particle flux density, scanning a broad surface temperature range. Polycrystalline ITER – like grade tungsten samples were exposed in linear plasma devices to two different ranges of deuterium ion flux densities (high: 3.5–7 · 10{sup 23} D{sup +}/m{sup 2} s and low: 9 · 10{sup 21} D{sup +}/m{sup 2} s). Particle fluence and ion energy, respectively 10{sup 26} D{sup +}/m{sup 2} and ∼38 eV were kept constant in all cases. The experiments were performed at three different surface temperatures 530 K, 630 K and 870 K. Experimental results concerning the deuterium retention and surface modifications of low flux exposure confirmed previous investigations. At temperatures 530 K and 630 K, deuterium retention was higher at lower flux density due to the longer exposure time (steady state plasma operation) and a consequently deeper diffusion range. At 870 K, deuterium retention was found to be higher at high flux density according to the thermal desorption spectroscopy (TDS) measurements. While blisters were completely absent at low flux density, small blisters of about 40–50 nm were formed at high flux density exposure. At the given conditions, a relation between deuterium retention and blister formation has been found which has to be considered in addition to deuterium trapping in defects populated by diffusion.

  5. Deuterium retention and surface modifications of nanocrystalline tungsten films exposed to high-flux plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hoen, M.H.J. ' t [FOM Institute DIFFER (Dutch Institute for Fundamental Energy Research), Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster, 3439 MN Nieuwegein (Netherlands); Dellasega, D.; Pezzoli, A.; Passoni, M. [Politecnico di Milano, EURATOM-ENEA-CNR Association, Milano (Italy); Kleyn, A.W., E-mail: A.W.Kleijn@uva.nl [FOM Institute DIFFER (Dutch Institute for Fundamental Energy Research), Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster, 3439 MN Nieuwegein (Netherlands); University of Amsterdam, Science Park 904, NL-1098 XH Amsterdam (Netherlands); Center of Interface Dynamics for Sustainability, CDCST, CAEP, Chengdu, Sichuan 610207 (China); Zeijlmans van Emmichoven, P.A. [FOM Institute DIFFER (Dutch Institute for Fundamental Energy Research), Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster, 3439 MN Nieuwegein (Netherlands)

    2015-08-15

    Highlights: • The films withstand the intense plasma exposure maintaining overall integrity. • An increase of deuterium retention was observed with decreasing tungsten density. • Formation of micrometer-sized blisters as well as structures on the nanometer scale depending on the layer type. - Abstract: Deuterium retention studies are presented for nanostructured tungsten films exposed to high-flux deuterium plasmas. Thin tungsten films of ∼1 μm thickness were deposited with pulsed laser deposition (PLD) on bulk tungsten. Surface modifications were studied with scanning electron microscopy and deuterium retention with thermal desorption spectroscopy. Three types of PLD films with different densities and crystallinity were studied after exposure to deuterium plasmas. The surface temperature ranged from about 460 K at the periphery to about 520 K in the centre of the targets. The films withstand the intense plasma exposure well and maintain their overall integrity. An increase of deuterium retention is observed with decreasing tungsten density and crystallite size. We found that the filling of these thin films with deuterium is significantly faster than for pre-damaged polycrystalline tungsten. We observed formation of micrometer-sized blisters as well as structures on the nanometer scale, both depending on the layer type.

  6. Fundamental aspects of deuterium retention in tungsten at high flux plasma exposure

    Energy Technology Data Exchange (ETDEWEB)

    Ogorodnikova, O. V., E-mail: igra32@rambler.ru [National Research Nuclear University “MEPHI,” Kashirskoe sh.31, 115409 Moscow (Russian Federation)

    2015-08-21

    An effect of enhanced trapping of deuterium in tungsten at high flux was discovered. It was shown analytically and confirmed experimentally that the deuterium trapping in a presence of high density of defects in tungsten (W) depends on the ion energy and ion flux. Newly developed analytical model explains experimentally observed discrepancy of deuterium trapping at radiation-induced defects in tungsten at different ion fluxes that significantly improves a prediction of hydrogen isotope accumulation in different plasma devices, including ITER and DEMO. The developed model can be used for many system of hydrogen in a metal in both normal and extreme environments (high fluxes, elevated temperatures, neutron irradiation, etc.). This new model allows, for the first time, to validate density function theory (DFT) predictions of multiple occupation of a defect with deuterium against experimental data that bridge the gap in length and time scale between DFT calculations and experiments. By comparing first-principle calculations based on DFT and semi-empirical “adsorption model,” it was proved that the mechanism of hydrogen isotope trapping in a vacancy cluster is similar to a chemisorption on a surface. Binding energies of deuterium with different types of defects in W were defined. Moreover, the surface barrier of deuterium to be chemisorbed on a clean W surface was found to be less than 1 eV and kinetics of deuterium release is limited by de-trapping from defects rather than to be limited by surface effects.

  7. Hydrogen water deuterium exchange studies on palladium on activated charcoal hydrophobic catalyst (Preprint No. CA-20)

    International Nuclear Information System (INIS)

    Deuterium exchange between hydrogen gas and water is one of the most promising processes for heavy water production. In production of heavy water, separation factor and energy cost are two main parameters which govern the economic effectiveness of a process. Out of the chemical exchange process, H2-H2O exchange has higher separation factor at a given temperature. Even though the separation factor is high, major disadvantage in the process is that a catalyst is required. Group VIII metals are most suitable catalysts for hydrogenation, dehydrogenation and hydrogenolysis because of their ability to chemisorb H2 dissociatively. Even among VIII2 triad, Pt has the highest activity. A highly active Pt catalyst has a reported half life of 4 seconds. As Pd is cheaper than Pt, studies have been carried out using active Pd as catalyst for H2-H2O exchange. It is observed that: (1)at metal concentration of 0.3%, Pd shows the optimum catalytic activity, (2)a highly active Pd is found to have a half life of 5 minutes, and (3)addition of α-alumina enhances the catalytic activity. (author). 6 refs., 5 figs

  8. The exchange reaction between deuterium and water vapour on platinum deposited over a hydrophobic support

    International Nuclear Information System (INIS)

    Isotope exchange reaction between deuterium gas and water vapour at room temperature and below on platinum deposited on hydrophobic supports such as polytetrafluoroethylene (PTFE) or Porapak Q (copolymer of styrene and divinylbenzene) was studied and the results were compared with those of the exchange reaction on platinum over hydrophilic support such as alumina. It was demonstrated that the exchange reaction at temperatures below the boiling point of water is markedly retarded by the multilayer adsorption of water over the platinum catalyst deposited on hydrophilic support, whereas the platinum catalyst on hydrophobic support exhibited a high catalytic activity, being not retarded by the water, forming no multilayer of adsorbed water over platinum surface. Therefore in the case of the hydrogen isotope exchange reaction on platinum over hydrophobic support, the chemical exchange rate can be measured even under a saturated vapour pressure of water. The surface area of platinum was estimated by hydrogen chemisorption and hydrogen titration and specific activities of the catalyst were calculated at both room temperature and freezing point of water, which revealed that the specific rate of this reaction does not differ so much over various supports. (orig.)

  9. The deuterium-exchange reaction between water and hydrogen with the thin-film hydrophobic catalyst

    International Nuclear Information System (INIS)

    The deuterium-exchange reaction between water and hydrogen with a hydrophobic catalyst was studied. The hydrophobic catalyst was composed of platinum as an active component and porous poly(tetrafluoroethylene) (PTFE) as a support. The PTFE support was in two forms, i.e., (a) a pellet and (b) a thin-film with the thickness of 50 μm. The primary purpose of the thin film hydrophobic catalyst was to reduce the platinum usage in the reactor. The activity of the catalyst was measured in a trickle bed reactor at atmospheric pressure and temperature of 20 ∼ 70 deg C. It has been found that the employment of the thin-film catalyst reduced the platinum usage to 1/5 of the reactor in the case of using a conventional catalyst. Platinum particles on the thin-film catalyst work efficiently because the reactants were easily diffused to the active sites. It has also been found that the isotopic exchange rate with the thin-film catalyst increased with the increase in the ratio of liquid/gas and increased with the rise of the reaction temperature. It was found from an endurance test that the activity of the thin-film catalyst decreased gradually due to the condensation of water vapor in the catalyst, but was regenarated by heating the catalyst to remove the condensed water. (author)

  10. VUV Spectroscopic Study of the D^1\\Pi State of Molecular Deuterium

    CERN Document Server

    Dickenson, G D; Ubachs, W; Roudjane, M; de Oliveira, N; Joyeux, D; Nahon, L; Tchang-Brillet, W -Ü L; Glass-Maujean, M; Schmoranzer, H; Knie, A; Kübler, S; Ehresmann, A; 10.1080/00268976.2011.631056

    2013-01-01

    The D^1\\Pi_u - X^1\\Sigma_g^+ absorption system of molecular deuterium has been re-investigated using the VUV Fourier -Transform (FT) spectrometer at the DESIRS beamline of the synchrotron SOLEIL and photon-induced fluorescence spectrometry (PIFS) using the 10 m normal incidence monochromator at the synchrotron BESSY II. Using the FT spectrometer absorption spectra in the range 72 - 82 nm were recorded in quasi static gas at 100 K and in a free flowing jet at a spectroscopic resolution of 0.50 and 0.20 cm^{-1} respectively . The narrow Q-branch transitions, probing states of \\Pi^- symmetry, were observed up to vibrational level v = 22. The states of \\Pi^+ symmetry, known to be broadened due to predissociation and giving rise to asymmetric Beutler-Fano resonances, were studied up to v = 18. The 10 m normal incidence beamline setup at BESSY II was used to simultaneously record absorption, dissociation, ionization and fluorescence decay channels from which information on the line intensities, predissociated width...

  11. Thermal desorption of deuterium from Be, and Be with helium bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, A.V.; Van Veen, A.; Busker, G.J. [Delft Univ. of Technology (Netherlands). Interfaculty Reactor Inst.

    1998-01-01

    Deuterium desorption measurements carried out on a single-crystalline beryllium sample are presented. Deuterium ions were implanted at room temperature at the energy of 0.7 and 1.2 keV up to doses ranging from 10{sup 19} to 3.6 x 10{sup 21} m{sup -2}. In order to eliminate the influence of the beryllium-oxide surface layer, before the implantation the surface of the sample was cleaned by argon sputtering. After the implantation the sample was annealed up to 1200 K at a constant rate of 10 K/s. Deuterium released from the sample was monitored by a calibrated quadrupole mass-spectrometer. The desorption spectra revealed two different contributions. One is a well defined and very narrow peak centered around 450 K. This peak is observed only at high implantation doses > 7.8 x 10{sup 20} m{sup -2}, which is close to the deuterium saturation limit of 0.3 D/Be and is related to deuterium release from blisters or interconnected bubbles. The activation energy of 1.1 eV and the threshold implantation dose are consistent with the values reported in literature. The second contribution in the release spectra is found in the temperature range from 600 to 900 K and is present throughout the whole range of the implantation doses. The activation energies corresponding to this release lie in the range between 1.8 and 2.5 eV and are ascribed to the release from deuterium-vacancy type of defects. In a number of experiments the deuterium implantation was preceded by helium implantation followed by partial annealing to create helium bubbles. The resulting deuterium desorption spectra indicate that deuterium detrapping from helium bubbles is characterized by an activation energy of 2.7 eV. (author)

  12. Depth concentrations of deuterium ions implanted into some pure metals and alloys

    OpenAIRE

    Didyk, A. Yu.; R. Wiśniewski; Kitowski, K.; Kulikauskas, V.; Wilczynska, T.; Shiryaev, A. A.; Zubavichus, Ya. V.

    2011-01-01

    Pure metals (Cu, Ti, Zr, V, Pd) and diluted Pd-alloys (Pd-Ag, Pd-Pt, Pd-Ru, Pd-Rh) were implanted by 25 keV deuterium ions at fluences in the range (1.2{\\div}2.3)x1022 D+/m2. The post-treatment depth distributions of deuterium ions were measured 10 days and three months after the implantation using Elastic Recoil Detection Analysis (ERDA) and Rutherford Backscattering (RBS). Comparison of the obtained results allowed to make conclusions about relative stability of deuterium and hydrogen gases...

  13. Scattering cross sections of liquid deuterium for ultracold neutrons: Experimental results and a calculation model

    CERN Document Server

    Döge, Stefan; Müller, Stefan; Morkel, Christoph; Gutsmiedl, Erwin; Geltenbort, Peter; Lauer, Thorsten; Fierlinger, Peter; Petry, Winfried; Böni, Peter

    2015-01-01

    We present scattering cross sections $\\sigma_\\text{scatt}$ of ultracold neutrons (UCN) in liquid deuterium at T = 20.6 K, as recently measured by means of a transmission experiment. The indispensable thorough raw data treatment procedure is explained. A calculation model for coherent and incoherent scattering in liquid deuterium in the hydrodynamic limit based on appropriate physical concepts is provided and shown to ?t the data well. The applicability of the incoherent approximation for UCN scattering in liquid deuterium was tested and found to deliver acceptable results.

  14. Numerical study of the ablative Richtmyer-Meshkov instability of laser-irradiated deuterium and deuterium-tritium targets

    International Nuclear Information System (INIS)

    The Richtmyer-Meshkov instability (RMI) at the ablation front of laser-irradiated planar targets is investigated by two-dimensional numerical hydrodynamics simulations. The linear evolution of perturbations seeded either by surface roughness or target inhomogeneity is studied for perturbation wavelengths in the range 10≤λ≤400 μm and laser intensity 4x1012≤I≤4x1014 W/cm2 (with laser wavelength λlaser=0.35 μm). Thin and thick cryogenic deuterium or deuterium-tritium (DT) planar targets are considered. For targets irradiated at constant intensity, it is found that perturbations with wavelength below a given threshold perform damped oscillations, while perturbations above such a threshold are unstable and oscillate with growing amplitude. This is qualitatively in agreement with theoretical predictions by Goncharov et al. [Phys. Plasmas 13, 012702 (2006)], according to which ablation related processes stabilize perturbations with kDc>>1, where Dc is the distance between the ablation front and critical density for laser propagation. For kDcc on laser intensity I (roughly Dc∝I, according to the present simulations). Direct-drive laser fusion targets are irradiated by time-shaped pulses, with a low intensity initial foot. In this case, perturbations with wavelengths below some threshold (about 10 μm, for typical ignition-class all-DT targets) are damped after an initial growth. In a thin target, initial perturbations, either damped or amplified by RMI and LDI, seed the subsequent Rayleigh-Taylor instability. Finally, it is shown that RMI growth of fusion targets can be reduced by using laser pulses including an initial adiabat-shaping picket (originally proposed to reduce the growth of Rayleigh-Taylor instability).

  15. Optical Transmission Properties of Dielectric Aperture Arrays

    Science.gov (United States)

    Yang, Tao

    Optical detection devices such as optical biosensors and optical spectrometers are widely used in many applications for the functions of measurements, inspections and analysis. Due to the large dimension of prisms and gratings, the traditional optical devices normally occupy a large space with complicated components. Since cheaper and smaller optical devices are always in demand, miniaturization has been kept going for years. Thanks to recent fabrication advances, nanophotonic devices such as semiconductor laser chips have been growing in number and diversity. However, the optical biosensor chips and the optical spectrometer chips are seldom reported in the literature. For the reason of improving system integration, the study of ultra-compact, low-cost, high-performance and easy-alignment optical biosensors and optical spectrometers are imperative. This thesis is an endeavor in these two subjects and will present our research work on studying the optical transmission properties of dielectric aperture arrays and developing new optical biosensors and optical spectrometers. The first half of the thesis demonstrates that the optical phase shift associated with the surface plasmon (SP) assisted extraordinary optical transmission (EOT) in nano-hole arrays fabricated in a metal film has a strong dependence on the material refractive index value in close proximity to the holes. A novel refractive index sensor based on detecting the EOT phase shift is proposed by building a model. This device readily provides a 2-D biosensor array platform for non-labeled real-time detection of a variety of organic and biological molecules in a sensor chip format, which leads to a high packing density, minimal analyte volumes, and a large number of parallel channels while facilitating high resolution imaging and supporting a large space-bandwidth product (SBP). Simulation (FDTD Solutions, Lumerical Solutions Inc) results indicate an achievable sensitivity limit of 4.37x10-9 refractive index

  16. RADARSAT-1 synthetic aperture radar analysis

    International Nuclear Information System (INIS)

    The M/V Selendang Ayu grounded off Unalaska Island in Alaska on December 8, 2004, and spilled over 1270 m3 of oil and an unknown quantity of soybeans. The freighter grounded nearshore in a high-wave energy zone along a remote and rugged coastline, a terrain which can cause difficulties for remote sensors in detecting oil slicks. In addition, guano, kelp beds, whale and fish sperm, and releases from fishing activities generated biogenic films on the sea surface that had a signature similar to that of petroleum films. RADARSAT-1 synthetic aperture radar (SAR) imagery was used as part of the response effort to assist in the pollution monitoring effort. This paper described the methodology and results of the RADARSAT-1 analysis. Detailed information on the spill response was reported daily, and provided an opportunity to compare field observations with RADARSAT-1 SAR imagery. Observers recorded observations onto electronic maps during 35 aerial surveillance flights. Fifty-seven incident reports describing the vessel status were also used for comparison. Using screening criteria for the favorable wind and wave conditions, 37 images were available for viewing the wreck, and 22 images were acceptable for oil slick viewing. Image analysis for the wreck suggested that the sensor has the resolution and capability to monitor a grounded freighter. Visual inspection of the images showed that SAR can capture changes in vessel status, such as the gradual sinking of the bow. However, SAR's oil slick detection capability was disappointing due to the significant number of biogenic films in the nearshore areas of Alaska. It was concluded that future work should concentrate on developing a ranking system to indicate analysis confidence that a particular image does in fact contain a petroleum pocket. 25 refs., 2 tabs., 10 figs

  17. Morphometric analysis of septal aperture of humerus

    Directory of Open Access Journals (Sweden)

    Raghavendra K, Anil kumar Reddy Y, Shirol VS, Daksha Dixit, Desai SP

    2014-04-01

    Full Text Available Introduction: Lower end of humerus shows olecranon and coronoid fossae separated by a thin bony septum, sometimes it may deficient and shows foramen which communicates both the fossae called Septal aperture, which is commonly referred as supratrochlear foramen (STF. Materials & Methods: We have studied 260 humeri (126 right side and 134 left side, measurements were taken by using vernier caliper, translucency septum was observed by keeping the lower end of humerus against the x-ray lobby. Results: A clear cut STF was observed in 19.2% bones, translucency septum was observed in 99 (91.6% humeri on the right side and 95 (93.1% humeri on the left sides respectively (Table – 1. Clinical significance: The presence of STF is always associated with the narrow medullary canal at the lower end of humerus, Supracondylar fracture of humerus is most common in paediatric age group, medullary nailing is done to treat the fractures in those cases the knowledge about the STF is very important for treating the fractures. It has been observed in x-ray of lower end of the humerus the STF is comparatively radiolucent, it is commonly seen as a type of ‘pseudolesions’ in an x-ray of the lower end of humerus and it may mistake for an osteolytic or cystic lesions. Conclusion: The present study can add data into anthropology and anatomy text books regarding STF and it gives knowledge of understanding anatomical variation of distal end of the humerus, which is significant for anthropologists, orthopaedic surgeons and radiologists in habitual clinical practice.

  18. Triangulation using synthetic aperture radar images

    Science.gov (United States)

    Wu, Sherman S. C.; Howington-Kraus, Annie E.

    1991-01-01

    For the extraction of topographic information about Venus from stereoradar images obtained from the Magellan Mission, a Synthetic Aperture Radar (SAR) compilation system was developed on analytical stereoplotters. The system software was extensively tested by using stereoradar images from various spacecraft and airborne radar systems, including Seasat, SIR-B, ERIM XCL, and STAR-1. Stereomodeling from radar images was proven feasible, and development is on a correct approach. During testing, the software was enhanced and modified to obtain more flexibility and better precision. Triangulation software for establishing control points by using SAR images was also developed through a joint effort with the Defense Mapping Agency. The SAR triangulation system comprises four main programs, TRIDATA, MODDATA, TRISAR, and SHEAR. The first two programs are used to sort and update the data; the third program, the main one, performs iterative statistical adjustment; and the fourth program analyzes the results. Also, input are flight data and data from the Global Positioning System and Inertial System (navigation information). The SAR triangulation system was tested with six strips of STAR-1 radar images on a VAX-750 computer. Each strip contains images of 10 minutes flight time (equivalent to a ground distance of 73.5 km); the images cover a ground width of 22.5 km. All images were collected from the same side. With an input of 44 primary control points, 441 ground control points were produced. The adjustment process converged after eight iterations. With a 6-m/pixel resolution of the radar images, the triangulation adjustment has an average standard elevation error of 81 m. Development of Magellan radargrammetry will be continued to convert both SAR compilation and triangulation systems into digital form.

  19. The LASS [Larger Aperture Superconducting Solenoid] spectrometer

    International Nuclear Information System (INIS)

    LASS is the acronym for the Large Aperture Superconducting Solenoid spectrometer which is located in an rf-separated hadron beam at the Stanford Linear Accelerator Center. This spectrometer was constructed in order to perform high statistics studies of multiparticle final states produced in hadron reactions. Such reactions are frequently characterized by events having complicated topologies and/or relatively high particle multiplicity. Their detailed study requires a spectrometer which can provide good resolution in momentum and position over almost the entire solid angle subtended by the production point. In addition, good final state particle identification must be available so that separation of the many kinematically-overlapping final states can be achieved. Precise analyses of the individual reaction channels require high statistics, so that the spectrometer must be capable of high data-taking rates in order that such samples can be acquired in a reasonable running time. Finally, the spectrometer must be complemented by a sophisticated off-line analysis package which efficiently finds tracks, recognizes and fits event topologies and correctly associates the available particle identification information. This, together with complicated programs which perform specific analysis tasks such as partial wave analysis, requires a great deal of software effort allied to a very large computing capacity. This paper describes the construction and performance of the LASS spectrometer, which is an attempt to realize the features just discussed. The configuration of the spectrometer corresponds to the data-taking on K+ and K- interactions in hydrogen at 11 GeV/c which took place in 1981 and 1982. This constitutes a major upgrade of the configuration used to acquire lower statistics data on 11 GeV/c K-p interactions during 1977 and 1978, which is also described briefly

  20. RADARSAT-1 synthetic aperture radar analysis

    Energy Technology Data Exchange (ETDEWEB)

    Simecek-Beatty, D. [National Oceanic and Atmospheric Adminstration, National Ocean Service, Seattle, WA (United States). Office of Response and Restoration; Pichel, W.G. [National Oceanic and Atmospheric Administration, National Environmental Satellite, Data and Information Service, Camp Springs, MD (United States). Office of Research and Applications

    2006-07-01

    The M/V Selendang Ayu grounded off Unalaska Island in Alaska on December 8, 2004, and spilled over 1270 m{sup 3} of oil and an unknown quantity of soybeans. The freighter grounded nearshore in a high-wave energy zone along a remote and rugged coastline, a terrain which can cause difficulties for remote sensors in detecting oil slicks. In addition, guano, kelp beds, whale and fish sperm, and releases from fishing activities generated biogenic films on the sea surface that had a signature similar to that of petroleum films. RADARSAT-1 synthetic aperture radar (SAR) imagery was used as part of the response effort to assist in the pollution monitoring effort. This paper described the methodology and results of the RADARSAT-1 analysis. Detailed information on the spill response was reported daily, and provided an opportunity to compare field observations with RADARSAT-1 SAR imagery. Observers recorded observations onto electronic maps during 35 aerial surveillance flights. Fifty-seven incident reports describing the vessel status were also used for comparison. Using screening criteria for the favorable wind and wave conditions, 37 images were available for viewing the wreck, and 22 images were acceptable for oil slick viewing. Image analysis for the wreck suggested that the sensor has the resolution and capability to monitor a grounded freighter. Visual inspection of the images showed that SAR can capture changes in vessel status, such as the gradual sinking of the bow. However, SAR's oil slick detection capability was disappointing due to the significant number of biogenic films in the nearshore areas of Alaska. It was concluded that future work should concentrate on developing a ranking system to indicate analysis confidence that a particular image does in fact contain a petroleum pocket. 25 refs., 2 tabs., 10 figs.

  1. Studies of THGEM-based detector at low-pressure Hydrogen/Deuterium, for AT-TPC applications

    CERN Document Server

    Cortesi, Marco; Mittig, Wolfgang; Bazin, Daniel; Beceiro-Novo, Saul; Stolz, Andreas

    2015-01-01

    We study the performance of single- and double- THick Gas Electron Multiplier (THGEM) detectors in pure Hydrogen and Deuterium at low pressures, in the range of 100-450 Torr. The effect of the pressure on the maximum achievable gain, ion-back flow and long-term gain stability are investigated for single and double cascade detectors. In particular, it was found that maximum achievable gains above 10^4, from single-photoelectrons avalanche, can be achieved for pressures of 200 Torr and above; for lower pressure the gains are limited by avalanche-induced secondary effects to a values of around 103. The results of this work are relevant in the field of avalanche mechanism in low-pressure, low-mass noble gases, in particular for applications of THGEM end-cap readout for active-target Time Projection Chambers (TPC) in the field of nuclear physics and nuclear astrophysics.

  2. Excitation of the hyperfine transitions of atomic hydrogen, deuterium, and ionized helium 3 by Lyman-alpha radiation

    Energy Technology Data Exchange (ETDEWEB)

    Deguchi, S.; Watson, W.D.

    1985-03-01

    The profile of Lyman-alpha radiation in an expanding gas cloud is calculated in detail in order to determine the color temperature of the radiation scattered by an H I atom within the cloud. The basic methods used include a Sobolov-like treatment and the application of a redistribution function for the scattering that preserves detailed balance when the recoil of the atom is included. It is found that for hydrogen the color temperature approaches the kinetic temperature above tau(L) of 100,000, while for deuterium it tends to be well below the kinetic temperature for tau(L) of about a billion or less, becoming comparable to 3 K for some tau(L). For He-3 ion, the color temperature can become negative. 41 references.

  3. Studies of THGEM-based detector at low-pressure Hydrogen/Deuterium, for AT-TPC applications

    International Nuclear Information System (INIS)

    We study the performance of single- and double- THick Gas Electron Multiplier (THGEM) detectors in pure Hydrogen (H2) and Deuterium (D2) at low pressures, in the range of 100–450 torr. The effect of the pressure on the maximum achievable gain, ion-back flow and long-term gain stability are investigated for single and double cascade detectors. In particular, it was found that maximum achievable gains above 104, from single-photoelectrons avalanche, can be achieved for pressures of 200 torr and above; for lower pressure the gains are limited by avalanche-induced secondary effects to a values of around 103. The results of this work are relevant in the field of avalanche mechanism in low-pressure, low-mass noble gases, in particular for applications of THGEM end-cap readout for active-target Time Projection Chambers (TPC) in the field of nuclear physics and nuclear astrophysics

  4. Detection of small, slow ground targets using Synthetic Aperture Radar

    Science.gov (United States)

    Chen, Curtis; Chapin, Elaine; Rosen, Paul

    2005-01-01

    Synthetic aperture radar (SAR) along-track interferometry (ATI) is a technique for sensing Earth-surface motion. The technique involves interferometrically combining data from two radar images acquired from phase centers separated along the platform flight track.

  5. Synthetic aperture radar signal processing: Trends and technologies

    Science.gov (United States)

    Curlander, John C.

    1993-01-01

    An overview of synthetic aperture radar (SAR) technology is presented in vugraph form. The following topics are covered: an SAR ground data system; SAR signal processing algorithms; SAR correlator architectures; and current and future trends.

  6. Stellwagen Bank National Marine Sanctuary - Synthetic Aperture Radar (SAR) Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This geodatabase contains Synthetic Aperture Radar images (SAR), which consist of a fine resolution (12.5-50m), two-dimensional radar backscatter map of the...

  7. An Adaptive Homomorphic Aperture Photometry Algorithm for Merging Galaxies

    CERN Document Server

    Huang, Jen-Chao

    2016-01-01

    We present a novel automatic adaptive aperture photometry algorithm for measuring the total magnitudes of merging galaxies with irregular shapes. First, we use a morphological pattern recognition routine for identifying the shape of an irregular source in a background-subtracted image. Then, we extend the shape of the source by using the Dilation image operation to obtain an aperture that is quasi-homomorphic to the shape of the irregular source. The magnitude measured from the homomorphic aperture would thus have minimal contamination from the nearby background. As a test of our algorithm, we applied our technique to the merging galaxies observed by the Sloan Digital Sky Survey (SDSS) and the Canada-France-Hawaii Telescope (CFHT). Our results suggest that the adaptive homomorphic aperture algorithm can be very useful for investigating extended sources with irregular shapes and sources in crowded regions.

  8. Ultra-Lightweight Large Aperture Support Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ultra-lightweight membranes may prove to be very attractive for large aperture systems, but their value will be fully realized only if they are mated with equally...

  9. Aperture Arrays for the SKA: Dense or Sparse?

    CERN Document Server

    Braun, R; Braun, Robert; Cappellen, Wim van

    2006-01-01

    We briefly consider some design aspects of aperture arrays for use in radio astronomy, particularly contrasting the performance of dense and sparse aperture arrays. Recent insights have emerged in the final design phase of LOFAR which suggest that sparse aperture arrays have the best prospects for cost-effective performance at radio frequencies below about 500 MHz; exceeding those of both dense aperture arrays and parabolic reflectors by an order of magnitude. Very attractive performance, of 10,000 - 20,000 m2/K, can be achieved with a sparse design that covers the 70 - 700 MHz range with two antenna systems that share receiver resources. Cost-effective systems of this type represent only a modest increment in system complexity over that being deployed in LOFAR and are achievable with today's technology.

  10. Effect of bandwidth and numerical aperture in optical scatterometry

    Science.gov (United States)

    Germer, Thomas A.; Patrick, Heather J.

    2010-03-01

    We consider the effects of finite spectral bandwidth and numerical aperture in scatterometry measurements and discuss efficient integration methods based upon Gaussian quadrature in one dimension (for spectral bandwidth averaging) and two dimensions inside a circle (for numerical aperture averaging). Provided the wavelength is not near a Wood's anomaly for the grating, we find that the resulting methods converge very quickly to a level suitable for most measurement applications. In the vicinity of a Wood's anomaly, however, the methods provide rather poor behavior. We also describe a method that can be used to extract the effective spectral bandwidth and numerical aperture for a scatterometry tool. We find that accounting for spectral bandwidth and numerical aperture is necessary to obtain satisfactory results in scatterometry.

  11. Foamed Antenna Support for Very Large Apertures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Large aperture antennas are of interest to NASA for applications in establishing high-speed communication relays for interplanetary missions. Design goals include...

  12. Photonic spin-controlled multifunctional shared-aperture antenna array

    Science.gov (United States)

    Maguid, Elhanan; Yulevich, Igor; Veksler, Dekel; Kleiner, Vladimir; Brongersma, Mark L.; Hasman, Erez

    2016-06-01

    The shared-aperture phased antenna array developed in the field of radar applications is a promising approach for increased functionality in photonics. The alliance between the shared-aperture concepts and the geometric phase phenomenon arising from spin-orbit interaction provides a route to implement photonic spin-control multifunctional metasurfaces. We adopted a thinning technique within the shared-aperture synthesis and investigated interleaved sparse nanoantenna matrices and the spin-enabled asymmetric harmonic response to achieve helicity-controlled multiple structured wavefronts such as vortex beams carrying orbital angular momentum. We used multiplexed geometric phase profiles to simultaneously measure spectrum characteristics and the polarization state of light, enabling integrated on-chip spectropolarimetric analysis. The shared-aperture metasurface platform opens a pathway to novel types of nanophotonic functionality.

  13. Stitching interferometry for cylindrical optics with large angular aperture

    International Nuclear Information System (INIS)

    Stitching interferometry is an attractive method for measuring optics with large apertures. However, existing stitching algorithms are not suitable for measuring cylindrical optics, because the misalignment aberrations in cylindrical interferometry are more complicated than those in plane, spherical and aspherical measurements. This paper presents a stitching algorithm for measuring cylindrical optics with large angular apertures. With it, we use five aberrations (i.e. piston, tilt, tip, defocus and twist) to describe the possible misalignments of the tested cylindrical surface and to build the cylindrical stitching model. Using this model allows us to calculate the relative misalignment aberrations of subapertures from their overlapped areas, so that the full aperture map of a cylindrical surface is obtained by compensating for these misalignment aberrations. In experiment, a cylindrical lens with an angular aperture over 150° is measured, thus demonstrating the feasibility and validity of the proposed method. (paper)

  14. Foamed Antenna Support for Very Large Apertures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase I program will demonstrate the feasibility of the in-space production of large aperture antenna structures. The use of a novel open cell foam,...

  15. Electronic aperture control devised for solid state imaging system

    Science.gov (United States)

    Anders, R. A.; Callahan, D. E.; Mc Cann, D. H.

    1968-01-01

    Electronic means of performing the equivalent of automatic aperture control has been devised for the new class of television cameras that incorporates a solid state imaging device in the form of phototransistor mosaic sensors.

  16. Autofocus algorithm for synthetic aperture radar imaging with large curvilinear apertures

    International Nuclear Information System (INIS)

    An approach to autofocusing for large curved synthetic aperture radar (SAR) apertures is presented. Its essential feature is that phase corrections are being extracted not directly from SAR images, but rather from reconstructed SAR phase-history data representing windowed patches of the scene, of sizes sufficiently small to allow the linearization of the forward- and back-projection formulae. The algorithm processes data associated with each patch independently and in two steps. The first step employs a phase-gradient-type method in which phase correction compensating (possibly rapid) trajectory perturbations are estimated from the reconstructed phase history for the dominant scattering point on the patch. The second step uses phase-gradient-corrected data and extracts the absolute phase value, removing in this way phase ambiguities and reducing possible imperfections of the first stage, and providing the distances between the sensor and the scattering point with accuracy comparable to the wavelength. The features of the proposed autofocusing method are illustrated in its applications to intentionally corrupted small-scene 2006 Gotcha data. The examples include the extraction of absolute phases (ranges) for selected prominent point targets. They are then used to focus the scene and determine relative target–target distances. (paper)

  17. Shallow Water Height Mapping With Interferometric Synthetic Aperture Sonar

    OpenAIRE

    Sergio Rui Silva; Sergio Cunha; Anibal Matos; Nuno Cruz

    2008-01-01

    Height mapping of shallow water areas is an important task for many commercial and scientific applications like river navigability, infrastructure maintenance or natural resource monitoring. The use of an autonomous boat presents several advantages that case the use of synthetic aperture images to create three-dimensional topographic maps through interferometric techniques. Sample data obtained during test trials illustrate how synthetic aperture can be used to generate imagery and bathymetry...

  18. Synthetic aperture single-exposure on-axis digital holography

    OpenAIRE

    Martínez León, Lluís; Javidi, Bahram

    2008-01-01

    We present a system for reconstructing single-exposure on-line (SEOL) digital holograms with improved resolution using a synthetic aperture. Several recordings are made in order to compose the synthetic aperture, shifting the camera within the hologram plane. After processing the synthetic hologram, an inverse Fresnel transformation provides an enhanced resolution reconstruction. We show that recognition capacity for high frequency details is increased. Experimental results ...

  19. Radiometric resolution of motion-induced synthetic aperture radiometer

    OpenAIRE

    Hyuk, Park; Camps Carmona, Adriano José; Choi, Min Gyu; Kim, Yong-Hoon

    2011-01-01

    The radiometric resolution of a motion-induced synthetic aperture radiometer (MISAR) is analytically obtained from the standard deviation of a baseline response, an observation scenario, and the imaging method of the MISAR. The intrinsic long integration time given by the whole dwell time on moving platforms improves the radiometric resolution compared with the snapshot resolution of other nominal synthetic aperture radiometers. In addition, it is illustrated that the MISAR imaging hold...

  20. The synthetic aperture method in the environment microwave interferometer radiometry

    OpenAIRE

    Kutuza, B.G.; Zagorin, G. K.

    2003-01-01

    The basic principles of space-borne two dimensional synthetic aperture microwave polarimetric interferometer function are considered. The main advantages of these systems over the well-known systems ESMR, SMMR and SSM/I are: a high rate of the observation scene image construction; the finite angular resolution; besides, they have no movable onboard construction elements on the spacecraft board, like the scanning antenna, and etc. The advantages of the synthetic aperture systems with hexagonal...

  1. Transmission of High-Power Electron Beams Through Small Apertures

    CERN Document Server

    Tschalär, C; Balascuta, S.; Benson, S.V.; Bertozzi, W.; Boyce, J.R.; Cowan, R.; Douglas, D.; Evtushenko, P.; Fisher, P.; Ihloff, E.; Kalantarians, N.; Kelleher, A.; Legg, R.; Milner, R.G.; Neil, G.R.; Ou, L.; Schmookler, B.; Tennant, C.; Williams, G.P.; Zhang, S.

    2013-01-01

    Tests were performed to pass a 100 MeV, 430 kWatt c.w. electron beam from the energy-recovery linac at the Jefferson Laboratory's FEL facility through a set of small apertures in a 127 mm long aluminum block. Beam transmission losses of 3 p.p.m. through a 2 mm diameter aperture were maintained during a 7 hour continuous run.

  2. Dynamic Aperture Of The Heavy Ion Collider Nica

    International Nuclear Information System (INIS)

    Dynamic aperture of the heavy ion collider NICA which is under construction at the Joint Institute for Nuclear Research in Dubna has been studied. Both nonlinearities in the magnetic elements and beam-beam forces have been taken into account in the numerical simulations. The obtained values of the dynamic aperture and the nonlinear acceptance are close to those in other heavy ion accelerators. Key words: particle accelerators, collider, beam dynamics

  3. Transport of Particle Swarms Through Variable Aperture Fractures

    Science.gov (United States)

    Boomsma, E.; Pyrak-Nolte, L. J.

    2012-12-01

    Particle transport through fractured rock is a key concern with the increased use of micro- and nano-size particles in consumer products as well as from other activities in the sub- and near surface (e.g. mining, industrial waste, hydraulic fracturing, etc.). While particle transport is often studied as the transport of emulsions or dispersions, particles may also enter the subsurface from leaks or seepage that lead to particle swarms. Swarms are drop-like collections of millions of colloidal-sized particles that exhibit a number of unique characteristics when compared to dispersions and emulsions. Any contaminant or engineered particle that forms a swarm can be transported farther, faster, and more cohesively in fractures than would be expected from a traditional dispersion model. In this study, the effects of several variable aperture fractures on colloidal swarm cohesiveness and evolution were studied as a swarm fell under gravity and interacted with the fracture walls. Transparent acrylic was used to fabricate synthetic fracture samples with (1) a uniform aperture, (2) a converging region followed by a uniform region (funnel shaped), (3) a uniform region followed by a diverging region (inverted funnel), and (4) a cast of a an induced fracture from a carbonate rock. All of the samples consisted of two blocks that measured 100 x 100 x 50 mm. The minimum separation between these blocks determined the nominal aperture (0.5 mm to 20 mm). During experiments a fracture was fully submerged in water and swarms were released into it. The swarms consisted of a dilute suspension of 3 micron polystyrene fluorescent beads (1% by mass) with an initial volume of 5μL. The swarms were illuminated with a green (525 nm) LED array and imaged optically with a CCD camera. The variation in fracture aperture controlled swarm behavior. Diverging apertures caused a sudden loss of confinement that resulted in a rapid change in the swarm's shape as well as a sharp increase in its velocity

  4. Effect of neon plasma pre-irradiation on surface morphology and deuterium retention of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, L., E-mail: L.Cheng@buaa.edu.cn [School of Physics & Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); De Temmerman, G.; Zeijlmans van Emmichoven, P.A. [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregion Cluster, Nieuwegein (Netherlands); Ji, G. [Unité Matériaux et Transformations, UMR CNRS 8207, Université Lille 1, 59655 Villeneuve d’Ascq (France); Zhou, H.B. [School of Physics & Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Wang, B. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Yuan, Y., E-mail: yueyuan@buaa.edu.cn [School of Physics & Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Zhang, Y. [School of Physics & Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Lu, G.H., E-mail: LGH@buaa.edu.cn [School of Physics & Nuclear Energy Engineering, Beihang University, Beijing 100191 (China)

    2015-08-15

    Neon and deuterium plasma irradiation of polycrystalline tungsten targets have been performed at high fluxes of ∼10{sup 24} ions m{sup −2} s{sup −1} to study the interaction of neon with tungsten and the influence of neon on deuterium retention. Tungsten exposure to neon plasma leads to the formation of wavy nanostructures on the surface. Subsequent exposure to high-flux deuterium plasma leads to blister formation of micrometer size on top of the wavy structures. The total deuterium retention is decreased by neon pre-irradiation for all surface temperatures used in the present experiments. It is suggested that a barrier of trapped Ne is formed that interrupts the D transport and reduces D retention.

  5. Mid-infrared vibrational study of deuterium-containing PAH variants

    CERN Document Server

    Buragohain, Mridusmita; Sarre, Peter; Onaka, Takashi; Sakon, Itsuki

    2016-01-01

    Polycyclic Aromatic Hydrocarbon (PAH) molecules have been long proposed to be a major carrier of 'Unidentified Infrared' (UIR) emission bands that have been observed ubiquitously in various astrophysical environments. These molecules can potentially be an efficient reservoir of deuterium. Once the infrared properties of the deuterium- containing PAHs are well understood both experimentally and theoretically, the interstellar UIR bands can be used as a valuable tool to infer the cause of the deuterium depletion in the ISM. Density Functional Theory (DFT) calculations have been carried out on deuterium-containing ovalene variants to study the infrared properties of these molecules. These include deuterated ovalene, cationic deuterated ovalene, deuteronated ovalene and deuterated-deuteronated ovalene. We present a D/H ratio calculated from our theoretical study to compare with the observationally proposed D/H ratio.

  6. Parity-violating neutron spin rotation in hydrogen and deuterium

    Science.gov (United States)

    Grießhammer, H. W.; Schindler, M. R.; Springer, R. P.

    2012-01-01

    We calculate the (parity-violating) spin-rotation angle of a polarized neutron beam through hydrogen and deuterium targets, using pionless effective field theory up to next-to-leading order. Our result is part of a program to obtain the five leading independent low-energy parameters that characterize hadronic parity violation from few-body observables in one systematic and consistent framework. The two spin-rotation angles provide independent constraints on these parameters. Our result for np spin rotation is frac{1} {ρ }frac{{d\\varphi _{PV}^{np} }} {{dl}} = left[ {4.5 ± 0.5} right] rad MeV^{ - frac{1} {2}} left( {2g^{left( {^3 S_1 - ^3 P_1 } right)} + g^{left( {^3 S_1 - ^3 P_1 } right)} } right) - left[ {18.5 ± 1.9} right] rad MeV^{ - frac{1} {2}} left( {g_{left( {Δ I = 0} right)}^{left( {^1 S_0 - ^3 P_0 } right)} - 2g_{left( {Δ I = 2} right)}^{left( {^1 S_0 - ^3 P_0 } right)} } right), while for nd spin rotation we obtain frac{1} {ρ }frac{{d\\varphi _{PV}^{nd} }} {{dl}} = left[ {8.0 ± 0.8} right] rad MeV^{ - frac{1} {2}} g^{left( {^3 S_1 - ^1 P_1 } right)} + left[ {17.0 ± 1.7} right] rad MeV^{ - frac{1} {2}} g^{left( {^3 S_1 - ^3 P_1 } right)} + left[ {2.3 ± 0.5} right] rad MeV^{ - frac{1} {2}} left( {3g_{left( {Δ I = 0} right)}^{left( {^1 S_0 - ^3 P_0 } right)} - 2g_{left( {Δ I = 1} right)}^{left( {^1 S_0 - ^3 P_0 } right)} } right), where the g (X-Y), in units of MeV^{ - frac{3} {2}}, are the presently unknown parameters in the leading-order parity-violating Lagrangian. Using naıve dimensional analysis to estimate the typical size of the couplings, we expect the signal for standard target densities to be left| {frac{{d\\varphi _{PV} }} {{dl}}} right| ≈ left[ {10^{ - 7} ldots 10^{ - 6} } right]frac{{rad}} {m} for both hydrogen and deuterium targets. We find no indication that the nd observable is enhanced compared to the np one. All results are properly renormalized. An estimate of the numerical and systematic uncertainties of our calculations

  7. Influence of deuterium depleted water upon plant organisms

    International Nuclear Information System (INIS)

    Deuterium depleted water (DDW) or light water, the opposite of heavy water, is microbiologically pure distilled water characterized by a D/(D+H) deuterium concentration of 20 - 120, i.e. under natural water content which is within 140 - 150 ppm. Variations occur as depending on the geographical zone and altitude. It is known that heavy water has inhibitory effects upon the plant cell metabolism, generally upon living cells, while their long time exposure to deuterated environment leads to death of cells. Accordingly, studies and research were initiated and developed in collaboration with Romanian institutes of corresponding speciality to establish the effects and the applications of DDW to plant culture. The results of these research on plants effects can be summarized as follows: - in the in vitro culture of aquatic macrophytes (Tetraselmis suecica) an increase of the metabolism rate was found following the diminution of sea water spectral energy when mixed with DDW (in collaboration with Maria Mirza, Mihaela Zaharia, T.M. Cristescu from the Grigore Antipa National Institute for Marine Research and Development); - experiments performed on two rice species (Avena sativa) grown on DDW media evidenced a stimulation of seed germination and plant growth in different stages of ontogenetic development (Galia Butnaru, I. Sarac, C. Chiran from Banat Agricultural Sciences University at Timisoara); - laboratory studies (in collaboration with Monica Fleancu and Daniela Giosanu from Pitesti University) performed on three corn genotypes (Zea mays), one of heterozygote type in parental forms and two of homozygote type, in the presence of DDW, showed an enhancement of coleoptile growth in homozygotes and hindering of coleoptile growth in heterozygotes while the root growth was hindered in both cases; - in vitro studies (in collaboration with Monica Fleancu and Daniela Giosanu from Pitesti University) carried out on explants of different breeds of Vitis vinifera (Feteasca Alba and

  8. Programmable Aperture with MEMS Microshutter Arrays

    Science.gov (United States)

    Moseley, Samuel; Li, Mary; Kutyrev, Alexander; Kletetschka, Gunther; Fettig, Rainer

    2011-01-01

    A microshutter array (MSA) has been developed for use as an aperture array for multi-object selections in James Webb Space Telescope (JWST) technology. Light shields, molybdenum nitride (MoN) coating on shutters, and aluminum/aluminum oxide coatings on interior walls are put on each shutter for light leak prevention, and to enhance optical contrast. Individual shutters are patterned with a torsion flexure that permits shutters to open 90 deg. with a minimized mechanical stress concentration. The shutters are actuated magnetically, latched, and addressed electrostatically. Also, micromechanical features are tailored onto individual shutters to prevent stiction. An individual shutter consists of a torsion hinge, a shutter blade, a front electrode that is coated on the shutter blade, a backside electrode that is coated on the interior walls, and a magnetic cobalt-iron coating. The magnetic coating is patterned into stripes on microshutters so that shutters can respond to an external magnetic field for the magnetic actuation. A set of column electrodes is placed on top of shutters, and a set of row electrodes on sidewalls is underneath the shutters so that they can be electrostatically latched open. A linear permanent magnet is aligned with the shutter rows and is positioned above a flipped upside-down array, and sweeps across the array in a direction parallel to shutter columns. As the magnet sweeps across the array, sequential rows of shutters are rotated from their natural horizontal orientation to a vertical open position, where they approach vertical electrodes on the sidewalls. When the electrodes are biased with a sufficient electrostatic force to overcome the mechanical restoring force of torsion bars, shutters remain latched to vertical electrodes in their open state. When the bias is removed, or is insufficient, the shutters return to their horizontal, closed positions. To release a shutter, both the electrode on the shutter and the one on the back wall where

  9. Oil Slick Characterization Using Synthetic Aperture Radar

    Science.gov (United States)

    Jones, C. E.; Breivik, O.; Brekke, C.; Skrunes, S.; Holt, B.

    2015-12-01

    Oil spills are a hazard worldwide with potential of causing high impact disasters, and require an active oil spill response capability to protect personnel, the ecosystem, and the energy supply. As the amount of oil in traditionally accessible reserves decline, there will be increasing oil extraction from the Arctic and deep-water wells, both new sources with high risk and high cost for monitoring and response. Although radar has long been used for mapping the spatial extent of oil slicks, it is only since the Deepwater Horizon spill that synthetic aperture radar (SAR) has been shown capable of characterizing oil properties within a slick, and therefore useful for directing response to the recoverable thicker slicks or emulsions. Here we discuss a 2015 Norwegian oil-on-water spill experiment in which emulsions of known quantity and water-to-oil ratio along with a look-alike slick of plant oil were released in the North Sea and imaged with polarimetric SAR (PolSAR) by NASA's UAVSAR instrument for several hours following release. During the experiment, extensive in situ measurements were made from ship or aircraft with meteorological instruments, released drift buoys, and optical/IR imagers. The experiment was designed to provide validation data for development of a physical model relating polarization-dependent electromagnetic scattering to the dielectric properties of oil mixed with ocean water, which is the basis for oil characterization with SAR. Data were acquired with X-, C-, and L-band satellite-based SARs to enable multi-frequency comparison of characterization capabilities. In addition, the data are used to develop methods to differentiate mineral slicks from biogenic look-alikes, and to better understand slick weathering and dispersion. The results will provide a basis for modeling oil-in-ice spills, currently a high priority for nations involved in Arctic oil exploration. Here we discuss the Norwegian experiment, the validation data, and the results of

  10. Deployable Wide-Aperture Array Antennas

    Science.gov (United States)

    Fink, Patrick W.; Dobbins, Justin A.; Lin, Greg Y.; Chu, Andrew; Scully, Robert C.

    2005-01-01

    Inexpensive, lightweight array antennas on flexible substrates are under development to satisfy a need for large-aperture antennas that can be stored compactly during transport and deployed to full size in the field. Conceived for use aboard spacecraft, antennas of this type also have potential terrestrial uses . most likely, as means to extend the ranges of cellular telephones in rural settings. Several simple deployment mechanisms are envisioned. One example is shown in the figure, where the deployment mechanism, a springlike material contained in a sleeve around the perimeter of a flexible membrane, is based on a common automobile window shade. The array can be formed of antenna elements that are printed on small sections of semi-flexible laminates, or preferably, elements that are constructed of conducting fabric. Likewise, a distribution network connecting the elements can be created from conventional technologies such as lightweight, flexible coaxial cable and a surface mount power divider, or preferably, from elements formed from conductive fabrics. Conventional technologies may be stitched onto a supporting flexible membrane or contained within pockets that are stitched onto a flexible membrane. Components created from conductive fabrics may be attached by stitching conductive strips to a nonconductive membrane, embroidering conductive threads into a nonconductive membrane, or weaving predetermined patterns directly into the membrane. The deployable antenna may comprise multiple types of antenna elements. For example, thin profile antenna elements above a ground plane, both attached to the supporting flexible membrane, can be used to create a unidirectional boresight radiation pattern. Or, antenna elements without a ground plane, such as bow-tie dipoles, can be attached to the membrane to create a bidirectional array such as that shown in the figure. For either type of antenna element, the dual configuration, i.e., elements formed of slots in a conductive

  11. Wind energy applications of synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Bruun Christiansen, M.

    2006-11-15

    Synthetic aperture radars (SAR), mounted on satellites or aircraft, have proven useful for ocean wind mapping. Wind speeds at the height 10 m may be retrieved from measurements of radar backscatter using empirical model functions. The resulting wind fields are valuable in offshore wind energy planning as a supplement to on site measurements, which are costly and sparse, and model wind fields, which are not fully validated. Two applications of SAR measurements in offshore wind energy planning are addressed here: the study of wind farm wake effects and the potential of using SAR winds in offshore wind resource assessment. Firstly, wind wakes behind two large offshore wind farms in Denmark Horns Rev and Nysted are identified. A region of reduced wind speed is found downstream of both wind farms from the SAR wind fields. The wake extent and magnitude depends on the wind speed, the atmospheric stability, and the fraction of turbines operating. Wind farm wake effects are detected up to 20 km downwind of the last turbine. This distance is longer than predicted by state-of-the art wake models. Wake losses are typically 10-20% near the wind farms. Secondly, the potential of using SAR wind maps in offshore wind resource assessment is investigated. The resource assessment is made through Weibull fitting to frequency observations of wind speed and requires at least 100 satellite observations per year for a given site of interest. Predictions of the energy density are very sensitive to the wind speed and the highest possible accuracy on SAR wind retrievals is therefore sought. A 1.1 m s{sup -1} deviation on the mean wind speed is found through comparison with mast measurements at Horns Rev. The accuracy on mean wind speeds and energy densities found from satellite measurements varies with different empirical model functions. Additional uncertainties are introduced by the infrequent satellite sampling at fixed times of the day. The accuracy on satellite based wind resource

  12. Path integral calculation of shock Hugoniot curves of precompressed liquid deuterium

    CERN Document Server

    Militzer, B

    2003-01-01

    Path integral Monte Carlo simulations have been used to study deuterium at high pressure and temperature. The equation of state has been derived in the temperature and density regions of 10 000 <= T <= 1 000 000 K and 0.6 <= rho <= 2.5 g cm sup - sup 3. A series of shock Hugoniot curves is computed for different initial compressions in order to compare with current and future shock wave experiments using liquid deuterium samples precompressed in diamond anvil cells.

  13. Utilization of deuterium for the study of ingested water absorption during muscular exercise

    International Nuclear Information System (INIS)

    A long physical exercise-heat exposure is accompanied with massive hydro-saline losses, due to sudation, inducing a lowering of the physical performance. A stable isotope tracer technique, with deuterium in the form of deuterium oxide, is used to study the effect of ingested water quality (pure water, water and sodic and/or energetic additives) on the speed at which ingested water passes in the vascular sector during such an exercise in preliminarily dehydrated human beings. 2 figs., 12 refs

  14. Cavity-excited Huygens' metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures.

    Science.gov (United States)

    Epstein, Ariel; Wong, Joseph P S; Eleftheriades, George V

    2016-01-21

    One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators.

  15. Cavity-excited Huygens' metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures

    Science.gov (United States)

    Epstein, Ariel; Wong, Joseph P. S.; Eleftheriades, George V.

    2016-01-01

    One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators.

  16. Cavity-excited Huygens' metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures.

    Science.gov (United States)

    Epstein, Ariel; Wong, Joseph P S; Eleftheriades, George V

    2016-01-01

    One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators. PMID:26790605

  17. Experimental Investigation of an L-Shaped Very-Small-Aperture Laser

    Institute of Scientific and Technical Information of China (English)

    XU Ji-Ying; WANG Jia; GAI Hong-Feng; TIAN Qian; WANG Bo-Xiong; HAO Zhi-Biao; HAN Shuo

    2006-01-01

    @@ An L-shaped very-small-aperture laser (VSAL) with high power output and field enhancement effect is fabricated and characterized. As a comparison, a conventional rectangular VSAL and a double-aperture VSAL containing one L-aperture and one rectangular aperture are also fabricated and measured.

  18. Pattern transfer on large samples using a sub-aperture reactive ion beam

    International Nuclear Information System (INIS)

    In comparison to sole Ar ion beam sputtering Reactive Ion Beam Etching (RIBE) reveals the main advantage of increasing the selectivity for different kind of materials due to chemical contributions during the material removal. Therefore RIBE is qualified to be an excellent candidate for pattern transfer applications. The goal of the present study is to apply a sub-aperture reactive ion beam for pattern transfer on large fused silica samples. Concerning this matter, the etching behavior in the ion beam periphery plays a decisive role. Using CF4 as reactive gas, XPS measurements of the modified surface exposes impurities like Ni, Fe and Cr, which belongs to chemically eroded material of the plasma pot as well as an accumulation of carbon (up to 40 atomic percent) in the beam periphery, respectively. The substitution of CF4 by NF3 as reactive gas reveals a lot of benefits: more stable ion beam conditions in combination with a reduction of the beam size down to a diameter of 5 mm and a reduced amount of the Ni, Fe and Cr contaminations. However, a layer formation of silicon nitride handicaps the chemical contribution of the etching process. These negative side effects influence the transfer of trench structures on quartz by changing the selectivity due to altered chemical reaction of the modified resist layer. Concerning this we investigate the pattern transfer on large fused silica plates using NF3-sub-aperture RIBE.

  19. Body composition of lactating and dry Holstein cows estimated by deuterium dilution

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.A.; Ehle, F.R.

    1986-01-01

    In three experiments patterns of water turnover and body composition estimated by deuterium oxide were studied in Holstein cows. In the first experiment, four lactating cows were infused with deuterium oxide, and blood samples were taken during 4-d collection. Milking was stopped; cows were reinfused with deuterium oxide and resampled. Slopes of deuterium oxide dilution curves indicated lactating cows turned water over more rapidly than nonlactating cows. In the second experiment with the same four cows, during 4-d collection, deuterium oxide concentrations in milk, urine, and feces showed dilution patterns similar to deuterium oxide in blood. Sampling milk may be an alternative to sampling blood. In the third experiment, 36 Holstein cows were fed 55, 65, or 75% alfalfa, smooth bromegrass, or equal parts of each forage as total mixed rations; remaining portions of rations were a grain mixture. Body composition was estimated at -1, 1, 2, 3, 4, and 5 mo postpartum. Empty body water, protein, mineral, fat, and fat percentage decreased from prepartum to postpartum. First calf heifers contained less empty body water, protein, and mineral than older cows. Cows fed diets with 55% forage had more body fat than those fed diets with 75% forage. Cows fed alfalfa-based diets had more gastrointestinal fill regardless of grain than cows fed diets that contained alfalfa and smooth bromegrass. Gastrointestinal fill of cows increased from prepartum to 5 mo postpartum.

  20. Effect of plastic deformation on deuterium retention and release in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Terentyev, D., E-mail: dterenty@sckcen.be; Lambrinou, K.; Minov, B. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium); De Temmerman, G. [ITER Organization, Route de Vinon-sur-Verdon - CS 90 046 - 13067 St. Paul Lez Durance Cedex (France); Morgan, T. W. [FOM Institute DIFFER, Edisonbaan 14, 3439 MN, Nieuwegein (Netherlands); Zayachuk, Y.; Bystrov, K. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Dubinko, A. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium); Department of Applied Physics, Ghent University, St. Pietersnieuwstraat 41, 9000 Ghent (Belgium); Van Oost, G. [Department of Applied Physics, Ghent University, St. Pietersnieuwstraat 41, 9000 Ghent (Belgium)

    2015-02-28

    The effect of severe plastic deformation on the deuterium retention in tungsten exposed to high-flux low-energy plasma (flux ∼ 10{sup 24 }D/m{sup 2}/s, energy ∼ 50 eV, and fluence up to 3 × 10{sup 26 }D/m{sup 2}) at the plasma generator Pilot-PSI was studied by thermal desorption spectroscopy and scanning electron microscopy. The desorption spectra in both reference and plastically deformed samples were deconvolved into three contributions attributed to the detrapping from dislocations, deuterium-vacancy clusters, and pores, respectively. The plastically induced deformation, resulting in high dislocation density, does not change the positions of the three peaks, but alters their amplitudes as compared to the reference material. The appearance of blisters detected by scanning electron microscopy and the desorption peak attributed to the release from pores (i.e., deuterium bubbles) were suppressed in the plastically deformed samples but only up to a certain fluence. Beyond 5 × 10{sup 25 }D/m{sup 2}, the release from the bubbles in the deformed material is essentially higher than in the reference material. Based on the presented results, we suggest that a dense dislocation network increases the incubation dose needed for the appearance of blisters, associated with deuterium bubbles, by offering numerous nucleation sites for deuterium clusters eventually transforming into deuterium-vacancy clusters by punching out jogs on dislocation lines.