WorldWideScience

Sample records for aperiodic magnetic turbulence

  1. Cosmic Magnetization: From Spontaneously Emitted Aperiodic Turbulent to Ordered Equipartition Fields

    Science.gov (United States)

    Schlickeiser, R.

    2012-12-01

    It is shown that an unmagnetized nonrelativistic thermal electron-proton plasma spontaneously emits aperiodic turbulent magnetic field fluctuations of strength |δB|=3.5βeg1/3We1/2G, where βe is the normalized thermal electron temperature, We the thermal plasma energy density, and g the plasma parameter. For the unmagnetized intergalactic medium, immediately after the reionization onset, the field strengths from this mechanism are about 2×10-16G in cosmic voids and 2×10-10G in protogalaxies, both too weak to affect the dynamics of the plasma. Accounting for simultaneous viscous damping reduces these estimates to 2×10-21G in cosmic voids and 2×10-12G in protogalaxies. The shear and/or compression of the intergalactic and protogalactic medium exerted by the first supernova explosions locally amplify these seed fields and make them anisotropic, until the magnetic restoring forces affect the gas dynamics at ordered plasma betas near unity.

  2. Magnetic response of aperiodic wire networks based on Fibonacci distortions of square antidot lattices

    Science.gov (United States)

    Farmer, B.; Bhat, V. S.; Sklenar, J.; Teipel, E.; Woods, J.; Ketterson, J. B.; Hastings, J. T.; De Long, L. E.

    2015-05-01

    The static and dynamic magnetic responses of patterned ferromagnetic thin films are uniquely altered in the case of aperiodic patterns that retain long-range order (e.g., quasicrystals). We have fabricated permalloy wire networks based on periodic square antidot lattices (ADLs) distorted according to an aperiodic Fibonacci sequence applied to two lattice translations, d1 = 1618 nm and d2 = 1000 nm. The wire segment thickness is fixed at t = 25 nm, and the width W varies from 80 to 510 nm. We measured the DC magnetization between room temperature and 5 K. Room-temperature, narrow-band (9.7 GHz) ferromagnetic resonance (FMR) spectra were acquired for various directions of applied magnetic field. The DC magnetization curves exhibited pronounced step anomalies and plateaus that signal flux closure states. Although the Fibonacci distortion breaks the fourfold symmetry of a finite periodic square ADL, the FMR data exhibit fourfold rotational symmetry with respect to the applied DC magnetic field direction.

  3. Inhomogeneous turbulence in magnetic reconnection

    Science.gov (United States)

    Yokoi, Nobumitsu

    2016-07-01

    Turbulence is expected to play an essential role in enhancing magnetic reconnection. Turbulence associated with magnetic reconnection is highly inhomogeneous: it is generated by inhomogeneities of the field configuration such as the velocity shear, temperature gradient, density stratification, magnetic shear, etc. This self-generated turbulence affects the reconnection through the turbulent transport. In this reconnection--turbulence interaction, localization of turbulent transport due to dynamic balance between several turbulence effects plays an essential role. For investigating inhomogeneous turbulence in a strongly nonlinear regime, closure or turbulence modeling approaches provide a powerful tool. A turbulence modeling approach for the magnetic reconnection is introduced. In the model, the mean-field equations with turbulence effects incorporated are solved simultaneously with the equations of turbulent statistical quantities that represent spatiotemporal properties of turbulence under the effect of large-scale field inhomogeneities. Numerical simulations of this Reynolds-averaged turbulence model showed that self-generated turbulence enhances magnetic reconnection. It was pointed out that reconnection states may be divided into three category depending on the turbulence level: (i) laminar reconnection; (ii) turbulent reconnection, and (iii) turbulent diffusion. Recent developments in this direction are also briefly introduced, which includes the magnetic Prandtl number dependence, spectral evolution, and guide-field effects. Also relationship of this fully nonlinear turbulence approach with other important approaches such as plasmoid instability reconnection will be discussed.

  4. Magnetic turbulence in Tokamaks

    International Nuclear Information System (INIS)

    From a discussion of the disruption process, it is concluded that this process plausibly consists of the onset of a fine grain turbulence. This turbulence must be able to produce the large values of the inductive electric field which are associated with the reorganization of the poloidal flux and the current density on the magnetic surfaces. It is then plausible that the turbulence belongs to a class of 'rippling' modes, that may explain the experimental values for the magnetic perturbations corresponding to a substantial radial ergodicity of the flux lines. The stability of the modes in the presence of such an ergodicity is accordingly considered. It is found that the modes may be unstable even in collisionless regime, the ergodicity playing a role similar to the resistivity to partially remove the M.H.D. constraint

  5. Surface Magnetization of Aperiodic Ising Systems: a Comparative Study of the Bond and Site Problems

    OpenAIRE

    Turban, L.; Berche, P. E.; Berche, B.

    1994-01-01

    We investigate the influence of aperiodic perturbations on the critical behaviour at a second order phase transition. The bond and site problems are compared for layered systems and aperiodic sequences generated through substitution. In the bond problem, the interactions between the layers are distributed according to an aperiodic sequence whereas in the site problem, the layers themselves follow the sequence. A relevance-irrelevance criterion introduced by Luck for the bond problem is extend...

  6. Turbulent General Magnetic Reconnection

    CERN Document Server

    Eyink, Gregory L

    2014-01-01

    Plasma flows with an MHD-like turbulent inertial range, such as the solar wind, require a generalization of General Magnetic Reconnection (GMR) theory. We introduce the slip-velocity source vector, which gives the rate of development of slip velocity per unit arc length of field line. The slip source vector is the ratio of the curl of the non ideal electric field in the Generalized Ohm's Law and the magnetic field strength. It diverges at magnetic nulls, unifying GMR with magnetic null-point reconnection. Only under restrictive assumptions is the slip velocity related to the gradient of the quasi potential (integral of parallel electric field along field lines). In a turbulent inertial range the curl becomes extremely large while the parallel component is tiny, so that line slippage occurs even while ideal MHD becomes accurate. The resolution of this paradox is that ideal MHD is valid for a turbulent inertial-range only in a weak sense which does not imply magnetic line freezing. The notion of weak solution i...

  7. Turbulent General Magnetic Reconnection

    Science.gov (United States)

    Eyink, G. L.

    2015-07-01

    Plasma flows with a magnetohydrodynamic (MHD)-like turbulent inertial range, such as the solar wind, require a generalization of general magnetic reconnection (GMR) theory. We introduce the slip velocity source vector per unit arclength of field line, the ratio of the curl of the non-ideal electric field in the generalized Ohm’s Law and magnetic field strength. It diverges at magnetic nulls, unifying GMR with null-point reconnection. Only under restrictive assumptions is the slip velocity related to the gradient of quasi-potential (which is the integral of parallel electric field along magnetic field lines). In a turbulent inertial range, the non-ideal field becomes tiny while its curl is large, so that line slippage occurs even while ideal MHD becomes accurate. The resolution is that ideal MHD is valid for a turbulent inertial range only in a weak sense that does not imply magnetic line freezing. The notion of weak solution is explained in terms of renormalization group (RG) type theory. The weak validity of the ideal Ohm’s law in the inertial range is shown via rigorous estimates of the terms in the generalized Ohm’s Law. All non-ideal terms are irrelevant in the RG sense and large-scale reconnection is thus governed solely by ideal dynamics. We discuss the implications for heliospheric reconnection, in particular for deviations from the Parker spiral model. Solar wind observations show that reconnection in a turbulence-broadened heliospheric current sheet, which is consistent with Lazarian-Vishniac theory, leads to slip velocities that cause field lines to lag relative to the spiral model.

  8. Turbulent Dynamos and Magnetic Helicity

    CERN Document Server

    Ji, H

    1999-01-01

    It is shown that the turbulent dynamo $\\alpha$-effect converts magnetic helicity from the turbulent field to the mean field when the turbulence is electromagnetic while the magnetic helicity of the mean-field is transported across space when the turbulence is electrostatic or due to the electron diamagnetic effect. In all cases, however, the dynamo effect strictly conserves the total helicity except for resistive effects and a small battery effect. Implications for astrophysical situations, especially for the solar dynamo, are discussed.

  9. Static magnetic fields enhance turbulence

    CERN Document Server

    Pothérat, Alban

    2015-01-01

    More often than not, turbulence occurs under the influence of external fields, mostly rotation and magnetic fields generated either by planets, stellar objects or by an industrial environment. Their effect on the anisotropy and the dissipative behaviour of turbulence is recognised but complex, and it is still difficult to even tell whether they enhance or dampen turbulence. For example, externally imposed magnetic fields suppress free turbulence in electrically conducting fluids (Moffatt 1967), and make it two-dimensional (2D) (Sommeria & Moreau 1982); but their effect on the intensity of forced turbulence, as in pipes, convective flows or otherwise, is not clear. We shall prove that since two-dimensionalisation preferentially affects larger scales, these undergo much less dissipation and sustain intense turbulent fluctuations. When higher magnetic fields are imposed, quasi-2D structures retain more kinetic energy, so that rather than suppressing forced turbulence, external magnetic fields indirectly enha...

  10. Magnetized Turbulent Dynamo in Protogalaxies

    Energy Technology Data Exchange (ETDEWEB)

    Leonid Malyshkin; Russell M. Kulsrud

    2002-01-28

    The prevailing theory for the origin of cosmic magnetic fields is that they have been amplified to their present values by the turbulent dynamo inductive action in the protogalactic and galactic medium. Up to now, in calculation of the turbulent dynamo, it has been customary to assume that there is no back reaction of the magnetic field on the turbulence, as long as the magnetic energy is less than the turbulent kinetic energy. This assumption leads to the kinematic dynamo theory. However, the applicability of this theory to protogalaxies is rather limited. The reason is that in protogalaxies the temperature is very high, and the viscosity is dominated by magnetized ions. As the magnetic field strength grows in time, the ion cyclotron time becomes shorter than the ion collision time, and the plasma becomes strongly magnetized. As a result, the ion viscosity becomes the Braginskii viscosity. Thus, in protogalaxies the back reaction sets in much earlier, at field strengths much lower than those which correspond to field-turbulence energy equipartition, and the turbulent dynamo becomes what we call the magnetized turbulent dynamo. In this paper we lay the theoretical groundwork for the magnetized turbulent dynamo. In particular, we predict that the magnetic energy growth rate in the magnetized dynamo theory is up to ten times larger than that in the kinematic dynamo theory. We also briefly discuss how the Braginskii viscosity can aid the development of the inverse cascade of magnetic energy after the energy equipartition is reached.

  11. Magnetized Turbulent Dynamo in Protogalaxies

    International Nuclear Information System (INIS)

    The prevailing theory for the origin of cosmic magnetic fields is that they have been amplified to their present values by the turbulent dynamo inductive action in the protogalactic and galactic medium. Up to now, in calculation of the turbulent dynamo, it has been customary to assume that there is no back reaction of the magnetic field on the turbulence, as long as the magnetic energy is less than the turbulent kinetic energy. This assumption leads to the kinematic dynamo theory. However, the applicability of this theory to protogalaxies is rather limited. The reason is that in protogalaxies the temperature is very high, and the viscosity is dominated by magnetized ions. As the magnetic field strength grows in time, the ion cyclotron time becomes shorter than the ion collision time, and the plasma becomes strongly magnetized. As a result, the ion viscosity becomes the Braginskii viscosity. Thus, in protogalaxies the back reaction sets in much earlier, at field strengths much lower than those which correspond to field-turbulence energy equipartition, and the turbulent dynamo becomes what we call the magnetized turbulent dynamo. In this paper we lay the theoretical groundwork for the magnetized turbulent dynamo. In particular, we predict that the magnetic energy growth rate in the magnetized dynamo theory is up to ten times larger than that in the kinematic dynamo theory. We also briefly discuss how the Braginskii viscosity can aid the development of the inverse cascade of magnetic energy after the energy equipartition is reached

  12. Wave turbulence in magnetized plasmas

    Directory of Open Access Journals (Sweden)

    S. Galtier

    2009-02-01

    Full Text Available The paper reviews the recent progress on wave turbulence for magnetized plasmas (MHD, Hall MHD and electron MHD in the incompressible and compressible cases. The emphasis is made on homogeneous and anisotropic turbulence which usually provides the best theoretical framework to investigate space and laboratory plasmas. The solar wind and the coronal heating problems are presented as two examples of application of anisotropic wave turbulence. The most important results of wave turbulence are reported and discussed in the context of natural and simulated magnetized plasmas. Important issues and possible spurious interpretations are also discussed.

  13. Turbulent transport in magnetized plasmas

    CERN Document Server

    Horton, Wendell

    2012-01-01

    This book explains how magnetized plasmas self-organize in states of electromagnetic turbulence that transports particles and energy out of the core plasma faster than anticipated by the fusion scientists designing magnetic confinement systems in the 20th century. It describes theory, experiments and simulations in a unified and up-to-date presentation of the issues of achieving nuclear fusion power.

  14. Relation of Astrophysical Turbulence and Magnetic Reconnection

    CERN Document Server

    Lazarian, A; Vishniac, E

    2011-01-01

    Astrophysical fluids are generically turbulent and this must be taken into account for most transport processes. We discuss how the preexisting turbulence modifies magnetic reconnection and how magnetic reconnection affects the MHD turbulent cascade. We show the intrinsic interdependence and interrelation of magnetic turbulence and magnetic reconnection, in particular, that strong magnetic turbulence in 3D requires reconnection and 3D magnetic turbulence entails fast reconnection. We follow the approach in Eyink, Lazarian & Vishniac 2011 to show that the expressions of fast magnetic reconnection in Lazarian & Vishniac 1999 can be recovered if Richardson diffusion of turbulent flows is used instead of ordinary Ohmic diffusion. This does not revive, however, the concept of magnetic turbulent diffusion which assumes that magnetic fields can be mixed up in a passive way down to a very small dissipation scales. On the contrary, we are dealing the reconnection of dynamically important magnetic field bundles...

  15. Mixing in Magnetized Turbulent Medium

    CERN Document Server

    Sur, Sharanya; Scannapieco, Evan

    2014-01-01

    Turbulent motions are essential to the mixing of entrained fluids and are also capable of amplifying weak initial magnetic fields by small-scale dynamo action. Here we perform a systematic study of turbulent mixing in magnetized media, using three-dimensional magnetohydrodynamic simulations that include a scalar concentration field. We focus on how mixing depends on the magnetic Prandtl number, Pm, from 1 to 4 and the Mach number, M}, from 0.3 to 2.4. For all subsonic flows, we find that the velocity power spectrum has a k^-5/3 slope in the early, kinematic phase, but steepens due to magnetic back reactions as the field saturates. The scalar power spectrum, on the other hand, flattens compared to k^-5/3 at late times, consistent with the Obukohov-Corrsin picture of mixing as a cascade process. At higher Mach numbers, the velocity power spectrum also steepens due to the presence of shocks, and the scalar power spectrum again flattens accordingly. Scalar structures are more intermittent than velocity structures...

  16. Magnetized Turbulent Dynamo in Protogalaxies; TOPICAL

    International Nuclear Information System (INIS)

    The prevailing theory for the origin of cosmic magnetic fields is that they have been amplified to their present values by the turbulent dynamo inductive action in the protogalactic and galactic medium. Up to now, in calculation of the turbulent dynamo, it has been customary to assume that there is no back reaction of the magnetic field on the turbulence, as long as the magnetic energy is less than the turbulent kinetic energy. This assumption leads to the kinematic dynamo theory. However, the applicability of this theory to protogalaxies is rather limited. The reason is that in protogalaxies the temperature is very high, and the viscosity is dominated by magnetized ions. As the magnetic field strength grows in time, the ion cyclotron time becomes shorter than the ion collision time, and the plasma becomes strongly magnetized. As a result, the ion viscosity becomes the Braginskii viscosity. Thus, in protogalaxies the back reaction sets in much earlier, at field strengths much lower than those which correspond to field-turbulence energy equipartition, and the turbulent dynamo becomes what we call the magnetized turbulent dynamo. In this paper we lay the theoretical groundwork for the magnetized turbulent dynamo. In particular, we predict that the magnetic energy growth rate in the magnetized dynamo theory is up to ten times larger than that in the kinematic dynamo theory. We also briefly discuss how the Braginskii viscosity can aid the development of the inverse cascade of magnetic energy after the energy equipartition is reached

  17. Inverse scattering problem in turbulent magnetic fluctuations

    CERN Document Server

    Treumann, R A; Narita, Y

    2016-01-01

    We apply a particular form of the inverse scattering theory to turbulent magnetic fluctuations in a plasma. In the present note we develop the theory, formulate the magnetic fluctuation problem in terms of its electrodynamic turbulent response function, and reduce it to the solution of a special form of the famous Gel$'$fand-Levitan-Marchenko equation of quantum mechanical scattering theory.

  18. Scaling laws in magnetized plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Boldyrev, Stanislav [Univ. of Wisconsin, Madison, WI (United States)

    2015-06-28

    Interactions of plasma motion with magnetic fields occur in nature and in the laboratory in an impressively broad range of scales, from megaparsecs in astrophysical systems to centimeters in fusion devices. The fact that such an enormous array of phenomena can be effectively studied lies in the existence of fundamental scaling laws in plasma turbulence, which allow one to scale the results of analytic and numerical modeling to the sized of galaxies, velocities of supernovae explosions, or magnetic fields in fusion devices. Magnetohydrodynamics (MHD) provides the simplest framework for describing magnetic plasma turbulence. Recently, a number of new features of MHD turbulence have been discovered and an impressive array of thought-provoking phenomenological theories have been put forward. However, these theories have conflicting predictions, and the currently available numerical simulations are not able to resolve the contradictions. MHD turbulence exhibits a variety of regimes unusual in regular hydrodynamic turbulence. Depending on the strength of the guide magnetic field it can be dominated by weakly interacting Alfv\\'en waves or strongly interacting wave packets. At small scales such turbulence is locally anisotropic and imbalanced (cross-helical). In a stark contrast with hydrodynamic turbulence, which tends to ``forget'' global constrains and become uniform and isotropic at small scales, MHD turbulence becomes progressively more anisotropic and unbalanced at small scales. Magnetic field plays a fundamental role in turbulent dynamics. Even when such a field is not imposed by external sources, it is self-consistently generated by the magnetic dynamo action. This project aims at a comprehensive study of universal regimes of magnetic plasma turbulence, combining the modern analytic approaches with the state of the art numerical simulations. The proposed study focuses on the three topics: weak MHD turbulence, which is relevant for laboratory devices

  19. Magnetic curvature effects on plasma interchange turbulence

    Science.gov (United States)

    Li, B.; Liao, X.; Sun, C. K.; Ou, W.; Liu, D.; Gui, G.; Wang, X. G.

    2016-06-01

    The magnetic curvature effects on plasma interchange turbulence and transport in the Z-pinch and dipole-like systems are explored with two-fluid global simulations. By comparing the transport levels in the systems with a different magnetic curvature, we show that the interchange-mode driven transport strongly depends on the magnetic geometry. For the system with large magnetic curvature, the pressure and density profiles are strongly peaked in a marginally stable state and the nonlinear evolution of interchange modes produces the global convective cells in the azimuthal direction, which lead to the low level of turbulent convective transport.

  20. Turbulent reconnection of magnetic bipoles in stratified turbulence

    CERN Document Server

    Jabbari, Sarah; Mitra, Dhrubaditya; Kleeorin, Nathan; Rogachevskii, Igor

    2016-01-01

    We consider strongly stratified forced turbulence in a plane-parallel layer with helicity and corresponding large-scale dynamo action in the lower part and nonhelical turbulence in the upper. The magnetic field is found to develop strongly concentrated bipolar structures near the surface. They form elongated bands with a sharp interface between opposite polarities. Unlike earlier experiments with imposed magnetic field, the inclusion of rotation does not strongly suppress the formation of these structures. We perform a systematic numerical study of this phenomenon by varying magnetic Reynolds number, scale separation ratio, and Coriolis number. We also focus on the formation of the current sheet between bipolar regions where reconnection of oppositely oriented field lines occurs. We determine the reconnection rate by measuring either the inflow velocity in the vicinity of the current sheet or by measuring the electric field in the reconnection region. We demonstrate that for small Lundquist number, S1000, the...

  1. Turbulent dynamo with advective magnetic helicity flux

    CERN Document Server

    Del Sordo, Fabio; Brandenburg, Axel

    2012-01-01

    Many astrophysical bodies harbor magnetic fields that are thought to be sustained by dynamo processes. However, it has been argued that the production of large-scale magnetic fields by a mean-field dynamo is strongly suppressed at large magnetic Reynolds numbers owing to the conservation of magnetic helicity. This phenomenon is known as catastrophic quenching. Advection of magnetic field toward the outer boundaries and away from the dynamo is expected to alleviate such quenching. Examples are stellar and galactic winds. Such advection might be able to overcome the constraint imposed by the conservation of magnetic helicity, transporting a fraction of it outside the domain in which the dynamo operates. We study how the dynamo process is affected by advection. In particular, we study the relative roles played by advective and diffusive fluxes of magnetic helicity. We do this by performing direct numerical simulations of a turbulent dynamo of alpha^2 type driven by forced turbulence in a Cartesian domain in the ...

  2. Turbulent transport and dynamo in sheared MHD turbulence with a non-uniform magnetic field

    OpenAIRE

    Leprovost, Nicolas; Kim, Eun-Jin

    2009-01-01

    We investigate three-dimensional magnetohydrodynamics turbulence in the presence of velocity and magnetic shear (i.e., with both a large-scale shear flow and a nonuniform magnetic field). By assuming a turbulence driven by an external forcing with both helical and nonhelical spectra, we investigate the combined effect of these two shears on turbulence intensity and turbulent transport represented by turbulent diffusivities (turbulent viscosity, α and β effect) in Reynolds-averaged equations. ...

  3. Polarimetric studies of magnetic turbulence with interferometer

    CERN Document Server

    Lee, Hyeseung; Cho, Jungyeon

    2016-01-01

    We study statistical properties of synchrotron polarization emitted from media with magnetohydrodynamic (MHD) turbulence. We use both synthetic and MHD turbulence simulation data for our studies. We obtain the spatial spectrum and its derivative with respect to wavelength of synchrotron polarization arising from both synchrotron radiation and Faraday rotation fluctuations. In particular, we investigate how the spectrum changes with frequency. We find that our simulations agree with the theoretical predication in Lazarian \\& Pogosyan (2016). We conclude that the spectrum of synchrotron polarization and it derivative can be very informative tools to get detailed information about the statistical properties of MHD turbulence from radio observations of diffuse synchrotron polarization. Especially, they are useful to recover the statistics of turbulent magnetic field as well as turbulent density of electrons. We also simulate interferometric observations that incorporate the effects of noise and finite telesco...

  4. Magnetic presheath in a turbulent plasma

    International Nuclear Information System (INIS)

    Fluid model of the magnetic presheath in a turbulent boundary plasma is presented. Turbulent transport corrections of the classical three-dimensional fluid transport equations, which can be used to study magnetic presheaths in various geometries, are derived by means of the ensemble averaging procedure from the statistical theory of plasma turbulence. The magnetic presheath in front of an infinite plane surface is then analysed in detail, by using linearised planar magnetic presheath equations for studying the plasma presheath-magnetic presheath boundary, i.e., the magnetic presheath edge, and the original non-linear planar magnetic presheath equations for studying the entire magnetic presheath when various sets of experimentally relevant free input parameters of the model are applied. Important new results of this study are, among others, new expressions for the fluid approximation of the Bohm criterion at the electrostatic sheath edge and for the ion flux density perpendicular to the wall, which include corrections due to the turbulent charged particle transport. These results can qualitatively explain electric currents measured by Langmuir probes in the boundary regions of nuclear fusion devices and in various low-temperature plasmas, which are anomalously enhanced in comparison with those expected or predicted by other theoretical models, when the angle between the magnetic field and the wall is very small (i.e., several degrees), or when the magnetic field is parallel to the wall. The boundary conditions of the fluid transport codes, which are used for tokamak boundary plasma modelling, can be improved by using the results of this study. (author)

  5. Drift Wave Turbulence and Magnetic Reconnection

    Science.gov (United States)

    Price, L.; Drake, J. F.; Swisdak, M.

    2015-12-01

    An important feature in collisionless magnetic reconnection is the development of sharp discontinuities along the separatrices bounding the Alfvenic outflow. The typical scale length of these features is ρs (the Larmor radius based on the sound speed) for guide field reconnection. Temperature gradients in the inflowing plasma (as might be found in the magnetopause and the magnetotail) can lead to instabilities at these separatrices, specifically drift wave turbulence. We present standalone 2D and 3D PIC simulations of drift wave turbulence to investigate scaling properties and growth rates. We specifically consider stabilization of the lower hybrid drift instability (LHDI) and the development of this instability in the presence of a sheared magnetic field. Further investigations of the relative importance of drift wave turbulence in the development of reconnection will also be considered.

  6. Mathematics of aperiodic order

    CERN Document Server

    Lenz, Daniel; Savinien, Jean

    2015-01-01

    What is order that is not based on simple repetition, that is, periodicity? How must atoms be arranged in a material so that it diffracts like a quasicrystal? How can we describe aperiodically ordered systems mathematically? Originally triggered by the – later Nobel prize-winning – discovery of quasicrystals, the investigation of aperiodic order has since become a well-established and rapidly evolving field of mathematical research with close ties to a surprising variety of branches of mathematics and physics. This book offers an overview of the state of the art in the field of aperiodic order, presented in carefully selected authoritative surveys. It is intended for non-experts with a general background in mathematics, theoretical physics or computer science, and offers a highly accessible source of first-hand information for all those interested in this rich and exciting field. Topics covered include the mathematical theory of diffraction, the dynamical systems of tilings or Delone sets, their cohomolog...

  7. Turbulent transport and dynamo in sheared magnetohydrodynamics turbulence with a nonuniform magnetic field.

    Science.gov (United States)

    Leprovost, Nicolas; Kim, Eun-Jin

    2009-08-01

    We investigate three-dimensional magnetohydrodynamics turbulence in the presence of velocity and magnetic shear (i.e., with both a large-scale shear flow and a nonuniform magnetic field). By assuming a turbulence driven by an external forcing with both helical and nonhelical spectra, we investigate the combined effect of these two shears on turbulence intensity and turbulent transport represented by turbulent diffusivities (turbulent viscosity, alpha and beta effect) in Reynolds-averaged equations. We show that turbulent transport (turbulent viscosity and diffusivity) is quenched by a strong flow shear and a strong magnetic field. For a weak flow shear, we further show that the magnetic shear increases the turbulence intensity while decreasing the turbulent transport. In the presence of a strong flow shear, the effect of the magnetic shear is found to oppose the effect of flow shear (which reduces turbulence due to shear stabilization) by enhancing turbulence and transport, thereby weakening the strong quenching by flow shear stabilization. In the case of a strong magnetic field (compared to flow shear), magnetic shear increases turbulence intensity and quenches turbulent transport. PMID:19792244

  8. Turbulent reconnection of magnetic bipoles in stratified turbulence

    Science.gov (United States)

    Jabbari, S.; Brandenburg, A.; Mitra, Dhrubaditya; Kleeorin, N.; Rogachevskii, I.

    2016-07-01

    We consider strongly stratified forced turbulence in a plane-parallel layer with helicity and corresponding large-scale dynamo action in the lower part and non-helical turbulence in the upper. The magnetic field is found to develop strongly concentrated bipolar structures near the surface. They form elongated bands with a sharp interface between opposite polarities. Unlike earlier experiments with imposed magnetic field, the inclusion of rotation does not strongly suppress the formation of these structures. We perform a systematic numerical study of this phenomenon by varying magnetic Reynolds number, scale-separation ratio, and Coriolis number. We focus on the formation of a current sheet between bipolar regions where reconnection of oppositely oriented field lines occurs. We determine the reconnection rate by measuring either the inflow velocity in the vicinity of the current sheet or by measuring the electric field in the reconnection region. We demonstrate that for large Lundquist numbers, S > 103, the reconnection rate is nearly independent of S in agreement with results of recent numerical simulations performed by other groups in simpler settings.

  9. Kinetic intermittency in magnetized plasma turbulence

    CERN Document Server

    Teaca, Bogdan; Told, Daniel; Jenko, Frank

    2016-01-01

    We employ magnetized plasma turbulence, described by a gyrokinetic formalism in an interval ranging from the end of the fluid scales to the electron gyroradius, to introduce the first study of kinetic intermittency, in which nonlinear structures formed directly in the distribution functions are analyzed by accounting for velocity space correlations generated by linear (Landau resonance) and nonlinear phase mixing. Electron structures are found to be strongly intermittent and dominated by linear phase mixing, while nonlinear phase mixing dominates the weakly intermittent ions. This is the first time spatial intermittency and linear phase mixing are shown to be self-consistently linked for the electrons and, as the magnetic field follows the intermittency of the electrons at small scales, explain why magnetic islands are places dominated by Landau damping in steady state turbulence.

  10. Electrostatic turbulence in strongly magnetized plasmas

    International Nuclear Information System (INIS)

    Turbulence in plasmas has been investigated experimentally and numerically. On the experimental side the turbulent nature of the Kelvin-Helmholtz instability has been studied in a single-ended Q-machine. The development of coherent structures in the background of the turbulent flow has been demonstrated and the capability of structures of transporting plasma across the magnetic field-lines is explained in detail. The numerical investigations are divided into two parts: Numerical simulations of the dynamics from the Q-machine experiments using spectral methods to solve the two-dimensional Navier-Stokes equations in a cylindrical geometry. A numerical study of the Eulerian-Lagrangian transformation in a two-dimensional flow. Here the flow is made up by a large number of structures, where each individual structure is convected by the superposed flow field of all the others. (au) (33 ills., 67 refs.)

  11. Small-scale magnetic buoyancy and magnetic pumping effects in a turbulent convection

    OpenAIRE

    Rogachevskii, I.; Kleeorin, N.

    2006-01-01

    We determine the nonlinear drift velocities of the mean magnetic field and nonlinear turbulent magnetic diffusion in a turbulent convection. We show that the nonlinear drift velocities are caused by the three kinds of the inhomogeneities, i.e., inhomogeneous turbulence; the nonuniform fluid density and the nonuniform turbulent heat flux. The inhomogeneous turbulence results in the well-known turbulent diamagnetic and paramagnetic velocities. The nonlinear drift velocities of the mean magnetic...

  12. Magnetic reconnection as an element of turbulence

    Directory of Open Access Journals (Sweden)

    S. Servidio

    2011-10-01

    Full Text Available In this work, recent advances on the study of reconnection in turbulence are reviewed. Using direct numerical simulations of decaying incompressible two-dimensional magnetohydrodynamics (MHD, it was found that in fully developed turbulence complex processes of reconnection locally occur (Servidio et al., 2009, 2010a. In this complex scenario, reconnection is spontaneous but locally driven by the fields, with the boundary conditions provided by the turbulence. Matching classical turbulence analysis with a generalized Sweet-Parker theory, the statistical features of these multiple-reconnection events have been identified. A discussion on the accuracy of our algorithms is provided, highlighting the necessity of adequate spatial resolution. Applications to the study of solar wind discontinuities are reviewed, comparing simulations to spacecraft observations. New results are shown, studying the time evolution of these local reconnection events. A preliminary study on the comparison between MHD and Hall MHD is reported. Our new approach to the study of reconnection as an element of turbulence has broad applications to space plasmas, shedding a new light on the study of magnetic reconnection in nature.

  13. Microtearing turbulence: Magnetic braiding and disruption limit

    Energy Technology Data Exchange (ETDEWEB)

    Firpo, Marie-Christine [Laboratoire de Physique des Plasmas, CNRS-Ecole Polytechnique, 91128 Palaiseau cedex (France)

    2015-12-15

    A realistic reduced model involving a large poloidal spectrum of microtearing modes is used to probe the existence of some stochasticity of magnetic field lines. Stochasticity is shown to occur even for the low values of the magnetic perturbation δB/B devoted to magnetic turbulence that have been experimentally measured. Because the diffusion coefficient may strongly depend on the radial (or magnetic-flux) coordinate, being very low near some resonant surfaces, and because its evaluation implicitly makes a normal diffusion hypothesis, one turns to another indicator appropriate to diagnose the confinement: the mean residence time of magnetic field lines. Their computation in the microturbulence frame points to the existence of a disruption limit, namely of a critical order of magnitude of δB/B above which stochasticity is no longer benign yet, leads to a macroscopic loss of confinement in some tens to hundred of electron toroidal excursions. Since the level of magnetic turbulence δB/B has been measured to grow with the plasma electron density, this would also be a density limit.

  14. Microtearing turbulence: Magnetic braiding and disruption limit

    International Nuclear Information System (INIS)

    A realistic reduced model involving a large poloidal spectrum of microtearing modes is used to probe the existence of some stochasticity of magnetic field lines. Stochasticity is shown to occur even for the low values of the magnetic perturbation δB/B devoted to magnetic turbulence that have been experimentally measured. Because the diffusion coefficient may strongly depend on the radial (or magnetic-flux) coordinate, being very low near some resonant surfaces, and because its evaluation implicitly makes a normal diffusion hypothesis, one turns to another indicator appropriate to diagnose the confinement: the mean residence time of magnetic field lines. Their computation in the microturbulence frame points to the existence of a disruption limit, namely of a critical order of magnitude of δB/B above which stochasticity is no longer benign yet, leads to a macroscopic loss of confinement in some tens to hundred of electron toroidal excursions. Since the level of magnetic turbulence δB/B has been measured to grow with the plasma electron density, this would also be a density limit

  15. Transport of magnetic turbulence in supernova remnants

    Science.gov (United States)

    Brose, R.; Telezhinsky, I.; Pohl, M.

    2016-08-01

    Context. Supernova remnants are known as sources of Galactic cosmic rays for their nonthermal emission of radio waves, X-rays, and gamma rays. However, the observed soft broken power-law spectra are hard to reproduce within standard acceleration theory based on the assumption of Bohm diffusion and steady-state calculations. Aims: We point out that a time-dependent treatment of the acceleration process together with a self-consistent treatment of the scattering turbulence amplification is necessary. Methods: We numerically solve the coupled system of transport equations for cosmic rays and isotropic Alfvénic turbulence. The equations are coupled through the growth rate of turbulence determined by the cosmic-ray gradient and the spatial diffusion coefficient of cosmic rays determined by the energy density of the turbulence. The system is solved on a comoving expanding grid extending upstream for dozens of shock radii, allowing for the self-consistent study of cosmic-ray diffusion in the vicinity of their acceleration site. The transport equation for cosmic rays is solved in a test-particle approach. Results: We demonstrate that the system is typically not in a steady state. In fact, even after several thousand years of evolution, no equilibrium situation is reached. The resulting time-dependent particle spectra strongly differ from those derived assuming a steady state and Bohm diffusion. Our results indicate that proper accounting for the evolution of the scattering turbulence and hence the particle diffusion coefficient is crucial for the formation of the observed soft spectra. In any case, the need to continuously develop magnetic turbulence upstream of the shock introduces nonlinearity in addition to that imposed by cosmic-ray feedback.

  16. Magnetic flux concentrations from turbulent stratified convection

    CERN Document Server

    Käpylä, P J; Kleeorin, N; Käpylä, M J; Rogachevskii, I

    2015-01-01

    (abridged) Context: The mechanisms that cause the formation of sunspots are still unclear. Aims: We study the self-organisation of initially uniform sub-equipartition magnetic fields by highly stratified turbulent convection. Methods: We perform simulations of magnetoconvection in Cartesian domains that are $8.5$-$24$ Mm deep and $34$-$96$ Mm wide. We impose either a vertical or a horizontal uniform magnetic field in a convection-driven turbulent flow. Results: We find that super-equipartition magnetic flux concentrations are formed near the surface with domain depths of $12.5$ and $24$ Mm. The size of the concentrations increases as the box size increases and the largest structures ($20$ Mm horizontally) are obtained in the 24 Mm deep models. The field strength in the concentrations is in the range of $3$-$5$ kG. The concentrations grow approximately linearly in time. The effective magnetic pressure measured in the simulations is positive near the surface and negative in the bulk of the convection zone. Its ...

  17. Solar wind magnetic turbulence: Inferences from spectral shape

    CERN Document Server

    Treumann, R A; Narita, Y

    2016-01-01

    Some differences between theoretical, numerical and observational determinations of spectral slopes of solar wind turbulence are interpreted in the thermodynamical sense. Confirmations of turbulent Kolmogorov slopes in solar wind magnetic turbulence and magnetohydrodynamic simulations exhibit tiny differences. These are used to infer about entropy generation in the turbulent cascade and to infer about the anomalous turbulent collision frequency in the dissipative range as well as the average energy input in solar wind turbulence. Anomalous turbulent collision frequencies are obtained of the order of v < 200 Hz. The corresponding stationary solar wind magnetic energy input into magnetic turbulence in the Kolmogorov inertial range is obtained to be of the order of 50 eV/s. Its thermal fate is discussed.

  18. Transport enhancement and suppression in turbulent magnetic reconnection: A self-consistent turbulence model

    OpenAIRE

    Yokoi, Nobumitsu; Higashimori, Katsuaki; Hoshino, Masahiro

    2014-01-01

    Through the enhancement of transport, turbulence is expected to contribute to the fast reconnection. However the effects of turbulence are not so straightforward. In addition to the enhancement of transport, turbulence under some environment shows effects that suppress the transport. In the presence of turbulent cross helicity, such a dynamic balance between the transport enhancement and suppression occurs. As this result of dynamic balance, the region of effective enhanced magnetic diffusivi...

  19. Aperiodic Volume Optics

    Science.gov (United States)

    Gerke, Tim D.

    Presented in this thesis is an investigation into aperiodic volume optical devices. The three main topics of research and discussion are the aperiodic volume optical devices that we call computer-generated volume holograms (CGVH), defects within periodic 3D photonic crystals, and non-periodic, but ordered 3D quasicrystals. The first of these devices, CGVHs, are designed and investigated numerically and experimentally. We study the performance of multi-layered amplitude computer-generated volume holograms in terms of efficiency and angular/frequency selectivity. Simulation results show that such aperiodic devices can increase diffraction efficiency relative to periodic amplitude volume holograms while maintaining angular and wavelength selectivity. CGVHs are also designed as voxelated volumes using a new projection optimization algorithm. They are investigated using a volumetric diffraction simulation and a standard 3D beam propagation technique as well as experimentally. Both simulation and experiment verify that the structures function according to their design. These represent the first diffractive structures that have the capacity for generating arbitrary transmission and reflection wave fronts and that provide the ability for multiplexing arbitrary functionality given different illumination conditions. Also investigated and discussed in this thesis are 3D photonic crystals and quasicrystals. We demonstrate that these devices can be fabricated using a femtosecond laser direct writing system that is particularly appropriate for fabrication of such arbitrary 3D structures. We also show that these devices can provide 3D partial bandgaps which could become complete bandgaps if fabricated using high index materials or by coating lower index materials with high index metals. Our fabrication method is particularly suited to the fabrication of engineered defects within the periodic or quasi-periodic systems. We demonstrate the potential for fabricating defects within

  20. Magnetic turbulence in the plasma sheet

    CERN Document Server

    Vörös, Z; Nakamura, R; Runov, A; Zhang, T L; Eichelberger, H U; Treumann, R A; Georgescu, E; Balogh, A; Klecker, B; R`eme, H

    2004-01-01

    Small-scale magnetic turbulence observed by the Cluster spacecraft in the plasma sheet is investigated by means of a wavelet estimator suitable for detecting distinct scaling characteristics even in noisy measurements. The spectral estimators used for this purpose are affected by a frequency dependent bias. The variances of the wavelet coefficients, however, match the power-law shaped spectra, which makes the wavelet estimator essentially unbiased. These scaling characteristics of the magnetic field data appear to be essentially non-steady and intermittent. The scaling properties of bursty bulk flow (BBF) and non-BBF associated magnetic fluctuations are analysed with the aim of understanding processes of energy transfer between scales. Small-scale ($\\sim 0.08-0.3$ s) magnetic fluctuations having the same scaling index $\\alpha \\sim 2.6$ as the large-scale ($\\sim 0.7-5$ s) magnetic fluctuations occur during BBF-associated periods. During non-BBF associated periods the energy transfer to small scales is absent, ...

  1. Effect of Externally Driven Magnetic Islands on Resistive Ballooning Turbulence

    OpenAIRE

    NISHIMURA, Seiya; Yagi, Masatoshi

    2011-01-01

    Turbulent transport in the edge region of tokamak plasmas is simulated using a reduced set of magnetohydrodynamic equations. Repetitive and intermittent transport bursts driven by resistive ballooning turbulence with external heating are observed. The effect of a resonant magnetic perturbation (RMP) on turbulent heat transport is examined, where the electromagnetic response of the plasma to the RMP is solved consistently. The penetration of the RMP excites a magnetic island chain and damps th...

  2. Magnetic Discontinuities in Magnetohydrodynamic Turbulence and in the Solar Wind

    OpenAIRE

    Zhdankin, Vladimir; Boldyrev, Stanislav; Mason, Joanne; Perez, Jean Carlos

    2012-01-01

    Recent measurements of solar wind turbulence report the presence of intermittent, exponentially distributed angular discontinuities in the magnetic field. In this Letter, we study whether such discontinuities can be produced by magnetohydrodynamic (MHD) turbulence. We detect the discontinuities by measuring the fluctuations of the magnetic field direction, Delta theta, across fixed spatial increments Delta x in direct numerical simulations of MHD turbulence with an imposed uniform guide field...

  3. Turbulent behaviour in magnetic hydrodynamics is not universal

    CERN Document Server

    Dmitriy, W

    1996-01-01

    A short distance expansion method (SDE) that is well known in the quantum field theory for analysis of turbulent behaviour of stochastic magnetic hydrodynamics of incompressible conductive fluid is applied. As a result is shown that in an inertial range the turbulent spectra of magnetic hydrodynamics depend on a scale of arising of curls.

  4. Toward the Theory of Turbulence in Magnetized Plasmas

    International Nuclear Information System (INIS)

    The goal of the project was to develop a theory of turbulence in magnetized plasmas at large scales, that is, scales larger than the characteristic plasma microscales (ion gyroscale, ion inertial scale, etc.). Collisions of counter-propagating Alfven packets govern the turbulent cascade of energy toward small scales. It has been established that such an energy cascade is intrinsically anisotropic, in that it predominantly supplies energy to the modes with mostly field-perpendicular wave numbers. The resulting energy spectrum of MHD turbulence, and the structure of the fluctuations were studied both analytically and numerically. A new parallel numerical code was developed for simulating reduced MHD equations driven by an external force. The numerical setting was proposed, where the spectral properties of the force could be varied in order to simulate either strong or weak turbulent regimes. It has been found both analytically and numerically that weak MHD turbulence spontaneously generates a 'condensate', that is, concentration of magnetic and kinetic energy at small kllel)). A related topic that was addressed in the project is turbulent dynamo action, that is, generation of magnetic field in a turbulent flow. We were specifically concentrated on the generation of large-scale magnetic field compared to the scales of the turbulent velocity field. We investigate magnetic field amplification in a turbulent velocity field with nonzero helicity, in the framework of the kinematic Kazantsev-Kraichnan model

  5. Magnetic flux concentrations from turbulent stratified convection

    Science.gov (United States)

    Käpylä, P. J.; Brandenburg, A.; Kleeorin, N.; Käpylä, M. J.; Rogachevskii, I.

    2016-04-01

    Context. The formation of magnetic flux concentrations within the solar convection zone leading to sunspot formation is unexplained. Aims: We study the self-organization of initially uniform sub-equipartition magnetic fields by highly stratified turbulent convection. Methods: We perform simulations of magnetoconvection in Cartesian domains representing the uppermost 8.5-24 Mm of the solar convection zone with the horizontal size of the domain varying between 34 and 96 Mm. The density contrast in the 24 Mm deep models is more than 3 × 103 or eight density scale heights, corresponding to a little over 12 pressure scale heights. We impose either a vertical or a horizontal uniform magnetic field in a convection-driven turbulent flow in set-ups where no small-scale dynamos are present. In the most highly stratified cases we employ the reduced sound speed method to relax the time step constraint arising from the high sound speed in the deep layers. We model radiation via the diffusion approximation and neglect detailed radiative transfer in order to concentrate on purely magnetohydrodynamic effects. Results: We find that super-equipartition magnetic flux concentrations are formed near the surface in cases with moderate and high density stratification, corresponding to domain depths of 12.5 and 24 Mm. The size of the concentrations increases as the box size increases and the largest structures (20 Mm horizontally near the surface) are obtained in the models that are 24 Mm deep. The field strength in the concentrations is in the range of 3-5 kG, almost independent of the magnitude of the imposed field. The amplitude of the concentrations grows approximately linearly in time. The effective magnetic pressure measured in the simulations is positive near the surface and negative in the bulk of the convection zone. Its derivative with respect to the mean magnetic field, however, is positive in most of the domain, which is unfavourable for the operation of the negative

  6. Effect of externally driven magnetic islands on resistive ballooning turbulence

    International Nuclear Information System (INIS)

    Turbulent transport in the edge region of tokamak plasmas is simulated using a reduced set of magnetohydrodynamic equations. Repetitive and intermittent transport bursts driven by resistive ballooning turbulence with external heating are observed. The effect of a resonant magnetic perturbation (RMP) on turbulent heat transport is examined, where the electromagnetic response of the plasma to the RMP is solved consistently. The penetration of the RMP excites a magnetic island chain and damps the poloidal flow near the magnetic islands. The transport bursts are found to be replaced by more moderate and continuous transport. The change in the transport pattern is associated with the effect of the RMP on nonlinear coupling of fluctuations. (author)

  7. Turbulent particle transport in magnetized fusion plasma

    International Nuclear Information System (INIS)

    The understanding of the mechanisms responsible for particle transport is of the utmost importance for magnetized fusion plasmas. Indeed, a peaked density profile is attractive to improve the fusion rate, which is proportional to the square of the density, and to self-generate a large fraction of non-inductive current required for continuous operation. Experiments in various tokamak devices have indicated the existence of an anomalous inward particle pinch. Recently, such an anomalous pinch has been unambiguously identified in Tore Supra very long discharges, in absence of toroidal electric field and of central particle source, for more than 3 minutes. This anomalous particle pinch is predicted by a quasilinear theory of particle transport, and confirmed by non-linear turbulence simulations and general considerations based on the conservation of motion invariants. Experimentally, the particle pinch is found to be sensitive to the magnetic field gradient in many cases, to the temperature gradient and also to the collisionality that changes the nature of the microturbulence. The consistency of some of the observed dependences with the theoretical predictions gives us a clearer understanding of the particle pinch in tokamaks, allowing us to predict more accurately the density profile in ITER. (authors)

  8. Turbulence Reduces Magnetic Diffusivity in DTS Liquid Sodium Experiment

    Science.gov (United States)

    Cabanes, Simon; Nataf, Henri-Claude; Schaeffer, Nathanael

    2015-04-01

    Earth, Sun and many other astrophysical bodies produce their own magnetic field by dynamo action, where induction of magnetic field by fluid motion overcomes the Joule dissipation when the magnetic Reynolds number Rm = UL/η is large enough (U and L are characteristic velocity and length-scale and η the magnetic diffusivity). Large scale motion of a conducting medium shearing pre-existing magnetic field lines is a well known process to produce large scale magnetic field by omega-effect. However, such a process cannot sustain a self-excited dynamo and small-scale turbulent motions are usually invoked as the appropriate mechanism to dynamo action. The contribution of turbulent fluctuations to the induction of mean magnetic field is investigated in our liquid sodium spherical Couette experiment, with an imposed magnetic field. Many measurements are used through an inversion technique to obtain a radial profile of α and β effects together with the mean flow at magnetic Reynolds number Rm = 100. It appears that the small scale turbulent fluctuations can be modeled as a strong contribution to the magnetic diffusivity which is negative in the interior region and positive close to the outer shell.Direct numerical simulations of our experiment support these results. The lowering of the effective magnetic diffusivity by small scale fluctuations implies that turbulence can actually help to achieve self-generation of large scale magnetic fields.

  9. The inverse cascade of magnetic helicity in magnetohydrodynamic turbulence

    OpenAIRE

    Müller, W.; Malapaka, S.; Busse, A.

    2012-01-01

    The nonlinear dynamics of magnetic helicity, $H^M$, which is responsible for large-scale magnetic structure formation in electrically conducting turbulent media is investigated in forced and decaying three-dimensional magnetohydrodynamic turbulence. This is done with the help of high resolution direct numerical simulations and statistical closure theory. The numerically observed spectral scaling of $H^M$ is at variance with earlier work using a statistical closure model [Pouquet et al., J. Fl...

  10. Turbulent Amplification and Structure of the Intracluster Magnetic Field

    CERN Document Server

    Beresnyak, Andrey

    2015-01-01

    We compare DNS calculations of homogeneous isotropic turbulence with the statistical properties of intra-cluster turbulence from the Matryoshka Run (Miniati 2014) and find remarkable similarities between their inertial ranges. This allowed us to use the time dependent statistical properties of intra-cluster turbulence to evaluate dynamo action in the intra-cluster medium, based on earlier results from numerically resolved nonlinear magneto-hydrodynamic turbulent dynamo (Beresnyak 2012). We argue that this approach is necessary (a) to properly normalize dynamo action to the available intra-cluster turbulent energy and (b) to overcome the limitations of low Re affecting current numerical models of the intra-cluster medium. We find that while the properties of intra-cluster magnetic field are largely insensitive to the value and origin of the seed field, the resulting values for the Alfven speed and the outer scale of the magnetic field are consistent with current observational estimates, basically confirming th...

  11. Turbulent magnetic reconnection in 2D and 3D

    CERN Document Server

    Lazarian, A; Vishniac, E; Kulpa-Dubel, K; Otmianowska-Mazur, K

    2010-01-01

    Magnetic field embedded in a perfectly conducting fluid preserves its topology for all time. Although ionized astrophysical objects, like stars and galactic disks, are almost perfectly conducting, they show indications of changes in topology, `magnetic reconnection', on dynamical time scales. Reconnection can be observed directly in the solar corona, but can also be inferred from the existence of large scale dynamo activity inside stellar interiors. Solar flares and gamma ray busts are usually associated with magnetic reconnection. Previous work has concentrated on showing how reconnection can be rapid in plasmas with very small collision rates. Here we present numerical evidence, based on three dimensional simulations, that reconnection in a turbulent fluid occurs at a speed comparable to the rms velocity of the turbulence, regardless of the value of the resistivity. In particular, this is true for turbulent pressures much weaker than the magnetic field pressure so that the magnetic field lines are only slig...

  12. Magnetic flux concentration and zonal flows in magnetorotational instability turbulence

    International Nuclear Information System (INIS)

    Accretion disks are likely threaded by external vertical magnetic flux, which enhances the level of turbulence via the magnetorotational instability (MRI). Using shearing-box simulations, we find that such external magnetic flux also strongly enhances the amplitude of banded radial density variations known as zonal flows. Moreover, we report that vertical magnetic flux is strongly concentrated toward low-density regions of the zonal flow. Mean vertical magnetic field can be more than doubled in low-density regions, and reduced to nearly zero in high-density regions in some cases. In ideal MHD, the scale on which magnetic flux concentrates can reach a few disk scale heights. In the non-ideal MHD regime with strong ambipolar diffusion, magnetic flux is concentrated into thin axisymmetric shells at some enhanced level, whose size is typically less than half a scale height. We show that magnetic flux concentration is closely related to the fact that the turbulent diffusivity of the MRI turbulence is anisotropic. In addition to a conventional Ohmic-like turbulent resistivity, we find that there is a correlation between the vertical velocity and horizontal magnetic field fluctuations that produces a mean electric field that acts to anti-diffuse the vertical magnetic flux. The anisotropic turbulent diffusivity has analogies to the Hall effect, and may have important implications for magnetic flux transport in accretion disks. The physical origin of magnetic flux concentration may be related to the development of channel flows followed by magnetic reconnection, which acts to decrease the mass-to-flux ratio in localized regions. The association of enhanced zonal flows with magnetic flux concentration may lead to global pressure bumps in protoplanetary disks that helps trap dust particles and facilitates planet formation.

  13. Asymmetric diffusion of magnetic field lines in turbulence

    International Nuclear Information System (INIS)

    Stochasticity of magnetic field lines is paramount to understanding particle transport and mixing (Rechester and Rosenbluth 1978 Phys. Rev. Lett. 40 38–41). In this paper we study magnetic field separation in turbulent plasmas, which feature so-called superdiffusion, where field lines separate faster than diffusively. We discovered that turbulent superdiffusion can be pronouncedly asymmetric, so that the separation of field lines will be different if one follows magnetic field lines along the direction of the field or follows them in the opposite direction. Particle transport perpendicular to the magnetic field is primarily due to the field line separation in collisionless, well-magnetized plasmas. The asymmetry in diffusion, however, was certainly unexpected, as it will create free energy in particles that follow field lines, e.g. it will create large-scale streaming out of particle gradients perpendicular to the mean magnetic field. While the symmetry of the flow is broken by the so-called imbalance or cross-helicity, the difference between forward and backward diffusion is not directly due to imbalance, but a non-trivial consequence of both imbalance and non-reversibility of turbulence. It therefore follows that this peculiar property of field lines is directly related to turbulence being a dissipative phenomenon, and that turbulence can directly channel part of its free energy to particles. (invited comment)

  14. Turbulent Diffusion of Magnetic Fields in Weakly Ionized Gas

    OpenAIRE

    Kim, Eun-Jin; P. H. Diamond

    2002-01-01

    The diffusion of uni-directional magnetic fields by two dimensional turbulent flows in a weakly ionized gas is studied. The fields here are orthogonal to the plane of fluid motion. This simple model arises in the context of the decay of the mean magnetic flux to mass ratio in the interstellar medium. When ions are strongly coupled to neutrals, the transport of a large--scale magnetic field is driven by both turbulent mixing and nonlinear, ambipolar drift. Using a standard homogeneous and Gaus...

  15. Wavelet analysis of magnetic turbulence in the Earth's plasma sheet

    CERN Document Server

    Baumjohann, W; Runov, A; Volwerk, M; Zhang, T L; Balogh, A

    2004-01-01

    Recent studies provide evidence for the multi-scale nature of magnetic turbulence in the plasma sheet. Wavelet methods represent modern time series analysis techniques suitable for the description of statistical characteristics of multi-scale turbulence. Cluster FGM (fluxgate magnetometer) magnetic field high-resolution (~67 Hz) measurements are studied during an interval in which the spacecraft are in the plasma sheet. As Cluster passes through different plasma regions, physical processes exhibit non-steady properties on magnetohydrodynamic (MHD) and small, possibly kinetic scales. As a consequence, the implementation of wavelet-based techniques becomes complicated due to the statistically transitory properties of magnetic fluctuations and finite size effects. Using a supervised multi-scale technique which allows existence test of moments, the robustness of higher-order statistics is investigated. On this basis the properties of magnetic turbulence are investigated for changing thickness of the plasma sheet.

  16. The Inherently Three-Dimensional Nature of Magnetized Plasma Turbulence

    CERN Document Server

    Howes, Gregory G

    2013-01-01

    It is often asserted or implicitly assumed, without justification, that the results of two-dimensional investigations of plasma turbulence are applicable to the three-dimensional plasma environments of interest. A projection method is applied to derive two scalar equations that govern the nonlinear evolution of the Alfvenic and pseudo-Alfvenic components of ideal incompressible magnetohydrodynamic (MHD) plasma turbulence. The mathematical form of these equations makes clear the inherently three-dimensional nature of plasma turbulence, enabling an analysis of the nonlinear properties of two-dimensional limits often used to study plasma turbulence. In the anisotropic limit k_perp >>k_parallel that naturally arises in magnetized plasma systems, the perpendicular 2D limit retains the dominant nonlinearities that are mediated only by the Alfvenic fluctuations but lacks the wave physics associated with the linear term that is necessary to capture the anisotropic cascade of turbulent energy. In the in-plane 2D limit...

  17. INVERSE CASCADE OF NONHELICAL MAGNETIC TURBULENCE IN A RELATIVISTIC FLUID

    Energy Technology Data Exchange (ETDEWEB)

    Zrake, Jonathan [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Menlo Park, CA 94025 (United States)

    2014-10-20

    The free decay of nonhelical relativistic magnetohydrodynamic turbulence is studied numerically, and found to exhibit cascading of magnetic energy toward large scales. Evolution of the magnetic energy spectrum P{sub M} (k, t) is self-similar in time and well modeled by a broken power law with subinertial and inertial range indices very close to 7/2 and –2, respectively. The magnetic coherence scale is found to grow in time as t {sup 2/5}, much too slow to account for optical polarization of gamma-ray burst afterglow emission if magnetic energy is to be supplied only at microphysical length scales. No bursty or explosive energy loss is observed in relativistic MHD turbulence having modest magnetization, which constrains magnetic reconnection models for rapid time variability of GRB prompt emission, blazars, and the Crab nebula.

  18. Turbulent Amplification and Structure of the Intracluster Magnetic Field

    Science.gov (United States)

    Beresnyak, Andrey; Miniati, Francesco

    2016-02-01

    We compare DNS calculations of homogeneous isotropic turbulence with the statistical properties of intracluster turbulence from the Matryoshka Run and find remarkable similarities between their inertial ranges. This allowed us to use the time-dependent statistical properties of intracluster turbulence to evaluate dynamo action in the intracluster medium, based on earlier results from a numerically resolved nonlinear magneto-hydrodynamic turbulent dynamo. We argue that this approach is necessary (a) to properly normalize dynamo action to the available intracluster turbulent energy and (b) to overcome the limitations of low Re affecting current numerical models of the intracluster medium. We find that while the properties of intracluster magnetic field are largely insensitive to the value and origin of the seed field, the resulting values for the Alfvén speed and the outer scale of the magnetic field are consistent with current observational estimates, basically confirming the idea that the magnetic field in today’s galaxy clusters is a record of its past turbulent activity.

  19. Aperiodic Subshifts on Polycyclic Groups

    OpenAIRE

    Jeandel, Emmanuel

    2016-01-01

    Previous version had a mistake in the proof of the polycyclic case. The new proof needs a very strong new result by Barbieri and Sablik, that the authors hopes is avoidable We prove that every polycyclic group of nonlinear growth admits a strongly aperiodic SFT and has an undecidable domino problem. This answers a question of [4] and generalizes the result of [2].

  20. Hall MHD Stability and Turbulence in Magnetically Accelerated Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    H. R. Strauss

    2012-11-27

    The object of the research was to develop theory and carry out simulations of the Z pinch and plasma opening switch (POS), and compare with experimental results. In the case of the Z pinch, there was experimental evidence of ion kinetic energy greatly in excess of the ion thermal energy. It was thought that this was perhaps due to fine scale turbulence. The simulations showed that the ion energy was predominantly laminar, not turbulent. Preliminary studies of a new Z pinch experiment with an axial magnetic field were carried out. The axial magnetic is relevant to magneto - inertial fusion. These studies indicate the axial magnetic field makes the Z pinch more turbulent. Results were also obtained on Hall magnetohydrodynamic instability of the POS.

  1. Cosmic-ray diffusion in magnetized turbulence

    CERN Document Server

    Tautz, R C

    2015-01-01

    The problem of cosmic-ray scattering in the turbulent electromagnetic fields of the interstellar medium and the solar wind is of great importance due to the variety of applications of the resulting diffusion coefficients. Examples are diffusive shock acceleration, cosmic-ray observations, and, in the solar system, the propagation of coronal mass ejections. In recent years, it was found that the simple diffusive motion that had been assumed for decades is often in disagreement both with numerical and observational results. Here, an overview is given of the interaction processes of cosmic rays and turbulent electromagnetic fields. First, the formation of turbulent fields due to plasma instabilities is treated, where especially the non-linear behavior of the resulting unstable wave modes is discussed. Second, the analytical and the numerical side of high-energy particle propagation will be reviewed by presenting non-linear analytical theories and Monte-Carlo simulations. For the example of the solar wind, the im...

  2. Polarization of radiation of electrons in highly turbulent magnetic fields

    CERN Document Server

    Prosekin, A Yu; Aharonian, F A

    2016-01-01

    We study the polarization properties of the jitter and synchrotron radiation produced by electrons in highly turbulent anisotropic magnetic fields. The net polarization is provided by the geometry of the magnetic field the directions of which are parallel to a certain plane. Such conditions may appear in the relativistic shocks during the amplification of the magnetic field through the so-called Weibel instability. While the polarization properties of the jitter radiation allows extraction of direct information on the turbulence spectrum as well as the geometry of magnetic field, the polarization of the synchrotron radiation reflects the distribution of the magnetic field over its strength. For the isotropic distribution of monoenergetic electrons, we found that the degree of polarization of the synchrotron radiation is larger than the polarization of the jitter radiation. For the power-law energy distribution of electrons the relation between the degree of polarization of synchrotron and jitter radiation dep...

  3. Turbulence-induced magnetic fields in shock precursors

    CERN Document Server

    del Valle, Maria Victoria; Santos-Lima, Reinaldo

    2016-01-01

    Galactic cosmic rays are believed to be mostly accelerated at supernova shocks. However, the interstellar magnetic field is too weak to efficiently accelerate galactic cosmic rays up to the highest energies, i.e. $10^{15}$ eV. A stronger magnetic field in the pre-shock region could provide the efficiency required. Bell's cosmic-ray nonresonant streaming instability has been claimed to be responsible for the amplification of precursor magnetic fields. However, an alternative mechanism has been proposed in which the cosmic-ray pressure gradient forms the shock precursor and drives turbulence, amplifying the magnetic field via the small-scale dynamo. A key ingredient for the mechanism to operate are the inhomogeneities present in the interstellar medium (ISM). These inhomogeneities are the consequence of turbulence. In this work we explore the magnetic field amplification in different ISM conditions through 3D MHD numerical simulations.

  4. Turbulence-induced magnetic fields in shock precursors

    Science.gov (United States)

    del Valle, M. V.; Lazarian, A.; Santos-Lima, R.

    2016-05-01

    Galactic cosmic rays are believed to be mostly accelerated at supernova shocks. However, the interstellar magnetic field is too weak to efficiently accelerate galactic cosmic rays up to the highest energies, i.e. 1015 eV. A stronger magnetic field in the pre-shock region could provide the efficiency required. Bell's cosmic ray non-resonant streaming instability has been claimed to be responsible for the amplification of precursor magnetic fields. However, an alternative mechanism has been proposed in which the cosmic ray pressure gradient forms the shock precursor and drives turbulence, amplifying the magnetic field via the small-scale dynamo. Key ingredients for the mechanism to operate are the inhomogeneities present in the interstellar medium. These inhomogeneities are the consequence of turbulence. In this work we explore the magnetic field amplification in different interstellar medium conditions through 3D magnetohydrodynamic numerical simulations.

  5. Magnetic reversals in a modified shell model for magnetohydrodynamics turbulence.

    Science.gov (United States)

    Nigro, Giuseppina; Carbone, Vincenzo

    2010-07-01

    The aim of the paper is the study of dynamo action using a simple nonlinear model in the framework of magnetohydrodynamic turbulence. The nonlinear behavior of the system is described by using a shell model for velocity field and magnetic field fluctuations, modified for the magnetic field at the largest scale by a term describing a supercritical pitchfork bifurcation. Turbulent fluctuations generate a dynamical situation where the large-scale magnetic field jumps between two states which represent the opposite polarities of the magnetic field. Despite its simplicity, the model has the capability to describe a long time series of reversals from which we infer results about the statistics of persistence times and scaling laws of cancellations between opposite polarities for different magnetic diffusivity coefficients. These properties of the model are compared with real paleomagnetic data, thus revealing the origin of long-range correlations in the process. PMID:20866731

  6. Magnetic reversals in a modified shell model for magnetohydrodynamics turbulence

    Science.gov (United States)

    Nigro, Giuseppina; Carbone, Vincenzo

    2010-07-01

    The aim of the paper is the study of dynamo action using a simple nonlinear model in the framework of magnetohydrodynamic turbulence. The nonlinear behavior of the system is described by using a shell model for velocity field and magnetic field fluctuations, modified for the magnetic field at the largest scale by a term describing a supercritical pitchfork bifurcation. Turbulent fluctuations generate a dynamical situation where the large-scale magnetic field jumps between two states which represent the opposite polarities of the magnetic field. Despite its simplicity, the model has the capability to describe a long time series of reversals from which we infer results about the statistics of persistence times and scaling laws of cancellations between opposite polarities for different magnetic diffusivity coefficients. These properties of the model are compared with real paleomagnetic data, thus revealing the origin of long-range correlations in the process.

  7. Transport of magnetic turbulence in Supernova remnants

    CERN Document Server

    Brose, Robert; Pohl, Martin

    2016-01-01

    Context. Supernova remnants are known as sources of galactic cosmic rays for their non-thermal emission of radio waves, X-rays, and gamma-rays. However, the observed soft broken power-law spectra are hard to reproduce within standard acceleration theory based on the assumption of Bohm diffusion and steady-state calculations. Aims. We point out that a time-dependent treatment of the acceleration process together with a self-consistent treatment of the scattering turbulence amplification is necessary. Methods. We numerically solve the coupled system of transport equations for cosmic rays and isotropic Alfvenic turbulence. The equations are coupled through the growth rate of turbulence determined by the cosmic-ray gradient and the spatial diffusion coefficient of cosmic rays determined by the energy density of the turbulence. The system is solved on a co-moving expanding grid extending upstream for dozens of shock radii, allowing for the self-consistent study of cosmic-ray diffusion in the vicinity of their acce...

  8. PREFACE: 6th International Conference on Aperiodic Crystals (APERIODIC'09)

    Science.gov (United States)

    Grimm, Uwe; McGrath, Rónán; Degtyareva, Olga; Sharma, Hem Raj

    2010-04-01

    Aperiodic Logo Aperiodic'09, the sixth International Conference on Aperiodic Crystals, took place in Liverpool 13-18 September 2009. It was the first major conference in this interdisciplinary research field held in the UK. The conference, which was organised under the auspices of the Commission on Aperiodic Crystals of the International Union of Crystallography (IUCr), followed on from Aperiodic'94 (Les Diablerets, Switzerland), Aperiodic'97 (Alpe d'Huez, France), Aperiodic'2000 (Nijmegen, The Netherlands), Aperiodic'03 (Belo Horizonte, Brazil) and Aperiodic'06 (Zao, Japan). The next conference in the series will take place in Australia in 2012. The Aperiodic conference series is itself the successor to a series of Conferences on Modulated Structures, Polytypes and Quasicrystals (MOSPOQ), which were held in Marseilles (France) in 1984, Wroclaw (Poland) in 1986, Varanasi (India) in 1988 and Balatonszeplak (Hungary) in 1991. The remit of the conference covers two broad areas of research on aperiodic crystals, incommensurately modulated and composite crystals on the one hand, and quasicrystals on the other hand, sharing the property that they are aperiodically ordered solids. In addition, the conference also featured recent research on complex metal alloys, which are in fact periodically ordered solids. However, the term complex refers to their large unit cells, which may contain thousands of atoms, and as a consequence complex metal alloys share some of the properties of quasicrystalline solids. Aperiodic'09 attracted about 110 participants from across the world, including 20 UK-based scientists (the second largest group after Japan who sent 21 delegates). A particular feature of the conference series is its interdisciplinary character, and once again the range of disciplines of participants included mathematics, physics, crystallography and materials science. The programme started with three tutorial lectures on Sunday afternoon, presenting introductory overviews

  9. On the Nature of Magnetic Turbulence in Rotating, Shearing Flows

    CERN Document Server

    Walker, Justin; Boldyrev, Stanislav

    2015-01-01

    The local properties of turbulence driven by the magnetorotational instability (MRI) in rotating, shearing flows are studied in the framework of a shearing-box model. Based on numerical simulations, we propose that the MRI-driven turbulence comprises two components: the large-scale shear-aligned strong magnetic field and the small-scale fluctuations resembling magnetohydrodynamic (MHD) turbulence. The energy spectrum of the large-scale component is close to $k^{-2}$, whereas the spectrum of the small-scale component agrees with the spectrum of strong MHD turbulence $k^{-3/2}$. While the spectrum of the fluctuations is universal, the outer-scale characteristics of the turbulence are not; they depend on the parameters of the system, such as the net magnetic flux. However, there is remarkable universality among the allowed turbulent states -- their intensity $v_0$ and their outer scale $\\lambda_0$ satisfy the balance condition $v_0/\\lambda_0\\sim \\mathrm d\\Omega/\\mathrm d\\ln r$, where $\\mathrm d\\Omega/\\mathrm d\\l...

  10. Exploring phase space turbulence in magnetic fusion plasmas

    International Nuclear Information System (INIS)

    Plasma turbulence accompanied with fluctuations of the distribution function and the electromagnetic fields develops on the phase space composed of the configuration space and the velocity space. Detailed structures of the distribution function in magnetic fusion plasmas are investigated by means of gyrokinetic simulations performed on massively parallel supercomputers. The gyrokinetic simulations of drift wave turbulence have demonstrated entropy transfer in the phase space, zonal flow enhancement by helical fields and the resultant transport reduction. The state-of-the-art high performance computing is utilized for a multi-scale turbulence simulation covering ion- and electron-scales and for a global-scale simulation of turbulent transport in a sub-ITER sized plasma.

  11. BIPOLAR MAGNETIC STRUCTURES DRIVEN BY STRATIFIED TURBULENCE WITH A CORONAL ENVELOPE

    International Nuclear Information System (INIS)

    We report the spontaneous formation of bipolar magnetic structures in direct numerical simulations of stratified forced turbulence with an outer coronal envelope. The turbulence is forced with transverse random waves only in the lower (turbulent) part of the domain. Our initial magnetic field is either uniform in the entire domain or confined to the turbulent layer. After about 1-2 turbulent diffusion times, a bipolar magnetic region of vertical field develops with two coherent circular structures that live during one turbulent diffusion time, and then decay during 0.5 turbulent diffusion times. The resulting magnetic field strengths inside the bipolar region are comparable to the equipartition value with respect to the turbulent kinetic energy. The bipolar magnetic region forms a loop-like structure in the upper coronal layer. We associate the magnetic structure formation with the negative effective magnetic pressure instability in the two-layer model

  12. Thermal Instability and Magnetic Pressure in the Turbulent Interstellar Medium

    CERN Document Server

    Vázquez-Semadeni, E; Passot, T; Sánchez-Salcedo, F J; Vazquez-Semadeni, Enrique; Gazol, Adriana; Passot, Thierry; Sanchez-Salcedo, Javier

    2003-01-01

    We review recent results on the nonlinear development of thermal instability (TI) in the context of the turbulent atomic interstellar medium (ISM). First, we discuss the growth of entropy perturbations in isolation, as a function of the ratio \\eta of the cooling time to the dynamical crossing time. For \\eta~ 0.3) and occurs at scales with \\eta>1. We then consider the behavior of magnetic pressure in turbulent regimes. We propose that the reported lack of correlation between the magnetic pressure and the density is a consequence of the different scaling of the magnetic pressure with density for the slow and fast modes of nonlinear MHD waves. This implies that magnetic ``pressure'' is not a suitable candidate for supplementing thermal pressure in the presence of TI, and that polytropic descriptions of it are probably not adequate in the fully turbulent regime. Finally, we consider TI in a turbulent ISM-like medium. We find that the flow does not exhibit sharp phase transitions, as would be expected in classical...

  13. Fast Diffusion of Magnetic Field in Turbulence and Origin of Cosmic Magnetism

    CERN Document Server

    Cho, Jungyeon

    2013-01-01

    Turbulence is believed to play important roles in the origin of cosmic magnetism. While it is well known that turbulence can efficiently amplify a uniform or spatially homogeneous seed magnetic field, it is not clear whether or not we can draw a similar conclusion for a localized seed magnetic field. The main uncertainty is the rate of magnetic field diffusion on scales larger than the outer scale of turbulence. To measure the diffusion rate of magnetic field on those large scales, we perform a numerical simulation in which the outer scale of turbulence is much smaller than the size of the system. We numerically compare diffusion of a localized seed magnetic field and a localized passive scalar. We find that diffusion of the magnetic field can be much faster than that of the passive scalar and that turbulence can efficiently amplify the localized seed magnetic field. Based on the simulation result, we construct a model for fast diffusion of magnetic field. Our model suggests that a localized seed magnetic fie...

  14. DIFFUSION OF MAGNETIC FIELD AND REMOVAL OF MAGNETIC FLUX FROM CLOUDS VIA TURBULENT RECONNECTION

    International Nuclear Information System (INIS)

    The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence reassures that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our three-dimensional MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e., without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our three-dimensional simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus, the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the

  15. Turbulent magnetic field amplification from the smallest to the largest magnetic Prandtl numbers

    International Nuclear Information System (INIS)

    The small-scale dynamo provides a highly efficient mechanism for the conversion of turbulent into magnetic energy. In astrophysical environments, such turbulence often occurs at high Mach numbers, implying steep slopes in the turbulent spectra. It is thus a central question whether the small-scale dynamo can amplify magnetic fields in the interstellar or intergalactic media, where such Mach numbers occur. To address this long-standing issue, we employ the Kazantsev model for turbulent magnetic field amplification, systematically exploring the effect of different turbulent slopes, as expected for Kolmogorov, Burgers, the Larson laws and results derived from numerical simulations. With the framework employed here, we give the first solution encompassing the complete range of magnetic Prandtl numbers, including Pm ≪ 1, Pm ∼ 1 and Pm ≫ 1. We derive scaling laws of the growth rate as a function of hydrodynamic and magnetic Reynolds number for Pm ≪ 1 and Pm ≫ 1 for all types of turbulence. A central result concerns the regime of Pm ∼ 1, where the magnetic field amplification rate increases rapidly as a function of Pm. This phenomenon occurs for all types of turbulence we have explored. We further find that the dynamo growth rate can be decreased by a few orders of magnitude for turbulence spectra steeper than Kolmogorov. We calculate the critical magnetic Reynolds number Rmc for magnetic field amplification, which is highest for the Burgers case. As expected, our calculation shows a linear behaviour of the amplification rate close to the threshold proportional to (Rm − Rmc). On the basis of the Kazantsev model, we therefore expect the existence of the small-scale dynamo for a given value of Pm as long as the magnetic Reynolds number is above the critical threshold. (paper)

  16. Aperiodic and semi-periodic perfect maps

    OpenAIRE

    Mitchell, Chris

    1995-01-01

    Paterson [1] has recently shown that the trivial necessary conditions are sufficient for the existence of a (binary) perfect map. These periodic structures can be transformed very simply into corresponding aperiodic and semi-periodic perfect maps. However, aperiodic and semi-periodic perfect maps can exist for parameter sets for which the corresponding periodic perfect maps cannot. In this paper it is shown, by construction, that (binary) aperiodic and semi-periodic perfect maps exist for all...

  17. Bondi-like Accretion in Magnetized Supersonic Isothermal Turbulence

    Science.gov (United States)

    Burleigh, Kaylan J.; McKee, Christopher F.; Klein, Richard I.

    2016-01-01

    The Bondi and Bondi-Hoyle-Lytlleton formulas give the order of magnitude steady-accretion rate onto a point mass at rest or moving, respectively, in a uniform density gas in the limit of negligible gas self-gravity. This applies in star-forming clouds where self-gravity is negligible near protostars and new-born stars, but instead of being uniform the gas is supersonically turbulent and threaded by dynamically important (Alven Mach number ˜ 1) large-scale magnetic fields. To determine the Bondi-like accretion rate in these environments, we used the ORION2 code to carry out grid-based 3D adaptive mesh refinement (AMR) magnetohydrodynamic (MHD) simulations of accretion onto sink particles embedded in an environment of fully developed, magnetized supersonic isothermal turbulence. We evolved the models until the median and mean accretion rates, over particles, became steady. We present a simple semi-analytic model that predicts the median and mean accretion rate from the turbulent properties of the background medium, such as the 3D Mach number and RMS plasma-β, and show that it is highly consistent with our simulations. Numerical codes can use our semi-analytic model as an accurate sub-grid model for accretion in magnetized supersonic isothermal turbulence.

  18. Magnetic energy production by turbulence in binary neutron star mergers

    CERN Document Server

    Zrake, Jonathan

    2013-01-01

    The simultaneous detection of electromagnetic and gravitational wave emission from merging neutron star binaries would aid greatly in their discovery and interpretation. By studying turbulent amplification of magnetic fields in local high-resolution simulations of neutron star merger conditions, we demonstrate that magnetar-level (~10^16) G fields are present throughout the merger duration. We find that the small-scale turbulent dynamo converts 60% of the randomized kinetic energy into magnetic fields on a merger time scale. Since turbulent magnetic energy dissipates through reconnection events which accelerate relativistic electrons, turbulence may facilitate the conversion of orbital kinetic energy into radiation. If 10^-4 of the ~ 10^53 erg of orbital kinetic available gets processed through reconnection, and creates radiation in the 15-150 keV band, then the fluence at 200 Mpc would be 10^-7 erg/cm^2, potentially rendering most merging neutron stars in the advanced LIGO and Virgo detection volumes detecta...

  19. MAGNETIC ENERGY PRODUCTION BY TURBULENCE IN BINARY NEUTRON STAR MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    Zrake, Jonathan; MacFadyen, Andrew I. [Center for Cosmology and Particle Physics, Physics Department, New York University, New York, NY 10003 (United States)

    2013-06-01

    The simultaneous detection of electromagnetic and gravitational wave emission from merging neutron star binaries would greatly aid in their discovery and interpretation. By studying turbulent amplification of magnetic fields in local high-resolution simulations of neutron star merger conditions, we demonstrate that magnetar-level ({approx}> 10{sup 16} G) fields are present throughout the merger duration. We find that the small-scale turbulent dynamo converts 60% of the randomized kinetic energy into magnetic fields on a merger timescale. Since turbulent magnetic energy dissipates through reconnection events that accelerate relativistic electrons, turbulence may facilitate the conversion of orbital kinetic energy into radiation. If 10{sup -4} of the {approx}10{sup 53} erg of orbital kinetic available gets processed through reconnection and creates radiation in the 15-150 keV band, then the fluence at 200 Mpc would be 10{sup -7} erg cm{sup -2}, potentially rendering most merging neutron stars in the advanced LIGO and Virgo detection volumes detectable by Swift BAT.

  20. Magnetic moment non-conservation in magnetohydrodynamic turbulence models

    CERN Document Server

    Dalena, S; Rappazzo, A F; Mace, R L; Matthaeus, W H

    2012-01-01

    The fundamental assumptions of the adiabatic theory do not apply in presence of sharp field gradients as well as in presence of well developed magnetohydrodynamic turbulence. For this reason in such conditions the magnetic moment $\\mu$ is no longer expected to be constant. This can influence particle acceleration and have considerable implications in many astrophysical problems. Starting with the resonant interaction between ions and a single parallel propagating electromagnetic wave, we derive expressions for the magnetic moment trapping width $\\Delta \\mu$ (defined as the half peak-to-peak difference in the particle magnetic moment) and the bounce frequency $\\omega_b$. We perform test-particle simulations to investigate magnetic moment behavior when resonances overlapping occurs and during the interaction of a ring-beam particle distribution with a broad-band slab spectrum. We find that magnetic moment dynamics is strictly related to pitch angle $\\alpha$ for a low level of magnetic fluctuation, $\\delta B/B_0...

  1. Anisotropic Formation of Magnetized Cores in Turbulent Clouds

    CERN Document Server

    Chen, Che-Yu

    2015-01-01

    In giant molecular clouds (GMCs), shocks driven by converging turbulent flows create high-density, strongly-magnetized regions that are locally sheetlike. In previous work, we showed that within these layers, dense filaments and embedded self-gravitating cores form by gathering material along the magnetic field lines. Here, we extend the parameter space of our three-dimensional, turbulent MHD core formation simulations. We confirm the anisotropic core formation model we previously proposed, and quantify the dependence of median core properties on the pre-shock inflow velocity and upstream magnetic field strength. Our results suggest that bound core properties are set by the total dynamic pressure (dominated by large-scale turbulence) and thermal sound speed c_s in GMCs, independent of magnetic field strength. For models with Mach number between 5 and 20, the median core masses and radii are comparable to the critical Bonnor-Ebert mass and radius defined using the dynamic pressure for P_ext. Our results corres...

  2. Radiation from Relativistic Shocks with Turbulent Magnetic Fields

    Science.gov (United States)

    Nishkawa, K.; Medvedev, M.; Zhang, B.; Hardee, P.; Niemiec, J.; Mizuno, A.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; Oka, M.; Fishman, J.

    2009-01-01

    Recent PIC simulations of relativistic electron-positron (electron-ion) jets injected into a stationary medium show that particle acceleration occurs at shocked region. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the shock. The "jitter" radiation from deflected electrons in turbulent magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. New recent calculation of spectra with various different Lorentz factors of jets (two electrons) and initial magnetic fields. New spectra based on small simulations will be presented.

  3. Transport of solar electrons in the turbulent interplanetary magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ablaßmayer, J.; Tautz, R. C., E-mail: robert.c.tautz@gmail.com [Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin (Germany); Dresing, N., E-mail: dresing@physik.uni-kiel.de [Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 11, D-24118 Kiel (Germany)

    2016-01-15

    The turbulent transport of solar energetic electrons in the interplanetary magnetic field is investigated by means of a test-particle Monte-Carlo simulation. The magnetic fields are modeled as a combination of the Parker field and a turbulent component. In combination with the direct calculation of diffusion coefficients via the mean-square displacements, this approach allows one to analyze the effect of the initial ballistic transport phase. In that sense, the model complements the main other approach in which a transport equation is solved. The major advancement is that, by recording the flux of particles arriving at virtual detectors, intensity and anisotropy-time profiles can be obtained. Observational indications for a longitudinal asymmetry can thus be explained by tracing the diffusive spread of the particle distribution. The approach may be of future help for the systematic interpretation of observations for instance by the solar terrestrial relations observatory (STEREO) and advanced composition explorer (ACE) spacecrafts.

  4. Turbulence and intermittent transport at the boundary of magnetized plasmas

    DEFF Research Database (Denmark)

    Garcia, O.E.; Naulin, V.; Nielsen, A.H.;

    2005-01-01

    Numerical fluid simulations of interchange turbulence for geometry and parameters relevant to the boundary region of magnetically confined plasmas are shown to result in intermittent transport qualitatively similar to recent experimental measurements. The two-dimensional simulation domain features...... a forcing region with spatially localized sources of particles and heat outside which losses due to the motion along open magnetic-field lines dominate, corresponding to the edge region and the scrape-off layer, respectively. Turbulent states reveal intermittent eruptions of hot plasma from the edge...... formation of blob structures is thus related to profile variations, which are here triggered in a quasiperiodic manner by a global dynamical regulation due to the self-sustained sheared flows. (C) 2005 American Institute of Physics....

  5. Bacterial turbulence reduction by passive magnetic particle chains

    Science.gov (United States)

    Liu, Kuo-An; I, Lin

    2013-09-01

    We report the experimental observation of the bacterial turbulence reduction in dense E. coli suspensions by increasing the coupling of passive particle additives (paramagnetic particles). Applying an external magnetic field induces magnetic dipoles for particles and causes the formation of vertical chain bundles, which are hard for bacterial flows to tilt and break. The larger effective drag coefficient of chains causes slow horizontal motion of chains, which in turn form obstacles to suppress bacterial flows through the strong correlation in coherent bacterial clusters and intercluster interaction. The interruption of the upward energy flow from individual self-propelling bacteria to the larger scale in the bacterial turbulence with multiscaled coherent flow by the chain bundle leads to more severe suppression in the low frequency (wave number) regimes of the power spectra.

  6. Transport of solar electrons in the turbulent interplanetary magnetic field

    Science.gov (United States)

    Ablaßmayer, J.; Tautz, R. C.; Dresing, N.

    2016-01-01

    The turbulent transport of solar energetic electrons in the interplanetary magnetic field is investigated by means of a test-particle Monte-Carlo simulation. The magnetic fields are modeled as a combination of the Parker field and a turbulent component. In combination with the direct calculation of diffusion coefficients via the mean-square displacements, this approach allows one to analyze the effect of the initial ballistic transport phase. In that sense, the model complements the main other approach in which a transport equation is solved. The major advancement is that, by recording the flux of particles arriving at virtual detectors, intensity and anisotropy-time profiles can be obtained. Observational indications for a longitudinal asymmetry can thus be explained by tracing the diffusive spread of the particle distribution. The approach may be of future help for the systematic interpretation of observations for instance by the solar terrestrial relations observatory (STEREO) and advanced composition explorer (ACE) spacecrafts.

  7. Transport of solar electrons in the turbulent interplanetary magnetic field

    International Nuclear Information System (INIS)

    The turbulent transport of solar energetic electrons in the interplanetary magnetic field is investigated by means of a test-particle Monte-Carlo simulation. The magnetic fields are modeled as a combination of the Parker field and a turbulent component. In combination with the direct calculation of diffusion coefficients via the mean-square displacements, this approach allows one to analyze the effect of the initial ballistic transport phase. In that sense, the model complements the main other approach in which a transport equation is solved. The major advancement is that, by recording the flux of particles arriving at virtual detectors, intensity and anisotropy-time profiles can be obtained. Observational indications for a longitudinal asymmetry can thus be explained by tracing the diffusive spread of the particle distribution. The approach may be of future help for the systematic interpretation of observations for instance by the solar terrestrial relations observatory (STEREO) and advanced composition explorer (ACE) spacecrafts

  8. Current filaments in turbulent magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Martines, E; Vianello, N; Spolaore, M; Zuin, M; Agostini, M; Antoni, V; Cavazzana, R; Scarin, P; Serianni, G; Spada, E [Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova (Italy); Sundkvist, D [Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA (United States); Ionita, C; Mehlmann, F; Schrittwieser, R [Association EURATOM/OeAW, Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck (Austria); Maraschek, M; Mueller, H W; Rohde, V [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany); Naulin, V; Rasmussen, J J, E-mail: emilio.martines@igi.cnr.i [Association EURATOM/RISOe-Technical University of Denmark, Roskilde (Denmark)

    2009-12-15

    Direct measurements of current density perturbations associated with non-linear phenomena in magnetized plasmas can be carried out using in situ magnetic measurements. In this paper we report such measurements for three different kinds of phenomena. Current density fluctuations in the edge density gradient region of a fusion plasma confined in reversed field pinch configuration and in a density gradient region in the Earth magnetosphere are measured and compared, showing that in both environments they can be attributed to drift-Alfven vortices. Current structures associated with reconnection events measured in a reversed field pinch plasma and in the magnetosheath are detected and compared. Evidence of current filaments occurring during ELMs in an H-mode tokamak plasma is displayed.

  9. Current filaments in turbulent magnetized plasmas

    DEFF Research Database (Denmark)

    Martines, E.; Vianello, N.; Sundkvist, D.;

    2009-01-01

    gradient region of a fusion plasma confined in reversed field pinch configuration and in a density gradient region in the Earth magnetosphere are measured and compared, showing that in both environments they can be attributed to drift-Alfvén vortices. Current structures associated with reconnection events......Direct measurements of current density perturbations associated with non-linear phenomena in magnetized plasmas can be carried out using in situ magnetic measurements. In this paper we report such measurements for three different kinds of phenomena. Current density fluctuations in the edge density...... measured in a reversed field pinch plasma and in the magnetosheath are detected and compared. Evidence of current filaments occurring during ELMs in an H-mode tokamak plasma is displayed....

  10. Turbulent transport of impurities in a magnetized plasma

    International Nuclear Information System (INIS)

    This work deals with the transport of impurities in magnetically confined thermonuclear plasmas. The accumulation of impurities in the core of the plasma would imply dramatic losses of energy that may lead to the extinction of the plasma. On the opposite, the injection of impurities in the plasma edge is considered as an efficient means to extract heat without damaging the first wall. The balance between these 2 contradictory constraints requires an accurate knowledge of the impurity transport inside the plasma. The effect of turbulence, the main transport mechanism for impurities is therefore a major issue. In this work, the complete formula of a turbulent flow of impurities for a given fluctuation spectrum has been inferred. The origin and features of the main accumulation processes have been identified. The main effect comes from the compressibility of the electrical shift speed in a plane perpendicular to the magnetic field. This compressibility appears to be linked to the curvature of the magnetic field. A less important effect is a thermal-diffusion process that is inversely proportional to the number of charges and then disappears for most type of impurities except the lightest. This effect implies an impurity flux proportional to the temperature gradient and its direction can change according to the average speed of fluctuations. A new version of the turbulence code TRB has been developed. This new version allows the constraints of the turbulence not by the gradients but by the flux which is more realistic. The importance of the processes described above has been confirmed by a comparison between calculation and experimental data from Tore-supra and the Jet tokamak. The prevailing role of the curvature of the magnetic field in the transport impurity is highlighted. (A.C.)

  11. Homological aperiodic tilings of 3-dimensional geometries

    CERN Document Server

    Nowak, Piotr W

    2012-01-01

    We construct the first aperiodic tiles for two amenable 3-dimensional Lie groups: Sol and the Heisenberg group. Our construction relies on the use of higher-dimensional uniformly finite homology. In particular, we settle completely the existence of aperiodic tiles for all of the non-compact geometries of 3-manifolds appearing in the geometrization conjecture.

  12. Wave turbulence on the surface of a ferrofluid submitted to a magnetic field

    OpenAIRE

    Boyer, François; Falcon, Eric

    2008-01-01

    We report the observation of wave turbulence on the surface of a ferrofluid mechanically forced and submitted to a static normal magnetic field. We show that magnetic surface waves arise only above a critical field. The power spectrum of their amplitudes displays a frequency-power law leading to the observation of a magnetic wave turbulence regime which is experimentally shown to involve a 4-wave interaction process. The existence of the regimes of gravity, magnetic and capillary wave turbule...

  13. Turbulence in Global Simulations of Magnetized Thin Accretion Disks

    CERN Document Server

    Beckwith, Kris; Simon, Jacob B

    2011-01-01

    We use a global magnetohydrodynamic simulation of a geometrically thin accretion disk to investigate the locality and detailed structure of turbulence driven by the magnetorotational instability (MRI). The model disk has an aspect ratio $H / R \\simeq 0.07$, and is computed using a higher-order Godunov MHD scheme with accurate fluxes. We focus the analysis on late times after the system has lost direct memory of its initial magnetic flux state. The disk enters a saturated turbulent state in which the fastest growing modes of the MRI are well-resolved, with a relatively high efficiency of angular momentum transport $ > \\approx 2.5 \\times 10^{-2}$. The accretion stress peaks at the disk midplane, above and below which exists a moderately magnetized corona with patches of superthermal field. By analyzing the spatial and temporal correlations of the turbulent fields, we find that the spatial structure of the magnetic and kinetic energy is moderately well-localized (with correlation lengths along the major axis of ...

  14. Magnetic shear-driven instability and turbulent mixing in magnetized protostellar disks

    CERN Document Server

    Bonanno, Alfio

    2008-01-01

    Observations of protostellar disks indicate the presence of the magnetic field of thermal (or superthermal) strength. In such a strong magnetic field, many MHD instabilities responsible for turbulent transport of the angular momentum are suppressed. We consider the shear-driven instability that can occur in protostellar disks even if the field is superthermal. This instability is caused by the combined influence of shear and compressibility in a magnetized gas and can be an efficient mechanism to generate turbulence in disks. The typical growth time is of the order of several rotation periods.

  15. Fluctuation dynamo and turbulent induction at low magnetic Prandtl numbers

    Energy Technology Data Exchange (ETDEWEB)

    Schekochihin, A A [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Iskakov, A B [Department of Physics and Astronomy, UCLA, Los Angeles CA 90095-1547 (United States); Cowley, S C [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); McWilliams, J C [Department of Atmospheric Sciences, UCLA, Los Angeles CA 90095-1565 (United States); Proctor, M R E [DAMTP, University of Cambridge, Cambridge CB3 0WA (United Kingdom); Yousef, T A [DAMTP, University of Cambridge, Cambridge CB3 0WA (United Kingdom)

    2007-08-15

    This paper is a detailed report on a programme of direct numerical simulations of incompressible nonhelical randomly forced magnetohydrodynamic (MHD) turbulence that are used to settle a long-standing issue in the turbulent dynamo theory and demonstrate that the fluctuation dynamo exists in the limit of large magnetic Reynolds number Rm >> 1 and small magnetic Prandtl number Pm << 1. The dependence of the critical Rm{sub c} for dynamo versus the hydrodynamic Reynolds number Re is obtained for 1 {approx}< Re {approx}< 6700. In the limit Pm >> 1, Rm{sub c} is at most three times larger than for the previously well established dynamo at large and moderate Prandtl numbers: Rm{sub c} {approx}< 200 for Re {approx}> 6000 compared to Rm{sub c} {approx} 60 for Pm{>=}1. The stability curve Rm{sub c}(Re) (and, it is argued, the nature of the dynamo) is substantially different from the case of the simulations and liquid-metal experiments with a mean flow. It is not as yet possible to determine numerically whether the growth rate of the magnetic energy is {proportional_to}Rm{sup 1/2} in the limit Re >> Rm >> 1, as should be the case if the dynamo is driven by the inertial-range motions at the resistive scale, or tends to an Rm-independent value comparable to the turnover rate of the outer-scale motions. The magnetic-energy spectrum in the low-Pm regime is qualitatively different from the Pm {>=} 1 case and appears to develop a negative spectral slope, although current resolutions are insufficient to determine its asymptotic form. At Rm element of (1,Rm{sub c}), the magnetic fluctuations induced via the tangling by turbulence of a weak mean field are investigated and the possibility of a k{sup -1} spectrum above the resistive scale is examined. At low Rm < 1, the induced fluctuations are well described by the quasistatic approximation; the k{sup -11/3} spectrum is confirmed for the first time in direct numerical simulations. Applications of the results on turbulent induction to

  16. On the Role of Pseudodisk Warping and Reconnection in Protostellar Disk Formation in Turbulent Magnetized Cores

    CERN Document Server

    Li, Zhi-Yun; Shang, Hsien; Zhao, Bo

    2014-01-01

    The formation of rotationally supported protostellar disks is suppressed in ideal MHD in non-turbulent cores with aligned magnetic field and rotation axis. A promising way to resolve this so-called "magnetic braking catastrophe" is through turbulence. The reason for the turbulence-enabled disk formation is usually attributed to the turbulence-induced magnetic reconnection, which is thought to reduce the magnetic flux accumulated in the disk-forming region. We advance an alternative interpretation, based on magnetic decoupling-triggered reconnection of severely pinched field lines close to the central protostar and turbulence-induced warping of the pseudodisk of Galli and Shu. Such reconnection weakens the central split magnetic monopole that lies at the heart of the magnetic braking catastrophe under flux freezing. We show, through idealized numerical experiments, that the pseudodisk can be strongly warped, but not completely destroyed, by a subsonic or sonic turbulence. The warping decreases the rates of ang...

  17. Cosmic Ray Small Scale Anisotropies and Local Turbulent Magnetic Fields

    CERN Document Server

    López-Barquero, Vanessa; Xu, S; Desiati, P; Lazarian, A

    2015-01-01

    Cosmic ray anisotropy is observed in a wide energy range and at different angular scales by a variety of experiments. However, a comprehensive and satisfactory explanation has been elusive for over a decade now. The arrival distribution of cosmic rays on Earth is the convolution of the distribution of their sources and of the effects of geometry and properties of the magnetic field through which particles propagate. It is generally believed that the anisotropy topology at the largest angular scale is adiabatically shaped by diffusion in the structured interstellar magnetic field. On the contrary, the medium and small angular scale structure could be an effect of non diffusive propagation of cosmic rays in perturbed magnetic fields. In particular, a possible explanation of the observed small scale anisotropy observed at TeV energy scale, may come from the effect of particle scattering in turbulent magnetized plasmas. We perform numerical integration of test particle trajectories in low-$\\beta$ compressible mag...

  18. Role of helicities for the dynamics of turbulent magnetic fields

    CERN Document Server

    Mueller, Wollf-Christian

    2013-01-01

    Investigations of the inverse cascade of magnetic helicity are conducted with pseudospectral, three-dimensional direct numerical simulations of forced and decaying incompressible magnetohydrodynamic turbulence. The high-resolution simulations which allow for the necessary scale-separation show that the observed self-similar scaling behavior of magnetic helicity and related quantities can only be understood by taking the full nonlinear interplay of velocity and magnetic fluctuations into account. With the help of the eddy-damped quasi-normal Markovian approximation a probably universal relation between kinetic and magnetic helicities is derived that closely resembles the extended definition of the prominent dynamo pseudoscalar $\\alpha$. This unexpected similarity suggests an additional nonlinear quenching mechanism of the current-helicity contribution to $\\alpha$.

  19. Turbulence, transport and confinement: from tokamaks to star magnetism

    International Nuclear Information System (INIS)

    This thesis is part of the general study of self-organization in hot and magnetized plasmas. We focus our work on two specific objects: stars and tokamaks. We use first principle numerical simulations to study turbulence, transport and confinement in these plasmas. The first part of this thesis introduces the main characteristics of stellar and tokamak plasmas. The reasons for studying them together are properly detailed. The second part is focused on stellar aspects. We study the interactions between the 3D turbulent motions in the solar convection zone with an internal magnetic field in the tachocline (the transition region between the instable and stable zones in the Sun). The tachocline is a very thin layer (less than five percent of the solar radius) that acts as a transport barrier of angular momentum. We show that such an internal magnetic field is not likely to explain the observed thickness of the tachocline and we give some insights on how to find alternative mechanisms to constrain it. We also explore the effect of the environment of star on its structure. We develop a methodology to study the influence of stellar wind and of the magnetic coupling of a star with its orbiting planets. We use the same methodology to analyse the magnetic interaction between a stellar wind and a planetary magnetosphere that acts as a transport barrier of matter. Then, the third part is dedicated to fusion oriented research. We present a numerical investigation on the experimental mechanisms that lead to the development of transport barriers in the plasma. These barriers are particularly important for the design of high performance fusion devices. The creation of transport barriers is obtained in turbulent first principle simulations for the very first time. The collaboration between the two scientific teams lead to the results presented in the fourth part of this thesis. An original spectral method is developed to analyse the saturation of stellar convective dynamos and of

  20. Magnetic self-organisation in Hall-dominated magnetorotational turbulence

    CERN Document Server

    Kunz, Matthew W

    2013-01-01

    The magnetorotational instability (MRI) is the most promising mechanism by which angular momentum is efficiently transported outwards in astrophysical discs. However, its application to protoplanetary discs remains problematic. These discs are so poorly ionised that they may not support magnetorotational turbulence in regions referred to as `dead zones'. It has recently been suggested that the Hall effect, a non-ideal magnetohydrodynamic (MHD) effect, could revive these dead zones by enhancing the magnetically active column density by an order of magnitude or more. We investigate this idea by performing local, three-dimensional, resistive Hall-MHD simulations of the MRI in situations where the Hall effect dominates over Ohmic dissipation. As expected from linear stability analysis, we find an exponentially growing instability in regimes otherwise linearly stable in resistive MHD. However, instead of vigorous and sustained magnetorotational turbulence, we find that the MRI saturates by producing large-scale, l...

  1. Wave turbulence on the surface of a ferrofluid in a horizontal magnetic field

    OpenAIRE

    Dorbolo, Stéphane; Falcon, Eric

    2011-01-01

    We report observations of wave turbulence on the surface of a ferrofluid submitted to a magnetic field parallel to the fluid surface. The magnetic wave turbulence shows several differences compared to the normal field case reported recently. The inertial zone of the magnetic wave turbulence regime is notably found to be strongly increased with respect to the normal field case, and to be well described by our theoretical predictions. The dispersion relation of linear waves is also measured and...

  2. Dynamics of fluctuating magnetic fields in turbulent dynamos incorporating ambipolar drifts

    OpenAIRE

    Subramanian, K.(Srikumar)

    1997-01-01

    Turbulence with a large magnetic Reyonolds number, generically leads to rapidly growing magnetic noise over and above any mean field. We revisit the dynamics of this fluctuating field, in homogeneous, isotropic, helical turbulence. Assuming the turbulence to be Markovian, we first rederive, in a fairly transparent manner, the equation for the mean field, and corrected Fokker-Plank type equations for the magnetic correlations. In these equations, we also incorporate the effects of ambipolar dr...

  3. Parity of solar global magnetic field determined by turbulent diffusivity

    Science.gov (United States)

    Hotta, H.; Yokoyama, T.

    We investigate the criterion for the solar dipole-field in a kinematic flux-transport dynamo model. The sun has a dipole-like global magnetic field. This field is thought to be generated by the dynamo action of the solar internal plasma. The flux-transport dynamo succeeds to reproduce some features of solar cycle, e.g. poleward the migration of the general magnetic field and the butterfly diagram. The parity, however, of the global magnetic field significantly depends on parameters in the flux-transport dynamo. It is known that the coupling of the magnetic field between hemispheres due to turbulent diffusivity is an important factor for the solar parity issue, but the detailed criterion for the generation of the dipole field has not been investigated. Our conclusions are as follows. (1) The stronger diffusivity near the surface is more likely to cause the magnetic field to be a dipole. (2) The thinner layer of the strong diffusivity near the surface is also more apt to generate a dipolar magnetic field. (3) The faster meridional flow is more prone to cause the magnetic field to be a quadrupole, i.e., symmetric about the equator. The result (1) is consistent with our previous work tep{hotta2010a}, which is on the effect of the surface diffusivity for the observed weak polar field.

  4. Electrostatic instabilities and turbulence in a toroidal magnetized plasma

    International Nuclear Information System (INIS)

    This Thesis aims at characterizing the linear properties of electrostatic drift instabilities arising in a toroidal plasma and the mechanisms leading to their development into turbulence. The experiments are performed on the TORoidal Plasma EXperiment (TORPEX) at CRPP-EPFL, Lausanne. The first part of the Thesis focuses on the identification of the nature of the instabilities observed in TORPEX, using a set of electrostatic probes, designed and built for this purpose. The global features of fluctuations, analyzed for different values of control parameters such as the magnetic field, the neutral gas pressure and the injected microwave power, are qualitatively similar in different experimental scenarios. The maximum of fluctuations is observed on the low field side, where the pressure gradient and the gradient of the magnetic field are co-linear, indicating that the curvature of the magnetic field lines has an important role in the destabilization of the waves. The power spectrum is dominated by electrostatic fluctuations with frequencies much lower than the ion cyclotron frequency. Taking advantage of the extended diagnostics coverage, the spectral properties of fluctuations are measured over the whole poloidal cross-section. Both drift and interchange instabilities develop and propagate on TORPEX, with the stability of both being affected by the curvature of the magnetic field. It is shown that modes of different nature are driven at separate locations over the plasma cross-section and that the wavenumber and frequency spectra, narrow at the location where the instabilities are generated, broaden during convection, suggesting an increase in the degree of turbulence. The transition from coherent to turbulent spectral features and the role of nonlinear coupling between modes in the development of turbulence are treated in the second part of this work. It is found that nonlinear mode-mode coupling is responsible for the redistribution of spectral energy from the

  5. Semiconductor Laser with Aperiodic Photonic Lattice

    OpenAIRE

    Subhasish Chakraborty

    2008-01-01

    A semiconductor laser and method for selecting laser frequency emission from the semiconductor laser are disclosed. The semiconductor laser provides selectable frequency emission and includes an aperiodic photonic lattice.

  6. Garbage Collection Scheduling of Aperiodic Tasks

    Institute of Scientific and Technical Information of China (English)

    Ning Zhang; Guang-Ze Xiong

    2009-01-01

    In the previous work of garbage collection (GC) models, scheduling analysis was given based on an assumption that there were no aperiodic mutator tasks. However, it is not true in practical real-time systems. The GC algorithm which can schedule aperiodic tasks is proposed, and the variance of live memory is analyzed. In this algorithm, active tasks are deferred to be processed by GC until the states of tasks become inactive, and the saved sporadic server time can be used to schedule aperiodic tasks. Scheduling the sample task sets demonstrates that this algorithm in this paper can schedule aperiodic tasks and decrease GC work. Thus, the GC algorithm proposed is more flexible and portable.

  7. Instabilities, turbulence and transport in a magnetized plasma; Instabilites, turbulence et transport dans un plasma magnetise

    Energy Technology Data Exchange (ETDEWEB)

    Garbet, X

    2001-06-01

    The purpose of this work is to introduce the main processes that occur in a magnetized plasma. During the last 2 decades, the understanding of turbulence has made great progress but analytical formulas and simulations are far to produce reliable predictions. The values of transport coefficients in a tokamak plasma exceed by far those predicted by the theory of collisional transport. This phenomenon is called abnormal transport and might be due to plasma fluctuations. An estimation of turbulent fluxes derived from the levels of fluctuations, is proposed. A flow description of plasma allows the understanding of most micro-instabilities. The ballooning representation deals with instabilities in a toric geometry. 3 factors play an important role to stabilize plasmas: density pinch, magnetic shear and speed shear. The flow model of plasma gives an erroneous value for the stability threshold, this is due to a bad description of the resonant interaction between wave and particle. As for dynamics, flow models can be improved by adding dissipative terms so that the linear response nears the kinetic response. The kinetic approach is more accurate but is complex because of the great number of dimensions involved. (A.C.)

  8. Multi-scale structures of turbulent magnetic reconnection

    Science.gov (United States)

    Nakamura, T. K. M.; Nakamura, R.; Narita, Y.; Baumjohann, W.; Daughton, W.

    2016-05-01

    We have analyzed data from a series of 3D fully kinetic simulations of turbulent magnetic reconnection with a guide field. A new concept of the guide filed reconnection process has recently been proposed, in which the secondary tearing instability and the resulting formation of oblique, small scale flux ropes largely disturb the structure of the primary reconnection layer and lead to 3D turbulent features [W. Daughton et al., Nat. Phys. 7, 539 (2011)]. In this paper, we further investigate the multi-scale physics in this turbulent, guide field reconnection process by introducing a wave number band-pass filter (k-BPF) technique in which modes for the small scale (less than ion scale) fluctuations and the background large scale (more than ion scale) variations are separately reconstructed from the wave number domain to the spatial domain in the inverse Fourier transform process. Combining with the Fourier based analyses in the wave number domain, we successfully identify spatial and temporal development of the multi-scale structures in the turbulent reconnection process. When considering a strong guide field, the small scale tearing mode and the resulting flux ropes develop over a specific range of oblique angles mainly along the edge of the primary ion scale flux ropes and reconnection separatrix. The rapid merging of these small scale modes leads to a smooth energy spectrum connecting ion and electron scales. When the guide field is sufficiently weak, the background current sheet is strongly kinked and oblique angles for the small scale modes are widely scattered at the kinked regions. Similar approaches handling both the wave number and spatial domains will be applicable to the data from multipoint, high-resolution spacecraft observations such as the NASA magnetospheric multiscale (MMS) mission.

  9. Instabilities, turbulence and transport in a magnetized plasma

    International Nuclear Information System (INIS)

    The purpose of this work is to introduce the main processes that occur in a magnetized plasma. During the last 2 decades, the understanding of turbulence has made great progress but analytical formulas and simulations are far to produce reliable predictions. The values of transport coefficients in a tokamak plasma exceed by far those predicted by the theory of collisional transport. This phenomenon is called abnormal transport and might be due to plasma fluctuations. An estimation of turbulent fluxes derived from the levels of fluctuations, is proposed. A flow description of plasma allows the understanding of most micro-instabilities. The ballooning representation deals with instabilities in a toric geometry. 3 factors play an important role to stabilize plasmas: density pinch, magnetic shear and speed shear. The flow model of plasma gives an erroneous value for the stability threshold, this is due to a bad description of the resonant interaction between wave and particle. As for dynamics, flow models can be improved by adding dissipative terms so that the linear response nears the kinetic response. The kinetic approach is more accurate but is complex because of the great number of dimensions involved. (A.C.)

  10. Basic Investigation of Turbulent Structures and Blobs of Relevance for Magnetic Fusion Plasmas

    OpenAIRE

    Theiler, Christian Gabriel

    2011-01-01

    Similarly to neutral fluids, plasmas often exhibit turbulent behavior. Turbulence in plasmas is usually more complex than in neutral fluids due to long range interactions via electric and magnetic fields, and kinetic effects. It gives rise to many interesting phenomena such as self-generated magnetic fields (dynamos), zonal-flows, transport barriers, or particle pinches. Plasma turbulence plays a crucial role for the success of nuclear fusion as a ...

  11. Gyrokinetic particle simulation for thermonuclear plasma turbulence studies in magnetic confinement

    OpenAIRE

    Janhunen, Salomon

    2013-01-01

    Thermal transport in a magnetised plasma is believed to be substantially enhanced due to turbulence. The ELMFIRE code has been developed for tokamak plasma turbulence studies in high temperature magnetized plasmas. ELMFIRE calculates the evolution of the Boltzmann equation in a magnetized plasma, including long scale interactions between particles calculated through field equations. In this work we concentrate on benchmarking the ELMFIRE against published results from other turbulence code...

  12. Fundamental Statistical Descriptions of Plasma Turbulence in Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    John A. Krommes

    2001-02-16

    A pedagogical review of the historical development and current status (as of early 2000) of systematic statistical theories of plasma turbulence is undertaken. Emphasis is on conceptual foundations and methodology, not practical applications. Particular attention is paid to equations and formalism appropriate to strongly magnetized, fully ionized plasmas. Extensive reference to the literature on neutral-fluid turbulence is made, but the unique properties and problems of plasmas are emphasized throughout. Discussions are given of quasilinear theory, weak-turbulence theory, resonance-broadening theory, and the clump algorithm. Those are developed independently, then shown to be special cases of the direct-interaction approximation (DIA), which provides a central focus for the article. Various methods of renormalized perturbation theory are described, then unified with the aid of the generating-functional formalism of Martin, Siggia, and Rose. A general expression for the renormalized dielectric function is deduced and discussed in detail. Modern approaches such as decimation and PDF methods are described. Derivations of DIA-based Markovian closures are discussed. The eddy-damped quasinormal Markovian closure is shown to be nonrealizable in the presence of waves, and a new realizable Markovian closure is presented. The test-field model and a realizable modification thereof are also summarized. Numerical solutions of various closures for some plasma-physics paradigms are reviewed. The variational approach to bounds on transport is developed. Miscellaneous topics include Onsager symmetries for turbulence, the interpretation of entropy balances for both kinetic and fluid descriptions, self-organized criticality, statistical interactions between disparate scales, and the roles of both mean and random shear. Appendices are provided on Fourier transform conventions, dimensional and scaling analysis, the derivations of nonlinear gyrokinetic and gyrofluid equations

  13. Investigation of turbulent structures in the edge of magnetized plasmas

    International Nuclear Information System (INIS)

    Rising energy cost and progressing climate change will exacerbate existing and give birth to new conflicts. Energy savings and the development of new technologies can counteract the reasons for these conflicts. Beside renewable energy sources, nuclear fusion can help to meet this challenge. To build future fusion power plants smaller and more efficient, the magnetic confinement must be improved and the load on plasma facing components reduced. To this end, better understanding is required of turbulent transport processes in magnetized plasmas. Within the frame of the present work, the properties and dynamics of turbulent density structures (''blobs'') have been investigated, as well as their interaction with shear flows. Langmuir-probe measurements have been conducted in the tokamak ASDEX Upgrade and in the stellarator TJ-K, and compared with GEMR plasma turbulence simulations. It has been shown, that blobs are generated at the last closed flux surface (LCFS) of ASDEX Upgrade. They propagate perpendicular to the magnetic field lines in the radial and poloidal directions. The poloidal E x B-drift depends on the radial variation of the plasma potential. The latter is given by the electron temperature profile in front of the electrically conducting wall. Experimental results show, that this can lead to a shear layer inside the scrape-off layer (SOL) of a divertor tokamak due to inhomogeneous connection lengths to the wall. Blobs can hardly cross such a shear layer unchanged. This investigation shows how blobs can exchange particles and energy across a shear layer without changing their shapes and velocities substantially. However, the dynamics of the structures are different between both sides of the shear layer. Parallel drift-wave dynamics are dominant on the plasma core side, i.e. density and potential of the blobs are in phase. Outside of the shear layer, the interchange mechanism dominates due to shorter parallel connection lengths to the wall. The poloidal

  14. Effect of the external magnetic field on the MHD turbulence spectra

    International Nuclear Information System (INIS)

    The turbulent properties of the conducting liquids at external constant magnetic field change with increase of magnetic field strength. The behavior of the second order structure function for the turbulent field velocity in the homogenous incompressible liquid is studied in the presence of the external homogeneous magnetic field. It is shown that different determining parameters may occur in system as well as in the inertial and dissipative turbulence intervals depending on magnetic field strength. It gives rise to appearance of the new spectral scalings which correspond to those observed at experiments

  15. Azimuthal inhomogeneity of turbulence structure and its impact on intermittent particle transport in linear magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, T., E-mail: kobayashi.tatsuya@LHD.nifs.ac.jp [National Institute for Fusion Science, Toki 509-5292 (Japan); Inagaki, S.; Sasaki, M.; Nagashima, Y.; Kasuya, N.; Fujisawa, A.; Itoh, S.-I. [Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580 (Japan); Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan); Kosuga, Y. [Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580 (Japan); Institute for Advanced Study, Kyushu University, Fukuoka 812-8581 (Japan); Arakawa, H. [Teikyo University, 6-22 Misakimachi, Omuta 836-8505 (Japan); Yamada, T. [Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan); Faculty of Arts and Science, Kyushu University, Nishi-ku, Fukuoka 819-0395 (Japan); Miwa, Y. [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga 816-8580 (Japan); Itoh, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan)

    2015-11-15

    Fluctuation component in the turbulence regime is found to be azimuthally localized at a phase of the global coherent modes in a linear magnetized plasma PANTA. Spatial distribution of squared bicoherence is given in the azimuthal cross section as an indicator of nonlinear energy transfer function from the global coherent mode to the turbulence. Squared bicoherence is strong at a phase where the turbulence amplitude is large. As a result of the turbulence localization, time evolution of radial particle flux becomes bursty. Statistical features such as skewness and kurtosis are strongly modified by the localized turbulence component, although contribution to mean particle flux profile is small.

  16. Growth of a localized seed magnetic field in a turbulent medium

    CERN Document Server

    Cho, Jungyeon

    2012-01-01

    Turbulence dynamo deals with amplification of a seed magnetic field in a turbulent medium and has been studied mostly for uniform or spatially homogeneous seed magnetic fields. However, some astrophysical processes (e.g. jets from active galaxies, galactic winds, or ram-pressure stripping in galaxy clusters) can provide localized seed magnetic fields. In this paper, we numerically study amplification of localized seed magnetic fields in a turbulent medium. Throughout the paper, we assume that driving scale of turbulence is comparable to the size of the system. Our findings are as follows. First, turbulence can amplify a localized seed magnetic field very efficiently. The growth rate of magnetic energy density is as high as that for a uniform seed magnetic field. This result implies that a magnetic field ejected from an astrophysical object can be a viable source of magnetic field in a cluster. Second, the localized seed magnetic field disperses and fills the whole system very fast. If turbulence in a system (...

  17. Dynamics of fluctuating magnetic fields in turbulent dynamos incorporating ambipolar drifts

    CERN Document Server

    Subramanian, K

    1997-01-01

    Turbulence with a large magnetic Reyonolds number, generically leads to rapidly growing magnetic noise over and above any mean field. We revisit the dynamics of this fluctuating field, in homogeneous, isotropic, helical turbulence. Assuming the turbulence to be Markovian, we first rederive, in a fairly transparent manner, the equation for the mean field, and corrected Fokker-Plank type equations for the magnetic correlations. In these equations, we also incorporate the effects of ambipolar drift which would obtain if the turbulent medium has a significant neutral component. We apply these equations to discuss a number of astrophysically interesting problems: (a) the small scale dynamo in galactic turbulence with a model Kolmogorov spectrum, incorporating the effect of ambipolar drift; (b) current helicity dynamics and the quasilinear corrections to the alpha effect; (c) growth of the current helicity and large-scale magnetic fields due to nonlinear effects.

  18. Turbulence in toroidally confined plasma: ion temperature gradient driven turbulence: dynamics of magnetic relaxation in current carrying plasma

    International Nuclear Information System (INIS)

    This thesis is devoted to two studies of low-frequency turbulence in toroidally confined plasma. Low-frequency turbulence is believed to play an important role in anomalous transport in toroidal confinement devices. The first study pertains the development of an analytic theory of ion-temperature-gradient-driven turbulence in tokamaks. Energy conserving, renormalized spectrum equations are derived and solved in order to obtain the spectra of stationary ion temperature gradient driven turbulence. Corrections to mixing length estimates are calculated explicitly. The resulting anomalous ion thermal diffusivity is derived and is found to be consistent with experimentally-deduced ion thermal diffusivities. The associated electron thermal diffusivity, particle and heat-pinch velocities are also calculated. The second study is devoted to the role of multiple helicity nonlinear interactions of tearing modes and dynamics of magnetic relaxation in a high-temperature current carrying plasma. To extend the resistive MHD theory of magnetic fluctuations and dynamo activity observed in the reversed field pinch, the fluid equations for high temperature regime are derived and basic nonlinear interaction mechanism and the effects of diamagnetic corrections to the MHD turbulence theory are studied for the case of fully developed, densely packed turbulence

  19. Formation of spectrum of accelerated particles and the hydromagnetic turbulence in the variable magnetic field

    International Nuclear Information System (INIS)

    We study the acceleration of charged particles by the variable magnetic field. The study is based on the determination of spectrum of accelerated particles and the spectrum of hydro magnetic turbulence. We plan the self-consistent system of equation and we also find out the solution of the system for the spectrum of particles and hydro magnetic turbulence with the conditions of effective acceleration in the cosmic space of solar system. (author)

  20. A thermally stable heating mechanism for the intracluster medium: turbulence, magnetic fields and plasma instabilities

    OpenAIRE

    Kunz, M. W.; Schekochihin, A. A.; Cowley, S. C.; Binney, J. J.; Sanders, J. S.

    2010-01-01

    We consider the problem of self-regulated heating and cooling in galaxy clusters and the implications for cluster magnetic fields and turbulence. Viscous heating of a weakly collisional magnetised plasma is regulated by the pressure anisotropy with respect to the local direction of the magnetic field. The intracluster medium is a high-beta plasma, where pressure anisotropies caused by the turbulent stresses and the consequent local changes in the magnetic field will trigger very fast microsca...

  1. Fractal signatures in the aperiodic Fibonacci grating.

    Science.gov (United States)

    Verma, Rupesh; Banerjee, Varsha; Senthilkumaran, Paramasivam

    2014-05-01

    The Fibonacci grating (FbG) is an archetypal example of aperiodicity and self-similarity. While aperiodicity distinguishes it from a fractal, self-similarity identifies it with a fractal. Our paper investigates the outcome of these complementary features on the FbG diffraction profile (FbGDP). We find that the FbGDP has unique characteristics (e.g., no reduction in intensity with increasing generations), in addition to fractal signatures (e.g., a non-integer fractal dimension). These make the Fibonacci architecture potentially useful in image forming devices and other emerging technologies. PMID:24784044

  2. Effect of the external magnetic field on the MHD turbulence spectra

    International Nuclear Information System (INIS)

    The turbulent properties of conducting fluids in an external constant magnetic field are known to change with increasing field strength. A study is made of the behavior of the second-order structural function of the velocity field in a homogeneous incompressible turbulent fluid in the presence of an external uniform magnetic field. It is shown that, depending on the magnetic field strength, there may be different governing parameters of the system in both the inertial and dissipative intervals of turbulence. This leads to new spectral scalings that are consistent with experimental ones

  3. Wave turbulence on the surface of a ferrofluid in a horizontal magnetic field

    CERN Document Server

    Dorbolo, Stéphane

    2011-01-01

    We report observations of wave turbulence on the surface of a ferrofluid submitted to a magnetic field parallel to the fluid surface. The magnetic wave turbulence shows several differences compared to the normal field case reported recently. The inertial zone of the magnetic wave turbulence regime is notably found to be strongly increased with respect to the normal field case, and to be well described by our theoretical predictions. The dispersion relation of linear waves is also measured and differs from the normal field case due to the absence of the Rosensweig instability.

  4. Turbulent Amplification and Structure of the Intracluster Magnetic Field

    OpenAIRE

    Beresnyak, Andrey; Miniati, Francesco

    2015-01-01

    We compare DNS calculations of homogeneous isotropic turbulence with the statistical properties of intra-cluster turbulence from the Matryoshka Run (Miniati 2014) and find remarkable similarities between their inertial ranges. This allowed us to use the time dependent statistical properties of intra-cluster turbulence to evaluate dynamo action in the intra-cluster medium, based on earlier results from numerically resolved nonlinear magneto-hydrodynamic turbulent dynamo (Beresnyak 2012). We ar...

  5. Turbulence

    CERN Document Server

    Bailly, Christophe

    2015-01-01

    This book covers the major problems of turbulence and turbulent processes, including  physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3, and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy, and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarka...

  6. Turbulent magnetic energy spectrum and the cancellation function of solar photospheric magnetic fields

    CERN Document Server

    Marschalkó, G

    2014-01-01

    A simple analytical relation of form {\\alpha} = 2 {\\kappa} -1 between the magnetic energy spectral exponent {\\alpha} of the turbulent magnetic field in the solar photosphere and its magnetic flux cancellation exponent {\\kappa}, valid under certain restrictive assumptions, is tested and extended outside its range of validity in a series of Monte Carlo simulations. In these numerical tests artificial "magnetograms" are constructed in 1D and 2D by superposing a discrete set of Fourier modes of the magnetic field distribution with amplitudes following a power law spectrum and measuring the cancellation function on these simulated magnetograms. Our results confirm the validity of the analytical relation and extend it to the domain {\\alpha} 0 as {\\alpha} ---> - infinity. The observationally derived upper limit of 0.38 on {\\kappa} implies {\\alpha} < -0.24 in the granular size range, apparently at odds with a small scale dynamo driven in the inertial range.

  7. Enhanced Dissipation Rate of Magnetic Field in Striped Pulsar Winds by the Effect of Turbulence

    CERN Document Server

    Takamoto, Makoto; Inutsuka, Shu-ichiro

    2012-01-01

    In this letter we report on turbulent acceleration of the dissipation of magnetic field in the postshock re- gion of a Poynting flux-dominated flow, such as the Crab pulsar wind nebula. We have performed two- dimensional resistive relativistic magnetohydrodynamics simulations of subsonic turbulence driven by the Richtmyer-Meshkov instability at the shock fronts of the Poynting flux-dominated flows in pulsar winds. We find that turbulence stretches current sheets which substantially enhances the dissipation of magnetic field, and that most of the initial magnetic field energy is dissipated within a few eddy-turnover times. We also develop a simple analytical model for turbulent dissipation of magnetic field that agrees well with our simulations. The analytical model indicates that the dissipation rate does not depend on resistivity even in the small resistivity limit. Our findings can possibly alleviate the {\\sigma}-problem in the Crab pulsar wind nebulae.

  8. Generation of a magnetic island by edge turbulence in tokamak plasmas

    International Nuclear Information System (INIS)

    We investigate, through extensive 3D magneto-hydro-dynamics numerical simulations, the nonlinear excitation of a large scale magnetic island and its dynamical properties due to the presence of small-scale turbulence. Turbulence is induced by a steep pressure gradient in the edge region [B. D. Scott, Plasma Phys. Controlled Fusion 49, S25 (2007)], close to the separatrix in tokamaks where there is an X-point magnetic configuration. We find that quasi-resonant localized interchange modes at the plasma edge can beat together and produce extended modes that transfer energy to the lowest order resonant surface in an inner stable zone and induce a seed magnetic island. The island width displays high frequency fluctuations that are associated with the fluctuating nature of the energy transfer process from the turbulence, while its mean size is controlled by the magnetic energy content of the turbulence

  9. Vorticity, Shocks and Magnetic Fields in Subsonic, ICM-like Turbulence

    CERN Document Server

    Porter, David H; Ryu, Dongsu

    2015-01-01

    We analyze high resolution simulations of compressible, MHD turbulence with properties resembling conditions in galaxy clusters. The flow is driven to turbulence Mach number $\\mathcal{M}_t \\sim 1/2$ in an isothermal medium with an initially very weak, uniform seed magnetic field ($\\beta = P_g/P_B = 10^6$). Since cluster turbulence is likely to result from a mix of sheared (solenoidal) and compressive forcing processes, we examine the distinct turbulence properties for both cases. In one set of simulations velocity forcing is entirely solenoidal ($\

  10. Turbulence

    Institute of Scientific and Technical Information of China (English)

    Z. Lin; R.E. Waltz

    2007-01-01

    @@ Turbulent transport driven by plasma pressure gradients [Tangl978] is one of the most important scientific challenges in burning plasma experiments since the balance between turbulent transport and the self-heating by the fusion products (a-particles) determines the performance of a fusion reactor like ITER.

  11. The Internal-Collision-Induced Magnetic Reconnection and Turbulence (ICMART) Model of Gamma-Ray Bursts

    CERN Document Server

    Zhang, Bing

    2010-01-01

    The recent Fermi observation of GRB 080916C shows that the bright photosphere emission associated with a putative fireball is missing, which suggests a Poynting-flux-dominated outflow. We propose a model of gamma-ray burst (GRB) prompt emission in the Poynting-flux-dominated regime, namely, the Internal-Collision-induced MAgnetic Reconnection and Turbulence (ICMART) model. It is envisaged that the GRB central engine launches an intermittent, magnetically-dominated wind, and that in the GRB emission region, the ejecta is still moderately magnetized. Similar to the internal shock (IS) model, the mini-shells interact internally at the traditional internal shock radius. Most of these early collision have little energy dissipation, but serve to distort the ordered magnetic field lines. At a certain point, the distortion of magnetic field configuration reaches the critical condition to allow fast reconnection seeds to occur, which induce relativistic MHD turbulence in the interaction regions. The turbulence further...

  12. On the resilience of helical magnetic fields to turbulent diffusion and the provocative astrophysical implications

    CERN Document Server

    Blackman, Eric G

    2012-01-01

    The extent to which large scale magnetic fields are susceptible to turbulent diffusion is important for interpreting the need for in situ large scale dynamos in astrophysics and for observationally inferring field strengths compared to kinetic energy. By solving coupled equations for magnetic energy and magnetic helicity in a system initiated with isotropic turbulence and an arbitrarily helical large scale field, we quantify the decay rate of the latter for a bounded or periodic system. The energy associated with the non-helical magnetic field rapidly decays by turbulent diffusion, but the decay rate of the helical component depends on whether its magnetic energy exceeds E_C =(k_1/k_f)^2 E_V, where E_V is the kinetic energy per mass of turbulence and k_1 and k_f are the wave numbers of the large and forcing scales. Turbulently diffusing helical fields to small scales while conserving magnetic helicity requires a rapid increase in total magnetic energy. As such, only when the helical fields are sub-critical ca...

  13. Turbulence and transport in a magnetized argon plasma

    International Nuclear Information System (INIS)

    An experimental study on turbulence and transport in the highly ionized argon plasma of a hollow cathode discharge is described. In order to determine the plasma parameters three standard diagnostics have been used, whilst two diagnostics have been developed to study the plasma turbulence. (Auth.)

  14. Sub-grid-scale description of turbulent magnetic reconnection in magnetohydrodynamics

    Science.gov (United States)

    Widmer, F.; Büchner, J.; Yokoi, N.

    2016-04-01

    Magnetic reconnection requires, at least locally, a non-ideal plasma response. In collisionless space and astrophysical plasmas, turbulence could transport energy from large to small scales where binary particle collisions are rare. We have investigated the influence of small scale magnetohydrodynamics (MHD) turbulence on the reconnection rate in the framework of a compressible MHD approach including sub-grid-scale (SGS) turbulence. For this sake, we considered Harris-type and force-free current sheets with finite guide magnetic fields directed out of the reconnection plane. The goal is to find out whether unresolved by conventional simulations MHD turbulence can enhance the reconnection process in high-Reynolds-number astrophysical plasmas. Together with the MHD equations, we solve evolution equations for the SGS energy and cross-helicity due to turbulence according to a Reynolds-averaged turbulence model. The SGS turbulence is self-generated and -sustained through the inhomogeneities of the mean fields. By this way, the feedback of the unresolved turbulence into the MHD reconnection process is taken into account. It is shown that the turbulence controls the regimes of reconnection by its characteristic timescale τt. The dependence on resistivity was investigated for large-Reynolds-number plasmas for Harris-type as well as force-free current sheets with guide field. We found that magnetic reconnection depends on the relation between the molecular and apparent effective turbulent resistivity. We found that the turbulence timescale τt decides whether fast reconnection takes place or whether the stored energy is just diffused away to small scale turbulence. If the amount of energy transferred from large to small scales is enhanced, fast reconnection can take place. Energy spectra allowed us to characterize the different regimes of reconnection. It was found that reconnection is even faster for larger Reynolds numbers controlled by the molecular resistivity η, as

  15. Turbulent transport of impurities in a magnetized plasma; Transport turbulent d'impuretes dans un plasma magnetise

    Energy Technology Data Exchange (ETDEWEB)

    Dubuit, N

    2006-10-15

    This work deals with the transport of impurities in magnetically confined thermonuclear plasmas. The accumulation of impurities in the core of the plasma would imply dramatic losses of energy that may lead to the extinction of the plasma. On the opposite, the injection of impurities in the plasma edge is considered as an efficient means to extract heat without damaging the first wall. The balance between these 2 contradictory constraints requires an accurate knowledge of the impurity transport inside the plasma. The effect of turbulence, the main transport mechanism for impurities is therefore a major issue. In this work, the complete formula of a turbulent flow of impurities for a given fluctuation spectrum has been inferred. The origin and features of the main accumulation processes have been identified. The main effect comes from the compressibility of the electrical shift speed in a plane perpendicular to the magnetic field. This compressibility appears to be linked to the curvature of the magnetic field. A less important effect is a thermal-diffusion process that is inversely proportional to the number of charges and then disappears for most type of impurities except the lightest. This effect implies an impurity flux proportional to the temperature gradient and its direction can change according to the average speed of fluctuations. A new version of the turbulence code TRB has been developed. This new version allows the constraints of the turbulence not by the gradients but by the flux which is more realistic. The importance of the processes described above has been confirmed by a comparison between calculation and experimental data from Tore-supra and the Jet tokamak. The prevailing role of the curvature of the magnetic field in the transport impurity is highlighted. (A.C.)

  16. Simulation of turbulent magnetic reconnection in the small-scale solar wind

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Some observational examples for the possible occurrence of the turbulent magnetic reconnection in the solar wind are found by analysing Helios spacecraft's high resolution data. The phenomena of turbulent magnetic reconnections in small scale solar wind are simulated by introducing a third order accuracy upwind compact difference scheme to the compressible two_dimensional MHD flow. Numerical results verify that the turbulent magnetic reconnection process could occur in small scale interplanetary solar wind, which is a basic feature characterizing the magnetic reconnection in high_magnetic Reynolds number (RM=2 000-10 000) solar wind. The configurations of the magnetic reconnection could evolve from a single X_line to a multiple X-line reconnection, exhibiting a complex picture of the formation, merging and evolution of magnetic islands, and finally the magnetic reconnection would evolve into a low_energy state. Its life_span of evolution is about one hour order of magnitude. Various magnetic and flow signatures are recorded in the numerical test for different evolution stages and along different crossing paths, which could in principle explain and confirm the observational samples from the Helios spacecraft. These results are helpful for revealing the basic physical processes in the solar wind turbulence.

  17. Wide-stopband aperiodic phononic filters

    Science.gov (United States)

    Rostem, K.; Chuss, D. T.; Denis, K. L.; Wollack, E. J.

    2016-06-01

    We demonstrate that a phonon stopband can be synthesized from an aperiodic structure comprising a discrete set of phononic filter stages. Each element of the set has a dispersion relation that defines a complete bandgap when calculated under a Bloch boundary condition. Hence, the effective stopband width in an aperiodic phononic filter (PnF) may readily exceed that of a phononic crystal with a single lattice constant or a coherence scale. With simulations of multi-moded phononic waveguides, we discuss the effects of finite geometry and mode-converting junctions on the phonon transmission in PnFs. The principles described may be utilized to form a wide stopband in acoustic and surface wave media. Relative to the quantum of thermal conductance for a uniform mesoscopic beam, a PnF with a stopband covering 1.6–10.4 GHz is estimated to reduce the thermal conductance by an order of magnitude at 75 mK.

  18. Optimized aperiodic highly directional narrowband infrared emitters

    Science.gov (United States)

    Granier, Christopher H.; Afzal, Francis O.; Min, Changjun; Dowling, Jonathan P.; Veronis, Georgios

    2014-09-01

    Bulk thermal emittance sources possess incoherent, isotropic, and broadband radiation spectra that vary from material to material. However, these radiation spectra can be drastically altered by modifying the geometry of the structures. In particular, several approaches have been proposed to achieve narrowband, highly directional thermal emittance based on photonic crystals, gratings, textured metal surfaces, metamaterials, and shock waves propagating through a crystal. Here we present optimized aperiodic structures for use as narrowband, highly directional thermal infrared emitters for both TE and TM polarizations. One-dimensional layered structures without texturing are preferable to more complex two- and three-dimensional structures because of the relative ease and low cost of fabrication. These aperiodic multilayer structures designed with alternating layers of silicon and silica on top of a semi-infinite tungsten substrate exhibit extremely high emittance peaked around the wavelength at which the structures are optimized. Structures were designed by a genetic optimization algorithm coupled to a transfer matrix code which computed thermal emittance. First, we investigate the properties of the genetic-algorithm optimized aperiodic structures and compare them to a previously proposed resonant cavity design. Second, we investigate a structure optimized to operate at the Wien wavelength corresponding to a near-maximum operating temperature for the materials used in the aperiodic structure. Finally, we present a structure that exhibits nearly monochromatic and highly directional emittance for both TE and TM polarizations at the frequency of one of the molecular resonances of carbon monoxide (CO); hence, the design is suitable for a detector of CO via absorption spectroscopy.

  19. An Enhanced Nonlinear Critical Gradient for Electron Turbulent Transport due to Reversed Magnetic Shear

    International Nuclear Information System (INIS)

    The first nonlinear gyrokinetic simulations of electron internal transport barriers (e-ITBs) in the National Spherical Torus Experiment show that reversed magnetic shear can suppress thermal transport by increasing the nonlinear critical gradient for electron-temperature-gradient-driven turbulence to three times its linear critical value. An interesting feature of this turbulence is non- linearly driven off-midplane radial streamers. This work reinforces the experimental observation that magnetic shear is likely an effective way of triggering and sustaining e-ITBs in magnetic fusion devices.

  20. An Enhanced Nonlinear Critical Gradient for Electron Turbulent Transport due to Reversed Magnetic Shear

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, J. L.; Hammet, G. W.; Mikkelsen, D. R.; Yuh, H. Y.; Candy, J.; Guttenfelder, W.; Kaye, S. M.; LeBlanc, B.

    2011-05-11

    The first nonlinear gyrokinetic simulations of electron internal transport barriers (e-ITBs) in the National Spherical Torus Experiment show that reversed magnetic shear can suppress thermal transport by increasing the nonlinear critical gradient for electron-temperature-gradient-driven turbulence to three times its linear critical value. An interesting feature of this turbulence is non- linearly driven off-midplane radial streamers. This work reinforces the experimental observation that magnetic shear is likely an effective way of triggering and sustaining e-ITBs in magnetic fusion devices.

  1. Fast magnetic field amplification in the early Universe: growth of collisionless plasma instabilities in turbulent media

    CERN Document Server

    Falceta-Goncalves, D

    2015-01-01

    In this work we report a numerical study of the cosmic magnetic field amplification due to collisionless plasma instabilities. The collisionless magnetohydrodynamic equations derived account for the pressure anisotropy that leads, in specific conditions, to the firehose and mirror instabilities. We study the time evolution of seed fields in turbulence under the influence of such instabilities. An approximate analytical time evolution of magnetic field is provided. The numerical simulations and the analytical predictions are compared. We found that i) amplification of magnetic field was efficient in firehose unstable turbulent regimes, but not in the mirror unstable models, ii) the growth rate of the magnetic energy density is much faster than the turbulent dynamo, iii) the efficient amplification occurs at small scales. The analytical prediction for the correlation between the growth timescales with pressure anisotropy ratio is confirmed by the numerical simulations. These results reinforce the idea that pres...

  2. Wave turbulence on the surface of a ferrofluid submitted to a magnetic field

    CERN Document Server

    Boyer, François

    2008-01-01

    We report the observation of wave turbulence on the surface of a ferrofluid mechanically forced and submitted to a static normal magnetic field. We show that magnetic surface waves arise only above a critical field. The power spectrum of their amplitudes displays a frequency-power law leading to the observation of a magnetic wave turbulence regime which is experimentally shown to involve a 4-wave interaction process. The existence of the regimes of gravity, magnetic and capillary wave turbulence is reported in the phase space parameters as well as a triple point of coexistence of these three regimes. Most of these features are understood using dimensional analysis or the dispersion relation of the ferrohydrodynamics surface waves.

  3. Turbulence in ferrofluids in channel flow with steady and oscillating magnetic fields.

    Science.gov (United States)

    Schumacher, Kristopher R; Riley, James J; Finlayson, Bruce A

    2011-01-01

    The turbulent flow of a ferrofluid in channel flow is studied using direct numerical simulation. The method of analysis is an extension of that used for Newtonian fluids, with additional features necessary to model the ferrofluid. The analysis is applied to low Reynolds number turbulence in the range of existing experimental data in a capillary. For steady and oscillating magnetic fields, comparisons are made between a Newtonian fluid and a ferrofluid by comparing the pressure drop, turbulent Reynolds number, turbulent kinetic energy (k), Reynolds stress, velocity, and spin profiles. The results are also compared with predictions of a k-ɛ model to show the accuracy of that model when applied to ferrofluids, where ɛ is the rate of viscous dissipation of turbulent kinetic energy. PMID:21405774

  4. Sub-Grid-Scale Description of Turbulent Magnetic Reconnection in Magnetohydrodynamics

    CERN Document Server

    Widmer, Fabien; Yokoi, Nobumitsu

    2015-01-01

    Magnetic reconnection requires, at least locally, a non-ideal plasma response. In collisionless space and astrophysical plasmas, turbulence could permit this instead of the too rare binary collisions. We investigated the influence of turbulence on the reconnection rate in the framework of a single fluid compressible MHD approach. The goal is to find out, whether unresolved, sub-grid for MHD simulations, turbulence can enhance the reconnection process in high Reynolds number astrophysical plasma. We solve, simultaneously with the grid-scale MHD equations, evolution equations for the sub-grid turbulent energy and cross helicity according to Yokoi's model (Yokoi (2013)) where turbulence is self-generated and -sustained through the inhomogeneities of the mean fields. Simulations of Harris and force free sheets confirm the results of Higashimori et al. (2013) and new results are obtained about the dependence on resistivity for large Reynolds number as well as guide field effects. The amount of energy transferred f...

  5. Turbulent Generation of Flows and Magnetic Field at the Rational Magnetic Surfaces of a Tokamak

    International Nuclear Information System (INIS)

    Full text: Comparative analysis of generation of large-scale structures, zonal flows and streamers, by drift wave turbulence is conducted for periodic systems with magnetic shear such as a tokamak. In a strong magnetic field dynamics of quasi two-dimensional perturbations strongly depends on the value of the wave vector along the magnetic field. When the parallel wave vector is significantly large, so that the parallel phase velocity of perturbation is small compared to electron thermal velocity, the parallel electron motion results in a finite electron density perturbation. It follows the Boltzmann distribution. However, for large-scale structures with poloidal and toroidal symmetry m = n = 0, and the parallel wave vector is zero. This results in strong reduction of density perturbation for m = n = 0. This difference has profound consequences for generation of large-scale zonal flows and streamers due to different structure of the nonlinear interaction matrix. The interaction term has a structure similar to the standard convective nonlinearity for zonal flows, while for streamers it has the structure of the Hasegawa-Mima nonlinearity (which is the higher order due to a small parameter associated with a finite ion Larmor radius). Respectively, zonal flows have the larger growth rate gamma(ZF) compared to that of the streamers. It is shown that 3D electromagnetic helical perturbations will have the growth rate comparable to that of zonal flows if their symmetry coincides with the symmetry of rational magnetic surface, m = nq. The field line bending provides a stabilizing effect and thus determines the radial localization of such structures. Therefore, it is expected that three-dimensional structures of flows and magnetic field will be preferentially generated at the rational magnetic surfaces of a tokamak with a growth rate of order gamma(ZF). This theoretical result may corroborate existing experimental correlations of large-scale shear flow structures with

  6. Turbulent transport across shear layers in magnetically confined plasmas

    International Nuclear Information System (INIS)

    Shear layers modify the turbulence in diverse ways and do not only suppress it. A spatial-temporal investigation of gyrofluid simulations in comparison with experiments allows to identify further details of the transport process across shear layers. Blobs in and outside a shear layer merge, thereby exchange particles and heat and subsequently break up. Via this mechanism particles and heat are transported radially across shear layers. Turbulence spreading is the immanent mechanism behind this process

  7. Coronae as Consequence of Large Scale Magnetic Fields in Turbulent Accretion Disks

    DEFF Research Database (Denmark)

    G. Blackman, Eric; Pessah, Martin Elias

    2009-01-01

    Non-thermal X-ray emission in compact accretion engines can be interpreted to result from magnetic dissipation in an optically thin magnetized corona above an optically thick accretion disk. If coronal magnetic field originates in the disk and the disk is turbulent, then only magnetic structures...... emission. Our results suggest that a significant fraction of the magnetic energy in accretion disks resides in large scale fields, which in turn provides circumstantial evidence for significant non-local transport phenomena and the need for large scale magnetic field generation. For the example of Seyfert...

  8. The Complex Structure of Magnetic Field Discontinuities in the Turbulent Solar Wind

    CERN Document Server

    Greco, A; Servidio, S; Yordanova, E; Veltri, P

    2015-01-01

    Using high resolution Cluster satellite observations, we show that the turbulent solar wind is populated by magnetic discontinuities at different scales, going from proton down to electron scales. The structure of these layers resembles the Harris equilibrium profile in plasmas. Using a multi-dimensional intermittency technique, we show that these structures are connected through the scales. Supported by numerical simulations of magnetic reconnection, we show that observations are consistent with a scenario where many current layers develop in turbulence, and where the outflow of these reconnection events are characterized by complex sub-proton networks of secondary islands, in a self-similar way. The present work establishes that the picture of "reconnection in turbulence" and "turbulent reconnection", separately invoked as ubiquitous, coexist in space plasmas.

  9. The Effects of Turbulence on Three-Dimensional Magnetic Reconnection at the Magnetopause

    CERN Document Server

    Price, L; Drake, J F; Cassak, P A; Dahlin, J; Ergun, R E

    2016-01-01

    Two- and three-dimensional particle-in-cell simulations of a recent encounter of the Magnetospheric Multiscale Mission (MMS) with an electron diffusion region at the magnetopause are presented. While the two-dimensional simulations are laminar, in the three-dimensional simulation turbulence develops at both the x-line and along the magnetic separatrices. The turbulence is strong enough to make the magnetic field around the reconnection island chaotic and produces both anomalous resistivity and anomalous viscosity. Each contribute significantly to breaking the frozen-in condition in the electron diffusion region. A surprise is that the crescent-shaped features seen in velocity distributions during the recent MMS observations and in two-dimensional simulations survive even in the turbulent environment of the three-dimensional system. This suggests that MMS's measurements of crescent distributions do not exclude the possibility that turbulence plays an important role in magnetopause reconnection.

  10. Dispersion blue-shift in an aperiodic Bragg reflection waveguide

    Science.gov (United States)

    Fesenko, Volodymyr I.; Tuz, Vladimir R.

    2016-04-01

    A particular feature of an aperiodic design of cladding of Bragg reflection waveguides to demonstrate a dispersion blue-shift is elucidated. It is made on the basis of a comparative study of dispersion characteristics of both periodic and aperiodic configurations of Bragg mirrors in the waveguide system, wherein for the aperiodic configuration three procedures for layers alternating, namely Fibonacci, Thue-Morse and Kolakoski substitutional rules are considered. It was found out that, in a Bragg reflection waveguide with any considered aperiodic cladding, dispersion curves of guided modes appear to be shifted to shorter wavelengths compared to the periodic configuration regardless of the modes polarization.

  11. Dispersion blue-shift in an aperiodic Bragg reflection waveguide

    CERN Document Server

    Fesenko, Volodymyr I

    2016-01-01

    A particular feature of an aperiodic design of cladding of Bragg reflection waveguides to demonstrate a dispersion blue-shift is elucidated. It is made on the basis of a comparative study of dispersion characteristics of both periodic and aperiodic configurations of Bragg mirrors in the waveguide system, wherein for the aperiodic configuration three procedures for layers alternating, namely Fibonacci, Thue-Morse and Kolakoski substitutional rules are considered. It was found out that, in a Bragg reflection waveguide with any considered aperiodic cladding, dispersion curves of guided modes appear to be shifted to shorter wavelengths compared to the periodic configuration regardless of the modes polarization.

  12. Turbulence-Level Variations and Magnetic Field Orientations in the Fast Solar Wind

    CERN Document Server

    Ragot, B R

    2013-01-01

    The turbulent magnetic fields of a large set of fast solar wind streams measured onboard ACE and STEREO A and B are analyzed in an effort to identify the effects of the turbulence-level broad variations on the orientations of the local, time-averaged magnetic fields. The power level of turbulence, roughly defined as the power in the transverse field fluctuations normalized to the medium-scale average background field, tightly orders the location of the peaks in the probability distribution functions (PDFs) of the angles between local fields and Parker spiral. As a result, the broad variations in the power level of turbulence cause a steep dependence of the average power level of turbulence on the angle of the local field to the Parker spiral, with the highest turbulence levels found near the normal to the Parker spiral and the lowest levels near the Parker spiral direction. Generalized quasilinear estimates of the mean cross-field displacements adapted to intermittent time-varying turbulence lead to accurate ...

  13. DNS of turbulent channel flow at high Reynolds number under a uniform magnetic field

    International Nuclear Information System (INIS)

    A direct numerical simulation (DNS) of turbulent channel flow with high Reynolds number has been carried out to show the effects of magnetic field. In this study, the Reynolds number for channel flow based on bulk velocity ub, kinematic viscosity ν, and channel width 2δ was set to be constant; Reb=2δub/ν=45818. A uniform magnetic field was applied in the direction of the wall normal. The Hartmann number was Ha=2δB0√σ/ρν=32.5 and 65. Turbulent quantities such as the mean flow, turbulent stress, and the turbulent statistics were obtained by DNS. Although the influence of the magnetohydrodynamic dissipation terms in the turbulent kinetic energy budget was small, large-scale turbulent structures, such as vertical structures, low-speed streaks, ejection, and sweep, disappear at the central region of the channel. Consequently, the difference between production and dissipation in the turbulent kinetic energy decreases with increasing Hartmann number at the central region and large-scale structures at this region disappear. (author)

  14. Mach Number Dependence of Turbulent Magnetic Field Amplification: Solenoidal versus Compressive Flows

    CERN Document Server

    Federrath, Christoph; Schober, Jennifer; Banerjee, Robi; Klessen, Ralf S; Schleicher, Dominik R G; 10.1103/PhysRevLett.107.114504

    2011-01-01

    We study the growth rate and saturation level of the turbulent dynamo in magnetohydrodynamical simulations of turbulence, driven with solenoidal (divergence-free) or compressive (curl-free) forcing. For models with Mach numbers ranging from 0.02 to 20, we find significantly different magnetic field geometries, amplification rates, and saturation levels, decreasing strongly at the transition from subsonic to supersonic flows, due to the development of shocks. Both extreme types of turbulent forcing drive the dynamo, but solenoidal forcing is more efficient, because it produces more vorticity.

  15. On the resilience of helical magnetic fields to turbulent diffusion and the astrophysical implications

    Science.gov (United States)

    Blackman, Eric G.; Subramanian, Kandaswamy

    2013-02-01

    The extent to which large-scale magnetic fields are susceptible to turbulent diffusion is important for interpreting the need for in situ large-scale dynamos in astrophysics and for observationally inferring field strengths compared to kinetic energy. By solving coupled evolution equations for magnetic energy and magnetic helicity in a system initialized with isotropic turbulence and an arbitrarily helical large-scale field, we quantify the decay rate of the latter for a bounded or periodic system. The magnetic energy associated with the non-helical large-scale field decays at least as fast as the kinematically estimated turbulent diffusion rate, but the decay rate of the helical part depends on whether the ratio of its magnetic energy to the turbulent kinetic energy exceeds a critical value given by M1, c = (k1/k2)2, where k1 and k2 are the wavenumbers of the large and forcing scales. Turbulently diffusing helical fields to small scales while conserving magnetic helicity requires a rapid increase in total magnetic energy. As such, only when the helical field is subcritical can it so diffuse. When supercritical, it decays slowly, at a rate determined by microphysical dissipation even in the presence of macroscopic turbulence. In effect, turbulent diffusion of such a large-scale helical field produces small-scale helicity whose amplification abates further turbulent diffusion. Two curious implications are that (1) standard arguments supporting the need for in situ large-scale dynamos based on the otherwise rapid turbulent diffusion of large-scale fields require re-thinking since only the large-scale non-helical field is so diffused in a closed system. Boundary terms could however provide potential pathways for rapid change of the large-scale helical field. (2) Since M1, c ≪ 1 for k1 ≪ k2, the presence of long-lived ordered large-scale helical fields as in extragalactic jets do not guarantee that the magnetic field dominates the kinetic energy.

  16. Theoretical study of anisotropic MHD turbulence with low magnetic Reynolds number

    Science.gov (United States)

    Sukoriansky, Semion; Zemach, Efi

    2016-03-01

    Flows of electrically conducting fluids under the action of external magnetic field present an example of strongly anisotropic turbulence. Such flows are not only important for different engineering applications, but also provide an interesting framework for studies of quasi-two-dimensional turbulence with strongly modified transport properties in easily controllable laboratory experiments. We present theoretical results that advance our understanding of magnetohydrodynamic (MHD) flows with low magnetic Reynolds number by treating this phenomenon within the quasi-normal scale elimination (QNSE) theory. Previous applications of the theory to turbulent flows with stable stratification and solid body rotation have demonstrated that QNSE is a powerful tool for studies of anisotropic turbulent flows. We derive expressions for scale-dependent eddy viscosities and eddy diffusivities in the directions parallel and normal to the external magnetic field and investigate progressive anisotropization of turbulent transport of momentum and passive scalar. The theory yields analytical expressions for anisotropic one-dimensional spectra of MHD turbulence. In particular, the theory sheds light upon the modification of the Kolmogorov k-5/3 spectrum by anisotropic Ohmic (Joule) dissipation.

  17. Energetic particle transport in the presence of magnetic turbulence: influence of spectral extension and intermittency

    Science.gov (United States)

    Pucci, F.; Malara, F.; Perri, S.; Zimbardo, G.; Sorriso-Valvo, L.; Valentini, F.

    2016-07-01

    The transport of energetic particles in the presence of magnetic turbulence is an important but unsolved problem of space physics and astrophysics. Here, we aim at advancing the understanding of energetic particle transport by means of a new numerical model of synthetic magnetic turbulence. The model builds up a turbulent magnetic field as a superposition of space-localized fluctuations at different spatial scales. The resulting spectrum is isotropic with an adjustable spectral index. The model allows us to reproduce a spectrum broader than four decades, and to regulate the level of intermittency through a technique based on the p-model. Adjusting the simulation parameters close to solar wind conditions at 1 au, we inject ˜1 MeV protons in the turbulence realization and compute the parallel and perpendicular diffusion coefficients as a function of spectral extension, turbulence level, and intermittency. While a number of previous results are recovered in the appropriate limits, including anomalous transport regimes for low turbulence levels, we find that long spectral extensions tend to reduce the diffusion coefficients. Furthermore, we find for the first time that intermittency has an influence on parallel transport but not on perpendicular transport, with the parallel diffusion coefficient increasing with the level of intermittency. We also obtain the distribution of particle inversion times for parallel velocity, a power law for more than one decade, and compare it with the pitch angle scattering times observed in the solar wind. This parametric study can be useful to interpret particle propagation properties in astrophysical systems.

  18. Intermittent magnetic field excitation by a turbulent flow of liquid sodium

    OpenAIRE

    Nornberg, M. D.; Spence, E. J.; Kendrick, R. D.; Jacobson, C. M.; Forest, C. B.

    2006-01-01

    The magnetic field measured in the Madison Dynamo Experiment shows intermittent periods of growth when an axial magnetic field is applied. The geometry of the intermittent field is consistent with the fastest growing magnetic eigenmode predicted by kinematic dynamo theory using a laminar model of the mean flow. Though the eigenmodes of the mean flow are decaying, it is postulated that turbulent fluctuations of the velocity field change the flow geometry such that the eigenmode growth rate is ...

  19. DNS of turbulent heat transfer under a uniform magnetic field at high Reynolds number

    International Nuclear Information System (INIS)

    In recent developments in nuclear fusion research, certain design concepts for liquid breeder blankets for nuclear fusion reactors use molten salts, such as FLiBe, as coolant material. The mean velocity of liquid coolant material in a reactor is strongly influenced by magnetic field, and hence it is important to study the turbulent magnetohydrodynamic (MHD) flow behavior for an applied magnetic field perpendicular to the main flow. Furthermore, because the flow characteristics of coolant at high Reynolds number are assumed to be different from the usual turbulent MHD flow, it is important to investigate the flow under a magnetic field where the Reynolds number is high. A direct numerical simulation (DNS) of turbulent heat transfer with high Reynolds number has been carried out to show the effects of magnetic field. In this study, the Reynolds number for channel flow based on bulk velocity, viscosity, and channel width was set to be constant; Reb=45818. A uniform magnetic field was applied in the direction of the wall normal. The values of Hartmann number Ha were 32.5 and 65. A constant temperature was applied to the wall as a thermal boundary condition. Prandtl number of the working fluid was assumed to be 0.06. The number of computational grids used in this study was 1024 x 1024 x 768 in the x-, y- and z- directions, respectively. The turbulent quantities such as the mean flow, mean temperature, turbulent stress, and turbulent statistics were obtained by DNS. Moreover, the large-scale turbulent structure about temperature field will be presented at final paper. (orig.)

  20. Non-Collisional Ion Heating and Magnetic Turbulence in the RFP

    International Nuclear Information System (INIS)

    Full text: Strong non-collisional ion heating occurs during sawtooth-like magnetic reconnection events in MST Reversed Field Pinch (RFP) plasma, where ions are transiently heated to as high as 3 keV, often exceeding the electron temperature. The source for this ion heating is the mean magnetic field energy. This transient ion heating has been utilized to enhance plasma beta and energy confinement in MST by timing the application of current profile control just after a reconnection event. The high frequency magnetic turbulence broadens and develops anisotropy with respect to the background magnetic field as expected in magnetized plasma. Magnetic fluctuations are measured over a broad range of scales down to the ion gyroradius. These fluctuations exhibit an exponential spectral density consistent with dissipative nonlinear turbulent cascade, originating from unstable MHD tearing fluctuations, believed to be related to the observed non-collisional ion heating (which is not understood). The non-collisional ion heating and anisotropic magnetic turbulence are also observed in astrophysical plasmas, heightening the interest in these observations. MST provides a laboratory setting to examine this ion heating mechanism and magnetic turbulence. Our key results are 1) achieved high ion temperature through a non-collisional heating and then sustained by parallel current profile control helping to establish MST's record energy confinement time of 12 ms, 2) the resulting ion temperature has a mass dependence where heavier ions heat up to higher temperature 3) the high frequency magnetic turbulence is anisotropic in wave number, and 4) we observe a dissipative cascade in kperp with kdis =0.22/cm. (author)

  1. Asymptotical theory of runaway electron diffusion due to magnetic turbulence in Tokamak plasmas

    International Nuclear Information System (INIS)

    Asymptotic theory of transport of runaway electrons in a toroidal plasma in the presence of small-scale magnetic turbulence is proposed. It is based on relativistic Hamiltonian guiding center equations for runaway electrons in toroidal plasmas. Using the asymptotical analysis the explicit relation between the spectral (m, n)- components of perturbation Hamiltonian and the corresponding spectrum of the magnetic turbulence is found. This relation depends only on a few parameters of runaway orbits and magnetic surfaces. The radial profiles of runaway diffusion coefficients are found employing two methods, the quasilinear approximation and the direct calculations using a fast running mapping. The dependence of the shielding factor of the runaway electron parameters and the turbulence spectra is discussed (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. On the angular distribution of cosmic rays from an individual source in a turbulent magnetic field

    CERN Document Server

    Harari, Diego; Roulet, Esteban

    2015-01-01

    We obtain the angular distribution of the cosmic rays reaching an observer from an individual source and after propagation through a turbulent magnetic field, for different ratios between the source distance and the diffusion length. We study both the high-energy quasi-rectilinear regime as well as the transition towards the diffusive regime at lower energies where the deflections become large. We consider the impact of energy losses, showing that they tend to enhance the anisotropy of the source at a given energy. We also discuss lensing effects, in particular those that could result from the regular galactic magnetic field component, and show that the effect of the turbulent extragalactic magnetic fields can smooth out the divergent magnification peaks that would result for point-like sources in the limit of no turbulent deflections.

  3. Turbulent magnetic field amplification driven by cosmic-ray pressure gradients

    CERN Document Server

    Drury, Luke O'C

    2012-01-01

    Observations of non-thermal emission from several supernova remnants suggest that magnetic fields close to the blastwave are much stronger than would be naively expected from simple shock compression of the field permeating the interstellar medium (ISM). We present a simple model which is capable of achieving sufficient magnetic field amplification to explain the observations. We propose that the cosmic-ray pressure gradient acting on the inhomogeneous ISM upstream of the supernova blastwave induces strong turbulence upstream of the supernova blastwave. The turbulence is generated through the differential acceleration of the upstream ISM which occurs as a result of density inhomogeneities in the ISM. This turbulence then amplifies the pre-existing magnetic field. Numerical simulations are presented which demonstrate that amplification factors of 20 or more are easily achievable by this mechanism when reasonable parameters for the ISM and supernova blastwave are assumed. The length scale over which this amplif...

  4. Magnetic turbulence and particle dynamics in the Earth’s magnetotail

    Directory of Open Access Journals (Sweden)

    G. Zimbardo

    Full Text Available The influence of magnetic turbulence in the near-Earth magnetotail on ion motion is investigated by numerical simulation. The magnetotail current sheet is modelled as a magnetic field reversal with a normal magnetic field com-ponent Bn , plus a three-dimensional spectrum of magnetic fluctuations dB which represents the observed magnetic turbulence. The dawn-dusk electric field Ey is also considered. A test particle simulation is performed using different values of Bn and of the fluctuation level dB/B0. We show that when the magnetic fluctuations are taken into account, the particle dynamics is deeply affected, giving rise to an increase in the cross tail transport, ion heating, and current sheet thickness. For strong enough turbulence, the current splits in two layers, in agreement with recent Cluster observations.

    Key words. Magnetospheric physics (magnetospheric configuration and dynamics – Interplanetary physics (MHD waves and turbulence – Electromagnetics (numerical methods

  5. DNS of turbulent heat transfer under a uniform magnetic field at high Reynolds number

    International Nuclear Information System (INIS)

    A low Pr number fluid flow, such as liquid-metals, has relatively less than turbulent heat transport capability because of the liquid-metals' high thermal conductivity and its very large thermal boundary layer. Liquid-metals as coolant material in fusion reactor have a significant role in the design of advanced reactors. This is true since the investigation of thermal behavior in the actual facility environment such as in the case of low Pr number fluid flow, is needed at high Reynolds number under a magnetic field. In the present study, a direct numerical simulation (DNS) for the low Pr number fluid flow of turbulent heat transfer with high Reynolds number has been carried out to show the effects of magnetic field. The Reynolds number for channel flow based on bulk velocity Ub, viscosity ν, and channel width 2δ was set to be constant as Reb = 2δUb/ν = 45,818. A uniform magnetic field was applied in a direction perpendicular to the wall of the channel. The values of Hartmann number Ha were 0 and 65 (where Ha=2δB0√(σ/ρν)), and Prandtl number was 0.06. The turbulent quantities such as the mean temperature, turbulent heat flux, and temperature variant were obtained by DNS. Although large-scale turbulent structures of both velocity and temperature fields are found at the central region of the channel, the mean temperature profiles near wall region show up as laminar profile, that is, the thermal efficiency of the transport is less than that of turbulent flow. This means that it is necessary to consider the fusion reactor design of thermal mixing argumentation for low Pr number fluid flow because the heat transfer enhancement at turbulent flow cannot be acceptable even where the flow state happens to be a turbulent flow at high Reynolds number

  6. Transport of magnetic field by a turbulent flow of liquid sodium

    International Nuclear Information System (INIS)

    We study the effect of a turbulent flow of liquid sodium generated in the von Karman geometry, on the localized field of a magnet placed close to the frontier of the flow. We observe that the field can be transported by the flow on distances larger than its integral length scale. In the most turbulent configurations, the mean value of the induced field at large distance vanishes. However, the root-mean-square (rms) value of the fluctuations increases linearly with the magnetic Reynolds number. The induced field is strongly intermittent. (authors)

  7. Transport of magnetic field by a turbulent flow of liquid sodium

    OpenAIRE

    Volk, R.; Ravelet, F.; Monchaux, R.; Berhanu, M.; Chiffaudel, A.; Daviaud, F; Odier, Ph.; Pinton, J. F.; Fauve, S.; Mordant, N.; Petrelis, F.

    2006-01-01

    We study the effect of a turbulent flow of liquid sodium generated in the von K\\'arm\\'an geometry, on the localized field of a magnet placed close to the frontier of the flow. We observe that the field can be transported by the flow on distances larger than its integral length scale. In the most turbulent configurations, the mean value of the field advected at large distance vanishes. However, the rms value of the fluctuations increases linearly with the magnetic Reynolds number. The advected...

  8. Time Aperiodic Perturbations of Integrable Hamiltonian Systems

    OpenAIRE

    Martinez, A; Wiggins, S

    2000-01-01

    We consider a Hamiltonian $H=H^{0}(p)+\\kappa H^{1}(p,q,t)$, $(p,q)\\in {\\mathbb{R}}^{n} \\times {\\mathbb{T}}^n$, $t\\in{\\mathbb{R}}$ where $\\kappa \\in {\\mathbb{R}}$ is a small perturbation parameter and $p$, $q$ are the action and angle variables respectively. The Hamiltonian generates an autonomous vector field obtained by extending the phase space making $t$ a dependent variable and adding its conjugate variable $\\tau$. In this paper we look at a time aperiodic perturbation $H^{1}(p,q,t)$ whic...

  9. The effect of magnetic islands on Ion Temperature Gradient turbulence driven transport

    International Nuclear Information System (INIS)

    In this work, we address the question of the influence of magnetic islands on the perpendicular transport due to steady-state ITG turbulence on the energy transport time scale. We demonstrate that turbulence can cross the separatrix and enhance the perpendicular transport across magnetic islands. As the perpendicular transport in the interior of the island sets the critical island size needed for growth of neoclassical tearing modes, this increased transport leads to a critical island size larger than that predicted from considering collisional conductivities, but smaller than that using anomalous effective conductivities. We find that on Bohm time scales, the turbulence is able to re-establish the temperature gradient across the island for islands widths w ≲ λturb, the turbulence correlation length. The reduction in the island flattening is estimated by comparison with simulations retaining only the perpendicular temperature and no turbulence. At intermediate island widths, comparable to λturb, turbulence is able to maintain finite temperature gradients across the island

  10. Aperiodic behaviour of a non-linear oscillator.

    Science.gov (United States)

    Baker, N. H.; Moore, D. W.; Spiegel, E. A.

    1971-01-01

    The aperiodic behavior of the solution of the equation of motion derived previously (1966) when considering a model thermomechanical oscillator is examined. Periodic solutions of this equation are studied numerically and analytically. Conditions for the instability of the solutions are determined. This instability seems to be the cause of the observed aperiodicity.

  11. Density effects on tokamak edge turbulence and transport with magnetic X-points

    International Nuclear Information System (INIS)

    Results are presented from the 3D electromagnetic turbulence code BOUT, the 2D transport code UEDGE, and theoretical analysis of boundary turbulence and transport in a real divertor-plasma geometry and its relationship to the density limit. Key results include: (1) a transition of the boundary turbulence from resistive X-point to resistive-ballooning as a critical plasma density is exceeded; (2) formation of an X-point MARFE in 2D UEDGE transport simulations for increasing outboard radial transport as found by BOUT for increasing density; (3) identification of convective transport by localized plasma 'blobs' in the SOL at high density during neutral fueling, and decorrelation of turbulence between the midplane and the divertor leg due to strong X-point magnetic shear; (4) a new divertor-leg instability driven at high plasma beta by a radial tilt of the divertor plate. (author)

  12. Magnetic Turbulence and Line Broadening in Simulations of Lyman-Alpha Absorption

    Science.gov (United States)

    Gurvich, Alex; Burkhart, Blakesley K.; Bird, Simeon

    2016-01-01

    We use the Illustris cosmological AREPO simulations to study the effects of gas turbulence and magnetic fields on measurements from the Lyman-Alpha forest. We generate simulated Lyman-Alpha spectra and plot the distributions of Column Density (CDD) and Doppler Width (b) both by adhering to the canonical method of fitting Voigt profiles to absorption lines and by directly measuring the column density and equivalent widths from snapshot data .We investigate the effects of additional unresolved gas turbulence in Illustris by adding an additional broadening term to the line profiles to mimic turbulent broadening. When we do this, we find a measurable effect in the CDD and an offset in the mean of the b distribution corresponding to the additional turbulence. We also compare different MHD runs in AREPO we find that the CDD can measurably differentiate between magnetic seed field at redshifts as low as z=0.1, but we do not find that the b distribution is affected at a detectable level. Our work suggests that the effects of turbulence and magnetic fields from z=2-0.1 can potentially be measured with these diagnostics. This work was supported in part by the NSF REU and DoD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.

  13. Optimization of Aperiodic Waveguide Mode Converters

    Energy Technology Data Exchange (ETDEWEB)

    Burke, G J; White, D A; Thompson, C A

    2004-12-09

    Previous studies by Haq, Webb and others have demonstrated the design of aperiodic waveguide structures to act as filters and mode converters. These aperiodic structures have been shown to yield high efficiency mode conversion or filtering in lengths considerably shorter than structures using gradual transitions and periodic perturbations. The design method developed by Haq and others has used mode-matching models for the irregular, stepped waveguides coupled with computer optimization to achieve the design goal using a Matlab optimization routine. Similar designs are described here, using a mode matching code written in Fortran and with optimization accomplished with the downhill simplex method with simulated annealing using an algorithm from the book Numerical Recipes in Fortran. Where Haq et al. looked mainly for waveguide shapes with relatively wide cavities, we have sought lower profile designs. It is found that lower profiles can meet the design goals and result in a structure with lower Q. In any case, there appear to be very many possible configurations for a given mode conversion goal, to the point that it is unlikely to find the same design twice. Tolerance analysis was carried out for the designs to show edge sensitivity and Monte Carlo degradation rate. The mode matching code and mode conversion designs were validated by comparison with FDTD solutions for the discontinuous waveguides.

  14. Periodic and aperiodic synchronization in skilled action

    Directory of Open Access Journals (Sweden)

    Fred Cummins

    2011-12-01

    Full Text Available Synchronized action is considered as a manifestation of shared skill. Most synchronized behaviors in humans and other animals are based on periodic repetition. Aperiodic synchronization of complex action is found in the experimental task of synchronous speaking, in which naive subjects read a common text in lock step. The demonstration of synchronized behavior without a periodic basis is presented as a challenge for theoretical understanding. A unified treatment of periodic and aperiodic synchronization is suggested by replacing the sequential processing model of cognitivist approaches with the more local notion of a task-specific sensorimotor coordination. On this view, skilled action is the imposition of constraints on the co-variation of movement and sensory flux such that the boundary conditions that define the skill are met. This non-cognitivist approach originates in the work of John Dewey. It allows a unification of the treatment of sensorimotor synchronization in simple rhythmic behavior and in complex skilled behavior and it suggests that skill sharing is a uniquely human trait of considerable import.

  15. Kubo number and magnetic field line diffusion coefficient for anisotropic magnetic turbulence

    International Nuclear Information System (INIS)

    The magnetic field line diffusion coefficients Dx and Dy are obtained by numerical simulations in the case that all the magnetic turbulence correlation lengths lx, ly, and lz are different. We find that the variety of numerical results can be organized in terms of the Kubo number, the definition of which is extended from R=(δB/B0)(l#parallel#/l#perpendicular#) to R=(δB/B0)(lz/lx), for lx≥ly. Here, l#parallel# (l#perpendicular#) is the correlation length along (perpendicular to) the average field B0=B0{cflx e}z. We have anomalous, non-Gaussian transport for R{approx-lt}0.1, in which case the mean square deviation scales nonlinearly with time. For R{approx-gt}1 we have several Gaussian regimes: an almost quasilinear regime for 0.1{approx-lt}R{approx-lt}1, an intermediate, transition regime for 1{approx-lt}R{approx-lt}10, and a percolative regime for R{approx-gt}10. An analytical form of the diffusion coefficient is proposed, Di=D(δBlz/B0lx)μ(li/lx)νlx2/lz, which well describes the numerical simulation results in the quasilinear, intermediate, and percolative regimes

  16. Comparing Numerical Methods for Isothermal Magnetized Supersonic Turbulence

    CERN Document Server

    Kritsuk, Alexei G; Collins, David; Padoan, Paolo; Norman, Michael L; Abel, Tom; Banerjee, Robi; Federrath, Christoph; Flock, Mario; Lee, Dongwook; Li, Pak Shing; Mueller, Wolf-Christian; Teyssier, Romain; Ustyugov, Sergey D; Vogel, Christian; Xu, Hao

    2011-01-01

    We employ simulations of supersonic super-Alfv\\'enic turbulence decay as a benchmark test problem to assess and compare the performance of nine astrophysical MHD methods actively used to model star formation. The set of nine codes includes: ENZO, FLASH, KT-MHD, LL-MHD, PLUTO, PPML, RAMSES, STAGGER, and ZEUS. We present a comprehensive set of statistical measures designed to quantify the effects of numerical dissipation in these MHD solvers. We compare power spectra for basic fields to determine the effective spectral bandwidth of the methods and rank them based on their relative effective Reynolds numbers. We also compare numerical dissipation for solenoidal and dilatational velocity components to check for possible impacts of the numerics on small-scale density statistics. Finally, we discuss convergence of various characteristics for the turbulence decay test and impacts of various components of numerical schemes on the accuracy of solutions. We show that the best performing codes employ a consistently high...

  17. Quantifying the effect of turbulent magnetic diffusion on the growth rate of the magneto-rotational instability

    CERN Document Server

    Väisälä, M S; Mitra, Dhrubaditya; Käpylä, P J; Mantere, M J

    2013-01-01

    In astrophysics, turbulent diffusion is often used in place of microphysical diffusion to avoid resolving the small scales. However, we expect this approach to break down when time and length scales of the turbulence become comparable with other relevant time and length scales in the system. Turbulent diffusion has previously been applied to the magneto-rotational instability (MRI), but no quantitative comparison of growth rates at different turbulent intensities has been performed. We investigate to what extent turbulent diffusion can be used to model the effects of small-scale turbulence on the kinematic growth rates of the MRI, and how this depends on angular velocity and magnetic field strength. We use direct numerical simulations in three-dimensional shearing boxes with periodic boundary conditions in the spanwise direction and additional random plane-wave volume forcing to drive a turbulent flow at a given length scale. We estimate the turbulent diffusivity using a mixing length formula and compare with...

  18. Production of Magnetic Turbulence by Cosmic Rays Drifting Upstream of Supernova Remnant Shocks

    Science.gov (United States)

    Stroman, Thomas; Niemiec, Jacek; Pohl, Martin; Nishikawa, Ken-ichi

    2008-01-01

    I will present results of our recent two- and three-dimensional Particle-In-Cell simulations of magnetic-turbulence production by cosmic-ray ions drifting upstream of supernova remnant shocks. These studies' aim is twofold: test recent predictions of strong amplification in short wavelength, non-resonant wave modes, and study the subsequent evolution of the magnetic turbulence, including its backreaction on cosmic-ray trajectories. We confirm that the drifting cosmic rays give rise to a turbulent magnetic field, but show that an oblique filamentary mode grows more rapidly than the non-resonant parallel modes found in analytical theory. The field perturbations grow more slowly than estimated using a quasi-linear analytical approach for the parallel plane-wave mode, and saturate in amplitude at deltaB/B approximately equal to 1. The backreaction of the magnetic turbulence on the particles leads to an alignment of the bulk-flow velocities of the cosmic rays and the background medium. This is an essential characteristic of cosmic ray-modified shocks: the upstream flow speed is continuously changed by the cosmic rays. The reduction of relative drift between cosmic rays and background medium accounts for the saturation of the instability at only moderate magnetic-field amplitudes. It is possible that the prolonged magnetic field growth observed in recent MHD simulations results from a cosmic-ray current assumed to be constant and thus immune to the backreaction from the turbulent field. We speculate that the parallel plane-wave mode found in analytical treatments very quickly leads co filamentation, which we observe in our PIC modeling and is also apparent in the MHD simulations.

  19. On the effect of rotation on magnetohydrodynamic turbulence at high magnetic Reynolds number

    CERN Document Server

    Favier, Benjamin F N; Cambon, Claude; 10.1080/03091929.2010.544655

    2011-01-01

    This article is focused on the dynamics of a rotating electrically conducting fluid in a turbulent state. As inside the Earth's core or in various industrial processes, a flow is altered by the presence of both background rotation and a large scale magnetic field. In this context, we present a set of 3D direct numerical simulations of incompressible decaying turbulence. We focus on parameters similar to the ones encountered in geophysical and astrophysical flows, so that the Rossby number is small, the interaction parameter is large, but the Elsasser number, defining the ratio between Coriolis and Lorentz forces, is about unity. These simulations allow to quantify the effect of rotation and thus inertial waves on the growth of magnetic fluctuations due to Alfv\\'en waves. Rotation prevents the occurrence of equipartition between kinetic and magnetic energies, with a reduction of magnetic energy at decreasing Elsasser number {\\Lambda}. It also causes a decrease of energy transfer mediated by cubic correlations....

  20. Parallel and perpendicular structure of the edge turbulence in a three-dimensional magnetic field

    International Nuclear Information System (INIS)

    Edge turbulence and blobs are studied in the three-dimensional magnetic topology of the RFX-mod reversed field pinch. The edge of the RFX-mod shows a three-dimensional structure dominated by a helical equilibrium with (1, −7) symmetry, which gives the same space-time modulation to all of the kinetic properties. The interaction between the edge turbulence and this magnetic topology is studied. It is shown that the edge blobs are current-carrying filaments aligned with the magnetic field, and in the perpendicular plane each blob is a positive peak of electron density and a valley of temperature. The inner nature of these blobs is not affected by the presence of the O and X points of the (1, −7) island; however, the statistical properties are sensitive to them, pointing to the influence of the magnetic topology on the edge fluctuations. (paper)

  1. Parallel and perpendicular structure of the edge turbulence in a three-dimensional magnetic field

    Science.gov (United States)

    Agostini, M.; Scarin, P.; Spizzo, G.; Vianello, N.; Carraro, L.

    2014-09-01

    Edge turbulence and blobs are studied in the three-dimensional magnetic topology of the RFX-mod reversed field pinch. The edge of the RFX-mod shows a three-dimensional structure dominated by a helical equilibrium with (1, -7) symmetry, which gives the same space-time modulation to all of the kinetic properties. The interaction between the edge turbulence and this magnetic topology is studied. It is shown that the edge blobs are current-carrying filaments aligned with the magnetic field, and in the perpendicular plane each blob is a positive peak of electron density and a valley of temperature. The inner nature of these blobs is not affected by the presence of the O and X points of the (1, -7) island; however, the statistical properties are sensitive to them, pointing to the influence of the magnetic topology on the edge fluctuations.

  2. Turbulence simulations of blob formation and radial propagation in toroidally magnetized plasmas

    DEFF Research Database (Denmark)

    Garcia, O.E.; Naulin, V.; Nielsen, A.H.; Juul Rasmussen, J.

    Two- dimensional numerical fluid turbulence simulations demonstrating the formation and radial propagation of blob structures in toroidally magnetized plasmas are presented and analysed in detail. A salient feature of the model is a linearly unstable edge plasma region with localized sources of...... particles and heat, which is coupled to a scrape-off layer with linear damping terms for all dependent variables corresponding to transport along open magnetic field lines. The formation of blob structures is related to profile variations caused by bursting in the global turbulence level, which is due to a...... dynamical regulation by self- sustained differential rotation of the plasma layer. Radial propagation of the blob structures follows from a vertical charge polarization due to magnetic guiding centre drifts in the toroidally magnetized plasma. Statistical analysis of the particle density, radial electric...

  3. Effects of Magnetic Turbulence on the Dynamics of Pickup Ions in the Ionosheath of Mars

    OpenAIRE

    Aceves, H.; Reyes-Ruiz, M.; C. E. Chávez

    2011-01-01

    We study some of the effects that magnetic turbulent fluctuations have on the dynamics of pickup O+ ions in the magnetic polar regions of the Mars ionosheath. In particular we study their effect on the bulk velocity profiles of ions as a function of altitude over the magnetic poles, in order to compare them with recent Mars Express data; that indicate that their average velocity is very low and essentially in the anti-sunward direction. We find that, while magnetic field fluctuations do give ...

  4. The effects of a magnetic field on planetary migration in laminar and turbulent discs

    Science.gov (United States)

    Comins, Megan L.; Romanova, Marina M.; Koldoba, Alexander V.; Ustyugova, Galina V.; Blinova, Alisa A.; Lovelace, Richard V. E.

    2016-04-01

    We investigate the migration of low-mass planets (1M⊕, 5M⊕ and 20M⊕) in accretion discs threaded with a magnetic field using 2D MHD code in polar coordinates. We observed that, in the case of a strong azimuthal magnetic field where the plasma parameter is β ˜ 2 - 4, density waves at the magnetic resonances exert a positive torque on the planet and may slow down or reverse its migration. However, when the magnetic field is weaker (i.e., the plasma parameter β is relatively large), then non-axisymmetric density waves excited by the planet lead to growth of the radial component of the field and, subsequently, to development of the magneto-rotational instability, such that the disc becomes turbulent. Migration in a turbulent disc is stochastic, and the migration direction may change as such. To understand migration in a turbulent disc, both the interaction between a planet and individual turbulent cells, as well as the interaction between a planet and ordered density waves, have been investigated.

  5. The effects of a magnetic field on planetary migration in laminar and turbulent discs

    Science.gov (United States)

    Comins, Megan L.; Romanova, Marina M.; Koldoba, Alexander V.; Ustyugova, Galina V.; Blinova, Alisa A.; Lovelace, Richard V. E.

    2016-07-01

    We investigate the migration of low-mass planets (1, 5 and 20 M⊕) in accretion discs threaded with a magnetic field using 2D magnetohydrodynamic code in polar coordinates. We observed that, in the case of a strong azimuthal magnetic field where the plasma parameter is β ˜ 2-4, density waves at the magnetic resonances exert a positive torque on the planet and may slow down or reverse its migration. However, when the magnetic field is weaker (i.e. the plasma parameter β is relatively large), then non-axisymmetric density waves excited by the planet lead to growth of the radial component of the field and, subsequently, to development of the magnetorotational instability, such that the disc becomes turbulent. Migration in a turbulent disc is stochastic, and the migration direction may change as such. To understand migration in a turbulent disc, both the interaction between a planet and individual turbulent cells, as well as the interaction between a planet and ordered density waves, have been investigated.

  6. ON THE AMPLIFICATION OF MAGNETIC FIELD BY A SUPERNOVA BLAST SHOCK WAVE IN A TURBULENT MEDIUM

    International Nuclear Information System (INIS)

    We have performed extensive two-dimensional magnetohydrodynamic simulations to study the amplification of magnetic fields when a supernova blast wave propagates into a turbulent interstellar plasma. The blast wave is driven by injecting high pressure in the simulation domain. The interstellar magnetic field can be amplified by two different processes, occurring in different regions. One is facilitated by the fluid vorticity generated by the 'rippled' shock front interacting with the background turbulence. The resulting turbulent flow keeps amplifying the magnetic field, consistent with earlier work. The other process is facilitated by the growth of the Rayleigh-Taylor instability at the contact discontinuity between the ejecta and the shocked medium. This can efficiently amplify the magnetic field and tends to produce the highest magnetic field. We investigate the dependence of the amplification on numerical parameters such as grid-cell size and on various physical parameters. We show that the magnetic field has a characteristic radial profile such that the downstream magnetic field gets progressively stronger away from the shock. This is because the downstream magnetic field needs a finite time to reach the efficient amplification, and will get further amplified in the Rayleigh-Taylor region. In our simulation, we do not observe a systematic strong magnetic field within a small distance to the shock. This indicates that if the magnetic-field amplification in supernova remnants indeed occurs near the shock front, other processes such as three-dimensional instabilities, plasma kinetics, and/or cosmic ray effect may need to be considered to explain the strong magnetic field in supernova remnants.

  7. Cosmic-ray parallel and perpendicular transport in turbulent magnetic fields

    International Nuclear Information System (INIS)

    A correct description of cosmic-ray (CR) diffusion in turbulent plasma is essential for many astrophysical and heliospheric problems. This paper aims to present the physical diffusion behavior of CRs in actual turbulent magnetic fields, a model of which has been numerically tested. We perform test particle simulations in compressible magnetohydrodynamic turbulence. We obtain scattering and spatial diffusion coefficients by tracing particle trajectories. We find no resonance gap for pitch-angle scattering at 90°. Our result confirms the dominance of mirror interaction with compressible modes for most pitch angles, as revealed by the nonlinear theory. For cross-field transport, our results are consistent with normal diffusion predicted earlier for large scales. The diffusion behavior strongly depends on the Alfvénic Mach number and the particle's parallel mean free path. We, for the first time, numerically derive the dependence of MA4 for the perpendicular diffusion coefficient with respect to the mean magnetic field. We conclude that CR diffusion coefficients are spatially correlated to the local turbulence properties. On scales smaller than the injection scale, we find that CRs are superdiffusive. We emphasize the importance of our results in a wide range of astrophysical processes, including magnetic reconnection.

  8. Correlation Reflectometry for Turbulence and Magnetic Field Measurements in Fusion Plasmas

    International Nuclear Information System (INIS)

    For the interpretation of correlation reflectometry data a fast two-dimensional full wave code has been developed in which realistic plasma geometries are used. Results of this code are compared with experiments and turbulence correlation lengths and fluctuation levels are extracted with statistical optics methods. It is shown that in general the measured reflectometer correlation length is not equal to the turbulence correlation length. The code is also used to study the possibility of O-X correlation reflectometry in FIRE for the determination of the local magnetic field strength. It was found that this is only possible at very low fluctuation levels

  9. Generation of Magnetic Field by Combined Action of Turbulence and Shear

    CERN Document Server

    Yousef, T A; Schekochihin, A A; Kleeorin, N; Rogachevskii, I; Iskakov, A B; Cowley, S C; McWilliams, J C

    2007-01-01

    The possibility of a mean-field dynamo in nonhelical turbulence with superimposed linear shear is studied numerically in elongated shearing boxes. Exponential growth of magnetic field at scales much larger than the outer scale of the turbulence is found. The charateristic scale of the field is ~ S^{-1/2} and growth rate is gamma ~ S, where S is the shearing rate. This newly discovered form of large-scale dynamo action may have an extremely broad range of applications to astrophysical systems with spatially coherent mean flows.

  10. Turbulent amplification of magnetic field driven by dynamo effect at rippled shocks

    CERN Document Server

    Fraschetti, Federico

    2013-01-01

    We derive analytically the vorticity generated downstream of a two-dimensional rippled hydromagnetic shock neglecting fluid viscosity and resistivity. The growth of the turbulent component of the downstream magnetic field is driven by the vortical eddies motion. We determine an analytic time-evolution of the magnetic field amplification at shocks, so far described only numerically, until saturation occurs due to seed-field reaction to field lines whirling. The explicit expression of the amplification growth rate and of the non-linear field back-reaction in terms of the parameters of shock and interstellar density fluctuations is derived from MHD jump conditions at rippled shocks. A magnetic field saturation up to the order of milligauss and a short-time variability in the $X$-ray observations of supernova remnants can be obtained by using reasonable parameters for the interstellar turbulence.

  11. Stochastic field-line wandering in magnetic turbulence with shear. I. Quasi-linear theory

    Science.gov (United States)

    Shalchi, A.; Negrea, M.; Petrisor, I.

    2016-07-01

    We investigate the random walk of magnetic field lines in magnetic turbulence with shear. In the first part of the series, we develop a quasi-linear theory in order to compute the diffusion coefficient of magnetic field lines. We derive general formulas for the diffusion coefficients in the different directions of space. We like to emphasize that we expect that quasi-linear theory is only valid if the so-called Kubo number is small. We consider two turbulence models as examples, namely, a noisy slab model as well as a Gaussian decorrelation model. For both models we compute the field line diffusion coefficients and we show how they depend on the aforementioned Kubo number as well as a shear parameter. It is demonstrated that the shear effect reduces all field line diffusion coefficients.

  12. Magnetically-regulated fragmentation of a massive, dense and turbulent clump

    CERN Document Server

    Fontani, F; Giannetti, A; Beltrán, M T; Sánchez-Monge, Á; Testi, L; Brand, J; Caselli, P; Cesaroni, R; Dodson, R; Longmore, S; Rioja, M; Tan, J C; Walmsley, C M

    2016-01-01

    Massive stars, multiple stellar systems and clusters are born from the gravitational collapse of massive dense gaseous clumps, and the way these systems form strongly depends on how the parent clump fragments into cores during collapse. Numerical simulations show that magnetic fields may be the key ingredient in regulating fragmentation. Here we present ALMA observations at ~0.25'' resolution of the thermal dust continuum emission at ~278 GHz towards a turbulent, dense, and massive clump, IRAS 16061-5048c1, in a very early evolutionary stage. The ALMA image shows that the clump has fragmented into many cores along a filamentary structure. We find that the number, the total mass and the spatial distribution of the fragments are consistent with fragmentation dominated by a strong magnetic field. Our observations support the theoretical prediction that the magnetic field plays a dominant role in the fragmentation process of massive turbulent clump.

  13. Magnetic Turbulence and Thermodynamics in the Inner Region of Protoplanetary Discs

    CERN Document Server

    Hirose, Shigenobu

    2015-01-01

    Using radiation magnetohydrodynamics simulations with realistic opacities and equation of state, and zero net magnetic flux, we have explored thermodynamics in the inner part of protoplanetary discs where magnetic turbulence is expected. The thermal equilibrium curve consists of the upper, lower, and middle branches. The upper (lower) branch corresponds to hot (cool) and optically very (moderately) thick discs, respectively, while the middle branch is characterized by convective energy transport near the midplane. Convection is also the major energy transport process near the low surface density end of the upper branch. There, convective motion is fast with Mach numbers reaching $\\gtrsim 0.01$, and enhances both magnetic turbulence and cooling, raising the ratio of vertically-integrated shear stress to vertically-integrated pressure by a factor of several. This convectively enhanced ratio seems a robust feature in accretion discs having an ionization transition. We have also examined causes of the S-shaped th...

  14. A Lagrangian model for the evolution of turbulent magnetic and passive scalar fields

    CERN Document Server

    Hater, T; Grauer, R

    2010-01-01

    In this paper we present an extension of the \\emph{Recent Fluid Deformation (RFD)} closure introduced by Chevillard and Meneveau (2006) which was developed for modeling the time evolution of Lagrangian fluctuations in incompressible Navier-Stokes turbulence. We apply the RFD closure to study the evolution of magnetic and passive scalar fluctuations. This comparison is especially interesting since the stretching term for the magnetic field and for the gradient of the passive scalar are similar but differ by a sign such that the effect of stretching and compression by the turbulent velocity field is reversed. Probability density functions (PDFs) of magnetic fluctuations and fluctuations of the gradient of the passive scalar obtained from the RFD closure are compared against PDFs obtained from direct numerical simulations.

  15. The Magnetic Field as a Turbulence Suppressor in Molecular Cloud Formation

    CERN Document Server

    Manuel, Zamora-Avilés; Bastian, Körtgen; Robi, Banerjee; Lee, Hartmann

    2016-01-01

    We present magnetohydrodynamic simulations aimed at studying the effect of the magnetic field on the production of turbulence through various instabilities during the formation of molecular clouds (MCs) by converging flows. We particularly focus on the subsequent star formation (SF) activity. We study four magnetically supercritical models with magnetic field strengths $B= 0$, 1, 2, and 3 $\\mu$G (corresponding to mass-to-flux ratios of $\\infty$, 4.76, 2.38, and 1.59 times the critical value), with the magnetic field initially aligned with the flows. We find that, for increasing magnetic field strength, the clouds formed tend to be more massive, denser, less turbulent, and with higher SF activity. This causes the onset of star formation activity in the non-magnetic or more weakly magnetized cases to be delayed by a few Myr in comparison to the more strongly magnetized cases. We attribute this behavior to a suppression of the nonlinear thin shell instability (NTSI), which is the main mechanism responsible for t...

  16. Phase-coded pulse aperiodic transmitter coding

    Directory of Open Access Journals (Sweden)

    I. I. Virtanen

    2009-07-01

    Full Text Available Both ionospheric and weather radar communities have already adopted the method of transmitting radar pulses in an aperiodic manner when measuring moderately overspread targets. Among the users of the ionospheric radars, this method is called Aperiodic Transmitter Coding (ATC, whereas the weather radar users have adopted the term Simultaneous Multiple Pulse-Repetition Frequency (SMPRF. When probing the ionosphere at the carrier frequencies of the EISCAT Incoherent Scatter Radar facilities, the range extent of the detectable target is typically of the order of one thousand kilometers – about seven milliseconds – whereas the characteristic correlation time of the scattered signal varies from a few milliseconds in the D-region to only tens of microseconds in the F-region. If one is interested in estimating the scattering autocorrelation function (ACF at time lags shorter than the F-region correlation time, the D-region must be considered as a moderately overspread target, whereas the F-region is a severely overspread one. Given the technical restrictions of the radar hardware, a combination of ATC and phase-coded long pulses is advantageous for this kind of target. We evaluate such an experiment under infinitely low signal-to-noise ratio (SNR conditions using lag profile inversion. In addition, a qualitative evaluation under high-SNR conditions is performed by analysing simulated data. The results show that an acceptable estimation accuracy and a very good lag resolution in the D-region can be achieved with a pulse length long enough for simultaneous E- and F-region measurements with a reasonable lag extent. The new experiment design is tested with the EISCAT Tromsø VHF (224 MHz radar. An example of a full D/E/F-region ACF from the test run is shown at the end of the paper.

  17. The End of the Turbulent Cascade?: Exploring possible signatures of MHD turbulent dissipation beyond spectra in a magnetically-dynamic laboratory plasma

    Science.gov (United States)

    Schaffner, David

    2015-11-01

    A typical signature of dissipation in conventional fluid turbulence is the steepening power spectrum of velocity fluctuations, signaling the transition from the inertial range to the dissipation range where scales become small enough for fluid viscosity effects to be dominant and convert flow energy into thermal energy. In MHD fluids, resistivity can play an analogous role to viscosity for magnetic field fluctuations, where collisional scales determine the onset of dissipation. However, turbulent plasmas can exhibit other mechanisms for converting magnetic energy into thermal energy such as through the generation of current sheets and magnetic reconnection or through coupling to kinetic scale fluctuations such as Kinetic Alfven waves or Whistler waves. In collisionless plasmas such as the solar wind, only these alternative dissipation mechanisms are likely active. Recent experiments with MHD turbulence generated in the wind-tunnel configuration of the Swarthmore Spheromak Experiment (SSX) provide an environment in which various potential non-resistive signatures of magnetic turbulent energy dissipation can be studied. SSX plasma is magnetically dynamic with no background field. Previous work has demonstrated that a steepening in the magnetic fluctuation spectrum is observed which can be roughly interpreted as a transition from inertial range to a dissipation range magnetic turbulence. The frequency range at which this steepening occurs can be correlated to the ion inertial scale of the plasma, a length which is characteristic of the size of current sheets in MHD plasmas. Detailed intermittency and structure function analysis presented here coupled with appeals to fractal scaling models support the hypothesis that the observed turbulence is being affected by a global dissipation mechanism such as the generation of current sheets. Information theory based analysis techniques using permutation entropy and statistical complexity are also applied to seek dissipation

  18. Fractal dissipation of small-scale magnetic fluctuations in solar wind turbulence as seen by CLUSTER

    International Nuclear Information System (INIS)

    A robust multiscale analysis of high-frequency magnetic field measurements from the Cluster spacecraft is presented using complimentary measurements from the magnetometer and search-coil instruments; in a stationary interval of fast ambient solar wind. We show a surprising and novel result: that for time-scales smaller than the ion-gyro period the magnetic field fluctuations exhibit non-Gaussian monoscaling i.e. are globally scale invariant and can be characterized by a single scaling exponent and thus a single universal scaling function for the probability density. This presents new questions, as well as theoretical constraints, for determining how magnetic turbulent energy is dissipated in collisionless plasmas.

  19. Transport and turbulence in a magnetized argon plasma

    International Nuclear Information System (INIS)

    Three aspects of the longitudinal motion of ionized and neutral particles in a hollow cathode arc are investigated. The longitudinal plasma momentum balance of the column has been investigated, we have studied the momentum balance in relation to turbulence and we have investigated the source properties of the cathode. The study of the plasma momentum balance contains two aspects: (1) to collect experimental data on ion drift velocities and temperatures with Fabry-Perot interferometry, on electron densities and temperatures with Thomson scattering or optical spectroscopy and on neutral densities with a collisional radiative model combined with the ion energy balance; (2) to check the (classical) theory of the momentum balance with these data. The coupling between these aspects has been investigated and found to be in good agreement. (Auth.)

  20. Kinetic-scale magnetic turbulence and finite Larmor radius effects at Mercury

    CERN Document Server

    Uritsky, V M; Khazanov, G V; Donovan, E F; Boardsen, S A; Anderson, B J; Korth, H

    2011-01-01

    We use a nonstationary generalization of the higher-order structure function technique to investigate statistical properties of the magnetic field fluctuations recorded by MESSENGER spacecraft during its first flyby (01/14/2008) through the near Mercury's space environment, with the emphasis on key boundary regions participating in the solar wind -- magnetosphere interaction. Our analysis shows, for the first time, that kinetic-scale fluctuations play a significant role in the Mercury's magnetosphere up to the largest resolvable time scale ~20 s imposed by the signal nonstationarity, suggesting that turbulence at this planet is largely controlled by finite Larmor radius effects. In particular, we report the presence of a highly turbulent and extended foreshock system filled with packets of ULF oscillations, broad-band intermittent fluctuations in the magnetosheath, ion-kinetic turbulence in the central plasma sheet of Mercury's magnetotail, and kinetic-scale fluctuations in the inner current sheet encountered...

  1. The Complex Structure of Magnetic Field Discontinuities in the Turbulent Solar Wind

    Science.gov (United States)

    Greco, A.; Perri, S.; Servidio, S.; Yordanova, E.; Veltri, P.

    2016-06-01

    Using high-resolution Cluster satellite observations and a multi-dimensional intermittency technique, we show that the magnetic discontinuities in the turbulent solar wind are connected through the spatial scales, going from proton down to electron scales. In some circumstances, their structure resembles the Harris equilibrium profile in plasmas. Observations are consistent with a scenario where many current layers develop in turbulence and where the outflow of these reconnection events are characterized by complex sub-proton networks of secondary islands, in a self-similar way. Although in the past these pictures have been speculated to be separately ubiquitous, through theories and simulations, the present work confirms that “reconnection in turbulence” and “turbulent reconnection” coexist in space plasmas.

  2. Magnetic field amplification and saturation in two-dimensional magnetohydrodynamic turbulence

    International Nuclear Information System (INIS)

    Two-dimensional (2-D) magnetohydrodynamic turbulence is investigated for weak initial magnetic fields using numerical simulation. It is found that the magnetic field is amplified owing to the formation of flux sheets with saturation due either to resistive diffusion (kinematic regime) or to nonlinear effects (dynamic regime). In the kinematic regime, which corresponds to the problem of passive scalar convection by 2-D Navier--Stokes turbulence, the saturation value of the magnetic energy is observed to scale as EMmax∝η-0.8 in approximate agreement with a simple theoretical estimate, EMmax/EM(0)congruent Rm, where Rm is the magnetic Reynolds number. Because of the strongly disparate kinetic and magnetic energy spectra in the kinematic regime, roughly EVk∼k-3, EMk∼k, dynamic interaction on small scales already occurs at very small global energy ratios EM/EV, giving rise to strongly enhanced kinetic energy dissipation. In the fully dynamic regime (reached for EM/EV|t=0>R-1m) global magnetic and kinetic energies become tightly coupled, with EM/EV being approximately constant in time and the energy dissipation rates being independent of the collisional diffusion coefficients. Finally, the effect of the magnetic Prandtl number Pr=μ/η is discussed

  3. 2D turbulence structure observed by a fast framing camera system in linear magnetized device PANTA

    International Nuclear Information System (INIS)

    Mesoscale structure, such as the zonal flow and the streamer plays important role in the drift-wave turbulence. The interaction of the mesoscale structure and the turbulence is not only interesting phenomena but also a key to understand the turbulence driven transport in the magnetically confined plasmas. In the cylindrical magnetized device, PANTA, the interaction of the streamer and the drift wave has been found by the bi-spectrum analysis of the turbulence. In order to study the mesoscale physics directly, the 2D turbulence is studied by a fast-framing visible camera system view from a window located at the end plate of the device. The parameters of the plasma is the following; Te∼3eV, n ∼ 1x1019 m-3, Ti∼0.3eV, B=900G, Neutral pressure Pn=0.8 mTorr, a∼ 6cm, L=4m, Helicon source (7MHz, 3kW). Fluctuating component of the visible image is decomposed by the Fourier-Bessel expansion method. Several rotating mode is observed simultaneously. From the images, m = 1 (f∼0.7 kHz) and m = 2, 3 (f∼-3.4 kHz) components which rotate in the opposite direction can be easily distinguished. Though the modes rotate constantly in most time, there appear periods where the radially complicated node structure is formed (for example, m=3 component, t = 142.5∼6 in the figure) and coherent mode structures are disturbed. Then, a new rotating period is started again with different phase of the initial rotation until the next event happens. The typical time interval of the event is 0.5 to 1.0 times of the one rotation of the slow m = 1 mode. The wave-wave interaction might be interrupted occasionally. Detailed analysis of the turbulence using imaging technique will be discussed. (author)

  4. Dispersion relation analysis of turbulent magnetic field fluctuations in fast solar wind

    Energy Technology Data Exchange (ETDEWEB)

    Perschke, C. [Technische Univ. Braunschweig (Germany). Inst. fuer Theoretische Physik; Technische Univ. Braunschweig (Germany). Inst. fuer Geophysik und extraterrestrische Physik; Narita, Y. [Technische Univ. Braunschweig (Germany). Inst. fuer Geophysik und extraterrestrische Physik; Austrian Academy of Sciences, Graz (Austria). Space Research Inst.; Gary, S.P. [Space Science Institute, Boulder, CO (United States); Motschmann, U. [Technische Univ. Braunschweig (Germany). Inst. fuer Theoretische Physik; Deutsches Zentrum fuer Luft- und Raumfahrt, Berlin (Germany). Inst. fuer Planetenforschung; Glassmeier, K.H. [Technische Univ. Braunschweig (Germany). Inst. fuer Geophysik und extraterrestrische Physik; Max-Planck-Institut fuer Sonnensystemforschung, Katlenburg-Lindau (Germany)

    2013-07-01

    Physical processes of the energy transport in solar wind turbulence are a subject of intense studies, and different ideas exist to explain them. This manuscript describes the investigation of dispersion properties in short-wavelength magnetic turbulence during a rare high-speed solar wind event with a flow velocity of about 700 km s{sup -1} using magnetic field and ion data from the Cluster spacecraft. Using the multipoint resonator technique, the dispersion relations (i.e., frequency versus wave-number values in the solar wind frame) of turbulent magnetic fluctuations with wave numbers near the inverse ion inertial length are determined. Three major results are shown: (1) the wave vectors are uniformly quasi-perpendicular to the mean magnetic field; (2) the fluctuations show a broad range of frequencies at wavelengths around the ion inertial length; and (3) the direction of propagation at the observed wavelengths is predominantly in the sunward direction. These results suggest the existence of high-frequency dispersion relations partly associated with normal modes on small scales. Therefore nonlinear energy cascade processes seem to be acting that are not described by wave-wave interactions.

  5. Nonlinear competition of turbulent structures and improved confinement in magnetized cylindrical plasmas

    International Nuclear Information System (INIS)

    Nonlinear competition of turbulent structures and their roles in transport are investigated by using three-dimensional simulation code of resistive drift wave turbulence in magnetized cylindrical plasmas. Selective formation of zonal flows and streamers has been obtained by controlling the strength of damping of the zonal flow. In addition, there is an energy path from the drift waves to a flute type structure, which is linearly stable, and it becomes effective just below the stability boundary of the zonal flow. The flute structure directly induces transport effectively, and affects the drift waves and the zonal flow. A large amplitude zonal flow is formed selectively even with existence of the flute structure. The property of the particle confinement is investigated by changing the particle source intensity, which controls the strength of driving of the drift waves. The characteristic of the particle confinement changes according to turbulent states, and an improved confinement regime is obtained in the zonal flow dominant state. Study on cylindrical plasmas reveals the fundamental mechanism of improved confinement in the magnetized plasma with influence of turbulent structural formation. (paper)

  6. Fluctuation dynamo and turbulent induction at low magnetic Prandtl numbers

    CERN Document Server

    Schekochihin, A A; Cowley, S C; McWilliams, J C; Proctor, M R E; Yousef, T A

    2007-01-01

    This paper is a detailed report on a programme of simulations used to settle a long-standing issue in the dynamo theory and demonstrate that the fluctuation dynamo exists in the limit of large magnetic Reynolds number Rm>>1 and small magnetic Prandtl number Pm1. The dependence of the critical Rm_c vs. the hydrodynamic Reynolds number Re is obtained for 11. The stability curve Rm_c(Re) (and, it is argued, the nature of the dynamo) is substantially different from the case of the simulations and liquid-metal experiments with a mean flow. It is not as yet possible to determine numerically whether the growth rate is ~Rm^{1/2} in the limit ReRm>>1, as should be the case if the dynamo is driven by the inertial-range motions. The magnetic-energy spectrum in the low-Pm regime is qualitatively different from the Pm>1 case and appears to develop a negative spectral slope, although current resolutions are insufficient to determine its asymptotic form. At 1magnetic fluctuations induced via the tangling...

  7. New construction of hybrid and aperiodic ordered PBG cavity

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The band gap of a photonic crystal (PhC) cavity intrinsically avoids HOM problems. In this paper, we present a new PBG structure based on the possible advantage of using hybrid structures and aperiodic lattices. This novel hybrid and aperiodically ordered cavity was designed for apparently higher Q-factor (more than 10300) and achieving large accelerating field gradient. The HOMs in the cavity are able to be absorbed efficiently.

  8. The role of turbulence, magnetic fields and feedback for star formation

    CERN Document Server

    Federrath, Christoph

    2016-01-01

    Star formation is inefficient. Only a few percent of the available gas in molecular clouds forms stars, leading to the observed low star formation rate (SFR). The same holds when averaged over many molecular clouds, such that the SFR of whole galaxies is again surprisingly low. Indeed, considering the low temperatures, molecular clouds should be highly gravitationally unstable and collapse on their global mean freefall timescale. And yet, they are observed to live about 10-100 times longer, i.e., the SFR per freefall time is only a few percent. Thus, other physical mechanisms must provide support against quick global collapse. Magnetic fields, turbulence and stellar feedback have been proposed as stabilising agents controlling star formation, but it is still unclear which of these processes is the most important and what their relative contributions are. Here I present high-resolution, adaptive-mesh-refinement simulations of star cluster formation that include turbulence, magnetic fields, and protostellar jet...

  9. Reduction of compressibility and parallel transfer by Landau damping in turbulent magnetized plasmas

    CERN Document Server

    Hunana, P; Passot, T; Sulem, P L; Borgogno, D

    2011-01-01

    Three-dimensional numerical simulations of decaying turbulence in a magnetized plasma are performed using a so-called FLR-Landau fluid model which incorporates linear Landau damping and finite Larmor radius (FLR) corrections. It is shown that compared to simulations of compressible Hall-MHD, linear Landau damping is responsible for significant damping of magnetosonic waves, which is consistent with the linear kinetic theory. Compressibility of the fluid and parallel energy cascade along the ambient magnetic field are also significantly inhibited when the beta parameter is not too small. In contrast with Hall-MHD, the FLR-Landau fluid model can therefore correctly describe turbulence in collisionless plasmas such as the solar wind, providing an interpretation for its nearly incompressible behavior.

  10. Turbulence in a global magnetohydrodynamic simulation of the Earth's magnetosphere during northward and southward interplanetary magnetic field

    OpenAIRE

    M. El-Alaoui; R. L. Richard; Ashour-Abdalla, M.; Walker, R. J.; Goldstein, M. L.

    2012-01-01

    We report the results of MHD simulations of Earth's magnetosphere for idealized steady solar wind plasma and interplanetary magnetic field (IMF) conditions. The simulations feature purely northward and southward magnetic fields and were designed to study turbulence in the magnetotail plasma sheet. We found that the power spectral densities (PSDs) for both northward and southward IMF had the characteristics of turbulent flow. In both cases, the PSDs showed the three scale ranges expected from ...

  11. Protostellar Disk Evolution Over Million-Year Timescales with a Prescription for Magnetized Turbulence

    OpenAIRE

    Landry, Russell; Dodson-Robinson, Sarah E.; Turner, Neal J.; Abram, Greg

    2013-01-01

    Magnetorotational instability (MRI) is the most promising mechanism behind accretion in low-mass protostellar disks. Here we present the first analysis of the global structure and evolution of non-ideal MRI-driven T-Tauri disks on million-year timescales. We accomplish this in a 1+1D simulation by calculating magnetic diffusivities and utilizing turbulence activity criteria to determine thermal structure and accretion rate without resorting to a 3-D magnetohydrodynamical (MHD) simulation. Our...

  12. Interaction of supra-thermal ions with turbulence in a magnetized toroidal plasma

    International Nuclear Information System (INIS)

    This thesis addresses the interaction of a supra-thermal ion beam with turbulence in the simple magnetized toroidal plasma of TORPEX. The first part of the Thesis deals with the ohmic assisted discharges on TORPEX. The aim of these discharges is the investigation of the open to closed magnetic field line transition. The relevant magnetic diagnostics were developed. Ohmic assisted discharges with a maximum plasma current up to 1 kA are routinely obtained. The equilibrium conditions on the vacuum magnetic field configuration were investigated. In the second part of the Thesis, the design of the fast ion source and detector are discussed. The accelerating electric field needed for the fast ion source was optimized. The fast ion source was constructed and commissioned. To detect the fast ions a specially designed gridded energy analyzer was used. The electron energy distribution function was obtained to demonstrate the efficiency of the detector. The experiments with the fast ion beam were conducted in different plasma regions of TORPEX. In the third part of the Thesis, numerical simulations are used to interpret the measured fast ion beam behavior. It is shown that a simple single particle equation of motion explains the beam behavior in the experiments in the absence of plasma. To explain the fast ion beam experiments with the plasma a turbulent electric field must be used. The model that takes into account this turbulent electrical field qualitatively explains the shape of the fast ion current density profile in the different plasma regions of TORPEX. The vertically elongated fast ion current density profiles are explained by a spread in the fast ion velocity distribution. The theoretically predicted radial fast ion beam spreading due to the turbulent electric field was observed in the experiment. (author)

  13. The role of turbulence, magnetic fields and feedback for star formation

    Science.gov (United States)

    Federrath, Christoph

    2016-05-01

    Star formation is inefficient. Only a few percent of the available gas in molecular clouds forms stars, leading to the observed low star formation rate (SFR). The same holds when averaged over many molecular clouds, such that the SFR of whole galaxies is again surprisingly low. Indeed, considering the low temperatures, molecular clouds should be highly gravitationally unstable and collapse on their global mean freefall timescale. And yet, they are observed to live about 10-100 times longer, i.e., the SFR per freefall time (SFRff) is only a few percent. Thus, other physical mechanisms must provide support against quick global collapse. Magnetic fields, turbulence and stellar feedback have been proposed as stabilising agents controlling star formation, but it is still unclear which of these processes is the most important and what their relative contributions are. Here I present high-resolution, adaptive- mesh-refinement simulations of star cluster formation that include turbulence, magnetic fields, and protostellar jet/outflow feedback. These simulations produce nearly realistic star formation rates consistent with observations, but only if turbulence, magnetic fields and feedback are included simultaneously.

  14. The Effects of Velocity Correlation Times on the Turbulent Amplification of Magnetic Energy

    Science.gov (United States)

    Chandran, Benjamin D. G.

    1997-06-01

    This paper extends the quasilinear theory of Kulsrud & Anderson to assess the effects of realistically long velocity correlation times on the turbulent amplification of a very weak magnetic field. A computer simulation is presented that tracks the growth of the magnetic energy in a turbulent plasma at a single point moving with the turbulent flow. The velocities are assumed to conform to the ideas of Kraichnan concerning Lagrangian correlation times, and are modeled as a set of randomly generated pulses chosen to reproduce the correct two-time Lagrangian correlation tensor. The model is simple computationally and can be used to calculate the growth rate of the magnetic energy for arbitrarily high magnetic Reynolds numbers. The simulations show that the magnetic energy grows roughly half as fast as predicted in the short correlation time approximation of Kulsrud & Anderson's quasilinear theory. In a separate analysis, the effects of nonzero correlation times are considered using an analytic method developed by van Kampen. The growth rate is expanded, roughly speaking, in powers of the correlation time divided by the time required for the energy to exponentiate once. The first two terms in the series are calculated. In themselves, these two terms do not exactly determine the growth rate, but they are consistent with the numerical results. The analytic treatment is included mostly for completeness and because it offers some physical understanding of the problem. The main conclusion of the paper is that velocity correlation times do not play an important role in the growth of the magnetic energy. As a result, Kulsrud & Anderson's short correlation time analysis of the spectrum of amplified small-scale fields should be approximately correct.

  15. Fast electron generation and transport in a turbulent, magnetized plasma

    International Nuclear Information System (INIS)

    The nature of fast electron generation and transport in the Madison Symmetric Torus (MST) reversed field pinch (RFP) is investigated using two electron energy analyzer (EEA) probes and a thermocouple calorimeter. The parallel velocity distribution of the fast electron population is well fit by a drifted Maxwellian distribution with temperature of about 100 eV and drift velocity of about 2 x 106 m/s. Cross-calibration of the EEA with the calorimeter provides a measurement of the fast electron perpendicular temperature of 30 eV, much lower than the parallel temperature, and is evidence that the kinetic dynamo mechanism (KDT) is not operative in MST. The fast electron current is found to match to the parallel current at the edge, and the fast electron density is about 4 x 1011 cm-3 independent of the ratio of the applied toroidal electric field to the critical electric field for runaways. First time measurements of magnetic fluctuation induced particle transport are reported. By correlating electron current fluctuations with radial magnetic fluctuations the transported flux of electrons is found to be negligible outside r/a∼0.9, but rises the level of the expected total particle losses inside r/a∼0.85. A comparison of the measured diffusion coefficient is made with the ausilinear stochastic diffusion coefficient. Evidence exists that the reduction of the transport is due to the presence of a radial ambipolar electric field of magnitude 500 V/m, that acts to equilibrate the ion and electron transport rates. The convective energy transport associated with the measured particle transport is large enough to account for the observed magnetic fluctuation induced energy transport in MST

  16. Artificial ionospheric turbulence (review)

    International Nuclear Information System (INIS)

    This study is an analysis of artificial ionospheric turbulence (AIT) arising near the level at which a powerful wave is reflected with ordinary polarization. AIT is an inhomogeneous structure in the ionosphere with a size on the order of centimeters or tens of kilometers and with characteristic frequencies from a fraction of a hertz (aperiodic inhomogeneity) to several megahertz (plasma waves). The authors are primarily concerned with small-scale artificial ionospheric turbulence (SAIT), i.e., with inhomogeneities that are greatly extended along the geomagnetic field with transverse dimensions that are less than the wavelengths of the perturbing waves - the pumping waves (PW) - in a vacuum

  17. Triangular dissections, aperiodic tilings and Jones algebras

    CERN Document Server

    Coquereaux, Robert

    1994-01-01

    The Brattelli diagram associated with a given bicolored Dynkin-Coxeter graph of type A_n determines planar fractal sets obtained by infinite dissections of a given triangle. All triangles appearing in the dissection process have angles that are multiples of \\pi/ (n+1). There are usually several possible infinite dissections compatible with a given n but a given one makes use of n/2 triangle types if n is even. Jones algebra with index [ 4 \\ \\cos^2{\\pi \\over n+1}]^{-1} (values of the discrete range) act naturally on vector spaces associated with those fractal sets. Triangles of a given type are always congruent at each step of the dissection process. In the particular case n=4, there are isometric and the whole structure lead, after proper inflation, to aperiodic Penrose tilings. The other "tilings" associated with other values of the index are discussed and shown to be encoded by equivalence classes of infinite sequences (with appropriate constraints) using only n/2 digits (if n is even) and generalizing the ...

  18. Applications the Lagrangian description in aperiodic flows

    Science.gov (United States)

    Mendoza, Carolina; Mancho, Ana Maria

    2012-11-01

    We use several recently developed Lagrangian tools for describing transport in general aperiodic flows. In our approach the first step is based in a Lagrangian descriptor (the so called function M). It measures the length of particle trajectories on the ocean surface over a given interval of time. We describe its output over satellite altimetry data on the Kuroshio current. The technique is combined with the direct computation of manifolds of Distinguished Hyperbolic trajectories and a very detailed description of transport is achieved across an eddy and a jet on the Kuroshio current,. A second velocity data set is examined with the M function tool. These are obtained from the HYCOM project on the Gulf of Mexico during the time of the oil-spill. We have identified underlying Lagrangian structures and dynamics. We acknowledge to the hospitality of the university of Delaware and the assistance of Bruce Lipphardt and Helga Huntley in accessing the model data sets. We acknowledge to the grants: UPM-AL12-PAC-09, Becas de Movilidad de Caja Madrid 2011, MTM2011-26696 and ILINK-0145.

  19. Simulation of Relativistic Shocks and Associated Radiation from Turbulent Magnetic Fields

    Science.gov (United States)

    Nishikawa, K.-I.; Mizuno, Y.; Niemiec, J.; Medvedev, M.; Zhang, B.; Hardee, P.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; Fishman, G. J.

    2010-01-01

    Recent PIC simulations of relativistic electron-positron (electron-ion) jets injected into a stationary medium show that particle acceleration occurs at shocked regions. Simulations show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields and particle acceleration. These magnetic fields contribute to the electron's transverse deflection behind the shock. The jitter'' radiation from deflected electrons in turbulent magnetic fields has different properties than synchrotron radiation, which is calculated in a uniform magnetic field. This jitter radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants. We will present detailed spectra for conditions relevant of various astrophysical sites of shock formation via the Weibel instability. In particular we will discuss the application to GRBs and SNRs

  20. Dynamics of Ion Temperature Gradient Turbulence and Transport with a Static Magnetic Island

    CERN Document Server

    Izacard, Olivier; James, Spencer D; Brennan, Dylan P

    2015-01-01

    The quantification of the interaction mechanism between large-scale magnetohydrodynamics instabilities and small-scale drift-wave microturbulence is essential for predicting and optimizing the performance of magnetic confinement based fusion energy experiments. We report progress on understanding these interactions using both analytic theory and numerical simulation, with BOUT++ [B. Dudson et al., Comput. Phys. Comm. 180, 1467 (2009)] used to evolve simple five-field fluid models in a sheared slab geometry. This work focuses upon understanding the dynamics of the ion temperature gradient instability in the presence of a background static magnetic island in a weakly electromagnetic two-dimensional five-field model as key parameters such as ion temperature gradient, magnetic gradients and static magnetic island size are varied. The simulation results are then used to calculate the effective turbulent transport coefficient (i.e. resistivity) that is compared against classical coefficient. As part of this work, t...

  1. On the spatio-temporal behavior of magnetohydrodynamic turbulence in a magnetized plasma

    CERN Document Server

    Lugones, R; Mininni, P D; Wan, M; Matthaeus, W H

    2016-01-01

    Using direct numerical simulations of three-dimensional magnetohydrodynamic (MHD) turbulence the spatio-temporal behavior of magnetic field fluctuations is analyzed. Cases with relatively small, medium and large values of a mean background magnetic field are considered. The (wavenumber) scale dependent time correlation function is directly computed for different simulations, varying the mean magnetic field value. From this correlation function the time decorrelation is computed and compared with different theoretical times, namely, the local non-linear time, the random sweeping time, and the Alfv\\'enic time, the latter being a wave effect. It is observed that time decorrelations are dominated by sweeping effects, and only at large values of the mean magnetic field and for wave vectors mainly aligned with this field time decorrelations are controlled by Alfv\\'enic effects.

  2. Nonlinear magnetic induction by helical motion in a liquid sodium turbulent flow

    International Nuclear Information System (INIS)

    We report an experimental study of the magnetic field B(→) induced by a turbulent swirling flow of liquid sodium submitted to a transverse magnetic field B(→)0. We show that the induced field can behave nonlinearly as a function of the magnetic Reynolds number, Rm. At low Rm, the induced mean field along the axis of the flow, x>, and the one parallel to B(→)0, y>, first behave like Rm2, whereas the third component, z>, is linear in Rm. The sign of x> is determined by the flow helicity. At higher Rm, B(→) strongly depends on the local geometry of the mean flow: x> decreases to zero in the core of the swirling flow but remains finite outside. We compare the experimental results with the computed magnetic induction due to the mean flow alone

  3. Wavelet characterization of 2D turbulence and intermittency in magnetized electron plasmas

    Science.gov (United States)

    Romé, M.; Chen, S.; Maero, G.

    2016-06-01

    A study of the free relaxation of turbulence in a two-dimensional (2D) flow is presented, with a focus on the role of the initial vorticity conditions. Exploiting a well-known analogy with 2D inviscid incompressible fluids, the system investigated here is a magnetized pure electron plasma. The dynamics of this system are simulated by means of a 2D particle-in-cell code, starting from different spiral density (vorticity) distributions. A wavelet multiresolution analysis is adopted, which allows the coherent and incoherent parts of the flow to be separated. Comparison of the turbulent evolution in the different cases is based on the investigation of the time evolution of statistical properties, including the probability distribution functions and structure functions of the vorticity increments. It is also based on an analysis of the enstrophy evolution and its spectrum for the two components. In particular, while the statistical features assess the degree of flow intermittency, spectral analysis allows us not only to estimate the time required to reach a state of fully developed turbulence, but also estimate its dependence on the thickness of the initial spiral density distribution, accurately tracking the dynamics of both the coherent structures and the turbulent background. The results are compared with those relevant to annular initial vorticity distributions (Chen et al 2015 J. Plasma Phys. 81 495810511).

  4. Effects of ExB velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices

    International Nuclear Information System (INIS)

    One of the scientific success stories of fusion research over the past decade is the development of the ExB shear stabilization model to explain the formation of transport barriers in magnetic confinement devices. This model was originally developed to explain the transport barrier formed at the plasma edge in tokamaks after the L (low) to H (high) transition. This concept has the universality needed to explain the edge transport barriers seen in limiter and divertor tokamaks, stellarators, and mirror machines. More recently, this model has been applied to explain the further confinement improvement from H (high)-mode to VH (very high)-mode seen in some tokamaks, where the edge transport barrier becomes wider. Most recently, this paradigm has been applied to the core transport barriers formed in plasmas with negative or low magnetic shear in the plasma core. These examples of confinement improvement are of considerable physical interest; it is not often that a system self-organizes to a higher energy state with reduced turbulence and transport when an additional source of free energy is applied to it. The transport decrease that is associated with ExB velocity shear effects also has significant practical consequences for fusion research. The fundamental physics involved in transport reduction is the effect of ExB shear on the growth, radial extent and phase correlation of turbulent eddies in the plasma. The same fundamental transport reduction process can be operational in various portions of the plasma because there are a number ways to change the radial electric field Er. An important theme in this area is the synergistic effect of ExB velocity shear and magnetic shear. Although the ExB velocity shear appears to have an effect on broader classes of microturbulence, magnetic shear can mitigate some potentially harmful effects of ExB velocity shear and facilitate turbulence stabilization

  5. Kinetic-Scale Magnetic Turbulence and Finite Larmor Radius Effects at Mercury

    Science.gov (United States)

    Uritsky, V. M.; Slavin, J. A.; Khazanov, G. V.; Donovan, E. F.; Boardsen, S. A.; Anderson, B. J.; Korth, H.

    2011-01-01

    We use a nonstationary generalization of the higher-order structure function technique to investigate statistical properties of the magnetic field fluctuations recorded by MESSENGER spacecraft during its first flyby (01/14/2008) through the near-Mercury space environment, with the emphasis on key boundary regions participating in the solar wind - magnetosphere interaction. Our analysis shows, for the first time, that kinetic-scale fluctuations play a significant role in the Mercury's magnetosphere up to the largest resolvable timescale (approx.20 s) imposed by the signal nonstationariry, suggesting that turbulence at this plane I is largely controlled by finite Larmor radius effects. In particular, we report the presence of a highly turbulent and extended foreshock system filled with packets of ULF oscillations, broad-band intermittent fluctuations in the magnetosheath, ion-kinetic turbulence in the central plasma sheet of Mercury's magnetotail, and kinetic-scale fluctuations in the inner current sheet encountered at the outbound (dawn-side) magnetopause. Overall, our measurements indicate that the Hermean magnetosphere, as well as the surrounding region, are strongly affected by non-MHD effects introduced by finite sizes of cyclotron orbits of the constituting ion species. Physical mechanisms of these effects and their potentially critical impact on the structure and dynamics of Mercury's magnetic field remain to be understood.

  6. Magnetic turbulent spectra in the magnetosheath: new insights

    Directory of Open Access Journals (Sweden)

    F. Sahraoui

    2004-06-01

    Full Text Available The spectrum of the magnetic fluctuations measured by the Cluster satellites in the inner magnetosheath is investigated using the k-filtering technique. On a case study, it is shown first that the wave vectors calculated from the Flux Gate Magnetometer (FGM data fit well with those determined from the Spatio-Temporal Analysis of Field Fluctuations (STAFF data for their common range of frequency, which allows one to confirm that the high pass filter applied to STAFF data does not alter the spatial characteristics of its spectra. Both analyses confirm the dominance of the mirror mode for frequencies up to 1.4Hz. Furthermore, by comparing the experimental charateristics of the identified mirror mode to the prediction of the linear theory, it is shown that the predicted maximum growth rate is observed in the frequency range 0-0.15Hz, i.e. the FGM range. All the rest of the mirror mode, identified for higher frequencies is more likely to be a non linear extension of the most instable one. This cascade on the spatial scales is, in turn, observed in the satellite frame as a temporal spread due to Doppler shift. Further implications on the real nature of the observed spectrum are discussed.

  7. Kolmogorov-Sinai entropy in field line diffusion by anisotropic magnetic turbulence

    International Nuclear Information System (INIS)

    The Kolmogorov-Sinai (KS) entropy in turbulent diffusion of magnetic field lines is analyzed on the basis of a numerical simulation model and theoretical investigations. In the parameter range of strongly anisotropic magnetic turbulence the KS entropy is shown to deviate considerably from the earlier predicted scaling relations (1992 Rev. Mod. Phys. 64 961). In particular, a slowing down logarithmic behavior versus the so-called Kubo number R >> 1 (R = (δB/B0) (ξ||/ξperpendicular), where δB/B0 is the ratio of the rms magnetic fluctuation field to the magnetic field strength, and ξperpendicular and ξ|| are the correlation lengths in respective dimensions) is found instead of a power-law dependence. These discrepancies are explained from general principles of Hamiltonian dynamics. We discuss the implication of Hamiltonian properties in governing the paradigmatic 'percolation' transport, characterized by R → ∞, associating it with the concept of pseudochaos (random non-chaotic dynamics with zero Lyapunov exponents). Applications of this study pertain to both fusion and astrophysical plasma and by mathematical analogy to problems outside the plasma physics.

  8. Turbulent, megagauss magnetic fields in intense, ultrashort laser pulse interaction with solids

    International Nuclear Information System (INIS)

    Intense laser-plasma interactions provide a novel and fascinating platform to simulate astrophysical scenarios. Giant magnetic fields (102 - 103 megagauss) are created when a relativistic intensity >1018 W/cm2, ultrashort laser pulse interacts with plasma created on a solid. Here we present snapshots of these megagauss magnetic fields, capturing their picosecond-scale evolution with micron-precision. The plasma created by an 800 nm laser is probed at density of ∼1022 electrons/cc at 266 nm. This density is so far the highest at which plasma probing has been performed. The Fourier spectrum of these megagauss magnetic fields shows a power-law behaviour for the magnetic energy, which provides the signature of magnetic turbulence. Detailed particle-in-cell simulations have shown that the relativistic hot electron transport in a hot dense laser-generated plasma suffers from several instabilities including the Weibel instability, which leads to the spatial separation of forward and return currents and eventually lead to the filamentary structure. The currents subsequently get Weibel-separated, followed by the tearing and coalescence instabilities, which produce current channels and thereby filamentary magnetic field structures. These results are fundamentally interesting in the context of fast ignition of laser fusion, laser-based acceleration of protons, ions and neutral particles, the feasibility of experimentally verifying such instability mechanisms in astrophysical magnetic fields, mimic observations of kinetic Alfven wave turbulence in the earth's magneto-sheath, solar flares and solar wind and simulating intra-planetary matter existing at ultrahigh pressures. (author)

  9. The turbulent diffusion of toroidal magnetic flux as inferred from properties of the sunspot butterfly diagram

    Science.gov (United States)

    Cameron, R. H.; Schüssler, M.

    2016-06-01

    Context. In order to match observed properties of the solar cycle, flux-transport dynamo models require the toroidal magnetic flux to be stored in a region of low magnetic diffusivity, typically located at or below the bottom of the convection zone. Aims: We infer the turbulent magnetic diffusivity affecting the toroidal field on the basis of empirical data. Methods: We considered the time evolution of mean latitude and width of the activity belts of solar cycles 12-23 and their dependence on cycle strength. We interpreted the decline phase of the cycles as a diffusion process. Results: The activity level of a given cycle begins to decline when the centers of its equatorward propagating activity belts come within their (full) width (at half maximum) from the equator. This happens earlier for stronger cycles because their activity belts are wider. From that moment on, the activity and the belt width decrease in the same manner for all cycles, independent of their maximum activity level. In terms of diffusive cancellation of opposite-polarity toroidal flux across the equator, we infer the turbulent diffusivity experienced by the toroidal field, wherever it is located, to be in the range 150-450 km2 s-1. Strong diffusive latitudinal spreading of the toroidal flux underneath the activity belts can be inhibited by an inflow toward the toroidal field bands in the convection zone with a magnitude of several meters per second. Conclusions: The inferred value of the turbulent magnetic diffusivity affecting the toroidal field agrees, to order of magnitude, with estimates based on mixing-length models for the solar convection zone. This is at variance with the requirement of flux-transport dynamo models. The inflows required to keep the toroidal field bands together before they approach the equator are similar to the inflows toward the activity belts observed with local helioseismology.

  10. Radio Synchrotron Fluctuation Statistics as a Probe of Magnetized Interstellar Turbulence

    Science.gov (United States)

    Herron, C. A.; Burkhart, Blakesley; Lazarian, A.; Gaensler, B. M.; McClure-Griffiths, N. M.

    2016-05-01

    We investigate how observations of synchrotron intensity fluctuations can be used to probe the sonic and Alfvénic Mach numbers of interstellar turbulence, based on mock observations performed on simulations of magnetohydrodynamic turbulence. We find that the structure function slope and a diagnostic of anisotropy that we call the integrated quadrupole ratio modulus both depend on the Alfvénic Mach number. However, these statistics also depend on the orientation of the mean magnetic field in the synchrotron emitting region relative to our line of sight, and this creates a degeneracy that cannot be broken by observations of synchrotron intensity alone. We conclude that the polarization of synchrotron emission could be analyzed to break this degeneracy, and suggest that this will be possible with the Square Kilometre Array.

  11. Magnetic fields and Turbulence in Star Formation using Smoothed Particle Hydrodynamics

    CERN Document Server

    Price, Daniel J

    2010-01-01

    Firstly, we give a historical overview of attempts to incorporate magnetic fields into the Smoothed Particle Hydrodynamics method by solving the equations of Magnetohydrodynamics (MHD), leading an honest assessment of the current state-of-the-art in terms of the limitations to performing realistic calculations of the star formation process. Secondly, we discuss the results of a recent comparison we have performed on simulations of driven, supersonic turbulence with SPH and Eulerian techniques. Finally we present some new results on the relationship between the density variance and the Mach number in supersonic turbulent flows, finding sigma^2_{ln rho} = ln (1 + b^2 M^2) with b=0.33 up to Mach~20, consistent with other numerical results at lower Mach number (Lemaster and Stone 2008) but inconsistent with observational constraints on sigma_rho and M in Taurus and IC5146.

  12. Scattering of polarized radio waves by Langmuir turbulence in a plasma in a magnetic field

    International Nuclear Information System (INIS)

    The effects of the radio waves scattering in the plasma by the Langmuir turbulent pulses and their impact on the radiation polarized characteristics for the radiowave radiation frequencies above the electron one and close to the plasma one are considered. It is shown that these effects may essentially change the radiation polarization characteristics. The degree of polarization by optical thickness relative to the scattering process of the order of one unit may change by the value of 30% both on high frequencies and on frequencies close to the plasma one, whereby the sign of the annular radiation polarization may change on the contrary one. It is noted that scattering on the Langmuir turbulence may lead to appearance of dependence of the annular radiation polarization degree on the radio wave length even in a homogeneous magnetic field

  13. Sturm und Drang: The turbulent, magnetic tempest in the Galactic center

    Science.gov (United States)

    Lacki, Brian C.

    2014-05-01

    The Galactic center central molecular zone (GCCMZ) bears similarities with extragalactic starburst regions, including a high supernova (SN) rate density. As in other starbursts like M82, the frequent SNe can heat the ISM until it is filled with a hot (˜ 4 × 107 K) superwind. Furthermore, the random forcing from SNe stirs up the wind, powering Mach 1 turbulence. I argue that a turbulent dynamo explains the strong magnetic fields in starbursts, and I predict an average B ˜70 μG in the GCCMZ. I demonstrate how the SN driving of the ISM leads to equipartition between various pressure components in the ISM. The SN-heated wind escapes the center, but I show that it may be stopped in the Galactic halo. I propose that the Fermi bubbles are the wind's termination shock.

  14. Experimental Investigation of Active Feedback Control of Turbulent Transport in a Magnetized Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Mark Allen [University of New Mexico

    2013-07-07

    A new and unique basic plasma science laboratory device - the HelCat device (HELicon-CAThode) - has been constructed and is operating at the University of New Mexico. HelCat is a 4 m long, 0.5 m diameter device, with magnetic field up to 2.2 kG, that has two independent plasmas sources - an RF helicon source, and a thermionic cathode. These two sources, which can operate independently or simultaneously, are capable of producing plasmas with a wide range of parameters and turbulence characteristics, well suited to a variety of basic plasma physics experiments. An extensive set of plasma diagnostics is also operating. Experiments investigating the active feedback control of turbulent transport of particles and heat via electrode biasing to affect plasma ExB flows are underway, and ongoing.

  15. A kinetic theory of trapped electron driven drift wave turbulence in a sheared magnetic field

    International Nuclear Information System (INIS)

    A kinetic theory of collisionless and dissipative trapped electron driven drift wave turbulence in a sheared magnetic field is presented. Weak turbulence theory is employed to calculate the nonlinear electron and ion responses and to derive a wave kinetic equation that determines the nonlinear evolution of trapped electron mode turbulence. Saturated fluctuation spectrum is calculated using the condition of nonlinear saturation. The turbulent transport coefficients are in turn calculated using saturated fluctuation spectrum. Due to the disparity in the three different radial scale lengths of the slab-like eigenmode: Δ (trapped electron layer width), xt (turning point width) and xi (Landau damping point), Δ t i, we find that ion Compton scattering rather than trapped electron Compton scattering is the dominant nonlinear saturation mechanism. Ion Compton scattering transfers wave energy from short to long wavelengths where the wave energy is shear damped. As a consequence, a saturated fluctuation spectrum |φ|2(kθ) ∼ kθ-α (α = 2 and 3 for the dissipative and collisionless regime, respectively) occurs for kθρs θρs > 1. The predicted fluctuation level and transport coefficients are well below the ''mixing length'' estimate. This is due to the contribution of radial wavenumbers xt-1 r ≤ ρi-1 to the nonlinear couplings, the effect of radial localization of trapped electron response to a layer of width, Δ, and the weak turbulence factor left-angle(γel)/(ωrvecκ)right-angle rveck < 1, which enters the saturation level. 18 refs., 1 tab

  16. Turbulent Origin of the Galactic-Center Magnetic Field: Nonthermal Radio Filaments

    CERN Document Server

    Boldyrev, S; Boldyrev, Stanislav; Yusef-Zadeh, Farhad

    2006-01-01

    A great deal of study has been carried out over the last twenty years on the origin of the magnetic activity in the Galactic center. One of the most popular hypotheses assumes milli-Gauss magnetic field with poloidal geometry, pervading the inner few hundred parsecs of the Galactic-center region. However, there is a growing observational evidence for the large-scale distribution of a much weaker field of B \\lesssim 10 micro G in this region. Here, we propose that the Galactic-center magnetic field originates from turbulent activity that is known to be extreme in the central hundred parsecs. In this picture the spatial distribution of the magnetic field energy is highly intermittent, and the regions of strong field have filamentary structures. We propose that the observed nonthermal radio filaments appear in (or, possibly, may be identified with) such strongly magnetized regions. At the same time, the large-scale diffuse magnetic field is weak. Both results of our model can explain the magnetic field measureme...

  17. Alfv\\'en-dynamo balance and magnetic excess in MHD turbulence

    CERN Document Server

    Grappin, Roland; Verdini, Andrea

    2016-01-01

    3D Magnetohydrodynamic (MHD) turbulent flows with initially magnetic and kinetic energies at equipartition spontaneously develop a magnetic excess (or residual energy), as well in numerical simulations and in the solar wind. Closure equations obtained in 1983 describe the residual spectrum as being produced by a dynamo source proportional to the total energy spectrum, balanced by a linear Alfv\\'en damping term. A good agreement was found in 2005 with incompressible simulations; however, recent solar wind measurements disagree with these results. The previous dynamo-Alfv\\'en theory is generalized to a family of models, leading to simple relations between residual and total energy spectra. We want to assess these models in detail against MHD simulations and solar wind data. The family of models is tested against compressible decaying MHD simulations with low Mach number, low cross-helicity, zero mean magnetic field, without or with expansion terms (EBM or expanding box model). A single dynamo-Alfv\\'en model is ...

  18. Particle Diffusion and Acceleration by Shock Wave in Magnetized Filamentary Turbulence

    CERN Document Server

    Honda, M; Honda, Mitsuru; Honda, Yasuko S.

    2005-01-01

    We expand the off-resonant scattering theory for particle diffusion in magnetized current filaments that can be typically compared to astrophysical jets, including active galactic nucleus jets. In a high plasma beta region where the directional bulk flow is a free-energy source for establishing turbulent magnetic fields via current filamentation instabilities, a novel version of quasi-linear theory to describe the diffusion of test particles is proposed. The theory relies on the proviso that the injected energetic particles are not trapped in the small-scale structure of magnetic fields wrapping around and permeating a filament but deflected by the filaments, to open a new regime of the energy hierarchy mediated by a transition compared to the particle injection. The diffusion coefficient derived from a quasi-linear type equation is applied to estimating the timescale for the stochastic acceleration of particles by the shock wave propagating through the jet. The generic scalings of the achievable highest ener...

  19. Dynamics of radiation losses in Z-pinch plasma with taking into account generation of turbulent magnetic fields

    International Nuclear Information System (INIS)

    We estimated the total radiation losses from argon Z-pinches. Radiation losses due to excitation, di-electronic recombination, Bremsstrahlung, radiative recombination and also ionization, were considered. Each separate ion is analyzed in detail and the influence of density is taken into account. Our pinch dynamics includes Joule heating, anomalous plasma resistance, plasma outflow in Z-direction, electron beam generation, magnetic field pressure, radiation losses. Main novelty of the given model is generation of chaotic/turbulent magnetic fields. It is shown, that turbulent magnetic fields affect the dynamics of plasma parameters. The influence of turbulent magnetic field is analyzed on the dynamics of plasma temperature, density, radiation losses, line emission. (author)

  20. Influence of magnetic well on electromagnetic turbulence in the TJ-II stellarator

    Science.gov (United States)

    Castejón, F.; de Aguilera, M.; Ascasíbar, E.; Estrada, T.; Hidalgo, C.; López-Fraguas, A.; Ochando, M. A.; Yamamoto, S.; Melnikov, A. V.; Eliseev, L. G.; Krupnik, L. I.; the HIBP Team; the TJ-II Team

    2016-09-01

    A magnetic well scan has been performed in the TJ-II stellarator to investigate the confinement properties with different values of the well, or even of the hill, and to explore the properties of electromagnetic turbulence. Stable plasmas have been obtained in theoretically Mercier-unstable configurations, and the electrostatic turbulence levels in the edge are increased. Three families of modes appear during the experiments: (1) a family of modes of Alfvénic nature with high frequencies; (2) a second set of modes of middle frequencies (tens of kHz) and (3) an oscillation at f  ≈  10–20 kHz happens in several cases. In spite of the fact that the vacuum rotational transform is very similar in all of the cases, the Alfvénic mode family changes drastically when decreasing the magnetic well, showing a non-monotonic behaviour of the amplitude, and a decrease of the typical frequencies. This behaviour cannot be explained only by current or density variations, so the effect of the modification of the configuration is playing a key role. Regarding the intermediate frequencies, a coherent mode appears with decreasing frequency as the magnetic well decreases. This mode is a candidate for a GAM, which can survive in these TJ-II plasmas, despite of the strong damping these modes should suffer in this device.

  1. Band structures and localization properties of aperiodic layered phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yan Zhizhong, E-mail: zzyan@bit.edu.cn [Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081 (China); Zhang Chuanzeng [Department of Civil Engineering, University of Siegen, D-57078 Siegen (Germany)

    2012-03-15

    The band structures and localization properties of in-plane elastic waves with coupling of longitudinal and transverse modes oblique propagating in aperiodic phononic crystals based on Thue-Morse and Rudin-Shapiro sequences are studied. Using transfer matrix method, the concept of the localization factor is introduced and the correctness is testified through the Rytov dispersion relation. For comparison, the perfect periodic structure and the quasi-periodic Fibonacci system are also considered. In addition, the influences of the random disorder, local resonance, translational and/or mirror symmetries on the band structures of the aperiodic phononic crystals are analyzed in this paper.

  2. Feedback Regulated Turbulence, Magnetic Fields, and Star Formation Rates in Galactic Disks

    CERN Document Server

    Kim, Chang-Goo

    2015-01-01

    We use three-dimensional magnetohydrodynamic (MHD) simulations to investigate the quasi-equilibrium states of galactic disks regulated by star formation feedback. We incorporate effects from massive-star feedback via time-varying heating rates and supernova (SN) explosions. We find that the disks in our simulations rapidly approach a quasi-steady state that satisfies vertical dynamical equilibrium. The star formation rate (SFR) surface density self-adjusts to provide the total momentum flux (pressure) in the vertical direction that matches the weight of the gas. We quantify feedback efficiency by measuring feedback yields, \\eta_c\\equiv P_c/\\Sigma_SFR (in suitable units), for each pressure component. The turbulent and thermal feedback yields are the same for HD and MHD simulations, \\eta_th~1 and \\eta_ turb~4, consistent with the theoretical expectations. In MHD simulations, turbulent magnetic fields are rapidly generated by turbulence, and saturate at a level corresponding to \\eta_mag,t~1. The presence of magn...

  3. The Effect of Magnetic Turbulence Energy Spectra on the Heating of the Solar Wind

    Science.gov (United States)

    Ng, C. S.; Bhattacharjee, A.; Isenberg, P. A.; Munsi, D.; Smith, C. W.

    2008-11-01

    Recently, a phenomenological solar wind heating model based on a turbulent energy cascade prescribed by the Kolmogorov theory has produced reasonably good agreement with observations on proton temperatures out to distances around 70 AU, provided the effect of turbulence generation due to pickup ions is included in the model. In the present study, we have incorporated in the heating model the energy cascade rate based on Iroshnikov-Kraichnan (IK) scaling, derivable from incompressible magnetohydrodynamics. We show that the IK cascade rate can also produce good agreement with observations, with or without the inclusion of pickup ions. This effect is confirmed both by integrating the model using average boundary conditions at 1 AU, and by applying a method [Smith et al., Astrophys. J. 638, 508 (2006)] that uses directly observed values as boundary conditions. These results suggest that if the observed proton heating rates are used to constrain theories of turbulence, there is room in the model to include spectral scalings of magnetic fluctuations varying from IK to Kolmogorov.

  4. Scaling and anisotropy in magnetohydrodynamic turbulence in a strong mean magnetic field

    International Nuclear Information System (INIS)

    We present an analysis of the anisotropic spectral energy distribution in incompressible magnetohydrodynamic turbulence permeated by a strong mean magnetic field. The turbulent flow is generated by high-resolution pseudospectral direct numerical simulations with large-scale isotropic forcing. Examining the radial energy distribution for various angles θ with respect to B0 reveals a specific structure which remains hidden when not taking axial symmetry with respect to B0 into account. For each direction, starting at the forced large scales, the spectrum first exhibits an amplitude drop around a wave number k0 which marks the start of a scaling range and goes on up to a dissipative wave number kd(θ). The three-dimensional spectrum for k≥k0 is described by a single θ-independent functional form F(k/kd), with the scaling law being the same in every direction. The previous properties still hold when increasing the mean field from B0=5 up to B0=10brms, as well as when passing from resistive to ideal flows. We conjecture that at fixed B0 the direction-independent scaling regime is reached when increasing the Reynolds number above a threshold which raises with increasing B0. Below that threshold critically balanced turbulence is expected.

  5. Astrophysical Gyrokinetics: Kinetic and Fluid Turbulent Cascades In Magnetized Weakly Collisional Plasmas

    International Nuclear Information System (INIS)

    This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulent motions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the 'inertial range' above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-field strength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations

  6. Magnetic field amplification and evolution in turbulent collisionless magnetohydrodynamics: An application to the intracluster medium

    International Nuclear Information System (INIS)

    The amplification of magnetic fields (MFs) in the intracluster medium (ICM) is attributed to turbulent dynamo (TD) action, which is generally derived in the collisional-MHD framework. However, this assumption is poorly justified a priori, since in the ICM the ion mean free path between collisions is of the order of the dynamical scales, thus requiring a collisionless MHD description. The present study uses an anisotropic plasma pressure that brings the plasma within a parametric space where collisionless instabilities take place. In this model, a relaxation term of the pressure anisotropy simulates the feedback of the mirror and firehose instabilities, in consistency with empirical studies. Our three-dimensional numerical simulations of forced transonic turbulence, aiming the modeling of the turbulent ICM, were performed for different initial values of the MF intensity and different relaxation rates of the pressure anisotropy. We found that in the high-β plasma regime corresponding to the ICM conditions, a fast anisotropy relaxation rate gives results that are similar to the collisional-MHD model, as far as the statistical properties of the turbulence are concerned. Also, the TD amplification of seed MFs was found to be similar to the collisional-MHD model. The simulations that do not employ the anisotropy relaxation deviate significantly from the collisional-MHD results and show more power at the small-scale fluctuations of both density and velocity as a result of the action of the instabilities. For these simulations, the large-scale fluctuations in the MF are mostly suppressed and the TD fails in amplifying seed MFs.

  7. Piecewise Parabolic Method on a Local Stencil for Magnetized Supersonic Turbulence Simulation

    CERN Document Server

    Ustyugov, Sergey D; Kritsuk, Alexei G; Norman, Michael L

    2009-01-01

    Stable, accurate, divergence-free simulation of magnetized supersonic turbulence is a severe test of numerical MHD schemes and has been surprisingly difficult to achieve due to the range of flow conditions present. Here we present a new, higher order-accurate, low dissipation numerical method which requires no additional dissipation or local "fixes" for stable execution. We describe PPML, a local stencil variant of the popular PPM algorithm for solving the equations of compressible ideal magnetohydrodynamics. The principal difference between PPML and PPM is that cell interface states are evolved rather that reconstructed at every timestep, resulting in a compact stencil. Interface states are evolved using Riemann invariants containing all transverse derivative information. The conservation laws are updated in an unsplit fashion, making the scheme fully multidimensional. Divergence-free evolution of the magnetic field is maintained using the higher order-accurate constrained transport technique of Gardiner and...

  8. Evolution of self-gravitating magnetized disks. II- Interaction between MHD turbulence and gravitational instabilities

    CERN Document Server

    Fromang, S; Terquem, C; De Villiers, J P; Fromang, Sebastien; Balbus, Steven A.; Terquem, Caroline; Villiers, Jean-Pierre De

    2004-01-01

    We present 3D magnetohydrodynamic (MHD) numerical simulations of the evolution of self--gravitating and weakly magnetized disks with an adiabatic equation of state. Such disks are subject to the development of both the magnetorotational and gravitational instabilities, which transport angular momentum outward. As in previous studies, our hydrodynamical simulations show the growth of strong m=2 spiral structure. This spiral disturbance drives matter toward the central object and disappears when the Toomre parameter Q has increased well above unity. When a weak magnetic field is present as well, the magnetorotational instability grows and leads to turbulence. In that case, the strength of the gravitational stress tensor is lowered by a factor of about~2 compared to the hydrodynamical run and oscillates periodically, reaching very small values at its minimum. We attribute this behavior to the presence of a second spiral mode with higher pattern speed than the one which dominates in the hydrodynamical simulations...

  9. GMC Collisions as Triggers of Star Formation. II. 3D Turbulent, Magnetized Simulations

    CERN Document Server

    Wu, Benjamin; Nakamura, Fumitaka; Van Loo, Sven; Christie, Duncan; Collins, David

    2016-01-01

    We investigate giant molecular cloud (GMCs) collisions and their ability to induce gravitational instability and thus star formation. This mechanism may be a major driver of star formation activity in galactic disks. We carry out a series of three dimensional, magnetohydrodynamics (MHD), adaptive mesh refinement (AMR) simulations to study how cloud collisions trigger formation of dense filaments and clumps. Heating and cooling functions are implemented based on photo-dissociation region (PDR) models that span the atomic to molecular transition and can return detailed diagnostic information. The clouds are initialized with supersonic turbulence and a range of magnetic field strengths and orientations. Collisions at various velocities and impact parameters are investigated. Comparing and contrasting colliding and non-colliding cases, we characterize morphologies of dense gas, magnetic field structure, cloud kinematic signatures, and cloud dynamics. We present key observational diagnostics of cloud collisions, e...

  10. Shockwave-turbulent boundary layer interaction control using magnetically driven surface discharges

    Science.gov (United States)

    Kalra, Chiranjeev S.; Zaidi, Sohail H.; Miles, Richard B.; Macheret, Sergey O.

    2011-03-01

    This study demonstrates the potential for shockwave-turbulent boundary layer interaction control in air using low current DC constricted surface discharges forced by moderate strength magnetic fields. An analytical model describing the physics of magnetic field forced discharge interaction with boundary layer flow is developed and compared to experiments. Experiments are conducted in a Mach 2.6 indraft air tunnel with discharge currents up to 300 mA and magnetic field strengths up to 5 Tesla. Separation- and non-separation-inducing shocks are generated with diamond-shaped shockwave generators located on the wall opposite to the surface electrodes, and flow properties are measured with schlieren imaging, static wall pressure probes and acetone flow visualization. The effect of plasma control on boundary layer separation depends on the direction of the Lorentz force ( j × B). It is observed that by using a Lorentz force that pushes the discharge upstream, separation can be induced or further strengthened even with discharge currents as low as 30 mA in a 3-Tesla magnetic field. If shock-induced separation is present, it is observed that by using Lorentz force that pushes the discharge downstream, separation can be suppressed, but this required higher currents, greater than 80 mA. Acetone planar laser scattering is used to image the flow structure in the test section and the reduction in the size of recirculation bubble and its elimination are observed experimentally as a function of actuation current and magnetic field strength.

  11. Squeezing of particle distributions by expanding magnetic turbulence and space weather variability

    International Nuclear Information System (INIS)

    Among the space weather effects due to gradual solar storms, greatly enhanced high-energy ion fluxes contribute to radiation damage to satellites, spacecraft, and astronauts and dominate the hazards to air travelers, which motivates examination of the transport of high-energy solar ions to Earth's orbit. Ions of low kinetic energy (up to ∼2 MeV nucleon–1) from impulsive solar events exhibit abrupt changes due to filamentation of the magnetic connection from the Sun, indicating that anisotropic, field-aligned magnetic flux tubelike structures persist to Earth's orbit. By employing a corresponding spherical two-component model of Alfvénic (slab) and two-dimensional magnetic fluctuations to trace simulated trajectories in the solar wind, we show that the distribution of high-energy (E ≥ 1 GeV) protons from gradual solar events is squeezed toward magnetic flux structures with a specific polarity because of the conical shape of the flux structures. Conical flux structures and the squeezing of energetic particle distributions should occur in any astrophysical wind or jet with expanding, magnetized, turbulent plasma. This transport phenomenon contributes to event-to-event variability in ground level enhancements of GeV-range ions from solar storms, presenting a fundamental uncertainty in space weather prediction.

  12. A model for two-dimensional bursty turbulence in magnetized plasmas

    International Nuclear Information System (INIS)

    The nonlinear dynamics of two-dimensional electrostatic interchange modes in a magnetized plasma is investigated through a simple model that replaces the instability mechanism due to magnetic field curvature by an external source of vorticity and mass. Simulations in a cylindrical domain, with a spatially localized and randomized source at the center of the domain, reveal the eruption of mushroom-shaped bursts that propagate radially and are absorbed by the boundaries. Burst sizes and the interburst waiting times exhibit power-law statistics, which indicates long-range interburst correlations, similar to what has been found in sandpile models for avalanching systems. It is shown from the simulations that the dynamics can be characterized by a Yaglom relation for the third-order mixed moment involving the particle number density as a passive scalar and the ExB drift velocity, and hence that the burst phenomenology can be described within the framework of turbulence theory. Statistical features are qualitatively in agreement with experiments of intermittent transport at the edge of plasma devices, and suggest that essential features such as transport can be described by this simple model of bursty turbulence

  13. Fluid-like dissipation of magnetic turbulence at electron scales in the solar wind

    CERN Document Server

    Alexandrova, O; Mangeney, A; Grappin, R

    2011-01-01

    The turbulent spectrum of magnetic fluctuations in the solar wind displays a spectral break at ion characteristic scales. At electron scales the spectral shape is not yet completely established. Here, we perform a statistical study of 102 spectra at plasma kinetic scales, measured by the Cluster/STAFF instrument in the free solar wind. We show that the magnetic spectrum in the high frequency range, [1,400] Hz, has a form similar to what is found in hydrodynamics in the dissipation range ~Ak^(-\\alpha)exp(-kl_d). The dissipation scale l_d is found to be correlated with the electron Larmor radius \\rho_e. The spectral index \\alpha varies in the range [2.2,2.9] and is anti-correlated with l_d, as expected in the case of the balance between the energy injection and the energy dissipation. The coefficient A is found to be proportional to the ion temperature anisotropy, suggesting that local ion instabilities may play some role for the solar wind turbulence at plasma kinetic scales. The exponential spectral shape fou...

  14. Full-field velocity and temperature measurements using magnetic resonance imaging in turbulent complex internal flows

    International Nuclear Information System (INIS)

    Flow and heat transfer in complex internal passages are difficult to predict due to the presence of strong secondary flows and multiple regions of separation. Two methods based on magnetic resonance imaging called 4D magnetic resonance velocimetry (4D-MRV) and thermometry (4D-MRT) are described for measuring the full-field mean velocities and temperatures, respectively, in complex internal passage flows. 4D-MRV measurements are presented for flow through a model of a gas turbine blade internal cooling passage geometry with Reh = 10,000 and compared to PIV measurements in a highly complex 180 deg bend. Measured three-component velocities provide excellent qualitative and quantitative insight into flow structures throughout the entire flow domain. The velocities agree within ±10% in magnitude and ±10 deg in direction in a large portion of the bend which is characterized by turbulent fluctuations as high as 10-20% of the passage inlet bulk velocity. Integrated average flow rates are accurate to 4% throughout the flow domain. Preliminary 4D-MRV/MRT results are presented for heated fully developed turbulent pipe flow at ReD = 13,000

  15. Collimation of Particle Beams by the Structure of Two-Dimensional Magnetic Turbulence

    Science.gov (United States)

    Tooprakai, P.; Seripienlert, A.; Ruffolo, D. J.; Chuychai, P.; Matthaeus, W. H.

    2010-12-01

    We computationally examined the motion of energetic charged particles in the interplanetary medium, assuming a radial mean magnetic field and a two-component (2D+slab) model of turbulent transverse magnetic fluctuations. For the 2D component, which varies only in the angular directions, we employed 3 different models: a spherical harmonic series, 2D FFT, and 2D MHD (which we consider to be the most physically accurate). Given a narrow injection region, as expected for solar energetic particles (SEPs) from an impulsive solar flare, all 3 models yield intermittent particle distributions consistent with dropouts, for various particle energies. In addition, we find that relativistic ions are systematically drawn toward potential maxima (minima) of the 2D turbulence structure for a positive (negative) radial field, which can be attributed to guiding center drifts. The effect is strong when the Larmor radius exceeds the perpendicular coherence scale. We show that this effect leads to spatially collimated beams of relativistic ions, even for a wide injection region, as expected for gradual SEP events. Such collimation is relevant to spectral and temporal variability in neutron monitor observations of relativistic ions during ground level enhancements (GLEs), and such variability in the space radiation environment. Partially supported by the Thailand Research Fund, NSF SHINE ATM-0752135, and NASA Heliophysics Theory Program NNX08AI47G.

  16. The effect of safety factor and magnetic shear on turbulent transport in nonlinear gyrokinetic simulations

    International Nuclear Information System (INIS)

    This paper reports on over 100 nonlinear simulations used to systematically study the effects of safety factor q and magnetic shear s on turbulent energy and particle transport due to ion temperature gradient (ITG) modes and trapped electron modes (TEM) for several reference cases using the GYRO gyrokinetic code. All the simulations are collisionless, electrostatic, and utilize shifted circle geometry. The motivation is to create a database for benchmarking and testing of turbulent transport models. In simulations varying q, it is found that the ion and electron energy transport exhibit an offset linear dependence on q for 1≤q≤4. This result is valid for cases in which the spectrum is dominated by either TEM or ITG modes. The particle transport also follows a linear q dependence if the diffusivity D is positive (outward). If a particle pinch is predicted, however, then D is found to be insensitive to q. In kinetic electron simulations varying the magnetic shear s, the particle transport can exhibit a null flow at a particular value of s. In the vicinity of the null flow point, the transport spectrum shows that some modes drive an inward flow while others drive an outward flow. For negative magnetic shear, the magnetohydrodynamic α parameter is shown to be stabilizing for both the energy and particle transport but can be destabilizing for large positive shear. Compared to the ITG dominated case, the TEM cases show the same linear q dependence, but a weaker s dependence is exhibited for positive magnetic shear values when TEM modes dominate the spectrum. In general, the q, s, and α dependence of the transport including kinetic electrons is consistent with ITG adiabatic electron simulation results

  17. Bandgap properties of low index contrast aperiodically ordered photonic quasicrystals

    CERN Document Server

    Zito, Gianluigi; Di Gennaro, Emiliano; Andreone, Antonello; Santamato, Enrico; Abbate, Giancarlo

    2009-01-01

    We numerically analyze, using Finite Difference Time Domain simulations, the bandgap properties of photonic quasicrystals with a low index contrast. We compared 8-, 10- and 12-fold symmetry aperiodically ordered lattices with different spatial tiling. Our results show that tiling design, more than symmetry, determines the transmission properties of these structures.

  18. Properties of Deterministic Aperiodic Photonic Nanostructures for Biosensors

    DEFF Research Database (Denmark)

    Paulsen, Moritz; Jahns, Sabrina; Neustock, Lars Thorben;

    -localized critical modes in aperiodic nanostructures simultaneously exhibit high quality factors Q und high sensitivity S to refractive index changes [2]. We previously calculated the spectral response of different DANS [4]. Here, we present experimental results for DANS devices (Thue- Morse, Fibonacci, Rudin...

  19. Large-eddy simulation of very large kinetic and magnetic Reynolds number isotropic magnetohydrodynamic turbulence using a spectral subgrid model

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, T; Sagaut, P; Schilling, O; Zhou, Y

    2006-07-05

    A spectral subggrid-scale eddy viscosity and magnetic resisitivity model based on the eddy-damped quasi-normal Markovian (EDQNM) spectral kinetic and magnetic energy transfer presented in [12] is used in large-eddy simulation (LES) of large kinetic and magnetic Reynold number magneto-hydrodynamic (MHD) turbulence. The proposed model is assessed via a posteri tests on three-dimensional, incompressible, isotropic, non-helical, freely-decaying MHD turbulence at asymptotically large Reynolds numbers. Using LES with an initial condition characterized by an Alfv{acute e}n ratio of kinetic to magnetic energy {tau}{sub A} equal to unity, it is shown that at the kinetic energy spectrum E{sub K}(k) and magnetic energy spectrum E{sub M}(k) exhibit Kolmogorov -5/3 inertial subrange scalings in the LES, consistent with the EDQNM model.

  20. Direct numerical simulation of the turbulent MHD channel flow at low magnetic Reynolds number for electric correlation characteristics

    Institute of Scientific and Technical Information of China (English)

    LEE; ChunHian

    2010-01-01

    Direct numerical simulation (DNS) of incompressible magnetohydrodynamic (MHD) turbulent channel flow has been performed under the low magnetic Reynolds number assumption.The velocity-electric field and electric-electric field correlations were studied in the present work for different magnetic field orientations.The Kenjeres-Hanjalic (K-H) model was validated with the DNS data in a term by term manner.The numerical results showed that the K-H model makes good predictions for most components of the velocity-electric field correlations.The mechanisms of turbulence suppression were also analyzed for different magnetic field orientations utilizing the DNS data and the K-H model.The results revealed that the dissipative MHD source term is responsible for the turbulence suppression for the case of streamwise and spanwise magnetic orientation,while the Lorentz force which speeds up the near-wall fluid and decreases the production term is responsible for the turbulence suppression for the case of the wall normal magnetic orientation.

  1. Acceleration of ions to suprathermal energies by turbulence in the plasmoid-like magnetic structures

    Science.gov (United States)

    Grigorenko, E. E.; Malykhin, A. Yu.; Kronberg, E. A.; Malova, Kh. V.; Daly, P. W.

    2015-08-01

    We study energetic spectra of H+, He+, and O+ ion fluxes in the energy range ≥130 keV measured by Cluster/Research with Adaptive Particle Imaging Detectors (RAPID) instruments during 37 intervals of the tailward bulk flow propagation in the near-Earth tail (at X ≤ -19 RE). In all events from our database, the plasmoid-like magnetic structures with the superimposed low-frequency magnetic and electric field fluctuations were observed along with the tailward bulk flows. The plasmoid-like structures were associated with the enhancements of energetic ion fluxes and the hardening of energy spectra of H+ and He+ ion components in 80% of events and of O+ ion component in 64% of events. The hardening of energy spectra was more pronounced for heavy ions than for protons. The analysis of the magnetic structures and power spectral density (PSD) of the magnetic and electric field fluctuations from our database revealed the following factors favorable for the ion energization: (1) the spatial scale of a plasmoid should exceed the thermal gyroradius of a given ion component in the neutral plane inside the plasmoid; (2) the PSD of the magnetic fluctuations near the gyrofrequency of a particular ion component should exceed ~ 50.0 nT2/Hz for oxygen ions; while the energization of helium ions and protons takes place for much lower values of the PSD. The kinetic analysis of ion dynamics in the plasmoid-like magnetic configuration similar to the observed one with the superimposed turbulence confirms the importance of ion resonant interactions with the low-frequency electromagnetic fluctuations for ion energization inside plasmoids.

  2. A comparison between grid and particle methods on the small-scale dynamo in magnetized supersonic turbulence

    Science.gov (United States)

    Tricco, Terrence S.; Price, Daniel J.; Federrath, Christoph

    2016-09-01

    We perform a comparison between the smoothed particle magnetohydrodynamics (SPMHD) code, PHANTOM, and the Eulerian grid-based code, FLASH, on the small-scale turbulent dynamo in driven, Mach 10 turbulence. We show, for the first time, that the exponential growth and saturation of an initially weak magnetic field via the small-scale dynamo can be successfully reproduced with SPMHD. The two codes agree on the behaviour of the magnetic energy spectra, the saturation level of magnetic energy, and the distribution of magnetic field strengths during the growth and saturation phases. The main difference is that the dynamo growth rate, and its dependence on resolution, differs between the codes, caused by differences in the numerical dissipation and shock capturing schemes leading to differences in the effective Prandtl number in PHANTOM and FLASH.

  3. ACCRETION OF GAS ONTO GAP-OPENING PLANETS AND CIRCUMPLANETARY FLOW STRUCTURE IN MAGNETIZED TURBULENT DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Uribe, A. L. [University of Chicago, Chicago, IL 60637 (United States); Klahr, H.; Henning, Th., E-mail: uribe@oddjob.uchicago.edu [Max-Planck-Institut fuer Astronomie, Heidelberg (Germany)

    2013-06-01

    We have performed three-dimensional magnetohydrodynamical simulations of stellar accretion disks, using the PLUTO code, and studied the accretion of gas onto a Jupiter-mass planet and the structure of the circumplanetary gas flow after opening a gap in the disk. We compare our results with simulations of laminar, yet viscous disks with different levels of an {alpha}-type viscosity. In all cases, we find that the accretion flow across the surface of the Hill sphere of the planet is not spherically or azimuthally symmetric, and is predominantly restricted to the mid-plane region of the disk. Even in the turbulent case, we find no significant vertical flow of mass into the Hill sphere. The outer parts of the circumplanetary disk are shown to rotate significantly below Keplerian speed, independent of viscosity, while the circumplanetary disk density (therefore the angular momentum) increases with viscosity. For a simulation of a magnetized turbulent disk, where the global averaged alpha stress is {alpha}{sub MHD} = 10{sup -3}, we find the accretion rate onto the planet to be M-dot {approx}2 Multiplication-Sign 10{sup -6}M{sub J} yr{sup -1} for a gap surface density of 12 g cm{sup -2}. This is about a third of the accretion rate obtained in a laminar viscous simulation with equivalent {alpha} parameter.

  4. Scaling and anisotropy of magnetohydrodynamic turbulence in a strong mean magnetic field

    CERN Document Server

    Grappin, Roland

    2010-01-01

    We present a new analysis of the anisotropic spectral energy distribution in incompressible magnetohydrodynamic (MHD) turbulence permeated by a strong mean magnetic field. The turbulent flow is generated by high-resolution pseudo-spectral direct numerical simulations with large-scale isotropic forcing. Examining the radial energy distribution for various angles $\\theta$ with respect to $\\mathbf{B}_0$ reveals a specific structure which remains hidden when not taking axial symmetry with respect to $B_0$ into account. For each direction, starting at the forced large-scales, the spectrum first exhibits an amplitude drop around a wavenumber $k_0$ which marks the start of a scaling range and goes on up to a dissipative wavenumber $k_d(\\theta)$. The 3D spectrum for $k \\ge k_0$ is described by a single $\\theta$-independent functional form $F(k/k_d)$, the scaling law being the same in every direction. The previous properties still hold when increasing the mean field from $B_0=5$ up to $B_0=10 \\ b_{rms}$, as well as wh...

  5. On magnetic inhibition of photospheric macro-turbulence generated in the iron-bump opacity zone of O-stars

    CERN Document Server

    Sundqvist, J O; Owocki, S P; Wade, G A; Puls, J

    2013-01-01

    Massive, hot OB-stars show clear evidence of strong macroscopic broadening (in addition to rotation) in their photospheric spectral lines. This paper examines the occurrence of such "macro-turbulence" in slowly rotating O-stars with strong, organised surface magnetic fields. Focusing on the CIV 5811A line, we find evidence for significant macro-turbulent broadening in all stars except NGC1624-2, which also has (by far) the strongest magnetic field. Instead, the very sharp CIV lines in NGC1624-2 are dominated by magnetic Zeeman broadening, from which we estimate a dipolar field of approximately 20 kG. By contrast, magnetic broadening is negligible in the other stars (due to their weaker field strengths, on order 1 kG), and their CIV profiles are typically very broad and similar to corresponding lines observed in non-magnetic O-stars. Quantifying this by an isotropic, Gaussian macro-turbulence, we derive vmac = 2.2 (+- 0.9/2.2) km/s for NGC1624-2, and vmac = 20-65 km/s for the rest of the magnetic sample. We us...

  6. Study of the magnetic turbulence in a corotating interaction region in the interplanetary medium

    Directory of Open Access Journals (Sweden)

    J. F. Valdés-Galicia

    Full Text Available We study the geometry of magnetic fluctuations in a CIR observed by Pioneer 10 at 5 AU between days 292 and 295 in 1973. We apply the methodology proposed by Bieber et al. to make a comparison of the relative importance of two geometric arrays of vector propagation of the magnetic field fluctuations: slab and two-dimensional (2D. We found that inside the studied CIR this model is not applicable due to the restrictions imposed on it. Our results are consistent with Alfvenic fluctuations propagating close to the radial direction, confirming Mavromichalaki et al.'s findings. A mixture of isotropic and magnetoacoustic waves in the region before the front shock would be consistent with our results, and a mixture of slab/2D and magnetoacoustic waves in a region after the reverse shock. We base the latter conclusions on the theoretical analysis made by Kunstmann. We discuss the reasons why the composite model can not be applied in the CIR studied although the fluctuations inside it are two dimensional.

    Key words. Solar physics · astrophysics and astronomy (magnetic fields · Space plasma physics (turbulence; waves and instabilities

  7. The turbulent diffusion of toroidal magnetic flux as inferred from properties of the sunspot butterfly diagram

    CERN Document Server

    Cameron, R H

    2016-01-01

    In order to match observed properties of the solar cycle, flux-transport dynamo models require the toroidal magnetic flux to be stored in a region of low magnetic diffusivity, typically located at or below the bottom of the convection zone. We infer the turbulent magnetic diffusivity affecting the toroidal field on the basis of empirical data. We consider the time evolution of mean latitude and width of the activity belts of solar cycles 12--23 and their dependence on cycle strength. We interpret the decline phase of the cycles as a diffusion process. The activity level of a given cycle begins to decline when the centers of its equatorward propagating activity belts come within their width (at half maximum) from the equator. This happens earlier for stronger cycles because their activity belts are wider. From that moment on, the activity and the belt width decrease in the same manner for all cycles, independent of their maximum activity level. In terms of diffusive cancellation of opposite-polarity toroidal f...

  8. Filamentation of magnetosonic wave and generation of magnetic turbulence in laser plasma interaction

    Energy Technology Data Exchange (ETDEWEB)

    Modi, K. V., E-mail: kvmodi.iitd@gmail.com [Centre for Energy Studies, Indian Institute of Technology Delhi, Delhi 110016 (India); Mechanical Engineering Department, Government Engineering College Valsad, Gujarat 396001 (India); Tiwary, Prem Pyari, E-mail: prempyari@gmail.com [Centre for Energy Studies, Indian Institute of Technology Delhi, Delhi 110016 (India); Department of Physics and Computer Science, Dayal Bagh Educational Institute (Deemed University), Dayal Bagh, Agra 282005 (India); Singh, Ram Kishor, E-mail: ram007kishor@gmail.com; Sharma, R. P., E-mail: rpsharma@ces.iitd.ac.in [Centre for Energy Studies, Indian Institute of Technology Delhi, Delhi 110016 (India); Satsangi, V. R. [Department of Physics and Computer Science, Dayal Bagh Educational Institute (Deemed University), Dayal Bagh, Agra 282005 (India)

    2014-10-15

    This paper presents a theoretical model for the magnetic turbulence in laser plasma interaction due to the nonlinear coupling of magnetosonic wave with ion acoustic wave in overdense plasma. For this study, dynamical equations of magnetosonic waves and the ion acoustic waves have been developed in the presence of ponderomotive force due to the pump magnetosonic wave. Slowly converging and diverging behavior has been studied semi-analytically, this results in the formation of filaments of the magnetosonic wave. Numerical simulation has also been carried out to study nonlinear stage. From the results, it has been found that the localized structures become quite complex in nature. Further, power spectrum has been studied. Results show that the spectral index follows (∼k{sup −2.0}) scaling at smaller scale. Relevance of the present investigation has been shown with the experimental observation.

  9. MAGNETIC FIELD LINE RANDOM WALK IN ISOTROPIC TURBULENCE WITH ZERO MEAN FIELD

    International Nuclear Information System (INIS)

    In astrophysical plasmas, magnetic field lines often guide the motions of thermal and non-thermal particles. The field line random walk (FLRW) is typically considered to depend on the Kubo number R = (b/B 0)(ℓ∥/ℓ ) for rms magnetic fluctuation b, large-scale mean field B 0, and parallel and perpendicular coherence scales ℓ∥ and ℓ , respectively. Here we examine the FLRW when R → ∞ by taking B 0 → 0 for finite bz (fluctuation component along B 0), which differs from the well-studied route with bz = 0 or bz << B 0 as the turbulence becomes quasi-two-dimensional (quasi-2D). Fluctuations with B 0 = 0 are typically isotropic, which serves as a reasonable model of interstellar turbulence. We use a non-perturbative analytic framework based on Corrsin's hypothesis to determine closed-form solutions for the asymptotic field line diffusion coefficient for three versions of the theory, which are directly related to the k –1 or k –2 moment of the power spectrum. We test these theories by performing computer simulations of the FLRW, obtaining the ratio of diffusion coefficients for two different parameterizations of a field line. Comparing this with theoretical ratios, the random ballistic decorrelation version of the theory agrees well with the simulations. All results exhibit an analog to Bohm diffusion. In the quasi-2D limit, previous works have shown that Corrsin-based theories deviate substantially from simulation results, but here we find that as B 0 → 0, they remain in reasonable agreement. We conclude that their applicability is limited not by large R, but rather by quasi-two-dimensionality

  10. MAGNETIC FIELD LINE RANDOM WALK IN ISOTROPIC TURBULENCE WITH ZERO MEAN FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Sonsrettee, W.; Ruffolo, D.; Snodin, A. P.; Wongpan, P. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Subedi, P.; Matthaeus, W. H. [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States); Chuychai, P., E-mail: bturbulence@gmail.com, E-mail: david.ruf@mahidol.ac.th, E-mail: andrew.snodin@gmail.com, E-mail: pat.wongpan@postgrad.otago.ac.nz, E-mail: piyanate@gmail.com, E-mail: prasub@udel.edu, E-mail: whm@udel.edu [Thailand Center of Excellence in Physics, CHE, Ministry of Education, Bangkok 10400 (Thailand)

    2015-01-01

    In astrophysical plasmas, magnetic field lines often guide the motions of thermal and non-thermal particles. The field line random walk (FLRW) is typically considered to depend on the Kubo number R = (b/B {sub 0})(ℓ{sub ∥}/ℓ ) for rms magnetic fluctuation b, large-scale mean field B {sub 0}, and parallel and perpendicular coherence scales ℓ{sub ∥} and ℓ , respectively. Here we examine the FLRW when R → ∞ by taking B {sub 0} → 0 for finite b{sub z} (fluctuation component along B {sub 0}), which differs from the well-studied route with b{sub z} = 0 or b{sub z} << B {sub 0} as the turbulence becomes quasi-two-dimensional (quasi-2D). Fluctuations with B {sub 0} = 0 are typically isotropic, which serves as a reasonable model of interstellar turbulence. We use a non-perturbative analytic framework based on Corrsin's hypothesis to determine closed-form solutions for the asymptotic field line diffusion coefficient for three versions of the theory, which are directly related to the k {sup –1} or k {sup –2} moment of the power spectrum. We test these theories by performing computer simulations of the FLRW, obtaining the ratio of diffusion coefficients for two different parameterizations of a field line. Comparing this with theoretical ratios, the random ballistic decorrelation version of the theory agrees well with the simulations. All results exhibit an analog to Bohm diffusion. In the quasi-2D limit, previous works have shown that Corrsin-based theories deviate substantially from simulation results, but here we find that as B {sub 0} → 0, they remain in reasonable agreement. We conclude that their applicability is limited not by large R, but rather by quasi-two-dimensionality.

  11. Magnetic Field Line Random Walk in Isotropic Turbulence with Zero Mean Field

    Science.gov (United States)

    Sonsrettee, W.; Subedi, P.; Ruffolo, D.; Matthaeus, W. H.; Snodin, A. P.; Wongpan, P.; Chuychai, P.

    2015-01-01

    In astrophysical plasmas, magnetic field lines often guide the motions of thermal and non-thermal particles. The field line random walk (FLRW) is typically considered to depend on the Kubo number R = (b/B 0)(l∥/l) for rms magnetic fluctuation b, large-scale mean field B 0, and parallel and perpendicular coherence scales l∥ and l, respectively. Here we examine the FLRW when R → ∞ by taking B 0 → 0 for finite bz (fluctuation component along B 0), which differs from the well-studied route with bz = 0 or bz Lt B 0 as the turbulence becomes quasi-two-dimensional (quasi-2D). Fluctuations with B 0 = 0 are typically isotropic, which serves as a reasonable model of interstellar turbulence. We use a non-perturbative analytic framework based on Corrsin's hypothesis to determine closed-form solutions for the asymptotic field line diffusion coefficient for three versions of the theory, which are directly related to the k -1 or k -2 moment of the power spectrum. We test these theories by performing computer simulations of the FLRW, obtaining the ratio of diffusion coefficients for two different parameterizations of a field line. Comparing this with theoretical ratios, the random ballistic decorrelation version of the theory agrees well with the simulations. All results exhibit an analog to Bohm diffusion. In the quasi-2D limit, previous works have shown that Corrsin-based theories deviate substantially from simulation results, but here we find that as B 0 → 0, they remain in reasonable agreement. We conclude that their applicability is limited not by large R, but rather by quasi-two-dimensionality.

  12. High-pressure crystallography of periodic and aperiodic crystals

    Directory of Open Access Journals (Sweden)

    Clivia Hejny

    2015-03-01

    Full Text Available More than five decades have passed since the first single-crystal X-ray diffraction experiments at high pressure were performed. These studies were applied historically to geochemical processes occurring in the Earth and other planets, but high-pressure crystallography has spread across different fields of science including chemistry, physics, biology, materials science and pharmacy. With each passing year, high-pressure studies have become more precise and comprehensive because of the development of instrumentation and software, and the systems investigated have also become more complicated. Starting with crystals of simple minerals and inorganic compounds, the interests of researchers have shifted to complicated metal–organic frameworks, aperiodic crystals and quasicrystals, molecular crystals, and even proteins and viruses. Inspired by contributions to the microsymposium `High-Pressure Crystallography of Periodic and Aperiodic Crystals' presented at the 23rd IUCr Congress and General Assembly, the authors have tried to summarize certain recent results of single-crystal studies of molecular and aperiodic structures under high pressure. While the selected contributions do not cover the whole spectrum of high-pressure research, they demonstrate the broad diversity of novel and fascinating results and may awaken the reader's interest in this topic.

  13. High-pressure crystallography of periodic and aperiodic crystals.

    Science.gov (United States)

    Hejny, Clivia; Minkov, Vasily S

    2015-03-01

    More than five decades have passed since the first single-crystal X-ray diffraction experiments at high pressure were performed. These studies were applied historically to geochemical processes occurring in the Earth and other planets, but high-pressure crystallography has spread across different fields of science including chemistry, physics, biology, materials science and pharmacy. With each passing year, high-pressure studies have become more precise and comprehensive because of the development of instrumentation and software, and the systems investigated have also become more complicated. Starting with crystals of simple minerals and inorganic compounds, the interests of researchers have shifted to complicated metal-organic frameworks, aperiodic crystals and quasicrystals, molecular crystals, and even proteins and viruses. Inspired by contributions to the microsymposium 'High-Pressure Crystallography of Periodic and Aperiodic Crystals' presented at the 23rd IUCr Congress and General Assembly, the authors have tried to summarize certain recent results of single-crystal studies of molecular and aperiodic structures under high pressure. While the selected contributions do not cover the whole spectrum of high-pressure research, they demonstrate the broad diversity of novel and fascinating results and may awaken the reader's interest in this topic. PMID:25866659

  14. VERTICAL STRUCTURE OF A SUPERNOVA-DRIVEN TURBULENT, MAGNETIZED INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Stellar feedback drives the circulation of matter from the disk to the halo of galaxies. We perform three-dimensional magnetohydrodynamic simulations of a vertical column of the interstellar medium with initial conditions typical of the solar circle in which supernovae drive turbulence and determine the vertical stratification of the medium. The simulations were run using a stable, positivity-preserving scheme for ideal MHD implemented in the FLASH code. We find that the majority (≈90%) of the mass is contained in thermally stable temperature regimes of cold molecular and atomic gas at T 4.2 K, with strong peaks in probability distribution functions of temperature in both the cold and warm regimes. The 200-104.2 K gas fills 50%-60% of the volume near the plane, with hotter gas associated with supernova remnants (30%-40%) and cold clouds (5 K) gas accounts for most of the mass and volume, while hot gas dominates at |z| > 3 kpc. The magnetic field in our models has no significant impact on the scale heights of gas in each temperature regime; the magnetic tension force is approximately equal to and opposite the magnetic pressure, so the addition of the field does not significantly affect the vertical support of the gas. The addition of a magnetic field does reduce the fraction of gas in the cold (4 K) gas. However, our models lack rotational shear and thus have no large-scale dynamo, which reduces the role of the field in the models compared to reality. The supernovae drive oscillations in the vertical distribution of halo gas, with the period of the oscillations ranging from ≈30 Myr in the T 6 K gas, in line with predictions by Walters and Cox.

  15. Non diffusive corrections to the long scale behavior of ensembles of turbulent magnetic field lines. Application of the functional method

    International Nuclear Information System (INIS)

    The problem of the transversal spreading of the magnetic field lines in a turbulent plasma is investigated analytically in order to obtain a statistical characterization at large spatial scales. We develop a functional integral method which allows to calculate in a systematic way statistical averages of physical quantities which depend on the fluctuating field. The known magnetic diffusion coefficient for the shearless case is corrected with a term which arises from the assumption of a finite transversal correlation length. For the case with magnetic shear the functional method provides the appropriate frame for a perturbative approach based on series of diagrams

  16. Upper-hybrid wave-driven Alfvénic turbulence in magnetized dusty plasmas.

    Science.gov (United States)

    Misra, A P; Banerjee, S

    2011-03-01

    The nonlinear dynamics of coupled electrostatic upper-hybrid (UH) and Alfvén waves (AWs) is revisited in a magnetized electron-ion plasma with charged dust impurities. A pair of nonlinear equations that describe the interaction of UH wave envelopes (including the relativistic electron mass increase) and the density as well as the compressional magnetic field perturbations associated with the AWs are solved numerically to show that many coherent solitary patterns can be excited and saturated due to modulational instability of unstable UH waves. The evolution of these solitary patterns is also shown to appear in the states of spatiotemporal coherence, temporal as well as spatiotemporal chaos, due to collision and fusion among the patterns in stochastic motion. Furthermore, these spatiotemporal features are demonstrated by the analysis of wavelet power spectra. It is found that a redistribution of wave energy takes place to higher harmonic modes with small wavelengths, which, in turn, results in the onset of Alfvénic turbulence in dusty magnetoplasmas. Such a scenario can occur in the vicinity of Saturn's magnetosphere as many electrostatic solitary structures have been observed there by the Cassini spacecraft. PMID:21517632

  17. Thermal Emission Control via Bandgap Engineering in Aperiodically Designed Nanophotonic Devices

    OpenAIRE

    Enrique Maciá

    2015-01-01

    Aperiodic photonic crystals can open up novel routes for more efficient photon management due to increased degrees of freedom in their design along with the unique properties brought about by the long-range aperiodic order as compared to their periodic counterparts. In this work we first describe the fundamental notions underlying the idea of thermal emission/absorption control on the basis of the systematic use of aperiodic multilayer designs in photonic quasicrystals. Then, we illustrate th...

  18. Local dependence of ion temperature gradient on magnetic configuration, rotational shear and turbulent heat flux in MAST

    CERN Document Server

    Ghim, Y -c; Schekochihin, A A; Highcock, E G; Michael, C

    2012-01-01

    Experimental data from the Mega Amp Spherical Tokamak (MAST) is used to show that the inverse gradient scale length of the ion temperature R/LTi (normalized to the major radius R) has its strongest local correlation with the rotational shear and the pitch angle of the magnetic field (or, equivalently, an inverse correlation with q/{\\epsilon}, the safety factor/the inverse aspect ratio). Furthermore, R/LTi is found to be inversely correlated with the gyro-Bohm-normalized local turbulent heat flux estimated from the density fluctuation level measured using a 2D Beam Emission Spectroscopy (BES) diagnostic. These results can be explained in terms of the conjecture that the turbulent system adjusts to keep R/LTi close to a certain critical value (marginal for the excitation of turbulence) determined by local equilibrium parameters (although not necessarily by linear stability).

  19. On the theory of MHD waves in a shear flow of a magnetized turbulent plasma

    Science.gov (United States)

    Mishonov, Todor M.; Maneva, Yana G.; Dimitrov, Zlatan D.; Hristov, Tihomir S.

    The set of equations for magnetohydrodynamic (MHD) waves in a shear flow is consecutively derived. This investigation is devoted on the wave heating of space plasmas. The proposed scenario involves the presence of a self-sustained turbulence and magnetic field. In the framework of Langevin--Burgers approach the influence of the turbulence is described by an additional external random force in the MHD system. Kinetic equation for the spectral density of the slow magnetosonic (Alfvénic) mode is derived in the short wavelength (WKB) approximation. The results show a pressing need for conduction of numerical Monte Carlo (MC) simulations with a random driver to take into account the influence of the long wavelength modes and to give a more precise analytical assessment of the short ones. Realistic MC calculations for the heating rate and shear stress tensor should give an answer to the perplexing problem for the missing viscosity in accretion disks and reveal why the quasars are the most powerful sources of light in the universe. It is supposed that the heating mechanism by alfvén waves absorption is common for many kinds of space plasmas from solar corona to active galactic nuclei and the solution of these longstanding puzzles deserves active interdisciplinary research. The work is illustrated by typical solutions of MHD equations and their spectral densities obtained by numerical calculations or by analytical solutions with the help of Heun functions. The amplification coefficient of slow magnetosonic wave in shear flow is analytically calculated. Pictorially speaking, if in WKB approximation we treat Alfvén waves as particles -- this amplification is effect of ``lasing of alfvons.''

  20. Scale-dependent Normalized Amplitude and Weak Spectral Anisotropy of Magnetic Field Fluctuations in the Solar Wind Turbulence

    Science.gov (United States)

    Wang, Xin; Tu, Chuanyi; Marsch, Eckart; He, Jiansen; Wang, Linghua

    2016-01-01

    Turbulence in the solar wind was recently reported to be anisotropic, with the average power spectral index close to -2 when sampling parallel to the local mean magnetic field B0 and close to -5/3 when sampling perpendicular to the local B0. This result was widely considered to be observational evidence for the critical balance theory (CBT), which is derived by making the assumption that the turbulence strength is close to one. However, this basic assumption has not yet been checked carefully with observational data. Here we present for the first time the scale-dependent magnetic-field fluctuation amplitude, which is normalized by the local B0 and evaluated for both parallel and perpendicular sampling directions, using two 30-day intervals of Ulysses data. From our results, the turbulence strength is evaluated as much less than one at small scales in the parallel direction. An even stricter criterion is imposed when selecting the wavelet coefficients for a given sampling direction, so that the time stationarity of the local B0 is better ensured during the local sampling interval. The spectral index for the parallel direction is then found to be -1.75, whereas the spectral index in the perpendicular direction remains close to -1.65. These two new results, namely that the value of the turbulence strength is much less than one in the parallel direction and that the angle dependence of the spectral index is weak, cannot be explained by existing turbulence theories, like CBT, and thus will require new theoretical considerations and promote further observations of solar-wind turbulence.

  1. Alfvén-dynamo balance and magnetic excess in magnetohydrodynamic turbulence

    Science.gov (United States)

    Grappin, Roland; Müller, Wolf-Christian; Verdini, Andrea

    2016-05-01

    Context. Three-dimensional magnetohydrodynamic (3D MHD) turbulent flows with initially magnetic and kinetic energies at equipartition spontaneously develop a magnetic excess (or residual energy) in both numerical simulations and the solar wind. Closure equations obtained in 1983 describe the residual spectrum as resulting from a balance between a dynamo source proportional to the total energy spectrum and a linear Alfvén damping term. A good agreement was found in 2005 with incompressible simulations; however, recent solar wind measurements disagree with these results. Aims: The previous dynamo-Alfvén theory is generalized to a family of models, leading to simple relations between residual and total energy spectra. We want to assess these models in detail against MHD simulations and solar wind data. Methods: We tested the family of models against compressible decaying MHD simulations with a low Mach number, low cross-helicity, and zero-mean magnetic field with or without expansion terms (EBM; expanding box model). Results: A single dynamo-Alfvén model is found to describe correctly both solar wind scalings and compressible simulations without or with expansion. This model is equivalent to the 1983-2005 closure equation, but it incorporates the critical balance of nonlinear turnover and linear Alfvén times, while the dynamo source term remains unchanged. We elucidate the discrepancy with previous incompressible simulations. The model predicts a linear relation between the spectral slopes of total and residual energies mR = -1/2 + 3/2mT. By examining previous solar wind data, our relation is found to be valid for any cross-helicity, and is even better at high cross-helicity with the total energy slope varying from 1.7 to 1.55.

  2. Magnetic Field Line Random Walk in Isotropic Turbulence with Varying Mean Field

    Science.gov (United States)

    Sonsrettee, W.; Subedi, P.; Ruffolo, D.; Matthaeus, W. H.; Snodin, A. P.; Wongpan, P.; Chuychai, P.; Rowlands, G.; Vyas, S.

    2016-08-01

    In astrophysical plasmas, the magnetic field line random walk (FLRW) plays an important role in guiding particle transport. The FLRW behavior is scaled by the Kubo number R=(b/{B}0)({{\\ell }}\\parallel /{{\\ell }}\\perp ) for rms magnetic fluctuation b, large-scale mean field {{\\boldsymbol{B}}}0, and coherence scales parallel ({{\\ell }}\\parallel ) and perpendicular ({{\\ell }}\\perp ) to {{\\boldsymbol{B}}}0. Here we use a nonperturbative analytic framework based on Corrsin’s hypothesis, together with direct computer simulations, to examine the R-scaling of the FLRW for varying B 0 with finite b and isotropic fluctuations with {{\\ell }}\\parallel /{{\\ell }}\\perp =1, instead of the well-studied route of varying {{\\ell }}\\parallel /{{\\ell }}\\perp for b \\ll {B}0. The FLRW for isotropic magnetic fluctuations is also of astrophysical interest regarding transport processes in the interstellar medium. With a mean field, fluctuations may have variance anisotropy, so we consider limiting cases of isotropic variance and transverse variance (with b z = 0). We obtain analytic theories, and closed-form solutions for extreme cases. Padé approximants are provided to interpolate all versions of theory and simulations to any B 0. We demonstrate that, for isotropic turbulence, Corrsin-based theories generally work well, and with increasing R there is a transition from quasilinear to Bohm diffusion. This holds even with b z = 0, when different routes to R\\to ∞ are mathematically equivalent; in contrast with previous studies, we find that a Corrsin-based theory with random ballistic decorrelation works well even up to R = 400, where the effects of trapping are barely perceptible in simulation results.

  3. Effects of the stratification of two diffusive component and the magnetic field on the existence of internal Alfven gravity waves in a turbulent flow

    International Nuclear Information System (INIS)

    The mechanism of momentum and energy transfer by internal Alfven-gravity waves is studied in a turbulent plasma flow, modelling astrophysical and geophysical situations. The difficulty of the indeterminate system of equations is solved by using gradient diffusion model as a suitable closure. It is found that the weak stratification and the magnetic field decrease the intensity of the turbulence. (D.Gy.)

  4. Can a metaphor of physics contribute to MEG neuroscience research? Intermittent turbulent eddies in brain magnetic fields

    International Nuclear Information System (INIS)

    A common manifestation of nonlinear mathematical and experimental neurobiological dynamical systems in transition, intermittence, is currently being attended by concepts from physics such as turbulent eddy and the avalanche of critical systems. Do these concepts constitute an enticing poetry of dynamical universality or do these metaphors from physics generate more specific novel and relevant concepts and experiments in the neurosciences? Using six graphics and ten measures derived from the ergodic theory of dynamical systems, we study the magnetoencephalic, MEG, records of taskless, “resting” human subjects to find consistent evidence for turbulent (chaotic) dynamics marked by intermittent turbulent eddies. This brings up an apparent discrepancy via the juxtaposition of the superposition characteristics of magnetic fields and the non-superposition properties of turbulent flow. Treating this apparent inconsistency as an existent duality, we propose a physical model for how that might be the case. This leaves open the question: has the physical metaphor, turbulent eddy, contributed to a scientific understanding of the human resting MEG?

  5. Time evolution of the large-scale tail of non-helical primordial magnetic fields with back-reaction of the turbulent medium

    International Nuclear Information System (INIS)

    We present a derivation of the time evolution equations for the energy content of non-helical magnetic fields and the accompanying turbulent flows from first principles of magnetohydrodynamics in the general framework of homogeneous and isotropic turbulence. This is then applied to the Early Universe, i.e. the evolution of primordial magnetic fields. Numerically integrating the equations we find that most of the energy is concentrated at an integral wave number scale kI where the turbulence turn over time equals the Hubble time. At larger length scales L, or smaller wavenumbers q=2π/LI, independent of the assumed turbulent flow power spectrum, mode-mode coupling tends to develop a small q magnetic field tail from zero with a violet noise slope proportional to the fourth inverse power of L and therefore a scaling for the magnetic field of B∝ L-5/2.

  6. Time evolution of the large-scale tail of non-helical primordial magnetic fields with back-reaction of the turbulent medium

    Energy Technology Data Exchange (ETDEWEB)

    Saveliev, Andrey; Sigl, Guenter [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Jedamzik, Karsten [Montpellier Univ. (France). Lab. de Physique Theorique et Astroparticules

    2012-08-15

    We present a derivation of the time evolution equations for the energy content of non-helical magnetic fields and the accompanying turbulent flows from first principles of magnetohydrodynamics in the general framework of homogeneous and isotropic turbulence. This is then applied to the Early Universe, i.e. the evolution of primordial magnetic fields. Numerically integrating the equations we find that most of the energy is concentrated at an integral wave number scale k{sub I} where the turbulence turn over time equals the Hubble time. At larger length scales L, or smaller wavenumbers q=2{pi}/L<< k{sub I}, independent of the assumed turbulent flow power spectrum, mode-mode coupling tends to develop a small q magnetic field tail from zero with a violet noise slope proportional to the fourth inverse power of L and therefore a scaling for the magnetic field of B{proportional_to} L{sup -5/2}.

  7. Spatiotemporal scaling of turbulent photospheric line-of-sight magnetic field in the active region NOAA 11158

    CERN Document Server

    Guerra, Jordan A; Uritsky, Vadim M; Yashiro, Seiji

    2014-01-01

    We study structure and dynamics of the turbulent phostospheric magnetic field in the active region NOAA 11158 by characterizing the spatial and temporal scaling properties of the line-of-sight (LOS) component. Using high-resolution high-cadence LOS magnetrograms from SDO/HMI, we measured power-law exponents $\\alpha$ and $\\beta$ describing wavenumber- ($k$) and frequency-domain ($f$) Fourier power spectra, respectively, and investigated their evolution during the passage of the active region through the field of view of HMI. The (flaring) active region NOAA 11158 displays an average one-dimensional spatial power spectral density that follows approximately the power law $k^{-3}$; a spectrum characteristic of a passive scalar field in a turbulent two-dimensional medium. In addition, we found that values of $\\alpha$ capture systematic changes in the configuration of the LOS photospheric magnetic field during flaring activity in the corona. Position-dependent values of the temporal scaling exponent $\\beta$ showed ...

  8. Transport Equations of Three-point Distribution Functions in MHD Turbulent Flow for Velocity, Magnetic Temperature and Concentration

    Directory of Open Access Journals (Sweden)

    M.A.K. Azad

    2014-06-01

    Full Text Available In this study, the statistical theory of certain distribution functions for simultaneous velocity, magnetic temperature and concentration fields in MHD turbulent flow have been studied. The various properties of the constructed joint distribution functions such as, reduction property, separation property, coincidence and symmetric properties have been discussed. We have made an attempt to derive the transport equations for two and three point distribution functions. Lastly, the transport equation for evaluation of three point distribution functions has been derived.

  9. INTERSTELLAR TURBULENCE

    Directory of Open Access Journals (Sweden)

    D. Falceta-Gonçalves

    2011-01-01

    Full Text Available The Interstellar Medium (ISM is a complex, multi-phase system, where the history of the stars occurs. The processes of birth and death of stars are strongly coupled to the dynamics of the ISM. The observed chaotic and diffusive motions of the gas characterize its turbulent nature. Understanding turbulence is crucial for understanding the star-formation process and the energy-mass feedback from evolved stars. Magnetic fields, threading the ISM, are also observed, making this effort even more difficult. In this work, I briefly review the main observations and the characterization of turbulence from these observable quantities. Following on, I provide a review of the physics of magnetized turbulence. Finally, I will show the main results from theoretical and numerical simulations, which can be used to reconstruct observable quantities, and compare these predictions to the observations.

  10. Co-current toroidal rotation-driven and turbulent stresses with resonant magnetic perturbations in the edge plasmas of the J-TEXT tokamak

    Science.gov (United States)

    Zhao, K. J.; Shi, Yuejiang; Liu, H.; Diamond, P. H.; Li, F. M.; Cheng, J.; Chen, Z. P.; Nie, L.; Ding, Y. H.; Wu, Y. F.; Chen, Z. Y.; Rao, B.; Cheng, Z. F.; Gao, L.; Zhang, X. Q.; Yang, Z. J.; Wang, N. C.; Wang, L.; Jin, W.; Xu, J. Q.; Yan, L. W.; Dong, J. Q.; Zhuang, G.; J-TEXT team

    2016-07-01

    The acceleration of the co-current toroidal rotations around resonant surfaces by resonant magnetic perturbations (RMPs) through turbulence is presented. These experiments were performed using a Langmuir probe array in the edge plasmas of the J-TEXT tokamak. This study aims at understanding the RMP effects on edge toroidal rotations and exploring its control method. With RMPs, the flat electron temperature T e profile, due to magnetic islands, appears around resonant surfaces (Zhao et al 2015 Nucl. Fusion 55 073022). When the resonant surface is closer to the last closed flux surface, the flat T e profile vanishes with RMPs. In both cases, the toroidal rotations significantly increase in the direction of the plasma current around the resonant surfaces with RMPs. The characteristics of turbulence are significantly affected by RMPs around the resonant surfaces. The turbulence intensity profile changes and the poloidal wave vector k θ increases with RMPs. The power fraction of the turbulence components in the ion diamagnetic drift direction increases with RMPs. The measurements of turbulent Reynolds stresses are consistent with the toroidal flows that can be driven by turbulence. The estimations of the energy transfer between the turbulence and toroidal flows suggest that turbulence energy transfers into toroidal flows. The result has the implication of the intrinsic rotation being driven by RMPs via turbulence.

  11. MODEL OF THE FIELD LINE RANDOM WALK EVOLUTION AND APPROACH TO ASYMPTOTIC DIFFUSION IN MAGNETIC TURBULENCE

    International Nuclear Information System (INIS)

    The turbulent random walk of magnetic field lines plays an important role in the transport of plasmas and energetic particles in a wide variety of astrophysical situations, but most theoretical work has concentrated on determination of the asymptotic field line diffusion coefficient. Here we consider the evolution with distance of the field line random walk using a general ordinary differential equation (ODE), which for most cases of interest in astrophysics describes a transition from free streaming to asymptotic diffusion. By challenging theories of asymptotic diffusion to also describe the evolution, one gains insight on how accurately they describe the random walk process. Previous theoretical work has effectively involved closure of the ODE, often by assuming Corrsin's hypothesis and a Gaussian displacement distribution. Approaches that use quasilinear theory and prescribe the mean squared displacement (Δx 2) according to free streaming (random ballistic decorrelation, RBD) or asymptotic diffusion (diffusive decorrelation, DD) can match computer simulation results, but only over specific parameter ranges, with no obvious 'marker' of the range of validity. Here we make use of a unified description in which the ODE determines (Δx 2) self-consistently, providing a natural transition between the assumptions of RBD and DD. We find that the minimum kurtosis of the displacement distribution provides a good indicator of whether the self-consistent ODE is applicable, i.e., inaccuracy of the self-consistent ODE is associated with non-Gaussian displacement distributions.

  12. Protostellar Disk Evolution Over Million-Year Timescales with a Prescription for Magnetized Turbulence

    CERN Document Server

    Landry, Russell; Turner, Neal J; Abram, Greg

    2013-01-01

    Magnetorotational instability (MRI) is the most promising mechanism behind accretion in low-mass protostellar disks. Here we present the first analysis of the global structure and evolution of non-ideal MRI-driven T-Tauri disks on million-year timescales. We accomplish this in a 1+1D simulation by calculating magnetic diffusivities and utilizing turbulence activity criteria to determine thermal structure and accretion rate without resorting to a 3-D magnetohydrodynamical (MHD) simulation. Our major findings are as follows. First, even for modest surface densities of just a few times the minimum-mass solar nebula, the dead zone encompasses the giant planet-forming region, preserving any compositional gradients. Second, the surface density of the active layer is nearly constant in time at roughly 10 g/cm2, which we use to derive a simple prescription for viscous heating in MRI-active disks for those who wish to avoid detailed MHD computations. Furthermore, unlike a standard disk with constant-alpha viscosity, t...

  13. Models for the probability densities of the turbulent plasma flux in magnetized plasmas

    Science.gov (United States)

    Bergsaker, A. S.; Fredriksen, Å; Pécseli, H. L.; Trulsen, J. K.

    2015-10-01

    Observations of turbulent transport in magnetized plasmas indicate that plasma losses can be due to coherent structures or bursts of plasma rather than a classical random walk or diffusion process. A model for synthetic data based on coherent plasma flux events is proposed, where all basic properties can be obtained analytically in terms of a few control parameters. One basic parameter in the present case is the density of burst events in a long time-record, together with parameters in a model of the individual pulse shapes and the statistical distribution of these parameters. The model and its extensions give the probability density of the plasma flux. An interesting property of the model is a prediction of a near-parabolic relation between skewness and kurtosis of the statistical flux distribution for a wide range of parameters. The model is generalized by allowing for an additive random noise component. When this noise dominates the signal we can find a transition to standard results for Gaussian random noise. Applications of the model are illustrated by data from the toroidal Blaamann plasma.

  14. PARTICLE ACCELERATION AT A FLARE TERMINATION SHOCK: EFFECT OF LARGE-SCALE MAGNETIC TURBULENCE

    International Nuclear Information System (INIS)

    We investigate the acceleration of charged particles (both electrons and protons) at collisionless shocks predicted to exist in the vicinity of solar flares. The existence of standing termination shocks has been examined by flare models and numerical simulations. We study electron energization by numerically integrating the equations of motion of a large number of test-particle electrons in the time-dependent two-dimensional electric and magnetic fields generated from hybrid simulations (kinetic ions and fluid electron) using parameters typical of the solar flare plasma environment. The shock is produced by injecting plasma flow toward a rigid piston. Large-scale magnetic fluctuations—known to exist in plasmas and known to have important effects on the nonthermal electron acceleration at shocks—are also included in our simulations. For the parameters characteristic of the flaring region, our calculations suggest that the termination shock formed in the reconnection outflow region (above post-flare loops) could accelerate electrons to a kinetic energy of a few MeV within 100 ion cyclotron periods, which is of the order of a millisecond. Given a sufficient turbulence amplitude level (δB2/B 20 ∼ 0.3), about 10% of thermal test-particle electrons are accelerated to more than 15 keV. We find that protons are also accelerated, but not to as high energy in the available time and the energy spectra are considerably steeper than that of the electrons for the parameters used in our simulations. Our results are qualitatively consistent with the observed hard X-ray emissions in solar flares.

  15. Influence of intermittency on the anisotropy of magnetic structure functions of solar wind turbulence

    Science.gov (United States)

    Pei, Zhongtian; He, Jiansen; Wang, Xin; Tu, Chuanyi; Marsch, Eckart; Wang, Linghua; Yan, Limei

    2016-02-01

    Intermittency appears to be connected with the spectral anisotropy of solar wind turbulence. We use the Local Intermittency Measure to identify and remove intermittency from the magnetic field data measured by the Ulysses spacecraft in fast solar wind. Structure functions are calculated based on the time sequences as obtained before and after removing intermittency and arranged by time scale (τ) and ΘRB (the angle between local mean magnetic field B0 and radial direction R). Thus, the scaling exponent (ξ(p, ΘRB)) of every structure function of order (p) is obtained for different angles. Before removing intermittency, ξ(p, ΘRB) shows a distinctive dependence on ΘRB: from monofractal scaling law at ΘRB ~0° to multifractal scaling law at ΘRB ~90°. In contrast after eliminating the intermittency, ξ(p, ΘRB) is found to be more monofractal for all ΘRB. The extended structure-function model is applied to ξ(p, ΘRB), revealing differences of its fitting parameters α (a proxy of the power spectral index) and P1 (fragmentation fraction) for the cases with and without intermittency. Parameter α shows an evident angular trend falling from 1.9 to 1.6 for the case with intermittency but has a relatively flat profile around 1.8 for the case without intermittency. Parameter P1 rises from around 0.5 to above 0.8 with increasing ΘRB for the intermittency case and is located between 0.5 and 0.8 for the case lacking intermittency. Therefore, we may infer that it is the anisotropy of intermittency that causes the scaling anisotropy of energy spectra and the unequal fragmentation of energy cascading.

  16. Linear astrophysical dynamos in rotating spheres Differential rotation, anisotropic turbulent magnetic diffusivity, and solar-stellar cycle magnetic parity

    Science.gov (United States)

    Yoshimura, H.; Wang, Z.; Wu, F.

    1984-05-01

    Differential rotation dependence of the selection mechanism for magnetic parity of solar and stellar cycles is studied by assuming various differential rotation profiles in the dynamo equation. The parity selection depends on propagation direction of oscillating magnetic fields in the form of dynamo waves which propagate along isorotation surfaces. When there is any radial gradient in the differential rotation, dynamo waves propagate either equatorward or poleward. In the former case, field systems of the two hemispheres approach each other and collide at the equator. Then, odd parity is selected. In the latter case, field systems of the two hemispheres recede from each other and do not collide at the equator, and even parity is selected. Thus the equatorial migration of wings of the butterfly diagram of the solar cycle and its odd parity are intrinsically related. In the case of purely latitudinal differential rotation, dynamo waves propagate purely radially and growth rates of odd and even modes are nearly the same even when dynamo strength is weak when the parity selection mechanism should work most efficiently. In this case, anisotropy of turbulent diffusivity is a decisive factor to separate odd and even modes. Unlike in the case of radial-gradient-dominated differential rotation in which any difference between diffusivities for poloidal and toroidal fields enhances the parity selection without changing the parity, the parity selection in the case of latitudinal-gradient-dominated differential rotation depends on the difference of diffusivities for poloidal and toroidal fields. When diffusivity for poloidal fields is larger than that for toroidal fields, odd parity is selected; and when diffusivity for toroidal fields is larger, even parity is selected. This suggests that diffusivity for poloidal fields is larger than that for toroidal fields in the solar convection zone where magnetic parity is odd and where radial gradient influence on the parity selection

  17. Confinement and Isotropization of Galactic Cosmic Rays by Molecular-Cloud Magnetic Mirrors When Turbulent Scattering Is Weak

    International Nuclear Information System (INIS)

    Theoretical studies of magnetohydrodynamic (MHD) turbulence and observations of solar wind fluctuations suggest that MHD turbulence in the interstellar medium is anisotropic at small scales, with smooth variations along the background magnetic field and sharp variations perpendicular to the background field. Turbulence with this anisotropy is inefficient at scattering cosmic rays, and thus the scattering rate ν may be smaller than has been traditionally assumed in diffusion models of Galactic cosmic-ray propagation, at least for cosmic-ray energies E above 1011-1012 eV at which self-confinement is not possible. In this paper, it is shown that Galactic cosmic rays can be effectively confined through magnetic reflection by molecular clouds, even when turbulent scattering is weak. Elmegreen's quasi-fractal model of molecular-cloud structure is used to argue that a typical magnetic field line passes through a molecular cloud complex once every ∼300 pc. Once inside the complex, the field line will in most cases be focused into one or more dense clumps in which the magnetic field can be much stronger than the average field in the intercloud medium (ICM). Cosmic rays following field lines into cloud complexes are most often magnetically reflected back into the ICM, since strong-field regions act as magnetic mirrors. For a broad range of cosmic-ray energies, a cosmic ray initially following some particular field line separates from that field line sufficiently slowly that the cosmic ray can be trapped between neighboring cloud complexes for long periods of time. The suppression of cosmic-ray diffusion due to magnetic trapping is calculated in this paper with the use of phenomenological arguments, asymptotic analysis, and Monte Carlo particle simulations. Formulas for the coefficient of diffusion perpendicular to the Galactic disk are derived for several different parameter regimes within the E-ν plane. In one of these parameter regimes in which scattering is weak, it

  18. A possible origin of viscosity in Keplerian accretion disks due to secondary perturbation: Turbulent transport without magnetic fields

    Institute of Scientific and Technical Information of China (English)

    Banibrata Mukhopadhyay; Kanak Saha

    2011-01-01

    The origin of hydrodynamic turbulence in rotating shear flow is a long standing puzzle.Resolving it is especially important in astrophysics when the flow's angular momentum profile is Keplerian which forms an accretion disk having negligible molecular viscosity.Hence, any viscosity in such systems must be due to turbulence, arguably governed by magnetorotational instability, especially when temperature T (≥)105.However, such disks around quiescent cataclysmic variables, protoplanetary and star-forming disks, and the outer regions of disks in active galactic nuclei are practically neutral in charge because of their low temperature, and thus are not expected to be coupled with magnetic fields enough to generate any transport due to the magnetorotational instability.This flow is similar to plane Couette flow including the Coriolis force, at least locally.What drives their turbulence and then transport,when such flows do not exhibit any unstable mode under linear hydrodynamic perturbation? We demonstrate that the three-dimensional secondary disturbance to the primarily perturbed flow that triggers elliptical instability may generate significant turbulent viscosity in the range 0.0001 (≤) vt (≤) 0.1, which can explain transport in accretion flows.

  19. Extended State to Localization in Random Aperiodic Chains

    Science.gov (United States)

    Gao, Hui-Fen; Tao, Rui-Bao

    2006-11-01

    The electronic states in Thus-Morse chain (TMC) and generalized Fibonacci chain (GFC) are studied by solving eigenequation and using transfer matrix method. Two model Hamiltonians are studied. One contains the nearest neighbor (n.n.) hopping terms only and the other has additionally next nearest neighbor (n.n.n.) hopping terms. Based on the transfer matrix method, a criterion of transition from the extended to the localized states is suggested for GFC and TMC. The numerical calculation shows the existence of both extended and localized states in pure aperiodic system. A random potential is introduced to the diagonal term of the Hamiltonian and then the extended states are always changed to be localized. The exponents related to the localization length as a function of randomness are calculated. For different kinds of aperiodic chain, the critical value of randomness for the transition from extended to the localized states are found to be zero, consistent with the case of ordinary one-dimensional systems.

  20. Turbulence in a Global Magnetohydrodynamic Simulation of the Earth's Magnetosphere during Northward and Southward Interplanetary Magnetic Field

    Science.gov (United States)

    El-Alaoui, M.; Richard, R. L.; Ashour-Abdalla, M.; Walker, R. J.; Goldstein, M. L.

    2012-01-01

    We report the results of MHD simulations of Earth's magnetosphere for idealized steady solar wind plasma and interplanetary magnetic field (IMF) conditions. The simulations feature purely northward and southward magnetic fields and were designed to study turbulence in the magnetotail plasma sheet. We found that the power spectral densities (PSDs) for both northward and southward IMF had the characteristics of turbulent flow. In both cases, the PSDs showed the three scale ranges expected from theory: the energy-containing scale, the inertial range, and the dissipative range. The results were generally consistent with in-situ observations and theoretical predictions. While the two cases studied, northward and southward IMF, had some similar characteristics, there were significant differences as well. For southward IMF, localized reconnection was the main energy source for the turbulence. For northward IMF, remnant reconnection contributed to driving the turbulence. Boundary waves may also have contributed. In both cases, the PSD slopes had spatial distributions in the dissipative range that reflected the pattern of resistive dissipation. For southward IMF there was a trend toward steeper slopes in the dissipative range with distance down the tail. For northward IMF there was a marked dusk-dawn asymmetry with steeper slopes on the dusk side of the tail. The inertial scale PSDs had a dusk-dawn symmetry during the northward IMF interval with steeper slopes on the dawn side. This asymmetry was not found in the distribution of inertial range slopes for southward IMF. The inertial range PSD slopes were clustered around values close to the theoretical expectation for both northward and southward IMF. In the dissipative range, however, the slopes were broadly distributed and the median values were significantly different, consistent with a different distribution of resistivity.

  1. Turbulence in a global magnetohydrodynamic simulation of the Earth's magnetosphere during northward and southward interplanetary magnetic field

    Directory of Open Access Journals (Sweden)

    M. El-Alaoui

    2012-03-01

    Full Text Available We report the results of MHD simulations of Earth's magnetosphere for idealized steady solar wind plasma and interplanetary magnetic field (IMF conditions. The simulations feature purely northward and southward magnetic fields and were designed to study turbulence in the magnetotail plasma sheet. We found that the power spectral densities (PSDs for both northward and southward IMF had the characteristics of turbulent flow. In both cases, the PSDs showed the three scale ranges expected from theory: the energy-containing scale, the inertial range, and the dissipative range. The results were generally consistent with in-situ observations and theoretical predictions. While the two cases studied, northward and southward IMF, had some similar characteristics, there were significant differences as well. For southward IMF, localized reconnection was the main energy source for the turbulence. For northward IMF, remnant reconnection contributed to driving the turbulence. Boundary waves may also have contributed. In both cases, the PSD slopes had spatial distributions in the dissipative range that reflected the pattern of resistive dissipation. For southward IMF there was a trend toward steeper slopes in the dissipative range with distance down the tail. For northward IMF there was a marked dusk-dawn asymmetry with steeper slopes on the dusk side of the tail. The inertial scale PSDs had a dusk-dawn symmetry during the northward IMF interval with steeper slopes on the dawn side. This asymmetry was not found in the distribution of inertial range slopes for southward IMF. The inertial range PSD slopes were clustered around values close to the theoretical expectation for both northward and southward IMF. In the dissipative range, however, the slopes were broadly distributed and the median values were significantly different, consistent with a different distribution of resistivity.

  2. The divergence of neighboring magnetic field lines and fast-particle diffusion in strong magnetohydrodynamic turbulence, with application to thermal conduction in galaxy clusters

    OpenAIRE

    Maron, Jason L.; Chandran, Benjamin D. G.; Blackman, Eric G.

    2003-01-01

    We investigate field-line separation in strong MHD turbulence using direct numerical simulations. We find that in the static-magnetic-field approximation the thermal conductivity in galaxy clusters is reduced by a factor of about 50 relative to the Spitzer thermal conductivity of a non-magnetized plasma. This value is too small for heat conduction to balance radiative cooling in clusters.

  3. Auroral electron fluxes induced by static magnetic field aligned electric field and plasma wave turbulence

    International Nuclear Information System (INIS)

    We have studied the formation of auroral electron fluxes induced by a field aligned dc electric field in the presence of plasma wave turbulence. The effect of the wave spectral shape on the production rate has been considered. This acceleration scheme was modelled by the weak turbulence approach. The electron fluxes for narrow and broad band spectra, in the case of low and high phase velocities, are calculated, and it is found as a general feature, for all modes, that their enhancement is larger the weaker the background electric field, while for its absolute enhancement it is just the opposite. The electron fluxes are enhanced by many orders of magnitude over that without turbulence. It is also shown that the modes enhance the runaway production rate via their Cherenkov dissipation, and that a synergetic effect occurs in the enhancement when more than one mode turbulent is present in the acceleration region. (author)

  4. Correlation of electron path lengths observed in the highly wound outer region of magnetic clouds with the slab fraction of magnetic turbulence in the dissipation range

    International Nuclear Information System (INIS)

    Three magnetic cloud events, in which solar impulsive electron events occurred in their outer region, are employed to investigate the difference of path lengths L 0eIII traveled by non-relativistic electrons from their release site near the Sun to the observer at 1 AU, where L 0eIII = v l × (t l – t III), v l and t l being the velocity and arrival time of electrons in the lowest energy channel (∼27 keV) of the Wind/3DP/SST sensor, respectively, and t III being the onset time of type III radio bursts. The deduced L 0eIII value ranges from 1.3 to 3.3 AU. Since a negligible interplanetary scattering level can be seen in both L 0eIII > 3 AU and ∼1.2 AU events, the difference in L 0eIII could be linked to the turbulence geometry (slab or two-dimensional) in the solar wind. By using the Wind/MFI magnetic field data with a time resolution of 92 ms, we examine the turbulence geometry in the dissipation range. In our examination, ∼6 minutes of sampled subintervals are used in order to improve time resolution. We have found that, in the transverse turbulence, the observed slab fraction is increased with an increasing L 0eIII value, reaching ∼100% in the L 0eIII > 3 AU event. Our observation implies that when only the slab spectral component exists, magnetic flux tubes (magnetic surfaces) are closed and regular for a very long distance along the transport route of particles.

  5. GRILLIX. A 3D turbulence code for magnetic fusion devices based on a field line map

    International Nuclear Information System (INIS)

    The complex geometry in the scrape-off layer of tokamaks poses problems to existing turbulence codes. The usually employed field aligned coordinates become ill defined at the separatrix. Therefore the parallel code GRILLIX was developed, which is based on a field line map. This allows simulations in additional complex geometries, especially across the separatrix. A new discretisation, based on the support operator method, for the highly anisotropic diffusion was developed and applied to a simple turbulence model (Hasegawa-Wakatani).

  6. Extraction of coherent bursts from turbulent edge plasma in magnetic fusion devices using orthogonal wavelets

    OpenAIRE

    Farge, Marie; Schneider, Kai; Devynck, Pascal

    2006-01-01

    A new method to extract coherent bursts from turbulent signals is presented. It uses the wavelet representation which keeps track of both time and scale and thus preserves the temporal structure of the analyzed signal, in contrast to the Fourier representation which scrambles it among the phases of all Fourier coefficients. Using orthogonal wavelets,turbulent signals can be decomposed into coherent and incoherent components, which are orthogonal and whose properties can thus be studied indepe...

  7. Self-generated magnetic turbulence and the propagation of galactic cosmic rays

    OpenAIRE

    Aloisio, R.; P. Blasi(INAF Arcetri)

    2013-01-01

    Cosmic rays propagating in the Galaxy may excite a streaming instability when their motion is super-alfvenic, thereby producing the conditions for their own diffusion. We present the results of a self-consistent solution of the transport equation where diffusion occurs because of the self-generated turbulence together with a preexisting turbulence injected, for instance, by supernova explosions and cascading to smaller scales. All chemicals are included in our calculations, so that we are abl...

  8. Ion kinetic energy conservation and magnetic field strength constancy in multi-fluid solar wind Alfv\\'enic turbulence

    CERN Document Server

    Matteini, L; Pantellini, F; Velli, M; Schwartz, S J

    2015-01-01

    We investigate properties of the plasma fluid motion in the large amplitude low frequency fluctuations of highly Alfv\\'enic fast solar wind. We show that protons locally conserve total kinetic energy when observed from an effective frame of reference comoving with the fluctuations. For typical properties of the fast wind, this frame can be reasonably identified by alpha particles, which, owing to their drift with respect to protons at about the Alfv\\'en speed along the magnetic field, do not partake in the fluid low frequency fluctuations. Using their velocity to transform proton velocity into the frame of Alfv\\'enic turbulence, we demonstrate that the resulting plasma motion is characterized by a constant absolute value of the velocity, zero electric fields, and aligned velocity and magnetic field vectors as expected for unidirectional Alfv\\'enic fluctuations in equilibrium. We propose that this constraint, via the correlation between velocity and magnetic field in Alfv\\'enic turbulence, is at the origin of ...

  9. Gain modulation by graphene plasmons in aperiodic lattice lasers

    Science.gov (United States)

    Chakraborty, S.; Marshall, O. P.; Folland, T. G.; Kim, Y.-J.; Grigorenko, A. N.; Novoselov, K. S.

    2016-01-01

    Two-dimensional graphene plasmon-based technologies will enable the development of fast, compact, and inexpensive active photonic elements because, unlike plasmons in other materials, graphene plasmons can be tuned via the doping level. Such tuning is harnessed within terahertz quantum cascade lasers to reversibly alter their emission. This is achieved in two key steps: first, by exciting graphene plasmons within an aperiodic lattice laser and, second, by engineering photon lifetimes, linking graphene’s Fermi energy with the round-trip gain. Modal gain and hence laser spectra are highly sensitive to the doping of an integrated, electrically controllable, graphene layer. Demonstration of the integrated graphene plasmon laser principle lays the foundation for a new generation of active, programmable plasmonic metamaterials with major implications across photonics, material sciences, and nanotechnology.

  10. Invaded cluster algorithm for critical properties of periodic and aperiodic planar Ising models

    International Nuclear Information System (INIS)

    We demonstrate that the invaded cluster algorithm, introduced by Machta et al (1995 Phys. Rev. Lett. 75 2792-5), is a fast and reliable tool for determining the critical temperature and the magnetic critical exponent of periodic and aperiodic ferromagnetic Ising models in two dimensions. The algorithm is shown to reproduce the known values of the critical temperature on various periodic and quasiperiodic graphs with an accuracy of more than three significant digits, but only modest computational effort. On two quasiperiodic graphs which were not investigated in this respect before, the 12-fold symmetric square-triangle tiling and the 10-fold symmetric Tuebingen triangle tiling, we determine the critical temperature. Furthermore, a generalization of the algorithm to non-identical coupling strengths is presented and applied to a class of Ising models on the Labyrinth tiling. For generic cases in which the heuristic Harris-Luck criterion predicts deviations from the Onsager universality class, we find a magnetic critical exponent different from the Onsager value. But notable exceptions to the criterion are found which consist not only of the exactly solvable cases, in agreement with a recent exact result, but also of the self-dual ones and maybe more. (author)

  11. Turbulence in a toroidal magnetized plasma investigated by collective light scattering: plasma form factor and plasma diffusion

    OpenAIRE

    Lemoine, Nicolas; Grésillon, Dominique

    2004-01-01

    On the toroidal magnetized plasma discharge ToriX, a collective light scattering device has been set to investigate plasma turbulence and transport. The light scattering intensity provides a measurement of the static form factor, at the scale of the scattering wave number k. The form factor is found to be very large, five to eight orders of magnitude above the equilibrium level. As a function of the k wave number, an exponential decay is found instead of a scaling law. This implies long range...

  12. Interaction of particles with systems of magnetic islands and edge turbulence in tokamaks in fully Hamiltonian approach

    Czech Academy of Sciences Publication Activity Database

    Cahyna, Pavel; Krlín, Ladislav; Pánek, Radomír; Kurian, M.

    Varšava: EPS, 2007 - (Gąsior, P.; Wołowski, J.), P4.044-P4.044. (Europhysics conference abstracts. 31F). ISBN 978-83-926290-0-9. [EPS Conference on Plasma Physics and Controlled Fusion/34th./. Varšava (PL), 02.07.2007-06.07.2007] R&D Projects: GA AV ČR IAA100430502 Institutional research plan: CEZ:AV0Z20430508 Keywords : electrostatic turbulence * magnetic islands * deterministic chaos Subject RIV: BL - Plasma and Gas Discharge Physics http://www.eps2007.ifpilm.waw.pl/pdf/P4_044.pdf

  13. TURBULENCE IN THE OUTER REGIONS OF PROTOPLANETARY DISKS. II. STRONG ACCRETION DRIVEN BY A VERTICAL MAGNETIC FIELD

    International Nuclear Information System (INIS)

    We carry out a series of local, vertically stratified shearing box simulations of protoplanetary disks that include ambipolar diffusion and a net vertical magnetic field. The ambipolar diffusion profiles we employ correspond to 30 AU and 100 AU in a minimum mass solar nebula (MMSN) disk model, which consists of a far-ultraviolet-ionized surface layer and low-ionization disk interior. These simulations serve as a follow-up to Simon et al., in which we found that without a net vertical field, the turbulent stresses that result from the magnetorotational instability (MRI) are too weak to account for observed accretion rates. The simulations in this work show a very strong dependence of the accretion stresses on the strength of the background vertical field; as the field strength increases, the stress amplitude increases. For a net vertical field strength (quantified by β0, the ratio of gas to magnetic pressure at the disk mid-plane) of β0 = 104 and β0 = 105, we find accretion rates M-dot ∼10-8-10–7 M☉ yr–1. These accretion rates agree with observational constraints, suggesting a vertical magnetic field strength of ∼60-200 μG and 10-30 μG at 30 AU and 100 AU, respectively, in a MMSN disk. Furthermore, the stress has a non-negligible component due to a magnetic wind. For sufficiently strong vertical field strengths, MRI turbulence is quenched, and the flow becomes largely laminar, with accretion proceeding through large-scale correlations in the radial and toroidal field components as well as through the magnetic wind. In all simulations, the presence of a low-ionization region near the disk mid-plane, which we call the ambipolar damping zone, results in reduced stresses there

  14. Plasma turbulence

    International Nuclear Information System (INIS)

    This paper presents an overview of the progress made in understanding plasma turbulence. It has relied heavily on numerical simulations to gain some intuition on the physical processes underlying nonlinear interaction and as a cross check for quantitative estimates derived from weak turbulence theory or DIA-based strong turbulence theory. The mathematical description of plasmas, especially those confined in a magnetic bottle, is far more complex than the Navier-Stokes fluid. Yet because of the dispersion of the plasma eigenmodes, the DIA perhaps has greater validity in a plasma than in a Navier-Stokes fluid. Recent developments in dynamical-systems theory have not yet been implemented in plasma turbulence at the level discussed in other studies for boundary-layer turbulence. This technique has promise for evaluating the behavior of large eddies, which may dominate plasma transport as a low-order system. In the collisionless, kinetic regime, where turbulence in x, v phase space has to be addressed, the new methods involving noneigenmode entities called clumps and holes, need further evolution to gain complete acceptability. For the future, a combination of analytical tools and numerical methods may afford the optimum route. Some examples of this are revireviewed

  15. CFD simulation of an unbaffled stirred tank reactor driven by a magnetic rod: assessment of turbulence models.

    Science.gov (United States)

    Li, Jiajia; Deng, Baoqing; Zhang, Bing; Shen, Xiuzhong; Kim, Chang Nyung

    2015-01-01

    A simulation of an unbaffled stirred tank reactor driven by a magnetic stirring rod was carried out in a moving reference frame. The free surface of unbaffled stirred tank was captured by Euler-Euler model coupled with the volume of fluid (VOF) method. The re-normalization group (RNG) k-ɛ model, large eddy simulation (LES) model and detached eddy simulation (DES) model were evaluated for simulating the flow field in the stirred tank. All turbulence models can reproduce the tangential velocity in an unbaffled stirred tank with a rotational speed of 150 rpm, 250 rpm and 400 rpm, respectively. Radial velocity is underpredicted by the three models. LES model and RNG k-ɛ model predict the better tangential velocity and axial velocity, respectively. RNG k-ɛ model is recommended for the simulation of the flow in an unbaffled stirred tank with magnetic rod due to its computational effort. PMID:26465300

  16. Turbulent Pumping of Magnetic Flux Reduces Solar Cycle Memory and thus Impacts Predictability of the Sun's Activity

    CERN Document Server

    Karak, Bidya Binay

    2012-01-01

    Prediction of the Sun's magnetic activity is important because of its effect on space environmental conditions and climate. However, recent efforts to predict the amplitude of the solar cycle have resulted in diverging forecasts with no consensus. It is understood that the dynamical memory of the solar dynamo mechanism governs predictability and this memory is different for advection- and diffusion-dominated solar convection zones. By utilizing stochastically forced, kinematic dynamo simulations, we demonstrate that the inclusion of downward turbulent pumping of magnetic flux reduces the memory of both advection- and diffusion-dominated solar dynamos to only one cycle; stronger pumping degrades this memory further. We conclude that reliable predictions for the maximum of solar activity can be made only at the preceding minimum and for more accurate predictions, sequential data assimilation would be necessary in forecasting models to account for the Sun's short memory.

  17. Ultra large mode area fibers with aperiodic cladding structure for high power single mode lasers

    OpenAIRE

    Roy, Philippe; Dauliat, Romain; Benoit, Aurélien; Darwich, Dia; Kobelke, Jens; Schuster, Kay; Grimm, Stephan; Salin, François; Jamier, Raphaël

    2015-01-01

    This communication presents the latest designs, fabrication steps and first results of large mode area fibres with aperiodic cladding structure for high power singlemode emission. Pre-compensation of thermal loading and first laser emission are detailed.

  18. Self-generated magnetic turbulence and the propagation of galactic cosmic rays

    CERN Document Server

    Aloisio, R

    2013-01-01

    Cosmic rays propagating in the Galaxy may excite a streaming instability when their motion is super-alfvenic, thereby producing the conditions for their own diffusion. We present the results of a self-consistent solution of the transport equation where diffusion occurs because of the self-generated turbulence together with a preexisting turbulence injected, for instance, by supernova explosions and cascading to smaller scales. All chemicals are included in our calculations, so that we are able to show the secondary to primary ratios in addition to the spectra of the individual elements. All predictions appear to be in good agreement with observations.

  19. Application of a solar wind model driven by turbulence dissipation to a 2D magnetic field configuration

    International Nuclear Information System (INIS)

    Although it is widely accepted that photospheric motions provide the energy source and that the magnetic field must play a key role in the process, the detailed mechanisms responsible for heating the Sun's corona and accelerating the solar wind are still not fully understood. Cranmer et al. developed a sophisticated, one-dimensional (1D), time-steady model of the solar wind with turbulence dissipation. By varying the coronal magnetic field, they obtain, for a single choice of wave properties, a realistic range of slow and fast wind conditions with a sharp latitudinal transition between the two streams. Using a 1D, time-dependent model of the solar wind of Lionello et al., which incorporates turbulent dissipation of Alfvén waves to provide heating and acceleration of the plasma, we have explored a similar configuration, obtaining qualitatively equivalent results. However, our calculations suggest that the rapid transition between slow and fast wind suggested by this 1D model may be disrupted in multidimensional MHD simulations by the requirement of transverse force balance.

  20. Application of a Solar Wind Model Driven by Turbulence Dissipation to a 2D Magnetic Field Configuration

    CERN Document Server

    Lionello, Roberto; Downs, Cooper; Linker, Jon A; Mikić, Zoran

    2014-01-01

    Although it is widely accepted that photospheric motions provide the energy source and that the magnetic field must play a key role in the process, the detailed mechanisms responsible for heating the Sun's corona and accelerating the solar wind are still not fully understood. Cranmer et al. (2007) developed a sophisticated, 1D, time-steady model of the solar wind with turbulence dissipation. By varying the coronal magnetic field, they obtain, for a single choice of wave properties, a realistic range of slow and fast wind conditions with a sharp latitudinal transition between the two streams. Using a 1D, time-dependent model of the solar wind of Lionello et al. (2014), which incorporates turbulent dissipation of Alfv\\'en waves to provide heating and acceleration of the plasma, we have explored a similar configuration, obtaining qualitatively equivalent results. However, our calculations suggest that the rapid transition between slow and fast wind suggested by this 1D model may be disrupted in multidimensional ...

  1. Aperiodic order, integrated density of states and the continuous algebras of John von Neumann

    OpenAIRE

    Elek, Gabor

    2006-01-01

    Lenz and Stollmann recently proved the existence of the integrated density of states in the sense of uniform convergence of the distributions for certain operators with aperiodic order. The goal of this paper is to establish a relation between aperiodic order, uniform spectral convergence and the continuous algebras invented by John von Neumann. We illustrate the technique by proving the uniform spectral convergence for random Schodinger operators on lattices with finite site probabilities, p...

  2. Characterizing the Aperiodicity of Irreducible Markov Chains by Using P Systems

    OpenAIRE

    Cardona, Mónica; Colomer, M. Angels; Pérez Jiménez, Mario de Jesús

    2009-01-01

    It is well known that any irreducible and aperiodic Markov chain has exactly one stationary distribution, and for any arbitrary initial distribution, the sequence of distributions at time n converges to the stationary distribution, that is, the Markov chain is approaching equilibrium as n ! 1. In this paper, a characterization of the aperiodicity in existential terms of some state is given. At the same time, a P system with external output is associated with any irreducible ...

  3. Sustained Magnetorotational Turbulence in Local Simulations of Stratified Disks with Zero Net Magnetic Flux

    DEFF Research Database (Denmark)

    W. Davis, S.; M. Stone, J.; Pessah, Martin Elias

    2010-01-01

    We examine the effects of density stratification on magnetohydrodynamic turbulence driven by the magnetorotational instability in local simulations that adopt the shearing box approximation. Our primary result is that, even in the absence of explicit dissipation, the addition of vertical gravity...

  4. Dynamo model for the inverse transfer of magnetic energy in a nonhelical decaying magnetohydrodynamic turbulence

    CERN Document Server

    Park, Kiwan

    2015-01-01

    The inverse cascade of magnetic energy occurs when helicity or rotational instability exists in the magnetohydrodynamic (MHD) system. This well known phenomenon provides a basis for the large scale magnetic field in space. However even the decaying nonhelical magnetic energy can evolve to expand its scale. This phenomenon, inverse transfer of decaying nonhelical magnetic field may hold some vital clues to the origin of large scale magnetic field in the astrophysical system without helicity nor any significant driving source. Zeldovich's rope model has been considered as the basic principle with regard to the amplification of magnetic field. However, since the rope model assuming a driving force is not appropriate to the decaying system, we suggest a supplementary dynamo model based on the magnetic induction equation. The model explicitly shows the basic principle of migration and amplification of magnetic field. The expansion of scale and intensity of magnetic field is basically the consequent result of the r...

  5. PERIODIC AND APERIODIC VARIABILITY IN THE MOLECULAR CLOUD ρ OPHIUCHUS

    International Nuclear Information System (INIS)

    Presented are the results of a near-IR photometric survey of 1678 stars in the direction of the ρ Ophiuchus (ρ Oph) star forming region using data from the 2MASS Calibration Database. For each target in this sample, up to 1584 individual J-, H-, and Ks -band photometric measurements with a cadence of ∼1 day are obtained over three observing seasons spanning ∼2.5 yr; it is the most intensive survey of stars in this region to date. This survey identifies 101 variable stars with ΔKs -band amplitudes from 0.044 to 2.31 mag and Δ(J – Ks ) color amplitudes ranging from 0.053 to 1.47 mag. Of the 72 young ρ Oph star cluster members included in this survey, 79% are variable; in addition, 22 variable stars are identified as candidate members. Based on the temporal behavior of the Ks time-series, the variability is distinguished as either periodic, long time-scale or irregular. This temporal behavior coupled with the behavior of stellar colors is used to assign a dominant variability mechanism. A new period-searching algorithm finds periodic signals in 32 variable stars with periods between 0.49 to 92 days. The chief mechanism driving the periodic variability for 18 stars is rotational modulation of cool starspots while 3 periodically vary due to accretion-induced hot spots. The time-series for six variable stars contains discrete periodic ''eclipse-like'' features with periods ranging from 3 to 8 days. These features may be asymmetries in the circumstellar disk, potentially sustained or driven by a proto-planet at or near the co-rotation radius. Aperiodic, long time-scale variations in stellar flux are identified in the time-series for 31 variable stars with time-scales ranging from 64 to 790 days. The chief mechanism driving long time-scale variability is variable extinction or mass accretion rates. The majority of the variable stars (40) exhibit sporadic, aperiodic variability over no discernable time-scale. No chief variability mechanism

  6. Distribution of Magnetic Discontinuities in the Solar Wind and in MHD Turbulence

    OpenAIRE

    Zhdankin, Vladimir; Boldyrev, Stanislav; Mason, Joanne

    2012-01-01

    The statistical properties of magnetic discontinuities in the solar wind are investigated by measuring fluctuations in the magnetic field direction, given by the rotation Delta theta that the magnetic field vector undergoes during time interval Delta t. We show that the probability density function for rotations, P(Delta theta), can be described by a simple model in which the magnetic field vector rotates with a relative increment (Delta B)/B that is lognormally distributed. We find that the ...

  7. Aperiodic dynamical decoupling sequences in presence of pulse errors

    CERN Document Server

    Wang, Zhi-Hui

    2011-01-01

    Dynamical decoupling (DD) is a promising tool for preserving the quantum states of qubits. However, small imperfections in the control pulses can seriously affect the fidelity of decoupling, and qualitatively change the evolution of the controlled system at long times. Using both analytical and numerical tools, we theoretically investigate the effect of the pulse errors accumulation for two aperiodic DD sequences, the Uhrig's DD UDD) protocol [G. S. Uhrig, Phys. Rev. Lett. {\\bf 98}, 100504 (2007)], and the Quadratic DD (QDD) protocol [J. R. West, B. H. Fong and D. A. Lidar, Phys. Rev. Lett {\\bf 104}, 130501 (2010)]. We consider the implementation of these sequences using the electron spins of phosphorus donors in silicon, where DD sequences are applied to suppress dephasing of the donor spins. The dependence of the decoupling fidelity on different initial states of the spins is the focus of our study. We investigate in detail the initial drop in the DD fidelity, and its long-term saturation. We also demonstra...

  8. Scaling laws of turbulent dynamos

    OpenAIRE

    Fauve, Stephan; Petrelis, Francois

    2007-01-01

    We consider magnetic fields generated by homogeneous isotropic and parity invariant turbulent flows. We show that simple scaling laws for dynamo threshold, magnetic energy and Ohmic dissipation can be obtained depending on the value of the magnetic Prandtl number.

  9. Is the magnetic field in the heliosheath laminar or a turbulent bath of bubbles?

    CERN Document Server

    Opher, M; Swisdak, M; Schoeffler, K M; Richardson, J D; Decker, R B; Toth, G

    2011-01-01

    All the current global models of the heliosphere are based on the assumption that the magnetic field in the heliosheath, in the region close to the heliopause is laminar. We argue that in that region the heliospheric magnetic field is not laminar but instead consists of magnetic bubbles. Recently, we proposed that the annihilation of the "sectored" magnetic field within the heliosheath as it is compressed on its approach to the heliopause produces the anomalous cosmic rays and also energetic electrons. As a product of the annihilation of the sectored magnetic field, densely-packed magnetic islands/bubbles are produced. These magnetic islands/bubbles will be convected with the ambient flows as the sector region is carried to higher latitudes filling the heliosheath. We further argue that the magnetic islands/bubbles will develop upstream within the heliosheath. As a result, the magnetic field in the heliosheath sector region will be disordered well upstream of the heliopause. We present a 3D MHD simulation wit...

  10. Gyrokinetic simulations of 2D magnetic reconnection turbulence in guide fields

    Science.gov (United States)

    Terry, P. W.; Pueschel, M. J.; Jenko, F.; Zweibel, E.; Zhdankin, V.; Told, D.

    2012-10-01

    Following the analyses in [M.J. Pueschel et al., Phys. Plasmas 18, 112102 (2011)], a study of turbulence in driven reconnection is commenced, with a sinusoidal current sheet providing the drive through a Krook-type operator in a bi-periodic box. Simulations with the Gene code cover all relevant physical parameters, allowing for encompassing comparisons with expectations from linear simulations. A central observed feature are coherent circular current structures which may be identified as plasmoids. These objects move randomly in the plane perpendicular to the guide field, and may either disappear again after some time or instead merge with one another---the setup can thus be described as turbulence driven by reconnection, but simultaneously creating its own reconnection. Such merger events are associated with large bursts in the heating rate jE, and display strong non-Maxwellian components of the distribution function in parallel velocity space. The plasmoid energetics are studied, as are their ability to produce populations of fast particles. Statistics of such populations are used to facilitate direct comparisons with astrophysical scenarios of energetic particle production.

  11. Effects of Turbulent Magnetic Fields on the Transport and Acceleration of Energetic Charged Particles: Numerical Simulations with Application to Heliospheric Physics

    CERN Document Server

    Guo, Fan

    2012-01-01

    After introduction we focus on: the transport of charged particles, the acceleration of ions at shocks, and the acceleration of electrons at shocks. Chapter 2 studies the propagation of solar energetic particles(SEPs) in turbulent magnetic fields. Particle trajectories in turbulent magnetic fields are numerically integrated. The turbulence includes a Kolmogorov-like power spectrum containing a broad range of scales. Small-scale variations in particle intensities(dropouts) and velocity dispersions can be reproduced. The result gives a constraint on the error of onset analysis for inferring SEP informations. We find that dropouts are rarely produced using the two-component model(Matthaeus et al., 1990). The result questions the turbulence model. Chapter 3 studies the acceleration of ions. We use 3-D hybrid simulations to study the acceleration of low-energy particles at parallel shocks. We find that particles gain energy by reflection at the shock. The protons can move off field lines in 3-D electric and magnet...

  12. Cluster and ACE observations of phase synchronization in intermittent magnetic field turbulence: a comparative study of shocked and unshocked solar wind

    International Nuclear Information System (INIS)

    We apply two distinct nonlinear techniques, kurtosis and phase coherence index, to analyze the modulus of interplanetary magnetic field data vertical stroke B vertical stroke measured by Cluster and ACE spacecraft from 1 to 3 February 2002. High degree of phase synchronization is found across a wide range of time scales, from 1 s to 104 s, in the magnetic field fluctuations, both in the shocked solar wind upstream of Earth's bow shock and in the unshocked ambient solar wind at the L1 Lagrangian point. This is the first direct measurement of phase coherence in the ambient solar wind turbulence. We show that phase synchronization related to nonlinear multiscale interactions is the origin of the departure from Gaussianity in the intermittent magnetic field turbulence. In particular, we demonstrate that at small scales near the spectral break the intermittency level of Cluster is lower than ACE, which may be a signature of the reflected ions from the shock. (orig.)

  13. Deterministic aperiodic composite lattice-structured silicon thin films for photon management

    CERN Document Server

    Xavier, Jolly; Becker, Christiane

    2016-01-01

    Exotic manipulation of the flow of photons in nanoengineered semiconductor materials with an aperiodic distribution of nanostructures plays a key role in efficiency-enhanced and industrially viable broadband photonic technologies. Through a generic deterministic nanotechnological route, in addition to periodic, transversely quasicrystallographic or disordered random photonic lattices, here we show scalable nanostructured semiconductor thin films on large area nanoimprinted substrates up to 4cm^2 with advanced functional features of aperiodic composite nanophotonic lattices having tailorable supercell tiles. The richer Fourier spectra of the presented artificially nanostructured materials with well-defined lattice point morphologies are designed functionally akin to two-dimensional incommensurate intergrowth aperiodic lattices-comprising periodic photonic crystals and in-plane quasicrystals as subgroups. The composite photonic lattice-structured crystalline silicon thin films with tapered nanoholes or nanocone...

  14. Structural color of a lycaenid butterfly: analysis of an aperiodic multilayer structure

    International Nuclear Information System (INIS)

    We investigated the structural color of the green wing of the lycaenid butterfly Chrysozephyrus brillantinus. Electron microscopy revealed that the bottom plate of the cover scale on the wing consists of an alternating air–cuticle multilayer structure. However, the thicknesses of the layers were not constant but greatly differed depending on the layer, unlike the periodic multilayer designs often adopted for artificial laser-reflecting mirrors. The agreement between the experimentally determined and theoretically calculated reflectance spectra led us to conclude that the multilayer interference in the aperiodic system is the primary origin of the structural color. We analyzed optical interference in this aperiodic system using a simple analytical model and found that two spectral peaks arise from constructive interference among different parts of the multilayer structure. We discuss the advantages and disadvantages of the aperiodic system over a periodic one. (paper)

  15. Mixed acoustic phonons and phase modes in an aperiodic composite crystal.

    Science.gov (United States)

    Toudic, B; Lefort, R; Ecolivet, C; Guérin, L; Currat, R; Bourges, P; Breczewski, T

    2011-11-11

    Aperiodic crystals which are long range ordered materials present original dynamics features due to the lack of translational symmetry formally implying the nonvalidity of the Brillouin zone concept. This Letter reports the observation by neutron scattering of an overdamped acousticlike mode at a Bragg peak position in a n-alkane-urea inclusion crystal. This result implies the existence of a gap in the dispersion branch. The gap and anomalous damping of these collective modes are discussed in terms of specific dynamics and interaction in aperiodic materials. PMID:22181743

  16. An aperiodic phenomenon of the unscented Kalman filter in filtering noisy chaotic signals

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A non-periodic oscillatory behavior of the unscented Kalman filter (UKF) when used to filter noisy contaminated chaotic signals is reported. We show both theoretically and experimentally that the gain of the UKF may not converge or diverge but oscillate aperiodically. More precisely, when a nonlinear system is periodic, the Kalman gain and error covariance of the UKF converge to zero. However, when the system being considered is chaotic, the Kalman gain either converges to a fixed point with a magnitude larger than zero or oscillates aperiodically.

  17. Excitation of Bloch-like surface waves in quasi-crystals and aperiodic dielectric multilayers.

    Science.gov (United States)

    Koju, Vijay; Robertson, William M

    2016-07-01

    The existence of Bloch surface waves in periodic dielectric multilayer structures with a surface defect is well known. Not yet recognized is that quasi-crystals and aperiodic dielectric multilayers can also support Bloch-like surface waves. In this work, we numerically show the excitation of Bloch-like surface waves in Fibonacci quasi-crystals and Thue-Morse aperiodic dielectric multilayers using the prism coupling method. We report improved surface electric field intensity and penetration depth of Bloch-like surface waves in the air side in such structures compared to their periodic counterparts. PMID:27367064

  18. Extended field-of-view in a lensless endoscope using an aperiodic multicore fiber

    CERN Document Server

    Sivankutty, Siddharth; Bouwmans, Géraud; Kogan, Dani; Oron, Dan; Andresen, Esben Ravn; Rigneault, Hervé

    2016-01-01

    We investigate lensless endoscopy using coherent beam combining and aperiodic multicore fibers (MCF). We show that diffracted orders, inherent to MCF with periodically arranged cores, dramatically reduce the field of view (FoV) and that randomness in MCF core positions can increase the FoV up to the diffraction limit set by a single fiber core, while maintaining MCF experimental feasibility. We demonstrate experimentally pixelation-free lensless endoscopy imaging over a 120 micron FoV with an aperiodic MCF designed with widely spaced cores. We show that this system is suitable to perform beam scanning imaging by simply applying a tilt to the proximal wavefront.

  19. Optimized aperiodic broadband thermal emitters for use as light bulb filaments

    CERN Document Server

    Granier, Christopher H; Veronis, Georgios; Dowling, Jonathan P

    2016-01-01

    We present optimized aperiodic structures for use as broadband thermal incandescent emitters which are capable of increasing the emittance by nearly a factor of two over the visible wavelength range when compared to bulk tungsten. These aperiodic multilayer structures are designed with alternating layers of tungsten and air or tungsten and silicon carbide on top of a tungsten substrate. We investigate the properties of these structures for use as lightbulb filaments. We find that these structures greatly enhance the emittance over the visible wavelength range, while also increasing the overall efficiency of the bulb and could lead to a decrease in incandescent lightbulb power consumption by nearly 50%.

  20. The Heliospheric Magnetic Field

    Science.gov (United States)

    Balogh, André; Erdõs, Géza

    2013-06-01

    The Heliospheric Magnetic Field (HMF) is the physical framework in which energetic particles and cosmic rays propagate. Changes in the large scale structure of the magnetic field lead to short- and long term changes in cosmic ray intensities, in particular in anti-phase with solar activity. The origin of the HMF in the corona is well understood and inner heliospheric observations can generally be linked to their coronal sources. The structure of heliospheric magnetic polarities and the heliospheric current sheet separating the dominant solar polarities are reviewed here over longer than a solar cycle, using the three dimensional heliospheric observations by Ulysses. The dynamics of the HMF around solar minimum activity is reviewed and the development of stream interaction regions following the stable flow patterns of fast and slow solar wind in the inner heliosphere is described. The complex dynamics that affects the evolution of the stream interaction regions leads to a more chaotic structure of the HMF in the outer heliosphere is described and discussed on the basis of the Voyager observations. Around solar maximum, solar activity is dominated by frequent transients, resulting in the interplanetary counterparts of Coronal Mass Ejections (ICMEs). These produce a complex aperiodic pattern of structures in the inner heliosphere, at all heliolatitudes. These structures continue to interact and evolve as they travel to the outer heliosphere. However, linking the observations in the inner and outer heliospheres is possible in the case of the largest solar transients that, despite their evolutions, remain recognizably large structures and lead to the formation of Merged Interaction Regions (MIRs) that may well form a quasi-spherical, "global" shell of enhanced magnetic fields around the Sun at large distances. For the transport of energetic particles and cosmic rays, the fluctuations in the magnetic field and their description in alternative turbulent models remains a

  1. Length Scales and Turbulent Properties of Magnetic Fields in Simulated Galaxy Clusters

    CERN Document Server

    Egan, Hilary; Hallman, Eric; Burns, Jack; Xu, Hao; Collins, David; Li, Hui; Norman, Michael L

    2016-01-01

    Additional physics beyond standard hydrodynamics is needed to fully model the intracluster medium (ICM); however, as we move to more sophisticated models, it is important to consider the role of magnetic fields and the way the fluid approximation breaks down. This paper represents a first step towards developing a self-consistent model of the ICM by characterizing the statistical properties of magnetic fields in cosmological simulations of galaxy clusters. We find that plasma conditions are largely homogeneous across a range of cluster masses and relaxation states. We also find that the magnetic field length scales are resolution dependent and not based on any particular physical process. Energy transfer mechanisms and scales are also identified, and imply the existence of small scale dynamo action. The scales of the small scale dynamo are resolution limited and driven by numerical resistivity and viscosity.

  2. Suppression of local heat flux in a turbulent magnetized intracluster medium

    CERN Document Server

    Komarov, S; Schekochihin, A

    2013-01-01

    X-ray observations of hot gas in galaxy clusters often show steeper temperature gradients across cold fronts -- contact discontinuities, driven by the differential gas motions. These sharp (few kpc wide) surface brightness/temperature discontinuities would be quickly smeared out by the electron thermal conduction in unmagnetized plasma, suggesting significant suppression of the heat flow across the discontinuities. In fact, the character of the gas flow near cold fronts is favorable for suppression of conduction by aligning magnetic field lines along the discontinuities. We argue that a similar mechanism is operating in the bulk of the gas. Generic 3D random isotropic and incompressible motions increase the temperature gradients (in some places) and at the same time suppress the conduction by aligning the magnetic field lines perpendicular to the temperature gradient. We show that the suppression of the effective conductivity in the bulk of the gas can be linked to the increase of the frozen magnetic field en...

  3. Experimental validation of a filament transport model in turbulent magnetized plasmas

    CERN Document Server

    Carralero, D; Aho-Mantila, L; Birkenmeier, G; Brix, M; Groth, M; Müller, H W; Stroth, U; Vianello, N; Wolfrum, E; Contributors, JET

    2015-01-01

    In a wide variety of natural and laboratory magnetized plasmas, filaments appear as a result of interchange instability. These convective structures substantially enhance transport in the direction perpendicular to the magnetic field. According to filament models, their propagation may follow different regimes depending on the parallel closure of charge conservation. This is of paramount importance in magnetic fusion plasmas, as high collisionality in the scrape-off layer may trigger a regime transition leading to strongly enhanced perpendicular particle fluxes. This work reports for the first time on an experimental verification of this process, linking enhanced transport with a regime transition as predicted by models. Based on these results, a novel scaling for global perpendicular particle transport in reactor relevant tokamaks such as ASDEX-Upgrade and JET is found, leading to important implications for next generation fusion devices.

  4. Experimental Validation of a Filament Transport Model in Turbulent Magnetized Plasmas.

    Science.gov (United States)

    Carralero, D; Manz, P; Aho-Mantila, L; Birkenmeier, G; Brix, M; Groth, M; Müller, H W; Stroth, U; Vianello, N; Wolfrum, E

    2015-11-20

    In a wide variety of natural and laboratory magnetized plasmas, filaments appear as a result of interchange instability. These convective structures substantially enhance transport in the direction perpendicular to the magnetic field. According to filament models, their propagation may follow different regimes depending on the parallel closure of charge conservation. This is of paramount importance in magnetic fusion plasmas, as high collisionality in the scrape-off layer may trigger a regime transition leading to strongly enhanced perpendicular particle fluxes. This work reports for the first time on an experimental verification of this process, linking enhanced transport with a regime transition as predicted by models. Based on these results, a novel scaling for global perpendicular particle transport in reactor relevant tokamaks such as ASDEX-Upgrade and JET is found, leading to important implications for next generation fusion devices. PMID:26636855

  5. Ulysses observations of magnetic waves due to newborn interstellar pickup ions. II. Application of turbulence concepts to limiting wave energy and observability

    International Nuclear Information System (INIS)

    The low-frequency magnetic waves that arise from the isotropization of newborn interstellar pickup ions (PUIs) are reasonably well described by linear and quasi-linear kinetic theory in so far as those theories predict the wave frequency and polarization in the spacecraft frame. Those theories fail to describe the scarce observability of the waves. Quasilinear theory predicts that the wave power should accumulate over long periods of time as the relatively weak kinetic instability slowly adds power to the observed spectrum. At the same time it has been argued that the same wave energy must serve as a secondary source of thermal ion heating in the outer heliosphere once the initial turbulence is depleted. To the extent that turbulent transport of the wave energy acts against the spectrally confined accumulation of wave energy, turbulence should be a limiting factor in observability. We argue that turbulence does limit the observability of the waves and we use turbulence theory to predict the observed wave energy. We compare this prediction against a database of 502 wave observations attributed to newborn interstellar PUIs observed by the Ulysses spacecraft.

  6. Ulysses observations of magnetic waves due to newborn interstellar pickup ions. II. Application of turbulence concepts to limiting wave energy and observability

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, Bradford E. [Physics Department, Florida State University, Tallahassee, FL 32306 (United States); Smith, Charles W.; Isenberg, Philip A.; Vasquez, Bernard J.; Joyce, Colin J. [Physics Department and Space Science Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824 (United States); Murphy, Neil [Jet Propulsion Laboratory, Mail Stop 180-600, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Nuno, Raquel G., E-mail: bc13h@my.fsu.edu, E-mail: Charles.Smith@unh.edu, E-mail: Phil.Isenberg@unh.edu, E-mail: Bernie.Vasquez@unh.edu, E-mail: cjl46@wildcats.unh.edu, E-mail: Neil.Murphy@jpl.nasa.gov, E-mail: raquel.nuno@asu.edu [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States)

    2014-06-01

    The low-frequency magnetic waves that arise from the isotropization of newborn interstellar pickup ions (PUIs) are reasonably well described by linear and quasi-linear kinetic theory in so far as those theories predict the wave frequency and polarization in the spacecraft frame. Those theories fail to describe the scarce observability of the waves. Quasilinear theory predicts that the wave power should accumulate over long periods of time as the relatively weak kinetic instability slowly adds power to the observed spectrum. At the same time it has been argued that the same wave energy must serve as a secondary source of thermal ion heating in the outer heliosphere once the initial turbulence is depleted. To the extent that turbulent transport of the wave energy acts against the spectrally confined accumulation of wave energy, turbulence should be a limiting factor in observability. We argue that turbulence does limit the observability of the waves and we use turbulence theory to predict the observed wave energy. We compare this prediction against a database of 502 wave observations attributed to newborn interstellar PUIs observed by the Ulysses spacecraft.

  7. Eddy viscosity and turbulent Schmidt number by kink-type instability of strong toroidal magnetic fields

    CERN Document Server

    Rüdiger, G; Schultz, M

    2009-01-01

    The potential of the nonaxisymmetric magnetic instability to transport angular momentum and to mix chemicals is probed considering the stability of a nearly uniform toroidal field between conducting cylinders with different rotation rates. The fluid between the cylinders is assumed as incompressible and to be of uniform density. With a linear theory the neutral-stability maps for m=1 are computed. Rigid rotation must be subAlfvenic to allow instability while for differential rotation with negative shear also an unstable domain with superAlfvenic rotation exists. The rotational quenching of the magnetic instability is strongest for magnetic Prandtl number Pm=1 and becomes much weaker for Pm unequal 1. The effective angular momentum transport by the instability is directed outwards(inwards) for subrotation(superrotation). The resulting magnetic-induced eddy viscosities exceed the microscopic values by factors of 10-100. This is only true for superAlfvenic flows; in the strong-field limit the values remain much ...

  8. A DIRECT APPROACH FOR DETERMINING THE PERPENDICULAR MEAN FREE PATH OF SOLAR ENERGETIC PARTICLES IN A TURBULENT AND SPATIALLY VARYING MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    He, H.-Q.; Wan, W., E-mail: hqhe@mail.iggcas.ac.cn, E-mail: wanw@mail.iggcas.ac.cn [Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 (China)

    2012-12-15

    A direct approach for explicitly determining the perpendicular mean free path of solar energetic particles (SEPs) influenced by parallel diffusion and composite dynamical turbulence in a spatially varying magnetic field is presented. As theoretical applications of the direct approach, we investigate the inherent relations between the perpendicular mean free path and various parameters concerning physical properties of SEPs as well as those of interplanetary conditions such as the solar wind and the turbulent magnetic field. Comparisons of the perpendicular mean free paths with and without adiabatic focusing are also presented. The direct method shows encouraging agreement with spacecraft observations, suggesting it is a reliable and useful tool for use in theoretical investigations and space weather forecasting.

  9. Particle Acceleration at a Flare Termination Shock: Effect of Large-scale Magnetic Turbulence

    CERN Document Server

    Guo, Fan

    2012-01-01

    We investigate the acceleration of charged particles (both electrons and protons) at collisionless shocks predicted to exist in the vicinity of solar flares. The existence of standing termination shocks has been examined by flare models and numerical simulations e.g., Shibata,Forbes. We study electron energization by numerically integrating the equations of motion of a large number of test-particle electrons in the time-dependent two-dimensional electric and magnetic fields generated from hybrid simulations (kinetic ions and fluid electron) using parameters typical of the solar flare plasma environment. The shock is produced by injecting plasma flow toward a rigid piston. Large-scale magnetic fluctuations -- known to exist in plasmas and known to have important effects on the nonthermal electron acceleration at shocks -- are also included in our simulations. For the parameters characteristic of the flaring region, our calculations suggest that the termination shock formed in the reconnection outflow region (a...

  10. Turbulent convection in a horizontal duct with strong axial magnetic field

    Science.gov (United States)

    Zhang, Xuan; Zikanov, Oleg

    2014-11-01

    Convection in a horizontal duct with one heated wall is studied computationally. The work is motivated by the concept of a blanket for fusion reactors, according to which liquid metal slowly flows in toroidal ducts aligned with the main component of the magnetic field. We first assume that the magnetic field is sufficiently strong for the flow to be purely two-dimensional and analyze chaotic flow regimes at very high Grashof numbers. Furthermore, three-dimensional perturbations are considered and the relation between the length of the duct and the critical Hartmann number, below which the flow becomes three-dimensional, is determined. Financial support was provided by the US NSF (Grant CBET 1232851).

  11. Suppression of local heat flux in a turbulent magnetized intracluster medium

    Science.gov (United States)

    Komarov, S. V.; Churazov, E. M.; Schekochihin, A. A.; ZuHone, J. A.

    2014-05-01

    X-ray observations of hot gas in galaxy clusters often show steeper temperature gradients across cold fronts - contact discontinuities, driven by the differential gas motions. These sharp (a few kpc wide) surface brightness/temperature discontinuities would be quickly smeared out by the electron thermal conduction in unmagnetized plasma, suggesting significant suppression of the heat flow across the discontinuities. In fact, the character of the gas flow near cold fronts is favourable for suppression of conduction by aligning magnetic field lines along the discontinuities. We argue that a similar mechanism is operating in the bulk of the gas. Generic 3D random isotropic and incompressible motions increase the temperature gradients (in some places) and at the same time suppress the local conduction by aligning the magnetic field lines perpendicular to the local temperature gradient. We show that the suppression of the effective conductivity in the bulk of the gas can be linked to the increase of the frozen magnetic field energy density. On average the rate of decay of the temperature fluctuations d/dt decreases as -1/5.

  12. A Wavelet Time Series Analysis of Aperiodic Variable Stars in the Kepler Field

    Science.gov (United States)

    Arnold, Timothy; Mighell, K.; Howell, S.

    2009-12-01

    The variable sky offers insights into the physical mechanisms of astronomical objects and can be used as a useful tool for many other purposes like the determination of distance with standard candles. Periodic variables were the first to be classified, understood, and used. Many variable but aperiodic light curves are discarded or insufficiently analyzed because of the apparent uselessness of the information contained in these data. Many contemporary projects (e.g. the Large Synoptic Survey Telescope, PanSTARRS, the Kepler mission) aim to map the transient sky, and recently methods of time series analysis have become increasingly advanced. It would be advantageous to discover identifying information in the large number of variable but ostensibly aperiodic light curves. We use a wavelet analysis, based on a weighted projection of time series data on to basis functions, to analyze aperiodic variable stars in the Burrell-Optical-Kepler Survey (BOKS). Using the Weighted Wavelet Z-Transform detailed in Foster 1996, we find that variable but aperiodic stars in our sample offer few characteristic properties that would be useful for further classification. Arnold's research was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program and the Department of Defense ASSURE program through Scientific Program Order No. 3 (AST-0243875) of the Cooperative Agreement No. AST-0132798 between the Association of Universities for Research in Astronomy (AURA) and the NSF.

  13. Scalar hydrodynamic problem with concentrated masses aperiodically located on the surface

    International Nuclear Information System (INIS)

    Low-frequency oscillations of a heavy viscous incompressible fluid in a vessel with aperiodically perforated cover have been considered for the case of where the density of the fluid in the vicinity of the cover is inhomogeneous. The homogenization theorem has been proved for the resulting quadratic operator

  14. Dynamo efficiency with shear in helical turbulence .

    OpenAIRE

    Leprovost, Nicolas; Kim, Eun-Jin

    2009-01-01

    To elucidate the influence of shear flow on the generation of magnetic fields through the modification of turbulence property, we consider the case where a large-scale magnetic field is parallel to a large-scale shear flow without direct interaction between the two in the kinematic limit where the magnetic field does not backreact on the velocity. By nonperturbatively incorporating the effect of shear in a helically forced turbulence, we show that turbulence intensity and turbulent transport ...

  15. Transport and turbulence in a magnetized plasma (application to tokamak plasmas); Transport et turbulence dans un plasma magnetise (application aux plasmas de tokamaks)

    Energy Technology Data Exchange (ETDEWEB)

    Sarazin, Y

    2004-03-01

    This document gathers the lectures made in the framework of a Ph.D level physics class dedicated to plasma physics. This course is made up of 3 parts : 1) collisions and transport, 2) transport and turbulence, and 3) study of a few exchange instabilities. More precisely the first part deals with the following issues: thermonuclear fusion, Coulomb collisions, particles trajectories in a tokamak, neo-classical transport in tokamaks, the bootstrap current, and ware pinch. The second part involves: particle transport in tokamaks, quasi-linear transport, resonance islands, resonance in tokamaks, from quasi to non-linear transport, and non-linear saturation of turbulence. The third part deals with: shift velocities in fluid theory, a model for inter-change instabilities, Rayleigh-Benard instability, Hasegawa-Wakatani model, and Hasegawa-Mima model. This document ends with a series of appendices dealing with: particle-wave interaction, determination of the curvature parameter G, Rossby waves.

  16. Global simulations of magnetorotational turbulence II: turbulent energetics

    CERN Document Server

    Parkin, E R

    2013-01-01

    Magnetorotational turbulence draws its energy from gravity and ultimately releases it via dissipation. However, the quantitative details of this energy flow have not been assessed for global disk models. In this work we examine the energetics of a well-resolved, three-dimensional, global magnetohydrodynamic accretion disk simulation by evaluating statistically-averaged mean-field equations for magnetic, kinetic, and internal energy using simulation data. The results reveal that turbulent magnetic (kinetic) energy is primarily injected by the correlation between Maxwell (Reynolds) stresses and shear in the (almost Keplerian) mean flow, and removed by dissipation. This finding differs from previous work using local (shearing-box) models, which indicated that turbulent kinetic energy was primarily sourced from the magnetic energy reservoir. Lorentz forces provide the bridge between the magnetic and kinetic energy reservoirs, converting ~ 1/5 of the total turbulent magnetic power input into turbulent kinetic ener...

  17. Microphysical dissipation, turbulence and magnetic fields in hyper-accreting discs

    CERN Document Server

    Rossi, Elena M; Menou, Kristen

    2008-01-01

    Hyper-accreting discs occur in compact-object mergers and collapsars, and may power gamma-ray bursts (GRBs). We calculate the microscopic viscosity and resistivity of plasma in these discs, and discuss the implications for their global structure and evolution. In the neutrino-cooled innermost regions, the viscosity is provided mainly by mildly degenerate electrons, while the resistivity is modified from the Spitzer value due to the effects of both relativity and degeneracy. The plasma behaves as an almost ideal MHD fluid. Among the non-ideal MHD effects the Hall term is relatively the most important, while the magnetic Prandtl number, Pr (the ratio of viscosity to resistivity), is typically larger than unity: 10 < Pr < 6000. The outer radiatively inefficient regions also display high Pr. Numerical simulations of the magneto-rotational instability indicate that the saturation level and angular momentum transport efficiency may be greatly enhanced at high Pr. If this behaviour persists in the presence of ...

  18. Stirring turbulence with turbulence

    Science.gov (United States)

    Cekli, Hakki Ergun; Joosten, René; van de Water, Willem

    2015-12-01

    We stir wind-tunnel turbulence with an active grid that consists of rods with attached vanes. The time-varying angle of these rods is controlled by random numbers. We study the response of turbulence on the statistical properties of these random numbers. The random numbers are generated by the Gledzer-Ohkitani-Yamada shell model, which is a simple dynamical model of turbulence that produces a velocity field displaying inertial-range scaling behavior. The range of scales can be adjusted by selection of shells. We find that the largest energy input and the smallest anisotropy are reached when the time scale of the random numbers matches that of the largest eddies of the wind-tunnel turbulence. A large mismatch of these times creates a highly intermittent random flow with interesting but quite anomalous statistics.

  19. Accretion of Chondrules formed by Impact Jetting in Magnetically Induced Turbulent Solar Nebula

    CERN Document Server

    Hasegawa, Yasuhiro; Masiero, Joseph; Wakita, Shigeru; Matsumoto, Yuji; Oshino, Shoichi

    2016-01-01

    Chondritic meteorites provide valuable opportunities to investigate origins of the solar system. We explore impact jetting as a mechanism to form chondrules and subsequent pebble accretion as a mechanism to accrete them onto parent bodies of chondrites, and investigate how these two processes can account for the currently available meteoritic data. We find that when the solar nebula is $\\le 5$ times more massive than the minimum-mass solar nebula at $a \\simeq 2-3$ AU and parent bodies of chondrites are $\\le 10^{24}$ g ($\\le$ 500 km in radius) there, impact jetting and subsequent pebble accretion can reproduce a number of properties of the meteoritic data. The properties include the present asteroid belt mass, formation timescale of chondrules, and the magnetic field strength of the nebula derived from chondrules in Semarkona. Since this scenario requires a first generation of planetesimals that trigger impact jetting and serve as parent bodies to accrete chondrules, the upper limit of parent bodies' mass lead...

  20. Transition to turbulence in ferrofluids

    CERN Document Server

    Altmeyer, Sebastian; Lai, Ying-Cheng

    2015-01-01

    It is known that in classical fluids turbulence typically occurs at high Reynolds numbers. But can turbulence occur at low Reynolds numbers? Here we investigate the transition to turbulence in the classic Taylor-Couette system in which the rotating fluids are manufactured ferrofluids with magnetized nanoparticles embedded in liquid carriers. We find that, in the presence of a magnetic field turbulence can occur at Reynolds numbers that are at least one order of magnitude smaller than those in conventional fluids. This is established by extensive computational ferrohydrodynamics through a detailed bifurcation analysis and characterization of behaviors of physical quantities such as the energy, the wave number, and the angular momentum through the bifurcations. A striking finding is that, as the magnetic field is increased, the onset of turbulence can be determined accurately and reliably. Our results imply that experimental investigation of turbulence can be greatly facilitated by using ferrofluids, opening up...

  1. Suppression of turbulent resistivity in turbulent Couette flow

    Energy Technology Data Exchange (ETDEWEB)

    Si, Jiahe, E-mail: jsi@nmt.edu; Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe [New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801 (United States); Colgate, Stirling A.; Li, Hui [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Nornberg, Mark D. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2015-07-15

    Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.

  2. Demonstration of a homogeneous Yb-doped core fully aperiodic large-pitch fiber laser.

    Science.gov (United States)

    Dauliat, Romain; Benoît, Aurélien; Darwich, Dia; Jamier, Raphaël; Kobelke, Jens; Grimm, Stephan; Schuster, Kay; Roy, Philippe

    2016-08-10

    The first demonstration of a 40 μm core homogeneously ytterbium-doped fully aperiodic large-pitch fiber laser, to the best of our knowledge, is reported here. In this concept, the amplification of unwanted high-order modes is prevented by means of an aperiodic inner-cladding structure, while the core and inner-cladding material has a higher refractive index than pure silica. In a laser configuration, up to 252 W of extracted power, together with an optical-to-optical efficiency of 63% with respect to the incident pump power, have been achieved. While an average M2 of 1.4 was measured, the emitted power becomes temporally unstable when exceeding 95 W, owing to the occurrence of modal instabilities. PMID:27534463

  3. Aperiodic signals processing via parameter-tuning stochastic resonance in a photorefractive ring cavity

    Directory of Open Access Journals (Sweden)

    Xuefeng Li

    2014-04-01

    Full Text Available Based on solving numerically the generalized nonlinear Langevin equation describing the nonlinear dynamics of stochastic resonance by Fourth-order Runge-Kutta method, an aperiodic stochastic resonance based on an optical bistable system is numerically investigated. The numerical results show that a parameter-tuning stochastic resonance system can be realized by choosing the appropriate optical bistable parameters, which performs well in reconstructing aperiodic signals from a very high level of noise background. The influences of optical bistable parameters on the stochastic resonance effect are numerically analyzed via cross-correlation, and a maximum cross-correlation gain of 8 is obtained by optimizing optical bistable parameters. This provides a prospective method for reconstructing noise-hidden weak signals in all-optical signal processing systems.

  4. The Effect of Magnetic Turbulence Energy Spectra and Pickup Ions on the Heating of the Solar Wind

    OpenAIRE

    Ng, C. S.; A Bhattacharjee; Isenberg, P. A.; Munsi, D.; Smith, C W

    2011-01-01

    In recent years, a phenomenological solar wind heating model based on a turbulent energy cascade prescribed by the Kolmogorov theory has produced reasonably good agreement with observations on proton temperatures out to distances around 70 AU, provided the effect of turbulence generation due to pickup ions is included in the model. In a recent study [Ng et al., J. Geophys. Res., 115, A02101 (2010)], we have incorporated in the heating model the energy cascade rate based on Iroshnikov-Kraichna...

  5. Periodic and aperiodic liquid crystal-polymer composite structures realized via spatial light modulator direct holography.

    Science.gov (United States)

    Infusino, M; De Luca, A; Barna, V; Caputo, R; Umeton, C

    2012-10-01

    In this work we present the first realization and characterization of two-dimensional periodic and aperiodic POLICRYPS (Polymer Liquid Crystal Polymer Slices) structures, obtained by means of a single-beam holographic technique exploiting a high resolution spatial light modulator (SLM). A first investigation shows that the gratings, operating in the Raman Nath regime, exhibit a morphology and a electro-optical behavior that are typical of the POLICRYPS gratings realized by two-beam interference holography. PMID:23188278

  6. Opportunistic condition-based maintenance and aperiodic inspections for a two-unit series system

    OpenAIRE

    Olde Keizer, Minou C.A.; Ruud H. Teunter

    2014-01-01

    Condition-Based Maintenance (CBM) intends to perform maintenance right before a failure occurs by estimating the pending moment of failure based on monitoring a certain condition, such as vibration or temperature. This paper considers a two-unit series system with economic dependencies. The aperiodic inspection moments are optimized simultaneously with the critical levels at which maintenance is performed in order to minimize cost and/or maximize availability. For this purpose, a stochastic m...

  7. On the area of accretion curtains from fast aperiodic time variability of the intermediate polar EX Hya

    CERN Document Server

    Semena, Andrey N; Buckley, David A H; Kotze, Marissa M; Khabibullin, Ildar I; Breytenbach, Hannes; Gulbis, Amanda A S; Coppejans, Rocco; Potter, Stephen B

    2014-01-01

    We present results of a study of the fast timing variability of the magnetic cataclysmic variable (mCV) EX Hya. It was previously shown that one may expect the rapid flux variability of mCVs to be smeared out at timescales shorter than the cooling time of hot plasma in the post shock region of the accretion curtain near the WD surface. Estimates of the cooling time and the mass accretion rate, thus provide us with a tool to measure the density of the post-shock plasma and the cross-sectional area of the accretion funnel at the WD surface. We have probed the high frequencies in the aperiodic noise of one of the brightest mCV EX Hya with the help of optical telescopes, namely SALT and the SAAO 1.9m telescope. We place upper limits on the plasma cooling timescale $\\tau<$0.3 sec, on the fractional area of the accretion curtain footprint $f<1.6\\times10^{-4}$, and a lower limit on the specific mass accretion rate $\\dot{M}/A \\gtrsim $3 g/sec/cm$^{-2}$. We show that measurements of accretion column footprints v...

  8. On the Beam Induced Quasi-instability Transformation of the Damped Aperiodic Mode in the Intergalactic Medium

    Science.gov (United States)

    Kolberg, U.; Schlickeiser, R.; Yoon, P. H.

    2016-02-01

    Highly relativistic electron-positron pair beams considerably affect the spontaneously emitted field fluctuations in the unmagnetized intergalactic medium (IGM). In view of the considered small density ratio of beam and background plasma, a perturbative treatment is employed in order to derive the spectral balance equations for the fluctuating fields from first principles of plasma kinetic theory that are covariantly correct within the limits of special relativity. They self-consistently account for the competing effects of spontaneous and induced emission and absorption in the perturbed thermal plasma. It is found that the presence of the beam transforms the growth rate of the dominating transverse damped aperiodic mode into an effective growth rate that displays positive values in certain spectral regions if beam velocity and wave vector are perpendicular or almost perpendicular to each other. This corresponds to a quasi-instability that induces an amplification of the fluctuations for these wavenumbers. Such an effect can greatly influence the cosmic magnetogenesis as it affects the strengths of the spontaneously emitted magnetic seed fields in the IGM, thereby possibly lowering the required growth time and effectivity of any further amplification mechanism such as an astrophysical dynamo.

  9. On Turbulent Reconnection

    OpenAIRE

    Kim, Eun-Jin; Diamond, P. H.

    2001-01-01

    We examine the dynamics of turbulent reconnection in 2D and 3D reduced MHD by calculating the effective dissipation due to coupling between small-scale fluctuations and large-scale magnetic fields. Sweet-Parker type balance relations are then used to calculate the global reconnection rate. Two approaches are employed -- quasi-linear closure and an eddy-damped fluid model. Results indicate that despite the presence of turbulence, the reconnection rate remains inversely proportional to $\\sqrt{R...

  10. Cluster and ACE observations of phase synchronization in intermittent magnetic field turbulence: a comparative study of shocked and unshocked solar wind

    Directory of Open Access Journals (Sweden)

    A. C.-L. Chian

    2009-04-01

    Full Text Available We apply two distinct nonlinear techniques, kurtosis and phase coherence index, to analyze the modulus of interplanetary magnetic field data |B| measured by Cluster and ACE spacecraft from 1 to 3 February 2002. High degree of phase synchronization is found across a wide range of time scales, from 1 s to 104 s, in the magnetic field fluctuations, both in the shocked solar wind upstream of Earth's bow shock and in the unshocked ambient solar wind at the L1 Lagrangian point. This is the first direct measurement of phase coherence in the ambient solar wind turbulence. We show that phase synchronization related to nonlinear multiscale interactions is the origin of the departure from Gaussianity in the intermittent magnetic field turbulence. In particular, we demonstrate that at small scales near the spectral break the intermittency level of Cluster is lower than ACE, which may be a signature of the reflected ions from the shock.

  11. Laboratory Experiments on Wave Turbulence

    CERN Document Server

    Falcon, Eric

    2010-01-01

    This review paper is devoted to a presentation of recent progress in wave turbulence. I first present the context and state of the art of this field of research both experimentally and theoretically. I then focus on the case of wave turbulence on the surface of a fluid, and I discuss the main results obtained by our group: caracterization of the gravity and capillary wave turbulence regimes, the first observation of intermittency in wave turbulence, the occurrence of strong fluctuations of injected power in the fluid, the observation of a pure capillary wave turbulence in low gravity environment and the observation of magnetic wave turbulence on the surface of a ferrofluid. Finally, open questions in wave turbulence are discussed.

  12. A proposed paradigm for solar cycle dynamics mediated via turbulent pumping of magnetic flux in Babcock-Leighton type solar dynamos

    CERN Document Server

    Hazra, Soumitra

    2016-01-01

    At present, Babcock-Leighton flux transport solar dynamo models appear as the most promising model for explaining diverse observational aspects of the sunspot cycle. The success of these flux transport dynamo models is largely dependent upon a single-cell meridional circulation with a deep equatorward component at the base of the Sun's convection zone. However, recent observations suggest that the meridional flow may in fact be very shallow (confined to the top 10 % of the Sun) and more complex than previously thought. Taken together these observations raise serious concerns on the validity of the flux transport paradigm. By accounting for the turbulent pumping of magnetic flux as evidenced in magnetohydrodynamic simulations of solar convection, we demonstrate that flux transport dynamo models can generate solar-like magnetic cycles even if the meridional flow is shallow. Solar-like periodic reversals is recovered even when meridional circulation is altogether absent, however, in this case the solar surface m...

  13. Quasilinear saturation of the aperiodic ordinary mode streaming instability

    Energy Technology Data Exchange (ETDEWEB)

    Stockem Novo, A., E-mail: anne@tp4.rub.de; Schlickeiser, R. [Institut für Theoretische Physik, Lehrstuhl IV: Weltraum-und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Yoon, P. H. [Institute for Physical Science & Technology, University of Maryland, College Park, Maryland 20742 (United States); School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of); Lazar, M. [Institut für Theoretische Physik, Lehrstuhl IV: Weltraum-und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Centre for Mathematical Plasma Astrophysics, Celestijnenlaan 200B, 3001 Leuven (Belgium); Poedts, S. [Centre for Mathematical Plasma Astrophysics, Celestijnenlaan 200B, 3001 Leuven (Belgium); Seough, J. [Faculty of Human Development, University of Toyama, 3190, Gofuku, Toyama City, Toyama 930-8555 (Japan); International Research Fellow of the Japan Society for the Promotion of Science, Tokyo (Japan)

    2015-09-15

    In collisionless plasmas, only kinetic instabilities and fluctuations are effective in reducing the free energy and scatter plasma particles, preventing an increase of their anisotropy. Solar energetic outflows into the interplanetary plasma give rise to important thermal anisotropies and counterstreaming motions of plasma shells, and the resulting instabilities are expected to regulate the expansion of the solar wind. The present paper combines quasilinear theory and kinetic particle-in-cell simulations in order to study the weakly nonlinear saturation of the ordinary mode in hot counter-streaming plasmas with a temperature anisotropy as a follow-up of the paper by Seough et al. [Phys. Plasmas 22, 082122 (2015)]. This instability provides a plausible mechanism for the origin of dominating, two-dimensional spectrum of transverse magnetic fluctuations observed in the solar wind. Stimulated by the differential motion of electron counterstreams the O mode instability may convert their free large-scale energy by nonlinear collisionless dissipation on plasma particles.

  14. Magnetohydrodynamic turbulence

    CERN Document Server

    Biskamp, Dieter

    2003-01-01

    This book presents an introduction to, and modern account of, magnetohydrodynamic (MHD) turbulence, an active field both in general turbulence theory and in various areas of astrophysics. The book starts by introducing the MHD equations, certain useful approximations and the transition to turbulence. The second part of the book covers incompressible MHD turbulence, the macroscopic aspects connected with the different self-organization processes, the phenomenology of the turbulence spectra, two-point closure theory, and intermittency. The third considers two-dimensional turbulence and compressi

  15. Magnetic turbulence and pressure gradient feedback effect of the 1/2 mode soft-hard magnetohydrodynamic limit in large helical device

    International Nuclear Information System (INIS)

    The aim of this study was to analyze the feedback process between the magnetic turbulence and the pressure gradients in Large Helical Device (LHD) inward-shifted configurations as well as its role in the transition between the soft-hard magnetohydrodynamic (MHD) regimes for instabilities driven by the mode 1/2 in the middle plasma. In the present paper, we summarize the results of two simulations with different Lundquist numbers, S=2.5×105 and 106, assuming a plasma in the slow reconnection regime. The results for the high Lundquist number simulation show that the magnetic turbulence and the pressure gradient in the middle plasma region of LHD are below the critical value to drive the transition to the hard MHD regime, therefore only relaxations in the soft MHD limit are triggered (1/2 sawtooth-like events) [Phys. Plasmas 19, 082512 (2012)]. In the case of the simulation with low Lundquist number, the system reaches the hard MHD limit and a plasma collapse is observed

  16. Characterisation of the turbulent electromotive force and its magnetically-mediated quenching in a global EULAG-MHD simulation of solar convection

    CERN Document Server

    Simard, C; Dube, C

    2016-01-01

    We perform a mean-field analysis of the EULAG-MHD millenium simulation of global magnetohydrodynamical convection presented in Passos et al. 2014. The turbulent electromotive force operating in the simulation is assumed to be linearly related to the cyclic axisymmetric mean magnetic field and its first spatial derivatives. At every grid point in the simulation's meridional plane, this assumed relationship involves 27 independent tensorial coefficients. Expanding on Racine et al. 2011, we extract these coefficients from the simulation data through a least-squares minimization procedure based on singular value decomposition. The reconstructed alpha-tensor shows good agreement with that obtained by Racine et al. 2011, who did not include derivatives of the mean-field in their fit, as well as with the alpha-tensor extracted by Augustson et al. 2015 from a distinct ASH MHD simulation. The isotropic part of the turbulent magnetic diffusivity tensor beta is positive definite and reaches values of 5.0x10^7 m2s-1 in t...

  17. MHD turbulence and distributed chaos

    CERN Document Server

    Bershadskii, A

    2016-01-01

    It is shown, using results of recent direct numerical simulations, that spectral properties of distributed chaos in MHD turbulence with zero mean magnetic field are similar to those of hydrodynamic turbulence. An exception is MHD spontaneous breaking of space translational symmetry, when the stretched exponential spectrum $\\exp(-k/k_{\\beta})^{\\beta}$ has $\\beta=4/7$.

  18. The TOKAM3X code for edge turbulence fluid simulations of tokamak plasmas in versatile magnetic geometries

    Science.gov (United States)

    Tamain, P.; Bufferand, H.; Ciraolo, G.; Colin, C.; Galassi, D.; Ghendrih, Ph.; Schwander, F.; Serre, E.

    2016-09-01

    The new code TOKAM3X simulates plasma turbulence in full torus geometry including the open field lines of the Scrape-off Layer (SOL) and the edge closed field lines region in the vicinity of the separatrix. Based on drift-reduced Braginskii equations, TOKAM3X is able to simulate both limited and diverted plasmas. Turbulence is flux driven by incoming particles from the core plasma and no scale separation between the equilibrium and the fluctuations is assumed so that interactions between large scale flows and turbulence are consistently treated. Based on a domain decomposition, specific numerical schemes are proposed using conservative finite-differences associated to a semi-implicit time advancement. The process computation is multi-threaded and based on MPI and OpenMP libraries. In this paper, fluid model equations are presented together with the proposed numerical methods. The code is verified using the manufactured solution technique and validated through documented simple experiments. Finally, first simulations of edge plasma turbulence in X-point geometry are also introduced in a JET geometry.

  19. High-Q X-band distributed Bragg resonator utilizing an aperiodic alumina plate arrangement.

    Science.gov (United States)

    Bale, Simon; Everard, Jeremy

    2010-01-01

    This paper describes a high-Q X-band distributed Bragg resonator that uses an aperiodic arrangement of non-lambda/4 low loss alumina plates mounted in a cylindrical waveguide. An ABCD parameter waveguide model was developed to simulate and optimize the cavity. The dielectric plates and air waveguide dimensions were optimized to achieve maximum quality factor by redistributing the energy loss within the cavity. An unloaded quality factor (Q(0)) of 196,000 was demonstrated at 9.93 GHz. PMID:20040428

  20. Comment on "Metal-Insulator Transition in an Aperiodic Ladder Network: An Exact Result"

    OpenAIRE

    Flach, Sergej; Danieli, Carlo

    2014-01-01

    Sil, Maiti, and Chakrabarti (SMC) (Phys. Rev. Lett. 101, 076803 (2008), arXiv:0801.2670) introduce an aperiodic two-leg ladder network composed of atomic sites with on-site potentials distributed according to a quasiperiodic Aubry-Andre potential. SMC claim the existence of multiple mobility edges, i.e. metal-insulator transitions at multiple values of the Fermi energy. SMC use numerical calculations of the conductance and den- sity of states, and an analytical result in a limiting case. In t...

  1. Large mode area aperiodic fiber designs for robust singlemode emission under high thermal load

    OpenAIRE

    Dauliat, Romain; Coscelli, Enrico; Poli, Federica; Darwich, Dia; Benoit, Aurélien; Jamier, Raphaël; Schuster, Kay; Grimm, Stephan; Cucinotta, Annamaria; Selleri, Stefano; Salin, François; Roy, Philippe

    2015-01-01

    In this paper, we investigate the potential of various large mode area bers under thermal load, that is the state-of-the-art air-silica large pitch bers, as well as the recently devised symmetry-reduced photonic crystal ber and aperiodic all-solid by carefully considering the degrees of freedom oered all along the ber fabrication. This work aims to discuss the mode ltering ability of these structures in regard to the power scaling and to conrm their potential for robust singlemode operation a...

  2. Example of a non-measurable set involving aperiodic trajectories of a discrete map

    International Nuclear Information System (INIS)

    We consider a discrete map transforming a compact set in RN onto itself. Under assumptions that: (i) there exists a measure on this set which is invariant under the map, and (ii) the set of all cyclic trajectories has a measure which is strictly less than the measure of the whole set, it is shown that the set consisting of all 'distinct initial conditions' (each point of the set represents a different aperiodic trajectory of the discrete map) is non-measurable with respect to this measure. (author). 8 refs

  3. Suppression of drift wave turbulence and zonal flow formation by changing axial boundary conditions in a cylindrical magnetized plasma device

    International Nuclear Information System (INIS)

    For drift wave turbulence, due to charge conservation, the divergence of the parallel current is coupled to the divergence of the perpendicular polarization current, which determines the effective radial momentum flux, i.e., the Reynolds stress. Changes in the current flow patterns also affect the nonlinear energy transfer from smaller to larger scales. Here, we show that by changing the end plate boundary conditions in a cylindrical plasma device, the radial currents through the plasma and hence the net momentum transport and the nonlinear coupling for the inverse energy transfer are strongly modified. The transition to drift wave turbulence and the formation of low frequency zonal flows can be either suppressed with conducting boundaries or enhanced with insulating boundaries.

  4. The Effect of Magnetic Turbulence Energy Spectra and Pickup Ions on the Heating of the Solar Wind

    Science.gov (United States)

    Ng, C. S.; Bhattacharjee, A.; Isenberg, P. A.; Munsi, D.; Smith, C. W.

    2010-12-01

    In recent years, a phenomenological solar wind heating model based on a turbulent energy cascade prescribed by the Kolmogorov theory has produced reasonably good agreement with observations on proton temperatures out to distances around 70 AU, provided the effect of turbulence generation due to pickup ions is included in the model. In a recent study [Ng et al., J. Geophys. Res., 115, A02101 (2010)], we have incorporated in the heating model the energy cascade rate based on Iroshnikov-Kraichnan (IK) scaling, derivable from incompressible magnetohydrodynamics. We showed that the IK cascade rate can also produce good agreement with observations, with or without the inclusion of pickup ions. This effect was confirmed both by integrating the model using average boundary conditions at 1 AU, and by applying a method [Smith et al., Astrophys. J., 638, 508 (2006)] that uses directly observed values as boundary conditions. The reduction of effects due to pickup ions is because less turbulence is generated by pickup ions for the IK spectrum, which has a shallower spectral index than the Kolmogorov spectrum. In this paper, we will discuss more on this part of the theory.

  5. Characterizing the Aperiodic Variability of 3XMM Sources using Bayesian Blocks

    Science.gov (United States)

    Salvetti, D.; De Luca, A.; Belfiore, A.; Marelli, M.

    2016-06-01

    I will present Bayesian blocks algorithm and its application to XMM sources, statistical properties of the entire 3XMM sample, and a few interesting cases. While XMM-Newton is the best suited instrument for the characterization of X-ray source variability, its most recent catalogue (3XMM) reports light curves only for the brightest ones and excludes from its analysis periods of background flares. One aim of the EXTraS ("Exploring the X-ray Transient and variable Sky") project is the characterization of aperiodic variability of as many 3XMM sources as possible on a time scale shorter than the XMM observation. We adapted the original Bayesian blocks algorithm to account for background contamination, including soft proton flares. In addition, we characterized the short-term aperiodic variability performing a number of statistical tests on all the Bayesian blocks light curves. The EXTraS catalogue and products will be released to the community in 2017, together with tools that will allow the user to replicate EXTraS results and extend them through the next decade.

  6. Rapidly tunable optical parametric oscillator based on aperiodic quasi-phase matching.

    Science.gov (United States)

    Descloux, Delphine; Dherbecourt, Jean-Baptiste; Melkonian, Jean-Michel; Raybaut, Myriam; Lai, Jui-Yu; Drag, Cyril; Godard, Antoine

    2016-05-16

    A new optical parametric oscillator (OPO) architecture with high tuning speed capability is demonstrated. This device exploits the versatility offered by aperiodic quasi-phase matching (QPM) to provide a broad parametric gain spectrum without changing the temperature, angle, or position of the nonlinear crystal. Rapid tuning is then straightforwardly achieved using a fast intracavity spectral filter. This concept is demonstrated here for a picosecond synchronously pumped OPO containing an aperiodically poled MgO-doped LiNbO3 crystal and a rapidly tunable spectral filter based on a diffraction grating. Tuning over 160 nm around 3.86 μm is achieved at fixed temperature and a fast tuning over 30 nm in 40 μs is demonstrated. Different configurations are tested and compared. The cavity length detuning is analyzed and discussed. This device is successfully used to detect N2O by absorption. This approach could be generalized to other spectral ranges (e.g., visible) and temporal regimes (e.g., continuous-wave or nanosecond). PMID:27409934

  7. Suppression of parallel transport in turbulent magnetized plasmas and its impact on non-thermal and thermal aspects of solar flares

    CERN Document Server

    Bian, Nicolas H; Emslie, A Gordon

    2016-01-01

    The transport of the energy contained in electrons, both thermal and suprathermal, in solar flares plays a key role in our understanding of many aspects of the flare phenomenon, from the spatial distribution of hard X-ray emission to global energetics. Motivated by recent {\\em RHESSI} observations that point to the existence of a mechanism that confines electrons to the coronal parts of flare loops more effectively than Coulomb collisions, we here consider the impact of pitch-angle scattering off turbulent magnetic fluctuations on the parallel transport of electrons in flaring coronal loops. It is shown that the presence of such a scattering mechanism in addition to Coulomb collisional scattering can significantly reduce the parallel thermal and electrical conductivities relative to their collisional values. We provide illustrative expressions for the resulting thermoelectric coefficients that relate the thermal flux and electrical current density to the temperature gradient and the applied electric field. We...

  8. Turbulent Plasmoid Reconnection

    CERN Document Server

    Widmer, Fabien; Yokoi, Nobumitsu

    2016-01-01

    The plasmoid instability may lead to fast magnetic reconnection through long current sheets(CS). It is well known that large-Reynolds-number plasmas easily become turbulent. We address the question whether turbulence enhances the energy conversion rate of plasmoid-unstable current sheets. We carry out appropriate numerical MHD simulations, but resolving simultaneously the relevant large-scale (mean-) fields and the corresponding small-scale, turbulent, quantities by means of direct numerical simulations (DNS) is not possible. Hence we investigate the influence of small scale turbulence on large scale MHD processes by utilizing a subgrid-scale (SGS) turbulence model. We verify the applicability of our SGS model and then use it to investigate the influence of turbulence on the plasmoid instability. We start the simulations with Harris-type and force-free CS equilibria in the presence of a finite guide field in the direction perpendicular to the reconnection plane. We use the DNS results to investigate the growt...

  9. Turbulence and diffusion fossil turbulence

    CERN Document Server

    Gibson, C H

    2000-01-01

    Fossil turbulence processes are central to turbulence, turbulent mixing, and turbulent diffusion in the ocean and atmosphere, in astrophysics and cosmology, and in most other natural flows. George Gamov suggested in 1954 that galaxies might be fossils of primordial turbulence produced by the Big Bang. John Woods showed that breaking internal waves on horizontal dye sheets in the interior of the stratified ocean form highly persistent remnants of these turbulent events, which he called fossil turbulence. The dark mixing paradox of the ocean refers to undetected mixing that must exist somewhere to explain why oceanic scalar fields like temperature and salinity are so well mixed, just as the dark matter paradox of galaxies refers to undetected matter that must exist to explain why rotating galaxies don't fly apart by centrifugal forces. Both paradoxes result from sampling techniques that fail to account for the extreme intermittency of random variables involved in self-similar, nonlinear, cascades over a wide ra...

  10. Nonresonant Grain Acceleration in MHD Turbulence

    OpenAIRE

    Yan, Huirong

    2009-01-01

    We discuss a new type of dust acceleration mechanism that acts in a turbulent magnetized medium. The magnetohydrodynamic (MHD) turbulence can accelerate grains through resonant as well as nonresonant interactions. We show that the magnetic compression provides higher velocities for super-Alfvenic turbulence and can accelerate an extended range of grains in warm media compared to gyroresonance. While fast modes dominate the acceleration for the large grains, slow modes can be important for sub...

  11. Functional continuity: did field-induced oriented aperiodic constraints at Life's origin aid its sequence-based evolution?

    Science.gov (United States)

    Mitra-Delmotte, G.; Mitra, A. N.

    2014-04-01

    A non-biological analog undergoing Darwinian-like evolution could have enhanced the probability of many crucial independent bottom-up emergent steps, engendered within its premises, and smoothen the inanimate-animate transition. Now, the higher-level environment-mutable DNA sequences influence the lower-level pattern of oriented templates (enzymes, lipid membranes, RNA) in the organized cell matrix and hence their associated substrate-dynamics; note how templates are akin to local fields, kinetically constraining reactant orientations. Since the lowerlevel is likely the more primitive of the two (rather than Cairns-Smith's "readily available" rigid clay crystal sequence-based replicators as a memory-like basis for slowly mutating predecessor-patterns enroute to complex RNA-based Darwinian evolution), a gradual thermodynamic-to-kinetic transition in an isotropic medium, is proposed as driven by some order-parameter --via "available" field-responsive dipolar colloid networks, as apart from bio-organics, mineral colloids also can display liquid crystal (LC) phases (see [1]). An access to solid-like orientational order in a fluid matrix suggests how aperiodic patterns can be influenced and sustained (a la homeostasis) via external inhomogeneous fields (e.g. magnetic rocks); this renders these cooperative networks with potential as confining host-media, whose environment-sensitivity can not only influence their sterically-coupled guest-substrates but also their network properties (the latter can enable 'functions' like spontaneous transport under non-equilibrium suggesting a natural basis for their selection by the environment). In turn LC systems could have been preceded by even simpler anisotropic fluid hosts, viz., external field-induced mineral magnetic nanoparticle (MNP) aggregates. Indeed, the capacity of an MNP to couple its magnetic and rotational d.o.f.s suggests how an environment-sensitive field-influenced network of interacting dipolar colloids close to

  12. The Effect of Magnetic Turbulence Energy Spectra and Pickup Ions on the Heating of the Solar Wind

    CERN Document Server

    Ng, C S; Isenberg, P A; Munsi, D; Smith, C W; 10.1063/1.3529966

    2011-01-01

    In recent years, a phenomenological solar wind heating model based on a turbulent energy cascade prescribed by the Kolmogorov theory has produced reasonably good agreement with observations on proton temperatures out to distances around 70 AU, provided the effect of turbulence generation due to pickup ions is included in the model. In a recent study [Ng et al., J. Geophys. Res., 115, A02101 (2010)], we have incorporated in the heating model the energy cascade rate based on Iroshnikov-Kraichnan (IK) scaling. We showed that the IK cascade rate can also produce good agreement with observations, with or without the inclusion of pickup ions. This effect was confirmed both by integrating the model using average boundary conditions at 1 AU, and by applying a method [Smith et al., Astrophys. J., 638, 508 (2006)] that uses directly observed values as boundary conditions. The effects due to pickup ions is found to be less important for the IK spectrum, which is shallower than the Kolmogorov spectrum. In this paper, we ...

  13. Tiling Problem: Convex Pentagons for Edge-to-Edge Monohedral Tiling and Convex Polygons for Aperiodic Tiling

    OpenAIRE

    Sugimoto, Teruhisa

    2015-01-01

    We show that convex pentagons that can generate edge-to-edge monohedral tilings of the plane can be classified into exactly eight types. Using these results, it is also proved that no single convex polygon can be an aperiodic prototile without matching conditions other than "edge-to-edge."

  14. New solid fully-aperiodic large pitch fibers with non-filamented core for high-power singlemode emission

    OpenAIRE

    Dauliat, Romain; Benoît, Aurélien; Darwich, Dia; Kobelke, Jens; Schuster, Kay; Grimm, Stephan; Jamier, Raphaël; Salin, François; Roy, Philippe

    2015-01-01

    We report on the first high power laser emission of a solid triple-clad fully-aperiodic large mode area fiber with non-filamented core based on Repusil process. The average power is 184 W with a singlemode fashion.

  15. New Thermodynamical Force in Plasma Phase Space that Controls Turbulence and Turbulent Transport

    Science.gov (United States)

    Itoh, Sanae-I.; Itoh, Kimitaka

    2012-11-01

    Physics of turbulence and turbulent transport has been developed on the central dogma that spatial gradients constitute the controlling parameters, such as Reynolds number and Rayleigh number. Recent experiments with the nonequilibrium plasmas in magnetic confinement devices, however, have shown that the turbulence and transport change much faster than global parameters, after an abrupt change of heating power. Here we propose a theory of turbulence in inhomogeneous magnetized plasmas, showing that the heating power directly influences the turbulence. New mechanism, that an external source couples with plasma fluctuations in phase space so as to affect turbulence, is investigated. A new thermodynamical force in phase-space, i.e., the derivative of heating power by plasma pressure, plays the role of new control parameter, in addition to spatial gradients. Following the change of turbulence, turbulent transport is modified accordingly. The condition under which this new effect can be observed is also evaluated.

  16. Effects of magnetic and kinetic helicities on the growth of magnetic fields in laminar and turbulent flows by helical-Fourier decomposition

    CERN Document Server

    Linkmann, Moritz; McKay, Mairi; Berera, Arjun; Biferale, Luca

    2016-01-01

    We present a numerical and analytical study of incompressible homogeneous conducting fluids using a Fourier-helical representation. We analytically study both small- and large-scale dynamo properties, as well as the inverse cascade of magnetic helicity, in the most general minimal subset of interacting velocity and magnetic fields on a closed Fourier triad. We mainly focus on the dependency of magnetic field growth as a function of the distribution of kinetic and magnetic helicities among the three interacting wavenumbers. By combining direct numerical simulations of the full magnetohydrodynamics (MHD) equations with the Fourier-helical decomposition we numerically confirm that in the kinematic dynamo regime the system develops a large-scale magnetic helicity with opposite sign compared to the small-scale kinetic helicity, a sort of triad-by-triad $\\alpha$-effect in Fourier space. Concerning the small-scale perturbations, we predict theoretically and confirm numerically that the largest instability is achived...

  17. Turbulent mixing and beyond.

    Science.gov (United States)

    Abarzhi, S I; Sreenivasan, K R

    2010-04-13

    Turbulence is a supermixer. Turbulent mixing has immense consequences for physical phenomena spanning astrophysical to atomistic scales under both high- and low-energy-density conditions. It influences thermonuclear fusion in inertial and magnetic confinement systems; governs dynamics of supernovae, accretion disks and explosions; dominates stellar convection, planetary interiors and mantle-lithosphere tectonics; affects premixed and non-premixed combustion; controls standard turbulent flows (wall-bounded and free-subsonic, supersonic as well as hypersonic); as well as atmospheric and oceanic phenomena (which themselves have important effects on climate). In most of these circumstances, the mixing phenomena are driven by non-equilibrium dynamics. While each article in this collection dwells on a specific problem, the purpose here is to seek a few unified themes amongst diverse phenomena. PMID:20211872

  18. High Turbulence

    CERN Multimedia

    EuHIT, Collaboration

    2015-01-01

    As a member of the EuHIT (European High-Performance Infrastructures in Turbulence - see here) consortium, CERN is participating in fundamental research on turbulence phenomena. To this end, the Laboratory provides European researchers with a cryogenic research infrastructure (see here), where the first tests have just been performed.

  19. Wave turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Nazarenko, Sergey [Warwick Univ., Coventry (United Kingdom). Mathematics Inst.

    2011-07-01

    Wave Turbulence refers to the statistical theory of weakly nonlinear dispersive waves. There is a wide and growing spectrum of physical applications, ranging from sea waves, to plasma waves, to superfluid turbulence, to nonlinear optics and Bose-Einstein condensates. Beyond the fundamentals the book thus also covers new developments such as the interaction of random waves with coherent structures (vortices, solitons, wave breaks), inverse cascades leading to condensation and the transitions between weak and strong turbulence, turbulence intermittency as well as finite system size effects, such as ''frozen'' turbulence, discrete wave resonances and avalanche-type energy cascades. This book is an outgrow of several lectures courses held by the author and, as a result, written and structured rather as a graduate text than a monograph, with many exercises and solutions offered along the way. The present compact description primarily addresses students and non-specialist researchers wishing to enter and work in this field. (orig.)

  20. Electronic band gaps and transport in aperiodic graphene-based superlattices of Thue-Morse sequence

    Science.gov (United States)

    Wang, Ligang; Ma, Tianxing

    2014-03-01

    We investigate electronic band structure and transport properties in aperiodic graphene-based superlattices of Thue-Morse (TM) sequence. The robust properties of zero- k gap are demonstrated in both mono-layer and bi-layer graphene TM sequence. The Extra Dirac points may emerge at ky ≠ 0, and the electronic transport behaviors such as the conductance and the Fano factor are discussed in detail. Our results provide a flexible and effective way to control the transport properties in graphene-based superlattices. This work is supported by NSFCs (Nos. 11274275, 11104014 and 61078021), Research Fund for the Doctoral Program of Higher Education 20110003120007, SRF for ROCS (SEM), and the National Basic Research Program of China (No. 2011CBA00108, and 2012CB921602).

  1. The DNA electronic specific heat at low temperature: The role of aperiodicity

    International Nuclear Information System (INIS)

    The electronic specific heat spectra at constant volume (CV) of a long-range correlated extended ladder model, mimicking a DNA molecule, is theoretically analyzed for a stacked array of a double-stranded structure made up from the nucleotides guanine G, adenine A, cytosine C and thymine T. The role of the aperiodicity on CV is discussed, considering two different nucleotide arrangements with increasing disorder, namely the Fibonacci and the Rudin–Shapiro quasiperiodic structures. Comparisons are made for different values of the band fillings, considering also a finite segment of natural DNA, as part of the human chromosome Ch22. -- Highlights: ► Quasiperiodic sequence to mimic the DNA nucleotides arrangement. ► Electronic tight-binding Hamiltonian model. ► Electronic density of states. ► Electronic specific heat spectra.

  2. Characteristics of optical multiple channelled filters made of aperiodically patterned phase elements

    Science.gov (United States)

    Liu, Chung Ping; Lee, Kuei Jen; Ko, Cheng Hao; Dong, Bi Zhen

    2007-03-01

    Alternative optical filtered phase elements (OFPEs) in a rotationally symmetrically optical system are designed based on the general theory of the phase-retrieval. The OFPEs can implement simultaneously the filtering and focusing functions of optical waves at the preassigned wavelengths. The design procedure corresponds to solving an inverse source problem in optics. The designed OFPEs have aperiodic surface-relief depth distributions. Numerical results demonstrate that the constructed OFPEs can achieve the predetermined goal well. The performances of the designed OFPEs are appraised in detail, for instance, the line-width of the transmissive peaks, the spot size of the focusing point on the focal plane, and the effect of phase quantized level of the OFPEs, etc. It is expected that the presented OFPEs may diversify the optical filtering devices to meet various applications in micro-optics.

  3. Gate-controlled mid-infrared light bending with aperiodic graphene nanoribbons array

    CERN Document Server

    Carrasco, Eduardo; Mosig, Juan R; Low, Tony; Perruisseau-Carrier, Julien

    2014-01-01

    Graphene plasmonic nanostructures enable subwavelength confinement of electromagnetic energy from the mid-infrared down to the terahertz frequencies. By exploiting the spectrally varying light scattering phase at vicinity of the resonant frequency of the plasmonic nanostructure, it is possible to control the angle of reflection of an incoming light beam. We demonstrate, through full-wave electromagnetic simulations based on Maxwell equations, the electrical control of the angle of reflection of a mid-infrared light beam by using an aperiodic array of graphene nanoribbons, whose widths are engineered to produce a spatially varying reflection phase profile that allows for the construction of a far-field collimated beam towards a predefined direction.

  4. The DNA electronic specific heat at low temperature: The role of aperiodicity

    Energy Technology Data Exchange (ETDEWEB)

    Sarmento, R.G. [Departamento de Física, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil); Mendes, G.A. [Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil); Albuquerque, E.L., E-mail: eudenilson@gmail.com [Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil); Fulco, U.L. [Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil); Vasconcelos, M.S. [Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil); Ujsághy, O. [Department of Theoretical Physics and Condensed Matter Research Group of the Hungarian Academy of Sciences, Budapest University of Technology and Economics, Budafoki út 8, H-1521 Budapest (Hungary); Freire, V.N. [Departamento de Física, Universidade Federal do Ceará, 60455-760, Fortaleza, CE (Brazil); Caetano, E.W.S. [Instituto Federal de Educação, Ciência e Tecnologia do Ceará, 60040-531, Fortaleza, CE (Brazil)

    2012-07-16

    The electronic specific heat spectra at constant volume (C{sub V}) of a long-range correlated extended ladder model, mimicking a DNA molecule, is theoretically analyzed for a stacked array of a double-stranded structure made up from the nucleotides guanine G, adenine A, cytosine C and thymine T. The role of the aperiodicity on C{sub V} is discussed, considering two different nucleotide arrangements with increasing disorder, namely the Fibonacci and the Rudin–Shapiro quasiperiodic structures. Comparisons are made for different values of the band fillings, considering also a finite segment of natural DNA, as part of the human chromosome Ch22. -- Highlights: ► Quasiperiodic sequence to mimic the DNA nucleotides arrangement. ► Electronic tight-binding Hamiltonian model. ► Electronic density of states. ► Electronic specific heat spectra.

  5. Wave propagation in one-dimensional solid-fluid quasi-periodic and aperiodic phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ali, E-mail: alchen@bjtu.edu.cn [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Wang Yuesheng [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Zhang Chuanzeng [Department of Civil Engineering, University of Siegen, D-57068 Siegen (Germany)

    2012-02-01

    The propagation of the elastic waves in one-dimensional (1D) solid-fluid quasi-periodic phononic crystals is studied by employing the concept of the localization factor, which is calculated by the transfer matrix method. The solid-fluid interaction effect at the interfaces between the solid and the fluid components is considered. For comparison, the periodic systems and aperiodic Thue-Morse sequence are also analyzed in this paper. The splitting phenomenon of the pass bands and bandgaps are discussed for these 1D solid-fluid systems. At last the influences of the material impedance ratios on the band structures of the 1D solid-fluid quasi-periodic phononic crystals arranged as Fibonacci sequence are discussed.

  6. Large mode area aperiodic fiber designs for robust singlemode emission under high thermal load

    Science.gov (United States)

    Dauliat, Romain; Coscelli, Enrico; Poli, Federica; Darwich, Dia; Benoît, Aurélien; Jamier, Raphaël.; Schuster, Kay; Grimm, Stephan; Cucinotta, Annamaria; Selleri, Stefano; Salin, François; Roy, Philippe

    2015-05-01

    In this paper, we investigate the potential of various large mode area fibers under thermal load, that is the state-of-the-art air-silica large pitch fibers, as well as the recently devised symmetry-reduced photonic crystal fiber and aperiodic all-solid by carefully considering the degrees of freedom offered all along the fiber fabrication. This work aims to discuss the mode filtering ability of these structures in regard to the power scaling and to confirm their potential for robust singlemode operation at high power level. Structural principles contributing to improve their performances such as the impact of air holes / solid inclusions size will be presented. We also intend to establish that the range of average absorbed/output power for which a robust singlemode operation is available can be shifted to fulfill user requests in term of power range.

  7. Self-similar transmission properties of aperiodic Cantor potentials in gapped graphene

    Science.gov (United States)

    Rodríguez-González, Rogelio; Rodríguez-Vargas, Isaac; Díaz-Guerrero, Dan Sidney; Gaggero-Sager, Luis Manuel

    2016-01-01

    We investigate the transmission properties of quasiperiodic or aperiodic structures based on graphene arranged according to the Cantor sequence. In particular, we have found self-similar behaviour in the transmission spectra, and most importantly, we have calculated the scalability of the spectra. To do this, we implement and propose scaling rules for each one of the fundamental parameters: generation number, height of the barriers and length of the system. With this in mind we have been able to reproduce the reference transmission spectrum, applying the appropriate scaling rule, by means of the scaled transmission spectrum. These scaling rules are valid for both normal and oblique incidence, and as far as we can see the basic ingredients to obtain self-similar characteristics are: relativistic Dirac electrons, a self-similar structure and the non-conservation of the pseudo-spin.

  8. Evidence of parameter-induced aperiodic stochastic resonance with fixed noise

    Institute of Scientific and Technical Information of China (English)

    Li Jian-Long

    2007-01-01

    Stochastic resonance (SR) is based on the cooperative effect between the stochastic dynamical system and the external forcing. As is well known, the cooperative effect is produced by adding noises. In this paper, we show the evidence that by changing the system parameters and the signal intensity, a nonlinear system in the presence of an input aperiodic signal can yield the cooperative effect, with the noise fixed. To quantify the nonlinear system output,we determine the theoretical bit error rate (BER). By numerical simulation, the validity of the theoretical derivation is checked. Besides, we show that parameter-induced SR is more realizable than SR via adding noises, especially when the noise intensity exceeds the resonance level, or when the characteristic of the noise is not known.

  9. Quenching and anisotropy of hydromagnetic turbulent transport

    International Nuclear Information System (INIS)

    Hydromagnetic turbulence affects the evolution of large-scale magnetic fields through mean-field effects like turbulent diffusion and the α effect. For stronger fields, these effects are usually suppressed or quenched, and additional anisotropies are introduced. Using different variants of the test-field method, we determine the quenching of the turbulent transport coefficients for the forced Roberts flow, isotropically forced non-helical turbulence, and rotating thermal convection. We see significant quenching only when the mean magnetic field is larger than the equipartition value of the turbulence. Expressing the magnetic field in terms of the equipartition value of the quenched flows, we obtain for the quenching exponents of the turbulent magnetic diffusivity about 1.3, 1.1, and 1.3 for Roberts flow, forced turbulence, and convection, respectively. However, when the magnetic field is expressed in terms of the equipartition value of the unquenched flows, these quenching exponents become about 4, 1.5, and 2.3, respectively. For the α effect, the exponent is about 1.3 for the Roberts flow and 2 for convection in the first case, but 4 and 3, respectively, in the second. In convection, the quenching of turbulent pumping follows the same power law as turbulent diffusion, while for the coefficient describing the Ω×J effect nearly the same quenching exponent is obtained as for α. For forced turbulence, turbulent diffusion proportional to the second derivative along the mean magnetic field is quenched much less, especially for larger values of the magnetic Reynolds number. However, we find that in corresponding axisymmetric mean-field dynamos with dominant toroidal field the quenched diffusion coefficients are the same for the poloidal and toroidal field constituents.

  10. Turbulent transport in hydromagnetic flows

    OpenAIRE

    Brandenburg, A.; Chatterjee, P.; Del Sordo, F.; Hubbard, A.; Käpylä, P. J.; Rheinhardt, M.

    2010-01-01

    The predictive power of mean-field theory is emphasized by comparing theory with simulations under controlled conditions. The recently developed test-field method is used to extract turbulent transport coefficients both in kinematic as well as nonlinear and quasi-kinematic cases. A striking example of the quasi-kinematic method is provided by magnetic buoyancy-driven flows that produce an alpha effect and turbulent diffusion.

  11. Turbulence spreading in gyro-kinetic theory

    Science.gov (United States)

    Migliano, P.; Buchholz, R.; Grosshauser, S. R.; Hornsby, W. A.; Peeters, A. G.; Stauffert, O.

    2016-01-01

    In this letter a new operative definition for the turbulence intensity in connection with magnetized plasmas is given. In contrast to previous definitions the new definition satisfies a Fisher-Kolmogorov-Petrovskii-Piskunov type equation. Furthermore, explicit expressions for the turbulence intensity and the turbulence intensity flux, that allow for the first time direct numerical evaluation, are derived. A carefully designed numerical experiment for the case of a tokamak is performed to study the impact of turbulence spreading. The effective turbulence diffusion coefficient is measured to be smaller than the heat conduction coefficient and the turbulence spreading length is found to be of the order of the turbulence correlation length. The results show that turbulence spreading can play a role in the non-local flux gradient relation, or in the scaling of transport coefficients with the normalized Larmor radius, only over lengths scale of the order of the turbulence correlation length. A new turbulence convection mechanism, due to the drift connected with the magnetic field inhomogeneities, is described. The convective flux integrates to zero under the flux surface average unless there is an up-down asymmetry in the tubulence intensity. The latter asymmetry can be generated through a radial inhomogeneity or plasma rotation. It is shown that the turbulence convection can lead to a spreading of the order of the correlation length.

  12. Wave turbulence

    Science.gov (United States)

    Nazarenko, Sergey

    2015-07-01

    Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.

  13. Turbulent mixing

    OpenAIRE

    Dimotakis, Paul E.

    2005-01-01

    The ability of turbulent flows to effectively mix entrained fluids to a molecular scale is a vital part of the dynamics of such flows, with wide-ranging consequences in nature and engineering. It is a considerable experimental, theoretical, modeling, and computational challenge to capture and represent turbulent mixing which, for high Reynolds number (Re) flows, occurs across a spectrum of scales of considerable span. This consideration alone places high-Re mixing phenomena beyond the reach o...

  14. GEOMETRIC TURBULENCE

    Directory of Open Access Journals (Sweden)

    Trunev A. P.

    2014-05-01

    Full Text Available In this article we have investigated the solutions of Maxwell's equations, Navier-Stokes equations and the Schrödinger associated with the solutions of Einstein's equations for empty space. It is shown that in some cases the geometric instability leading to turbulence on the mechanism of alternating viscosity, which offered by N.N. Yanenko. The mechanism of generation of matter from dark energy due to the geometric turbulence in the Big Bang has been discussed

  15. Anisotropic Intermittency of Magnetohydrodynamic Turbulence

    CERN Document Server

    Osman, K T; Chapman, S C; Hnat, B

    2013-01-01

    A higher-order multiscale analysis of spatial anisotropy in inertial range magnetohydrodynamic turbulence is presented using measurements from the STEREO spacecraft in fast ambient solar wind. We show for the first time that, when measuring parallel to the local magnetic field direction, the full statistical signature of the magnetic and Els\\"asser field fluctuations is that of a non-Gaussian globally scale-invariant process. This is distinct from the classic multi-exponent statistics observed when the local magnetic field is perpendicular to the flow direction. These observations are interpreted as evidence for the weakness, or absence, of a parallel magnetofluid turbulence energy cascade. As such, these results present strong observational constraints on the statistical nature of intermittency in turbulent plasmas.

  16. Scaling, Intermittency and Decay of MHD Turbulence

    CERN Document Server

    Lazarian, A

    2004-01-01

    We discuss a few recent developments that are important for understanding of MHD turbulence. First, MHD turbulence is not so messy as it is usually believed. In fact, the notion of strong non-linear coupling of compressible and incompressible motions along MHD cascade is not tenable. Alfven, slow and fast modes of MHD turbulence follow their own cascades and exhibit degrees of anisotropy consistent with theoretical expectations. Second, the fast decay of turbulence is not related to the compressibility of fluid. Rates of decay of compressible and incompressible motions are very similar. Third, viscosity by neutrals does not suppress MHD turbulence in a partially ionized gas. Instead, MHD turbulence develops magnetic cascade at scales below the scale at which neutrals damp ordinary hydrodynamic motions. Forth, density statistics does not exhibit the universality that the velocity and magnetic field do. For instance, at small Mach numbers the density is anisotropic, but it gets isotropic at high Mach numbers. F...

  17. Suppression of Parallel Transport in Turbulent Magnetized Plasmas and Its Impact on the Non-thermal and Thermal Aspects of Solar Flares

    Science.gov (United States)

    Bian, Nicolas H.; Kontar, Eduard P.; Emslie, A. Gordon

    2016-06-01

    The transport of the energy contained in electrons, both thermal and suprathermal, in solar flares plays a key role in our understanding of many aspects of the flare phenomenon, from the spatial distribution of hard X-ray emission to global energetics. Motivated by recent RHESSI observations that point to the existence of a mechanism that confines electrons to the coronal parts of flare loops more effectively than Coulomb collisions, we here consider the impact of pitch-angle scattering off turbulent magnetic fluctuations on the parallel transport of electrons in flaring coronal loops. It is shown that the presence of such a scattering mechanism in addition to Coulomb collisional scattering can significantly reduce the parallel thermal and electrical conductivities relative to their collisional values. We provide illustrative expressions for the resulting thermoelectric coefficients that relate the thermal flux and electrical current density to the temperature gradient and the applied electric field. We then evaluate the effect of these modified transport coefficients on the flare coronal temperature that can be attained, on the post-impulsive-phase cooling of heated coronal plasma, and on the importance of the beam-neutralizing return current on both ambient heating and the energy loss rate of accelerated electrons. We also discuss the possible ways in which anomalous transport processes have an impact on the required overall energy associated with accelerated electrons in solar flares.

  18. Suppression of Parallel Transport in Turbulent Magnetized Plasmas and Its Impact on Non-Thermal and Thermal Aspects of Solar Flares

    Science.gov (United States)

    Emslie, A. Gordon; Bian, Nicolas H.; Kontar, Eduard

    2016-05-01

    Motivated by recent RHESSI observations that point to the existence of a mechanism that confines electrons to the coronal parts of flare loops more effectively than Coulomb collisions, we consider the impact of pitch-angle scattering off turbulent magnetic fluctuations on the parallel transport of electrons in flaring coronal loops. It is shown that the presence of such a scattering mechanism in addition to Coulomb collisional scattering can significantly reduce the parallel thermal and electrical conductivities relative to their collisional values. We provide illustrative expressions for the resulting thermoelectric coefficients that relate the thermal flux and electrical current density to the temperature gradient and the applied electric field. We then evaluate the effect of these modified transport coefficients on several items of interest to the modeling of flares, including: the peak flare coronal temperature that can be attained, the post-impulsive-phase cooling time of heated coronal plasma, and the importance of the beam-neutralizing return current on both ambient heating and the energy loss rate of accelerated electrons. We also discuss the ways in which anomalous transport processes have an impact on the required overall energy content of accelerated electrons in solar flares.

  19. Recent developments in plasma turbulence and turbulent transport

    Energy Technology Data Exchange (ETDEWEB)

    Terry, P.W. [Univ. of Wisconsin, Madison, WI (United States)

    1997-09-22

    This report contains viewgraphs of recent developments in plasma turbulence and turbulent transport. Localized nonlinear structures occur under a variety of circumstances in turbulent, magnetically confined plasmas, arising in both kinetic and fluid descriptions, i.e., in either wave-particle or three-wave coupling interactions. These structures are non wavelike. They cannot be incorporated in the collective wave response, but interact with collective modes through their shielding by the plasma dielectric. These structures are predicted to modify turbulence-driven transport in a way that in consistent with, or in some cases are confirmed by recent experimental observations. In kinetic theory, non wavelike structures are localized perturbations of phase space density. There are two types of structures. Holes are self-trapped, while clumps have a self-potential that is too weak to resist deformation and mixing by ambient potential fluctuations. Clumps remain correlated in turbulence if their spatial extent is smaller than the correlation length of the scattering fields. In magnetic turbulence, clumps travel along stochastic magnetic fields, shielded by the plasma dielectric. A drag on the clump macro-particle is exerted by the shielding, inducing emission into the collective response. The emission in turn damps back on the particle distribution via Landau dampling. The exchange of energy between clumps and particles, as mediated by the collective mode, imposes constraints on transport. For a turbulent spectrum whose mean wavenumber along the equilibrium magnetic field is nonzero, the electron thermal flux is proportional to the ion thermal velocity. Conventional predictions (which account only for collective modes) are larger by the square root of the ion to electron mass ratio. Recent measurements are consistent with the small flux. In fluid plasma,s localized coherent structures can occur as intense vortices.

  20. A design fix to supervisory control for fault-tolerant scheduling of real-time multiprocessor systems with aperiodic tasks

    Science.gov (United States)

    Devaraj, Rajesh; Sarkar, Arnab; Biswas, Santosh

    2015-11-01

    In the article 'Supervisory control for fault-tolerant scheduling of real-time multiprocessor systems with aperiodic tasks', Park and Cho presented a systematic way of computing a largest fault-tolerant and schedulable language that provides information on whether the scheduler (i.e., supervisor) should accept or reject a newly arrived aperiodic task. The computation of such a language is mainly dependent on the task execution model presented in their paper. However, the task execution model is unable to capture the situation when the fault of a processor occurs even before the task has arrived. Consequently, a task execution model that does not capture this fact may possibly be assigned for execution on a faulty processor. This problem has been illustrated with an appropriate example. Then, the task execution model of Park and Cho has been modified to strengthen the requirement that none of the tasks are assigned for execution on a faulty processor.

  1. The Pagoda Sequence: a Ramble through Linear Complexity, Number Walls, D0L Sequences, Finite State Automata, and Aperiodic Tilings

    Directory of Open Access Journals (Sweden)

    Fred Lunnon

    2009-06-01

    Full Text Available We review the concept of the number wall as an alternative to the traditional linear complexity profile (LCP, and sketch the relationship to other topics such as linear feedback shift-register (LFSR and context-free Lindenmayer (D0L sequences. A remarkable ternary analogue of the Thue-Morse sequence is introduced having deficiency 2 modulo 3, and this property verified via the re-interpretation of the number wall as an aperiodic plane tiling.

  2. The Pagoda Sequence: a Ramble through Linear Complexity, Number Walls, D0L Sequences, Finite State Automata, and Aperiodic Tilings

    CERN Document Server

    Lunnon, Fred

    2009-01-01

    We review the concept of the number wall as an alternative to the traditional linear complexity profile (LCP), and sketch the relationship to other topics such as linear feedback shift-register (LFSR) and context-free Lindenmayer (D0L) sequences. A remarkable ternary analogue of the Thue-Morse sequence is introduced having deficiency 2 modulo 3, and this property verified via the re-interpretation of the number wall as an aperiodic plane tiling.

  3. Aperiodic dynamics in a deterministic adaptive network model of attitude formation in social groups

    Science.gov (United States)

    Ward, Jonathan A.; Grindrod, Peter

    2014-07-01

    Adaptive network models, in which node states and network topology coevolve, arise naturally in models of social dynamics that incorporate homophily and social influence. Homophily relates the similarity between pairs of nodes' states to their network coupling strength, whilst social influence causes coupled nodes' states to convergence. In this paper we propose a deterministic adaptive network model of attitude formation in social groups that includes these effects, and in which the attitudinal dynamics are represented by an activato-inhibitor process. We illustrate that consensus, corresponding to all nodes adopting the same attitudinal state and being fully connected, may destabilise via Turing instability, giving rise to aperiodic dynamics with sensitive dependence on initial conditions. These aperiodic dynamics correspond to the formation and dissolution of sub-groups that adopt contrasting attitudes. We discuss our findings in the context of cultural polarisation phenomena. Social influence. This reflects the fact that people tend to modify their behaviour and attitudes in response to the opinions of others [22-26]. We model social influence via diffusion: agents adjust their state according to a weighted sum (dictated by the evolving network) of the differences between their state and the states of their neighbours. Homophily. This relates the similarity of individuals' states to their frequency and strength of interaction [27]. Thus in our model, homophily drives the evolution of the weighted ‘social' network. A precise formulation of our model is given in Section 2. Social influence and homophily underpin models of social dynamics [21], which cover a wide range of sociological phenomena, including the diffusion of innovations [28-32], complex contagions [33-36], collective action [37-39], opinion dynamics [19,20,40,10,11,13,15,41,16], the emergence of social norms [42-44], group stability [45], social differentiation [46] and, of particular relevance

  4. Magnetorotational Turbulence Transports Angular Momentum in Stratified Disks with Low Magnetic Prandtl Number but Magnetic Reynolds Number above a Critical Value

    Energy Technology Data Exchange (ETDEWEB)

    Oishi, Jeffrey S.; /KIPAC, Menlo Park; Low, Mordecai-Mark Mac; /Amer. Museum Natural Hist.

    2012-02-14

    The magnetorotational instability (MRI) may dominate outward transport of angular momentum in accretion disks, allowing material to fall onto the central object. Previous work has established that the MRI can drive a mean-field dynamo, possibly leading to a self-sustaining accretion system. Recently, however, simulations of the scaling of the angular momentum transport parameter {alpha}{sub SS} with the magnetic Prandtl number Pm have cast doubt on the ability of the MRI to transport astrophysically relevant amounts of angular momentum in real disk systems. Here, we use simulations including explicit physical viscosity and resistivity to show that when vertical stratification is included, mean field dynamo action operates, driving the system to a configuration in which the magnetic field is not fully helical. This relaxes the constraints on the generated field provided by magnetic helicity conservation, allowing the generation of a mean field on timescales independent of the resistivity. Our models demonstrate the existence of a critical magnetic Reynolds number Rm{sub crit}, below which transport becomes strongly Pm-dependent and chaotic, but above which the transport is steady and Pm-independent. Prior simulations showing Pm-dependence had Rm < Rm{sub crit}. We conjecture that this steady regime is possible because the mean field dynamo is not helicity-limited and thus does not depend on the details of the helicity ejection process. Scaling to realistic astrophysical parameters suggests that disks around both protostars and stellar mass black holes have Rm >> Rm{sub crit}. Thus, we suggest that the strong Pm dependence seen in recent simulations does not occur in real systems.

  5. Hydromagnetic turbulence in the direct interaction approximation

    International Nuclear Information System (INIS)

    The dissertation is concerned with the nature of turbulence in a medium with large electrical conductivity. Three distinct though inter-related questions are asked. Firstly, the evolution of a weak, random initial magnetic field in a highly conducting, isotropically turbulent fluid is discussed. This was first discussed in the paper 'Growth of Turbulent Magnetic Fields' by Kraichnan and Nagargian. The Physics of Fluids, volume 10, number 4, 1967. Secondly, the direct interaction approximation for hydromagnetic turbulence maintained by stationary, isotropic, random stirring forces is formulated in the wave-number-frequency domain. Thirdly, the dynamical evolution of a weak, random, magnetic excitation in a turbulent electrically conducting fluid is examined under varying kinematic conditions. (G.T.H.)

  6. Elastic wave localization in two-dimensional phononic crystals with one-dimensional random disorder and aperiodicity

    Energy Technology Data Exchange (ETDEWEB)

    Yan Zhizhong, E-mail: zzyan@bit.edu.c [Department of Mathematics, Beijing Institute of Technology, Beijing 100081 (China); Zhang Chuanzeng, E-mail: c.zhang@uni-siegen.d [Department of Civil Engineering, University of Siegen, D-57078 Siegen (Germany); Wang Yuesheng, E-mail: yswang@center.njtu.edu.c [Institute of Engineering Mechanics, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044 (China)

    2011-03-01

    The band structures of in-plane elastic waves propagating in two-dimensional phononic crystals with one-dimensional random disorder and aperiodicity are analyzed in this paper. The localization of wave propagation is discussed by introducing the concept of the localization factor, which is calculated by the plane-wave-based transfer-matrix method. By treating the random disorder and aperiodicity as the deviation from the periodicity in a special way, three kinds of aperiodic phononic crystals that have normally distributed random disorder, Thue-Morse and Rudin-Shapiro sequence in one direction and translational symmetry in the other direction are considered and the band structures are characterized using localization factors. Besides, as a special case, we analyze the band gap properties of a periodic planar layered composite containing a periodic array of square inclusions. The transmission coefficients based on eigen-mode matching theory are also calculated and the results show the same behaviors as the localization factor does. In the case of random disorders, the localization degree of the normally distributed random disorder is larger than that of the uniformly distributed random disorder although the eigenstates are both localized no matter what types of random disorders, whereas, for the case of Thue-Morse and Rudin-Shapiro structures, the band structures of Thue-Morse sequence exhibit similarities with the quasi-periodic (Fibonacci) sequence not present in the results of the Rudin-Shapiro sequence.

  7. Turbulent equipartitions in two dimensional drift convection

    International Nuclear Information System (INIS)

    Unlike the thermodynamic equipartition of energy in conservative systems, turbulent equipartitions (TEP) describe strongly non-equilibrium systems such as turbulent plasmas. In turbulent systems, energy is no longer a good invariant, but one can utilize the conservation of other quantities, such as adiabatic invariants, frozen-in magnetic flux, entropy, or combination thereof, in order to derive new, turbulent quasi-equilibria. These TEP equilibria assume various forms, but in general they sustain spatially inhomogeneous distributions of the usual thermodynamic quantities such as density or temperature. This mechanism explains the effects of particle and energy pinch in tokamaks. The analysis of the relaxed states caused by turbulent mixing is based on the existence of Lagrangian invariants (quantities constant along fluid-particle or other orbits). A turbulent equipartition corresponds to the spatially uniform distribution of relevant Lagrangian invariants. The existence of such turbulent equilibria is demonstrated in the simple model of two dimensional electrostatically turbulent plasma in an inhomogeneous magnetic field. The turbulence is prescribed, and the turbulent transport is assumed to be much stronger than the classical collisional transport. The simplicity of the model makes it possible to derive the equations describing the relaxation to the TEP state in several limits

  8. Soliton turbulence

    Science.gov (United States)

    Tchen, C. M.

    1986-01-01

    Theoretical and numerical works in atmospheric turbulence have used the Navier-Stokes fluid equations exclusively for describing large-scale motions. Controversy over the existence of an average temperature gradient for the very large eddies in the atmosphere suggested that a new theoretical basis for describing large-scale turbulence was necessary. A new soliton formalism as a fluid analogue that generalizes the Schrodinger equation and the Zakharov equations has been developed. This formalism, processing all the nonlinearities including those from modulation provided by the density fluctuations and from convection due to the emission of finite sound waves by velocity fluctuations, treats large-scale turbulence as coalescing and colliding solitons. The new soliton system describes large-scale instabilities more explicitly than the Navier-Stokes system because it has a nonlinearity of the gradient type, while the Navier-Stokes has a nonlinearity of the non-gradient type. The forced Schrodinger equation for strong fluctuations describes the micro-hydrodynamical state of soliton turbulence and is valid for large-scale turbulence in fluids and plasmas where internal waves can interact with velocity fluctuations.

  9. High Energy Particle Acceleration and Turbulent Magnetic Field Amplification in Shell Type Supernova Remnants. Degree awarded by Minnesota Univ.

    Science.gov (United States)

    Keohane, Jonathan Wilmore

    1998-01-01

    Thesis submitted to the faculty of the Graduate School of the University of Minnesota in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Part I discusses the spatial correlation between the x-ray and radio morphologies of Cas A, and in the process address: the effect of inhomogeneous absorption on the apparent x-ray morphology, the interaction between the SNR and a molecular cloud, and the rapid move toward equipartition between the magnetic and gas energy densities. Discussions of the x-ray./radio correlation continues in Chapter 5, where we present a new, deep, ROSAT HRI image of Cas A. Chapter 7 presents ASCA spectra, with non-thermal spectral fits for 13 of the youngest SNRs in the Galaxy.

  10. Effects of resonant magnetic perturbations on turbulence and transport in DIII-D L-mode plasmas

    Science.gov (United States)

    Mordijck, S.; Rhodes, T. L.; Zeng, L.; Doyle, E. J.; Schmitz, L.; Chrystal, C.; Strait, T. J.; Moyer, R. A.

    2016-01-01

    In this paper we show that resonant magnetic perturbations (RMPs) affect the L- to H-mode power threshold. We find that during the L-mode phase, RMPs cause the particle pinch to reverse from traditionally inward to outward. As a result, the density at the plasma edge increases, while the density in the plasma core is reduced. Linear stability calculations indicate that the plasma transitions from an ion temperature gradient (ITG) to trapped electron mode (TEM) regime at the plasma edge. If the applied RMP current is below the threshold for penetration and island formation, we find that the changes in the edge radial electric field are minimal, while the carbon toroidal rotation brakes over the whole minor radius. Once the RMP field penetrates and the screening plasma response dissappears, the spin-up of the toroidal rotation at the plasma edge results in a positive radial electric field inside the separatrix.

  11. Turbulence modelling

    International Nuclear Information System (INIS)

    This paper is an introduction course in modelling turbulent thermohydraulics, aimed at computational fluid dynamics users. No specific knowledge other than the Navier Stokes equations is required beforehand. Chapter I (which those who are not beginners can skip) provides basic ideas on turbulence physics and is taken up in a textbook prepared by the teaching team of the ENPC (Benque, Viollet). Chapter II describes turbulent viscosity type modelling and the 2k-ε two equations model. It provides details of the channel flow case and the boundary conditions. Chapter III describes the 'standard' (Rij-ε) Reynolds tensions transport model and introduces more recent models called 'feasible'. A second paper deals with heat transfer and the effects of gravity, and returns to the Reynolds stress transport model. (author)

  12. Optimized aperiodic multilayer structures for use as narrow-angular absorbers

    International Nuclear Information System (INIS)

    In this paper, we investigate aperiodic multilayer structures for use as narrow-angular absorbers. The layer thicknesses and materials are optimized using a genetic global optimization algorithm coupled to a transfer matrix code to maximize the angular selectivity in the absorptance at a single or multiple wavelengths. We first consider structures composed of alternating layers of tungsten and silicon or silica, and find that it is not possible to achieve angular selectivity in the absorptance with such structures. We next consider structures composed of alternating layers of silicon and silica, and show that when optimized they exhibit high angular selectivity in absorptance. In addition, as the angular selectivity in absorptance increases, the wavelength range of high angular selectivity also decreases. Optimizing the material composition of the multilayer structures, in addition to optimizing the layer thicknesses, leads to marginal improvement in angular selectivity. Finally, we show that by optimizing the absorptance of the multilayer structures at multiple wavelengths, we can obtain structures exhibiting almost perfect absorptance at normal incidence and narrow angular width in absorptance at these wavelengths. Similar to the structures optimized at a single wavelength, the wavelength range of high angularly selective absorptance is narrow

  13. Optimized aperiodic multilayer structures for use as narrow-angular absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Granier, Christopher H., E-mail: cgrani1@lsu.edu; Dowling, Jonathan P. [Department of Physics and Astronomy, Hearne Institute of Theoretical Physics, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Afzal, Francis O. [Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Department of Physics, Truman State University, Kirksville, Missouri 63501,USA (United States); Lorenzo, Simón G. [Department of Physics and Astronomy, Hearne Institute of Theoretical Physics, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Reyes, Mario [Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Department of Physics, California State University, San Bernardino, California 92407 (United States); Department of Physics and Astronomy, Hearne Institute of Theoretical Physics, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Veronis, Georgios [Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, Louisiana 70803 (United States)

    2014-12-28

    In this paper, we investigate aperiodic multilayer structures for use as narrow-angular absorbers. The layer thicknesses and materials are optimized using a genetic global optimization algorithm coupled to a transfer matrix code to maximize the angular selectivity in the absorptance at a single or multiple wavelengths. We first consider structures composed of alternating layers of tungsten and silicon or silica, and find that it is not possible to achieve angular selectivity in the absorptance with such structures. We next consider structures composed of alternating layers of silicon and silica, and show that when optimized they exhibit high angular selectivity in absorptance. In addition, as the angular selectivity in absorptance increases, the wavelength range of high angular selectivity also decreases. Optimizing the material composition of the multilayer structures, in addition to optimizing the layer thicknesses, leads to marginal improvement in angular selectivity. Finally, we show that by optimizing the absorptance of the multilayer structures at multiple wavelengths, we can obtain structures exhibiting almost perfect absorptance at normal incidence and narrow angular width in absorptance at these wavelengths. Similar to the structures optimized at a single wavelength, the wavelength range of high angularly selective absorptance is narrow.

  14. TEM turbulence optimisation in stellarators

    CERN Document Server

    Proll, J H E; Xanthopoulos, P; Lazerson, S A; Faber, B J

    2015-01-01

    With the advent of neoclassically optimised stellarators, optimising stellarators for turbulent transport is an important next step. The reduction of ion-temperature-gradient-driven turbulence has been achieved via shaping of the magnetic field, and the reduction of trapped-electron mode (TEM) turbulence is adressed in the present paper. Recent analytical and numerical findings suggest TEMs are stabilised when a large fraction of trapped particles experiences favourable bounce-averaged curvature. This is the case for example in Wendelstein 7-X [C.D. Beidler $\\textit{et al}$ Fusion Technology $\\bf{17}$, 148 (1990)] and other Helias-type stellarators. Using this knowledge, a proxy function was designed to estimate the TEM dynamics, allowing optimal configurations for TEM stability to be determined with the STELLOPT [D.A. Spong $\\textit{et al}$ Nucl. Fusion $\\bf{41}$, 711 (2001)] code without extensive turbulence simulations. A first proof-of-principle optimised equilibrium stemming from the TEM-dominated stella...

  15. Self-organized criticality and the dynamics of near-marginal turbulent transport in magnetically confined fusion plasmas

    Science.gov (United States)

    Sanchez, R.; Newman, D. E.

    2015-12-01

    The high plasma temperatures expected at reactor conditions in magnetic confinement fusion toroidal devices suggest that near-marginal operation could be a reality in future devices and reactors. By near-marginal it is meant that the plasma profiles might wander around the local critical thresholds for the onset of instabilities. Self-organized criticality (SOC) was suggested in the mid 1990s as a more proper paradigm to describe the dynamics of tokamak plasma transport in near-marginal conditions. It advocated that, near marginality, the evolution of mean profiles and fluctuations should be considered simultaneously, in contrast to the more common view of a large separation of scales existing between them. Otherwise, intrinsic features of near-marginal transport would be missed, that are of importance to understand the properties of energy confinement. In the intervening 20 years, the relevance of the idea of SOC for near-marginal transport in fusion plasmas has transitioned from an initial excessive hype to the much more realistic standing of today, which we will attempt to examine critically in this review paper. First, the main theoretical ideas behind SOC will be described. Secondly, how they might relate to the dynamics of near-marginal transport in real magnetically confined plasmas will be discussed. Next, we will review what has been learnt about SOC from various numerical studies and what it has meant for the way in which we do numerical simulation of fusion plasmas today. Then, we will discuss the experimental evidence available from the several experiments that have looked for SOC dynamics in fusion plasmas. Finally, we will conclude by identifying the various problems that still remain open to investigation in this area. Special attention will be given to the discussion of frequent misconceptions and ongoing controversies. The review also contains a description of ongoing efforts that seek effective transport models better suited than traditional

  16. Cosmic turbulence

    International Nuclear Information System (INIS)

    A generalization of a transformation due to Kurskov and Ozernoi is used to rewrite the usual equations governing subsonic turbulence in Robertson-Walker cosmological models as Navier-Stokes equations with a time-dependent viscosity. This paper first rederives some well-known results in a very simple way by means of this transformation. The main result however is that the establishment of a Kolmogorov spectrum at recombination appears to be incompatible with subsonic turbulence. The conditions after recombination are also discussed briefly. (author)

  17. Direct measurement of turbulent resistivity

    Science.gov (United States)

    Nornberg, M. D.

    2013-10-01

    We have directly measured the vector turbulent emf in a two-vortex flow of liquid sodium in the Madison Dynamo Experiment. Using a novel probe design, we simultaneously measure magnetic and flow fluctuations to determine their correlated effect on mean-field induction. Through our electromagnetic model for the flow-induced mean magnetic field, constrained by measurements throughout the flow, we construct the vector mean current density at the probe location. With this information we are able to construct the mean-field model for the α and β-effect terms of the turbulent emf and compare them with the direct measurement of the time averaged correlated fluctuations. The measured turbulent emf is anti-parallel with the mean current and is almost entirely described by an enhanced resistivity. The residual turbulent resistivity presents a difficulty for establishing the onset of the kinematic dynamo in a laboratory turbulent flow in that the effective magnetic Reynolds number is reduced making it more difficult to exceed the critical Rm . We have demonstrated that this enhanced resistivity can be mitigated by eliminating the largest-scale eddies. By tailoring the large-scale flow, we have achieved flows operating near threshold for dynamo self-excitation.

  18. Energy dissipation processes in solar wind turbulence

    CERN Document Server

    Wang, Y; Feng, X S; Xu, X J; Zhang, J; Sun, T R; Zuo, P B

    2015-01-01

    Turbulence is a chaotic flow regime filled by irregular flows. The dissipation of turbulence is a fundamental problem in the realm of physics. Theoretically, dissipation cannot be ultimately achieved without collisions, and so how turbulent kinetic energy is dissipated in the nearly collisionless solar wind is a challenging problem. Wave particle interactions and magnetic reconnection are two possible dissipation mechanisms, but which mechanism dominates is still a controversial topic. Here we analyze the dissipation region scaling around a solar wind magnetic reconnection region. We find that the magnetic reconnection region shows a unique multifractal scaling in the dissipation range, while the ambient solar wind turbulence reveals a monofractal dissipation process for most of the time. These results provide the first observational evidences for the intermittent multifractal dissipation region scaling around a magnetic reconnection site, and they also have significant implications for the fundamental energy...

  19. Burgers turbulence

    International Nuclear Information System (INIS)

    The last decades witnessed a renewal of interest in the Burgers equation. Much activities focused on extensions of the original one-dimensional pressureless model introduced in the thirties by the Dutch scientist J.M. Burgers, and more precisely on the problem of Burgers turbulence, that is the study of the solutions to the one- or multi-dimensional Burgers equation with random initial conditions or random forcing. Such work was frequently motivated by new emerging applications of Burgers model to statistical physics, cosmology, and fluid dynamics. Also Burgers turbulence appeared as one of the simplest instances of a nonlinear system out of equilibrium. The study of random Lagrangian systems, of stochastic partial differential equations and their invariant measures, the theory of dynamical systems, the applications of field theory to the understanding of dissipative anomalies and of multiscaling in hydrodynamic turbulence have benefited significantly from progress in Burgers turbulence. The aim of this review is to give a unified view of selected work stemming from these rather diverse disciplines

  20. Turbulent combustion

    Energy Technology Data Exchange (ETDEWEB)

    Talbot, L.; Cheng, R.K. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.

  1. Intrinsic rotation drive by collisionless trapped electron mode turbulence

    CERN Document Server

    Wang, Lu; Diamond, P H

    2016-01-01

    Both the parallel residual stress and parallel turbulent acceleration driven by electrostatic collisionsless trapped electron mode (CTEM) turbulence are calculated analytically using gyrokinetic theory. Quasilinear results show that the parallel residual stress contributes an outward flux of co-current rotation for normal magnetic shear and turbulence intensity profile increasing outward. This may induce intrinsic counter-current rotation or flattening of the co-current rotation profile. The parallel turbulent acceleration driven by CTEM turbulence vanishes, due to the absence of a phase shift between density fluctuation and ion pressure fluctuation. This is different from the case of ion temperature gradient (ITG) turbulence, for which the turbulent acceleration can provide co-current drive for normal magnetic shear and turbulence intensity profile increasing outward. Its order of magnitude is predicted to be the same as that of the divergence of the residual stress [Lu Wang and P.H. Diamond, Phys. Rev. Lett...

  2. Coherence in Turbulence: New Perspective

    Science.gov (United States)

    Levich, Eugene

    2009-07-01

    . In particular, theoretical and numerical evidence is given indicating that BCC in turbulent channel/pipe flows have the depth at the walls proportional to the square root of the Reynolds number in wall units, Ly ∝ √Re, which is equivalent to the fractal dimension in normal to the walls y direction DyF = 0, 5, and the total dimension DF = Dx, zF + DyF = 2 + 0.5 = 2.5. Similar BCC structure and the same fractal dimension are suggested for geophysical turbulence, in near agreement with the recent comprehensive analysis of experimental and observational data. It is asserted that the atmospheric and oceanic events, e.g., tropical hurricanes, tornadoes and other mesoscale phenomena, and probably ocean currents are manifestations of BCC and their environs. Generally BCC should be rather seen as the turbulence core, while the whole surrounding 3D flow as being created and sustained by the intense vorticity of BCC by means of induction, in a manner similar to that for an electric current generating magnetic field. It is further argued that BCC is not only a theoretical concept important for fundamental grasp on turbulence, but may be a practical asset furnishing tools for turbulence management in regular fluids and plasmas. The concept of helical fluctuations in turbulence goes 25 years back in time, and while never totally abandoned nevertheless has been residing on the fringes of research activity. Experiment and numerical simulations had not been able to either validate or repudiate decisively the concept. However, recent large scale direct numerical simulations and proliferation of experimental and observational data showed convincingly how ubiquitous is the phenomenon of helicity fluctuations in various turbulent flows, from hurricanes and tornadoes to turbulent jets to solar wind plasma turbulence to turbulent flows in compressible fluids. This allowed a fresh look at the concept and led to a quantitative theory exposed in this paper. The paper concludes with a

  3. Two-dimensional turbulence in magnetised plasmas

    CERN Document Server

    Kendl, Alexander

    2010-01-01

    In an inhomogeneous magnetised plasma the transport of energy and particles perpendicular to the magnetic field is in general mainly caused by quasi two-dimensional turbulent fluid mixing. The physics of turbulence and structure formation is of ubiquitous importance to every magnetically confined laboratory plasma for experimental or industrial application. Specifically, high temperature plasmas for fusion energy research are also dominated by the properties of this turbulent transport. Self-organisation of turbulent vortices to mesoscopic structures like zonal flows is related to the formation of transport barriers that can significantly enhance the confinement of a fusion plasma. This subject of great importance in research is rarely touched on in introductory plasma physics or continuum dynamics courses. Here a brief tutorial on 2D fluid and plasma turbulence is presented as an introduction to the field, appropriate for inclusion in undergraduate and graduate courses.

  4. Molecular Cloud Turbulence and Star Formation

    CERN Document Server

    Ballesteros-Paredes, J; MacLow, M M; Vázquez-Semadeni, E

    2006-01-01

    We review the properties of turbulent molecular clouds (MCs), focusing on the physical processes that influence star formation (SF). MC formation appears to occur during large-scale compression of the diffuse ISM driven by supernovae, magnetorotational instability, or gravitational instability in galactic disks of stars and gas. The compressions generate turbulence that can accelerate molecule production and produce the observed morphology. We then review the properties of MC turbulence, including density enhancements observed as clumps and cores, magnetic field structure, driving scales, the relation to observed scaling relations, and the interaction with gas thermodynamics. We argue that MC cores are dynamical, not quasistatic, objects with relatively short lifetimes not exceeding a few megayears. We review their morphology, magnetic fields, density and velocity profiles, and virial budget. Next, we discuss how MC turbulence controls SF. On global scales turbulence prevents monolithic collapse of the clouds...

  5. Coherent structure of zonal flow and onset of turbulent transport

    International Nuclear Information System (INIS)

    Excitation of the turbulence in the range of drift wave frequency and zonal flow in magnetized plasmas is analyzed. Nonlinear stabilization effect on zonal flow drive is introduced, and the steady state solution is obtained. The condition for the onset of turbulent transport is obtained and partition ratio of fluctuation energy into turbulence and zonal flows is derived. The turbulent transport coefficient, which includes the effect of zonal flow, is also obtained. Analytic result and direct numerical simulation show a good agreement. (author)

  6. Surveying the higher dimensions of the aperiodic composite nonadecane/urea

    International Nuclear Information System (INIS)

    We recently observed for the first time that there exist phase transitions where the structural changes correspond just to degrees of freedom hidden in the internal (super)space of an aperiodic material, here the composite nonadecane/urea. A key factor in the discovery of this type of transition was the examination of the diffraction pattern in 3D, only possible at the time on a four-circle triple-axis neutron spectrometer, the analyzer used in zero-energy transfer to reduce the background and improve resolution. Despite the greater accessibility in reciprocal space, the weak intensity of the superlattice reflections limited the volume of reciprocal space that could be explored. Modern neutron Laue diffractometers with large image-plate detectors permit rapid and extensive exploration of reciprocal space with high resolution in the two dimensional projection and a wide dynamic range with negligible bleeding of intense diffraction spots. Surveying nonadecane/urea with neutron Laue diffraction from 300K to 4K reveals further detail of the superspace-driven phase transition, notably a significant increase in misorientation in the plane perpendicular to the composite misfit axis, as well as a first-order transition to a new phase at lower temperature. Complementary monochromatic X-ray examination, again using a high-resolution image-plate detector, reveals that this new phase corresponds to a new ordering of the guest alkane subsystem. Little more can be concluded though, since in common with other alkane-urea crystals, the paucity of unique data in the new phases prevents full structural refinement. Nevertheless these new observations shed further light on how nature uses the degrees of freedom hidden in the internal superspace to form states that cannot be envisaged in the usual 3D real space.

  7. Magnetized stratified rotating shear waves.

    Science.gov (United States)

    Salhi, A; Lehner, T; Godeferd, F; Cambon, C

    2012-02-01

    stability of the solution at infinite vertical wavelength (k(3) = 0): There is an oscillatory behavior for τ > 1+|K(2)/k(1)|, where τ = St is a dimensionless time and K(2) is the radial component of the wave vector at τ = 0. The model is suitable to describe instabilities leading to turbulence by the bypass mechanism that can be relevant for the analysis of magnetized stratified Keplerian disks with a purely azimuthal field. For initial isotropic conditions, the time evolution of the spectral density of total energy (kinetic + magnetic + potential) is considered. At k(3) = 0, the vertical motion is purely oscillatory, and the sum of the vertical (kinetic + magnetic) energy plus the potential energy does not evolve with time and remains equal to its initial value. The horizontal motion can induce a rapid transient growth provided K(2)/k(1)>1. This rapid growth is due to the aperiodic velocity vortex mode that behaves like K(h)/k(h) where k(h)(τ)=[k(1)(2) + (K(2) - k(1)τ)(2)](1/2) and K(h) =k(h)(0). After the leading phase (τ > K(2)/k(1)>1), the horizontal magnetic energy and the horizontal kinetic energy exhibit a similar (oscillatory) behavior yielding a high level of total energy. The contribution to energies coming from the modes k(1) = 0 and k(3) = 0 is addressed by investigating the one-dimensional spectra for an initial Gaussian dense spectrum. For a magnetized Keplerian disk with a purely vertical field, it is found that an important contribution to magnetic and kinetic energies comes from the region near k(1) = 0. The limit at k(1) = 0 of the streamwise one-dimensional spectra of energies, or equivalently, the streamwise two-dimensional (2D) energy, is then computed. The comparison of the ratios of these 2D quantities with their three-dimensional counterparts provided by previous direct numerical simulations shows a quantitative agreement. PMID:22463311

  8. Turbulence Model

    DEFF Research Database (Denmark)

    Nielsen, Mogens Peter; Shui, Wan; Johansson, Jens

    2011-01-01

    In this report a new turbulence model is presented.In contrast to the bulk of modern work, the model is a classical continuum model with a relatively simple constitutive equation. The constitutive equation is, as usual in continuum mechanics, entirely empirical. It has the usual Newton or Stokes...... term with stresses depending linearly on the strain rates. This term takes into account the transfer of linear momentum from one part of the fluid to another. Besides there is another term, which takes into account the transfer of angular momentum. Thus the model implies a new definition of turbulence....... The model is in a virgin state, but a number of numerical tests have been carried out with good results. It is published to encourage other researchers to study the model in order to find its merits and possible limitations....

  9. Burgers Turbulence

    OpenAIRE

    Bec, Jeremie; Khanin, Konstantin

    2007-01-01

    The last decades witnessed a renewal of interest in the Burgers equation. Much activities focused on extensions of the original one-dimensional pressureless model introduced in the thirties by the Dutch scientist J.M. Burgers, and more precisely on the problem of Burgers turbulence, that is the study of the solutions to the one- or multi-dimensional Burgers equation with random initial conditions or random forcing. Such work was frequently motivated by new emerging applications of Burgers mod...

  10. Controlling turbulence

    Science.gov (United States)

    Kühnen, Jakob; Hof, Björn

    2015-11-01

    We show that a simple modification of the velocity profile in a pipe can lead to a complete collapse of turbulence and the flow fully relaminarises. The annihilation of turbulence is achieved by a steady manipulation of the streamwise velocity component alone, greatly reducing control efforts. Several different control techniques are presented: one with a local modification of the flow profile by means of a stationary obstacle, one employing a nozzle injecting fluid through a small gap at the pipe wall and one with a moving wall, where a part of the pipe is shifted in the streamwise direction. All control techniques act on the flow such that the streamwise velocity profile becomes more flat and turbulence gradually grows faint and disappears. In a smooth straight pipe the flow remains laminar downstream of the control. Hence a reduction in skin friction by a factor of 8 and more can be accomplished. Stereoscopic PIV-measurements and movies of the development of the flow during relaminarisation are presented.

  11. A dynamics investigation into edge plasma turbulence

    International Nuclear Information System (INIS)

    The present experimental work investigates plasma turbulence in the edge region of magnetized high-temperature plasmas. A main topic is the turbulent dynamics parallel to the magnetic field, where hitherto only a small data basis existed, especially for very long scale lengths in the order of ten of meters. A second point of special interest is the coupling of the dynamics parallel and perpendicular to the magnetic field. This anisotropic turbulent dynamics is investigated by two different approaches. Firstly, spatially and temporally high-resolution measurements of fluctuating plasma parameters are investigated by means of two-point correlation analysis. Secondly, the propagation of signals externally imposed into the turbulent plasma background is studied. For both approaches, Langmuir probe arrays were utilized for diagnostic purposes. (orig.)

  12. Study of resistive pressure-gradient-driven turbulence

    International Nuclear Information System (INIS)

    Previous studies have shown the resistive pressure-gradient-driven turbulence (RPGDT) is a likely cause of observed turbulent fluctuations and anomalous transport in magnetically confined plasmas. More recent study of RPGDT found a true saturation criterion and predicted significantly larger pressure diffusivity over simple mixing-length estimate. In this study, we investigate wavenumber spectrum for more detailed characteristics of this driven turbulence and consider an electromagnetic model with electron temperature evolution to study the effect of magnetic fluctuations on thermal transport

  13. Intermittency of quasi-static magnetohydrodynamic turbulence: A wavelet viewpoint

    International Nuclear Information System (INIS)

    Intermittency of quasi-static magnetohydrodynamic (MHD) turbulence in an imposed magnetic field is examined, using three-dimensional orthonormal wavelets. The wavelet analysis is applied to two turbulent MHD flows computed by direct numerical simulation with 5123 grid points and with different intensities of the imposed magnetic field. It is found that the imposed magnetic field leads to a substantial amplification of intermittency of the flow, especially in the direction of the imposed magnetic field.

  14. Phenomenological Magnetic Model in Tsai-Type Approximants

    Science.gov (United States)

    Sugimoto, Takanori; Tohyama, Takami; Hiroto, Takanobu; Tamura, Ryuji

    2016-05-01

    Motivated by recent discovery of canted ferromagnetism in Tsai-type approximants Au-Si-RE (RE = Tb, Dy, Ho), we propose a phenomenological magnetic model reproducing their magnetic structure and thermodynamic quantities. In the model, cubic symmetry ($m\\bar{3}$) of the approximately-regular icosahedra plays a key role in the peculiar magnetic structure determined by a neutron diffraction experiment. Our magnetic model does not only explain magnetic behaviors in the quasicrystal approximants, but also provides a good starting point for the possibility of coexistence between magnetic long-range order and aperiodicity in quasicrystals.

  15. Graphic Turbulence Guidance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Forecast turbulence hazards identified by the Graphical Turbulence Guidance algorithm. The Graphical Turbulence Guidance product depicts mid-level and upper-level...

  16. Magnetohydrodynamic Turbulence

    Science.gov (United States)

    Montgomery, David C.

    2004-01-01

    Magnetohydrodynamic (MHD) turbulence theory is modeled on neutral fluid (Navier-Stokes) turbulence theory, but with some important differences. There have been essentially no repeatable laboratory MHD experiments wherein the boundary conditions could be controlled or varied and a full set of diagnostics implemented. The equations of MHD are convincingly derivable only in the limit of small ratio of collision mean-free-paths to macroscopic length scales, an inequality that often goes the other way for magnetofluids of interest. Finally, accurate information on the MHD transport coefficients-and thus, the Reynolds-like numbers that order magnetofluid behavior-is largely lacking; indeed, the algebraic expressions used for such ingredients as the viscous stress tensor are often little more than wishful borrowing from fluid mechanics. The one accurate thing that has been done extensively and well is to solve the (strongly nonlinear) MHD equations numerically, usually in the presence of rectangular periodic boundary conditions, and then hope for the best when drawing inferences from the computations for those astrophysical and geophysical MHD systems for which some indisputably turbulent detailed data are available, such as the solar wind or solar prominences. This has led to what is perhaps the first field of physics for which computer simulations are regarded as more central to validating conclusions than is any kind of measurement. Things have evolved in this way due to a mixture of the inevitable and the bureaucratic, but that is the way it is, and those of us who want to work on the subject have to live with it. It is the only game in town, and theories that have promised more-often on the basis of some alleged ``instability''-have turned out to be illusory.

  17. A-periodic multilayer development for attosecond pulses in the 300-500 eV photon energy range

    Energy Technology Data Exchange (ETDEWEB)

    Guggenmos, Alexander; Hofstetter, Michael; Kleineberg, Ulf [Fakultaet fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, Garching (Germany); Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Rauhut, Roman [Fakultaet fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, Garching (Germany)

    2011-07-01

    The development of ultrafast X-ray pulses in the sub-femtosecond time regime is a cutting edge technology for studying electron dynamics in atoms, molecules or solid surfaces/nanostructures by means of pump/probe electron spectroscopy. XUV elements as multilayer mirrors and thin metal filters are used to filter and shape attosecond bursts from high harmonic radiation. One near future goal is to extend the current technology to higher photon energies, reaching the water window range around 300-500 eV, where the in-vitro investigation of bio-materials on ultra-short time scales becomes possible. Following the ideas of nowadays experimental setups, both the spectral and the temporal resolution can be determined and guided by means of periodic and a-periodic multilayer mirrors, allowing for spectral and temporal soft X-ray pulse shaping. We will present first investigations of periodic and a-periodic multilayer XUV optics in that energy range of 300-400 eV and discuss their applications for filtering single attosecond pulses from High Harmonic radiation. Simulations and optimizations of various binary and ternary multilayer material systems as well as first experimental results achieved by Ion Beam Deposition and in-situ ellipsometry of the deposited nanolayers are demonstrated.

  18. A-periodic multilayer development for attosecond pulses in the 300-500 eV photon energy range

    International Nuclear Information System (INIS)

    The development of ultrafast X-ray pulses in the sub-femtosecond time regime is a cutting edge technology for studying electron dynamics in atoms, molecules or solid surfaces/nanostructures by means of pump/probe electron spectroscopy. XUV elements as multilayer mirrors and thin metal filters are used to filter and shape attosecond bursts from high harmonic radiation. One near future goal is to extend the current technology to higher photon energies, reaching the water window range around 300-500 eV, where the in-vitro investigation of bio-materials on ultra-short time scales becomes possible. Following the ideas of nowadays experimental setups, both the spectral and the temporal resolution can be determined and guided by means of periodic and a-periodic multilayer mirrors, allowing for spectral and temporal soft X-ray pulse shaping. We will present first investigations of periodic and a-periodic multilayer XUV optics in that energy range of 300-400 eV and discuss their applications for filtering single attosecond pulses from High Harmonic radiation. Simulations and optimizations of various binary and ternary multilayer material systems as well as first experimental results achieved by Ion Beam Deposition and in-situ ellipsometry of the deposited nanolayers are demonstrated.

  19. Magnetohydrodynamic turbulence: Observation and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M. R.; Schaffner, D. A.; Weck, P. J. [Department of Physics and Astronomy, Swarthmore College, 500 College Avenue, Swarthmore, Pennsylvania 19081 (United States)

    2015-05-15

    We provide a tutorial on the paradigms and tools of magnetohydrodynamic (MHD) turbulence. The principal paradigm is that of a turbulent cascade from large scales to small, resulting in power law behavior for the frequency power spectrum for magnetic fluctuations E{sub B}(f). We will describe five useful statistical tools for MHD turbulence in the time domain: the temporal autocorrelation function, the frequency power spectrum, the probability distribution function of temporal increments, the temporal structure function, and the permutation entropy. Each of these tools will be illustrated with an example taken from MHD fluctuations in the solar wind. A single dataset from the Wind satellite will be used to illustrate all five temporal statistical tools.

  20. Solar Wind Turbulence and the Role of Ion Instabilities

    CERN Document Server

    Alexandrova, Olga; Sorriso-Valvo, Luca; Horbury, Timothy S; Bale, Stuart D

    2013-01-01

    Solar wind is probably the best laboratory to study turbulence in astrophysical plasmas. In addition to the presence of magnetic field, the differences with neutral fluid isotropic turbulence are: weakness of collisional dissipation and presence of several characteristic space and time scales. In this paper we discuss observational properties of solar wind turbulence in a large range from the MHD to the electron scales. At MHD scales, within the inertial range, turbulence cascade of magnetic fluctuations develops mostly in the plane perpendicular to the mean field. Solar wind turbulence is compressible in nature. The spectrum of velocity fluctuations do not follow magnetic field one. Probability distribution functions of different plasma parameters are not Gaussian, indicating presence of intermittency. At the moment there is no global model taking into account all these observed properties of the inertial range. At ion scales, turbulent spectra have a break, compressibility increases and the density fluctuat...

  1. Intrinsic Turbulence Stabilization in a Stellarator

    Science.gov (United States)

    Xanthopoulos, P.; Plunk, G. G.; Zocco, A.; Helander, P.

    2016-04-01

    The magnetic surfaces of modern stellarators are characterized by complex, carefully optimized shaping and exhibit locally compressed regions of strong turbulence drive. Massively parallel computer simulations of plasma turbulence reveal, however, that stellarators also possess two intrinsic mechanisms to mitigate the effect of this drive. In the regime where the length scale of the turbulence is very small compared to the equilibrium scale set by the variation of the magnetic field, the strongest fluctuations form narrow bandlike structures on the magnetic surfaces. Thanks to this localization, the average transport through the surface is significantly smaller than that predicted at locations of peak turbulence. This feature results in a numerically observed upshift of the onset of turbulence on the surface towards higher ion temperature gradients as compared with the prediction from the most unstable regions. In a second regime lacking scale separation, the localization is lost and the fluctuations spread out on the magnetic surface. Nonetheless, stabilization persists through the suppression of the large eddies (relative to the equilibrium scale), leading to a reduced stiffness for the heat flux dependence on the ion temperature gradient. These fundamental differences with tokamak turbulence are exemplified for the QUASAR stellarator [G. H. Neilson et al., IEEE Trans. Plasma Sci. 42, 489 (2014)].

  2. Ribbon Turbulence

    CERN Document Server

    Venaille, Antoine; Vallis, Geoffrey K

    2014-01-01

    We investigate the non-linear equilibration of a two-layer quasi-geostrophic flow in a channel forced by an imposed unstable zonal mean flow, paying particular attention to the role of bottom friction. In the limit of low bottom friction, classical theory of geostrophic turbulence predicts an inverse cascade of kinetic energy in the horizontal with condensation at the domain scale and barotropization on the vertical. By contrast, in the limit of large bottom friction, the flow is dominated by ribbons of high kinetic energy in the upper layer. These ribbons correspond to meandering jets separating regions of homogenized potential vorticity. We interpret these result by taking advantage of the peculiar conservation laws satisfied by this system: the dynamics can be recast in such a way that the imposed mean flow appears as an initial source of potential vorticity levels in the upper layer. The initial baroclinic instability leads to a turbulent flow that stirs this potential vorticity field while conserving the...

  3. Dynamic structure in self-sustained turbulence

    International Nuclear Information System (INIS)

    Dynamical equation for the self-sustained and pressure-driven turbulence in toroidal plasmas is derived. The growth rate of the dressed-test mode, which belongs to the subcritical turbulence, is obtained as a function of the turbulent transport coefficient. In the limit of the low fluctuation level, the mode has the feature of the nonlinear instability and shows the explosive growth. The growth rate vanishes when the driven transport reaches to the stationarily-turbulent level. The stationary solution is thermodynamically stable. The characteristic time, by which the stationary and self-sustained turbulence is established, scales with the ion-sound transit time and is accelerated by the bad magnetic curvature. Influences of the pressure gradient as well as the radial electric field inhomogeneity are quantified. (author)

  4. Interstellar MHD Turbulence and Star Formation

    CERN Document Server

    Vazquez-Semadeni, Enrique

    2012-01-01

    This chapter reviews the nature of turbulence in the Galactic interstellar medium (ISM) and its connections to the star formation (SF) process. The ISM is turbulent, magnetized, self-gravitating, and is subject to heating and cooling processes that control its thermodynamic behavior. The turbulence in the warm and hot ionized components of the ISM appears to be trans- or subsonic, and thus to behave nearly incompressibly. However, the neutral warm and cold components are highly compressible, as a consequence of both thermal instability in the atomic gas and of moderately-to-strongly supersonic motions in the roughly isothermal cold atomic and molecular components. Within this context, we discuss: i) the production and statistical distribution of turbulent density fluctuations in both isothermal and polytropic media; ii) the nature of the clumps produced by thermal instability, noting that, contrary to classical ideas, they in general accrete mass from their environment; iii) the density-magnetic field correla...

  5. Statistical turbulence theory and turbulence phenomenology

    Science.gov (United States)

    Herring, J. R.

    1973-01-01

    The application of deductive turbulence theory for validity determination of turbulence phenomenology at the level of second-order, single-point moments is considered. Particular emphasis is placed on the phenomenological formula relating the dissipation to the turbulence energy and the Rotta-type formula for the return to isotropy. Methods which deal directly with most or all the scales of motion explicitly are reviewed briefly. The statistical theory of turbulence is presented as an expansion about randomness. Two concepts are involved: (1) a modeling of the turbulence as nearly multipoint Gaussian, and (2) a simultaneous introduction of a generalized eddy viscosity operator.

  6. Global invariants in ideal magnetohydrodynamic turbulence

    International Nuclear Information System (INIS)

    Magnetohydrodynamic (MHD) turbulence is an important though incompletely understood factor affecting the dynamics of many astrophysical, geophysical, and technological plasmas. As an approximation, viscosity and resistivity may be ignored, and ideal MHD turbulence may be investigated by statistical methods. Incompressibility is also assumed and finite Fourier series are used to represent the turbulent velocity and magnetic field. The resulting model dynamical system consists of a set of independent Fourier coefficients that form a canonical ensemble described by a Gaussian probability density function (PDF). This PDF is similar in form to that of Boltzmann, except that its argument may contain not just the energy multiplied by an inverse temperature, but also two other invariant integrals, the cross helicity and magnetic helicity, each multiplied by its own inverse temperature. However, the cross and magnetic helicities, as usually defined, are not invariant in the presence of overall rotation or a mean magnetic field, respectively. Although the generalized form of the magnetic helicity is known, a generalized cross helicity may also be found, by adding terms that are linear in the mean magnetic field and angular rotation vectors, respectively. These general forms are invariant even in the presence of overall rotation and a mean magnetic field. We derive these general forms, explore their properties, examine how they extend the statistical theory of ideal MHD turbulence, and discuss how our results may be affected by dissipation and forcing

  7. Turbulent transport in low-beta plasmas

    DEFF Research Database (Denmark)

    Nielsen, A.H.; Pécseli, H.L.; Juul Rasmussen, J.

    1996-01-01

    Low-frequency electrostatic fluctuations are studied experimentally in a low-P plasma, with particular attention to their importance for the anomalous plasma transport across magnetic field lines. The presence of large coherent structures in a turbulent background at the edge of the plasma column...... is demonstrated by a statistical analysis. The importance of these structures for the turbulent transport is investigated. The study is extended by a multichannel conditional analysis to illustrate detailed properties and parameter dependences of the turbulent transport. (C) 1996 American Institute...

  8. Magnetohydrodynamic turbulence in the solar wind

    Science.gov (United States)

    Goldstein, Melvyn L.

    1995-01-01

    The fluctuations in magnetic field and plasma velocity in solar wind, which possess many features of fully developed magnetohydrodynamic (MHD) turbulence, are discussed. Direct spacecraft observations from 0.3 to over 20 AU, remote sensing radio scintillation observations, numerical simulations, and various models provide complementary methods that show that the fluctuations in the wind parameters undergo significant dynamical evolution independent of whatever turbulence might exist in the solar photosphere and corona. The Cluster mission, with high time resolution particle and field measurements and its variable separation strategies, should be able to provide data for answering many questions on MHD turbulence.

  9. Statistical Mechanics of Turbulent Dynamos

    Science.gov (United States)

    Shebalin, John V.

    2014-01-01

    Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much

  10. Studying Magnetohydrodynamic Turbulence with Synchrotron Polarization Dispersion

    Science.gov (United States)

    Zhang, Jian-Fu; Lazarian, Alex; Lee, Hyeseung; Cho, Jungyeon

    2016-07-01

    We test a new technique for studying magnetohydrodynamic turbulence suggested by Lazarian & Pogosyan, using synthetic observations of synchrotron polarization. This paper focuses on a one-point statistics, which is termed polarization frequency analysis, that is characterized by the variance of polarized emission as a function of the square of the wavelength along a single line of sight. We adopt the ratio η of the standard deviation of the line-of-sight turbulent magnetic field to the line-of-sight mean magnetic field to depict the level of turbulence. When this ratio is large (η \\gg 1), which characterizes a region dominated by turbulent field, or small (η ≲ 0.2), which characterizes a region dominated by the mean field, we obtain the polarization variance \\propto {λ }-2 or \\propto {λ }-2-2m, respectively. At small η, i.e., in the region dominated by the mean field, we successfully recover the turbulent spectral index from the polarization variance. We find that our simulations agree well with the theoretical prediction of Lazarian & Pogosyan. With existing and upcoming data cubes from the Low-Frequency Array for Radio Astronomy (LOFAR) and the Square Kilometer Array (SKA), this new technique can be applied to study the magnetic turbulence in the Milky Way and other galaxies.

  11. Introduction to quantum turbulence

    OpenAIRE

    Barenghi, Carlo F.; Skrbek, Ladislav; Sreenivasan, Katepalli R.

    2014-01-01

    The term quantum turbulence denotes the turbulent motion of quantum fluids, systems such as superfluid helium and atomic Bose–Einstein condensates, which are characterized by quantized vorticity, superfluidity, and, at finite temperatures, two-fluid behavior. This article introduces their basic properties, describes types and regimes of turbulence that have been observed, and highlights similarities and differences between quantum turbulence and classical turbulence in ordinary fluids. Our ai...

  12. Reconnection by turbulence

    Science.gov (United States)

    BELMONT, G.; REZEAU, L.

    2001-12-01

    Transfers of mass and magnetic flux are known to take place through the magnetopause boundary. When looking for the cause of these transfers, several scenarios have been invoked in the literature: 1) quasi-stationary reconnection; 2) localized reconnection (FTEs) 3) growing reconnection due to a local instability (tearing); 4) impulsive penetration of a magnetosheath inhomogeneity. As the very existence of the transfers implies that the frozen-in condition must be broken at some place, all of the preceding scenarios can be termed "reconnection" scenarios. The larger difference between them is that the two first scenarios pre-suppose the existence of an external electrostatic field; while the two others make use of a self-consistent inductive electric field. The varying magnetic field giving rise to the inductive electric field is due the growth of the tearing mode in the third case, while it is due to the spatial gradients limiting the incident blob in the fourth one. We will present a new scenario, of the fourth type, where the original cause for reconnection is the existence of a magnetic turbulence convecting from the shock region and impinging the magnetopause. We first show that this turbulence is converted onto the Alfven mode in the boundary gradient, where it is trapped and amplified. We also show how it can allow for transfers through the boundary, for both the magnetic flux and the plasma. A non ideal effect is of course mandatory for allowing such transfers: our model is calculated in the frame of Hall MHD, which means that the ion inertia effects are taken into account in the Ohm's law; the finite Larmor radius effects, nevertheless, have not yet been included up to now. Finally, we show that the magnetic flux reconnected per second through a perpendicular elementary surface can be calculated as a function of the local parameters; we are thus able to propose the definition of a local "reconnection rate". Analyzing the numerical results corresponding to

  13. Enlarged omnidirectional band gap in one-dimensional plasma photonic crystals with ternary Thue-Morse aperiodic structure

    International Nuclear Information System (INIS)

    In this paper, an omnidirectional photonic band gap (OBG) which originates from Bragg gap compared to zero-n-tilde gap or single negative (negative permittivity or negative permeability) gap, realized by one-dimensional (1D) plasma photonic crystals (PPCs) with ternary Thue-Morse aperiodic structure, which is composed of plasma and two kinds of homogeneous, isotropic dielectric is theoretically studied by the transfer matrix method (TMM) in detail. Such OBG is insensitive to the incident angle and the polarization of electromagnetic wave (EM wave). From the numerical results, the bandwidth and central frequency of OBG can be notably broadened by changing the thickness of plasma and dielectric layers but cease to change with increasing Thue-Morse order. The OBG also can be manipulated by plasma density. However, the plasma collision frequency has no effect on the bandwidth of OBG. These results may provide theoretical instructions to design the future optoelectronic devices based on plasma photonic crystals.

  14. Manifestations of phase-coherent transport in graphene. The Josephson effect, weak localization, and aperiodic conductance fluctuations

    Science.gov (United States)

    Heersche, H. B.; Jarillo-Herrero, P.; Oostinga, J. B.; Vandersypen, L. M. K.; Morpurgo, A. F.

    2007-09-01

    The electronic transport properties of graphene exhibit pronounced differences from those of conventional two dimensional electron systems investigated in the past. As a consequence, well established phenomena such as the integer quantum Hall effect and weak localization manifest themselves differently in graphene. Here we present an overview of recent experiments that we have performed to probe phase coherent transport. In particular, we have investigated in great detail Josephson supercurrent and superconducting proximity effect in junctions consisting of a graphene layer in between superconducting electrodes. We have also used the same devices to measure aperiodic conductance fluctuations and weak localization. The experimental results clearly indicate that low-temperature transport in graphene is phase coherent on a ˜ 1 μm length scale, irrespective of the position of the Fermi level. We discuss the different behavior of Josephson supercurrent and weak localization in terms of the unusual properties of the electronic states in graphene upon time reversal symmetry.

  15. Three-dimensional computation of drift Alfven turbulence

    International Nuclear Information System (INIS)

    A transcollisional, electromagnetic fluid model, incorporating the parallel heat flux as a dependent variable, is constructed to treat electron drift turbulence in the regime of tokamak edge plasma at the L-H transition. The resulting turbulence is very sensitive to the plasma beta throughout this regime, with the scaling with rising beta produced by the effect of magnetic induction to slow the Alfvenic parallel electron dynamics and thereby leave the turbulence in a more robust, non-adiabatic state. Magnetic flutter and curvature have a minor quantitative effect is strong. Transport by magnetic flutter is small compared to that by the E x B flow eddies. Fluctuation statistics show that while the turbulence shows no coherent structure, it is coupled strongly enough so that neither density nor temperature fluctuations behave as passive scalars. Both profile gradients drive the turbulence, with the total thermal energy transport varying only weakly with the gradient ratio, d log T/d log n. Scaling with magnetic shear is pronounced, with stronger shear leading to lower drive levels. Scaling with either collision frequency or magnetic curvature is weak, consistent with their weak qualitative effect. The result is that electron drift turbulence at L-H transition edge parameters is drift Alfven turbulence, with both ballooning and resistivity in a clear secondary role. The contents of the drift Alfven model will form a significant part of any useful first-principles computation of tokamak edge turbulence. (Author)

  16. Topics in strong Langmuir turbulence

    International Nuclear Information System (INIS)

    This thesis discusses certain aspects of the turbulence of a fully ionised non-isothermal plasma dominated by the Langmuir mode. Some of the basic properties of strongly turbulent plasmas are reviewed. In particular, interest is focused on the state of Langmuir turbulence, that is the turbulence of a simple externally unmagnetized plasma. The problem of the existence and dynamics of Langmuir collapse is discussed, often met as a non-linear stage of the modulational instability in the framework of the Zakharov equations (i.e. simple time-averaged dynamical equations). Possible macroscopic consequences of such dynamical turbulent models are investigated. In order to study highly non-linear collapse dynamics in its advanced stage, a set of generalized Zakharov equations are derived. Going beyond the original approximation, the author includes the effects of higher electron non-linearities and a breakdown of slow-timescale quasi-neutrality. He investigates how these corrections may influence the collapse stabilisation. Recently, it has been realised that the modulational instability in a Langmuir plasma will be accompanied by the collisionless-generation of a slow-timescale magnetic field. Accordingly, a novel physical situation has emerged which is investigated in detail. The stability of monochromatic Langmuir waves in a self-magnetized Langmuir plasma, is discussed, and the existence of a novel magneto-modulational instability shown. The wave collapse dynamics is investigated and a physical interpretation of the basic results is given. A problem of the transient analysis of an interaction of time-dependent electromagnetic pulses with linear cold plasma media is investigated. (Auth.)

  17. Direct numerical simulation of MHD turbulent free surface flow

    International Nuclear Information System (INIS)

    A direct numerical simulation (DNS) of turbulent free surface flow with a constant magnetic field has been carried out to grasp and understand the effects of electromagnetic suppression of turbulence. In this study, the Reynolds number based on bulk velocity and a film depth was set to be constant, Reb=2300. The constant static magnetic field at Ha=20 and 30 for the streamwise orientation and at Ha=5 and 10 for the spanwise orientation were considered in the electrical potential equation. The number of computational grids used in this study was 256x128x128 in the x-, y- and z-directions, respectively. The turbulent quantities such as the mean flow, turbulent stresses and the turbulent statistics were obtained. The mean velocity and turbulent intensities distributed from the wall to the free surface are damped quickly near wall region, because of the electromagnetic effects. (author)

  18. Numerical Simulations of Driven Supersonic Relativistic MHD Turbulence

    CERN Document Server

    Zrake, Jonathan; 10.1063/1.3621748

    2011-01-01

    Models for GRB outflows invoke turbulence in relativistically hot magnetized fluids. In order to investigate these conditions we have performed high-resolution three-dimensional numerical simulations of relativistic magneto-hydrodynamical (RMHD) turbulence. We find that magnetic energy is amplified to several percent of the total energy density by turbulent twisting and folding of magnetic field lines. Values of epsilon_B near 1% are thus naturally expected. We study the dependence of saturated magnetic field energy fraction as a function of Mach number and relativistic temperature. We then present power spectra of the turbulent kinetic and magnetic energies. We also present solenoidal (curl-like) and dilatational (divergence-like) power spectra of kinetic energy. We propose that relativistic effects introduce novel couplings between these spectral components. The case we explore in most detail is for equal amounts of thermal and rest mass energy, corresponding to conditions after collisions of shells with re...

  19. Fossil turbulence revisited

    CERN Document Server

    Gibson, C H

    1999-01-01

    A theory of fossil turbulence presented in the 11th Liege Colloquium on Marine turbulence is "revisited" in the 29th Liege Colloquium "Marine Turbulence Revisited". The Gibson (1980) theory applied universal similarity theories of turbulence and turbulent mixing to the vertical evolution of an isolated patch of turbulence in a stratified fluid as it is constrained and fossilized by buoyancy forces. Towed oceanic microstructure measurements of Schedvin (1979) confirmed the predicted universal constants. Universal constants, spectra, hydrodynamic phase diagrams (HPDs) and other predictions of the theory have been reconfirmed by a wide variety of field and laboratory observations. Fossil turbulence theory has many applications; for example, in marine biology, laboratory and field measurements suggest phytoplankton species with different swimming abilities adjust their growth strategies differently by pattern recognition of several days of turbulence-fossil-turbulence dissipation and persistence times above thres...

  20. Magnetohydrodynamic Turbulence and the Geodynamo

    Science.gov (United States)

    Shebalin, John V.

    2014-01-01

    The ARES Directorate at JSC has researched the physical processes that create planetary magnetic fields through dynamo action since 2007. The "dynamo problem" has existed since 1600, when William Gilbert, physician to Queen Elizabeth I, recognized that the Earth was a giant magnet. In 1919, Joseph Larmor proposed that solar (and by implication, planetary) magnetism was due to magnetohydrodynamics (MHD), but full acceptance did not occur until Glatzmaier and Roberts solved the MHD equations numerically and simulated a geomagnetic reversal in 1995. JSC research produced a unique theoretical model in 2012 that provided a novel explanation of these physical observations and computational results as an essential manifestation of broken ergodicity in MHD turbulence. Research is ongoing, and future work is aimed at understanding quantitative details of magnetic dipole alignment in the Earth as well as in Mercury, Jupiter and its moon Ganymede, Saturn, Uranus, Neptune, and the Sun and other stars.

  1. Global scale-invariant dissipation in collisionless plasma turbulence

    CERN Document Server

    Kiyani, K H; Khotyaintsev, Yu V; Dunlop, M W

    2009-01-01

    A higher-order multiscale analysis of the dissipation range of collisionless plasma turbulence is presented using in-situ high-frequency magnetic field measurements from the Cluster spacecraft in a stationary interval of fast ambient solar wind. The observations, spanning five decades in temporal scales, show a crossover from multifractal intermittent turbulence in the inertial range to non-Gaussian monoscaling in the dissipation range. This presents a strong observational constraint on theories of dissipation mechanisms in turbulent collisionless plasmas.

  2. A Model for the Saturation of the Turbulent Dynamo

    CERN Document Server

    Schober, Jennifer; Federrath, Christoph; Bovino, Stefano; Klessen, Ralf S

    2015-01-01

    The origin of strong magnetic fields in the Universe can be explained by amplifying weak seed fields via turbulent motions on small spatial scales and subsequently transporting the magnetic energy to larger scales. This process is known as the turbulent dynamo and depends on the properties of turbulence, i.e. on the hydrodynamical Reynolds number and the compressibility of the gas, and on the magnetic diffusivity. While we know the growth rate the magnetic energy in the linear regime, the saturation level, i.e. the ratio of magnetic energy to turbulent kinetic energy that can be reached, is not known from analytical calculations. In this paper we present the first scale-dependent saturation model based on an effective turbulent resistivity which is determined by the turnover timescale of turbulent eddies and the magnetic energy density. The magnetic resistivity increases compared to the Spitzer value and the effective scale on which the magnetic energy spectrum is at its maximum moves to larger spatial scales...

  3. Spectral properties of electromagnetic turbulence in plasmas

    Directory of Open Access Journals (Sweden)

    D. Shaikh

    2009-03-01

    Full Text Available We report on the nonlinear turbulent processes associated with electromagnetic waves in plasmas. We focus on low-frequency (in comparison with the electron gyrofrequency nonlinearly interacting electron whistlers and nonlinearly interacting Hall-magnetohydrodynamic (H-MHD fluctuations in a magnetized plasma. Nonlinear whistler mode turbulence study in a magnetized plasma involves incompressible electrons and immobile ions. Two-dimensional turbulent interactions and subsequent energy cascades are critically influenced by the electron whisters that behave distinctly for scales smaller and larger than the electron skin depth. It is found that in whistler mode turbulence there results a dual cascade primarily due to the forward spectral migration of energy that coexists with a backward spectral transfer of mean squared magnetic potential. Finally, inclusion of the ion dynamics, resulting from a two fluid description of the H-MHD plasma, leads to several interesting results that are typically observed in the solar wind plasma. Particularly in the solar wind, the high-time-resolution databases identify a spectral break at the end of the MHD inertial range spectrum that corresponds to a high-frequency regime. In the latter, turbulent cascades cannot be explained by the usual MHD model and a finite frequency effect (in comparison with the ion gyrofrequency arising from the ion inertia is essentially included to discern the dynamics of the smaller length scales (in comparison with the ion skin depth. This leads to a nonlinear H-MHD model, which is presented in this paper. With the help of our 3-D H-MHD code, we find that the characteristic turbulent interactions in the high-frequency regime evolve typically on kinetic-Alfvén time-scales. The turbulent fluctuation associated with kinetic-Alfvén interactions are compressive and anisotropic and possess equipartition of the kinetic and magnetic energies.

  4. Theory and Applications of Non-Relativistic and Relativistic Turbulent Reconnection

    CERN Document Server

    Lazarian, A; Takamoto, M; Pino, E M de Gouveia Dal; Cho, J

    2015-01-01

    Realistic astrophysical environments are turbulent due to the extremely high Reynolds numbers. Therefore, the theories of reconnection intended for describing astrophysical reconnection should not ignore the effects of turbulence on magnetic reconnection. Turbulence is known to change the nature of many physical processes dramatically and in this review we claim that magnetic reconnection is not an exception. We stress that not only astrophysical turbulence is ubiquitous, but also magnetic reconnection itself induces turbulence. Thus turbulence must be accounted for in any realistic astrophysical reconnection setup. We argue that due to the similarities of MHD turbulence in relativistic and non-relativistic cases the theory of magnetic reconnection developed for the non-relativistic case can be extended to the relativistic case and we provide numerical simulations that support this conjecture. We also provide quantitative comparisons of the theoretical predictions and results of numerical experiments, includi...

  5. Recent results on analytical plasma turbulence theory: realizability, intermittency, submarginal turbulence and self-organized criticality

    International Nuclear Information System (INIS)

    Recent results and future challenges in the systematic analytical description of plasma turbulence are described. First, the importance of statistical realizability is stressed and the development and successes of the realizable Markovian closure are briefly reviewed. Next, submarginal turbulence (linearly stable but nonlinearly self-sustained fluctuations) is considered and the relevance of nonlinear instability in neutral-fluid shear flows to submarginal turbulence in magnetized plasmas is discussed. For the Hasegawa-Wakatani equations, a self-consistency loop that leads to steady-state vortex regeneration in the presence of dissipation is demonstrated and a partial unification of recent work of Drake (for plasmas) and of Waleffe (for neutral fluids) is given. Brief remarks are made on the difficulties facing a quantitatively accurate statistical description of submarginal turbulence. Finally, possible connections between intermittency, submarginal turbulence and self-organized criticality (SOC) are considered and outstanding questions are identified. (author)

  6. Structure of homogeneous nonhelical magnetohydrodynamic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.S.; Mashayek, F.; Adumitroaie, V.; Givi, P. [Department of Mechanical and Aerospace Engineering, State University of New York at Buffalo, Buffalo, New York 14260-4400 (United States)

    1996-09-01

    Results are presented for three-dimensional direct numerical simulations of nonhelical magnetohydrodynamic (MHD) turbulence for both stationary isotropic and homogeneous shear flow configurations with zero mean induction and unity magnetic Prandtl number. Small scale dynamo action is observed in both flows, and stationary values for the ratio of magnetic to kinetic energy are shown to scale nearly linearly with the Taylor microscale Reynolds numbers above a critical value of Re{sub {lambda}}{approx_equal}30. The presence of the magnetic field has the effect of decreasing the kinetic energy of the flow, while simultaneously increasing the Taylor microscale Reynolds number due to enlargement of the hydrodynamic length scales. For shear flows, both the velocity and the magnetic fields become increasingly anisotropic with increasing initial magnetic field strength. The kinetic energy spectra show a relative increase in high wave-number energy in the presence of a magnetic field. The magnetic field is found to portray an intermittent behavior, with peak values of the flatness near the critical Reynolds number. The magnetic field of both flows is organized in the form of {open_quote}{open_quote}flux tubes{close_quote}{close_quote} and magnetic {open_quote}{open_quote}sheets.{close_quote}{close_quote} These regions of large magnetic field strength show a small correlation with moderate vorticity regions, while the electric current structures are correlated with large amplitude strain regions of the turbulence. Some of the characteristics of small scale MHD turbulence are explained via the {open_quote}{open_quote}structural{close_quote}{close_quote} description of turbulence. {copyright} {ital 1996 American Institute of Physics.}

  7. Structure of homogeneous nonhelical magnetohydrodynamic turbulence

    International Nuclear Information System (INIS)

    Results are presented for three-dimensional direct numerical simulations of nonhelical magnetohydrodynamic (MHD) turbulence for both stationary isotropic and homogeneous shear flow configurations with zero mean induction and unity magnetic Prandtl number. Small scale dynamo action is observed in both flows, and stationary values for the ratio of magnetic to kinetic energy are shown to scale nearly linearly with the Taylor microscale Reynolds numbers above a critical value of Reλ≅30. The presence of the magnetic field has the effect of decreasing the kinetic energy of the flow, while simultaneously increasing the Taylor microscale Reynolds number due to enlargement of the hydrodynamic length scales. For shear flows, both the velocity and the magnetic fields become increasingly anisotropic with increasing initial magnetic field strength. The kinetic energy spectra show a relative increase in high wave-number energy in the presence of a magnetic field. The magnetic field is found to portray an intermittent behavior, with peak values of the flatness near the critical Reynolds number. The magnetic field of both flows is organized in the form of open-quote open-quote flux tubes close-quote close-quote and magnetic open-quote open-quote sheets.close-quote close-quote These regions of large magnetic field strength show a small correlation with moderate vorticity regions, while the electric current structures are correlated with large amplitude strain regions of the turbulence. Some of the characteristics of small scale MHD turbulence are explained via the open-quote open-quote structural close-quote close-quote description of turbulence. copyright 1996 American Institute of Physics

  8. Turbulence and disruptions in Tokamaks

    International Nuclear Information System (INIS)

    In the first part of this thesis, the possible explanation of the electron abnormal thermal conductivity with electromagnetic drift modes rather than simply electrostatic is discussed. A variational form is established in non collisional conditions; linear modes principal possibilities are reviewed, then quasilinear theory is used to calculate the transport phenomenon associated to each mode. They are compared to experimental results. Electron abnormal thermal conductibility is not better explained by electromagnetic modes than by electrostatic modes. In the second part, disruptions are examined; experimental manifestations are briefly recalled. Existing interpretations of these phenomenons are reviewed, which are based on magnetic islands non-linear evolution. A detailed analytical study of the case l=1, m=1 is made. Other disruptions are studied; it is shown that the disruptive process is indissociable from sudden apparition of small scale magnetic turbulence. The possibility of such a turbulence is studied. Its predictable effects are compared to experiment. Such a turbulence, is assumed to exist permanently in an attenuated form, which could justify the electronic transport anomalies in quiescent state

  9. Lessons from hydrodynamic turbulence

    International Nuclear Information System (INIS)

    Turbulent flows, with their irregular behavior, confound any single attempts to understand them. But physicists have succeeded in identifying some universal properties of turbulence and relating them to broken symmetries. (author)

  10. Electromagnetically driven dwarf tornados in turbulent convection

    Science.gov (United States)

    Kenjereš, Saša

    2011-01-01

    Motivated by the concept of interdependency of turbulent flow and electromagnetic fields inside the spiraling galaxies, we explored the possibilities of generating a localized Lorentz force that will produce a three-dimensional swirling flow in weakly conductive fluids. Multiple vortical flow patterns were generated by combining arrays of permanent magnets and electrodes with supplied dc current. This concept was numerically simulated and applied to affect natural convection flow, turbulence, and heat transfer inside a rectangular enclosure heated from below and cooled from above over a range of Rayleigh numbers (104<=Ra<=5×109). The large-eddy simulations revealed that for low- and intermediate-values of Ra, the heat transfer was increased more than five times when an electromagnetic forcing was activated. In contrast to the generally accepted view that electromagnetic forcing will suppress velocity fluctuations and will increase anisotropy of turbulence, we demonstrated that localized forcing can enhance turbulence isotropy of thermal convection compared to its neutral state.

  11. Energy Dissipation Processes in Solar Wind Turbulence

    Science.gov (United States)

    Wang, Y.; Wei, F. S.; Feng, X. S.; Xu, X. J.; Zhang, J.; Sun, T. R.; Zuo, P. B.

    2015-12-01

    Turbulence is a chaotic flow regime filled by irregular flows. The dissipation of turbulence is a fundamental problem in the realm of physics. Theoretically, dissipation ultimately cannot be achieved without collisions, and so how turbulent kinetic energy is dissipated in the nearly collisionless solar wind is a challenging problem. Wave particle interactions and magnetic reconnection (MR) are two possible dissipation mechanisms, but which mechanism dominates is still a controversial topic. Here we analyze the dissipation region scaling around a solar wind MR region. We find that the MR region shows unique multifractal scaling in the dissipation range, while the ambient solar wind turbulence reveals a monofractal dissipation process for most of the time. These results provide the first observational evidences for intermittent multifractal dissipation region scaling around a MR site, and they also have significant implications for the fundamental energy dissipation process.

  12. Imbalanced relativistic force-free magnetohydrodynamic turbulence

    International Nuclear Information System (INIS)

    When magnetic energy density is much larger than that of matter, as in pulsar/black hole magnetospheres, the medium becomes force-free and we need relativity to describe it. As in non-relativistic magnetohydrodynamics (MHD), Alfvénic MHD turbulence in the relativistic limit can be described by interactions of counter-traveling wave packets. In this paper, we numerically study strong imbalanced MHD turbulence in such environments. Here, imbalanced turbulence means the waves traveling in one direction (dominant waves) have higher amplitudes than the opposite-traveling waves (sub-dominant waves). We find that (1) spectrum of the dominant waves is steeper than that of sub-dominant waves, (2) the anisotropy of the dominant waves is weaker than that of sub-dominant waves, and (3) the dependence of the ratio of magnetic energy densities of dominant and sub-dominant waves on the ratio of energy injection rates is steeper than quadratic (i.e., b+2/b−2∝(ϵ+/ϵ−)n with n > 2). These results are consistent with those obtained for imbalanced non-relativistic Alfvénic turbulence. This corresponds well to the earlier reported similarity of the relativistic and non-relativistic balanced magnetic turbulence.

  13. Distinguishing ichthyogenic turbulence from geophysical turbulence

    Science.gov (United States)

    Pujiana, Kandaga; Moum, James N.; Smyth, William D.; Warner, Sally J.

    2015-05-01

    Measurements of currents and turbulence beneath a geostationary ship in the equatorial Indian Ocean during a period of weak surface forcing revealed unexpectedly strong turbulence beneath the surface mixed layer. Coincident with the turbulence was a marked reduction of the current speeds registered by shipboard Doppler current profilers, and an increase in their variability. At a mooring 1 km away, measurements of turbulence and currents showed no such anomalies. Correlation with the shipboard echo sounder measurements indicate that these nighttime anomalies were associated with fish aggregations beneath the ship. The fish created turbulence by swimming against the strong zonal current in order to remain beneath the ship, and their presence affected the Doppler speed measurements. The principal characteristics of the resultant ichthyogenic turbulence are (i) low wave number roll-off of shear spectra in the inertial subrange relative to geophysical turbulence, (ii) Thorpe overturning scales that are small compared with the Ozmidov scale, and (iii) low mixing efficiency. These factors extend previous findings by Gregg and Horne (2009) to a very different biophysical regime and support the general conclusion that the biological contribution to mixing the ocean via turbulence is negligible.

  14. Turbulence and wind turbines

    DEFF Research Database (Denmark)

    Brand, Arno J.; Peinke, Joachim; Mann, Jakob

    2011-01-01

    The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed.......The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed....

  15. Turbulent flow in graphene

    OpenAIRE

    Gupta, Kumar S.; Sen, Siddhartha

    2009-01-01

    We demonstrate the possibility of a turbulent flow of electrons in graphene in the hydrodynamic region, by calculating the corresponding turbulent probability density function. This is used to calculate the contribution of the turbulent flow to the conductivity within a quantum Boltzmann approach. The dependence of the conductivity on the system parameters arising from the turbulent flow is very different from that due to scattering.

  16. MAGNET

    CERN Multimedia

    by B. Curé

    2011-01-01

    The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...

  17. Analysis and prediction of aperiodic hydrodynamic oscillatory time series by feed-forward neural networks, fuzzy logic, and a local nonlinear predictor

    International Nuclear Information System (INIS)

    Forecasting of aperiodic time series is a compelling challenge for science. In this work, we analyze aperiodic spectrophotometric data, proportional to the concentrations of two forms of a thermoreversible photochromic spiro-oxazine, that are generated when a cuvette containing a solution of the spiro-oxazine undergoes photoreaction and convection due to localized ultraviolet illumination. We construct the phase space for the system using Takens' theorem and we calculate the Lyapunov exponents and the correlation dimensions to ascertain the chaotic character of the time series. Finally, we predict the time series using three distinct methods: a feed-forward neural network, fuzzy logic, and a local nonlinear predictor. We compare the performances of these three methods

  18. Analysis and prediction of aperiodic hydrodynamic oscillatory time series by feed-forward neural networks, fuzzy logic, and a local nonlinear predictor

    Energy Technology Data Exchange (ETDEWEB)

    Gentili, Pier Luigi, E-mail: pierluigi.gentili@unipg.it [Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia (Italy); Gotoda, Hiroshi [Department of Mechanical Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu-shi, Shiga 525-8577 (Japan); Dolnik, Milos; Epstein, Irving R. [Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110 (United States)

    2015-01-15

    Forecasting of aperiodic time series is a compelling challenge for science. In this work, we analyze aperiodic spectrophotometric data, proportional to the concentrations of two forms of a thermoreversible photochromic spiro-oxazine, that are generated when a cuvette containing a solution of the spiro-oxazine undergoes photoreaction and convection due to localized ultraviolet illumination. We construct the phase space for the system using Takens' theorem and we calculate the Lyapunov exponents and the correlation dimensions to ascertain the chaotic character of the time series. Finally, we predict the time series using three distinct methods: a feed-forward neural network, fuzzy logic, and a local nonlinear predictor. We compare the performances of these three methods.

  19. Redistribution of energetic particles by background turbulence

    International Nuclear Information System (INIS)

    The quest to understand the turbulent transport of particles, momentum and energy in magnetized plasmas remains a key challenge in fusion research. A basic issue being .still relatively poorly understood is the turbulent ExB advection of charged test particles with large gyroradii. Especially the interaction of alpha particles or impurities with the background turbulence is of great interest. In order to understand the dependence of the particle diffusivity on the interaction mechanisms between FLR effects and the special structure of a certain type of turbulence, direct numerical simulations are done in artificially created two dimensional turbulent electrostatic fields, assuming a constant magnetic field. Finite gyroradius effects are introduced using the gyrokinetic approximation which means that the gyrating particle is simply replaced by a charged ring. Starting from an idealized isotropic potential with Gaussian autocorrelation function, numerous test particle simulations are done varying both the gyroradius and the Kubo number of the potential. It is found that for Kubo numbers larger than about unity, the particle diffusivity is almost independent of the gyroradius as long as the latter does not exceed the correlation length of the electrostatic potential, whereas for small Kubo numbers the diffusivity is monotonically reduced. The underlying physical mechanisms of this behavior are identified and an analytic approach is developed which favorably agrees with the simulation results. The investigations are extended by introducing anisotropic structures like streamers and zonal flows into the artificial potential, leading to quantitative modulations of the gyroradius dependence of the diffusion coefficient. Analytic models are used to explain these various effects. After having developed a general overview on the behavior in simplified artificial potentials, test particle simulations in realistic turbulence created by the gyrokinetic turbulence code GENE are

  20. Influences of short-wave truncations to spectral energy budget in hall MHD turbulence

    International Nuclear Information System (INIS)

    The effect of a sharp short-wave truncation on Hall magnetohydrodynamic (MHD) turbulence is studied numerically to obtain basic information for constructing sub-grid-scale models of the Hall MHD equations. Hall MHD turbulence is found to be less sensitive to truncation than MHD turbulence, because the Hall term suppresses energy transfer in the magnetic field at relatively low wave numbers. (author)