WorldWideScience

Sample records for apelin receptor knockout

  1. Improvement of Kidney Apelin and Apelin Receptor in Nitro-L-Arginine-Methyl Ester Induced Rats

    Directory of Open Access Journals (Sweden)

    S. Ali Akbar Mahmoody

    2015-02-01

    Full Text Available Background: We have investigated the effect of 8 weeks aerobic training (AT and Ferula gummosis supplement (FG on apelin and apelin receptor (APJ, nitric oxide (NO and angiotensin converting enzyme (ACE of hypertensive rats. Materials and Methods: In a experimental study, 50 adult male wistar rats were classified into five groups; 1- AT, 2- FG, 3- combination of aerobic training + Ferula Gummosa supplement (TFG, 4- nitro-L-arginine-methyl ester (L-NAME, 5- shame (control groups (SH. The rats in the 1 to 4 groups received L-NAME (10 mg/kg, 6 times a week for 8 weeks. Also, the 1 and 3 groups experienced the training of 15 to 22 m/min for 25 to 64 minutes, 5 times a week for 8 weeks, whereas, the 2 and 3 groups received Ferula gummosis supplement (90 mg/kg, 6 times a week for 8 weeks. However, rats in 5 groups received NaCl solution. Results: At protocols resulted in a significant increase in apelin and APJ as compared to control and L-NAME groups. The TFG protocols resulted in a markedly increase in apelin, APJ and significantly decrease of ACE levels as compared to L-NAME group. Chronically administration of L-NAME resulted increased, ACE, and reduced the levels of apelin, APJ and NO, as compared to control group. Conclusion: The results in this study show that physical regular activity with and without herbal treatment induce amplification in apelin/APJ system and down-regulation blood pressure in L-NAME induced hypertension in the rat kidney tissue.

  2. Apelin-13 induces ERK1/2 but not p38 MAPK activation through coupling of the human apelin receptor to the Gi2 pathway

    Institute of Scientific and Technical Information of China (English)

    Bo Bai; Jiyou Tang; Haiqing Liu; Jing Chen; Yalin Li; Wengang Song

    2008-01-01

    Apelin signaling to the family of mitogen-activated protein kinases (MAPKs), such as extracellular-regulated kinases 1/2 (ERK1/2) and p38 MAPK, through the coupling of apelin receptor (APJ) to G-protein, mediates important pathophysiological responses. Although apelin fragments have been reported to induce ERK1/2 activation through Gi-protein, the intracellular pathways by which APJ activates these MAPKs are only partially understood. Here, using stably transfected human embryonic kidney 293 (HEK293) cells overexpressing human APJ (HEK293-apelinR), we showed that apelin-13 signaling leads to ERK1/2 and p38 MAPK pathways through APJ activation. It was found in HEK293-apelinR cells that ERK1/2 activation was initiated by apelin13 at 5 min, with the peak of activation occurring at 15 min,and a return to the basal level within 60 min. The activation of ERK1/2 appeared to be dose-dependent with a significant activation being observed at 10 nM apelin-13 and maximal activation at 100 nM. However, phosphorylated-p38 MAPK was not detected in HEK293-apelinR cells treated with apelin13. We also shown that the apelin-13-induced ERK1/2 activation requires a coupling with pertussis toxin-sensitive G-protein, and that overexpression of dominant-negative Gi2 completely inhibits the apelin-13-induced ERK1/2 activation.In addition, treatment with apelin-13 resulted in a concentration-dependent reduction of forskolin-stimulated cAMP production. It is therefore suggested that apelin-13 activates ERK1/2 but not p38 MAPK, which involves the coupling of APJ to the Gi2 cascade. In conclusion, the ERK1/2, but not p38 MAPK pathway is activated by apelin- 13 through coupling of human APJ to Gi2-protein, which contributes to cellular responses.

  3. The apelin receptor APJ: journey from an orphan to a multifaceted regulator of homeostasis.

    Science.gov (United States)

    O'Carroll, Anne-Marie; Lolait, Stephen J; Harris, Louise E; Pope, George R

    2013-10-01

    The apelin receptor (APJ; gene symbol APLNR) is a member of the G protein-coupled receptor gene family. Neural gene expression patterns of APJ, and its cognate ligand apelin, in the brain implicate the apelinergic system in the regulation of a number of physiological processes. APJ and apelin are highly expressed in the hypothalamo-neurohypophysial system, which regulates fluid homeostasis, in the hypothalamic-pituitary-adrenal axis, which controls the neuroendocrine response to stress, and in the forebrain and lower brainstem regions, which are involved in cardiovascular function. Recently, apelin, synthesised and secreted by adipocytes, has been described as a beneficial adipokine related to obesity, and there is growing awareness of a potential role for apelin and APJ in glucose and energy metabolism. In this review we provide a comprehensive overview of the structure, expression pattern and regulation of apelin and its receptor, as well as the main second messengers and signalling proteins activated by apelin. We also highlight the physiological and pathological roles that support this system as a novel therapeutic target for pharmacological intervention in treating conditions related to altered water balance, stress-induced disorders such as anxiety and depression, and cardiovascular and metabolic disorders. PMID:23943882

  4. THE EXPRESSION OF APELIN AND ITS RECEPTOR APJ DURING DIFFERENT PHYSIOLOGICAL STAGES IN THE BOVINE OVARY

    OpenAIRE

    Stefanie Schilffarth, Bernadette Antoni, Dieter Schams, Heinrich HD Meyer, Bajram Berisha

    2009-01-01

    Recent studies implicate that apelin and its receptor APJ may have important role for the modulation of angiogenesis. The aim of this study was to further characterise the regulation of apelin/APJ system in bovine ovary. Experiment 1: corpora lutea (CL) were assigned to the following stages: days 1-2, 3-4, 5-7, 8-12, 13-16, >18 (after regression) of oestrous cycle and of gravidity (month <3, 3-5, 6-7 and >8). Experiment 2: Follicles during maturation were divided into granulosa ce...

  5. THE EXPRESSION OF APELIN AND ITS RECEPTOR APJ DURING DIFFERENT PHYSIOLOGICAL STAGES IN THE BOVINE OVARY

    Directory of Open Access Journals (Sweden)

    Stefanie Schilffarth, Bernadette Antoni, Dieter Schams, Heinrich HD Meyer, Bajram Berisha

    2009-01-01

    Full Text Available Recent studies implicate that apelin and its receptor APJ may have important role for the modulation of angiogenesis. The aim of this study was to further characterise the regulation of apelin/APJ system in bovine ovary. Experiment 1: corpora lutea (CL were assigned to the following stages: days 1-2, 3-4, 5-7, 8-12, 13-16, >18 (after regression of oestrous cycle and of gravidity (month <3, 3-5, 6-7 and >8. Experiment 2: Follicles during maturation were divided into granulosa cells (GC and theca interna (TI and were examined separately. Classification of follicles occurred by follicle size and oestradiol-17β (E2 concentration in the follicular fluid (FF (<0.5 ng/ml, 0.5-5 ng/ml; 5-40 ng/ml; 40-180 ng/ml; >180 ng/ml. Real-time RT-PCR (qPCR was applied to investigate mRNA expression of examined factors. In general, the expression level of apelin during the oestrous cycle was significantly higher compared to the one during pregnancy. Apelin mRNA levels were always high during the cycle with a tendency of decrease after CL regression. The APJ mRNA in the CL was significantly up regulated on days 5-7 and 8-12 followed by a decrease on days 13-16, and further on days >18. The expression of APJ does not show any significant regulation in the CL throughout pregnancy. The expression of apelin and APJ was not statistically regulated in GC, but was significantly up regulated in follicles with an E2 concentration of more than 5 ng/ml and showed an increase according to growth and maturation of follicles. In conclusion, our data suggest that apelin/APJ system is involved in the mechanism regulating angiogenesis during follicle maturation as well as during CL formation and function in the bovine ovary.

  6. The Role of Apelin on the Alleviative Effect of Angiotensin Receptor Blocker in Unilateral Ureteral Obstruction-Induced Renal Fibrosis

    Directory of Open Access Journals (Sweden)

    Masashi Nishida

    2012-03-01

    Full Text Available Background: Apelin is a selective endogenous ligand of the APJ receptor, which genetically has closest identity to the angiotensin II type 1 receptor (AT-1. The effects of the apelin/APJ system on renal fibrosis still remain unclear. Methods: We examined the effects of the apelin/APJ system on renal fibrosis during AT-1 blockade in a mouse unilateral ureteral obstruction (UUO model. Results: We obtained the following results: (1 At UUO day 7, mRNA expressions of apelin/APJ and phosphorylations of Akt/endothelial nitric oxide synthase (eNOS in the UUO kidney were increased compared to those in the nonobstructed kidney. (2 AT-1 blockade by the treatment with losartan resulted in a further increase of apelin mRNA as well as phosphorylations of Akt/eNOS proteins, and this was accompanied by alleviated renal interstitial fibrosis, decreased myofibroblast accumulation, and a decreased number of interstitial macrophages. (3 Blockade of the APJ receptor by the treatment with F13A during losartan administration completely abrogated the effects of losartan in the activation of the Akt/eNOS pathway and the amelioration of renal fibrosis. (4 Inhibition of NOS by the treatment with L-NAME also resulted in a further increase in renal fibrosis compared to the control group. Conclusion: These results suggest that increased nitric oxide production through the apelin/APJ/Akt/eNOS pathway may, at least in part, contribute to the alleviative effect of losartan in UUO-induced renal fibrosis.

  7. Apelin elevates blood pressure in ICR mice with L-NAME-induced endothelial dysfunction

    OpenAIRE

    NAGANO, KATSUMASA; Ishida, Junji; UNNO, MADOKA; MATSUKURA, TANOMU; Fukamizu, Akiyoshi

    2013-01-01

    Apelin is the endogenous ligand of APJ, which belongs to the family of G protein-coupled receptors. Apelin and APJ are highly expressed in various cardiovascular tissues, including the heart, kidney and vascular endothelial and smooth muscle cells. Although apelin exerts hypotensive effects via activation of endothelial nitric oxide synthase (eNOS), the ability of apelin to regulate blood pressure under pathological conditions is poorly understood. In the current study, NG-nitro-L-arginine me...

  8. Apelin and pulmonary hypertension

    DEFF Research Database (Denmark)

    Andersen, Charlotte Uggerhøj; Hilberg, Ole; Mellemkjær, Søren;

    2011-01-01

    Pulmonary arterial hypertension (PAH) is a devastating disease characterized by pulmonary vasoconstriction, pulmonary arterial remodeling, abnormal angiogenesis and impaired right ventricular function. Despite progress in pharmacological therapy, there is still no cure for PAH. The peptide apelin...... vasoconstriction, and has positive inotropic and cardioprotective effects. Apelin attenuates vasoconstriction in isolated rat pulmonary arteries, and chronic treatment with apelin attenuates the development of pulmonary hypertension in animal models. The existing literature thus renders APLNR an interesting...

  9. A Conditional Knockout Mouse Line of the Oxytocin Receptor

    OpenAIRE

    Lee, Heon-Jin; Heather K Caldwell; Macbeth, Abbe H.; Tolu, Selen G.; Young, W. Scott

    2008-01-01

    Oxytocin plays important roles in reproductive physiology and various behaviors, including maternal behavior and social memory. Its receptor (Oxtr) is present in peripheral tissues and brain, so a conditional knockout (KO, −/−) would be useful to allow elimination of the receptor in specific sites at defined times. We created a line of mice in which loxP sites flank Oxtr coding sequence (floxed) enable Cre recombinase-mediated inactivation of the receptor. We expressed Cre recombinase in thes...

  10. Longitudinal changes in adipose tissue of dairy cows from late pregnancy to lactation. Part 1: The adipokines apelin and resistin and their relationship to receptors linked with lipolysis.

    Science.gov (United States)

    Weber, M; Locher, L; Huber, K; Kenéz, Á; Rehage, J; Tienken, R; Meyer, U; Dänicke, S; Sauerwein, H; Mielenz, M

    2016-02-01

    The transition from pregnancy to lactation is characterized by major changes in glucose and adipose tissue metabolism. Anti- and prolipolytic pathways mediated via the hydroxycarboxylic acid receptors 1 (HCAR1) and 2 (HCAR2) and tumor necrosis factor-α receptor 1 (TNFR1), as well as the adipokines apelin and resistin, are likely involved in regulating these processes. This study aimed to determine the mRNA abundance of the aforementioned receptors in both subcutaneous and visceral adipose tissue, to characterize the adipokine concentrations in serum, and to test the effects of feeding diets with either high or low portions of concentrate and a concomitant niacin supplementation from late gestation to early lactation. Twenty pluriparous German Holstein cows were all kept on the same silage-based diet until d 42 antepartum, when they were allocated to 2 feeding groups: until d 1 antepartum, 10 animals each were assigned to either a high-concentrate (60:40 concentrate-to-roughage ratio) or a low-concentrate diet (30:70). Both groups were further subdivided into a control and a niacin group, the latter receiving 24 g/d of nicotinic acid from d -42 until 24. From d 1 to 24 postpartum, the concentrate portion was increased from 30 to 50% for all cows. Biopsies of subcutaneous (SCAT) and retroperitoneal adipose tissue (RPAT) were taken at d -42, 1, 21, and 100 relative to parturition. Blood samples were drawn along with the biopsies and on d -14, 3, 7, 14, and 42. The concentrations of the adipokines apelin and resistin in serum were measured via ELISA. The mRNA of the 3 receptors in AT was quantified as well as the protein abundance of HCAR2 by Western blot. The feeding regimen did not affect the variables examined. The concentrations of apelin remained fairly constant during the observation period, whereas the resistin concentrations increased toward parturition and decreased to precalving levels within 1 wk after calving. The mRNA abundance of HCAR1, HCAR2, and TNFR1

  11. Plasma Concentration of the Novel Peptide Apelin is Regularly Changed in Patients With Heart Failure

    Institute of Scientific and Technical Information of China (English)

    Yuan Yanju; Li Tianchang; Yan Jun; Bian Hong; Yao Daokuo; Xu Shiying; Zheng Jianyong

    2006-01-01

    Objectives Apelin, the novel endogenous ligand for the G-protein-coupled receptor APJ, has been observed in many animals and humans studies. It is concluded that it has inotropic effects,hypotension and diuretic properties. The change of apelin in relation to heart failure is still controversial.Our goal was to observe the change of apelin-12 in patients with heart failure (HF). Methods From 2005 to 2006, 81 consecutive patients (46 male and 35 female, mean age 68.5±12.1 years) with heart failure resulting from variable etiologies and 15 healthy controls were included in this study. Plasma concentration of apelin-12 was measured through ELISA on admission. All patients received conventional therapy and recorded detailed the clinical conditions. Results (1) Plasma concentration of apelin of the controls is lower than the ones of heart failure patients. (2) Plasma concentration of apelin is increased in the early stage and decreased in the advanced period. (3) Apelin is related with variable indexes in the Pearson's association analysis. Apelin is also changed with the atrium and ventricular's diameter. Conclusions Plasma concentration of apelin is increased in early stage and decreased in advanced period. The apelin-APJ system might be important in the pathophysiological process of heart failure. And it might be valuable in diagnosis and therapeutic implications in heart failure.

  12. Neuroprotective effect of the endogenous neural peptide apelin in cultured mouse cortical neurons

    International Nuclear Information System (INIS)

    The adipocytokine apelin and its G protein-coupled APJ receptor were initially isolated from a bovine stomach and have been detected in the brain and cardiovascular system. Recent studies suggest that apelin can protect cardiomyocytes from ischemic injury. Here, we investigated the effect of apelin on apoptosis in mouse primary cultures of cortical neurons. Exposure of the cortical cultures to a serum-free medium for 24 h induced nuclear fragmentation and apoptotic death; apelin-13 (1.0-5.0 nM) markedly prevented the neuronal apoptosis. Apelin neuroprotective effects were mediated by multiple mechanisms. Apelin-13 reduced serum deprivation (SD)-induced ROS generation, mitochondria depolarization, cytochrome c release and activation of caspase-3. Apelin-13 prevented SD-induced changes in phosphorylation status of Akt and ERK1/2. In addition, apelin-13 attenuated NMDA-induced intracellular Ca2+ accumulation. These results indicate that apelin is an endogenous neuroprotective adipocytokine that may block apoptosis and excitotoxic death via cellular and molecular mechanisms. It is suggested that apelins may be further explored as a potential neuroprotective reagent for ischemia-induced brain damage.

  13. Apelin Protects Primary Rat Retinal Pericytes from Chemical Hypoxia-Induced Apoptosis

    Directory of Open Access Journals (Sweden)

    Li Chen

    2015-01-01

    Full Text Available Pericytes are a population of cells that participate in normal vessel architecture and regulate permeability. Apelin, as the endogenous ligand of G protein-coupled receptor APJ, participates in a number of physiological and pathological processes. To date, the effect of apelin on pericyte is not clear. Our study aimed to investigate the potential protection mechanisms of apelin, with regard to primary rat retinal pericytes under hypoxia. Immunofluorescence staining revealed that pericytes colocalized with APJ in the fibrovascular membranes dissected from proliferative diabetic retinopathy patients. In the in vitro studies, we first demonstrated that the expression of apelin/APJ was upregulated in pericytes under hypoxia, and apelin increased pericytes proliferation and migration. Moreover, knockdown of apelin in pericyte was achieved via lentivirus-mediated RNA interference. After the inhibition of apelin, pericytes proliferation was inhibited significantly in hypoxia culture condition. Furthermore, exogenous recombinant apelin effectively prevented hypoxia-induced apoptosis through downregulating active-caspase 3 expression and increasing the ratio of B cell lymphoma-2 (Bcl-2/Bcl-2 associated X protein (Bax in pericytes. These results suggest that apelin suppressed hypoxia-induced pericytes injury, which indicated that apelin could be a potential therapeutic target for retinal angiogenic diseases.

  14. Myocardial injection of apelin-overexpressing bone marrow cells improves cardiac repair via upregulation of Sirt3 after myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Lanfang Li

    Full Text Available Our previous study shows that treatment with apelin increases bone marrow cells (BMCs recruitment and promotes cardiac repair after myocardial infarction (MI. The objective of this study was to investigate whether overexpression of apelin in BMCs improved cell therapy and accelerated cardiac repair and functional recovery in post-MI mice. Mouse myocardial infarction was achieved by coronary artery ligation and BMCs overexpressing apelin (apelin-BMCs or GFP (GFP-BMCs were injected into ischemic area immediately after surgery. In vitro, exposure of cultured BMCs to apelin led to a gradual increase in SDF-1á and CXCR4 expression. Intramyocardial delivery of apelin-BMCs in post-MI mice resulted in a significant increase number of APJ⁺/c-kit⁺/Sca1⁺ cells in the injected area compared to GFP-BMCs treated post-MI mice. Treatment with apelin-BMCs increased expression of VEGF, Ang-1 and Tie-2 in post-MI mice. Apelin-BMCs treatment also significantly increased angiogenesis and attenuated cardiac fibrosis formation in post-MI mice. Most importantly, treatment with apelin-BMCs significantly improved left ventricular (LV systolic function in post-MI mice. Mechanistically, Apelin-BMCs treatment led to a significant increase in Sirtuin3 (Sirt3 expression and reduction of reactive oxygen species (ROS formation. Treatment of cultured BMCs with apelin also increased Notch3 expression and Akt phosphorylation. Apelin treatment further attenuated stress-induced apoptosis whereas knockout of Sirt3 abolished anti-apoptotic effect of apelin in cultured BMCs. Moreover, knockout of Sirt3 significantly attenuated apelin-BMCs-induced VEGF expression and angiogenesis in post-MI mice. Knockout of Sirt3 further blunted apelin-BMCs-mediated improvement of cardiac repair and systolic functional recovery in post-MI mice. These data suggest that apelin improves BMCs therapy on cardiac repair and systolic function in post-MI mice. Upregulation of Sirt3 may contribute to the

  15. Myocardial injection of apelin-overexpressing bone marrow cells improves cardiac repair via upregulation of Sirt3 after myocardial infarction.

    Science.gov (United States)

    Li, Lanfang; Zeng, Heng; Hou, Xuwei; He, Xiaochen; Chen, Jian-Xiong

    2013-01-01

    Our previous study shows that treatment with apelin increases bone marrow cells (BMCs) recruitment and promotes cardiac repair after myocardial infarction (MI). The objective of this study was to investigate whether overexpression of apelin in BMCs improved cell therapy and accelerated cardiac repair and functional recovery in post-MI mice. Mouse myocardial infarction was achieved by coronary artery ligation and BMCs overexpressing apelin (apelin-BMCs) or GFP (GFP-BMCs) were injected into ischemic area immediately after surgery. In vitro, exposure of cultured BMCs to apelin led to a gradual increase in SDF-1á and CXCR4 expression. Intramyocardial delivery of apelin-BMCs in post-MI mice resulted in a significant increase number of APJ⁺/c-kit⁺/Sca1⁺ cells in the injected area compared to GFP-BMCs treated post-MI mice. Treatment with apelin-BMCs increased expression of VEGF, Ang-1 and Tie-2 in post-MI mice. Apelin-BMCs treatment also significantly increased angiogenesis and attenuated cardiac fibrosis formation in post-MI mice. Most importantly, treatment with apelin-BMCs significantly improved left ventricular (LV) systolic function in post-MI mice. Mechanistically, Apelin-BMCs treatment led to a significant increase in Sirtuin3 (Sirt3) expression and reduction of reactive oxygen species (ROS) formation. Treatment of cultured BMCs with apelin also increased Notch3 expression and Akt phosphorylation. Apelin treatment further attenuated stress-induced apoptosis whereas knockout of Sirt3 abolished anti-apoptotic effect of apelin in cultured BMCs. Moreover, knockout of Sirt3 significantly attenuated apelin-BMCs-induced VEGF expression and angiogenesis in post-MI mice. Knockout of Sirt3 further blunted apelin-BMCs-mediated improvement of cardiac repair and systolic functional recovery in post-MI mice. These data suggest that apelin improves BMCs therapy on cardiac repair and systolic function in post-MI mice. Upregulation of Sirt3 may contribute to the protective

  16. Apelin and APJ, a novel critical factor and therapeutic target for atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    Deguan Lv; Hening Li; Linxi Chen

    2013-01-01

    Apelin is a bioactive peptide discovered recently that has been proved to be an endogenous ligand of the APJ receptor.Apelin and APJ are widely distributed in the central nervous system and peripheral tissues.Researches have confirmed that apelin/APJ involved in a wide range of physiological and pathological functions in the cardiovascular system.Investigations indicated that apelin is a novel critical factor in the development of atherosclerosis (AS).In this review,we discuss the roles of apelin in the vascular smooth muscle cell proliferation,monocytes-endothelial cell adhesion,and angiogenesis that potentially reveals a new cellular mechanism of AS.Considering these roles,apelin and APJ may be novel therapeutic targets of AS.

  17. Bone growth and turnover in progesterone receptor knockout mice.

    Energy Technology Data Exchange (ETDEWEB)

    Rickard, David J.; Iwaniec, Urszula T.; Evans, Glenda; Hefferan, Theresa E.; Hunter, Jaime C.; Waters, Katrina M.; Lydon, John P.; O' Malley, Bert W.; Khosla, Sundeep; Spelsberg, Thomas C.; Turner, Russell T.

    2008-05-01

    The role of progesterone receptor (PR) signaling in skeletal metabolism is controversial. To address whether signaling through the PR is necessary for normal bone growth and turnover, we performed histomorphometric and mCT analyses of bone from homozygous female PR knockout (PRKO) mice at 6, 12, and 26 weeks of age. These mice possess a null mutation of the PR locus, which blocks the gene expression of A and B isoforms of PR. Body weight gain, uterine weight gain and tibia longitudinal bone growth was normal in PRKO mice. In contrast, total and cortical bone mass were increased in long bones of post-pubertal (12 and 26-week-old) PRKO mice, whereas cancellous bone mass was normal in the tibia but increased in the humerus. The striking 57% decrease in cancellous bone from the proximal tibia metaphysis which occurred between 6 and 26 weeks in WT mice was abolished in PRKO mice. The improved bone balance in aging PRKO mice was associated with elevated bone formation and a tendency toward reduced osteoclast perimeter. Taken together, these findings suggest that PR signaling in mice attenuates the accumulation of cortical bone mass during adolescence and is required for early age-related loss of cancellous bone.

  18. Normal Maternal Behavior, But Increased Pup Mortality, in Conditional Oxytocin Receptor Knockout Females

    OpenAIRE

    Macbeth, Abbe H.; Stepp, Jennifer E.; Lee, Heon-Jin; Young, W. Scott; Heather K Caldwell

    2010-01-01

    Oxytocin (Oxt) and the Oxt receptor (Oxtr) are implicated in the onset of maternal behavior in a variety of species. Recently, we developed two Oxtr knockout lines: a total body knockout (Oxtr−/−) and a conditional Oxtr knockout (OxtrFB/FB) in which the Oxtr is lacking only in regions of the forebrain, allowing knockout females to potentially nurse and care for their biological offspring. In the current study, we assessed maternal behavior of postpartum OxtrFB/FB females toward their own pups...

  19. Effects of D1 receptor knockout on fear and reward learning.

    Science.gov (United States)

    Abraham, Antony D; Neve, Kim A; Lattal, K Matthew

    2016-09-01

    Dopamine signaling is involved in a variety of neurobiological processes that contribute to learning and memory. D1-like dopamine receptors (including D1 and D5 receptors) are thought to be involved in memory and reward processes, but pharmacological approaches have been limited in their ability to distinguish between D1 and D5 receptors. Here, we examine the effects of a specific knockout of D1 receptors in associative learning tasks involving aversive (shock) or appetitive (cocaine) unconditioned stimuli. We find that D1 knockout mice show similar levels of cued and contextual fear conditioning to WT controls following conditioning protocols involving one, two, or four shocks. D1 knockout mice show increased generalization of fear conditioning and extinction across contexts, revealed as increased freezing to a novel context following conditioning and decreased freezing to an extinguished cue during a contextual renewal test. Further, D1 knockout mice show mild enhancements in extinction following an injection of SKF81297, a D1/D5 receptor agonist, suggesting a role for D5 receptors in extinction enhancements induced by nonspecific pharmacological agonists. Finally, although D1 knockout mice show decreased locomotion induced by cocaine, they are able to form a cocaine-induced conditioned place preference. We discuss these findings in terms of the role of dopamine D1 receptors in general learning and memory processes. PMID:27423521

  20. Exercise modulates postreceptor insulin signaling and glucose transport in muscle-specific insulin receptor knockout mice

    OpenAIRE

    Wojtaszewski, Jørgen F. P.; Higaki, Yasuki; Hirshman, Michael F.; Michael, M. Dodson; Dufresne, Scott D.; Kahn, C. Ronald; Goodyear, Laurie J.

    1999-01-01

    Physical exercise promotes glucose uptake into skeletal muscle and makes the working muscles more sensitive to insulin. To understand the role of insulin receptor (IR) signaling in these responses, we studied the effects of exercise and insulin on skeletal muscle glucose metabolism and insulin signaling in mice lacking insulin receptors specifically in muscle. Muscle-specific insulin receptor knockout (MIRKO) mice had normal resting 2-deoxy-glucose (2DG) uptake in soleus muscles but had no si...

  1. Impaired social behavior in 5-HT3A receptor knockout mice

    Directory of Open Access Journals (Sweden)

    Laura A Smit-Rigter

    2010-11-01

    Full Text Available The 5-HT3 receptor is a ligand-gated ion channel expressed on interneurons throughout the brain. So far, analysis of the 5-HT3A knockout mouse revealed changes in nociceptive processing and a reduction in anxiety related behavior. Recently, it was shown that the 5-HT3 receptor is also expressed on Cajal-Retzius cells which play a key role in cortical development and that knockout mice lacking this receptor showed aberrant growth of the dendritic tree of cortical layer II/III pyramidal neurons. Other mouse models in which serotonergic signaling was disrupted during development showed similar morphological changes in the cortex, and in addition, also deficits in social behavior. Here, we subjected male and female 5-HT3A knockout mice and their non-transgenic littermates to several tests of social behavior. We found that 5-HT3A knockout mice display impaired social communication in the social transmission of food preference task. Interestingly, we showed that in the social interaction test only female 5-HT3A knockout mice spent less time in reciprocal social interaction starting after 5 minutes of testing. Moreover, we observed differences in preference for social novelty for male and female 5-HT3A knockout mice during the social approach test. However, no changes in olfaction, exploratory activity and anxiety were detected. These results indicate that the 5-HT3A knockout mouse displays impaired social behavior with specific changes in males and females, reminiscent to other mouse models in which serotonergic signaling is disturbed in the developing brain.

  2. Hematopoiesis in 5-Fluorouracil-Treated Adenosine A(3) Receptor Knock-Out Mice

    Czech Academy of Sciences Publication Activity Database

    Hofer, Michal; Pospíšil, Milan; Dušek, L.; Hoferová, Zuzana; Komůrková, Denisa

    2015-01-01

    Roč. 64, č. 2 (2015), s. 255-262. ISSN 0862-8408 Institutional support: RVO:68081707 Keywords : Adenosine A(3) receptor knock-out mice * Hematopoiesis * 5-fluorouracil-induced hematotoxicity Subject RIV: BO - Biophysics Impact factor: 1.293, year: 2014

  3. Autonomic changes associated with enhanced anxiety in 5-HT(1A) receptor knockout mice.

    NARCIS (Netherlands)

    Pattij, T.; Groenink, L.; Hijzen, T.H.; Oosting, R.S.; Maes, R.A.A.; Gugten, J. van der; Olivier, B.

    2002-01-01

    5-HT(1A) receptor knockout (KO) mice have been described as more anxious in various anxiety paradigms. Because anxiety is often associated with autonomic changes like elevated body temperature and tachycardia, radiotelemetry was used to study these parameters in wild type (WT) and KO mice in stress-

  4. Knockout of Insulin-Like Growth Factor-1 Receptor Impairs Distal Lung Morphogenesis

    OpenAIRE

    Epaud, Ralph; Aubey, Flore; Xu, Jie; Chaker, Zayna; Clemessy, Maud; Dautin, Alexandre; Ahamed, Karmène; Bonora, Monique; Hoyeau, Nadia; Fléjou, Jean-François; Mailleux, Arnaud; Clement, Annick; Henrion-Caude, Alexandra; Holzenberger, Martin

    2012-01-01

    Background Insulin-like growth factors (IGF-I and -II) are pleiotropic regulators of somatic growth and development in vertebrate species. Endocrine and paracrine effects of both hormones are mediated by a common IGF type 1 receptor (IGF-1R). Lethal respiratory failure in neonatal IGF-1R knockout mice suggested a particular role for this receptor in pulmonary development, and we therefore investigated the consequences of IGF-1R inactivation in lung tissue. Methods and Findings We first genera...

  5. Reduced emotional and corticosterone responses to stress in μ-opioid receptor knockout mice

    OpenAIRE

    Ide, Soichiro; Sora, Ichiro; Ikeda, Kazutaka; Minami, Masabumi; Uhl, George R; Ishihara, Kumatoshi

    2009-01-01

    The detailed mechanisms of emotional modulation in the nervous system by opioids remain to be elucidated, although the opioid system is well known to play important roles in the mechanisms of analgesia and drug dependence. In the present study, we conducted behavioral tests of anxiety and depression and measured corticosterone concentrations in both male and female μ-opioid receptor knockout (MOP-KO) mice to reveal the involvement of μ-opioid receptors in stress-induced emotional responses. M...

  6. Chemokine Receptor 7 Knockout Attenuates Atherosclerotic Plaque Development

    NARCIS (Netherlands)

    Luchtefeld, Maren; Grothusen, Christina; Gagalick, Andreas; Jagavelu, Kumaravelu; Schuett, Harald; Tietge, Uwe J. F.; Pabst, Oliver; Grote, Karsten; Drexler, Helmut; Foerster, Reinhold; Schieffer, Bernhard

    2010-01-01

    Background-Atherosclerosis is a systemic inflammatory disease characterized by the formation of atherosclerotic plaques. Both innate immunity and adaptive immunity contribute to atherogenesis, but the mode of interaction is poorly understood. Chemokine receptor 7 (CCR7) is critically involved in the

  7. Apelin is a novel islet peptide

    DEFF Research Database (Denmark)

    Ringström, Camilla; Nitert, Marloes Dekker; Bennet, Hedvig;

    2010-01-01

    Apelin, a recently discovered peptide with wide tissue distribution, regulates feeding behavior, improves glucose utilization, and inhibits insulin secretion. We examined whether apelin is expressed in human islets, as well as in normal and type 2 diabetic (T2D) animal islets. Further, we studied...

  8. Human androgen deficiency: insights gained from androgen receptor knockout mouse models

    OpenAIRE

    Kesha Rana; Davey, Rachel A; Zajac, Jeffrey D

    2014-01-01

    The mechanism of androgen action is complex. Recently, significant advances have been made into our understanding of how androgens act via the androgen receptor (AR) through the use of genetically modified mouse models. A number of global and tissue-specific AR knockout (ARKO) models have been generated using the Cre-loxP system which allows tissue- and/or cell-specific deletion. These ARKO models have examined a number of sites of androgen action including the cardiovascular system, the immu...

  9. Key Regulators of Mitochondrial Biogenesis are Increased in Kidneys of Growth Hormone Receptor Knockout (GHRKO) Mice

    OpenAIRE

    Gesing, Adam; Bartke, Andrzej; Wang, Feiya; Karbownik-Lewinska, Malgorzata; Masternak, Michal M.

    2011-01-01

    The growth hormone (GH) receptor knockout mice (GHRKO) are remarkably long-lived and highly insulin sensitive. Alterations in mitochondrial biogenesis are associated with aging and various metabolic derangements. We have previously demonstrated increased gene expression of key regulators of mitochondriogenesis in kidneys, hearts and skeletal muscles of GHRKO mice. The aim of the present study was to quantify the protein levels of the following regulators of mitochondriogenesis: peroxisome pro...

  10. Behavioural and molecular responses to amphetamine in the neurokinin-1 receptor knock-out mouse

    OpenAIRE

    Slone-Murphy, J.

    2011-01-01

    The neurokinin-1 receptor knock-out (NK1R-/-) mouse is hyperactive and shows deficits in attentional processing, and has recently been put forward as a model of attention deficit hyperactivity disorder (ADHD). Acute amphetamine, a first-line treatment for ADHD and a drug of abuse, paradoxically reduces the hyperactivity of NK1R-/- mice, and the characteristic amphetamine-stimulated increase in striatal dopamine efflux seen in wild-type animals is attenuated in NK1R-/- mice. The...

  11. Cardiac-Specific Knockout of ETA Receptor Mitigates Paraquat-Induced Cardiac Contractile Dysfunction.

    Science.gov (United States)

    Wang, Jiaxing; Lu, Songhe; Zheng, Qijun; Hu, Nan; Yu, Wenjun; Li, Na; Liu, Min; Gao, Beilei; Zhang, Guoyong; Zhang, Yingmei; Wang, Haichang

    2016-07-01

    Paraquat (1,1'-dim ethyl-4-4'-bipyridinium dichloride), a highly toxic quaternary ammonium herbicide widely used in agriculture, exerts potent toxic prooxidant effects resulting in multi-organ failure including the lung and heart although the underlying mechanism remains elusive. Recent evidence suggests possible involvement of endothelin system in paraquat-induced acute lung injury. This study was designed to examine the role of endothelin receptor A (ETA) in paraquat-induced cardiac contractile and mitochondrial injury. Wild-type (WT) and cardiac-specific ETA receptor knockout mice were challenged to paraquat (45 mg/kg, i.p.) for 48 h prior to the assessment of echocardiographic, cardiomyocyte contractile and intracellular Ca(2+) properties, as well as apoptosis and mitochondrial damage. Levels of the mitochondrial proteins for biogenesis and oxidative phosphorylation including UCP2, HSP90 and PGC1α were evaluated. Our results revealed that paraquat elicited cardiac enlargement, mechanical anomalies including compromised echocardiographic parameters (elevated left ventricular end-systolic and end-diastolic diameters as well as reduced factional shortening), suppressed cardiomyocyte contractile function, intracellular Ca(2+) handling, overt apoptosis and mitochondrial damage. ETA receptor knockout itself failed to affect myocardial function, apoptosis, mitochondrial integrity and mitochondrial protein expression. However, ETA receptor knockout ablated or significantly attenuated paraquat-induced cardiac contractile and intracellular Ca(2+) defect, apoptosis and mitochondrial damage. Taken together, these findings revealed that endothelin system in particular the ETA receptor may be involved in paraquat-induced toxic myocardial contractile anomalies possibly related to apoptosis and mitochondrial damage. PMID:26089164

  12. Increased amphetamine-induced locomotor activity, sensitization and accumbal dopamine release in M5 muscarinic receptor knockout mice

    OpenAIRE

    Schmidt, Lene S.; Miller, Anthony D.; Lester, Deranda B.; Bay-Richter, Cecilie; Schülein, Christina; Schmidt, Henriette F.; Wess, Jürgen; Blaha, Charles D.; Woldbye, David P.D.; Fink-Jensen, Anders; Wortwein, Gitta

    2009-01-01

    Muscarinic M5 receptors are the only muscarinic receptor subtype expressed by dopamine-containing neurons of the ventral tegmental area. These cells play an important role for the reinforcing properties of psychostimulants and M5 receptors modulate their activity. Previous studies showed that M5 receptor knockout (M5−/−) mice are less sensitive to the reinforcing properties of addictive drugs. Here we investigate the role of M5 receptors in the effects of amphetamine and cocaine on locomotor ...

  13. Thyrotropin receptor knockout mice: studies on immunological tolerance to a major thyroid autoantigen.

    Science.gov (United States)

    Pichurin, Pavel N; Pichurina, Oxana; Marians, Russell C; Chen, Chun-Rong; Davies, Terry F; Rapoport, Basil; McLachlan, Sandra M

    2004-03-01

    Graves' disease involves a breakdown in self-tolerance to the TSH receptor (TSHR). Central T cell tolerance is established by intrathymic deletion of immature T lymphocytes that bind with high affinity to peptides from autoantigens (like the TSHR) expressed ectopically in the thymus. In TSHR-knockout mice, tolerance cannot be induced to the TSHR, which should, therefore, be a foreign antigen for these animals. To test this hypothesis, TSHR-knockout mice and wild-type controls were vaccinated (three injections) with TSHR DNA or control DNA. TSHR antibodies, measured by ELISA, binding to TSHR-expressing eukaryotic cells, and TSH binding inhibition, developed in approximately 60% of TSHR-knockout mice, not significantly different from 80% in the wild-type mice. Antibody levels were also comparable in the two groups, and both strains recognized the same immunodominant linear antibody epitope at the amino terminus of the TSHR. Splenocyte responses to TSHR protein in culture, measured as interferon-gamma production, were similar in TSHR-knockout and wild-type mice. Moreover, T cells from both strains recognized the same two epitopes from a panel of 29 synthetic peptides encompassing the TSHR ectodomain and extracellular loops. This lack of difference in immune responses in TSHR-knockout and wild-type mice is unexpected and is contrary to observations in other induced animal models of autoimmunity. The importance of our finding is that the TSHR may not be similar to other model proteins used to define the concept of central immune tolerance. PMID:14630711

  14. Enhanced voluntary wheel running in GPRC6A receptor knockout mice

    DEFF Research Database (Denmark)

    Clemmensen, Christoffer; Pehmøller, Christian; Klein, Anders B;

    2013-01-01

    wheel running is affected by GPRC6A, as ablation of the receptor significantly enhances wheel running in KO relative to WT mice. Both genotypes responded to voluntary exercise by increasing food intake and improving body composition to a similar degree. In conclusion, these data demonstrate that the......GPRC6A is an amino acid-sensing receptor highly expressed in the brain and in skeletal muscle. Although recent evidence suggests that genetically engineered GPRC6A receptor knockout (KO) mice are susceptible to develop subtle endocrine and metabolic disturbances, the underlying disruptions in...... to voluntary wheel running and forced treadmill exercise. Moreover, we assessed energy expenditure in the basal state, and evaluated the effects of wheel running on food intake, body composition, and a range of exercise-induced central and peripheral biomarkers. We found that adaptation to voluntary...

  15. Increased cocaine self-administration in M4 muscarinic acetylcholine receptor knockout mice

    DEFF Research Database (Denmark)

    Schmidt, Lene Sørensen; Thomsen, Morgane; Weikop, Pia;

    2011-01-01

    Rationale The reinforcing effects of cocaine are mediated by the mesolimbic dopamine system. Behavioral and neurochemical studies have shown that the cholinergic muscarinic M4 receptor subtype plays an important role in regulation of dopaminergic neurotransmission. Objectives Here we investigated...... for the first time the involvement of M4 receptors in the reinforcing effects of cocaine using chronic intravenous cocaine self-administration in extensively backcrossed M4 receptor knockout (M4 -/-) mice. Methods We evaluated acquisition of cocaine self-administration in experimentally naïve mice....... Both cocaine self-administration and food-maintained operant behavior were evaluated under fixed ratio 1 (FR 1) and progressive ratio (PR) schedules of reinforcement. In addition, cocaine-induced dopamine release and cocaine-induced hyperactivity were evaluated. Results M4 -/- mice earned significantly...

  16. Disruption of PPARγ/β-catenin–mediated regulation of apelin impairs BMP-induced mouse and human pulmonary arterial EC survival

    Science.gov (United States)

    Alastalo, Tero-Pekka; Li, Molong; de Jesus Perez, Vinicio; Pham, David; Sawada, Hirofumi; Wang, Jordon K.; Koskenvuo, Minna; Wang, Lingli; Freeman, Bruce A.; Chang, Howard Y.; Rabinovitch, Marlene

    2011-01-01

    Reduced bone morphogenetic protein receptor 2 (BMPR2) expression in patients with pulmonary arterial hypertension (PAH) can impair pulmonary arterial EC (PAEC) function. This can adversely affect EC survival and promote SMC proliferation. We hypothesized that interventions to normalize expression of genes that are targets of BMPR2 signaling could restore PAEC function and prevent or reverse PAH. Here we have characterized, in human PAECs, a BMPR2-mediated transcriptional complex between PPARγ and β-catenin and shown that disruption of this complex impaired BMP-mediated PAEC survival. Using whole genome-wide ChIP-Chip promoter analysis and gene expression microarrays, we delineated PPARγ/β-catenin–dependent transcription of target genes including APLN, which encodes apelin. We documented reduced PAEC expression of apelin in PAH patients versus controls. In cell culture experiments, we showed that apelin-deficient PAECs were prone to apoptosis and promoted pulmonary arterial SMC (PASMC) proliferation. Conversely, we established that apelin, like BMPR2 ligands, suppressed proliferation and induced apoptosis of PASMCs. Consistent with these functions, administration of apelin reversed PAH in mice with reduced production of apelin resulting from deletion of PPARγ in ECs. Taken together, our findings suggest that apelin could be effective in treating PAH by rescuing BMPR2 and PAEC dysfunction. PMID:21821917

  17. Increased adipose tissue in male and female estrogen receptorknockout mice

    OpenAIRE

    Heine, P. A.; Taylor, J.A.; Iwamoto, G. A.; Lubahn, D.B.; Cooke, P S

    2000-01-01

    Estrogen regulates the amount of white adipose tissue (WAT) in females, but its role in males and whether WAT effects involve estrogen receptor-α (ERα) or ERβ were unclear. We analyzed the role of ERα in WAT and brown adipose tissue by comparing these tissues in wild-type (WT) and ERα-knockout (αERKO) male and female mice. Brown adipose tissue weight was similar in αERKO and WT males at all ages. Progressive increases in WAT were seen in αERKO males with advancing ...

  18. Antidepressant-like effect of venlafaxine is abolished in µ-opioid receptor knockout mice

    OpenAIRE

    Ide, Soichiro; Fujiwara, Shunsuke; Fujiwara, Masayuki; Sora, Ichiro; Ikeda, Kazutaka; Minami, Masabumi; Uhl, George R; Ishihara, Kumatoshi

    2010-01-01

    Although the opioid system is known to modulate depression-like behaviors, its role in the effects of antidepressants is not yet clear. We investigated the role of µ-opioid receptors (MOPs) in the effects of venlafaxine, a serotonin and norepinephrine reuptake inhibitor, in the forced swim test using MOP-knockout (KO) mice. Venlafaxine reduced immobility time in wildtype mice (C57BL/6J), but not in MOP-KO mice, although no significant effects were observed on locomotor activity. These results...

  19. Invariant NKT Cell Defects in Vitamin D Receptor Knockout Mice Prevents Experimental Lung Inflammation

    OpenAIRE

    Yu, Sanhong; Zhao, Jun; Cantorna, Margherita T.

    2011-01-01

    Vitamin D receptor (VDR) deficiency (knockout, KO) results in a failure of mice to generate an airway hyper-reactivity (AHR) response on both the Balb/c and C57BL/6 background. The cause of the failed AHR response is the defective population of iNKT cells in the VDR KO mice since wildtype (WT) iNKT cells rescued the AHR response. VDR KO mice had significantly fewer iNKT cells and normal numbers of T cells in the spleen compared to WT mice. In Balb/c VDR KO mice the reduced frequencies of iNKT...

  20. Apelin attenuates the osteoblastic differentiation of aortic valve interstitial cells via the ERK and PI3-K/Akt pathways.

    Science.gov (United States)

    Yuan, Zhao-shun; Zhou, Yang-zhao; Liao, Xiao-bo; Luo, Jia-wen; Shen, Kang-jun; Hu, Ye-rong; Gu, Lu; Li, Jian-ming; Tan, Chang-ming; Chen, He-ming; Zhou, Xin-min

    2015-12-01

    Aortic valve calcification (AVC), which used to be recognized as a passive and irreversible process, is now widely accepted as an active and regulated process characterized by osteoblastic differentiation of aortic valve interstitial cells (AVICs). Apelin, the endogenous ligand for G-protein-coupled receptor APJ, was found to have protective cardiovascular effects in several studies. However, the effects and mechanisms of apelin on osteoblastic differentiation of AVICs have not been elucidated. Using a pro-calcific medium, we devised a method to produce calcific human AVICs. These cells were used to study the relationship between apelin and the osteoblastic calcification of AVICs and the involved signaling pathways. Alkaline phosphatase (ALP) activity/expression and runt-related transcription factor 2 (Runx2) expression were examined as hallmark proteins in this research. The involved signaling pathways were studied using the extracellular signal-regulated kinase (ERK) inhibitor, PD98059, and the phosphatidylinositol 3-kinase (PI3-K) inhibitor, LY294002. The results indicate that apelin attenuates the expression and activity of ALP, the expression of Runx2, and the formation of mineralized nodules. This protective effect was dependent on the dose of apelin, reaching the maximum at 100 pM, and was connected to activity of ERK and Akt (a downstream effector of PI3-K). The activation of ERK and PI3-K initiated the effects of apelin on ALP activity/expression and Runx2, but PD98059 and LY294002 abolished the effect. These results demonstrate that apelin attenuates the osteoblastic differentiation of AVICs via the ERK and PI3-K/Akt pathway. PMID:26142632

  1. Apelin-13 inhibits large-conductance Ca2+-activated K+ channels in cerebral artery smooth muscle cells via a PI3-kinase dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Amit Modgil

    Full Text Available Apelin-13 causes vasoconstriction by acting directly on APJ receptors in vascular smooth muscle (VSM cells; however, the ionic mechanisms underlying this action at the cellular level remain unclear. Large-conductance Ca(2+-activated K(+ (BKCa channels in VSM cells are critical regulators of membrane potential and vascular tone. In the present study, we examined the effect of apelin-13 on BK(Ca channel activity in VSM cells, freshly isolated from rat middle cerebral arteries. In whole-cell patch clamp mode, apelin-13 (0.001-1 μM caused concentration-dependent inhibition of BK(Ca in VSM cells. Apelin-13 (0.1 µM significantly decreased BK(Ca current density from 71.25 ± 8.14 pA/pF to 44.52 ± 7.10 pA/pF (n=14 cells, P<0.05. This inhibitory effect of apelin-13 was confirmed by single channel recording in cell-attached patches, in which extracellular application of apelin-13 (0.1 µM decreased the open-state probability (NPo of BK(Ca channels in freshly isolated VSM cells. However, in inside-out patches, extracellular application of apelin-13 (0.1 µM did not alter the NPo of BK(Ca channels, suggesting that the inhibitory effect of apelin-13 on BKCa is not mediated by a direct action on BK(Ca. In whole cell patches, pretreatment of VSM cells with LY-294002, a PI3-kinase inhibitor, markedly attenuated the apelin-13-induced decrease in BK(Ca current density. In addition, treatment of arteries with apelin-13 (0.1 µM significantly increased the ratio of phosphorylated-Akt/total Akt, indicating that apelin-13 significantly increases PI3-kinase activity. Taken together, the data suggest that apelin-13 inhibits BK(Ca channel via a PI3-kinase-dependent signaling pathway in cerebral artery VSM cells, which may contribute to its regulatory action in the control of vascular tone.

  2. Comparative effects of chlorpyrifos in wild type and cannabinoid Cb1 receptor knockout mice

    Energy Technology Data Exchange (ETDEWEB)

    Baireddy, Praveena; Liu, Jing; Hinsdale, Myron; Pope, Carey, E-mail: carey.pope@okstate.edu

    2011-11-15

    Endocannabinoids (eCBs) modulate neurotransmission by inhibiting the release of a variety of neurotransmitters. The cannabinoid receptor agonist WIN 55.212-2 (WIN) can modulate organophosphorus (OP) anticholinesterase toxicity in rats, presumably by inhibiting acetylcholine (ACh) release. Some OP anticholinesterases also inhibit eCB-degrading enzymes. We studied the effects of the OP insecticide chlorpyrifos (CPF) on cholinergic signs of toxicity, cholinesterase activity and ACh release in tissues from wild type (+/+) and cannabinoid CB1 receptor knockout (-/-) mice. Mice of both genotypes (n = 5-6/treatment group) were challenged with CPF (300 mg/kg, 2 ml/kg in peanut oil, sc) and evaluated for functional and neurochemical changes. Both genotypes exhibited similar cholinergic signs and cholinesterase inhibition (82-95% at 48 h after dosing) in cortex, cerebellum and heart. WIN reduced depolarization-induced ACh release in vitro in hippocampal slices from wild type mice, but had no effect in hippocampal slices from knockouts or in striatal slices from either genotype. Chlorpyrifos oxon (CPO, 100 {mu}M) reduced release in hippocampal slices from both genotypes in vitro, but with a greater reduction in tissues from wild types (21% vs 12%). CPO had no significant in vitro effect on ACh release in striatum. CPF reduced ACh release in hippocampus from both genotypes ex vivo, but reduction was again significantly greater in tissues from wild types (52% vs 36%). In striatum, CPF led to a similar reduction (20-23%) in tissues from both genotypes. Thus, while CB1 deletion in mice had little influence on the expression of acute toxicity following CPF, CPF- or CPO-induced changes in ACh release appeared sensitive to modulation by CB1-mediated eCB signaling in a brain-regional manner. -- Highlights: Black-Right-Pointing-Pointer C57Bl/6 mice showed dose-related cholinergic toxicity following subcutaneous chlorpyrifos exposure. Black-Right-Pointing-Pointer Wild type and

  3. Effect of P2X7 receptor knockout on AQP-5 expression of type I alveolar epithelial cells.

    Directory of Open Access Journals (Sweden)

    Georg Ebeling

    Full Text Available P2X7 receptors, ATP-gated cation channels, are specifically expressed in alveolar epithelial cells. The pathophysiological function of this lung cell type, except a recently reported putative involvement in surfactant secretion, is unknown. In addition, P2X7 receptor-deficient mice show reduced inflammation and lung fibrosis after exposure with bleomycin. To elucidate the role of the P2X7 receptor in alveolar epithelial type I cells we characterized the pulmonary phenotype of P2X7 receptor knockout mice by using immunohistochemistry, western blot analysis and real-time RT PCR. No pathomorphological signs of fibrosis were found. Results revealed, however, a remarkable loss of aquaporin-5 protein and mRNA in young knockout animals. Additional in vitro experiments with bleomycin treated precision cut lung slices showed a greater sensitivity of the P2X7 receptor knockout mice in terms of aquaporin-5 reduction as wild type animals. Finally, P2X7 receptor function was examined by using the alveolar epithelial cell lines E10 and MLE-12 for stimulation experiments with bleomycin. The in vitro activation of P2X7 receptor was connected with an increase of aquaporin-5, whereas the inhibition of the receptor with oxidized ATP resulted in down regulation of aquaporin-5. The early loss of aquaporin-5 which can be found in different pulmonary fibrosis models does not implicate a specific pathogenetic role during fibrogenesis.

  4. Myeloid Deletion of α1AMPK Exacerbates Atherosclerosis in LDL Receptor Knockout (LDLRKO) Mice.

    Science.gov (United States)

    Cao, Qiang; Cui, Xin; Wu, Rui; Zha, Lin; Wang, Xianfeng; Parks, John S; Yu, Liqing; Shi, Hang; Xue, Bingzhong

    2016-06-01

    Macrophage inflammation marks all stages of atherogenesis, and AMPK is a regulator of macrophage inflammation. We therefore generated myeloid α1AMPK knockout (MAKO) mice on the LDL receptor knockout (LDLRKO) background to investigate whether myeloid deletion of α1AMPK exacerbates atherosclerosis. When fed an atherogenic diet, MAKO/LDLRKO mice displayed exacerbated atherosclerosis compared with LDLRKO mice. To determine the underlying pathophysiological pathways, we characterized macrophage inflammation/chemotaxis and lipid/cholesterol metabolism in MAKO/LDLRKO mice. Myeloid deletion of α1AMPK increased macrophage inflammatory gene expression and enhanced macrophage migration and adhesion to endothelial cells. Remarkably, MAKO/LDLRKO mice also displayed higher composition of circulating chemotaxically active Ly-6C(high) monocytes, enhanced atherosclerotic plaque chemokine expression, and monocyte recruitment into plaques, leading to increased atherosclerotic plaque macrophage content and inflammation. MAKO/LDLRKO mice also exhibited higher plasma LDL and VLDL cholesterol content, increased circulating apolipoprotein B (apoB) levels, and higher liver apoB expression. We conclude that macrophage α1AMPK deficiency promotes atherogenesis in LDLRKO mice and is associated with enhanced macrophage inflammation and hypercholesterolemia and that macrophage α1AMPK may serve as a therapeutic target for prevention and treatment of atherosclerosis. PMID:26822081

  5. Thyrotoropin receptor knockout changes monoaminergic neuronal system and produces methylphenidate-sensitive emotional and cognitive dysfunction.

    Science.gov (United States)

    Mouri, Akihiro; Hoshino, Yuta; Narusawa, Shiho; Ikegami, Keisuke; Mizoguchi, Hiroyuki; Murata, Yoshiharu; Yoshimura, Takashi; Nabeshima, Toshitaka

    2014-10-01

    Attention deficit/hyperactivity disorder (ADHD) has been reported in association with resistance to thyroid hormone, a disease caused by a mutation in the thyroid hormone receptor β (TRβ) gene. TRβ is a key protein mediating down-regulation of thyrotropin (TSH) expression by 3,3',5-tri-iodothyronine (T3), an active form of thyroid hormone. Dysregulation of TSH and its receptor (TSHR) is implicated in the pathophysiology of ADHD but the role of TSHR remains elusive. Here, we clarified a novel role for TSHR in emotional and cognitive functions related to monoaminergic nervous systems. TSHR knockout mice showed phenotypes of ADHD such as hyperactivity, impulsiveness, a decrease in sociality and increase in aggression, and an impairment of short-term memory and object recognition memory. Administration of methylphenidate (1, 5 and 10mg/kg) reversed impulsiveness, aggression and object recognition memory impairment. In the knockout mice, monoaminergic changes including decrease in the ratio of 3-methoxy-4-hydroxyphenylglycol/noradrenaline and increase in the ratio of homovanillic acid/dopamine were observed in some brain regions, accompanied by increase in the expression of noradrenaline transporter in the frontal cortex. When TSH was completely suppressed by the supraphysiological administration of T3 to the adult mice, some behavioral and neurological changes in TSHR KO mice were also observed, suggesting that these changes were not due to developmental hypothyroidism induced by the inactivation of TSHR but to the loss of the TSH-TSHR pathway itself. Taken together, the present findings suggest a novel role for TSHR in behavioral and neurological phenotypes of ADHD. PMID:25016105

  6. Pregnane X receptor knockout mice display aging-dependent wearing of articular cartilage.

    Directory of Open Access Journals (Sweden)

    Kotaro Azuma

    Full Text Available Steroid and xenobiotic receptor (SXR and its murine ortholog, pregnane X receptor (PXR, are nuclear receptors that are expressed at high levels in the liver and the intestine where they function as xenobiotic sensors that induce expression of genes involved in detoxification and drug excretion. Recent evidence showed that SXR and PXR are also expressed in bone tissue where they mediate bone metabolism. Here we report that systemic deletion of PXR results in aging-dependent wearing of articular cartilage of knee joints. Histomorphometrical analysis showed remarkable reduction of width and an enlarged gap between femoral and tibial articular cartilage in PXR knockout mice. We hypothesized that genes induced by SXR in chondrocytes have a protective effect on articular cartilage and identified Fam20a (family with sequence similarity 20a as an SXR-dependent gene induced by the known SXR ligands, rifampicin and vitamin K2. Lastly, we demonstrated the biological significance of Fam20a expression in chondrocytes by evaluating osteoarthritis-related gene expression of primary articular chondrocytes. Consistent with epidemiological findings, our results indicate that SXR/PXR protects against aging-dependent wearing of articular cartilage and that ligands for SXR/PXR have potential role in preventing osteoarthritis caused by aging.

  7. Pregnane X receptor knockout mice display aging-dependent wearing of articular cartilage.

    Science.gov (United States)

    Azuma, Kotaro; Casey, Stephanie C; Urano, Tomohiko; Horie-Inoue, Kuniko; Ouchi, Yasuyoshi; Blumberg, Bruce; Inoue, Satoshi

    2015-01-01

    Steroid and xenobiotic receptor (SXR) and its murine ortholog, pregnane X receptor (PXR), are nuclear receptors that are expressed at high levels in the liver and the intestine where they function as xenobiotic sensors that induce expression of genes involved in detoxification and drug excretion. Recent evidence showed that SXR and PXR are also expressed in bone tissue where they mediate bone metabolism. Here we report that systemic deletion of PXR results in aging-dependent wearing of articular cartilage of knee joints. Histomorphometrical analysis showed remarkable reduction of width and an enlarged gap between femoral and tibial articular cartilage in PXR knockout mice. We hypothesized that genes induced by SXR in chondrocytes have a protective effect on articular cartilage and identified Fam20a (family with sequence similarity 20a) as an SXR-dependent gene induced by the known SXR ligands, rifampicin and vitamin K2. Lastly, we demonstrated the biological significance of Fam20a expression in chondrocytes by evaluating osteoarthritis-related gene expression of primary articular chondrocytes. Consistent with epidemiological findings, our results indicate that SXR/PXR protects against aging-dependent wearing of articular cartilage and that ligands for SXR/PXR have potential role in preventing osteoarthritis caused by aging. PMID:25749104

  8. Treatment with anti-interferon-gamma monoclonal antibodies modifies experimental autoimmune encephalomyelitis in interferon-gamma receptor knockout mice

    DEFF Research Database (Denmark)

    Espejo, C; Penkowa, M; Sáez-Torres, I;

    2001-01-01

    The role of interferon-gamma (IFN-gamma) in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis (EAE) is still controversial. We have studied the function of IFN-gamma and its receptor in the EAE model using two different IFN-gamma receptor knockout (IFN-gamma R......(-/-)) mouse types: C57Bl/6x129Sv, with a disruption of the IFN-gamma receptor cytoplasmic domain, and 129Sv, homozygous for a disrupted IFN-gamma receptor gene. Mice were immunized with peptide 40-55 from rat myelin oligodendrocyte glycoprotein. A subgroup of mice was treated with anti-IFN-gamma monoclonal...

  9. Somatostatin receptor 1 and 5 double knockout mice mimic neurochemical changes of Huntington's disease transgenic mice.

    Directory of Open Access Journals (Sweden)

    Padmesh S Rajput

    Full Text Available BACKGROUND: Selective degeneration of medium spiny neurons and preservation of medium sized aspiny interneurons in striatum has been implicated in excitotoxicity and pathophysiology of Huntington's disease (HD. However, the molecular mechanism for the selective sparing of medium sized aspiny neurons and vulnerability of projection neurons is still elusive. The pathological characteristic of HD is an extensive reduction of the striatal mass, affecting caudate putamen. Somatostatin (SST positive neurons are selectively spared in HD and Quinolinic acid/N-methyl-D-aspartic acid induced excitotoxicity, mimic the model of HD. SST plays neuroprotective role in excitotoxicity and the biological effects of SST are mediated by five somatostatin receptor subtypes (SSTR1-5. METHODS AND FINDINGS: To delineate subtype selective biological responses we have here investigated changes in SSTR1 and 5 double knockout mice brain and compared with HD transgenic mouse model (R6/2. Our study revealed significant loss of dopamine and cAMP regulated phosphoprotein of 32 kDa (DARPP-32 and comparable changes in SST, N-methyl-D-aspartic acid receptors subtypes, calbindin and brain nitric oxide synthase expression as well as in key signaling proteins including calpain, phospho-extracellular-signal-regulated kinases1/2, synapsin-IIa, protein kinase C-α and calcineurin in SSTR1/5(-/- and R6/2 mice. Conversely, the expression of somatostatin receptor subtypes, enkephalin and phosphatidylinositol 3-kinases were strain specific. SSTR1/5 appears to be important in regulating NMDARs, DARPP-32 and signaling molecules in similar fashion as seen in HD transgenic mice. CONCLUSIONS: This is the first comprehensive description of disease related changes upon ablation of G- protein coupled receptor gene. Our results indicate that SST and SSTRs might play an important role in regulation of neurodegeneration and targeting this pathway can provide a novel insight in understanding the

  10. The in vivo respiratory phenotype of the adenosine A1 receptor knockout mouse.

    Science.gov (United States)

    Heitzmann, Dirk; Buehler, Philipp; Schweda, Frank; Georgieff, Michael; Warth, Richard; Thomas, Joerg

    2016-02-01

    The nucleoside adenosine has been implicated in the regulation of respiration, especially during hypoxia in the newborn. In this study the role of adenosine A1 receptors for the control of respiration was investigated in vivo. To this end, respiration of unrestrained adult and neonatal adenosine A1 receptor knockout mice (A1R(-/-)) was measured in a plethysmographic device. Under control conditions (21% O2) and mild hypoxia (12-15% O2) no difference of respiratory parameters was observed between adult wildtype (A1R(+/+)) and A1R(-/-) mice. Under more severe hypoxia (6-10% O2) A1R(+/+) mice showed, after a transient increase of respiration, a decrease of respiration frequency (fR) and tidal volume (VT) leading to a decrease of minute volume (MV). This depression of respiration during severe hypoxia was absent in A1R(-/-) mice which displayed a stimulated respiration as indicated by the enhancement of MV by some 50-60%. During hypercapnia-hyperoxia (3-10% CO2/97-90 % O2), no obvious differences in respiration of A1R(-/-) and A1R(+/+) was observed. In neonatal mice, the respiratory response to hypoxia was surprisingly similar in both genotypes. However, neonatal A1R(-/-) mice appeared to have more frequently periods of apnea during hypoxia and in the post-hypoxic control period. In conclusion, these data indicate that the adenosine A1 receptor is an important molecular component mediating hypoxic depression in adult mice and it appears to stabilize respiration of neonatal mice. PMID:26593641

  11. Tissue- and cell-specific functions of the androgen receptor revealed through conditional knockout models in mice.

    Science.gov (United States)

    De Gendt, Karel; Verhoeven, Guido

    2012-04-16

    This review aims to evaluate the contribution of individual cell-selective knockout models to our current understanding of androgen action. Cre/loxP technology has allowed the generation of cell-selective knockout models targeting the androgen receptor (AR) in distinct putative target cells in a wide variety of organs and tissues including: testis, ovary, accessory sex tissues, muscle, bone, fat, liver, skin and myeloid tissue. In some androgen-regulated processes such as spermatogenesis and folliculogenesis this approach has lead to the identification of a key cellular mediator of androgen action (Sertoli and granulosa cells, respectively). In many target tissues, however, the final response to androgens appears to be more complex. Here, cell-selective knockout technology offers a platform upon which we can begin to unravel the more complex interplay and signaling pathways of androgens. A prototypic example is the analysis of mesenchymal-epithelial interactions in many accessory sex glands. Furthermore, for some actions of testosterone, in which part of the effect is mediated by the active metabolite 17β-estradiol, conditional knockout technology offers a novel strategy to study the relative contribution of AR and estrogen receptor-mediated signaling. The latter approach has already resulted in a better understanding of androgen action in brain and bone. Finally, cell-selective knockout technology has generated valuable models to search for AR-controlled molecular mediators of androgen action, a strategy that has successfully been applied to the study of androgen action in the testis and in the epididymis. Although some conditional knockout models have provided clear answers to physiologic questions, it should be noted that others have pointed to unexpected complexities or technical limitations confounding interpretation of the results. PMID:21871526

  12. Knockout of insulin-like growth factor-1 receptor impairs distal lung morphogenesis.

    Directory of Open Access Journals (Sweden)

    Ralph Epaud

    Full Text Available BACKGROUND: Insulin-like growth factors (IGF-I and -II are pleiotropic regulators of somatic growth and development in vertebrate species. Endocrine and paracrine effects of both hormones are mediated by a common IGF type 1 receptor (IGF-1R. Lethal respiratory failure in neonatal IGF-1R knockout mice suggested a particular role for this receptor in pulmonary development, and we therefore investigated the consequences of IGF-1R inactivation in lung tissue. METHODS AND FINDINGS: We first generated compound heterozygous mutant mice harboring a hypomorphic (Igf1r(neo and a null (Igf1r(- allele. These IGF-1R(neo/- mice express only 22% of normal IGF-1R levels and are viable. In adult IGF-1R(neo/- mice, we assessed lung morphology and respiratory physiology and found normal histomorphometric characteristics and normal breathing response to hypercapnia. We then generated homozygous IGF-1R knockout mutants (IGF-1R(-/- and analyzed their lung development during late gestation using histomorphometric and immunohistochemical methods. IGF-1R(-/- embryos displayed severe lung hypoplasia and markedly underdeveloped diaphragms, leading to lethal neonatal respiratory distress. Importantly, IGF-1R(-/- lungs from late gestation embryos were four times smaller than control lungs and showed markedly thickened intersaccular mesenchyme, indicating strongly delayed lung maturation. Cell proliferation and apoptosis were significantly increased in IGF-1R(-/- lung tissue as compared with IGF-1R(+/+ controls. Immunohistochemistry using pro-SP-C, NKX2-1, CD31 and vWF as markers revealed a delay in cell differentiation and arrest in the canalicular stage of prenatal respiratory organ development in IGF-1R(-/- mutant mice. CONCLUSIONS/SIGNIFICANCE: We found that low levels of IGF-1R were sufficient to ensure normal lung development in mice. In contrast, complete absence of IGF-1R significantly delayed end-gestational lung maturation. Results indicate that IGF-1R plays

  13. Effects of dopamine D1-like and D2-like antagonists on cocaine discrimination in muscarinic receptor knockout mice.

    Science.gov (United States)

    Thomsen, Morgane; Caine, Simon Barak

    2016-04-01

    Muscarinic and dopamine brain systems interact intimately, and muscarinic receptor ligands, like dopamine ligands, can modulate the reinforcing and discriminative stimulus (S(D)) effects of cocaine. To enlighten the dopamine/muscarinic interactions as they pertain to the S(D) effects of cocaine, we evaluated whether muscarinic M1, M2 or M4 receptors are necessary for dopamine D1 and/or D2 antagonist mediated modulation of the S(D) effects of cocaine. Knockout mice lacking M1, M2, or M4 receptors, as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline in a food-reinforced drug discrimination procedure. Effects of pretreatments with the dopamine D1 antagonist SCH 23390 and the dopamine D2 antagonist eticlopride were evaluated. In intact mice, both SCH 23390 and eticlopride attenuated the cocaine discriminative stimulus effect, as expected. SCH 23390 similarly attenuated the cocaine discriminative stimulus effect in M1 knockout mice, but not in mice lacking M2 or M4 receptors. The effects of eticlopride were comparable in each knockout strain. These findings demonstrate differences in the way that D1 and D2 antagonists modulate the S(D) effects of cocaine, D1 modulation being at least partially dependent upon activity at the inhibitory M2/M4 muscarinic subtypes, while D2 modulation appeared independent of these systems. PMID:26874213

  14. Lipodystrophy Due to Adipose Tissue-Specific Insulin Receptor Knockout Results in Progressive NAFLD.

    Science.gov (United States)

    Softic, Samir; Boucher, Jeremie; Solheim, Marie H; Fujisaka, Shiho; Haering, Max-Felix; Homan, Erica P; Winnay, Jonathon; Perez-Atayde, Antonio R; Kahn, C Ronald

    2016-08-01

    Ectopic lipid accumulation in the liver is an almost universal feature of human and rodent models of generalized lipodystrophy and is also a common feature of type 2 diabetes, obesity, and metabolic syndrome. Here we explore the progression of fatty liver disease using a mouse model of lipodystrophy created by a fat-specific knockout of the insulin receptor (F-IRKO) or both IR and insulin-like growth factor 1 receptor (F-IR/IGFRKO). These mice develop severe lipodystrophy, diabetes, hyperlipidemia, and fatty liver disease within the first weeks of life. By 12 weeks of age, liver demonstrated increased reactive oxygen species, lipid peroxidation, histological evidence of balloon degeneration, and elevated serum alanine aminotransferase and aspartate aminotransferase levels. In these lipodystrophic mice, stored liver lipids can be used for energy production, as indicated by a marked decrease in liver weight with fasting and increased liver fibroblast growth factor 21 expression and intact ketogenesis. By 52 weeks of age, liver accounted for 25% of body weight and showed continued balloon degeneration in addition to inflammation, fibrosis, and highly dysplastic liver nodules. Progression of liver disease was associated with improvement in blood glucose levels, with evidence of altered expression of gluconeogenic and glycolytic enzymes. However, these mice were able to mobilize stored glycogen in response to glucagon. Feeding F-IRKO and F-IR/IGFRKO mice a high-fat diet for 12 weeks accelerated the liver injury and normalization of blood glucose levels. Thus, severe fatty liver disease develops early in lipodystrophic mice and progresses to advanced nonalcoholic steatohepatitis with highly dysplastic liver nodules. The liver injury is propagated by lipotoxicity and is associated with improved blood glucose levels. PMID:27207510

  15. The transcobalamin receptor knockout mouse: a model for vitamin B12 deficiency in the central nervous system

    OpenAIRE

    Lai, Shao-Chiang; Nakayama, Yasumi; Sequeira, Jeffrey M.; Wlodarczyk, Bogdan J.; Cabrera, Robert M.; Finnell, Richard H.; Bottiglieri, Teodoro; Quadros, Edward V.

    2013-01-01

    The membrane receptor (TCblR/CD320) for transcobalamin (TC)-bound cobalamin (Cbl) facilitates the cellular uptake of Cbl. A genetically modified mouse model involving ablation of the CD320 gene was generated to study the effects on cobalamin homeostasis. The nonlethal nature of this knockout and the lack of systemic cobalamin deficiency point to other mechanisms for cellular Cbl uptake in the mouse. However, severe cobalamin depletion in the central nervous system (CNS) after birth (P

  16. Abolished thermal and mechanical antinociception but retained visceral chemical antinociception induced by butorphanol in μ-opioid receptor knockout mice

    OpenAIRE

    Ide, Soichiro; Minami, Masabumi; Ishihara, Kumatoshi; Uhl, George R; Satoh, Masamichi; Sora, Ichiro; Ikeda, Kazutaka

    2008-01-01

    Butorphanol is hypothesized to induce analgesia via opioid pathways, although the precise mechanisms for its effects remain unknown. In this study, we investigated the role of the μ-opioid receptor (MOP) in thermal, mechanical, and visceral chemical antinociception induced by butorphanol using MOP knockout (KO) mice. Butorphanol-induced thermal antinociception, assessed by the hot-plate and tail-flick tests, was significantly reduced in heterozygous and abolished in homozygous MOP-KO mice com...

  17. Selective increase of dark phase water intake in neuropeptide-Y Y2 and Y4 receptor knockout mice

    OpenAIRE

    Wultsch, Thomas; Painsipp, Evelin; Donner, Sabine; Sperk1, Günther; Herzog, Herbert; Peskar, Bernhard A; Holzer, Peter

    2005-01-01

    Neuropeptide-Y (NPY) is involved in the regulation of ingestive behaviour and energy homeostasis. Since deletion of the NPY Y2 and Y4 receptor gene increases and decreases food intake, respectively, we examined whether water intake during the light and dark phase is altered in Y2 and Y4 receptor knockout mice. The water consumption of mice staying in their home cages was measured by weighing the water bottles at the beginning and end of the light phase during 4 consecutive days. Control, Y2 a...

  18. No further loss of dorsal root ganglion cells after axotomy in p75 neurotrophin receptor knockout mice

    DEFF Research Database (Denmark)

    Sørensen, Bodil; Tandrup, Trine; Koltzenburg, Martin;

    2003-01-01

    The role of the p75 neurotrophin receptor for neuronal survival after nerve crush was studied in L5 dorsal root ganglia (DRG) of knockout mice and controls with assumption-free stereological methods. Numbers of neuronal A- and B-cells were obtained using the optical fractionator and optical...... remained stable. After a sciatic nerve crush, the total neuron loss in controls was 15.4% ±3.5% (2P ±0.05) and 22.7% 5.1% (2P <0.05) at days 14 and 42, respectively. In contrast, there was no loss in total number of neurons after crush in p75 knockout mice. Neuronal A-cell number was unchanged after the...... crush in p75 knockouts as well as in controls at both times. At 14 days, the population of B-cells was reduced by 24.8% 3.6% in controls and by 6.1% ±3.5% in p75 knockouts, this difference being significant (2P ±0.001). At 42 days, the B-cell loss was 29.6% ± 5.5% in controls and 4.2% ±6.4% in p75...

  19. Species-dependent smooth muscle contraction to Neuromedin U and determination of the receptor subtypes mediating contraction using NMU1 receptor knockout mice

    OpenAIRE

    Prendergast, Clodagh E; Morton, Magda F; Figueroa, Katherine W.; Wu, Xiaodong; Shankley, Nigel P.

    2006-01-01

    The peptide ligand neuromedin U (NMU) has been implicated in an array of biological activities, including contraction of uterine, intestinal and urinary bladder smooth muscle. However, many of these responses appear to be species-specific. This study was undertaken to fully elucidate the range of smooth muscle-stimulating effects of NMU in rats, mice and guinea-pigs, and to examine the extent of the species differences. In addition, the NMU1 receptor knockout mouse was used to determine which...

  20. [Effect of P2X7 receptor knock-out on bone cancer pain in mice].

    Science.gov (United States)

    Zhao, Xin; Liu, Hui-Zhu; Zhang, Yu-Qiu

    2016-06-25

    Cancer pain is one of the most common symptoms in patients with late stage cancer. Lung, breast and prostate carcinoma are the most common causes of pain from osseous metastasis. P2X7 receptor (P2X7R) is one of the subtypes of ATP-gated purinergic ion channel family, predominately distributed in microglia in the spinal cord. Activation of P2X7Rs in the spinal dorsal horn has been associated with release of proinflammatory cytokines from glial cells, causing increased neuronal excitability and exaggerated nociception. Mounting evidence implies a critical role of P2X7R in inflammatory and neuropathic pain. However, whether P2X7R is involved in cancer pain remains controversial. Here we established a bone cancer pain model by injecting the Lewis lung carcinoma cells into the femur bone marrow cavity of C57BL/6J wild-type mice (C57 WT mice) and P2X7R knockout mice (P2rx7(-/-) mice) to explore the role of P2X7R in bone cancer pain. Following intrafemur carcinoma inoculation, robust mechanical allodynia and thermal hyperalgesia in C57 WT mice were developed on day 7 and 14, respectively, and persisted for at least 28 days in the ipsilateral hindpaw of the affected limb. CatWalk gait analysis showed significant decreases in the print area and stand phase, and a significant increase in swing phase in the ipsilateral hindpaw on day 21 and 28 after carcinoma cells inoculation. Histopathological sections (hematoxylin and eosin stain) showed that the bone marrow of the affected femur was largely replaced by invading tumor cells, and the femur displayed medullary bone loss and bone destruction on day 28 after inoculation. Unexpectedly, no significant changes in bone cancer-induced hypersensitivity of pain behaviors were found in P2rx7(-/-) mice, and the changes of pain-related values in CatWalk gait analysis even occurred earlier in P2rx7(-/-) mice, as compared with C57 WT mice. Together with our previous study in rats that blockade of P2X7R significantly alleviated bone cancer

  1. Interactive association of five candidate polymorphisms in Apelin/APJ pathway with coronary artery disease among Chinese hypertensive patients.

    Directory of Open Access Journals (Sweden)

    Wei Jin

    Full Text Available BACKGROUND: Via sequencing the genes of apelin/angiotensin receptor-like 1 (apelin/APJ pathway, we have recently identified and validated four common polymorphisms (rs3761581, rs56204867, rs7119375, and rs10501367 implicated in the development of hypertension. Extending these findings, we, in Chinese hypertensive patients, sought to investigate the association of these four polymorphisms and one additional promising candidate (rs9943582 from this pathway with the risk of developing coronary artery disease (CAD. METHODOLOGY/PRINCIPAL FINDINGS: Genotypes were obtained from 994 sporadic CAD patients and 708 age- and sex-matched controls. All participants were hypertensives and angiographically-confirmed. Data were analyzed by Haplo.Stats and multifactor dimensionality reduction (MDR softwares. Genotype distributions of five examined polymorphisms satisfied Hardy-Weinberg equilibrium in controls of both genders. Single-locus analyses exhibited no significant differences in the genotype/allele frequencies of examined polymorphisms between CAD patients and controls (P>0.05, even after controlling traditional cardiovascular confounders. In haplotype analyses, low-penetrance haplotype G-A (in order of rs56204867 and rs3761581 from apelin gene was significantly overrepresented in controls (1.73% relative to in CAD patients (0.4% in males (P = 0.047. Further interaction analyses suggested an overall best MDR model including rs3761581 in males (P = 0.0408 and including rs7119375 and rs9943582 in females (P<0.0001, which were further substantiated in the classical logistical regression model. CONCLUSIONS: Our findings demonstrated a contributive role of low-penetrance haplotype in apelin gene on CAD in males, and more importantly, interactive effects of genetic defects in apelin/APJ pathway might confer a potential risk in Chinese hypertensive patients.

  2. The transcobalamin receptor knockout mouse: a model for vitamin B12 deficiency in the central nervous system.

    Science.gov (United States)

    Lai, Shao-Chiang; Nakayama, Yasumi; Sequeira, Jeffrey M; Wlodarczyk, Bogdan J; Cabrera, Robert M; Finnell, Richard H; Bottiglieri, Teodoro; Quadros, Edward V

    2013-06-01

    The membrane receptor (TCblR/CD320) for transcobalamin (TC)-bound cobalamin (Cbl) facilitates the cellular uptake of Cbl. A genetically modified mouse model involving ablation of the CD320 gene was generated to study the effects on cobalamin homeostasis. The nonlethal nature of this knockout and the lack of systemic cobalamin deficiency point to other mechanisms for cellular Cbl uptake in the mouse. However, severe cobalamin depletion in the central nervous system (CNS) after birth (Pmouse model; however, it does provide a model with which to evaluate metabolic pathways and genes affected. PMID:23430977

  3. Decreased striatal dopamine in group II metabotropic glutamate receptor (mGlu2/mGlu3) double knockout mice

    OpenAIRE

    Lane, TA; Boerner, T.; Bannerman, DM; Kew, JNC; Tunbridge, EM; Sharp, T.; Harrison, PJ

    2013-01-01

    Background: Group II metabotropic glutamate receptors (mGlu2 and mGlu3, encoded by Grm2 and Grm3) have been the focus of attention as treatment targets for a number of psychiatric conditions. Double knockout mice lacking mGlu2 and mGlu3 (mGlu2/3−/−) show a subtle behavioural phenotype, being hypoactive under basal conditions and in response to amphetamine, and with a spatial memory deficit that depends on the arousal properties of the task. The neurochemical correlates of this profile are unk...

  4. Data on Arc and Zif268 expression in the brain of the α-2A adrenergic receptor knockout mouse.

    Science.gov (United States)

    Sanders, Jeff

    2016-06-01

    The α2-adrenergic receptor (α2-AR) is widely distributed in the brain with distinct roles for α2-AR subtypes (A, B and C). In this article, data are provided on Activity Regulated Cytoskeleton Associated Protein (Arc) and Zif268 expression in the brain of the α2A-AR knockout (α2A-AR KO) mouse. These data are supplemental to an original research article examining Arc and Zif268 expression in rats injected with the α2-AR antagonist, RX821002 (http://dx.doi.org/10.1016/j.neulet.2015.12.002. [1]). PMID:26952134

  5. Elevated non-specific immunity and normal Listeria clearance in young and old vitamin D receptor knockout mice

    OpenAIRE

    Bruce, Danny; Whitcomb, James P.; August, Avery; McDowell, Mary Ann; Cantorna, Margherita T.

    2008-01-01

    1,25-Dihydroxyvitamin D3 [1,25(OH)2D3] and the vitamin D receptor (VDR) are important regulators of autoimmunity. The effect of the VDR on the ability of mice to fight a primary or secondary infection has not been determined. Young and old VDR knockout (KO) mice were able to clear both primary and secondary infections with Listeria monocytogenes. However, the kinetics of clearance was somewhat delayed in the absence of the VDR. Memory T cell development was not different in young VDR KO and w...

  6. The role of apelin in central cardiovascular regulation in rats with post-infarct heart failure maintained on a normal fat or high fat diet.

    Science.gov (United States)

    Czarzasta, Katarzyna; Cudnoch-Jedrzejewska, Agnieszka; Szczepanska-Sadowska, Ewa; Fus, Lukasz; Puchalska, Liana; Gondek, Agata; Dobruch, Jakub; Gomolka, Ryszard; Wrzesien, Robert; Zera, Tymoteusz; Gornicka, Barbara; Kuch, Marek

    2016-10-01

    Based on the available literature, it can be assumed that in cases of post-infarct heart failure (HF) and obesity, a significant change in the central regulation of the cardiovascular system takes place with, among others, the involvement of the apelinergic system. The main objective of the present study was to clarify the role of apelin-13 in the central regulation of the cardiovascular system in Sprague Dawley rats with HF or sham operated (SO) and fed on a normal fat (NFD) or a high fat diet (HFD). The study was divided into two parts: Part I, hemodynamic studies; and Part II, biochemical and molecular studies. The animals were subjected to the following research procedures. Part I and II: feeding NFD or HFD; experimental induction of HF or SO; Part I: intracerebroventricular (ICV) infusion of the examined substances, monitoring of mean arterial blood pressure (MABP) and heart rate (HR); Part II: venous blood and tissue samples collected. ICV infusion of apelin-13 caused significantly higher changes in ΔMABP in the SO NFD group. No changes were noted in ΔHR in any of the studied groups. Apelin and apelin receptor (APJ) mRNA expression in the brain and adipose tissues was higher in the HF rats. HFD causes significant increase in expression of apelin and APJ mRNA in the left ventricle. In conclusion, HF and HFD appear to play an important role in modifying the activity of the central apelinergic system and significant changes in mRNA expression of apelin and APJ receptor. PMID:27378063

  7. Genetic background can result in a marked or minimal effect of gene knockout (GPR55 and CB2 receptor in experimental autoimmune encephalomyelitis models of multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Sofia Sisay

    Full Text Available Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1 receptor and the orphan G protein receptor fifty-five (GPR55. Studies using C57BL/10 and C57BL/6 (Cnr2 (tm1Zim CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2 (Dgen receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2 (tm1Zim mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational

  8. Genetic background can result in a marked or minimal effect of gene knockout (GPR55 and CB2 receptor) in experimental autoimmune encephalomyelitis models of multiple sclerosis.

    Science.gov (United States)

    Sisay, Sofia; Pryce, Gareth; Jackson, Samuel J; Tanner, Carolyn; Ross, Ruth A; Michael, Gregory J; Selwood, David L; Giovannoni, Gavin; Baker, David

    2013-01-01

    Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1) receptor and the orphan G protein receptor fifty-five (GPR55). Studies using C57BL/10 and C57BL/6 (Cnr2 (tm1Zim)) CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2 (Dgen)) receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2 (tm1Zim) mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational value of some

  9. Apelin Enhances Brown Adipogenesis and Browning of White Adipocytes.

    Science.gov (United States)

    Than, Aung; He, Hui Ling; Chua, Si Hui; Xu, Dan; Sun, Lei; Leow, Melvin Khee-Shing; Chen, Peng

    2015-06-01

    Brown adipose tissue expends energy in the form of heat via the mitochondrial uncoupling protein UCP1. Recent studies showed that brown adipose tissue is present in adult humans and may be exploited for its anti-obesity and anti-diabetes actions. Apelin is an adipocyte-derived hormone that plays important roles in energy metabolism. Here, we report that apelin-APJ signaling promotes brown adipocyte differentiation by increasing the expressions of brown adipogenic and thermogenic transcriptional factors via the PI3K/Akt and AMPK signaling pathways. It is also found that apelin relieves the TNFα inhibition on brown adipogenesis. In addition, apelin increases the basal activity of brown adipocytes, as evidenced by the increased PGC1α and UCP1 expressions, mitochondrial biogenesis, and oxygen consumption. Finally, we provide both in vitro and in vivo evidence that apelin is able to increase the brown-like characteristics in white adipocytes. This study, for the first time, reveals the brown adipogenic and browning effects of apelin and suggests a potential therapeutic route to combat obesity and related metabolic disorders. PMID:25931124

  10. Genetic Background Can Result in a Marked or Minimal Effect of Gene Knockout (GPR55 and CB2 Receptor) in Experimental Autoimmune Encephalomyelitis Models of Multiple Sclerosis

    OpenAIRE

    Sisay, S.; Pryce, G.; Jackson, S. J.; Tanner, C.; Ross, R A; Michael, G. J.; Selwood, D. L.; Giovannoni, G; Baker, D.

    2013-01-01

    Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1) receptor and the orphan G protein receptor fifty-five (GPR55). Studies using C57BL/10 and C57BL/6 (Cnr2 (tm1Zim)) CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatmen...

  11. Phenotypic screening of hepatocyte nuclear factor (HNF) 4-γ receptor knockout mice

    International Nuclear Information System (INIS)

    Using the mouse as a model organism in pharmaceutical research presents unique advantages as its physiology in many ways resembles the human physiology, it also has a relatively short generation time, low breeding and maintenance costs, and is available in a wide variety of inbred strains. The ability to genetically modify mouse embryonic stem cells to generate mouse models that better mimic human disease is another advantage. In the present study, a comprehensive phenotypic screening protocol is applied to elucidate the phenotype of a novel mouse knockout model of hepatocyte nuclear factor (HNF) 4-γ. HNF4-γ is expressed in the kidneys, gut, pancreas, and testis. First level of the screen is aimed at general health, morphologic appearance, normal cage behaviour, and gross neurological functions. The second level of the screen looks at metabolic characteristics and lung function. The third level of the screen investigates behaviour more in-depth and the fourth level consists of a thorough pathological characterisation, blood chemistry, haematology, and bone marrow analysis. When compared with littermate wild-type mice (HNF4-γ+/+), the HNF4-γ knockout (HNF4-γ-/-) mice had lowered energy expenditure and locomotor activity during night time that resulted in a higher body weight despite having reduced intake of food and water. HNF4-γ-/- mice were less inclined to build nest and were found to spend more time in a passive state during the forced swim test

  12. Toll-like receptor 4 knockout alleviates paraquat-induced cardiomyocyte contractile dysfunction through an autophagy-dependent mechanism.

    Science.gov (United States)

    Wang, Shuyi; Zhu, Xiaoling; Xiong, Lize; Zhang, Yingmei; Ren, Jun

    2016-08-22

    Paraquat, a quarternary nitrogen herbicide, is a toxic prooxidant leading to multi-organ failure including the heart although the underlying mechanism remains poorly understood. This study was designed to examine the role of the innate proinflammatory mediator toll-like receptor 4 (TLR4) in paraquat-induced cardiac contractile anomalies and the underlying mechanisms involved with a focus on autophagy, a conservative machinery governing protein and organelle degradation and recycling for cardiac homeostasis. Wild-type (WT) and TLR4 knockout (TLR4(-/-)) mice were challenged with paraquat (45mg/kg, i.p.) for 48h. Paraquat challenge did not affect mRNA levels of TLR2, TLR4 and TLR9 in WT mice nor did paraquat treatment alter TREM-1 levels. Paraquat challenge elicited cardiac mechanical defects including compromised cardiomyocyte contractile function, intracellular Ca(2+) handling, and overt autophagy as manifested by increased LC3BII-to-LC3BI ratio, Atg5, Atg7 and p62 levels. Interestingly, TLR4 knockout significantly attenuated paraquat-induced cardiac contractile and intracellular Ca(2+) derangement as well as alterations of autophagy markers. Paraquat-elicited changes in cardiac autophagy markers (LC3BII, LC3BII-to-LC3BI ratio and p62) were augmented by lysosomal inhibition using bafilomycin A1 in WT mice. TLR4 knockout significantly attenuated or negated paraquat-elicited increase in LC3BII, LC3BII-to-LC3BI ratio and p62 levels in the presence of lysosomal inhibition. In addition, paraquat challenge promoted phosphorylation of AMPK while suppressing the phosphorylation of mTOR and ULK1 (the autophagy inhibitory Ser(757)), the effects of which were significantly attenuated by TLR4 ablation. In vitro study revealed that AMPK activation using AICAR or mTOR inhibition using rapamycin effectively negated the beneficial cardiomyocyte mechanical effects of TLR4 inhibition (CLI-095) against paraquat toxicity, supporting a permissive role for AMPK-mTOR in TLR4 inhibition

  13. GPR39 (zinc receptor) knockout mice exhibit depression-like behavior and CREB/BDNF down-regulation in the hippocampus

    DEFF Research Database (Denmark)

    Młyniec, Katarzyna; Budziszewska, Bogusława; Holst, Birgitte; Ostachowicz, Beata; Nowak, Gabriel

    2015-01-01

    Background: Zinc may act as a neurotransmitter in the central nervous system by activation of the GPR39 metabotropic receptors. Methods: In the present study, we investigated whether GPR39 knockout would cause depressive-like and/or anxiety-like behavior, as measured by the forced swim test, tail...... to the forced swim test, as measured by Western-blot analysis. Results: In this study, GPR39 knockout mice showed an increased immobility time in both the forced swim test and tail suspension test, indicating depressive-like behavior and displayed anxiety-like phenotype. GPR39 knockout mice had lower...... mice in comparison with the wild-type control mice, which does not support a role of GPR39 in hypothalamus-pituitary-adrenal axis regulation. The results of this study indicate the involvement of the GPR39 Zn2+-sensing receptor in the pathophysiology of depression with component of anxiety....

  14. Differential actions of orexin receptors in brainstem cholinergic and monoaminergic neurons revealed by receptor knockouts: implications for orexinergic signaling in arousal and narcolepsy

    Directory of Open Access Journals (Sweden)

    ChristopherSLeonard

    2013-12-01

    Full Text Available Orexin neuropeptides influence multiple homeostatic functions and play an essential role in the expression of normal sleep-wake behavior. While their two known receptors (OX1 and OX2 are targets for novel pharmacotherapeutics, the actions mediated by each receptor remain largely unexplored. Using brain slices from mice constitutively lacking either receptor, we used whole-cell and Ca2+ imaging methods to delineate the cellular actions of each receptor within cholinergic (laterodorsal tegmental nucleus; LDT and monoaminergic (dorsal raphe; DR and locus coeruleus; LC brainstem nuclei – where orexins promote arousal and suppress REM sleep. In slices from OX2-/- mice, orexin-A (300 nM elicited wild-type responses in LDT, DR and LC neurons consisting of a depolarizing current and augmented voltage-dependent Ca2+ transients. In slices from OX1-/- mice, the depolarizing current was absent in LDT and LC neurons and was attenuated in DR neurons, although Ca2+-transients were still augmented. Since orexin-A produced neither of these actions in slices lacking both receptors, our findings suggest that orexin-mediated depolarization is mediated by both receptors in DR, but is exclusively mediated by OX1 in LDT and LC neurons, even though OX2 is present and OX2 mRNA appears elevated in brainstems from OX1-/- mice. Considering published behavioral data, these findings support a model in which orexin-mediated excitation of mesopontine cholinergic and monoaminergic neurons contributes little to stabilizing spontaneous waking and sleep bouts, but functions in context-dependent arousal and helps restrict muscle atonia to REM sleep. The augmented Ca2± transients mediated by both receptors appeared mediated by influx via L-type Ca2+ channels, which is often linked to transcriptional signaling. This could provide an adaptive signal to compensate for receptor loss or prolonged antagonism and may contribute to the reduced severity of narcolepsy in single receptor

  15. Important role for bone marrow-derived cholesteryl ester transfer protein in lipoprotein cholesterol redistribution and atherosclerotic lesion development in LDL receptor knockout mice

    NARCIS (Netherlands)

    Van Eck, Miranda; Ye, Dan; Hildebrand, Reeni B.; Kruijt, J. Kar; de Haan, Willeke; Hoekstra, Menno; Rensen, Patrick C. N.; Ehnholm, Christian; Jauhiainen, Matti; Van Berkel, Theo J. C.

    2007-01-01

    Abundant amounts of cholesteryl ester transfer protein (CETP) are found in macrophage-derived foam cells in the arterial wall, but its function in atherogenesis is unknown. To investigate the role of macrophage CETP in atherosclerosis, LDL receptor knockout mice were transplanted with bone marrow fr

  16. Serotonin/dopamine interactions in a hyperactive mouse: reduced serotonin receptor 1B activity reverses effects of dopamine transporter knockout.

    Directory of Open Access Journals (Sweden)

    Frank Scott Hall

    Full Text Available Knockout (KO mice that lack the dopamine transporter (SL6A3; DAT display increased locomotion that can be attenuated, under some circumstances, by administration of drugs that normally produce psychostimulant-like effects, such as amphetamine and methylphenidate. These results have led to suggestions that DAT KO mice may model features of attention deficit hyperactivity disorder (ADHD and that these drugs may act upon serotonin (5-HT systems to produce these unusual locomotor decreasing effects. Evidence from patterns of brain expression and initial pharmacologic studies led us to use genetic and pharmacologic approaches to examine the influence of altered 5-HT1B receptor activity on hyperactivity in DAT KO mice. Heterozygous 5-HT1B KO and pharmacologic 5-HT1B antagonism both attenuated locomotor hyperactivity in DAT KO mice. Furthermore, DAT KO mice with reduced, but not eliminated, 5-HT1B receptor expression regained cocaine-stimulated locomotion, which was absent in DAT KO mice with normal levels of 5-HT1B receptor expression. Further experiments demonstrated that the degree of habituation to the testing apparatus determined whether cocaine had no effect on locomotion in DAT KO or reduced locomotion, helping to resolve differences among prior reports. These findings of complementation of the locomotor effects of DAT KO by reducing 5-HT1B receptor activity underscore roles for interactions between specific 5-HT receptors and dopamine (DA systems in basal and cocaine-stimulated locomotion and support evaluation of 5-HT1B antagonists as potential, non-stimulant ADHD therapeutics.

  17. Expression of Key Regulators of Mitochondrial Biogenesis in Growth Hormone Receptor Knockout (GHRKO) Mice is Enhanced but is Not Further Improved by Other Potential Life-Extending Interventions

    OpenAIRE

    Gesing, Adam; Masternak, Michal M.; Wang, Feiya; Joseph, Anna-Maria; Leeuwenburgh, Christiaan; Westbrook, Reyhan; Lewinski, Andrzej; Karbownik-Lewinska, Malgorzata; Bartke, Andrzej

    2011-01-01

    Mitochondrial biogenesis is essential for cell viability. Growth hormone receptor knockout (GHRKO), calorie restriction, and surgical visceral fat removal constitute experimental interventions to delay aging and increase life span. We examined the expression of known regulators of mitochondriogenesis: peroxisome proliferator–activated receptor γ co-activator 1α (PGC-1α), adenosine monophosphate (AMP)–activated protein kinase (AMPK), sirtuin-1 (SIRT-1) and sirtuin-3 (SIRT-3), endothelial nitri...

  18. Enhanced self-administration of alcohol in muscarinic acetylcholine M4 receptor knockout mice

    DEFF Research Database (Denmark)

    de la Cour, Cecilie; Sørensen, Gunnar; Wörtwein, Gitta;

    2015-01-01

    Modulation of cholinergic neurotransmission via nicotinic acetylcholine receptors is known to alter alcohol-drinking behavior. It is not known if muscarinic acetylcholine receptor subtypes have similar effects. The muscarinic M4 receptor is highly expressed in the brain reinforcement system and i......4+/+ littermates. The highest alcohol concentration used (10%) did not immediately result in divergent drinking patterns, but after 4 weeks of 10% alcohol self-administration, baseline levels as well as a pattern of M4-/- mice consuming more alcohol than their M4+/+ controls were re...... as a potential target for pharmacological (positive allosteric modulators or future agonists) treatment of alcohol use disorders....

  19. The endogenous opioid system in cocaine addiction: what lessons have opioid peptide and receptor knockout mice taught us?

    Science.gov (United States)

    Yoo, Ji Hoon; Kitchen, Ian; Bailey, Alexis

    2012-01-01

    Cocaine addiction has become a major concern in the UK as Britain tops the European ‘league table’ for cocaine abuse. Despite its devastating health and socio-economic consequences, no effective pharmacotherapy for treating cocaine addiction is available. Identifying neurochemical changes induced by repeated drug exposure is critical not only for understanding the transition from recreational drug use towards compulsive drug abuse but also for the development of novel targets for the treatment of the disease and especially for relapse prevention. This article focuses on the effects of chronic cocaine exposure and withdrawal on each of the endogenous opioid peptides and receptors in rodent models. In addition, we review the studies that utilized opioid peptide or receptor knockout mice in order to identify and/or clarify the role of different components of the opioid system in cocaine-addictive behaviours and in cocaine-induced alterations of brain neurochemistry. The review of these studies indicates a region-specific activation of the µ-opioid receptor system following chronic cocaine exposure, which may contribute towards the rewarding effect of the drug and possibly towards cocaine craving during withdrawal followed by relapse. Cocaine also causes a region-specific activation of the κ-opioid receptor/dynorphin system, which may antagonize the rewarding effect of the drug, and at the same time, contribute to the stress-inducing properties of the drug and the triggering of relapse. These conclusions have important implications for the development of effective pharmacotherapy for the treatment of cocaine addiction and the prevention of relapse. PMID:22428846

  20. Decreased Incentive Motivation Following Knockout or Acute Blockade of the Serotonin Transporter: Role of the 5-HT2C Receptor.

    Science.gov (United States)

    Browne, Caleb J; Fletcher, Paul J

    2016-09-01

    Acute pharmacological elevation of serotonin (5-hydroxytryptamine; 5-HT) activity decreases operant responding for primary reinforcers, suggesting that 5-HT reduces incentive motivation. The mechanism by which 5-HT alters incentive motivation is unknown, but parallel evidence that 5-HT2C receptor agonists also reduce responding for primary reinforcers implicates this receptor as a potential candidate. These experiments examined whether chronic and acute disruptions of serotonin transporter (SERT) activity altered incentive motivation, and whether the 5-HT2C receptor mediated the effects of elevated 5-HT on behavior. To assess incentive motivation, we measured responding for three different reinforcers: a primary reinforcer (saccharin), a conditioned reinforcer (CRf), and an unconditioned sensory reinforcer (USRf). In the chronic condition, responding was compared between SERT knockout (SERT-KO) mice and their wild-type littermates. In the acute condition, responding was examined in wild-type mice following treatment with 10 or 20 mg/kg citalopram, or its vehicle. The ability of the selective 5-HT2C antagonist SB 242084 to prevent the effects of SERT-KO and citalopram on responding was subsequently examined. Both SERT-KO and citalopram reduced responding for saccharin, a CRf, and a USRf. Treatment with SB 242084 enhanced responding for a CRf and a USRf in SERT-KO mice and blocked the effects of citalopram on CRf and USRf responding. However, SB 242084 was unable to prevent the effects of SERT-KO or citalopram on responding for saccharin. These results support a powerful inhibitory function for 5-HT in the control of incentive motivation, and indicate that the 5-HT2C receptor mediates these effects of 5-HT in a reinforcer-dependent manner. PMID:27125304

  1. Orp8 deficiency in bone marrow-derived cells reduces atherosclerotic lesion progression in LDL receptor knockout mice.

    Directory of Open Access Journals (Sweden)

    Erik van Kampen

    Full Text Available INTRODUCTION: Oxysterol binding protein Related Proteins (ORPs mediate intracellular lipid transport and homeostatic regulation. ORP8 downregulates ABCA1 expression in macrophages and cellular cholesterol efflux to apolipoprotein A-I. In line, ORP8 knockout mice display increased amounts of HDL cholesterol in blood. However, the role of macrophage ORP8 in atherosclerotic lesion development is unknown. METHODS AND RESULTS: LDL receptor knockout (KO mice were transplanted with bone marrow (BM from ORP8 KO mice and C57Bl/6 wild type mice. Subsequently, the animals were challenged with a high fat/high cholesterol Western-type diet to induce atherosclerosis. After 9 weeks of Western-Type diet feeding, serum levels of VLDL cholesterol were increased by 50% in ORP8 KO BM recipients compared to the wild-type recipients. However, no differences were observed in HDL cholesterol. Despite the increase in VLDL cholesterol, lesions in mice transplanted with ORP8 KO bone marrow were 20% smaller compared to WT transplanted controls. In addition, ORP8 KO transplanted mice displayed a modest increase in the percentage of macrophages in the lesion as compared to the wild-type transplanted group. ORP8 deficient macrophages displayed decreased production of pro-inflammatory factors IL-6 and TNFα, decreased expression of differentiation markers and showed a reduced capacity to form foam cells in the peritoneal cavity. CONCLUSIONS: Deletion of ORP8 in bone marrow-derived cells, including macrophages, reduces lesion progression after 9 weeks of WTD challenge, despite increased amounts of circulating pro-atherogenic VLDL. Reduced macrophage foam cell formation and lower macrophage inflammatory potential are plausible mechanisms contributing to the observed reduction in atherosclerosis.

  2. Absence of prostaglandin E2-induced hyperalgesia in NMDA receptor ε subunit knockout mice

    OpenAIRE

    Minami, Toshiaki; Sugatani, Junko; Sakimura, Kenji; Abe, Manabu; Mishina, Masayoshi; Ito, Seiji

    1997-01-01

    We have previously found that intrathecal administration of prostaglandins E2 (PGE2) and D2 (PGD2) into conscious mice induced hyperalgesia by the hot plate test. The present study investigated the involvement of N-methyl-D-aspartate (NMDA) receptor in the prostaglandin-induced hyperalgesia by use of mice lacking NMDA receptor ε1, ε4, or ε1/ε4 subunits.PGE2 induced hyperalgesia over a wide range of doses from 50 pg to 500 ng kg−1 in wild-type mice. But PGE2 could not induce hyperalgesia in ε1...

  3. COMPARATIVE EFFECTS OF CHLOPYRIFOS IN WILD TYPE AND CANNABINIOID CB1 RECEPTOR KNOCKOUT MICE

    OpenAIRE

    Baireddy, Praveena; Liu, Jing; Hinsdale, Myron; Pope, Carey

    2011-01-01

    Endocannabinoids (eCBs) modulate neurotransmission by inhibiting the release of a variety of neurotransmitters. The cannabinoid receptor agonist WIN 55,212-2 (WIN) can modulate organophosphorus (OP) anticholinesterase toxicity in rats, presumably by inhibiting acetylcholine (ACh) release. Some OP anticholinesterases also inhibit eCB-degrading enzymes. We studied the effects of the OP insecticide chlorpyrifos (CPF) on cholinergic signs of toxicity, cholinesterase activity and ACh release in ti...

  4. Decreased response to social defeat stress in μ-opioid-receptor knockout mice

    OpenAIRE

    Komatsu, Hiroshi; Ohara, Arihisa; Sasaki, Kazumasu; Abe, Hiromi; Hattori, Hisaki; Hall, F Scott; Uhl, George R.; Sora, Ichiro

    2011-01-01

    Substantial evidence exists that opioid systems are involved in stress response and that changes in opioid systems in response to stressors affect both reward and analgesia. Reportedly, mice suffering chronic social defeat stress subsequently show aversion to social contact with unfamiliar mice. To further examine the role of opioid systems in stress response, the behavioral and neurochemical effects of chronic social defeat stress (psychosocial stress) were evaluated in μ-opioid-receptor kno...

  5. Lack of Self-Administration of Cocaine in Dopamine D1 Receptor Knock-Out Mice

    OpenAIRE

    Caine, S. Barak; Thomsen, Morgane; Gabriel, Kara I.; Berkowitz, Jill S.; Gold, Lisa H.; Koob, George F; Tonegawa, Susumu; Zhang, Jianhua; Xu, Ming

    2007-01-01

    Evidence suggests a critical role for dopamine in the reinforcing effects of cocaine in rats and primates. However, self-administration has been less often studied in the mouse species, and, to date, “knock-out” of individual dopamine-related genes in mice has not been reported to reduce the reinforcing effects of cocaine. We studied the dopamine D1 receptor and cocaine self-administration in mice using a combination of gene-targeted mutation and pharmacological tools. Two cohorts with varied...

  6. Increased susceptibility to diet-induced obesity in GPRC6A receptor knockout mice

    DEFF Research Database (Denmark)

    Clemmensen, Christoffer; Smajilovic, Sanela; Madsen, Andreas N;

    2013-01-01

    significant increase in body weight, corresponding to a selective increase in body fat, was observed in Gprc6a KO mice exposed to an HFD relative to WT controls. The obese phenotype was linked to subtle perturbations in energy homoeostasis as GPRC6A deficiency resulted in chronic hyperphagia and decreased...... glucose metabolism showing that Gprc6a KO mice on an HFD display increased susceptibility to develop metabolic-related disorders. Altogether, these data suggest that the amino acid sensing receptor GPRC6A plays an important role in resistance to DIO and metabolic complications. Future studies will...

  7. Upregulation of Cannabinoid Type 1 Receptors in Dopamine D2 Receptor Knockout Mice Is Reversed by Chronic Forced Ethanol Consumption

    Energy Technology Data Exchange (ETDEWEB)

    Thanos, P.K.; Wang, G.; Thanos, P.K.; Gopez, V.; Delis, F.; Michaelides, M.; Grand, D.K.; Wang, G.-J.; Kunos, G.; Volkow, N.D.

    2011-01-01

    The anatomical proximity of the cannabinoid type 1 (CNR1/CB1R) and the dopamine D2 receptors (DRD2), their ability to form CB1R-DRD2 heteromers, their opposing roles in locomotion, and their involvement in ethanol's reinforcing and addictive properties prompted us to study the levels and distribution of CB1R after chronic ethanol intake, in the presence and absence of DRD2. We monitored the drinking patterns and locomotor activity of Drd2+/+ and Drd2-/- mice consuming either water or a 20% (v/v) ethanol solution (forced ethanol intake) for 6 months and used the selective CB1 receptor antagonist [{sup 3}H]SR141716A to quantify CB1R levels in different brain regions with in vitro receptor autoradiography. We found that the lack of DRD2 leads to a marked upregulation (approximately 2-fold increase) of CB1R in the cerebral cortex, the caudate-putamen, and the nucleus accumbens, which was reversed by chronic ethanol intake. The results suggest that DRD2-mediated dopaminergic neurotransmission and chronic ethanol intake exert an inhibitory effect on cannabinoid receptor expression in cortical and striatal regions implicated in the reinforcing and addictive properties of ethanol.

  8. Layer- and column-specific knockout of NMDA receptors in pyramidal neurons of the mouse barrel cortex.

    Directory of Open Access Journals (Sweden)

    Rachel Aronoff

    2007-11-01

    Full Text Available Viral vectors injected into the mouse brain offer the possibility for localized genetic modifications in a highly controlled manner. Lentivector injection into mouse neocortex transduces cells within a diameter of approximately 200µm, which closely matches the lateral scale of a column in barrel cortex. The depth and volume of the injection determines which cortical layer is transduced. Furthermore, transduced gene expression from the lentivector can be limited to predominantly pyramidal neurons by using a 1.3kb fragment of the αCaMKII promoter. This technique therefore allows genetic manipulation of a specific cell type in defined columns and layers of the neocortex. By expressing Cre recombinase from such a lentivector in gene-targeted mice carrying a floxed gene, highly specific genetic lesions can be induced. Here, we demonstrate the utility of this approach by specifically knocking out NMDA receptors (NMDARs in pyramidal neurons in the somatosensory barrel cortex of gene-targeted mice carrying floxed NMDAR 1 genes. Neurons transduced with lentivector encoding GFP and Cre recombinase exhibit not only reductions in NMDAR 1 mRNA levels, but reduced NMDAR-dependent currents and pairing-induced synaptic potentiation. This technique for knockout of NMDARs in a cell type, column- and layer-specific manner in the mouse somatosensory cortex may help further our understanding of the functional roles of NMDARs in vivo during sensory perception and learning.

  9. Weekly Treatment of 2-Hydroxypropyl-β-cyclodextrin Improves Intracellular Cholesterol Levels in LDL Receptor Knockout Mice

    Directory of Open Access Journals (Sweden)

    Sofie M. A. Walenbergh

    2015-09-01

    Full Text Available Recently, the importance of lysosomes in the context of the metabolic syndrome has received increased attention. Increased lysosomal cholesterol storage and cholesterol crystallization inside macrophages have been linked to several metabolic diseases, such as atherosclerosis and non-alcoholic fatty liver disease (NAFLD. Two-hydroxypropyl-β-cyclodextrin (HP-B-CD is able to redirect lysosomal cholesterol to the cytoplasm in Niemann-Pick type C1 disease, a lysosomal storage disorder. We hypothesize that HP-B-CD ameliorates liver cholesterol and intracellular cholesterol levels inside Kupffer cells (KCs. Hyperlipidemic low-density lipoprotein receptor knockout (Ldlr−/− mice were given weekly, subcutaneous injections with HP-B-CD or control PBS. In contrast to control injections, hyperlipidemic mice treated with HP-B-CD demonstrated a shift in intracellular cholesterol distribution towards cytoplasmic cholesteryl ester (CE storage and a decrease in cholesterol crystallization inside KCs. Compared to untreated hyperlipidemic mice, the foamy KC appearance and liver cholesterol remained similar upon HP-B-CD administration, while hepatic campesterol and 7α-hydroxycholesterol levels were back increased. Thus, HP-B-CD could be a useful tool to improve intracellular cholesterol levels in the context of the metabolic syndrome, possibly through modulation of phyto- and oxysterols, and should be tested in the future. Additionally, these data underline the existence of a shared etiology between lysosomal storage diseases and NAFLD.

  10. Effect of Shenxinning decoction on ventricular remodeling in AT1 receptor-knockout mice with chronic renal insufficiency

    Directory of Open Access Journals (Sweden)

    Xuejun Yang

    2014-01-01

    Full Text Available Objective: To observe the efficacy of Shenxinning Decoction (SXND in ventricular remodeling in AT1 receptor-knockout (AT1-KO mice with chronic renal insufficiency (CRI. Materials and Methods: AT1-KO mice modeled with subtotal (5/6 nephrectomy were intervened with SXND for 12 weeks. Subsequently, blood urea nitrogen (BUN, serum creatinine (SCr, brain natriuretic peptide (BNP, echocardiography (left ventricular end-diastolic diameter, LVDD; left ventricular end-systolic diameter, LVDS; fractional shortening, FS; and ejection fraction, EF, collagen types I and III in the heart and kidney, myocardial mitochondria, and cardiac transforming growth factor-β1 (TGF-β1 of the AT1-KO mice were compared with the same model with nephrectomy only and untreated with SXND. Results: AT1-KO mice did not affect the process of CRI but it could significantly affect cardiac remodeling process. SXND decreased to some extent the AT1-KO mice′s BUN, SCr, BNP, and cardiac LVDD, LVDS, and BNP, improved FS and EF, lowered the expression of collagen type I and III in heart and kidney, increased the quantity of mitochondria and ameliorated their structure, and down-regulated the expression of TGF-β1. Conclusion: SXND may antagonize the renin-angiotensin system (RAS and decrease uremia toxins, thereby ameliorating ventricular remodeling in CRI. Furthermore, SXND has a mechanism correlated with the improvement of myocardial energy metabolism and the down-regulation of TGF-β1.

  11. Small heterodimer partner overexpression partially protects against liver tumor development in farnesoid X receptor knockout mice

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guodong [Department of Surgical Oncology, Cancer Treatment Center, The Fourth Affiliated Hospital of Harbin Medical University, Harbin (China); Kong, Bo [Department of Pharmacology and Toxicology, School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Zhu, Yan [Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing (China); Zhan, Le [Department of Pharmacology and Toxicology, School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Williams, Jessica A. [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Tawfik, Ossama [Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Kassel, Karen M. [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Luyendyk, James P. [Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI (United States); Wang, Li [Department of Medicine, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT (United States); Guo, Grace L., E-mail: guo@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, School of Pharmacy, Rutgers University, Piscataway, NJ (United States)

    2013-10-15

    Farnesoid X receptor (FXR, Nr1h4) and small heterodimer partner (SHP, Nr0b2) are nuclear receptors that are critical to liver homeostasis. Induction of SHP serves as a major mechanism of FXR in suppressing gene expression. Both FXR{sup −/−} and SHP{sup −/−} mice develop spontaneous hepatocellular carcinoma (HCC). SHP is one of the most strongly induced genes by FXR in the liver and is a tumor suppressor, therefore, we hypothesized that deficiency of SHP contributes to HCC development in the livers of FXR{sup −/−} mice and therefore, increased SHP expression in FXR{sup −/−} mice reduces liver tumorigenesis. To test this hypothesis, we generated FXR{sup −/−} mice with overexpression of SHP in hepatocytes (FXR{sup −/−}/SHP{sup Tg}) and determined the contribution of SHP in HCC development in FXR{sup −/−} mice. Hepatocyte-specific SHP overexpression did not affect liver tumor incidence or size in FXR{sup −/−} mice. However, SHP overexpression led to a lower grade of dysplasia, reduced indicator cell proliferation and increased apoptosis. All tumor-bearing mice had increased serum bile acid levels and IL-6 levels, which was associated with activation of hepatic STAT3. In conclusion, SHP partially protects FXR{sup −/−} mice from HCC formation by reducing tumor malignancy. However, disrupted bile acid homeostasis by FXR deficiency leads to inflammation and injury, which ultimately results in uncontrolled cell proliferation and tumorigenesis in the liver. - Highlights: • SHP does not prevent HCC incidence nor size in FXR KO mice but reduces malignancy. • Increased SHP promotes apoptosis. • Bile acids and inflammation maybe critical for HCC formation with FXR deficiency.

  12. Small heterodimer partner overexpression partially protects against liver tumor development in farnesoid X receptor knockout mice

    International Nuclear Information System (INIS)

    Farnesoid X receptor (FXR, Nr1h4) and small heterodimer partner (SHP, Nr0b2) are nuclear receptors that are critical to liver homeostasis. Induction of SHP serves as a major mechanism of FXR in suppressing gene expression. Both FXR−/− and SHP−/− mice develop spontaneous hepatocellular carcinoma (HCC). SHP is one of the most strongly induced genes by FXR in the liver and is a tumor suppressor, therefore, we hypothesized that deficiency of SHP contributes to HCC development in the livers of FXR−/− mice and therefore, increased SHP expression in FXR−/− mice reduces liver tumorigenesis. To test this hypothesis, we generated FXR−/− mice with overexpression of SHP in hepatocytes (FXR−/−/SHPTg) and determined the contribution of SHP in HCC development in FXR−/− mice. Hepatocyte-specific SHP overexpression did not affect liver tumor incidence or size in FXR−/− mice. However, SHP overexpression led to a lower grade of dysplasia, reduced indicator cell proliferation and increased apoptosis. All tumor-bearing mice had increased serum bile acid levels and IL-6 levels, which was associated with activation of hepatic STAT3. In conclusion, SHP partially protects FXR−/− mice from HCC formation by reducing tumor malignancy. However, disrupted bile acid homeostasis by FXR deficiency leads to inflammation and injury, which ultimately results in uncontrolled cell proliferation and tumorigenesis in the liver. - Highlights: • SHP does not prevent HCC incidence nor size in FXR KO mice but reduces malignancy. • Increased SHP promotes apoptosis. • Bile acids and inflammation maybe critical for HCC formation with FXR deficiency

  13. Dopamine-dependent CB1 receptor dysfunction at corticostriatal synapses in homozygous PINK1 knockout mice.

    Science.gov (United States)

    Madeo, G; Schirinzi, T; Maltese, M; Martella, G; Rapino, C; Fezza, F; Mastrangelo, N; Bonsi, P; Maccarrone, M; Pisani, A

    2016-02-01

    Recessive mutations in the PTEN-induced putative kinase 1 (PINK1) gene cause early-onset Parkinson's disease (PD). We investigated the interaction between endocannabinoid (eCB) and dopaminergic transmission at corticostriatal synapses in PINK1 deficient mice. Whole-cell patch-clamp and conventional recordings of striatal medium spiny neurons (MSNs) were made from slices of PINK1(-/-), heterozygous PINK1(+/-) mice and wild-type littermates (PINK1(+/+)). In PINK1(+/+) mice, CB1 receptor (CB1R) activation reduced spontaneous excitatory postsynaptic currents (sEPSCs). Likewise, CB1R agonists (ACEA, WIN55,212-3 and HU210) induced a dose-dependent reduction of cortically-evoked excitatory postsynaptic potential (eEPSP) amplitude. While CB1R agonists retained their inhibitory effect in heterozygous PINK1(+/-) mice, conversely, in PINK1(-/-) mice they failed to modulate sEPSC amplitude. Similarly, CB1R activation failed to reduce eEPSP amplitude in PINK1(-/-) mice. Parallel biochemical measurements revealed no significant difference in the levels of the two main eCBs, 2-arachidonoylglycerol (2-AG) and anandamide (AEA) in PINK1(-/-) striata. Similarly, no change was observed in the enzymatic activity of both fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), responsible for eCB hydrolysis. Instead, a significant reduction of binding ability of CB1R agonists was found in PINK1(-/-) mice. Notably, the CB1R-dependent inhibition of synaptic activity was restored either by amphetamine or after chronic treatment with the D2 dopamine receptor agonist quinpirole. Additionally, CB1R binding activity returned to control levels after chronic pretreatment with quinpirole. Consistent with the hypothesis of a close interplay with dopaminergic neurotransmission, our findings show a CB1R dysfunction at corticostriatal synapses in PINK1(-/-), but not in PINK1(+/-) mice, and provide a mechanistic link to the distinct plasticity deficits observed in both genotypes. PMID

  14. Similarities in the behavior and molecular deficits in the frontal cortex between the neurotensin receptor subtype 1 knockout mice and chronic phencyclidine-treated mice: relevance to schizophrenia

    OpenAIRE

    Li, Zhimin; Boules, Mona; Williams, Katrina; Gordillo, Andres; Li, Shuhua; Richelson, Elliott

    2010-01-01

    Much evidence suggests that targeting the neurotensin (NT) system may provide a novel and promising treatment for schizophrenia. Our recent work shows that: NTS1 knockout (NTS1−/−) mice may provide a potential animal model for studying schizophrenia by investigating the effect of deletion NTS1 receptor on amphetamine-induced hyperactivity and neurochemical changes. The data indicate a hyper-dopaminergic state similar to the excessive striatal DA activity reported in schizophrenia. The present...

  15. 15 years of genetic approaches in vivo for addiction research: opioid receptor and peptide gene knockout in mouse models of drug abuse

    OpenAIRE

    Charbogne, Pauline; Kieffer, Brigitte L.; Befort, Katia

    2013-01-01

    The endogenous opioid system is expressed throughout the brain reinforcement circuitry, and plays a major role in reward processing, mood control and the development of addiction. This neuromodulator system is composed of three receptors, mu, delta and kappa, interacting with a family of opioid peptides derived from POMC (β-endorphin), preproenkephalin (pEnk) and preprodynorphin (pDyn) precursors. Knockout mice targeting each gene of the opioid system have been created almost two decades ago....

  16. Knockout of the aryl hydrocarbon receptor results in distinct hepatic and renal phenotypes in rats and mice

    Energy Technology Data Exchange (ETDEWEB)

    Harrill, Joshua A. [The Hamner Institute for Health Sciences, Institute for Chemical Safety Sciences, RTP, NC 27709 (United States); Hukkanen, Renee R.; Lawson, Marie; Martin, Greg [The Dow Chemical Company, Midland, MI 48640 (United States); Gilger, Brian [North Carolina State University, College of Veterinary Medicine, Raleigh, NC 27606 (United States); Soldatow, Valerie [University of North Carolina, Department of Environmental Sciences and Engineering, Chapel Hill, NC 27599 (United States); LeCluyse, Edward L. [The Hamner Institute for Health Sciences, Institute for Chemical Safety Sciences, RTP, NC 27709 (United States); Budinsky, Robert A.; Rowlands, J. Craig [The Dow Chemical Company, Midland, MI 48640 (United States); Thomas, Russell S., E-mail: RThomas@thehamner.org [The Hamner Institute for Health Sciences, Institute for Chemical Safety Sciences, RTP, NC 27709 (United States)

    2013-10-15

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor which plays a role in the development of multiple tissues and is activated by a large number of ligands, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In order to examine the roles of the AHR in both normal biological development and response to environmental chemicals, an AHR knockout (AHR-KO) rat model was created and compared with an existing AHR-KO mouse. AHR-KO rats harboring either 2-bp or 29-bp deletion mutation in exon 2 of the AHR were created on the Sprague–Dawley genetic background using zinc-finger nuclease (ZFN) technology. Rats harboring either mutation type lacked expression of AHR protein in the liver. AHR-KO rats were also insensitive to thymic involution, increased hepatic weight and the induction of AHR-responsive genes (Cyp1a1, Cyp1a2, Cyp1b1, Ahrr) following acute exposure to 25 μg/kg TCDD. AHR-KO rats had lower basal expression of transcripts for these genes and also accumulated ∼ 30–45-fold less TCDD in the liver at 7 days post-exposure. In untreated animals, AHR-KO mice, but not AHR-KO rats, had alterations in serum analytes indicative of compromised hepatic function, patent ductus venosus of the liver and persistent hyaloid arteries in the eye. AHR-KO rats, but not AHR-KO mice, displayed pathological alterations to the urinary tract: bilateral renal dilation (hydronephrosis), secondary medullary tubular and uroepithelial degenerative changes and bilateral ureter dilation (hydroureter). The present data indicate that the AHR may play significantly different roles in tissue development and homeostasis and toxicity across rodent species. - Highlights: • An AHR knockout rat was generated on a Sprague–Dawley outbred background. • AHR-KO rats lack expression of AHR protein. • AHR-KO rats are insensitive to TCDD-mediated effects. • Data suggests difference in the role of AHR in tissue development of rats and mice. • Abnormalities in vascular

  17. Apelin administration ameliorates high fat diet-induced cardiac hypertrophy and contractile dysfunction.

    Science.gov (United States)

    Ceylan-Isik, Asli F; Kandadi, Machender R; Xu, Xihui; Hua, Yinan; Chicco, Adam J; Ren, Jun; Nair, Sreejayan

    2013-10-01

    Apelin has been recognized as an adipokine that plays an important role in regulating energy metabolism and is credited with antiobesity and antidiabetic properties. This study was designed to examine the effect of exogenous apelin on obesity-associated cardiac dysfunction. Oral glucose tolerance test, echocardiography, cardiomyocyte contractile and intracellular Ca(2+) properties were assessed in adult C57BL/6J mice fed - low or a - high-fat diet for 24weeks followed by apelin treatment (100nmol/kg, i.p. for 2weeks). High-fat diet resulted in increased left ventricular diastolic and systolic diameters, and wall thickness, compromised fractional shortening, impaired cardiomyocyte mechanics (peak-shortening, maximal velocity of shortening/relengthening, and duration of shortening and relengthening) and compromised intracellular Ca(2+) handling, all of which were reconciled by apelin. Apelin treatment also reversed high fat diet-induced changes in intracellular Ca(2+) regulatory proteins, ER stress, and autophagy. In addition, microRNAs (miR) -133a, miR-208 and miR-1 which were elevated following high-fat feeding were attenuated by apelin treatment. In cultured cardiomyocytes apelin reconciled palmitic acid-induced cardiomyocyte contractile anomalies. Collectively, these data depict a pivotal role of apelin in obesity-associated cardiac contractile dysfunction, suggesting a therapeutic potential of apelin in the management of cardiac dysfunction associated with obesity. PMID:23859766

  18. Adaptations in pre- and postsynaptic 5-HT1A receptor function and cocaine supersensitivity in serotonin transporter knockout rats.

    NARCIS (Netherlands)

    Homberg, J.R.; Boer, SF De; Raaso, H.S.; Olivier, J.D.A.; Verheul, M.; Ronken, E.; Cools, A.R.; Ellenbroek, B.A.; Schoffelmeer, A.N.; Schuren, L.J. van der; Vries, TJ De; Cuppen, E.

    2008-01-01

    RATIONALE: While individual differences in vulnerability to psychostimulants have been largely attributed to dopaminergic neurotransmission, the role of serotonin is not fully understood. OBJECTIVES: To study the rewarding and motivational properties of cocaine in the serotonin transporter knockout

  19. Adaptations in pre- and postsynaptic 5-HT(1A) receptor function and cocaine supersensitivity in serotonin transporter knockout rats

    NARCIS (Netherlands)

    Homberg, Judith R; De Boer, Sietse F; Raasø, Halfdan S; Olivier, Jocelien D A; Verheul, Mark; Ronken, Eric; Cools, Alexander R; Ellenbroek, Bart A; Schoffelmeer, Anton N M; Vanderschuren, Louk J M J; De Vries, Taco J; Cuppen, Edwin

    2008-01-01

    RATIONALE: While individual differences in vulnerability to psychostimulants have been largely attributed to dopaminergic neurotransmission, the role of serotonin is not fully understood. OBJECTIVES: To study the rewarding and motivational properties of cocaine in the serotonin transporter knockout

  20. Toll-like receptor 4 knockout ameliorates neuroinflammation due to lung-brain interaction in mechanically ventilated mice.

    Science.gov (United States)

    Chen, Ting; Chen, Chang; Zhang, Zongze; Zou, Yufeng; Peng, Mian; Wang, Yanlin

    2016-08-01

    Toll-like receptor 4 (TLR4) is a crucial receptor in the innate immune system, and increasing evidence supports its role in inflammation, stress, and tissue injury, including injury to the lung and brain. We aimed to investigate the effects of TLR4 on neuroinflammation due to the lung-brain interaction in mechanically ventilated mice. Male wild-type (WT) C57BL/6 and TLR4 knockout (TLR4 KO) mice were divided into three groups: (1) control group (C): spontaneous breathing; (2) anesthesia group (A): spontaneous breathing under anesthesia; and (3) mechanical ventilation group (MV): 6h of MV under anesthesia. The behavioral responses of mice were tested with fear conditioning tests. The histological changes in the lung and brain were assessed using hematoxylin-eosin (HE) staining. The level of TLR4 mRNA in tissue was measured using reverse transcription-polymerase chain reaction (RT-PCR). The levels of inflammatory cytokines were measured with an enzyme-linked immunosorbent assay (ELISA). Microgliosis, astrocytosis, and the TLR4 immunoreactivity in the hippocampus were measured by double immunofluorescence. MV mice exhibited impaired cognition, and this impairment was less severe in TLR4 KO mice than in WT mice. In WT mice, MV increased TLR4 mRNA expression in the lung and brain. MV induced mild lung injury, which was prevented in TLR4 KO mice. MV mice exhibited increased levels of inflammatory cytokines, increased microglia and astrocyte activation. Microgliosis was alleviated in TLR4 KO mice. MV mice exhibited increased TLR4 immunoreactivity, which was expressed in microglia and astrocytes. These results demonstrate that TLR4 is involved in neuroinflammation due to the lung-brain interaction and that TLR4 KO ameliorates neuroinflammation due to lung-brain interaction after prolonged MV. In addition, Administration of a TLR4 antagonist (100μg/mice) to WT mice also significantly attenuated neuroinflammation of lung-brain interaction due to prolonged MV. TLR4 antagonism

  1. Receptor-selective IL-4 mutein modulates inflammatory vascular cell phenotypes and attenuates atherogenesis in apolipoprotein E-knockout mice.

    Science.gov (United States)

    Lin, Yanhui; Chen, Zhiheng; Kato, Seiya

    2015-08-01

    The therapeutic potential of interleukin-4-mediated immunomodulation has not been proven in atherogenesis. Type I IL-4 receptor consists of IL-4Rα and a common γ chain, whereas type II IL-4R is a heterodimer of IL-4Rα and IL-13Rα1. Reportedly, the human IL-4 mutein IL-4/R121E is able to act as an IL-4RI-specific agonist. Here, we investigated the effect of receptor-specific IL-4 mutein on vascular cell phenotypes and atherogenesis. Initially, a plasmid expressing murine IL-4/Q116E, analogous to human IL-4/R121E, was transfected to vascular lineage cells in-vitro. IL-4/Q116E induced the activation of STAT6 in b.End3 endothelial cells, Mm1 macrophages, and splenocytes isolated from C57BL6/J (B6) mice, but it failed to activate STAT6 in SMC and J774.1 macrophages. IL-4/Q116E induced the expression of vascular cell adhesion protein-1 in b.End3 cells but not in SMC. IL-4/Q116E did not exhibit pro-inflammatory actions in either macrophage cell line. Splenocytes were also infected with an adenovirus vector expressing IL-4/Q116E (AdIL-4/Q116E). Enzyme-linked immunosorbent assay for interferon-γ, IL-10 and IL-13 revealed that AdIL-4/Q116E-infected splenocytes showed Th2 deviation. Th2 deviation and M2 marker up-regulation were further revealed in ex-vivo assays using the splenocytes isolated from AdIL-4/Q116E-infected apolipoprotein-E knockout (ApoEKO) mice. Finally, adenoviral induction of IL-4/Q116E, but not wild type IL-4, double mutein IL-4/Q116D/Y119D or control β-galactosidase, significantly attenuated in-vivo atherogenesis of ApoEKO mice. Our data suggest that IL-4 signaling plays a pivotal role in the regulation of vascular cell phenotypes, and atherogenesis. The IL-4RI-selective mutein IL-4/Q116E may have therapeutic potential in vascular diseases. PMID:26093164

  2. Estrogen receptor transcription and transactivation: Estrogen receptor knockout mice: what their phenotypes reveal about mechanisms of estrogen action.

    Science.gov (United States)

    Curtis Hewitt, S; Couse, J F; Korach, K S

    2000-01-01

    Natural, synthetic and environmental estrogens have numerous effects on the development and physiology of mammals. Estrogen is primarily known for its role in the development and functioning of the female reproductive system. However, roles for estrogen in male fertility, bone, the circulatory system and immune system have been established by clinical observations regarding sex differences in pathologies, as well as observations following menopause or castration. The primary mechanism of estrogen action is via binding and modulation of activity of the estrogen receptors (ERs), which are ligand-dependent nuclear transcription factors. ERs are found in highest levels in female tissues critical to reproduction, including the ovaries, uterus, cervix, mammary glands and pituitary gland. Since other affected tissues have extremely low levels of ER, indirect effects of estrogen, for example induction of pituitary hormones that affect the bone, have been proposed. The development of transgenic mouse models that lack either estrogen or ER have proven to be valuable tools in defining the mechanisms by which estrogen exerts its effects in various systems. The aim of this article is to review the mouse models with disrupted estrogen signaling and describe the associated phenotypes. PMID:11250727

  3. Knockout of Toll-Like Receptors 2 and 4 Prevents Renal Ischemia-Reperfusion-Induced Cardiac Hypertrophy in Mice

    Science.gov (United States)

    Trentin-Sonoda, Mayra; da Silva, Rogério Cirino; Kmit, Fernanda Vieira; Abrahão, Mariana Vieira; Monnerat Cahli, Gustavo; Brasil, Guilherme Visconde; Muzi-Filho, Humberto; Silva, Paulo André; Tovar-Moll, Fernanda Freire; Vieyra, Adalberto; Medei, Emiliano; Carneiro-Ramos, Marcela Sorelli

    2015-01-01

    We investigated whether the pathways linked to Toll-like receptors 2 and 4 (TLRs) are involved in renal ischemia-reperfusion (I/R)-induced cardiac hypertrophy. Wild type (WT) C57BL/6J, TLR2-/- and TLR4-/- mice were subjected to left kidney ischemia for 60 min followed by reperfusion for 5, 8, 12 and 15 days. Proton density magnetic resonance showed alterations in the injured kidney from WT mice, together with signs of parenchymal edema and higher levels of vimentin mRNA, accompanied by: (i) small, but significant, increase in serum urea after 24 h, (ii) 100% increase in serum creatinine at 24 h. A serum peak of inflammatory cytokines occurred after 5 days of reperfusion. Heart weight/body weight and heart weight/tibia length ratios increased after 12 and 15 days of reperfusion, respectively. Cardiac hypertrophy markers, B-type natriuretic peptide (BNP) and α-actin, left ventricle mass, cardiac wall thickness and myocyte width increased after 15 days of reperfusion, together with longer QTc and action potential duration. Cardiac TLRs, MyD88, HSP60 and HSP70 mRNA levels also increased. After 15 days of reperfusion, absence of TLRs prevented cardiac hypertrophy, as reflected by similar values of left ventricular cardiac mass and heart weight/body weight ratio compared to the transgenic Sham. Renal tissular injury also ameliorated in both knockout mice, as revealed by the comparison of their vimentin mRNA levels with those found in the WT on the same day after I/R. The I/R TLR2-/- group had TNF-α, IFN-γ and IL-1β levels similar to the non-I/R group, whereas the TLR4-/- group conserved the p-NF-κB/NF- κB ratio contrasting with that found in TLR2-/-. We conclude: (i) TLRs are involved in renal I/R-induced cardiac hypertrophy; (ii) absence of TLRs prevents I/R-induced cardiac hypertrophy, despite renal lesions seeming to evolve towards those of chronic disease; (iii) TLR2 and TLR4 selectively regulate the systemic inflammatory profile and NF- κB activation. PMID

  4. Modification of female and male social behaviors in estrogen receptor beta knockout mice by neonatal maternal separation

    Directory of Open Access Journals (Sweden)

    Mumeko C Tsuda

    2014-09-01

    Full Text Available Maternal separation (MS is an animal model mimicking the effects of early life stress on the development of emotional and social behaviors. Recent studies revealed that MS stress increased social anxiety levels in female mice and reduced peri-pubertal aggression in male mice. Estrogen receptor (ER β plays a pivotal role in the regulation of stress responses and anxiety-related and social behaviors. Behavioral studies using ERβ knockout (βERKO mice reported increased social investigation and decreased social anxiety in βERKO females, and elevated aggression levels in βERKO males compared to wild-type (WT mice. In the present study, using βERKO and WT mice, we examined whether ERβ contributes to MS effects on anxiety and social behaviors. βERKO and WT mice were separated from their dam daily (4 h from postnatal day 1 to 14 and control groups were left undisturbed. First, MS and ERβ gene deletion individually increased anxiety-related behaviors in the open field test, but only in female mice. Anxiety levels were not further modified in βERKO female mice subjected to MS stress. Second, βERKO female mice showed higher levels of social investigation compared with WT in the social investigation test and long-term social preference test. However, MS greatly reduced social investigation duration and elevated number of stretched approaches in WT and βERKO females in the social investigation test, suggesting elevated levels of social anxiety in both genotypes. Third, peri-pubertal and adult βERKO male mice were more aggressive than WT mice as indicated by heightened aggression duration. On the other hand, MS significantly decreased aggression duration in both genotypes, but only in peri-pubertal male mice. Altogether, these results suggest that βERKO mice are sensitive to the adverse effects of MS stress on subsequent female and male social behaviors, which could then have overrode the ERβ effects on female social anxiety and male aggression.

  5. Lateral intracerebroventricular injection of Apelin-13 inhibits apoptosis after cerebral ischemia/reperfusion injury

    Directory of Open Access Journals (Sweden)

    Xiao-ge Yan

    2015-01-01

    Full Text Available Apelin-13 inhibits neuronal apoptosis caused by hydrogen peroxide, yet apoptosis following cerebral ischemia-reperfusion injury has rarely been studied. In this study, Apelin-13 (0.1 µg/g was injected into the lateral ventricle of middle cerebral artery occlusion model rats. TTC, TUNEL, and immunohistochemical staining showed that compared with the cerebral ischemia/reperfusion group, infarct volume and apoptotic cell number at the ischemic penumbra region were decreased in the Apelin-13 treatment group. Additionally, Apelin-13 treatment increased Bcl-2 immunoreactivity and decreased caspase-3 immunoreactivity. Our findings suggest that Apelin-13 is neuroprotective against cerebral ischemia/reperfusion injury through inhibition of neuronal apoptosis.

  6. Effects of structural analogues of apelin-12 in acute myocardial infarction in rats

    Directory of Open Access Journals (Sweden)

    Oleg I Pisarenko

    2013-01-01

    Full Text Available Objective: To examine cardioprotective effects of Ρ-terminal fragment of adipokine apelin-12 (A12, its novel structural analogue [MeArg1 , NLe 10 ]-A12 (I, and [d-Ala 12 ]-A12 (II, a putative antagonist of APJ receptor, employing in vivo model of ischemia/reperfusion (I/R injury. Materials and Methods: Peptides were synthesized by the automatic solid phase method using Fmoc technology. Anesthetized open-chest male Wistar rats were subjected to left anterior descending (LAD coronary artery occlusion and coronary reperfusion. Hemodynamic variables and electrocardiogram (ECG were monitored throughout the experiment. Myocardial injury was assessed by infarct size (IS, activity of necrosis markers in plasma, and metabolic state of the area at risk (AAR. Results: Intravenous injection of A12, I, or II at the onset of reperfusion led to a transient reduction of the mean arterial pressure. A12 or I administration decreased the percent ratio of IS/AAR by 40% and 30%, respectively, compared with control animals which received saline. Both peptides improved preservation of high-energy phosphates, reduced lactate accumulation in the AAR, and lowered CK-MB and LDH activities in plasma at the end of reperfusion compared with these indices in control. Treatment with II did not significantly affect either the IS/AAR, % ratio, or activities of both markers of necrosis compared with control. The overall metabolic protection of the AAR in the treated groups increased in the following rank: II < A12 < I. Conclusions: The structural analogue of apelin-12 [MeArg 1 , NLe 10 ]-A12 may be a promising basis to create a new drug for the treatment of acute coronary syndrome.

  7. Effects of Chronic Mild Stress on the Development of Atherosclerosis and Expression of Toll-Like Receptor 4 Signaling Pathway in Adolescent Apolipoprotein E Knockout Mice

    Directory of Open Access Journals (Sweden)

    Hongfeng Gu

    2009-01-01

    Full Text Available Here, we investigated the effect of chronic mild stress (CMS on the development of atherosclerosis as well as the expression of Toll-like receptors (TLRs signaling pathway in adolescent apolipoprotein E knockout (apoE-/- mice. Mice were subjected to daily CMS for 0, 4, and 12 weeks, respectively. To identify the expression of Toll-like receptor 4 signaling pathway in adolescent apolipoprotein E knockout mice subjected to CMS, we compared gene expression in aortas of stressed and unstressed mice using TLRs signaling pathway real-time PCR microarrays consisting of 87 genes. We found that atherosclerosis lesions both in aortic tress and sinuses of CMS mice were significantly increased linearly in response to duration of CMS exposure. Among 87 genes analyzed, 15 genes were upregulated in stressed mice, especially TLR4, myeloid differentiation factor 88 (MyD88, and IL-1β, and 28 genes were downregulated compared with nonstressed mice. CMS mice demonstrated markedly increased aortic atherosclerosis that were associated with significant increases in levels of expression of TLR4, MyD88, nuclear factor κB (NF-κB, MCP-1, IL-1β, TNF-α, and sICAM-1. Taken together, our results suggest an important role for TLR4 signaling pathway in atherosclerosis in a CMS mouse model.

  8. Evaluation of organ-specific glucose metabolism by 18F-FDG in insulin receptor substrate-1 (IRS-1) knockout mice as a model of insulin resistance

    International Nuclear Information System (INIS)

    Insulin resistance (IR) is a physiological condition in which the body produces insulin but does not result in a sufficient biological effect. Insulin resistance is usually asymptomatic but is associated with health problems and is a factor in the metabolic syndrome. The aim of the present study is to clarify organ-specific insulin resistance in normal daily conditions using [18F]-2-fluoro-2-deoxy-D-glucose ([18F]-FDG). The biodistribution of [18F]-FDG was examined in insulin receptor substrate-1 (IRS-1) knockout mice, an animal model of skeletal muscle insulin resistance, and C57BL/6J (wild-type) mice with and without insulin loading. Mice received 0.5 MBq of [18F]-FDG injected into the tail vein, immediately followed by nothing (control cohorts) or an intraperitoneal injection of 1.5 mU/g body weight of human insulin as an insulin loading test. Blood glucose concentrations for all of the experimental animals were assessed at 0, 20, 40, and 60 min post-injection. The mice were subsequently killed, and tissue was collected for evaluation of [18F]-FDG biodistribution. The radioactivity of each organ was measured using a gamma counter. In the absence of insulin, the blood glucose concentrations of wild-type mice (132±26 mg/dl) and IRS-1 knockout mice (134±18 mg/dl) were not significantly different. Blood glucose concentrations decreased following insulin administration, with lower concentrations in wild-type mice than in knockout mice at 20, 40, and 60 min. A statistically significant difference in [18F]-FDG uptake between wild-type mice and IRS-1 knockout mice was confirmed in the heart, abdominal muscle, and femoral muscle. With insulin loading, [18F]-FDG uptake in the heart, back muscle, and abdominal muscle was significantly increased compared to without insulin loading in both wild-type mice and knockout mice. Our results showed that IR significantly affected [18F]-FDG uptake in the heart in normal daily conditions. IR was associated with decreased [18F

  9. Role of histamine H1-receptor on behavioral states and wake maintenance during deficiency of a brain activating system: A study using a knockout mouse model.

    Science.gov (United States)

    Parmentier, Régis; Zhao, Yan; Perier, Magali; Akaoka, Hideo; Lintunen, Minnamaija; Hou, Yiping; Panula, Pertti; Watanabe, Takeshi; Franco, Patricia; Lin, Jian-Sheng

    2016-07-01

    Using knockout (KO) mice lacking the histamine (HA)-synthesizing enzyme (histidine decarboxylase, HDC), we have previously shown the importance of histaminergic neurons in maintaining wakefulness (W) under behavioral challenges. Since the central actions of HA are mediated by several receptor subtypes, it remains to be determined which one(s) could be responsible for such a role. We have therefore compared the cortical-EEG, sleep and W under baseline conditions or behavioral/pharmacological stimuli in littermate wild-type (WT) and H1-receptor KO (H1-/-) mice. We found that H1-/- mice shared several characteristics with HDC KO mice, i.e. 1) a decrease in W after lights-off despite its normal baseline daily amount; 2) a decreased EEG slow wave sleep (SWS)/W power ratio; 3) inability to maintain W in response to behavioral challenges demonstrated by a decreased sleep latency when facing various stimuli. These effects were mediated by central H1-receptors. Indeed, in WT mice, injection of triprolidine, a brain-penetrating H1-receptor antagonist increased SWS, whereas ciproxifan (H3-receptor antagonist/inverse agonist) elicited W; all these injections had no effect in H1-/- mice. Finally, H1-/- mice showed markedly greater changes in EEG power (notably in the 0.8-5 Hz band) and sleep-wake cycle than in WT mice after application of a cholinergic antagonist or an indirect agonist, i.e., scopolamine or physostigmine. Hence, the role of HA in wake-promotion is largely ensured by H1-receptors. An upregulated cholinergic system may account for a quasi-normal daily amount of W in HDC or H1-receptor KO mice and likely constitutes a major compensatory mechanism when the brain is facing deficiency of an activating system. This article is part of the Special Issue entitled 'Histamine Receptors'. PMID:26723880

  10. Enhanced effects of amphetamine but reduced effects of the hallucinogen, 5-MeO-DMT, on locomotor activity in 5-HT1A receptor knockout mice: Implications for schizophrenia

    OpenAIRE

    van den Buuse, Maarten; Ruimschotel, Emma; Martin, Sally; Risbrough, Victoria B.; Halberstadt, Adam L.

    2011-01-01

    Serotonin-1A (5-HT1A) receptors may play a role in schizophrenia and the effects of certain antipsychotic drugs. However, the mechanism of interaction of 5-HT1A receptors with brain systems involved in schizophrenia, remains unclear. Here we show that 5-HT1A receptor knockout mice display enhanced locomotor hyperactivity to acute treatment with amphetamine, a widely used animal model of hyperdopaminergic mechanisms in psychosis. In contrast, the effect of MK-801 on locomotor activity, modelin...

  11. Increased amphetamine-induced locomotor activity, sensitization, and accumbal dopamine release in M5 muscarinic receptor knockout mice

    DEFF Research Database (Denmark)

    Schmidt, Lene S; Miller, Anthony D; Lester, Deranda B;

    2010-01-01

    INTRODUCTION: Muscarinic M(5) receptors are the only muscarinic receptor subtype expressed by dopamine-containing neurons of the ventral tegmental area. These cells play an important role for the reinforcing properties of psychostimulants and M(5) receptors modulate their activity. Previous studi...

  12. Enkephalin levels and the number of neuropeptide Y-containing interneurons in the hippocampus are decreased in female cannabinoid-receptor 1 knock-out mice.

    Science.gov (United States)

    Rogers, Sophie A; Kempen, Tracey A Van; Pickel, Virginia M; Milner, Teresa A

    2016-05-01

    Drug addiction requires learning and memory processes that are facilitated by activation of cannabinoid-1 (CB1) and opioid receptors in the hippocampus. This involves activity-dependent synaptic plasticity that is partially regulated by endogenous opioid (enkephalin and dynorphin) and non-opioid peptides, specifically cholecystokinin, parvalbumin and neuropeptide Y, the neuropeptides present in inhibitory interneurons that co-express CB1 or selective opioid receptors. We tested the hypothesis that CB1 receptor expression is a determinant of the availability of one or more of these peptide modulators in the hippocampus. This was achieved by quantitatively analyzing the immunoperoxidase labeling for each of these neuropeptide in the dorsal hippocampus of female wild-type (CB1+/+) and cannabinoid receptor 1 knockout (CB1-/-) C57/BL6 mice. The levels of Leu(5)-enkephalin-immunoreactivity were significantly reduced in the hilus of the dentate gyrus and in stratum lucidum of CA3 in CB1-/- mice. Moreover, the numbers of neuropeptide Y-immunoreactive interneurons in the dentate hilus were significantly lower in the CB1-/- compared to wild-type mice. However, CB1+/+ and CB1-/- mice did not significantly differ in expression levels of either dynorphin or cholecystokinin, and showed no differences in numbers of parvalbumin-containing interneurons. These findings suggest that the cannabinoid and opioid systems have a nuanced, regulatory relationship that could affect the balance of excitation and inhibition in the hippocampus and thus processes such as learning that rely on this balance. PMID:27012427

  13. Secretin receptor-knockout mice are resistant to high-fat diet-induced obesity and exhibit impaired intestinal lipid absorption.

    Science.gov (United States)

    Sekar, Revathi; Chow, Billy K C

    2014-08-01

    Secretin, a classical gastrointestinal hormone released from S cells in response to acid and dietary lipid, regulates pleiotropic physiological functions, such as exocrine pancreatic secretion and gastric motility. Subsequent to recently proposed revisit on secretin's metabolic effects, we have confirmed lipolytic actions of secretin during starvation and discovered a hormone-sensitive lipase-mediated mechanistic pathway behind. In this study, a 12 wk high-fat diet (HFD) feeding to secretin receptor-knockout (SCTR(-/-)) mice and their wild-type (SCTR(+/+)) littermates revealed that, despite similar food intake, SCTR(-/-) mice gained significantly less weight (SCTR(+/+): 49.6±0.9 g; SCTR(-/-): 44.7±1.4 g; Pfat content. These SCTR(-/-) mice have corresponding alleviated HFD-associated hyperleptinemia and improved glucose/insulin tolerance. Further analyses indicate that SCTR(-/-) have impaired intestinal fatty acid absorption while having similar energy expenditure and locomotor activity. Reduced fat absorption in the intestine is further supported by lowered postprandial triglyceride concentrations in circulation in SCTR(-/-) mice. In jejunal cells, transcript and protein levels of a key fat absorption regulator, cluster of differentiation 36 (CD36), was reduced in knockout mice, while transcript of Cd36 and fatty-acid uptake in isolated enterocytes was stimulated by secretin. Based on our findings, a novel positive feedback pathway involving secretin and CD36 to enhance intestinal lipid absorption is being proposed. PMID:24769669

  14. TIMP3 interplays with apelin to regulate cardiovascular metabolism in hypercholesterolemic mice

    Directory of Open Access Journals (Sweden)

    Robert Stöhr

    2015-10-01

    Conclusion: TIMP3 regulates lipid metabolism as well as oxidative stress response via apelin. These findings therefore suggest that TIMP3 maintains metabolic flexibility in the heart, particularly during episodes of increased cardiac stress.

  15. B cell antigen receptor-induced activation of an IRAK4-dependent signaling pathway revealed by a MALT1-IRAK4 double knockout mouse model

    Directory of Open Access Journals (Sweden)

    Dufner Almut

    2011-03-01

    Full Text Available Abstract Background The B cell antigen receptor (BCR and pathogen recognition receptors, such as Toll-like receptor 4 (TLR4, act in concert to control adaptive B cell responses. However, little is known about the signaling pathways that integrate BCR activation with intrinsic TLR4 stimulation. Antigen receptors initialize activation of the inducible transcription factor nuclear factor-κB (NF-κB via recruitment of the membrane-associated guanylate kinase caspase recruitment domain protein 11 (CARD11, the adapter molecule B cell CLL/lymphoma 10 (BCL10, and the "paracaspase" mucosa-associated lymphoid tissue lymphoma translocation gene 1 (MALT1 into lipid rafts. Upon BCR triggering, this activation strictly depends on BCL10, but not on MALT1, leading to the hypothesis that a MALT1-independent NF-κB activation pathway contributes to BCR-induced NF-κB activation downstream of BCL10. The identity of this pathway has remained elusive. Results Using genetic and biochemical approaches, we demonstrate that the IRAK4- and IRAK1-dependent TLR signaling branch is activated upon BCR triggering to induce partial NF-κB activation. BCR-induced MALT1-independent IκB degradation and B cell proliferation were inhibited in MALT1/IRAK4 double knockout B cells. Moreover, IRAK1 was recruited into lipid rafts upon BCR stimulation and activated following transient recruitment of IRAK4. Conclusion We propose that the observed crosstalk between BCR and TLR signaling components may contribute to the discrimination of signals that emanate from single and dual receptor engagement to control adaptive B cell responses.

  16. Effect of P2X(7) receptor knockout on exocrine secretion of pancreas, salivary glands and lacrimal glands

    DEFF Research Database (Denmark)

    Novak, Ivana; Jans, Ida M; Wohlfahrt, Louise

    2010-01-01

    The purinergic P2X(7) receptors are expressed in different cell types where they have varied functions, including regulation of cell survival. The P2X(7) receptors are also expressed in exocrine glands, but their integrated role in secretion is unclear. The aim of our study was to determine whether...... release and intracellular Ca(2+) activity using Fura-2. The data showed that pancreatic secretion and salivary secretions were reduced in P2X(7)(-/-) mice, and in contrast, tear secretion was increased in P2X(7)(-/-) mice. The secretory phenotype was also dependent on the sex of the animal, such that...... males were more dependent on the P2X(7) receptor expression. ATP release in all cell preparations could be elicited by carbachol and other agonists, and this was independent of the P2X(7) receptor expression. ATP and carbachol increased intracellular Ca(2+) activity, but responses depended on the gland...

  17. Aggravation of Chronic Stress Effects on Hippocampal Neurogenesis and Spatial Memory in LPA1 Receptor Knockout Mice

    OpenAIRE

    Castilla-Ortega, Estela; Hoyo-Becerra, Carolina; Pedraza, Carmen; Chun, Jerold; Rodríguez de Fonseca, Fernando; Estivill-Torrús, Guillermo; Santín, Luis J.

    2011-01-01

    Background The lysophosphatidic acid LPA1 receptor regulates plasticity and neurogenesis in the adult hippocampus. Here, we studied whether absence of the LPA1 receptor modulated the detrimental effects of chronic stress on hippocampal neurogenesis and spatial memory. Methodology/Principal Findings Male LPA1-null (NULL) and wild-type (WT) mice were assigned to control or chronic stress conditions (21 days of restraint, 3 h/day). Immunohistochemistry for bromodeoxyuridine and endogenous marker...

  18. Expression of key regulators of mitochondrial biogenesis in growth hormone receptor knockout (GHRKO) mice is enhanced but is not further improved by other potential life-extending interventions.

    Science.gov (United States)

    Gesing, Adam; Masternak, Michal M; Wang, Feiya; Joseph, Anna-Maria; Leeuwenburgh, Christiaan; Westbrook, Reyhan; Lewinski, Andrzej; Karbownik-Lewinska, Malgorzata; Bartke, Andrzej

    2011-10-01

    Mitochondrial biogenesis is essential for cell viability. Growth hormone receptor knockout (GHRKO), calorie restriction, and surgical visceral fat removal constitute experimental interventions to delay aging and increase life span. We examined the expression of known regulators of mitochondriogenesis: peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), adenosine monophosphate (AMP)-activated protein kinase (AMPK), sirtuin-1 (SIRT-1) and sirtuin-3 (SIRT-3), endothelial nitric oxide synthase (eNOS), nuclear respiratory factor-1, mitochondrial transcription factor A (TFAM), and mitofusin-2 (MFN-2) in the skeletal muscles and hearts of control and calorie-restricted female GHRKO mice and in the kidneys of male GHRKOs after visceral fat removal or sham surgery. Expression of PGC-1α in skeletal muscles, AMPK, SIRT-1, SIRT-3, eNOS, and MFN-2 in the heart and PGC-1α, AMPK, SIRT-3, eNOS, and MFN-2 in kidneys was increased in GHRKO mice but was not affected by calorie restriction or visceral fat removal. GHRKO mice have increased expression of key regulators of mitochondriogenesis, which is not improved further by calorie restriction or visceral fat removal. PMID:21788651

  19. Influence of bone morphogenetic protein type IA receptor conditional knockout in lens on expression of bone morphogenetic protein 4 in lens

    Institute of Scientific and Technical Information of China (English)

    Qi; Zhao; Jiang-Yue; Zhao; Jin-Song; Zhang

    2015-01-01

    AIM: To investigate the influence of bone morphogenetic protein type IA receptor [BMPR-IA(ALK3)] conditional knockout in lens on expression of bone morphogenetic protein 4(BMP4) in lens during the development of the vertebrate eye.METHODS: Cre-positive mice were mated with Crenegative mice to generate 50% Cre-positive(conditional knockout, CKO) 4 embryos, 8 eyes and 50% Cre-negative offspring(wild type, WT) 4 embryos, 8 eyes. The embryos were fixed in 4% paraformaldehyde, embedded in paraffin, and sectioned to a thickness of 4 μm.Removal of paraffin wax and dehydrating for sections,and then the procedure of in situ hybridization was processed, BMP4 MK1784-m(BOSTER) was used, and observed the expression of BMP4 in the lens in experimental group and control group. We selected SPSS11.0 software for statistical analysis, P<0.05 showed that the difference was statistically significant.· RESULTS: Four embryos of each genotype were examined, totally we had 8 embryos, 16 eyes. We got the uniform outcomes in all the embryos. We found ALK3 was required during lens growing, but was not essential for the formation of lens. We observed that the expression of BMP4 in the lens was significantly reduced in all 8 ALK3 CKO lens, BMP4 expression was normal in all the 8 WT lens, P <0.01. This phenomenon became increasingly visible in accordance with embryo development. The most apparent alteration was present at stage E15.5.CONCLUSION: ALK3 is essential for lens growth. The influence of ALK3 on the expression of BMP4 is present during the development of mice lens.

  20. Brain activation by short-term nicotine exposure in anesthetized wild-type and beta2-nicotinic receptors knockout mice: a BOLD fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, S.V.; Changeux, J.P.; Granon, S. [Unite de Neurobiologie Integrative du Systeme Cholinergique, URA CNRS 2182, Institut Pasteur, Departement de Neuroscience, 25 rue du Dr Roux, 75015 Paris (France); Amadon, A.; Giacomini, E.; Le Bihan, D. [Service Hospitalier Frederic Joliot, 4 place du general Leclerc, 91400 Orsay (France); Wiklund, A. [Section of Anaesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Sweden)

    2009-07-01

    Rationale: The behavioral effects of nicotine and the role of the beta2-containing nicotinic receptors in these behaviors are well documented. However, the behaviors altered by nicotine rely on the functioning on multiple brain circuits where the high-affinity {beta}2-containing nicotinic receptors ({beta}2*nAChRs) are located. Objectives We intend to see which brain circuits are activated when nicotine is given in animals naive for nicotine and whether the {beta}2*nAChRs are needed for its activation of the blood oxygen level dependent (BOLD) signal in all brain areas. Materials and methods: We used functional magnetic resonance imaging (fMRI) to measure the brain activation evoked by nicotine (1 mg/kg delivered at a slow rate for 45 min) in anesthetized C57BL/6J mice and {beta}2 knockout (KO) mice. Results: Acute nicotine injection results in a significant increased activation in anterior frontal, motor, and somatosensory cortices and in the ventral tegmental area and the substantia nigra. Anesthetized mice receiving no nicotine injection exhibited a major decreased activation in all cortical and subcortical structures, likely due to prolonged anesthesia. At a global level, {beta}2 KO mice were not rescued from the globally declining BOLD signal. However, nicotine still activated regions of a meso-cortico-limbic circuit likely via {alpha}7 nicotinic receptors. Conclusions: Acute nicotine exposure compensates for the drop in brain activation due to anesthesia through the meso-cortico-limbic network via the action of nicotine on {beta}2*nAChRs. The developed fMRI method is suitable for comparing responses in wild-type and mutant mice. (authors)

  1. Brain activation by short-term nicotine exposure in anesthetized wild-type and beta2-nicotinic receptors knockout mice: a BOLD fMRI study

    International Nuclear Information System (INIS)

    Rationale: The behavioral effects of nicotine and the role of the beta2-containing nicotinic receptors in these behaviors are well documented. However, the behaviors altered by nicotine rely on the functioning on multiple brain circuits where the high-affinity β2-containing nicotinic receptors (β2*nAChRs) are located. Objectives We intend to see which brain circuits are activated when nicotine is given in animals naive for nicotine and whether the β2*nAChRs are needed for its activation of the blood oxygen level dependent (BOLD) signal in all brain areas. Materials and methods: We used functional magnetic resonance imaging (fMRI) to measure the brain activation evoked by nicotine (1 mg/kg delivered at a slow rate for 45 min) in anesthetized C57BL/6J mice and β2 knockout (KO) mice. Results: Acute nicotine injection results in a significant increased activation in anterior frontal, motor, and somatosensory cortices and in the ventral tegmental area and the substantia nigra. Anesthetized mice receiving no nicotine injection exhibited a major decreased activation in all cortical and subcortical structures, likely due to prolonged anesthesia. At a global level, β2 KO mice were not rescued from the globally declining BOLD signal. However, nicotine still activated regions of a meso-cortico-limbic circuit likely via α7 nicotinic receptors. Conclusions: Acute nicotine exposure compensates for the drop in brain activation due to anesthesia through the meso-cortico-limbic network via the action of nicotine on β2*nAChRs. The developed fMRI method is suitable for comparing responses in wild-type and mutant mice. (authors)

  2. Interleukin-1 receptor 1 knockout has no effect on amyloid deposition in Tg2576 mice and does not alter efficacy following Aβ immunotherapy

    Directory of Open Access Journals (Sweden)

    Chakrabarty Paramita

    2006-07-01

    Full Text Available Abstract Background Microglial activation has been proposed to facilitate clearance of amyloid β protein (Aβ from the brain following Aβ immunotherapy in amyloid precursor protein (APP transgenic mice. Interleukin-1 receptor 1 knockout (IL-1 R1-/- mice are reported to exhibit blunted inflammatory responses to injury. To further define the role of IL-1-mediated inflammatory responses and microglial activation in this paradigm, we examined the efficacy of passive Aβ immunotherapy in Tg2576 mice crossed into the IL-1 R1-/- background. In addition, we examined if loss of IL-1 R1-/- modifies Aβ deposition in the absence of additional manipulations. Methods We passively immunized Tg2576 mice crossed into the IL-1 R1-/- background (APP/IL-1 R1-/- mice with an anti-Aβ1-16 mAb (mAb9, IgG2a that we previously showed could attenuate Aβ deposition in Tg2576 mice. We also examined whether the IL-1 R1 knockout background modifies Aβ deposition in untreated mice. Biochemical and immunohistochemical Aβ loads and microglial activation was assessed. Results Passive immunization with anti-Aβ mAb was effective in reducing plaque load in APP/IL-1 R1-/- mice when the immunization was started prior to significant plaque deposition. Similar to previous studies, immunization was not effective in older APP/IL-1 R1-/- mice or IL-1 R1 sufficient wild type Tg2576 mice. Our analysis of Aβ deposition in the untreated APP/IL-1 R1-/- mice did not show differences on biochemical Aβ loads during normal aging of these mice compared to IL-1 R1 sufficient wild type Tg2576 mice. Conclusion We find no evidence that the lack of the IL-1 R1 receptor influences either Aβ deposition or the efficacy of passive immunotherapy. Such results are consistent with other studies in Tg2576 mice that suggest microglial activation may not be required for efficacy in passive immunization approaches.

  3. Multiple risk pathways for schizophrenia converge in serine racemase knockout mice, a mouse model of NMDA receptor hypofunction

    OpenAIRE

    Balu, Darrick T.; Li, Yan; Puhl, Matthew D.; Benneyworth, Michael A.; Basu, Alo C.; Takagi, Shunsuke; Bolshakov, Vadim Y.; Coyle, Joseph T.

    2013-01-01

    We sought to determine whether the diverse hippocampal neuropathology observed in schizophrenia could be recapitulated in an animal model of NMDA receptor (NMDAR) hypofunction. Serine racemase-deficient (SR−/−) mice, which lack one of the NMDAR coagonists d-serine, display impaired hippocampal plasticity, as well as the morphological, neurochemical, and cognitive abnormalities consistent with what is observed in schizophrenia. Importantly, treatment in adulthood with d-serine reversed the ele...

  4. A2A adenosine receptor-mediated increase in coronary flow in hyperlipidemic APOE–knockout mice

    OpenAIRE

    Teng, Bunyen

    2011-01-01

    Bunyen Teng, S Jamal MustafaDepartment of Physiology and Pharmacology and Center for Cardiovascular and Respiratory Sciences, West Virginia University, Morgantown, WV, USAAbstract: Adenosine-induced coronary vasodilation is predominantly A2A adenosine receptor (AR)-mediated, whereas A1 AR is known to negatively modulate the coronary flow (CF). However, the coronary responses to adenosine in hyperlipidemia and atherosclerosis are not well understood. Using hyperlipidemic/atherosclerotic apolip...

  5. Colonic mucosal DNA methylation, immune response, and microbiome patterns in Toll-like receptor 2-knockout mice

    OpenAIRE

    Kellermayer, Richard; Dowd, Scot E.; Harris, R. Alan; Balasa, Alfred; Schaible, Tiffany D.; Wolcott, Randy D; Tatevian, Nina; Szigeti, Reka; Li, Zhijie; Versalovic, James; Smith, C. Wayne

    2011-01-01

    The connection between intestinal microbiota and host physiology is increasingly becoming recognized. The details of this dynamic interaction, however, remain to be explored. Toll-like receptor 2 (Tlr2) is important for its role in bacterial recognition, intestinal inflammation, and obesity-related metabolic changes. Therefore, we sought to determine the epigenomic and metagenomic consequences of Tlr2 deficiency in the colonic mucosa of mice to gain insights into biological pathways that shap...

  6. Knockout of Toll-Like Receptors 2 and 4 Prevents Renal Ischemia-Reperfusion-Induced Cardiac Hypertrophy in Mice

    OpenAIRE

    Trentin-Sonoda, Mayra; da Silva, Rogério Cirino; Kmit, Fernanda Vieira; Abrahão, Mariana Vieira; Monnerat Cahli, Gustavo; Brasil, Guilherme Visconde; Muzi-Filho, Humberto; Silva, Paulo André; Tovar-Moll, Fernanda Freire; Vieyra, Adalberto; Medei, Emiliano; Carneiro-Ramos, Marcela Sorelli

    2015-01-01

    We investigated whether the pathways linked to Toll-like receptors 2 and 4 (TLRs) are involved in renal ischemia-reperfusion (I/R)-induced cardiac hypertrophy. Wild type (WT) C57BL/6J, TLR2-/- and TLR4-/- mice were subjected to left kidney ischemia for 60 min followed by reperfusion for 5, 8, 12 and 15 days. Proton density magnetic resonance showed alterations in the injured kidney from WT mice, together with signs of parenchymal edema and higher levels of vimentin mRNA, accompanied by: (i) s...

  7. Gene knockout of nuclear progesterone receptor provides insights into the regulation of ovulation by LH signaling in zebrafish

    Science.gov (United States)

    Tang, Haipei; Liu, Yun; Li, Jianzhen; Yin, Yike; Li, Gaofei; Chen, Yu; Li, Shuisheng; Zhang, Yong; Lin, Haoran; Liu, Xiaochun; Cheng, Christopher H. K.

    2016-01-01

    It is well established that the luteinizing hormone surge triggers ovulation, a dynamic process leading to the release of the mature oocyte from the ovarian follicle. But how this process controlled by LH signaling remains largely unknown in non-mammalian species. In this study, we investigated the roles of nuclear progesterone receptor (npr) in LH-induced ovulation. Our results indicate that the nuclear progesterone receptor serves as an important mediator of LH action on ovulation. This conclusion is based on the following results: (1) the expression level of npr peaks at the full-grown stage of the follicles; (2) the expression of npr is stimulated by LH signaling in vitro and in vivo; and (3) the npr null females are infertile due to ovulation defects. Moreover, we further show that LH signaling could induce ptger4b expression in an npr-dependent manner, and blockage of Ptger4b could also block hCG-induced ovulation. Collectively, our results not only demonstrate that npr serves an indispensable role in mediating the action of LH on ovulation in zebrafish, but also provide insights into the molecular mechanisms of the regulation of ovulation in fish. PMID:27333837

  8. The roles of testicular nuclear receptor 4 (TR4 in male fertility-priapism and sexual behavior defects in TR4 knockout mice

    Directory of Open Access Journals (Sweden)

    Bao Bo-Ying

    2011-10-01

    Full Text Available Abstract Background Successful reproductive efforts require the establishment of a situation favorable for reproduction that requires integration of both behavior and internal physiological events. TR4 nuclear receptor is known to be involved in male fertility via controlling spermatogenesis, yet its roles in regulating other biological events related to reproduction have not been completely revealed. Methods Male TR4 knockout (TR4-/- and wild type mice were used for the sexual behavior and penile dysfunction studies. Mice were sacrificed for histological examination and corresponding genes profiles were analyzed by quantitative RT-PCR. Reporter gene assays were performed. Results We describe an unexpected finding of priapism in TR4-/- mice. As a transcriptional factor, we demonstrated that TR4 transcriptionally modulates a key enzyme regulating penis erection and neuronal nitric oxide synthese NOS (nNOS. Thereby, elimination of TR4 results in nNOS reduction in both mRNA and protein levels, consequently may lead to erectile dysfunction. In addition, male TR4-/- mice display defects in sexual and social behavior, with increased fear or anxiety, as well as reduced mounting, intromission, and ejaculation. Reduction of ER alpha, ER beta, and oxytocin in the hypothalamus may contribute to defects in sexual behavior and stress response. Conclusions Together, these results provide in vivo evidence of important TR4 roles in penile physiology, as well as in male sexual behavior. In conjunction with previous finding, TR4 represents a key factor that controls male fertility via regulating behavior and internal physiological events.

  9. Automated pipeline to analyze non-contact infrared images of the paraventricular nucleus specific leptin receptor knock-out mouse model

    Science.gov (United States)

    Diaz Martinez, Myriam; Ghamari-Langroudi, Masoud; Gifford, Aliya; Cone, Roger; Welch, E. B.

    2015-03-01

    Evidence of leptin resistance is indicated by elevated leptin levels together with other hallmarks of obesity such as a defect in energy homeostasis.1 As obesity is an increasing epidemic in the US, the investigation of mechanisms by which leptin resistance has a pathophysiological impact on energy is an intensive field of research.2 However, the manner in which leptin resistance contributes to the dysregulation of energy, specifically thermoregulation,3 is not known. The aim of this study was to investigate whether the leptin receptor expressed in paraventricular nucleus (PVN) neurons plays a role in thermoregulation at different temperatures. Non-contact infrared (NCIR) thermometry was employed to measure surface body temperature (SBT) of nonanesthetized mice with a specific deletion of the leptin receptor in the PVN after exposure to room (25 °C) and cold (4 °C) temperature. Dorsal side infrared images of wild type (LepRwtwt/sim1-Cre), heterozygous (LepRfloxwt/sim1-Cre) and knock-out (LepRfloxflox/sim1-Cre) mice were collected. Images were input to an automated post-processing pipeline developed in MATLAB to calculate average and maximum SBTs. Linear regression was used to evaluate the relationship between sex, cold exposure and leptin genotype with SBT measurements. Findings indicate that average SBT has a negative relationship to the LepRfloxflox/sim1-Cre genotype, the female sex and cold exposure. However, max SBT is affected by the LepRfloxflox/sim1-Cre genotype and the female sex. In conclusion this data suggests that leptin within the PVN may have a neuroendocrine role in thermoregulation and that NCIR thermometry combined with an automated imaging-processing pipeline is a promising approach to determine SBT in non-anesthetized mice.

  10. Aryl hydrocarbon receptor knockout rats are insensitive to the pathological effects of repeated oral exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin.

    Science.gov (United States)

    Harrill, Joshua A; Layko, Debra; Nyska, Abraham; Hukkanen, Renee R; Manno, Rosa Anna; Grassetti, Andrea; Lawson, Marie; Martin, Greg; Budinsky, Robert A; Rowlands, J Craig; Thomas, Russell S

    2016-06-01

    Sustained activation of the aryl hydrocarbon receptor (AHR) is believed to be the initial key event in AHR receptor-mediated tumorigenesis in the rat liver. The role of AHR in mediating pathological changes in the liver prior to tumor formation was investigated in a 4-week, repeated-dose study using adult female wild-type (WT) and AHR knockout (AHR-KO) rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Beginning at 8 weeks of age, AHR-KO and WT rats were dosed by oral gavage with varying concentrations of TCDD (0, 3, 22, 100, 300 and 1000 ng kg(-1)  day(-1) ). Lung, liver and thymus histopathology, hematology, serum chemistry and the distribution of TCDD in liver and adipose tissue were examined. Treatment-related increases in the severity of liver and thymus pathology were observed in WT, but not AHR-KO rats. In the liver, these included hepatocellular hypertrophy, bile duct hyperplasia, multinucleated hepatocytes and inflammatory cell foci. A loss of cellularity in the thymic cortex and thymic atrophy was observed. Treatment-related changes in serum chemistry parameters were also observed in WT, but not AHR-KO rats. Finally, dose-dependent accumulation of TCDD was observed primarily in the liver of WT rats and primarily in the adipose tissue of AHR-KO rats. The results suggest that AHR activation is the initial key event underlying the progression of histological effects leading to liver tumorigenesis following TCDD treatment. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26278112

  11. Prenatal minocycline treatment alters synaptic protein expression, and rescues reduced mother call rate in oxytocin receptor-knockout mice.

    Science.gov (United States)

    Miyazaki, Shinji; Hiraoka, Yuichi; Hidema, Shizu; Nishimori, Katsuhiko

    2016-04-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired communication, difficulty in companionship, repetitive behaviors and restricted interests. Recent studies have shown amelioration of ASD symptoms by intranasal administration of oxytocin and demonstrated the association of polymorphisms in the oxytocin receptor (Oxtr) gene with ASD patients. Deficient pruning of synapses by microglial cells in the brain has been proposed as potential mechanism of ASD. Other researchers have shown specific activation of microglial cells in brain regions related to sociality in patients with ASD. Although the roles of Oxtr and microglia in ASD are in the spotlight, the relationship between them remains to be elucidated. In this study, we found abnormal activation of microglial cells and a reduction of postsynaptic density protein PSD95 expression in the Oxtr-deficient brain. Moreover, pharmacological inhibition of microglia during development can alter the expression of PSD95 and ameliorate abnormal mother-infant communication in Oxtr-deficient mice. Our results suggest that microglial abnormality is a potential mechanism of the development of Oxt/Oxtr mediated ASD-like phenotypes. PMID:26926566

  12. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model

    Science.gov (United States)

    Canelles, Sandra; Argente, Jesús; Barrios, Vicente

    2016-01-01

    ABSTRACT Insulin receptor substrate-2-deficient (IRS2−/−) mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I) and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2−/− mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2−/− mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2−/− mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2−/− mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus. PMID:27013528

  13. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model

    Directory of Open Access Journals (Sweden)

    Eva Baquedano

    2016-05-01

    Full Text Available Insulin receptor substrate-2-deficient (IRS2−/− mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2−/− mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2−/− mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2−/− mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2−/− mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus.

  14. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model.

    Science.gov (United States)

    Baquedano, Eva; Burgos-Ramos, Emma; Canelles, Sandra; González-Rodríguez, Agueda; Chowen, Julie A; Argente, Jesús; Barrios, Vicente; Valverde, Angela M; Frago, Laura M

    2016-05-01

    Insulin receptor substrate-2-deficient (IRS2(-/-)) mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I) and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2(-/-) mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2(-/-) mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2(-/-) mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2(-/-) mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus. PMID:27013528

  15. Distinct motor impairments of dopamine D1 and D2 receptor knockout mice revealed by three types of motor behavior

    Directory of Open Access Journals (Sweden)

    Toru eNakamura

    2014-07-01

    Full Text Available Both D1R and D2R knock out (KO mice of the major dopamine receptors show significant motor impairments. However, there are some discrepant reports, which may be due to the differences in genetic background and experimental procedures. In addition, only few studies directly compared the motor performance of D1R and D2R KO mice. In this paper, we examined the behavioral difference among N10 congenic D1R and D2R KO, and wild type (WT mice. First, we examined spontaneous motor activity in the home cage environment for consecutive five days. Second, we examined motor performance using the rota-rod task, a standard motor task in rodents. Third, we examined motor ability with the Step-Wheel task in which mice were trained to run in a motor-driven turning wheel adjusting their steps on foothold pegs to drink water. The results showed clear differences among the mice of three genotypes in three different types of behavior. In monitoring spontaneous motor activities, D1R and D2R KO mice showed higher and lower 24 h activities, respectively, than WT mice. In the rota-rod tasks, at a low speed, D1R KO mice showed poor performance but later improved, whereas D2R KO mice showed a good performance at early days without further improvement. When first subjected to a high speed task, the D2R KO mice showed poorer rota-rod performance at a low speed than the D1R KO mice. In the Step-Wheel task, across daily sessions, D2R KO mice increased the duration that mice run sufficiently close to the spout to drink water, and decreased time to touch the floor due to missing the peg steps and number of times the wheel was stopped, which performance was much better than that of D1R KO mice. These incongruent results between the two tasks for D1R and D2R KO mice may be due to the differences in the motivation for the rota-rod and Step-Wheel tasks, aversion- and reward-driven, respectively. The Step-Wheel system may become a useful tool for assessing the motor ability of WT

  16. Induction of chronic pancreatitis by pancreatic duct ligation activates BMP2, apelin, and PTHrP expression in mice.

    Science.gov (United States)

    Rastellini, Cristiana; Han, Song; Bhatia, Vandanajay; Cao, Yanna; Liu, Ka; Gao, Xuxia; Ko, Tien C; Greeley, George H; Falzon, Miriam

    2015-10-01

    Chronic pancreatitis (CP) is a devastating disease with no treatments. Experimental models have been developed to reproduce the parenchyma and inflammatory responses typical of human CP. For the present study, one objective was to assess and compare the effects of pancreatic duct ligation (PDL) to those of repetitive cerulein (Cer)-induced CP in mice on pancreatic production of bone morphogenetic protein-2 (BMP2), apelin, and parathyroid hormone-related protein (PTHrP). A second objective was to determine the extent of cross talk among pancreatic BMP2, apelin, and PTHrP signaling systems. We focused on BMP2, apelin, and PTHrP since these factors regulate the inflammation-fibrosis cascade during pancreatitis. Findings showed that PDL- and Cer-induced CP resulted in significant elevations in expression and peptide/protein levels of pancreatic BMP2, apelin, and PTHrP. In vivo mouse and in vitro pancreatic cell culture experiments demonstrated that BMP2 stimulated pancreatic apelin expression whereas apelin expression was inhibited by PTHrP exposure. Apelin or BMP2 exposure inhibited PTHrP expression, and PTHrP stimulated upregulation of gremlin, an endogenous inhibitor of BMP2 activity. Transforming growth factor-β (TGF-β) stimulated PTHrP expression. Together, findings demonstrated that PDL- and Cer-induced CP resulted in increased production of the pancreatic BMP2, apelin, and PTHrP signaling systems and that significant cross talk occurred among pancreatic BMP2, apelin, and PTHrP. These results together with previous findings imply that these factors interact via a pancreatic network to regulate the inflammation-fibrosis cascade during CP. More importantly, this network communicated with TGF-β, a key effector of pancreatic pathophysiology. This novel network may be amenable to pharmacologic manipulations during CP in humans. PMID:26229008

  17. Synthetic liver X receptor agonist T0901317 inhibits semicarbazide-sensitive amine oxidase gene expression and activity in apolipoprotein E knockout mice

    Institute of Scientific and Technical Information of China (English)

    Xiaoyan Dai; Xiang Ou; Xinrui Hao; Dongli Cao; Yaling Tang; Yanwei Hu; Xiaoxu Li; Chaoke Tang

    2008-01-01

    Semicarbazide-sensitive amine oxidase(SSAO)catalyzes oxidative deamination of primary aromatic and aliphatic amines.Increased SSAO activity has been found in atherosclerosis and diabetes mellitus.We hypothesize that the anti-atherogenic effect of liver X receptors(LXRs)might be related to the inhibition of SSAD gene expression and its activity.In this study,we investigated the effect of LXR agonist T0901317 on SSAO gene expression and its activity in apolipoprotein E knockout(apoE-/-)mice.Male apoE-/-mice(8 weeks old) were randomly divided into four groups:basal control group;vehicle group;prevention group;and treatment group.SSAO gene expression was analyzed by real-time quantitative polymerase chain reaction and its activity was determined.The activity of superoxide dismutase and content of malondialdehy de in the aorta and liver were also determined.In T0901317-treated mice,SSAO gene expression was significantly decreased in the aorta,liver,small intestine,and brain.SSAO activities in serum and in these tissues were also inhibited.The amount of superoxide dismutase in the aorta and liver of the prevention group and treatment group was significantly higher compared with the vehicle group(P<0.05).Malondialdehyde in the tissues of these two groups was significantly lower compared with the vehicle group(P<0.05).Our results showed that T0901317 inhibits SSAO gene expression and its activity in atherogenic apoE-/-mice.The atheroprotective effect of LXR agonist T0901317 is related to the inhibition of SSAO gene expression and its activity.

  18. APJ acts as a dual receptor in cardiac hypertrophy.

    Science.gov (United States)

    Scimia, Maria Cecilia; Hurtado, Cecilia; Ray, Saugata; Metzler, Scott; Wei, Ke; Wang, Jianming; Woods, Chris E; Purcell, Nicole H; Catalucci, Daniele; Akasaka, Takeshi; Bueno, Orlando F; Vlasuk, George P; Kaliman, Perla; Bodmer, Rolf; Smith, Layton H; Ashley, Euan; Mercola, Mark; Brown, Joan Heller; Ruiz-Lozano, Pilar

    2012-08-16

    Cardiac hypertrophy is initiated as an adaptive response to sustained overload but progresses pathologically as heart failure ensues. Here we report that genetic loss of APJ, a G-protein-coupled receptor, confers resistance to chronic pressure overload by markedly reducing myocardial hypertrophy and heart failure. In contrast, mice lacking apelin (the endogenous APJ ligand) remain sensitive, suggesting an apelin-independent function of APJ. Freshly isolated APJ-null cardiomyocytes exhibit an attenuated response to stretch, indicating that APJ is a mechanosensor. Activation of APJ by stretch increases cardiomyocyte cell size and induces molecular markers of hypertrophy. Whereas apelin stimulates APJ to activate Gαi and elicits a protective response, stretch signals in an APJ-dependent, G-protein-independent fashion to induce hypertrophy. Stretch-mediated hypertrophy is prevented by knockdown of β-arrestins or by pharmacological doses of apelin acting through Gαi. Taken together, our data indicate that APJ is a bifunctional receptor for both mechanical stretch and the endogenous peptide apelin. By sensing the balance between these stimuli, APJ occupies a pivotal point linking sustained overload to cardiomyocyte hypertrophy. PMID:22810587

  19. The relationship between apelin and cardiac parameters in patients on peritoneal dialysis: is there a new cardiac marker?

    OpenAIRE

    Karadag, Serhat; Ozturk, Savas; Gursu, Meltem; Gurdal, Ahmet; Basinoglu, Filiz; Yigit, Servet; Zeki AYDIN; Uzun, Sami; Sumnu, Abdullah; Oflaz, Huseyin; Kazancioglu, Rumeyza

    2014-01-01

    Background Many markers have been proposed for CVD risk assessment in dialysis population. Apelin is a peptide that has roles in cardiovascular functions and volume regulation namely vasodilation, decreased blood pressure (BP), positive inotropic effect and inhibition of antidiuretic hormone release. The aim of this study was to examine relationship of apelin levels with echocardiographic findings and laboratory parameters related with cardiovascular function and bone mineral metabolism among...

  20. Interleukin 1 receptor antagonist knockout mice show enhanced microglial activation and neuronal damage induced by intracerebroventricular infusion of human β-amyloid

    Directory of Open Access Journals (Sweden)

    Watterson D Martin

    2005-06-01

    Full Text Available Abstract Background Interleukin 1 (IL-1 is a key mediator of immune responses in health and disease. Although classically the function of IL-1 has been studied in the systemic immune system, research in the past decade has revealed analogous roles in the CNS where the cytokine can contribute to the neuroinflammation and neuropathology seen in a number of neurodegenerative diseases. In Alzheimer's disease (AD, for example, pre-clinical and clinical studies have implicated IL-1 in the progression of a pathologic, glia-mediated pro-inflammatory state in the CNS. The glia-driven neuroinflammation can lead to neuronal damage, which, in turn, stimulates further glia activation, potentially propagating a detrimental cycle that contributes to progression of pathology. A prediction of this neuroinflammation hypothesis is that increased IL-1 signaling in vivo would correlate with increased severity of AD-relevant neuroinflammation and neuronal damage. Methods To test the hypothesis that increased IL-1 signaling predisposes animals to beta-amyloid (Aβ-induced damage, we used IL-1 receptor antagonist Knock-Out (IL1raKO and wild-type (WT littermate mice in a model that involves intracerebroventricular infusion of human oligomeric Aβ1–42. This model mimics many features of AD, including robust neuroinflammation, Aβ plaques, synaptic damage and neuronal loss in the hippocampus. IL1raKO and WT mice were infused with Aβ for 28 days, sacrificed at 42 days, and hippocampal endpoints analyzed. Results IL1raKO mice showed increased vulnerability to Aβ-induced neuropathology relative to their WT counterparts. Specifically, IL1raKO mice exhibited increased mortality, enhanced microglial activation and neuroinflammation, and more pronounced loss of synaptic markers. Interestingly, Aβ-induced astrocyte responses were not significantly different between WT and IL1raKO mice, suggesting that enhanced IL-1 signaling predominately affects microglia. Conclusion Our

  1. Vascular remodeling and mobilization of bone marrow-derived cells in cuff-induced vascular injury in LDL receptor knockout muce

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Background Vascular remodeling is an important pathologic process in vascular injury for various vascular disorders such as atherosclerosis,postangioplasty restenosis and transplant arteriopathy.Recently,pathologic change and the role of bone marrow derived cells were wildly studied in atherosclerosis and restenosis.But the manner of lesion formation in neointima and cell recruitment in vascular remodeling lesion in the present of hypercholesterolemia is not Vet fully understood. Methods Double-transgenic mice knockout of LDL receptor gene (LDL-/-) and expressing ubiquitously green fluorescent protein (GFP) were obtained by cross-breeding LDL-/-mice with the GFP-expressing transgenic mice. LDL-/- mice (22-24 weeks of age) fed high fat diet containing 1.25% (w/w) cholesterol were subjected to 9Gy irradiation and received bone marrow (BM) cells from the double-transgenic mice.Four weeks later,a nonconstrictive cuff was Dlaced around the right femoral artery.After another 2 weeks,both right and left femoral arteries were harvested and subjected to histochemical analysis.Apoptosis was analyzed in situ using TUNEL assay.Resuits Two weeks after cuff placement,atherosclerotic lesions developed in the intima consisting of a massive accumulation of foam cells, The tissue stained with anti-α smooth muscle actin (SMA) antibody,showed a number of SMA-positive cells in the intimal lesion area.They were also positive for GFP,indicating that BM-derived cells can differentiate to SMCs in the intima in cuff-induced vascular remodeling lesions.Numerous small vessels in the adventitia as well as the endothelial lining of the intima were positive both for CD31 and GFP.The intima and media showed a larae number of TUNEL-positive signals after 2 weeks cuff injury,indicating the presence of apoptosis in vascular remodelina.Conclusions Atherosclerotic lesions in mice can be developed in the intima after 2 weeks of cuff-induced vascular inJury under the hypercholesterolemic conditions

  2. Apelin: an endogenous peptide essential for cardiomyogenic differentiation of mesenchymal stem cells via activating extracellular signal-regulated kinase 1/2 and 5.

    Science.gov (United States)

    Wang, Li; Zhu, Zhi-Ming; Zhang, Ning-Kun; Fang, Zhi-Rong; Xu, Xiao-Hong; Zheng, Nan; Gao, Lian-Ru

    2016-05-01

    Growing evidence has shown that apelin/APJ system functions as a critical mediator of cardiac development as well as cardiovascular function. Here, we investigated the role of apelin in the cardiomyogenic differentiation of mesenchymal stem cells derived from Wharton's jelly of human umbilical cord in vitro. In this research, we used RNA interference methodology and gene transfection technique to regulate the expression of apelin in Wharton's jelly-derived mesenchymal stem cells and induced cells with a effective cardiac differentiation protocol including 5-azacytidine and bFGF. Four weeks after induction, induced cells assumed a stick-like morphology and myotube-like structures except apelin-silenced cells and the control group. The silencing expression of apelin in Wharton's jelly-derived mesenchymal stem cells decreased the expression of several critical cardiac progenitor transcription factors (Mesp1, Mef2c, NKX2.5) and cardiac phenotypes (cardiac α-actin, β-MHC, cTnT, and connexin-43). Meanwhile, endogenous compensation of apelin contributed to differentiating into cells with characteristics of cardiomyocytes in vitro. Further experiment showed that exogenous apelin peptide rescued the cardiomyogenic differentiation of apelin-silenced mesenchymal stem cells in the early stage (1-4 days) of induction. Remarkably, our experiment indicated that apelin up-regulated cardiac specific genes in Wharton's jelly-derived mesenchymal stem cells via activating extracellular signal-regulated kinase (ERK) 1/2 and 5. PMID:26787000

  3. Apelin and copeptin: two opposite biomarkers associated with kidney function decline and cyst growth in autosomal dominant polycystic kidney disease.

    Science.gov (United States)

    Lacquaniti, Antonio; Chirico, Valeria; Lupica, Rosaria; Buemi, Antoine; Loddo, Saverio; Caccamo, Chiara; Salis, Paola; Bertani, Tullio; Buemi, Michele

    2013-11-01

    Vasopressin (AVP) plays a detrimental role in autosomal dominant polycystic kidney disease (ADPKD). Copeptin represents a measurable substitute for circulating AVP whereas apelin counteracts AVP signaling. The aim of this study was to investigate the predictive value of apelin and copeptin for the progression of ADPKD disease. 52 ADPKD patients were enrolled and followed until the end of the observation period or the primary study endpoint was reached, defined by the combined outcome of decrease of glomerular filtration rate associated with a total renal volume increase. Receiver operating characteristics (ROC) analysis was employed for identifying the progression of renal disease and Kaplan-Meier curves assessed the renal survival. Adjusted risk estimates for progression endpoint and incident renal replacement therapy (RRT) were calculated using Cox proportional hazard regression analysis. ADPKD patients were characterized by lower apelin levels and higher copeptin levels when compared with healthy subjects. These biomarkers were strictly correlated with osmolality and markers of renal function. At ROC analysis, apelin and copeptin showed a very good diagnostic profile in identifying ADPKD progression. After the follow up of 24 months, 33 patients reached the endpoint. Cox proportional hazard regression analysis showed that apelin predicted renal disease progression and incident RRT independently of other potential confounders. Apelin is associated with kidney function decline in ADPKD, suggesting that it may be a new marker to predict kidney outcome. PMID:23973863

  4. Proestrous compared to diestrous wildtype, but not estrogen receptor beta knockout, mice have better performance in the spontaneous alternation and object recognition tasks and reduced anxiety-like behavior in the elevated plus and mirror maze

    OpenAIRE

    Walf, Alicia A.; Koonce, Carolyn; Manley, Kevin; Frye, Cheryl A.

    2008-01-01

    17β-Estradiol (E2) may influence cognitive and/or affective behavior in part via the β isoform of the estrogen receptor (ERβ). Endocrine status and behavior in cognitive (object recognition, T-maze), anxiety (open field, elevated plus maze, mirror maze, emergence), and motor/coordination (rotarod, activity chamber) tasks of proestrous and diestrous wildtype (WT) and ERβ knockout (βERKO) mice was examined. Proestrous (WT or βERKO), versus diestrous, mice had higher E2 and progestin levels in p...

  5. Co-administration of Apelin and T4 Protects Inotropic and Chronotropic Changes Occurring in Hypothyroid Rats

    Directory of Open Access Journals (Sweden)

    Zahra Akhondali

    2015-01-01

    Full Text Available Abstract Background: One of the most important thyroid hormone targets is the cardiovascular system. Hemodynamic changes, such as decreased resting heart rate (HR, myocardial contractility, and cardiac output, and increased diastolic pressure and systemic vascular resistance, have been observed in hypothyroid patients. Moreover, in these patients, ECG changes include sinus bradycardia and low voltage complexes (P waves or QRS complexes. Objective: This study aimed at evaluating the prophylactic effect of apelin on HR changes and QRS voltage that occur in propylthiouracil (PTU-induced hypothyroid rats. Method: In this study, 48 adult male Wistar rats weighing 170-235g were randomly divided into 6 groups: Control group (normal saline ip injection + tap water gavage; P group (PTU 0.05%, in drinking water; A group (apelin 200 µg.kg-1.day-1, ip; PA group [co-administration of PTU and apelin]; PT group [co-administration of PTU + T4 (0.2 mg/g per day, gavage]; and PAT group (co-administration of PTU, apelin and T4. All experiments were performed for 28 consecutive days, and then the animals were anesthetized with an ip injection of ketamine (80 mg/kg and xylazine (12 mg/kg. Lead II electrocardiogram was recorded to calculate HR and QRS voltage. Results: Heart rate and QRS voltage increased more significantly in the hypothyroid group that consumed both apelin and T4 (201 ± 4 beat/min, 0.71 ± 0.02 mv vs. hypothyroid 145 ± 9 beat/min, 0.563 ± 0.015 mv; respectively. Conclusion: The co-administration of apelin and T4 showed a protective effect on QRS voltage and HR in PTU‑induced hypothyroid rats.

  6. Co-administration of Apelin and T4 Protects Inotropic and Chronotropic Changes Occurring in Hypothyroid Rats

    Energy Technology Data Exchange (ETDEWEB)

    Akhondali, Zahra; Badavi, Mohammad; Dianat, Mahin, E-mail: dianat@ajums.ac.ir; Faraji, Farzaneh [Physiology Research Center and Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz (Iran, Islamic Republic of)

    2015-09-15

    One of the most important thyroid hormone targets is the cardiovascular system. Hemodynamic changes, such as decreased resting heart rate (HR), myocardial contractility, and cardiac output, and increased diastolic pressure and systemic vascular resistance, have been observed in hypothyroid patients. Moreover, in these patients, ECG changes include sinus bradycardia and low voltage complexes (P waves or QRS complexes). This study aimed at evaluating the prophylactic effect of apelin on HR changes and QRS voltage that occur in propylthiouracil (PTU)-induced hypothyroid rats. In this study, 48 adult male Wistar rats weighing 170-235g were randomly divided into 6 groups: Control group (normal saline ip injection + tap water gavage); P group (PTU 0.05%, in drinking water); A group (apelin 200 µg.kg{sup -1}.day{sup -1}, ip); PA group [co-administration of PTU and apelin]; PT group [co-administration of PTU + T4 (0.2 mg/g per day, gavage)]; and PAT group (co-administration of PTU, apelin and T4). All experiments were performed for 28 consecutive days, and then the animals were anesthetized with an ip injection of ketamine (80 mg/kg) and xylazine (12 mg/kg). Lead II electrocardiogram was recorded to calculate HR and QRS voltage. Heart rate and QRS voltage increased more significantly in the hypothyroid group that consumed both apelin and T4 (201 ± 4 beat/min, 0.71 ± 0.02 mv vs. hypothyroid 145 ± 9 beat/min, 0.563 ± 0.015 mv; respectively). The co-administration of apelin and T4 showed a protective effect on QRS voltage and HR in PTU‑induced hypothyroid rats.

  7. Co-administration of Apelin and T4 Protects Inotropic and Chronotropic Changes Occurring in Hypothyroid Rats

    International Nuclear Information System (INIS)

    One of the most important thyroid hormone targets is the cardiovascular system. Hemodynamic changes, such as decreased resting heart rate (HR), myocardial contractility, and cardiac output, and increased diastolic pressure and systemic vascular resistance, have been observed in hypothyroid patients. Moreover, in these patients, ECG changes include sinus bradycardia and low voltage complexes (P waves or QRS complexes). This study aimed at evaluating the prophylactic effect of apelin on HR changes and QRS voltage that occur in propylthiouracil (PTU)-induced hypothyroid rats. In this study, 48 adult male Wistar rats weighing 170-235g were randomly divided into 6 groups: Control group (normal saline ip injection + tap water gavage); P group (PTU 0.05%, in drinking water); A group (apelin 200 µg.kg-1.day-1, ip); PA group [co-administration of PTU and apelin]; PT group [co-administration of PTU + T4 (0.2 mg/g per day, gavage)]; and PAT group (co-administration of PTU, apelin and T4). All experiments were performed for 28 consecutive days, and then the animals were anesthetized with an ip injection of ketamine (80 mg/kg) and xylazine (12 mg/kg). Lead II electrocardiogram was recorded to calculate HR and QRS voltage. Heart rate and QRS voltage increased more significantly in the hypothyroid group that consumed both apelin and T4 (201 ± 4 beat/min, 0.71 ± 0.02 mv vs. hypothyroid 145 ± 9 beat/min, 0.563 ± 0.015 mv; respectively). The co-administration of apelin and T4 showed a protective effect on QRS voltage and HR in PTU‑induced hypothyroid rats

  8. Probucol prevents early coronary heart disease and death in the high-density lipoprotein receptor SR-BI/apolipoprotein E double knockout mouse

    OpenAIRE

    Braun, Anne; Zhang, Songwen; Miettinen, Helena E.; Ebrahim, Shamsah; Holm, Teresa M.; Vasile, Eliza; Mark J Post; Yoerger, Danita M.; Picard, Michael H.; Joshua L. Krieger; Andrews, Nancy C.; Simons, Michael; Krieger, Monty

    2003-01-01

    Mice with homozygous null mutations in the high-density lipoprotein receptor SR-BI (scavenger receptor class B, type I) and apolipoprotein E genes fed a low-fat diet exhibit a constellation of pathologies shared with human atherosclerotic coronary heart disease (CHD): hypercholesterolemia, occlusive coronary atherosclerosis, myocardial infarctions, cardiac dysfunction (heart enlargement, reduced systolic function and ejection fraction, and ECG abnormalities), and premature death (mean a...

  9. KnockoutJS blueprints

    CERN Document Server

    Russo, Carlo

    2015-01-01

    If you are a JavaScript developer and already know the basics of KnockoutJS and you want to get the most out of it, then this book is for you. This book will help in your transition from a small site to a large web application that is easily maintainable.

  10. D2 dopamine receptors colocalize regulator of G-protein signaling 9-2 (RGS9-2) via the RGS9 DEP domain, and RGS9 knock-out mice develop dyskinesias associated with dopamine pathways.

    Science.gov (United States)

    Kovoor, Abraham; Seyffarth, Petra; Ebert, Jana; Barghshoon, Sami; Chen, Ching-Kang; Schwarz, Sigrid; Axelrod, Jeffrey D; Cheyette, Benjamin N R; Simon, Melvin I; Lester, Henry A; Schwarz, Johannes

    2005-02-23

    Regulator of G-protein signaling 9-2 (RGS9-2), a member of the RGS family of G GTPase accelerating proteins, is expressed specifically in the striatum, which participates in antipsychotic-induced tardive dyskinesia and in levodopa-induced dyskinesia. We report that RGS9 knock-out mice develop abnormal involuntary movements when inhibition of dopaminergic transmission is followed by activation of D2-like dopamine receptors (DRs). These abnormal movements resemble drug-induced dyskinesia more closely than other rodent models. Recordings from striatal neurons of these mice establish that activation of D2-like DRs abnormally inhibits glutamate-elicited currents. We show that RGS9-2, via its DEP domain (for Disheveled, EGL-10, Pleckstrin homology), colocalizes with D2DRs when coexpressed in mammalian cells. Recordings from oocytes coexpressing D2DR or the m2 muscarinic receptor and G-protein-gated inward rectifier potassium channels show that RGS9-2, via its DEP domain, preferentially accelerates the termination of D2DR signals. Thus, alterations in RGS9-2 may be a key factor in the pathway leading from D2DRs to the side effects associated with the treatment both of psychoses and Parkinson's disease. PMID:15728856

  11. Adult female wildtype, but not oestrogen receptor β knockout, mice have decreased depression-like behaviour during pro-oestrus and following administration of oestradiol or diarylpropionitrile

    OpenAIRE

    Walf, AA; Koonce, CJ; Frye, CA

    2008-01-01

    Studies in people and animal models suggest that depression is influenced by natural, fluctuations in the levels of 17β-oestradiol (E2), as well as administration of E2-based therapies, such as selective oestrogen receptor modulators (SERMs). Elucidating the effects and mechanisms of E2 is important to improve future E2-based therapeutics. An important question is whether effects of E2 or SERMs for mood regulation act at the α or β isoform of the oestrogen receptor (ER) because some of the un...

  12. The effects of nonlinear resistance and aerobic interval training on serum levels of apelin and insulin resistance in middle-aged obese men

    Directory of Open Access Journals (Sweden)

    Mahmoud Nikseresht

    2015-08-01

    Conclusion: The practical applications indicate that obese men can use both AIT and NRT exercise programs to reduce insulin resistance. However, the AIT may have better beneficial effects (as indicated by apelin-13 compared to NRT.

  13. Accumulation of cytolytic CD8{sup +} T cells in B16-melanoma and proliferation of mature T cells in TIS21-knockout mice after T cell receptor stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Min Sook [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Woo, Min-Yeong [Department of Microbiology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Department of Biomedical Sciences, The Graduate School, Ajou University (Korea, Republic of); Kwon, Daeho [Department of Microbiology, Kwandong University College of Medicine, Gangneung, Gangwon-do 210-701 (Korea, Republic of); Hong, Allen E. [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Song, Kye Yong [Department of Pathology, Chung-Ang University College of Medicine, Dongjak-gu, Seoul 156-756 (Korea, Republic of); Park, Sun [Department of Microbiology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Lim, In Kyoung [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of)

    2014-10-01

    In vivo and in vitro effects of TIS21 gene on the mature T cell activation and antitumor activities were explored by employing MO5 melanoma orthograft and splenocytes isolated from the TIS21-knockout (KO) mice. Proliferation and survival of mature T cells were significantly increased in the KO than the wild type (WT) cells, indicating that TIS21 inhibits the rate of mature T cell proliferation and its survival. In MO5 melanoma orthograft model, the KO mice recruited much more CD8{sup +} T cells into the tumors at around day 14 after tumor cell injection along with reduced tumor volumes compared with the WT. The increased frequency of granzyme B{sup +} CD8{sup +} T cells in splenocytes of the KO mice compared with the WT may account for antitumor-immunity of TIS21 gene in the melanoma orthograft. In contrast, reduced frequencies of CD107a{sup +} CD8{sup +} T cells in the splenocytes of KO mice may affect the loss of CD8{sup +} T cell infiltration in the orthograft at around day 19. These results indicate that TIS21 exhibits antiproliferative and proapoptotic effects in mature T cells, and differentially affects the frequencies of granzyme B{sup +} CD8{sup +} T-cells and CD107a{sup +} CD8{sup +} T-cells, thus transiently regulating in vivo anti-tumor immunity. - Highlights: • Constitutive expression of TIS21 in splenocytes and upregulation by TCR stimulation. • Proliferation of mature T-cells in spleen of TIS21KO mice after TCR stimulation. • Inhibition of cell death in mature T-cells of TIS21KO mice compared with the wild type. • Inhibition of melanoma growth in TIS21KO mice and CD8{sup +} T cell infiltration in tumor. • Reduction of CD 107{sup +}CD8{sup +} T cells, but increased granzyme B{sup +} CD8{sup +} T cells in TIS21KO mice.

  14. Accumulation of cytolytic CD8+ T cells in B16-melanoma and proliferation of mature T cells in TIS21-knockout mice after T cell receptor stimulation

    International Nuclear Information System (INIS)

    In vivo and in vitro effects of TIS21 gene on the mature T cell activation and antitumor activities were explored by employing MO5 melanoma orthograft and splenocytes isolated from the TIS21-knockout (KO) mice. Proliferation and survival of mature T cells were significantly increased in the KO than the wild type (WT) cells, indicating that TIS21 inhibits the rate of mature T cell proliferation and its survival. In MO5 melanoma orthograft model, the KO mice recruited much more CD8+ T cells into the tumors at around day 14 after tumor cell injection along with reduced tumor volumes compared with the WT. The increased frequency of granzyme B+ CD8+ T cells in splenocytes of the KO mice compared with the WT may account for antitumor-immunity of TIS21 gene in the melanoma orthograft. In contrast, reduced frequencies of CD107a+ CD8+ T cells in the splenocytes of KO mice may affect the loss of CD8+ T cell infiltration in the orthograft at around day 19. These results indicate that TIS21 exhibits antiproliferative and proapoptotic effects in mature T cells, and differentially affects the frequencies of granzyme B+ CD8+ T-cells and CD107a+ CD8+ T-cells, thus transiently regulating in vivo anti-tumor immunity. - Highlights: • Constitutive expression of TIS21 in splenocytes and upregulation by TCR stimulation. • Proliferation of mature T-cells in spleen of TIS21KO mice after TCR stimulation. • Inhibition of cell death in mature T-cells of TIS21KO mice compared with the wild type. • Inhibition of melanoma growth in TIS21KO mice and CD8+ T cell infiltration in tumor. • Reduction of CD 107+CD8+ T cells, but increased granzyme B+ CD8+ T cells in TIS21KO mice

  15. KnockoutJS essentials

    CERN Document Server

    Ferrando, Jorge

    2015-01-01

    If you are a JavaScript developer who has been using DOM manipulation libraries such as Mootools or Scriptaculous, and you want go further in modern JavaScript development with a simple and well-documented library, then this book is for you. Learning how to use Knockout will be perfect as your next step towards building JavaScript applications that respond to user interaction.

  16. Cluster knockout reactions

    Indian Academy of Sciences (India)

    Arun K Jain; B N Joshi

    2014-04-01

    Cluster knockout reactions are expected to reveal the amount of clustering (such as that of , d and even of heavier clusters such as 12C, 16O etc.) in the target nucleus. In simple terms, incident medium high-energy nuclear projectile interacts strongly with the cluster (present in the target nucleus) as if it were existing as a free entity. Theoretically, the relatively softer interactions of the two outgoing particles with the residual nucleus lead to optical distortions and are treated in terms of distorted wave (DW) formalism. The long-range projectile–cluster interaction is accounted for, in terms of the finite range (FR) direct reaction formalism, as against the more commonly adopted zero-range (ZR) distorted wave impulse approximation (DWIA) formalism. Comparison of the DWIA calculations with the observed data provide information about the momentum distribution and the clustering spectroscopic factor of the target nucleus. Interesting results and some recent advancements in the area of (, 2) reactions and heavy cluster knockout reactions are discussed. Importance of the finite-range vertex and the final-state interactions are brought out.

  17. Influence of apelin-13 on 5-azacytidine inducing differentiation of umbilical cord mesenchymal stem cells to cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Xiao-hong XU

    2013-11-01

    Full Text Available Objective To explore the influence of apelin-13 on 5-azacytidine (5-Aza inducing differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs to cardiomyocytes. Methods hUC-MSCs were cultivated by tissue adherent method, and subcultured after digested with trypsin. The second passage cells (P2 were cultured for 14 days with different concentrations of apelin-13 (0, 1×10–6mol/L, 2×10–6 and 10×10–6mol/L apelin-13, called as group A, B, C and D respectively, and the concentration of 5-Aza was 10×10–6mol/L in each group. Immune markers on the surface of hUC-MSCs were detected by flow cytometry, the absorbance (A value of cultured cells at 570nm was detected by MTT method, the mRNA expression levels of troponin T (cTnT and GATA-4 were determined by RT-PCR, and the expression of cTnT (myocardial cell surface marker was observed by immunohistochemistry. Results HUC-MSCs expressed CD44, CD90, CD105, CD73 and HLA-ABC, but did not express CD34, CD45 or HLA-DR. The A value at 570nm of hUC-MSCs treated with 10×10–6mol/L apelin-13 was 0.875±0.325 and similar to that of hUC-MSCs treated with 0 mol/L apelin-13 (0.841±0.290, P>0.05. The expression levels of cTnT mRNA and GATA-4 mRNA in groups B, C and D were 2.09±1.35, 5.24±1.30 and 1.17±0.63 and 2.68±1.18, 4.82±0.14 and 2.14±0.27 times those in group A. The expression levels of cTnT and GATA-4 mRNA in group C were significantly higher than those in groups B and D (P<0.05. Immunohistochemical staining showed cTnT protein was positively expressed in group C after induction for 14 days. Conclusions There is no toxic effects of apelin-13 at concentration of 10×10–6mol/L on hUC-MSCs. Certain concentrations of apelin-13 could promote the 5-Aze inducing differentiation of hUC-MSCs to cardiomyocytes, especially at 2×10–6mol/L. DOI: 10.11855/j.issn.0577-7402.2013.10.003

  18. Knockout beyond the dripline

    Energy Technology Data Exchange (ETDEWEB)

    Bonaccorso, A. [INFN, Sez. di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Charity, R. J. [Department of Chemistry, Washington University, St. Louis, Missouri 63130 (United States); Kumar, R. [Department of Physics, Deenbandhu Chhoturam University of Science and Technology, Murthal, Sonepat-131039 Haryana (India); Salvioni, G. [INFN, Sez. di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy and Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, 56127, Pisa (Italy)

    2015-02-24

    In this contribution, we will describe neutron and proton removal from {sup 9}C and {sup 7}Be which are two particularly interesting nuclei entering the nucleo-synthesis pp-chain [1, 2]. Neutron and proton removal reactions have been used in the past twenty years to probe the single-particle structure of exotic nuclei. The core parallel-momentum distribution can give information on the angular momentum and spin of the nucleon initial state while the total removal cross section is sensitive to the asymptotic part of the initial wave function and also to the reaction mechanism. Because knockout is a peripheral reaction from which the Asymptotic Normalization Constant (ANC) of the single-particle wave function can be extracted, it has been used as an indirect method to obtain the rate of reactions like {sup 8}B(p,γ){sup 9}C or {sup 7}Be(p,γ){sup 8}B. Nucleon removal has recently been applied by the HiRA collaboration [3] to situations in which the remaining “core” is beyond the drip line, such as {sup 8}C and {sup 6}Be, unbound by one or more protons, and whose excitation-energy spectrum can be obtained by the invariant-mass method. By gating on the ground-state peak, “core” parallel-momentum distributions and total knockout cross sections have been obtained similar to previous studies with well-bound “cores”. In addition for each projectile, knock out to final bound states has also been obtained in several cases. We will report on the theoretical description and comparison to this experimental data for a few cases for which advances in the accuracy of the transfer-to-the continuum model [4, 5] have been made [6]. These include the use, when available, of “ab-initio” overlaps for the initial state [7] and in particular their ANC values [8]. Also, the construction of a nucleus-target folding potential for the treatment of the core-target S-matrix [9] using for the cores “ab-initio” densities [10] and state-of-the-art n−{sup 9}Be optical

  19. Toddler: An Embryonic Signal That Promotes Cell Movement via Apelin Receptors

    OpenAIRE

    Pauli, Andrea; Norris, Megan L.; Valen, Eivind; Chew, Guo-Liang; Gagnon, James A.; Zimmerman, Steven; Mitchell, Andrew; Ma, Jiao; Dubrulle, Julien; Reyon, Deepak; Tsai, Shengdar Q.; Joung, J. Keith; Saghatelian, Alan; Schier, Alexander F.

    2014-01-01

    It has been assumed that most, if not all, signals regulating early development have been identified. Contrary to this expectation, we identified 28 candidate signaling proteins expressed during zebrafish embryogenesis, including Toddler, a short, conserved, and secreted peptide. Both absence and overproduction of Toddler reduce the movement of mesendodermal cells during zebrafish gastrulation. Local and ubiquitous production of Toddler promote cell movement, suggesting that Toddler is neithe...

  20. Generation of Fgfr3 Conditional Knockout Mice

    Directory of Open Access Journals (Sweden)

    Nan Su, Xiaoling Xu, Cuiling Li, Qifen He, Ling Zhao, Can Li, Siyu Chen, Fengtao Luo, Lingxian Yi, Xiaolan Du, Haiyang Huang, Chuxia Deng, Lin Chen

    2010-01-01

    Full Text Available Fibroblast growth factor receptor 3 (FGFR3, highly conserved in both humans and murine, is one of key tyrosine kinase receptors for FGF. FGFR3 is expressed in different tissues, including cartilage, brain, kidney, and intestine at different development stages. Conventional knockout of Fgfr3 alleles leads to short life span, and overgrowth of bone. In clinic, human FGFR3 mutations are responsible for three different types of chondrodysplasia syndromes including achondroplasia (ACH, hypochondroplasia (HCH and thanatophoric dysplasia (TD. For better understanding of the roles of FGFR3 in different tissues at different stages of development and in pathological conditions, we generated Fgfr3 conditional knockout mice in which loxp sites flank exons 9-10 in the Fgfr3 allele. We also demonstrated that Cre-mediated recombination using Col2a1-Cre, a Cre line expressed in chondrocyte during bone development, results in specific deletion of the gene in tissues containing cartilage. This animal model will be useful to study distinct roles of FGFR3 in different tissues at different ages.

  1. New findings in gene knockout, mutant and transgenic mice.

    Science.gov (United States)

    Bartke, Andrzej

    2008-01-01

    During the past year, some novel genetic modifications were shown to alter the lifespan of mice, thus expanding the list of genes and physiological processes that influence mammalian aging. Considerable progress was also made in identifying putative mechanisms of extended longevity in previously described gene knockouts, mutants and transgenics. In addition, new leads concerning mechanisms of aging were derived from studies of gene knockout mice in which aging is accelerated. Among the important findings from the period July 2006 to July 2007: Core body temperature was shown to influence longevity in homeothermic animals; a Surf1 gene knockout extended lifespan in mice; separate studies using Little and Snell dwarf mice found stress resistance enhancements correlated with longevity gains; and mice heterozygous for deletion of insulin receptor substrate 2 (IRS-2) lived longer than normal animals, while animals with homozygous or heterozygous deletion of IRS-2 selectively in the brain exhibited comparable extension of lifespan and various symptoms of delayed aging. PMID:18053667

  2. The effects of prolonged fasting on the levels of adiponectin, leptin, apelin, and omentin in pregnant women.

    Science.gov (United States)

    Kiyak Caglayan, Emel; Engin-Ustun, Yaprak; Sari, Nagihan; Gocmen, Ayşe Yesim; Polat, M Fevzi

    2016-05-01

    The aim of the present study was to evaluate serum adiponectin, leptin, apelin and omentin levels to explore metabolic changes occurring during fasting in the month of Ramadan. The study was designed as a prospective study. The patients were divided into two groups, each comprising 20 patients: Group I, fasting pregnant women, and Group II, non-fasting pregnant women. The patients' age, parity, gestational week and body mass index were recorded. Adiponectin and omentin levels were significantly lower in fasting pregnant women (p fast during 24-38 weeks' gestation should be informed about insulin resistance. PMID:26759187

  3. Study of the expression of apelin and its recoptor in ischemic myocardium in insulin-resistant rats

    Institute of Scientific and Technical Information of China (English)

    魏芳晶

    2013-01-01

    Objective To investigate the expression of apelin and its recoptor (APJ) in myocardium in insulin-resistant CIR rats with myocardial ischemia.Methods Totally 24male SD rats were randomly divided into three groups:IR group,IR+ischemia group,the control group (n=8each) .Rats in IR and IR+ischemia groups were fed with the high fat diet.Rats in control group were given the basic diet.The rat model of insulin resistance was assessed by fasting blood glucose (FBG) ,fasting insulin (Fins) and insulin resistance index (HOMA-IR) .The

  4. KnockoutJS web development

    CERN Document Server

    Farrar, John

    2015-01-01

    This book is for web developers and designers who work with HTML and JavaScript to help them manage data and interactivity with data using KnockoutJS. Knowledge about jQuery will be useful but is not necessary.

  5. Transgenic mice: beyond the knockout

    OpenAIRE

    Miller, R. Lance

    2010-01-01

    Transgenic mice have had a tremendous impact on biomedical research. Most researchers are familiar with transgenic mice that carry Cre recombinase (Cre) and how they are used to create conditional knockouts. However, some researchers are less familiar with many of the other types of transgenic mice and their applications. For example, transgenic mice can be used to study biochemical and molecular pathways in primary cultures and cell suspensions derived from transgenic mice, cell-cell interac...

  6. Changes in 5-HT2A-mediated behavior and 5-HT2A- and 5-HT1A receptor binding and expression in conditional brain-derived neurotrophic factor knock-out mice

    DEFF Research Database (Denmark)

    Klein, A B; Santini, M A; Aznar, S;

    2010-01-01

    )R binding was reflected in reduced functional output in two 5-HT(2A)-receptor mediated behavioral tests, the head-twitch response (HTR) and the ear-scratch response (ESR). BDNF(2L/2LCk-cre) mutants treated with the 5-HT(2A) receptor agonist (+/-)-2,5-dimethoxy-4-iodoamphetamine (DOI) showed a clearly...

  7. Molecular cloning, genomic organization, developmental regulation, and a knock-out mutant of a novel leu-rich repeats-containing G protein-coupled receptor (DLGR-2) from Drosophila melanogaster

    DEFF Research Database (Denmark)

    Eriksen, Kathrine Krageskov; Hauser, Frank; Schiøtt, Morten; Pedersen, Karen-Marie; Søndergaard, Leif; Grimmelikhuijzen, Cornelis

    2000-01-01

    After screening the Berkeley Drosophila Genome Project database with sequences from a recently characterized Leu-rich repeats-containing G protein-coupled receptor (LGR) fromDrosophila (DLGR-1), we identified a second gene for a different LGR (DLGR-2) and cloned its cDNA. DLGR-2 is 1360 amino acid...... LGRs (LGR-4 and LGR-5). This homology includes the seven transmembrane region (e.g., 49% amino acid identity with the human TSH receptor) and the very large extracellular amino terminus. This amino terminus contains 18 Leu-rich repeats-in contrast with the 3 mammalian glycoprotein hormone receptors and...

  8. Enhanced Long-Term and Impaired Short-Term Spatial Memory in GluA1 AMPA Receptor Subunit Knockout Mice: Evidence for a Dual-Process Memory Model

    Science.gov (United States)

    Sanderson, David J.; Good, Mark A.; Skelton, Kathryn; Sprengel, Rolf; Seeburg, Peter H.; Rawlins, J. Nicholas P.; Bannerman, David M.

    2009-01-01

    The GluA1 AMPA receptor subunit is a key mediator of hippocampal synaptic plasticity and is especially important for a rapidly-induced, short-lasting form of potentiation. GluA1 gene deletion impairs hippocampus-dependent, spatial working memory, but spares hippocampus-dependent spatial reference memory. These findings may reflect the necessity of…

  9. Cell-specific knockout of steroidogenic factor 1 reveals its essential roles in gonadal function

    NARCIS (Netherlands)

    Jeyasuria, P; Ikeda, Y; Jamin, SP; Zhao, LP; De Rooij, DG; Themmen, APN; Behringer, RR; Parker, KL

    2004-01-01

    Knockout ( KO) mice lacking the orphan nuclear receptor steroidogenic factor 1 (SF-1, officially designated Nr5a1) have a compound endocrine phenotype that includes adrenal and gonadal agenesis, impaired expression of pituitary gonadotropins, and structural abnormalities of the ventromedial hypothal

  10. Apolipoprotein E knockout as the basis for mouse models of dyslipidemia-induced neuropathy.

    Science.gov (United States)

    Hinder, Lucy M; Vincent, Andrea M; Hayes, John M; McLean, Lisa L; Feldman, Eva L

    2013-01-01

    Dyslipidemia has been identified as an important pathogenic risk factor for diabetic neuropathy, but current animal models do not adequately reproduce the lipid profile observed in human diabetics (increased triglycerides with an elevated LDL-cholesterol and reduced HDL-cholesterol). High fat feeding of mice produces hyperlipidemia, but mice are resistant to increases in the LDL to HDL ratio, reducing the potential for peripheral lipid deposits to impact neuropathy, as is postulated to occur in human subjects. Genetic manipulations provide an alternative approach to reproducing a neuropathic plasma lipid profile. Based on findings from the atherosclerosis literature, we began with knockout of ApoE. Since knockout of ApoE alone only partially mimics the human diabetic lipid profile, we examined the impact of its combination with a well-characterized model of type 2 diabetes exhibiting neuropathy, the db/db mouse. We added further gene manipulations to increase hyperlipidemia by using mice with both ApoE and ApoB48 knockout on the ob/+ (leptin mutation) mice. In all of these models, we found that either the db/db or ob/ob genotypes had increased body weight, hyperlipidemia, hyperglycemia, and evidence of neuropathy compared with the control groups (db/+ or ob/+, respectively). We found that ApoE knockout combined with leptin receptor knockout produced a lipid profile most closely modeling human dyslipidemia that promotes neuropathy. ApoE knockout combined with additional ApoB48 and leptin knockout produced similar changes of smaller magnitude, but, notably, an increase in HDL-cholesterol. Our data suggest that the overall effects of ApoE knockout, either directly upon nerve structure and function or indirectly on lipid metabolism, are insufficient to significantly alter the course of diabetic neuropathy. Although these models ultimately do not deliver optimal lipid profiles for translational diabetic neuropathy research, they do present glycemic and lipid profile

  11. Enhanced long-term and impaired short-term spatial memory in GluA1 AMPA receptor subunit knockout mice: Evidence for a dual-process memory model

    OpenAIRE

    Sanderson, David J.; Good, Mark A.; Skelton, Kathryn; Sprengel, Rolf; Seeburg, Peter H.; Rawlins, J. Nicholas P.; Bannerman, David M.

    2009-01-01

    The GluA1 AMPA receptor subunit is a key mediator of hippocampal synaptic plasticity and is especially important for a rapidly-induced, short-lasting form of potentiation. GluA1 gene deletion impairs hippocampus-dependent, spatial working memory, but spares hippocampus-dependent spatial reference memory. These findings may reflect the necessity of GluA1-dependent synaptic plasticity for short-term memory of recently visited places, but not for the ability to form long-term associations betwee...

  12. Knockout Reaction Mechanism for 6He+%Knockout Reaction Mechanism for 6He+

    Institute of Scientific and Technical Information of China (English)

    吕林辉; 叶沿林; 曹中鑫; 肖军; 江栋兴; 郑涛; 华辉; 李智焕; 葛俞成; 李湘庆; 楼建玲; 李阔昂; 李奇特; 乔锐; 游海波; 陈瑞九

    2012-01-01

    A knockout reaction experiment was carried out by using the 6He beam at 82.5 MeV/nucleon impinging on CH2 and C targets. The a core fragments at forward angles were detected in coincidence with the recoiled protons at larger angles. From this exclusive measure- ment the valence nucleon knockout mechanism and the core knockout mechanism are separated. This study provides a basis for the exclusive spectroscopic investigation of the exotic nuclei.

  13. 血清Apelin APN FFA及MMP与充血性心力衰竭的关系的分析

    Institute of Scientific and Technical Information of China (English)

    陈申杰; 吕淑敏; 李波

    2014-01-01

    ObjectiveTo investigate the relationship between the serum Apelin,APN,FFA,MMP and congestive heart failure.Methods80 patients with congestive heart failure in our hospital from July 2012 to March 2014 were selected as observation group,80 healthy persons with health examination at the same time were the control group,then the serum Apelin,APN,FFA and MMP of two groups were detected and compared,then the serum Apelin,APN,FFA and MMP of observation group with different grades and classification were respectively analyzed and compared,then relationship between those serum items and congestive heart failure were analyzed by the logistic analysis.ResultsThe serum Apelin,APN,FFA and MMP of observation group were all higher than those of control group,those of observation group with higher grades were all higher than those of patients with lower grades, those of patients with systolic heart failure were all higher than those of patients with diastolic heart failure,and those serum indexes all had close relationship to the congestive heart failure by the Logistic analysis,allP<0.05.ConclusionThe serum Apelin,APN, FFA and MMP of patients with congestive heart failure show obvious higher state,and those serum indexes have close relationship to the congestive heart failure.%目的:探讨血清爱帕琳肽(Apelin)、脂联素(APN),游离脂肪酸(FFA)及基质金属蛋白酶(MMP)与充血性心力衰竭的关系。方法本资料中80例充血性心力衰竭患者设为观察组,同期的80名健康者为对照组,将两组的血清Apelin、APN、FFA及MMP水平进行检测及比较,然后将观察组中不同分级及分类患者的血清Apelin、APN、FFA及MMP水平进行分别统计及比较,并以Logistic分析处理上述血清项目与充血性心力衰竭的关系。结果观察组的血清Apelin、APN、FFA及MMP水平均高于对照组,且观察组中分级较高者高于分级较低者,收缩性心力衰竭患者则高于舒张性心

  14. 多囊卵巢综合征不孕患者血清Apelin水平与胰岛素抵抗的关系%Relation between serum Apelin level and insulin resistance in infertility patients with polycystic ovarian syndrome

    Institute of Scientific and Technical Information of China (English)

    黄红艺; 莫云; 何冰; 刘杨桦; 张团英; 张凤兰

    2014-01-01

    目的:研究多囊卵巢综合征(PCOS)不孕患者血清 Apelin 水平的变化及其与胰岛素抵抗(IR)的关系。方法:选择2011年1月至2012年6月间首次来我院就诊的98例PCOS不孕患者及72例非PCOS不孕患者,分别分为PCOS组和非PCOS组。分别比较两组患者的体重指数(BMI)、血清Apelin、血糖、胰岛素、稳态模型胰岛素抵抗指数(HOMA-IR)间的相互关系。血清Apelin采用ELISA法测定,空腹血浆葡萄糖(FPG)采用葡萄糖氧化酶法测定,空腹胰岛素(FIns)采用化学发光法测定。结果:PCOS 组血清Apelin 水平(μg/L)明显高于非PCOS组(3.28±1.24 vs.1.94±0.78, P<0.05)。 PCOS 组的HOMA-IR 高于非PCOS 组(3.84±1.23 vs.2.14±0.77, P<0.05); Person 相关分析表明, PCOS 组血清 Apelin 水平与 HOMA-IR 相关(r=0.65, P<0.01)。结论:PCOS不孕患者血清Apelin水平升高,并且其升高与IR 密切相关。提示Apelin可能参与PCOS不孕患者IR的发生发展。%Objective To explore the change of serum Apelin level and its relationship with insulin resistance (IR) in infertility patients with polycystic ovarian syndrome (PCOS). Methods Ninety-eight infertility patients with PCOS (PCOS group) and 72 infertility patients without PCOS (non-PCOS group) visiting our hospital for the first time from January 2011 to June 2012 were selected. The BMI , serum Apelin level (detected by ELISA), fasting blood glucose (FPG, detected by glucose oxidase method), fasting insulin (Fins, detected by chemiluminescence), and homeostasis model assessment of insulin resistance index (HOMA-IR) of the two groups were detected. Results The serum Apelin level and HOMA-IR in PCOS patients were higher than those in non-PCOS patients (3.28 ± 1.24 vs. 1.94 ± 0.78, P < 0.05; 3.84 ± 1.23 vs. 2.14 ± 0.77,P < 0.05). Pearson correlation analysis showed that serum Apelin level was positively correlated

  15. Delayed liver regeneration after partial hepatectomy in adiponectin knockout mice

    International Nuclear Information System (INIS)

    We previously demonstrated that adiponectin has anti-fibrogenic and anti-inflammatory effects in the liver of mouse models of various liver diseases. However, its role in liver regeneration remains unclear. The aim of this study was to determine the role of adiponectin in liver regeneration. We assessed liver regeneration after partial hepatectomy in wild-type (WT) and adiponectin knockout (KO) mice. We analyzed DNA replication and various signaling pathways involved in cell proliferation and metabolism. Adiponectin KO mice exhibited delayed DNA replication and increased lipid accumulation in the regenerating liver. The expression levels of peroxisome proliferator-activated receptor (PPAR) α and carnitine palmitoyltransferase-1 (CPT-1), a key enzyme in mitochondrial fatty acid oxidation, were decreased in adiponectin KO mice, suggesting possible contribution of altered fat metabolism to these phenomena. Collectively, the present results highlight a new role for adiponectin in the process of liver regeneration.

  16. receptores

    Directory of Open Access Journals (Sweden)

    Salete Regina Daronco Benetti

    2006-01-01

    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  17. Thermoregulatory Phenotype of the Trpv1 Knockout Mouse: Thermoeffector Dysbalance with Hyperkinesis

    OpenAIRE

    Garami, Andras; Pakai, Eszter; Oliveira, Daniela L.; Steiner, Alexandre A; Wanner, Samuel P.; Almeida, M. Camila; Lesnikov, Vladimir A.; Gavva, Narender R.; Romanovsky, Andrej A

    2011-01-01

    This study aimed at determining the thermoregulatory phenotype of mice lacking transient receptor potential vanilloid-1 (TRPV1) channels. We used Trpv1 knockout (KO) mice and their genetically unaltered littermates to study diurnal variations in deep body temperature (Tb) and thermoeffector activities under basal conditions, as well as thermoregulatory responses to severe heat and cold. Only subtle alterations were found in the basal Tb of Trpv1 KO mice or in their Tb responses to thermal cha...

  18. Comprehensive behavioral analysis of pituitary adenylate cyclase-activating polypeptide (PACAP) knockout mice

    OpenAIRE

    Koichi Tanda; Norihito Shintani; Akemichi Baba; Hitoshi Hashimoto; Tsuyoshi Miyakawa

    2012-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide acting as a neurotransmitter, neuromodulator, or neurotrophic factor. PACAP is widely expressed throughout the brain and exerts its functions through the PACAP-specific receptor (PAC1). Recent studies reveal that genetic variants of the PACAP and PAC1 genes are associated with mental disorders, and several behavioral abnormalities of PACAP knockout (KO) mice are reported. However, an insufficient number of backcrosse...

  19. Apelin-13对5-Aza诱导脐带间充质干细胞向心肌细胞分化的影响%Influence of apelin-13 on 5-azacytidine inducing differentiation of umbilical cord mesenchymal stem cells to cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    徐小红; 王力; 张宁坤; 郑楠; 高连如; 朱智明

    2013-01-01

    目的 探讨apelin-13蛋白在体外对5-氮胞苷(5-Aza)诱导人脐带间充质干细胞(hUC-MSCs)向心肌细胞分化的影响.方法 采用组织块贴壁法培养hUC-MSCs,胰酶消化传代;取P2代细胞置于不同分化条件的培养液中分化培养14d,实验分为A、B、C、D组(apelin-13浓度分别为0、1×10-6、2×10-6和10×10-6mol/L),各组培养基中5-Aza浓度均为10×10-6mol/L.采用流式细胞仪检测hUC-MSCs表面免疫标记,MTT法检测细胞在570nm处的吸光度(A)值,RT-PCR检测肌钙蛋白T(cTnT)、GATA-4 mRNA表达水平,免疫组织化学染色法检测心肌细胞表面标志物cTnT的表达.结果 流式细胞仪鉴定结果表明,hUC-MSCs表达CD44、CD90、CD105、CD73、经典人类白细胞抗原Ⅰ类抗原(HLA-ABC),不表达CD34、CD45、经典人类白细胞抗原Ⅱ类抗原(HLA-DR).MTT检测显示,0、10×10-6mol/L apelin-13处理的hUC-MSCs在570nm处的A值分别为0.841 ±0.290、0.875±0.325,差异无统计学意义(P>0.05).B、C、D组cTnTmRNA表达水平分别是A组的2.09±1.35、5.24±1.30、1.17±0.63倍,B、C、D组GATA-4 mRNA表达水平分别是A组的2.68±1.18、4.82±0.14、2.14±0.27倍;C组与B、D组比较,cTnT、GATA-4 mRNA表达差异具有统计学意义(P<0.05).免疫组化染色显示,诱导14d后C组细胞cTnT蛋白表达呈阳性.结论 10×10-6m01/L apelin-13对hUC-MSCs无毒性作用,一定浓度的apelin-13蛋白可增强5-Aza诱导hUC-MSCs向心肌细胞分化的效率,浓度为2×10-6mol/L时增强作用最明显.

  20. Knockout reactions in atomic and nuclear physics

    International Nuclear Information System (INIS)

    In a knockout experiment the momenta of a projectile before and after the collision and of a knocked-out particle are all measured, so that the recoil momentum of the residual system is known by subtraction. The atomic (e,2e) experiments are very much more accurate and detailed than present nuclear experiments. The (e,2e) reaction on argon is used to illustrate the principles involved. Other experiments involve the (p,2p) and (e,e'p) reactions

  1. Generation of ERα-floxed and knockout mice using the Cre/LoxP system

    International Nuclear Information System (INIS)

    Highlights: ► ERα floxed and knockout mice were generated. ► Disruption of the ERα gene results in sterility in both male and female mice. ► ERα−/− mice have ovaries with hemorrhagic follicles and hypoplastic uterus. ► Female ERα−/− mice develop obesity. -- Abstract: Estrogen receptor alpha (ERα) is a nuclear receptor that regulates a range of physiological processes in response to estrogens. In order to study its biological role, we generated a floxed ERα mouse line that can be used to knock out ERα in selected tissues by using the Cre/LoxP system. In this study, we established a new ERα knockout mouse line by crossing the floxed ERα mice with Cre deleter mice. Here we show that genetic disruption of the ERα gene in all tissues results in sterility in both male and female mice. Histological examination of uterus and ovaries revealed a dramatically atrophic uterus and hemorrhagic cysts in the ovary. These results suggest that infertility in female mice is the result of functional defects of the reproductive tract. Moreover, female knockout mice are hyperglycemic, develop obesity and at the age of 4 months the body weight of these mice was more than 20% higher compared to wild type littermates and this difference increased over time. Our results demonstrate that ERα is necessary for reproductive tract development and has important functions as a regulator of metabolism in females.

  2. K Basins floor sludge retrieval system knockout pot basket fuel burn accident

    International Nuclear Information System (INIS)

    The K Basins Sludge Retrieval System Preliminary Hazard Analysis Report (HNF-2676) identified and categorized a series of potential accidents associated with K Basins Sludge Retrieval System design and operation. The fuel burn accident was of concern with respect to the potential release of contamination resulting from a runaway chemical reaction of the uranium fuel in a knockout pot basket suspended in the air. The unmitigated radiological dose to an offsite receptor from this fuel burn accident is calculated to be much less than the offsite risk evaluation guidelines for anticipated events. However, because of potential radiation exposure to the facility worker, this accident is precluded with a safety significant lifting device that will prevent the monorail hoist from lifting the knockout pot basket out of the K Basin water pool

  3. Universal statistics of the knockout tournament

    CERN Document Server

    Baek, Seung Ki; Park, Hye Jin; Kim, Beom Jun

    2014-01-01

    We study statistics of the knockout tournament, where only the winner of a fixture progresses to the next. We assign a real number called competitiveness to each contestant and find that the resulting distribution of prize money follows a power law with an exponent close to unity if the competitiveness is a stable quantity and a decisive factor to win a match. Otherwise, the distribution is found narrow. The existing observation of power law distributions in various kinds of real sports tournaments therefore suggests that the rules of those games are constructed in such a way that it is possible to understand the games in terms of the contestants' inherent characteristics of competitiveness.

  4. Altered reward circuitry in the norepinephrine transporter knockout mouse.

    Directory of Open Access Journals (Sweden)

    Joseph J Gallagher

    Full Text Available Synaptic levels of the monoamine neurotransmitters dopamine, serotonin, and norepinephrine are modulated by their respective plasma membrane transporters, albeit with a few exceptions. Monoamine transporters remove monoamines from the synaptic cleft and thus influence the degree and duration of signaling. Abnormal concentrations of these neuronal transmitters are implicated in a number of neurological and psychiatric disorders, including addiction, depression, and attention deficit/hyperactivity disorder. This work concentrates on the norepinephrine transporter (NET, using a battery of in vivo magnetic resonance imaging techniques and histological correlates to probe the effects of genetic deletion of the norepinephrine transporter on brain metabolism, anatomy and functional connectivity. MRS recorded in the striatum of NET knockout mice indicated a lower concentration of NAA that correlates with histological observations of subtle dysmorphisms in the striatum and internal capsule. As with DAT and SERT knockout mice, we detected minimal structural alterations in NET knockout mice by tensor-based morphometric analysis. In contrast, longitudinal imaging after stereotaxic prefrontal cortical injection of manganese, an established neuronal circuitry tracer, revealed that the reward circuit in the NET knockout mouse is biased toward anterior portions of the brain. This is similar to previous results observed for the dopamine transporter (DAT knockout mouse, but dissimilar from work with serotonin transporter (SERT knockout mice where Mn(2+ tracings extended to more posterior structures than in wildtype animals. These observations correlate with behavioral studies indicating that SERT knockout mice display anxiety-like phenotypes, while NET knockouts and to a lesser extent DAT knockout mice display antidepressant-like phenotypic features. Thus, the mainly anterior activity detected with manganese-enhanced MRI in the DAT and NET knockout mice is likely

  5. Recoiled Proton Tagged Knockout Reaction for 8He

    Institute of Scientific and Technical Information of China (English)

    曹中鑫; 叶沿林; 江栋兴; 郑涛; 李智焕; 华辉; 葛榆成; 李湘庆; 楼建玲; 肖军; 李奇特; 吕林辉; 李阔昂; 王赫; 乔锐; 游海波; 陈瑞九

    2012-01-01

    An experiment for knockout reaction induced by SHe beam at 82.5 MeV/nucleon on CH2 and C targets was carried out. The 6He and 4He core fragments at forward angles and the recoiled protons at large angles were detected coincidently. From this exclusive measurement the valence nucleon knockout mechanism and the core knockout mechanism are separated, which can be applied to the exclusive spectroscopic study on the structure of exotic nuclei.

  6. Proteomic Analysis of Loricrin Knockout Mouse Epidermis.

    Science.gov (United States)

    Rice, Robert H; Durbin-Johnson, Blythe P; Ishitsuka, Yosuke; Salemi, Michelle; Phinney, Brett S; Rocke, David M; Roop, Dennis R

    2016-08-01

    The crosslinked envelope of the mammalian epidermal corneocyte serves as a scaffold for assembly of the lipid barrier of the epidermis. Thus, deficient envelope crosslinking by keratinocyte transglutaminase (TGM1) is a major cause of the human autosomal recessive congenital ichthyoses characterized by barrier defects. Expectations that loss of some envelope protein components would also confer an ichthyosis phenotype have been difficult to demonstrate. To help rationalize this observation, the protein profile of epidermis from loricrin knockout mice has been compared to that of wild type. Despite the mild phenotype of the knockout, some 40 proteins were incorporated into envelope material to significantly different extents compared to those of wild type. Nearly half were also incorporated to similarly altered extents into the disulfide bonded keratin network of the corneocyte. The results suggest that loss of loricrin alters their incorporation into envelopes as a consequence of protein-protein interactions during cell maturation. Mass spectrometric protein profiling revealed that keratin 1, keratin 10, and loricrin are prominent envelope components and that dozens of other proteins are also components. This finding helps rationalize the potential formation of functional envelopes, despite loss of a single component, due to the availability of many alternative transglutaminase substrates. PMID:27418529

  7. Environmental enrichment induces behavioural disturbances in neuropeptide Y knockout mice

    Science.gov (United States)

    Reichmann, Florian; Wegerer, Vanessa; Jain, Piyush; Mayerhofer, Raphaela; Hassan, Ahmed M.; Fröhlich, Esther E.; Bock, Elisabeth; Pritz, Elisabeth; Herzog, Herbert; Holzer, Peter; Leitinger, Gerd

    2016-01-01

    Environmental enrichment (EE) refers to the provision of a complex and stimulating housing condition which improves well-being, behaviour and brain function of laboratory animals. The mechanisms behind these beneficial effects of EE are only partially understood. In the current report, we describe a link between EE and neuropeptide Y (NPY), based on findings from NPY knockout (KO) mice exposed to EE. Relative to EE-housed wildtype (WT) animals, NPY KO mice displayed altered behaviour as well as molecular and morphological changes in amygdala and hippocampus. Exposure of WT mice to EE reduced anxiety and decreased central glucocorticoid receptor expression, effects which were absent in NPY KO mice. In addition, NPY deletion altered the preference of EE items, and EE-housed NPY KO mice responded to stress with exaggerated hyperthermia, displayed impaired spatial memory, had higher hippocampal brain-derived neurotrophic factor mRNA levels and altered hippocampal synaptic plasticity, effects which were not seen in WT mice. Accordingly, these findings suggest that NPY contributes to the anxiolytic effect of EE and that NPY deletion reverses the beneficial effects of EE into a negative experience. The NPY system could thus be a target for “enviromimetics”, therapeutics which reproduce the beneficial effects of enhanced environmental stimulation.

  8. CRISPR-Mediated Triple Knockout of SLAMF1, SLAMF5 and SLAMF6 Supports Positive Signaling Roles in NKT Cell Development

    Science.gov (United States)

    Huang, Bonnie; Gomez-Rodriguez, Julio; Preite, Silvia; Garrett, Lisa J.; Harper, Ursula L.; Schwartzberg, Pamela L.

    2016-01-01

    The SLAM family receptors contribute to diverse aspects of lymphocyte biology and signal via the small adaptor molecule SAP. Mutations affecting SAP lead to X-linked lymphoproliferative syndrome Type 1, a severe immunodysregulation characterized by fulminant mononucleosis, dysgammaglobulinemia, and lymphoproliferation/lymphomas. Patients and mice having mutations affecting SAP also lack germinal centers due to a defect in T:B cell interactions and are devoid of invariant NKT (iNKT) cells. However, which and how SLAM family members contribute to these phenotypes remains uncertain. Three SLAM family members: SLAMF1, SLAMF5 and SLAMF6, are highly expressed on T follicular helper cells and germinal center B cells. SLAMF1 and SLAMF6 are also implicated in iNKT development. Although individual receptor knockout mice have limited iNKT and germinal center phenotypes compared to SAP knockout mice, the generation of multi-receptor knockout mice has been challenging, due to the genomic linkage of the genes encoding SLAM family members. Here, we used Cas9/CRISPR-based mutagenesis to generate mutations simultaneously in Slamf1, Slamf5 and Slamf6. Genetic disruption of all three receptors in triple-knockout mice (TKO) did not grossly affect conventional T or B cell development and led to mild defects in germinal center formation post-immunization. However, the TKO worsened defects in iNKT cells development seen in SLAMF6 single gene-targeted mice, supporting data on positive signaling and potential redundancy between these receptors. PMID:27258160

  9. Normal gonadotropin production and fertility in gonadotrope-specific Bmpr1a knockout mice.

    Science.gov (United States)

    Zhou, Xiang; Wang, Ying; Ongaro, Luisina; Boehm, Ulrich; Kaartinen, Vesa; Mishina, Yuji; Bernard, Daniel J

    2016-06-01

    Pituitary follicle-stimulating hormone (FSH) synthesis is regulated by transforming growth factorβsuperfamily ligands, most notably the activins and inhibins. Bone morphogenetic proteins (BMPs) also regulate FSHβ subunit (Fshb) expression in immortalized murine gonadotrope-like LβT2 cells and in primary murine or ovine primary pituitary cultures. BMP2 signals preferentially via the BMP type I receptor, BMPR1A, to stimulate murine Fshb transcription in vitro Here, we used a Cre-lox approach to assess BMPR1A's role in FSH synthesis in mice in vivo Gonadotrope-specific Bmpr1a knockout animals developed normally and had reproductive organ weights comparable with those of controls. Knockouts were fertile, with normal serum gonadotropins and pituitary gonadotropin subunit mRNA expression. Cre-mediated recombination of the floxed Bmpr1a allele was efficient and specific, as indicated by PCR analysis of diverse tissues and isolated gonadotrope cells. Furthermore, BMP2 stimulation of inhibitor of DNA binding 3 expression was impaired in gonadotropes isolated from Bmpr1a knockout mice, confirming the loss of functional receptor protein in these cells. Treatment of purified gonadotropes with small-molecule inhibitors of BMPR1A (and the related receptors BMPR1B and ACVR1) suppressed Fshb mRNA expression, suggesting that an autocrine BMP-like molecule might regulate FSH synthesis. However, deletion of Bmpr1a and Acvr1 in cultured pituitary cells did not alter Fshb expression, indicating that the inhibitors had off-target effects. In sum, BMPs or related ligands acting via BMPR1A or ACVR1 are unlikely to play direct physiological roles in FSH synthesis by murine gonadotrope cells. PMID:27029473

  10. Phenotypic Knockout of CXCR4 on Molt-4 with SDF-1α/54 Attached with KDEL

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective :To investigate the mechanism of phenotypic knockout of CXCR4 on T-cell leukemia cell line Molt-4 via SDF-1α/54/KDEL intrakine technology, which the mutant SDF-1α/54, human stromal cell-derived Faceor-1 (SDF-1α) was deleted its Cterminal α-helix and attached with a endoplasimc reticulum retention signal 4-peptide-KDEL encoding gene, so that retain the newly synthesized receptor CXCR4 within the Molt-4 cells endoplasmic reticulum. Methods: The recombinant vector pEGFP-C3/SDF-1α/54/KDEL were transfected into Cos-7 cells by liposome, SDF-1α/54/KDEL fusion protein was confirmed with western blot. The recombinant plasmids were transfected transiently into Molt-4 by electroporation. Results:Western blot confirmed SDF-1α/54/KDEL expression in Cos-7. A dramatic downregulation of CXCR4 expression on Molt-4 was demonstrated by flow cytometric (FCM) analysis. Conclusion:SDF-1α/54/KDEL and SDF-1αKDEL have no significant deviation for phenotypic knockout of CXCR4. These suggest that the phenotypic knockout effects of SDF-1α/54 against CXCR4 are not influenced by deleting of SDF-1α helix in the C-terminal.

  11. Impaired spine formation and learning in GPCR kinase interacting protein-1 (GIT1) knockout mice

    OpenAIRE

    Menon, Prashanthi; Deane, Rashid; Sagare, Abhay; Lane, Steven M.; Zarcone, Troy J; O’Dell, Michael R.; Yan, Chen; Zlokovic, Berislav V.; Berk, Bradford C.

    2010-01-01

    The G-protein coupled receptor (GPCR)-kinase interacting proteins 1 and 2 (GIT1 and GIT2) are scaffold proteins with ADP-ribosylating factor GTPase activity. GIT1 and GIT2 control numerous cellular functions and are highly expressed in neurons, endothelial cells and vascular smooth muscle cells (VSMC). GIT1 promotes dendritic spine formation, growth and motility in cultured neurons, but its role in brain in vivo is unknown. By using global GIT1 knockout mice (GIT1 KO), we show that deletion o...

  12. Vitamin D Deficiency and Exogenous Vitamin D Excess Similarly Increase Diffuse Atherosclerotic Calcification in Apolipoprotein E Knockout Mice

    OpenAIRE

    Ellam, Timothy; Hameed, Abdul; ul Haque, Risat; Muthana, Munitta; Wilkie, Martin; Francis, Sheila E.; Chico, Timothy J. A.

    2014-01-01

    Background Observational data associate lower levels of serum vitamin D with coronary artery calcification, cardiovascular events and mortality. However, there is little interventional evidence demonstrating that moderate vitamin D deficiency plays a causative role in cardiovascular disease. This study examined the cardiovascular effects of dietary vitamin D deficiency and of vitamin D receptor agonist (paricalcitol) administration in apolipoprotein E knockout mice. Methods Mice were fed athe...

  13. Common arterial trunk and ventricular non-compaction in Lrp2 knockout mice indicate a crucial role of LRP2 in cardiac development

    NARCIS (Netherlands)

    Baardman, Maria E.; Zwier, Mathijs V.; Wisse, Lambertus J.; Gittenberger-de Groot, Adriana C.; Kerstjens-Frederikse, Wilhelmina S.; Hofstra, Robert M. W.; Jurdzinski, Angelika; Hierck, Beerend P.; Jongbloed, Monique R. M.; Berger, Rolf M. F.; Plosch, Torsten; DeRuiter, Marco C.

    2016-01-01

    Lipoprotein-related receptor protein 2 (LRP2) is important for development of the embryonic neural crest and brain in both mice and humans. Although a role in cardiovascular development can be expected, the hearts of Lrp2 knockout (KO) mice have not yet been investigated. We studied the cardiovascul

  14. Increased hepatotoxicity of acetaminophen in Hsp70i knockout mice

    International Nuclear Information System (INIS)

    The effect of the inducible forms of 70 kDa heat shock protein (Hsp70i) on acetaminophen (APAP) hepatotoxicity was assessed in an Hsp70i knockout mouse model. Absence of the Hsp70i protein in liver was verified by monitoring Hsp levels in knockout and control mice after heat stress (41.5 oC water bath immersion for 30 min). Hsp70i knockout mice were more susceptible to APAP-induced hepatotoxicity than controls, as indicated by elevated serum alanine aminotransferase activities 24 and 48 h after the APAP dose. Increased APAP hepatotoxicity in knockout mice was verified by morphological evaluation of liver sections. The difference in toxic response to APAP between knockout and control strain mice could not be attributed to differences in APAP bioactivation, assessed by measurement of CYP2E1 and glutathione S-transferase activities, hepatic nonprotein sulfhydryl content, or covalent binding of reactive APAP metabolites to proteins. Pretreatment with transient hyperthermia to produce a general upregulation of Hsps resulted in decreased APAP hepatotoxicity in both the knockout and control strains. Among thermally-pretreated mice, hepatotoxicity of APAP was greater in the knockouts compared with the control strain. These observations suggest that increased Hsp70i expression in response to APAP acts to limit the extent of tissue injury. Results further suggest that other factors related to heat stress can also contribute to protection against APAP toxicity

  15. Physiological roles of the melanocortin MC3 receptor

    OpenAIRE

    Renquist, Benjamin J.; Lippert, Rachel; Sebag, Julien A.; Ellacott, Kate L.J; Cone, Roger D.

    2011-01-01

    The melanocortin MC3 receptor remains the most enigmatic of the melanocortin receptors with regard to its physiological functions. The receptor is expressed both in the CNS and in multiple tissues in the periphery. It appears to be an inhibitory autoreceptor on proopiomelanocortin neurons, yet global deletion of the receptor causes an obesity syndrome. Knockout of the receptor increases adipose mass without a readily measurable increase in food intake or decrease in energy expenditure. And fi...

  16. Generation of ER{alpha}-floxed and knockout mice using the Cre/LoxP system

    Energy Technology Data Exchange (ETDEWEB)

    Antonson, P., E-mail: per.antonson@ki.se [Department of Biosciences and Nutrition, Karolinska Institutet, Novum, SE-141 83 Huddinge (Sweden); Omoto, Y.; Humire, P. [Department of Biosciences and Nutrition, Karolinska Institutet, Novum, SE-141 83 Huddinge (Sweden); Gustafsson, J.-A. [Department of Biosciences and Nutrition, Karolinska Institutet, Novum, SE-141 83 Huddinge (Sweden); Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204 (United States)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer ER{alpha} floxed and knockout mice were generated. Black-Right-Pointing-Pointer Disruption of the ER{alpha} gene results in sterility in both male and female mice. Black-Right-Pointing-Pointer ER{alpha}{sup -/-} mice have ovaries with hemorrhagic follicles and hypoplastic uterus. Black-Right-Pointing-Pointer Female ER{alpha}{sup -/-} mice develop obesity. -- Abstract: Estrogen receptor alpha (ER{alpha}) is a nuclear receptor that regulates a range of physiological processes in response to estrogens. In order to study its biological role, we generated a floxed ER{alpha} mouse line that can be used to knock out ER{alpha} in selected tissues by using the Cre/LoxP system. In this study, we established a new ER{alpha} knockout mouse line by crossing the floxed ER{alpha} mice with Cre deleter mice. Here we show that genetic disruption of the ER{alpha} gene in all tissues results in sterility in both male and female mice. Histological examination of uterus and ovaries revealed a dramatically atrophic uterus and hemorrhagic cysts in the ovary. These results suggest that infertility in female mice is the result of functional defects of the reproductive tract. Moreover, female knockout mice are hyperglycemic, develop obesity and at the age of 4 months the body weight of these mice was more than 20% higher compared to wild type littermates and this difference increased over time. Our results demonstrate that ER{alpha} is necessary for reproductive tract development and has important functions as a regulator of metabolism in females.

  17. Manipulation of Mouse Embryonic Stem Cells for Knockout Mouse Production

    OpenAIRE

    Limaye, Advait; Hall, Bradford; Kulkarni, Ashok B.

    2009-01-01

    The establishment of mouse embryonic stem (ES) cell liness has allowed for the generation of the knockout mouse. ES cells that are genetically altered in culture can then be manipulated to derive a whole mouse containing the desired mutation. To successfully generate a knockout mouse, however, the ES cells must be carefully cultivated in a pluripotent state throughout the gene targeting experiment. This unit describes detailed step-by-step protocols, reagents, equipment, and strategies needed...

  18. Construction of Deletion-knockout Mutant Fowlpox Virus (FWPV)

    OpenAIRE

    Laidlaw, Stephen M.; Skinner, Michael A.

    2014-01-01

    The construction of deletion-knockout poxviruses is a useful approach to determining the function of specific virus genes. This protocol is an adaptation of the transient dominant knockout selection protocol published by Falkner and Moss (1990) for use with vaccinia virus. The protocol makes use of the dominant selectable marker Escherichia coli guanine phosphoribosyltransferase (gpt) gene (Mulligan and Berg, 1981), under the control of an early/late poxvirus promoter. The deletion viruses th...

  19. Establishment and phenotypic analysis of an Mstn knockout rat.

    Science.gov (United States)

    Gu, Hao; Cao, Yong; Qiu, Bin; Zhou, Zhiqiang; Deng, Ran; Chen, Zhuang; Li, Rongfeng; Li, Xueling; Wei, Qiang; Xia, Xianzhu; Yong, Weidong

    2016-08-12

    Myostatin (Mstn) is an inhibitor of myogenesis, regulating the number and size of skeletal myocytes. In addition to its myogenic regulatory function, Mstn plays important roles in the development of adipose tissues and in metabolism. In the present study, an Mstn knockout rat model was generated using the zinc finger nuclease (ZFN) technique in order to further investigate the function and mechanism of Mstn in metabolism. The knockout possesses a frame shift mutation resulting in an early termination codon and a truncated peptide of 109 amino acids rather than the full 376 amino acids. The absence of detectable mRNA confirmed successful knockout of Mstn. Relative to wild-type (WT) littermates, Knockout (KO) rats exhibited significantly greater body weight, body circumference, and muscle mass. However, no significant differences in grip force was observed, indicating that Mstn deletion results in greater muscle mass but not greater muscle fiber strength. Additionally, KO rats were found to possess less body fat relative to WT littermates, which is consistent with previous studies in mice and cattle. The aforementioned results indicate that Mstn knockout increases muscle mass while decreasing fat content, leading to observed increases in body weight and body circumference. The Mstn knockout rat model provides a novel means to study the role of Mstn in metabolism and Mstn-related muscle hypertrophy. PMID:27289021

  20. Impaired conditioned taste aversion learning in spinophilin knockout mice.

    Science.gov (United States)

    Stafstrom-Davis, C A; Ouimet, C C; Feng, J; Allen, P B; Greengard, P; Houpt, T A

    2001-01-01

    Plasticity in dendritic spines may underlie learning and memory. Spinophilin, a protein enriched in dendritic spines, has the properties of a scaffolding protein and is believed to regulate actin cytoskeletal dynamics affecting dendritic spine morphology. It also binds protein phosphatase-1 (PP-1), an enzyme that regulates dendritic spine physiology. In this study, we tested the role of spinophilin in conditioned taste aversion learning (CTA) using transgenic spinophilin knockout mice. CTA is a form of associative learning in which an animal rejects a food that has been paired previously with a toxic effect (e.g., a sucrose solution paired with a malaise-inducing injection of lithium chloride). Acquisition and extinction of CTA was tested in spinophilin knockout and wild-type mice using taste solutions (sucrose or sodium chloride) or flavors (Kool-Aid) paired with moderate or high doses of LiCl (0.15 M, 20 or 40 mL/kg). When sucrose or NaCl solutions were paired with a moderate dose of LiCl, spinophilin knockout mice were unable to learn a CTA. At the higher dose, knockout mice acquired a CTA but extinguished more rapidly than wild-type mice. A more salient flavor stimulus (taste plus odor) revealed similar CTA learning at both doses of LiCl in both knockouts and wild types. Sensory processing in the knockouts appeared normal because knockout mice and wild-type mice expressed identical unconditioned taste preferences in two-bottle tests, and identical lying-on-belly responses to acute LiCl. We conclude that spinophilin is a candidate molecule required for normal CTA learning. PMID:11584074

  1. Benefit of farnesoid X receptor inhibition in obstructive cholestasis

    OpenAIRE

    Stedman, Catherine; Liddle, Christopher; Coulter, Sally; Sonoda, Junichiro; Alvarez, Jacqueline G.; Evans, Ronald M; Downes, Michael

    2006-01-01

    The nuclear hormone receptors farnesoid X receptor (FXR) and pregnane X receptor have been implicated in regulating bile acid, lipid, carbohydrate, and xenobiotic metabolism. Bile duct ligation was used to increase endogenous bile acids and evaluate the roles of these receptors in modulating cholestatic liver injury. FXR knockout (KO) mice were found to be protected from obstructive cholestasis. Concurrent deletion of FXR also could ameliorate an increase in liver injury that is seen usually ...

  2. Necroptotic Cell Death Signaling and Execution Pathway: Lessons from Knockout Mice

    Directory of Open Access Journals (Sweden)

    José Belizário

    2015-01-01

    Full Text Available Under stress conditions, cells in living tissue die by apoptosis or necrosis depending on the activation of the key molecules within a dying cell that either transduce cell survival or death signals that actively destroy the sentenced cell. Multiple extracellular (pH, heat, oxidants, and detergents or intracellular (DNA damage and Ca2+ overload stress conditions trigger various types of the nuclear, endoplasmic reticulum (ER, cytoplasmatic, and mitochondrion-centered signaling events that allow cells to preserve the DNA integrity, protein folding, energetic, ionic and redox homeostasis, thus escaping from injury. Along the transition from reversible to irreversible injury, death signaling is highly heterogeneous and damaged cells may engage autophagy, apoptotic, or necrotic cell death programs. Studies on multiple double- and triple- knockout mice identified caspase-8, flip, and fadd genes as key regulators of embryonic lethality and inflammation. Caspase-8 has a critical role in pro- and antinecrotic signaling pathways leading to the activation of receptor interacting protein kinase 1 (RIPK1, RIPK3, and the mixed kinase domain-like (MLKL for a convergent execution pathway of necroptosis or regulated necrosis. Here we outline the recent discoveries into how the necrotic cell death execution pathway is engaged in many physiological and pathological outcome based on genetic analysis of knockout mice.

  3. In vivo modulation of epidermal growth factor receptor phosphorylation in mice expressing different gangliosides.

    Science.gov (United States)

    Daniotti, Jose L; Crespo, Pilar M; Yamashita, Tadashi

    2006-12-01

    We studied in this work the in vivo phosphorylation of the epidermal growth factor receptor (EGFr) in skin from knockout mice lacking different ganglioside glycosyltransferases. Results show an enhancement of EGFr phosphorylation, after EGF stimulation, in skin from Sial-T2 knockout and Sial-T2/GalNAc-T double knockout mice as compared with wild-type and Sial-T1 knockout mice. Qualitative analysis of ganglioside composition in mice skin suggest that the increase of EGFr phosphorylation observed in skin from Sial-T2 knockout and Sial-T2/GalNAc-T double knockout mice in response to EGF might not be primary attributed to the expression of GD3 or a-series gangliosides in mice skin. These studies provide, for the first time, an approach for studying the molecular mechanisms involved in the in vivo regulation of EGFr function by gangliosides. PMID:16817235

  4. Dopamine beta-hydroxylase knockout mice have alterations in dopamine signaling and are hypersensitive to cocaine.

    Science.gov (United States)

    Schank, Jesse R; Ventura, Rossella; Puglisi-Allegra, Stefano; Alcaro, Antonio; Cole, Charlene D; Liles, L Cameron; Seeman, Philip; Weinshenker, David

    2006-10-01

    Multiple lines of evidence demonstrate that the noradrenergic system provides both direct and indirect excitatory drive onto midbrain dopamine (DA) neurons. We used DA beta-hydroxylase (DBH) knockout (Dbh-/-) mice that lack norepinephrine (NE) to determine the consequences of chronic NE deficiency on midbrain DA neuron function in vivo. Basal extracellular DA levels were significantly attenuated in the nucleus accumbens (NAc) and caudate putamen (CP), but not prefrontal cortex (PFC), of Dbh-/- mice, while amphetamine-induced DA release was absent in the NAc and attenuated in the CP and PFC. The decrease in dopaminergic tone was associated with a profound increase in the density of high-affinity state D1 and D2 DA receptors in the NAc and CP, while DA receptors in the PFC were relatively unaffected. As a behavioral consequence of these neurochemical changes, Dbh-/- mice were hypersensitive to the psychomotor, rewarding, and aversive effects of cocaine, as measured by locomotor activity and conditioned place preference. Antagonists of DA, but not 5-HT, receptors attenuated the locomotor hypersensitivity to cocaine in Dbh-/- mice. As DBH activity in humans is genetically controlled and the DBH inhibitor disulfiram has shown promise as a pharmacotherapy for cocaine dependence, these results have implications for the influence of genetic and pharmacological DBH inhibition on DA system function and drug addiction. PMID:16395294

  5. The mammalian gene function resource: The International Knockout Mouse Consortium

    NARCIS (Netherlands)

    A. Bradley (Allan); K. Anastassiadis (Konstantinos); A. Ayadi (Abdelkader); J.F. Battey (James); C. Bell (Cindy); M.-C. Birling (Marie-Christine); J. Bottomley (Joanna); S.D.M. Brown (Steve); F. Bürger (Friederike); C.J. Bult (Carol); W. Bushell (Wendy); F.S. Collins (Francis); C. Desaintes (Christian); B. Doe (Brendan); E. Aris (Economides); J.T. Eppig (Janan); R.H. Finnell (Richard); C. Fletcher (Colin); M. Fray (Martin); D. Frendewey (David); R.H. Friedel (Roland); F.G. Grosveld (Frank); J. Hansen; Y. Hérault (Yann); G. Hicks (Geoffrey); A. Hörlein (Andreas); C. Houghton (Catherine); M. Hrabé De Angelis (Martin); D. Huylebroeck (Danny); V. Iyer (Vivek); P.J. de Jong (Pieter); J.A. Kadin (James); C. Kaloff (Cornelia); K. Kennedy (Karen); M. Koutsourakis (Manousos); K.C. Kent Lloyd (K.); S. Marschall (Susan); J. Mason (Jeremy); C. McKerlie (Colin); M.P. McLeod (Michael); H. von Melchner (Harald); M. Moore (Matt); A.O. Mujica (Alejandro); A. Nagy (Andras); M. Nefedov (Mikhail); L.M. Nutter (Lauryl); G. Pavlovic (Guillaume); J.L. Peterson (Jane); I. Pollock; R. Ramirez-Solis (Ramiro); D.E. Rancourt (Derrick); M. Raspa (Marcello); J.E. Remacle (Jacques); M. Ringwald (Martin); B. Rosen (Barry); N. Rosenthal (Nadia); J. Rossant (Janet); P. Ruiz Noppinger (Patricia); S. Ryder; J.Z. Schick (Joel Zupicich); F. Schnütgen (Frank); C.J. Schofield (Christopher); C. Seisenberger (Claudia); M. Selloum (Mohammed); E.M. Simpson (Elizabeth); W.C. Skarnes (William); D. Smedley (Damian); W.L. Stanford (William); A. Francis Stewart (A.); K. Stone (Kevin); K. Swan (Kate); H. Tadepally (Hamsa); J.L. Teboul (Jean Louis); G.P. Tocchini-Valentini (Glauco); D. Valenzuela (David); A.P. West (Anthony); K.-I. Yamamura (Ken-Ichi); Y. Yoshinaga (Yuko); M. Wurst (Martin)

    2012-01-01

    textabstractIn 2007, the International Knockout Mouse Consortium (IKMC) made the ambitious promise to generate mutations in virtually every protein-coding gene of the mouse genome in a concerted worldwide action. Now, 5 years later, the IKMC members have developed highthroughput gene trapping and, i

  6. Threshold Energies for Single Carbon Knockout from Polycyclic Aromatic Hydrocarbons

    CERN Document Server

    Stockett, M H; Chen, T; de Ruette, N; Giacomozzi, L; Wolf, M; Schmidt, H T; Zettergren, H; Cederquist, H

    2015-01-01

    We have measured absolute cross sections for ultrafast (fs) single-carbon knockout from Polycyclic Aromatic Hydrocarbon (PAH) cations as functions of He-PAH center-of-mass collision energy in the range 10-200 eV. Classical Molecular Dynamics (MD) simulations cover this range and extend up to 10$^5$ eV. The shapes of the knockout cross sections are well described by a simple analytical expression yielding experimental and MD threshold energies of $E_{th}^{Exp}=32.5\\pm 0.4$ eV and $E_{th}^{MD}=41.0\\pm 0.3$ eV, respectively. These are the first measurements of knockout threshold energies for molecules isolated \\emph{in vacuo}. We further deduce semi-empirical (SE) and MD displacement energies --- \\emph{i.e.} the energy transfers to the PAH molecules at the threshold energies for knockout --- of $T_{disp}^{SE}=23.3\\pm 0.3$ eV and $T_{disp}^{MD}=27.0\\pm 0.3$ eV. The semi-empirical results compare favorably with measured displacement energies for graphene $T_{disp}=23.6$ eV [Meyer \\emph{et al.} Phys. Rev Lett. \\tex...

  7. Pharmacogenomic study of the role of the nociceptin/orphanin FQ receptor and opioid receptors in diabetic hyperalgesia.

    Science.gov (United States)

    Rutten, Kris; Tzschentke, Thomas M; Koch, Thomas; Schiene, Klaus; Christoph, Thomas

    2014-10-15

    Targeting functionally independent receptors may provide synergistic analgesic effects in neuropathic pain. To examine the interdependency between different opioid receptors (µ-opioid peptide [MOP], δ-opioid peptide [DOP] and κ-opioid peptide [KOP]) and the nociceptin/orphanin FQ peptide (NOP) receptor in streptozotocin (STZ)-induced diabetic polyneuropathy, nocifensive activity was measured using a hot plate test in wild-type and NOP, MOP, DOP and KOP receptor knockout mice in response to the selective receptor agonists Ro65-6570, morphine, SNC-80 and U50488H, or vehicle. Nocifensive activity was similar in non-diabetic wild-type and knockout mice at baseline, before agonist or vehicle administration. STZ-induced diabetes significantly increased heat sensitivity in all mouse strains, but MOP, DOP and KOP receptor knockouts showed a smaller degree of hyperalgesia than wild-type mice and NOP receptor knockouts. For each agonist, a significant antihyperalgesic effect was observed in wild-type diabetic mice (all Pfunctional independence, may yield an effective and favorable therapeutic analgesic profile. PMID:25169429

  8. APJ ACTS AS A DUAL RECEPTOR IN CARDIAC HYPERTROPHY

    OpenAIRE

    Scimia, Maria Cecilia; Hurtado, Cecilia; Ray, Saugata; Metzler, Scott; Wei, Ke; Wang, Jianming; Woods, Chris E.; Purcell, Nicole H.; Catalucci, Daniele; Akasaka, Takashi; Bueno, Orlando F.; Vlasuk, George P.; Kaliman, Perla; Bodmer, Rolf; Smith, Layton H.

    2012-01-01

    Cardiac hypertrophy is initiated as an adaptive response to sustained overload but progresses pathologically as heart failure ensues 1 . Here we report that genetic loss of APJ confers resistance to chronic pressure overload by dramatically reducing myocardial hypertrophy and heart failure. In contrast, mice lacking apelin (the endogenous APJ ligand) remain sensitive, suggesting an apelin independent function of APJ. Freshly isolated APJ-null cardiomyocytes exhibit an attenuated response to s...

  9. Role of estrogen receptor-α on food demand elasticity.

    Science.gov (United States)

    Minervini, Vanessa; Rowland, Neil E; Robertson, Kimberly L; Foster, Thomas C

    2015-05-01

    Estrogens have been shown to have an inhibitory effect on food intake under free-feeding conditions, yet the effects of estrogens on food-maintained operant responding have been studied to a much lesser extent and, thus, are not well understood. Therefore, the purpose of the present experiment was to use a behavioral economics paradigm to assess differences in demand elasticity between mice with knockout of the estrogen receptor subtype α, knockout of subtype β, and their wild type controls. The mice responded in a closed economy, and the price of food was increased by increasing the fixed-ratio response requirement every four sessions. Overall, we found that mice with the knockout of receptor subtype α had the most elastic demand functions. Therefore, under these conditions, estrogens increased food seeking via activation of the receptor subtype α. The results were inconsistent with those reported by previous studies that employed free-feeding conditions. PMID:25869426

  10. Estrogen and liver X receptors in human disease

    OpenAIRE

    Nilsson, Maria

    2006-01-01

    The nuclear hormone receptors (NRs) are a class of transcription factors that has attracted great interest due to their important roles in animal physiology and metabolism. Studies of knockout (KO) mouse models have indicated several pathophysiological conditions in which the NRs are involved. Four NRs, the estrogen receptors (ERs) á and â, and liver X receptors (LXRs) á and â, are studied in this thesis. The ERs have been implicated in several human diseases such as breast ...

  11. Cortical Gene Expression After a Conditional Knockout of 67 kDa Glutamic Acid Decarboxylase in Parvalbumin Neurons.

    Science.gov (United States)

    Georgiev, Danko; Yoshihara, Toru; Kawabata, Rika; Matsubara, Takurou; Tsubomoto, Makoto; Minabe, Yoshio; Lewis, David A; Hashimoto, Takanori

    2016-07-01

    In the cortex of subjects with schizophrenia, expression of glutamic acid decarboxylase 67 (GAD67), the enzyme primarily responsible for cortical GABA synthesis, is reduced in the subset of GABA neurons that express parvalbumin (PV). This GAD67 deficit is accompanied by lower cortical levels of other GABA-associated transcripts, including GABA transporter-1, PV, brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B, somatostatin, GABAA receptor α1 subunit, and KCNS3 potassium channel subunit mRNAs. In contrast, messenger RNA (mRNA) levels for glutamic acid decarboxylase 65 (GAD65), another enzyme for GABA synthesis, are not altered. We tested the hypothesis that this pattern of GABA-associated transcript levels is secondary to the GAD67 deficit in PV neurons by analyzing cortical levels of these GABA-associated mRNAs in mice with a PV neuron-specific GAD67 knockout. Using in situ hybridization, we found that none of the examined GABA-associated transcripts had lower cortical expression in the knockout mice. In contrast, PV, BDNF, KCNS3, and GAD65 mRNA levels were higher in the homozygous mice. In addition, our behavioral test battery failed to detect a change in sensorimotor gating or working memory, although the homozygous mice exhibited increased spontaneous activities. These findings suggest that reduced GAD67 expression in PV neurons is not an upstream cause of the lower levels of GABA-associated transcripts, or of the characteristic behaviors, in schizophrenia. In PV neuron-specific GAD67 knockout mice, increased levels of PV, BDNF, and KCNS3 mRNAs might be the consequence of increased neuronal activity secondary to lower GABA synthesis, whereas increased GAD65 mRNA might represent a compensatory response to increase GABA synthesis. PMID:26980143

  12. Human Genetic Disorders and Knockout Mice Deficient in Glycosaminoglycan

    Directory of Open Access Journals (Sweden)

    Shuji Mizumoto

    2014-01-01

    Full Text Available Glycosaminoglycans (GAGs are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases and sulfotransferases. The structural diversity of GAG polysaccharides, including their sulfation patterns and sequential arrangements, is essential for a wide range of biological activities such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Studies using knockout mice of enzymes responsible for the biosynthesis of the GAG side chains of proteoglycans have revealed their physiological functions. Furthermore, mutations in the human genes encoding glycosyltransferases, sulfotransferases, and related enzymes responsible for the biosynthesis of GAGs cause a number of genetic disorders including chondrodysplasia, spondyloepiphyseal dysplasia, and Ehlers-Danlos syndromes. This review focused on the increasing number of glycobiological studies on knockout mice and genetic diseases caused by disturbances in the biosynthetic enzymes for GAGs.

  13. Reduced cocaine-seeking behavior in heterozygous BDNF knockout rats

    OpenAIRE

    St. Laurent, Robyn; Helm, Samuel R.; Glenn, Melissa J.

    2013-01-01

    Cocaine generates drug-seeking behavior by creating long-lasting changes in the reward pathway. The role of the growth factor, brain-derived neurotrophic factor (BDNF) in facilitating these changes was investigated in the present report with a genetic rat model. Using conditioned place preference, the current study investigated the hypothesis that a partial knockout of the BDNF gene in rats (BDNF+/−) would attenuate the rewarding effects of cocaine. Wildtype rats exposed to cocaine exhibited ...

  14. One-neutron knockout from {sup 51-55}Sc

    Energy Technology Data Exchange (ETDEWEB)

    Schwertel, S.; Maierbeck, P.; Gernhaeuser, R.; Bildstein, V.; Boehmer, M.; Eppinger, K.; Faestermann, T.; Friese, J.; Fabbietti, L.; Maier, L.; Winkler, S. [Technische Universitaet Muenchen, Physik Department E12, Garching (Germany); Kruecken, R. [Technische Universitaet Muenchen, Physik Department E12, Garching (Germany); TRIUMF, Vancouver (Canada); University of British Columbia, Department of Physics and Astronomy, Vancouver (Canada); Kroell, T. [Technische Universitaet Muenchen, Physik Department E12, Garching (Germany); Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Alvarez-Pol, H.; Benjamim, E.A.; Benlliure, J.; Caamano, M.; Cortina-Gil, D.; Gascon, M.; Kurtukian, T.; Perez, D.; Rodriguez-Tajes, C. [Universidade de Santiago de Compostela, Departamento de Fisica de Particulas, Santiago de Compostela (Spain); Aksouh, F.; Aumann, T.; Behr, K.; Boretzky, K.; Bruenle, A.; Chatillon, A.; Chulkov, L.V.; Geissel, H.; Gerl, J.; Gorska, M.; Kojouharov, I.; Klimkiewicz, A.; Kurz, N.; Nociforo, C.; Schaffner, H.; Simon, H.; Stanoiu, M.; Suemmerer, K.; Weick, H. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Borge, M.J.G.; Pascual-Izarra, C.; Perea, A.; Tengblad, O. [CSIC, Instituto de Estructura de la Materia, Madrid (Spain); Buerger, A. [University of Oslo, SAFE/OCL, Oslo (Norway); CEA, Gif-sur-Yvette (France); Casarejos, E.; Brown, B.A. [University of Vigo, Vigo (Spain); Enders, J.; Schrieder, G. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Hansen, P.G. [Michigan State University, NSCL, East Lansing, Michigan (United States); Jonson, B.; Nyman, G. [Chalmers Tekniska Hoegskola och Goeteborgs Universitet, Experimentell Fysik, Goeteborg (Sweden); Kanungo, R. [TRIUMF, Vancouver (Canada); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Saint Mary' s University, Halifax (Canada); Kiselev, O. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Johannes Gutenberg Universitaet, Mainz (Germany); Paul Scherrer Institut, Villigen (Switzerland); Larsson, K. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Chalmers Tekniska Hoegskola och Goeteborgs Universitet, Experimentell Fysik, Goeteborg (Sweden); Le Bleis, T. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); IN2P3-CNRS/Universite Louis Pasteur, Institut Pluridisciplinaire Hubert Curien, Strasbourg Cedex 2 (France); Mahata, K. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Paul Scherrer Institut, Villigen (Switzerland); Nilsson, T. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Chalmers Tekniska Hoegskola och Goeteborgs Universitet, Experimentell Fysik, Goeteborg (Sweden); Prochazka, A. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Comenius University, Faculty of Mathematics and Physics, Bratislava (Slovakia); Rossi, D. [Johannes Gutenberg Universitaet, Mainz (Germany); Sitar, B. [Comenius University, Faculty of Mathematics and Physics, Bratislava (Slovakia); Otsuka, T. [University of Tokyo, Hongo, Bunkyo-ku, Department of Physics, Tokyo (Japan); Tostevin, J.A. [University of Surrey, Department of Physics, Faculty of Engineering and Physical Sciences, Guildford (United Kingdom); Rae, W.D.M. [Garsington, Oxfordshire (United Kingdom)

    2012-12-15

    Results are presented from a one-neutron knockout experiment at relativistic energies of {approx} 420 A MeV on {sup 51-55}Sc using the GSI Fragment Separator as a two-stage magnetic spectrometer and the MINIBALL array for gamma-ray detection. Inclusive longitudinal momentum distributions and cross-sections were measured enabling the determination of the contributions corresponding to knockout from the {nu}p{sub 1/2}, {nu}p{sub 3/2}, (L = 1) and {nu}f{sub 7/2}, {nu}f{sub 5/2} (L = 3) neutron orbitals. The observed L = 1 and L = 3 contributions are compared with theoretical cross-sections using eikonal knockout theory and spectroscopic factors from shell model calculations using the GXPF1A interaction. The measured inclusive knockout cross-sections generally follow the trends expected theoretically and given by the spectroscopic strength predicted from the shell model calculations. However, the deduced L = 1 cross-sections are generally 30-40% higher while the L = 3 contributions are about a factor of two smaller than predicted. This points to a promotion of neutrons from the {nu}f{sub 7/2} to the {nu}p{sub 3/2} orbital indicating a weakening of the N = 28 shell gap in these nuclei. While this is not predicted for the phenomenological GXPF1A interaction such a weakening is predicted by recent calculations using realistic low-momentum interactions V{sub low} {sub k} obtained by evolving a chiral N3LO nucleon-nucleon potential. (orig.)

  15. Lessons from hepatocyte-specific cyp51 knockout mice

    OpenAIRE

    Keber, Rok; Lorbek, Gregor; Lewinska, Monika; Juvan, Peter; Perše, Martina; Bjorkhem, Ingemar; Rozman, Damjana; Horvat, Simon; Jeruc, Jera; Gutiérrez Mariscal, Francisco Miguel; Gebhardt, Rolf

    2016-01-01

    We demonstrate unequivocally that defective cholesterol synthesis is an independent determinant of liver inflammation and fibrosis. We prepared a mouse hepatocyte-specific knockout (LKO) of lanosterol 14 a -demethylase (CYP51) from the part of cholesterol synthesis that is already committed to cholesterol. LKO mice developed hepatomegaly with oval cell proliferation, fibrosis and inflammation, but without steatosis. The key trigger was reduced cholesterol esters that provoked cell cycle arres...

  16. Analysis of Microsatellite Polymorphism in Inbred Knockout Mice

    OpenAIRE

    Zuo, Baofen; Du, Xiaoyan; Zhao, Jing; Yang, Huixin; Wang, Chao; Wu, Yanhua; LU, JING; Wang, Ying; Chen, Zhenwen

    2012-01-01

    Previously, we found that the genotype of 42 out of 198 mouse microsatellite loci, which are distributed among all chromosomes except the Y chromosome, changed from monomorphism to polymorphism (CMP) in a genetically modified inbred mouse strain. In this study, we further examined whether CMP also relates to the homologous recombination in gene knockout (KO) mouse strains. The same 42 microsatellite loci were analyzed by polymerase chain reaction (PCR) in 29 KO inbred mouse strains via short ...

  17. Screening Methods to Identify TALEN-Mediated Knockout Mice

    OpenAIRE

    Nakagawa, Yoshiko; Yamamoto, Takashi; Suzuki, Ken-Ichi; Araki, Kimi; Takeda, Naoki; Ohmuraya, Masaki; Sakuma, Tetsushi

    2014-01-01

    Genome editing with site-specific nucleases, such as zinc-finger nucleases or transcription activator-like effector nucleases (TALENs), and RNA-guided nucleases, such as the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) system, is becoming the new standard for targeted genome modification in various organisms. Application of these techniques to the manufacture of knockout mice would be greatly aided by simple and easy methods for genotyping of mutant...

  18. Impaired Conditioned Taste Aversion Learning in Spinophilin Knockout Mice

    OpenAIRE

    Stafstrom-Davis, Carrie A.; Ouimet, Charles C.; Feng, Jian; Allen, Patrick B; Greengard, Paul; Houpt, Thomas A.

    2001-01-01

    Plasticity in dendritic spines may underlie learning and memory. Spinophilin, a protein enriched in dendritic spines, has the properties of a scaffolding protein and is believed to regulate actin cytoskeletal dynamics affecting dendritic spine morphology. It also binds protein phosphatase-1 (PP-1), an enzyme that regulates dendritic spine physiology. In this study, we tested the role of spinophilin in conditioned taste aversion learning (CTA) using transgenic spinophilin knockout mice. CTA is...

  19. Behavioural and neuroplastic properties of chronic lurasidone treatment in serotonin transporter knockout rats.

    Science.gov (United States)

    Luoni, Alessia; Hulsken, Sjoerd; Cazzaniga, Greta; Racagni, Giorgio; Homberg, Judith R; Riva, Marco A

    2013-07-01

    Second-generation antipsychotics (SGA) are multi-target agents widely used for the treatment of schizophrenia and bipolar disorder that also hold potential for the treatment of impaired emotional control, thanks to their diverse receptor profiles as well as their potential in modulating neuroadaptive changes in key brain regions. The aim of this study was thus to establish the ability of lurasidone, a novel SGA characterized by a multi-receptor signature, to modulate behavioural and molecular defects associated with a genetic model of impaired emotional control, namely serotonin transporter knockout (SERT KO) rats. At behavioural level, we found that chronic lurasidone treatment significantly increased fear extinction in SERT KO rats, but not in wild-type control animals. Moreover, at molecular level, lurasidone was able to normalize the reduced expression of the neurotrophin brain-derived neurotrophic factor in the prefrontal cortex of SERT KO rats, an effect that occurred through the regulation of specific neurotrophin transcripts (primarily exon VI). Furthermore, chronic lurasidone treatment was also able to restore the reduced expression of different GABAergic markers that is present in these animals. Our results show that lurasidone can improve emotional control in SERT KO rats, with a primary impact on the prefrontal cortex. The adaptive changes set in motion by repeated treatment with lurasidone may in fact contribute to the amelioration of functional capacities, closely associated with neuronal plasticity, which are deteriorated in patients with schizophrenia, bipolar disease and major depression. PMID:23164505

  20. Expression of PPARα modifies fatty acid effects on insulin secretion in uncoupling protein-2 knockout mice

    Directory of Open Access Journals (Sweden)

    Chan Catherine B

    2007-03-01

    Full Text Available Abstract Aims/hypothesis In uncoupling protein-2 (UCP2 knockout (KO mice, protection of beta cells from fatty acid exposure is dependent upon transcriptional events mediated by peroxisome proliferator-activated receptor-α (PPARα. Methods PPARα expression was reduced in isolated islets from UCP2KO and wild-type (WT mice with siRNA for PPARα (siPPARα overnight. Some islets were also cultured with oleic or palmitic acid, then glucose stimulated insulin secretion (GSIS was measured. Expression of genes was examined by quantitative RT-PCR or immunoblotting. PPARα activation was assessed by oligonucleotide consensus sequence binding. Results siPPARα treatment reduced PPARα protein expression in KO and WT islets by >85%. In siPPARα-treated UCP2KO islets, PA but not OA treatment significantly decreased the insulin response to 16.5 mM glucose. In WT islets, siPPARα treatment did not modify GSIS in PA and OA exposed groups. In WT islets, PA treatment significantly increased UCP2 mRNA and protein expression. Both PA and OA treatment significantly increased PPARα expression in UCP2KO and WT islets but OA treatment augmented PPARα protein expression only in UCP2KO islets (p Conclusion These data show that the negative effect of saturated fatty acid on GSIS is mediated by PPARα/UCP2. Knockout of UCP2 protects beta-cells from PA exposure. However, in the absence of both UCP2 and PPARα even a short exposure (24 h to PA significantly impairs GSIS.

  1. Escherichia coli Strain Nissle 1917 Ameliorates Experimental Colitis via Toll-Like Receptor 2- and Toll-Like Receptor 4-Dependent Pathways

    OpenAIRE

    Grabig, A.; Paclik, D.; Guzy, C.; Dankof, A.; Baumgart, D.C.; Erckenbrecht, J.; Raupach, B; Sonnenborn, U.; Eckert, J.; Schumann, R. R.; Wiedenmann, B; Dignass, A U; Sturm, A

    2006-01-01

    Toll-like receptors (TLRs) are key components of the innate immune system that trigger antimicrobial host defense responses. The aim of the present study was to analyze the effects of probiotic Escherichia coli Nissle strain 1917 in experimental colitis induced in TLR-2 and TLR-4 knockout mice. Colitis was induced in wild-type (wt), TLR-2 knockout, and TLR-4 knockout mice via administration of 5% dextran sodium sulfate (DSS). Mice were treated with either 0.9% NaCl or 107 E. coli Nissle 1917 ...

  2. Brain-derived neurotrophic factor signaling is altered in the forebrain of Engrailed-2 knockout mice.

    Science.gov (United States)

    Zunino, G; Messina, A; Sgadò, P; Baj, G; Casarosa, S; Bozzi, Y

    2016-06-01

    Engrailed-2 (En2), a homeodomain transcription factor involved in regionalization and patterning of the midbrain and hindbrain regions has been associated to autism spectrum disorders (ASDs). En2 knockout (En2(-/-)) mice show ASD-like features accompanied by a significant loss of GABAergic subpopulations in the hippocampus and neocortex. Brain-derived neurotrophic factor (BDNF) is a crucial factor for the postnatal development of forebrain GABAergic neurons, and altered GABA signaling has been hypothesized to underlie the symptoms of ASD. Here we sought to determine whether interneuron loss in the En2(-/-) forebrain might be related to altered expression of BDNF and its signaling receptors. We first evaluated the expression of different BDNF mRNA isoforms in the neocortex and hippocampus of wild-type (WT) and En2(-/-) mice. Quantitative RT-PCR showed a marked down-regulation of several splicing variants of BDNF mRNA in the neocortex but not hippocampus of adult En2(-/-) mice, as compared to WT controls. Accordingly, levels of mature BDNF protein were lower in the neocortex but not hippocampus of En2(-/-) mice, as compared to WT. Increased levels of phosphorylated TrkB and decreased levels of p75 receptor were also detected in the neocortex of mutant mice. Accordingly, the expression of low density lipoprotein receptor (LDLR) and RhoA, two genes regulated via p75 was significantly altered in forebrain areas of mutant mice. These data indicate that BDNF signaling alterations might be involved in the anatomical changes observed in the En2(-/-) forebrain and suggest a pathogenic role of altered BDNF signaling in this mouse model of ASD. PMID:26987954

  3. Sleep and Sleep Homeostasis in Mice Lacking the 5-HT2c Receptor

    OpenAIRE

    Frank, Marcos G.; Stryker, Michael P.; Tecott, Laurence H.

    2002-01-01

    Studies in humans and rats indicate that serotonin (5-hydroxytryptamine, 5-HT) receptors are involved in mammalian sleep expression. We investigated the contribution of the 5-HT2c receptor to sleep expression by examining sleep patterns in mice bearing a targeted null mutation of this receptor. 5-HT2c receptor knock-out mice had more wakefulness, several abnormalities in rapid eye movement sleep expression and an enhanced response to sleep deprivation compared with wild-type control mice. The...

  4. Characteristics of Skeletal Muscle Fibers of SOD1 Knockout Mice

    OpenAIRE

    Hiroshi Nagahisa; Kazuma Okabe; Yoshihito Iuchi; Junichi Fujii; Hirofumi Miyata

    2016-01-01

    Cu/Zn superoxide dismutase (SOD1) knockout (KO) mice are known as an aging model in some aspects, but the damage and regeneration process of each fiber type have not been sufficiently studied. In this study, we investigated the damage and satellite cell state of the gastrocnemius muscle in SOD1 KO mice (6 months old) using immunohistochemical staining and real-time RT-PCR. The proportion of central nuclei-containing Type IIx/b fibers in the deep and superficial portions of the gastrocnemius m...

  5. Electron-induced neutron knockout from 4He

    International Nuclear Information System (INIS)

    The differential cross section for electron-induced neutron knockout in the reaction 4He(e,e'n)3He has been measured for the first time with a statistical accuracy of 11%. The experiment was performed in quasielastic kinematics at a momentum transfer of 300 MeV/c and in the missing-momentum range of 25-70 MeV/c. The comparison of the data with theoretical calculations shows an impressive increase of the cross section resulting from final state interaction effects. Specifically, the p-n charge-exchange process dominates the cross section in this kinematical regime

  6. Lack of adenosine A(3) receptors causes defects in mouse peripheral blood parameters

    Czech Academy of Sciences Publication Activity Database

    Hofer, Michal; Pospíšil, Milan; Dušek, L.; Hoferová, Zuzana; Komůrková, Denisa

    2014-01-01

    Roč. 10, č. 3 (2014), s. 509-514. ISSN 1573-9538 R&D Projects: GA ČR(CZ) GAP303/11/0128 Institutional support: RVO:68081707 Keywords : Adenosine A(3) receptor * Adenosine A(3) receptor knockout mice * Hematopoiesis Subject RIV: BO - Biophysics Impact factor: 3.886, year: 2014

  7. Differential suppression of seizures via Y2 and Y5 neuropeptide Y receptors

    DEFF Research Database (Denmark)

    Woldbye, David P D; Nanobashvili, Avtandil; Sørensen, Andreas Vehus;

    2005-01-01

    Neuropeptide Y (NPY) prominently inhibits epileptic seizures in different animal models. The NPY receptors mediating this effect remain controversial partially due to lack of highly selective agonists and antagonists. To circumvent this problem, we used various NPY receptor knockout mice with the...

  8. A STAT-1 knockout mouse model for Machupo virus pathogenesis

    Directory of Open Access Journals (Sweden)

    Shurtleff Amy C

    2011-06-01

    Full Text Available Abstract Background Machupo virus (MACV, a member of the Arenaviridae, causes Bolivian hemorrhagic fever, with ~20% lethality in humans. The pathogenesis of MACV infection is poorly understood, and there are no clinically proven treatments for disease. This is due, in part, to a paucity of small animal models for MACV infection in which to discover and explore candidate therapeutics. Methods Mice lacking signal transducer and activator of transcription 1 (STAT-1 were infected with MACV. Lethality, viral replication, metabolic changes, hematology, histopathology, and systemic cytokine expression were analyzed throughout the course of infection. Results We report here that STAT-1 knockout mice succumbed to MACV infection within 7-8 days, and presented some relevant clinical and histopathological manifestations of disease. Furthermore, the model was used to validate the efficacy of ribavirin in protection against infection. Conclusions The STAT-1 knockout mouse model can be a useful small animal model for drug testing and preliminary immunological analysis of lethal MACV infection.

  9. Knockout reaction induced by 6He at 61.2 MeV/u

    Institute of Scientific and Technical Information of China (English)

    LU Lin-Hui; CAO Zhong-Xin; SONG Yu-Shou; XIAO Jun; LI Qi-Te; QIAO Rui; YOU Hai-Bo; CHEN Rui-Jiu; XU Hu-Shan; WANG Jian-Song; GUO Zhong-Yan; YE Yan-Lin; ZHANG Xue-Ying; LI Chen; HU Zheng-Guo; CHEN Ruo-FU; WANG Meng; XU Zhi-Guo; YUE Ke; TANG Bin; ZANG Yong-Dong; ZHANG Xue-Heng; JIANG Dong-Xing; YAO Xiang-Wu; CHEN Jin-Da; BAI Zhen; HUA Hui; ZHENG Tao; LI Zhi-Huan; GE Yu-Cheng; LI Xiang-Qing; LOU Jian-Ling

    2011-01-01

    A knockout reaction induced by 6He at 61.2 MeV/u was carried out at the HIRFL-RIBLL radioactive beam line.The α core fragments at forward angles were detected in coincidence with the recoiled protons at large angles.From this coincident measurement the valence nucleon knockout mechanism and the core knockout mechanism can be separated according to the polar angle correlation between the core fragments and the recoiled protons.It is demonstrated that,when reconstructing the resonant state of a weakly bound nucleus,the contamination resulting from the core knockout mechanism should be eliminated in order to obtain the correct structure information.

  10. Intestinal tumor suppression in ApcMin/+ mice by prostaglandin D2 receptor PTGDR

    International Nuclear Information System (INIS)

    Our earlier work showed that knockout of hematopoietic prostaglandin D synthase (HPGDS, an enzyme that produces prostaglandin D2) caused more adenomas in ApcMin/+ mice. Conversely, highly expressed transgenic HPGDS allowed fewer tumors. Prostaglandin D2 (PGD2) binds to the prostaglandin D2 receptor known as PTGDR (or DP1). PGD2 metabolites bind to peroxisome proliferator-activated receptor γ (PPARG). We hypothesized that Ptgdr or Pparg knockouts may raise numbers of tumors, if these receptors take part in tumor suppression by PGD2. To assess, we produced ApcMin/+ mice with and without Ptgdr knockouts (147 mice). In separate experiments, we produced ApcMin/+ mice expressing transgenic lipocalin-type prostaglandin D synthase (PTGDS), with and without heterozygous Pparg knockouts (104 mice). Homozygous Ptgdr knockouts raised total numbers of tumors by 30–40% at 6 and 14 weeks. Colon tumors were not affected. Heterozygous Pparg knockouts alone did not affect tumor numbers in ApcMin/+ mice. As mentioned above, our Pparg knockout assessment also included mice with highly expressed PTGDS transgenes. ApcMin/+ mice with transgenic PTGDS had fewer large adenomas (63% of control) and lower levels of v-myc avian myelocytomatosis viral oncogene homolog (MYC) mRNA in the colon. Heterozygous Pparg knockouts appeared to blunt the tumor-suppressing effect of transgenic PTGDS. However, tumor suppression by PGD2 was more clearly mediated by receptor PTGDR in our experiments. The suppression mechanism did not appear to involve changes in microvessel density or slower proliferation of tumor cells. The data support a role for PGD2 signals acting through PTGDR in suppression of intestinal tumors

  11. Polyhydramnios in Lrp4 knockout mice with bilateral kidney agenesis: Defects in the pathways of amniotic fluid clearance

    Science.gov (United States)

    Tanahashi, Hiroshi; Tian, Qing-Bao; Hara, Yoshinobu; Sakagami, Hiroyuki; Endo, Shogo; Suzuki, Tatsuo

    2016-01-01

    Amniotic fluid volume during mid-to-late gestation depends mainly on the urine excretion from the foetal kidneys and partly on the fluid secretion from the foetal lungs during foetal breathing-like movements. Urine is necessary for foetal breathing-like movements, which is critical for foetal lung development. Bilateral renal agenesis and/or obstruction of the urinary tract lead to oligohydramnios, which causes infant death within a short period after birth due to pulmonary hypoplasia. Lrp4, which functions as an agrin receptor, is essential for the formation of neuromuscular junctions. Herein, we report novel phenotypes of Lrp4 knockout (Lrp4−/−) mice. Most Lrp4−/− foetuses showed unilateral or bilateral kidney agenesis, and Lrp4 knockout resulted in polyhydramnios. The loss of Lrp4 compromised foetal swallowing and breathing-like movements and downregulated the expression of aquaporin-9 in the foetal membrane and aquaporin-1 in the placenta, which possibly affected the amniotic fluid clearance. These results suggest that amniotic fluid removal was compromised in Lrp4−/− foetuses, resulting in polyhydramnios despite the impairment of urine production. Our findings indicate that amniotic fluid removal plays an essential role in regulating the amniotic fluid volume. PMID:26847765

  12. Polyhydramnios in Lrp4 knockout mice with bilateral kidney agenesis: Defects in the pathways of amniotic fluid clearance.

    Science.gov (United States)

    Tanahashi, Hiroshi; Tian, Qing-Bao; Hara, Yoshinobu; Sakagami, Hiroyuki; Endo, Shogo; Suzuki, Tatsuo

    2016-01-01

    Amniotic fluid volume during mid-to-late gestation depends mainly on the urine excretion from the foetal kidneys and partly on the fluid secretion from the foetal lungs during foetal breathing-like movements. Urine is necessary for foetal breathing-like movements, which is critical for foetal lung development. Bilateral renal agenesis and/or obstruction of the urinary tract lead to oligohydramnios, which causes infant death within a short period after birth due to pulmonary hypoplasia. Lrp4, which functions as an agrin receptor, is essential for the formation of neuromuscular junctions. Herein, we report novel phenotypes of Lrp4 knockout (Lrp4(-/-)) mice. Most Lrp4(-/-) foetuses showed unilateral or bilateral kidney agenesis, and Lrp4 knockout resulted in polyhydramnios. The loss of Lrp4 compromised foetal swallowing and breathing-like movements and downregulated the expression of aquaporin-9 in the foetal membrane and aquaporin-1 in the placenta, which possibly affected the amniotic fluid clearance. These results suggest that amniotic fluid removal was compromised in Lrp4(-/-) foetuses, resulting in polyhydramnios despite the impairment of urine production. Our findings indicate that amniotic fluid removal plays an essential role in regulating the amniotic fluid volume. PMID:26847765

  13. Study on the Relationship between Serum Nesfatin-1,Apelin and Insulin-resistance in Newly Diagnosed Type 2 Diabetic Patients%新诊断2型糖尿病患者血清nesfatin-1及apelin与胰岛素抵抗的关系研究

    Institute of Scientific and Technical Information of China (English)

    谭丽艳; 徐海波; 谭丽萍; 潘佳秋

    2013-01-01

    目的 探讨新诊断2型糖尿病(T2DM)患者血清nesfatin-1、apelin与胰岛素抵抗(IR)的关系.方法 选取2011年6月-2012年2月在我院就诊的新诊断2型糖尿病患者60例(T2DM组)及同期体检健康者30例(NC组).采用酶联免疫吸附法(ELISA法)测定两组受检者空腹血清nesfatin-1、apelin水平,同时测定空腹血糖(FPG)、空腹胰岛素(FINS)、血脂水平.应用稳态模型评估的胰岛素抵抗指数(HOMA-IR)、胰岛素敏感性指数(ISI)评价胰岛素敏感性,用稳态模型评估的胰岛β细胞功能指数(HOMA-β)评价胰岛β细胞功能.采用Spearman秩相关及多元线性逐步回归分析观察nesfatin-1、apelin与糖代谢、IR的关系.结果 T2DM组患者血清nesfatin-1、apelin水平均高于NC组,差异有统计学意义(P<0.01);且二者均与体质指数(BMI)、空腹血糖(FPG)、三酰甘油(TG)、总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C)、空腹胰岛素(FINS)、HOMA-IR呈正相关(P<0.05),与高密度脂蛋白胆固醇(HDL-C)、HOMA-β、ISI呈负相关(P<0.01),且nesfatin-1与apelin呈正相关(P<0.01).多元线性逐步回归分析发现,apelin是nesfatin-1的独立影响因素,常数项为0.018,β=0.574,P<0.01.结论 新诊断2型糖尿病患者血清nesfatin-1、apelin水平较健康者显著升高,并与IR存在一定的相关性.提示nesfatin-1、apelin可能参与了T2DM及IR的病理生理过程.%Objective To investigate the relationship between nesfatin - 1, apelin and insulin resistance in newly diagnosed type 2 diabetes mellitus ( T2DM ) patients. Methods A total of 60 T2DM patients ( T2DM group ) and 30 non - diabetic controls ( NC group ) admitted to our hospital from June 2011 to February 2012 were recruited. Fasting plasma nesfatin - 1 and apelin levels were assayed by enzyme - linked immunosorbent assay ( ELISA ) . At the same time, the fasting plasma glucose ( FPG ), fasting insulin ( FINS ) and blood lipid indexes were detected. Homeostasis model

  14. Scavenger receptor BI boosts hepatocyte permissiveness to Plasmodium infection.

    NARCIS (Netherlands)

    Yalaoui, S.; Huby, T.; Franetich, J.F.; Gego, A.; Rametti, A.; Moreau, M.; Collet, X.; Siau, A.; Gemert, G.J.A. van; Sauerwein, R.W.; Luty, A.J.F.; Vaillant, J.C.; Hannoun, L.; Chapman, J.; Mazier, D.; Froissard, P.

    2008-01-01

    Infection of hepatocytes by Plasmodium falciparum sporozoites requires the host tetraspanin CD81. CD81 is also predicted to be a coreceptor, along with scavenger receptor BI (SR-BI), for hepatitis C virus. Using SR-BI-knockout, SR-BI-hypomorphic and SR-BI-transgenic primary hepatocytes, as well as s

  15. The role of P2X receptors in bone biology

    DEFF Research Database (Denmark)

    Jørgensen, N R; Syberg, S; Ellegaard, M

    2015-01-01

    come from studies on murine knockout models and from pharmacologic studies on cells and animals. More recently, the role of P2X receptors in human bone diseases has been documented. Loss-of-functions polymorphisms in the P2X7 receptorare associated with bone loss and increased fracture risk. Very...

  16. Improving expression of recombinant human IGF-1 using IGF-1R knockout CHO cell lines.

    Science.gov (United States)

    Romand, Sandrine; Jostock, Thomas; Fornaro, Mara; Schmidt, Joerg; Ritter, Anett; Wilms, Burkhard; Laux, Holger

    2016-05-01

    Chinese Hamster Ovary (CHO) cells are widely used for the large-scale production of recombinant biopharmaceuticals. However, attempts to express IGF-1 (a mutated human Insulin-like growth factor 1 Ea peptide (hIGF-1Ea mut)) in CHO cells resulted in poor cell growth and low productivity (0.1-0.2 g/L). Human IGF-1 variants negatively impacted CHO cell growth via the IGF-1 receptor (IGF-1R). Therefore knockout (KO) of the IGF-1R gene in two different CHO cell lines as well as knockdown (KD) of IGF-1R in one CHO cell line were performed. These cell line engineering approaches decreased significantly the hIGF-1 mediated cell growth inhibition and increased productivity of both KO CHO cell lines as well as of the KD CHO cell line. A productivity increase of 10-fold at pool level and sevenfold at clone level was achieved, resulting in a titer of 1.3 g/L. This data illustrate that cell line engineering approaches are powerful tools to improve the yields of recombinant proteins which are difficult to produce in CHO cells. Biotechnol. Bioeng. 2016;113: 1094-1101. © 2015 Wiley Periodicals, Inc. PMID:26523469

  17. GRK5-Knockout Mice Generated by TALEN-Mediated Gene Targeting.

    Science.gov (United States)

    Nanjidsuren, Tsevelmaa; Park, Chae-Won; Sim, Bo-Woong; Kim, Sun-Uk; Chang, Kyu-Tae; Kang, Myung-Hwa; Min, Kwan-Sik

    2016-10-01

    Transcription activator-like effector nucleases (TALENs) are a new type of engineered nuclease that is very effective for directed gene disruption in any genome sequence. We investigated the generation of mice with genetic knockout (KO) of the G protein-coupled receptor kinase (GRK) 5 gene by microinjection of TALEN mRNA. TALEN vectors were designed to target exons 1, 3, and 5 of the mouse GRK5 gene. Flow cytometry showed that the activity of the TALEN mRNAs targeted to exons 1, 3, and 5 was 8.7%, 9.7%, and 12.7%, respectively. The TALEN mRNA for exon 5 was injected into the cytoplasm of 180 one-cell embryos. Of the 53 newborns, three (5.6%) were mutant founders (F0) with mutations. Two clones from F028 showed a 45-bp deletion and F039 showed the same biallelic non-frame-shifting 3-bp deletions. Three clones from F041 were shown to possess a combination of frame-shifting 2-bp deletions. All of the mutations were transmitted through the germline but not to all progenies (37.5%, 37.5%, and 57.1% for the F028, F039, and F041 lines, respectively). The homozygote GRK5-KO mice for 28 and 41 lines created on F3 progenies and the homozygous genotype was confirmed by PCR, T7E1 assay and sequencing. PMID:27565865

  18. Decreased Neointimal Extracellular Matrix Formation in RAGE-Knockout Mice After Microvascular Denudation

    International Nuclear Information System (INIS)

    Purpose: To evaluate in vivo the role of RAGE (receptor for advanced glycated end products) in the development of restenosis and neointimal proliferation in RAGE-deficient knockout (KO) mice compared with wild-type (WT) mice in an animal model. Materials and Methods: Sixteen WT and 15 RAGE-deficient mice underwent microvascular denudation of the common femoral artery under general anaesthesia. Contralateral arteries underwent a sham operation and served as controls. Four weeks after the intervention, all animals were killed, and paraformaldehyde-fixed specimens of the femoral artery were analysed with different stains (hematoxylin and eosin and Elastica van Gieson) and several different types of immunostaining (proliferating cell nuclear antigen, α-actin, collagen, von Willebrand factor, RAGE). Luminal area, area of the neointima, and area of the media were measured in all specimens. In addition, colony-formation assays were performed, and collagen production by WT smooth muscle cells (SMCs) and RAGE-KO SMCs was determined. For statistical analysis, P 2 [n = 15) in the WT group compared with only 8.4 (*1000 μm2 [n = 16]) in the RAGE-KO group. RAGE-KO SMCs showed significantly decreased proliferation activity and production of extracellular matrix protein. Conclusion: RAGE may be shown to play a considerable role in the formation of neointima leading to restenosis after vascular injury.

  19. Repetitive grooming and sensorimotor abnormalities in an ephrin-A knockout model for Autism Spectrum Disorders

    Science.gov (United States)

    Wurzman, Rachel; Forcelli, Patrick A.; Griffey, Christopher J.; Kromer, Lawrence F.

    2014-01-01

    EphA receptors and ephrin-A ligands play important roles in neural development and synaptic plasticity in brain regions where expression persists into adulthood. Recently, EPHA3 and EPHA7 gene mutations were linked with Autism Spectrum Disorders (ASDs) and developmental neurological delays, respectively. Furthermore, deletions of ephrin-A2 or ephrin-A3, which exhibit high binding affinity for EphA3 and EphA7 receptors, are associated with subtle deficits in learning and memory behavior and abnormalities in dendritic spine morphology in the cortex and hippocampus in mice. To better characterize a potential role for these ligands in ASDs, we performed a comprehensive behavioral characterization of anxiety-like, sensorimotor, learning, and social behaviors in ephrin-A2/-A3 double knockout (DKO) mice. The predominant phenotype in DKO mice was repetitive and self-injurious grooming behaviors such as have been associated with corticostriatal circuit abnormalities in other rodent models of neuropsychiatric disorders. Consistent with ASDs specifically, DKO mice exhibited decreased preference for social interaction in the social approach assay, decreased locomotor activity in the open field, increased prepulse inhibition of acoustic startle, and a shift towards self-directed activity (e.g., grooming) in novel environments, such as marble burying. Although there were no gross deficits in cognitive assays, subtle differences in performance on fear conditioning and in the Morris water maze resembled traits observed in other rodent models of ASD. We therefore conclude that ephrin-A2/-A3 DKO mice have utility as a novel ASD model with an emphasis on sensory abnormalities and restricted, repetitive behavioral symptoms. PMID:25281279

  20. Giant vesicles functionally expressing membrane receptors for an insect pheromone.

    Science.gov (United States)

    Hamada, Satoshi; Tabuchi, Masashi; Toyota, Taro; Sakurai, Takeshi; Hosoi, Tomohiro; Nomoto, Tomonori; Nakatani, Kei; Fujinami, Masanori; Kanzaki, Ryohei

    2014-03-18

    To date, biochemical approaches to membrane receptors have been limited to the following methods: knockout or overexpression of membrane receptors by gene introduction and genome engineering or extraction of membrane receptor-surfactant complexes from innate cells and their introduction into model biomembranes. Here, we describe the development of a third method involving gene expression using cell-free in situ protein synthesis inside model biomembrane capsules. We verified this method by synthesizing olfactory receptors from the silkmoth Bombyx mori inside giant vesicles and found that they were excited in the presence of their ligand the Bombyx mori sex pheromone. PMID:24509495

  1. Preparation of Knockout Extract by Immunoaffinity Column and Its Application

    Directory of Open Access Journals (Sweden)

    Osamu Morinaga

    2012-12-01

    Full Text Available Importance of herbal medicines have recently increased owing to rising interest in their health benefits. However, medicinal plant extracts are complex mixtures of phytochemicals that act synergistically or additively on specific and/or multiple molecular and cellular targets. Thus, it is difficult to examine the actual pharmacological roles of active compounds in plant extracts. This review describes a new strategy for isolating target compounds from plant extracts using immunoaffinity columns coupled with monoclonal antibodies (mAbs against natural compounds. Through one-step purification using mAb-coupled immunoaffinity columns, we succeeded in preparing a knockout (KO extract, which contains all components except the target compound. Furthermore, we investigated the pharmacological effects of the KO extract to reveal the actual effects of a bioactive compound in the crude extract. This approach may help determine the potential function of target compounds in herbal medicines.

  2. Antiatherogenic effects of oleanolic acid in apolipoprotein E knockout mice

    DEFF Research Database (Denmark)

    Buus, Niels Henrik; Hansson, Nicolaj Christopher; Rodriguez-Rodriguez, Rosalia;

    2011-01-01

    Oleanolic acid (OA) is a plant triterpenoid steroid with potentially antiatherogenic properties. We investigated whether OA affected atherosclerosis development and vascular function in apolipoprotein E knockout (ApoE(-/-)) mice. ApoE(-/-) mice were fed a high cholesterol Western-type diet in...... combination with OA (100 mg/kg/day), fluvastatin (5 mg/kg/day) or vehicle, with wild type (WT) mice serving as controls. After 8 weeks of treatment atherosclerotic plaque areas in the aortic arch and plasma lipid concentrations were determined. Vasoconstriction and relaxation of the proximal part of aorta...... were investigated in vitro. Inducible nitric oxide synthase (iNOS) was visualized using immunoblotting. As opposed to WT and fluvastatin- and vehicle-treated mice, OA-fed ApoE(-/-) mice gained no weight during the treatment period. Plasma concentrations of total-cholesterol and triglyceride were not...

  3. Piroxicam treatment augments bone abnormalities in interleukin-10 knockout mice

    DEFF Research Database (Denmark)

    Holgersen, Kristine; Dobie, Ross; Farquharson, Colin;

    2015-01-01

    inflammation in an experimental colitis model. METHODS: Colitis was induced in interleukin-10 knockout mice (PAC IL-10 k.o.) by peroral administration of piroxicam for 12 days. The degree of colitis was assessed by clinical, macroscopic, and microscopic evaluation. Trabecular and cortical bone...... microarchitecture of tibia were determined using micro-computed tomography. Moreover, the serum levels of bone formation and bone resorption biomarkers were measured, and inflammatory protein profiling was performed on colons. RESULTS: PAC IL-10 k.o. mice developed severe colitis, characterized by hyperplasia and...... focal transmural inflammation, which was consistent with Crohn's disease-like pathology. The gut inflammation was accompanied by a 14% and 12% reduction in trabecular thickness relative to piroxicam-treated wild type and untreated wild type mice, respectively (P < 0.001). The trabecular bone structure...

  4. RF-knockout Extraction System for the CNAO Synchrotron

    CERN Document Server

    Carmignani, Nicola; Serio, Mario; Balbinot, Giovanni; Bressi, Erminia; Caldara, Michele; Pullia, Marco; Bosser, Jacques; Venchi, Giuseppe

    2010-01-01

    The National Centre for Oncological Hadrontherapy (CNAO) is a centre in Italy for the treatment of patients affected by tumours with proton and carbon ions beams accelerated in a synchrotron. The synchrotron extraction method is based on the use of a betatron core. This work aims to verify, through a theoretical study and a simulation, the possibility of using the RF-knockout extraction method exploiting the existing hardware. A simulation program has been written to simulate the extraction system of the synchrotron with the purpose to define the parameters of the radio frequency. Two types of radio frequencies have been compared in order to obtain a constant spill with the minimum ripple: a carrier wave with a frequency and amplitude modulation, and a gaussian narrow band noise modulated in amplitude. Results of the simulation and considerations on the kicker characteristics are presented

  5. Medium effects on spin observables of proton knockout reactions

    International Nuclear Information System (INIS)

    Medium modifications of the properties of bound nucleons and mesons are investigated by means of medium energy quasi free proton knockout reactions with polarized incident protons. The sensitivity of the spin observables of these reactions to modifications of the nucleon and meson properties is studied using the Bonn one-boson exchange model of the nucleon-nucleon interaction. A method proposed to extract the pp analysing power in medium from the (p, 2 p) asymmetries indicates a reduction of this quantity compared to its free space value. This reduction is linked to modifications of masses and coupling constants of the nucleons and mesons in the nucleus. The implications of these modifications for another spin observable to be measured in the future are discussed. (author). 39 refs, 9 figs

  6. Increased desensitization of dopamine D₂ receptor-mediated response in the ventral tegmental area in the absence of adenosine A(2A) receptors.

    Science.gov (United States)

    Al-Hasani, R; Foster, J D; Metaxas, A; Ledent, C; Hourani, S M O; Kitchen, I; Chen, Y

    2011-09-01

    G-protein coupled receptors interact to provide additional regulatory mechanisms for neurotransmitter signaling. Adenosine A(2A) receptors are expressed at a high density in striatal neurons, where they closely interact with dopamine D₂ receptors and modulate effects of dopamine and responses to psychostimulants. A(2A) receptors are expressed at much lower densities in other forebrain neurons but play a more prominent yet opposing role to striatal receptors in response to psychostimulants in mice. It is, therefore, possible that A(2A) receptors expressed at low levels elsewhere in the brain may also regulate neurotransmitter systems and modulate neuronal functions. Dopamine D₂ receptors play an important role in autoinhibition of neuronal firing in dopamine neurons of the ventral tegmental area (VTA) and dopamine release in other brain areas. Here, we examined the effect of A(2A) receptor deletion on D₂ receptor-mediated inhibition of neuronal firing in dopamine neurons in the VTA. Spontaneous activity of dopamine neurons was recorded in midbrain slices, and concentration-dependent effects of the dopamine D₂ receptor agonist, quinpirole, was compared between wild-type and A(2A) knockout mice. The potency of quinpirole applied in single concentrations and the expression of D₂ receptors were not altered in the VTA of the knockout mice. However, quinpirole applied in stepwise escalating concentrations caused significantly reduced maximal inhibition in A(2A) knockout mice, indicating an enhanced agonist-induced desensitization of D₂ receptors in the absence of A(2A) receptors. The A(2A) receptor agonist, CGS21680, did not exert any effect on dopamine neuron firing or response to quinpirole, revealing a novel non-pharmacological interaction between adenosine A(2A) receptors and dopaminergic neurotransmission in midbrain dopamine neurons. Altered D₂ receptor desensitization may result in changes in dopamine neuron firing rate and pattern and dopamine

  7. Preaxial Polydactyly in Sost/Sostdc1 Double Knockouts

    Energy Technology Data Exchange (ETDEWEB)

    Yee, C M; Collette, N M; Loots, G G

    2011-07-29

    In the United States, {approx}5% are born with congenital birth defects due to abnormal function of cellular processes and interactions. Sclerosteosis, a rare autosomal recessive disease, causes hyperostosis of the axial and appendicular skeleton, and patients present radial deviation, digit syndactyly, nail dysplasia, and overall high bone mineral density. Sclerosteosis is due to a loss of function of sclerostin (Sost). Sost is a Wnt (abbrev.) antagonist; when mutated, nonfunctional Sost results in hyperactive osteoblast activity which leads to abnormal high bone mass. Previous studies have shown that Sost overexpression in transgenic mice causes reduced bone mineral density and a variety of limb phenotypes ranging from lost, fused, and split phalanges. Consistent with clinical manifestations of Sclerosteosis, Sost knockout mice exhibit increased generalized bone mineral density and syndactyly of the digits. Sostdc1 is a paralog of Sost that has also been described as an antagonist of Wnt signaling, in developing tooth buds. Unlike Sost knockouts, Sostdc1 null mice do not display any limb abnormalities. To determine if Sost and Sostdc1 have redundant functions during limb patterning, we examined Sost; Sostdc1 mice determined that they exhibit a novel preaxial polydactyly phenotype with a low penetrance. LacZ staining, skeletal preparations, and in situ hybridization experiments were used to help characterize this novel phenotype and understand how this phenotype develops. We find Sost and Sostdc1 to have complementary expression patterns during limb development, and the loss of their expression alters the transcription of several key limb regulators, such as Fgf8, Shh and Grem.

  8. Reduced Extinction of Hippocampal-Dependent Memories in CPEB Knockout Mice

    Science.gov (United States)

    Zearfoss, N. Ruth; Richter, Joel D.; Berger-Sweeney, Joanne

    2006-01-01

    CPEB is a sequence-specific RNA binding protein that regulates translation at synapses. In neurons of CPEB knockout mice, synaptic efficacy is reduced. Here, we have performed a battery of behavioral tests and find that relative to wild-type animals, CPEB knockout mice, although similar on many baseline behaviors, have reduced extinction of…

  9. Kidney development and gene expression in the HIF2alpha knockout mouse.

    Science.gov (United States)

    Steenhard, Brooke M; Freeburg, Paul B; Isom, Kathryn; Stroganova, Larysa; Borza, Dorin-Bogdan; Hudson, Billy G; St John, Patricia L; Zelenchuk, Adrian; Abrahamson, Dale R

    2007-04-01

    The hypoxia-inducible transcription factor-2 (HIF2), a heterodimer composed of HIF2alpha and HIF1beta subunits, drives expression of genes essential for vascularization, including vascular endothelial growth factor (VEGF) and VEGF receptor-2 (VEGFR-2, Flk-1). Here, we used a HIF2alpha/LacZ transgenic mouse to define patterns of HIF2alpha transcription during kidney development and maturation. Our results from embryonic heterozygotes showed HIF2alpha/LacZ expression by apparently all renal endothelial cells. At 4 weeks of age, glomerular mesangial and vascular smooth muscle cells were also positive together with endothelial cells. These expression patterns were confirmed by electron microscopy using Bluo-gal as a beta-galactosidase substrate. Small numbers of glomerular and tubular epithelial cells were also positive at all stages examined. Light and electron microscopic examination of kidneys from HIF2alpha null embryos showed no defects in renal vascular development or nephrogenesis. Similarly, the same amounts of Flk-1 protein were seen on Western blots of kidney extracts from homozygous and heterozygous HIF2alpha mutants. To examine responsiveness of HIF2alpha null kidneys to hypoxia, embryonic day 13.5 metanephroi were cultured in room air or in mild (5% O(2)) hypoxia. For both heterozygous and null samples, VEGF mRNA levels doubled when metanephroi were cultured in mild hypoxia. Anterior chamber grafts of embryonic HIF2alpha knockouts were morphologically indistinguishable from heterozygous grafts. Endothelial markers, platelet endothelial cell adhesion molecule and BsLB4, as well as glomerular epithelial markers, GLEPP1 and WT-1, were all expressed appropriately. Finally, we undertook quantitative real-time polymerase chain reaction of kidneys from HIF2alpha null embryos and wild-type siblings and found no compensatory up-regulation of HIF1alpha or -3alpha. Our results show that, although HIF2alpha was widely transcribed by kidney endothelium and vascular

  10. Impairment of Bilirubin Clearance and Intestinal Interleukin-6 Expression in Bile Duct-Ligated Vitamin D Receptor Null Mice

    OpenAIRE

    Ishizawa, Michiyasu; Ogura, Michitaka; Kato, Shigeaki; Makishima, Makoto

    2012-01-01

    The vitamin D receptor (VDR) mediates the physiological and pharmacological actions of 1α,25-dihydroxyvitamin D3 in bone and calcium metabolism, cellular growth and differentiation, and immunity. VDR also responds to secondary bile acids and belongs to the NR1I subfamily of the nuclear receptor superfamily, which regulates expression of xenobiotic metabolism genes. When compared to knockout mouse investigations of the other NR1I nuclear receptors, pregnane X receptor and constitutive androsta...

  11. Atherosclerosis in low density lipoprotein receptor knockout mice fed cholesterol and soybean oil

    DEFF Research Database (Denmark)

    Mortensen, Alicja; Olsen, P.; Frandsen, H.

    1999-01-01

    In order to study aortic atherosclerosis and atherosclerotic response to dietary cholesterol and soybean oil in homozygous LDLR-/- mice, the 16 weeks old animals were randomized in 4 groups either fed standard diet (no cholesterol added, group I, 12 male and 12 female), standard diet added 0.......5% cholesterol (group II, 12 male and 12 female), standard diet added 10% soybean oil (group Iii, 7 male) or standard diet added 0.5% cholesterol and 10% soybean oil (group IV, 7 male) for 14 weeks. At termination, the plasma cholesterol of males was: 9.4 mmol/I +/- 0.3 (SD) (group I), 34.4 +/- 6.2 (group II), 9...

  12. Attenuated renovascular constrictor responses to angiotensin II in adenosine 1 receptor knockout mice

    DEFF Research Database (Denmark)

    Hansen, Pernille B; Hashimoto, Seiji; Briggs, Josie; Schnermann, Jurgen

    2003-01-01

    control conditions (450.5 +/- 60 vs. 475.2 +/- 62.5 microl/min) but fell significantly less in A1AR -/- mice during infusion of ANG II at 1.5 ng/min (A1AR +/+: 242 +/- 32.5 microl/min, A1AR -/-: 371 +/- 42 microl/min; P = 0.03). Bolus injection of 1, 10, and 100 ng of ANG II reduced renal blood flow and...

  13. Atorvastatin Improves Plaque Stability in ApoE-Knockout Mice by Regulating Chemokines and Chemokine Receptors

    OpenAIRE

    Nie, Peng; Li, Dandan; Hu, Liuhua; Jin, Shuxuan; Yu, Ying; CAI, ZHAOHUA; SHAO, QIN; Shen, Jieyan; Yi, Jing; Xiao, Hua; Shen, Linghong; He, Ben

    2014-01-01

    It is well documented that statins protect atherosclerotic patients from inflammatory changes and plaque instability in coronary arteries. However, the underlying mechanisms are not fully understood. Using a previously established mouse model for vulnerable atherosclerotic plaque, we investigated the effect of atorvastatin (10 mg/kg/day) on plaque morphology. Atorvastatin did not lower plasma total cholesterol levels or affect plaque progression at this dosage; however, vulnerable plaque numb...

  14. 5-HT1B receptors and serotonin function : microdialysis studies in rats and knockout mice

    NARCIS (Netherlands)

    Groote, Lotte de

    2002-01-01

    The serotonergic system is an important target in the treatment of psychiatric disorders. Selective serotonin reuptake inhibitors (SSRIs) are widely used in the treatment of depression and anxiety disorders, but a clinical problem is the delayed therapeutic effect. This delayed onset of action sugge

  15. Atherosclerosis in low density lipoprotein receptor knockout mice fed cholesterol and soybean oil

    DEFF Research Database (Denmark)

    Mortensen, Alicja; Olsen, P.; Frandsen, H.

    1999-01-01

    In order to study aortic atherosclerosis and atherosclerotic response to dietary cholesterol and soybean oil in homozygous LDLR-/- mice, the 16 weeks old animals were randomized in 4 groups either fed standard diet (no cholesterol added, group I, 12 male and 12 female), standard diet added 0.5% c...

  16. Erythropoiesis- and Thrombopoiesis-Characterizing Parameters in Adenosine A(3) Receptor Knock-Out Mice

    Czech Academy of Sciences Publication Activity Database

    Hofer, Michal; Pospíšil, Milan; Dušek, L.; Hoferová, Zuzana; Weiterová, Lenka

    2013-01-01

    Roč. 62, č. 3 (2013), s. 305-311. ISSN 0862-8408 R&D Projects: GA ČR(CZ) GAP303/11/0128 Institutional support: RVO:68081707 Keywords : ELEVATING EXTRACELLULAR ADENOSINE * COLONY-STIMULATING FACTOR * HEMATOPOIETIC PROGENITOR CELLS Subject RIV: BO - Biophysics Impact factor: 1.487, year: 2013

  17. Serotonergic hyperinnervation and effective serotonin blockade in an FGF receptor developmental model of psychosis

    OpenAIRE

    Klejbor, Ilona; Kucinski, Aaron; Wersinger, Scott R.; Corso, Thomas; Spodnik, Jan H.; Dziewiątkowski, Jerzy; Moryś, Janusz; Hesse, Renae A.; Rice, Kenner C.; Miletich, Robert; Stachowiak, Ewa K.; Stachowiak, Michal K.

    2009-01-01

    The role of fibroblast growth factor receptors (FGFR) in normal brain development has been well-documented in transgenic and knock-out mouse models. Changes in FGF and its receptors have also been observed in schizophrenia and related developmental disorders. The current study examines a transgenic th(tk-)/th(tk-) mouse model with FGF receptor signaling disruption targeted to dopamine (DA) neurons, resulting in neurodevelopmental, anatomical, and biochemical alterations similar to those obser...

  18. Tsh receptor

    OpenAIRE

    Frauman, Albert

    2013-01-01

    The TSH receptor is a member of the G protein-coupled receptor(GPCR)family. It is one of the glycoprotein hormone receptors, which also includes the FSH and LH/CG receptors. The TSH receptor mediates the action of the pituitary-derived glycoprotein, TSH (thyroid stimulating hormone, thyrotropin or thyrotrophin). TSH binds to the TSH receptor which is located on thyroid follicular cells (but is also expressed in extrathyroidal sites). Glycosylation of the TSH receptor occurs, as does cleavage ...

  19. Roles of transferrin receptors in erythropoiesis.

    Science.gov (United States)

    Kawabata, Hiroshi; Sakamoto, Soichiro; Masuda, Taro; Uchiyama, Tatsuki; Ohmori, Katsuyuki; Koeffler, H Phillip; Takaori-Kondo, Akifumi

    2016-07-01

    Erythropoiesis requires large amounts of iron for hemoglobin synthesis, which is mainly provided by macrophages and the intestines in a transferrin (Tf)-bound form. Bone marrow erythroblasts incorporate Tf through endocytosis, which is mediated by transferrin receptor 1 (TFR1). Recently, human TFR1, aside from its role as a Tf receptor, was also found to be a receptor for the H-subunit of ferritin (FTH). In humans, hematopoietic erythroid precursor cells express high levels of TFR1 and specifically take up the FTH homopolymer (H-ferritin). H-ferritin inhibits the formation of burst forming unit-erythroid colonies in vitro. TFR2, which is also a Tf receptor, is predominantly expressed in hepatocytes and erythroid precursor cells. In the liver, TFR2 forms a complex with HFE, a hereditary hemochromatosis-associated protein, and acts as an iron sensor. In mice, hepatocyte-specific knockout of the TFR2 gene has been shown to cause systemic iron-overload with decreased expression of hepcidin, the central regulator of iron homeostasis. In erythroid cells, TFR2 forms a complex with the erythropoietin receptor and facilitates its trafficking to the cell membrane. Moreover, hematopoietic cell-specific knockout of the TFR2 gene causes microcytic erythrocytosis in mice. This review focuses on the molecular evolution and functions of these TFRs and their ligands. PMID:27498743

  20. 不同体质指数心力衰竭患者的血浆apelin水平及相关因素分析%Study on levels of plasma apelin and its related factors in heart failure patients with different body mass index

    Institute of Scientific and Technical Information of China (English)

    郑毅; 王勇; 付研

    2010-01-01

    Objective To investigate the correlations of body mass index (BMI) with plasma apelin, waist-hip ratio (WHR), fasting plasma glucose (FPG), glycosylated hemoglobin (HbAlc), biochemical indicator, blood fat and ultrasonic cardiogram (UCG) figures in patients with congestive heart failure (CHF).Methods A total of 41 elderly CHF patients (20 males and 21 females, aged 66.0±12.3 years) were divided into 3 groups according to BMI: normal group (n= 16), overweight group (n=13) and obese group (n= 12).And they were also divided into 2 subgroups: grade Ⅲ heart function group (n=22) and grade Ⅳ heart function group (n= 19).Enzyme linked immunosorbent assay was used to detect the levels of plasma apelin, and BMI, WHR, C-reactive protein (CRP), FPG, creatine kinase (CK), CK-MB, blood fat, electrolyte and UCG of all patients were detected .Results There were significant differences in waist circumference, hip circumference and WHR among the 3 groups (P 0.05).The apelin level was higher in obese group than in normal group and in overweight group ((0.48±0.15) mg/L vs.(0.18±0.15) mg/L and (0.27±0.06) mg/L, both P<0.01].And the plasma apelin level was higher in grade Ⅳ heart function group than in grade Ⅲ heart function group [(0.35±0.16) mg/L vs.(0.26±0.13)mg/L, P<0.05].The level of plasma apelin was positively correlated with BMI, white blood cell, CK, hemoglobin and TG, and was negatively correlated with cardiac function and LVEF.The influencing factors for the plasma apelin were BMI (β=0.672, P<0.01), age (β=0.244, P<0.05) and HDL (β=-1.000, P<0.01).Conclusions The plasma apelin level is closely correlated with the development of heart failure.Cardiac dysfunction is more severer when the level of plasma apelin is higher.The high level of plasma apelin may be one of factors for the higher survival rate of the obese CHF patients.Plasma apelin level may be used as an indicator of state of illness.%目的 探讨充血性心力衰竭患者的体质指数与血

  1. Final-state interactions in two-nucleon knockout reactions

    Science.gov (United States)

    Colle, Camille; Cosyn, Wim; Ryckebusch, Jan

    2016-03-01

    Background: Exclusive two-nucleon knockout after electroexcitation of nuclei [A (e ,e'N N ) in brief] is considered to be a primary source of information about short-range correlations (SRCs) in nuclei. For a proper interpretation of the data, final-state interactions (FSIs) need to be theoretically controlled. Purpose: Our goal is to quantify the role of FSI effects in exclusive A (e ,e'p N ) reactions for four target nuclei representative of the whole mass region. Our focus is on processes that are SRC driven. We investigate the role of FSIs for two characteristic detector setups corresponding to "small" and "large" coverage of the available phase space. Method: Use is made of a factorized expression for the A (e ,e'p N ) cross section that is proportional to the two-body center-of-mass (c.m.) momentum distribution of close-proximity pairs. The A (e ,e'p p ) and A (e ,e'p n ) reactions for the target nuclei 12C,27Al,56Fe, and 208Pb are investigated. The elastic attenuation mechanisms in the FSIs are included using the relativistic multiple-scattering Glauber approximation (RMSGA). Single-charge exchange (SCX) reactions are also included. We introduce the nuclear transparency TAp N, defined as the ratio of exclusive (e ,e'p N ) cross sections on nuclei to those on "free" nucleon pairs, as a measure for the aggregated effect of FSIs in p N knockout reactions from nucleus A . A toy model is introduced in order to gain a better understanding of the A dependence of TAp N. Results: The transparency TAp N drops from 0.2 -0.3 for 12C to 0.04 -0.07 for 208Pb. For all considered kinematics, the mass dependence of TAp N can be captured by the power law TAp N∝A-λ with 0.4 ≲λ ≲0.5 . Apart from an overall reduction factor, we find that FSIs only modestly affect the distinct features of SRC-driven A (e ,e'p N ) which are dictated by the c.m. distribution of close-proximity pairs. Conclusion: The SCX mechanisms represent a relatively small (order of a few percent

  2. Estrogen receptor transcription and transactivation: Estrogen receptor knockout mice - what their phenotypes reveal about mechanisms of estrogen action

    OpenAIRE

    Curtis Hewitt, Sylvia; F Couse, John; S Korach, Kenneth

    2000-01-01

    Natural, synthetic and environmental estrogens have numerous effects on the development and physiology of mammals. Estrogen is primarily known for its role in the development and functioning of the female reproductive system. However, roles for estrogen in male fertility, bone, the circulatory system and immune system have been established by clinical observations regarding sex differences in pathologies, as well as observations following menopause or castration. The primary mechanism of estr...

  3. Reduced body weight is a common effect of gene knockout in mice

    Directory of Open Access Journals (Sweden)

    Lawler Maureen P

    2008-01-01

    Full Text Available Abstract Background During a search for obesity candidate genes in a small region of the mouse genome, we noticed that many genes when knocked out influence body weight. To determine whether this was a general feature of gene knockout or a chance occurrence, we surveyed the Jackson Laboratory Mouse Genome Database for knockout mouse strains and their phenotypes. Body weights were not available for all strains so we also obtained body weight information by contacting a random sample of investigators responsible for a knockout strain. Results We classified each knockout mouse strain as (1 lighter and smaller, (2 larger and heavier, or (3 the same weight, relative to control mice. We excluded knockout strains that died early in life, even though this type of lethality is often associated with a small embryo or reduced body size. Based on a dataset of 1,977 knockout strains, we found that that 31% of viable knockout mouse strains weighed less and an additional 3% weighed more than did controls. Conclusion Body weight is potentially a latent variable in about a third of experiments that use knockout mice and should be considered in interpreting experimental outcomes, e.g., in studies of hypertension, drug and hormone metabolism, organ development, cell proliferation and apoptosis, digestion, heart rate, or atherosclerosis. If we assume that the knockout genes we surveyed are representative then upward of 6,000 genes are predicted to influence the size of a mouse. Body weight is highly heritable, and numerous quantitative trait loci have been mapped in mice, but "multigenic" is an insufficient term for the thousands of loci that could contribute to this complex trait.

  4. Interleukin-15 affects serotonin system and exerts antidepressive effects through IL15Rα receptor

    OpenAIRE

    Wu, Xiaojun; Hsuchou, Hung; Kastin, Abba J; He, Yi; Khan, Reas S.; Stone, Kirsten P.; Cash, Michael S.; Pan, Weihong

    2010-01-01

    Contrary to the reduction of depressive-like behavior observed in several strains of cytokine receptor knockout mice, mice lacking the specific receptor for interleukin (IL)-15 showed increased immobility in tail suspension and modified forced swimming tests. There was also a reduction in social interactions. The hippocampus of the IL15Rα knockout mice had decreased mRNA for 5-HT1A, increased mRNA for 5-HT2C, and region-specific changes of serotonin reuptake transporter (SERT) immunoreactivit...

  5. Abolished synthesis of cholic acid reduces atherosclerotic development in apolipoprotein E knockout mice[S

    OpenAIRE

    Slätis, Katharina; Gåfvels, Mats; Kannisto, Kristina; Ovchinnikova, Olga; Paulsson-Berne, Gabrielle; Parini, Paolo; Jiang, Zhao-Yan; Eggertsen, Gösta

    2010-01-01

    To investigate the effects of abolished cholic acid (CA) synthesis in the ApoE knockout model [apolipoprotein E (apoE) KO],a double-knockout (DKO) mouse model was created by crossbreeding Cyp8b1 knockout mice (Cyp8b1 KO), unable to synthesize the primary bile acid CA, with apoE KO mice. After 5 months of cholesterol feeding, the development of atherosclerotic plaques in the proximal aorta was 50% less in the DKO mice compared with the apoE KO mice. This effect was associated with reduced inte...

  6. Drop tests of the Three Mile Island knockout canister

    International Nuclear Information System (INIS)

    A type of Three Mile Island Unit 2 (TMI-2) defueling canister, called a ''knockout'' canister, was subjected to a series of drop tests at the Oak Ridge National Laboratory's Drop Test Facility. These tests were designed to confirm the structural integrity of internal fixed neutron poisons in support of a request for NRC licensing of this type of canister for the shipment of TMI-2 reactor fuel debris to the Idaho National Engineering Laboratory (INEL) for the Core Examination R and D Program. Work conducted at the Oak Ridge National Laboratory included (1) precise physical measurements of the internal poison rod configuration before assembly, (2) canister assembly and welding, (3) nondestructive examination (an initial hydrostatic pressure test and an x-ray profile of the internals before and after each drop test), (4) addition of a simulated fuel load, (5) instrumentation of the canister for each drop test, (6) fabrication of a cask simulation vessel with a developed and tested foam impact limiter, (7) use of refrigeration facilities to cool the canister to well below freezing prior to three of the drops, (8) recording the drop test with still, high-speed, and normal-speed photography, (9) recording the accelerometer measurements during impact, (10) disassembly and post-test examination with precise physical measurements, and (11) preparation of the final report

  7. The biology of novel animal genes: Mouse APEX gene knockout

    Energy Technology Data Exchange (ETDEWEB)

    MacInnes, M.; Altherr, M.R.; Ludwig, D. [Los Alamos National Lab., NM (United States); Pedersen, R.; Mold, C. [Univ. of California, San Francisco, CA (United States)

    1997-07-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The controlled breeding of novel genes into mice, including the gene knockout (KO), or conversely by adding back transgenes provide powerful genetic technologies that together suffice to determine in large part the biological role(s) of novel genes. Inbred mouse remains the best understood and most useful mammalian experimental system available for tackling the biology of novel genes. The major mammalian apurinic/apyrimidinic (AP) endonuclease (APE), is involved in a key step in the repair of spontaneous and induced AP sites in DNA. Efficient repair of these lesions is imperative to prevent the stable incorporation of mutations into the cellular genome which may lead to cell death or transformation. Loss or modulation of base excison repair activity in vivo may elevate the spontaneous mutation rate in cells, and may lead to a substantial increase in the incidence of cancer. Despite extensive biochemical analysis, however, the significance of these individual APE functions in vivo has not been elucidated. Mouse embryonic stem (ES) cells heterozygous for a deletion mutation in APE have been generated and whole animals containing the APE mutation have been derived from these ES cells. Animals homozygous for the APE null mutation die early in gestation, underscoring the biological significance of this DNA repair gene.

  8. Boolean network model predicts knockout mutant phenotypes of fission yeast.

    Directory of Open Access Journals (Sweden)

    Maria I Davidich

    Full Text Available BOOLEAN NETWORKS (OR: networks of switches are extremely simple mathematical models of biochemical signaling networks. Under certain circumstances, Boolean networks, despite their simplicity, are capable of predicting dynamical activation patterns of gene regulatory networks in living cells. For example, the temporal sequence of cell cycle activation patterns in yeasts S. pombe and S. cerevisiae are faithfully reproduced by Boolean network models. An interesting question is whether this simple model class could also predict a more complex cellular phenomenology as, for example, the cell cycle dynamics under various knockout mutants instead of the wild type dynamics, only. Here we show that a Boolean network model for the cell cycle control network of yeast S. pombe correctly predicts viability of a large number of known mutants. So far this had been left to the more detailed differential equation models of the biochemical kinetics of the yeast cell cycle network and was commonly thought to be out of reach for models as simplistic as Boolean networks. The new results support our vision that Boolean networks may complement other mathematical models in systems biology to a larger extent than expected so far, and may fill a gap where simplicity of the model and a preference for an overall dynamical blueprint of cellular regulation, instead of biochemical details, are in the focus.

  9. Final-state interactions in two-nucleon knockout reactions

    CERN Document Server

    Colle, Camille; Ryckebusch, Jan

    2015-01-01

    Background: Exclusive two-nucleon knockout after electroexcitation of nuclei ($A(e,e'NN)$ in brief) is considered to be a primary source of information about short-range correlations (SRC) in nuclei. For a proper interpretation of the data, final-state interactions (FSI) need to be theoretically controlled. Purpose: Our goal is to quantify the role of FSI effects in exclusive $A(e,e'pN)$ reactions for four target nuclei representative for the whole mass region. Our focus is on processes that are SRC driven. We investigate the role of FSI for two characteristic detector setups corresponding with a "small" and "large" coverage of the available phase space. Results: The transparency $T^{pN}_{A}$, defined as the ratio of exclusive $(e,e'pN)$ cross sections on nuclei to those on "free" nucleon pairs, drops from $ 0.2-0.3 $ for $^{12}$C to $0.04-0.07$ for $^{208}$Pb. For all considered kinematics, the mass dependence of the $T^{pN}_{A}$ can be captured by the power law $T^{pN}_{A} \\propto A^{- \\lambda}$ with $ 0.4 ...

  10. Generation and characterisation of keratin 7 (K7 knockout mice.

    Directory of Open Access Journals (Sweden)

    Aileen Sandilands

    Full Text Available Keratin 7 (K7 is a Type II member of the keratin superfamily and despite its widespread expression in different types of simple and transitional epithelia, its functional role in vivo remains elusive, in part due to the lack of any appropriate mouse models or any human diseases that are associated with KRT7 gene mutations. Using conventional gene targeting in mouse embryonic stem cells, we report here the generation and characterisation of the first K7 knockout mouse. Loss of K7 led to increased proliferation of the bladder urothelium although this was not associated with hyperplasia. K18, a presumptive type I assembly partner for K7, showed reduced expression in the bladder whereas K20, a marker of the terminally differentiated superficial urothelial cells was transcriptionally up-regulated. No other epithelia were seen to be adversely affected by the loss of K7 and western blot and immunofluorescence microscopy analysis revealed that the expression of K8, K18, K19 and K20 were not altered in the absence of K7, with the exception of the kidney where there was reduced K18 expression.

  11. Autism spectrum disorder traits in Slc9a9 knock-out mice.

    Science.gov (United States)

    Yang, Lina; Faraone, Stephen V; Zhang-James, Yanli

    2016-04-01

    Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders which begin in childhood and persist into adulthood. They cause lifelong impairments and are associated with substantial burdens to patients, families, and society. Genetic studies have implicated the sodium/proton exchanger (NHE) nine gene, Slc9a9, to ASDs and attention-deficit/hyperactivity disorder(ADHD). Slc9a9 encodes, NHE9, a membrane protein of the late recycling endosomes. The recycling endosome plays an important role in synapse development and plasticity by regulating the trafficking of membrane neurotransmitter receptors and transporters. Here we tested the hypothesis that Slc9a9 knock-out (KO) mice would show ADHD-like and ASD-like traits. Ultrasonic vocalization (USV) recording showed that Slc9a9 KO mice emitted fewer calls and had shorter call durations, which suggest communication impairment. Slc9a9 KO mice lacked a preference for social novelty, but did not show deficits in social approach; Slc9a9 KO mice spent more time self-grooming, an indicator for restricted and repetitive behavior. We did not observe hyperactivity or other behavior impairments which are commonly comorbid with ASDs in human, such as anxiety-like behavior. Our study is the first animal behavior study that links Slc9a9 to ASDs. By eliminatingNHE9 activity, it provides strong evidence that lack of Slc9a9leads to ASD-like behaviors in mice and provides the field with a new mouse model of ASDs. PMID:26755066

  12. Blue-Green Algae Inhibit the Development of Atherosclerotic Lesions in Apolipoprotein E Knockout Mice.

    Science.gov (United States)

    Ku, Chai Siah; Kim, Bohkyung; Pham, Tho X; Yang, Yue; Wegner, Casey J; Park, Young-Ki; Balunas, Marcy; Lee, Ji-Young

    2015-12-01

    Hyperlipidemia and inflammation contribute to the development of atherosclerotic lesions. Our objective was to determine antiatherogenic effect of edible blue-green algae (BGA) species, that is, Nostoc commune var. sphaeroides Kützing (NO) and Spirulina platensis (SP), in apolipoprotein E knockout (ApoE(-/-)) mice, a well-established mouse model of atherosclerosis. Male ApoE(-/-) mice were fed a high-fat/high-cholesterol (HF/HC, 15% fat and 0.2% cholesterol by wt) control diet or a HF/HC diet supplemented with 5% (w/w) of NO or SP powder for 12 weeks. Plasma total cholesterol (TC) and triglycerides (TG) were measured, and livers were analyzed for histology and gene expression. Morphometric analysis for lesions and immunohistochemical analysis for CD68 were conducted in the aorta and the aortic root. NO supplementation significantly decreased plasma TC and TG, and liver TC, compared to control and SP groups. In the livers of NO-fed mice, less lipid droplets were present with a concomitant decrease in fatty acid synthase protein levels than the other groups. There was a significant increase in hepatic low-density lipoprotein receptor protein levels in SP-supplemented mice than in control and NO groups. Quantification of aortic lesions by en face analysis demonstrated that both NO and SP decreased aortic lesion development to a similar degree compared with control. While lesions in the aortic root were not significantly different between groups, the CD68-stained area in the aortic root was significantly lowered in BGA-fed mice than controls. In conclusion, both NO and SP supplementation decreased the development of atherosclerotic lesions, suggesting that they may be used as a natural product for atheroprotection. PMID:26566121

  13. Comprehensive behavioral analysis of pituitary adenylate cyclase-activating polypeptide (PACAP knockout mice

    Directory of Open Access Journals (Sweden)

    Satoko eHattori

    2012-10-01

    Full Text Available Pituitary adenylate cyclase-activating polypeptide (PACAP is a neuropeptide acting as a neurotransmitter, neuromodulator, or neurotrophic factor. PACAP is widely expressed throughout the brain and exerts its functions through the PACAP-specific receptor (PAC1. Recent studies reveal that genetic variants of the PACAP and PAC1 genes are associated with mental disorders, and several behavioral abnormalities of PACAP knockout (KO mice are reported. However, an insufficient number of backcrosses was made using PACAP KO mice on the C57BL/6J background due to their postnatal mortality. To elucidate the effects of PACAP on neuropsychiatric function, the PACAP gene was knocked out in F1 hybrid mice (C57BL/6J x 129SvEv for appropriate control of the genetic background. The PACAP KO mice were then subjected to a behavioral test battery. PACAP deficiency had no significant effects on neurological screen. As shown previously, the mice exhibited significantly increased locomotor activity in a novel environment and abnormal anxiety-like behavior, while no obvious differences between genotypes were shown in home cage activity. In contrast to previous reports, the PACAP KO mice showed normal prepulse inhibition and slightly decreased depression-like behavior. Previous study demonstrates that the social interaction in a resident-intruder test was decreased in PACAP KO mice. On the other hand, we showed that PACAP KO mice exhibited increased social interaction in Crawley’s three-chamber social approach test, although PACAP KO had no significant impact on social interaction in a home cage. PACAP KO mice also exhibited mild performance deficit in working memory in an eight-arm radial maze and the T-maze, while they did not show any significant abnormalities in the left-right discrimination task in the T-maze. These results suggest that PACAP has an important role in the regulation of locomotor activity, social behavior, anxiety-like behavior and, potentially

  14. Decreased Neointimal Extracellular Matrix Formation in RAGE-Knockout Mice After Microvascular Denudation

    Energy Technology Data Exchange (ETDEWEB)

    Groezinger, Gerd, E-mail: gerd.groezinger@med.uni-tuebingen.de; Schmehl, Joerg, E-mail: joerg.schmehl@med.uni-tuebingen.de; Bantleon, Ruediger, E-mail: ruediger.bantleon@med.uni-tuebingen.de; Kehlbach, Rainer, E-mail: rainer.kehlbach@uni-tuebingen.de [University of Tuebingen, Department of Diagnostic and Interventional Radiology (Germany); Mehra, Tarun, E-mail: tarun.mehra@med.uni-tuebingen.de [University of Tuebingen, Department of Dermatology (Germany); Claussen, Claus, E-mail: gerd.groezinger@med.uni-tuebingen.de; Wiesinger, Benjamin, E-mail: benjamin.wiesinger@med.uni-tuebingen.de [University of Tuebingen, Department of Diagnostic and Interventional Radiology (Germany)

    2012-12-15

    Purpose: To evaluate in vivo the role of RAGE (receptor for advanced glycated end products) in the development of restenosis and neointimal proliferation in RAGE-deficient knockout (KO) mice compared with wild-type (WT) mice in an animal model. Materials and Methods: Sixteen WT and 15 RAGE-deficient mice underwent microvascular denudation of the common femoral artery under general anaesthesia. Contralateral arteries underwent a sham operation and served as controls. Four weeks after the intervention, all animals were killed, and paraformaldehyde-fixed specimens of the femoral artery were analysed with different stains (hematoxylin and eosin and Elastica van Gieson) and several different types of immunostaining (proliferating cell nuclear antigen, {alpha}-actin, collagen, von Willebrand factor, RAGE). Luminal area, area of the neointima, and area of the media were measured in all specimens. In addition, colony-formation assays were performed, and collagen production by WT smooth muscle cells (SMCs) and RAGE-KO SMCs was determined. For statistical analysis, P < 0.05 was considered statistically significant. Results: Four weeks after denudation, WT mice showed a 49.6% loss of luminal area compared with 14.9% loss of luminal area in RAGE-deficient mice (sham = 0% loss) (P < 0.001). The neointima was 18.2 (*1000 {mu}m{sup 2} [n = 15) in the WT group compared with only 8.4 (*1000 {mu}m{sup 2} [n = 16]) in the RAGE-KO group. RAGE-KO SMCs showed significantly decreased proliferation activity and production of extracellular matrix protein. Conclusion: RAGE may be shown to play a considerable role in the formation of neointima leading to restenosis after vascular injury.

  15. Tissue inhibitor of metalloproteinase-3 knockout mice exhibit enhanced energy expenditure through thermogenesis.

    Directory of Open Access Journals (Sweden)

    Yohsuke Hanaoka

    Full Text Available Tissue inhibitors of metalloproteinases (TIMPs regulate matrix metalloproteinase activity and maintain extracellular matrix homeostasis. Although TIMP-3 has multiple functions (e.g., apoptosis, inhibition of VEGF binding to VEGF receptor, and inhibition of TNFα converting enzyme, its roles in thermogenesis and metabolism, which influence energy expenditure and can lead to the development of metabolic disorders when dysregulated, are poorly understood. This study aimed to determine whether TIMP-3 is implicated in metabolism by analyzing TIMP-3 knockout (KO mice. TIMP-3 KO mice had higher body temperature, oxygen consumption, and carbon dioxide production than wild-type (WT mice, although there were no differences in food intake and locomotor activity. These results suggest that metabolism is enhanced in TIMP-3 KO mice. Real-time PCR analysis showed that the expression of PPAR-δ, UCP-2, NRF-1 and NRF-2 in soleus muscle, and PGC-1α and UCP-2 in gastrocnemius muscle, was higher in TIMP-3 KO mice than in WT mice, suggesting that TIMP-3 deficiency may increase mitochondrial activity. When exposed to cold for 8 hours to induce thermogenesis, TIMP-3 KO mice had a higher body temperature than WT mice. In the treadmill test, oxygen consumption and carbon dioxide production were higher in TIMP-3 KO mice both before and after starting exercise, and the difference was more pronounced after starting exercise. Our findings suggest that TIMP-3 KO mice exhibit enhanced metabolism, as reflected by a higher body temperature than WT mice, possibly due to increased mitochondrial activity. Given that TIMP-3 deficiency increases energy expenditure, TIMP-3 may present a novel therapeutic target for preventing metabolic disorders.

  16. Alpha-asarone improves striatal cholinergic function and locomotor hyperactivity in Fmr1 knockout mice.

    Science.gov (United States)

    Qiu, Guozhen; Chen, Shengqiang; Guo, Jialing; Wu, Jie; Yi, Yong-Hong

    2016-10-01

    Hyperactivity is a symptom found in several neurological and psychiatric disorders, including Fragile X syndrome (FXS). The animal model of FXS, fragile X mental retardation gene (Fmr1) knockout (KO) mouse, exhibits robust locomotor hyperactivity. Alpha (α)-asarone, a major bioactive component isolated from Acorus gramineus, has been shown in previous studies to improve various disease conditions including central nervous system disorders. In this study, we show that treatment with α-asarone alleviates locomotor hyperactivity in Fmr1 KO mice. To elucidate the mechanism underlying this improvement, we evaluated the expressions of various cholinergic markers, as well as acetylcholinesterase (AChE) activity and acetylcholine (ACh) levels, in the striatum of Fmr1 KO mice. We also analyzed the AChE-inhibitory activity of α-asarone. Striatal samples from Fmr1 KO mice showed decreased m1 muscarinic acetylcholine receptor (m1 mAChR) expression, increased AChE activity, and reduced ACh levels. Treatment with α-asarone improved m1 mAChR expression and ACh levels, and attenuated the increased AChE activity. In addition, α-asarone dose-dependently inhibited AChE activity in vitro. These results indicate that direct inhibition of AChE activity and up-regulation of m1 mAChR expression in the striatum might contribute to the beneficial effects of α-asarone on locomotor hyperactivity in Fmr1 KO mice. These findings might improve understanding of the neurobiological mechanisms responsible for locomotor hyperactivity. PMID:27316341

  17. Motor dysfunction in cerebellar Purkinje cell-specific vesicular GABA transporter knockout mice

    Directory of Open Access Journals (Sweden)

    Mikiko eKayakabe

    2014-01-01

    Full Text Available γ-Aminobutyric acid (GABA is a major inhibitory neurotransmitter in the adult mammalian central nervous system and plays modulatory roles in neural development. The vesicular GABA transporter (VGAT is an essential molecule for GABAergic neurotransmission due to its role in vesicular GABA release. Cerebellar Purkinje cells (PCs are GABAergic projection neurons that are indispensable for cerebellar function. To elucidate the significance of VGAT in cerebellar PCs, we generated and characterized PC-specific VGAT knockout (L7-VGAT mice. VGAT mRNAs and proteins were specifically absent in the 40-week-old L7-VGAT PCs. The morphological charactereistics, such as lamination and foliation of the cerebellar cortex, of the L7-VGAT mice were similar to those of the control littermate mice. Moreover, the protein expression levels and patterns of pre- (calbindin and parvalbumin and postsynaptic (GABA-A receptor α1 subunit (GABAARα1 and gephyrin molecules between the L7-VGAT and control mice were similar in the deep cerebellar nuclei that receive PC projections. However, the L7-VGAT mice performed poorly in the accelerating rotarod test and displayed ataxic gait in the footprint test. The L7-VGAT mice also exhibited severer ataxia as VGAT deficits progressed. These results suggest that VGAT in cerebellar Purkinje cells is not essential for the rough maintenance of cerebellar structure, but does play an important role in motor coordination. The L7-VGAT mice are a novel model of ataxia without PC degeneration, and would also be useful for studying the role of Purkinje cells in cognition and emotion.

  18. The hallucinogen N,N-dimethyltryptamine (DMT) is an endogenous sigma-1 receptor regulator.

    Science.gov (United States)

    Fontanilla, Dominique; Johannessen, Molly; Hajipour, Abdol R; Cozzi, Nicholas V; Jackson, Meyer B; Ruoho, Arnold E

    2009-02-13

    The sigma-1 receptor is widely distributed in the central nervous system and periphery. Originally mischaracterized as an opioid receptor, the sigma-1 receptor binds a vast number of synthetic compounds but does not bind opioid peptides; it is currently considered an orphan receptor. The sigma-1 receptor pharmacophore includes an alkylamine core, also found in the endogenous compound N,N-dimethyltryptamine (DMT). DMT acts as a hallucinogen, but its receptor target has been unclear. DMT bound to sigma-1 receptors and inhibited voltage-gated sodium ion (Na+) channels in both native cardiac myocytes and heterologous cells that express sigma-1 receptors. DMT induced hypermobility in wild-type mice but not in sigma-1 receptor knockout mice. These biochemical, physiological, and behavioral experiments indicate that DMT is an endogenous agonist for the sigma-1 receptor. PMID:19213917

  19. Rare complete knockouts in humans: population distribution and significant role in autism spectrum disorders

    Science.gov (United States)

    Lim, Elaine T.; Raychaudhuri, Soumya; Sanders, Stephan J.; Stevens, Christine; Sabo, Aniko; MacArthur, Daniel G.; Neale, Benjamin M.; Kirby, Andrew; Ruderfer, Douglas M.; Fromer, Menachem; Lek, Monkol; Liu, Li; Flannick, Jason; Ripke, Stephan; Nagaswamy, Uma; Muzny, Donna; Reid, Jeffrey G.; Hawes, Alicia; Newsham, Irene; Wu, Yuanqing; Lewis, Lora; Dinh, Huyen; Gross, Shannon; Wang, Li-San; Lin, Chiao-Feng; Valladares, Otto; Gabriel, Stacey B.; dePristo, Mark; Altshuler, David M.; Purcell, Shaun M.; State, Matthew W.; Boerwinkle, Eric; Buxbaum, Joseph D.; Cook, Edwin H.; Gibbs, Richard A.; Schellenberg, Gerard D.; Sutcliffe, James S.; Devlin, Bernie; Roeder, Kathryn; Daly, Mark J.

    2013-01-01

    SUMMARY To characterize the role of rare complete human knockouts in autism spectrum disorders (ASD), we identify genes with homozygous or compound heterozygous loss-of-function (LoF) variants (defined as nonsense and essential splice sites) from exome sequencing of 933 cases and 869 controls. We identify a two-fold increase in complete knockouts of autosomal genes with low rates of LoF variation (≤5% frequency) in cases and estimate a 3% contribution to ASD risk by these events, confirming this observation in an independent set of 563 probands and 4,605 controls. Outside the pseudo-autosomal regions on the X-chromosome, we similarly observe a significant 1.5-fold increase in rare hemizygous knockouts in males, contributing to another 2% of ASDs in males. Taken together these results provide compelling evidence that rare autosomal and X-chromosome complete gene knockouts are important inherited risk factors for ASD. PMID:23352160

  20. Improved cognitive flexibility in serotonin transporter knockout rats is unchanged following chronic cocaine self-administration

    NARCIS (Netherlands)

    Nonkes, L.J.; Maes, J.H.R.; Homberg, J.R.

    2013-01-01

    Cocaine dependence is associated with orbitofrontal cortex (OFC)-dependent cognitive inflexibility in both humans and laboratory animals. A critical question is whether cocaine self-administration affects pre-existing individual differences in cognitive flexibility. Serotonin transporter knockout (5

  1. The role of P2X receptors in bone biology

    DEFF Research Database (Denmark)

    Jørgensen, N R; Syberg, S; Ellegaard, M

    2015-01-01

    receptors regulate bone metabolism and especially for the P2X7 receptor an impressive amount of evidence has now documented its expression in osteoblasts, osteoclasts, and osteocytes as well as important functional roles in proliferation, differentiation, and function of the cells of bone. Key evidence has...... come from studies on murine knockout models and from pharmacologic studies on cells and animals. More recently, the role of P2X receptors in human bone diseases has been documented. Loss-of-functions polymorphisms in the P2X7 receptorare associated with bone loss and increased fracture risk. Very...

  2. Insights from the Study of Animals Lacking Functional Estrogen Receptor

    Science.gov (United States)

    Korach, Kenneth S.

    1994-12-01

    Estrogen hormones produce physiological actions within a variety of target sites in the body and during development by activating a specific receptor protein. Hormone responsiveness for the estrogen receptor protein was investigated at different stages of development with the use of gene knockout techniques because no natural genetic mutants have been described. A mutant mouse line without a functional estrogen receptor was created and is being used to assess estrogen responsiveness. Both sexes of these mutant animals are infertile and show a variety of phenotypic changes, some of which are associated with the gonads, mammary glands, reproductive tracts, and skeletal tissues.

  3. β-Adrenoceptor-mediated Relaxation of Urinary Bladder Muscle in β2-Adrenoceptor Knockout Mice

    Science.gov (United States)

    Propping, Stefan; Lorenz, Kristina; Michel, Martin C.; Wirth, Manfred P.; Ravens, Ursula

    2016-01-01

    Background and Objective: In order to characterize the β-adrenoceptor (AR) subtypes involved in agonist-stimulated relaxation of murine urinary bladder we studied the effects of (-)-isoprenaline and CL 316,243 on tonic contraction and spontaneous contractions in detrusor strips of wild-type (WT) and β2-AR knockout (β2-AR KO) mice. Materials and Methods: Urinary bladders were isolated from male WT and β2-AR KO mice. β-AR subtype expression was determined with quantitative real-time PCR. Intact muscle strips pre-contracted with KCl (40 mM) were exposed to cumulatively increasing concentrations of (-)-isoprenaline or β3-AR agonist CL 316,243 in the presence and absence of the subtype-selective β-AR blockers CGP 20712A (β1-ARs), ICI 118,551 (β2-ARs), and L748,337 (β3-ARs). Results: Quantitative real-time PCR confirmed lack of β2-AR expression in bladder tissue from β2-AR KO mice. In isolated detrusor strips, pre-contraction with KCl increased basal tone and enhanced spontaneous activity significantly more in β2-AR KO than in WT. (-)-Isoprenaline relaxed tonic tension and attenuated spontaneous activity with similar potency, but the concentrations required were two orders of magnitude higher in β2-AR KO than WT. The concentration-response curves (CRCs) for relaxation were not affected by CGP 20712A (300 nM), but were shifted to the right by ICI 118,551 (50 nM) and L748,337 (10 μM). The -logEC50 values for (-)-isoprenaline in WT and β2-AR KO tissue were 7.98 and 6.00, respectively, suggesting a large receptor reserve of β2-AR. (-)-CL 316,243 relaxed detrusor and attenuated spontaneous contractions from WT and β2-AR KO mice with a potency corresponding to the drug’s affinity for β3-AR. L743,337 shifted the CRCs to the right. Conclusion: Our findings in β2-AR KO mice suggest that there is a large receptor reserve for β2-AR in WT mice so that this β-AR subtype will mediate relaxation of tone and attenuation of spontaneous activity under physiological

  4. Efficient Gene Knockout in Goats Using CRISPR/Cas9 System

    OpenAIRE

    Ni, Wei; Qiao, Jun; Hu, Shengwei; Zhao, Xinxia; Regouski, Misha; Yang, Min; Polejaeva, Irina A.; Chen, Chuangfu

    2014-01-01

    The CRISPR/Cas9 system has been adapted as an efficient genome editing tool in laboratory animals such as mice, rats, zebrafish and pigs. Here, we report that CRISPR/Cas9 mediated approach can efficiently induce monoallelic and biallelic gene knockout in goat primary fibroblasts. Four genes were disrupted simultaneously in goat fibroblasts by CRISPR/Cas9-mediated genome editing. The single-gene knockout fibroblasts were successfully used for somatic cell nuclear transfer (SCNT) and resulted i...

  5. Cocaine conditioned locomotion in dopamine transporter, norepinephrine transporter and serotonin transporter knockout mice

    OpenAIRE

    Hall, F. Scott; Li, Xiao-Fei; Randall-Thompson, Jovita; Sora, Ichiro; Murphy, Dennis L.; Lesch, Klaus-Peter; Caron, Marc; Uhl, George R

    2009-01-01

    The behavioral effects of cocaine are affected by gene knockout of the dopamine transporter (DAT), the serotonin transporter (SERT) and the norepinephrine transporter (NET). The relative involvement of each of these transporters varies depending on the particular behavioral response to cocaine considered, as well as on other factors such as genetic background of the subjects. Interestingly, the effects of these gene knockouts on cocaine induced locomotion are quite different from those on rew...

  6. Maximal Oxygen Consumption Is Reduced in Aquaporin-1 Knockout Mice.

    Science.gov (United States)

    Al-Samir, Samer; Goossens, Dominique; Cartron, Jean-Pierre; Nielsen, Søren; Scherbarth, Frank; Steinlechner, Stephan; Gros, Gerolf; Endeward, Volker

    2016-01-01

    We have measured maximal oxygen consumption ([Formula: see text]O2,max) of mice lacking one or two of the established mouse red-cell CO2 channels AQP1, AQP9, and Rhag. We intended to study whether these proteins, by acting as channels for O2, determine O2 exchange in the lung and in the periphery. We found that [Formula: see text]O2,max as determined by the Helox technique is reduced by ~16%, when AQP1 is knocked out, but not when AQP9 or Rhag are lacking. This figure holds for animals respiring normoxic as well as hypoxic gas mixtures. To see whether the reduction of [Formula: see text]O2,max is due to impaired O2 uptake in the lung, we measured carotid arterial O2 saturation (SO2) by pulse oximetry. Neither under normoxic (inspiratory O2 21%) nor under hypoxic conditions (11% O2) is there a difference in SO2 between AQP1null and WT mice, suggesting that AQP1 is not critical for O2 uptake in the lung. The fact that the % reduction of [Formula: see text]O2,max is identical in normoxia and hypoxia indicates moreover that the limitation of [Formula: see text]O2,max is not due to an O2 diffusion problem, neither in the lung nor in the periphery. Instead, it appears likely that AQP1null animals exhibit a reduced [Formula: see text]O2,max due to the reduced wall thickness and muscle mass of the left ventricles of their hearts, as reported previously. We conclude that very likely the properties of the hearts of AQP1 knockout mice cause a reduced maximal cardiac output and thus cause a reduced [Formula: see text]O2,max, which constitutes a new phenotype of these mice. PMID:27559317

  7. Targeting cancer using KAT inhibitors to mimic lethal knockouts

    Science.gov (United States)

    Brown, James A.L.; Bourke, Emer; Eriksson, Leif A.; Kerin, Michael J.

    2016-01-01

    Two opposing enzyme classes regulate fundamental elements of genome maintenance, gene regulation and metabolism, either through addition of an acetyl moiety by histone acetyltransferases (HATs) or its removal by histone de-acetyltransferases (HDAC), and are exciting targets for drug development. Importantly, dysfunctional acetylation has been implicated in numerous diseases, including cancer. Within the HAT superfamily the MYST family holds particular interest, as its members are directly involved in the DNA damage response and repair pathways and crucially, several members have been shown to be down-regulated in common cancers (such as breast and prostate). In the present study we focus on the development of lysine (K) acetyltransferase inhibitors (KATi) targeting the MYST family member Tip60 (Kat5), an essential protein, designed or discovered through screening libraries. Importantly, Tip60 has been demonstrated to be significantly down-regulated in many cancers which urgently require new treatment options. We highlight current and future efforts employing these KATi as cancer treatments and their ability to synergize and enhance current cancer treatments. We investigate the different methods of KATi production or discovery, their mechanisms and their validation models. Importantly, the utility of KATi is based on a key concept: using KATi to abrogate the activity of an already down-regulated essential protein (effectively creating a lethal knockout) provides another innovative mechanism for targeting cancer cells, while significantly minimizing any off-target effects to normal cells. This approach, combined with the rapidly developing interest in KATi, suggests that KATi have a bright future for providing truly personalized therapies. PMID:27528742

  8. P2X6 Knockout Mice Exhibit Normal Electrolyte Homeostasis

    Science.gov (United States)

    Viering, Daan H. H. M.; Bos, Caro; Bindels, René J. M.; Hoenderop, Joost G. J.

    2016-01-01

    ATP-mediated signaling is an important regulator of electrolyte transport in the kidney. The purinergic cation channel P2X6 has been previously localized to the distal convoluted tubule (DCT), a nephron segment important for Mg2+ and Na+ reabsorption, but its role in ion transport remains unknown. In this study, P2x6 knockout (P2x6-/-) mice were generated to investigate the role of P2X6 in renal electrolyte transport. The P2x6-/- animals displayed a normal phenotype and did not differ physiologically from wild type mice. Differences in serum concentration and 24-hrs urine excretion of Na+, K+, Mg2+ and Ca2+ were not detected between P2x6+/+, P2x6+/- and P2x6-/- mice. Quantitative PCR was applied to examine potential compensatory changes in renal expression levels of other P2x subunits and electrolyte transporters, including P2x1-5, P2x7, Trpm6, Ncc, Egf, Cldn16, Scnn1, Slc12a3, Slc41a1, Slc41a3, Cnnm2, Kcnj10 and Fxyd2. Additionally, protein levels of P2X2 and P2X4 were assessed in P2x6+/+ and P2x6-/- mouse kidneys. However, significant changes in expression were not detected. Furthermore, no compensatory changes in gene expression could be demonstrated in heart material isolated from P2x6-/- mice. Except for a significant (P<0.05) upregulation of P2x2 in the heart of P2x6-/- mice compared to the P2x6+/+ mice. Thus, our data suggests that purinergic signaling via P2X6 is not significantly involved in the regulation of renal electrolyte handling under normal physiological conditions. PMID:27254077

  9. Glutamate Delta-1 Receptor Regulates Metabotropic Glutamate Receptor 5 Signaling in the Hippocampus.

    Science.gov (United States)

    Suryavanshi, Pratyush S; Gupta, Subhash C; Yadav, Roopali; Kesherwani, Varun; Liu, Jinxu; Dravid, Shashank M

    2016-08-01

    The delta family of ionotropic glutamate receptors consists of glutamate delta-1 (GluD1) and glutamate delta-2 receptors. We have previously shown that GluD1 knockout mice exhibit features of developmental delay, including impaired spine pruning and switch in the N-methyl-D-aspartate receptor subunit, which are relevant to autism and other neurodevelopmental disorders. Here, we identified a novel role of GluD1 in regulating metabotropic glutamate receptor 5 (mGlu5) signaling in the hippocampus. Immunohistochemical analysis demonstrated colocalization of mGlu5 with GluD1 punctas in the hippocampus. Additionally, GluD1 protein coimmunoprecipitated with mGlu5 in the hippocampal membrane fraction, as well as when overexpressed in human embryonic kidney 293 cells, demonstrating that GluD1 and mGlu5 may cooperate in a signaling complex. The interaction of mGlu5 with scaffold protein effector Homer, which regulates mechanistic target of rapamycin (mTOR) signaling, was abnormal both under basal conditions and in response to mGlu1/5 agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) in GluD1 knockout mice. The basal levels of phosphorylated mTOR and protein kinase B, the signaling proteins downstream of mGlu5 activation, were higher in GluD1 knockout mice, and no further increase was induced by DHPG. We also observed higher basal protein translation and an absence of DHPG-induced increase in GluD1 knockout mice. In accordance with a role of mGlu5-mediated mTOR signaling in synaptic plasticity, DHPG-induced internalization of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunits was impaired in the GluD1 knockout mice. These results demonstrate that GluD1 interacts with mGlu5, and loss of GluD1 impairs normal mGlu5 signaling potentially by dysregulating coupling to its effector. These studies identify a novel role of the enigmatic GluD1 subunit in hippocampal function. PMID:27231330

  10. Altered sleep homeostasis in rev-erbα knockout mice

    OpenAIRE

    Mang, Géraldine M.; La Spada, Francesco; Emmenegger, Yann; Chappuis, Sylvie; Ripperger, Jürgen A; Albrecht, Urs; Franken, Paul

    2016-01-01

    Study Objectives: The nuclear receptor REV-ERBα is a potent, constitutive transcriptional repressor critical for the regulation of key circadian and metabolic genes. Recently, REV-ERBα's involvement in learning, neurogenesis, mood, and dopamine turnover was demonstrated suggesting a specific role in central nervous system functioning. We have previously shown that the brain expression of several core clock genes, including Rev-erbα, is modulated by sleep loss. We here test the consequen...

  11. The M4 muscarinic acetylcholine receptor play a key role in the control of murine hair follicle cycling and pigmentation

    OpenAIRE

    Hasse, Sybille; Chernyavsky, Alex I; Grando, Sergei A.; Paus, Ralf

    2007-01-01

    Cholinergic receptors of the muscarinic class (M1-M5) are expressed in epidermal keratinocytes and melanocytes as well as in the hair follicle. Knockout (KO) mice of all five receptors have been created and resulted in different phenotypes. KO mice with a deletion of the M4 muscarinic acetylcholine receptor (M4R) present a striking hair phenotype, which we have analyzed here in greater detail by quantitative histomorphometry. Earlier studies revealed a retarded hair follicle morphogenesis in ...

  12. Altered neurocircuitry in the dopamine transporter knockout mouse brain.

    Directory of Open Access Journals (Sweden)

    Xiaowei Zhang

    Full Text Available The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI. Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn(2+ into the prefrontal cortex indicated that DAT KO mice have a truncated Mn(2+ distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn(2+ transport into more posterior midbrain nuclei and contralateral

  13. Cocaine inhibits dopamine D2 receptor signaling via sigma-1-D2 receptor heteromers.

    Directory of Open Access Journals (Sweden)

    Gemma Navarro

    Full Text Available Under normal conditions the brain maintains a delicate balance between inputs of reward seeking controlled by neurons containing the D1-like family of dopamine receptors and inputs of aversion coming from neurons containing the D2-like family of dopamine receptors. Cocaine is able to subvert these balanced inputs by altering the cell signaling of these two pathways such that D1 reward seeking pathway dominates. Here, we provide an explanation at the cellular and biochemical level how cocaine may achieve this. Exploring the effect of cocaine on dopamine D2 receptors function, we present evidence of σ1 receptor molecular and functional interaction with dopamine D2 receptors. Using biophysical, biochemical, and cell biology approaches, we discovered that D2 receptors (the long isoform of the D2 receptor can complex with σ1 receptors, a result that is specific to D2 receptors, as D3 and D4 receptors did not form heteromers. We demonstrate that the σ1-D2 receptor heteromers consist of higher order oligomers, are found in mouse striatum and that cocaine, by binding to σ1 -D2 receptor heteromers, inhibits downstream signaling in both cultured cells and in mouse striatum. In contrast, in striatum from σ1 knockout animals these complexes are not found and this inhibition is not seen. Taken together, these data illuminate the mechanism by which the initial exposure to cocaine can inhibit signaling via D2 receptor containing neurons, destabilizing the delicate signaling balance influencing drug seeking that emanates from the D1 and D2 receptor containing neurons in the brain.

  14. Evidence against dopamine D1/D2 receptor heteromers

    Science.gov (United States)

    Frederick, Aliya L.; Yano, Hideaki; Trifilieff, Pierre; Vishwasrao, Harshad D.; Biezonski, Dominik; Mészáros, József; Sibley, David R.; Kellendonk, Christoph; Sonntag, Kai C.; Graham, Devon L.; Colbran, Roger J.; Stanwood, Gregg D.; Javitch, Jonathan A.

    2014-01-01

    Hetero-oligomers of G-protein-coupled receptors have become the subject of intense investigation because their purported potential to manifest signaling and pharmacological properties that differ from the component receptors makes them highly attractive for the development of more selective pharmacological treatments. In particular, dopamine D1 and D2 receptors have been proposed to form hetero-oligomers that couple to Gαq proteins, and SKF83959 has been proposed to act as a biased agonist that selectively engages these receptor complexes to activate Gαq and thus phospholipase C. D1/D2 heteromers have been proposed as relevant to the pathophysiology and treatment of depression and schizophrenia. We used in vitro bioluminescence resonance energy transfer (BRET), ex vivo analyses of receptor localization and proximity in brain slices, and behavioral assays in mice to characterize signaling from these putative dimers/oligomers. We were unable to detect Gαq or Gα11 protein coupling to homomers or heteromers of D1 or D2 receptors using a variety of biosensors. SKF83959-induced locomotor and grooming behaviors were eliminated in D1 receptor knockout mice, verifying a key role for D1-like receptor activation. In contrast, SKF83959-induced motor responses were intact in D2 receptor and Gαq knockout mice, as well as in knock-in mice expressing a mutant Ala286-CaMKIIα, that cannot autophosphorylate to become active. Moreover, we found that in the shell of the nucleus accumbens, even in neurons in which D1 and D2 receptor promoters are both active, the receptor proteins are segregated and do not form complexes. These data are not compatible with SKF83959 signaling through Gαq or through a D1–D2 heteromer and challenge the existence of such a signaling complex in the adult animals that we used for our studies. PMID:25560761

  15. Impaired Discrimination Learning in Mice Lacking the NMDA Receptor NR2A Subunit

    Science.gov (United States)

    Brigman, Jonathan L.; Feyder, Michael; Saksida, Lisa M.; Bussey, Timothy J.; Mishina, Masayoshi; Holmes, Andrew

    2008-01-01

    N-Methyl-D-aspartate receptors (NMDARs) mediate certain forms of synaptic plasticity and learning. We used a touchscreen system to assess NR2A subunit knockout mice (KO) for (1) pairwise visual discrimination and reversal learning and (2) acquisition and extinction of an instrumental response requiring no pairwise discrimination. NR2A KO mice…

  16. Atherosclerosis, inflammation and lipoprotein glomerulopathy in kidneys of apoE-/-/LDL-/- double knockout mice

    Directory of Open Access Journals (Sweden)

    Langheinrich Alexander C

    2010-08-01

    Full Text Available Abstract Background The apoE-/-/LDL-/- double knockout mice are bearing considerable structural homology to human atherosclerosis. We hypothesized, that advanced lesion formation in the renal artery is associated with kidney alterations in these mice. Methods Kidneys from apoE-/-/LDL-/- double knockout mice at the age of 80 weeks (n = 6 and C57/BL control mice (n = 5 were infused with Microfil, harvested and scanned with micro-CT (12 μm cubic voxels and Nano-CT (900 nm cubic voxels. We quantitated the total vascular volume using micro-CT. Number and cross-sectional area (μm2 of glomeruli were measured using histology. Results At the age of 80 weeks, the renal total vascular volume fraction decreased significantly (p -/-/LDL-/- double knockout mice, predominantly involved are plasma cells and leucocytes. Glomeruli cross-sectional area (9959 ± 1083 μm2 and number (24.8 ± 4.5 increased in apoE-/-/LDL-/- double knockout mice compared to controls (3533 ± 398 μm2; 17.6 ± 3, respectively, whereas 41% of the total number of glomeruli showed evidence for lipoprotein associated glomerulopathy (LPG. Moreover, immunohistochemistry demonstrated capillary aneurysms of the glomeruli filled with factor 8 containing emboli. Conclusion The reduced intra-renal total vascular volume is associated with systemic atherosclerosis and glomeruli alterations in the apoE-/-/LDL-/- double knockout mouse model.

  17. The Receptor for Advanced Glycation End Products Is a Central Mediator of Asthma Pathogenesis

    OpenAIRE

    Pavle S Milutinovic; Alcorn, John F.; Englert, Judson M; Crum, Lauren T.; Oury, Tim D.

    2012-01-01

    The receptor for advanced glycation end products (RAGE) is a multiligand receptor that has been shown to contribute to the pathogenesis of diabetes, atherosclerosis, and neurodegeneration. However, its role in asthma and allergic airway disease is largely unknown. These studies use a house dust mite (HDM) mouse model of asthma/allergic airway disease. Respiratory mechanics were assessed and compared between wild-type and RAGE knockout mice. Bronchovascular architecture was assessed with quant...

  18. Endothelial cell leptin receptor mutant mice have hyperleptinemia and reduced tissue uptake

    OpenAIRE

    Hsuchou, Hung; Jayaram, Bhavaani; Kastin, Abba J; Wang, Yuping; Ouyang, Suidong; Pan, Weihong

    2013-01-01

    Hyperleptinemia is usually associated with obesity and leptin resistance. Endothelial cell leptin receptor knockout (ELKO) mice without a signaling membrane-bound leptin receptor in endothelia, however, have profound hyperleptinemia without signs of leptin resistance. Leptin mRNA in adipose tissue was unchanged. To test the hypothesis that the ELKO mutation results in delayed degradation and slowed excretion, we determined the kinetics of leptin transfer in groups of ELKO and wildtype mice af...

  19. Gustatory sensory cells express a receptor responsive to protein breakdown products (GPR92)

    OpenAIRE

    Haid, Désirée; Widmayer, Patricia; Voigt, Anja; Chaudhari, Nirupa; Boehm, Ulrich; Breer, Heinz

    2013-01-01

    The ingestion of dietary protein is of vital importance for the maintenance of fundamental physiological processes. The taste modality umami, with its prototype stimulus, glutamate, is considered to signal the protein content of food. Umami was thought to be mediated by the heterodimeric amino acid receptor, T1R1+T1R3. Based on knockout studies, additional umami receptors are likely to exist. In addition to amino acids, certain peptides can also elicit and enhance umami taste suggesting that ...

  20. Osteoblast-Specific Transcription Factor Osterix Increases Vitamin D Receptor Gene Expression in Osteoblasts

    OpenAIRE

    Zhang, Chi; Tang, Wanjin; LI Yang; Yang, Fan; Dowd, Diane R.; MacDonald, Paul N.

    2011-01-01

    Osterix (Osx) is an osteoblast-specific transcription factor required for osteoblast differentiation from mesenchymal stem cells. In Osx knock-out mice, no bone formation occurs. The vitamin D receptor (VDR) is a member of the nuclear hormone receptor superfamily that regulates target gene transcription to ensure appropriate control of calcium homeostasis and bone development. Here, we provide several lines of evidence that show that the VDR gene is a target for transcriptional regulation by ...

  1. P2Y2 receptor activation decreases blood pressure and increases renal Na+ excretion

    OpenAIRE

    Rieg, Timo; Gerasimova, Maria; Boyer, José L.; Insel, Paul A.; Vallon, Volker

    2011-01-01

    ATP and UTP are endogenous agonists of P2Y2/4 receptors. To define the in vivo effects of P2Y2 receptor activation on blood pressure and urinary excretion, we compared the response to INS45973, a P2Y2/4 receptor agonist and UTP analog, in wild-type (WT) and P2Y2 receptor knockout (P2Y2−/−) mice. INS45973 was administered intravenously as a bolus injection or continuous infusion to determine effects on blood pressure and renal function, respectively. Within seconds, bolus application of INS459...

  2. Characterization of physiological responses to 22 gene knockouts in Escherichia coli central carbon metabolism.

    Science.gov (United States)

    Long, Christopher P; Gonzalez, Jacqueline E; Sandoval, Nicholas R; Antoniewicz, Maciek R

    2016-09-01

    Understanding the impact of gene knockouts on cellular physiology, and metabolism in particular, is centrally important to quantitative systems biology and metabolic engineering. Here, we present a comprehensive physiological characterization of wild-type Escherichia coli and 22 knockouts of enzymes in the upper part of central carbon metabolism, including the PTS system, glycolysis, pentose phosphate pathway and Entner-Doudoroff pathway. Our results reveal significant metabolic changes that are affected by specific gene knockouts. Analysis of collective trends and correlations in the data using principal component analysis (PCA) provide new, and sometimes surprising, insights into E. coli physiology. Additionally, by comparing the data-to-model predictions from constraint-based approaches such as FBA, MOMA and RELATCH we demonstrate the important role of less well-understood kinetic and regulatory effects in central carbon metabolism. PMID:27212692

  3. High-temperature expansion and knock-out properties of moulding sands with water glass

    Directory of Open Access Journals (Sweden)

    Major-Gabryś K.

    2007-01-01

    Full Text Available The article focuses on the topic of improving the knock-out properties of moulding sand with water glass and ester hardener. It is settled that the cause of worse knock-out properties of moulding sand can be brought by their thermal expansion in increased temperatures. There is a presentation of the influence of different additives, containing Al2O3, on moulding sands’ expansion in increased temperatures. Within the frames of research, there was an elaboration of the influence of authors own additive- Glassex, on the expansion phenomenon of moulding sands with water glass and ester hardener. It is concluded, that the new additive stops the expansion of moulding sands and as well it improves their knock-out properties.

  4. MR histology of advanced atherosclerotic lesions of ApoE- knockout mice

    Science.gov (United States)

    Naumova, A.; Yarnykh, V.; Ferguson, M.; Rosenfeld, M.; Yuan, C.

    2016-02-01

    The purposes of this study were to examine the feasibility of determining the composition of advanced atherosclerotic plaques in fixed ApoE-knockout mice and to develop a time-efficient microimaging protocol for MR histological imaging on mice. Five formalin-fixed transgenic ApoE-knockout mice were imaged at the 9.4T Bruker BioSpec MR scanner using 3D spoiled gradient-echo sequence with an isotropic field of view of 24 mm3; TR 20.8 ms; TE 2.6 ms; flip angle 20°, resulted voxel size 47 × 63 × 94 pm3. MRI examination has shown that advanced atherosclerotic lesions of aorta, innominate and carotid arteries in ApoE-knockout mice are characterized by high calcification and presence of the large fibrofatty nodules. MRI quantification of atherosclerotic lesion components corresponded to histological assessment of plaque composition with a correlation coefficient of 0.98.

  5. Impact of asialoglycoprotein receptor deficiency on the development of liver injury

    Institute of Scientific and Technical Information of China (English)

    Serene ML Lee; Carol A Casey; Benita L McVicker

    2009-01-01

    The asialoglycoprotein (ASGP) receptor is a wellcharacterized hepatic receptor that is recycled via the common cellular process of receptor-mediated endocytosis (RME). The RME process plays an integral part in the proper trafficking and routing of receptors and ligands in the healthy cell. Thus, the missorting or altered transport of proteins during RME is thought to play a role in several diseases associated with hepatocyte and liver dysfunction. Previously,we examined in detail alterations that occur in hepatocellular RME and associated receptor functions as a result of one particular liver injury, alcoholic liver disease (ALD). The studies revealed profound ethanolmediated impairments to the ASGP receptor and the RME process, indicating the importance of this receptor and the maintenance of proper endocytic events in normal tissue. To further clarify these observations,studies were performed utilizing knockout mice (lacking a functional ASGP receptor) to which were administered several liver toxicants. In addition to alcohol, we examined the effects following administration of anti-Fas (CD95) antibody, carbon tetrachloride (CCl4) and lipopolysaccharide (LPS)/galactosamine. The results of these studies demonstrated that the knockout mice sustained enhanced liver injury in response to all of the treatments, as shown by increased indices of liver damage, such as enhancement of serum enzyme levels,histopathological scores, as well as hepatocellular death.Overall, the work completed to date suggests a possible link between hepatic receptors and liver injury. In particular, adequate function and content of the ASGP receptor may provide protection against various toxinmediated liver diseases.

  6. Distortion effects on the neutron knockout from exotic nuclei in the collision with a proton target

    Science.gov (United States)

    Cravo, E.; Crespo, R.; Deltuva, A.

    2016-05-01

    Background: Reaction theory plays a major role in the interpretation of experimental data and one needs to identify and include accurately all the relevant dynamical effects in order to extract reliable structure information. The knockout of a nucleon (neutron/proton) from a high energy exotic nucleus projectile colliding with a proton target allows to get insight on the structure of its valence and inner shells. Purpose: We aim to clarify the role of the distortion on the calculated observables for nucleon knockout, in particular, the dependence of the calculated observables on the binding energy ɛb and angular momentum L of the knockout particle, and on the mass of the projectile core, Ac. We consider mainly the knockout of a neutron that may be either in the valence or in the inner shell of the projectile nucleus. Method: Exact three-body Faddeev/Alt-Grassberger-Sandhas (Faddeev/AGS) calculations are performed for the nucleon knockout from stable and exotic nuclei in the collision of 420 MeV/u projectile beams with a proton target. Results are compared with plane-wave impulse approximation (PWIA) calculations. Results: The Faddeev/AGS formalism accurately predicts: (i) a systematic nearly logarithmic dependence of the distortion parameter on the separation energy; (ii) roughly linear dependence of the ratio of the full to the PWIA cross section on the asymmetry parameter; (iii) a distinct behavior between the calculated transverse core momentum distribution from the PWIA and full Faddeev/AGS exact approach which indicates that distortion effects do not modify fully exclusive observables through a common renormalization factor. Conclusions: To extract structure information on deeper shells one needs to include distortion effects accurately. A systematic analysis enables to estimate the total cross section for knockout of a nucleon from a given shell of nuclei at/away the stability line of the nuclear landscape. The comparison with experimental results may

  7. Effect of knockout of α2δ-1 on action potentials in mouse sensory neurons.

    Science.gov (United States)

    Margas, Wojciech; Ferron, Laurent; Nieto-Rostro, Manuela; Schwartz, Arnold; Dolphin, Annette C

    2016-08-01

    Gene deletion of the voltage-gated calcium channel auxiliary subunit α2δ-1 has been shown previously to have a cardiovascular phenotype, and a reduction in mechano- and cold sensitivity, coupled with delayed development of neuropathic allodynia. We have also previously shown that dorsal root ganglion (DRG) neuron calcium channel currents were significantly reduced in α2δ-1 knockout mice. To extend our findings in these sensory neurons, we have examined here the properties of action potentials (APs) in DRG neurons from α2δ-1 knockout mice in comparison to their wild-type (WT) littermates, in order to dissect how the calcium channels that are affected by α2δ-1 knockout are involved in setting the duration of individual APs and their firing frequency. Our main findings are that there is reduced Ca(2+) entry on single AP stimulation, particularly in the axon proximal segment, reduced AP duration and reduced firing frequency to a 400 ms stimulation in α2δ-1 knockout neurons, consistent with the expected role of voltage-gated calcium channels in these events. Furthermore, lower intracellular Ca(2+) buffering also resulted in reduced AP duration, and a lower frequency of AP firing in WT neurons, mimicking the effect of α2δ-1 knockout. By contrast, we did not obtain any consistent evidence for the involvement of Ca(2+)-activation of large conductance calcium-activated potassium (BK) and small conductance calcium-activated potassium (SK) channels in these events. In conclusion, the reduced Ca(2+) elevation as a result of single AP stimulation is likely to result from the reduced duration of the AP in α2δ-1 knockout sensory neurons.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. PMID:27377724

  8. Germ line knockout of IGFBP-3 reveals influences of the gene on mammary gland neoplasia.

    Science.gov (United States)

    Blouin, Marie-José; Bazile, Miguel; Birman, Elena; Zakikhani, Mahvash; Florianova, Livia; Aleynikova, Olga; Powell, David R; Pollak, Michael

    2015-02-01

    Insulin-like growth factor binding protein-3 (IGFBP-3) is an important carrier protein for insulin-like growth factors (IGFs) in the circulation. IGFBP-3 antagonizes the growth-promoting and anti-apoptotic activities of IGFs in experimental systems, but in certain contexts can increase IGF bioactivity, probably by increasing its half-life. The goal of this study was to investigate the role of IGFBP-3 in breast carcinogenesis and breast cancer metastasis. In the first part of the study, we exposed IGFBP-3 knockout and wild-type female mice to dimethylbenz[a]anthracene (DMBA) and followed them for appearance of primary tumors for up to 13 months. In the second part, mice of each genotype received an IV injection of 4T1 mammary carcinoma cells and then lung nodules were counted. Our results show that IGFBP-3 knockout mice developed breast tumors significantly earlier than the wild-type (13.9 ± 1.1 versus 22.5 ± 3.3 weeks, respectively, P = 0.0144), suggesting tumor suppression activity of IGFBP-3. In tumors of IGFBP-3 knockout mice, levels of phospho-AKT(Ser473) were increased compared to wild-type mice. The lung metastasis assay showed significantly more and larger lung nodules in IGFBP-3 knockout mice than in wild-type mice. While we observed increased levels of IGFBP-5 protein in the IGFBP-3 knockout mice, our findings suggest that this was not sufficient to completely compensate for the absence of IGFBP-3. Even though knockout of IGFBP-3 is associated with only a subtle phenotype under control conditions, our results reveal that loss of this gene has measurable effects on breast carcinogenesis and breast cancer metastasis. PMID:25614235

  9. 8He cluster structure studied by recoil proton tagged knockout reaction

    Science.gov (United States)

    Ye, Y.; Cao, Z.; Xiao, J.; Jiang, D.; Zheng, T.; Hua, H.; Ge, Y.; Li, X.; Lou, J.; Li, Q.; Lv, L.; Qiao, R.; You, H.; Chen, R.; Sakurai, H.; Otsu, H.; Li, Z.; Nishimura, M.; Sakaguchi, S.; Baba, H.; Togano, Y.; Yoneda, K.; Li, C.; Wang, S.; Wang, H.; Li, K.; Nakayama, Y.; Kondo, Y.; Deguchi, S.; Sato, Y.; Tshoo, K.

    2013-04-01

    Knockout reaction experiment for 8He at 82.3 MeV/u on Hydrogen target was carried out at the RIPS beam line in RIKEN. Recoil protons were detected in coincidence with the forward moving core fragments and neutrons. The quasi-free knockout mechanism is identified through the polar angle correlation and checked by various kinematics conditions. The absolute differential cross sections for 6He core cluster are obtained and compared with the simple Glauber model calculations. The extracted spectroscopic factor is close to unity and a shrinking of the cluster size is evidenced.

  10. 8He cluster structure studied by recoil proton tagged knockout reaction

    International Nuclear Information System (INIS)

    Knockout reaction experiment for 8He at 82.3 MeV/u on Hydrogen target was carried out at the RIPS beam line in RIKEN. Recoil protons were detected in coincidence with the forward moving core fragments and neutrons. The quasi-free knockout mechanism is identified through the polar angle correlation and checked by various kinematics conditions. The absolute differential cross sections for 6He core cluster are obtained and compared with the simple Glauber model calculations. The extracted spectroscopic factor is close to unity and a shrinking of the cluster size is evidenced.

  11. Atherosclerosis, inflammation and lipoprotein glomerulopathy in kidneys of apoE-/-/LDL-/- double knockout mice

    OpenAIRE

    Langheinrich Alexander C; Kampschulte Marian; Scheiter Franziska; Dierkes Christian; Stieger Philip; Bohle Rainer M; Weidner Wolfgang

    2010-01-01

    Abstract Background The apoE-/-/LDL-/- double knockout mice are bearing considerable structural homology to human atherosclerosis. We hypothesized, that advanced lesion formation in the renal artery is associated with kidney alterations in these mice. Methods Kidneys from apoE-/-/LDL-/- double knockout mice at the age of 80 weeks (n = 6) and C57/BL control mice (n = 5) were infused with Microfil, harvested and scanned with micro-CT (12 μm cubic voxels) and Nano-CT (900 nm cubic voxels). We qu...

  12. Effects of Chronic Mild Stress in Female Bax Inhibitor-1-Gene Knockout Mice

    OpenAIRE

    Sui, Zhi-Yan; Chae, Han-Jung; Huang, Guang-Biao; Zhao, Tong; Shrestha Muna, Sushma; Chung, Young-Chul

    2012-01-01

    Objective The anti-apoptotic protein Bax inhibitor-1 (BI-1) is a regulator of apoptosis linked to endoplasmic reticulum (ER) stress, and BI-1-/- mice exhibit increased sensitivity to tissue damage. The purpose of this study was to investigate the role of BI-1 in the pathogenesis of chronic mild stress (CMS)-induced depression-like behaviors in BI-1-/- mice. Methods We delivered CMS for 2 or 6 weeks in BI-1-knockout and wild-type mice. Control groups of BI-1-knockout and wild-type mice were le...

  13. Relativistic predictions of polarization phenomena in exclusive proton-induced proton-knockout reactions

    CERN Document Server

    Hillhouse, G C; Noro, T; Van der Ventel, B I S

    2006-01-01

    Whereas a nonrelativistic distorted wave model fails to quantitatively describe analyzing power data for exclusive proton-induced proton-knockout from the 3s_{1/2} state in Pb-208 at 202 MeV, the corresponding relativistic prediction provides a perfect description, thus suggesting that the Dirac equation is the more appropriate underlying dynamical equation. We check the consistency of this rsult by comparing predictions for both dynamical models to new high resolution data for 3s_{1/2} knockout in Pb-208 at a higher incident energy of 392 MeV.

  14. Maternal profiling of corticotropin-releasing factor receptor 2 deficient mice in association with restraint stress

    OpenAIRE

    D’Anna, Kimberly L.; Sharon A Stevenson; Gammie, Stephen C.

    2008-01-01

    Mice deficient in corticotropin releasing factor receptor 2 (CRF2) (C57BL/6J:129Sv background) exhibit impaired maternal defense (protection of offspring) and are more reactive to stressors than wild-type mice. To further understand CRF2’s role in maternal behavior, we crossed the knockout mice with a line bred for high maternal defense that also has elevated maternal care relative to inbred lines. Maternal care was normal in knockout mice (relative to wild-type). Maternal defense was impaire...

  15. Lentivirus-ABCG1 instillation reduces lipid accumulation and improves lung compliance in GM-CSF knock-out mice

    Energy Technology Data Exchange (ETDEWEB)

    Malur, Anagha; Huizar, Isham [Program in Lung Cell Biology and Translational Research, Division of Pulmonary, Critical Care and Sleep Medicine, East Carolina University, Greenville, NC (United States); Wells, Greg [Department of Microbiology and Immunology, East Carolina University, Greenville, NC (United States); Barna, Barbara P. [Program in Lung Cell Biology and Translational Research, Division of Pulmonary, Critical Care and Sleep Medicine, East Carolina University, Greenville, NC (United States); Malur, Achut G. [Department of Microbiology and Immunology, East Carolina University, Greenville, NC (United States); Thomassen, Mary Jane, E-mail: thomassenm@ecu.edu [Program in Lung Cell Biology and Translational Research, Division of Pulmonary, Critical Care and Sleep Medicine, East Carolina University, Greenville, NC (United States); Department of Microbiology and Immunology, East Carolina University, Greenville, NC (United States)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Lentivirus-ABCG1 reduces lipid accumulation in lungs of GM-CSF knock-out mice. Black-Right-Pointing-Pointer Up-regulation of ABCG1 improves lung function. Black-Right-Pointing-Pointer Upregulation of ABCG1 improves surfactant metabolism. -- Abstract: We have shown decreased expression of the nuclear transcription factor, peroxisome proliferator-activated receptor-gamma (PPAR{gamma}) and the PPAR{gamma}-regulated ATP-binding cassette transporter G1 (ABCG1) in alveolar macrophages from patients with pulmonary alveolar proteinosis (PAP). PAP patients also exhibit neutralizing antibodies to granulocyte-macrophage colony stimulating factor (GM-CSF), an upregulator of PPAR{gamma}. In association with functional GM-CSF deficiency, PAP lung is characterized by surfactant-filled alveolar spaces and lipid-filled alveolar macrophages. Similar pathology characterizes GM-CSF knock-out (KO) mice. We reported previously that intratracheal instillation of a lentivirus (lenti)-PPAR{gamma} plasmid into GM-CSF KO animals elevated ABCG1 and reduced alveolar macrophage lipid accumulation. Here, we hypothesized that instillation of lenti-ABCG1 might be sufficient to decrease lipid accumulation and improve pulmonary function in GM-CSF KO mice. Animals received intratracheal instillation of lenti-ABCG1 or control lenti-enhanced Green Fluorescent Protein (eGFP) plasmids and alveolar macrophages were harvested 10 days later. Alveolar macrophage transduction efficiency was 79% as shown by lenti-eGFP fluorescence. Quantitative PCR analyses indicated a threefold (p = 0.0005) increase in ABCG1 expression with no change of PPAR{gamma} or ABCA1 in alveolar macrophages of lenti-ABCG1 treated mice. ABCG1 was unchanged in control lenti-eGFP and PBS-instilled groups. Oil Red O staining detected reduced intracellular neutral lipid in alveolar macrophages from lenti-ABCG1 treated mice. Extracellular cholesterol and phospholipids were also decreased as shown by

  16. Lentivirus-ABCG1 instillation reduces lipid accumulation and improves lung compliance in GM-CSF knock-out mice

    International Nuclear Information System (INIS)

    Highlights: ► Lentivirus-ABCG1 reduces lipid accumulation in lungs of GM-CSF knock-out mice. ► Up-regulation of ABCG1 improves lung function. ► Upregulation of ABCG1 improves surfactant metabolism. -- Abstract: We have shown decreased expression of the nuclear transcription factor, peroxisome proliferator-activated receptor-gamma (PPARγ) and the PPARγ-regulated ATP-binding cassette transporter G1 (ABCG1) in alveolar macrophages from patients with pulmonary alveolar proteinosis (PAP). PAP patients also exhibit neutralizing antibodies to granulocyte–macrophage colony stimulating factor (GM-CSF), an upregulator of PPARγ. In association with functional GM-CSF deficiency, PAP lung is characterized by surfactant-filled alveolar spaces and lipid-filled alveolar macrophages. Similar pathology characterizes GM-CSF knock-out (KO) mice. We reported previously that intratracheal instillation of a lentivirus (lenti)-PPARγ plasmid into GM-CSF KO animals elevated ABCG1 and reduced alveolar macrophage lipid accumulation. Here, we hypothesized that instillation of lenti-ABCG1 might be sufficient to decrease lipid accumulation and improve pulmonary function in GM-CSF KO mice. Animals received intratracheal instillation of lenti-ABCG1 or control lenti-enhanced Green Fluorescent Protein (eGFP) plasmids and alveolar macrophages were harvested 10 days later. Alveolar macrophage transduction efficiency was 79% as shown by lenti-eGFP fluorescence. Quantitative PCR analyses indicated a threefold (p = 0.0005) increase in ABCG1 expression with no change of PPARγ or ABCA1 in alveolar macrophages of lenti-ABCG1 treated mice. ABCG1 was unchanged in control lenti-eGFP and PBS-instilled groups. Oil Red O staining detected reduced intracellular neutral lipid in alveolar macrophages from lenti-ABCG1 treated mice. Extracellular cholesterol and phospholipids were also decreased as shown by analysis of bronchoalveolar lavage fluid. Lung compliance was diminished in untreated GMCSF KO mice

  17. Decreased Levels of Proapoptotic Factors and Increased Key Regulators of Mitochondrial Biogenesis Constitute New Potential Beneficial Features of Long-lived Growth Hormone Receptor Gene–Disrupted Mice

    OpenAIRE

    Gesing, Adam; Masternak, Michal M.; Lewinski, Andrzej; Karbownik-Lewinska, Malgorzata; Kopchick, John J.; Bartke, Andrzej

    2012-01-01

    Decreased somatotrophic signaling is among the most important mechanisms associated with extended longevity. Mice homozygous for the targeted disruption of the growth hormone (GH) receptor gene (GH receptor knockout; GHRKO) are obese and dwarf, are characterized by a reduced weight and body size, undetectable levels of GH receptor, high concentration of serum GH, and greatly reduced plasma levels of insulin and insulin-like growth factor-I, and are remarkably long lived. Recent results sugges...

  18. Knockout mouse model for Fxr2: a model for mental retardation

    NARCIS (Netherlands)

    C.J.M. Bontekoe (Carola); L. Kirkpatrick; C.E. Bakker (Cathy); A.T. Hoogeveen (Andre); R. McAninch; M. Merriweather; B.A. Oostra (Ben); N.C. Cheng (Ngan Ching); K.L. McIlwain; I.M. Nieuwenhuizen (Ingeborg); L.A. Yuva-Paylor; R. Paylor; A. Nellis; R. Willemsen (Rob); Z. Fang; D. Nelson

    2002-01-01

    textabstractFragile X syndrome is a common form of mental retardation caused by the absence of the FMR1 protein, FMRP. Fmr1 knockout mice exhibit a phenotype with some similarities to humans, such as macro-orchidism and behavioral abnormalities. Two homologs of FMRP have been ident

  19. Crucial role of alkaline sphingomyelinase in sphingomyelin digestion: a study on enzyme knockout mice

    DEFF Research Database (Denmark)

    Zhang, Yao; Cheng, Yajun; Hansen, Gert H;

    2011-01-01

    Alkaline sphingomyelinase (alk-SMase) hydrolyses sphingomyelin (SM) to ceramide in the gut. To evaluate the physiological importance of the enzyme, we generated alk-SMase knockout (KO) mice by the Cre-recombinase-Locus of X-over P1(Cre-LoxP) system and studied SM digestion. Both wild-type (WT...

  20. Serotonin Transporter Knockout Rats Show Improved Strategy Set-Shifting and Reduced Latent Inhibition

    Science.gov (United States)

    Nonkes, Lourens J. P.; van de Vondervoort, Ilse I. G. M.; de Leeuw, Mark J. C.; Wijlaars, Linda P.; Maes, Joseph H. R.; Homberg, Judith R.

    2012-01-01

    Behavioral flexibility is a cognitive process depending on prefrontal areas allowing adaptive responses to environmental changes. Serotonin transporter knockout (5-HTT[superscript -/-]) rodents show improved reversal learning in addition to orbitofrontal cortex changes. Another form of behavioral flexibility, extradimensional strategy set-shifting…

  1. Transthyretin knockout mice display decreased susceptibility to AMPA-induced neurodegeneration

    DEFF Research Database (Denmark)

    Nunes, Ana Filipa; Montero, Maria; Franquinho, Filipa;

    2009-01-01

    Transthyretin (TTR) has been regarded as a neuroprotective protein given that TTR knockout (KO) mice display increased susceptibility for amyloid beta deposition and memory deficits during aging. In parallel, TTR KO mice have increased levels of neuropeptide Y (NPY), which promotes neuroprotectio...

  2. Brief Report: Altered Social Behavior in Isolation-Reared "Fmr1" Knockout Mice

    Science.gov (United States)

    Heitzer, Andrew M.; Roth, Alexandra K.; Nawrocki, Lauren; Wrenn, Craige C.; Valdovinos, Maria G.

    2013-01-01

    Social behavior abnormalities in Fragile X syndrome (FXS) are characterized by social withdrawal, anxiety, and deficits in social cognition. To assess these deficits, a model of FXS, the "Fmr1" knockout mouse ("Fmr1" KO), has been utilized. This mouse model has a null mutation in the fragile X mental retardation 1 gene ("Fmr1") and displays…

  3. Immunopathologic effects associated with Sarcocystis neurona-infected interferon-gamma knockout mice

    OpenAIRE

    Witonsky, S. G.; Gogal, R. M.; Duncan, R. B.; Lindsay, D S

    2003-01-01

    Interferon-gamma knockout (IFN-gamma KO) mice were infected with Sarcocystis neurona merozoites to characterize the immunopathology associated with infection. By day 14 postinfection (PI), mice developed splenomegaly and lymphadenopathy, characterized by marked lymphoid hyperplasia with increased numbers of germinal centers. Additional histopathologic changes included increased extramedullary hematopoiesis, multifocal mixed inflammatory infiltrates in the liver, perivascular infiltrate of the...

  4. Generation and basic characterization of glutamate carboxypeptidase II knock-out mice

    Czech Academy of Sciences Publication Activity Database

    Vorlová, Barbora; Kašpárek, Petr; Šácha, Pavel; Sedláček, Radislav; Konvalinka, Jan

    2016-01-01

    Roč. 25, č. 2 (2016), s. 267. ISSN 0962-8819. [Transgenic Technology Meeting (TT2016) /13./. 20.03.2016-23.03.2016, Praha] Institutional support: RVO:61388963 ; RVO:68378050 Keywords : GCPII * PSMA * FolhI * knock-out mice Subject RIV: CE - Biochemistry

  5. The glucocorticoid receptor in the distal nephron is not necessary for the development or maintenance of dexamethasone-induced hypertension

    Science.gov (United States)

    Goodwin, Julie E.; Zhang, Junhui; Velazquez, Heino; Geller, David S.

    2010-01-01

    Glucocorticoids are used as a treatment for a variety of conditions and hypertension is a well-recognized side effect of their use. The mechanism of glucocorticoid-induced hypertension is incompletely understood and has traditionally been attributed to promiscuous activation of the mineralocorticoid receptor by cortisol. Multiple lines of evidence, however, point to the glucocorticoid receptor as an important mediator as well. We have developed a mouse model of glucocorticoid-induced hypertension, which is dependent on the glucocorticoid receptor. To determine the site(s) of glucocorticoid receptor action relevant to the development of hypertension, we studied glucocorticoid-induced hypertension in a mouse with a tissue-specific knockout of the glucocorticoid receptor in the distal nephron. Although knockout mice had similar body weight, nephron number and renal histology compared to littermate controls, their baseline blood pressure was mildly elevated. Nevertheless, distal nephron glucocorticoid receptor knockout mice and controls had a similar hypertensive response to dexamethasone. Urinary excretion of electrolytes, both before and after administration of glucocorticoid was also indistinguishable between the two groups. We conclude that the glucocorticoid receptor in the distal nephron is not necessary for the development or maintenance of dexamethasone-induced hypertension in our model. PMID:20188070

  6. Global Nav1.7 knockout mice recapitulate the phenotype of human congenital indifference to pain.

    Directory of Open Access Journals (Sweden)

    Jacinthe Gingras

    Full Text Available Clinical genetic studies have shown that loss of Nav1.7 function leads to the complete loss of acute pain perception. The global deletion is reported lethal in mice, however, and studies of mice with promoter-specific deletions of Nav1.7 have suggested that the role of Nav1.7 in pain transduction depends on the precise form of pain. We developed genetic and animal husbandry strategies that overcame the neonatal-lethal phenotype and enabled construction of a global Nav1.7 knockout mouse. Knockouts were anatomically normal, reached adulthood, and had phenotype wholly analogous to human congenital indifference to pain (CIP: compared to littermates, knockouts showed no defects in mechanical sensitivity or overall movement yet were completely insensitive to painful tactile, thermal, and chemical stimuli and were anosmic. Knockouts also showed no painful behaviors resulting from peripheral injection of nonselective sodium channel activators, did not develop complete Freund's adjuvant-induced thermal hyperalgesia, and were insensitive to intra-dermal histamine injection. Tetrodotoxin-sensitive sodium current recorded from cell bodies of isolated sensory neurons and the mechanically-evoked spiking of C-fibers in a skin-nerve preparation each were reduced but not eliminated in tissue from knockouts compared to littermates. Results support a role for Nav1.7 that is conserved between rodents and humans and suggest several possibly translatable biomarkers for the study of Nav1.7-targeted therapeutics. Results further suggest that Nav1.7 may retain its key role in persistent as well as acute forms of pain.

  7. Highly segmented CVD diamond detectors and high-resolution momentum measurements in knockout reactions; Hochsegmentierte CVD Diamant Detektoren und hochaufloesende Impulsmessungen in Knockout Reaktionen

    Energy Technology Data Exchange (ETDEWEB)

    Schwertel, Sabine

    2009-11-26

    In recent years knockout reactions have proven to be important tools for investigations of the structure of light exotic nuclei. In spring 2006 an experiment was performed with the fragment separator at GSI in Darmstadt to extend this method to medium-mass nuclei with energies of about 400 AMeV. An experiment with a stable and well-known {sup 48}Ca primary beam was performed as a reference. The FRS was set for the reaction {sup 56}Ti{yields}{sup 55}Ti. Because of the high acceptance of the FRS, mother and daughter nuclei of one-neutron knockout reactions in the Sc isotopes {sup 51,52,53,54,55}Sc were also transported with high efficiency. These are investigated in the first part of this thesis. Inclusive cross sections of 77(10) mbarn for one-neutron knockout from {sup 48}Ca and 78(12) mbarn, 99(15) mbarn, 101(15) mbarn, 113(17) mbarn and 72(14) mbarn for knockout from {sup 51,52,53,54,55}Sc, respectively, were measured for the first time. For the Sc isotopes the reduction factors are close to 1. For the one-neutron knockout reactions in {sup 48}Ca and the Sc isotopes, respectively, the momentum distributions could be measured with a relative resolution of 0.17-0.27 %. From the momentum distributions spectroscopic factors of the involved orbitals could be extracted. In the future, further knockout experiments should be performed using the R{sup 3}B setup at FAIR. The available beam intensity will be up to four orders of magnitude higher. As the beam has to be tracked from the dispersive plane of the Super-FRS up to the R{sup 3}B target, radiation hard detectors are needed. In the framework of this thesis extensive measurements were performed at the tandem accelerator in Munich with numerous small (10 x 10 mm{sup 2}) test detectors. Samples using new manufacturing methods were characterized. A dose of some 10{sup 11} ions/mm{sup 2} was determined as a limit for the exposure of the material with heavy ions of high ionisation density. It could be shown that even

  8. The NOP (ORL1) receptor antagonist Compound B stimulates mesolimbic dopamine release and is rewarding in mice by a non-NOP-receptor-mediated mechanism.

    Science.gov (United States)

    Koizumi, Miwako; Sakoori, Kazuto; Midorikawa, Naoko; Murphy, Niall P

    2004-09-01

    1. Compound B (1-[(3R, 4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one, CompB) is a nociceptin/orphanin FQ (N/OFQ) antagonist showing high selectivity for the NOP (ORL1) receptor over classical opioid receptors. We studied the effect of subcutaneous CompB administration on the release of mesolimbic dopamine (DA) and the expression of hedonia in mice. 2. CompB (0.3-30 mg kg(-1)) dose dependently stimulated mesolimbic DA release as measured by in vivo freely moving microdialysis, without any change in locomotor activity. However, intracerebroventricular administered N/OFQ (endogenous agonist of the NOP receptor, 6 nmol) did not influence CompB- (10 mg kg(-1)) induced DA release, despite clearly suppressing release when administered alone. 3. Studies using NOP receptor knockout mice and no-net-flux microdialysis revealed mildly, but not statistically significantly higher endogenous DA levels in mice lacking the NOP receptor compared to wild-type mice. Administration of CompB (10 mg kg(-1)) induced identical increases in mesolimbic DA release in wild-type and NOP receptor knockout mice. 4. CompB was rewarding in approximately the same dose range in which CompB induced major increases in mesolimbic DA release when assayed using a conditioned place preference paradigm. The rewarding effect of CompB (30 mg kg(-1)) was maintained in NOP receptor knockout mice. 5. These results show that CompB stimulates mesolimbic DA release and is rewarding by an action independent of the NOP receptor, the precise site of which is unclear. Consequently, caution should be exercised when interpreting the results of studies using this drug, particularly when administered by a peripheral route. PMID:15289286

  9. S100A9 Knockout Decreases the Memory Impairment and Neuropathology in Crossbreed Mice of Tg2576 and S100A9 Knockout Mice Model

    OpenAIRE

    Kim, Hee Jin; Chang, Keun-A; Ha, Tae-Young; Kim, Jeonga; Ha, Sungji; Shin, Ki-Young; Moon, Cheil; Nacken, Wolfgang; Kim, Hye-Sun; Suh, Yoo-Hun

    2014-01-01

    Our previous study presented evidence that the inflammation-related S100A9 gene is significantly upregulated in the brains of Alzheimer's disease (AD) animal models and human AD patients. In addition, experiments have shown that knockdown of S100A9 expression improves cognition function in AD model mice (Tg2576), and these animals exhibit reduced amyloid plaque burden. In this study, we established a new transgenic animal model of AD by crossbreeding the Tg2576 mouse with the S100A9 knockout ...

  10. Toward Selective Drug Development for the Human 5-Hydroxytryptamine 1E Receptor: A Comparison of 5-Hydroxytryptamine 1E and 1F Receptor Structure-Affinity RelationshipsS⃞

    OpenAIRE

    Klein, Michael T.; Dukat, Małgorzata; Glennon, Richard A.; Teitler, Milt

    2011-01-01

    The 5-hydroxytryptamine (5-HT) 1E receptor is highly expressed in the human frontal cortex and hippocampus, and this distribution suggests the function of 5-HT1E receptors might be linked to memory. To test this hypothesis, behavioral experiments are needed. Because rats and mice lack a 5-HT1E receptor gene, knockout strategies cannot be used to elucidate this receptor's functions. Thus, selective pharmacological tools must be developed. The tryptamine-related agonist BRL54443 [5-hydroxy-3-(1...

  11. Promyelocytic leukemia zinc finger protein activates GATA4 transcription and mediates cardiac hypertrophic signaling from angiotensin II receptor 2.

    Directory of Open Access Journals (Sweden)

    Ning Wang

    Full Text Available BACKGROUND: Pressure overload and prolonged angiotensin II (Ang II infusion elicit cardiac hypertrophy in Ang II receptor 1 (AT(1 null mouse, whereas Ang II receptor 2 (AT(2 gene deletion abolishes the hypertrophic response. The roles and signals of the cardiac AT(2 receptor still remain unsettled. Promyelocytic leukemia zinc finger protein (PLZF was shown to bind to the AT(2 receptor and transmit the hypertrophic signal. Using PLZF knockout mice we directed our studies on the function of PLZF concerning the cardiac specific transcription factor GATA4, and GATA4 targets. METHODOLOGY AND PRINCIPAL FINDINGS: PLZF knockout and age-matched wild-type (WT mice were treated with Ang II, infused at a rate of 4.2 ng·kg(-1·min(-1 for 3 weeks. Ang II elevated systolic blood pressure to comparable levels in PLZF knockout and WT mice (140 mmHg. WT mice developed prominent cardiac hypertrophy and fibrosis after Ang II infusion. In contrast, there was no obvious cardiac hypertrophy or fibrosis in PLZF knockout mice. An AT(2 receptor blocker given to Ang II-infused wild type mice prevented hypertrophy, verifying the role of AT(2 receptor for cardiac hypertrophy. Chromatin immunoprecipitation and electrophoretic mobility shift assay showed that PLZF bound to the GATA4 gene regulatory region. A Luciferase assay verified that PLZF up-regulated GATA4 gene expression and the absence of PLZF expression in vivo produced a corresponding repression of GATA4 protein. CONCLUSIONS: PLZF is an important AT(2 receptor binding protein in mediating Ang II induced cardiac hypertrophy through an AT(2 receptor-dependent signal pathway. The angiotensin II-AT(2-PLZF-GATA4 signal may further augment Ang II induced pathological effects on cardiomyocytes.

  12. Oxytocin-induced analgesia and scratching are mediated by the vasopressin-1A receptor in the mouse

    OpenAIRE

    Schorscher-Petcu, Ara; Sotocinal, Susana; Ciura, Sorana; Dupré, Anouk; Ritchie, Jennifer; Sorge, Robert E; Crawley, Jacqueline N; Hu, Shuang-Bao; Nishimori, Katsuhiko; Young, Larry J.; Tribollet, Eliane; Quirion, Rémi; Mogil, Jeffrey S.

    2010-01-01

    The neuropeptides oxytocin (OXT) and arginine vasopressin (AVP) contribute to the regulation of diverse cognitive and physiological functions including nociception. Indeed, OXT has been reported to be analgesic when administered directly into the brain, the spinal cord or systemically. Here, we characterized the phenotype of oxytocin receptor (OTR) and vasopressin-1A receptor (V1AR) null mutant mice in a battery of pain assays. Surprisingly, OTR knockout mice displayed a pain phenotype identi...

  13. Reevaluation of Fatty Acid Receptor 1 as a Drug Target for the Stimulation of Insulin Secretion in Humans

    OpenAIRE

    Wagner, Robert; Kaiser, Gabriele; Gerst, Felicia; Christiansen, Elisabeth; Due-Hansen, Maria E.; Grundmann, Manuel; Machicao, Fausto; Peter, Andreas; Kostenis, Evi; Ulven, Trond; Fritsche, Andreas; Häring, Hans-Ulrich; Ullrich, Susanne

    2013-01-01

    The role of free fatty acid receptor 1 (FFAR1/GPR40) in glucose homeostasis is still incompletely understood. Small receptor agonists stimulating insulin secretion are undergoing investigation for the treatment of type 2 diabetes. Surprisingly, genome-wide association studies did not discover diabetes risk variants in FFAR1. We reevaluated the role of FFAR1 in insulin secretion using a specific agonist, FFAR1-knockout mice and human islets. Nondiabetic individuals were metabolically phenotype...

  14. Gliosis after traumatic brain injury in conditional ephrinB2-knockout mice

    Institute of Scientific and Technical Information of China (English)

    LIU Ling; CHEN Xiao-lin; YANG Jian-kai; REN Ze-guang; WANG Shuo

    2012-01-01

    Background In response to the injury of the central nervous system (CNS),the astrocytes upregulate the expression of glial fibrillary acidic protein (GFAP),which largely contributes to the reactive gliosis after brain injury.The regulatory mechanism of this process is still not clear.In this study,we aimed to compare the ephrin-B2 deficient mice with the wild type ones with regard to gliosis after traumatic brain injury.Methods We generated ephrin-B2 knockout mice specifically in CNS astrocytes.Twelve mice from this gene-knockout strain were randomly selected along with twelve mice from the wild type littermates.In both groups,a modified controlled cortical impact injury model was applied to create a closed traumatic brain injury.Twenty-eight days after the injury,Nissl staining and GFAP immunofluorescence staining were used to compare the brain atrophy and GFAP immunoreactivity between the two groups.All the data were analyzed by t-test for between-group comparison.Results We successfully set up the conditional ephrin-B2 knockout mice strain,which was confirmed by genotyping and ephrin-B2/GFAP double staining.These mice developed normally without apparent abnormality in general appearance.Twenty-eight days following brain injury,histopathology revealed by immunohistochemistry showed different degrees of cerebral injuries in both groups.Compared with wild-type group,the ephrin-B2 knockout group exhibited less brain atrophy ratio for the injured hemispheres (P=0.005) and hippocampus (P=0.027).Also the wild-type group demonstrated greater GFAP immunoreactivity increment within hippocampal regions (P=0.008).Conclusions The establishment of conditional ephrin-B2 knockout mice provides us with a new way to explore the role of ephrin-B2 in astrocytes.Our findings revealed less atrophy and GFAP immunoreactivity in the knockout mice strain after traumatic brain injury,which implied ephrin-B2 could be one of the promoters to upregulate gliosis following brain injury.

  15. Highly segmented CVD diamond detectors and high-resolution momentum measurements in knockout reactions

    International Nuclear Information System (INIS)

    In recent years knockout reactions have proven to be important tools for investigations of the structure of light exotic nuclei. In spring 2006 an experiment was performed with the fragment separator at GSI in Darmstadt to extend this method to medium-mass nuclei with energies of about 400 AMeV. An experiment with a stable and well-known 48Ca primary beam was performed as a reference. The FRS was set for the reaction 56Ti→55Ti. Because of the high acceptance of the FRS, mother and daughter nuclei of one-neutron knockout reactions in the Sc isotopes 51,52,53,54,55Sc were also transported with high efficiency. These are investigated in the first part of this thesis. Inclusive cross sections of 77(10) mbarn for one-neutron knockout from 48Ca and 78(12) mbarn, 99(15) mbarn, 101(15) mbarn, 113(17) mbarn and 72(14) mbarn for knockout from 51,52,53,54,55Sc, respectively, were measured for the first time. For the Sc isotopes the reduction factors are close to 1. For the one-neutron knockout reactions in 48Ca and the Sc isotopes, respectively, the momentum distributions could be measured with a relative resolution of 0.17-0.27 %. From the momentum distributions spectroscopic factors of the involved orbitals could be extracted. In the future, further knockout experiments should be performed using the R3B setup at FAIR. The available beam intensity will be up to four orders of magnitude higher. As the beam has to be tracked from the dispersive plane of the Super-FRS up to the R3B target, radiation hard detectors are needed. In the framework of this thesis extensive measurements were performed at the tandem accelerator in Munich with numerous small (10 x 10 mm2) test detectors. Samples using new manufacturing methods were characterized. A dose of some 1011 ions/mm2 was determined as a limit for the exposure of the material with heavy ions of high ionisation density. It could be shown that even highly segmented detectors with an efficiency ε>98 % could be built from this

  16. Phenotypes Associated with Knockouts of Eight Dense Granule Gene Loci (GRA2-9) in Virulent Toxoplasma gondii.

    Science.gov (United States)

    Rommereim, Leah M; Bellini, Valeria; Fox, Barbara A; Pètre, Graciane; Rak, Camille; Touquet, Bastien; Aldebert, Delphine; Dubremetz, Jean-François; Cesbron-Delauw, Marie-France; Mercier, Corinne; Bzik, David J

    2016-01-01

    Toxoplasma gondii actively invades host cells and establishes a parasitophorous vacuole (PV) that accumulates many proteins secreted by the dense granules (GRA proteins). To date, at least 23 GRA proteins have been reported, though the function(s) of most of these proteins still remains unknown. We targeted gene knockouts at ten GRA gene loci (GRA1-10) to investigate the cellular roles and essentiality of these classical GRA proteins during acute infection in the virulent type I RH strain. While eight of these genes (GRA2-9) were successfully knocked out, targeted knockouts at the GRA1 and GRA10 loci were not obtained, suggesting these GRA proteins may be essential. As expected, the Δgra2 and Δgra6 knockouts failed to form an intravacuolar network (IVN). Surprisingly, Δgra7 exhibited hyper-formation of the IVN in both normal and lipid-free growth conditions. No morphological alterations were identified in parasite or PV structures in the Δgra3, Δgra4, Δgra5, Δgra8, or Δgra9 knockouts. With the exception of the Δgra3 and Δgra8 knockouts, all of the GRA knockouts exhibited defects in their infection rate in vitro. While the single GRA knockouts did not exhibit reduced replication rates in vitro, replication rate defects were observed in three double GRA knockout strains (Δgra4Δgra6, Δgra3Δgra5 and Δgra3Δgra7). However, the virulence of single or double GRA knockout strains in CD1 mice was not affected. Collectively, our results suggest that while the eight individual GRA proteins investigated in this study (GRA2-9) are not essential, several GRA proteins may provide redundant and potentially important functions during acute infection. PMID:27458822

  17. Low dose pramipexole causes D3 receptor-independent reduction of locomotion and responding for a conditioned reinforcer.

    Science.gov (United States)

    McCormick, P N; Fletcher, P J; Wilson, V S; Browne, J D C; Nobrega, J N; Remington, G J

    2015-02-01

    Pramipexole is a clinically important dopamine receptor agonist with reported selectivity for dopamine D3 receptors over other dopaminergic and non-dopaminergic sites. Many of its behavioural effects are therefore attributed to D3 receptor activity. Here we relate pramipexole's ex vivo D2 and D3 receptor binding (measured using [(3)H]-(+)-PHNO binding experiments) to its effects on locomotion and operant responding for primary and conditioned reinforcers. We show that pramipexole has inhibitory behavioural effects on all three behaviours at doses that occupy D3 but not D2 receptor. However, these effects are 1) not inhibited by a D3 selective dose of the antagonist SB-277011-A, and 2) present in D3 receptor knockout mice. These results suggest that a pharmacological mechanism other than D3 receptor activity must be responsible for these behavioural effects. Finally, our receptor binding results also suggest that these behavioural effects are independent of D2 receptor activity. However, firmer conclusions regarding D2 involvement would be aided by further pharmacological or receptor knock-out experiments. The implications of our findings for the understanding of pramipexole's behavioural and clinical effects are discussed. PMID:25283483

  18. Autophagy and the (prorenin receptor

    Directory of Open Access Journals (Sweden)

    KatrinaJeanBinger

    2013-10-01

    Full Text Available The (prorenin receptor (PRR is a newly reported member of the renin-angiotensin system (RAS; a hormonal cascade responsible for regulating blood pressure. Originally, the identification of PRR was heralded as the next drug target of the RAS, of which such therapies would have increased benefits against target-organ damage and hypertension. However, in the years since its discovery several conditional knockout mouse models of PRR have demonstrated an essential role for this receptor unrelated to the renin-angiotensin system and blood pressure. Deletion of PRR in podocytes or cardiomyocytes resulted in the rapid onset of organ failure, eventuating in animal mortality after only a matter of weeks. In both cases, deletion of PRR resulted in the intracellular accumulation of autophagosomes and misfolded proteins, indicating a disturbance in autophagy. In light of the fact that the majority of PRR is located intracellularly, this molecular function appears to be more relevant than its ability to bind to high, non-physiological concentrations of (prorenin. This review will focus on the role of PRR in autophagy and its importance in maintaining cellular homeostasis. Understanding the link between PRR, autophagy and how its loss results in cell death will be essential for deciphering its role in physiology and pathology.

  19. Abnormal social behavior, hyperactivity, impaired remote spatial memory, and increased D1-mediated dopaminergic signaling in neuronal nitric oxide synthase knockout mice

    Directory of Open Access Journals (Sweden)

    Tanda Koichi

    2009-06-01

    Full Text Available Abstract Background Neuronal nitric oxide synthase (nNOS is involved in the regulation of a diverse population of intracellular messenger systems in the brain. In humans, abnormal NOS/nitric oxide metabolism is suggested to contribute to the pathogenesis and pathophysiology of some neuropsychiatric disorders, such as schizophrenia and bipolar disorder. Mice with targeted disruption of the nNOS gene exhibit abnormal behaviors. Here, we subjected nNOS knockout (KO mice to a battery of behavioral tests to further investigate the role of nNOS in neuropsychiatric functions. We also examined the role of nNOS in dopamine/DARPP-32 signaling in striatal slices from nNOS KO mice and the effects of the administration of a dopamine D1 receptor agonist on behavior in nNOS KO mice. Results nNOS KO mice showed hyperlocomotor activity in a novel environment, increased social interaction in their home cage, decreased depression-related behavior, and impaired spatial memory retention. In striatal slices from nNOS KO mice, the effects of a dopamine D1 receptor agonist, SKF81297, on the phosphorylation of DARPP-32 and AMPA receptor subunit GluR1 at protein kinase A sites were enhanced. Consistent with the biochemical results, intraperitoneal injection of a low dose of SKF81297 significantly decreased prepulse inhibition in nNOS KO mice, but not in wild-type mice. Conclusion These findings indicate that nNOS KO upregulates dopamine D1 receptor signaling, and induces abnormal social behavior, hyperactivity and impaired remote spatial memory. nNOS KO mice may serve as a unique animal model of psychiatric disorders.

  20. Outcome of urogenital infection with Chlamydia muridarum in CD-14 gene knockout mice

    Directory of Open Access Journals (Sweden)

    Ramsey Kyle H

    2006-09-01

    Full Text Available Abstract Background CD14 has been postulated to play a role in chlamydial immunity and immunopathology. There is evidence to support this role in human infections but its function in a mouse model has not been investigated. Methods Female CD14 gene knockout and C57BL/6J wild type mice were infected intravaginally with Chlamydia muridarum. The infection course was monitored by detection of viable chlamydiae from serially collected cervical-vaginal swabs. The sequela of tubal factor infertility was assessed using hydrosalpinx formation as a surrogate marker. Results A significantly abbreviated infection course was observed in the CD14 gene knockout mice but hydrosalpinx formation occurred at similar rates between the two groups. Conclusion Involvement of CD14 during chlamydial infection impedes infection resolution but this does not affect the sequela of infertility as assessed by hydrosalpinx formation.

  1. Single-Step Generation of Conditional Knockout Mouse Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Matyas Flemr

    2015-07-01

    Full Text Available Induction of double-strand DNA breaks (DSBs by engineered nucleases, such as CRISPR/Cas9 or transcription activator-like effector nucleases (TALENs, stimulates knockin of exogenous DNA fragments via homologous recombination (HR. However, the knockin efficiencies reported so far have not allowed more complex in vitro genome modifications such as, for instance, simultaneous integration of a DNA fragment at two distinct genomic sites. We developed a reporter system to enrich for cells with engineered nuclease-assisted HR events. Using this system in mouse embryonic stem cells (mESCs, we achieve single-step biallelic and seamless integration of two loxP sites for Cre recombinase-mediated inducible gene knockout, as well as biallelic endogenous gene tagging with high efficiency. Our approach reduces the time and resources required for conditional knockout mESC generation dramatically.

  2. Voluntary exercise decreases atherosclerosis in nephrectomised ApoE knockout mice.

    Directory of Open Access Journals (Sweden)

    Cecilia M Shing

    Full Text Available Cardiovascular disease is the main cause of morbidity and mortality in patients with kidney disease. The effectiveness of exercise for cardiovascular disease that is accelerated by the presence of chronic kidney disease remains unknown. The present study utilized apolipoprotein E knockout mice with 5/6 nephrectomy as a model of combined kidney disease and cardiovascular disease to investigate the effect of exercise on aortic plaque formation, vascular function and systemic inflammation. Animals were randomly assigned to nephrectomy or control and then to either voluntary wheel running exercise or sedentary. Following 12-weeks, aortic plaque area was significantly (p0.05. Nephrectomy increased IL-6 and TNF-α concentrations compared with control mice (p0.05. Exercise was an effective non-pharmacologic approach to slow cardiovascular disease in the presence of kidney disease in the apolipoprotein E knockout mouse.

  3. Have gene knockouts caused evolutionary reversals in the mammalian first arch?

    Science.gov (United States)

    Smith, K K; Schneider, R A

    1998-03-01

    Many recent gene knockout experiments cause anatomical changes to the jaw region of mice that several investigators claim are evolutionary reversals. Here we evaluate these mutant phenotypes and the assertions of atavism. We argue that following the knockout of Hoxa-2, Dlx-2, MHox, Otx2, and RAR genes, ectopic cartilages arise as secondary consequences of disruptions in normal processes of cell specification, migration, or differentiation. These disruptions cause an excess of mesenchyme to accumulate in a region through which skeletal progenitor cells usually migrate, and at a site of condensation that is normally present in mammals but that is too small to chondrify. We find little evidence that these genes, when disrupted, cause a reversion to any primitive condition and although changes in their expression may have played a role in the evolution of the mammalian jaw, their function during morphogenesis is not sufficiently understood to confirm such hypotheses. PMID:9631652

  4. Knockout of GAD65 has major impact on synaptic GABA synthesized from astrocyte-derived glutamine

    DEFF Research Database (Denmark)

    Walls, Anne Byriel; Eyjolfsson, Elvar M.; Smeland, Olav B.;

    2011-01-01

    65 for maintenance of the highly compartmentalized intracellular and intercellular GABA homeostasis, GAD65 knockout and corresponding wild-type mice were injected with [1-(13)C]glucose and the astrocyte-specific substrate [1,2-(13)C]acetate. Synthesis of GABA from glutamine in the GABAergic synapses...... cortex and hippocampus. The GABA content in both brain regions was reduced by ∼20%. Moreover, it was revealed that GAD65 is crucial for maintenance of biosynthesis of synaptic GABA particularly by direct synthesis from astrocytic glutamine via glutamate. The GAD67 was found to be important for synthesis...... of GABA from glutamine both via direct synthesis and via a pathway involving mitochondrial metabolism. Furthermore, a severe neuronal hypometabolism, involving glycolysis and tricarboxylic acid (TCA) cycle activity, was observed in cerebral cortex of GAD65 knockout mice....

  5. Podocyte-specific knockout of myosin 1e disrupts glomerular filtration.

    Science.gov (United States)

    Chase, Sharon E; Encina, Christina V; Stolzenburg, Lindsay R; Tatum, Arthur H; Holzman, Lawrence B; Krendel, Mira

    2012-10-01

    Myosin 1e (myo1e) is an actin-dependent molecular motor that plays an important role in kidney functions. Complete knockout of myo1e in mice and Myo1E mutations in humans are associated with nephrotic syndrome and focal segmental glomerulosclerosis. In this paper, we tested the hypothesis that myo1e is necessary for normal functions of glomerular visceral epithelial cells (podocytes) using podocyte-targeted knockout of myo1e. Myo1e was selectively knocked out in podocytes using Cre-mediated recombination controlled by the podocin promoter. Myo1e loss from podocytes resulted in proteinuria, podocyte foot process effacement, and glomerular basement membrane disorganization. Our findings indicate that myo1e expression in podocytes is necessary for normal glomerular filtration and that podocyte defects are likely to represent the primary pathway leading to glomerular disease associated with Myo1E mutations. PMID:22811491

  6. (p,pα) cluster-knockout reaction on 9Be at 200 MeV

    International Nuclear Information System (INIS)

    The (p,pα) cluster-knockout reaction on 9Be has been investigated experimentally at a bombarding energy of 200 MeV. Coincident data were obtained at five quasifree angle pairs for proton angles ranging from 40 degree to 80 degree. The data were analyzed in terms of the distorted-wave impulse approximation. The calculated energy-sharing distributions reproduce the data reasonably well, indicating that the quasifree-knockout mechanism dominates the reaction. The factorization approximation employed in the calculation is found to be valid. The absolute spectroscopic factors derived from the data are in excellent agreement with lower-energy results, and compare well with shell-model predictions

  7. A model of knock-out of oxygen by charged particle irradiation of Bi-2212

    International Nuclear Information System (INIS)

    A model of knock-out of oxygen by charged particle (α and proton) irradiation of Bi2Sr2CaCu2O8+x (Bi-2212) is proposed on the basis of Monte Carlo TRIM calculations. In Bi-2212, the loosely bound excess oxygen is vulnerable to be displaced by particle irradiation. Binding energy and hence, displacement energy of this loosely bound excess oxygen is less compared to that of stoichiometric lattice bound oxygen and other atoms. The displaced or knocked out oxygen goes to pores or intergranular region and generates large pressure inside the sample. Because of porosity of the material, this displaced oxygen diffuses out and there is a net reduction of oxygen content of the sample. The irradiation induced oxygen knock-out is dominant in the bulk where nonionizing energy loss is maximum. (author). 29 refs., 1 fig., 3 tabs

  8. The mitochondrial function was impaired in APP knockout mouse embryo fibroblast cells

    Institute of Scientific and Technical Information of China (English)

    SHENG BaiYang; NIU Ying; ZHOU Hui; YAN JiaXin; ZHAO NanMing; ZHANG XiuFang; GONG YanDao

    2009-01-01

    The amyloid precursor protein (APP) is recognized as the source of Aβ, which plays an important role in Alzheimer's disease. However, the biological function of APP is obscure. Previous studies showed that mitochondria could be a target of APP. In this work, APP knockout mouse embryo fibroblast (MEF) cells were used to test if APP plays any role in maintaining the mitochondrial function. As the result, APP knockout MEF cells (APP-/- cells) showed the abnormal mitochondrial function, including slower cell proliferation, lower mitochondrial membrane potential, lower intracellular ROS, higher mitochon-drial membrane fluidity and lower cytochrome c oxidase activity than their wild-type counterparts. However, no change was found in the amount of mitochondria in MEF APP-/- cells.

  9. Determination of antibiotic hypersensitivity among 4,000 single-gene-knockout mutants of Escherichia coli.

    Science.gov (United States)

    Tamae, Cindy; Liu, Anne; Kim, Katherine; Sitz, Daniel; Hong, Jeeyoon; Becket, Elinne; Bui, Ann; Solaimani, Parrisa; Tran, Katherine P; Yang, Hanjing; Miller, Jeffrey H

    2008-09-01

    We have tested the entire Keio collection of close to 4,000 single-gene knockouts in Escherichia coli for increased susceptibility to one of seven different antibiotics (ciprofloxacin, rifampin, vancomycin, ampicillin, sulfamethoxazole, gentamicin, or metronidazole). We used high-throughput screening of several subinhibitory concentrations of each antibiotic and reduced more than 65,000 data points to a set of 140 strains that display significantly increased sensitivities to at least one of the antibiotics, determining the MIC in each case. These data provide targets for the design of "codrugs" that can potentiate existing antibiotics. We have made a number of double mutants with greatly increased sensitivity to ciprofloxacin, and these overcome the resistance generated by certain gyrA mutations. Many of the gene knockouts in E. coli are hypersensitive to more than one antibiotic. Together, all of these data allow us to outline the cell's "intrinsic resistome," which provides innate resistance to antibiotics. PMID:18621901

  10. The FKBP5 Gene Affects Alcohol Drinking in Knockout Mice and Is Implicated in Alcohol Drinking in Humans.

    Science.gov (United States)

    Qiu, Bin; Luczak, Susan E; Wall, Tamara L; Kirchhoff, Aaron M; Xu, Yuxue; Eng, Mimy Y; Stewart, Robert B; Shou, Weinian; Boehm, Stephen L; Chester, Julia A; Yong, Weidong; Liang, Tiebing

    2016-01-01

    FKBP5 encodes FK506-binding protein 5, a glucocorticoid receptor (GR)-binding protein implicated in various psychiatric disorders and alcohol withdrawal severity. The purpose of this study is to characterize alcohol preference and related phenotypes in Fkbp5 knockout (KO) mice and to examine the role of FKBP5 in human alcohol consumption. The following experiments were performed to characterize Fkpb5 KO mice. (1) Fkbp5 KO and wild-type (WT) EtOH consumption was tested using a two-bottle choice paradigm; (2) The EtOH elimination rate was measured after intraperitoneal (IP) injection of 2.0 g/kg EtOH; (3) Blood alcohol concentration (BAC) was measured after 3 h limited access of alcohol; (4) Brain region expression of Fkbp5 was identified using LacZ staining; (5) Baseline corticosterone (CORT) was assessed. Additionally, two SNPs, rs1360780 (C/T) and rs3800373 (T/G), were selected to study the association of FKBP5 with alcohol consumption in humans. Participants were college students (n = 1162) from 21-26 years of age with Chinese, Korean or Caucasian ethnicity. The results, compared to WT mice, for KO mice exhibited an increase in alcohol consumption that was not due to differences in taste sensitivity or alcohol metabolism. Higher BAC was found in KO mice after 3 h of EtOH access. Fkbp5 was highly expressed in brain regions involved in the regulation of the stress response, such as the hippocampus, amygdala, dorsal raphe and locus coeruleus. Both genotypes exhibited similar basal levels of plasma corticosterone (CORT). Finally, single nucleotide polymorphisms (SNPs) in FKBP5 were found to be associated with alcohol drinking in humans. These results suggest that the association between FKBP5 and alcohol consumption is conserved in both mice and humans. PMID:27527158

  11. Vitamin D deficiency and exogenous vitamin D excess similarly increase diffuse atherosclerotic calcification in apolipoprotein E knockout mice.

    Directory of Open Access Journals (Sweden)

    Timothy Ellam

    Full Text Available BACKGROUND: Observational data associate lower levels of serum vitamin D with coronary artery calcification, cardiovascular events and mortality. However, there is little interventional evidence demonstrating that moderate vitamin D deficiency plays a causative role in cardiovascular disease. This study examined the cardiovascular effects of dietary vitamin D deficiency and of vitamin D receptor agonist (paricalcitol administration in apolipoprotein E knockout mice. METHODS: Mice were fed atherogenic diets with normal vitamin D content (1.5 IU/kg or without vitamin D. Paricalcitol, or matched vehicle, was administered 3× weekly by intraperitoneal injection. Following 20 weeks of these interventions cardiovascular phenotype was characterized by histological assessment of aortic sinus atheroma, soluble markers, blood pressure and echocardiography. To place the cardiovascular assessments in the context of intervention effects on bone, structural changes at the tibia were assessed by microtomography. RESULTS: Vitamin D deficient diet induced significant reductions in plasma vitamin D (p<0.001, trabecular bone volume (p<0.01 and bone mineral density (p<0.005. These changes were accompanied by an increase in calcification density (number of calcifications per mm(2 of von Kossa-stained aortic sinus atheroma (461 versus 200, p<0.01. Paricalcitol administration suppressed parathyroid hormone (p<0.001, elevated plasma calcium phosphate product (p<0.005 and induced an increase in calcification density (472 versus 200, p<0.005 similar to that seen with vitamin D deficiency. Atheroma burden, blood pressure, metabolic profile and measures of left ventricular hypertrophy were unaffected by the interventions. CONCLUSION: Vitamin D deficiency, as well as excess, increases atherosclerotic calcification. This phenotype is induced before other measures of cardiovascular pathology associated clinically with vitamin D deficiency. Thus, maintenance of an optimal

  12. Diacylglycerol kinase β knockout mice exhibit attention-deficit behavior and an abnormal response on methylphenidate-induced hyperactivity.

    Directory of Open Access Journals (Sweden)

    Mitsue Ishisaka

    Full Text Available BACKGROUND: Diacylglycerol kinase (DGK is an enzyme that phosphorylates diacylglycerol to produce phosphatidic acid. DGKβ is one of the subtypes of the DGK family and regulates many intracellular signaling pathways in the central nervous system. Previously, we demonstrated that DGKβ knockout (KO mice showed various dysfunctions of higher brain function, such as cognitive impairment (with lower spine density, hyperactivity, reduced anxiety, and careless behavior. In the present study, we conducted further tests on DGKβ KO mice in order to investigate the function of DGKβ in the central nervous system, especially in the pathophysiology of attention deficit hyperactivity disorder (ADHD. METHODOLOGY/PRINCIPAL FINDINGS: DGKβ KO mice showed attention-deficit behavior in the object-based attention test and it was ameliorated by methylphenidate (MPH, 30 mg/kg, i.p.. In the open field test, DGKβ KO mice displayed a decreased response to the locomotor stimulating effects of MPH (30 mg/kg, i.p., but showed a similar response to an N-methyl-d-aspartate (NMDA receptor antagonist, MK-801 (0.3 mg/kg, i.p., when compared to WT mice. Examination of the phosphorylation of extracellular signal-regulated kinase (ERK, which is involved in regulation of locomotor activity, indicated that ERK1/2 activation induced by MPH treatment was defective in the striatum of DGKβ KO mice. CONCLUSIONS/SIGNIFICANCE: These findings suggest that DGKβ KO mice showed attention-deficit and hyperactive phenotype, similar to ADHD. Furthermore, the hyporesponsiveness of DGKβ KO mice to MPH was due to dysregulation of ERK phosphorylation, and that DGKβ has a pivotal involvement in ERK regulation in the striatum.

  13. Nicotine reward and affective nicotine withdrawal signs are attenuated in calcium/calmodulin-dependent protein kinase IV knockout mice.

    Directory of Open Access Journals (Sweden)

    Kia J Jackson

    Full Text Available The influx of Ca(2+ through calcium-permeable nicotinic acetylcholine receptors (nAChRs leads to activation of various downstream processes that may be relevant to nicotine-mediated behaviors. The calcium activated protein, calcium/calmodulin-dependent protein kinase IV (CaMKIV phosphorylates the downstream transcription factor cyclic AMP response element binding protein (CREB, which mediates nicotine responses; however the role of CaMKIV in nicotine dependence is unknown. Given the proposed role of CaMKIV in CREB activation, we hypothesized that CaMKIV might be a crucial molecular component in the development of nicotine dependence. Using male CaMKIV genetically modified mice, we found that nicotine reward is attenuated in CaMKIV knockout (-/- mice, but cocaine reward is enhanced in these mice. CaMKIV protein levels were also increased in the nucleus accumbens of C57Bl/6 mice after nicotine reward. In a nicotine withdrawal assessment, anxiety-related behavior, but not somatic signs or the hyperalgesia response are attenuated in CaMKIV -/- mice. To complement our animal studies, we also conducted a human genetic association analysis and found that variants in the CaMKIV gene are associated with a protective effect against nicotine dependence. Taken together, our results support an important role for CaMKIV in nicotine reward, and suggest that CaMKIV has opposing roles in nicotine and cocaine reward. Further, CaMKIV mediates affective, but not physical nicotine withdrawal signs, and has a protective effect against nicotine dependence in human genetic association studies. These findings further indicate the importance of calcium-dependent mechanisms in mediating behaviors associated with drugs of abuse.

  14. The FKBP5 Gene Affects Alcohol Drinking in Knockout Mice and Is Implicated in Alcohol Drinking in Humans

    Directory of Open Access Journals (Sweden)

    Bin Qiu

    2016-08-01

    Full Text Available FKBP5 encodes FK506-binding protein 5, a glucocorticoid receptor (GR-binding protein implicated in various psychiatric disorders and alcohol withdrawal severity. The purpose of this study is to characterize alcohol preference and related phenotypes in Fkbp5 knockout (KO mice and to examine the role of FKBP5 in human alcohol consumption. The following experiments were performed to characterize Fkpb5 KO mice. (1 Fkbp5 KO and wild-type (WT EtOH consumption was tested using a two-bottle choice paradigm; (2 The EtOH elimination rate was measured after intraperitoneal (IP injection of 2.0 g/kg EtOH; (3 Blood alcohol concentration (BAC was measured after 3 h limited access of alcohol; (4 Brain region expression of Fkbp5 was identified using LacZ staining; (5 Baseline corticosterone (CORT was assessed. Additionally, two SNPs, rs1360780 (C/T and rs3800373 (T/G, were selected to study the association of FKBP5 with alcohol consumption in humans. Participants were college students (n = 1162 from 21–26 years of age with Chinese, Korean or Caucasian ethnicity. The results, compared to WT mice, for KO mice exhibited an increase in alcohol consumption that was not due to differences in taste sensitivity or alcohol metabolism. Higher BAC was found in KO mice after 3 h of EtOH access. Fkbp5 was highly expressed in brain regions involved in the regulation of the stress response, such as the hippocampus, amygdala, dorsal raphe and locus coeruleus. Both genotypes exhibited similar basal levels of plasma corticosterone (CORT. Finally, single nucleotide polymorphisms (SNPs in FKBP5 were found to be associated with alcohol drinking in humans. These results suggest that the association between FKBP5 and alcohol consumption is conserved in both mice and humans.

  15. Production of p53 gene knockout rats by homologous recombination in embryonic stem cells

    OpenAIRE

    Tong, Chang; Li, Ping; Wu, Nancy L; Yan, Youzhen; Ying, Qi-Long

    2010-01-01

    The use of homologous recombination to modify genes in embryonic stem (ES) cells provides a powerful means to elucidate gene function and create disease models1. Application of this technology to engineer genes in rats has previously been impossible in the absence of germline competent ES cells in this species. We have recently established authentic rat ES cells2, 3. Here we report the generation of the first gene knockout rats using the ES cell-based gene targeting technology. We designed a ...

  16. Trafficking defects in WASH-knockout fibroblasts originate from collapsed endosomal and lysosomal networks

    OpenAIRE

    Gomez, Timothy S.; Gorman, Jacquelyn A.; Artal-Martinez de Narvajas, Amaia; Koenig, Alexander O.; BILLADEAU, DANIEL D.

    2012-01-01

    The Arp2/3-activator Wiskott–Aldrich syndrome protein and Scar homologue (WASH) is suggested to regulate actin-dependent membrane scission during endosomal sorting, but its cellular roles have not been fully elucidated. To investigate WASH function, we generated tamoxifen-inducible WASH-knockout mouse embryonic fibroblasts (WASHout MEFs). Of interest, although EEA1+ endosomes were enlarged, collapsed, and devoid of filamentous-actin and Arp2/3 in WASHout MEFs, we did not observe elongated mem...

  17. Contributions of Selective Knockout Studies to Understanding Cholinesterase Disposition and Function

    OpenAIRE

    Camp, Shelley; ZHANG, LIMIN; Krejci, Eric; Dobbertin, Alexandre; Bernard, Véronique; Girard, Emmanuelle; Duysen, Ellen G.; Lockridge, Oksana; De Jaco, Antonella; Taylor, Palmer

    2010-01-01

    The complete knockout of the acetylcholinesterase gene (AChE) in the mouse yielded a surprising phenotype that could not have been predicted from deletion of the cholinesterase genes in Drosophila, that of a living, but functionally compromised animal. The phenotype of this animal showed a sufficient compromise in motor function that precluded precise characterization of central and peripheral nervous functional deficits. Since AChE in mammals is encoded by a single gene with alternative spli...

  18. Voluntary Exercise Decreases Atherosclerosis in Nephrectomised ApoE Knockout Mice

    OpenAIRE

    Shing, Cecilia M.; Fassett, Robert G.; Peake, Jonathan M.; Coombes, Jeff S.

    2015-01-01

    Cardiovascular disease is the main cause of morbidity and mortality in patients with kidney disease. The effectiveness of exercise for cardiovascular disease that is accelerated by the presence of chronic kidney disease remains unknown. The present study utilized apolipoprotein E knockout mice with 5/6 nephrectomy as a model of combined kidney disease and cardiovascular disease to investigate the effect of exercise on aortic plaque formation, vascular function and systemic inflammation. Anima...

  19. Molecular mechanisms of cocaine reward: Combined dopamine and serotonin transporter knockouts eliminate cocaine place preference

    OpenAIRE

    Sora,Ichiro; Hall, F. Scott; Andrews, Anne M.; Itokawa, Masanari; Li, Xiao-Fei; Wei, Hong-Bing; Wichems, Christine; Lesch, Klaus-Peter; Murphy, Dennis L.; Uhl, George R.

    2001-01-01

    Cocaine blocks uptake by neuronal plasma membrane transporters for dopamine (DAT), serotonin (SERT), and norepinephrine (NET). Cocaine reward/reinforcement has been linked to actions at DAT or to blockade of SERT. However, knockouts of neither DAT, SERT, or NET reduce cocaine reward/reinforcement, leaving substantial uncertainty about cocaine's molecular mechanisms for reward. Conceivably, the molecular bases of cocaine reward might display sufficient redundancy th...

  20. Development of beam current control system in RF-knockout slow extraction

    Energy Technology Data Exchange (ETDEWEB)

    Mizushima, K., E-mail: mizshima@nirs.go.jp [Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Graduate School of Science and Technology, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Sato, S.; Shirai, T.; Furukawa, T.; Katagiri, K.; Takeshita, E.; Iwata, Y.; Himukai, T.; Noda, K. [Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2011-12-15

    A raster scanning method has been developed for cancer therapy at NIRS-HIMAC. This method requires a high-accuracy beam current control and fast beam-on/off switching. We have developed a feedback control system of the beam current with the RF-knockout slow extraction method. The system has allowed a stable response to beam-on/off switching using a feedback control delay function with a beam-current ripple of 7%.

  1. Does transfer confirm knockout results for spectroscopic factor suppression with radioactive beams

    International Nuclear Information System (INIS)

    Proton removal measurements of the (e, e'p), (d,3He), and fast-beam knockout types show a consistent reduction of the spectroscopic factor when compared to shell model calculations [1-3]. The loss of single-particle strength is explained as the result of the short-range correlations between nucleons that are not accounted for in shell model calculations [1,3]. A similar reduction is seen with neutron knockout measurements, as would be expected because of isospin symmetry [1]. The interpretation of these results is complicated by the observation of a dependence of the reduction factor on the asymmetry of the proton and neutron Fermi energy surfaces (ΔS , with ΔS ∼ 0 for near-stable nuclei) [4]. However, the observed trend is largely deduced from measurements of nucleon knockout from exotic nuclei with large values of ΔS, and there are no analogous (e, e'n) data to which to compare. It is, therefore, important to supplement these results with data obtained through different reaction mechanisms. The TIARA, MUST2, VAMOS, and EXOGAM systems were employed at the GANIL/SPIRAL facility to provide complete kinematics measurements of the 2H(26Ne,t)26Ne and 1H(26Ne,d)26Ne reactions. The (d, t) and (p, d) reactions, measured in inverse kinematics, provide spectroscopic information on the neutron single-hole states around the new N = 16 shell closure found in the Ne region. The two measurements are designed to provide a comparison of results for the neutron-rich nucleus 26Ne (ΔS = -12.55 MeV) obtained from the fast-beam neutron knockout reaction [5] and the transfer mechanism studied here. The details of the experimental arrangement and the data analysis, including angular distributions and spectroscopic factors, will be presented.(author)

  2. Kv4.2 Knockout Mice Have Hippocampal-Dependent Learning and Memory Deficits

    Science.gov (United States)

    Lugo, Joaquin N.; Brewster, Amy L.; Spencer, Corinne M.; Anderson, Anne E.

    2012-01-01

    Kv4.2 channels contribute to the transient, outward K[superscript +] current (A-type current) in hippocampal dendrites, and modulation of this current substantially alters dendritic excitability. Using Kv4.2 knockout (KO) mice, we examined the role of Kv4.2 in hippocampal-dependent learning and memory. We found that Kv4.2 KO mice showed a deficit…

  3. Fetal growth retardation and lack of hypotaurine in ezrin knockout mice.

    Directory of Open Access Journals (Sweden)

    Tomohiro Nishimura

    Full Text Available Ezrin is a membrane-associated cytoplasmic protein that serves to link cell-membrane proteins with the actin-based cytoskeleton, and also plays a role in regulation of the functional activities of some transmembrane proteins. It is expressed in placental trophoblasts. We hypothesized that placental ezrin is involved in the supply of nutrients from mother to fetus, thereby influencing fetal growth. The aim of this study was firstly to clarify the effect of ezrin on fetal growth and secondly to determine whether knockout of ezrin is associated with decreased concentrations of serum and placental nutrients. Ezrin knockout mice (Ez(-/- were confirmed to exhibit fetal growth retardation. Metabolome analysis of fetal serum and placental extract of ezrin knockout mice by means of capillary electrophoresis-time-of-flight mass spectrometry revealed a markedly decreased concentration of hypotaurine, a precursor of taurine. However, placental levels of cysteine and cysteine sulfinic acid (precursors of hypotaurine and taurine were not affected. Lack of hypotaurine in Ez(-/- mice was confirmed by liquid chromatography with tandem mass spectrometry. Administration of hypotaurine to heterogenous dams significantly decreased the placenta-to-maternal plasma ratio of hypotaurine in wild-type fetuses but only slightly decreased it in ezrin knockout fetuses, indicating that the uptake of hypotaurine from mother to placenta is saturable and that disruption of ezrin impairs the uptake of hypotaurine by placental trophoblasts. These results indicate that ezrin is required for uptake of hypotaurine from maternal serum by placental trophoblasts, and plays an important role in fetal growth.

  4. Sirh7/Ldoc1 knockout mice exhibit placental P4 overproduction and delayed parturition

    OpenAIRE

    Naruse, Mie; Ono, Ryuichi; Irie, Masahito; Nakamura, Kenji; Furuse, Tamio; Hino, Toshiaki; Oda, Kanako; Kashimura, Misho; Yamada, Ikuko; Wakana, Shigeharu; Yokoyama, Minesuke; Ishino, Fumitoshi; Kaneko-Ishino, Tomoko

    2014-01-01

    Sirh7/Ldoc1 [sushi-ichi retrotransposon homolog 7/leucine zipper, downregulated in cancer 1, also called mammalian retrotransposon-derived 7 (Mart7)] is one of the newly acquired genes from LTR retrotransposons in eutherian mammals. Interestingly, Sirh7/Ldoc1 knockout (KO) mice exhibited abnormal placental cell differentiation/maturation, leading to an overproduction of placental progesterone (P4) and placental lactogen 1 (PL1) from trophoblast giant cells (TGCs). The placenta is an organ tha...

  5. Lack of stress responses to long-term effects of corticosterone in Caps2 knockout mice

    OpenAIRE

    MISHIMA, Yuriko; Shinoda, Yo; Sadakata, Tetsushi; Kojima, Masami; Wakana, Shigeharu; Furuichi, Teiichi

    2015-01-01

    Chronic stress is associated with anxiety and depressive disorders, and can cause weight gain. Ca2+-dependent activator protein for secretion 2 (CAPS2) is involved in insulin release. Caps2 knockout (KO) mice exhibit decreased body weight, reduced glucose-induced insulin release, and abnormal psychiatric behaviors. We chronically administered the stress hormone corticosterone (CORT), which induces anxiety/depressive-like behavior and normally increases plasma insulin levels, via the drinking ...

  6. Transgenic knockout mice with exclusively human sickle hemoglobinand sickle cell disease

    Energy Technology Data Exchange (ETDEWEB)

    Paszty, C.; Brion, C.; Manci, E.; Witkowska, E.; Stevens, M.; Narla, M.; Rubin, E.

    1997-06-13

    To create mice expressing exclusively human sicklehemoglobin (HbS), transgenic mice expressing human alpha-, gamma-, andbeta[S]-globin were generated and bred with knockout mice that haddeletions of the murine alpha- and beta-globin genes. These sickle cellmice have the major features (irreversibly sickled red cells, anemia,multiorgan pathology) found in humans with sickle cell disease and, assuch, represent a useful in vivo system to accelerate the development ofimproved therapies for this common genetic disease.

  7. Comprehensive reanalysis of transcription factor knockout expression data in Saccharomyces cerevisiae reveals many new targets

    OpenAIRE

    Reimand, Jüri; Vaquerizas, Juan M.; Todd, Annabel E.; Vilo, Jaak; Luscombe, Nicholas M.

    2010-01-01

    Transcription factor (TF) perturbation experiments give valuable insights into gene regulation. Genome-scale evidence from microarray measurements may be used to identify regulatory interactions between TFs and targets. Recently, Hu and colleagues published a comprehensive study covering 269 TF knockout mutants for the yeast Saccharomyces cerevisiae. However, the information that can be extracted from this valuable dataset is limited by the method employed to process the microarray data. Here...

  8. STRIATAL-ENRICHED PROTEIN TYROSINE PHOSPHATASE (STEP) KNOCKOUT MICE HAVE ENHANCED HIPPOCAMPAL MEMORY

    OpenAIRE

    Venkitaramani, Deepa V.; Moura, Paula J.; Picciotto, Marina R.; Lombroso, Paul J.

    2011-01-01

    STEP is a brain-specific phosphatase that opposes synaptic strengthening by the regulation of key synaptic signaling proteins. Previous studies suggest a possible role for STriatal-Enriched protein tyrosine Phosphatase (STEP) in learning and memory. To demonstrate the functional importance of STEP in learning and memory, we generated STEP knockout (KO) mice and examined the effect of deletion of STEP on behavioral performance, as well as the phosphorylation and expression of its substrates. H...

  9. Effects of disulfiram and dopamine beta-hydroxylase knockout on cocaine-induced seizures

    OpenAIRE

    Gaval-Cruz, Meriem; Schroeder, Jason P; Liles, L. Cameron; Javors, Martin A.; Weinshenker, David

    2008-01-01

    The antialcoholism drug disulfiram has shown recent promise as a pharmacotherapy for treating cocaine dependence, probably via inhibition of dopamine β-hydroxylase (DBH), the enzyme that catalyzes the conversion of dopamine (DA) to norepinephrine (NE). We previously showed that DBH knockout (Dbh -/-) mice, which lack NE, are susceptible to seizures and are hypersensitive to the psychomotor, rewarding, and aversive effects of cocaine, suggesting that disulfiram might exacerbate cocaine-induced...

  10. Fetale Programmierung von Wildtyp-Nachkommen heterozygoter eNOS-Knockout-Mäuse

    OpenAIRE

    Kempiners, Nina

    2013-01-01

    Introduction: Manifold epidemiological studies have shown that low birth weight and fetal deprivation are associated with disease in later life. This correlation has been shown especially for cardiovascular disease, arteriosclerosis, diabetes mellitus, hyperlipidaemia and obesity. On the experimental side studies with homocygous eNOS-knockout-mice could support these data. Unfortunately the existing experimental designs do not distinguish between fetal, maternal and paternal genotype. Moreove...

  11. CARD9 knockout ameliorates myocardial dysfunction associated with high fat diet-induced obesity.

    Science.gov (United States)

    Cao, Li; Qin, Xing; Peterson, Matthew R; Haller, Samantha E; Wilson, Kayla A; Hu, Nan; Lin, Xin; Nair, Sreejayan; Ren, Jun; He, Guanglong

    2016-03-01

    Obesity is associated with chronic inflammation which plays a critical role in the development of cardiovascular dysfunction. Because the adaptor protein caspase recruitment domain-containing protein 9 (CARD9) in macrophages regulates innate immune responses via activation of pro-inflammatory cytokines, we hypothesize that CARD9 mediates the pro-inflammatory signaling associated with obesity en route to myocardial dysfunction. C57BL/6 wild-type (WT) and CARD9(-/-) mice were fed normal diet (ND, 12% fat) or a high fat diet (HFD, 45% fat) for 5months. At the end of 5-month HFD feeding, cardiac function was evaluated using echocardiography. Cardiomyocytes were isolated and contractile properties were measured. Immunofluorescence was performed to detect macrophage infiltration in the heart. Heart tissue homogenates, plasma, and supernatants from isolated macrophages were collected to measure the concentrations of pro-inflammatory cytokines using ELISA kits. Western immunoblotting analyses were performed on heart tissue homogenates and isolated macrophages to explore the underlying signaling mechanism(s). CARD9 knockout alleviated HFD-induced insulin resistance and glucose intolerance, prevented myocardial dysfunction with preserved cardiac fractional shortening and cardiomyocyte contractile properties. CARD9 knockout also significantly decreased the number of infiltrated macrophages in the heart with reduced myocardium-, plasma-, and macrophage-derived cytokines including IL-6, IL-1β and TNFα. Finally, CARD9 knockout abrogated the increase of p38 MAPK phosphorylation, the decrease of LC3BII/LC3BI ratio and the up-regulation of p62 expression in the heart induced by HFD feeding and restored cardiac autophagy signaling. In conclusion, CARD9 knockout ameliorates myocardial dysfunction associated with HFD-induced obesity, potentially through reduction of macrophage infiltration, suppression of p38 MAPK phosphorylation, and preservation of autophagy in the heart. PMID

  12. Reduced cortical BDNF expression and aberrant memory in Carf knockout mice

    OpenAIRE

    McDowell, Kelli A.; Hutchinson, Ashley N.; Wong-Goodrich, Sarah J.E.; Presby, Matthew M.; Su, Dan; Rodriguiz, Ramona M.; Law, Krystal C.; Williams, Christina L.; Wetsel, William C.; West, Anne E.

    2010-01-01

    Transcription factors are a key point of convergence between the cell-intrinsic and extracellular signals that guide synaptic development and brain plasticity. Calcium-Response Factor (CaRF) is a unique transcription factor first identified as a binding protein for a calcium-response element in the gene encoding Brain-Derived Neurotrophic Factor (Bdnf). We have now generated Carf knockout (KO) mice to characterize the function of this factor in vivo. Intriguingly, Carf KO mice have selectivel...

  13. Impaired Extinction of Learned Contextual Fear Memory in Early Growth Response 1 Knockout Mice

    OpenAIRE

    Han, Seungrie; Hong, Soontaek; Mo, Jiwon; Lee, Dongmin; Choi, Eunju; Choi, June-Seek; Sun, Woong; Lee, Hyun Woo; Kim, Hyun

    2014-01-01

    Inductive expression of early growth response 1 (Egr-1) in neurons is associated with many forms of neuronal activity. However, only a few Egr-1 target genes are known in the brain. The results of this study demonstrate that Egr-1 knockout (KO) mice display impaired contextual extinction learning and normal fear acquisition relative to wild-type (WT) control animals. Genome-wide microarray experiments revealed 368 differentially expressed genes in the hippocampus of Egr-1 WT exposed to differ...

  14. Comprehensive Behavioral Analysis of Calcium/Calmodulin-Dependent Protein Kinase IV Knockout Mice

    OpenAIRE

    Takao, Keizo; Tanda, Koichi; Nakamura, Kenji; Kasahara, Jiro; Nakao, Kazuki; Katsuki, Motoya; Nakanishi, Kazuo; Yamasaki, Nobuyuki; Toyama, Keiko; Adachi, Minami; UMEDA, MASAHIRO; Araki, Tsutomu; Fukunaga, Kohji; Kondo, Hisatake; Sakagami, Hiroyuki

    2010-01-01

    Calcium-calmodulin dependent protein kinase IV (CaMKIV) is a protein kinase that activates the transcription factor CREB, the cyclic AMP-response element binding protein. CREB is a key transcription factor in synaptic plasticity and memory consolidation. To elucidate the behavioral effects of CaMKIV deficiency, we subjected CaMKIV knockout (CaMKIV KO) mice to a battery of behavioral tests. CaMKIV KO had no significant effects on locomotor activity, motor coordination, social interaction, pain...

  15. Efficient conditional knockout targeting vector construction using co-selection BAC recombineering (CoSBR)

    OpenAIRE

    Robert J. Newman; Roose-Girma, Merone; Warming, Søren

    2015-01-01

    A simple and efficient strategy for Bacterial Artificial Chromosome (BAC) recombineering based on co-selection is described. We show that it is possible to efficiently modify two positions of a BAC simultaneously by co-transformation of a single-stranded DNA oligo and a double-stranded selection cassette. The use of co-selection BAC recombineering reduces the DNA manipulation needed to make a conditional knockout gene targeting vector to only two steps: a single round of BAC modification foll...

  16. Cellular Responses during Morphological Transformation in Azospirillum brasilense and Its flcA Knockout Mutant

    OpenAIRE

    Hou, Xingsheng; McMillan, Mary; Joëlle V. F. Coumans; Poljak, Anne; Raftery, Mark J.; Pereg, Lily

    2014-01-01

    FlcA is a response regulator controlling flocculation and the morphological transformation of Azospirillum cells from vegetative to cyst-like forms. To understand the cellular responses of Azospirillum to conditions that cause morphological transformation, proteins differentially expressed under flocculation conditions in A. brasilense Sp7 and its flcA knockout mutant were investigated. Comparison of 2-DE protein profiles of wild-type (Sp7) and a flcA deletion mutant (Sp7-flcAΔ) revealed a to...

  17. Age-Dependent Long-Term Potentiation Deficits in the Prefrontal Cortex of the Fmr1 Knockout Mouse Model of Fragile X Syndrome.

    Science.gov (United States)

    Martin, Henry G S; Lassalle, Olivier; Brown, Jonathan T; Manzoni, Olivier J

    2016-05-01

    The most common inherited monogenetic cause of intellectual disability is Fragile X syndrome (FXS). The clinical symptoms of FXS evolve with age during adulthood; however, neurophysiological data exploring this phenomenon are limited. TheFmr1knockout (Fmr1KO) mouse models FXS, but studies in these mice of prefrontal cortex (PFC) function are underrepresented, and aging linked data are absent. We studied synaptic physiology and activity-dependent synaptic plasticity in the medial PFC ofFmr1KO mice from 2 to 12 months. In young adultFmr1KO mice, NMDA receptor (NMDAR)-mediated long-term potentiation (LTP) is intact; however, in 12-month-old mice this LTP is impaired. In parallel, there was an increase in the AMPAR/NMDAR ratio and a concomitant decrease of synaptic NMDAR currents in 12-month-oldFmr1KO mice. We found that acute pharmacological blockade of mGlu5receptor in 12-month-oldFmr1KO mice restored a normal AMPAR/NMDAR ratio and LTP. Taken together, the data reveal an age-dependent deficit in LTP inFmr1KO mice, which may correlate to some of the complex age-related deficits in FXS. PMID:25750254

  18. How to determine a dineutron correlation in Borromean nuclei via a quasi-free knockout ($p,pn$) reaction?

    CERN Document Server

    Kikuchi, Yuma; Kubota, Yuki; Sasano, Masaki; Uesaka, Tomohiro

    2016-01-01

    The quasi-free neutron knockout reaction on $^6$He is investigated to discuss the dineutron correlation in the ground state. In the present work, the momentum distributions of the two emitted neutrons are calculated with the $\\alpha$~+~$n$~+~$n$ three-body model and the simple reaction model, and the effects of the knockout process via the $^5$He resonance and the target dependence in the momentum distributions are discussed. From the calculation, it is found that a clear signature of the dineutron correlation can be obtained by choosing the kinematical condition to exclude the process via the $^5$He resonance, while the inclusion of the $^5$He resonance drastically changes the momentum distributions. It is also shown to be important to use the proton target in the quantitative discussion on the dineutron correlation by the knockout reaction. In addition to theoretical arguments, a possible experimental setup to determine the dineutron correlation via the quasi-free knockout reaction is considered.

  19. Lipoxin Receptors

    Directory of Open Access Journals (Sweden)

    Mario Romano

    2007-01-01

    Full Text Available Lipoxins (LXs represent a class of arachidonic acid (AA metabolites that carry potent immunoregulatory and anti-inflammatory properties, LXA4 and LXB4 being the main components of this series. LXs are generated by cooperation between 5-lipoxygenase (LO and 12- or 15-LO during cell-cell interactions or by single cell types. LX epimers at carbon 15, the 15-epi-LXs, are formed by aspirin-acetylated cyclooxygenase-2 (COX-2 in cooperation with 5-LO. 15-epi-LXA4 is also termed aspirin-triggered LX (ATL. In vivo studies with stable LX and ATL analogs have established that these eicosanoids possess potent anti-inflammatory activities. A LXA4 receptor has been cloned. It belongs to the family of chemotactic receptors and clusters with formyl peptide receptors on chromosome 19. Therefore, it was initially denominated formyl peptide receptor like 1 (FPRL1. This receptor binds with high affinity and stereoselectivity LXA4 and ATL. It also recognizes a variety of peptides, synthetic, endogenously generated, or disease associated, but with lower affinity compared to LXA4. For this reason, this receptor has been renamed ALX. This review summarizes the current knowledge on ALX expression, signaling, and potential pathophysiological role. The involvement of additional recognition sites in LX bioactions is also discussed.

  20. Knockout confirmation for Hurries: rapid genotype identification of Trypanosoma cruzi transfectants by polymerase chain reaction directly from liquid culture

    OpenAIRE

    2014-01-01

    Gene knockout is a widely used approach to evaluate loss-of-function phenotypes and it can be facilitated by the incorporation of a DNA cassette having a drug-selectable marker. Confirmation of the correct knockout cassette insertion is an important step in gene removal validation and has generally been performed by polymerase chain reaction (PCR) assays following a time-consuming DNA extraction step. Here, we show a rapid procedure for the identification of Trypanosoma cruzi transfectants by...

  1. The hGFAP-driven conditional TSPO knockout is protective in a mouse model of multiple sclerosis

    OpenAIRE

    Daniel J. Daugherty; Olga Chechneva; Florian Mayrhofer; Wenbin Deng

    2016-01-01

    The mitochondrial translocator protein (TSPO) has been implicated in CNS diseases. Here, we sought to determine the specific role of TSPO in experimental autoimmune encephalomyelitis (EAE), the most studied animal model of multiple sclerosis (MS). To fundamentally elucidate the functions of TSPO, we first developed a viable TSPO knockout mouse. A conditional TSPO knockout mouse was generated by utilizing the Cre-Lox system. We generated a TSPO floxed mouse, and then crossed this mouse with a ...

  2. Mup-knockout mice generated through CRISPR/Cas9-mediated deletion for use in urinary protein analysis.

    Science.gov (United States)

    Yang, Haixia; Zhang, Wei; Lu, Shan; Lu, Guangqing; Zhang, Hongjuan; Zhuang, Yinghua; Wang, Yue; Dong, Mengqiu; Zhang, Yu; Zhou, Xingang; Wang, Peng; Yu, Lei; Wang, Fengchao; Chen, Liang

    2016-05-01

    Major urinary proteins (MUPs) are the most abundant protein species in mouse urine, accounting for more than 90% of total protein content. Twenty-one Mup genes and 21 pseudogenes are clustered in a region of around 2 megabase pairs (Mbp) on chromosome 4. A Mup-knockout mouse model would greatly facilitate researches in the field of proteomic analysis of mouse urine. Here, we report the successful knockout of the Mup gene cluster of 2.2 Mbp using the CRISPR/Cas9 system. Homozygous Mup-knockout mice survived to adulthood and exhibited no obvious defects. The patterns of the proteomes of non-MUP urinary proteins in homozygous Mup-knockout mice were similar to those of wild-type mice judged by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The sensitivity of enzyme-linked immunosorbent assay to detect non-MUP urinary protein was significantly enhanced in Mup-knockout mice. In short, we have developed a Mup-knockout mouse model. This mouse model will be useful for the research of urinary biomarker testing that may have relevance for humans. PMID:26851484

  3. Lupus eritematoso sistémico en ratones MRL lpr/lpm y knockouts del receptor de quimioquina CCR2

    OpenAIRE

    Camarasa Lillo, Natalia

    2009-01-01

    INTRODUCCIÓN El lupus eritematoso sistémico es una enfermedad autoinmune cuya principal manifestación y debut de la enfermedad es la glomerulonefritis mediada por complejos inmunes. Los ratones MRL/MpJ-Fas lpr/J (MRL/lpr) llevan una mutación en el gen Fas de la apoptosis que da lugar a una proliferación de linfocitos autoreactivos y son considerados un modelo de ratón que reproduce muy bien la enfermedad lúpica en el humano, con linfadenopatía asociada a proliferación aberrante de células T,...

  4. Enhanced survival of lethally irradiated adenosine A(3) receptor knockout mice. A role for hematopoietic growth factors?

    Czech Academy of Sciences Publication Activity Database

    Hofer, Michal; Pospíšil, Milan; Dušek, L.; Hoferová, Zuzana; Komůrková, Denisa

    2015-01-01

    Roč. 11, č. 1 (2015), s. 79-85. ISSN 1573-9538 Institutional support: RVO:68081707 Keywords : G-CSF PRODUCTION * CANCER -THERAPY * CELL-GROWTH Subject RIV: BO - Biophysics Impact factor: 3.886, year: 2014

  5. Frequency-dependent cannabinoid receptor-independent modulation of glycine receptors by endocannabinoid 2-AG

    Directory of Open Access Journals (Sweden)

    Natalia eLozovaya

    2011-07-01

    Full Text Available Endocannabinoids are known as retrograde messengers, being released from the postsynaptic neuron and acting on specific presynaptic G-protein-coupled cannabinoid (CB receptors to decrease neurotransmitter release. Also, at physiologically relevant concentrations cannabinoids can directly modulate the function of voltage-gated and receptor-operated ion channels. Using patch-clamp recording we analyzed the consequences of the direct action of an endocannabinoid, 2-arachidonoylglycerol (2-AG, on the functional properties of glycine receptor channels (GlyRs and ionic currents in glycinergic synapses. At physiologically relevant concentrations (0.1-1 µM, 2-AG directly affected the functions of recombinant homomeric alpha1H GlyR: it inhibited peak amplitude and dramatically enhanced desensitization. The action of 2-AG on GlyR-mediated currents developed rapidly, within ~300 milliseconds. Addition of 1 µM 2-AG strongly facilitated the depression of glycine-induced currents during repetitive (4-10 Hz application of short (2-ms duration pulses of glycine to outside-out patches. In brainstem slices from CB1 receptor-knockout mice, 2-AG significantly decreased the extent of facilitation of synaptic currents in hypoglossal motoneurons during repetitive (10-20 Hz stimulation. These observations suggest that endocannabinoids can modulate postsynaptic metaplasticity of glycinergic synaptic currents in a CB1 receptor-independent manner.

  6. Importance of GluA1 subunit-containing AMPA glutamate receptors for morphine state-dependency.

    Directory of Open Access Journals (Sweden)

    Teemu Aitta-aho

    Full Text Available In state-dependency, information retrieval is most efficient when the animal is in the same state as it was during the information acquisition. State-dependency has been implicated in a variety of learning and memory processes, but its mechanisms remain to be resolved. Here, mice deficient in AMPA-type glutamate receptor GluA1 subunits were first conditioned to morphine (10 or 20 mg/kg s.c. during eight sessions over four days using an unbiased procedure, followed by testing for conditioned place preference at morphine states that were the same as or different from the one the mice were conditioned to. In GluA1 wildtype littermate mice the same-state morphine dose produced the greatest expression of place preference, while in the knockout mice no place preference was then detected. Both wildtype and knockout mice expressed moderate morphine-induced place preference when not at the morphine state (saline treatment at the test; in this case, place preference was weaker than that in the same-state test in wildtype mice. No correlation between place preference scores and locomotor activity during testing was found. Additionally, as compared to the controls, the knockout mice showed unchanged sensitization to morphine, morphine drug discrimination and brain regional μ-opioid receptor signal transduction at the G-protein level. However, the knockout mice failed to show increased AMPA/NMDA receptor current ratios in the ventral tegmental area dopamine neurons of midbrain slices after a single injection of morphine (10 mg/kg, s.c., sliced prepared 24 h afterwards, in contrast to the wildtype mice. The results indicate impaired drug-induced state-dependency in GluA1 knockout mice, correlating with impaired opioid-induced glutamate receptor neuroplasticity.

  7. Dopamine receptor activation modulates GABA neuron migration from the basal forebrain to the cerebral cortex.

    Science.gov (United States)

    Crandall, James E; McCarthy, Deirdre M; Araki, Kiyomi Y; Sims, John R; Ren, Jia-Qian; Bhide, Pradeep G

    2007-04-01

    GABA neurons of the cerebral cortex and other telencephalic structures are produced in the basal forebrain and migrate to their final destinations during the embryonic period. The embryonic basal forebrain is enriched in dopamine and its receptors, creating a favorable environment for dopamine to influence GABA neuron migration. However, whether dopamine receptor activation can influence GABA neuron migration is not known. We show that dopamine D1 receptor activation promotes and D2 receptor activation decreases GABA neuron migration from the medial and caudal ganglionic eminences to the cerebral cortex in slice preparations of embryonic mouse forebrain. Slice preparations from D1 or D2 receptor knock-out mouse embryos confirm the findings. In addition, D1 receptor electroporation into cells of the basal forebrain and pharmacological activation of the receptor promote migration of the electroporated cells to the cerebral cortex. Analysis of GABA neuron numbers in the cerebral wall of the dopamine receptor knock-out mouse embryos further confirmed the effects of dopamine receptor activation on GABA neuron migration. Finally, dopamine receptor activation mobilizes striatal neuronal cytoskeleton in a manner consistent with the effects on neuronal migration. These data show that impairing the physiological balance between D1 and D2 receptors can alter GABA neuron migration from the basal forebrain to the cerebral cortex. The intimate relationship between dopamine and GABA neuron development revealed here may offer novel insights into developmental disorders such as schizophrenia, attention deficit or autism, and fetal cocaine exposure, all of which are associated with dopamine and GABA imbalance. PMID:17409246

  8. Interleukin-17/Interleukin-17 Receptor-Mediated Signaling Is Important for Generation of an Optimal Polymorphonuclear Response against Toxoplasma gondii Infection

    OpenAIRE

    Kelly, Michelle N; Kolls, Jay K.; Happel, Kyle; Schwartzman, Joseph D.; Schwarzenberger, Paul; Combe, Crescent; Moretto, Magali; Khan, Imtiaz A.

    2005-01-01

    We investigated the role of interleukin-17 (IL-17)/IL-17 receptor (IL-17R)-mediated signaling in the protective immunity against Toxoplasma gondii. IL-17R−/− mice developed a normal adaptive immunity against the parasite. However, increased mortality in the knockout animals can be attributed to a defect in the migration of polymorphonuclear leukocytes to infected sites during early infection.

  9. Abnormal lipoprotein metabolism and reversible female infertility in HDL receptor (SR-BI)–deficient mice

    OpenAIRE

    Miettinen, Helena E.; Rayburn, Helen; Krieger, Monty

    2001-01-01

    Mammalian female fertility depends on complex interactions between the ovary and the extraovarian environment (e.g., the hypothalamic-hypophyseal ovarian axis). The role of plasma lipoproteins in fertility was examined using HDL-receptor SR-BI knockout (KO) mice. SR-BI KO females have abnormal HDLs, ovulate dysfunctional oocytes, and are infertile. Fertility was restored when the structure and/or quantity of abnormal HDL was altered by inactivating the apoAI gene or administering the choleste...

  10. The role of melanin-concentrating hormone and its receptors in energy homeostasis

    OpenAIRE

    DouglasJMacNeil

    2013-01-01

    Extensive studies in rodents with melanin-concentrating hormone (MCH) have demonstrated that the neuropeptide hormone is a potent orexigen. Acutely, MCH causes an increase in food intake, while chronically it leads to increased weight gain, primarily as an increase in fat mass. Multiple knockout mice models have confirmed the importance of MCH in modulating energy homeostasis. Animals lacking MCH, MCH-containing neurons, or the MCH receptor all are resistant to diet-induced obesity. These gen...

  11. Dopamine receptor-mediated regulation of neuronal “clock” gene expression

    OpenAIRE

    Imbesi, Marta; Yildiz, Sevim; Arslan, Ahmet Dirim; Sharma, Rajiv; Manev, Hari; Uz, Tolga

    2008-01-01

    Using transgenic mice model (i.e., “clock” knockouts), clock transcription factors have been suggested as critical regulators of dopaminergic behaviors induced by drugs of abuse. Moreover, it has been shown that systemic administration of psychostimulants, such as cocaine and methamphetamine regulate the striatal expression of clock genes. However, it is not known whether dopamine receptors mediate these regulatory effects of psychostimulants at the cellular level. Primary striatal neurons in...

  12. Interleukin-6 receptor expression in contracting human skeletal muscle: regulating role of IL-6

    DEFF Research Database (Denmark)

    Keller, Pernille; Penkowa, Milena; Keller, Charlotte;

    2005-01-01

    and rest (n=6+5), or recombinant human IL-6 infusion (rhIL-6) or saline infusion (n=6+6). We further obtained skeletal muscle samples from IL-6 knockout (KO) mice and wild-type C57/BL-6 mice in response to a 1-h bout of exercise. In exercising human skeletal muscle, IL-6 receptor mRNA increased...

  13. Muscarinic cholinergic receptor (M2) plays a crucial role in the development of myopia in mice

    OpenAIRE

    Barathi, Veluchamy A.; Kwan, Jia Lin; Tan, Queenie S. W.; Weon, Sung Rhan; Seet, Li Fong; Goh, Liang Kee; Vithana, Eranga N.; Beuerman, Roger W.

    2013-01-01

    SUMMARY Myopia is a huge public health problem worldwide, reaching the highest incidence in Asia. Identification of susceptible genes is crucial for understanding the biological basis of myopia. In this paper, we have identified and characterized a functional myopia-associated gene using a specific mouse-knockout model. Mice lacking the muscarinic cholinergic receptor gene (M2 ; also known as Chrm2) were less susceptible to lens-induced myopia compared with wild-type mice, which showed signif...

  14. Muscarinic cholinergic receptor (M2) plays a crucial role in the development of myopia in mice

    OpenAIRE

    Barathi, Veluchamy A.; Jia Lin Kwan; Tan, Queenie S. W.; Sung Rhan Weon; Li Fong Seet; Liang Kee Goh; Vithana, Eranga N.; Beuerman, Roger W.

    2013-01-01

    SUMMARY Myopia is a huge public health problem worldwide, reaching the highest incidence in Asia. Identification of susceptible genes is crucial for understanding the biological basis of myopia. In this paper, we have identified and characterized a functional myopia-associated gene using a specific mouse-knockout model. Mice lacking the muscarinic cholinergic receptor gene (M2; also known as Chrm2) were less susceptible to lens-induced myopia compared with wild-type mice, which showed sign...

  15. Influence of Androgen Receptor in Vascular Cells on Reperfusion following Hindlimb Ischaemia

    OpenAIRE

    Wu, Junxi; Hadoke, Patrick W.F.; Takov, Kaloyan; Korczak, Agnieszka; Denvir, Martin A.; Smith, Lee B.

    2016-01-01

    Aims Studies in global androgen receptor knockout (G-ARKO) and orchidectomised mice suggest that androgen accelerates reperfusion of the ischaemic hindlimb by stimulating angiogenesis. This investigation used novel, vascular cell-specific ARKO mice to address the hypothesis that the impaired hindlimb reperfusion in G-ARKO mice was due to loss of AR from cells in the vascular wall. Methods and Results Mice with selective deletion of AR (ARKO) from vascular smooth muscle cells (SM-ARKO), endoth...

  16. A Vitamin D Receptor/SMAD Genomic Circuit Gates Hepatic Fibrotic Response

    OpenAIRE

    Ding, Ning; Yu, Ruth T; Subramaniam, Nanthakumar; Sherman, Mara H.; Wilson, Caroline; Rao, Renuka; Leblanc, Mathias; Coulter, Sally; He, Mingxiao; Scott, Christopher; Lau, Sue L.; Atkins, Annette R.; Barish, Grant D.; Gunton, Jenny E.; Liddle, Christopher

    2013-01-01

    Liver fibrosis is a reversible wound-healing response involving TGFβ1 activation of hepatic stellate cells (HSCs). Here we show that vitamin D receptor (VDR) ligands inhibit HSC activation and abrogate liver fibrosis, while Vdr knockout mice spontaneously developed hepatic fibrosis. Mechanistically, we describe a pronounced redistribution of genome wide VDR binding sites (VDR cistrome) in HSCs elicited by a TGFβ1 pro-fibrotic insult. This TGFβ1-induced VDR cistrome overlaps extensively with S...

  17. Tight junction CLDN2 gene is a direct target of the vitamin D receptor

    OpenAIRE

    Yong-guo Zhang; Shaoping Wu; Rong Lu; David Zhou; Jingsong Zhou; Geert Carmeliet; Elaine Petrof; Claud, Erika C.; Jun Sun

    2015-01-01

    The breakdown of the intestinal barrier is a common manifestation of many diseases. Recent evidence suggests that vitamin D and its receptor VDR may regulate intestinal barrier function. Claudin-2 is a tight junction protein that mediates paracellular water transport in intestinal epithelia, rendering them "leaky". Using whole body VDR(-/-) mice, intestinal epithelial VDR conditional knockout (VDR(ΔIEC)) mice, and cultured human intestinal epithelial cells, we demonstrate here that the CLDN2 ...

  18. IKKε knockout prevents high fat diet induced arterial atherosclerosis and NF-κB signaling in mice.

    Directory of Open Access Journals (Sweden)

    Changchun Cao

    Full Text Available AIMS: Atherosclerosis is a public health concern affecting many worldwide, but its pathogenesis remains unclear. In this study we investigated the role of IKKε during the formation of atherosclerosis and its molecular mechanism in the mouse aortic vessel wall. METHODS AND RESULTS: C57BL/6 wild-type or IKKε knockout mice bred into the ApoE knockout genetic background were divided into 4 groups: (1 wild-type (WT, (2 ApoE knockout (AK, (3 IKKε knockout (IK, (4 or both ApoE and IKKε knockout (DK. Each group of mice were fed with a high fat diet (HFD for 12 weeks from 8 weeks of age. Immunohistochemistry and Western blotting analysis demonstrated obvious increases in the expression of IKKε in the AK group compared with the WT group, especially in the intima. Serum lipid levels were significantly higher in the AK and DK groups than in the other two groups. Staining with hematoxylin-eosin and Oil Red, as well as scanning electron microscopy revealed less severe atherosclerotic lesions in the DK group than in the AK group. Immunofluorescence and Western blot analysis demonstrated obvious increases in the expression of NF-κB pathway components and downstream factors in the AK group, especially in the intima, while these increases were blocked in the DK group. CONCLUSION: The knockout of IKKε prevented significant atherosclerosis lesions in the mouse aorta from in both wild-type and ApoE knockout mice fed a HFD, suggesting that IKKε may play a vital role in HFD-induced atherosclerosis and would be an important target for the treatment of atherosclerosis.

  19. Unintentional miRNA ablation is a risk factor in gene knockout studies: a short report.

    Directory of Open Access Journals (Sweden)

    Ivan Osokine

    2008-02-01

    Full Text Available One of the most powerful techniques for studying the function of a gene is to disrupt the expression of that gene using genetic engineering strategies such as targeted recombination or viral integration of gene trap cassettes. The tremendous utility of these tools was recognized this year with the awarding of the Nobel Prize in Physiology or Medicine to Capecchi, Evans, and Smithies for their pioneering work in targeted recombination mutagenesis in mammals. Another noteworthy discovery made nearly a decade ago was the identification of a novel class of non-coding genes called microRNAs. MicroRNAs are among the largest known classes of regulatory elements with more than 1000 predicted to exist in the mouse genome. Over 50% of known microRNAs are located within introns of coding genes. Given that currently about half of the genes in mouse have been knocked out, we investigated the possibility that intronic microRNAs may have been coincidentally deleted or disrupted in some of these mouse models. We searched published murine knockout studies and gene trap embryonic stem cell line databases for cases where a microRNA was located within or near the manipulated genomic loci, finding almost 200 cases where microRNA expression may have been disrupted along with another gene. Our results draw attention to the need for careful planning in future knockout studies to minimize the unintentional disruption of microRNAs. These data also raise the possibility that many knockout studies may need to be reexamined to determine if loss of a microRNA contributes to the phenotypic consequences attributed to loss of a protein-encoding gene.

  20. Spectroscopy of 35P using the one-proton knockout reaction

    Science.gov (United States)

    Mutschler, A.; Sorlin, O.; Lemasson, A.; Bazin, D.; Borcea, C.; Borcea, R.; Gade, A.; Iwasaki, H.; Khan, E.; Lepailleur, A.; Recchia, F.; Roger, T.; Rotaru, F.; Stanoiu, M.; Stroberg, S. R.; Tostevin, J. A.; Vandebrouck, M.; Weisshaar, D.; Wimmer, K.

    2016-03-01

    The structure of 35P was studied with a one-proton knockout reaction at 88 MeV/u from a 36S projectile beam at NSCL. The γ rays from the depopulation of excited states in 35P were detected with GRETINA, while the 35P nuclei were identified event-by-event in the focal plane of the S800 spectrograph. The level scheme of 35P was deduced up to 7.5 MeV using γ -γ coincidences. The observed levels were attributed to proton removals from the s d shell and also from the deeply bound p1 /2 orbital. The orbital angular momentum of each state was derived from the comparison between experimental and calculated shapes of individual (γ -gated) parallel momentum distributions. Despite the use of different reactions and their associate models, spectroscopic factors, C2S , derived from the 36S(-1 p ) knockout reaction agree with those obtained earlier from 36S(d ,3He ) transfer, if a reduction factor Rs, as deduced from inclusive one-nucleon removal cross sections, is applied to the knockout transitions. In addition to the expected proton-hole configurations, other states were observed with individual cross sections of the order of 0.5 mb. Based on their shifted parallel momentum distributions, their decay modes to negative parity states, their high excitation energy (around 4.7 MeV), and the fact that they were not observed in the (d ,3He ) reaction, we propose that they may result from a two-step mechanism or a nucleon-exchange reaction with subsequent neutron evaporation. Regardless of the mechanism, that could not yet be clarified, these states likely correspond to neutron core excitations in 35P. This newly identified pathway, although weak, offers the possibility to selectively populate certain intruder configurations that are otherwise hard to produce and identify.

  1. p21WAF1/Cip1/Sdi1 knockout mice respond to doxorubicin with reduced cardiotoxicity

    International Nuclear Information System (INIS)

    Doxorubicin (Dox) is an antineoplastic agent that can cause cardiomyopathy in humans and experimental animals. As an inducer of reactive oxygen species and a DNA damaging agent, Dox causes elevated expression of p21WAF1/Cip1/Sdi1 (p21) gene. Elevated levels of p21 mRNA and p21 protein have been detected in the myocardium of mice following Dox treatment. With chronic treatment of Dox, wild type (WT) animals develop cardiomyopathy evidenced by elongated nuclei, mitochondrial swelling, myofilamental disarray, reduced cardiac output, reduced ejection fraction, reduced left ventricular contractility, and elevated expression of ANF gene. In contrast, p21 knockout (p21KO) mice did not show significant changes in the same parameters in response to Dox treatment. In an effort to understand the mechanism of the resistance against Dox induced cardiomyopathy, we measured levels of antioxidant enzymes and found that p21KO mice did not contain elevated basal or inducible levels of glutathione peroxidase and catalase. Measurements of 6 circulating cytokines indicated elevation of IL-6, IL-12, IFNγ and TNFα in Dox treated WT mice but not p21KO mice. Dox induced elevation of IL-6 mRNA was detected in the myocardium of WT mice but not p21KO mice. While the mechanism of the resistance against Dox induced cardiomyopathy remains unclear, lack of inflammatory response may contribute to the observed cardiac protection in p21KO mice. -- Highlights: ► Doxorubicin induces p21 elevation in the myocardium. ► Doxorubicin causes dilated cardiomyopathy in wild type mice. ► p21 Knockout mice are resistant against doxorubicin induced cardiomyopathy. ► Lack of inflammatory response correlates with the resistance in p21 knockout mice.

  2. AP endonuclease knockdown enhances methyl methanesulfonate hypersensitivity of DNA polymerase β knockout mouse embryonic fibroblasts

    International Nuclear Information System (INIS)

    Apurinic/apyrimidinic (AP) endonuclease (Apex) is required for base excision repair (BER), which is the major mechanism of repair for small DNA lesions such as alkylated bases. Apex incises the DNA strand at an AP site to leave 3'-OH and 5'-deoxyribose phosphate (5'-dRp) termini. DNA polymerase β (PolB) plays a dominant role in single nucleotide (Sn-) BER by incorporating a nucleotide and removing 5'-dRp. Methyl methanesulfonate (MMS)-induced damage is repaired by Sn-BER, and thus mouse embryonic fibroblasts (MEFs) deficient in PolB show significantly increased sensitivity to MMS. However, the survival curve for PolB-knockout MEFs (PolBKOs) has a shoulder, and increased sensitivity is only apparent at relatively high MMS concentrations. In this study, we prepared Apex-knockdown/PolB-knockout MEFs (AKDBKOs) to examine whether BER is related to the apparent resistance of PolBKOs at low MMS concentrations. The viability of PolBKOs immediately after MMS treatment was significantly lower than that of wild-type MEFs, but there was essentially no effect of Apex-knockdown on cell viability in the presence or absence of PolB. In contrast, relative counts of MEFs after repair were decreased by Apex knockdown. Parental PolBKOs showed especially high sensitivity at >1.5 mM MMS, suggesting that PolBKOs have another repair mechanism in addition to PolB-dependent Sn-BER, and that the back-up mechanism is unable to repair damage induced by high MMS concentrations. Interestingly, AKDBKOs were hypersensitive to MMS in a relative cell growth assay, suggesting that MMS-induced damage in PolB-knockout MEFs is repaired by Apex-dependent repair mechanisms, presumably including long-patch BER. (author)

  3. Perseverative instrumental and Pavlovian responding to conditioned stimuli in serotonin transporter knockout rats.

    Science.gov (United States)

    Nonkes, Lourens J P; Homberg, Judith R

    2013-02-01

    Environmental stimuli can influence behavior via the process of Pavlovian conditioning. Recent genetic research suggests that some individuals are more sensitive to environmental stimuli for behavioral guidance than others. One important mediator of this effect is serotonin transporter (5-HTT) genetic variance, which increases sensitivity to Pavlovian conditioned stimuli through changes in the build-up of corticolimbic circuits. As these stimuli can have reinforcing effects on instrumental responding, we here investigated their effects on instrumental behavior in 5-HTT knockout rats and their wild-type counterparts by means of the signal attenuation paradigm. In this paradigm animals acquired a Pavlovian association between a stimulus and food reward, and subsequently they had to lever press in order to gain access to this food reward-associated stimulus. Thereafter, half of the animals underwent extinction training during which extinction of the primary Pavlovian association was induced via non-reinforced stimulus presentations, whereas the other half did not receive this training. During a final test session all animals were tested for instrumental responding for the non-reinforced Pavlovian conditioned stimulus, as well as instrumental and Pavlovian responding to the stimulus after an initial lever-press. No genotype differences were observed during the training and extinction sessions. However, during the test session 5-HTT knockout rats that had not received prior extinction training displayed excessive instrumental responding. This was specifically observed during presentation of the stimulus (induced by the first lever press) and was accompanied by an increased number of feeder visits after termination of the stimulus presentation. An additionally performed c-Fos immunohistochemistry study revealed that the behaviors in these animals were associated with abnormal c-Fos immunoreactivity in the orbitofrontal cortex and basolateral amygdala, regions important

  4. Selectivity and specificity of sphingosine-1-phosphate receptor ligands: caveats and critical thinking in characterizing receptor-mediated effects

    Directory of Open Access Journals (Sweden)

    Christian eWaeber

    2011-02-01

    Full Text Available Receptors for sphingosine-1-phosphate (S1P have been identified only recently. Their medicinal chemistry is therefore still in its infancy, and few selective agonists or antagonists are available. Furthermore, the selectivity of S1P receptor agonists or antagonists is not well established. JTE-013 and BML-241 (also known as CAY10444, used extensively as specific S1P2 and S1P3 receptors antagonists respectively, are cases in point. When analyzing S1P-induced vasoconstriction in mouse basilar artery, we observed that JTE-013 inhibited not only the effect of S1P, but also the effect of U46619, endothelin-1 or high KCl; JTE-013 strongly inhibited responses to S1P in S1P2 receptor knockout mice. Similarly, BML-241 has been shown to inhibit increases in intracellular Ca2+ concentration via P2 receptor or α1A-adrenoceptor stimulation and α1A-adrenoceptor-mediated contraction of rat mesenteric artery, while it did not affect S1P3-mediated decrease of forskolin-induced cyclic AMP accumulation. Another putative S1P1/3 receptor antagonist, VPC23019, does not inhibit S1P3-mediated vasoconstriction. With these examples in mind, we discuss caveats about relying on available pharmacological tools to characterize receptor subtypes.

  5. Knockout of proton-neutron pairs from $^{16}$O with electromagnetic probes

    CERN Document Server

    Middleton, D G; Barbieri, C; Giusti, C; Grabmayr, P; Hehl, T; MacGregor, I J D; Martin, I; McGeorge, J C; Moschini, F; Pacati, F D; Schwamb, M; Watts, D

    2009-01-01

    After recent improvements to the Pavia model of two-nucleon knockout from $^{16}$O with electromagnetic probes the calculated cross sections are compared to experimental data from such reactions. Comparison with data from a measurement of the $^{16}$O(e,e$'$pn) reaction show much better agreement between experiment and theory than was previously observed. In a comparison with recent data from a measurement of the $^{16}$O($\\gamma$,pn) reaction the model over-predicts the measured cross section at low missing momentum.

  6. Knockout of proton-neutron pairs from {sup 16}O with electromagnetic probes

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, D.G.; Grabmayr, P.; Hehl, T.; Martin, I.; Moschini, F. [Universitaet Tuebingen, Kepler Centre for Astro and Particle Physics, Physikalisches Institut, Tuebingen (Germany); Annand, J.R.M.; MacGregor, I.J.D.; McGeorge, J.C. [University of Glasgow, Department of Physics and Astronomy, Glasgow, Scotland (United Kingdom); Barbieri, C. [RIKEN Nishina Center, Theoretical Nuclear Physics Laboratory, Wako (Japan); Giusti, C.; Pacati, F.D. [Dipartimento di Fisica Nucleare e Teorica dell' Universita degli Studi di Pavia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia (Italy); Schwamb, M. [Johannes-Gutenberg Universitaet Mainz, Institut fuer Kernphysik, Mainz (Germany); Watts, D. [University of Edinburgh, School of Physics, Edinburgh (United Kingdom)

    2010-02-15

    After recent improvements to the Pavia model of two-nucleon knockout from {sup 16}O with electromagnetic probes the calculated cross-sections are compared to experimental data from such reactions. Comparison with data from a measurement of the {sup 16}O (e,e' pn) reaction cross-section shows much better agreement between the experimental data and the results of the theoretical model than was previously observed. In a comparison with recent data from a measurement of the {sup 16}O({gamma},pn) reaction cross-section the model over-predicts the measured cross-section at low missing momentum. (orig.)

  7. Wip1 knockout inhibits the proliferation and enhances the migration of bone marrow mesenchymal stem cells

    International Nuclear Information System (INIS)

    Mesenchymal stem cells (MSCs), a unique population of multipotent adult progenitor cells originally found in bone marrow (BM), are extremely useful for multifunctional therapeutic approaches. However, the growth arrest and premature senescence of MSCs in vitro prevent the in-depth characterization of these cells. In addition, the regulatory factors involved in MSCs migration remain largely unknown. Given that protein phosphorylation is associated with the processes of MSCs proliferation and migration, we focused on wild-type p53-inducible phosphatase-1 (Wip1), a well-studied modulator of phosphorylation, in this study. Our results showed that Wip1 knockout significantly inhibited MSCs proliferation and induced G2-phase cell-cycle arrest by reducing cyclinB1 expression. Compared with WT-MSCs, Wip1−/− MSCs displayed premature growth arrest after six passages in culture. Transwell and scratch assays revealed that Wip1−/− MSCs migrate more effectively than WT-MSCs. Moreover, the enhanced migratory response of Wip1−/− MSCs may be attributed to increases in the induction of Rac1-GTP activity, the pAKT/AKT ratio, the rearrangement of filamentous-actin (f-actin), and filopodia formation. Based on these results, we then examined the effect of treatment with a PI3K/AKT and Rac1 inhibitor, both of which impaired the migratory activity of MSCs. Therefore, we propose that the PI3K/AKT/Rac1 signaling axis mediates the Wip1 knockout-induced migration of MSCs. Our findings indicate that the principal function of Wip1 in MSCs transformation is the maintenance of proliferative capacity. Nevertheless, knocking out Wip1 increases the migratory capacity of MSCs. This dual effect of Wip1 provides the potential for purposeful routing of MSCs. - Highlights: • Wip1 knockout inhibited MSCs proliferation through reducing cyclinB1 expression. • Wip1−/− MSCs displayed premature growth arrest in vitro after six passages. • Knocking out Wip1 increases the migratory capacity

  8. Wip1 knockout inhibits the proliferation and enhances the migration of bone marrow mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yiting [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China); Liu, Lan [State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China); Sheng, Ming [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Xiong, Kai [Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870 Frederiksberg C (Denmark); Huang, Lei; Gao, Qian; Wei, Jingliang; Wu, Tianwen; Yang, Shulin [State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China); Liu, Honglin, E-mail: liuhonglinnjau@163.com [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Mu, Yulian, E-mail: muyulian76@iascaas.net.cn [State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China); Li, Kui [State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China)

    2015-06-10

    Mesenchymal stem cells (MSCs), a unique population of multipotent adult progenitor cells originally found in bone marrow (BM), are extremely useful for multifunctional therapeutic approaches. However, the growth arrest and premature senescence of MSCs in vitro prevent the in-depth characterization of these cells. In addition, the regulatory factors involved in MSCs migration remain largely unknown. Given that protein phosphorylation is associated with the processes of MSCs proliferation and migration, we focused on wild-type p53-inducible phosphatase-1 (Wip1), a well-studied modulator of phosphorylation, in this study. Our results showed that Wip1 knockout significantly inhibited MSCs proliferation and induced G2-phase cell-cycle arrest by reducing cyclinB1 expression. Compared with WT-MSCs, Wip1{sup −/−} MSCs displayed premature growth arrest after six passages in culture. Transwell and scratch assays revealed that Wip1{sup −/−} MSCs migrate more effectively than WT-MSCs. Moreover, the enhanced migratory response of Wip1{sup −/−} MSCs may be attributed to increases in the induction of Rac1-GTP activity, the pAKT/AKT ratio, the rearrangement of filamentous-actin (f-actin), and filopodia formation. Based on these results, we then examined the effect of treatment with a PI3K/AKT and Rac1 inhibitor, both of which impaired the migratory activity of MSCs. Therefore, we propose that the PI3K/AKT/Rac1 signaling axis mediates the Wip1 knockout-induced migration of MSCs. Our findings indicate that the principal function of Wip1 in MSCs transformation is the maintenance of proliferative capacity. Nevertheless, knocking out Wip1 increases the migratory capacity of MSCs. This dual effect of Wip1 provides the potential for purposeful routing of MSCs. - Highlights: • Wip1 knockout inhibited MSCs proliferation through reducing cyclinB1 expression. • Wip1{sup −/−} MSCs displayed premature growth arrest in vitro after six passages. • Knocking out Wip1

  9. Global Nav1.7 Knockout Mice Recapitulate the Phenotype of Human Congenital Indifference to Pain

    OpenAIRE

    Jacinthe Gingras; Sarah Smith; Matson, David J.; Danielle Johnson; Kim Nye; Lauren Couture; Elma Feric; Ruoyuan Yin; Moyer, Bryan D.; Peterson, Matthew L.; Rottman, James B.; Beiler, Rudolph J.; Annika B Malmberg; McDonough, Stefan I.

    2014-01-01

    Clinical genetic studies have shown that loss of Nav1.7 function leads to the complete loss of acute pain perception. The global deletion is reported lethal in mice, however, and studies of mice with promoter-specific deletions of Nav1.7 have suggested that the role of Nav1.7 in pain transduction depends on the precise form of pain. We developed genetic and animal husbandry strategies that overcame the neonatal-lethal phenotype and enabled construction of a global Nav1.7 knockout mouse. Knock...

  10. A role for Mints in transmitter release: Mint 1 knockout mice exhibit impaired GABAergic synaptic transmission

    OpenAIRE

    Ho, Angela; Morishita, Wade; Hammer, Robert E.; Malenka, Robert C.; Südhof, Thomas C.

    2003-01-01

    Mints (also called X11-like proteins) are adaptor proteins composed of divergent N-terminal sequences that bind to synaptic proteins such as CASK (Mint 1 only) and Munc18-1 (Mints 1 and 2) and conserved C-terminal PTB- and PDZ-domains that bind to widely distributed proteins such as APP, presenilins, and Ca2+ channels (all Mints). We find that Mints 1 and 2 are similarly expressed in most neurons except for inhibitory interneurons that contain selectively high levels of Mint 1. Using knockout...

  11. Aldehyde Dehydrogenase 2 Knockout Accentuates Ethanol-Induced Cardiac Depression: Role of Protein Phosphatases

    OpenAIRE

    Ma, Heng; Byra, Emily A.; Yu, Lu; Hu, Nan; Kitagawa, Kyoko; Nakayama, Keiichi I.; Kawamoto, Toshihiro; Ren, Jun

    2010-01-01

    Alcohol consumption leads to myocardial contractile dysfunction possibly due to the toxicity of ethanol and its major metabolite acetaldehyde. This study was designed to examine the influence of mitochondrial aldehyde dehydrogenase-2 (ALDH2) knockout (KO) on acute ethanol exposure-induced cardiomyocyte dysfunction. Wild-type (WT) and ALDH2 KO mice were subjected to acute ethanol (3 g/kg, i.p.) challenge and cardiomyocyte contractile function was assessed 24 hrs later using an IonOptix® edge-d...

  12. Phytosterol Feeding Causes Toxicity in ABCG5/G8 Knockout Mice

    OpenAIRE

    McDaniel, Allison L.; Alger, Heather M.; Sawyer, Janet K.; Kelley, Kathryn L.; Kock, Nancy D.; Brown, J. Mark; Temel, Ryan E.; Rudel, Lawrence L.

    2013-01-01

    Plant sterols, or phytosterols, are very similar in structure to cholesterol and are abundant in typical diets. The reason for poor absorption of plant sterols by the body is still unknown. Mutations in the ABC transporters G5 and G8 are known to cause an accumulation of plant sterols in blood and tissues (sitosterolemia). To determine the significance of phytosterol exclusion from the body, we fed wild-type and ABCG5/G8 knockout mice a diet enriched with plant sterols. The high-phytosterol d...

  13. Mirror Energy Differences at Large Isospin Studied through Direct Two-Nucleon Knockout

    CERN Document Server

    Davies, P J; Henry, T W; Simpson, E C; Gade, A; Lenzi, S M; Baugher, T; Bazin, D; Berryman, J S; Bruce, A M; Diget, C Aa; Iwasaki, H; Lemasson, A; McDaniel, S; Napoli, D R; Ratkiewicz, A; Scruton, L; Shore, A; Stroberg, R; Tostevin, J A; Weisshaar, D; Wimmer, K; Winkler, R

    2013-01-01

    The first spectroscopy of excited states in 52Ni (Tz=2) and 51Co (Tz=-3/2) has been obtained using the highly selective two-neutron knockout reaction. Mirror energy differences between isobaric analogue states in these nuclei and their mirror partners are interpreted in terms of isospin nonconserving effects. A comparison between large scale shell-model calculations and data provides the most compelling evidence to date that both electromagnetic and an additional isospin nonconserving interactions for J=2 couplings, of unknown origin, are required to obtain good agreement.

  14. Spectroscopy of 23F by quasi-free proton knockout reaction

    Science.gov (United States)

    Tang, Tsz Leung

    2014-09-01

    The separation energy of quasi-free proton knockout reactioncan be a good probe for the single particle energy of each orbit inside a nucleus. The spectroscopic factor can also bededuced from the measured cross section. The effective single particle energy (ESPE)can then be calculated as a spectroscopic factor weighted mean of single particle energy. The ESPE can reveal the strength of spin-orbit splitting. This splitting is further related to the effects of tensor force, 3N force and spin-orbit coupling of nuclear force. Florine has 1 proton on the s-d shell. The single particle picture should be suitable to explain its behavior. However, in the neutron rich isotopes, this picture may be broken due to the effect of excessive neutrons on the s-d shell. The possible effects are s-d shell mixing and reduction of shell gap energy. We are going to present the experimental setup and condition, data analysis process and the latest data analysis result for exclusive measurement of F(p,2p)O* knockout reaction. The excitation energy spectrum of residual nucleus will be discussed. The yield will be compared with the theoretical calculation of the cross section by code THREEDEE. The separation energy of quasi-free proton knockout reactioncan be a good probe for the single particle energy of each orbit inside a nucleus. The spectroscopic factor can also bededuced from the measured cross section. The effective single particle energy (ESPE)can then be calculated as a spectroscopic factor weighted mean of single particle energy. The ESPE can reveal the strength of spin-orbit splitting. This splitting is further related to the effects of tensor force, 3N force and spin-orbit coupling of nuclear force. Florine has 1 proton on the s-d shell. The single particle picture should be suitable to explain its behavior. However, in the neutron rich isotopes, this picture may be broken due to the effect of excessive neutrons on the s-d shell. The possible effects are s-d shell mixing and

  15. Prohormone convertase 2 activity is increased in the hippocampus of Wfs1 knockout mice

    Directory of Open Access Journals (Sweden)

    Karin eTein

    2015-08-01

    Full Text Available BackgroundMutations in WFS1 gene cause Wolfram syndrome, which is a rare autosomal recessive disorder, characterized by diabetes insipidus, diabetes mellitus, optic nerve atrophy and deafness (DIDMOAD. The WFS1 gene product wolframin is located in the endoplasmic reticulum. Mice lacking this gene exhibit disturbances in the processing and secretion of peptides, such as vasopressin and insulin. In the brain, high levels of the wolframin protein have been observed in the hippocampus, amygdala and limbic structures. The aim of this study was to investigate the effect of Wfs1 knockout on peptide processing in mouse hippocampus. A peptidomic approach was used to characterize individual peptides in the hippocampus of wild-type and Wfs1 knockout mice. ResultsWe identified 126 peptides in hippocampal extracts and the levels of 10 peptides differed between Wfs1 KO and wild-type mice at P<0.05. The peptide with the largest alteration was little-LEN, which level was 25 times higher in the hippocampus of Wfs1 KO mice compared to wild-type mice. Processing (cleavage of little-LEN from the Pcsk1n gene product proSAAS involves prohormone convertase 2 (PC2. Thus, PC2 activity was measured in extracts prepared from the hippocampus of Wfs1 knockout mice. The activity of PC2 in Wfs1 mutant mice was significantly higher (149.9±2.3%, p<0.0001, n=8 than in wild-type mice (100.0±7.0%, n=8. However, Western blot analysis showed that protein levels of 7B2, proPC2 and PC2 were same in both groups, and so were gene expression levels.ConclusionsProcessing of proSAAS is altered in the hippocampus of Wfs1-KO mice, which is caused by increased activity of PC2. Increased activity of PC2 in Wfs1 knockout mice is not caused by alteration in the levels of PC2 protein. Our results suggest a functional link between Wfs1 and PC2. Thus, the detailed molecular mechanism of the role of Wfs1 in the regulation of PC2 activity needs further investigation.

  16. Quasifree knockout of proton pairs from carbon with 640 MeV protons

    International Nuclear Information System (INIS)

    The direct nuclear reaction C(p,3p) at 640 MeV has been investigated in an exclusive type of experiment using scintillation counter technique. The measuring conditions have been selected according to the kinematics of quasi-free two-nucleon knockout at large momentum transfer. A phenomenological model is discussed, which is capable of describing qualitatively the dependence of the differential cross section on the opening angle of the forward emitted proton pair as well as on the energy of backward going protons. (author)

  17. Flavor preference conditioning by different sugars in sweet ageusic Trpm5 knockout mice

    OpenAIRE

    Sclafani, Anthony; Ackroff, Karen

    2014-01-01

    Knockout (KO) mice missing the taste signaling protein Trpm5 have greatly attenuated sweetener preferences but develop strong preferences for glucose in 24-h tests, which is attributed to post-oral sugar conditioning. Trpm5 KO mice express mild preferences for galactose but no preferences for fructose in 24-h tests, which suggests that these sugars differ in their post-oral reinforcing effects. Here we investigated sugar-conditioned flavor preferences in Trpm5 KO and C57BL/6J wildtype (B6) mi...

  18. The mechanism of the (p,α) reaction: pick-up or knock-out

    International Nuclear Information System (INIS)

    Several early studies of the (p,α) reaction to discrete states of the final nucleus indicated that it proceeds mainly by the pick-up mechanism, whereas more recent experiments provide qualitative arguments in favour of the knock-out mechanism. This paper reports calculations showing that the angular distributions and analysing powers of the sup(90,92)Zr(p,α)sup(87,89)Y and 118Sn(p,α)115In reactions can be equally well fitted by distorted wave calculations using either mechanism. (author)

  19. Behavioral analysis of male and female Fmr1 knockout mice on C57BL/6 background

    OpenAIRE

    Ding, Qi; Sethna, Ferzin; Wang, Hongbing

    2014-01-01

    Fragile X syndrome (FXS) is a monogenic disease caused by mutations in the FMR1 gene. The Fmr1 knockout (KO) mice show many aspects of FXS-related phenotypes, and have been used as a major pre-clinical model for FXS. Although FXS occurs in both male and female patients, most studies on the mouse model use male animals. Few studies test whether gender affects the face validity of the mouse model. Here, we examined multiple behavioral phenotypes with male hemizygous and female homozygous Fmr1 K...

  20. Deletion of growth hormone receptor gene but not visceral fat removal decreases expression of apoptosis-related genes in the kidney—potential mechanism of lifespan extension

    OpenAIRE

    Gesing, Adam; Masternak, Michal M.; Wang, Feiya; Karbownik-Lewinska, Malgorzata; Bartke, Andrzej

    2011-01-01

    Mice homozygous for the targeted disruption of the growth hormone (GH) receptor (Ghr) gene (GH receptor knockout; GHRKO; KO) are hypoinsulinemic, highly insulin sensitive, normoglycemic, and long-lived. Visceral fat removal (VFR) is a surgical intervention which improves insulin signaling in normal (N) mice and rats and extends longevity in rats. We have previously demonstrated decreased expression level of certain pro-apoptotic genes in skeletal muscles and suggested that this may contribute...

  1. Functional polymorphisms in the P2X7 receptor gene are associated with osteoporosis

    DEFF Research Database (Denmark)

    Husted, L B; Harsløf, T; Stenkjær, L; Carstens, M; Jørgensen, N R; Langdahl, Bente Lomholt

    2013-01-01

    UNLABELLED: The P2X(7) receptor is an ATP-gated cation channel. We investigated the effect of both loss-of-function and gain-of-function polymorphisms in the P2X(7) receptor gene on BMD and risk of vertebral fractures and found that five polymorphisms and haplotypes containing three of these...... investigate the effect of these polymorphisms on BMD and risk of vertebral fractures in a case-control study including 798 individuals. METHODS: Genotyping was carried out using TaqMan assays. BMD was measured using dual energy X-ray absorptiometry, and vertebral fractures were assessed by lateral spinal X...... polymorphisms were associated with BMD and fracture risk. INTRODUCTION: The P2X(7) receptor is an ATP-gated cation channel. P2X(7) receptor knockout mice have reduced total bone mineral content, and because several functional polymorphisms have been identified in the human P2X(7) receptor gene, we wanted to...

  2. Glutamate receptors

    DEFF Research Database (Denmark)

    Kristensen, Anders S; Geballe, Matthew T; Snyder, James P;

    2006-01-01

    Fast excitatory synaptic transmission in the CNS relies almost entirely on the neurotransmitter glutamate and its family of ion channel receptors. An appreciation of the coupling between agonist binding and channel opening has advanced rapidly during the past five years, largely as a result of ne...

  3. Somatostatin receptors

    DEFF Research Database (Denmark)

    Møller, Lars Neisig; Stidsen, Carsten Enggaard; Hartmann, Bolette;

    2003-01-01

    In 1972, Brazeau et al. isolated somatostatin (somatotropin release-inhibiting factor, SRIF), a cyclic polypeptide with two biologically active isoforms (SRIF-14 and SRIF-28). This event prompted the successful quest for SRIF receptors. Then, nearly a quarter of a century later, it was announced...

  4. Evaluation of the In Vivo and Ex Vivo Binding of Novel BC1 Cannabinoid Receptor Radiotracers

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A.; Gatley, J.; Gifford, A.

    2002-01-01

    The primary active ingredient of marijuana, 9-tetrahydrocannabinol, exerts its psychoactive effects by binding to cannabinoid CB1 receptors. These receptors are found throughout the brain with high concentrations in the hippocampus and cerebellum. The current study was conducted to evaluate the binding of a newly developed putative cannabinoid antagonist, AM630, and a classical cannabinoid 8-tetrahydrocannabinol as potential PET and/or SPECT imaging agents for brain CB1 receptors. For both of these ligands in vivo and ex vivo studies in mice were conducted. AM630 showed good overall brain uptake (as measure by %IA/g) and a moderately rapid clearance from the brain with a half-clearance time of approximately 30 minutes. However, AM630 did not show selective binding to CB1 cannabinoid receptors. Ex vivo autoradiography supported the lack of selective binding seen in the in vivo study. Similar to AM630, 8-tetrahydrocanibol also failed to show selective binding to CB1 receptor rich brain areas. The 8-tetrahydrocanibol showed moderate overall brain uptake and relatively slow brain clearance as compared to AM630. Further studies were done with AM2233, a cannabinoid ligand with a similar structure as AM630. These studies were done to develop an ex vivo binding assay to quantify the displacement of [131I]AM2233 binding by other ligands in Swiss-Webster and CB1 receptor knockout mice. By developing this assay we hoped to determine the identity of an unknown binding site for AM2233 present in the hippocampus of CB1 knockout mice. Using an approach based on incubation of brain slices prepared from mice given intravenous [131I]AM2233 in either the presence or absence of AM2233 (unlabelled) it was possible to demonstrate a significant AM2233-displacable binding in the Swiss-Webster mice. Future studies will determine if this assay is appropriate for identifying the unknown binding site for AM2233 in the CB1 knockout mice.

  5. Neurotransmitter and their metabolite concentrations in different areas of the HPRT knockout mouse brain.

    Science.gov (United States)

    Tschirner, Sarah K; Gutzki, Frank; Schneider, Erich H; Seifert, Roland; Kaever, Volkhard

    2016-06-15

    Lesch-Nyhan syndrome (LNS) is characterized by uric acid overproduction and severe neurobehavioral symptoms, such as recurrent self-mutilative behavior. To learn more about the pathophysiology of the disease, we quantified neurotransmitters and their metabolites in the cerebral hemisphere, cerebellum and the medulla oblongata of HPRT knockout mice, an animal model for LNS, in comparison to the corresponding wild-type. Our analyses included l-glutamate, 4-aminobutanoic acid (GABA), acetylcholine, serotonin, 5-hydroxyindoleacetic acid (5-HIAA), norepinephrine, l-normetanephrine, epinephrine and l-metanephrine and were conducted via high performance liquid chromatography (HPLC) coupled to tandem mass spectrometry (MS/MS). Among these neurotransmitter systems, we did not find any abnormalities in the HPRT knockout mouse brains. On one side, this might indicate that HPRT deficiency most severely affects dopamine signaling, while brain functioning based on other neurotransmitters is more or less spared. On the other hand, our findings may reflect a compensating mechanism for impaired purine salvage that protects the brain in HPRT-deficient mice but not in LNS patients. PMID:27206901

  6. Hitting two birds with one stone: The unforeseen consequences of nested gene knockouts in Caenorhabditis elegans.

    Science.gov (United States)

    Jovelin, Richard; Cutter, Asher D

    2016-01-01

    Nested genes represent an intriguing form of non-random genomic organization in which the boundaries of one gene are fully contained within another, longer host gene. The C. elegans genome contains over 10,000 nested genes, 92% of which are ncRNAs, which occur inside 16% of the protein coding gene complement. Host genes are longer than non-host coding genes, owing to their longer and more numerous introns. Indel alleles are available for nearly all of these host genes that simultaneously alter the nested gene, raising the possibility of nested gene disruption contributing to phenotypes that might be attributed to the host gene. Such dual-knockouts could represent a source of misinterpretation about host gene function. Dual-knockouts might also provide a novel source of synthetic phenotypes that reveal the functional effects of ncRNA genes, whereby the host gene disruption acts as a perturbed genetic background to help unmask ncRNA phenotypes. PMID:27386165

  7. Upregulation of GSK3β Contributes to Brain Disorders in Elderly REGγ-knockout Mice.

    Science.gov (United States)

    Lv, Yiqing; Meng, Bo; Dong, Hao; Jing, Tiantian; Wu, Nan; Yang, Yingying; Huang, Lan; Moses, Robb E; O'Malley, Bert W; Mei, Bing; Li, Xiaotao

    2016-04-01

    GSK3β regulates some functions of the brain, but the mechanisms involved in the maintenance of GSK3β protein stability remain ambiguous. REGγ, an important proteasome activator for ubiquitin-independent protein degradation, has been shown to degrade certain intact proteins and is involved in the regulation of important biological processes. Here we demonstrate that REGγ promotes the degradation of GSK3β protein in vitro and in vivo. With increased GSK3β activity, REGγ knockout (REGγ-/-) mice exhibit late-onset sensorimotor gating and cognitive deficiencies including decreased working memory, hyperlocomotion, increased stereotype, defective prepulse inhibition (PPI), and disability in nest building, at the age of 8 months or older. Inhibition of GSK3β rescued the compromised PPI phenotypes and working memory deficiency in the knockout mice. Also, we found an age-dependent decrease in the trypsin-like proteasomal activity in REGγ-/- mice brains, which may be reflective of a lack of degradation of GSK3β. Collectively, our findings reveal a novel regulatory pathway in which the REGγ-proteasome controls the steady-state level of GSK3β protein. Dysfunction in this non-canonical proteasome degradation pathway may contribute to the sensorimotor gating deficiency and cognitive disorders in aging mice. PMID:26370326

  8. CRISPR-Mediated VHL Knockout Generates an Improved Model for Metastatic Renal Cell Carcinoma.

    Science.gov (United States)

    Schokrpur, Shiruyeh; Hu, Junhui; Moughon, Diana L; Liu, Peijun; Lin, Lucia C; Hermann, Kip; Mangul, Serghei; Guan, Wei; Pellegrini, Matteo; Xu, Hua; Wu, Lily

    2016-01-01

    Metastatic renal cell carcinoma (mRCC) is nearly incurable and accounts for most of the mortality associated with RCC. Von Hippel Lindau (VHL) is a tumour suppressor that is lost in the majority of clear cell RCC (ccRCC) cases. Its role in regulating hypoxia-inducible factors-1α (HIF-1α) and -2α (HIF-2α) is well-studied. Recent work has demonstrated that VHL knock down induces an epithelial-mesenchymal transition (EMT) phenotype. In this study we showed that a CRISPR/Cas9-mediated knock out of VHL in the RENCA model leads to morphologic and molecular changes indicative of EMT, which in turn drives increased metastasis to the lungs. RENCA cells deficient in HIF-1α failed to undergo EMT changes upon VHL knockout. RNA-seq revealed several HIF-1α-regulated genes that are upregulated in our VHL knockout cells and whose overexpression signifies an aggressive form of ccRCC in the cancer genome atlas (TCGA) database. Independent validation in a new clinical dataset confirms the upregulation of these genes in ccRCC samples compared to adjacent normal tissue. Our findings indicate that loss of VHL could be driving tumour cell dissemination through stabilization of HIF-1α in RCC. A better understanding of the mechanisms involved in this phenomenon can guide the search for more effective treatments to combat mRCC. PMID:27358011

  9. CRISPR/Cas9-mediated gene knockout in the mouse brain using in utero electroporation

    Science.gov (United States)

    Shinmyo, Yohei; Tanaka, Satoshi; Tsunoda, Shinichi; Hosomichi, Kazuyoshi; Tajima, Atsushi; Kawasaki, Hiroshi

    2016-01-01

    The CRISPR/Cas9 system has recently been adapted for generating knockout mice to investigate physiological functions and pathological mechanisms. Here, we report a highly efficient procedure for brain-specific disruption of genes of interest in vivo. We constructed pX330 plasmids expressing humanized Cas9 and single-guide RNAs (sgRNAs) against the Satb2 gene, which encodes an AT-rich DNA-binding transcription factor and is responsible for callosal axon projections in the developing mouse brain. We first confirmed that these constructs efficiently induced double-strand breaks (DSBs) in target sites of exogenous plasmids both in vitro and in vivo. We then found that the introduction of pX330-Satb2 into the developing mouse brain using in utero electroporation led to a dramatic reduction of Satb2 expression in the transfected cerebral cortex, suggesting DSBs had occurred in the Satb2 gene with high efficiency. Furthermore, we found that Cas9-mediated targeting of the Satb2 gene induced abnormalities in axonal projection patterns, which is consistent with the phenotypes previously observed in Satb2 mutant mice. Introduction of pX330-NeuN using our procedure also resulted in the efficient disruption of the NeuN gene. Thus, our procedure combining the CRISPR/Cas9 system and in utero electroporation is an effective and rapid approach to achieve brain-specific gene knockout in vivo. PMID:26857612

  10. Sirh7/Ldoc1 knockout mice exhibit placental P4 overproduction and delayed parturition.

    Science.gov (United States)

    Naruse, Mie; Ono, Ryuichi; Irie, Masahito; Nakamura, Kenji; Furuse, Tamio; Hino, Toshiaki; Oda, Kanako; Kashimura, Misho; Yamada, Ikuko; Wakana, Shigeharu; Yokoyama, Minesuke; Ishino, Fumitoshi; Kaneko-Ishino, Tomoko

    2014-12-01

    Sirh7/Ldoc1 [sushi-ichi retrotransposon homolog 7/leucine zipper, downregulated in cancer 1, also called mammalian retrotransposon-derived 7 (Mart7)] is one of the newly acquired genes from LTR retrotransposons in eutherian mammals. Interestingly, Sirh7/Ldoc1 knockout (KO) mice exhibited abnormal placental cell differentiation/maturation, leading to an overproduction of placental progesterone (P4) and placental lactogen 1 (PL1) from trophoblast giant cells (TGCs). The placenta is an organ that is essential for mammalian viviparity and plays a major endocrinological role during pregnancy in addition to providing nutrients and oxygen to the fetus. P4 is an essential hormone in the preparation and maintenance of pregnancy and the determination of the timing of parturition in mammals; however, the biological significance of placental P4 in rodents is not properly recognized. Here, we demonstrate that mouse placentas do produce P4 in mid-gestation, coincident with a temporal reduction in ovarian P4, suggesting that it plays a role in the protection of the conceptuses specifically in this period. Pregnant Sirh7/Ldoc1 knockout females also displayed delayed parturition associated with a low pup weaning rate. All these results suggest that Sirh7/Ldoc1 has undergone positive selection during eutherian evolution as a eutherian-specific acquired gene because it impacts reproductive fitness via the regulation of placental endocrine function. PMID:25468940

  11. Differential proteomic analysis of STAT6 knockout mice reveals new regulatory function in liver lipid homeostasis.

    Science.gov (United States)

    Iff, Joël; Wang, Wei; Sajic, Tatjana; Oudry, Nathalie; Gueneau, Estelle; Hopfgartner, Gérard; Varesio, Emmanuel; Szanto, Ildiko

    2009-10-01

    Increased inflammatory signaling is a key feature of metabolic disorders. In this context, the role of increased pro-inflammatory signals has been extensively studied. By contrast, no efforts have been dedicated to study the contrasting scenario: the attenuation of anti-inflammatory signals and their role in metabolic homeostasis. IL-4 and IL-13 are anti-inflammatory cytokines signaling through the Signal Transducer and Activator of Transcription 6 (STAT6). Our study was aimed at evaluating the lack of STAT6 signaling on liver homeostasis. To this end we analyzed the liver proteome of wild type and STAT6 knock-out mice using 2D nanoscale LC-MS/MS with iTRAQ labeling technique. The coordinated changes in proteins identified by this quantitative proteome analysis indicated disturbed lipid homeostasis and a state of hepatocellular stress. Most significantly, the expression of the liver fatty acid binding protein (FABP1) was increased in the knock-out mice. In line with the elevated FABP1 expression we found latent liver lipid accumulation in the STAT6-deficient mice which was further aggravated when mice were challenged by a high fat diet. In conclusion, our study revealed a so far uncharacterized role for STAT6 in regulating liver lipid homeostasis and demonstrates the importance of anti-inflammatory signaling in the defense against the development of liver steatosis. PMID:19663508

  12. Measurement of ν-values for TARN by the RF knock-out method

    International Nuclear Information System (INIS)

    The number of betatron oscillations per revolution (ν-value) can be measured experimentally by an RF knock-out method. The principle of the method is formulated. The RF knock-out system for TARN was desgned and constructed. Its design and specifications are described in detail. The experimental results with H2+ and He2+ beams with the kinetic energy of 7 MeV/u are compared with the calculation with the computer program SYNCH. The νsub(x) and νsub(z) were measured to be 2.29 and 2.12, respectively, for the excitation currents of the quadrupole magnets; I sub(D) = 121 A (G sub(D) = 0.212 kG/cm) and I sub(F) = 74.5 A (G sub(F) = 0.131 kG/cm). The calculation indicates that the corresponding values are 2.21 and 2.19, respectively, which are in fairly good agreement with the experimental ones. (author)

  13. Systematic construction of a conceptual minimal model of plasma cholesterol levels based on knockout mouse phenotypes.

    Science.gov (United States)

    van de Pas, Niek C A; Soffers, Ans E M F; Freidig, Andreas P; van Ommen, Ben; Woutersen, Ruud A; Rietjens, Ivonne M C M; de Graaf, Albert A

    2010-06-01

    Elevated plasma cholesterol, a well-known risk factor for cardiovascular diseases, is the result of the activity of many genes and their encoded proteins in a complex physiological network. We aim to develop a minimal kinetic computational model for predicting plasma cholesterol levels. To define the scope of this model, it is essential to discriminate between important and less important processes influencing plasma cholesterol levels. To this end, we performed a systematic review of mouse knockout strains and used the resulting dataset, named KOMDIP, for the identification of key genes that determine plasma cholesterol levels. Based on the described phenotype of mouse knockout models, 36 of the 120 evaluated genes were marked as key genes that have a pronounced effect on the plasma cholesterol concentration. The key genes include well-known genes, e.g., Apoe and Ldlr, as well as genes hardly linked to cholesterol metabolism so far, e.g., Plagl2 and Slc37a4. Based on the catalytic function of the genes, a minimal conceptual model was defined. A comparison with nine conceptual models from literature revealed that each of the individual published models is less complete than our model. Concluding, we have developed a conceptual model that can be used to develop a physiologically based kinetic model to quantitatively predict plasma cholesterol levels. PMID:20176131

  14. Improving cold storage and processing traits in potato through targeted gene knockout.

    Science.gov (United States)

    Clasen, Benjamin M; Stoddard, Thomas J; Luo, Song; Demorest, Zachary L; Li, Jin; Cedrone, Frederic; Tibebu, Redeat; Davison, Shawn; Ray, Erin E; Daulhac, Aurelie; Coffman, Andrew; Yabandith, Ann; Retterath, Adam; Haun, William; Baltes, Nicholas J; Mathis, Luc; Voytas, Daniel F; Zhang, Feng

    2016-01-01

    Cold storage of potato tubers is commonly used to reduce sprouting and extend postharvest shelf life. However, cold temperature stimulates the accumulation of reducing sugars in potato tubers. Upon high-temperature processing, these reducing sugars react with free amino acids, resulting in brown, bitter-tasting products and elevated levels of acrylamide--a potential carcinogen. To minimize the accumulation of reducing sugars, RNA interference (RNAi) technology was used to silence the vacuolar invertase gene (VInv), which encodes a protein that breaks down sucrose to glucose and fructose. Because RNAi often results in incomplete gene silencing and requires the plant to be transgenic, here we used transcription activator-like effector nucleases (TALENs) to knockout VInv within the commercial potato variety, Ranger Russet. We isolated 18 plants containing mutations in at least one VInv allele, and five of these plants had mutations in all VInv alleles. Tubers from full VInv-knockout plants had undetectable levels of reducing sugars, and processed chips contained reduced levels of acrylamide and were lightly coloured. Furthermore, seven of the 18 modified plant lines appeared to contain no TALEN DNA insertions in the potato genome. These results provide a framework for using TALENs to quickly improve traits in commercially relevant autotetraploid potato lines. PMID:25846201

  15. Oxygen knock-out and other studies in α-irradiated polycrystalline Bi-2212 superconductor

    International Nuclear Information System (INIS)

    Bulk polycrystalline samples of Bi2Sr2CaCu2O8+σ (Bi-2212) have been irradiated with 40 MeV α-particles. Tc increases up to a certain dose. The increase in Tc is correlated with the knock-out of oxygen, which has been verified by the determination of the oxygen contents of the irradiated samples by iodometry. A model of the knock-out of oxygen is proposed on the basis of Monte-Carlo TRIM calculations. Resistivity versus temperature of the irradiated samples shows fairly metallic behaviour up to a certain dose. Excess conductivity analysis shows a cross-over from 2D to 3D behaviour in conductivity for the unirradiated sample. However, for irradiated samples, the critical fluctuation regime sets in. The interlayer coupling strengths decrease with the increase in the irradiation dose. The sample with the highest dose shows a nonmetallic behaviour in resistivity. A detailed analysis shows a conductivity behaviour in the nonmetallic region characteristic of three-dimensional variable range hopping of charge carriers. (orig.)

  16. Oxygen knock-out and other studies in {alpha}-irradiated polycrystalline Bi-2212 superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, S.K. [Variable Energy Cyclotron Centre, Calcutta (India); Ghosh, A.K. [Jadavpur Univ., Calcutta (India). Dept. of Physics; Barat, P. [Variable Energy Cyclotron Centre, Calcutta (India); Sen Pintu [Variable Energy Cyclotron Centre, Calcutta (India); Basu, A.N. [Jadavpur Univ., Calcutta (India). Dept. of Physics; Ghosh, B. [Saha Inst. of Nuclear Physics, Calcutta (India)

    1997-08-16

    Bulk polycrystalline samples of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{sigma}} (Bi-2212) have been irradiated with 40 MeV {alpha}-particles. T{sub c} increases up to a certain dose. The increase in T{sub c} is correlated with the knock-out of oxygen, which has been verified by the determination of the oxygen contents of the irradiated samples by iodometry. A model of the knock-out of oxygen is proposed on the basis of Monte-Carlo TRIM calculations. Resistivity versus temperature of the irradiated samples shows fairly metallic behaviour up to a certain dose. Excess conductivity analysis shows a cross-over from 2D to 3D behaviour in conductivity for the unirradiated sample. However, for irradiated samples, the critical fluctuation regime sets in. The interlayer coupling strengths decrease with the increase in the irradiation dose. The sample with the highest dose shows a nonmetallic behaviour in resistivity. A detailed analysis shows a conductivity behaviour in the nonmetallic region characteristic of three-dimensional variable range hopping of charge carriers. (orig.)

  17. Spectroscopy of $^{35}$P using the one-proton knockout reaction

    CERN Document Server

    Mutschler, A; Lemasson, A; Bazin, D; Borcea, C; Borcea, R; Gade, A; Iwasaki, H; Khan, E; Lepailleur, A; Recchia, F; Roger, T; Rotaru, F; Stanoiu, M; Stroberg, R; Tostevin, J A; Vandebrouck, M; Weisshaar, D; Wimmer, K

    2016-01-01

    The structure of $^{35}$P was studied with a one-proton knockout reaction at88~MeV/u from a $^{36}$S projectile beam at NSCL. The $\\gamma$ rays from thedepopulation of excited states in $^{35}$P were detected with GRETINA, whilethe $^{35}$P nuclei were identified event-by-event in the focal plane of theS800 spectrograph. The level scheme of $^{35}$P was deduced up to 7.5 MeV using$\\gamma-\\gamma$ coincidences. The observed levels were attributed to protonremovals from the $sd$-shell and also from the deeply-bound $p\\_{1/2}$ orbital.The orbital angular momentum of each state was derived from the comparisonbetween experimental and calculated shapes of individual ($\\gamma$-gated)parallel momentum distributions. Despite the use of different reactions andtheir associate models, spectroscopic factors, $C^2S$, derived from the$^{36}$S $(-1p)$ knockout reaction agree with those obtained earlier from$^{36}$S($d$,\

  18. Altered sensitivities to morphine and cocaine in scaffold protein tamalin knockout mice

    OpenAIRE

    Ogawa, Masaaki; Miyakawa, Tsuyoshi; Nakamura, Kenji; Kitano, Jun; Furushima, Kenryo; Kiyonari, Hiroshi; Nakayama, Rika; Nakao, Kazuki; Moriyoshi, Koki; Nakanishi, Shigetada

    2007-01-01

    Tamalin is a scaffold protein that interacts with metabotropic glutamate receptors and the kinase-deficient neurotrophin TrkCT1 receptor and forms a protein complex with multiple protein-trafficking and intracellular signaling molecules. In culture, tamalin promotes intracellular trafficking of group 1 metabotropic glutamate receptors through its interaction with guanine nucleotide exchange factor cytohesins and causes actin reorganization and membrane ruffling via the TrkCT1/cytohesin-2 sign...

  19. Apolipoprotein E-knockout mice show increased titers of serum anti-nuclear and anti-dsDNA antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuehai [Cardiovascular Department, Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000 (China); Huang, Ziyang, E-mail: huangziyang666@126.com [Cardiovascular Department, Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000 (China); Lu, Huixia [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan, Shandong 250012 (China); Lin, Huili; Wang, Zhenhua [Cardiovascular Department, Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000 (China); Chen, Xiaoqing [Department of Rheumatism and Immunology, Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000 (China); Ouyang, Qiufang [Cardiovascular Department, Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000 (China); Tang, Mengxiong; Hao, Panpan [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan, Shandong 250012 (China); Ni, Jingqin [Cardiovascular Department, Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000 (China); Xu, Dongming [Department of Rheumatism and Immunology, Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000 (China); Zhang, Mingxiang; Zhang, Qunye [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan, Shandong 250012 (China); Lin, Ling [Department of Rheumatism and Immunology, Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000 (China); and others

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer Titers of ANA and anti-dsDNA antibodies were higher in ApoE{sup -/-} than C57B6/L mice. Black-Right-Pointing-Pointer Spleen was greater and splenocyte apoptosis lower in ApoE{sup -/-} than B6 mice. Black-Right-Pointing-Pointer Level of TLR4 was lower in spleen tissue of ApoE{sup -/-} than B6 mice. Black-Right-Pointing-Pointer The TLR4 pathway may participate in maintaining the balance of splenocyte apoptosis. Black-Right-Pointing-Pointer The TLR4 pathway may participate in antibody production in spleen tissue. -- Abstract: Apolipoprotein E-knockout (ApoE{sup -/-}) mice, atherosclerosis-prone mice, show an autoimmune response, but the pathogenesis is not fully understood. We investigated the pathogenesis in female and male ApoE{sup -/-} mice. The spleens of all ApoE{sup -/-} and C57BL/6 (B6) mice were weighed. The serum IgG level and titers of anti-nuclear antibody (ANA) and anti-double-stranded DNA (anti-dsDNA) antibody were assayed by ELISA. Apoptosis of spleen tissue was evaluated by TUNEL. TLR4 level in spleen tissue was tested by immunohistochemistry and Western blot analysis. Levels of MyD88, p38, phosphorylated p38 (pp38), interferon regulatory factor 3 (IRF3) and Bcl-2-associated X protein (Bax) in spleen tissue were detected by Western blot analysis. We also survey the changes of serum autoantibodies, spleen weight, splenocyte apoptosis and the expressions of TLR4, MyD88, pp38, IRF3 and Bax in spleen tissue in male ApoE{sup -/-} mice after 4 weeks of lipopolysaccharide (LPS), Toll-like receptor 4 ligand, administration. ApoE{sup -/-} mice showed splenomegaly and significantly increased serum level of IgG and titers of ANA and anti-dsDNA antibody as compared with B6 mice. Splenocyte apoptosis and the expression of TLR4, MyD88, pp38, IRF3 and Bax in spleen tissue were significantly lower in ApoE{sup -/-} than B6 mice. The expression of TLR4, MyD88, IRF3, pp38, and Bax differed by sex in ApoE{sup -/-} spleen tissue. The

  20. Apolipoprotein E-knockout mice show increased titers of serum anti-nuclear and anti-dsDNA antibodies

    International Nuclear Information System (INIS)

    Highlights: ► Titers of ANA and anti-dsDNA antibodies were higher in ApoE−/− than C57B6/L mice. ► Spleen was greater and splenocyte apoptosis lower in ApoE−/− than B6 mice. ► Level of TLR4 was lower in spleen tissue of ApoE−/− than B6 mice. ► The TLR4 pathway may participate in maintaining the balance of splenocyte apoptosis. ► The TLR4 pathway may participate in antibody production in spleen tissue. -- Abstract: Apolipoprotein E-knockout (ApoE−/−) mice, atherosclerosis-prone mice, show an autoimmune response, but the pathogenesis is not fully understood. We investigated the pathogenesis in female and male ApoE−/− mice. The spleens of all ApoE−/− and C57BL/6 (B6) mice were weighed. The serum IgG level and titers of anti-nuclear antibody (ANA) and anti-double-stranded DNA (anti-dsDNA) antibody were assayed by ELISA. Apoptosis of spleen tissue was evaluated by TUNEL. TLR4 level in spleen tissue was tested by immunohistochemistry and Western blot analysis. Levels of MyD88, p38, phosphorylated p38 (pp38), interferon regulatory factor 3 (IRF3) and Bcl-2-associated X protein (Bax) in spleen tissue were detected by Western blot analysis. We also survey the changes of serum autoantibodies, spleen weight, splenocyte apoptosis and the expressions of TLR4, MyD88, pp38, IRF3 and Bax in spleen tissue in male ApoE−/− mice after 4 weeks of lipopolysaccharide (LPS), Toll-like receptor 4 ligand, administration. ApoE−/− mice showed splenomegaly and significantly increased serum level of IgG and titers of ANA and anti-dsDNA antibody as compared with B6 mice. Splenocyte apoptosis and the expression of TLR4, MyD88, pp38, IRF3 and Bax in spleen tissue were significantly lower in ApoE−/− than B6 mice. The expression of TLR4, MyD88, IRF3, pp38, and Bax differed by sex in ApoE−/− spleen tissue. The down-regulation of TLR4 signal molecules induced by LPS led to decreased expression of Bax and increased serum titers of ANA and anti

  1. Fscn1 is required for the trafficking of TGF-β family type I receptors during endoderm formation

    Science.gov (United States)

    Liu, Zhaoting; Ning, Guozhu; Xu, Ranran; Cao, Yu; Meng, Anming; Wang, Qiang

    2016-01-01

    Microtubules function in TGF-β signalling by facilitating the cytoplasmic trafficking of internalized receptors and the nucleocytoplasmic shuttling of Smads. However, nothing is known about whether actin filaments are required for these processes. Here we report that zebrafish actin-bundling protein fscn1a is highly expressed in mesendodermal precursors and its expression is directly regulated by the TGF-β superfamily member Nodal. Knockdown or knockout of fscn1a leads to a reduction of Nodal signal transduction and endoderm formation in zebrafish embryos. Fscn1 specifically interacts with TGF-β family type I receptors, and its depletion disrupts the association between receptors and actin filaments and sequesters the internalized receptors into clathrin-coated vesicles. Therefore, Fscn1 acts as a molecular linker between TGF-β family type I receptors and the actin filaments to promote the trafficking of internalized receptors from clathrin-coated vesicles to early endosomes during zebrafish endoderm formation. PMID:27545838

  2. 9Be(p,pα) 5He cluster knockout reaction with 150 MeV polarized protons

    International Nuclear Information System (INIS)

    The (p,pα) cluster knockout reaction on 9Be was investigated using polarized incident protons. Coincident data for eight quasifree angle pairs were obtained at a bombarding energy of 150 MeV. Both differential cross sections and analyzing powers were measured for the energy-sharing distribution. Distorted wave impulse approximation calculations indicate that the reaction is dominated by a quasifree knockout process, and that a D-state component of the cluster-core wave function is important for larger momentum transfer. Extracted absolute spectroscopic factors for both S- and D-state knockout are in good agreement with theoretical predictions. The analyzing power follows the trend of free p-4He scattering and agrees with the distorted wave impulse approximation calculation reasonably well. Near zero recoil momentum, the spin-orbit interaction in the distorted waves plays little role

  3. The farnesoid X receptor induces fetuin-B gene expression in human hepatocytes

    OpenAIRE

    Murakami, Takeshi; Walczak, Robert; Caron, Sandrine; Duhem, Christian; Vidal, Vincent; Darteil, Raphaël; Staels, Bart

    2007-01-01

    Abstract Farnesoid X receptor (FXR), a nuclear receptor activated by bile acids, is a key factor in the regulation of bile acid, lipid and carbohydrate metabolism. The recent development of synthetic FXR agonists and knock-out mouse models has accelerated the discovery of FXR target genes. In this study we identify human Fetuin-B as a novel FXR target gene. Treatment with FXR agonists increased Fetuin-B expression in human primary hepatocytes and in the human hepatoma HepG2 cell li...

  4. Scavenger receptor BI: A multi-purpose player in cholesterol and steroid metabolism

    Institute of Scientific and Technical Information of China (English)

    Menno; Hoekstra; Theo; JC; Van; Berkel; Miranda; Van; Eck

    2010-01-01

    Scavenger receptor class B type Ⅰ (SR-BI) is an important member of the scavenger receptor family of integral membrane glycoproteins. This review highlights studies in SR-BI knockout mice, which concern the role of SR-BI in cholesterol and steroid metabolism. SR-BI in hepatocytes is the sole molecule involved in selective uptake of cholesteryl esters from high-density lipoprotein (HDL). SR-BI plays a physiological role in binding and uptake of native apolipoprotein B (apoB)-containing lipoproteins by hepato...

  5. Role of dopamine D2 receptors in optimizing choice strategy in a dynamic and uncertain environment

    OpenAIRE

    Kwak, Shinae; Huh, Namjung; Seo, Ji-Seon; Lee, Jung-Eun; Han, Pyung-Lim; Min W Jung

    2014-01-01

    In order to investigate roles of dopamine receptor subtypes in reward-based learning, we examined choice behavior of dopamine D1 and D2 receptor-knockout (D1R-KO and D2R-KO, respectively) mice in an instrumental learning task with progressively increasing reversal frequency and a dynamic two-armed bandit task. Performance of D2R-KO mice was progressively impaired in the former as the frequency of reversal increased and profoundly impaired in the latter even with prolonged training, whereas D1...

  6. NOVEL MECHANISMS FOR THE VITAMIN D RECEPTOR (VDR) IN THE SKIN AND IN SKIN CANCER

    OpenAIRE

    Bikle, Daniel D.; Oda, Yuko; Tu, Chia-Ling; Jiang, Yan

    2014-01-01

    The VDR acting with or without its principal ligand 1,25(OH)2D regulates two central processes in the skin, interfollicular epidermal (IFE) differentiation and hair follicle cycling (HFC). Calcium is an important co-regulator with 1,25(OH)2 D at least of epidermal differentiation. Knockout of the calcium sensing receptor (CaSR) in addition to VDR accelerates the development of skin cancer in mice on a low calcium diet. Coactivators such as Mediator 1 (aka DRIP205) and steroid receptor coactiv...

  7. The Expression of TALEN before Fertilization Provides a Rapid Knock-Out Phenotype in Xenopus laevis Founder Embryos.

    Directory of Open Access Journals (Sweden)

    Kei Miyamoto

    Full Text Available Recent advances in genome editing using programmable nucleases have revolutionized gene targeting in various organisms. Successful gene knock-out has been shown in Xenopus, a widely used model organism, although a system enabling less mosaic knock-out in founder embryos (F0 needs to be explored in order to judge phenotypes in the F0 generation. Here, we injected modified highly active transcription activator-like effector nuclease (TALEN mRNA to oocytes at the germinal vesicle (GV stage, followed by in vitro maturation and intracytoplasmic sperm injection, to achieve a full knock-out in F0 embryos. Unlike conventional injection methods to fertilized embryos, the injection of TALEN mRNA into GV oocytes allows expression of nucleases before fertilization, enabling them to work from an earlier stage. Using this procedure, most of developed embryos showed full knock-out phenotypes of the pigmentation gene tyrosinase and/or embryonic lethal gene pax6 in the founder generation. In addition, our method permitted a large 1 kb deletion. Thus, we describe nearly complete gene knock-out phenotypes in Xenopus laevis F0 embryos. The presented method will help to accelerate the production of knock-out frogs since we can bypass an extra generation of about 1 year in Xenopus laevis. Meantime, our method provides a unique opportunity to rapidly test the developmental effects of disrupting those genes that do not permit growth to an adult able to reproduce. In addition, the protocol shown here is considerably less invasive than the previously used host transfer since our protocol does not require surgery. The experimental scheme presented is potentially applicable to other organisms such as mammals and fish to resolve common issues of mosaicism in founders.

  8. Knockout of p11 attenuates the acquisition and reinstatement of cocaine conditioned place preference in male but not in female mice.

    Science.gov (United States)

    Thanos, Panayotis K; Malave, Lauren; Delis, Foteini; Mangine, Paul; Kane, Katie; Grunseich, Adam; Vitale, Melissa; Greengard, Paul; Volkow, Nora D

    2016-07-01

    Cocaine's enhancement of dopamine signaling is crucial for its rewarding effects but its serotonergic effects are also relevant. Here we examined the role of the protein p11, which recruits serotonin 5HT1B and 5HT4 receptors to the cell surface, in cocaine reward. For this purpose we tested wild-type (WT) and p11 knockout (KO) male and female mice for cocaine conditioned place preference (CPP) and its cocaine-induced reinstatement at different abstinence times, after 8 days of extinction and 28 days of being home-caged. All mice showed significant cocaine CPP. Among males, p11KO showed lower CPP than WT; this difference was also evident after 28 days of home-cage abstinence. In contrast, in females there were no CPP differences between p11KO and WT mice at any time point tested. Cocaine priming after the 28-day home-cage abstinence period also resulted in lower cocaine conditioned motor activity in both male and female p11KO mice. These results suggest that cocaine CPP and its persistence during extinction and reinstatement are modulated in a sex-differentiated manner by p11. The lack of protein p11 confers protection from CPP on male, but not female mice, immediately after cocaine conditioning as well as after prolonged abstinence, but not after short-term withdrawal. Synapse 70:293-301, 2016. © 2016 Wiley Periodicals, Inc. PMID:26990537

  9. Effect of Cyp27A1 gene dosage on atherosclerosis development in ApoE-knockout mice

    OpenAIRE

    Zurkinden, Line; Solcà, Curzio; Vögeli, Isabelle A.; Vogt, Bruno; Ackermann, Daniel; Erickson, Sandra K.; Frey, Felix J; Sviridov, Dmitri; Escher, Geneviève

    2014-01-01

    In humans, sterol 27-hydroxylase (CYP27A1) deficiency leads to cholesterol deposition in tendons and vasculature. Thus, in addition to its role in bile acid synthesis, where it converts cholesterol to 27-hydroxycholesterol (27-OHC), CYP27A1 may also be atheroprotective. Cyp27A1-deficient (Cyp27A1−/−) mice were crossed with apolipoprotein E (apoE)-deficient mice. Cyp27A1+/+/apoE−/− [ApoE-knockout (KO)], Cyp27A1+/−/apoE−/− heterozygous (het), and Cyp27A1−/−/apoE−/− [double-knockout (DKO)] mice ...

  10. No evidence for a bone phenotype in GPRC6A knockout mice under normal physiological conditions

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Johansen, Lars Dan; Jensen, Anders Asbjørn;

    2009-01-01

    GPRC6A is a seven transmembrane receptor mediating signaling by a wide range of L-alpha-amino-acids, a signaling augmented by the divalent cations Ca2+ and Mg2+. GPRC6A transcripts are detected in numerous mammalian tissues, but the physiological role of the receptor is thus far elusive. Analogou...

  11. CB2 cannabinoid receptors contribute to bacterial invasion and mortality in polymicrobial sepsis.

    Directory of Open Access Journals (Sweden)

    Balázs Csóka

    Full Text Available BACKGROUND: Sepsis is a major healthcare problem and current estimates suggest that the incidence of sepsis is approximately 750,000 annually. Sepsis is caused by an inability of the immune system to eliminate invading pathogens. It was recently proposed that endogenous mediators produced during sepsis can contribute to the immune dysfunction that is observed in sepsis. Endocannabinoids that are produced excessively in sepsis are potential factors leading to immune dysfunction, because they suppress immune cell function by binding to G-protein-coupled CB(2 receptors on immune cells. Here we examined the role of CB(2 receptors in regulating the host's response to sepsis. METHODS AND FINDINGS: The role of CB(2 receptors was studied by subjecting CB(2 receptor wild-type and knockout mice to bacterial sepsis induced by cecal ligation and puncture. We report that CB(2 receptor inactivation by knockout decreases sepsis-induced mortality, and bacterial translocation into the bloodstream of septic animals. Furthermore, CB(2 receptor inactivation decreases kidney and muscle injury, suppresses splenic nuclear factor (NF-kappaB activation, and diminishes the production of IL-10, IL-6 and MIP-2. Finally, CB(2 receptor deficiency prevents apoptosis in lymphoid organs and augments the number of CD11b(+ and CD19(+ cells during CLP. CONCLUSIONS: Taken together, our results establish for the first time that CB(2 receptors are important contributors to septic immune dysfunction and mortality, indicating that CB(2 receptors may be therapeutically targeted for the benefit of patients suffering from sepsis.

  12. Identifying the Integrated Neural Networks Involved in Capsaicin-Induced Pain Using fMRI in Awake TRPV1 Knockout and Wild-Type Rats

    Directory of Open Access Journals (Sweden)

    Kevin Gamber

    2015-02-01

    Full Text Available In the present study, we used functional MRI in awake rats to investigate the pain response that accompanies intradermal injection of capsaicin into the hindpaw. To this end, we used BOLD imaging together with a 3D segmented, annotated rat atlas and computational analysis to identify the integrated neural circuits involved in capsaicin-induced pain. The specificity of the pain response to capsaicin was tested in a transgenic model that contains a biallelic deletion of the gene encoding for the transient receptor potential cation channel subfamily V member 1 (TRPV1. Capsaicin is an exogenous ligand for the TRPV1 receptor, and in wild-type rats, activated the putative pain neural circuit. In addition, capsaicin-treated wild-type rats exhibited activation in brain regions comprising the “Papez circuit” and habenular system, systems that play important roles in the integration of emotional information, and learning and memory of aversive information, respectively. As expected, capsaicin administration to TRPV1-KO rats failed to elicit the robust BOLD activation pattern observed in wild-type controls. However, the intradermal injection of formalin elicited a significant activation of the putative pain pathway as represented by such areas as the anterior cingulate, somatosensory cortex, parabrachial nucleus, and periaqueductal gray. Notably, comparison of neural responses to capsaicin in wild-type versus knock-out rats uncovered evidence that capsaicin may function in an antinociceptive capacity independent of TRPV1 signaling. Our data suggest that neuroimaging of pain in awake, conscious animals has the potential to inform the neurobiological basis of full and integrated perceptions of pain.

  13. Inhibition of kidney proximal tubular glucose reabsorption does not prevent against diabetic nephropathy in type 1 diabetic eNOS knockout mice.

    Directory of Open Access Journals (Sweden)

    Muralikrishna Gangadharan Komala

    Full Text Available BACKGROUND AND OBJECTIVE: Sodium glucose cotransporter 2 (SGLT2 is the main luminal glucose transporter in the kidney. SGLT2 inhibition results in glycosuria and improved glycaemic control. Drugs inhibiting this transporter have recently been approved for clinical use and have been suggested to have potential renoprotective benefits by limiting glycotoxicity in the proximal tubule. We aimed to determine the renoprotective benefits of empagliflozin, an SGLT2 inhibitor, independent of its glucose lowering effect. RESEARCH DESIGN AND METHODS: We induced diabetes using a low dose streptozotocin protocol in 7-8 week old endothelial nitric oxide (eNOS synthase knockout mice. We measured fasting blood glucose on a monthly basis, terminal urinary albumin/creatinine ratio. Renal histology was assessed for inflammatory and fibrotic changes. Renal cortical mRNA transcription of inflammatory and profibrotic cytokines, glucose transporters and protein expression of SGLT2 and GLUT1 were determined. Outcomes were compared to diabetic animals receiving the angiotensin receptor blocker telmisartan (current best practice. RESULTS: Diabetic mice had high matched blood glucose levels. Empagliflozin did not attenuate diabetes-induced albuminuria, unlike telmisartan. Empagliflozin did not improve glomerulosclerosis, tubular atrophy, tubulointerstitial inflammation or fibrosis, while telmisartan attenuated these. Empagliflozin did not modify tubular toll-like receptor-2 expression in diabetic mice. Empagliflozin did not reduce the upregulation of macrophage chemoattractant protein-1 (MCP-1, transforming growth factor β1 and fibronectin mRNA observed in the diabetic animals, while telmisartan decreased transcription of MCP-1 and fibronectin. Empagliflozin increased GLUT1 mRNA expression and telmisartan increased SGLT2 mRNA expression in comparison to untreated diabetic mice. However no significant difference was found in protein expression of GLUT1 or SGLT2 among the

  14. Loss of dopamine D2 receptors increases parvalbumin-positive interneurons in the anterior cingulate cortex.

    Science.gov (United States)

    Graham, Devon L; Durai, Heather H; Garden, Jamie D; Cohen, Evan L; Echevarria, Franklin D; Stanwood, Gregg D

    2015-02-18

    Disruption to dopamine homeostasis during brain development has been implicated in a variety of neuropsychiatric disorders, including depression and schizophrenia. Inappropriate expression or activity of GABAergic interneurons are common features of many of these disorders. We discovered a persistent upregulation of GAD67+ and parvalbumin+ neurons within the anterior cingulate cortex of dopamine D2 receptor knockout mice, while other GABAergic interneuron markers were unaffected. Interneuron distribution and number were not altered in the striatum or in the dopamine-poor somatosensory cortex. The changes were already present by postnatal day 14, indicating a developmental etiology. D2eGFP BAC transgenic mice demonstrated the presence of D2 receptor expression within a subset of parvalbumin-expressing cortical interneurons, suggesting the possibility of a direct cellular mechanism through which D2 receptor stimulation regulates interneuron differentiation or survival. D2 receptor knockout mice also exhibited decreased depressive-like behavior compared with wild-type controls in the tail suspension test. These data indicate that dopamine signaling modulates interneuron number and emotional behavior and that developmental D2 receptor loss or blockade could reveal a potential mechanism for the prodromal basis of neuropsychiatric disorders. PMID:25393953

  15. O sistema apelinérgico: papel na fisiologia e patologia humanas e potenciais aplicações terapêuticas The apelinergic system: the role played in human physiology and pathology and potential therapeutic applications

    OpenAIRE

    Ricardo Ladeiras-Lopes; João Ferreira-Martins; Leite-Moreira, Adelino F.

    2008-01-01

    A apelina é um peptídeo recentemente descoberto e identificado como o ligando endógeno do receptor APJ. A apelina e o receptor APJ são expressos numa grande variedade de tecidos, tais como coração, cérebro, rins e pulmões, onde a sua interação pode ter importantes efeitos fisiopatológicos. Com efeito, a última década foi fértil no esclarecimento de possíveis papéis desempenhados pela apelina na fisiologia humana, nomeadamente como peptídeo regulador dos sistemas cardiovascular, hipotálamo-hip...

  16. Dopamine receptor-mediated regulation of neuronal "clock" gene expression.

    Science.gov (United States)

    Imbesi, M; Yildiz, S; Dirim Arslan, A; Sharma, R; Manev, H; Uz, T

    2009-01-23

    Using a transgenic mice model (i.e. "clock" knockouts), clock transcription factors have been suggested as critical regulators of dopaminergic behaviors induced by drugs of abuse. Moreover, it has been shown that systemic administration of psychostimulants, such as cocaine and methamphetamine regulates the striatal expression of clock genes. However, it is not known whether dopamine receptors mediate these regulatory effects of psychostimulants at the cellular level. Primary striatal neurons in culture express dopamine receptors as well as clock genes and have been successfully used in studying dopamine receptor functioning. Therefore, we investigated the role of dopamine receptors on neuronal clock gene expression in this model using specific receptor agonists. We found an inhibitory effect on the expression of mClock and mPer1 genes with the D2-class (i.e. D2/D3) receptor agonist quinpirole. We also found a generalized stimulatory effect on the expression of clock genes mPer1, mClock, mNPAS2 (neuronal PAS domain protein 2), and mBmal1 with the D1-class (i.e. D1) receptor agonist SKF38393. Further, we tested whether systemic administration of dopamine receptor agonists causes similar changes in striatal clock gene expression in vivo. We found quinpirole-induced alterations in mPER1 protein levels in the mouse striatum (i.e. rhythm shift). Collectively, our results indicate that the dopamine receptor system may mediate psychostimulant-induced changes in clock gene expression. Using striatal neurons in culture as a model, further research is needed to better understand how dopamine signaling modulates the expression dynamics of clock genes (i.e. intracellular signaling pathways) and thereby influences neuronal gene expression, neuronal transmission, and brain functioning. PMID:19017537

  17. Structure of 55Ti and 49Ca from relativistic one-neutron knockout

    CERN Document Server

    Maierbeck, P; Krücken, R; Kröll, T; Alvarez-Pol, H; Aksouh, F; Aumann, T; Behr, K; Benjamim, E A; Benlliure, J; Bildstein, V; Böhmer, M; Boretzky, K; García-Borge, M J; Brünle, A; Bürger, A; Caamaño, M; Casarejos, E; Chatillon, A; Chulkov, L V; Cortina-Gil, D; Enders, J; Eppinger, K; Fästermann, T; Friese, J; Fabbietti, L; Gascón, M; Geissel, H; Gerl, J; Górska, M; Hansen, P G; Jonson, B; Kanungo, R; Kiselev, O; Kojouharov, I; Klimkiewicz, A; Kurtukian, T; Kurz, N; Larsson, K; Bleis, T Le; Mahata, K; Maier, L; Nilsson, T; Nociforo, C; Nyman, G; Pascual-Izarra, C; Perea, A; Pérez, D; Prochazka, A; Rodriguez-Tajes, C; Rossi, D; Schaffner, H; Schrieder, G; Schwertel, S; Simon, H; Sitár, B; Stanoiu, M; Sümmerer, K; Tengblad, O; Weick, H; Winkler, S; Brown, B A; Otsuka, T; Tostevin, J; Rae, W D M

    2008-01-01

    Results are presented from a one-neutron knockout reaction at relativistic energies on 50Ca and 56Ti using the GSI FRS as a two-stage magnetic spectrometer and the Miniball array for gamma-ray detection. Inclusive and exclusive longitudinal momentum distributions and cross-sections were measured enabling the determination of the orbital angular momentum of the populated states. First-time observation of the 3.35(15) MeV nu f7/2-hole state in 49Ca and the 955(6) keV nu p3/2-hole state in 55Ti is reported. The measured data clearly indicates that the ground state of 55Ti is a 1/2- state, in agreement with shell-model calculations using the GXPF1A interaction that predict a sizable N=34 gap in 54Ca.

  18. Management Of Hanford KW Basin Knockout Pot Sludge As Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, R. E. [CH2M HIll Plateau Remediation Company, Richland, WA (United States); Evans, K. M. [AREVA, Avignon (France)

    2012-10-22

    CH2M HILL Plateau Remediation Company (CHPRC) and AREVA Federal Services, LLC (AFS) have been working collaboratively to develop and deploy technologies to remove, transport, and interim store remote-handled sludge from the 10S-K West Reactor Fuel Storage Basin on the U.S. Department of Energy (DOE) Hanford Site near Richland, WA, USA. Two disposal paths exist for the different types of sludge found in the K West (KW) Basin. One path is to be managed as Spent Nuclear Fuel (SNF) with eventual disposal at an SNF at a yet to be licensed repository. The second path will be disposed as remote-handled transuranic (RH-TRU) waste at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, NM. This paper describes the systems developed and executed by the Knockout Pot (KOP) Disposition Subproject for processing and interim storage of the sludge managed as SNF, (i.e., KOP material).

  19. Fast beam cut-off method in RF-knockout extraction for spot-scanning

    CERN Document Server

    Furukawa, T

    2002-01-01

    An irradiation method with magnetic scanning has been developed in order to provide accurate irradiation even for an irregular target shape. The scanning method has strongly required a lower ripple of the beam spill and a faster response to beam-on/off in slow extraction from a synchrotron ring. At HIMAC, RF-knockout extraction has utilized a bunched beam to reduce the beam-spill ripple. Therefore, particles near the resonance can be spilled out from the separatrices by synchrotron oscillation as well as by a transverse RF field. From this point of view, a fast beam cut-off method has been proposed and verified by both simulations and experiments. The maximum delay from the beam cut-off signal to beam-off has been improved to around 60 mu s from 700 mu s by a usual method. Unwanted dose has been considerably reduced by around a factor of 10 compared with that by the usual method.

  20. Failed stabilization for long-term potentiation in the auditory cortex of FMR1 knockout mice.

    Directory of Open Access Journals (Sweden)

    Sungchil Yang

    Full Text Available Fragile X syndrome is a developmental disorder that affects sensory systems. A null mutation of the Fragile X Mental Retardation protein 1 (Fmr1 gene in mice has varied effects on developmental plasticity in different sensory systems, including normal barrel cortical plasticity, altered ocular dominance plasticity and grossly impaired auditory frequency map plasticity. The mutation also has different effects on long-term synaptic plasticity in somatosensory and visual cortical neurons, providing insights on how it may differentially affect the sensory systems. Here we present evidence that long-term potentiation (LTP is impaired in the developing auditory cortex of the Fmr1 knockout (KO mice. This impairment of synaptic plasticity is consistent with impaired frequency map plasticity in the Fmr1 KO mouse. Together, these results suggest a potential role of LTP in sensory map plasticity during early sensory development.

  1. DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins.

    Science.gov (United States)

    Baek, Kwangryul; Kim, Duk Hyoung; Jeong, Jooyeon; Sim, Sang Jun; Melis, Anastasios; Kim, Jin-Soo; Jin, EonSeon; Bae, Sangsu

    2016-01-01

    Microalgae are versatile organisms capable of converting CO2, H2O, and sunlight into fuel and chemicals for domestic and industrial consumption. Thus, genetic modifications of microalgae for enhancing photosynthetic productivity, and biomass and bio-products generation are crucial for both academic and industrial applications. However, targeted mutagenesis in microalgae with CRISPR-Cas9 is limited. Here we report, a one-step transformation of Chlamydomonas reinhardtii by the DNA-free CRISPR-Cas9 method rather than plasmids that encode Cas9 and guide RNAs. Outcome was the sequential CpFTSY and ZEP two-gene knockout and the generation of a strain constitutively producing zeaxanthin and showing improved photosynthetic productivity. PMID:27466170

  2. Hyperactivity and lack of social discrimination in the adolescent Fmr1 knockout mouse

    DEFF Research Database (Denmark)

    Sørensen, Emilie M; Bertelsen, Freja; Weikop, Pia;

    2015-01-01

    -chamber test for the presence of hyperactivity, anxiety, repetitive behaviour, sociability and observation of social novelty compared with wild-type (WT) mice. The Fmr1 KO mice expressed anxiety and hyperactivity in the open field compared with WT mice. This increased level of hyperactivity was confirmed in......The aims of this study were to investigate behaviour relevant to human autism spectrum disorder (ASD) and the fragile X syndrome in adolescent Fmr1 knockout (KO) mice and to evaluate the tissue levels of striatal monoamines. Fmr1 KO mice were evaluated in the open field, marble burying and three...... mouse. Monoamines were measured by HPLC: Fmr1 KO mice showed an increase in the striatal dopamine level. We conclude that the fragile X syndrome model seems to be useful for understanding certain aspects of ASD and may have translational interest for studies of social behaviour when hyperactivity...

  3. DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins

    Science.gov (United States)

    Baek, Kwangryul; Kim, Duk Hyoung; Jeong, Jooyeon; Sim, Sang Jun; Melis, Anastasios; Kim, Jin-Soo; Jin, EonSeon; Bae, Sangsu

    2016-01-01

    Microalgae are versatile organisms capable of converting CO2, H2O, and sunlight into fuel and chemicals for domestic and industrial consumption. Thus, genetic modifications of microalgae for enhancing photosynthetic productivity, and biomass and bio-products generation are crucial for both academic and industrial applications. However, targeted mutagenesis in microalgae with CRISPR-Cas9 is limited. Here we report, a one-step transformation of Chlamydomonas reinhardtii by the DNA-free CRISPR-Cas9 method rather than plasmids that encode Cas9 and guide RNAs. Outcome was the sequential CpFTSY and ZEP two-gene knockout and the generation of a strain constitutively producing zeaxanthin and showing improved photosynthetic productivity. PMID:27466170

  4. Phosphocreatine kinetics at the onset of contractions in skeletal muscle of MM creatine kinase knockout mice

    Science.gov (United States)

    Roman, Brian B.; Meyer, Ronald A.; Wiseman, Robert W.

    2002-01-01

    Phosphocreatine (PCr) depletion during isometric twitch stimulation at 5 Hz was measured by (31)P-NMR spectroscopy in gastrocnemius muscles of pentobarbital-anesthetized MM creatine kinase knockout (MMKO) vs. wild-type C57B (WT) mice. PCr depletion after 2 s of stimulation, estimated from the difference between spectra gated to times 200 ms and 140 s after 2-s bursts of contractions, was 2.2 +/- 0.6% of initial PCr in MMKO muscle vs. 9.7 +/- 1.6% in WT muscles (mean +/- SE, n = 7, P creatine kinase, and adenylate kinase fluxes during stimulation was consistent with the observed PCr depletion in MMKO muscle after 2 s only if ADP-stimulated oxidative phosphorylation was included in the model. Taken together, the results suggest that cytoplasmic ADP more rapidly increases and oxidative phosphorylation is more rapidly activated at the onset of contractions in MMKO compared with WT muscles.

  5. Gomafu lncRNA knockout mice exhibit mild hyperactivity with enhanced responsiveness to the psychostimulant methamphetamine

    Science.gov (United States)

    Ip, Joanna Y.; Sone, Masamitsu; Nashiki, Chieko; Pan, Qun; Kitaichi, Kiyoyuki; Yanaka, Kaori; Abe, Takaya; Takao, Keizo; Miyakawa, Tsuyoshi; Blencowe, Benjamin J.; Nakagawa, Shinichi

    2016-01-01

    The long noncoding RNA Gomafu/MIAT/Rncr2 is thought to function in retinal cell specification, stem cell differentiation and the control of alternative splicing. To further investigate physiological functions of Gomafu, we created mouse knockout (KO) model that completely lacks the Gomafu gene. The KO mice did not exhibit any developmental deficits. However, behavioral tests revealed that the KO mice are hyperactive. This hyperactive behavior was enhanced when the KO mice were treated with the psychostimulant methamphetamine, which was associated with an increase in dopamine release in the nucleus accumbens. RNA sequencing analyses identified a small number of genes affected by the deficiency of Gomafu, a subset of which are known to have important neurobiological functions. These observations suggest that Gomafu modifies mouse behavior thorough a mild modulation of gene expression and/or alternative splicing of target genes. PMID:27251103

  6. Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masahito [Japan Science and Technology Agency (JST), ERATO, Nakauchi Stem Cell and Organ Regeneration Project, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Umeyama, Kazuhiro [Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); International Cluster for Bio-Resource Research, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Matsunari, Hitomi [Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Takayanagi, Shuko [Japan Science and Technology Agency (JST), ERATO, Nakauchi Stem Cell and Organ Regeneration Project, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Haruyama, Erika; Nakano, Kazuaki; Fujiwara, Tsukasa; Ikezawa, Yuka [Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Nakauchi, Hiromitsu [Japan Science and Technology Agency (JST), ERATO, Nakauchi Stem Cell and Organ Regeneration Project, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, Tokyo University, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); and others

    2010-11-05

    Research highlights: {yields} EGFP gene integrated in porcine somatic cells could be knocked out using the ZFN-KO system. {yields} ZFNs induced targeted mutations in porcine primary cultured cells. {yields} Complete absence of EGFP fluorescence was confirmed in ZFN-treated cells. -- Abstract: Zinc-finger nucleases (ZFNs) are expected as a powerful tool for generating gene knockouts in laboratory and domestic animals. Currently, it is unclear whether this technology can be utilized for knocking-out genes in pigs. Here, we investigated whether knockout (KO) events in which ZFNs recognize and cleave a target sequence occur in porcine primary cultured somatic cells that harbor the exogenous enhanced green fluorescent protein (EGFP) gene. ZFN-encoding mRNA designed to target the EGFP gene was introduced by electroporation into the cell. Using the Surveyor nuclease assay and flow cytometric analysis, we confirmed ZFN-induced cleavage of the target sequence and the disappearance of EGFP fluorescence expression in ZFN-treated cells. In addition, sequence analysis revealed that ZFN-induced mutations such as base substitution, deletion, or insertion were generated in the ZFN cleavage site of EGFP-expression negative cells that were cloned from ZFN-treated cells, thereby showing it was possible to disrupt (i.e., knock out) the function of the EGFP gene in porcine somatic cells. To our knowledge, this study provides the first evidence that the ZFN-KO system can be applied to pigs. These findings may open a new avenue to the creation of gene KO pigs using ZFN-treated cells and somatic cell nuclear transfer.

  7. Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases

    International Nuclear Information System (INIS)

    Research highlights: → EGFP gene integrated in porcine somatic cells could be knocked out using the ZFN-KO system. → ZFNs induced targeted mutations in porcine primary cultured cells. → Complete absence of EGFP fluorescence was confirmed in ZFN-treated cells. -- Abstract: Zinc-finger nucleases (ZFNs) are expected as a powerful tool for generating gene knockouts in laboratory and domestic animals. Currently, it is unclear whether this technology can be utilized for knocking-out genes in pigs. Here, we investigated whether knockout (KO) events in which ZFNs recognize and cleave a target sequence occur in porcine primary cultured somatic cells that harbor the exogenous enhanced green fluorescent protein (EGFP) gene. ZFN-encoding mRNA designed to target the EGFP gene was introduced by electroporation into the cell. Using the Surveyor nuclease assay and flow cytometric analysis, we confirmed ZFN-induced cleavage of the target sequence and the disappearance of EGFP fluorescence expression in ZFN-treated cells. In addition, sequence analysis revealed that ZFN-induced mutations such as base substitution, deletion, or insertion were generated in the ZFN cleavage site of EGFP-expression negative cells that were cloned from ZFN-treated cells, thereby showing it was possible to disrupt (i.e., knock out) the function of the EGFP gene in porcine somatic cells. To our knowledge, this study provides the first evidence that the ZFN-KO system can be applied to pigs. These findings may open a new avenue to the creation of gene KO pigs using ZFN-treated cells and somatic cell nuclear transfer.

  8. Does murine spermatogenesis require WNT signalling? A lesson from Gpr177 conditional knockout mouse models.

    Science.gov (United States)

    Chen, Su-Ren; Tang, J-X; Cheng, J-M; Hao, X-X; Wang, Y-Q; Wang, X-X; Liu, Y-X

    2016-01-01

    Wingless-related MMTV integration site (WNT) proteins and several other components of the WNT signalling pathway are expressed in the murine testes. However, mice mutant for WNT signalling effector β-catenin using different Cre drivers have phenotypes that are inconsistent with each other. The complexity and overlapping expression of WNT signalling cascades have prevented researchers from dissecting their function in spermatogenesis. Depletion of the Gpr177 gene (the mouse orthologue of Drosophila Wntless), which is required for the secretion of various WNTs, makes it possible to genetically dissect the overall effect of WNTs in testis development. In this study, the Gpr177 gene was conditionally depleted in germ cells (Gpr177(flox/flox), Mvh-Cre; Gpr177(flox/flox), Stra8-Cre) and Sertoli cells (Gpr177(flox/flox), Amh-Cre). No obvious defects in fertility and spermatogenesis were observed in these three Gpr177 conditional knockout (cKO) mice at 8 weeks. However, late-onset testicular atrophy and fertility decline in two germ cell-specific Gpr177 deletion mice were noted at 8 months. In contrast, we did not observe any abnormalities of spermatogenesis and fertility, even in 8-month-old Gpr177(flox/flox), Amh-Cre mice. Elevation of reactive oxygen species (ROS) was detected in Gpr177 cKO germ cells and Sertoli cells and exhibited an age-dependent manner. However, significant increase in the activity of Caspase 3 was only observed in germ cells from 8-month-old germ cell-specific Gpr177 knockout mice. In conclusion, GPR177 in Sertoli cells had no apparent influence on spermatogenesis, whereas loss of GPR177 in germ cells disrupted spermatogenesis in an age-dependent manner via elevating ROS levels and triggering germ cell apoptosis. PMID:27362799

  9. Establishment of large mutant families of tomato for gene knockouts and other important traits

    International Nuclear Information System (INIS)

    Tomato (Lycopersicon esculentum L.) is one of the popular and important vegetable crops grown worldwide. It ranks second after potato in terms of global production area. Tomato is the most important crop in the fresh and processed vegetable market. Current breeding efforts are geared towards the incorporation of disease resistance genes, enhanced quality traits and other important traits required by the tomato crop to sustain productivity under biotic and abiotic limiting conditions. As sources for genetic stocks, breeding materials are resourced from within the Lycopersicon and wild relatives. This paper reports the successful establishment of large M1 and M2 families of tomato generated using physical (Cobalt 60 gamma ray) and chemical (ethylmethane sulfonate, EMS) mutagens. The mutant germplasm will be used as a rich source of genetic materials to intensify crop improvement and genetic studies in tomato. Based on high-throughput phenotype screening, a total of forty one (41) homogeneous and segregating M2 families were identified as visible mutants. The most common visible mutations observed in the M2 screening were the monopodial plant type, different forms of chlorotic mutants, and plants with abnormal leaf morphology. From the large 600Gy and 1.0% EMS mutant families, 12 families were also identified as initial bacterial wilt resistance (BWR) gene knockouts. More gene knockouts, and visible and biochemical mutations will be identified from the remaining 600Gy and 1.0% EMS M2 families. To confirm mutation, targeted screening will be employed using gene-specific DNA markers like BWR SCAR markers and published EST-derived markers for tomato mutant genes. This is to determine and compare the type/frequency of mutations that have been induced using either gamma ray irradiation or EMS. (author)

  10. ATP-sensitive K+ channel knockout induces cardiac proteome remodeling predictive of heart disease susceptibility.

    Science.gov (United States)

    Arrell, D Kent; Zlatkovic, Jelena; Kane, Garvan C; Yamada, Satsuki; Terzic, Andre

    2009-10-01

    Forecasting disease susceptibility requires detection of maladaptive signatures prior to onset of overt symptoms. A case-in-point are cardiac ATP-sensitive K+ (K(ATP)) channelopathies, for which the substrate underlying disease vulnerability remains to be identified. Resolving molecular pathobiology, even for single genetic defects, mandates a systems platform to reliably diagnose disease predisposition. High-throughput proteomic analysis was here integrated with network biology to decode consequences of Kir6.2 K(ATP) channel pore deletion. Differential two-dimensional gel electrophoresis reproducibly resolved >800 protein species from hearts of asymptomatic wild-type and Kir6.2-knockout counterparts. K(ATP) channel ablation remodeled the cardiac proteome, significantly altering 71 protein spots, from which 102 unique identities were assigned following hybrid linear ion trap quadrupole-Orbitrap tandem mass spectrometry. Ontological annotation stratified the K(ATP) channel-dependent protein cohort into a predominant bioenergetic module (63 resolved identities), with additional focused sets representing signaling molecules (6), oxidoreductases (8), chaperones (6), and proteins involved in catabolism (6), cytostructure (8), and transcription and translation (5). Protein interaction mapping, in conjunction with expression level changes, localized a K(ATP) channel-associated subproteome within a nonstochastic scale-free network. Global assessment of the K(ATP) channel deficient environment verified the primary impact on metabolic pathways and revealed overrepresentation of markers associated with cardiovascular disease. Experimental imposition of graded stress precipitated exaggerated structural and functional myocardial defects in the Kir6.2-knockout, decreasing survivorship and validating the forecast of disease susceptibility. Proteomic cartography thus provides an integral view of molecular remodeling in the heart induced by K(ATP) channel deletion, establishing a

  11. Generation of a heterozygous knockout human embryonic stem cell line for the OCIAD1 locus using CRISPR/CAS9 mediated targeting: BJNhem20-OCIAD1-CRISPR-39

    Directory of Open Access Journals (Sweden)

    Deeti K. Shetty

    2016-03-01

    Full Text Available Ovarian carcinoma immuno-reactive antigen domain containing 1 (OCIAD1 single copy was knocked out generating an OCIAD1 heterozygous knockout human embryonic stem line named BJNhem20-OCIAD1-CRISPR-39. The line was generated using CRISPR-Cas9D10A double nickase knockout strategy (Mali et al., 2013.

  12. Generation of a heterozygous knockout human embryonic stem cell line for the OCIAD1 locus using CRISPR/CAS9 mediated targeting: BJNhem20-OCIAD1-CRISPR-20

    Directory of Open Access Journals (Sweden)

    Deeti K. Shetty

    2016-03-01

    Full Text Available Ovarian carcinoma immuno-reactive antigen domain containing 1(OCIAD1 single copy was knocked out generating an OCIAD1 heterozygous knockout human embryonic stem line named BJNhem20-OCIAD1-CRISPR-20. The line was generated using CRISPR-Cas9D10A double nickase knockout strategy (Mali et al., 2013.

  13. Generation of a heterozygous knockout human embryonic stem cell line for the OCIAD1 locus using CRISPR/CAS9 mediated targeting: BJNhem20-OCIAD1-CRISPR-20

    OpenAIRE

    Deeti K. Shetty; Inamdar, Maneesha S.

    2016-01-01

    Ovarian carcinoma immuno-reactive antigen domain containing 1(OCIAD1) single copy was knocked out generating an OCIAD1 heterozygous knockout human embryonic stem line named BJNhem20-OCIAD1-CRISPR-20. The line was generated using CRISPR-Cas9D10A double nickase knockout strategy (Mali et al., 2013).

  14. Generation of a heterozygous knockout human embryonic stem cell line for the OCIAD1 locus using CRISPR/CAS9 mediated targeting: BJNhem20-OCIAD1-CRISPR-39

    OpenAIRE

    Deeti K. Shetty; Inamdar, Maneesha S.

    2016-01-01

    Ovarian carcinoma immuno-reactive antigen domain containing 1 (OCIAD1) single copy was knocked out generating an OCIAD1 heterozygous knockout human embryonic stem line named BJNhem20-OCIAD1-CRISPR-39. The line was generated using CRISPR-Cas9D10A double nickase knockout strategy (Mali et al., 2013).

  15. A study in male and female 5-HT transporter knockout rats : An animal model for anxiety and depression disorders

    NARCIS (Netherlands)

    Olivier, J D A; Van Der Hart, M G C; Van Swelm, R P L; Dederen, P J; Homberg, J R; Cremers, T; Deen, P M T; Cuppen, E; Cools, A R; Ellenbroek, B A

    2008-01-01

    Human studies have shown that a reduction of 5-HT transporter (SERT) increases the vulnerability for anxiety and depression. Moreover, women are more vulnerable to develop depression and anxiety disorders than men. For that reason we hypothesized that homozygous 5-HT transporter knockout rat (SERT-/

  16. Transient in utero knockout (TIUKO of C-MYC affects late lung and intestinal development in the mouse

    Directory of Open Access Journals (Sweden)

    Zhou Pengbo

    2004-04-01

    Full Text Available Abstract Background Developmentally important genes often result in early lethality in knockout animals. Thus, the direct role of genes in late gestation organogenesis cannot be assessed directly. In utero delivery of transgenes was shown previously to result in high efficiency transfer to pulmonary and intestinal epithelial stem cells. Thus, this technology can be used to evaluate late gestation development. Results In utero gene transfer was used to transfer adenovirus with either an antisense c-myc or a C-MYC ubiquitin targeting protein to knockout out c-myc expression in late gestation lung and intestines. Using either antisense or ubiquitin mediated knockout of C-MYC levels in late gestation resulted in similar effects. Decreased complexity was observed in both intestines and lungs. Stunted growth of villi was evident in the intestines. In the lung, hypoplastic lungs with disrupted aveolarization were observed. Conclusions These data demonstrated that C-MYC was required for cell expansion and complexity in late gestation lung and intestinal development. In addition they demonstrate that transient in utero knockout of proteins may be used to determine the role of developmentally important genes in the lungs and intestines.

  17. CD8 Knockout Mice Are Protected from Challenge by Vaccination with WR201, a Live Attenuated Mutant of Brucella melitensis

    Directory of Open Access Journals (Sweden)

    Samuel L. Yingst

    2013-01-01

    Full Text Available CD8+ T cells have been reported to play an important role in defense against B. abortus infection in mouse models. In the present report, we use CD8 knockout mice to further elucidate the role of these cells in protection from B. melitensis infection. Mice were immunized orally by administration of B. melitensis WR201, a purine auxotrophic attenuated vaccine strain, then challenged intranasally with B. melitensis 16M. In some experiments, persistence of WR201 in the spleens of CD8 knockout mice was slightly longer than that in the spleens of normal mice. However, development of anti-LPS serum antibody, antigen-induced production of γ-interferon (IFN-γ by immune splenic lymphocytes, protection against intranasal challenge, and recovery of nonimmunized animals from intranasal challenge were similar between normal and knockout animals. Further, primary Brucella infection was not exacerbated in perforin knockout and Fas-deficient mice and these animals’ anti-Brucella immune responses were indistinguishable from those of normal mice. These results indicate that CD8+ T cells do not play an essential role as either cytotoxic cells or IFN-γ producers, yet they do participate in a specific immune response to immunization and challenge in this murine model of B. melitensis infection.

  18. G protein coupled receptor kinase 2 interacting protein 1 (GIT1) is a novel regulator of mitochondrial biogenesis in heart

    OpenAIRE

    Pang, Jinjiang; Xu, Xiangbin; Getman, Michael R.; Shi, Xi; Belmonte, Stephen L.; Michaloski, Heidi; Mohan, Amy; Blaxall, Burns C.; Berk, Bradford C.

    2011-01-01

    G-protein-coupled receptor (GPCR)-kinase interacting protein-1 (GIT1) is a multi-function scaffold protein. However, little is known about its physiological role in the heart. Here we sought to identify the cardiac function of GIT1. Global GIT1 knockout (KO) mice were generated and exhibited significant cardiac hypertrophy that progressed to heart failure. Electron microscopy revealed that the hearts of GIT1 KO mice demonstrated significant morphological abnormities in mitochondria, including...

  19. The chemokine receptor CXCR6 contributes to recruitment of bone marrow-derived fibroblast precursors in renal fibrosis

    OpenAIRE

    Xia, Yunfeng; Yan, Jingyin; Jin, Xiaogao; Entman, Mark L.; Wang, Yanlin

    2014-01-01

    Bone marrow-derived fibroblasts in circulation are of hematopoietic origin, proliferate, differentiate into myofibroblasts, and express the chemokine receptor CXCR6. Since chemokines mediate the trafficking of circulating cells to sites of injury, we studied the role of CXCR6 in mouse models of renal injury. Significantly fewer bone marrow-derived fibroblasts accumulated in the kidney of CXCR6 knockout mice in response to injury, expressed less profibrotic chemokines and cytokines, displayed ...

  20. Bile Acids Acutely Stimulate Insulin Secretion of Mouse β-Cells via Farnesoid X Receptor Activation and KATP Channel Inhibition

    OpenAIRE

    Düfer, Martina; Hörth, Katrin; Wagner, Rebecca; Schittenhelm, Björn; Prowald, Susanne; Wagner, Thomas F. J.; Oberwinkler, Johannes; Lukowski, Robert; Gonzalez, Frank J.; Krippeit-Drews, Peter; Drews, Gisela

    2012-01-01

    Type 2 diabetes mellitus is associated with alterations in bile acid (BA) signaling. The aim of our study was to test whether pancreatic β-cells contribute to BA-dependent regulation of glucose homeostasis. Experiments were performed with islets from wild-type, farnesoid X receptor (FXR) knockout (KO), and β-cell ATP-dependent K+ (KATP) channel gene SUR1 (ABCC8) KO mice, respectively. Sodium taurochenodeoxycholate (TCDC) increased glucose-induced insulin secretion. This effect was mimicked by...

  1. Group III metabotropic glutamate receptors and drug addiction.

    Science.gov (United States)

    Mao, Limin; Guo, Minglei; Jin, Daozhong; Xue, Bing; Wang, John Q

    2013-12-01

    Neuroadaptations of glutamatergic transmission in the limbic reward circuitry are linked to persistent drug addiction. Accumulating data have demonstrated roles of ionotropic glutamate receptors and group I and II metabotropic glutamate receptors (mGluRs) in this event. Emerging evidence also identifies Gαi/o-coupled group III mGluRs (mGluR4/7/8 subtypes enriched in the limbic system) as direct substrates of drugs of abuse and active regulators of drug action. Auto- and heteroreceptors of mGluR4/7/8 reside predominantly on nerve terminals of glutamatergic corticostriatal and GABAergic striatopallidal pathways, respectively. These presynaptic receptors regulate basal and/or phasic release of respective transmitters to maintain basal ganglia homeostasis. In response to operant administration of common addictive drugs, such as psychostimulants (cocaine and amphetamine), alcohol and opiates, limbic group III mGluRs undergo drastic adaptations to contribute to the enduring remodeling of excitatory synapses and to usually suppress drug seeking behavior. As a result, a loss-of-function mutation (knockout) of individual group III receptor subtypes often promotes drug seeking. This review summarizes the data from recent studies on three group III receptor subtypes (mGluR4/7/8) expressed in the basal ganglia and analyzes their roles in the regulation of dopamine and glutamate signaling in the striatum and their participation in the addictive properties of three major classes of drugs (psychostimulants, alcohol, and opiates). PMID:24078068

  2. Atherosclerosis in LDLR-Knockout Mice Is Inhibited, but Not Reversed, by the PPARγ Ligand Pioglitazone

    OpenAIRE

    Nakaya, Hideaki; Summers, Barbara D.; Nicholson, Andrew C.; Gotto, Antonio M; Hajjar, David P.; Han, Jihong

    2009-01-01

    Thiazolidinediones, a class of drugs for the treatment of type-2 diabetes, are synthetic ligands for peroxisome proliferator-activated receptor-γ. They have been demonstrated to possess cardioprotective effects in humans and anti-atherogenic properties in animal models. However, the question remains whether a peroxisome proliferator-activated receptor-γ ligand can reverse the development of atherosclerosis. In this study, we tested the effects of pioglitazone on the development of established...

  3. Remyelination in experimentally demyelinated connexin 32 KnockOut mice Remielinização em camundongos KnockOut para conexina 32 desmielinizados experimentalmente

    Directory of Open Access Journals (Sweden)

    Adriano Tony Ramos

    2009-06-01

    Full Text Available The aim of this study was to evaluate the role of connexin 32 (Cx 32 during remyelination of the peripheral nervous system, through a local injection of either 0,1% ethidium bromide solution or saline in the sciatic nerve of Cx 32 knockout mice. Euthanasia was performed ranging from 1, 2, 3, 7, 15, 21 to 30 days after injection. Histochemical, immunohistochemical, immunofluorescence and transmission electron microscopical techniques were used to analyze the development of the lesions. Within the sciatic nerves, Schwann cells initially showed signs of intoxication and rejected their sheaths; after seven days, some thin newly formed myelin sheaths with uneven compactness and redundant loops (tomacula were conspicuous. We concluded that the regeneration of lost myelin sheaths within the PNS followed the pattern already reported for this model in other laboratory species. Therefore, these results suggest that absence of Cx 32 did not interfere with the normal pattern of remyelination in this model in young mice.Este estudo visou avaliar o papel da conexina 32 (Cx 32 durante a remielinização no sistema nervoso periférico. Uma injeção local de 0,1% de solução de brometo de etídio foi realizada no nervo ciático de camundongos deletados para a Cx 32, com eutanásia dos animais aos 1, 2, 3, 7, 15, 21 e 30 dias pós-injeção. Avaliações histoquímicas, imunoistoquímicas, por imunofluorescência e por microscopia eletrônica de transmissão foram utilizadas na análise do desenvolvimento das lesões. Nos nervos ciáticos, células de Schwann mostraram inicialmente sinais de intoxicação e rejeitaram suas bainhas. Após sete dias, observaram-se finas bainhas neoformadas, com compactação desigual e alças redundantes (tomácula. Conclui-se que a regeneração de bainhas de mielina perdidas no SNP seguiu o padrão já relatado deste modelo em outras espécies de laboratório. Portanto, estes resultados sugerem que a ausência da Cx 32 n

  4. Toll-like receptor 2 contributes to chemokine gene expression and macrophage infiltration in the dorsal root ganglia after peripheral nerve injury

    Directory of Open Access Journals (Sweden)

    Lee Sung Joong

    2011-09-01

    Full Text Available Abstract Background We have previously reported that nerve injury-induced neuropathic pain is attenuated in toll-like receptor 2 (TLR2 knock-out mice. In these mice, inflammatory gene expression and spinal cord microglia actvation is compromised, whereas the effects in the dorsal root ganglia (DRG have not been tested. In this study, we investigated the role of TLR2 in inflammatory responses in the DRG after peripheral nerve injury. Results L5 spinal nerve transection injury induced the expression of macrophage-attracting chemokines such as CCL2/MCP-1 and CCL3/MIP-1 and subsequent macrophage infiltration in the DRG of wild-type mice. In TLR2 knock-out mice, however, the induction of chemokine expression and macrophage infiltration following nerve injury were markedly reduced. Similarly, the induction of IL-1β and TNF-α expression in the DRG by spinal nerve injury was ameliorated in TLR2 knock-out mice. The reduced inflammatory response in the DRG was accompanied by attenuation of nerve injury-induced spontaneous pain hypersensitivity in TLR2 knock-out mice. Conclusions Our data show that TLR2 contributes to nerve injury-induced proinflammatory chemokine/cytokine gene expression and macrophage infiltration in the DRG, which may have relevance in the reduced pain hypersensitivity in TLR2 knock-out mice after spinal nerve injury.

  5. Exposure to low-dose rotenone precipitates synaptic plasticity alterations in PINK1 heterozygous knockout mice.

    Science.gov (United States)

    Martella, G; Madeo, G; Maltese, M; Vanni, V; Puglisi, F; Ferraro, E; Schirinzi, T; Valente, E M; Bonanni, L; Shen, J; Mandolesi, G; Mercuri, N B; Bonsi, P; Pisani, A

    2016-07-01

    Heterozygous mutations in the PINK1 gene are considered a susceptibility factor to develop early-onset Parkinson's disease (PD), as supported by dopamine hypometabolism in asymptomatic mutation carriers and subtle alterations of dopamine-dependent striatal synaptic plasticity in heterozygous PINK1 knockout (PINK1(+/-)) mice. The aim of the present study was to investigate whether exposure to low-dose rotenone of heterozygous PINK1(+/-) mice, compared to their wild-type PINK1(+/+) littermates, could impact on dopamine-dependent striatal synaptic plasticity, in the absence of apparent structural alterations. Mice were exposed to a range of concentrations of rotenone (0.01-1mg/kg). Chronic treatment with concentrations of rotenone up to 0.8mg/kg did not cause manifest neuronal loss or changes in ATP levels both in the striatum or substantia nigra of PINK1(+/-) and PINK1(+/+) mice. Moreover, rotenone (up to 0.8mg/kg) treatment did not induce mislocalization of the mitochondrial membrane protein Tom20 and release of cytochrome c in PINK1(+/-) striata. Accordingly, basic electrophysiological properties of nigral dopaminergic and striatal medium spiny neurons (MSNs) were normal. Despite the lack of gross alterations in neuronal viability in chronically-treated PINK1(+/-), a complete loss of both long-term depression (LTD) and long-term potentiation (LTP) was recorded in MSNs from PINK1(+/-) mice treated with a low rotenone (0.1mg/kg) concentration. Even lower concentrations (0.01mg/kg) blocked LTP induction in heterozygous PINK1(+/-) MSNs compared to PINK1(+/+) mice. Of interest, chronic pretreatment with the antioxidants alpha-tocopherol and Trolox, a water-soluble analog of vitamin E and powerful antioxidant, rescued synaptic plasticity impairment, confirming that, at the doses we utilized, rotenone did not induce irreversible alterations. In this model, chronic exposure to low-doses of rotenone was not sufficient to alter mitochondrial integrity and ATP production, but

  6. Global analysis of gene expression in the developing brain of Gtf2ird1 knockout mice.

    Directory of Open Access Journals (Sweden)

    Jennifer O'Leary

    Full Text Available BACKGROUND: Williams-Beuren Syndrome (WBS is a neurodevelopmental disorder caused by a hemizygous deletion of a 1.5 Mb region on chromosome 7q11.23 encompassing 26 genes. One of these genes, GTF2IRD1, codes for a putative transcription factor that is expressed throughout the brain during development. Genotype-phenotype studies in patients with atypical deletions of 7q11.23 implicate this gene in the neurological features of WBS, and Gtf2ird1 knockout mice show reduced innate fear and increased sociability, consistent with features of WBS. Multiple studies have identified in vitro target genes of GTF2IRD1, but we sought to identify in vivo targets in the mouse brain. METHODOLOGY/PRINCIPAL FINDINGS: We performed the first in vivo microarray screen for transcriptional targets of Gtf2ird1 in brain tissue from Gtf2ird1 knockout and wildtype mice at embryonic day 15.5 and at birth. Changes in gene expression in the mutant mice were moderate (0.5 to 2.5 fold and of candidate genes with altered expression verified using real-time PCR, most were located on chromosome 5, within 10 Mb of Gtf2ird1. siRNA knock-down of Gtf2ird1 in two mouse neuronal cell lines failed to identify changes in expression of any of the genes identified from the microarray and subsequent analysis showed that differences in expression of genes on chromosome 5 were the result of retention of that chromosome region from the targeted embryonic stem cell line, and so were dependent upon strain rather than Gtf2ird1 genotype. In addition, specific analysis of genes previously identified as direct in vitro targets of GTF2IRD1 failed to show altered expression. CONCLUSIONS/SIGNIFICANCE: We have been unable to identify any in vivo neuronal targets of GTF2IRD1 through genome-wide expression analysis, despite widespread and robust expression of this protein in the developing rodent brain.

  7. Atm heterozygous deficiency enhances development of mammary carcinomas in p53 heterozygous knockout mice

    International Nuclear Information System (INIS)

    Ataxia-telangiectasia is an autosomal-recessive disease that affects neuro-immunological functions, associated with increased susceptibility to malignancy, chromosomal instability and hypersensitivity to ionizing radiation. Although ataxia-telangiectasia mutated (ATM) heterozygous deficiency has been proposed to increase susceptibility to breast cancer, some studies have not found excess risk. In experimental animals, increased susceptibility to breast cancer is not observed in the Atm heterozygous deficient mice (Atm+/-) carrying a knockout null allele. In order to determine the effect of Atm heterozygous deficiency on mammary tumourigenesis, we generated a series of Atm+/- mice on the p53+/- background with a certain predisposition to spontaneous development of mammary carcinomas, and we examined the development of the tumours after X-irradiation. BALB/cHeA-p53+/- mice were crossed with MSM/Ms-Atm+/- mice, and females of the F1 progeny ([BALB/cHeA × MSM/Ms]F1) with four genotypes were used in the experiments. The mice were exposed to X-rays (5 Gy; 0.5 Gy/min) at age 5 weeks. We tested the effect of haploinsufficiency of the Atm gene on mammary tumourigenesis after X-irradiation in the p53+/- mice of the BALB/cHeA × MSM/Ms background. The singly heterozygous p53+/- mice subjected to X-irradiation developed mammary carcinomas at around 25 weeks of age, and the final incidence of mammary carcinomas at 39 weeks was 31% (19 out of 61). The introduction of the heterozygous Atm knockout alleles into the background of the p53+/- genotype significantly increased the incidence of mammary carcinoma to 58% (32 out of 55) and increased the average number of mammary carcinomas per mouse. However, introduction of Atm alleles did not change the latency of development of mammary carcinoma. Our results indicate a strong enhancement in mammary carcinogenesis by Atm heterozygous deficiency in p53+/- mice. Thus, doubly heterozygous mice represent a useful model system with which to

  8. Angiotensin II Type 1 Receptor Signaling Regulates Feeding Behavior through Anorexigenic Corticotropin-releasing Hormone in Hypothalamus*

    OpenAIRE

    Yamamoto, Rie; Akazawa, Hiroshi; Fujihara, Hiroaki; Ozasa, Yukako; Yasuda, Noritaka; Ito, Kaoru; Kudo, Yoko; Qin, Yingjie; Ueta, Yoichi; Komuro, Issei

    2011-01-01

    The activation of renin-angiotensin system contributes to the development of metabolic syndrome and diabetes as well as hypertension. However, it remains undetermined how renin-angiotensin system is implicated in feeding behavior. Here, we show that angiotensin II type 1 (AT1) receptor signaling regulates the hypothalamic neurocircuit that is involved in the control of food intake. Compared with wild-type Agtr1a+/+ mice, AT1 receptor knock-out (Agtr1a−/−) mice were hyperphagic and obese with ...

  9. Peripheral activation of corticotropin-releasing factor receptor 2 inhibits food intake and alters meal structures in mice

    OpenAIRE

    Wang, Lixin; Stengel, Andreas; Goebel, Miriam; Martinez, Vicente; Gourcerol, Guillaume; Rivier, Jean; Taché, Yvette

    2010-01-01

    The orexigenic effect of urocortins (Ucn 1, Ucn 2 and Ucn 3) through activation of corticotropin-releasing factor (CRF) receptors, has been well characterized after injection into the brain but not in the periphery. We examined the role of CRF receptor subtype 2 (CRF2) in the regulation of food intake using intraperitoneal (ip) injection of Ucns, the selective CRF2 antagonist, astressin2-B, and CRF2 knockout (−/−) mice. Meal structures were monitored using an automated episodic solid food int...

  10. Hippocampal dysfunction in the Euchromatin histone methyltransferase 1 heterozygous knockout mouse model for Kleefstra syndrome.

    Science.gov (United States)

    Balemans, Monique C M; Kasri, Nael Nadif; Kopanitsa, Maksym V; Afinowi, Nurudeen O; Ramakers, Ger; Peters, Theo A; Beynon, Andy J; Janssen, Sanne M; van Summeren, Rik C J; Eeftens, Jorine M; Eikelenboom, Nathalie; Benevento, Marco; Tachibana, Makoto; Shinkai, Yoichi; Kleefstra, Tjitske; van Bokhoven, Hans; Van der Zee, Catharina E E M

    2013-03-01

    Euchromatin histone methyltransferase 1 (EHMT1) is a highly conserved protein that catalyzes mono- and dimethylation of histone H3 lysine 9, thereby epigenetically regulating transcription. Kleefstra syndrome (KS), is caused by haploinsufficiency of the EHMT1 gene, and is an example of an emerging group of intellectual disability (ID) disorders caused by genes encoding epigenetic regulators of neuronal gene activity. Little is known about the mechanisms underlying this disorder, prompting us to study the Euchromatin histone methyltransferase 1 heterozygous knockout (Ehmt1(+/-)) mice as a model for KS. In agreement with the cognitive disturbances observed in patients with KS, we detected deficits in fear extinction learning and both novel and spatial object recognition in Ehmt1(+/-) mice. These learning and memory deficits were associated with a significant reduction in dendritic arborization and the number of mature spines in hippocampal CA1 pyramidal neurons of Ehmt1(+/-) mice. In-depth analysis of the electrophysiological properties of CA3-CA1 synapses revealed no differences in basal synaptic transmission or theta-burst induced long-term potentiation (LTP). However, paired-pulse facilitation (PPF) was significantly increased in Ehmt1(+/-) neurons, pointing to a potential deficiency in presynaptic neurotransmitter release. Accordingly, a reduction in the frequency of miniature excitatory post-synaptic currents (mEPSCs) was observed in Ehmt1(+/-) neurons. These data demonstrate that Ehmt1 haploinsufficiency in mice leads to learning deficits and synaptic dysfunction, providing a possible mechanism for the ID phenotype in patients with KS. PMID:23175442

  11. A dhfr-ts- Leishmania major Knockout Mutant Cross-protects against Leishmania amazonensis

    Directory of Open Access Journals (Sweden)

    PST Veras

    1999-07-01

    Full Text Available E10-5A3 is a dhfr-ts- Leishmania major double knockout auxotrophic shown previously to induce substantial protection against virulent L. major infection in both genetically susceptible and resistant mice. We investigated the capacity of dhfr-ts- to protect against heterologous infection by L. amazonensis. The degree of protection was evaluated by immunization of BALB/c or C57BL/6 mice with E10-5A3, followed by L. amazonensis challenge. Whether immunized by subcutaneous (SC or intravenous (IV inoculation, susceptible and resistant mice displayed a partial degree of protection against challenge with virulent L. amazonensis. SC-immunized BALB/c mice developed lesions 40 to 65% smaller than non immunized mice, while IV immunization led to protection ranging from 40 to 75% in four out of six experiments compared to non immunized animals. The resistant C57BL/6 mice displayed comparable degrees of protection, 57% by SC and 49% by IV immunization. Results are encouraging as it has been previously difficult to obtain protection by SC vaccination against Leishmania, the preferred route for human immunization.

  12. Constitutively Expressed αB—Crystallin in Heat Schock Transcription Factor 1 Knockout Mice Myocardium

    Institute of Scientific and Technical Information of China (English)

    刘莉; 张洪慧; 丁国宪; 程蕴琳; 晏良军; BENJAMINIvorJ

    2003-01-01

    Objective:To invesligate the effects of heat shock transcription factor 1(HSF 1) gene on the constitutively expressed aB-Crystallin(αBC)in mice myocardium.Methods:The expression levels of constitutive αBC in HSF1 knockout(hsf1-/-) and HSF1 wild type (hsf1+/+) mice myocardium were evaluated by western blot and immunohistochemistry.Results:The αBC levels in hsf1-/- and hsf1+/_ were 68.42±4.16,100.00±7.58,respectively(P<0.05,cytosolic fraction),and 20.53±1.01,37.55±1.91,respectively(P<0.05,pellet fraction).The αBC signals decreased significantly in hsf1-/- myocardium when compared with those in hsf1+/+ myocardium stained with fluorescence immunohistochemistry.Conclusion.HSF1 is an important,but not the only factor,which mediates the constitutively expressed αBC.

  13. Molecular signatures of neurodegeneration in the cortex of PS1/PS2 double knockout mice

    Directory of Open Access Journals (Sweden)

    Choi Se

    2008-10-01

    Full Text Available Abstract Background Familial Alzheimer's disease-linked variants of presenilin (PSEN1 and PSEN2 contribute to the pathophysiology of disease by both gain-of-function and loss-of-function mechanisms. Deletions of PSEN1 and PSEN2 in the mouse forebrain result in a strong and progressive neurodegenerative phenotype which is characterized by both anatomical and behavioral changes. Results To better understand the molecular changes associated with these morphological and behavioral phenotypes, we performed a DNA microarray transcriptome profiling of the hippocampus and the frontal cortex of the PSEN1/PSEN2 double knock-out mice and littermate controls at five different ages ranging from 2–8 months. Our data suggest that combined deficiencies of PSEN1 and PSEN2 results in a progressive, age-dependent transcriptome signature related to neurodegeneration and neuroinflammation. While these events may progress differently in the hippocampus and frontal cortex, the most critical expression signatures are common across the two brain regions, and involve a strong upregulation of cathepsin and complement system transcripts. Conclusion The observed neuroinflammatory expression changes are likely to be causally linked to the neurodegenerative phenotype observed in mice with compound deletions of PSEN1 and PSEN2. Furthermore, our results suggest that the evaluation of inhibitors of PS/γ-secretase activity for treatment of Alzheimer's Disease must include close monitoring for signs of calpain-cathepsin system activation.

  14. Persistent lung inflammation and fibrosis in serum amyloid P component (APCs-/-) knockout mice.

    Science.gov (United States)

    Pilling, Darrell; Gomer, Richard H

    2014-01-01

    Fibrosing diseases, such as pulmonary fibrosis, cardiac fibrosis, myelofibrosis, liver fibrosis, and renal fibrosis are chronic and debilitating conditions and are an increasing burden for the healthcare system. Fibrosis involves the accumulation and differentiation of many immune cells, including macrophages and fibroblast-like cells called fibrocytes. The plasma protein serum amyloid P component (SAP; also known as pentraxin-2, PTX2) inhibits fibrocyte differentiation in vitro, and injections of SAP inhibit fibrosis in vivo. SAP also promotes the formation of immuno-regulatory Mreg macrophages. To elucidate the endogenous function of SAP, we used bleomycin aspiration to induce pulmonary inflammation and fibrosis in mice lacking SAP. Compared to wildtype C57BL/6 mice, we find that in Apcs-/- "SAP knock-out" mice, bleomycin induces a more persistent inflammatory response and increased fibrosis. In both C57BL/6 and Apcs-/- mice, injections of exogenous SAP reduce the accumulation of inflammatory macrophages and prevent fibrosis. The types of inflammatory cells present in the lungs following bleomycin-aspiration appear similar between C57BL/6 and Apcs-/- mice, suggesting that the initial immune response is normal in the Apcs-/- mice, and that a key endogenous function of SAP is to promote the resolution of inflammation and fibrosis. PMID:24695531

  15. Ethanol self-administration in serotonin transporter knockout mice: unconstrained demand and elasticity.

    Science.gov (United States)

    Lamb, R J; Daws, L C

    2013-10-01

    Low serotonin function is associated with alcoholism, leading to speculation that increasing serotonin function could decrease ethanol consumption. Mice with one or two deletions of the serotonin transporter (SERT) gene have increased extracellular serotonin. To examine the relationship between SERT genotype and motivation for alcohol, we compared ethanol self-administration in mice with zero (knockout, KO), one (HET) or two copies (WT) of the SERT gene. All three genotypes learned to self-administer ethanol. The SSRI, fluvoxamine, decreased responding for ethanol in the HET and WT, but not the KO mice. When tested under a progressive ratio schedule, KO mice had lower breakpoints than HET or WT. As work requirements were increased across sessions, behavioral economic analysis of ethanol self-administration indicated that the decreased breakpoint in KO as compared to HET or WT mice was a result of lower levels of unconstrained demand, rather than differences in elasticity, i.e. the proportional decreases in ethanol earned with increasing work requirements were similar across genotypes. The difference in unconstrained demand was unlikely to result from motor or general motivational factors, as both WT and KO mice responded at high levels for a 50% condensed milk solution. As elasticity is hypothesized to measure essential value, these results indicate that KO value ethanol similarly to WT or HET mice despite having lower break points for ethanol. PMID:23927813

  16. CRISPR/Cas9-mediated GJA8 knockout in rabbits recapitulates human congenital cataracts.

    Science.gov (United States)

    Yuan, Lin; Sui, Tingting; Chen, Mao; Deng, Jichao; Huang, Yongye; Zeng, Jian; Lv, Qingyan; Song, Yuning; Li, Zhanjun; Lai, Liangxue

    2016-01-01

    Cataracts are the leading cause of vision loss in the world, although surgical treatment can restore vision in cataract patients. Until now, there have been no adequate animal models for in vivo studies of artificial lens safety and drug interactions. Genetic studies have demonstrated that GJA8 is involved in maintaining lens opacity and proper lens development. In this study, a cataract model with GJA8 gene knockout was developed via co-injection of Cas9/sgRNA mRNA into rabbit zygotes. Our results showed that gene mutation efficiency in the GJA8 locus reached 98.7% in embryos and 100% in pups, demonstrating that the Cas9/sgRNA system is a highly efficient tool for gene editing in rabbits. In agreement with other studies, our genetic and histology results showed that impaired GJA8 function caused microphthalmia, small lens size and cataracts. In summary, our novel rabbit model of cataracts will be an important drug-screening tool for cataract prevention and treatment. PMID:26912477

  17. Utilising the resources of the International Knockout Mouse Consortium: the Australian experience.

    Science.gov (United States)

    Cotton, Leanne M; Meilak, Michelle L; Templeton, Tanya; Gonzales, Jose G; Nenci, Arianna; Cooney, Melissa; Truman, Dirk; Rodda, Fleur; Lynas, Alyce; Viney, Elizabeth; Rosenthal, Nadia; Bianco, Deborah M; O'Bryan, Moira K; Smyth, Ian M

    2015-04-01

    Mouse models play a key role in the understanding gene function, human development and disease. In 2007, the Australian Government provided funding to establish the Monash University embryonic stem cell-to-mouse (ES2M) facility. This was part of the broader Australian Phenomics Network, a national infrastructure initiative aimed at maximising access to global resources for understanding gene function in the mouse. The remit of the ES2M facility is to provide subsidised access for Australian biomedical researchers to the ES cell resources available from the International Knockout Mouse Consortium (IKMC). The stated aim of the IKMC is to generate a genetically modified mouse ES cell line for all of the ~23,000 genes in the mouse genome. The principal function of the Monash University ES2M service is to import genetically modified ES cells into Australia and to convert them into live mice with the potential to study human disease. Through advantages of economy of scale and established relationships with ES cell repositories worldwide, we have created over 110 germline mouse strains sourced from all of the major ES providers worldwide. We comment on our experience in generating these mouse lines; providing a snapshot of a "clients" perspective of using the IKMC resource and one which we hope will serve as a guide to other institutions or organisations contemplating establishing a similar centralised service. PMID:25645994

  18. Chronic minocycline treatment improves social recognition memory in adult male Fmr1 knockout mice.

    Science.gov (United States)

    Yau, Suk Yu; Chiu, Christine; Vetrici, Mariana; Christie, Brian R

    2016-10-01

    Fragile X syndrome (FXS) is caused by a mutation in the Fmr1 gene that leads to silencing of the gene and a loss of its gene product, Fragile X mental retardation protein (FMRP). Some of the key behavioral phenotypes for FXS include abnormal social anxiety and sociability. Here we show that Fmr1 knock-out (KO) mice exhibit impaired social recognition when presented with a novel mouse, and they display normal social interactions in other sociability tests. Administering minocycline to Fmr1 KO mice throughout critical stages of neural development improved social recognition memory in the novel mouse recognition task. To determine if synaptic changes in the prefrontal cortex (PFC) could have played a role in this improvement, we examined PSD-95, a member of the membrane-associated guanylate kinase family, and signaling molecules (ERK1/2, and Akt) linked to synaptic plasticity in the PFC. Our analyses indicated that while minocycline treatment can enhance behavioral performance, it does not enhance expression of PSD-95, ERK1/2 or Akt in the PFC. PMID:27291517

  19. CRISPR/Cas9-mediated GJA8 knockout in rabbits recapitulates human congenital cataracts

    Science.gov (United States)

    Yuan, Lin; Sui, Tingting; Chen, Mao; Deng, Jichao; Huang, Yongye; Zeng, Jian; Lv, Qingyan; Song, Yuning; Li, Zhanjun; Lai, Liangxue

    2016-01-01

    Cataracts are the leading cause of vision loss in the world, although surgical treatment can restore vision in cataract patients. Until now, there have been no adequate animal models for in vivo studies of artificial lens safety and drug interactions. Genetic studies have demonstrated that GJA8 is involved in maintaining lens opacity and proper lens development. In this study, a cataract model with GJA8 gene knockout was developed via co-injection of Cas9/sgRNA mRNA into rabbit zygotes. Our results showed that gene mutation efficiency in the GJA8 locus reached 98.7% in embryos and 100% in pups, demonstrating that the Cas9/sgRNA system is a highly efficient tool for gene editing in rabbits. In agreement with other studies, our genetic and histology results showed that impaired GJA8 function caused microphthalmia, small lens size and cataracts. In summary, our novel rabbit model of cataracts will be an important drug-screening tool for cataract prevention and treatment. PMID:26912477

  20. Neutron Knockout on Beams of $^{108,106}$Sn and $^{106}$Cd

    CERN Document Server

    Cerizza, Giordano

    2015-01-01

    Characterizing the nature of single-particle states outside of double shell closures is essential to a fundamental understanding of nuclear structure. This is especially true for those doubly magic nuclei that lie far from stability and where the shell closures influence nucleo-synthetic pathways. The region around $^{100}$Sn is one of the most important due to the proximity of the N=Z=50 magic numbers, the proton-drip line, and the end of the rp-process. However, owing to the low production rates, there is a lack of spectroscopic information and no firm spin-parity assignment for ground states of odd-A isotopes close to $^{100}$Sn. Neutron knockout reaction experiments on beams of $^{108,106}$Sn and $^{106}$Cd have been performed at the NSCL. By measuring gamma rays and momentum distributions from reaction residues, the spin of ground state and first excited state for $^{107,105}$Sn have been established. The results also show a degree of mixing in the ground states of the isotopes $^{108,106}$Sn between the...