WorldWideScience

Sample records for apelin receptor knockout

  1. Improvement of Kidney Apelin and Apelin Receptor in Nitro-L-Arginine-Methyl Ester Induced Rats

    Directory of Open Access Journals (Sweden)

    S. Ali Akbar Mahmoody

    2015-02-01

    Full Text Available Background: We have investigated the effect of 8 weeks aerobic training (AT and Ferula gummosis supplement (FG on apelin and apelin receptor (APJ, nitric oxide (NO and angiotensin converting enzyme (ACE of hypertensive rats. Materials and Methods: In a experimental study, 50 adult male wistar rats were classified into five groups; 1- AT, 2- FG, 3- combination of aerobic training + Ferula Gummosa supplement (TFG, 4- nitro-L-arginine-methyl ester (L-NAME, 5- shame (control groups (SH. The rats in the 1 to 4 groups received L-NAME (10 mg/kg, 6 times a week for 8 weeks. Also, the 1 and 3 groups experienced the training of 15 to 22 m/min for 25 to 64 minutes, 5 times a week for 8 weeks, whereas, the 2 and 3 groups received Ferula gummosis supplement (90 mg/kg, 6 times a week for 8 weeks. However, rats in 5 groups received NaCl solution. Results: At protocols resulted in a significant increase in apelin and APJ as compared to control and L-NAME groups. The TFG protocols resulted in a markedly increase in apelin, APJ and significantly decrease of ACE levels as compared to L-NAME group. Chronically administration of L-NAME resulted increased, ACE, and reduced the levels of apelin, APJ and NO, as compared to control group. Conclusion: The results in this study show that physical regular activity with and without herbal treatment induce amplification in apelin/APJ system and down-regulation blood pressure in L-NAME induced hypertension in the rat kidney tissue.

  2. Apelin-13 induces ERK1/2 but not p38 MAPK activation through coupling of the human apelin receptor to the Gi2 pathway

    Institute of Scientific and Technical Information of China (English)

    Bo Bai; Jiyou Tang; Haiqing Liu; Jing Chen; Yalin Li; Wengang Song

    2008-01-01

    Apelin signaling to the family of mitogen-activated protein kinases (MAPKs), such as extracellular-regulated kinases 1/2 (ERK1/2) and p38 MAPK, through the coupling of apelin receptor (APJ) to G-protein, mediates important pathophysiological responses. Although apelin fragments have been reported to induce ERK1/2 activation through Gi-protein, the intracellular pathways by which APJ activates these MAPKs are only partially understood. Here, using stably transfected human embryonic kidney 293 (HEK293) cells overexpressing human APJ (HEK293-apelinR), we showed that apelin-13 signaling leads to ERK1/2 and p38 MAPK pathways through APJ activation. It was found in HEK293-apelinR cells that ERK1/2 activation was initiated by apelin13 at 5 min, with the peak of activation occurring at 15 min,and a return to the basal level within 60 min. The activation of ERK1/2 appeared to be dose-dependent with a significant activation being observed at 10 nM apelin-13 and maximal activation at 100 nM. However, phosphorylated-p38 MAPK was not detected in HEK293-apelinR cells treated with apelin13. We also shown that the apelin-13-induced ERK1/2 activation requires a coupling with pertussis toxin-sensitive G-protein, and that overexpression of dominant-negative Gi2 completely inhibits the apelin-13-induced ERK1/2 activation.In addition, treatment with apelin-13 resulted in a concentration-dependent reduction of forskolin-stimulated cAMP production. It is therefore suggested that apelin-13 activates ERK1/2 but not p38 MAPK, which involves the coupling of APJ to the Gi2 cascade. In conclusion, the ERK1/2, but not p38 MAPK pathway is activated by apelin- 13 through coupling of human APJ to Gi2-protein, which contributes to cellular responses.

  3. Characterization of apela, a novel endogenous ligand of apelin receptor, in the adult heart.

    Science.gov (United States)

    Perjés, Ábel; Kilpiö, Teemu; Ulvila, Johanna; Magga, Johanna; Alakoski, Tarja; Szabó, Zoltán; Vainio, Laura; Halmetoja, Eveliina; Vuolteenaho, Olli; Petäjä-Repo, Ulla; Szokodi, István; Kerkelä, Risto

    2016-01-01

    The G protein-coupled apelin receptor regulates important processes of the cardiovascular homeostasis, including cardiac development, cardiac contractility, and vascular tone. Most recently, a novel endogenous peptide ligand for the apelin receptor was identified in zebrafish, and it was named apela/elabela/toddler. The peptide was originally considered as an exclusively embryonic regulator, and so far its function in the adult organism remains elusive. We show here that apela is predominantly expressed in the non-cardiomyocyte fraction in the adult rodent heart. We also provide evidence that apela binds to apelin receptors in the heart. Using isolated adult rat hearts, we demonstrate, that just like the fellow receptor agonist apelin, apela increases cardiac contractility and induces coronary vasodilation already in the nanomolar level. The inotropic effect, as revealed by Western blot analysis, is accompanied by a significant increase in extracellular signal-regulated kinase (ERK) 1/2 phosphorylation. Pharmacological inhibition of ERK1/2 activation markedly attenuates the apela-induced inotropy. Analysis of samples from infarcted mouse hearts showed that expression of both apela and apelin receptor is induced in failing mouse hearts and correlate with left ventricular ejection fraction. Hence, we conclude that apela is present in the adult heart, is upregulated in post-infarction cardiac remodeling, and increases cardiac contractility in an ERK1/2-dependent manner.

  4. The Role of Apelin on the Alleviative Effect of Angiotensin Receptor Blocker in Unilateral Ureteral Obstruction-Induced Renal Fibrosis

    Directory of Open Access Journals (Sweden)

    Masashi Nishida

    2012-03-01

    Full Text Available Background: Apelin is a selective endogenous ligand of the APJ receptor, which genetically has closest identity to the angiotensin II type 1 receptor (AT-1. The effects of the apelin/APJ system on renal fibrosis still remain unclear. Methods: We examined the effects of the apelin/APJ system on renal fibrosis during AT-1 blockade in a mouse unilateral ureteral obstruction (UUO model. Results: We obtained the following results: (1 At UUO day 7, mRNA expressions of apelin/APJ and phosphorylations of Akt/endothelial nitric oxide synthase (eNOS in the UUO kidney were increased compared to those in the nonobstructed kidney. (2 AT-1 blockade by the treatment with losartan resulted in a further increase of apelin mRNA as well as phosphorylations of Akt/eNOS proteins, and this was accompanied by alleviated renal interstitial fibrosis, decreased myofibroblast accumulation, and a decreased number of interstitial macrophages. (3 Blockade of the APJ receptor by the treatment with F13A during losartan administration completely abrogated the effects of losartan in the activation of the Akt/eNOS pathway and the amelioration of renal fibrosis. (4 Inhibition of NOS by the treatment with L-NAME also resulted in a further increase in renal fibrosis compared to the control group. Conclusion: These results suggest that increased nitric oxide production through the apelin/APJ/Akt/eNOS pathway may, at least in part, contribute to the alleviative effect of losartan in UUO-induced renal fibrosis.

  5. ELABELA: a hormone essential for heart development signals via the apelin receptor.

    Science.gov (United States)

    Chng, Serene C; Ho, Lena; Tian, Jing; Reversade, Bruno

    2013-12-23

    We report here the discovery and characterization of a gene, ELABELA (ELA), encoding a conserved hormone of 32 amino acids. Present in human embryonic stem cells, ELA is expressed at the onset of zebrafish zygotic transcription and is ubiquitous in the naive ectodermal cells of the embryo. Using zinc-finger-nuclease-mediated gene inactivation in zebrafish, we created an allelic series of ela mutants. ela null embryos have impaired endoderm differentiation potential marked by reduced gata5 and sox17 expression. Loss of Ela causes embryos to develop with a rudimentary heart or no heart at all, surprisingly phenocopying the loss of the apelin receptor (aplnr), which we show serves as Ela's cognate G protein-coupled receptor. Our results reveal the existence of a peptide hormone, ELA, which, together with APLNR, forms an essential signaling axis for early cardiovascular development.

  6. Regulation of apelin and its receptor expression in adipose tissues of obesity rats with hypertension and cultured 3T3-L1 adipocytes.

    Science.gov (United States)

    Wu, Hongxian; Cheng, Xian Wu; Hao, Changning; Zhang, Zhi; Yao, Huali; Murohara, Toyoaki; Dai, Qiuyan

    2014-01-01

    The apelin/APJ system has been implicated in obesity-related hypertension. We investigated the mechanism responsible for the pathogenesis of obesity-related hypertension with a special focus on the crosstalk between AngII/its type 1 receptor (AT1R) signaling and apelin/APJ expression. Sprague-Dawley rats fed a high-fat (obesity-related hypertension, OH) or normal-fat diet (NF) for 15 weeks were randomly assigned to one of two groups and administered vehicle or perindopril for 4 weeks. Compared to the NF rats, the OH rats showed lower levels of plasma apelin and apelin/APJ mRNAs of perirenal adipose tissues, and these changes were restored by perindopril. Administration of the AT1R antagonist olmesartan resulted in the restoration of the reduction of apelin and APJ expressions induced by AngII for 48 h in 3T3-L1 adipocytes. Among several inhibitors for extracellular signal-regulated kinases 1/2 (ERK1/2) PD98059, p38 mitogen-activated protein kinase (p38MAPK) SB203580 and phosphatidylinositol 3-kinase (PI3K) LY294002, the latter showed an additive effect on AngII-mediated inhibitory effects. In addition, the levels of p-Akt, p-ERK and p38MAPK proteins were decreased by long-term treatment with AngII (120 min), and these changes were restored by Olmesartan. Apelin/APJ appears to be impaired in obesity-related hypertension. The AngII inhibition-mediated beneficial effects are likely attributable, at least in part, to restoration of p38/ERK-dependent apelin/APJ expression in diet-induced obesity-related hypertension.

  7. Heterodimerization of apelin receptor and neurotensin receptor 1 induces phosphorylation of ERK(1/2) and cell proliferation via Gαq-mediated mechanism.

    Science.gov (United States)

    Bai, Bo; Cai, Xin; Jiang, Yunlu; Karteris, Emmanouil; Chen, Jing

    2014-10-01

    Dimerization of G protein-coupled receptors (GPCRs) is crucial for receptor function including agonist affinity, efficacy, trafficking and specificity of signal transduction, including G protein coupling. Emerging data suggest that the cardiovascular system is the main target of apelin, which exerts an overall neuroprotective role, and is a positive regulator of angiotensin-converting enzyme 2 (ACE2) in heart failure. Moreover, ACE2 cleaves off C-terminal residues of vasoactive peptides including apelin-13, and neurotensin that activate the apelin receptor (APJ) and neurotensin receptor 1 (NTSR1) respectively, that belong to the A class of GPCRs. Therefore, based on the similar mode of modification by ACE2 at peptide level, the homology at amino acid level and the capability of forming dimers with other GPCRs, we have been suggested that APJ and NTSR1 can form a functional heterodimer. Using co-immunoprecipitation, BRET and FRET, we provided conclusive evidence of heterodimerization between APJ and NTSR1 in a constitutive and induced form. Upon agonist stimulation, hetrodimerization enhanced ERK(1/2) activation and increased proliferation via activation of Gq α-subunits. These novel data provide evidence for a physiological role of APJ/NTSR1 heterodimers in terms of ERK(1/2) activation and increased intracellular calcium and induced cell proliferation and provide potential new pharmaceutical targets for cardiovascular disease.

  8. Promoting effects of the adipokine, apelin, on diabetic nephropathy.

    Directory of Open Access Journals (Sweden)

    Bao-hai Zhang

    Full Text Available Angiogenesis, increased glomerular permeability, and albuminuria are thought to contribute to the progression of diabetic nephropathy (DN. Apelin receptor (APLNR and the endogenous ligand of APLNR, apelin, induce the sprouting of endothelial cells in an autocrine or paracrine manner, which may be one of the mechanisms of DN. The aim of this study was to investigate the role of apelin in the pathogenesis of DN. Therefore, we observed apelin/APLNR expression in kidneys from patients with type 2 diabetes as well as the correlation between albuminuria and serum apelin in patients with type 2 diabetes. We also measured the proliferating, migrating, and chemotactic effects of apelin on glomerular endothelial cells. To measure the permeability of apelin in glomerular endothelial cells, we used transwells to detect FITC-BSA penetration through monolayered glomerular endothelial cells. The results showed that serum apelin was significantly higher in the patients with type 2 diabetes compared to healthy people (p<0.05, Fig. 1B and that urinary albumin was positively correlated with serum apelin (R = 0.78, p<0.05. Apelin enhanced the migration, proliferation, and chemotaxis of glomerular endothelial cells in a dose-dependent manner (p<0.05. Apelin also promoted the permeability of glomerular endothelial cells (p<0.05 and upregulated the expression of VEGFR2 and Tie2 in glomerular endothelial cells (p<0.05. These results indicated that upregulated apelin in type 2 diabetes, which may be attributed to increased fat mass, promotes angiogenesis in glomeruli to form abnormal vessels and that enhanced apelin increases permeability via upregulating the expression of VEGFR2 and Tie2 in glomerular endothelial cells.

  9. Apelin elevates blood pressure in ICR mice with L-NAME-induced endothelial dysfunction

    OpenAIRE

    NAGANO, KATSUMASA; Ishida, Junji; UNNO, MADOKA; MATSUKURA, TANOMU; Fukamizu, Akiyoshi

    2013-01-01

    Apelin is the endogenous ligand of APJ, which belongs to the family of G protein-coupled receptors. Apelin and APJ are highly expressed in various cardiovascular tissues, including the heart, kidney and vascular endothelial and smooth muscle cells. Although apelin exerts hypotensive effects via activation of endothelial nitric oxide synthase (eNOS), the ability of apelin to regulate blood pressure under pathological conditions is poorly understood. In the current study, NG-nitro-L-arginine me...

  10. Apelin and pulmonary hypertension

    DEFF Research Database (Denmark)

    Andersen, Charlotte Uggerhøj; Hilberg, Ole; Mellemkjær, Søren;

    2011-01-01

    Pulmonary arterial hypertension (PAH) is a devastating disease characterized by pulmonary vasoconstriction, pulmonary arterial remodeling, abnormal angiogenesis and impaired right ventricular function. Despite progress in pharmacological therapy, there is still no cure for PAH. The peptide apelin...... vasoconstriction, and has positive inotropic and cardioprotective effects. Apelin attenuates vasoconstriction in isolated rat pulmonary arteries, and chronic treatment with apelin attenuates the development of pulmonary hypertension in animal models. The existing literature thus renders APLNR an interesting...

  11. A Conditional Knockout Mouse Line of the Oxytocin Receptor

    OpenAIRE

    Lee, Heon-Jin; Heather K Caldwell; Macbeth, Abbe H.; Tolu, Selen G.; Young, W. Scott

    2008-01-01

    Oxytocin plays important roles in reproductive physiology and various behaviors, including maternal behavior and social memory. Its receptor (Oxtr) is present in peripheral tissues and brain, so a conditional knockout (KO, −/−) would be useful to allow elimination of the receptor in specific sites at defined times. We created a line of mice in which loxP sites flank Oxtr coding sequence (floxed) enable Cre recombinase-mediated inactivation of the receptor. We expressed Cre recombinase in thes...

  12. Longitudinal changes in adipose tissue of dairy cows from late pregnancy to lactation. Part 1: The adipokines apelin and resistin and their relationship to receptors linked with lipolysis.

    Science.gov (United States)

    Weber, M; Locher, L; Huber, K; Kenéz, Á; Rehage, J; Tienken, R; Meyer, U; Dänicke, S; Sauerwein, H; Mielenz, M

    2016-02-01

    The transition from pregnancy to lactation is characterized by major changes in glucose and adipose tissue metabolism. Anti- and prolipolytic pathways mediated via the hydroxycarboxylic acid receptors 1 (HCAR1) and 2 (HCAR2) and tumor necrosis factor-α receptor 1 (TNFR1), as well as the adipokines apelin and resistin, are likely involved in regulating these processes. This study aimed to determine the mRNA abundance of the aforementioned receptors in both subcutaneous and visceral adipose tissue, to characterize the adipokine concentrations in serum, and to test the effects of feeding diets with either high or low portions of concentrate and a concomitant niacin supplementation from late gestation to early lactation. Twenty pluriparous German Holstein cows were all kept on the same silage-based diet until d 42 antepartum, when they were allocated to 2 feeding groups: until d 1 antepartum, 10 animals each were assigned to either a high-concentrate (60:40 concentrate-to-roughage ratio) or a low-concentrate diet (30:70). Both groups were further subdivided into a control and a niacin group, the latter receiving 24 g/d of nicotinic acid from d -42 until 24. From d 1 to 24 postpartum, the concentrate portion was increased from 30 to 50% for all cows. Biopsies of subcutaneous (SCAT) and retroperitoneal adipose tissue (RPAT) were taken at d -42, 1, 21, and 100 relative to parturition. Blood samples were drawn along with the biopsies and on d -14, 3, 7, 14, and 42. The concentrations of the adipokines apelin and resistin in serum were measured via ELISA. The mRNA of the 3 receptors in AT was quantified as well as the protein abundance of HCAR2 by Western blot. The feeding regimen did not affect the variables examined. The concentrations of apelin remained fairly constant during the observation period, whereas the resistin concentrations increased toward parturition and decreased to precalving levels within 1 wk after calving. The mRNA abundance of HCAR1, HCAR2, and TNFR1

  13. Apelin and energy metabolism

    Directory of Open Access Journals (Sweden)

    Chantal eBertrand

    2015-04-01

    Full Text Available A wide range of adipokines identified over the past years has allowed considering white adipose tissue as a secretory organ closely integrated into overall physiological and metabolic control. Apelin, an ubiquitous peptide was known to exert different physiological effects mainly on the cardiovascular system and the regulation of fluid homeostasis until its identification as an adipokine. This has increased its broad range of action and apelin now appears clearly as a new player in energy metabolism alongside leptin and adiponectin. Apelin has been shown to act on glucose and lipid metabolism but also to modulate insulin secretion. Moreover, different studies in both animals and humans have shown that plasma apelin concentrations are usually increased during obesity and type 2 diabetes. This mini-review will focus on the various systemic apelin effects on energy metabolism by addressing its mechanisms of action. The advances concerning the role of apelin in metabolic diseases in relation with the recent reports on apelin concentrations in obese and/or diabetic subjects will also be discussed.

  14. Plasma Concentration of the Novel Peptide Apelin is Regularly Changed in Patients With Heart Failure

    Institute of Scientific and Technical Information of China (English)

    Yuan Yanju; Li Tianchang; Yan Jun; Bian Hong; Yao Daokuo; Xu Shiying; Zheng Jianyong

    2006-01-01

    Objectives Apelin, the novel endogenous ligand for the G-protein-coupled receptor APJ, has been observed in many animals and humans studies. It is concluded that it has inotropic effects,hypotension and diuretic properties. The change of apelin in relation to heart failure is still controversial.Our goal was to observe the change of apelin-12 in patients with heart failure (HF). Methods From 2005 to 2006, 81 consecutive patients (46 male and 35 female, mean age 68.5±12.1 years) with heart failure resulting from variable etiologies and 15 healthy controls were included in this study. Plasma concentration of apelin-12 was measured through ELISA on admission. All patients received conventional therapy and recorded detailed the clinical conditions. Results (1) Plasma concentration of apelin of the controls is lower than the ones of heart failure patients. (2) Plasma concentration of apelin is increased in the early stage and decreased in the advanced period. (3) Apelin is related with variable indexes in the Pearson's association analysis. Apelin is also changed with the atrium and ventricular's diameter. Conclusions Plasma concentration of apelin is increased in early stage and decreased in advanced period. The apelin-APJ system might be important in the pathophysiological process of heart failure. And it might be valuable in diagnosis and therapeutic implications in heart failure.

  15. Neuroprotective effect of the endogenous neural peptide apelin in cultured mouse cortical neurons

    International Nuclear Information System (INIS)

    The adipocytokine apelin and its G protein-coupled APJ receptor were initially isolated from a bovine stomach and have been detected in the brain and cardiovascular system. Recent studies suggest that apelin can protect cardiomyocytes from ischemic injury. Here, we investigated the effect of apelin on apoptosis in mouse primary cultures of cortical neurons. Exposure of the cortical cultures to a serum-free medium for 24 h induced nuclear fragmentation and apoptotic death; apelin-13 (1.0-5.0 nM) markedly prevented the neuronal apoptosis. Apelin neuroprotective effects were mediated by multiple mechanisms. Apelin-13 reduced serum deprivation (SD)-induced ROS generation, mitochondria depolarization, cytochrome c release and activation of caspase-3. Apelin-13 prevented SD-induced changes in phosphorylation status of Akt and ERK1/2. In addition, apelin-13 attenuated NMDA-induced intracellular Ca2+ accumulation. These results indicate that apelin is an endogenous neuroprotective adipocytokine that may block apoptosis and excitotoxic death via cellular and molecular mechanisms. It is suggested that apelins may be further explored as a potential neuroprotective reagent for ischemia-induced brain damage.

  16. Apelin Protects Primary Rat Retinal Pericytes from Chemical Hypoxia-Induced Apoptosis

    Directory of Open Access Journals (Sweden)

    Li Chen

    2015-01-01

    Full Text Available Pericytes are a population of cells that participate in normal vessel architecture and regulate permeability. Apelin, as the endogenous ligand of G protein-coupled receptor APJ, participates in a number of physiological and pathological processes. To date, the effect of apelin on pericyte is not clear. Our study aimed to investigate the potential protection mechanisms of apelin, with regard to primary rat retinal pericytes under hypoxia. Immunofluorescence staining revealed that pericytes colocalized with APJ in the fibrovascular membranes dissected from proliferative diabetic retinopathy patients. In the in vitro studies, we first demonstrated that the expression of apelin/APJ was upregulated in pericytes under hypoxia, and apelin increased pericytes proliferation and migration. Moreover, knockdown of apelin in pericyte was achieved via lentivirus-mediated RNA interference. After the inhibition of apelin, pericytes proliferation was inhibited significantly in hypoxia culture condition. Furthermore, exogenous recombinant apelin effectively prevented hypoxia-induced apoptosis through downregulating active-caspase 3 expression and increasing the ratio of B cell lymphoma-2 (Bcl-2/Bcl-2 associated X protein (Bax in pericytes. These results suggest that apelin suppressed hypoxia-induced pericytes injury, which indicated that apelin could be a potential therapeutic target for retinal angiogenic diseases.

  17. Myocardial injection of apelin-overexpressing bone marrow cells improves cardiac repair via upregulation of Sirt3 after myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Lanfang Li

    Full Text Available Our previous study shows that treatment with apelin increases bone marrow cells (BMCs recruitment and promotes cardiac repair after myocardial infarction (MI. The objective of this study was to investigate whether overexpression of apelin in BMCs improved cell therapy and accelerated cardiac repair and functional recovery in post-MI mice. Mouse myocardial infarction was achieved by coronary artery ligation and BMCs overexpressing apelin (apelin-BMCs or GFP (GFP-BMCs were injected into ischemic area immediately after surgery. In vitro, exposure of cultured BMCs to apelin led to a gradual increase in SDF-1á and CXCR4 expression. Intramyocardial delivery of apelin-BMCs in post-MI mice resulted in a significant increase number of APJ⁺/c-kit⁺/Sca1⁺ cells in the injected area compared to GFP-BMCs treated post-MI mice. Treatment with apelin-BMCs increased expression of VEGF, Ang-1 and Tie-2 in post-MI mice. Apelin-BMCs treatment also significantly increased angiogenesis and attenuated cardiac fibrosis formation in post-MI mice. Most importantly, treatment with apelin-BMCs significantly improved left ventricular (LV systolic function in post-MI mice. Mechanistically, Apelin-BMCs treatment led to a significant increase in Sirtuin3 (Sirt3 expression and reduction of reactive oxygen species (ROS formation. Treatment of cultured BMCs with apelin also increased Notch3 expression and Akt phosphorylation. Apelin treatment further attenuated stress-induced apoptosis whereas knockout of Sirt3 abolished anti-apoptotic effect of apelin in cultured BMCs. Moreover, knockout of Sirt3 significantly attenuated apelin-BMCs-induced VEGF expression and angiogenesis in post-MI mice. Knockout of Sirt3 further blunted apelin-BMCs-mediated improvement of cardiac repair and systolic functional recovery in post-MI mice. These data suggest that apelin improves BMCs therapy on cardiac repair and systolic function in post-MI mice. Upregulation of Sirt3 may contribute to the

  18. Bone phenotypes of P2 receptor knockout mice

    DEFF Research Database (Denmark)

    Orriss, Isabel; Syberg, Susanne; Wang, Ning;

    2011-01-01

    The action of extracellular nucleotides is mediated by ionotropic P2X receptors and G-protein coupled P2Y receptors. The human genome contains 7 P2X and 8 P2Y receptor genes. Knockout mice strains are available for most of them. As their phenotypic analysis is progressing, bone abnormalities have...... been observed in an impressive number of these mice: distinct abnormalities in P2X7-/- mice, depending on the gene targeting construct and the genetic background, decreased bone mass in P2Y1-/- mice, increased bone mass in P2Y2-/- mice, decreased bone resorption in P2Y6-/- mice, decreased bone...... formation and bone resorption in P2Y13-/- mice. These findings demonstrate the unexpected importance of extracellular nucleotide signalling in the regulation of bone metabolism via multiple P2 receptors and distinct mechanisms involving both osteoblasts and osteoclasts....

  19. Apelin and APJ, a novel critical factor and therapeutic target for atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    Deguan Lv; Hening Li; Linxi Chen

    2013-01-01

    Apelin is a bioactive peptide discovered recently that has been proved to be an endogenous ligand of the APJ receptor.Apelin and APJ are widely distributed in the central nervous system and peripheral tissues.Researches have confirmed that apelin/APJ involved in a wide range of physiological and pathological functions in the cardiovascular system.Investigations indicated that apelin is a novel critical factor in the development of atherosclerosis (AS).In this review,we discuss the roles of apelin in the vascular smooth muscle cell proliferation,monocytes-endothelial cell adhesion,and angiogenesis that potentially reveals a new cellular mechanism of AS.Considering these roles,apelin and APJ may be novel therapeutic targets of AS.

  20. Cardioprotective effects of adipokine apelin on myocardial infarction.

    Science.gov (United States)

    Zhang, Bao-Hai; Guo, Cai-Xia; Wang, Hong-Xia; Lu, Ling-Qiao; Wang, Ya-Jie; Zhang, Li-Ke; Du, Feng-He; Zeng, Xiang-Jun

    2014-09-01

    Angiogenesis plays an important role in myocardial infarction. Apelin and its natural receptor (angiotensin II receptor-like 1, AGTRL-1 or APLNR) induce sprouting of endothelial cells in an autocrine or paracrine manner. The aim of this study is to investigate whether apelin can improve the cardiac function after myocardial infarction by increasing angiogenesis in infarcted myocardium. Left ventricular end-diastolic pressure (LVEDP), left ventricular end systolic pressure (LVESP), left ventricular developed pressure (LVDP), maximal left ventricular pressure development (±LVdp/dtmax), infarct size, and angiogenesis were evaluated to analyze the cardioprotective effects of apelin on ischemic myocardium. Assays of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, 5-bromo-2'-deoxyuridine incorporation, wound healing, transwells, and tube formation were used to detect the effects of apelin on proliferation, migration, and chemotaxis of cardiac microvascular endothelial cells. Fluorescein isothiocyanate-labeled bovine serum albumin penetrating through monolayered cardiac microvascular endothelial cells was measured to evaluate the effects of apelin on permeability of microvascular endothelial cells. In vivo results showed that apelin increased ±LV dp/dtmax and LVESP values, decreased LVEDP values (all p myocardial infarction through promoting angiogenesis and decreasing permeability of microvascular endothelial cells via upregulating the expression of VEGFR2 and Tie-2 in cardiac microvascular endothelial cells.

  1. Apelin/APJ system as a therapeutic target in diabetes and its complications.

    Science.gov (United States)

    Hu, Haoliang; He, Lu; Li, Lanfang; Chen, Linxi

    2016-09-01

    The G-protein-coupled receptor APJ and its endogenous ligand apelin are widely expressed in many peripheral tissues and central nervous system, including adipose tissue, skeletal muscles and hypothalamus. Apelin/APJ system, involved in numerous physiological functions like angiogenesis, fluid homeostasis and energy metabolism regulation, is notably implicated in the development of different pathologies such as diabetes and its complications. Increasing evidence suggests that apelin regulates insulin sensitivity, stimulates glucose utilization and enhances brown adipogenesis in different tissues associated with diabetes. Moreover, apelin is also involved in the regulation of diabetic complications via binding to APJ receptor. Apelin improves diabetes-induced kidney hypertrophia, normalizes obesity-associated cardiac hypertrophy and negatively promotes retinal angiogenesis in diabetic retinopathy. In this review, we provide a comprehensive overview about the role of apelin/APJ system in different tissues related with diabetes. Furthermore, we describe the pathogenesis of diabetic complications associated with apelin/APJ system. Finally, agonists and antagonists targeted to APJ receptor are described in the literature. Thus, we highlight apelin/APJ system as a novel therapeutic target for pharmacological intervention in treating diabetes and its complications. PMID:27650065

  2. The role of apelin in the modulation of gastric and pancreatic enzymes activity in adult rats.

    Science.gov (United States)

    Antuschevich, H; Kapica, M; Krawczynska, A; Herman, A; Kato, I; Kuwahara, A; Zabielski, R

    2016-06-01

    Apelin is considered as important gut regulatory peptide ligand of APJ receptor with a potential physiological role in gastrointestinal cytoprotection, regulation of food intake and drinking behavior. Circulating apelin inhibits secretion of pancreatic juice through vagal- cholecystokinin-dependent mechanism and reduces local blood flow. Our study was aimed to determine the effect of fundectomy and intraperitoneal or intragastric administration of apelin-13 on pancreatic and gastric enzymes activities in adult rats. Fundectomy is a surgical removal of stomach fundus - maine site apelin synthesis. Three independent experiments were carried out on Wistar rats. In the first and second experiment apelin-13 was given by intragastric or intraperitoneal way twice a day for 10 days (100 nmol/kg b.w.). Control groups received the physiological saline respectively. In the third experiment the group of rats after fundectomy were used. Fundectomized rats did not receive apelin and the rats from control group were 'sham operated'. At the end of experiment rats were sacrificed and blood from rats was withdrawn for apelin and CCK (cholecystokinin) radioimmunoassay analysis and pancreas and stomach tissues were collected for enzyme activity analyses. Intragastric and intraperitoneal administrations of apelin-13 increased basal plasma CCK level and stimulated gastric and pancreatic enzymes activity in rats. In animals after fundectomy decreased activity of studied enzymes was observed, as well as basal plasma apelin and CCK levels. In conclusion, apelin can effects on CCK release and stimulates some gastric and pancreatic enzymes activity in adult rats while fudectomy suppresses those processes. Changes in the level of pancreatic lipase activity point out that apelin may occurs as a regulator of lipase secretion.

  3. Bone growth and turnover in progesterone receptor knockout mice.

    Energy Technology Data Exchange (ETDEWEB)

    Rickard, David J.; Iwaniec, Urszula T.; Evans, Glenda; Hefferan, Theresa E.; Hunter, Jaime C.; Waters, Katrina M.; Lydon, John P.; O' Malley, Bert W.; Khosla, Sundeep; Spelsberg, Thomas C.; Turner, Russell T.

    2008-05-01

    The role of progesterone receptor (PR) signaling in skeletal metabolism is controversial. To address whether signaling through the PR is necessary for normal bone growth and turnover, we performed histomorphometric and mCT analyses of bone from homozygous female PR knockout (PRKO) mice at 6, 12, and 26 weeks of age. These mice possess a null mutation of the PR locus, which blocks the gene expression of A and B isoforms of PR. Body weight gain, uterine weight gain and tibia longitudinal bone growth was normal in PRKO mice. In contrast, total and cortical bone mass were increased in long bones of post-pubertal (12 and 26-week-old) PRKO mice, whereas cancellous bone mass was normal in the tibia but increased in the humerus. The striking 57% decrease in cancellous bone from the proximal tibia metaphysis which occurred between 6 and 26 weeks in WT mice was abolished in PRKO mice. The improved bone balance in aging PRKO mice was associated with elevated bone formation and a tendency toward reduced osteoclast perimeter. Taken together, these findings suggest that PR signaling in mice attenuates the accumulation of cortical bone mass during adolescence and is required for early age-related loss of cancellous bone.

  4. Normal Maternal Behavior, But Increased Pup Mortality, in Conditional Oxytocin Receptor Knockout Females

    OpenAIRE

    Macbeth, Abbe H.; Stepp, Jennifer E.; Lee, Heon-Jin; Young, W. Scott; Heather K Caldwell

    2010-01-01

    Oxytocin (Oxt) and the Oxt receptor (Oxtr) are implicated in the onset of maternal behavior in a variety of species. Recently, we developed two Oxtr knockout lines: a total body knockout (Oxtr−/−) and a conditional Oxtr knockout (OxtrFB/FB) in which the Oxtr is lacking only in regions of the forebrain, allowing knockout females to potentially nurse and care for their biological offspring. In the current study, we assessed maternal behavior of postpartum OxtrFB/FB females toward their own pups...

  5. INDUCTION OF MAMMARY GLAND DEVELOPMENT IN ESTROGEN RECEPTOR-ALPHA KNOCKOUT MICE

    Science.gov (United States)

    Mammary glands from the estrogen receptor knockout ( ERKO) mouse do not undergo ductal morphogenesis or alveolar development. Disrupted Er signaling may result in reduced estrogen-responsive gene products in the mammary gland or reduced mammotropic hormones that contribute t...

  6. Effects of D1 receptor knockout on fear and reward learning.

    Science.gov (United States)

    Abraham, Antony D; Neve, Kim A; Lattal, K Matthew

    2016-09-01

    Dopamine signaling is involved in a variety of neurobiological processes that contribute to learning and memory. D1-like dopamine receptors (including D1 and D5 receptors) are thought to be involved in memory and reward processes, but pharmacological approaches have been limited in their ability to distinguish between D1 and D5 receptors. Here, we examine the effects of a specific knockout of D1 receptors in associative learning tasks involving aversive (shock) or appetitive (cocaine) unconditioned stimuli. We find that D1 knockout mice show similar levels of cued and contextual fear conditioning to WT controls following conditioning protocols involving one, two, or four shocks. D1 knockout mice show increased generalization of fear conditioning and extinction across contexts, revealed as increased freezing to a novel context following conditioning and decreased freezing to an extinguished cue during a contextual renewal test. Further, D1 knockout mice show mild enhancements in extinction following an injection of SKF81297, a D1/D5 receptor agonist, suggesting a role for D5 receptors in extinction enhancements induced by nonspecific pharmacological agonists. Finally, although D1 knockout mice show decreased locomotion induced by cocaine, they are able to form a cocaine-induced conditioned place preference. We discuss these findings in terms of the role of dopamine D1 receptors in general learning and memory processes. PMID:27423521

  7. Mu-opioid receptor knockout mice show diminished food-anticipatory activity

    NARCIS (Netherlands)

    Kas, Martien J H; van den Bos, Ruud; Baars, Annemarie M; Lubbers, Marianne; Lesscher, Heidi M B; Hillebrand, Jacquelien J G; Schuller, Alwin G; Pintar, John E; Spruijt, Berry M

    2004-01-01

    We have previously suggested that during or prior to activation of anticipatory behaviour to a coming reward, mu-opioid receptors are activated. To test this hypothesis schedule induced food-anticipatory activity in mu-opioid receptor knockout mice was measured using running wheels. We hypothesized

  8. Impaired social behavior in 5-HT(3A) receptor knockout mice

    NARCIS (Netherlands)

    L.A. Smit-Rigter; W.J. Wadman; J.A. van Hooft

    2010-01-01

    The 5-HT(3) receptor is a ligand-gated ion channel expressed on interneurons throughout the brain. So far, analysis of the 5-HT(3A) knockout mouse revealed changes in nociceptive processing and a reduction in anxiety related behavior. Recently, it was shown that the 5-HT(3) receptor is also expresse

  9. Exercise modulates postreceptor insulin signaling and glucose transport in muscle-specific insulin receptor knockout mice

    OpenAIRE

    Wojtaszewski, Jørgen F. P.; Higaki, Yasuki; Hirshman, Michael F.; Michael, M. Dodson; Dufresne, Scott D.; Kahn, C. Ronald; Goodyear, Laurie J.

    1999-01-01

    Physical exercise promotes glucose uptake into skeletal muscle and makes the working muscles more sensitive to insulin. To understand the role of insulin receptor (IR) signaling in these responses, we studied the effects of exercise and insulin on skeletal muscle glucose metabolism and insulin signaling in mice lacking insulin receptors specifically in muscle. Muscle-specific insulin receptor knockout (MIRKO) mice had normal resting 2-deoxy-glucose (2DG) uptake in soleus muscles but had no si...

  10. Cocaine Self-Administration in Dopamine D3 Receptor Knockout Mice

    OpenAIRE

    Caine, S. Barak; Thomsen, Morgane; Barrett, Andrew C.; Collins, Gregory T.; Butler, Paul; Grundt, Peter; Newman, Amy Hauck; Xu, Ming

    2012-01-01

    The dopamine D3 receptor has received attention over the last two decades as a target for medications development for substance abuse disorders. Results have remained mixed. Despite emergence of more D3-selective ligands, possible attribution of observed effects to D2 receptors remains a concern. Knockout mice may help shed light on mechanisms. Here we evaluated the effect of constitutive D3 receptor inactivation (“knockout”) on the reinforcing effects of cocaine. We tested D3 wild-type (WT),...

  11. Impaired social behavior in 5-HT3A receptor knockout mice

    Directory of Open Access Journals (Sweden)

    Laura A Smit-Rigter

    2010-11-01

    Full Text Available The 5-HT3 receptor is a ligand-gated ion channel expressed on interneurons throughout the brain. So far, analysis of the 5-HT3A knockout mouse revealed changes in nociceptive processing and a reduction in anxiety related behavior. Recently, it was shown that the 5-HT3 receptor is also expressed on Cajal-Retzius cells which play a key role in cortical development and that knockout mice lacking this receptor showed aberrant growth of the dendritic tree of cortical layer II/III pyramidal neurons. Other mouse models in which serotonergic signaling was disrupted during development showed similar morphological changes in the cortex, and in addition, also deficits in social behavior. Here, we subjected male and female 5-HT3A knockout mice and their non-transgenic littermates to several tests of social behavior. We found that 5-HT3A knockout mice display impaired social communication in the social transmission of food preference task. Interestingly, we showed that in the social interaction test only female 5-HT3A knockout mice spent less time in reciprocal social interaction starting after 5 minutes of testing. Moreover, we observed differences in preference for social novelty for male and female 5-HT3A knockout mice during the social approach test. However, no changes in olfaction, exploratory activity and anxiety were detected. These results indicate that the 5-HT3A knockout mouse displays impaired social behavior with specific changes in males and females, reminiscent to other mouse models in which serotonergic signaling is disturbed in the developing brain.

  12. Autonomic changes associated with enhanced anxiety in 5-HT(1A) receptor knockout mice.

    NARCIS (Netherlands)

    Pattij, T.; Groenink, L.; Hijzen, T.H.; Oosting, R.S.; Maes, R.A.A.; Gugten, J. van der; Olivier, B.

    2002-01-01

    5-HT(1A) receptor knockout (KO) mice have been described as more anxious in various anxiety paradigms. Because anxiety is often associated with autonomic changes like elevated body temperature and tachycardia, radiotelemetry was used to study these parameters in wild type (WT) and KO mice in stress-

  13. Normal maternal behavior, but increased pup mortality, in conditional oxytocin receptor knockout females.

    Science.gov (United States)

    Macbeth, Abbe H; Stepp, Jennifer E; Lee, Heon-Jin; Young, W Scott; Caldwell, Heather K

    2010-10-01

    Oxytocin (Oxt) and the Oxt receptor (Oxtr) are implicated in the onset of maternal behavior in a variety of species. Recently, we developed two Oxtr knockout lines: a total body knockout (Oxtr-/-) and a conditional Oxtr knockout (OxtrFB/FB) in which the Oxtr is lacking only in regions of the forebrain, allowing knockout females to potentially nurse and care for their biological offspring. In the current study, we assessed maternal behavior of postpartum OxtrFB/FB females toward their own pups and maternal behavior of virgin Oxtr-/- females toward foster pups and compared knockouts of both lines to wildtype (Oxtr+/+) littermates. We found that both Oxtr-/- and OxtrFB/FB females appear to have largely normal maternal behaviors. However, with first litters, approximately 40% of the OxtrFB/FB knockout dams experienced high pup mortality, compared to fewer than 10% of the Oxtr+/+ dams. We then went on to test whether or not this phenotype occurred in subsequent litters or when the dams were exposed to an environmental disturbance. We found that regardless of the degree of external disturbance, OxtrFB/FB females lost more pups on their first and second litters compared to wildtype females. Possible reasons for higher pup mortality in OxtrFB/FB females are discussed.

  14. Reduced emotional and corticosterone responses to stress in μ-opioid receptor knockout mice

    OpenAIRE

    Ide, Soichiro; Sora, Ichiro; Ikeda, Kazutaka; Minami, Masabumi; Uhl, George R; Ishihara, Kumatoshi

    2009-01-01

    The detailed mechanisms of emotional modulation in the nervous system by opioids remain to be elucidated, although the opioid system is well known to play important roles in the mechanisms of analgesia and drug dependence. In the present study, we conducted behavioral tests of anxiety and depression and measured corticosterone concentrations in both male and female μ-opioid receptor knockout (MOP-KO) mice to reveal the involvement of μ-opioid receptors in stress-induced emotional responses. M...

  15. Knockout of Insulin-Like Growth Factor-1 Receptor Impairs Distal Lung Morphogenesis

    OpenAIRE

    Epaud, Ralph; Aubey, Flore; Xu, Jie; Chaker, Zayna; Clemessy, Maud; Dautin, Alexandre; Ahamed, Karmène; Bonora, Monique; Hoyeau, Nadia; Fléjou, Jean-François; Mailleux, Arnaud; Clement, Annick; Henrion-Caude, Alexandra; Holzenberger, Martin

    2012-01-01

    Background Insulin-like growth factors (IGF-I and -II) are pleiotropic regulators of somatic growth and development in vertebrate species. Endocrine and paracrine effects of both hormones are mediated by a common IGF type 1 receptor (IGF-1R). Lethal respiratory failure in neonatal IGF-1R knockout mice suggested a particular role for this receptor in pulmonary development, and we therefore investigated the consequences of IGF-1R inactivation in lung tissue. Methods and Findings We first genera...

  16. Chemokine Receptor 7 Knockout Attenuates Atherosclerotic Plaque Development

    NARCIS (Netherlands)

    Luchtefeld, Maren; Grothusen, Christina; Gagalick, Andreas; Jagavelu, Kumaravelu; Schuett, Harald; Tietge, Uwe J. F.; Pabst, Oliver; Grote, Karsten; Drexler, Helmut; Foerster, Reinhold; Schieffer, Bernhard

    2010-01-01

    Background-Atherosclerosis is a systemic inflammatory disease characterized by the formation of atherosclerotic plaques. Both innate immunity and adaptive immunity contribute to atherogenesis, but the mode of interaction is poorly understood. Chemokine receptor 7 (CCR7) is critically involved in the

  17. Apelin is a novel islet peptide

    DEFF Research Database (Denmark)

    Ringström, Camilla; Nitert, Marloes Dekker; Bennet, Hedvig;

    2010-01-01

    Apelin, a recently discovered peptide with wide tissue distribution, regulates feeding behavior, improves glucose utilization, and inhibits insulin secretion. We examined whether apelin is expressed in human islets, as well as in normal and type 2 diabetic (T2D) animal islets. Further, we studied...

  18. Effects of activation of central nervous histamine receptors in cardiovascular regulation; studies in H1 and H2 receptor gene knockout mice

    OpenAIRE

    Suzuki, Hideaki; Mobarakeh, Jalal Izadi; Nunoki, Kazuo; Sukegawa, Jun; Watanabe, Haruo; Kuramasu, Atsuo; Watanabe, Takeshi; Yanai, Kazuhiko; Yanagisawa, Teruyuki

    2006-01-01

    To elucidate the central roles of histamine receptors in cardiovascular regulatory system, systolic, mean, and diastolic blood pressures (BPs) and heart rate (HR) were examined in conscious H-1 receptor gene knockout (H1KO) mice, H-2 receptor gene knockout (H2KO) mice, H-1 and H-2 receptor gene double knockout (DKO) mice, and their respective control mice by the tail-cuff system. Histamine, histamine-trifluoromethyl-toluidine derivative (HTMT, an H-1 agonist), dimaprit (an H-2 agonist), and i...

  19. Human androgen deficiency: insights gained from androgen receptor knockout mouse models

    OpenAIRE

    Kesha Rana; Davey, Rachel A; Zajac, Jeffrey D

    2014-01-01

    The mechanism of androgen action is complex. Recently, significant advances have been made into our understanding of how androgens act via the androgen receptor (AR) through the use of genetically modified mouse models. A number of global and tissue-specific AR knockout (ARKO) models have been generated using the Cre-loxP system which allows tissue- and/or cell-specific deletion. These ARKO models have examined a number of sites of androgen action including the cardiovascular system, the immu...

  20. Key Regulators of Mitochondrial Biogenesis are Increased in Kidneys of Growth Hormone Receptor Knockout (GHRKO) Mice

    OpenAIRE

    Gesing, Adam; Bartke, Andrzej; Wang, Feiya; Karbownik-Lewinska, Malgorzata; Masternak, Michal M.

    2011-01-01

    The growth hormone (GH) receptor knockout mice (GHRKO) are remarkably long-lived and highly insulin sensitive. Alterations in mitochondrial biogenesis are associated with aging and various metabolic derangements. We have previously demonstrated increased gene expression of key regulators of mitochondriogenesis in kidneys, hearts and skeletal muscles of GHRKO mice. The aim of the present study was to quantify the protein levels of the following regulators of mitochondriogenesis: peroxisome pro...

  1. Behavioural and molecular responses to amphetamine in the neurokinin-1 receptor knock-out mouse

    OpenAIRE

    Slone-Murphy, J.

    2011-01-01

    The neurokinin-1 receptor knock-out (NK1R-/-) mouse is hyperactive and shows deficits in attentional processing, and has recently been put forward as a model of attention deficit hyperactivity disorder (ADHD). Acute amphetamine, a first-line treatment for ADHD and a drug of abuse, paradoxically reduces the hyperactivity of NK1R-/- mice, and the characteristic amphetamine-stimulated increase in striatal dopamine efflux seen in wild-type animals is attenuated in NK1R-/- mice. The...

  2. Enhanced voluntary wheel running in GPRC6A receptor knockout mice

    DEFF Research Database (Denmark)

    Clemmensen, Christoffer; Pehmøller, Christian; Klein, Anders B;

    2013-01-01

    GPRC6A is an amino acid-sensing receptor highly expressed in the brain and in skeletal muscle. Although recent evidence suggests that genetically engineered GPRC6A receptor knockout (KO) mice are susceptible to develop subtle endocrine and metabolic disturbances, the underlying disruptions...... in energy metabolism are largely unexplored. Based on GPRC6A's expression pattern and ligand preferences, we hypothesize that the receptor may impact energy metabolism via regulating physical activity levels. Thus, in the present study, we exposed GPRC6A receptor KO mice and their wild-type (WT) littermates...... running is affected by GPRC6A, as ablation of the receptor significantly enhances wheel running in KO relative to WT mice. Both genotypes responded to voluntary exercise by increasing food intake and improving body composition to a similar degree. In conclusion, these data demonstrate that the GPRC6A...

  3. Apelin/APJ系统对多个系统功能的调控作用%Regulatory function of apelin/APJ system on multiple systems

    Institute of Scientific and Technical Information of China (English)

    杨莉

    2011-01-01

    Apelin is an endogenous peptide that can activate G protein-coupled receptor-putative receptor protein related to the angiotensin receptor ATI (APJ). Activation of apelin/APJ system can increase cardiac contractility and decrease blood pressure. It can promote angiogenesis and is closely related to the development of tumor. In digestive system, it can regulate insulin secretion as new adipokine. It has roles in respiratory system, urinary system, and endocrine and reproductive system. It can aslo regulate the release of pituitary hormones and play a role in water-electrolyte metabolism in the central nervous system. Apelin/APJ system is expected to be a therapeutic target for heart failure, hypertension, tumor,obesity related diseases, etc.%Apelin是可激活G蛋白偶联受体--血管紧张素受体AT1相关的受体蛋白(putative receptor protein related to the angiotensin receptor AT1, APJ)的内源性活性肽. Apelin/APJ系统在心血管调节中具有增强心脏收缩力、降低血压等作用;可促进血管生成,与肿瘤的发生和发展紧密相关;在消化系统,作为脂肪细胞分泌的新脂肪因子,可调节胰岛素的分泌;可能与呼吸系统、泌尿系统以及内分泌与生殖系统密切相关以及在中枢神经系统中具有调节垂体激素释放和水盐代谢等作用.Apelin/APJ系统有望成为心力衰竭、原发性高血压、肿瘤、肥胖等相关疾病的治疗靶点.

  4. Cardiac-Specific Knockout of ETA Receptor Mitigates Paraquat-Induced Cardiac Contractile Dysfunction.

    Science.gov (United States)

    Wang, Jiaxing; Lu, Songhe; Zheng, Qijun; Hu, Nan; Yu, Wenjun; Li, Na; Liu, Min; Gao, Beilei; Zhang, Guoyong; Zhang, Yingmei; Wang, Haichang

    2016-07-01

    Paraquat (1,1'-dim ethyl-4-4'-bipyridinium dichloride), a highly toxic quaternary ammonium herbicide widely used in agriculture, exerts potent toxic prooxidant effects resulting in multi-organ failure including the lung and heart although the underlying mechanism remains elusive. Recent evidence suggests possible involvement of endothelin system in paraquat-induced acute lung injury. This study was designed to examine the role of endothelin receptor A (ETA) in paraquat-induced cardiac contractile and mitochondrial injury. Wild-type (WT) and cardiac-specific ETA receptor knockout mice were challenged to paraquat (45 mg/kg, i.p.) for 48 h prior to the assessment of echocardiographic, cardiomyocyte contractile and intracellular Ca(2+) properties, as well as apoptosis and mitochondrial damage. Levels of the mitochondrial proteins for biogenesis and oxidative phosphorylation including UCP2, HSP90 and PGC1α were evaluated. Our results revealed that paraquat elicited cardiac enlargement, mechanical anomalies including compromised echocardiographic parameters (elevated left ventricular end-systolic and end-diastolic diameters as well as reduced factional shortening), suppressed cardiomyocyte contractile function, intracellular Ca(2+) handling, overt apoptosis and mitochondrial damage. ETA receptor knockout itself failed to affect myocardial function, apoptosis, mitochondrial integrity and mitochondrial protein expression. However, ETA receptor knockout ablated or significantly attenuated paraquat-induced cardiac contractile and intracellular Ca(2+) defect, apoptosis and mitochondrial damage. Taken together, these findings revealed that endothelin system in particular the ETA receptor may be involved in paraquat-induced toxic myocardial contractile anomalies possibly related to apoptosis and mitochondrial damage. PMID:26089164

  5. Increased amphetamine-induced locomotor activity, sensitization and accumbal dopamine release in M5 muscarinic receptor knockout mice

    OpenAIRE

    Schmidt, Lene S.; Miller, Anthony D.; Lester, Deranda B.; Bay-Richter, Cecilie; Schülein, Christina; Schmidt, Henriette F.; Wess, Jürgen; Blaha, Charles D.; Woldbye, David P.D.; Fink-Jensen, Anders; Wortwein, Gitta

    2009-01-01

    Muscarinic M5 receptors are the only muscarinic receptor subtype expressed by dopamine-containing neurons of the ventral tegmental area. These cells play an important role for the reinforcing properties of psychostimulants and M5 receptors modulate their activity. Previous studies showed that M5 receptor knockout (M5−/−) mice are less sensitive to the reinforcing properties of addictive drugs. Here we investigate the role of M5 receptors in the effects of amphetamine and cocaine on locomotor ...

  6. Diacylglycerol lipase a knockout mice demonstrate metabolic and behavioral phenotypes similar to those of cannabinoid receptor 1 knockout mice

    Directory of Open Access Journals (Sweden)

    David R Powell

    2015-06-01

    Full Text Available After creating >4650 knockouts (KOs of independent mouse genes, we screened them by high-throughput phenotyping and found that cannabinoid receptor 1 (Cnr1 KO mice had the same lean phenotype published by others. We asked if our KOs of DAG lipase a or b (Dagla or Daglb, which catalyze biosynthesis of the endocannabinoid (EC 2-Arachidonoylglycerol (2-AG, or Napepld, which catalyzes biosynthesis of the EC anandamide, shared the lean phenotype of Cnr1 KO mice. We found that Dagla KO mice, but not Daglb or Napepld KO mice, were among the leanest of 3651 chow-fed KO lines screened. In confirmatory studies, chow- or high fat diet-fed Dagla and Cnr1 KO mice were leaner than wild type (WT littermates; when data from multiple cohorts of adult mice were combined, body fat was 47% and 45% lower in Dagla and Cnr1 KO mice, respectively, relative to WT values. In contrast, neither Daglb nor Napepld KO mice were lean. Weanling Dagla KO mice ate less than WT mice and had body weight similar to pair-fed WT mice, and adult Dagla KO mice had normal activity and VO2 levels, similar to Cnr1 KO mice. Our Dagla and Cnr1 KO mice also had low fasting insulin, triglyceride and total cholesterol levels, and after a glucose challenge had normal glucose but very low insulin levels. Dagla and Cnr1 KO mice also showed similar responses to a battery of behavioral tests. These data suggest: 1 the lean phenotype of young Dagla and Cnr1 KO mice is mainly due to hypophagia; 2 in pathways where ECs signal through Cnr1 to regulate food intake and other metabolic and behavioral phenotypes observed in Cnr1 KO mice, Dagla alone provides the 2-AG that serves as the EC signal; and 3 small molecule Dagla inhibitors with a pharmacokinetic profile similar to that of Cnr1 inverse agonists are likely to mirror the ability of these Cnr1 inverse agonists to lower body weight and improve glycemic control in obese patients with type 2 diabetes, but may also induce undesirable neuropsychiatric

  7. HSL-knockout mouse testis exhibits class B scavenger receptor upregulation and disrupted lipid raft microdomains.

    Science.gov (United States)

    Casado, María Emilia; Huerta, Lydia; Ortiz, Ana Isabel; Pérez-Crespo, Mirian; Gutiérrez-Adán, Alfonso; Kraemer, Fredric B; Lasunción, Miguel Ángel; Busto, Rebeca; Martín-Hidalgo, Antonia

    2012-12-01

    There is a tight relationship between fertility and changes in cholesterol metabolism during spermatogenesis. In the testis, class B scavenger receptors (SR-B) SR-BI, SR-BII, and LIMP II mediate the selective uptake of cholesterol esters from HDL, which are hydrolyzed to unesterified cholesterol by hormone-sensitive lipase (HSL). HSL is critical because HSL knockout (KO) male mice are sterile. The aim of the present work was to determine the effects of the lack of HSL in testis on the expression of SR-B, lipid raft composition, and related cell signaling pathways. HSL-KO mouse testis presented altered spermatogenesis associated with decreased sperm counts, sperm motility, and infertility. In wild-type (WT) testis, HSL is expressed in elongated spermatids; SR-BI, in Leydig cells and spermatids; SR-BII, in spermatocytes and spermatids but not in Leydig cells; and LIMP II, in Sertoli and Leydig cells. HSL knockout male mice have increased expression of class B scavenger receptors, disrupted caveolin-1 localization in lipid raft plasma membrane microdomains, and activated phospho-ERK, phospho-AKT, and phospho-SRC in the testis, suggesting that class B scavenger receptors are involved in cholesterol ester uptake for steroidogenesis and spermatogenesis in the testis.

  8. Increased adipose tissue in male and female estrogen receptorknockout mice

    OpenAIRE

    Heine, P. A.; Taylor, J.A.; Iwamoto, G. A.; Lubahn, D.B.; Cooke, P S

    2000-01-01

    Estrogen regulates the amount of white adipose tissue (WAT) in females, but its role in males and whether WAT effects involve estrogen receptor-α (ERα) or ERβ were unclear. We analyzed the role of ERα in WAT and brown adipose tissue by comparing these tissues in wild-type (WT) and ERα-knockout (αERKO) male and female mice. Brown adipose tissue weight was similar in αERKO and WT males at all ages. Progressive increases in WAT were seen in αERKO males with advancing ...

  9. Antidepressant-like effect of venlafaxine is abolished in µ-opioid receptor knockout mice

    OpenAIRE

    Ide, Soichiro; Fujiwara, Shunsuke; Fujiwara, Masayuki; Sora, Ichiro; Ikeda, Kazutaka; Minami, Masabumi; Uhl, George R; Ishihara, Kumatoshi

    2010-01-01

    Although the opioid system is known to modulate depression-like behaviors, its role in the effects of antidepressants is not yet clear. We investigated the role of µ-opioid receptors (MOPs) in the effects of venlafaxine, a serotonin and norepinephrine reuptake inhibitor, in the forced swim test using MOP-knockout (KO) mice. Venlafaxine reduced immobility time in wildtype mice (C57BL/6J), but not in MOP-KO mice, although no significant effects were observed on locomotor activity. These results...

  10. Comparative effects of chlorpyrifos in wild type and cannabinoid Cb1 receptor knockout mice

    Energy Technology Data Exchange (ETDEWEB)

    Baireddy, Praveena; Liu, Jing; Hinsdale, Myron; Pope, Carey, E-mail: carey.pope@okstate.edu

    2011-11-15

    Endocannabinoids (eCBs) modulate neurotransmission by inhibiting the release of a variety of neurotransmitters. The cannabinoid receptor agonist WIN 55.212-2 (WIN) can modulate organophosphorus (OP) anticholinesterase toxicity in rats, presumably by inhibiting acetylcholine (ACh) release. Some OP anticholinesterases also inhibit eCB-degrading enzymes. We studied the effects of the OP insecticide chlorpyrifos (CPF) on cholinergic signs of toxicity, cholinesterase activity and ACh release in tissues from wild type (+/+) and cannabinoid CB1 receptor knockout (-/-) mice. Mice of both genotypes (n = 5-6/treatment group) were challenged with CPF (300 mg/kg, 2 ml/kg in peanut oil, sc) and evaluated for functional and neurochemical changes. Both genotypes exhibited similar cholinergic signs and cholinesterase inhibition (82-95% at 48 h after dosing) in cortex, cerebellum and heart. WIN reduced depolarization-induced ACh release in vitro in hippocampal slices from wild type mice, but had no effect in hippocampal slices from knockouts or in striatal slices from either genotype. Chlorpyrifos oxon (CPO, 100 {mu}M) reduced release in hippocampal slices from both genotypes in vitro, but with a greater reduction in tissues from wild types (21% vs 12%). CPO had no significant in vitro effect on ACh release in striatum. CPF reduced ACh release in hippocampus from both genotypes ex vivo, but reduction was again significantly greater in tissues from wild types (52% vs 36%). In striatum, CPF led to a similar reduction (20-23%) in tissues from both genotypes. Thus, while CB1 deletion in mice had little influence on the expression of acute toxicity following CPF, CPF- or CPO-induced changes in ACh release appeared sensitive to modulation by CB1-mediated eCB signaling in a brain-regional manner. -- Highlights: Black-Right-Pointing-Pointer C57Bl/6 mice showed dose-related cholinergic toxicity following subcutaneous chlorpyrifos exposure. Black-Right-Pointing-Pointer Wild type and

  11. Effect of P2X7 receptor knockout on AQP-5 expression of type I alveolar epithelial cells.

    Directory of Open Access Journals (Sweden)

    Georg Ebeling

    Full Text Available P2X7 receptors, ATP-gated cation channels, are specifically expressed in alveolar epithelial cells. The pathophysiological function of this lung cell type, except a recently reported putative involvement in surfactant secretion, is unknown. In addition, P2X7 receptor-deficient mice show reduced inflammation and lung fibrosis after exposure with bleomycin. To elucidate the role of the P2X7 receptor in alveolar epithelial type I cells we characterized the pulmonary phenotype of P2X7 receptor knockout mice by using immunohistochemistry, western blot analysis and real-time RT PCR. No pathomorphological signs of fibrosis were found. Results revealed, however, a remarkable loss of aquaporin-5 protein and mRNA in young knockout animals. Additional in vitro experiments with bleomycin treated precision cut lung slices showed a greater sensitivity of the P2X7 receptor knockout mice in terms of aquaporin-5 reduction as wild type animals. Finally, P2X7 receptor function was examined by using the alveolar epithelial cell lines E10 and MLE-12 for stimulation experiments with bleomycin. The in vitro activation of P2X7 receptor was connected with an increase of aquaporin-5, whereas the inhibition of the receptor with oxidized ATP resulted in down regulation of aquaporin-5. The early loss of aquaporin-5 which can be found in different pulmonary fibrosis models does not implicate a specific pathogenetic role during fibrogenesis.

  12. Apelin-13 inhibits large-conductance Ca2+-activated K+ channels in cerebral artery smooth muscle cells via a PI3-kinase dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Amit Modgil

    Full Text Available Apelin-13 causes vasoconstriction by acting directly on APJ receptors in vascular smooth muscle (VSM cells; however, the ionic mechanisms underlying this action at the cellular level remain unclear. Large-conductance Ca(2+-activated K(+ (BKCa channels in VSM cells are critical regulators of membrane potential and vascular tone. In the present study, we examined the effect of apelin-13 on BK(Ca channel activity in VSM cells, freshly isolated from rat middle cerebral arteries. In whole-cell patch clamp mode, apelin-13 (0.001-1 μM caused concentration-dependent inhibition of BK(Ca in VSM cells. Apelin-13 (0.1 µM significantly decreased BK(Ca current density from 71.25 ± 8.14 pA/pF to 44.52 ± 7.10 pA/pF (n=14 cells, P<0.05. This inhibitory effect of apelin-13 was confirmed by single channel recording in cell-attached patches, in which extracellular application of apelin-13 (0.1 µM decreased the open-state probability (NPo of BK(Ca channels in freshly isolated VSM cells. However, in inside-out patches, extracellular application of apelin-13 (0.1 µM did not alter the NPo of BK(Ca channels, suggesting that the inhibitory effect of apelin-13 on BKCa is not mediated by a direct action on BK(Ca. In whole cell patches, pretreatment of VSM cells with LY-294002, a PI3-kinase inhibitor, markedly attenuated the apelin-13-induced decrease in BK(Ca current density. In addition, treatment of arteries with apelin-13 (0.1 µM significantly increased the ratio of phosphorylated-Akt/total Akt, indicating that apelin-13 significantly increases PI3-kinase activity. Taken together, the data suggest that apelin-13 inhibits BK(Ca channel via a PI3-kinase-dependent signaling pathway in cerebral artery VSM cells, which may contribute to its regulatory action in the control of vascular tone.

  13. Myeloid Deletion of α1AMPK Exacerbates Atherosclerosis in LDL Receptor Knockout (LDLRKO) Mice.

    Science.gov (United States)

    Cao, Qiang; Cui, Xin; Wu, Rui; Zha, Lin; Wang, Xianfeng; Parks, John S; Yu, Liqing; Shi, Hang; Xue, Bingzhong

    2016-06-01

    Macrophage inflammation marks all stages of atherogenesis, and AMPK is a regulator of macrophage inflammation. We therefore generated myeloid α1AMPK knockout (MAKO) mice on the LDL receptor knockout (LDLRKO) background to investigate whether myeloid deletion of α1AMPK exacerbates atherosclerosis. When fed an atherogenic diet, MAKO/LDLRKO mice displayed exacerbated atherosclerosis compared with LDLRKO mice. To determine the underlying pathophysiological pathways, we characterized macrophage inflammation/chemotaxis and lipid/cholesterol metabolism in MAKO/LDLRKO mice. Myeloid deletion of α1AMPK increased macrophage inflammatory gene expression and enhanced macrophage migration and adhesion to endothelial cells. Remarkably, MAKO/LDLRKO mice also displayed higher composition of circulating chemotaxically active Ly-6C(high) monocytes, enhanced atherosclerotic plaque chemokine expression, and monocyte recruitment into plaques, leading to increased atherosclerotic plaque macrophage content and inflammation. MAKO/LDLRKO mice also exhibited higher plasma LDL and VLDL cholesterol content, increased circulating apolipoprotein B (apoB) levels, and higher liver apoB expression. We conclude that macrophage α1AMPK deficiency promotes atherogenesis in LDLRKO mice and is associated with enhanced macrophage inflammation and hypercholesterolemia and that macrophage α1AMPK may serve as a therapeutic target for prevention and treatment of atherosclerosis. PMID:26822081

  14. Pregnane X receptor knockout mice display aging-dependent wearing of articular cartilage.

    Directory of Open Access Journals (Sweden)

    Kotaro Azuma

    Full Text Available Steroid and xenobiotic receptor (SXR and its murine ortholog, pregnane X receptor (PXR, are nuclear receptors that are expressed at high levels in the liver and the intestine where they function as xenobiotic sensors that induce expression of genes involved in detoxification and drug excretion. Recent evidence showed that SXR and PXR are also expressed in bone tissue where they mediate bone metabolism. Here we report that systemic deletion of PXR results in aging-dependent wearing of articular cartilage of knee joints. Histomorphometrical analysis showed remarkable reduction of width and an enlarged gap between femoral and tibial articular cartilage in PXR knockout mice. We hypothesized that genes induced by SXR in chondrocytes have a protective effect on articular cartilage and identified Fam20a (family with sequence similarity 20a as an SXR-dependent gene induced by the known SXR ligands, rifampicin and vitamin K2. Lastly, we demonstrated the biological significance of Fam20a expression in chondrocytes by evaluating osteoarthritis-related gene expression of primary articular chondrocytes. Consistent with epidemiological findings, our results indicate that SXR/PXR protects against aging-dependent wearing of articular cartilage and that ligands for SXR/PXR have potential role in preventing osteoarthritis caused by aging.

  15. Hyperfunction of muscarinic receptor maintains long-term memory in 5-HT4 receptor knock-out mice.

    Directory of Open Access Journals (Sweden)

    Luis Segu

    Full Text Available Patients suffering from dementia of Alzheimer's type express less serotonin 4 receptors (5-HTR(4, but whether an absence of these receptors modifies learning and memory is unexplored. In the spatial version of the Morris water maze, we show that 5-HTR(4 knock-out (KO and wild-type (WT mice performed similarly for spatial learning, short- and long-term retention. Since 5-HTR(4 control mnesic abilities, we tested whether cholinergic system had circumvented the absence of 5-HTR(4. Inactivating muscarinic receptor with scopolamine, at an ineffective dose (0.8 mg/kg to alter memory in WT mice, decreased long-term but not short-term memory of 5-HTR(4 KO mice. Other changes included decreases in the activity of choline acetyltransferase (ChAT, the required enzyme for acetylcholine synthesis, in the septum and the dorsal hippocampus in 5-HTR(4 KO under baseline conditions. Training- and scopolamine-induced increase and decrease, respectively in ChAT activity in the septum in WT mice were not detected in the 5-HTR(4 KO animals. Findings suggest that adaptive changes in cholinergic systems may circumvent the absence of 5-HTR(4 to maintain long-term memory under baseline conditions. In contrast, despite adaptive mechanisms, the absence of 5-HTR(4 aggravates scopolamine-induced memory impairments. The mechanisms whereby 5-HTR(4 mediate a tonic influence on ChAT activity and muscarinic receptors remain to be determined.

  16. Brain Region-Specific Effects of cGMP-Dependent Kinase II Knockout on AMPA Receptor Trafficking and Animal Behavior

    Science.gov (United States)

    Kim, Seonil; Pick, Joseph E.; Abera, Sinedu; Khatri, Latika; Ferreira, Danielle D. P.; Sathler, Matheus F.; Morison, Sage L.; Hofmann, Franz; Ziff, Edward B.

    2016-01-01

    Phosphorylation of GluA1, a subunit of AMPA receptors (AMPARs), is critical for AMPAR synaptic trafficking and control of synaptic transmission. cGMP-dependent protein kinase II (cGKII) mediates this phosphorylation, and cGKII knockout (KO) affects GluA1 phosphorylation and alters animal behavior. Notably, GluA1 phosphorylation in the KO…

  17. Apelin-13 attenuates pressure overload-induced aortic adventitial remodeling and fibrosis in Sprague-Dawley rats

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhen-zhou; ZHANG Yan; XU Ran; CHEN Lai-jiang; GUO Shu-jie; XU Ying-le; CHANG Qing; GAO Ping-jin; ZHONG Jiu-chang

    2016-01-01

    AIM:To investigate regulatory roles of Apelin in adventitial remodeling and fibrosis in rats with transverse aortic constriction ( TAC) .METHODS:The male Sprague-Dawley rats with TAC were randomized to daily deliver either pyroglutamyl Apelin-13 ( 50μg/kg) or saline for 4 weeks.RESULTS:Histomorphometric analysis by HE and Masson Trichrome staining revealed increased medi -al and adventitial thicknesses , especially in the adventitia , in ascending aortas in rats with TAC when compared with the sham-operated rats.Downregulation of APJ receptor and elevations in phosphorylated mTOR and ERK 1/2 levels were observed in rats with TAC . There are marked increases in heart weight ( HW) , HW/body weight ratio , and aortic fibrosis in rats with TAC .The pressure over-load-mediated pathological adventitial remodeling was strikingly rescued by Apelin-13, associated with attenuation of aortic fibrosis and reduced mRNA expression of TGF-β1, fibronectin and collagen I .CONCLUSION:Our results demonstrate the importance of Apelin-13 in amelioration of aortic adventitial remodeling and fibrosis in rats with TAC via modulation of the mTOR /ERK signaling , thus indi-cating potential therapeutic strategies by enhancing Apelin /APJ action for preventing pressure overload-and fibrosis-associated cardio-vascular disorders .

  18. Somatostatin receptor 1 and 5 double knockout mice mimic neurochemical changes of Huntington's disease transgenic mice.

    Directory of Open Access Journals (Sweden)

    Padmesh S Rajput

    Full Text Available BACKGROUND: Selective degeneration of medium spiny neurons and preservation of medium sized aspiny interneurons in striatum has been implicated in excitotoxicity and pathophysiology of Huntington's disease (HD. However, the molecular mechanism for the selective sparing of medium sized aspiny neurons and vulnerability of projection neurons is still elusive. The pathological characteristic of HD is an extensive reduction of the striatal mass, affecting caudate putamen. Somatostatin (SST positive neurons are selectively spared in HD and Quinolinic acid/N-methyl-D-aspartic acid induced excitotoxicity, mimic the model of HD. SST plays neuroprotective role in excitotoxicity and the biological effects of SST are mediated by five somatostatin receptor subtypes (SSTR1-5. METHODS AND FINDINGS: To delineate subtype selective biological responses we have here investigated changes in SSTR1 and 5 double knockout mice brain and compared with HD transgenic mouse model (R6/2. Our study revealed significant loss of dopamine and cAMP regulated phosphoprotein of 32 kDa (DARPP-32 and comparable changes in SST, N-methyl-D-aspartic acid receptors subtypes, calbindin and brain nitric oxide synthase expression as well as in key signaling proteins including calpain, phospho-extracellular-signal-regulated kinases1/2, synapsin-IIa, protein kinase C-α and calcineurin in SSTR1/5(-/- and R6/2 mice. Conversely, the expression of somatostatin receptor subtypes, enkephalin and phosphatidylinositol 3-kinases were strain specific. SSTR1/5 appears to be important in regulating NMDARs, DARPP-32 and signaling molecules in similar fashion as seen in HD transgenic mice. CONCLUSIONS: This is the first comprehensive description of disease related changes upon ablation of G- protein coupled receptor gene. Our results indicate that SST and SSTRs might play an important role in regulation of neurodegeneration and targeting this pathway can provide a novel insight in understanding the

  19. The in vivo respiratory phenotype of the adenosine A1 receptor knockout mouse.

    Science.gov (United States)

    Heitzmann, Dirk; Buehler, Philipp; Schweda, Frank; Georgieff, Michael; Warth, Richard; Thomas, Joerg

    2016-02-01

    The nucleoside adenosine has been implicated in the regulation of respiration, especially during hypoxia in the newborn. In this study the role of adenosine A1 receptors for the control of respiration was investigated in vivo. To this end, respiration of unrestrained adult and neonatal adenosine A1 receptor knockout mice (A1R(-/-)) was measured in a plethysmographic device. Under control conditions (21% O2) and mild hypoxia (12-15% O2) no difference of respiratory parameters was observed between adult wildtype (A1R(+/+)) and A1R(-/-) mice. Under more severe hypoxia (6-10% O2) A1R(+/+) mice showed, after a transient increase of respiration, a decrease of respiration frequency (fR) and tidal volume (VT) leading to a decrease of minute volume (MV). This depression of respiration during severe hypoxia was absent in A1R(-/-) mice which displayed a stimulated respiration as indicated by the enhancement of MV by some 50-60%. During hypercapnia-hyperoxia (3-10% CO2/97-90 % O2), no obvious differences in respiration of A1R(-/-) and A1R(+/+) was observed. In neonatal mice, the respiratory response to hypoxia was surprisingly similar in both genotypes. However, neonatal A1R(-/-) mice appeared to have more frequently periods of apnea during hypoxia and in the post-hypoxic control period. In conclusion, these data indicate that the adenosine A1 receptor is an important molecular component mediating hypoxic depression in adult mice and it appears to stabilize respiration of neonatal mice. PMID:26593641

  20. CXC receptor knockout mice: characterization of skeletal features and membranous bone healing in the adult mouse.

    Science.gov (United States)

    Bischoff, David S; Sakamoto, Taylor; Ishida, Kenji; Makhijani, Nalini S; Gruber, Helen E; Yamaguchi, Dean T

    2011-02-01

    The potential role of CXC chemokines bearing the glu-leu-arg (ELR) motif in bone repair was studied using a cranial defect (CD) model in mice lacking the CXC receptor (mCXCR(-/-) knockout mice), which is homologous to knockout of the human CXC receptor 2 (CXCR2) gene. During the inflammatory stage of bone repair, ELR CXC chemokines are released by inflammatory cells and serve as chemotactic and angiogenic factors. mCXCR(-/-) mice were smaller in weight and length from base of tail to nose tip, compared to WT littermates. DEXA analysis indicated that bone mineral density (BMD), bone mineral content (BMC), total area (TA), bone area (BA), and total tissue mass (TTM) were decreased in the mCXCR(-/-) mice at 6, 12, and 18 weeks of age. Trabecular bone characteristics in mCXCR(-/-) (% bone, connectivity, number, and thickness) were reduced, and trabecular spacing was increased as evidenced by μCT. There was no difference in bone formation or resorption indices measured by bone histomorphometry. Trabecular BMD was not altered. Cortical bone volume, BMD, and thickness were reduced; whereas, bone marrow volume was increased in mCXCR(-/-). Decreased polar moment of inertia (J) in the tibias/femurs suggested that the mCXCR(-/-) long bones are weaker. This was confirmed by three-point bending testing of the femurs. CDs created in 6-week-old male mCXCR(-/-) and WT littermates were not completely healed at 12 weeks; WT animals, however, had significantly more bone in-growth than mCXCR(-/-). New bone sites were identified using polarized light and assessed for numbers of osteocyte (OCy) lacunae and blood vessels (BlV) around the original CD. In new bone, the number of BlV in WT was >2× that seen in mCXCR(-/-). Bone histomorphometry parameters in the cranial defect did not show any difference in bone formation or resorption markers. In summary, studies showed that mCXCR(-/-) mice have (1) reduced weight and size; (2) decreased BMD and BMC; (3) decreased amounts of trabecular

  1. Knockout of insulin-like growth factor-1 receptor impairs distal lung morphogenesis.

    Directory of Open Access Journals (Sweden)

    Ralph Epaud

    Full Text Available BACKGROUND: Insulin-like growth factors (IGF-I and -II are pleiotropic regulators of somatic growth and development in vertebrate species. Endocrine and paracrine effects of both hormones are mediated by a common IGF type 1 receptor (IGF-1R. Lethal respiratory failure in neonatal IGF-1R knockout mice suggested a particular role for this receptor in pulmonary development, and we therefore investigated the consequences of IGF-1R inactivation in lung tissue. METHODS AND FINDINGS: We first generated compound heterozygous mutant mice harboring a hypomorphic (Igf1r(neo and a null (Igf1r(- allele. These IGF-1R(neo/- mice express only 22% of normal IGF-1R levels and are viable. In adult IGF-1R(neo/- mice, we assessed lung morphology and respiratory physiology and found normal histomorphometric characteristics and normal breathing response to hypercapnia. We then generated homozygous IGF-1R knockout mutants (IGF-1R(-/- and analyzed their lung development during late gestation using histomorphometric and immunohistochemical methods. IGF-1R(-/- embryos displayed severe lung hypoplasia and markedly underdeveloped diaphragms, leading to lethal neonatal respiratory distress. Importantly, IGF-1R(-/- lungs from late gestation embryos were four times smaller than control lungs and showed markedly thickened intersaccular mesenchyme, indicating strongly delayed lung maturation. Cell proliferation and apoptosis were significantly increased in IGF-1R(-/- lung tissue as compared with IGF-1R(+/+ controls. Immunohistochemistry using pro-SP-C, NKX2-1, CD31 and vWF as markers revealed a delay in cell differentiation and arrest in the canalicular stage of prenatal respiratory organ development in IGF-1R(-/- mutant mice. CONCLUSIONS/SIGNIFICANCE: We found that low levels of IGF-1R were sufficient to ensure normal lung development in mice. In contrast, complete absence of IGF-1R significantly delayed end-gestational lung maturation. Results indicate that IGF-1R plays

  2. Effects of dopamine D1-like and D2-like antagonists on cocaine discrimination in muscarinic receptor knockout mice.

    Science.gov (United States)

    Thomsen, Morgane; Caine, Simon Barak

    2016-04-01

    Muscarinic and dopamine brain systems interact intimately, and muscarinic receptor ligands, like dopamine ligands, can modulate the reinforcing and discriminative stimulus (S(D)) effects of cocaine. To enlighten the dopamine/muscarinic interactions as they pertain to the S(D) effects of cocaine, we evaluated whether muscarinic M1, M2 or M4 receptors are necessary for dopamine D1 and/or D2 antagonist mediated modulation of the S(D) effects of cocaine. Knockout mice lacking M1, M2, or M4 receptors, as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline in a food-reinforced drug discrimination procedure. Effects of pretreatments with the dopamine D1 antagonist SCH 23390 and the dopamine D2 antagonist eticlopride were evaluated. In intact mice, both SCH 23390 and eticlopride attenuated the cocaine discriminative stimulus effect, as expected. SCH 23390 similarly attenuated the cocaine discriminative stimulus effect in M1 knockout mice, but not in mice lacking M2 or M4 receptors. The effects of eticlopride were comparable in each knockout strain. These findings demonstrate differences in the way that D1 and D2 antagonists modulate the S(D) effects of cocaine, D1 modulation being at least partially dependent upon activity at the inhibitory M2/M4 muscarinic subtypes, while D2 modulation appeared independent of these systems. PMID:26874213

  3. Genetic Background Strongly Influences the Bone Phenotype of P2X7 Receptor Knockout Mice

    DEFF Research Database (Denmark)

    Syberg, Susanne; Petersen, Solveig; Beck Jensen, Jens-Erik;

    2012-01-01

    The purinergic P2X7 receptor is expressed by bone cells and has been shown to be important in both bone formation and bone resorption. In this study we investigated the importance of the genetic background of the mouse strains on which the P2X7 knock-out models were based by comparing bone status...... of a new BALB/cJ P2X7(-/-) strain with a previous one based on the C57BL/6 strain. Female four-month-old mice from both strains were DXA scanned on a PIXImus densitometer; femurs were collected for bone strength measurements and serum for bone marker analysis. Bone-related parameters that were altered only...... littermates. In conclusion, we have shown that the genetic background of P2X7(-/-) mice strongly influences the bone phenotype of the P2X7(-/-) mice and that P2X7 has a more significant regulatory role in bone remodeling than found in previous studies....

  4. Schmallenberg virus infection of adult type I interferon receptor knock-out mice.

    Directory of Open Access Journals (Sweden)

    Kerstin Wernike

    Full Text Available Schmallenberg virus (SBV, a novel orthobunyavirus, was discovered in Europe in late 2011. It causes mild and transient disease in adult ruminants, but fetal infection can lead to abortion or severe malformations. There is considerable demand for SBV research, but in vivo studies in large animals are complicated by their long gestation periods and the cost of high containment housing. The goal of this study was to investigate whether type I interferon receptor knock-out (IFNAR(-/- mice are a suitable small animal model for SBV. Twenty IFNAR(-/- mice were inoculated with SBV, four were kept as controls. After inoculation, all were observed and weighed daily; two mice per day were sacrificed and blood, brain, lungs, liver, spleen, and intestine were harvested. All but one inoculated mouse lost weight, and two mice died spontaneously at the end of the first week, while another two had to be euthanized. Real-time RT-PCR detected large amounts of SBV RNA in all dead or sick mice; the controls were healthy and PCR-negative. IFNAR(-/- mice are susceptible to SBV infection and can develop fatal disease, making them a handy and versatile tool for SBV vaccine research.

  5. Lipodystrophy Due to Adipose Tissue-Specific Insulin Receptor Knockout Results in Progressive NAFLD.

    Science.gov (United States)

    Softic, Samir; Boucher, Jeremie; Solheim, Marie H; Fujisaka, Shiho; Haering, Max-Felix; Homan, Erica P; Winnay, Jonathon; Perez-Atayde, Antonio R; Kahn, C Ronald

    2016-08-01

    Ectopic lipid accumulation in the liver is an almost universal feature of human and rodent models of generalized lipodystrophy and is also a common feature of type 2 diabetes, obesity, and metabolic syndrome. Here we explore the progression of fatty liver disease using a mouse model of lipodystrophy created by a fat-specific knockout of the insulin receptor (F-IRKO) or both IR and insulin-like growth factor 1 receptor (F-IR/IGFRKO). These mice develop severe lipodystrophy, diabetes, hyperlipidemia, and fatty liver disease within the first weeks of life. By 12 weeks of age, liver demonstrated increased reactive oxygen species, lipid peroxidation, histological evidence of balloon degeneration, and elevated serum alanine aminotransferase and aspartate aminotransferase levels. In these lipodystrophic mice, stored liver lipids can be used for energy production, as indicated by a marked decrease in liver weight with fasting and increased liver fibroblast growth factor 21 expression and intact ketogenesis. By 52 weeks of age, liver accounted for 25% of body weight and showed continued balloon degeneration in addition to inflammation, fibrosis, and highly dysplastic liver nodules. Progression of liver disease was associated with improvement in blood glucose levels, with evidence of altered expression of gluconeogenic and glycolytic enzymes. However, these mice were able to mobilize stored glycogen in response to glucagon. Feeding F-IRKO and F-IR/IGFRKO mice a high-fat diet for 12 weeks accelerated the liver injury and normalization of blood glucose levels. Thus, severe fatty liver disease develops early in lipodystrophic mice and progresses to advanced nonalcoholic steatohepatitis with highly dysplastic liver nodules. The liver injury is propagated by lipotoxicity and is associated with improved blood glucose levels. PMID:27207510

  6. Abolished thermal and mechanical antinociception but retained visceral chemical antinociception induced by butorphanol in μ-opioid receptor knockout mice

    OpenAIRE

    Ide, Soichiro; Minami, Masabumi; Ishihara, Kumatoshi; Uhl, George R; Satoh, Masamichi; Sora, Ichiro; Ikeda, Kazutaka

    2008-01-01

    Butorphanol is hypothesized to induce analgesia via opioid pathways, although the precise mechanisms for its effects remain unknown. In this study, we investigated the role of the μ-opioid receptor (MOP) in thermal, mechanical, and visceral chemical antinociception induced by butorphanol using MOP knockout (KO) mice. Butorphanol-induced thermal antinociception, assessed by the hot-plate and tail-flick tests, was significantly reduced in heterozygous and abolished in homozygous MOP-KO mice com...

  7. The transcobalamin receptor knockout mouse: a model for vitamin B12 deficiency in the central nervous system

    OpenAIRE

    Lai, Shao-Chiang; Nakayama, Yasumi; Sequeira, Jeffrey M.; Wlodarczyk, Bogdan J.; Cabrera, Robert M.; Finnell, Richard H.; Bottiglieri, Teodoro; Quadros, Edward V.

    2013-01-01

    The membrane receptor (TCblR/CD320) for transcobalamin (TC)-bound cobalamin (Cbl) facilitates the cellular uptake of Cbl. A genetically modified mouse model involving ablation of the CD320 gene was generated to study the effects on cobalamin homeostasis. The nonlethal nature of this knockout and the lack of systemic cobalamin deficiency point to other mechanisms for cellular Cbl uptake in the mouse. However, severe cobalamin depletion in the central nervous system (CNS) after birth (P

  8. Selective increase of dark phase water intake in neuropeptide-Y Y2 and Y4 receptor knockout mice

    OpenAIRE

    Wultsch, Thomas; Painsipp, Evelin; Donner, Sabine; Sperk1, Günther; Herzog, Herbert; Peskar, Bernhard A; Holzer, Peter

    2005-01-01

    Neuropeptide-Y (NPY) is involved in the regulation of ingestive behaviour and energy homeostasis. Since deletion of the NPY Y2 and Y4 receptor gene increases and decreases food intake, respectively, we examined whether water intake during the light and dark phase is altered in Y2 and Y4 receptor knockout mice. The water consumption of mice staying in their home cages was measured by weighing the water bottles at the beginning and end of the light phase during 4 consecutive days. Control, Y2 a...

  9. No further loss of dorsal root ganglion cells after axotomy in p75 neurotrophin receptor knockout mice

    DEFF Research Database (Denmark)

    Sørensen, Bodil; Tandrup, Trine; Koltzenburg, Martin;

    2003-01-01

    The role of the p75 neurotrophin receptor for neuronal survival after nerve crush was studied in L5 dorsal root ganglia (DRG) of knockout mice and controls with assumption-free stereological methods. Numbers of neuronal A- and B-cells were obtained using the optical fractionator and optical...... disector techniques. At birth, the total number of DRG neurons was 10,000 ±2,600 in control mice compared with 5,100 ±1,300 in p75 knockout mice. During postnatal development, 1,400 neuronal B-cell bodies were lost in p75 knockouts (2P ± 0.±05) and 1,100 in controls (NS), whereas the A-cell population...... remained stable. After a sciatic nerve crush, the total neuron loss in controls was 15.4% ±3.5% (2P ±0.05) and 22.7% 5.1% (2P knockout mice. Neuronal A-cell number was unchanged after...

  10. No further loss of dorsal root ganglion cells after axotomy in p75 neurotrophin receptor knockout mice

    DEFF Research Database (Denmark)

    Sørensen, Bodil; Tandrup, Trine; Koltzenburg, Martin;

    2003-01-01

    The role of the p75 neurotrophin receptor for neuronal survival after nerve crush was studied in L5 dorsal root ganglia (DRG) of knockout mice and controls with assumption-free stereological methods. Numbers of neuronal A- and B-cells were obtained using the optical fractionator and optical...... remained stable. After a sciatic nerve crush, the total neuron loss in controls was 15.4% ±3.5% (2P ±0.05) and 22.7% 5.1% (2P <0.05) at days 14 and 42, respectively. In contrast, there was no loss in total number of neurons after crush in p75 knockout mice. Neuronal A-cell number was unchanged after the...... crush in p75 knockouts as well as in controls at both times. At 14 days, the population of B-cells was reduced by 24.8% 3.6% in controls and by 6.1% ±3.5% in p75 knockouts, this difference being significant (2P ±0.001). At 42 days, the B-cell loss was 29.6% ± 5.5% in controls and 4.2% ±6.4% in p75...

  11. M4 muscarinic receptor knockout mice display abnormal social behavior and decreased prepulse inhibition

    Directory of Open Access Journals (Sweden)

    Koshimizu Hisatsugu

    2012-04-01

    Full Text Available Abstract Background In the central nervous system (CNS, the muscarinic system plays key roles in learning and memory, as well as in the regulation of many sensory, motor, and autonomic processes, and is thought to be involved in the pathophysiology of several major diseases of the CNS, such as Alzheimer's disease, depression, and schizophrenia. Previous studies reveal that M4 muscarinic receptor knockout (M4R KO mice displayed an increase in basal locomotor activity, an increase in sensitivity to the prepulse inhibition (PPI-disrupting effect of psychotomimetics, and normal basal PPI. However, other behaviorally significant roles of M4R remain unclear. Results In this study, to further investigate precise functional roles of M4R in the CNS, M4R KO mice were subjected to a battery of behavioral tests. M4R KO mice showed no significant impairments in nociception, neuromuscular strength, or motor coordination/learning. In open field, light/dark transition, and social interaction tests, consistent with previous studies, M4R KO mice displayed enhanced locomotor activity compared to their wild-type littermates. In the open field test, M4R KO mice exhibited novelty-induced locomotor hyperactivity. In the social interaction test, contacts between pairs of M4R KO mice lasted shorter than those of wild-type mice. In the sensorimotor gating test, M4R KO mice showed a decrease in PPI, whereas in the startle response test, in contrast to a previous study, M4R KO mice demonstrated normal startle response. M4R KO mice also displayed normal performance in the Morris water maze test. Conclusions These findings indicate that M4R is involved in regulation of locomotor activity, social behavior, and sensorimotor gating in mice. Together with decreased PPI, abnormal social behavior, which was newly identified in the present study, may represent a behavioral abnormality related to psychiatric disorders including schizophrenia.

  12. Reduced prostate branching morphogenesis in stromal fibroblast, but not in epithelial, estrogen receptor α knockout mice

    Institute of Scientific and Technical Information of China (English)

    Ming Chen; Chiuan-Ren Yeh; Chih-Rong Shyr; Hsiu-Hsia Lin; Jun Da; Shuyuan Yeh

    2012-01-01

    Early studies suggested that estrogen receptor alpha (ERα) is involved in estrogen-mediated imprinting effects in prostate development.We recently reported a more complete ERα knockout (KO) mouse model via mating β-actin Cretransgenic mice with floxed ERα mice.These ACTB-ERαKO male mice showed defects in prostatic branching morphogenesis,which demonstrates that ERα is necessary to maintain proliferative events in the prostate.However,within which prostate cell type ERα exerts those important functions remains to be elucidated.To address this,we have bred floxed ERα mice with either fibroblast-specific protein (FSP)-Cre or probasin-Cre transgenic mice to generate a mouse model that has deleted ERα gene in either stromal fibroblast (FSP-ERαKO) or epithelial (pes-ERαKO) prostate cells.We found that circulating testosterone and fertility were not altered in FSP-ERαKO and pes-ERαKO male mice.Prostates of FSP-ERαKO mice have less branching morphogenesis compared to that of wild.type littermates.Further analyses indicated that loss of stromal ERα leads to increased stromal apoptosis,reduced expression of insulin-like growth factor-1 (IGF-1) and FGF10,and increased expression of BMP4,Collectively,we have established the first in vivo prostate stromal and epithelial selective ERαKO mouse models and the results from these mice indicated that stromal fibroblast ERα plays important roles in prostatic branching morphogenesis via a paracrine fashion.Selective deletion of the ERα gene in mouse prostate epithelial cells by probasin-Cre does not affect the regular prostate development and homeostasis.

  13. Treatment with anti-interferon-gamma monoclonal antibodies modifies experimental autoimmune encephalomyelitis in interferon-gamma receptor knockout mice

    DEFF Research Database (Denmark)

    Espejo, C; Penkowa, M; Sáez-Torres, I;

    2001-01-01

    The role of interferon-gamma (IFN-gamma) in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis (EAE) is still controversial. We have studied the function of IFN-gamma and its receptor in the EAE model using two different IFN-gamma receptor knockout (IFN-gamma R......(-/-)) mouse types: C57Bl/6x129Sv, with a disruption of the IFN-gamma receptor cytoplasmic domain, and 129Sv, homozygous for a disrupted IFN-gamma receptor gene. Mice were immunized with peptide 40-55 from rat myelin oligodendrocyte glycoprotein. A subgroup of mice was treated with anti-IFN-gamma monoclonal...... antibodies (mAb) on day 8 postimmunization. Clinical scoring and both histological and immunohistochemical studies were undertaken for all groups. We hereby show that treatment with anti-IFN-gamma mAb worsened the disease course of 129Sv wild-type mice. However, it decreased the mean daily score in IFN...

  14. A satellite cell-specific knockout of the androgen receptor reveals myostatin as a direct androgen target in skeletal muscle.

    Science.gov (United States)

    Dubois, Vanessa; Laurent, Michaël R; Sinnesael, Mieke; Cielen, Nele; Helsen, Christine; Clinckemalie, Liesbeth; Spans, Lien; Gayan-Ramirez, Ghislaine; Deldicque, Louise; Hespel, Peter; Carmeliet, Geert; Vanderschueren, Dirk; Claessens, Frank

    2014-07-01

    Androgens have well-established anabolic actions on skeletal muscle, although the direct effects of the androgen receptor (AR) in muscle remain unclear. We generated satellite cell-specific AR-knockout (satARKO) mice in which the AR is selectively ablated in satellite cells, the muscle precursor cells. Total-limb maximal grip strength is decreased by 7% in satARKO mice, with soleus muscles containing ∼10% more type I fibers and 10% less type IIa fibers than the corresponding control littermates. The weight of the perineal levator ani muscle is markedly reduced (-52%). Thus, muscle AR is involved in fiber-type distribution and force production of the limb muscles, while it is a major determinant of the perineal muscle mass. Surprisingly, myostatin (Mstn), a strong inhibitor of skeletal muscle growth, is one of the most androgen-responsive genes (6-fold reduction in satARKO) through direct transcription activation by the AR. Consequently, muscle hypertrophy in response to androgens is augmented in Mstn-knockout mice. Our finding that androgens induce Mstn signaling to restrain their own anabolic actions has implications for the treatment of muscle wasting disorders.-Dubois, V., Laurent, M. R., Sinnesael, M., Cielen, N., Helsen, C., Clinckemalie, L., Spans, L., Gayan-Ramirez, G., Deldicque, L., Hespel, P., Carmeliet, G., Vanderschueren, D., and Claessens, F. A satellite cell-specific knockout of the androgen receptor reveals myostatin as a direct androgen target in skeletal muscle.

  15. Apelin在能量平衡中的作用%Role of apelin in energy homeostasis

    Institute of Scientific and Technical Information of China (English)

    吕双瑜; 秦耀军; 杨艳杰; 姚文亮; 陈强

    2013-01-01

    新发现的生物活性肽apelin是APJ受体的天然配体,广泛分布于中枢系统和外周组织.研究表明apelin具有广泛的生理作用.该文总结了近几年来关于apelin在摄食、消化、体液平衡、肥胖和糖代谢等方面所取得的最新进展,并结合本实验室的工作,提出了今后的发展趋势.%Apelin, a recently identified bioactive peptide, is i-dentified as the natural ligand for the APJ receptor, and has a wide distribution in both the central nervous system and peripheral tissues.The current studies show that apelin has extensive physiological functions.This review summarizes the latest progress of apelin on feeding, indigestion, fluid homeostasis, obesity and glucose metabolism etc, and the trend of the research development for the future is proposed.

  16. Species-dependent smooth muscle contraction to Neuromedin U and determination of the receptor subtypes mediating contraction using NMU1 receptor knockout mice

    OpenAIRE

    Prendergast, Clodagh E; Morton, Magda F; Figueroa, Katherine W.; Wu, Xiaodong; Shankley, Nigel P.

    2006-01-01

    The peptide ligand neuromedin U (NMU) has been implicated in an array of biological activities, including contraction of uterine, intestinal and urinary bladder smooth muscle. However, many of these responses appear to be species-specific. This study was undertaken to fully elucidate the range of smooth muscle-stimulating effects of NMU in rats, mice and guinea-pigs, and to examine the extent of the species differences. In addition, the NMU1 receptor knockout mouse was used to determine which...

  17. [Effect of P2X7 receptor knock-out on bone cancer pain in mice].

    Science.gov (United States)

    Zhao, Xin; Liu, Hui-Zhu; Zhang, Yu-Qiu

    2016-06-25

    Cancer pain is one of the most common symptoms in patients with late stage cancer. Lung, breast and prostate carcinoma are the most common causes of pain from osseous metastasis. P2X7 receptor (P2X7R) is one of the subtypes of ATP-gated purinergic ion channel family, predominately distributed in microglia in the spinal cord. Activation of P2X7Rs in the spinal dorsal horn has been associated with release of proinflammatory cytokines from glial cells, causing increased neuronal excitability and exaggerated nociception. Mounting evidence implies a critical role of P2X7R in inflammatory and neuropathic pain. However, whether P2X7R is involved in cancer pain remains controversial. Here we established a bone cancer pain model by injecting the Lewis lung carcinoma cells into the femur bone marrow cavity of C57BL/6J wild-type mice (C57 WT mice) and P2X7R knockout mice (P2rx7(-/-) mice) to explore the role of P2X7R in bone cancer pain. Following intrafemur carcinoma inoculation, robust mechanical allodynia and thermal hyperalgesia in C57 WT mice were developed on day 7 and 14, respectively, and persisted for at least 28 days in the ipsilateral hindpaw of the affected limb. CatWalk gait analysis showed significant decreases in the print area and stand phase, and a significant increase in swing phase in the ipsilateral hindpaw on day 21 and 28 after carcinoma cells inoculation. Histopathological sections (hematoxylin and eosin stain) showed that the bone marrow of the affected femur was largely replaced by invading tumor cells, and the femur displayed medullary bone loss and bone destruction on day 28 after inoculation. Unexpectedly, no significant changes in bone cancer-induced hypersensitivity of pain behaviors were found in P2rx7(-/-) mice, and the changes of pain-related values in CatWalk gait analysis even occurred earlier in P2rx7(-/-) mice, as compared with C57 WT mice. Together with our previous study in rats that blockade of P2X7R significantly alleviated bone cancer

  18. Apelin/APJ系统与心血管系统相关性研究进展%Research advances in correlation between apelin/APJ system and cardiovascular system

    Institute of Scientific and Technical Information of China (English)

    黄珍; 郭晓玲

    2013-01-01

    @@@Apelin is a novel cardiovascular regulator that functions as an endogenous ligand for angiotensin II type 1 receptor-associated protein. The apelin/APJ system is widely present in the cardiovascular system and plays a variety of cardiovascular protective roles by dilating vessels, decreasing blood pressure, enhancing cardiac contractility, inhibiting cardiomyocyte hypertrophy, fibrosis, and autophagy, and promoting angiogenesis. The system is also implicated in the pathophysiological processes of many diseases such as heart failure, coronary heart disease, hypertension, and atrial fibrillation. For this reason, the correlation between apelin/APJ system and cardiovascular system is drawing increasing attention.%Apelin作为一种新近发现的心血管调节物质,是血管紧张素II1型受体相关蛋白的内源性配体。Apelin/APJ系统在心血管系统中分布广泛,具有扩张血管、降血压,增强心肌收缩力,抑制心肌细胞肥大、纤维化、自噬,促进血管生成等保护作用,参与心力衰竭、冠心病,高血压,心房纤颤等多种疾病的病理生理过程,因此Apelin/APJ系统与心血管系统相关性日益受到人们的重视。

  19. Decreased striatal dopamine in group II metabotropic glutamate receptor (mGlu2/mGlu3) double knockout mice

    OpenAIRE

    Lane, TA; Boerner, T.; Bannerman, DM; Kew, JNC; Tunbridge, EM; Sharp, T.; Harrison, PJ

    2013-01-01

    Background: Group II metabotropic glutamate receptors (mGlu2 and mGlu3, encoded by Grm2 and Grm3) have been the focus of attention as treatment targets for a number of psychiatric conditions. Double knockout mice lacking mGlu2 and mGlu3 (mGlu2/3−/−) show a subtle behavioural phenotype, being hypoactive under basal conditions and in response to amphetamine, and with a spatial memory deficit that depends on the arousal properties of the task. The neurochemical correlates of this profile are unk...

  20. Data on Arc and Zif268 expression in the brain of the α-2A adrenergic receptor knockout mouse

    Directory of Open Access Journals (Sweden)

    Jeff Sanders

    2016-06-01

    Full Text Available The α2-adrenergic receptor (α2-AR is widely distributed in the brain with distinct roles for α2-AR subtypes (A, B and C. In this article, data are provided on Activity Regulated Cytoskeleton Associated Protein (Arc and Zif268 expression in the brain of the α2A-AR knockout (α2A-AR KO mouse. These data are supplemental to an original research article examining Arc and Zif268 expression in rats injected with the α2-AR antagonist, RX821002 (http://dx.doi.org/10.1016/j.neulet.2015.12.002. [1].

  1. The transcobalamin receptor knockout mouse: a model for vitamin B12 deficiency in the central nervous system.

    Science.gov (United States)

    Lai, Shao-Chiang; Nakayama, Yasumi; Sequeira, Jeffrey M; Wlodarczyk, Bogdan J; Cabrera, Robert M; Finnell, Richard H; Bottiglieri, Teodoro; Quadros, Edward V

    2013-06-01

    The membrane receptor (TCblR/CD320) for transcobalamin (TC)-bound cobalamin (Cbl) facilitates the cellular uptake of Cbl. A genetically modified mouse model involving ablation of the CD320 gene was generated to study the effects on cobalamin homeostasis. The nonlethal nature of this knockout and the lack of systemic cobalamin deficiency point to other mechanisms for cellular Cbl uptake in the mouse. However, severe cobalamin depletion in the central nervous system (CNS) after birth (Pmouse model; however, it does provide a model with which to evaluate metabolic pathways and genes affected. PMID:23430977

  2. Characterization of the retina in the alpha7 nicotinic acetylcholine receptor knockout mouse

    Science.gov (United States)

    Smith, Marci L.

    Acetylcholine receptors (AChRs) are involved in visual processing and are expressed by inner retinal neurons in all species studied to date (Keyser et al., 2000; Dmitrieva et al., 2007; Liu et al., 2009), but their distribution in the mouse retina remains unknown. Reductions in alpha7 nicotinic AChRs (nAChRs) are thought to contribute to memory and visual deficits observed in Alzheimer's and schizophrenia (Coyle et al., 1983; Nordberg et al., 1999; Leonard et al., 2006). However, the alpha7 nAChR knockout (KO) mouse has a mild phenotype (Paylor et al., 1998; Fernandes et al., 2006; Young et al., 2007; Origlia et al., 2012). The purpose of this study was to determine the expression of AChRs in wildtype (WT) mouse retina and to assess whether up-regulation of other AChRs in the alpha7 nAChR KO retina may explain the minimal deficits described in the KO mouse. Reverse-transcriptase PCR (RT-PCR) showed that mRNA transcripts for alpha2-7, alpha 9, alpha10, beta2-4 nAChR subunits and m1-m5 muscarinic AChR (mAChR) subtypes were present in WT murine retina. Western blot analysis confirmed the presence of alpha3-5, alpha9, and m1-m5 AChR proteins and immunohistochemical analysis demonstrated nAChR and mAChR proteins expressed by subsets of bipolar, amacrine and ganglion cells. This is the first reported expression of alpha9 and alpha10 nAChR transcripts and alpha9 nAChR proteins in the retina of any species. Quantitative RT-PCR (qPCR) showed changes in AChR transcript expression in the alpha7 nAChR KO mouse retina relative to WT. Within whole retina alpha2, alpha9, alpha10, beta4, m1 and m4 AChR transcripts were up-regulated, while alpha5 nAChR transcripts were down-regulated. However, cell populations showed subtle differences; m4 mAChR transcripts were up-regulated in the ganglion cell layer and outer portion of the inner nuclear layer (oINL),while beta4 nAChR transcript up-regulation was limited to the oINL. Surprisingly, alpha2, alpha9, beta4, m2 and m4 transcripts were

  3. Interactive association of five candidate polymorphisms in Apelin/APJ pathway with coronary artery disease among Chinese hypertensive patients.

    Directory of Open Access Journals (Sweden)

    Wei Jin

    Full Text Available BACKGROUND: Via sequencing the genes of apelin/angiotensin receptor-like 1 (apelin/APJ pathway, we have recently identified and validated four common polymorphisms (rs3761581, rs56204867, rs7119375, and rs10501367 implicated in the development of hypertension. Extending these findings, we, in Chinese hypertensive patients, sought to investigate the association of these four polymorphisms and one additional promising candidate (rs9943582 from this pathway with the risk of developing coronary artery disease (CAD. METHODOLOGY/PRINCIPAL FINDINGS: Genotypes were obtained from 994 sporadic CAD patients and 708 age- and sex-matched controls. All participants were hypertensives and angiographically-confirmed. Data were analyzed by Haplo.Stats and multifactor dimensionality reduction (MDR softwares. Genotype distributions of five examined polymorphisms satisfied Hardy-Weinberg equilibrium in controls of both genders. Single-locus analyses exhibited no significant differences in the genotype/allele frequencies of examined polymorphisms between CAD patients and controls (P>0.05, even after controlling traditional cardiovascular confounders. In haplotype analyses, low-penetrance haplotype G-A (in order of rs56204867 and rs3761581 from apelin gene was significantly overrepresented in controls (1.73% relative to in CAD patients (0.4% in males (P = 0.047. Further interaction analyses suggested an overall best MDR model including rs3761581 in males (P = 0.0408 and including rs7119375 and rs9943582 in females (P<0.0001, which were further substantiated in the classical logistical regression model. CONCLUSIONS: Our findings demonstrated a contributive role of low-penetrance haplotype in apelin gene on CAD in males, and more importantly, interactive effects of genetic defects in apelin/APJ pathway might confer a potential risk in Chinese hypertensive patients.

  4. The role of apelin in central cardiovascular regulation in rats with post-infarct heart failure maintained on a normal fat or high fat diet.

    Science.gov (United States)

    Czarzasta, Katarzyna; Cudnoch-Jedrzejewska, Agnieszka; Szczepanska-Sadowska, Ewa; Fus, Lukasz; Puchalska, Liana; Gondek, Agata; Dobruch, Jakub; Gomolka, Ryszard; Wrzesien, Robert; Zera, Tymoteusz; Gornicka, Barbara; Kuch, Marek

    2016-10-01

    Based on the available literature, it can be assumed that in cases of post-infarct heart failure (HF) and obesity, a significant change in the central regulation of the cardiovascular system takes place with, among others, the involvement of the apelinergic system. The main objective of the present study was to clarify the role of apelin-13 in the central regulation of the cardiovascular system in Sprague Dawley rats with HF or sham operated (SO) and fed on a normal fat (NFD) or a high fat diet (HFD). The study was divided into two parts: Part I, hemodynamic studies; and Part II, biochemical and molecular studies. The animals were subjected to the following research procedures. Part I and II: feeding NFD or HFD; experimental induction of HF or SO; Part I: intracerebroventricular (ICV) infusion of the examined substances, monitoring of mean arterial blood pressure (MABP) and heart rate (HR); Part II: venous blood and tissue samples collected. ICV infusion of apelin-13 caused significantly higher changes in ΔMABP in the SO NFD group. No changes were noted in ΔHR in any of the studied groups. Apelin and apelin receptor (APJ) mRNA expression in the brain and adipose tissues was higher in the HF rats. HFD causes significant increase in expression of apelin and APJ mRNA in the left ventricle. In conclusion, HF and HFD appear to play an important role in modifying the activity of the central apelinergic system and significant changes in mRNA expression of apelin and APJ receptor. PMID:27378063

  5. Maturation of blood vessels by haematopoietic stem cells and progenitor cells: involvement of apelin/APJ and angiopoietin/Tie2 interactions in vessel caliber size regulation.

    Science.gov (United States)

    Takakura, Nobuyuki; Kidoya, Hiroyasu

    2009-06-01

    Apelin is a recently-isolated bioactive peptide from bovine gastric extract. The gene encodes a protein of 77 amino acids, which can generate two active polypeptides, long (42-77) and short (65-77). Both peptides ligate and activate APJ, a G protein-coupled receptor expressed in the cardiovascular and central nervous systems. Although an essential role for the apelin/APJ system in blood vessel formation has been reported in Xenopus, its precise function in mammals is unclear. Blood vessel tube formation is accomplished by two main mechanisms: 1) single cell hollowing, in which a lumen forms within the cytoplasm of a single endothelial cell (EC), and 2) cord hollowing in which a luminal cavity is created de novo between ECs in a thin cylindrical cord. Molecular control of either single cell or cord hollowing has not been precisely determined. Angiopoietin-1 (Ang1) has been reported to induce enlargement of blood vessels. Apelin is produced from ECs upon activation of Tie2, a cognate receptor of Ang1, expressed on ECs. It has been suggested that apelin induces cord hollowing by promoting proliferation and aggregation/assembly of ECs. During angiogenesis, haematopoietic stem cells (HSCs) and progenitor cells (HPCs) are frequently observed in the perivascular region. They produce Ang1 and induce migration of ECs, resulting in a fine vascular network. Moreover, HSCs/HPCs can induce apelin production from ECs. Therefore, this review article posits that HSCs/HPCs regulate caliber size of blood vessels via apelin/APJ and Angiopoietin/Tie2 interactions.

  6. (--Pentazocine induces visceral chemical antinociception, but not thermal, mechanical, or somatic chemical antinociception, in μ-opioid receptor knockout mice

    Directory of Open Access Journals (Sweden)

    Satoh Masamichi

    2011-04-01

    Full Text Available Abstract Background (--Pentazocine has been hypothesized to induce analgesia via the κ-opioid (KOP receptor, although the involvement of other opioid receptor subtypes in the effects of pentazocine remains unknown. In this study, we investigated the role of the μ-opioid (MOP receptor in thermal, mechanical, and chemical antinociception induced by (--pentazocine using MOP receptor knockout (MOP-KO mice. Results (--Pentazocine-induced thermal antinociception, assessed by the hot-plate and tail-flick tests, was significantly reduced in heterozygous and abolished in homozygous MOP-KO mice compared with wildtype mice. The results obtained from the (--pentazocine-induced mechanical and somatic chemical antinociception experiments, which used the hind-paw pressure and formalin tests, were similar to the results obtained from the thermal antinociception experiments in these mice. However, (--pentazocine retained its ability to induce significant visceral chemical antinociception, assessed by the writhing test, in homozygous MOP-KO mice, an effect that was completely blocked by pretreatment with nor-binaltorphimine, a KOP receptor antagonist. In vitro binding and cyclic adenosine monophosphate assays showed that (--pentazocine possessed higher affinity for KOP and MOP receptors than for δ-opioid receptors. Conclusions The present study demonstrated the abolition of the thermal, mechanical, and somatic chemical antinociceptive effects of (--pentazocine and retention of the visceral chemical antinociceptive effects of (--pentazocine in MOP-KO mice. These results suggest that the MOP receptor plays a pivotal role in thermal, mechanical, and somatic chemical antinociception induced by (--pentazocine, whereas the KOP receptor is involved in visceral chemical antinociception induced by (--pentazocine.

  7. Increased amphetamine-induced locomotor activity, sensitization, and accumbal dopamine release in M5 muscarinic receptor knockout mice

    DEFF Research Database (Denmark)

    Schmidt, Lene S; Miller, Anthony D; Lester, Deranda B;

    2010-01-01

    showed that M(5) receptor knockout (M (5) (-/-) ) mice are less sensitive to the reinforcing properties of addictive drugs. MATERIALS AND METHODS: Here, we investigate the role of M(5) receptors in the effects of amphetamine and cocaine on locomotor activity, locomotor sensitization, and dopamine release...... using M (5) (-/-) mice backcrossed to the C57BL/6NTac strain. STATISTICAL ANALYSES: Sensitization of the locomotor response is considered a model for chronic adaptations to repeated substance exposure, which might be related to drug craving and relapse. The effects of amphetamine on locomotor activity...... and locomotor sensitization were enhanced in M (5) (-/-) mice, while the effects of cocaine were similar in M (5) (-/-) and wild-type mice. RESULTS: Consistent with the behavioral results, amphetamine-, but not cocaine, -elicited dopamine release in nucleus accumbens was enhanced in M (5) (-/-) mice. DISCUSSION...

  8. Knockout of the tumor necrosis factor α receptor 1 gene can up-regulate erythropoietin receptor during myocardial ischemia-reperfusion injury in mice

    Institute of Scientific and Technical Information of China (English)

    LI Chang-ling; JIANG Jun; FAN You-qi; FU Guo-sheng; WANG Jia-nan; FAN Wei-ming

    2009-01-01

    Background Tumor necrosis factor α receptor 1 (TNFαR1) plays an important role in the signal pathway of apoptosis.The objective of this study was to investigate the effects of TNFaR1 knockout on the up-regulation of erythropoietin receptor (Epo-R) and the coordinated anti-apoptosis functions during myocardial ischemia-reperfusion injury in mice.Methods The ischemia-reperfusion injury model for cardiomyocytes was performed by ligating the left circumflex branch artery of TNFαR1 knockout (P55-/-) C17 B6 mice, as well as wild-type (P55+/+) C17 B6 mice. Triphenyltetrazolium chloride (TTC) staining was performed to observe the damaged area of the heart. TUNEL staining and DNA fragmentation were used to identify apoptosis. Mitochondrial Bcl-2 and Bax as well as expression of Epo-R and its downstream genes (Jak-2, slat-5, Akt, IkB-α, HIF-1α) were measured by Western blotting. The gene knockout mice were assigned into those undergoing the apoptosis surgical model group (KO group), and those subjected to sham operation (Kos group). Similarly, wild-type mice were either exposed to the surgical model (WT group) or subject to a sham operation (WTs group).Results The myocardial damage ratio of the wild-type group after the operation was significantly higher than that of the knockout group, (50.5±6.4)% vs (36.9±6.9)%, P<0.01. Similarly, TUNEL positive ratio of the wild-type group was significantly higher than that of the knockout group, (63.1±5.6)% vs (42.1±4.7)%, P<0.01. The gray value ratios of Epo-R,Jak-2, stat-5, Akt, IkB-α, HIF-1 and mitochondrial Bcl-2 in the KO group were significantly higher than those of the WT group, P<0.05; however, mitochondrial Bax was significantly lower than that of the WT group significantly (P<0.05).Conclusions Using the ischemia-reperfusion injury model in mice, cardiomyocytes of TNFαR1 knockouts exhibited anti-apoptotic characteristics. This information could be used to coordinate the prevention of myocardial apoptosis by up

  9. Genetic background can result in a marked or minimal effect of gene knockout (GPR55 and CB2 receptor) in experimental autoimmune encephalomyelitis models of multiple sclerosis.

    Science.gov (United States)

    Sisay, Sofia; Pryce, Gareth; Jackson, Samuel J; Tanner, Carolyn; Ross, Ruth A; Michael, Gregory J; Selwood, David L; Giovannoni, Gavin; Baker, David

    2013-01-01

    Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1) receptor and the orphan G protein receptor fifty-five (GPR55). Studies using C57BL/10 and C57BL/6 (Cnr2 (tm1Zim)) CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2 (Dgen)) receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2 (tm1Zim) mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational value of some

  10. Genetic background can result in a marked or minimal effect of gene knockout (GPR55 and CB2 receptor in experimental autoimmune encephalomyelitis models of multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Sofia Sisay

    Full Text Available Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1 receptor and the orphan G protein receptor fifty-five (GPR55. Studies using C57BL/10 and C57BL/6 (Cnr2 (tm1Zim CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2 (Dgen receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2 (tm1Zim mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational

  11. Tumor endothelial cell-specific drug delivery system using apelin-conjugated liposomes.

    Directory of Open Access Journals (Sweden)

    Hiroki Kawahara

    Full Text Available BACKGROUND: A drug delivery system specifically targeting endothelial cells (ECs in tumors is required to prevent normal blood vessels from being damaged by angiogenesis inhibitors. The purpose of this study was to investigate whether apelin, a ligand for APJ expressed in ECs when angiogenesis is taking place, can be used for targeting drug delivery to ECs in tumors. METHODS AND RESULTS: Uptake of apelin via APJ stably expressed in NIH-3T3 cells was investigated using TAMRA (fluorescent probe-conjugated apelin. Both long and short forms of apelin (apelin 36 and apelin 13 were taken up, the latter more effectively. To improve efficacy of apelin- liposome conjugates, we introduced cysteine, with its sulfhydryl group, to the C terminus of apelin 13, resulting in the generation of apelin 14. In turn, apelin 14 was conjugated to rhodamine-encapsulating liposomes and administered to tumor-bearing mice. In the tumor microenvironment, we confirmed that liposomes were incorporated into the cytoplasm of ECs. In contrast, apelin non-conjugated liposomes were rarely found in the cytoplasm of ECs. Moreover, non-specific uptake of apelin-conjugated liposomes was rarely detected in other normal organs. CONCLUSIONS: ECs in normal organs express little APJ; however, upon hypoxic stimulation, such as in tumors, ECs start to express APJ. The present study suggests that apelin could represent a suitable tool to effectively deliver drugs specifically to ECs within tumors.

  12. A muscle-specific knockout implicates nuclear receptor coactivator MED1 in the regulation of glucose and energy metabolism.

    Science.gov (United States)

    Chen, Wei; Zhang, Xiaoting; Birsoy, Kivanc; Roeder, Robert G

    2010-06-01

    As conventional transcriptional factors that are activated in diverse signaling pathways, nuclear receptors play important roles in many physiological processes that include energy homeostasis. The MED1 subunit of the Mediator coactivator complex plays a broad role in nuclear receptor-mediated transcription by anchoring the Mediator complex to diverse promoter-bound nuclear receptors. Given the significant role of skeletal muscle, in part through the action of nuclear receptors, in glucose and fatty acid metabolism, we generated skeletal muscle-specific Med1 knockout mice. Importantly, these mice show enhanced insulin sensitivity and improved glucose tolerance as well as resistance to high-fat diet-induced obesity. Furthermore, the white muscle of these mice exhibits increased mitochondrial density and expression of genes specific to type I and type IIA fibers, indicating a fast-to-slow fiber switch, as well as markedly increased expression of the brown adipose tissue-specific UCP-1 and Cidea genes that are involved in respiratory uncoupling. These dramatic results implicate MED1 as a powerful suppressor in skeletal muscle of genetic programs implicated in energy expenditure and raise the significant possibility of therapeutical approaches for metabolic syndromes and muscle diseases through modulation of MED1-nuclear receptor interactions.

  13. Enhanced self-administration of alcohol in muscarinic acetylcholine M4 receptor knockout mice

    DEFF Research Database (Denmark)

    de la Cour, Cecilie; Sørensen, Gunnar; Wörtwein, Gitta;

    2015-01-01

    Modulation of cholinergic neurotransmission via nicotinic acetylcholine receptors is known to alter alcohol-drinking behavior. It is not known if muscarinic acetylcholine receptor subtypes have similar effects. The muscarinic M4 receptor is highly expressed in the brain reinforcement system...

  14. Toll-like receptor 4 knockout alleviates paraquat-induced cardiomyocyte contractile dysfunction through an autophagy-dependent mechanism.

    Science.gov (United States)

    Wang, Shuyi; Zhu, Xiaoling; Xiong, Lize; Zhang, Yingmei; Ren, Jun

    2016-08-22

    Paraquat, a quarternary nitrogen herbicide, is a toxic prooxidant leading to multi-organ failure including the heart although the underlying mechanism remains poorly understood. This study was designed to examine the role of the innate proinflammatory mediator toll-like receptor 4 (TLR4) in paraquat-induced cardiac contractile anomalies and the underlying mechanisms involved with a focus on autophagy, a conservative machinery governing protein and organelle degradation and recycling for cardiac homeostasis. Wild-type (WT) and TLR4 knockout (TLR4(-/-)) mice were challenged with paraquat (45mg/kg, i.p.) for 48h. Paraquat challenge did not affect mRNA levels of TLR2, TLR4 and TLR9 in WT mice nor did paraquat treatment alter TREM-1 levels. Paraquat challenge elicited cardiac mechanical defects including compromised cardiomyocyte contractile function, intracellular Ca(2+) handling, and overt autophagy as manifested by increased LC3BII-to-LC3BI ratio, Atg5, Atg7 and p62 levels. Interestingly, TLR4 knockout significantly attenuated paraquat-induced cardiac contractile and intracellular Ca(2+) derangement as well as alterations of autophagy markers. Paraquat-elicited changes in cardiac autophagy markers (LC3BII, LC3BII-to-LC3BI ratio and p62) were augmented by lysosomal inhibition using bafilomycin A1 in WT mice. TLR4 knockout significantly attenuated or negated paraquat-elicited increase in LC3BII, LC3BII-to-LC3BI ratio and p62 levels in the presence of lysosomal inhibition. In addition, paraquat challenge promoted phosphorylation of AMPK while suppressing the phosphorylation of mTOR and ULK1 (the autophagy inhibitory Ser(757)), the effects of which were significantly attenuated by TLR4 ablation. In vitro study revealed that AMPK activation using AICAR or mTOR inhibition using rapamycin effectively negated the beneficial cardiomyocyte mechanical effects of TLR4 inhibition (CLI-095) against paraquat toxicity, supporting a permissive role for AMPK-mTOR in TLR4 inhibition

  15. Differential actions of orexin receptors in brainstem cholinergic and monoaminergic neurons revealed by receptor knockouts: implications for orexinergic signaling in arousal and narcolepsy

    Directory of Open Access Journals (Sweden)

    Kristi A Kohlmeier

    2013-12-01

    Full Text Available Orexin neuropeptides influence multiple homeostatic functions and play an essential role in the expression of normal sleep-wake behavior. While their two known receptors (OX1 and OX2 are targets for novel pharmacotherapeutics, the actions mediated by each receptor remain largely unexplored. Using brain slices from mice constitutively lacking either receptor, we used whole-cell and Ca2+ imaging methods to delineate the cellular actions of each receptor within cholinergic (laterodorsal tegmental nucleus; LDT and monoaminergic (dorsal raphe; DR and locus coeruleus; LC brainstem nuclei – where orexins promote arousal and suppress REM sleep. In slices from OX2-/- mice, orexin-A (300 nM elicited wild-type responses in LDT, DR and LC neurons consisting of a depolarizing current and augmented voltage-dependent Ca2+ transients. In slices from OX1-/- mice, the depolarizing current was absent in LDT and LC neurons and was attenuated in DR neurons, although Ca2+-transients were still augmented. Since orexin-A produced neither of these actions in slices lacking both receptors, our findings suggest that orexin-mediated depolarization is mediated by both receptors in DR, but is exclusively mediated by OX1 in LDT and LC neurons, even though OX2 is present and OX2 mRNA appears elevated in brainstems from OX1-/- mice. Considering published behavioral data, these findings support a model in which orexin-mediated excitation of mesopontine cholinergic and monoaminergic neurons contributes little to stabilizing spontaneous waking and sleep bouts, but functions in context-dependent arousal and helps restrict muscle atonia to REM sleep. The augmented Ca2± transients mediated by both receptors appeared mediated by influx via L-type Ca2+ channels, which is often linked to transcriptional signaling. This could provide an adaptive signal to compensate for receptor loss or prolonged antagonism and may contribute to the reduced severity of narcolepsy in single receptor

  16. P2Y2 receptor knock-out mice display normal NaCl absorption in medullary thick ascending limb

    DEFF Research Database (Denmark)

    Marques, Rita D; Praetorius, Helle A; Leipziger, Jens

    2013-01-01

    significantly lower NaCl absorption rates when compared to mTALs from juvenile WT mice. This could be attributed to significantly higher Rtevalues in mTALs from adult WT mice. This pattern was not observed in mTALs from P2Y2 receptor knockout (KO) mice. In addition, adult P2Y2 receptor KO mTALs have...... (35 days) male mice. Using microelectrodes, we determined the transepithelial voltage (Vte) and the transepithelial resistance (Rte) and thus, transepithelial NaCl absorption (equivalent short circuit current, I'sc). We find that mTALs from adult wild type (WT) mice have...... significantly lower Vtevalues compared to the juvenile. No difference in absolute I'sc was observed when comparing mTALs from WT and KO mice. AVP stimulated the mTALs to similar increases of NaCl absorption irrespective of the absence of the P2Y2 receptor. No difference was observed in the medullary expression...

  17. Important role for bone marrow-derived cholesteryl ester transfer protein in lipoprotein cholesterol redistribution and atherosclerotic lesion development in LDL receptor knockout mice

    NARCIS (Netherlands)

    Van Eck, Miranda; Ye, Dan; Hildebrand, Reeni B.; Kruijt, J. Kar; de Haan, Willeke; Hoekstra, Menno; Rensen, Patrick C. N.; Ehnholm, Christian; Jauhiainen, Matti; Van Berkel, Theo J. C.

    2007-01-01

    Abundant amounts of cholesteryl ester transfer protein (CETP) are found in macrophage-derived foam cells in the arterial wall, but its function in atherogenesis is unknown. To investigate the role of macrophage CETP in atherosclerosis, LDL receptor knockout mice were transplanted with bone marrow fr

  18. Serotonin/dopamine interactions in a hyperactive mouse: reduced serotonin receptor 1B activity reverses effects of dopamine transporter knockout.

    Directory of Open Access Journals (Sweden)

    Frank Scott Hall

    Full Text Available Knockout (KO mice that lack the dopamine transporter (SL6A3; DAT display increased locomotion that can be attenuated, under some circumstances, by administration of drugs that normally produce psychostimulant-like effects, such as amphetamine and methylphenidate. These results have led to suggestions that DAT KO mice may model features of attention deficit hyperactivity disorder (ADHD and that these drugs may act upon serotonin (5-HT systems to produce these unusual locomotor decreasing effects. Evidence from patterns of brain expression and initial pharmacologic studies led us to use genetic and pharmacologic approaches to examine the influence of altered 5-HT1B receptor activity on hyperactivity in DAT KO mice. Heterozygous 5-HT1B KO and pharmacologic 5-HT1B antagonism both attenuated locomotor hyperactivity in DAT KO mice. Furthermore, DAT KO mice with reduced, but not eliminated, 5-HT1B receptor expression regained cocaine-stimulated locomotion, which was absent in DAT KO mice with normal levels of 5-HT1B receptor expression. Further experiments demonstrated that the degree of habituation to the testing apparatus determined whether cocaine had no effect on locomotion in DAT KO or reduced locomotion, helping to resolve differences among prior reports. These findings of complementation of the locomotor effects of DAT KO by reducing 5-HT1B receptor activity underscore roles for interactions between specific 5-HT receptors and dopamine (DA systems in basal and cocaine-stimulated locomotion and support evaluation of 5-HT1B antagonists as potential, non-stimulant ADHD therapeutics.

  19. Expression of Key Regulators of Mitochondrial Biogenesis in Growth Hormone Receptor Knockout (GHRKO) Mice is Enhanced but is Not Further Improved by Other Potential Life-Extending Interventions

    OpenAIRE

    Gesing, Adam; Masternak, Michal M.; Wang, Feiya; Joseph, Anna-Maria; Leeuwenburgh, Christiaan; Westbrook, Reyhan; Lewinski, Andrzej; Karbownik-Lewinska, Malgorzata; Bartke, Andrzej

    2011-01-01

    Mitochondrial biogenesis is essential for cell viability. Growth hormone receptor knockout (GHRKO), calorie restriction, and surgical visceral fat removal constitute experimental interventions to delay aging and increase life span. We examined the expression of known regulators of mitochondriogenesis: peroxisome proliferator–activated receptor γ co-activator 1α (PGC-1α), adenosine monophosphate (AMP)–activated protein kinase (AMPK), sirtuin-1 (SIRT-1) and sirtuin-3 (SIRT-3), endothelial nitri...

  20. Apelin-13 as a novel target for intervention in secondary injury after traumatic brain injury.

    Science.gov (United States)

    Bao, Hai-Jun; Qiu, Hai-Yang; Kuai, Jin-Xia; Song, Cheng-Jie; Wang, Shao-Xian; Wang, Chao-Qun; Peng, Hua-Bin; Han, Wen-Can; Wu, Yong-Ping

    2016-07-01

    The adipocytokine, apelin-13, is an abundantly expressed peptide in the nervous system. Apelin-13 protects the brain against ischemia/reperfusion injury and attenuates traumatic brain injury by suppressing autophagy. However, secondary apelin-13 effects on traumatic brain injury-induced neural cell death and blood-brain barrier integrity are still not clear. Here, we found that apelin-13 significantly decreases cerebral water content, mitigates blood-brain barrier destruction, reduces aquaporin-4 expression, diminishes caspase-3 and Bax expression in the cerebral cortex and hippocampus, and reduces apoptosis. These results show that apelin-13 attenuates secondary injury after traumatic brain injury and exerts a neuroprotective effect. PMID:27630697

  1. Increased cocaine self-administration in M4 muscarinic acetylcholine receptor knockout mice

    DEFF Research Database (Denmark)

    Schmidt, Lene Sørensen; Thomsen, Morgane; Weikop, Pia;

    2011-01-01

    Rationale The reinforcing effects of cocaine are mediated by the mesolimbic dopamine system. Behavioral and neurochemical studies have shown that the cholinergic muscarinic M4 receptor subtype plays an important role in regulation of dopaminergic neurotransmission. Objectives Here we investigated...

  2. Decreased Incentive Motivation Following Knockout or Acute Blockade of the Serotonin Transporter: Role of the 5-HT2C Receptor.

    Science.gov (United States)

    Browne, Caleb J; Fletcher, Paul J

    2016-09-01

    Acute pharmacological elevation of serotonin (5-hydroxytryptamine; 5-HT) activity decreases operant responding for primary reinforcers, suggesting that 5-HT reduces incentive motivation. The mechanism by which 5-HT alters incentive motivation is unknown, but parallel evidence that 5-HT2C receptor agonists also reduce responding for primary reinforcers implicates this receptor as a potential candidate. These experiments examined whether chronic and acute disruptions of serotonin transporter (SERT) activity altered incentive motivation, and whether the 5-HT2C receptor mediated the effects of elevated 5-HT on behavior. To assess incentive motivation, we measured responding for three different reinforcers: a primary reinforcer (saccharin), a conditioned reinforcer (CRf), and an unconditioned sensory reinforcer (USRf). In the chronic condition, responding was compared between SERT knockout (SERT-KO) mice and their wild-type littermates. In the acute condition, responding was examined in wild-type mice following treatment with 10 or 20 mg/kg citalopram, or its vehicle. The ability of the selective 5-HT2C antagonist SB 242084 to prevent the effects of SERT-KO and citalopram on responding was subsequently examined. Both SERT-KO and citalopram reduced responding for saccharin, a CRf, and a USRf. Treatment with SB 242084 enhanced responding for a CRf and a USRf in SERT-KO mice and blocked the effects of citalopram on CRf and USRf responding. However, SB 242084 was unable to prevent the effects of SERT-KO or citalopram on responding for saccharin. These results support a powerful inhibitory function for 5-HT in the control of incentive motivation, and indicate that the 5-HT2C receptor mediates these effects of 5-HT in a reinforcer-dependent manner. PMID:27125304

  3. Orp8 deficiency in bone marrow-derived cells reduces atherosclerotic lesion progression in LDL receptor knockout mice.

    Directory of Open Access Journals (Sweden)

    Erik van Kampen

    Full Text Available INTRODUCTION: Oxysterol binding protein Related Proteins (ORPs mediate intracellular lipid transport and homeostatic regulation. ORP8 downregulates ABCA1 expression in macrophages and cellular cholesterol efflux to apolipoprotein A-I. In line, ORP8 knockout mice display increased amounts of HDL cholesterol in blood. However, the role of macrophage ORP8 in atherosclerotic lesion development is unknown. METHODS AND RESULTS: LDL receptor knockout (KO mice were transplanted with bone marrow (BM from ORP8 KO mice and C57Bl/6 wild type mice. Subsequently, the animals were challenged with a high fat/high cholesterol Western-type diet to induce atherosclerosis. After 9 weeks of Western-Type diet feeding, serum levels of VLDL cholesterol were increased by 50% in ORP8 KO BM recipients compared to the wild-type recipients. However, no differences were observed in HDL cholesterol. Despite the increase in VLDL cholesterol, lesions in mice transplanted with ORP8 KO bone marrow were 20% smaller compared to WT transplanted controls. In addition, ORP8 KO transplanted mice displayed a modest increase in the percentage of macrophages in the lesion as compared to the wild-type transplanted group. ORP8 deficient macrophages displayed decreased production of pro-inflammatory factors IL-6 and TNFα, decreased expression of differentiation markers and showed a reduced capacity to form foam cells in the peritoneal cavity. CONCLUSIONS: Deletion of ORP8 in bone marrow-derived cells, including macrophages, reduces lesion progression after 9 weeks of WTD challenge, despite increased amounts of circulating pro-atherogenic VLDL. Reduced macrophage foam cell formation and lower macrophage inflammatory potential are plausible mechanisms contributing to the observed reduction in atherosclerosis.

  4. Increased susceptibility to diet-induced obesity in GPRC6A receptor knockout mice

    DEFF Research Database (Denmark)

    Clemmensen, Christoffer; Smajilovic, Sanela; Madsen, Andreas N;

    2013-01-01

    The recently identified G protein-coupled receptor GPRC6A is activated by dietary amino acids and expressed in multiple tissues. Although the receptor is hypothesised to exert biological impact on metabolic and endocrine-related parameters, the role of the receptor in obesity and metabolic....... A significant increase in body weight, corresponding to a selective increase in body fat, was observed in Gprc6a KO mice exposed to an HFD relative to WT controls. The obese phenotype was linked to subtle perturbations in energy homoeostasis as GPRC6A deficiency resulted in chronic hyperphagia and decreased...... locomotor activity. Moreover, diet-induced obese Gprc6a KO mice had increased circulating insulin and leptin levels relative to WT animals, thereby demonstrating that endocrine abnormalities associate with the reported disturbances in energy balance. The phenotype was further accompanied by disruptions...

  5. Duodenal calcium absorption in vitamin D receptor-knockout mice: functional and molecular aspects.

    NARCIS (Netherlands)

    Cromphaut, S.J. van; Dewerchin, M.; Hoenderop, J.G.J.; Stockmans, I.; Herck, E. van; Kato, S.; Bindels, R.J.M.; Collen, D.; Carmeliet, P.; Bouillon, R.; Carmeliet, G.

    2001-01-01

    Rickets and hyperparathyroidism caused by a defective vitamin D receptor (VDR) can be prevented in humans and animals by high calcium intake, suggesting that intestinal calcium absorption is critical for 1,25(OH)(2) vitamin D [1,25(OH)(2)D(3)] action on calcium homeostasis. We assessed the rate of s

  6. COMPARATIVE EFFECTS OF CHLOPYRIFOS IN WILD TYPE AND CANNABINIOID CB1 RECEPTOR KNOCKOUT MICE

    OpenAIRE

    Baireddy, Praveena; Liu, Jing; Hinsdale, Myron; Pope, Carey

    2011-01-01

    Endocannabinoids (eCBs) modulate neurotransmission by inhibiting the release of a variety of neurotransmitters. The cannabinoid receptor agonist WIN 55,212-2 (WIN) can modulate organophosphorus (OP) anticholinesterase toxicity in rats, presumably by inhibiting acetylcholine (ACh) release. Some OP anticholinesterases also inhibit eCB-degrading enzymes. We studied the effects of the OP insecticide chlorpyrifos (CPF) on cholinergic signs of toxicity, cholinesterase activity and ACh release in ti...

  7. Decreased response to social defeat stress in μ-opioid-receptor knockout mice

    OpenAIRE

    Komatsu, Hiroshi; Ohara, Arihisa; Sasaki, Kazumasu; Abe, Hiromi; Hattori, Hisaki; Hall, F Scott; Uhl, George R.; Sora, Ichiro

    2011-01-01

    Substantial evidence exists that opioid systems are involved in stress response and that changes in opioid systems in response to stressors affect both reward and analgesia. Reportedly, mice suffering chronic social defeat stress subsequently show aversion to social contact with unfamiliar mice. To further examine the role of opioid systems in stress response, the behavioral and neurochemical effects of chronic social defeat stress (psychosocial stress) were evaluated in μ-opioid-receptor kno...

  8. Upregulation of Cannabinoid Type 1 Receptors in Dopamine D2 Receptor Knockout Mice Is Reversed by Chronic Forced Ethanol Consumption

    Energy Technology Data Exchange (ETDEWEB)

    Thanos, P.K.; Wang, G.; Thanos, P.K.; Gopez, V.; Delis, F.; Michaelides, M.; Grand, D.K.; Wang, G.-J.; Kunos, G.; Volkow, N.D.

    2011-01-01

    The anatomical proximity of the cannabinoid type 1 (CNR1/CB1R) and the dopamine D2 receptors (DRD2), their ability to form CB1R-DRD2 heteromers, their opposing roles in locomotion, and their involvement in ethanol's reinforcing and addictive properties prompted us to study the levels and distribution of CB1R after chronic ethanol intake, in the presence and absence of DRD2. We monitored the drinking patterns and locomotor activity of Drd2+/+ and Drd2-/- mice consuming either water or a 20% (v/v) ethanol solution (forced ethanol intake) for 6 months and used the selective CB1 receptor antagonist [{sup 3}H]SR141716A to quantify CB1R levels in different brain regions with in vitro receptor autoradiography. We found that the lack of DRD2 leads to a marked upregulation (approximately 2-fold increase) of CB1R in the cerebral cortex, the caudate-putamen, and the nucleus accumbens, which was reversed by chronic ethanol intake. The results suggest that DRD2-mediated dopaminergic neurotransmission and chronic ethanol intake exert an inhibitory effect on cannabinoid receptor expression in cortical and striatal regions implicated in the reinforcing and addictive properties of ethanol.

  9. Layer- and column-specific knockout of NMDA receptors in pyramidal neurons of the mouse barrel cortex.

    Directory of Open Access Journals (Sweden)

    Rachel Aronoff

    2007-11-01

    Full Text Available Viral vectors injected into the mouse brain offer the possibility for localized genetic modifications in a highly controlled manner. Lentivector injection into mouse neocortex transduces cells within a diameter of approximately 200µm, which closely matches the lateral scale of a column in barrel cortex. The depth and volume of the injection determines which cortical layer is transduced. Furthermore, transduced gene expression from the lentivector can be limited to predominantly pyramidal neurons by using a 1.3kb fragment of the αCaMKII promoter. This technique therefore allows genetic manipulation of a specific cell type in defined columns and layers of the neocortex. By expressing Cre recombinase from such a lentivector in gene-targeted mice carrying a floxed gene, highly specific genetic lesions can be induced. Here, we demonstrate the utility of this approach by specifically knocking out NMDA receptors (NMDARs in pyramidal neurons in the somatosensory barrel cortex of gene-targeted mice carrying floxed NMDAR 1 genes. Neurons transduced with lentivector encoding GFP and Cre recombinase exhibit not only reductions in NMDAR 1 mRNA levels, but reduced NMDAR-dependent currents and pairing-induced synaptic potentiation. This technique for knockout of NMDARs in a cell type, column- and layer-specific manner in the mouse somatosensory cortex may help further our understanding of the functional roles of NMDARs in vivo during sensory perception and learning.

  10. Weekly Treatment of 2-Hydroxypropyl-β-cyclodextrin Improves Intracellular Cholesterol Levels in LDL Receptor Knockout Mice

    Directory of Open Access Journals (Sweden)

    Sofie M. A. Walenbergh

    2015-09-01

    Full Text Available Recently, the importance of lysosomes in the context of the metabolic syndrome has received increased attention. Increased lysosomal cholesterol storage and cholesterol crystallization inside macrophages have been linked to several metabolic diseases, such as atherosclerosis and non-alcoholic fatty liver disease (NAFLD. Two-hydroxypropyl-β-cyclodextrin (HP-B-CD is able to redirect lysosomal cholesterol to the cytoplasm in Niemann-Pick type C1 disease, a lysosomal storage disorder. We hypothesize that HP-B-CD ameliorates liver cholesterol and intracellular cholesterol levels inside Kupffer cells (KCs. Hyperlipidemic low-density lipoprotein receptor knockout (Ldlr−/− mice were given weekly, subcutaneous injections with HP-B-CD or control PBS. In contrast to control injections, hyperlipidemic mice treated with HP-B-CD demonstrated a shift in intracellular cholesterol distribution towards cytoplasmic cholesteryl ester (CE storage and a decrease in cholesterol crystallization inside KCs. Compared to untreated hyperlipidemic mice, the foamy KC appearance and liver cholesterol remained similar upon HP-B-CD administration, while hepatic campesterol and 7α-hydroxycholesterol levels were back increased. Thus, HP-B-CD could be a useful tool to improve intracellular cholesterol levels in the context of the metabolic syndrome, possibly through modulation of phyto- and oxysterols, and should be tested in the future. Additionally, these data underline the existence of a shared etiology between lysosomal storage diseases and NAFLD.

  11. Effect of Shenxinning decoction on ventricular remodeling in AT1 receptor-knockout mice with chronic renal insufficiency

    Directory of Open Access Journals (Sweden)

    Xuejun Yang

    2014-01-01

    Full Text Available Objective: To observe the efficacy of Shenxinning Decoction (SXND in ventricular remodeling in AT1 receptor-knockout (AT1-KO mice with chronic renal insufficiency (CRI. Materials and Methods: AT1-KO mice modeled with subtotal (5/6 nephrectomy were intervened with SXND for 12 weeks. Subsequently, blood urea nitrogen (BUN, serum creatinine (SCr, brain natriuretic peptide (BNP, echocardiography (left ventricular end-diastolic diameter, LVDD; left ventricular end-systolic diameter, LVDS; fractional shortening, FS; and ejection fraction, EF, collagen types I and III in the heart and kidney, myocardial mitochondria, and cardiac transforming growth factor-β1 (TGF-β1 of the AT1-KO mice were compared with the same model with nephrectomy only and untreated with SXND. Results: AT1-KO mice did not affect the process of CRI but it could significantly affect cardiac remodeling process. SXND decreased to some extent the AT1-KO mice′s BUN, SCr, BNP, and cardiac LVDD, LVDS, and BNP, improved FS and EF, lowered the expression of collagen type I and III in heart and kidney, increased the quantity of mitochondria and ameliorated their structure, and down-regulated the expression of TGF-β1. Conclusion: SXND may antagonize the renin-angiotensin system (RAS and decrease uremia toxins, thereby ameliorating ventricular remodeling in CRI. Furthermore, SXND has a mechanism correlated with the improvement of myocardial energy metabolism and the down-regulation of TGF-β1.

  12. Cardiac-specific knockout of ETA receptor mitigates low ambient temperature-induced cardiac hypertrophy and contractile dysfunction

    Institute of Scientific and Technical Information of China (English)

    Yingmei Zhang; Linlin Li; Yinan Hua; Jennifer M. Nunn; Feng Dong; Masashi Yanagisawa; Jun Ren

    2012-01-01

    Cold exposure is associated with oxidative stress and cardiac dysfunction.The endothelin (ET) system,which plays a key role in myocardial homeostasis,may participate in cold exposure-induced cardiovascular dysfunction.This study was designed to examine the role of ET-1 in cold stress-induced cardiac geometric and contractile responses.Wild-type (WT) and ETA receptor knockout (ETAKO) mice were assigned to normal or cold exposure (4℃) environment for 2 and 5 weeks prior to evaluation of cardiac geometry,contractile,and intracellular Ca2+ properties.Levels of the temperature sensor transient receptor potential vanlllold (TRPV1),mitochondrlal proteins for biogenesis and oxidative phosphorylatlon,Including UCP2,HSP90,and PGC1α were evaluated.Cold stress triggered cardiac hypertrophy,depressed myocardial contractile capacity,including fractional shortening,peak shortening,and maximal velocity of shortening/relengthening,reduced intracellular Ca2+ release,prolonged intracellular Ca2+ decay and relengthening duration,generation of ROS and superoxide,as well as apoptosls,the effects of which were blunted by ETAKO.Western blotting revealed downregulated TRPV1 and PGC1α as well as upregulated UCP2 and activation of GSK3β,GATA4,and CREB in cold-stressed WT mouse hearts,which were obliterated by ETAKO.Levels of HSP90,an essential regulator for thermotolerance,were unchanged.The TRPV1 agonist SA13353 attenuated whereas TRPV1 antagonist capsazepino mimicked cold stress- or ET-1-induced cardiac anomalies.The GSK3β Inhibitor SB216763 ablated cold stress-induced cardiac contractile (but not remodeling) changes and ET-1-induced TRPV1 downregulation.These data suggest that ETAKO protects against cold exposure-induced cardiac remodeling and dysfunction mediated through TRPV1 and mitochondrlal function.

  13. Dopamine-dependent CB1 receptor dysfunction at corticostriatal synapses in homozygous PINK1 knockout mice.

    Science.gov (United States)

    Madeo, G; Schirinzi, T; Maltese, M; Martella, G; Rapino, C; Fezza, F; Mastrangelo, N; Bonsi, P; Maccarrone, M; Pisani, A

    2016-02-01

    Recessive mutations in the PTEN-induced putative kinase 1 (PINK1) gene cause early-onset Parkinson's disease (PD). We investigated the interaction between endocannabinoid (eCB) and dopaminergic transmission at corticostriatal synapses in PINK1 deficient mice. Whole-cell patch-clamp and conventional recordings of striatal medium spiny neurons (MSNs) were made from slices of PINK1(-/-), heterozygous PINK1(+/-) mice and wild-type littermates (PINK1(+/+)). In PINK1(+/+) mice, CB1 receptor (CB1R) activation reduced spontaneous excitatory postsynaptic currents (sEPSCs). Likewise, CB1R agonists (ACEA, WIN55,212-3 and HU210) induced a dose-dependent reduction of cortically-evoked excitatory postsynaptic potential (eEPSP) amplitude. While CB1R agonists retained their inhibitory effect in heterozygous PINK1(+/-) mice, conversely, in PINK1(-/-) mice they failed to modulate sEPSC amplitude. Similarly, CB1R activation failed to reduce eEPSP amplitude in PINK1(-/-) mice. Parallel biochemical measurements revealed no significant difference in the levels of the two main eCBs, 2-arachidonoylglycerol (2-AG) and anandamide (AEA) in PINK1(-/-) striata. Similarly, no change was observed in the enzymatic activity of both fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), responsible for eCB hydrolysis. Instead, a significant reduction of binding ability of CB1R agonists was found in PINK1(-/-) mice. Notably, the CB1R-dependent inhibition of synaptic activity was restored either by amphetamine or after chronic treatment with the D2 dopamine receptor agonist quinpirole. Additionally, CB1R binding activity returned to control levels after chronic pretreatment with quinpirole. Consistent with the hypothesis of a close interplay with dopaminergic neurotransmission, our findings show a CB1R dysfunction at corticostriatal synapses in PINK1(-/-), but not in PINK1(+/-) mice, and provide a mechanistic link to the distinct plasticity deficits observed in both genotypes. PMID

  14. Small heterodimer partner overexpression partially protects against liver tumor development in farnesoid X receptor knockout mice

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guodong [Department of Surgical Oncology, Cancer Treatment Center, The Fourth Affiliated Hospital of Harbin Medical University, Harbin (China); Kong, Bo [Department of Pharmacology and Toxicology, School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Zhu, Yan [Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing (China); Zhan, Le [Department of Pharmacology and Toxicology, School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Williams, Jessica A. [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Tawfik, Ossama [Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Kassel, Karen M. [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Luyendyk, James P. [Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI (United States); Wang, Li [Department of Medicine, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT (United States); Guo, Grace L., E-mail: guo@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, School of Pharmacy, Rutgers University, Piscataway, NJ (United States)

    2013-10-15

    Farnesoid X receptor (FXR, Nr1h4) and small heterodimer partner (SHP, Nr0b2) are nuclear receptors that are critical to liver homeostasis. Induction of SHP serves as a major mechanism of FXR in suppressing gene expression. Both FXR{sup −/−} and SHP{sup −/−} mice develop spontaneous hepatocellular carcinoma (HCC). SHP is one of the most strongly induced genes by FXR in the liver and is a tumor suppressor, therefore, we hypothesized that deficiency of SHP contributes to HCC development in the livers of FXR{sup −/−} mice and therefore, increased SHP expression in FXR{sup −/−} mice reduces liver tumorigenesis. To test this hypothesis, we generated FXR{sup −/−} mice with overexpression of SHP in hepatocytes (FXR{sup −/−}/SHP{sup Tg}) and determined the contribution of SHP in HCC development in FXR{sup −/−} mice. Hepatocyte-specific SHP overexpression did not affect liver tumor incidence or size in FXR{sup −/−} mice. However, SHP overexpression led to a lower grade of dysplasia, reduced indicator cell proliferation and increased apoptosis. All tumor-bearing mice had increased serum bile acid levels and IL-6 levels, which was associated with activation of hepatic STAT3. In conclusion, SHP partially protects FXR{sup −/−} mice from HCC formation by reducing tumor malignancy. However, disrupted bile acid homeostasis by FXR deficiency leads to inflammation and injury, which ultimately results in uncontrolled cell proliferation and tumorigenesis in the liver. - Highlights: • SHP does not prevent HCC incidence nor size in FXR KO mice but reduces malignancy. • Increased SHP promotes apoptosis. • Bile acids and inflammation maybe critical for HCC formation with FXR deficiency.

  15. 15 years of genetic approaches in vivo for addiction research: opioid receptor and peptide gene knockout in mouse models of drug abuse

    OpenAIRE

    Charbogne, Pauline; Kieffer, Brigitte L.; Befort, Katia

    2013-01-01

    The endogenous opioid system is expressed throughout the brain reinforcement circuitry, and plays a major role in reward processing, mood control and the development of addiction. This neuromodulator system is composed of three receptors, mu, delta and kappa, interacting with a family of opioid peptides derived from POMC (β-endorphin), preproenkephalin (pEnk) and preprodynorphin (pDyn) precursors. Knockout mice targeting each gene of the opioid system have been created almost two decades ago....

  16. Similarities in the behavior and molecular deficits in the frontal cortex between the neurotensin receptor subtype 1 knockout mice and chronic phencyclidine-treated mice: relevance to schizophrenia

    OpenAIRE

    Li, Zhimin; Boules, Mona; Williams, Katrina; Gordillo, Andres; Li, Shuhua; Richelson, Elliott

    2010-01-01

    Much evidence suggests that targeting the neurotensin (NT) system may provide a novel and promising treatment for schizophrenia. Our recent work shows that: NTS1 knockout (NTS1−/−) mice may provide a potential animal model for studying schizophrenia by investigating the effect of deletion NTS1 receptor on amphetamine-induced hyperactivity and neurochemical changes. The data indicate a hyper-dopaminergic state similar to the excessive striatal DA activity reported in schizophrenia. The present...

  17. Knockout of the aryl hydrocarbon receptor results in distinct hepatic and renal phenotypes in rats and mice

    Energy Technology Data Exchange (ETDEWEB)

    Harrill, Joshua A. [The Hamner Institute for Health Sciences, Institute for Chemical Safety Sciences, RTP, NC 27709 (United States); Hukkanen, Renee R.; Lawson, Marie; Martin, Greg [The Dow Chemical Company, Midland, MI 48640 (United States); Gilger, Brian [North Carolina State University, College of Veterinary Medicine, Raleigh, NC 27606 (United States); Soldatow, Valerie [University of North Carolina, Department of Environmental Sciences and Engineering, Chapel Hill, NC 27599 (United States); LeCluyse, Edward L. [The Hamner Institute for Health Sciences, Institute for Chemical Safety Sciences, RTP, NC 27709 (United States); Budinsky, Robert A.; Rowlands, J. Craig [The Dow Chemical Company, Midland, MI 48640 (United States); Thomas, Russell S., E-mail: RThomas@thehamner.org [The Hamner Institute for Health Sciences, Institute for Chemical Safety Sciences, RTP, NC 27709 (United States)

    2013-10-15

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor which plays a role in the development of multiple tissues and is activated by a large number of ligands, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In order to examine the roles of the AHR in both normal biological development and response to environmental chemicals, an AHR knockout (AHR-KO) rat model was created and compared with an existing AHR-KO mouse. AHR-KO rats harboring either 2-bp or 29-bp deletion mutation in exon 2 of the AHR were created on the Sprague–Dawley genetic background using zinc-finger nuclease (ZFN) technology. Rats harboring either mutation type lacked expression of AHR protein in the liver. AHR-KO rats were also insensitive to thymic involution, increased hepatic weight and the induction of AHR-responsive genes (Cyp1a1, Cyp1a2, Cyp1b1, Ahrr) following acute exposure to 25 μg/kg TCDD. AHR-KO rats had lower basal expression of transcripts for these genes and also accumulated ∼ 30–45-fold less TCDD in the liver at 7 days post-exposure. In untreated animals, AHR-KO mice, but not AHR-KO rats, had alterations in serum analytes indicative of compromised hepatic function, patent ductus venosus of the liver and persistent hyaloid arteries in the eye. AHR-KO rats, but not AHR-KO mice, displayed pathological alterations to the urinary tract: bilateral renal dilation (hydronephrosis), secondary medullary tubular and uroepithelial degenerative changes and bilateral ureter dilation (hydroureter). The present data indicate that the AHR may play significantly different roles in tissue development and homeostasis and toxicity across rodent species. - Highlights: • An AHR knockout rat was generated on a Sprague–Dawley outbred background. • AHR-KO rats lack expression of AHR protein. • AHR-KO rats are insensitive to TCDD-mediated effects. • Data suggests difference in the role of AHR in tissue development of rats and mice. • Abnormalities in vascular

  18. Trace eyeblink conditioning is impaired in α7 but not in β2 nicotinic acetylcholine receptor knock-out mice

    Directory of Open Access Journals (Sweden)

    Kevin L Brown

    2010-10-01

    Full Text Available Nicotinic acetylcholine receptors (nAChRs are essentially involved in learning and memory. A neurobiologically and behaviorally well-characterized measure of learning and memory, eyeblink classical conditioning, is sensitive to disruptions in acetylcholine neurotransmission. The two most common forms of eyeblink classical conditioning – the delay and trace paradigms - differentially engage forebrain areas densely-populated with nAChRs. The present study used genetically modified mice to investigate the effects of selective nAChR subunit deletion on delay and trace eyeblink classical conditioning. α7 and β2 nAChR subunit knockout (KO mice and their wild-type littermates were trained for 10 daily sessions in a 500 ms delay or 500 ms trace eyeblink conditioning task, matched for the interstimulus interval (ISI between conditioned stimulus (CS and unconditioned stimulus (US onset. Impairments in conditioned responding were found in α7 KO mice trained in trace – but not delay – eyeblink conditioning. Relative to littermate controls, β2 KO mice were unimpaired in the trace task but displayed higher levels of conditioned responding in delay eyeblink conditioning. Elevated conditioned response levels in delay-conditioned β2 KOs corresponded to elevated levels of alpha responding in this group. These findings suggest that α7 nAChRs play a role in normal acquisition of 500 ms trace eyeblink classical conditioning in mice. The prominent distribution of α7 nAChRs in the hippocampus and other forebrain regions may account for these genotype-specific acquisition effects in this hippocampus-dependent trace paradigm.

  19. Adaptations in pre- and postsynaptic 5-HT1A receptor function and cocaine supersensitivity in serotonin transporter knockout rats.

    NARCIS (Netherlands)

    Homberg, J.R.; Boer, SF De; Raaso, H.S.; Olivier, J.D.A.; Verheul, M.; Ronken, E.; Cools, A.R.; Ellenbroek, B.A.; Schoffelmeer, A.N.; Schuren, L.J. van der; Vries, TJ De; Cuppen, E.

    2008-01-01

    RATIONALE: While individual differences in vulnerability to psychostimulants have been largely attributed to dopaminergic neurotransmission, the role of serotonin is not fully understood. OBJECTIVES: To study the rewarding and motivational properties of cocaine in the serotonin transporter knockout

  20. Adaptations in pre- and postsynaptic 5-HT(1A) receptor function and cocaine supersensitivity in serotonin transporter knockout rats

    NARCIS (Netherlands)

    Homberg, Judith R; De Boer, Sietse F; Raasø, Halfdan S; Olivier, Jocelien D A; Verheul, Mark; Ronken, Eric; Cools, Alexander R; Ellenbroek, Bart A; Schoffelmeer, Anton N M; Vanderschuren, Louk J M J; De Vries, Taco J; Cuppen, Edwin

    2008-01-01

    RATIONALE: While individual differences in vulnerability to psychostimulants have been largely attributed to dopaminergic neurotransmission, the role of serotonin is not fully understood. OBJECTIVES: To study the rewarding and motivational properties of cocaine in the serotonin transporter knockout

  1. Toll-like receptor 4 knockout ameliorates neuroinflammation due to lung-brain interaction in mechanically ventilated mice.

    Science.gov (United States)

    Chen, Ting; Chen, Chang; Zhang, Zongze; Zou, Yufeng; Peng, Mian; Wang, Yanlin

    2016-08-01

    Toll-like receptor 4 (TLR4) is a crucial receptor in the innate immune system, and increasing evidence supports its role in inflammation, stress, and tissue injury, including injury to the lung and brain. We aimed to investigate the effects of TLR4 on neuroinflammation due to the lung-brain interaction in mechanically ventilated mice. Male wild-type (WT) C57BL/6 and TLR4 knockout (TLR4 KO) mice were divided into three groups: (1) control group (C): spontaneous breathing; (2) anesthesia group (A): spontaneous breathing under anesthesia; and (3) mechanical ventilation group (MV): 6h of MV under anesthesia. The behavioral responses of mice were tested with fear conditioning tests. The histological changes in the lung and brain were assessed using hematoxylin-eosin (HE) staining. The level of TLR4 mRNA in tissue was measured using reverse transcription-polymerase chain reaction (RT-PCR). The levels of inflammatory cytokines were measured with an enzyme-linked immunosorbent assay (ELISA). Microgliosis, astrocytosis, and the TLR4 immunoreactivity in the hippocampus were measured by double immunofluorescence. MV mice exhibited impaired cognition, and this impairment was less severe in TLR4 KO mice than in WT mice. In WT mice, MV increased TLR4 mRNA expression in the lung and brain. MV induced mild lung injury, which was prevented in TLR4 KO mice. MV mice exhibited increased levels of inflammatory cytokines, increased microglia and astrocyte activation. Microgliosis was alleviated in TLR4 KO mice. MV mice exhibited increased TLR4 immunoreactivity, which was expressed in microglia and astrocytes. These results demonstrate that TLR4 is involved in neuroinflammation due to the lung-brain interaction and that TLR4 KO ameliorates neuroinflammation due to lung-brain interaction after prolonged MV. In addition, Administration of a TLR4 antagonist (100μg/mice) to WT mice also significantly attenuated neuroinflammation of lung-brain interaction due to prolonged MV. TLR4 antagonism

  2. Fibroblast growth factor 21, fibroblast growth factor receptor 1, and β-Klotho expression in bovine growth hormone transgenic and growth hormone receptor knockout mice

    DEFF Research Database (Denmark)

    Brooks, Nicole E; Hjortebjerg, Rikke; Henry, Brooke E;

    2016-01-01

    of Fgf21, Fgfr1, and Klb mRNA in white adipose tissue (AT), brown AT, and liver were evaluated by reverse transcription quantitative PCR. RESULTS: As expected, bGH mice had increased body weight (p=3.70E(-8)) but decreased percent fat mass (p=4.87E(-4)). Likewise, GHR-/- mice had decreased body weight (p...... was to quantify circulating FGF21 and tissue specific expression of Fgf21, Fgfr1, and Klb in mice with modified GH action. Based on previous studies, we hypothesized that bovine GH transgenic (bGH) mice will be FGF21 resistant and GH receptor knockout (GHR-/-) mice will have normal FGF21 action. DESIGN: Seven......-month-old male bGH mice (n=9) and wild type (WT) controls (n=10), and GHR-/- mice (n=8) and WT controls (n=8) were used for all measurements. Body composition was determined before dissection, and tissue weights were measured at the time of dissection. Serum FGF21 levels were evaluated by ELISA. Expression...

  3. Enhanced effects of amphetamine but reduced effects of the hallucinogen, 5-MeO-DMT, on locomotor activity in 5-HT(1A) receptor knockout mice: implications for schizophrenia.

    Science.gov (United States)

    van den Buuse, Maarten; Ruimschotel, Emma; Martin, Sally; Risbrough, Victoria B; Halberstadt, Adam L

    2011-01-01

    Serotonin-1A (5-HT(1A)) receptors may play a role in schizophrenia and the effects of certain antipsychotic drugs. However, the mechanism of interaction of 5-HT(1A) receptors with brain systems involved in schizophrenia, remains unclear. Here we show that 5-HT(1A) receptor knockout mice display enhanced locomotor hyperactivity to acute treatment with amphetamine, a widely used animal model of hyperdopaminergic mechanisms in psychosis. In contrast, the effect of MK-801 on locomotor activity, modeling NMDA receptor hypoactivity, was unchanged in the knockouts. The effect of the hallucinogen 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) was markedly reduced in 5-HT(1A) receptor knockout mice. There were no changes in apomorphine-induced disruption of PPI, a model of sensory gating deficits seen in schizophrenia. Similarly, there were no major changes in density of dopamine transporters (DAT) or dopamine D(1) or D(2) receptors which could explain the behavioural changes observed in 5-HT(1A) receptor knockout mice. These results extend our insight into the possible role of these receptors in aspects of schizophrenia. As also suggested by previous studies using agonist and antagonist drugs, 5-HT(1A) receptors may play an important role in hallucinations and to modulate dopaminergic activity in the brain.

  4. Antinociceptive effects of morphine and naloxone in mu-opioid receptor knockout mice transfected with the MORS196A gene

    Directory of Open Access Journals (Sweden)

    Tao Pao-Luh

    2010-04-01

    Full Text Available Abstract Background Opioid analgesics such as morphine and meperidine have been used to control moderate to severe pain for many years. However, these opioids have many side effects, including the development of tolerance and dependence after long-term use, which has limited their clinical use. We previously reported that mutations in the mu-opioid receptors (MOR S196L and S196A rendered them responsive to the opioid antagonist naloxone without altering the agonist phenotype. In MORS196A knock-in mice, naloxone and naltrexone were antinociceptive but did not cause tolerance or physical dependence. In this study we delivery this mutated MOR gene into pain related pathway to confirm the possibility of in vivo transfecting MORS196A gene and using naloxone as a new analgesic agent. Methods The MOR-knockout (MOR-KO mice were used to investigate whether morphine and naloxone could show antinociceptive effects when MORS196A gene was transfected into the spinal cords of MOR-KO mice. Double-stranded adeno-associated virus type 2 (dsAAV2 was used to deliver the MORS196A-enhanced green fluorescence protein (EGFP gene by microinjected the virus into the spinal cord (S2/S3 dorsal horn region. Tail-flick test was used to measure the antinociceptive effect of drugs. Results Morphine (10 mg/kg, s.c. and naloxone (10 mg/kg, s.c. had no antinociceptive effects in MOR-KO mice before gene transfection. However, two or three weeks after the MOR-S196A gene had been injected locally into the spinal cord of MOR-KO mice, significant antinociceptive effects could be induced by naloxone or morphine. On the other hand, only morphine but not naloxone induced significant tolerance after sub-chronic treatment. Conclusion Transfecting the MORS196A gene into the spinal cord and systemically administering naloxone in MOR-KO mice activated the exogenously delivered mutant MOR and provided antinociceptive effect without causing tolerance. Since naloxone will not activate natural

  5. Modification of female and male social behaviors in estrogen receptor beta knockout mice by neonatal maternal separation

    Directory of Open Access Journals (Sweden)

    Mumeko C Tsuda

    2014-09-01

    Full Text Available Maternal separation (MS is an animal model mimicking the effects of early life stress on the development of emotional and social behaviors. Recent studies revealed that MS stress increased social anxiety levels in female mice and reduced peri-pubertal aggression in male mice. Estrogen receptor (ER β plays a pivotal role in the regulation of stress responses and anxiety-related and social behaviors. Behavioral studies using ERβ knockout (βERKO mice reported increased social investigation and decreased social anxiety in βERKO females, and elevated aggression levels in βERKO males compared to wild-type (WT mice. In the present study, using βERKO and WT mice, we examined whether ERβ contributes to MS effects on anxiety and social behaviors. βERKO and WT mice were separated from their dam daily (4 h from postnatal day 1 to 14 and control groups were left undisturbed. First, MS and ERβ gene deletion individually increased anxiety-related behaviors in the open field test, but only in female mice. Anxiety levels were not further modified in βERKO female mice subjected to MS stress. Second, βERKO female mice showed higher levels of social investigation compared with WT in the social investigation test and long-term social preference test. However, MS greatly reduced social investigation duration and elevated number of stretched approaches in WT and βERKO females in the social investigation test, suggesting elevated levels of social anxiety in both genotypes. Third, peri-pubertal and adult βERKO male mice were more aggressive than WT mice as indicated by heightened aggression duration. On the other hand, MS significantly decreased aggression duration in both genotypes, but only in peri-pubertal male mice. Altogether, these results suggest that βERKO mice are sensitive to the adverse effects of MS stress on subsequent female and male social behaviors, which could then have overrode the ERβ effects on female social anxiety and male aggression.

  6. Lateral intracerebroventricular injection of Apelin-13 inhibits apoptosis after cerebral ischemia/reperfusion injury

    Directory of Open Access Journals (Sweden)

    Xiao-ge Yan

    2015-01-01

    Full Text Available Apelin-13 inhibits neuronal apoptosis caused by hydrogen peroxide, yet apoptosis following cerebral ischemia-reperfusion injury has rarely been studied. In this study, Apelin-13 (0.1 µg/g was injected into the lateral ventricle of middle cerebral artery occlusion model rats. TTC, TUNEL, and immunohistochemical staining showed that compared with the cerebral ischemia/reperfusion group, infarct volume and apoptotic cell number at the ischemic penumbra region were decreased in the Apelin-13 treatment group. Additionally, Apelin-13 treatment increased Bcl-2 immunoreactivity and decreased caspase-3 immunoreactivity. Our findings suggest that Apelin-13 is neuroprotective against cerebral ischemia/reperfusion injury through inhibition of neuronal apoptosis.

  7. Effects of structural analogues of apelin-12 in acute myocardial infarction in rats

    Directory of Open Access Journals (Sweden)

    Oleg I Pisarenko

    2013-01-01

    Full Text Available Objective: To examine cardioprotective effects of Ρ-terminal fragment of adipokine apelin-12 (A12, its novel structural analogue [MeArg1 , NLe 10 ]-A12 (I, and [d-Ala 12 ]-A12 (II, a putative antagonist of APJ receptor, employing in vivo model of ischemia/reperfusion (I/R injury. Materials and Methods: Peptides were synthesized by the automatic solid phase method using Fmoc technology. Anesthetized open-chest male Wistar rats were subjected to left anterior descending (LAD coronary artery occlusion and coronary reperfusion. Hemodynamic variables and electrocardiogram (ECG were monitored throughout the experiment. Myocardial injury was assessed by infarct size (IS, activity of necrosis markers in plasma, and metabolic state of the area at risk (AAR. Results: Intravenous injection of A12, I, or II at the onset of reperfusion led to a transient reduction of the mean arterial pressure. A12 or I administration decreased the percent ratio of IS/AAR by 40% and 30%, respectively, compared with control animals which received saline. Both peptides improved preservation of high-energy phosphates, reduced lactate accumulation in the AAR, and lowered CK-MB and LDH activities in plasma at the end of reperfusion compared with these indices in control. Treatment with II did not significantly affect either the IS/AAR, % ratio, or activities of both markers of necrosis compared with control. The overall metabolic protection of the AAR in the treated groups increased in the following rank: II < A12 < I. Conclusions: The structural analogue of apelin-12 [MeArg 1 , NLe 10 ]-A12 may be a promising basis to create a new drug for the treatment of acute coronary syndrome.

  8. Effects of Chronic Mild Stress on the Development of Atherosclerosis and Expression of Toll-Like Receptor 4 Signaling Pathway in Adolescent Apolipoprotein E Knockout Mice

    Directory of Open Access Journals (Sweden)

    Hongfeng Gu

    2009-01-01

    Full Text Available Here, we investigated the effect of chronic mild stress (CMS on the development of atherosclerosis as well as the expression of Toll-like receptors (TLRs signaling pathway in adolescent apolipoprotein E knockout (apoE-/- mice. Mice were subjected to daily CMS for 0, 4, and 12 weeks, respectively. To identify the expression of Toll-like receptor 4 signaling pathway in adolescent apolipoprotein E knockout mice subjected to CMS, we compared gene expression in aortas of stressed and unstressed mice using TLRs signaling pathway real-time PCR microarrays consisting of 87 genes. We found that atherosclerosis lesions both in aortic tress and sinuses of CMS mice were significantly increased linearly in response to duration of CMS exposure. Among 87 genes analyzed, 15 genes were upregulated in stressed mice, especially TLR4, myeloid differentiation factor 88 (MyD88, and IL-1β, and 28 genes were downregulated compared with nonstressed mice. CMS mice demonstrated markedly increased aortic atherosclerosis that were associated with significant increases in levels of expression of TLR4, MyD88, nuclear factor κB (NF-κB, MCP-1, IL-1β, TNF-α, and sICAM-1. Taken together, our results suggest an important role for TLR4 signaling pathway in atherosclerosis in a CMS mouse model.

  9. Evaluation of organ-specific glucose metabolism by 18F-FDG in insulin receptor substrate-1 (IRS-1) knockout mice as a model of insulin resistance

    International Nuclear Information System (INIS)

    Insulin resistance (IR) is a physiological condition in which the body produces insulin but does not result in a sufficient biological effect. Insulin resistance is usually asymptomatic but is associated with health problems and is a factor in the metabolic syndrome. The aim of the present study is to clarify organ-specific insulin resistance in normal daily conditions using [18F]-2-fluoro-2-deoxy-D-glucose ([18F]-FDG). The biodistribution of [18F]-FDG was examined in insulin receptor substrate-1 (IRS-1) knockout mice, an animal model of skeletal muscle insulin resistance, and C57BL/6J (wild-type) mice with and without insulin loading. Mice received 0.5 MBq of [18F]-FDG injected into the tail vein, immediately followed by nothing (control cohorts) or an intraperitoneal injection of 1.5 mU/g body weight of human insulin as an insulin loading test. Blood glucose concentrations for all of the experimental animals were assessed at 0, 20, 40, and 60 min post-injection. The mice were subsequently killed, and tissue was collected for evaluation of [18F]-FDG biodistribution. The radioactivity of each organ was measured using a gamma counter. In the absence of insulin, the blood glucose concentrations of wild-type mice (132±26 mg/dl) and IRS-1 knockout mice (134±18 mg/dl) were not significantly different. Blood glucose concentrations decreased following insulin administration, with lower concentrations in wild-type mice than in knockout mice at 20, 40, and 60 min. A statistically significant difference in [18F]-FDG uptake between wild-type mice and IRS-1 knockout mice was confirmed in the heart, abdominal muscle, and femoral muscle. With insulin loading, [18F]-FDG uptake in the heart, back muscle, and abdominal muscle was significantly increased compared to without insulin loading in both wild-type mice and knockout mice. Our results showed that IR significantly affected [18F]-FDG uptake in the heart in normal daily conditions. IR was associated with decreased [18F

  10. Enhanced effects of amphetamine but reduced effects of the hallucinogen, 5-MeO-DMT, on locomotor activity in 5-HT1A receptor knockout mice: Implications for schizophrenia

    OpenAIRE

    van den Buuse, Maarten; Ruimschotel, Emma; Martin, Sally; Risbrough, Victoria B.; Halberstadt, Adam L.

    2011-01-01

    Serotonin-1A (5-HT1A) receptors may play a role in schizophrenia and the effects of certain antipsychotic drugs. However, the mechanism of interaction of 5-HT1A receptors with brain systems involved in schizophrenia, remains unclear. Here we show that 5-HT1A receptor knockout mice display enhanced locomotor hyperactivity to acute treatment with amphetamine, a widely used animal model of hyperdopaminergic mechanisms in psychosis. In contrast, the effect of MK-801 on locomotor activity, modelin...

  11. Nature's knockout: the Mel1b receptor is not necessary for reproductive and circadian responses to melatonin in Siberian hamsters.

    Science.gov (United States)

    Weaver, D R; Liu, C; Reppert, S M

    1996-11-01

    The pineal hormone melatonin regulates seasonal reproduction and influences the timing of circadian rhythms. The Mel1a and Mel1b receptors are the high-affinity melatonin receptors present in mammals. Unexpectedly, the Mel1b receptor gene of the Siberian hamster, Phodopus sungorus, cannot encode a functional receptor; two nonsense mutations are present within the coding region. Southern blot analysis indicates that this is a single copy gene. The Mel1b receptor gene is nonfunctional in outbred populations of P. sungorus and Phodopus campbelli. Siberian hamsters lacking a functional Mel1b receptor nevertheless show seasonal reproductive and circadian responses to melatonin, indicating that the Mel1b receptor is not necessary for these responses. These data support the hypothesis that the Mel1a receptor, which does encode a functional receptor in this species, mediates reproductive and circadian responses to melatonin.

  12. Mu opioid receptors on primary afferent nav1.8 neurons contribute to opiate-induced analgesia: insight from conditional knockout mice.

    Directory of Open Access Journals (Sweden)

    Raphaël Weibel

    Full Text Available Opiates are powerful drugs to treat severe pain, and act via mu opioid receptors distributed throughout the nervous system. Their clinical use is hampered by centrally-mediated adverse effects, including nausea or respiratory depression. Here we used a genetic approach to investigate the potential of peripheral mu opioid receptors as targets for pain treatment. We generated conditional knockout (cKO mice in which mu opioid receptors are deleted specifically in primary afferent Nav1.8-positive neurons. Mutant animals were compared to controls for acute nociception, inflammatory pain, opiate-induced analgesia and constipation. There was a 76% decrease of mu receptor-positive neurons and a 60% reduction of mu-receptor mRNA in dorsal root ganglia of cKO mice. Mutant mice showed normal responses to heat, mechanical, visceral and chemical stimuli, as well as unchanged morphine antinociception and tolerance to antinociception in models of acute pain. Inflammatory pain developed similarly in cKO and controls mice after Complete Freund's Adjuvant. In the inflammation model, however, opiate-induced (morphine, fentanyl and loperamide analgesia was reduced in mutant mice as compared to controls, and abolished at low doses. Morphine-induced constipation remained intact in cKO mice. We therefore genetically demonstrate for the first time that mu opioid receptors partly mediate opiate analgesia at the level of Nav1.8-positive sensory neurons. In our study, this mechanism operates under conditions of inflammatory pain, but not nociception. Previous pharmacology suggests that peripheral opiates may be clinically useful, and our data further demonstrate that Nav1.8 neuron-associated mu opioid receptors are feasible targets to alleviate some forms of persistent pain.

  13. A shutoff and exonuclease mutant of murine gammaherpesvirus-68 yields infectious virus and causes RNA loss in type I interferon receptor knockout cells.

    Science.gov (United States)

    Sheridan, Victoria; Polychronopoulos, Louise; Dutia, Bernadette M; Ebrahimi, Bahram

    2014-05-01

    Significant loss of RNA followed by severely reduced cellular protein pool, a phenomenon termed host shutoff, is associated with a number of lytic virus infections and is a critical player in viral pathogenesis. Until recently, viral DNA exonucleases were associated only with processing of viral genomic DNA and its encapsidation. However, recent observations have identified host shutoff and exonuclease function for the highly conserved viral exonucleases in γ-herpesviruses, which include Kaposi's sarcoma-associated herpesvirus, Epstein-Barr virus and the mouse model murine gammaherpesvirus-68, also referred to as MHV-68. In this study, we show that although ablation of the MHV-68 exonuclease ORF37 caused a restrictive phenotype in WT IFN-α/β receptor-positive cells such as NIH 3T3, lack of ORF37 was tolerated in cells lacking the IFN-α/β receptor: the ORF37Stop virus was capable of forming infectious particles and caused loss of mRNA in IFN-α/β receptor knockout cells. Moreover, ORF37Stop virus was able to establish lytic infection in the lungs of mice lacking the IFN-α/β receptor. These observations provide evidence that lytic MHV-68 infection and subsequent loss of mRNA can take place independently of ORF37. Moreover, efficient growth of ORF37Stop virus also identifies a role for this family of viral nucleases in providing a window of opportunity for virus growth by overcoming type I IFN-dependent responses.

  14. Knockout crickets for the study of learning and memory: Dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets.

    Science.gov (United States)

    Awata, Hiroko; Watanabe, Takahito; Hamanaka, Yoshitaka; Mito, Taro; Noji, Sumihare; Mizunami, Makoto

    2015-01-01

    Elucidation of reinforcement mechanisms in associative learning is an important subject in neuroscience. In mammals, dopamine neurons are thought to play critical roles in mediating both appetitive and aversive reinforcement. Our pharmacological studies suggested that octopamine and dopamine neurons mediate reward and punishment, respectively, in crickets, but recent studies in fruit-flies concluded that dopamine neurons mediates both reward and punishment, via the type 1 dopamine receptor Dop1. To resolve the discrepancy between studies in different insect species, we produced Dop1 knockout crickets using the CRISPR/Cas9 system and found that they are defective in aversive learning with sodium chloride punishment but not appetitive learning with water or sucrose reward. The results suggest that dopamine and octopamine neurons mediate aversive and appetitive reinforcement, respectively, in crickets. We suggest unexpected diversity in neurotransmitters mediating appetitive reinforcement between crickets and fruit-flies, although the neurotransmitter mediating aversive reinforcement is conserved. This study demonstrates usefulness of the CRISPR/Cas9 system for producing knockout animals for the study of learning and memory. PMID:26521965

  15. Knockout crickets for the study of learning and memory: Dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets.

    Science.gov (United States)

    Awata, Hiroko; Watanabe, Takahito; Hamanaka, Yoshitaka; Mito, Taro; Noji, Sumihare; Mizunami, Makoto

    2015-11-02

    Elucidation of reinforcement mechanisms in associative learning is an important subject in neuroscience. In mammals, dopamine neurons are thought to play critical roles in mediating both appetitive and aversive reinforcement. Our pharmacological studies suggested that octopamine and dopamine neurons mediate reward and punishment, respectively, in crickets, but recent studies in fruit-flies concluded that dopamine neurons mediates both reward and punishment, via the type 1 dopamine receptor Dop1. To resolve the discrepancy between studies in different insect species, we produced Dop1 knockout crickets using the CRISPR/Cas9 system and found that they are defective in aversive learning with sodium chloride punishment but not appetitive learning with water or sucrose reward. The results suggest that dopamine and octopamine neurons mediate aversive and appetitive reinforcement, respectively, in crickets. We suggest unexpected diversity in neurotransmitters mediating appetitive reinforcement between crickets and fruit-flies, although the neurotransmitter mediating aversive reinforcement is conserved. This study demonstrates usefulness of the CRISPR/Cas9 system for producing knockout animals for the study of learning and memory.

  16. Secretin receptor-knockout mice are resistant to high-fat diet-induced obesity and exhibit impaired intestinal lipid absorption.

    Science.gov (United States)

    Sekar, Revathi; Chow, Billy K C

    2014-08-01

    Secretin, a classical gastrointestinal hormone released from S cells in response to acid and dietary lipid, regulates pleiotropic physiological functions, such as exocrine pancreatic secretion and gastric motility. Subsequent to recently proposed revisit on secretin's metabolic effects, we have confirmed lipolytic actions of secretin during starvation and discovered a hormone-sensitive lipase-mediated mechanistic pathway behind. In this study, a 12 wk high-fat diet (HFD) feeding to secretin receptor-knockout (SCTR(-/-)) mice and their wild-type (SCTR(+/+)) littermates revealed that, despite similar food intake, SCTR(-/-) mice gained significantly less weight (SCTR(+/+): 49.6±0.9 g; SCTR(-/-): 44.7±1.4 g; Pfat content. These SCTR(-/-) mice have corresponding alleviated HFD-associated hyperleptinemia and improved glucose/insulin tolerance. Further analyses indicate that SCTR(-/-) have impaired intestinal fatty acid absorption while having similar energy expenditure and locomotor activity. Reduced fat absorption in the intestine is further supported by lowered postprandial triglyceride concentrations in circulation in SCTR(-/-) mice. In jejunal cells, transcript and protein levels of a key fat absorption regulator, cluster of differentiation 36 (CD36), was reduced in knockout mice, while transcript of Cd36 and fatty-acid uptake in isolated enterocytes was stimulated by secretin. Based on our findings, a novel positive feedback pathway involving secretin and CD36 to enhance intestinal lipid absorption is being proposed. PMID:24769669

  17. Enhanced plasma ghrelin levels in Helicobacter pylori-colonized,interleukin-1-receptor type 1-homozygous knockout (IL-1R1-/-) mice

    Institute of Scientific and Technical Information of China (English)

    Yuka Abiko; Hidekazu Suzuki; Tatsuhiro Masaoka; Sachiko Nomura; Kumiko Kurabayashi; Hiroshi Hosoda; Kenji Kangawa; Toshifumi Hibi

    2005-01-01

    AIM: Ghrelin is an endogenous ligand for the growth hormone secretagogue receptor, and it plays a role in stimulating the growth hormone secretion, food intake,body weight gain and gastric motility. Eradication of Helicobacter pylori(H pylori) was shown to be associated with increase of the body weight. On the other hand, H pylori infection evokes the release of gastric IL-1β. The present study was designed to investigate the involvement of the gastric IL-1 signal in the ghrelin dynamics in H pyloricolonized mice.METHODS: Twelve-week-old female IL-1-receptor type 1-homozygous-knockout mice (IL-1R1-/-) and their wild-type littermates (WT) were orally inoculated with H pylori (Hp group), while other cohorts received oral inoculation of culture medium (Cont group). Thirteen weeks after the inoculation, the mice were examined. The plasma and stomach ghrelin levels and the gastric preproghrelin mRNA were measured.RESULTS: Although the WT mice with H pylori infection showed a significantly decreased body weight as compared with that of the animals without H pylori infection,H pylori infection did not influence the body weight of the IL-1R1-knockout (IL-1R1-/-) mice. In the H pylori-infected IL-1R1-/-mice, the total and active ghrelin levels in the plasma were significantly increased, and the gastric ghrelin level was decreased. No significant differences were noted in the gastric preproghrelin mRNA expression.CONCLUSION: Ghrelin secretion triggered by H pylori infection might be suppressed by IL-1β, the release of which is also induced by the infection, resulting in the body weight loss of mice with H pylori infection.

  18. TIMP3 interplays with apelin to regulate cardiovascular metabolism in hypercholesterolemic mice

    Directory of Open Access Journals (Sweden)

    Robert Stöhr

    2015-10-01

    Conclusion: TIMP3 regulates lipid metabolism as well as oxidative stress response via apelin. These findings therefore suggest that TIMP3 maintains metabolic flexibility in the heart, particularly during episodes of increased cardiac stress.

  19. Expression of key regulators of mitochondrial biogenesis in growth hormone receptor knockout (GHRKO) mice is enhanced but is not further improved by other potential life-extending interventions.

    Science.gov (United States)

    Gesing, Adam; Masternak, Michal M; Wang, Feiya; Joseph, Anna-Maria; Leeuwenburgh, Christiaan; Westbrook, Reyhan; Lewinski, Andrzej; Karbownik-Lewinska, Malgorzata; Bartke, Andrzej

    2011-10-01

    Mitochondrial biogenesis is essential for cell viability. Growth hormone receptor knockout (GHRKO), calorie restriction, and surgical visceral fat removal constitute experimental interventions to delay aging and increase life span. We examined the expression of known regulators of mitochondriogenesis: peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), adenosine monophosphate (AMP)-activated protein kinase (AMPK), sirtuin-1 (SIRT-1) and sirtuin-3 (SIRT-3), endothelial nitric oxide synthase (eNOS), nuclear respiratory factor-1, mitochondrial transcription factor A (TFAM), and mitofusin-2 (MFN-2) in the skeletal muscles and hearts of control and calorie-restricted female GHRKO mice and in the kidneys of male GHRKOs after visceral fat removal or sham surgery. Expression of PGC-1α in skeletal muscles, AMPK, SIRT-1, SIRT-3, eNOS, and MFN-2 in the heart and PGC-1α, AMPK, SIRT-3, eNOS, and MFN-2 in kidneys was increased in GHRKO mice but was not affected by calorie restriction or visceral fat removal. GHRKO mice have increased expression of key regulators of mitochondriogenesis, which is not improved further by calorie restriction or visceral fat removal. PMID:21788651

  20. Influence of bone morphogenetic protein type IA receptor conditional knockout in lens on expression of bone morphogenetic protein 4 in lens

    Institute of Scientific and Technical Information of China (English)

    Qi; Zhao; Jiang-Yue; Zhao; Jin-Song; Zhang

    2015-01-01

    AIM: To investigate the influence of bone morphogenetic protein type IA receptor [BMPR-IA(ALK3)] conditional knockout in lens on expression of bone morphogenetic protein 4(BMP4) in lens during the development of the vertebrate eye.METHODS: Cre-positive mice were mated with Crenegative mice to generate 50% Cre-positive(conditional knockout, CKO) 4 embryos, 8 eyes and 50% Cre-negative offspring(wild type, WT) 4 embryos, 8 eyes. The embryos were fixed in 4% paraformaldehyde, embedded in paraffin, and sectioned to a thickness of 4 μm.Removal of paraffin wax and dehydrating for sections,and then the procedure of in situ hybridization was processed, BMP4 MK1784-m(BOSTER) was used, and observed the expression of BMP4 in the lens in experimental group and control group. We selected SPSS11.0 software for statistical analysis, P<0.05 showed that the difference was statistically significant.· RESULTS: Four embryos of each genotype were examined, totally we had 8 embryos, 16 eyes. We got the uniform outcomes in all the embryos. We found ALK3 was required during lens growing, but was not essential for the formation of lens. We observed that the expression of BMP4 in the lens was significantly reduced in all 8 ALK3 CKO lens, BMP4 expression was normal in all the 8 WT lens, P <0.01. This phenomenon became increasingly visible in accordance with embryo development. The most apparent alteration was present at stage E15.5.CONCLUSION: ALK3 is essential for lens growth. The influence of ALK3 on the expression of BMP4 is present during the development of mice lens.

  1. Genetic knockout of the α7 nicotinic acetylcholine receptor gene alters hippocampal long-term potentiation in a background strain-dependent manner.

    Science.gov (United States)

    Freund, Ronald K; Graw, Sharon; Choo, Kevin S; Stevens, Karen E; Leonard, Sherry; Dell'Acqua, Mark L

    2016-08-01

    Reduced α7 nicotinic acetylcholine receptor (nAChR) function is linked to impaired hippocampal-dependent sensory processing and learning and memory in schizophrenia. While knockout of the Chrna7 gene encoding the α7nAChR on a C57/Bl6 background results in changes in cognitive measures, prior studies found little impact on hippocampal synaptic plasticity in these mice. However, schizophrenia is a multi-genic disorder where complex interactions between specific genetic mutations and overall genetic background may play a prominent role in determining phenotypic penetrance. Thus, we compared the consequences of knocking out the α7nAChR on synaptic plasticity in C57/Bl6 and C3H mice, which differ in their basal α7nAChR expression levels. Homozygous α7 deletion in C3H mice, which normally express higher α7nAChR levels, resulted in impaired long-term potentiation (LTP) at hippocampal CA1 synapses, while C3H α7 heterozygous mice maintained robust LTP. In contrast, homozygous α7 deletion in C57 mice, which normally express lower α7nAChR levels, did not alter LTP, as had been previously reported for this strain. Thus, the threshold of Chrna7 expression required for LTP may be different in the two strains. Measurements of auditory gating, a hippocampal-dependent behavioral paradigm used to identify schizophrenia-associated sensory processing deficits, was abnormal in C3H α7 knockout mice confirming that auditory gating also requires α7nAChR expression. Our studies highlight the importance of genetic background on the regulation of synaptic plasticity and could be relevant for understanding genetic and cognitive heterogeneity in human studies of α7nAChR dysfunction in mental disorders.

  2. Brain activation by short-term nicotine exposure in anesthetized wild-type and beta2-nicotinic receptors knockout mice: a BOLD fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, S.V.; Changeux, J.P.; Granon, S. [Unite de Neurobiologie Integrative du Systeme Cholinergique, URA CNRS 2182, Institut Pasteur, Departement de Neuroscience, 25 rue du Dr Roux, 75015 Paris (France); Amadon, A.; Giacomini, E.; Le Bihan, D. [Service Hospitalier Frederic Joliot, 4 place du general Leclerc, 91400 Orsay (France); Wiklund, A. [Section of Anaesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Sweden)

    2009-07-01

    Rationale: The behavioral effects of nicotine and the role of the beta2-containing nicotinic receptors in these behaviors are well documented. However, the behaviors altered by nicotine rely on the functioning on multiple brain circuits where the high-affinity {beta}2-containing nicotinic receptors ({beta}2*nAChRs) are located. Objectives We intend to see which brain circuits are activated when nicotine is given in animals naive for nicotine and whether the {beta}2*nAChRs are needed for its activation of the blood oxygen level dependent (BOLD) signal in all brain areas. Materials and methods: We used functional magnetic resonance imaging (fMRI) to measure the brain activation evoked by nicotine (1 mg/kg delivered at a slow rate for 45 min) in anesthetized C57BL/6J mice and {beta}2 knockout (KO) mice. Results: Acute nicotine injection results in a significant increased activation in anterior frontal, motor, and somatosensory cortices and in the ventral tegmental area and the substantia nigra. Anesthetized mice receiving no nicotine injection exhibited a major decreased activation in all cortical and subcortical structures, likely due to prolonged anesthesia. At a global level, {beta}2 KO mice were not rescued from the globally declining BOLD signal. However, nicotine still activated regions of a meso-cortico-limbic circuit likely via {alpha}7 nicotinic receptors. Conclusions: Acute nicotine exposure compensates for the drop in brain activation due to anesthesia through the meso-cortico-limbic network via the action of nicotine on {beta}2*nAChRs. The developed fMRI method is suitable for comparing responses in wild-type and mutant mice. (authors)

  3. Multiple risk pathways for schizophrenia converge in serine racemase knockout mice, a mouse model of NMDA receptor hypofunction

    OpenAIRE

    Balu, Darrick T.; Li, Yan; Puhl, Matthew D.; Benneyworth, Michael A.; Basu, Alo C.; Takagi, Shunsuke; Bolshakov, Vadim Y.; Coyle, Joseph T.

    2013-01-01

    We sought to determine whether the diverse hippocampal neuropathology observed in schizophrenia could be recapitulated in an animal model of NMDA receptor (NMDAR) hypofunction. Serine racemase-deficient (SR−/−) mice, which lack one of the NMDAR coagonists d-serine, display impaired hippocampal plasticity, as well as the morphological, neurochemical, and cognitive abnormalities consistent with what is observed in schizophrenia. Importantly, treatment in adulthood with d-serine reversed the ele...

  4. A2A adenosine receptor-mediated increase in coronary flow in hyperlipidemic APOE–knockout mice

    OpenAIRE

    Teng, Bunyen

    2011-01-01

    Bunyen Teng, S Jamal MustafaDepartment of Physiology and Pharmacology and Center for Cardiovascular and Respiratory Sciences, West Virginia University, Morgantown, WV, USAAbstract: Adenosine-induced coronary vasodilation is predominantly A2A adenosine receptor (AR)-mediated, whereas A1 AR is known to negatively modulate the coronary flow (CF). However, the coronary responses to adenosine in hyperlipidemia and atherosclerosis are not well understood. Using hyperlipidemic/atherosclerotic apolip...

  5. Colonic mucosal DNA methylation, immune response, and microbiome patterns in Toll-like receptor 2-knockout mice

    OpenAIRE

    Kellermayer, Richard; Dowd, Scot E.; Harris, R. Alan; Balasa, Alfred; Schaible, Tiffany D.; Wolcott, Randy D; Tatevian, Nina; Szigeti, Reka; Li, Zhijie; Versalovic, James; Smith, C. Wayne

    2011-01-01

    The connection between intestinal microbiota and host physiology is increasingly becoming recognized. The details of this dynamic interaction, however, remain to be explored. Toll-like receptor 2 (Tlr2) is important for its role in bacterial recognition, intestinal inflammation, and obesity-related metabolic changes. Therefore, we sought to determine the epigenomic and metagenomic consequences of Tlr2 deficiency in the colonic mucosa of mice to gain insights into biological pathways that shap...

  6. O sistema apelinérgico: papel na fisiologia e patologia humanas e potenciais aplicações terapêuticas The apelinergic system: the role played in human physiology and pathology and potential therapeutic applications

    Directory of Open Access Journals (Sweden)

    Ricardo Ladeiras-Lopes

    2008-05-01

    Full Text Available A apelina é um peptídeo recentemente descoberto e identificado como o ligando endógeno do receptor APJ. A apelina e o receptor APJ são expressos numa grande variedade de tecidos, tais como coração, cérebro, rins e pulmões, onde a sua interação pode ter importantes efeitos fisiopatológicos. Com efeito, a última década foi fértil no esclarecimento de possíveis papéis desempenhados pela apelina na fisiologia humana, nomeadamente como peptídeo regulador dos sistemas cardiovascular, hipotálamo-hipófisário, gastrointestinal e imunitário. Um possível envolvimento da apelina na patogênese de doenças com elevada prevalência e co-morbilidades, como a hipertensão arterial, a insuficiência cardíaca e o diabete melito tipo 2, perspectivam-na como um possível alvo terapêutico a explorar no futuro. Este trabalho fornece uma visão geral dos efeitos fisiológicos da apelina e apresenta o possível papel desse peptídeo na patogênese de várias doenças, associado a implicações terapêuticas que poderão vir a ser, assim, exploradas.Apelin is a recently discovered peptide, identified as an endogenous ligand of receptor APJ. Apelin and receptor APJ are expressed in a wide variety of tissues including heart, brain, kidneys and lungs. Their interaction may have relevant pathophysiologic effects in those tissues. In fact, the last decade has been rich in illustrating the possible roles played by apelin in human physiology, namely as a regulating peptide of cardiovascular, hypothalamus-hypophysis, gastrointestinal, and immune systems. The possible involvement of apelin in the pathogenesis of high prevalence conditions and comorbidities - such as hypertension, heart failure, and Diabetes Mellitus Type 2 (T2DM - rank it as a likely therapeutic target to be investigated in the future. The present paper is an overview of apelin physiologic effects and presents the possible role played by this peptide in the pathogenesis of a number of

  7. Effect of P2X(7) receptor knockout on exocrine secretion of pancreas, salivary glands and lacrimal glands

    DEFF Research Database (Denmark)

    Novak, Ivana; Jans, Ida M; Wohlfahrt, Louise

    2010-01-01

    the P2X(7) receptors affect fluid secretion in pancreas, salivary glands and tear glands. We monitored gland secretions in in vivo preparations of wild-type and P2X(7)(-/-) (Pfizer) mice stimulated with pilocarpine. In cell preparations from pancreas, parotid and lacrimal glands we measured ATP release...... and intracellular Ca(2+) activity using Fura-2. The data showed that pancreatic secretion and salivary secretions were reduced in P2X(7)(-/-) mice, and in contrast, tear secretion was increased in P2X(7)(-/-) mice. The secretory phenotype was also dependent on the sex of the animal, such that males were more...

  8. Gene knockout of nuclear progesterone receptor provides insights into the regulation of ovulation by LH signaling in zebrafish

    Science.gov (United States)

    Tang, Haipei; Liu, Yun; Li, Jianzhen; Yin, Yike; Li, Gaofei; Chen, Yu; Li, Shuisheng; Zhang, Yong; Lin, Haoran; Liu, Xiaochun; Cheng, Christopher H. K.

    2016-01-01

    It is well established that the luteinizing hormone surge triggers ovulation, a dynamic process leading to the release of the mature oocyte from the ovarian follicle. But how this process controlled by LH signaling remains largely unknown in non-mammalian species. In this study, we investigated the roles of nuclear progesterone receptor (npr) in LH-induced ovulation. Our results indicate that the nuclear progesterone receptor serves as an important mediator of LH action on ovulation. This conclusion is based on the following results: (1) the expression level of npr peaks at the full-grown stage of the follicles; (2) the expression of npr is stimulated by LH signaling in vitro and in vivo; and (3) the npr null females are infertile due to ovulation defects. Moreover, we further show that LH signaling could induce ptger4b expression in an npr-dependent manner, and blockage of Ptger4b could also block hCG-induced ovulation. Collectively, our results not only demonstrate that npr serves an indispensable role in mediating the action of LH on ovulation in zebrafish, but also provide insights into the molecular mechanisms of the regulation of ovulation in fish. PMID:27333837

  9. Generation of Interleukin-2 Receptor Gamma Gene Knockout Pigs from Somatic Cells Genetically Modified by Zinc Finger Nuclease-Encoding mRNA

    Science.gov (United States)

    Watanabe, Masahito; Nakano, Kazuaki; Matsunari, Hitomi; Matsuda, Taisuke; Maehara, Miki; Kanai, Takahiro; Kobayashi, Mirina; Matsumura, Yukina; Sakai, Rieko; Kuramoto, Momoko; Hayashida, Gota; Asano, Yoshinori; Takayanagi, Shuko; Arai, Yoshikazu; Umeyama, Kazuhiro; Nagaya, Masaki; Hanazono, Yutaka; Nagashima, Hiroshi

    2013-01-01

    Zinc finger nuclease (ZFN) is a powerful tool for genome editing. ZFN-encoding plasmid DNA expression systems have been recently employed for the generation of gene knockout (KO) pigs, although one major limitation of this technology is the use of potentially harmful genome-integrating plasmid DNAs. Here we describe a simple, non-integrating strategy for generating KO pigs using ZFN-encoding mRNA. The interleukin-2 receptor gamma (IL2RG) gene was knocked out in porcine fetal fibroblasts using ZFN-encoding mRNAs, and IL2RG KO pigs were subsequently generated using these KO cells through somatic cell nuclear transfer (SCNT). The resulting IL2RG KO pigs completely lacked a thymus and were deficient in T and NK cells, similar to human X-linked SCID patients. Our findings demonstrate that the combination of ZFN-encoding mRNAs and SCNT provides a simple robust method for producing KO pigs without genomic integration. PMID:24130776

  10. Anti-atherogenic effects of a phenol-rich fraction from Brazilian red wine (Vitis labrusca L.) in hypercholesterolemic low-density lipoprotein receptor knockout mice.

    Science.gov (United States)

    Hort, Mariana Appel; Schuldt, Elke Zuleika; Bet, Angela Cristina; DalBó, Silvia; Siqueira, Jarbas Mota; Ianssen, Carla; Abatepaulo, Fátima; de Souza, Heraldo Possolo; Veleirinho, Beatriz; Maraschin, Marcelo; Ribeiro-do-Valle, Rosa Maria

    2012-10-01

    Moderate wine intake (i.e., 1-2 glasses of wine a day) is associated with a reduced risk of morbidity and mortality from cardiovascular disease. The aim of this study was to evaluate the anti-atherosclerotic effects of a nonalcoholic ethyl acetate fraction (EAF) from a South Brazilian red wine obtained from Vitis labrusca grapes. Experiments were carried out on low-density lipoprotein (LDL) receptor knockout (LDLr⁻/⁻) mice, which were subjected to a hypercholesterolemic diet and treated with doses of EAF (3, 10, and 30 mg/kg) for 12 weeks. At the end of the treatment, the level of plasma lipids, the vascular reactivity, and the atherosclerotic lesions were evaluated. Our results demonstrated that the treatment with EAF at 3 mg/kg significantly decreased total cholesterol, triglycerides, and LDL plus very low-density lipoprotein levels compared with control hypercholesterolemic mice. The treatment of mice with EAF at 3 mg/kg also preserved the vasodilatation induced by acetylcholine on isolated thoracic aorta from hypercholesterolemic LDLr⁻/⁻ mice. This result is in agreement with the degree of lipid deposit on arteries. Taken together, the results show for the first time that the lowest concentration of an EAF obtained from a red wine produced in southern Brazil significantly reduced the progression of atherosclerosis in mice.

  11. Changes in Otx2 and Parvalbumin Immunoreactivity in the Superior Colliculus in the Platelet-Derived Growth Factor ReceptorKnockout Mice

    Directory of Open Access Journals (Sweden)

    Juanjuan Zhao

    2013-01-01

    Full Text Available The superior colliculus (SC, a relay nucleus in the subcortical visual pathways, is implicated in socioemotional behaviors. Homeoprotein Otx2 and β subunit of receptors of platelet-derived growth factor (PDGFR-β have been suggested to play an important role in development of the visual system and development and maturation of GABAergic neurons. Although PDGFR-β-knockout (KO mice displayed socio-emotional deficits associated with parvalbumin (PV-immunoreactive (IR neurons, their anatomical bases in the SC were unknown. In the present study, Otx2 and PV-immunolabeling in the adult mouse SC were investigated in the PDGFR-β KO mice. Although there were no differences in distribution patterns of Otx2 and PV-IR cells between the wild type and PDGFR-β KO mice, the mean numbers of both of the Otx2- and PV-IR cells were significantly reduced in the PDGFR-β KO mice. Furthermore, average diameters of Otx2- and PV-IR cells were significantly reduced in the PDGFR-β KO mice. These findings suggest that PDGFR-β plays a critical role in the functional development of the SC through its effects on Otx2- and PV-IR cells, provided specific roles of Otx2 protein and PV-IR cells in the development of SC neurons and visual information processing, respectively.

  12. Apelin as a marker for monitoring the tumor vessel normalization window during antiangiogenic therapy.

    Science.gov (United States)

    Zhang, Li; Takara, Kazuhiro; Yamakawa, Daishi; Kidoya, Hiroyasu; Takakura, Nobuyuki

    2016-01-01

    Antiangiogenic agents transiently normalize tumor vessel structure and improve vessel function, thereby providing a window of opportunity for enhancing the efficacy of chemotherapy or radiotherapy. Currently, there are no reliable predictors or markers reflecting this vessel normalization window during antiangiogenic therapy. Apelin, the expression of which is regulated by hypoxia, and which has well-described roles in tumor progression, is an easily measured secreted protein. Here, we show that apelin can be used as a marker for the vessel normalization window during antiangiogenic therapy. Mice bearing s.c. tumors resulting from inoculation of the colon adenocarcinoma cell line HT29 were treated with a single injection of bevacizumab, a mAb neutralizing vascular endothelial growth factor. Tumor growth, vessel density, pericyte coverage, tumor hypoxia, and small molecule delivery were determined at four different times after treatment with bevacizumab (days 1, 3, 5, and 8). Tumor growth and vessel density were significantly reduced after bevacizumab treatment, which also significantly increased tumor vessel maturity, and improved tumor hypoxia and small molecule delivery between days 3 and 5. These effects abated by day 8, suggesting that a time window for vessel normalization was opened between days 3 and 5 during bevacizumab treatment in this model. Apelin mRNA expression and plasma apelin levels decreased transiently at day 5 post-treatment, coinciding with vessel normalization. Thus, apelin is a potential indicator of the vessel normalization window during antiangiogenic therapy. PMID:26475217

  13. Automated pipeline to analyze non-contact infrared images of the paraventricular nucleus specific leptin receptor knock-out mouse model

    Science.gov (United States)

    Diaz Martinez, Myriam; Ghamari-Langroudi, Masoud; Gifford, Aliya; Cone, Roger; Welch, E. B.

    2015-03-01

    Evidence of leptin resistance is indicated by elevated leptin levels together with other hallmarks of obesity such as a defect in energy homeostasis.1 As obesity is an increasing epidemic in the US, the investigation of mechanisms by which leptin resistance has a pathophysiological impact on energy is an intensive field of research.2 However, the manner in which leptin resistance contributes to the dysregulation of energy, specifically thermoregulation,3 is not known. The aim of this study was to investigate whether the leptin receptor expressed in paraventricular nucleus (PVN) neurons plays a role in thermoregulation at different temperatures. Non-contact infrared (NCIR) thermometry was employed to measure surface body temperature (SBT) of nonanesthetized mice with a specific deletion of the leptin receptor in the PVN after exposure to room (25 °C) and cold (4 °C) temperature. Dorsal side infrared images of wild type (LepRwtwt/sim1-Cre), heterozygous (LepRfloxwt/sim1-Cre) and knock-out (LepRfloxflox/sim1-Cre) mice were collected. Images were input to an automated post-processing pipeline developed in MATLAB to calculate average and maximum SBTs. Linear regression was used to evaluate the relationship between sex, cold exposure and leptin genotype with SBT measurements. Findings indicate that average SBT has a negative relationship to the LepRfloxflox/sim1-Cre genotype, the female sex and cold exposure. However, max SBT is affected by the LepRfloxflox/sim1-Cre genotype and the female sex. In conclusion this data suggests that leptin within the PVN may have a neuroendocrine role in thermoregulation and that NCIR thermometry combined with an automated imaging-processing pipeline is a promising approach to determine SBT in non-anesthetized mice.

  14. Adipose tissue deficiency results in severe hyperlipidemia and atherosclerosis in the low-density lipoprotein receptor knockout mice.

    Science.gov (United States)

    Wang, Mengyu; Gao, Mingming; Liao, Jiawei; Qi, Yanfei; Du, Ximing; Wang, Yuhui; Li, Ling; Liu, George; Yang, Hongyuan

    2016-05-01

    Adipose tissue can store over 50% of whole-body cholesterol; however, the physiological role of adipose tissue in cholesterol metabolism and atherogenesis has not been directly assessed. Here, we examined lipoprotein metabolism and atherogenesis in a unique mouse model of severe lipodystrophy: the Seipin(-/-) mice, and also in mice deficient in both low-density lipoprotein receptor (Ldlr) and Seipin: the Ldlr(-/-)Seipin(-/-) mice. Plasma cholesterol was moderately increased in the Seipin(-/-) mice when fed an atherogenic diet. Strikingly, plasma cholesterol reached ~6000 mg/dl in the Seipin(-/-)Ldlr(-/-) mice on an atherogenic diet, as compared to ~1000 mg/dl in the Ldlr(-/-) mice on the same diet. The Seipin(-/-)Ldlr(-/-) mice also developed spontaneous atherosclerosis on chow diet and severe atherosclerosis on an atherogenic diet. Rosiglitazone treatment significantly reduced the hypercholesterolemia of the Seipin(-/-)Ldlr(-/-) mice, and also alleviated the severity of atherosclerosis. Our results provide direct evidence, for the first time, that the adipose tissue plays a critical role in the clearance of plasma cholesterol. Our results also reveal a previously unappreciated strong link between adipose tissue and LDLR in plasma cholesterol metabolism.

  15. Prenatal minocycline treatment alters synaptic protein expression, and rescues reduced mother call rate in oxytocin receptor-knockout mice.

    Science.gov (United States)

    Miyazaki, Shinji; Hiraoka, Yuichi; Hidema, Shizu; Nishimori, Katsuhiko

    2016-04-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired communication, difficulty in companionship, repetitive behaviors and restricted interests. Recent studies have shown amelioration of ASD symptoms by intranasal administration of oxytocin and demonstrated the association of polymorphisms in the oxytocin receptor (Oxtr) gene with ASD patients. Deficient pruning of synapses by microglial cells in the brain has been proposed as potential mechanism of ASD. Other researchers have shown specific activation of microglial cells in brain regions related to sociality in patients with ASD. Although the roles of Oxtr and microglia in ASD are in the spotlight, the relationship between them remains to be elucidated. In this study, we found abnormal activation of microglial cells and a reduction of postsynaptic density protein PSD95 expression in the Oxtr-deficient brain. Moreover, pharmacological inhibition of microglia during development can alter the expression of PSD95 and ameliorate abnormal mother-infant communication in Oxtr-deficient mice. Our results suggest that microglial abnormality is a potential mechanism of the development of Oxt/Oxtr mediated ASD-like phenotypes. PMID:26926566

  16. Apelin-13对自发性高血压大鼠心肌肥厚的影响%The effects of Apelin-13 on myocardial hypertrophy in the spontaneously hypertensive rats

    Institute of Scientific and Technical Information of China (English)

    陈柏荣; 刘茂; 罗礼云; 陈剑; 伍卫

    2016-01-01

    目的:观察外源性Apelin-13对自发性高血压大鼠( SHR)心肌肥厚的影响,并初步探讨其作用机制。方法将24只20周龄雄性SHR随机分为空白对照组(NTC)、硝苯地平组(NIF)、Apelin-13组(Apelin-13),每组8只。干预4周后,测定无创尾动脉血压及左室质量指数;超声心动图评估心肌肥厚和心功能;HE染色评价心肌细胞及排列情况;Western blot法检测心肌组织Apelin-13、APJ、ANP、IKBα和NF-κB蛋白表达。结果与NTC组和NIF组相比, Apelin-13组的收缩压( SBP)、左心室重量/体重( LVW/BW)、舒张期室间隔厚度( IVSD)和心肌组织ANP降低( P ﹤0.05),左室舒张末期内径(LVEDd)、左心室射血分数(EF)和左心室短轴缩短率(FS)升高( P ﹤0.05);Apelin-13组的心肌组织Apelin-13、APJ和IKBα蛋白表达升高( P ﹤0.05),NF-κB蛋白表达降低( P ﹤0.05)。HE染色提示NIF组和Apelin-13组干预后心肌细胞肥大改善、排列趋向整齐。结论 Apelin-13可以减轻SHR心肌肥厚和改善心功能,其机制可能与下调NF-κB信号通路相关。%Objective To observe the effects of Apelin-13 on myocardial hypertrophy in the spontaneously hypertensive rats( SHR),and to explore preliminarily its possible mechanism. Methods 24 male SHR only 20 weeks old were randomly divided into no-treatment control group(NTC),nifedipine group(NIF),Apelin-13 group(Apelin-13),with 8 rats in each group. After treating for 4 weeks ,noninvasive tail arterial blood pressure and left ventricular weight/body weight were separately measured. Echocardiography system was used to assess myocardial hypertrophy and cardiac function. HE staining was used to evaluate myocardial cells and arrangement. The expression level of Apelin-13 ,APJ, ANP,IKBα,NF-κB in the myocardium was detected by Western blot. Results Compared to the NTC and NIF group,the level of SBP,LVW/BW,IVSD and myocardial ANP in

  17. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model

    Directory of Open Access Journals (Sweden)

    Eva Baquedano

    2016-05-01

    Full Text Available Insulin receptor substrate-2-deficient (IRS2−/− mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2−/− mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2−/− mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2−/− mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2−/− mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus.

  18. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model.

    Science.gov (United States)

    Baquedano, Eva; Burgos-Ramos, Emma; Canelles, Sandra; González-Rodríguez, Agueda; Chowen, Julie A; Argente, Jesús; Barrios, Vicente; Valverde, Angela M; Frago, Laura M

    2016-05-01

    Insulin receptor substrate-2-deficient (IRS2(-/-)) mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I) and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2(-/-) mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2(-/-) mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2(-/-) mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2(-/-) mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus. PMID:27013528

  19. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model

    Science.gov (United States)

    Canelles, Sandra; Argente, Jesús; Barrios, Vicente

    2016-01-01

    ABSTRACT Insulin receptor substrate-2-deficient (IRS2−/−) mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I) and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2−/− mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2−/− mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2−/− mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2−/− mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus. PMID:27013528

  20. Distinct motor impairments of dopamine D1 and D2 receptor knockout mice revealed by three types of motor behavior

    Directory of Open Access Journals (Sweden)

    Toru eNakamura

    2014-07-01

    Full Text Available Both D1R and D2R knock out (KO mice of the major dopamine receptors show significant motor impairments. However, there are some discrepant reports, which may be due to the differences in genetic background and experimental procedures. In addition, only few studies directly compared the motor performance of D1R and D2R KO mice. In this paper, we examined the behavioral difference among N10 congenic D1R and D2R KO, and wild type (WT mice. First, we examined spontaneous motor activity in the home cage environment for consecutive five days. Second, we examined motor performance using the rota-rod task, a standard motor task in rodents. Third, we examined motor ability with the Step-Wheel task in which mice were trained to run in a motor-driven turning wheel adjusting their steps on foothold pegs to drink water. The results showed clear differences among the mice of three genotypes in three different types of behavior. In monitoring spontaneous motor activities, D1R and D2R KO mice showed higher and lower 24 h activities, respectively, than WT mice. In the rota-rod tasks, at a low speed, D1R KO mice showed poor performance but later improved, whereas D2R KO mice showed a good performance at early days without further improvement. When first subjected to a high speed task, the D2R KO mice showed poorer rota-rod performance at a low speed than the D1R KO mice. In the Step-Wheel task, across daily sessions, D2R KO mice increased the duration that mice run sufficiently close to the spout to drink water, and decreased time to touch the floor due to missing the peg steps and number of times the wheel was stopped, which performance was much better than that of D1R KO mice. These incongruent results between the two tasks for D1R and D2R KO mice may be due to the differences in the motivation for the rota-rod and Step-Wheel tasks, aversion- and reward-driven, respectively. The Step-Wheel system may become a useful tool for assessing the motor ability of WT

  1. Synthetic liver X receptor agonist T0901317 inhibits semicarbazide-sensitive amine oxidase gene expression and activity in apolipoprotein E knockout mice

    Institute of Scientific and Technical Information of China (English)

    Xiaoyan Dai; Xiang Ou; Xinrui Hao; Dongli Cao; Yaling Tang; Yanwei Hu; Xiaoxu Li; Chaoke Tang

    2008-01-01

    Semicarbazide-sensitive amine oxidase(SSAO)catalyzes oxidative deamination of primary aromatic and aliphatic amines.Increased SSAO activity has been found in atherosclerosis and diabetes mellitus.We hypothesize that the anti-atherogenic effect of liver X receptors(LXRs)might be related to the inhibition of SSAD gene expression and its activity.In this study,we investigated the effect of LXR agonist T0901317 on SSAO gene expression and its activity in apolipoprotein E knockout(apoE-/-)mice.Male apoE-/-mice(8 weeks old) were randomly divided into four groups:basal control group;vehicle group;prevention group;and treatment group.SSAO gene expression was analyzed by real-time quantitative polymerase chain reaction and its activity was determined.The activity of superoxide dismutase and content of malondialdehy de in the aorta and liver were also determined.In T0901317-treated mice,SSAO gene expression was significantly decreased in the aorta,liver,small intestine,and brain.SSAO activities in serum and in these tissues were also inhibited.The amount of superoxide dismutase in the aorta and liver of the prevention group and treatment group was significantly higher compared with the vehicle group(P<0.05).Malondialdehyde in the tissues of these two groups was significantly lower compared with the vehicle group(P<0.05).Our results showed that T0901317 inhibits SSAO gene expression and its activity in atherogenic apoE-/-mice.The atheroprotective effect of LXR agonist T0901317 is related to the inhibition of SSAO gene expression and its activity.

  2. High Fat High Cholesterol Diet (Western Diet Aggravates Atherosclerosis, Hyperglycemia and Renal Failure in Nephrectomized LDL Receptor Knockout Mice: Role of Intestine Derived Lipopolysaccharide.

    Directory of Open Access Journals (Sweden)

    Siddhartha S Ghosh

    Full Text Available A high fat meal, frequently known as western diet (WD, exacerbates atherosclerosis and diabetes. Both these diseases are frequently associated with renal failure. Recent studies have shown that lipopolysaccharide (LPS leaks into the circulation from the intestine in the setting of renal failure and after WD. However, it is not clear how renal function and associated disorders are affected by LPS. This study demonstrates that circulatory LPS exacerbates renal insufficiency, atherosclerosis and glucose intolerance. Renal insufficiency was induced by 2/3 nephrectomy in LDL receptor knockout mice. Nx animals were given normal diet (Nx or WD (Nx+WD. The controls were sham operated animals on normal diet (control and WD (WD. To verify if LPS plays a role in exaggerating renal insufficiency, polymyxin (PM, a known LPS antagonist, and curcumin (CU, a compound known to ameliorate chronic kidney disease (CKD, was given to Nx animals on western diet (Nx+WD+PM and Nx+WD+CU, respectively. Compared to control, all other groups displayed increased circulatory LPS. The Nx+WD cohort had the highest levels of LPS. Nx group had significant renal insufficiency and glucose intolerance but not atherosclerosis. WD had intense atherosclerosis and glucose intolerance but it did not show signs of renal insufficiency. Compared to other groups, Nx+WD had significantly higher cytokine expression, macrophage infiltration in the kidney, renal insufficiency, glucose intolerance and atherosclerosis. PM treatment blunted the expression of cytokines, deterioration of renal function and associated disorders, albeit not to the levels of Nx, and was significantly inferior to CU. PM is a non-absorbable antibiotic with LPS binding properties, hence its beneficial effect can only be due to its effect within the GI tract. We conclude that LPS may not cause renal insufficiency but can exaggerate kidney failure and associated disorders following renal insufficiency.

  3. High Fat High Cholesterol Diet (Western Diet) Aggravates Atherosclerosis, Hyperglycemia and Renal Failure in Nephrectomized LDL Receptor Knockout Mice: Role of Intestine Derived Lipopolysaccharide.

    Science.gov (United States)

    Ghosh, Siddhartha S; Righi, Samuel; Krieg, Richard; Kang, Le; Carl, Daniel; Wang, Jing; Massey, H Davis; Sica, Domenic A; Gehr, Todd W B; Ghosh, Shobha

    2015-01-01

    A high fat meal, frequently known as western diet (WD), exacerbates atherosclerosis and diabetes. Both these diseases are frequently associated with renal failure. Recent studies have shown that lipopolysaccharide (LPS) leaks into the circulation from the intestine in the setting of renal failure and after WD. However, it is not clear how renal function and associated disorders are affected by LPS. This study demonstrates that circulatory LPS exacerbates renal insufficiency, atherosclerosis and glucose intolerance. Renal insufficiency was induced by 2/3 nephrectomy in LDL receptor knockout mice. Nx animals were given normal diet (Nx) or WD (Nx+WD). The controls were sham operated animals on normal diet (control) and WD (WD). To verify if LPS plays a role in exaggerating renal insufficiency, polymyxin (PM), a known LPS antagonist, and curcumin (CU), a compound known to ameliorate chronic kidney disease (CKD), was given to Nx animals on western diet (Nx+WD+PM and Nx+WD+CU, respectively). Compared to control, all other groups displayed increased circulatory LPS. The Nx+WD cohort had the highest levels of LPS. Nx group had significant renal insufficiency and glucose intolerance but not atherosclerosis. WD had intense atherosclerosis and glucose intolerance but it did not show signs of renal insufficiency. Compared to other groups, Nx+WD had significantly higher cytokine expression, macrophage infiltration in the kidney, renal insufficiency, glucose intolerance and atherosclerosis. PM treatment blunted the expression of cytokines, deterioration of renal function and associated disorders, albeit not to the levels of Nx, and was significantly inferior to CU. PM is a non-absorbable antibiotic with LPS binding properties, hence its beneficial effect can only be due to its effect within the GI tract. We conclude that LPS may not cause renal insufficiency but can exaggerate kidney failure and associated disorders following renal insufficiency.

  4. Induction of chronic pancreatitis by pancreatic duct ligation activates BMP2, apelin, and PTHrP expression in mice.

    Science.gov (United States)

    Rastellini, Cristiana; Han, Song; Bhatia, Vandanajay; Cao, Yanna; Liu, Ka; Gao, Xuxia; Ko, Tien C; Greeley, George H; Falzon, Miriam

    2015-10-01

    Chronic pancreatitis (CP) is a devastating disease with no treatments. Experimental models have been developed to reproduce the parenchyma and inflammatory responses typical of human CP. For the present study, one objective was to assess and compare the effects of pancreatic duct ligation (PDL) to those of repetitive cerulein (Cer)-induced CP in mice on pancreatic production of bone morphogenetic protein-2 (BMP2), apelin, and parathyroid hormone-related protein (PTHrP). A second objective was to determine the extent of cross talk among pancreatic BMP2, apelin, and PTHrP signaling systems. We focused on BMP2, apelin, and PTHrP since these factors regulate the inflammation-fibrosis cascade during pancreatitis. Findings showed that PDL- and Cer-induced CP resulted in significant elevations in expression and peptide/protein levels of pancreatic BMP2, apelin, and PTHrP. In vivo mouse and in vitro pancreatic cell culture experiments demonstrated that BMP2 stimulated pancreatic apelin expression whereas apelin expression was inhibited by PTHrP exposure. Apelin or BMP2 exposure inhibited PTHrP expression, and PTHrP stimulated upregulation of gremlin, an endogenous inhibitor of BMP2 activity. Transforming growth factor-β (TGF-β) stimulated PTHrP expression. Together, findings demonstrated that PDL- and Cer-induced CP resulted in increased production of the pancreatic BMP2, apelin, and PTHrP signaling systems and that significant cross talk occurred among pancreatic BMP2, apelin, and PTHrP. These results together with previous findings imply that these factors interact via a pancreatic network to regulate the inflammation-fibrosis cascade during CP. More importantly, this network communicated with TGF-β, a key effector of pancreatic pathophysiology. This novel network may be amenable to pharmacologic manipulations during CP in humans. PMID:26229008

  5. APJ acts as a dual receptor in cardiac hypertrophy.

    Science.gov (United States)

    Scimia, Maria Cecilia; Hurtado, Cecilia; Ray, Saugata; Metzler, Scott; Wei, Ke; Wang, Jianming; Woods, Chris E; Purcell, Nicole H; Catalucci, Daniele; Akasaka, Takeshi; Bueno, Orlando F; Vlasuk, George P; Kaliman, Perla; Bodmer, Rolf; Smith, Layton H; Ashley, Euan; Mercola, Mark; Brown, Joan Heller; Ruiz-Lozano, Pilar

    2012-08-16

    Cardiac hypertrophy is initiated as an adaptive response to sustained overload but progresses pathologically as heart failure ensues. Here we report that genetic loss of APJ, a G-protein-coupled receptor, confers resistance to chronic pressure overload by markedly reducing myocardial hypertrophy and heart failure. In contrast, mice lacking apelin (the endogenous APJ ligand) remain sensitive, suggesting an apelin-independent function of APJ. Freshly isolated APJ-null cardiomyocytes exhibit an attenuated response to stretch, indicating that APJ is a mechanosensor. Activation of APJ by stretch increases cardiomyocyte cell size and induces molecular markers of hypertrophy. Whereas apelin stimulates APJ to activate Gαi and elicits a protective response, stretch signals in an APJ-dependent, G-protein-independent fashion to induce hypertrophy. Stretch-mediated hypertrophy is prevented by knockdown of β-arrestins or by pharmacological doses of apelin acting through Gαi. Taken together, our data indicate that APJ is a bifunctional receptor for both mechanical stretch and the endogenous peptide apelin. By sensing the balance between these stimuli, APJ occupies a pivotal point linking sustained overload to cardiomyocyte hypertrophy. PMID:22810587

  6. Vascular remodeling and mobilization of bone marrow-derived cells in cuff-induced vascular injury in LDL receptor knockout muce

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Background Vascular remodeling is an important pathologic process in vascular injury for various vascular disorders such as atherosclerosis,postangioplasty restenosis and transplant arteriopathy.Recently,pathologic change and the role of bone marrow derived cells were wildly studied in atherosclerosis and restenosis.But the manner of lesion formation in neointima and cell recruitment in vascular remodeling lesion in the present of hypercholesterolemia is not Vet fully understood. Methods Double-transgenic mice knockout of LDL receptor gene (LDL-/-) and expressing ubiquitously green fluorescent protein (GFP) were obtained by cross-breeding LDL-/-mice with the GFP-expressing transgenic mice. LDL-/- mice (22-24 weeks of age) fed high fat diet containing 1.25% (w/w) cholesterol were subjected to 9Gy irradiation and received bone marrow (BM) cells from the double-transgenic mice.Four weeks later,a nonconstrictive cuff was Dlaced around the right femoral artery.After another 2 weeks,both right and left femoral arteries were harvested and subjected to histochemical analysis.Apoptosis was analyzed in situ using TUNEL assay.Resuits Two weeks after cuff placement,atherosclerotic lesions developed in the intima consisting of a massive accumulation of foam cells, The tissue stained with anti-α smooth muscle actin (SMA) antibody,showed a number of SMA-positive cells in the intimal lesion area.They were also positive for GFP,indicating that BM-derived cells can differentiate to SMCs in the intima in cuff-induced vascular remodeling lesions.Numerous small vessels in the adventitia as well as the endothelial lining of the intima were positive both for CD31 and GFP.The intima and media showed a larae number of TUNEL-positive signals after 2 weeks cuff injury,indicating the presence of apoptosis in vascular remodelina.Conclusions Atherosclerotic lesions in mice can be developed in the intima after 2 weeks of cuff-induced vascular inJury under the hypercholesterolemic conditions

  7. Oleylphosphocholine (OlPC arrests Cryptosporidium parvum growth in vitro and prevents lethal infection in interferon gamma receptor knock-out mice

    Directory of Open Access Journals (Sweden)

    Karine eSonzogni-Desautels

    2015-09-01

    Full Text Available Cryptosporidium parvum is a species of protozoa that causes cryptosporidiosis, an intestinal disease affecting many mammals including humans. Typically, in healthy individuals, cryptosporidiosis is a self-limiting disease. However, C. parvum can cause a severe and persistent infection that can be life-threatening for immunocompromised individuals, such as AIDS patients. As there are no available treatments for these patients that can cure the disease, there is an urgent need to identify treatment options. We tested the anti-parasitic activity of the alkylphosphocholine oleylphosphocholine (OlPC, an analog of miltefosine, against C. parvum in in vitro and in vivo studies. In vitro experiments using C. parvum infected human ileocecal adenocarcinoma cells (HCT-8 cells showed that OlPC has an EC50 of 18.84 nM. Moreover, no cell toxicity has been seen at concentrations ≤50 µM. C57BL/6 interferon gamma receptor knock-out mice, were infected by gavage with 4000 C. parvum oocysts on Day 0. Oral treatments, with OlPC, miltefosine, paromomycin or PBS, began on Day 3 post-infection for 10 days. Treatment with OlPC, at 40 mg/kg/day resulted in 100% survival, complete clearance of parasite in stools and a 99.9% parasite burden reduction in the intestines at Day 30. Doses of 30 mg/kg/day and 20 mg/kg/day also demonstrated an increased survival rate and a dose-dependent parasite burden reduction. Mice treated with 10 mg/kg/day of miltefosine resulted in 50% survival at Day 30. In contrast, control mice, treated with PBS or 100 mg/kg/day of paromomycin, died or had to be euthanized between Days 6 and 13 due to severe illness. Results of parasite burden were obtained by qPCR and cross-validated by both flow cytometry of stool oocysts and histological sections of the ileum. Together, our results strongly support that OlPC represents a potential candidate for the treatment of C. parvum infections in immunocompromised patients.

  8. Oleylphosphocholine (OlPC) arrests Cryptosporidium parvum growth in vitro and prevents lethal infection in interferon gamma receptor knock-out mice.

    Science.gov (United States)

    Sonzogni-Desautels, Karine; Renteria, Axel E; Camargo, Fabio V; Di Lenardo, Thomas Z; Mikhail, Alexandre; Arrowood, Michael J; Fortin, Anny; Ndao, Momar

    2015-01-01

    Cryptosporidium parvum is a species of protozoa that causes cryptosporidiosis, an intestinal disease affecting many mammals including humans. Typically, in healthy individuals, cryptosporidiosis is a self-limiting disease. However, C. parvum can cause a severe and persistent infection that can be life-threatening for immunocompromised individuals, such as AIDS patients. As there are no available treatments for these patients that can cure the disease, there is an urgent need to identify treatment options. We tested the anti-parasitic activity of the alkylphosphocholine oleylphosphocholine (OlPC), an analog of miltefosine, against C. parvum in in vitro and in vivo studies. In vitro experiments using C. parvum infected human ileocecal adenocarcinoma cells (HCT-8 cells) showed that OlPC has an EC50 of 18.84 nM. Moreover, no cell toxicity has been seen at concentrations ≤50 μM. C57BL/6 interferon gamma receptor knock-out mice, were infected by gavage with 4000 C. parvum oocysts on Day 0. Oral treatments, with OlPC, miltefosine, paromomycin or PBS, began on Day 3 post-infection for 10 days. Treatment with OlPC, at 40 mg/kg/day resulted in 100% survival, complete clearance of parasite in stools and a 99.9% parasite burden reduction in the intestines at Day 30. Doses of 30 and 20 mg/kg/day also demonstrated an increased survival rate and a dose-dependent parasite burden reduction. Mice treated with 10 mg/kg/day of miltefosine resulted in 50% survival at Day 30. In contrast, control mice, treated with PBS or 100 mg/kg/day of paromomycin, died or had to be euthanized between Days 6 and 13 due to severe illness. Results of parasite burden were obtained by qPCR and cross-validated by both flow cytometry of stool oocysts and histological sections of the ileum. Together, our results strongly support that OlPC represents a potential candidate for the treatment of C. parvum infections in immunocompromised patients. PMID:26441906

  9. The relationship between apelin and cardiac parameters in patients on peritoneal dialysis: is there a new cardiac marker?

    OpenAIRE

    Karadag, Serhat; Ozturk, Savas; Gursu, Meltem; Gurdal, Ahmet; Basinoglu, Filiz; Yigit, Servet; Zeki AYDIN; Uzun, Sami; Sumnu, Abdullah; Oflaz, Huseyin; Kazancioglu, Rumeyza

    2014-01-01

    Background Many markers have been proposed for CVD risk assessment in dialysis population. Apelin is a peptide that has roles in cardiovascular functions and volume regulation namely vasodilation, decreased blood pressure (BP), positive inotropic effect and inhibition of antidiuretic hormone release. The aim of this study was to examine relationship of apelin levels with echocardiographic findings and laboratory parameters related with cardiovascular function and bone mineral metabolism among...

  10. Proestrous compared to diestrous wildtype, but not estrogen receptor beta knockout, mice have better performance in the spontaneous alternation and object recognition tasks and reduced anxiety-like behavior in the elevated plus and mirror maze

    OpenAIRE

    Walf, Alicia A.; Koonce, Carolyn; Manley, Kevin; Frye, Cheryl A.

    2008-01-01

    17β-Estradiol (E2) may influence cognitive and/or affective behavior in part via the β isoform of the estrogen receptor (ERβ). Endocrine status and behavior in cognitive (object recognition, T-maze), anxiety (open field, elevated plus maze, mirror maze, emergence), and motor/coordination (rotarod, activity chamber) tasks of proestrous and diestrous wildtype (WT) and ERβ knockout (βERKO) mice was examined. Proestrous (WT or βERKO), versus diestrous, mice had higher E2 and progestin levels in p...

  11. Apelin and copeptin: two opposite biomarkers associated with kidney function decline and cyst growth in autosomal dominant polycystic kidney disease.

    Science.gov (United States)

    Lacquaniti, Antonio; Chirico, Valeria; Lupica, Rosaria; Buemi, Antoine; Loddo, Saverio; Caccamo, Chiara; Salis, Paola; Bertani, Tullio; Buemi, Michele

    2013-11-01

    Vasopressin (AVP) plays a detrimental role in autosomal dominant polycystic kidney disease (ADPKD). Copeptin represents a measurable substitute for circulating AVP whereas apelin counteracts AVP signaling. The aim of this study was to investigate the predictive value of apelin and copeptin for the progression of ADPKD disease. 52 ADPKD patients were enrolled and followed until the end of the observation period or the primary study endpoint was reached, defined by the combined outcome of decrease of glomerular filtration rate associated with a total renal volume increase. Receiver operating characteristics (ROC) analysis was employed for identifying the progression of renal disease and Kaplan-Meier curves assessed the renal survival. Adjusted risk estimates for progression endpoint and incident renal replacement therapy (RRT) were calculated using Cox proportional hazard regression analysis. ADPKD patients were characterized by lower apelin levels and higher copeptin levels when compared with healthy subjects. These biomarkers were strictly correlated with osmolality and markers of renal function. At ROC analysis, apelin and copeptin showed a very good diagnostic profile in identifying ADPKD progression. After the follow up of 24 months, 33 patients reached the endpoint. Cox proportional hazard regression analysis showed that apelin predicted renal disease progression and incident RRT independently of other potential confounders. Apelin is associated with kidney function decline in ADPKD, suggesting that it may be a new marker to predict kidney outcome. PMID:23973863

  12. Positron emission tomographic imaging of the cannabinoid type 1 receptor system with [¹¹C]OMAR ([¹¹C]JHU75528): improvements in image quantification using wild-type and knockout mice.

    Science.gov (United States)

    Herance, Raúl; Rojas, Santiago; Abad, Sergio; Jiménez, Xavier; Gispert, Juan Domingo; Millán, Olga; Martín-García, Elena; Burokas, Aurelijus; Serra, Miquel Àngel; Maldonado, Rafael; Pareto, Deborah

    2011-12-01

    In this study, we assessed the feasibility of using positron emission tomography (PET) and the tracer [¹¹C]OMAR ([¹¹C]JHU75528), an analogue of rimonabant, to study the brain cannabinoid type 1 (CB1) receptor system. Wild-type (WT) and CB1 knockout (KO) animals were imaged at baseline and after pretreatment with blocking doses of rimonabant. Brain uptake in WT animals was higher (50%) than in KO animals in baseline conditions. After pretreatment with rimonabant, WT uptake lowered to the level of KO animals. The results of this study support the feasibility of using PET with the radiotracer [¹¹C]JHU75528 to image the brain CB1 receptor system in mice. In addition, this methodology can be used to assess the effect of new drugs in preclinical studies using genetically manipulated animals.

  13. GPR39 (zinc receptor) knockout mice exhibit depression-like behavior and CREB/BDNF down-regulation in the hippocampus

    DEFF Research Database (Denmark)

    Młyniec, Katarzyna; Budziszewska, Bogusława; Holst, Birgitte;

    2015-01-01

    suspension test, and light/dark test. We also investigated whether lack of GPR39 would change levels of cAMP response element-binding protein (CREB),brain-derived neurotrophic factor (BDNF) and tropomyosin related kinase B (TrkB) protein in the hippocampus and frontal cortex of GPR39 knockout mice subjected...... and BDNF levels in the hippocampus, but not in the frontal cortex, which indicates region specificity for the impaired CREB/BDNF pathway (which is important in antidepressant response) in the absence of GPR39. There were no changes in TrkB protein in either structure. In the present study, we also...

  14. Corynebacterium parvum- and Mycobacterium bovis bacillus Calmette-Guerin-induced granuloma formation is inhibited in TNF receptor I (TNF-RI) knockout mice and by treatment with soluble TNF-RI.

    Science.gov (United States)

    Senaldi, G; Yin, S; Shaklee, C L; Piguet, P F; Mak, T W; Ulich, T R

    1996-12-01

    The aim of this study was to examine the role of TNF receptor I (TNF-RI) in the pathogenesis of heat-killed Corynebacterium parvum- and live bacillus Calmette-Guerin (BCG)-induced granulomas. Granuloma formation was analyzed in TNF-RI knockout mice and after treatment with soluble TNF-RI (sTNF-RI). TNF-RI knockout mice injected with C. parvum or BCG developed fewer and smaller granulomas than wild-type control mice. Mice treated with sTNF-RI from days 7 to 13 after injection of C. parvum or BCG developed fewer and smaller granulomas than saline-treated control mice. Established granulomas regressed in rats treated with sTNF-RI from days 10 to 13 after injection of C. parvum. In conclusion, TNF signaling via TNF-RI contributes to the pathogenesis of C. parvum- and BCG-induced granulomas. sTNF-RI inhibits the development of granulomas and can cause the regression of established granulomas. PMID:8943410

  15. Operant learning and differential-reinforcement-of-low-rate 36-s responding in 5-HT1A and 5-HT1B receptor knockout mice.

    NARCIS (Netherlands)

    Pattij, T.; Broersen, L.M.; Linde, J. van der; Groenink, L.; Gugten, J. van der; Maes, R.A.A.; Olivier, B.

    2003-01-01

    Previous studies with mice lacking 5-HT(1A) (1AKO) and 5-HT(1B) (1BKO) receptors in hippocampus-dependent learning and memory paradigms, suggest that these receptors play an important role in learning and memory, although their precise role is unclear. In the present study, 1AKO and 1BKO mice were s

  16. Co-administration of Apelin and T4 Protects Inotropic and Chronotropic Changes Occurring in Hypothyroid Rats

    Energy Technology Data Exchange (ETDEWEB)

    Akhondali, Zahra; Badavi, Mohammad; Dianat, Mahin, E-mail: dianat@ajums.ac.ir; Faraji, Farzaneh [Physiology Research Center and Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz (Iran, Islamic Republic of)

    2015-09-15

    One of the most important thyroid hormone targets is the cardiovascular system. Hemodynamic changes, such as decreased resting heart rate (HR), myocardial contractility, and cardiac output, and increased diastolic pressure and systemic vascular resistance, have been observed in hypothyroid patients. Moreover, in these patients, ECG changes include sinus bradycardia and low voltage complexes (P waves or QRS complexes). This study aimed at evaluating the prophylactic effect of apelin on HR changes and QRS voltage that occur in propylthiouracil (PTU)-induced hypothyroid rats. In this study, 48 adult male Wistar rats weighing 170-235g were randomly divided into 6 groups: Control group (normal saline ip injection + tap water gavage); P group (PTU 0.05%, in drinking water); A group (apelin 200 µg.kg{sup -1}.day{sup -1}, ip); PA group [co-administration of PTU and apelin]; PT group [co-administration of PTU + T4 (0.2 mg/g per day, gavage)]; and PAT group (co-administration of PTU, apelin and T4). All experiments were performed for 28 consecutive days, and then the animals were anesthetized with an ip injection of ketamine (80 mg/kg) and xylazine (12 mg/kg). Lead II electrocardiogram was recorded to calculate HR and QRS voltage. Heart rate and QRS voltage increased more significantly in the hypothyroid group that consumed both apelin and T4 (201 ± 4 beat/min, 0.71 ± 0.02 mv vs. hypothyroid 145 ± 9 beat/min, 0.563 ± 0.015 mv; respectively). The co-administration of apelin and T4 showed a protective effect on QRS voltage and HR in PTU‑induced hypothyroid rats.

  17. Co-administration of Apelin and T4 Protects Inotropic and Chronotropic Changes Occurring in Hypothyroid Rats

    International Nuclear Information System (INIS)

    One of the most important thyroid hormone targets is the cardiovascular system. Hemodynamic changes, such as decreased resting heart rate (HR), myocardial contractility, and cardiac output, and increased diastolic pressure and systemic vascular resistance, have been observed in hypothyroid patients. Moreover, in these patients, ECG changes include sinus bradycardia and low voltage complexes (P waves or QRS complexes). This study aimed at evaluating the prophylactic effect of apelin on HR changes and QRS voltage that occur in propylthiouracil (PTU)-induced hypothyroid rats. In this study, 48 adult male Wistar rats weighing 170-235g were randomly divided into 6 groups: Control group (normal saline ip injection + tap water gavage); P group (PTU 0.05%, in drinking water); A group (apelin 200 µg.kg-1.day-1, ip); PA group [co-administration of PTU and apelin]; PT group [co-administration of PTU + T4 (0.2 mg/g per day, gavage)]; and PAT group (co-administration of PTU, apelin and T4). All experiments were performed for 28 consecutive days, and then the animals were anesthetized with an ip injection of ketamine (80 mg/kg) and xylazine (12 mg/kg). Lead II electrocardiogram was recorded to calculate HR and QRS voltage. Heart rate and QRS voltage increased more significantly in the hypothyroid group that consumed both apelin and T4 (201 ± 4 beat/min, 0.71 ± 0.02 mv vs. hypothyroid 145 ± 9 beat/min, 0.563 ± 0.015 mv; respectively). The co-administration of apelin and T4 showed a protective effect on QRS voltage and HR in PTU‑induced hypothyroid rats

  18. Co-administration of Apelin and T4 Protects Inotropic and Chronotropic Changes Occurring in Hypothyroid Rats

    Directory of Open Access Journals (Sweden)

    Zahra Akhondali

    2015-01-01

    Full Text Available Abstract Background: One of the most important thyroid hormone targets is the cardiovascular system. Hemodynamic changes, such as decreased resting heart rate (HR, myocardial contractility, and cardiac output, and increased diastolic pressure and systemic vascular resistance, have been observed in hypothyroid patients. Moreover, in these patients, ECG changes include sinus bradycardia and low voltage complexes (P waves or QRS complexes. Objective: This study aimed at evaluating the prophylactic effect of apelin on HR changes and QRS voltage that occur in propylthiouracil (PTU-induced hypothyroid rats. Method: In this study, 48 adult male Wistar rats weighing 170-235g were randomly divided into 6 groups: Control group (normal saline ip injection + tap water gavage; P group (PTU 0.05%, in drinking water; A group (apelin 200 µg.kg-1.day-1, ip; PA group [co-administration of PTU and apelin]; PT group [co-administration of PTU + T4 (0.2 mg/g per day, gavage]; and PAT group (co-administration of PTU, apelin and T4. All experiments were performed for 28 consecutive days, and then the animals were anesthetized with an ip injection of ketamine (80 mg/kg and xylazine (12 mg/kg. Lead II electrocardiogram was recorded to calculate HR and QRS voltage. Results: Heart rate and QRS voltage increased more significantly in the hypothyroid group that consumed both apelin and T4 (201 ± 4 beat/min, 0.71 ± 0.02 mv vs. hypothyroid 145 ± 9 beat/min, 0.563 ± 0.015 mv; respectively. Conclusion: The co-administration of apelin and T4 showed a protective effect on QRS voltage and HR in PTU‑induced hypothyroid rats.

  19. mRNA transfection of a novel TAL effector nuclease (TALEN) facilitates efficient knockout of HIV co-receptor CCR5.

    Science.gov (United States)

    Mock, Ulrike; Machowicz, Rafał; Hauber, Ilona; Horn, Stefan; Abramowski, Pierre; Berdien, Belinda; Hauber, Joachim; Fehse, Boris

    2015-06-23

    Homozygosity for a natural deletion variant of the HIV-coreceptor molecule CCR5, CCR5Δ32, confers resistance toward HIV infection. Allogeneic stem cell transplantation from a CCR5Δ32-homozygous donor has resulted in the first cure from HIV ('Berlin patient'). Based thereon, genetic disruption of CCR5 using designer nucleases was proposed as a promising HIV gene-therapy approach. Here we introduce a novel TAL-effector nuclease, CCR5-Uco-TALEN that can be efficiently delivered into T cells by mRNA electroporation, a gentle and truly transient gene-transfer technique. CCR5-Uco-TALEN mediated high-rate CCR5 knockout (>90% in PM1 and >50% in primary T cells) combined with low off-target activity, as assessed by flow cytometry, next-generation sequencing and a newly devised, very convenient gene-editing frequency digital-PCR (GEF-dPCR). GEF-dPCR facilitates simultaneous detection of wild-type and gene-edited alleles with remarkable sensitivity and accuracy as shown for the CCR5 on-target and CCR2 off-target loci. CCR5-edited cells were protected from infection with HIV-derived lentiviral vectors, but also with the wild-type CCR5-tropic HIV-1BaL strain. Long-term exposure to HIV-1BaL resulted in almost complete suppression of viral replication and selection of CCR5-gene edited T cells. In conclusion, we have developed a novel TALEN for the targeted, high-efficiency knockout of CCR5 and a useful dPCR-based gene-editing detection method.

  20. Fmr1基因敲除小鼠耳蜗的GABAα1受体的表达%Expression of GABAα1 receptor of cochlea in FMR1 gene knock-out mice

    Institute of Scientific and Technical Information of China (English)

    李敏雄; 杜娜; 孙卫文; 黄月玲; 沈岩松; 戴丽军; 陈盛强; 马钊恩; 张建国

    2012-01-01

    Objective To observe cochlea morphology and expression of GABA a 1 receptor of cochlea in 4 weeks FMR1 KO mice and WT mice. Methods Four-week old Fmrl knockout mice were identified using the PCR technique.and immunohistochemistry to compare with the changes of expression of GABA a 1 receptor between FMR1 KO mice and WT mice cochlea. Results There were no difference in cochlea morphology between FMR1 KO mice and WT mice by HE dyeing. The expression of GABA a 1 receptor in cochlear in FMR-1K0 mice was decreased. Conclusion The expression of GABA a 1 receptor is incerased in cochlear in four-week old FMR-1K0 mice that might be associated with audiogenic seizure susceptibility of Fmrl knockout mice.%目的 对4周龄Fmr1基因敲除小鼠耳蜗的GABAα1受体表达进行观察,探讨耳蜗GABAα1受体的表达是否受FMRP的影响.方法 使用PCR技术对Fmr1基因敲除小鼠鉴定后,对4周龄的Fmr1基因敲除小鼠和野生型小鼠进行耳蜗的GABAα1受体免疫组织化学的表达观察,数据采用多因素方差分析处理.结果 耳蜗HE染色结果:4周龄组KO鼠较WT鼠形态学观察无差异.4周龄KO小鼠的耳蜗中GABAα1受体表达的平均阳性细胞数均低于WT小鼠,P<0.01,差异具有统计学意义.结论 GABAα1受体表达的降低可能与FMR1基因KO小鼠听源性惊厥发病有关.

  1. D2 dopamine receptors colocalize regulator of G-protein signaling 9-2 (RGS9-2) via the RGS9 DEP domain, and RGS9 knock-out mice develop dyskinesias associated with dopamine pathways.

    Science.gov (United States)

    Kovoor, Abraham; Seyffarth, Petra; Ebert, Jana; Barghshoon, Sami; Chen, Ching-Kang; Schwarz, Sigrid; Axelrod, Jeffrey D; Cheyette, Benjamin N R; Simon, Melvin I; Lester, Henry A; Schwarz, Johannes

    2005-02-23

    Regulator of G-protein signaling 9-2 (RGS9-2), a member of the RGS family of G GTPase accelerating proteins, is expressed specifically in the striatum, which participates in antipsychotic-induced tardive dyskinesia and in levodopa-induced dyskinesia. We report that RGS9 knock-out mice develop abnormal involuntary movements when inhibition of dopaminergic transmission is followed by activation of D2-like dopamine receptors (DRs). These abnormal movements resemble drug-induced dyskinesia more closely than other rodent models. Recordings from striatal neurons of these mice establish that activation of D2-like DRs abnormally inhibits glutamate-elicited currents. We show that RGS9-2, via its DEP domain (for Disheveled, EGL-10, Pleckstrin homology), colocalizes with D2DRs when coexpressed in mammalian cells. Recordings from oocytes coexpressing D2DR or the m2 muscarinic receptor and G-protein-gated inward rectifier potassium channels show that RGS9-2, via its DEP domain, preferentially accelerates the termination of D2DR signals. Thus, alterations in RGS9-2 may be a key factor in the pathway leading from D2DRs to the side effects associated with the treatment both of psychoses and Parkinson's disease. PMID:15728856

  2. Adult female wildtype, but not oestrogen receptor β knockout, mice have decreased depression-like behaviour during pro-oestrus and following administration of oestradiol or diarylpropionitrile

    OpenAIRE

    Walf, AA; Koonce, CJ; Frye, CA

    2008-01-01

    Studies in people and animal models suggest that depression is influenced by natural, fluctuations in the levels of 17β-oestradiol (E2), as well as administration of E2-based therapies, such as selective oestrogen receptor modulators (SERMs). Elucidating the effects and mechanisms of E2 is important to improve future E2-based therapeutics. An important question is whether effects of E2 or SERMs for mood regulation act at the α or β isoform of the oestrogen receptor (ER) because some of the un...

  3. KnockoutJS blueprints

    CERN Document Server

    Russo, Carlo

    2015-01-01

    If you are a JavaScript developer and already know the basics of KnockoutJS and you want to get the most out of it, then this book is for you. This book will help in your transition from a small site to a large web application that is easily maintainable.

  4. Double incretin receptor knockout (DIRKO) mice reveal an essential role for the enteroinsular axis in transducing the glucoregulatory actions of DPP-IV inhibitors

    DEFF Research Database (Denmark)

    Hansotia, Tanya; Baggio, Laurie L; Delmeire, Dominique;

    2004-01-01

    Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) are gut-derived incretins that potentiate glucose clearance following nutrient ingestion. Elimination of incretin receptor action in GIPR(-/-) or GLP-1R(-/-) mice produces only modest impairment in glucose...

  5. Role of the cholinergic nervous system in rheumatoid arthritis: aggravation of arthritis in nicotinic acetylcholine receptor alpha7 subunit gene knockout mice

    NARCIS (Netherlands)

    M.A. van Maanen; S.P. Stoof; G.J. Larosa; M.J. Vervoordeldonk; P.P. Tak

    2010-01-01

    BACKGROUND: The alpha7 subunit of nicotinic acetylcholine receptors (alpha7nAChR) can negatively regulate the synthesis and release of proinflammatory cytokines by macrophages and fibroblast-like synoviocytes in vitro. In addition, stimulation of the alpha7nAChR can reduce the severity of arthritis

  6. Accumulation of cytolytic CD8{sup +} T cells in B16-melanoma and proliferation of mature T cells in TIS21-knockout mice after T cell receptor stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Min Sook [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Woo, Min-Yeong [Department of Microbiology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Department of Biomedical Sciences, The Graduate School, Ajou University (Korea, Republic of); Kwon, Daeho [Department of Microbiology, Kwandong University College of Medicine, Gangneung, Gangwon-do 210-701 (Korea, Republic of); Hong, Allen E. [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Song, Kye Yong [Department of Pathology, Chung-Ang University College of Medicine, Dongjak-gu, Seoul 156-756 (Korea, Republic of); Park, Sun [Department of Microbiology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Lim, In Kyoung [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of)

    2014-10-01

    In vivo and in vitro effects of TIS21 gene on the mature T cell activation and antitumor activities were explored by employing MO5 melanoma orthograft and splenocytes isolated from the TIS21-knockout (KO) mice. Proliferation and survival of mature T cells were significantly increased in the KO than the wild type (WT) cells, indicating that TIS21 inhibits the rate of mature T cell proliferation and its survival. In MO5 melanoma orthograft model, the KO mice recruited much more CD8{sup +} T cells into the tumors at around day 14 after tumor cell injection along with reduced tumor volumes compared with the WT. The increased frequency of granzyme B{sup +} CD8{sup +} T cells in splenocytes of the KO mice compared with the WT may account for antitumor-immunity of TIS21 gene in the melanoma orthograft. In contrast, reduced frequencies of CD107a{sup +} CD8{sup +} T cells in the splenocytes of KO mice may affect the loss of CD8{sup +} T cell infiltration in the orthograft at around day 19. These results indicate that TIS21 exhibits antiproliferative and proapoptotic effects in mature T cells, and differentially affects the frequencies of granzyme B{sup +} CD8{sup +} T-cells and CD107a{sup +} CD8{sup +} T-cells, thus transiently regulating in vivo anti-tumor immunity. - Highlights: • Constitutive expression of TIS21 in splenocytes and upregulation by TCR stimulation. • Proliferation of mature T-cells in spleen of TIS21KO mice after TCR stimulation. • Inhibition of cell death in mature T-cells of TIS21KO mice compared with the wild type. • Inhibition of melanoma growth in TIS21KO mice and CD8{sup +} T cell infiltration in tumor. • Reduction of CD 107{sup +}CD8{sup +} T cells, but increased granzyme B{sup +} CD8{sup +} T cells in TIS21KO mice.

  7. The effects of nonlinear resistance and aerobic interval training on serum levels of apelin and insulin resistance in middle-aged obese men

    Directory of Open Access Journals (Sweden)

    Mahmoud Nikseresht

    2015-08-01

    Conclusion: The practical applications indicate that obese men can use both AIT and NRT exercise programs to reduce insulin resistance. However, the AIT may have better beneficial effects (as indicated by apelin-13 compared to NRT.

  8. Knockout crickets for the study of learning and memory: Dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets

    OpenAIRE

    Hiroko Awata; Takahito Watanabe; Yoshitaka Hamanaka; Taro Mito; Sumihare Noji; Makoto Mizunami

    2015-01-01

    Elucidation of reinforcement mechanisms in associative learning is an important subject in neuroscience. In mammals, dopamine neurons are thought to play critical roles in mediating both appetitive and aversive reinforcement. Our pharmacological studies suggested that octopamine and dopamine neurons mediate reward and punishment, respectively, in crickets, but recent studies in fruit-flies concluded that dopamine neurons mediates both reward and punishment, via the type 1 dopamine receptor Do...

  9. The Effect of Fenugreek (Trigonella foenum-graecum Seed and 17-β Estradiol on Serum Apelin, Glucose, Lipids, and Insulin in Ovariectomized Rats

    Directory of Open Access Journals (Sweden)

    Abedinzade

    2015-08-01

    Full Text Available Background Menopause, a natural phenomenon, is defined by the fall of ovarian hormones mainly estrogens causing major problems such as insulin resistance. Fenugreek (Trigonella foenum-graecum is known to have some useful properties such as insulin sensitizing effect. Apelin is an adipokine, which has several roles such as regulation of insulin secretion. Objectives The objective of the present study was to evaluate the effect of fenugreek seed and 17-β estradiol on serum Apelin along with glucose, lipids and insulin in ovariectomized rats. Materials and Methods Forty-nine adult female Wistar rats were randomly divided to seven groups: normal control, ovariectomized control, ovariectomized treated with ethanolic and hexanic extract of fenugreek seed (50 and 150 mg/kg/daily for each, and ovariectomized treated with 17-β estradiol (10 µg/kg/daily for 42 days. Serum Apelin, glucose, lipids and insulin were measured. Results Serum Apelin, glucose, lipids and insulin significantly increased in ovariectomized controls in comparison with normal controls (P < 0.05. Serum glucose, lipids and insulin in ovariectomized rats treated with fenugreek seed extract and 17-β estradiol were remarkably lower than ovariectomized controls (P < 0.05. Furthermore, 17-β estradiol caused a significant decrease (P < 0.05 in serum Apelin in ovariectomized rats. Conclusions It appears that fenugreek seed might be effective against hyperglycemia, hyperlipidemia and insulin resistance in ovariectomized rats without impact on serum Apelin. Furthermore, 17-β estradiol could have similar effects along with possible inhibitory effects on serum Apelin. The complicated role of Apelin in menopause needs to be further explored.

  10. KnockoutJS essentials

    CERN Document Server

    Ferrando, Jorge

    2015-01-01

    If you are a JavaScript developer who has been using DOM manipulation libraries such as Mootools or Scriptaculous, and you want go further in modern JavaScript development with a simple and well-documented library, then this book is for you. Learning how to use Knockout will be perfect as your next step towards building JavaScript applications that respond to user interaction.

  11. Analysis in conditional cannabinoid 1 receptor-knockout mice reveals neuronal subpopulation-specific effects on epileptogenesis in the kindling paradigm.

    Science.gov (United States)

    von Rüden, E L; Jafari, M; Bogdanovic, R M; Wotjak, C T; Potschka, H

    2015-01-01

    The endocannabinoid system serves as a retrograde negative feedback mechanism. It is thought to control neuronal activity in an epileptic neuronal network. The purpose of this study was to evaluate the impact of the endocannabinoid and endovanilloid systems on both epileptogenesis and ictogenesis. Therefore, we modulated the endocannabinoid and endovanilloid systems genetically and pharmacologically, and analyzed the subsequent impact on seizure progression in the kindling model of temporal lobe epilepsy in mice. In addition, the impact of seizures on associated cellular alterations was evaluated. Our principal results revealed that the endocannabinoid system affects seizure and afterdischarge duration dependent on the neuronal subpopulation being modulated. Genetic deletion of CB1-receptors (CB1Rs) from principal neurons of the forebrain and pharmacological antagonism with rimonabant (5 mg/kg) caused longer seizure duration. Deletion of CB1R from GABAergic forebrain neurons resulted in the opposite effect. Along with these findings, the CB1R density was elevated in animals with repetitively induced seizures. However, neither genetic nor pharmacological interventions had any impact on the development of generalized seizures. Other than CB1, genetic deletion or pharmacological blockade with SB366791 (1 mg/kg) of transient receptor potential vanilloid receptor 1 (TRPV1) had no effect on the duration of behavioral or electrographic seizure activity in the kindling model. In conclusion, we demonstrate that endocannabinoid, but not endovanilloid, signaling affects termination of seizure activity, without influencing seizure severity over time. These effects are dependent on the neuronal subpopulation. Thus, the data argue that the endocannabinoid system plays an active role in seizure termination but does not regulate epileptogenesis.

  12. Effect of long-term ingestion of weakly oxidised flaxseed oil on biomarkers of oxidative stress in LDL-receptor knockout mice.

    Science.gov (United States)

    Nogueira, M S; Kessuane, M C; Lobo Ladd, A A B; Lobo Ladd, F V; Cogliati, B; Castro, I A

    2016-07-01

    The effect of oxidised fatty acids on atherosclerosis progression is controversial. Thus, our objective was to evaluate the effect of long-term consumption of weakly oxidised PUFA from flaxseed oil on oxidative stress biomarkers of LDL-receptor(-/-) mice. To test our hypothesis, mice were separated into three groups. The first group received a high-fat diet containing fresh flaxseed oil (CONT-), the second was fed the same diet prepared using heated flaxseed oil (OXID), and the third group received the same diet containing fresh flaxseed oil and had diabetes induced by streptozotocin (CONT+). Oxidative stress, aortic parameters and non-alcoholic fatty liver disease were assessed. After 3 months, plasma lipid profile, glucose levels, body weight, energy intake and dietary intake did not differ among groups. Likewise, oxidative stress, plasma malondialdehyde (MDA), hepatic MDA expressed as nmol/mg portion (ptn) and antioxidant enzymes did not differ among the groups. Hepatic linoleic acid, α-linolenic acid, arachidonic acid and EPA acid declined in the OXID and CONT+ groups. Aortic wall thickness, lumen and diameter increased only in the OXID group. OXID and CONT+ groups exhibited higher concentrations of MDA, expressed as μmol/mg ptn per %PUFA, when compared with the CONT- group. Our results suggest that ingestion of oxidised flaxseed oil increases hepatic MDA concentration and is potentially pro-atherogenic. In addition, the mean MDA value observed in all groups was similar to those reported in other studies that used xenobiotics as oxidative stress inducers. Thus, the diet applied in this study represents an interesting model for further research involving antioxidants.

  13. Cluster knockout reactions

    Indian Academy of Sciences (India)

    Arun K Jain; B N Joshi

    2014-04-01

    Cluster knockout reactions are expected to reveal the amount of clustering (such as that of , d and even of heavier clusters such as 12C, 16O etc.) in the target nucleus. In simple terms, incident medium high-energy nuclear projectile interacts strongly with the cluster (present in the target nucleus) as if it were existing as a free entity. Theoretically, the relatively softer interactions of the two outgoing particles with the residual nucleus lead to optical distortions and are treated in terms of distorted wave (DW) formalism. The long-range projectile–cluster interaction is accounted for, in terms of the finite range (FR) direct reaction formalism, as against the more commonly adopted zero-range (ZR) distorted wave impulse approximation (DWIA) formalism. Comparison of the DWIA calculations with the observed data provide information about the momentum distribution and the clustering spectroscopic factor of the target nucleus. Interesting results and some recent advancements in the area of (, 2) reactions and heavy cluster knockout reactions are discussed. Importance of the finite-range vertex and the final-state interactions are brought out.

  14. Performance deficits of NK1 receptor knockout mice in the 5-choice serial reaction-time task: effects of d-amphetamine, stress and time of day.

    Directory of Open Access Journals (Sweden)

    Ting Carrie Yan

    Full Text Available BACKGROUND: The neurochemical status and hyperactivity of mice lacking functional substance P-preferring NK1 receptors (NK1R-/- resemble abnormalities in Attention Deficit Hyperactivity Disorder (ADHD. Here we tested whether NK1R-/- mice express other core features of ADHD (impulsivity and inattentiveness and, if so, whether they are diminished by d-amphetamine, as in ADHD. Prompted by evidence that circadian rhythms are disrupted in ADHD, we also compared the performance of mice that were trained and tested in the morning or afternoon. METHODS AND RESULTS: The 5-Choice Serial Reaction-Time Task (5-CSRTT was used to evaluate the cognitive performance of NK1R-/- mice and their wildtypes. After training, animals were tested using a long (LITI and a variable (VITI inter-trial interval: these tests were carried out with, and without, d-amphetamine pretreatment (0.3 or 1 mg/kg i.p.. NK1R-/- mice expressed greater omissions (inattentiveness, perseveration and premature responses (impulsivity in the 5-CSRTT. In NK1R-/- mice, perseveration in the LITI was increased by injection-stress but reduced by d-amphetamine. Omissions by NK1R-/- mice in the VITI were unaffected by d-amphetamine, but premature responses were exacerbated by this psychostimulant. Omissions in the VITI were higher, overall, in the morning than the afternoon but, in the LITI, premature responses of NK1R-/- mice were higher in the afternoon than the morning. CONCLUSION: In addition to locomotor hyperactivity, NK1R-/- mice express inattentiveness, perseveration and impulsivity in the 5-CSRTT, thereby matching core criteria for a model of ADHD. Because d-amphetamine reduced perseveration in NK1R-/- mice, this action does not require functional NK1R. However, the lack of any improvement of omissions and premature responses in NK1R-/- mice given d-amphetamine suggests that beneficial effects of this psychostimulant in other rodent models, and ADHD patients, need functional NK1R. Finally

  15. 多巴胺D1和D2受体敲除对类风湿关节炎小鼠模型的影响%The influence of dopamine D1 and D2 receptor knockout on the mice model of rheumatoid arthritis

    Institute of Scientific and Technical Information of China (English)

    邓乔文; 蔡唤唤; 王小琴; 邱一华

    2016-01-01

    目的:探讨多巴胺D1受体敲除(dopamine D1 receptor gene knockout, D1R-/-)和多巴胺D2受体敲除(dopamine D2 receptor gene knockout, D2R-/-)对类风湿关节炎小鼠模型的影响。方法:以D1R-/-和D2R-/-小鼠为实验对象,用鸡Ⅱ型胶原(typeⅡcollagen, CⅡ)乳剂制作胶原诱导性关节炎(collagen-induced arthritis, CIA)小鼠模型。用免疫荧光染色法检测该小鼠模型关节滑膜组织CD4+T细胞上多巴胺D1受体(dopamine D1 receptor, D1R)和多巴胺D2受体(dopamine D2 receptor, D2R)的表达;用蛋白免疫印迹法检测滑膜组织中CD4+T细胞相关转录因子的表达。结果:CIA造模组关节滑膜组织中CD4+T细胞上有D2R的表达。D2R敲除后,CD4+T细胞相关转录因子T-bet、GATA-3、ROR-γt、Foxp3的蛋白表达上调;D1R敲除后,CD4+T细胞相关转录因子T-bet、GATA-3、ROR-γt、Foxp3的蛋白表达与野生组无明显差异。结论:D2R敲除后,CIA的症状加重。%Objective: To study the effect of dopamine D1 receptor(D1R) and dopamine D2 receptor(D2R) gene knockout on collagen-induced arthritis(CIA) mice model. Methods: Dopamine D1 receptor gene knockout mice(D1R-/-) and dopamine D2 receptor gene knockout mice(D2R-/-) were used in this experiment. CIA model was established using chicken type Ⅱcollagen(CⅡ) and co-localization of D1R or D2R with CD4 +T cells in joint synovial tissue were performed by immunofluorescence staining. Transcription factors related to CD4+T cell were determined by Western Blot analysis. Results:Study confirmed that dopamine D2 receptor expressed on CD4 +T cells in synovial tissue from CIA model. After D2R knockout, transcription factors T-bet, GATA-3, ROR-γt and Foxp3 related to CD4 +T cells expression were increased;however, there was no obvious difference in protein expression between D1R-/- CIA model mice and wild type CIA model mice. Conclusion:CIA model get worse with D2R-/- mice.

  16. Influence of apelin-13 on 5-azacytidine inducing differentiation of umbilical cord mesenchymal stem cells to cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Xiao-hong XU

    2013-11-01

    Full Text Available Objective To explore the influence of apelin-13 on 5-azacytidine (5-Aza inducing differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs to cardiomyocytes. Methods hUC-MSCs were cultivated by tissue adherent method, and subcultured after digested with trypsin. The second passage cells (P2 were cultured for 14 days with different concentrations of apelin-13 (0, 1×10–6mol/L, 2×10–6 and 10×10–6mol/L apelin-13, called as group A, B, C and D respectively, and the concentration of 5-Aza was 10×10–6mol/L in each group. Immune markers on the surface of hUC-MSCs were detected by flow cytometry, the absorbance (A value of cultured cells at 570nm was detected by MTT method, the mRNA expression levels of troponin T (cTnT and GATA-4 were determined by RT-PCR, and the expression of cTnT (myocardial cell surface marker was observed by immunohistochemistry. Results HUC-MSCs expressed CD44, CD90, CD105, CD73 and HLA-ABC, but did not express CD34, CD45 or HLA-DR. The A value at 570nm of hUC-MSCs treated with 10×10–6mol/L apelin-13 was 0.875±0.325 and similar to that of hUC-MSCs treated with 0 mol/L apelin-13 (0.841±0.290, P>0.05. The expression levels of cTnT mRNA and GATA-4 mRNA in groups B, C and D were 2.09±1.35, 5.24±1.30 and 1.17±0.63 and 2.68±1.18, 4.82±0.14 and 2.14±0.27 times those in group A. The expression levels of cTnT and GATA-4 mRNA in group C were significantly higher than those in groups B and D (P<0.05. Immunohistochemical staining showed cTnT protein was positively expressed in group C after induction for 14 days. Conclusions There is no toxic effects of apelin-13 at concentration of 10×10–6mol/L on hUC-MSCs. Certain concentrations of apelin-13 could promote the 5-Aze inducing differentiation of hUC-MSCs to cardiomyocytes, especially at 2×10–6mol/L. DOI: 10.11855/j.issn.0577-7402.2013.10.003

  17. Toddler: An Embryonic Signal That Promotes Cell Movement via Apelin Receptors

    OpenAIRE

    Pauli, Andrea; Norris, Megan L.; Valen, Eivind; Chew, Guo-Liang; Gagnon, James A.; Zimmerman, Steven; Mitchell, Andrew; Ma, Jiao; Dubrulle, Julien; Reyon, Deepak; Tsai, Shengdar Q.; Joung, J. Keith; Saghatelian, Alan; Schier, Alexander F.

    2014-01-01

    It has been assumed that most, if not all, signals regulating early development have been identified. Contrary to this expectation, we identified 28 candidate signaling proteins expressed during zebrafish embryogenesis, including Toddler, a short, conserved, and secreted peptide. Both absence and overproduction of Toddler reduce the movement of mesendodermal cells during zebrafish gastrulation. Local and ubiquitous production of Toddler promote cell movement, suggesting that Toddler is neithe...

  18. Apelin-13对在体大鼠心肌缺血-再灌注损伤的影响及其信号转导途径%Effects of Apelin-13 on rat myocardial ischemia-reperfusion injury in vivo and its signal transduction pathway

    Institute of Scientific and Technical Information of China (English)

    李卉; 曲新凯; 杨栓锁; 方唯一

    2009-01-01

    目的 研究心血管活性肽Apelin-13对在体大鼠心肌缺血-再灌注损伤的影响,并探讨其信号转导途径.方法 将雄性SD大鼠随机分为对照组(n=17)和Apelin-13组(n=15),建立在体大鼠心肌缺血-再灌注模型,对照组在再灌注前5 min给予生理盐水颈静脉注射,Apelin-13组给予0.1 mg/kg Apelin-13颈静脉注射,用伊文思蓝和TTC双重染色法测定心肌梗死区(IS)面积和缺血危险区(ARR)面积,计算IS面积占ARR面积的百分比(IS/ARR);TUNEL法测定心肌细胞凋亡;Western blotting法检测ERK1/2蛋白的表达.结果 Apelin-13组的IS/AAR和心肌细胞凋亡指数均显著低于对照组[(38.33±12.95)% vs (52.61±11.00)%,(0.21±0.02 vs 0.31±0.05](P<0.05);Apelin-13组p-ERK1/2的表达较对照组明显增加(1.15±0.16 vs 0.63±0.07)(P<0.05).结论 Apelin-13具有心肌保护作用,能够缩小心肌梗死面积,减少心肌细胞凋亡,其作用机制可能与ERK1/2MAPK激酶途径激活有关.%Objective To investigate the role of apelin-13, a vasoactive peptide, in rat myocardial ischemia-reperfusion injury in vivo and explore its signal transduction pathway. Methods Rats were randomly divided into control group (n=10) and Apelin-13 group (n=15), and in vivo models of rat myocardial ischemia-reperfusion injury were established. Normal saline (control group) or Apelin-13 (Apelin-13 group) was administered intravenously 5 min before reperfusion. TTC and Evan's blue staining were used to determine the infarction size (IS) and area at risk (AAR), apoptotic cells were quantified by TUNEL method, and the expression of ERK1/2 was determined by Western blotting. Results IS/AAR and apoptosis index of Apelin-13 group were significantly lower than those in control group [(38.33±12.95) % vs (52.61±11.00)% and (0.21±0.02) vs (0.31±0.05)](P <0.05). The expression of p-ERK1/2 in Apelin-13 group was significantly increased than that in control group [(1.15±0.16) vs (0.63±0.07)](P < 0.05). Conclusion

  19. Study of the expression of apelin and its recoptor in ischemic myocardium in insulin-resistant rats

    Institute of Scientific and Technical Information of China (English)

    魏芳晶

    2013-01-01

    Objective To investigate the expression of apelin and its recoptor (APJ) in myocardium in insulin-resistant CIR rats with myocardial ischemia.Methods Totally 24male SD rats were randomly divided into three groups:IR group,IR+ischemia group,the control group (n=8each) .Rats in IR and IR+ischemia groups were fed with the high fat diet.Rats in control group were given the basic diet.The rat model of insulin resistance was assessed by fasting blood glucose (FBG) ,fasting insulin (Fins) and insulin resistance index (HOMA-IR) .The

  20. Clinical Significance of the Plasma Apelin in Essential Hypertension Patients with LVH and Heart Failure%高血压伴 LVH 心力衰竭的 Apelin 测定分析

    Institute of Scientific and Technical Information of China (English)

    韩超; 王蔚浩; 何耀武; 姜明花; 邓文彬

    2015-01-01

    Objective:To study plasma Apelin level before and after the treatment of primary hypertension patients with LVH and heart failure ;to discuss the relationship between plasma Apelin with essential hypertension ,LVH,early heart failure. Methods:Selected 66 essential hypertension patients with LVH without heart failure , 65 essential hypertension patients with LVH and early heart failure ( NYHA Cardiac function classification Ⅰ -Ⅱ) , and 30 healthy people as the normal control group . Measured patients ’ plasma Apelin level and the content of Plasma N -terminal pro-brain natriuretic peptide ( NT-proBNP) with the double antibody sandwich method ,and measured the left ventricle ejection fraction ( LVEF) with ultrasound.Results:There were statistically significant difference between the control group and the group without heart failure ,the group with heart failureon EF, NT-proBNP(P0.05 ) .The fall of blood pressure and the improvement of heart function were related to the plasma Apelin level , but in different groups , the antihypertensive methods had no significant influence to the plasma Apelin level . Conclusion:Patients’ plasma Apelin level becomes lower following hypertension with LVH ,and becomes higher following early heart failure .Monitoring Apelin levels can predict the occurrence of heart failure ,and Apelin can be used as an auxiliary index to bserve the condition and prognosis of heart function .%目的:研究原发性高血压伴LVH心力衰竭患者治疗前后血浆Apelin的水平,探讨原发性高血压伴LVH早期心衰与血浆Apelin的关系。方法:选取原发性高血压伴LVH无心衰患者66例(无心衰组),原发性高血压伴LVH早期心衰( NYHA心功能分级Ⅰ~Ⅱ级)患者65例(早期心衰组),选取经体检筛查身体健康的中老年体检者30例作为正常组(对照组)。用双抗体夹心法分别测定3组患者血浆Apelin水平和血浆N末端脑钠肽原(NT-proBNP)含量,用

  1. 腺苷A2A受体基因敲除小鼠瘢痕胶原亚型的变化%Detection of collagens in hypertrophic scars of adenosine receptor A2A knockout mice by picrosirius polarization method

    Institute of Scientific and Technical Information of China (English)

    肖虎; 李少华; 王德昌; 霍然; 王一兵; 冯永强; 李强

    2012-01-01

    BACKGROUND: Recent study shows that the adenosine receptor agonists can promote the collagen synthesis, and the adenosine receptor antagonists can inhibit the collagen synthesis and reduce the proliferation of skin collagen fiber. The expression of transforming growth factorβ (TGF-β) in hypertrophic scar of adenosine A2A knockout mice models is decreased. OBJECTIVE: To observe the changes of collagens in hypertrophic scars of adenosine receptor A2A knockout mice and its mechanism by picric acid-sirius red polarization method. METHODS: The models of hypertrophic scars were made by adenosine A2A knockout mice and wild-type mice. The character and the distribution of the collagen in the hypertrophic scars were observed by picric acid-sirius red polarization method, and the type of the collagen, distribution, arrangement and content was confirmed. RESULTS AND CONCLUSION: A large amount of eosinophilic collagen protein fibers were observed under polarizing microscope in the hypertrophic scars of wild-type control group. Type collagen fibers were in red and compact bunchiness and Ⅰexhibited strong double refraction, the hypertrophic scars of adenosine A2A knockout mice were lack of thick collagen bundles and was in sparse bunchiness, and the collage bundles were well-arranged and well-distributed. Compared with the wild-type control group, adenosine A2A knockout mice showed significantly lower typecollagen fibers levⅠel (P < 0.01), as well as the hypertrophic scars. It indicated that adenosine A2A receptors played an active role in the proliferation of scars and could prevent the proliferation of scars.%背景:作者前期研究发现腺苷受体激动剂可以刺激胶原合成,腺苷受体拮抗剂可以抑制胶原合成,并且可以减轻皮肤胶原纤维增生.腺苷A2A 受体基因敲除小鼠瘢痕转化生长因子β表达降低.目的:利用苦味酸-天狼星红偏振光法观察腺苷A2A 受体基因敲除小鼠瘢痕胶原亚型的变化并

  2. KnockoutJS web development

    CERN Document Server

    Farrar, John

    2015-01-01

    This book is for web developers and designers who work with HTML and JavaScript to help them manage data and interactivity with data using KnockoutJS. Knowledge about jQuery will be useful but is not necessary.

  3. The significance of TGF-β expression in scar in adenosine receptor A_(2A) knockout mice%腺苷A_(2A)受体基因敲除小鼠瘢痕增生中TGF-β的表达及意义

    Institute of Scientific and Technical Information of China (English)

    肖虎; 冉丽; 禚莹莹; 王德昌; 霍然; 王一兵; 冯永强; 李强

    2010-01-01

    Objective To discuss the mechanism of scar hypertrophy in adenosine receptor A_(2A) (A_(2A) R) knockout mice. Methods Animal models of hypertrophic scar were established in 12 A_(2A)R knockout mice and 12 wild-type mice as control. The thickness and the size of transverse section of the hypertrophic scar were observed by H-E staining. The hydroxyproline ( HYP) in the scar was measured colorimetrically. The TGF-p expression was tested by Western blotting method. Results The hypertrophic scar in wild-type mice was more severe than that in knockout mice. Compared with self-control , the increase of the thickness and the size of transverse section of hypertrophic scar was markedly higher in wild-type group than in the knockout group( P < 0. 01) . There was significant difference in HYP content between the two groups (P < 0. 01 ). Compared with self-control, the increase of TGF-p expression in wild-type group was much more than that in knockout group (P < 0. 01 ). Conclusions The TGF-p expression decreases in the A_(2A) R knockout mice. The scar hypertrophy is also much less in the A_(2A) R knockout mice.%目的 探讨腺苷A_(2A)受体基因敲除小鼠在瘢痕形成中的作用及其机制.方法 4周大腺苷A_(2A)受体基因敲除小鼠和同窝野生型小鼠各12只,制作瘢痕模型,利用HE染色观察瘢痕组织厚度、横截面积变化情况.采用比色氯胺T法测量组织羟脯氨酸含量,利用Western免疫印迹测量TGF-β表达.结果 野生型组小鼠瘢痕增生明显,其厚度、横截面积比自身对照增加倍数显著大于腺苷A_(2A)受体基因敲除组小鼠(P<0.01),腺苷A_(2A)受体基因敲除小鼠瘢痕增生轻,羟脯氨酸含量与同窝野生型组小鼠瘢痕含量相比差异有统计学(P<0.01),野生型组小鼠瘢痕TGF-β表达比自身对照增加倍数显著大于腺苷A_(2A)受体基因敲除小鼠组(P<0.01).结论 腺苷A_(2A)受体基因敲除小鼠瘢痕TGF-β表达降低,瘢痕增生显著减轻.

  4. P2X7受体敲除对小鼠骨癌痛的影响%Effect of P2X7 receptor knock-out on bone cancer pain in mice

    Institute of Scientific and Technical Information of China (English)

    赵欣; 刘慧珠; 张玉秋

    2016-01-01

    癌痛是临床晚期恶性肿瘤患者常见的临床表现之一.其中,以肺癌、乳腺癌和前列腺癌等骨转移引起疼痛尤为严重.P2X7受体是ATP门控离子通道型嘌呤能受体的一个亚型,在脊髓背角主要表达在胶质细胞.P2X7受体激活可以促进胶质细胞释放多种炎症介质,介导脊髓中枢敏化.该受体在炎症痛及神经病理性疼痛中的作用已多有报道,但在癌痛中的作用尚有争议.本研究采用C57BL/6J小鼠股骨骨髓腔内接种Lewis肺癌细胞所诱导的骨癌痛小鼠模型,分析对比了野生型小鼠和P2X7受体基因敲除(P2rx7-/-)小鼠骨癌痛的发生、发展.野生型C57BL/6J小鼠股骨骨髓腔内接种Lewis肺癌细胞后,患侧后肢分别在第7和14天开始出现明显的触诱发痛和热痛过敏,并呈进行性加重;CatWalk步态分析显示骨癌第21和28天,小鼠患侧脚印面积明显减小,站立时相持续时间缩短,举步时相持续时间显著延长;组织病理学结果显示受累骨骨髓腔有大量肿瘤细胞浸润,骨髓质正常结构消失,伴有髓质骨和皮质骨的破坏.与研究设计时的预期相反,P2rx 7-/-小鼠接种瘤细胞后,患肢痛行为检测结果与野生型小鼠相似,甚至在CatWalk步态分析检测值变化发生的时间上较野生小鼠有所提前.这与本研究组前期在大鼠骨癌痛模型观察到的阻断P2X7受体明显对抗骨癌痛的结果完全不同,提示P2X7受体在大、小鼠骨癌痛中可能发挥不同的作用,并再次提示疾病动物模型上的研究结果与人类疾病机理之间还存在巨大差异.%Cancer pain is one of the most common symptoms in patients with late stage cancer.Lung,breast and prostate carcinoma are the most common causes of pain from osseous metastasis.P2X7 receptor (P2X7R) is one of the subtypes ofATP-gated pudnergic ion channel family,predominately distributed in microglia in the spinal cord.Activation of P2X7Rs in the spinal dorsal horn has been

  5. Changes in 5-HT2A-mediated behavior and 5-HT2A- and 5-HT1A receptor binding and expression in conditional brain-derived neurotrophic factor knock-out mice

    DEFF Research Database (Denmark)

    Klein, A B; Santini, M A; Aznar, S;

    2010-01-01

    Changes in brain-derived neurotrophic factor (BDNF) expression have been implicated in the etiology of psychiatric disorders. To investigate pathological mechanisms elicited by perturbed BDNF signaling, we examined mutant mice with central depletion of BDNF (BDNF(2L/2LCk-cre)). A severe impairment...... specific for the serotonin 2A receptor (5-HT(2A)R) in prefrontal cortex was described previously in these mice. This is of much interest, as 5-HT(2A)Rs have been linked to neuropsychiatric disorders and anxiety-related behavior. Here we further characterized the serotonin receptor alterations triggered...... by BDNF depletion. 5-HT(2A) ([(3)H]-MDL100907) and 5-HT(1A) ([(3)H]-WAY100635) receptor autoradiography revealed site-specific alterations in BDNF mutant mice. They exhibited lower 5-HT(2A) receptor binding in frontal cortex but increased binding in hippocampus. Additionally, 5-HT(1A) receptor binding...

  6. 小鼠肝脏胰岛素受体的特异性敲除降低极低密度脂蛋白中三酰甘油分泌的研究%Knockout of insulin receptors in hepatocytes reduced the secretion of triglyceride in very low density lipoprotein

    Institute of Scientific and Technical Information of China (English)

    李国平; 唐蔚青; 黎健; 陈保生

    2012-01-01

    目的:建立肝组织特异性胰岛素受体急性缺失的动物模型,分析胰岛素信号缺失对三酰甘油代谢的影响.方法:在构建腺病毒时,利用Cre-LoxP系统机制,在Cre重组酶基因的上游插入肝组织特异性表达的白蛋白基因启动子.扩增纯化病毒,经小鼠尾静脉注射病毒14 d后,收集小鼠血浆,测定极低密度脂蛋白三酰甘油分泌速率,抽提肝脏脂质并用酶法检测脂质含量,用免疫印迹法分析胰岛素受体和脂代谢相关基因在肝脏内的表达.结果:成功构建了肝脏特异性胰岛素受体急性缺失动物模型.胰岛素信号缺失显著降低了小鼠肝脏的极低密度脂蛋白三酰甘油的分泌速度,同时也下调了肝脏脂肪酸合成相关基因和极低密度脂蛋白形成相关基因的表达.结论:肝脏胰岛素信号急性缺失降低极低密度脂蛋白中三酰甘油的分泌速度,这种变化可能和肝脏内脂肪酸的合成速度下降有关.%Objective;In order to investigate the effect of insulin signaling in triglyceride (TG) metab-olism , a hepatic insulin receptor knockout model was developed. Methods: Based on Cre-LoxP system, a pro-moter of hepatic tissue specific albumin gene was introduced into upstream of the ere recombinase gene. Albu-min-Cre adenovirus (Ad-CRE) and GFP adenovirus (Ad-GFP) were amplified in 293A cells and purified be-fore intravenous administration. After adenovirus infection for 14 days, blood samples were collected and livers were frozen. The levels of cholesterol (TC) and TG were measured, and the expression of insulin receptor and other lipoprotein metabolism related genes were analyzed by Western blot. The TG secretion rate in very low density lipoprotein (VLDL) was determined by injection of Triton WR1339. Results; The mouse model of acute knockout for hepatic insulin receptor was successfully established. TG secretion in VLDL was reduced, accom-panied by decreased expression of lipoprotein metabolism

  7. Hormone-Sensitive Lipase Knockouts

    Directory of Open Access Journals (Sweden)

    Shen Wen-Jun

    2006-02-01

    Full Text Available Abstract All treatments for obesity, including dietary restriction of carbohydrates, have a goal of reducing the storage of fat in adipocytes. The chief enzyme responsible for the mobilization of FFA from adipose tissue, i.e., lipolysis, is thought to be hormone-sensitive lipase (HSL. Studies of HSL knockouts have provided important insights into the functional significance of HSL and into adipose metabolism in general. Studies have provided evidence that HSL, though possessing triacylglycerol lipase activity, appears to be the rate-limiting enzyme for cholesteryl ester and diacylglycerol hydrolysis in adipose tissue and is essential for complete hormone stimulated lipolysis, but other triacylglycerol lipases are important in mediating triacylglycerol hydrolysis in lipolysis. HSL knockouts are resistant to both high fat diet-induced and genetic obesity, displaying reduced quantities of white with increased amounts of brown adipose tissue, increased numbers of adipose macrophages, and have multiple alterations in the expression of genes involved in adipose differentiation, including transcription factors, markers of adipocyte differentiation, and enzymes of fatty acid and triglyceride synthesis. With disruption of lipolysis by removal of HSL, there is a drastic reduction in lipogenesis and alteration in adipose metabolism.

  8. Expression of Apelin in Obese Rats with Heart Failure%Apelin在肥胖心力衰竭大鼠中表达的变化

    Institute of Scientific and Technical Information of China (English)

    岳洪峰; 杨进刚; 荀轶文; 胡大一

    2009-01-01

    目的:探讨心血管活性肽apelin在肥胖心力衰竭大鼠中袭达的变化及意义.方法:高糖高脂饮食复制肥胖大鼠模型,皮下注射异丙肾上腺素(Isoproterenol, ISO)复制心力衰竭大鼠模型,酶联免疫法检测血浆apelin的含量,实时定量PCR方法检测心室肌apelin mRNA表达水平.结果:(1)肥胖组大鼠血浆apelln含量、心室肌apelin mRNA表达水平较正常对照组均显著升高(均P<0.01).(2)正常体重心力衰竭组大鼠斑浆apelin含量、心室肌apelia mRNA表达较正常对照组均显著下调(均P<0.01).(3)肥胖心力衰竭组大鼠血浆apelia含量、心室肌apelin mRNA表达较肥胖组均显著下调(均P<0.01).(4)血浆apelin水平、心室肌apelin mRNA表达水平在正常体重心力衰竭组和肥胖心力衰竭组间无统计学差异.结论:与来用ISO干预的大鼠相比,ISO诱导的心力衰竭大鼠血浆apelin含量降低、心室肌apelin mRNA呈低表达水平,但这两个指标在正常体重心力衰竭组大鼠和肥胖心力衰竭组大鼠间无显著差异,这间接提示心血管活性肽apelin有可能不是肥胖心力衰竭患者预后较好的原因.

  9. Enhanced Long-Term and Impaired Short-Term Spatial Memory in GluA1 AMPA Receptor Subunit Knockout Mice: Evidence for a Dual-Process Memory Model

    Science.gov (United States)

    Sanderson, David J.; Good, Mark A.; Skelton, Kathryn; Sprengel, Rolf; Seeburg, Peter H.; Rawlins, J. Nicholas P.; Bannerman, David M.

    2009-01-01

    The GluA1 AMPA receptor subunit is a key mediator of hippocampal synaptic plasticity and is especially important for a rapidly-induced, short-lasting form of potentiation. GluA1 gene deletion impairs hippocampus-dependent, spatial working memory, but spares hippocampus-dependent spatial reference memory. These findings may reflect the necessity of…

  10. The serotonin transporter knockout rat : A review

    NARCIS (Netherlands)

    Olivier, Jocelien; Cools, Alexander; Ellenbroek, Bart A.; Cuppen, E.; Homberg, Judith; Kalueff, Allan V.; LaPorte, Justin L.

    2010-01-01

    This chapter dicusses the most recent data on the serotonin transporter knock-out rat, a unique rat model that has been generated by target-selected N-ethyl-N-nitrosourea (ENU) driven mutagenesis. The knock-out rat is the result of a premature stopcodon in the serotonin transporter gene, and the abs

  11. Molecular cloning, genomic organization, developmental regulation, and a knock-out mutant of a novel leu-rich repeats-containing G protein-coupled receptor (DLGR-2) from Drosophila melanogaster

    DEFF Research Database (Denmark)

    Eriksen, Kathrine Krageskov; Hauser, Frank; Schiøtt, Morten;

    2000-01-01

    LGRs (LGR-4 and LGR-5). This homology includes the seven transmembrane region (e.g., 49% amino acid identity with the human TSH receptor) and the very large extracellular amino terminus. This amino terminus contains 18 Leu-rich repeats-in contrast with the 3 mammalian glycoprotein hormone receptors......After screening the Berkeley Drosophila Genome Project database with sequences from a recently characterized Leu-rich repeats-containing G protein-coupled receptor (LGR) fromDrosophila (DLGR-1), we identified a second gene for a different LGR (DLGR-2) and cloned its cDNA. DLGR-2 is 1360 amino acid...... and DLGR-1 that contain 9 Leu-rich repeats, but resembling the mammalian LGR-4 and LGR-5 that each have 17 Leu-rich repeats in their amino termini. The DLGR-2 gene is >18.6 kb pairs long and contains 15 exons and 14 introns. Four intron positions coincide with the intron positions of the three mammalian...

  12. Changes in 5-HT2A-mediated behavior and 5-HT2A- and 5-HT1A receptor binding and expression in conditional brain-derived neurotrophic factor knock-out mice

    DEFF Research Database (Denmark)

    Klein, A B; Santini, M A; Aznar, S;

    2010-01-01

    Changes in brain-derived neurotrophic factor (BDNF) expression have been implicated in the etiology of psychiatric disorders. To investigate pathological mechanisms elicited by perturbed BDNF signaling, we examined mutant mice with central depletion of BDNF (BDNF(2L/2LCk-cre)). A severe impairment...... by BDNF depletion. 5-HT(2A) ([(3)H]-MDL100907) and 5-HT(1A) ([(3)H]-WAY100635) receptor autoradiography revealed site-specific alterations in BDNF mutant mice. They exhibited lower 5-HT(2A) receptor binding in frontal cortex but increased binding in hippocampus. Additionally, 5-HT(1A) receptor binding...... was decreased in hippocampus of BDNF mutants, but unchanged in frontal cortex. Molecular analysis indicated corresponding changes in 5-HT(2A) and 5-HT(1A) mRNA expression but normal 5-HT(2C) content in these brain regions in BDNF(2L/2LCk-cre) mice. We investigated whether the reduction in frontal 5-HT(2A...

  13. Cell-specific knockout of steroidogenic factor 1 reveals its essential roles in gonadal function

    NARCIS (Netherlands)

    Jeyasuria, P; Ikeda, Y; Jamin, SP; Zhao, LP; De Rooij, DG; Themmen, APN; Behringer, RR; Parker, KL

    2004-01-01

    Knockout ( KO) mice lacking the orphan nuclear receptor steroidogenic factor 1 (SF-1, officially designated Nr5a1) have a compound endocrine phenotype that includes adrenal and gonadal agenesis, impaired expression of pituitary gonadotropins, and structural abnormalities of the ventromedial hypothal

  14. Enhanced long-term and impaired short-term spatial memory in GluA1 AMPA receptor subunit knockout mice: Evidence for a dual-process memory model

    OpenAIRE

    Sanderson, David J.; Good, Mark A.; Skelton, Kathryn; Sprengel, Rolf; Seeburg, Peter H.; Rawlins, J. Nicholas P.; Bannerman, David M.

    2009-01-01

    The GluA1 AMPA receptor subunit is a key mediator of hippocampal synaptic plasticity and is especially important for a rapidly-induced, short-lasting form of potentiation. GluA1 gene deletion impairs hippocampus-dependent, spatial working memory, but spares hippocampus-dependent spatial reference memory. These findings may reflect the necessity of GluA1-dependent synaptic plasticity for short-term memory of recently visited places, but not for the ability to form long-term associations betwee...

  15. Apolipoprotein E knockout as the basis for mouse models of dyslipidemia-induced neuropathy.

    Science.gov (United States)

    Hinder, Lucy M; Vincent, Andrea M; Hayes, John M; McLean, Lisa L; Feldman, Eva L

    2013-01-01

    Dyslipidemia has been identified as an important pathogenic risk factor for diabetic neuropathy, but current animal models do not adequately reproduce the lipid profile observed in human diabetics (increased triglycerides with an elevated LDL-cholesterol and reduced HDL-cholesterol). High fat feeding of mice produces hyperlipidemia, but mice are resistant to increases in the LDL to HDL ratio, reducing the potential for peripheral lipid deposits to impact neuropathy, as is postulated to occur in human subjects. Genetic manipulations provide an alternative approach to reproducing a neuropathic plasma lipid profile. Based on findings from the atherosclerosis literature, we began with knockout of ApoE. Since knockout of ApoE alone only partially mimics the human diabetic lipid profile, we examined the impact of its combination with a well-characterized model of type 2 diabetes exhibiting neuropathy, the db/db mouse. We added further gene manipulations to increase hyperlipidemia by using mice with both ApoE and ApoB48 knockout on the ob/+ (leptin mutation) mice. In all of these models, we found that either the db/db or ob/ob genotypes had increased body weight, hyperlipidemia, hyperglycemia, and evidence of neuropathy compared with the control groups (db/+ or ob/+, respectively). We found that ApoE knockout combined with leptin receptor knockout produced a lipid profile most closely modeling human dyslipidemia that promotes neuropathy. ApoE knockout combined with additional ApoB48 and leptin knockout produced similar changes of smaller magnitude, but, notably, an increase in HDL-cholesterol. Our data suggest that the overall effects of ApoE knockout, either directly upon nerve structure and function or indirectly on lipid metabolism, are insufficient to significantly alter the course of diabetic neuropathy. Although these models ultimately do not deliver optimal lipid profiles for translational diabetic neuropathy research, they do present glycemic and lipid profile

  16. Altered gut microbiota and endocannabinoid system tone in obese and diabetic leptin-resistant mice: impact on apelin regulation in adipose tissue

    Directory of Open Access Journals (Sweden)

    Lucie eGeurts

    2011-07-01

    Full Text Available Growing evidence supports the role of gut microbiota in the development of obesity, type 2 diabetes and low-grade inflammation. The endocrine activity of adipose tissue has been found to contribute to the regulation of glucose homeostasis and low-grade inflammation. Among the key hormones produced by this tissue, apelin has been shown to regulate glucose homeostasis. Recently, it has been proposed that gut microbiota participate in adipose tissue metabolism via the endocannabinoid system and gut microbiota-derived compounds, namely lipopolysaccharide (LPS. We have investigated gut microbiota composition in obese and diabetic leptin-resistant mice (db/db by combining pyrosequencing and phylogenetic microarray analysis of 16S ribosomal RNA gene sequences. We observed a significant higher abundance of Firmicutes, Proteobacteria and Fibrobacteres phyla in db/db mice compared to lean mice. The abundance of 10 genera was significantly affected by the genotype. We identified the roles of the endocannabinoid system and LPS in the regulation of apelinergic system tone (apelin and APJ mRNA expression in genetic obese and diabetic mice. By using in vivo and in vitro models, we have demonstrated that both the endocannabinoid system and low-grade inflammation differentially regulate apelin and APJ mRNA expression in adipose tissue. Finally, deep-gut microbiota profiling revealed that the gut microbial community of type 2 diabetic mice is significantly different from that of their lean counterparts. This indicates specific relationships between the gut microbiota and the regulation of the apelinergic system. However, the exact roles of specific bacteria in shaping the phenotype of db/db mice remain to be determined.

  17. Microarray analysis of E9.5 reduced folate carrier (RFC1; Slc19a1 knockout embryos reveals altered expression of genes in the cubilin-megalin multiligand endocytic receptor complex

    Directory of Open Access Journals (Sweden)

    Bauer Linda K

    2008-04-01

    Full Text Available Abstract Background The reduced folate carrier (RFC1 is an integral membrane protein and facilitative anion exchanger that mediates delivery of 5-methyltetrahydrofolate into mammalian cells. Adequate maternal-fetal transport of folate is necessary for normal embryogenesis. Targeted inactivation of the murine RFC1 gene results in post-implantation embryolethality, but daily folic acid supplementation of pregnant dams prolongs survival of homozygous embryos until mid-gestation. At E10.5 RFC1-/- embryos are developmentally delayed relative to wildtype littermates, have multiple malformations, including neural tube defects, and die due to failure of chorioallantoic fusion. The mesoderm is sparse and disorganized, and there is a marked absence of erythrocytes in yolk sac blood islands. The identification of alterations in gene expression and signaling pathways involved in the observed dysmorphology following inactivation of RFC1-mediated folate transport are the focus of this investigation. Results Affymetrix microarray analysis of the relative gene expression profiles in whole E9.5 RFC1-/- vs. RFC1+/+ embryos identified 200 known genes that were differentially expressed. Major ontology groups included transcription factors (13.04%, and genes involved in transport functions (ion, lipid, carbohydrate (11.37%. Genes that code for receptors, ligands and interacting proteins in the cubilin-megalin multiligand endocytic receptor complex accounted for 9.36% of the total, followed closely by several genes involved in hematopoiesis (8.03%. The most highly significant gene network identified by Ingenuity™ Pathway analysis included 12 genes in the cubilin-megalin multiligand endocytic receptor complex. Altered expression of these genes was validated by quantitative RT-PCR, and immunohistochemical analysis demonstrated that megalin protein expression disappeared from the visceral yolk sac of RFC1-/- embryos, while cubilin protein was widely misexpressed

  18. Hazara virus infection is lethal for adult type I interferon receptor-knockout mice and may act as a surrogate for infection with the human-pathogenic Crimean-Congo hemorrhagic fever virus.

    Science.gov (United States)

    Dowall, Stuart D; Findlay-Wilson, Stephen; Rayner, Emma; Pearson, Geoff; Pickersgill, Janice; Rule, Antony; Merredew, Natasha; Smith, Hazel; Chamberlain, John; Hewson, Roger

    2012-03-01

    Hazara virus (HAZV) is closely related to the Crimean-Congo hemorrhagic fever virus (CCHFV). HAZV has not been reported to cause human disease; work with infectious material can be carried out at containment level (CL)-2. By contrast, CCHFV causes a haemorrhagic fever in humans and requires CL-4 facilities. A disease model of HAZV infection in mice deficient in the type I interferon receptor is reported in this study. Dose-response effects were seen with higher doses, resulting in a shorter time to death and earlier detection of viral loads in organs. The lowest dose of 10 p.f.u. was still lethal in over 50 % of the mice. Histopathological findings were identified in the liver, spleen and lymph nodes, with changes similar to a recent mouse model of CCHFV infection. The findings demonstrate that inoculation of mice with HAZV may act as a useful surrogate model for the testing of antiviral agents against CCHFV.

  19. Knockout Reaction Mechanism for 6He+%Knockout Reaction Mechanism for 6He+

    Institute of Scientific and Technical Information of China (English)

    吕林辉; 叶沿林; 曹中鑫; 肖军; 江栋兴; 郑涛; 华辉; 李智焕; 葛俞成; 李湘庆; 楼建玲; 李阔昂; 李奇特; 乔锐; 游海波; 陈瑞九

    2012-01-01

    A knockout reaction experiment was carried out by using the 6He beam at 82.5 MeV/nucleon impinging on CH2 and C targets. The a core fragments at forward angles were detected in coincidence with the recoiled protons at larger angles. From this exclusive measure- ment the valence nucleon knockout mechanism and the core knockout mechanism are separated. This study provides a basis for the exclusive spectroscopic investigation of the exotic nuclei.

  20. No evidence for a bone phenotype in GPRC6A knockout mice under normal physiological conditions

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Johansen, Lars Dan; Jensen, Anders Asbjørn;

    2009-01-01

    . Analogously to the closely related calcium-sensing receptor, GPRC6A has been proposed to function as a metabolic sensor of Ca2+ and amino acids in bone and other tissues. In the present study, we have generated the first GPRC6A knockout mice and studied their phenotype with particular focus on bone...... homeostasis. The generated GPRC6A knockout mice are viable and fertile, develop normally and exhibit no significant differences in body weight compared to wild type littermates. Assessment of bone mineral density, histomorphometry and bone metabolism demonstrated no significant differences between 13-week......-old knockout and wild type mice. In conclusion, our data do not support a role for GPRC6A in normal bone physiology....

  1. Knockout of endothelial cell-derived endothelin-1 attenuates skin fibrosis but accelerates cutaneous wound healing.

    Directory of Open Access Journals (Sweden)

    Katsunari Makino

    Full Text Available Endothelin (ET-1 is known for the most potent vasoconstrictive peptide that is released mainly from endothelial cells. Several studies have reported ET-1 signaling is involved in the process of wound healing or fibrosis as well as vasodilation. However, little is known about the role of ET-1 in these processes. To clarify its mechanism, we compared skin fibrogenesis and wound repair between vascular endothelial cell-specific ET-1 knockout mice and their wild-type littermates. Bleomycin-injected fibrotic skin of the knockout mice showed significantly decreased skin thickness and collagen content compared to that of wild-type mice, indicating that bleomycin-induced skin fibrosis is attenuated in the knockout mice. The mRNA levels of transforming growth factor (TGF-β were decreased in the bleomycin-treated skin of ET-1 knockout mice. On the other hand, skin wound healing was accelerated in ET-1 knockout mice, which was indicated by earlier granulation tissue reduction and re-epithelialization in these mice. The mRNA levels of TGF-β, tumor necrosis factor (TNF-α and connective tissue growth factor (CTGF were reduced in the wound of ET-1 knockout mice. In endothelial ET-1 knockout mouse, the expression of TNF-α, CTGF and TGF-β was down-regulated. Bosentan, an antagonist of dual ET receptors, is known to attenuate skin fibrosis and accelerate wound healing in systemic sclerosis, and such contradictory effect may be mediated by above molecules. The endothelial cell-derived ET-1 is the potent therapeutic target in fibrosis or wound healing, and investigations of the overall regulatory mechanisms of these pathological conditions by ET-1 may lead to a new therapeutic approach.

  2. 血清Apelin APN FFA及MMP与充血性心力衰竭的关系的分析

    Institute of Scientific and Technical Information of China (English)

    陈申杰; 吕淑敏; 李波

    2014-01-01

    ObjectiveTo investigate the relationship between the serum Apelin,APN,FFA,MMP and congestive heart failure.Methods80 patients with congestive heart failure in our hospital from July 2012 to March 2014 were selected as observation group,80 healthy persons with health examination at the same time were the control group,then the serum Apelin,APN,FFA and MMP of two groups were detected and compared,then the serum Apelin,APN,FFA and MMP of observation group with different grades and classification were respectively analyzed and compared,then relationship between those serum items and congestive heart failure were analyzed by the logistic analysis.ResultsThe serum Apelin,APN,FFA and MMP of observation group were all higher than those of control group,those of observation group with higher grades were all higher than those of patients with lower grades, those of patients with systolic heart failure were all higher than those of patients with diastolic heart failure,and those serum indexes all had close relationship to the congestive heart failure by the Logistic analysis,allP<0.05.ConclusionThe serum Apelin,APN, FFA and MMP of patients with congestive heart failure show obvious higher state,and those serum indexes have close relationship to the congestive heart failure.%目的:探讨血清爱帕琳肽(Apelin)、脂联素(APN),游离脂肪酸(FFA)及基质金属蛋白酶(MMP)与充血性心力衰竭的关系。方法本资料中80例充血性心力衰竭患者设为观察组,同期的80名健康者为对照组,将两组的血清Apelin、APN、FFA及MMP水平进行检测及比较,然后将观察组中不同分级及分类患者的血清Apelin、APN、FFA及MMP水平进行分别统计及比较,并以Logistic分析处理上述血清项目与充血性心力衰竭的关系。结果观察组的血清Apelin、APN、FFA及MMP水平均高于对照组,且观察组中分级较高者高于分级较低者,收缩性心力衰竭患者则高于舒张性心

  3. Leukemogenesis in heterozygous PU.1 knockout mice.

    Science.gov (United States)

    Genik, Paula C; Vyazunova, Irina; Steffen, Leta S; Bacher, Jeffery W; Bielefeldt-Ohmann, Helle; McKercher, Scott; Ullrich, Robert L; Fallgren, Christina M; Weil, Michael M; Ray, F Andrew

    2014-09-01

    Most murine radiation-induced acute myeloid leukemias involve biallelic inactivation of the PU.1 gene, with one allele being lost through a radiation-induced chromosomal deletion and the other allele affected by a recurrent point mutation in codon 235 that is likely to be spontaneous. The short latencies of acute myeloid leukemias occurring in nonirradiated mice engineered with PU.1 conditional knockout or knockdown alleles suggest that once both copies of PU.1 have been lost any other steps involved in leukemogenesis occur rapidly. Yet, spontaneous acute myeloid leukemias have not been reported in mice heterozygous for a PU.1 knockout allele, an observation that conflicts with the understanding that the PU.1 codon 235 mutation is spontaneous. Here we describe experiments that show that the lack of spontaneous leukemia in PU.1 heterozygous knockout mice is not due to insufficient monitoring times or mouse numbers or the genetic background of the knockout mice. The results reveal that spontaneous leukemias that develop in mice of the mixed 129S2/SvPas and C57BL/6 background of knockout mice arise by a pathway that does not involve biallelic PU.1 mutation. In addition, the latency of radiation-induced leukemia in PU.1 heterozygous mice on a genetic background susceptible to radiation-induced leukemia indicates that the codon 235 mutation is not a rate-limiting step in radiation leukemogenesis driven by PU.1 loss.

  4. receptores

    Directory of Open Access Journals (Sweden)

    Salete Regina Daronco Benetti

    2006-01-01

    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  5. Generation of transient receptor potential vanilloid 6 gene knockout mouse model%瞬时性受体电位通道香草酸受体亚型6基因敲除小鼠模型的建立

    Institute of Scientific and Technical Information of China (English)

    叶添文; 郑晋华; 安静; 郭清河; 陈方经; 陈爱民

    2012-01-01

    目的 建立瞬时性受体电位通道香草酸受体亚型6(Trpv6)基因敲除小鼠模型,为在体研究Trpv6的生物学功能及其与骨代谢关系奠定基础.方法 从Ensembl数据库中获得小鼠Trpv6基因组序列.设计基因敲除策略,构建基因敲除载体pBR322-MK-Trpv6.以电穿孔方法将基因敲除载体导入胚胎多能干细胞(ES细胞),用G418和Ganciclovoir进行正负筛选,获得双抗性克隆.PCR鉴定出正确同源重组的ES细胞克隆.将正确同源重组的ES细胞注射到C57BL/6J小鼠的囊胚中,获得嵌合体小鼠.挑选嵌合率在50%的雄鼠与C57BL/6J小鼠交配,获得的灰鼠经PCR鉴定为杂合子小鼠.杂合子小鼠交配后获得纯合子小鼠.结果 成功构建了打靶载体pBR322-MK-Trpv6.电穿孔后,共获得24个正确同源重组的克隆,同源重组效率为25%.同源重组的克隆经显微注射后,共获得4只嵌合率大于50%的雄鼠.嵌合鼠与C57BL/6J小鼠交配,获得57只来源于ES细胞的灰鼠,PCR鉴定证实其中17只为杂合子小鼠,阳性率为29.8%.杂合子小鼠交配获得纯合子小鼠.经蛋白质印迹分析证实纯合子小鼠无Trpv6蛋白的表达.结论 成功建立了Trpv6基因敲除小鼠模型,其中纯合子小鼠未出现胚胎致死现象.%Objective To create transient receptor potential vanilloid 6 (Trpv6) gene knockout mouse model, so as to pave a way for further research of its biological function and its role in bone metabolism in vivo. Methods Mouse genomic DNA sequence of Trpv6 gene was obtained from Ensembl database. Trpv6 gene knockout vector (pBR322-MK-Trpv6) was constructed. Trpv6 knockout vector was transferred into the embryonic stem (ES) cells by electroporation and screening of both G418 and Ganciclovoir resistant clones were performed routinely. The homologous recombined ES cell clones were identified by PCR. The correct homologously recombined ES cells were microinjected into C57BL/6J mouse blastocysts to obtain chimera

  6. 多囊卵巢综合征不孕患者血清Apelin水平与胰岛素抵抗的关系%Relation between serum Apelin level and insulin resistance in infertility patients with polycystic ovarian syndrome

    Institute of Scientific and Technical Information of China (English)

    黄红艺; 莫云; 何冰; 刘杨桦; 张团英; 张凤兰

    2014-01-01

    目的:研究多囊卵巢综合征(PCOS)不孕患者血清 Apelin 水平的变化及其与胰岛素抵抗(IR)的关系。方法:选择2011年1月至2012年6月间首次来我院就诊的98例PCOS不孕患者及72例非PCOS不孕患者,分别分为PCOS组和非PCOS组。分别比较两组患者的体重指数(BMI)、血清Apelin、血糖、胰岛素、稳态模型胰岛素抵抗指数(HOMA-IR)间的相互关系。血清Apelin采用ELISA法测定,空腹血浆葡萄糖(FPG)采用葡萄糖氧化酶法测定,空腹胰岛素(FIns)采用化学发光法测定。结果:PCOS 组血清Apelin 水平(μg/L)明显高于非PCOS组(3.28±1.24 vs.1.94±0.78, P<0.05)。 PCOS 组的HOMA-IR 高于非PCOS 组(3.84±1.23 vs.2.14±0.77, P<0.05); Person 相关分析表明, PCOS 组血清 Apelin 水平与 HOMA-IR 相关(r=0.65, P<0.01)。结论:PCOS不孕患者血清Apelin水平升高,并且其升高与IR 密切相关。提示Apelin可能参与PCOS不孕患者IR的发生发展。%Objective To explore the change of serum Apelin level and its relationship with insulin resistance (IR) in infertility patients with polycystic ovarian syndrome (PCOS). Methods Ninety-eight infertility patients with PCOS (PCOS group) and 72 infertility patients without PCOS (non-PCOS group) visiting our hospital for the first time from January 2011 to June 2012 were selected. The BMI , serum Apelin level (detected by ELISA), fasting blood glucose (FPG, detected by glucose oxidase method), fasting insulin (Fins, detected by chemiluminescence), and homeostasis model assessment of insulin resistance index (HOMA-IR) of the two groups were detected. Results The serum Apelin level and HOMA-IR in PCOS patients were higher than those in non-PCOS patients (3.28 ± 1.24 vs. 1.94 ± 0.78, P < 0.05; 3.84 ± 1.23 vs. 2.14 ± 0.77,P < 0.05). Pearson correlation analysis showed that serum Apelin level was positively correlated

  7. SNARE function analyzed in synaptobrevin/VAMP knockout mice.

    Science.gov (United States)

    Schoch, S; Deák, F; Königstorfer, A; Mozhayeva, M; Sara, Y; Südhof, T C; Kavalali, E T

    2001-11-01

    SNAREs (soluble NSF-attachment protein receptors) are generally acknowledged as central components of membrane fusion reactions, but their precise function has remained enigmatic. Competing hypotheses suggest roles for SNAREs in mediating the specificity of fusion, catalyzing fusion, or actually executing fusion. We generated knockout mice lacking synaptobrevin/VAMP 2, the vesicular SNARE protein responsible for synaptic vesicle fusion in forebrain synapses, to make use of the exquisite temporal resolution of electrophysiology in measuring fusion. In the absence of synaptobrevin 2, spontaneous synaptic vesicle fusion and fusion induced by hypertonic sucrose were decreased approximately 10-fold, but fast Ca2+-triggered fusion was decreased more than 100-fold. Thus, synaptobrevin 2 may function in catalyzing fusion reactions and stabilizing fusion intermediates but is not absolutely required for synaptic fusion.

  8. Delayed liver regeneration after partial hepatectomy in adiponectin knockout mice

    International Nuclear Information System (INIS)

    We previously demonstrated that adiponectin has anti-fibrogenic and anti-inflammatory effects in the liver of mouse models of various liver diseases. However, its role in liver regeneration remains unclear. The aim of this study was to determine the role of adiponectin in liver regeneration. We assessed liver regeneration after partial hepatectomy in wild-type (WT) and adiponectin knockout (KO) mice. We analyzed DNA replication and various signaling pathways involved in cell proliferation and metabolism. Adiponectin KO mice exhibited delayed DNA replication and increased lipid accumulation in the regenerating liver. The expression levels of peroxisome proliferator-activated receptor (PPAR) α and carnitine palmitoyltransferase-1 (CPT-1), a key enzyme in mitochondrial fatty acid oxidation, were decreased in adiponectin KO mice, suggesting possible contribution of altered fat metabolism to these phenomena. Collectively, the present results highlight a new role for adiponectin in the process of liver regeneration.

  9. Short-Chain Fatty Acid Propionate Alleviates Akt2 Knockout-Induced Myocardial Contractile Dysfunction

    Directory of Open Access Journals (Sweden)

    Linlin Li

    2012-01-01

    Full Text Available Background and Aims. Dysregulation of Akt has been implicated in diseases such as cancer and diabetes, although little is known about the role of Akt deficiency on cardiomyocyte contractile function. This study was designed to examine the effect of Akt2 knockout-induced cardiomyocyte contractile response and the effect of dietary supplementation of short-chain fatty acid propionate on Akt2 knockout-induced cardiac dysfunction, if any. Methods and Results. Adult male wild-type (WT and Akt2 knockout mice were treated with propionate (0.3 g/kg, p.o. or vehicle for 7 days. Oral glucose tolerance test (OGTT was performed. Cardiomyocyte contractile function and mitochondrial membrane potential were assessed. Expression of insulin-signaling molecules Akt, PTEN, GSK3β, and eNOS receptors for short-chain fatty acids GPR41, and GPR43 as well as protein phosphatase PP2AA, PP2AB, PP2C were evaluated using Western blot analysis. Our results revealed that Akt2 knockout led to overt glucose intolerance, compromised cardiomyocyte contractile function (reduced peak shortening and maximal velocity of shortening/relengthening as well as prolonged relengthening, loss of mitochondrial membrane potential, decreased GPR41 and elevated GPR43 expression, all of which, with the exception of glucose intolerance and elevated GPR43 level, were significantly attenuated by propionate. Neither Akt2 knockout nor propionate affected the expression of protein phosphatases, eNOS, pan, and phosphorylated PTEN and GSK3β. Conclusions. Taken together, these data depicted that Akt2 knockout may elicit cardiomyocyte contractile and mitochondrial defects and a beneficial role of propionate or short-chain fatty acids against Akt2 deficiency-induced cardiac anomalies.

  10. Apelin-13对5-Aza诱导脐带间充质干细胞向心肌细胞分化的影响%Influence of apelin-13 on 5-azacytidine inducing differentiation of umbilical cord mesenchymal stem cells to cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    徐小红; 王力; 张宁坤; 郑楠; 高连如; 朱智明

    2013-01-01

    目的 探讨apelin-13蛋白在体外对5-氮胞苷(5-Aza)诱导人脐带间充质干细胞(hUC-MSCs)向心肌细胞分化的影响.方法 采用组织块贴壁法培养hUC-MSCs,胰酶消化传代;取P2代细胞置于不同分化条件的培养液中分化培养14d,实验分为A、B、C、D组(apelin-13浓度分别为0、1×10-6、2×10-6和10×10-6mol/L),各组培养基中5-Aza浓度均为10×10-6mol/L.采用流式细胞仪检测hUC-MSCs表面免疫标记,MTT法检测细胞在570nm处的吸光度(A)值,RT-PCR检测肌钙蛋白T(cTnT)、GATA-4 mRNA表达水平,免疫组织化学染色法检测心肌细胞表面标志物cTnT的表达.结果 流式细胞仪鉴定结果表明,hUC-MSCs表达CD44、CD90、CD105、CD73、经典人类白细胞抗原Ⅰ类抗原(HLA-ABC),不表达CD34、CD45、经典人类白细胞抗原Ⅱ类抗原(HLA-DR).MTT检测显示,0、10×10-6mol/L apelin-13处理的hUC-MSCs在570nm处的A值分别为0.841 ±0.290、0.875±0.325,差异无统计学意义(P>0.05).B、C、D组cTnTmRNA表达水平分别是A组的2.09±1.35、5.24±1.30、1.17±0.63倍,B、C、D组GATA-4 mRNA表达水平分别是A组的2.68±1.18、4.82±0.14、2.14±0.27倍;C组与B、D组比较,cTnT、GATA-4 mRNA表达差异具有统计学意义(P<0.05).免疫组化染色显示,诱导14d后C组细胞cTnT蛋白表达呈阳性.结论 10×10-6m01/L apelin-13对hUC-MSCs无毒性作用,一定浓度的apelin-13蛋白可增强5-Aza诱导hUC-MSCs向心肌细胞分化的效率,浓度为2×10-6mol/L时增强作用最明显.

  11. K Basins floor sludge retrieval system knockout pot basket fuel burn accident

    International Nuclear Information System (INIS)

    The K Basins Sludge Retrieval System Preliminary Hazard Analysis Report (HNF-2676) identified and categorized a series of potential accidents associated with K Basins Sludge Retrieval System design and operation. The fuel burn accident was of concern with respect to the potential release of contamination resulting from a runaway chemical reaction of the uranium fuel in a knockout pot basket suspended in the air. The unmitigated radiological dose to an offsite receptor from this fuel burn accident is calculated to be much less than the offsite risk evaluation guidelines for anticipated events. However, because of potential radiation exposure to the facility worker, this accident is precluded with a safety significant lifting device that will prevent the monorail hoist from lifting the knockout pot basket out of the K Basin water pool

  12. Universal statistics of the knockout tournament

    Science.gov (United States)

    Baek, Seung Ki; Yi, Il Gu; Park, Hye Jin; Kim, Beom Jun

    2013-11-01

    We study statistics of the knockout tournament, where only the winner of a fixture progresses to the next. We assign a real number called competitiveness to each contestant and find that the resulting distribution of prize money follows a power law with an exponent close to unity if the competitiveness is a stable quantity and a decisive factor to win a match. Otherwise, the distribution is found narrow. The existing observation of power law distributions in various kinds of real sports tournaments therefore suggests that the rules of those games are constructed in such a way that it is possible to understand the games in terms of the contestants' inherent characteristics of competitiveness.

  13. Universal statistics of the knockout tournament

    CERN Document Server

    Baek, Seung Ki; Park, Hye Jin; Kim, Beom Jun

    2014-01-01

    We study statistics of the knockout tournament, where only the winner of a fixture progresses to the next. We assign a real number called competitiveness to each contestant and find that the resulting distribution of prize money follows a power law with an exponent close to unity if the competitiveness is a stable quantity and a decisive factor to win a match. Otherwise, the distribution is found narrow. The existing observation of power law distributions in various kinds of real sports tournaments therefore suggests that the rules of those games are constructed in such a way that it is possible to understand the games in terms of the contestants' inherent characteristics of competitiveness.

  14. Altered reward circuitry in the norepinephrine transporter knockout mouse.

    Directory of Open Access Journals (Sweden)

    Joseph J Gallagher

    Full Text Available Synaptic levels of the monoamine neurotransmitters dopamine, serotonin, and norepinephrine are modulated by their respective plasma membrane transporters, albeit with a few exceptions. Monoamine transporters remove monoamines from the synaptic cleft and thus influence the degree and duration of signaling. Abnormal concentrations of these neuronal transmitters are implicated in a number of neurological and psychiatric disorders, including addiction, depression, and attention deficit/hyperactivity disorder. This work concentrates on the norepinephrine transporter (NET, using a battery of in vivo magnetic resonance imaging techniques and histological correlates to probe the effects of genetic deletion of the norepinephrine transporter on brain metabolism, anatomy and functional connectivity. MRS recorded in the striatum of NET knockout mice indicated a lower concentration of NAA that correlates with histological observations of subtle dysmorphisms in the striatum and internal capsule. As with DAT and SERT knockout mice, we detected minimal structural alterations in NET knockout mice by tensor-based morphometric analysis. In contrast, longitudinal imaging after stereotaxic prefrontal cortical injection of manganese, an established neuronal circuitry tracer, revealed that the reward circuit in the NET knockout mouse is biased toward anterior portions of the brain. This is similar to previous results observed for the dopamine transporter (DAT knockout mouse, but dissimilar from work with serotonin transporter (SERT knockout mice where Mn(2+ tracings extended to more posterior structures than in wildtype animals. These observations correlate with behavioral studies indicating that SERT knockout mice display anxiety-like phenotypes, while NET knockouts and to a lesser extent DAT knockout mice display antidepressant-like phenotypic features. Thus, the mainly anterior activity detected with manganese-enhanced MRI in the DAT and NET knockout mice is likely

  15. Recoiled Proton Tagged Knockout Reaction for 8He

    Institute of Scientific and Technical Information of China (English)

    曹中鑫; 叶沿林; 江栋兴; 郑涛; 李智焕; 华辉; 葛榆成; 李湘庆; 楼建玲; 肖军; 李奇特; 吕林辉; 李阔昂; 王赫; 乔锐; 游海波; 陈瑞九

    2012-01-01

    An experiment for knockout reaction induced by SHe beam at 82.5 MeV/nucleon on CH2 and C targets was carried out. The 6He and 4He core fragments at forward angles and the recoiled protons at large angles were detected coincidently. From this exclusive measurement the valence nucleon knockout mechanism and the core knockout mechanism are separated, which can be applied to the exclusive spectroscopic study on the structure of exotic nuclei.

  16. Proteomic Analysis of Loricrin Knockout Mouse Epidermis.

    Science.gov (United States)

    Rice, Robert H; Durbin-Johnson, Blythe P; Ishitsuka, Yosuke; Salemi, Michelle; Phinney, Brett S; Rocke, David M; Roop, Dennis R

    2016-08-01

    The crosslinked envelope of the mammalian epidermal corneocyte serves as a scaffold for assembly of the lipid barrier of the epidermis. Thus, deficient envelope crosslinking by keratinocyte transglutaminase (TGM1) is a major cause of the human autosomal recessive congenital ichthyoses characterized by barrier defects. Expectations that loss of some envelope protein components would also confer an ichthyosis phenotype have been difficult to demonstrate. To help rationalize this observation, the protein profile of epidermis from loricrin knockout mice has been compared to that of wild type. Despite the mild phenotype of the knockout, some 40 proteins were incorporated into envelope material to significantly different extents compared to those of wild type. Nearly half were also incorporated to similarly altered extents into the disulfide bonded keratin network of the corneocyte. The results suggest that loss of loricrin alters their incorporation into envelopes as a consequence of protein-protein interactions during cell maturation. Mass spectrometric protein profiling revealed that keratin 1, keratin 10, and loricrin are prominent envelope components and that dozens of other proteins are also components. This finding helps rationalize the potential formation of functional envelopes, despite loss of a single component, due to the availability of many alternative transglutaminase substrates. PMID:27418529

  17. CRISPR-Mediated Triple Knockout of SLAMF1, SLAMF5 and SLAMF6 Supports Positive Signaling Roles in NKT Cell Development

    Science.gov (United States)

    Huang, Bonnie; Gomez-Rodriguez, Julio; Preite, Silvia; Garrett, Lisa J.; Harper, Ursula L.; Schwartzberg, Pamela L.

    2016-01-01

    The SLAM family receptors contribute to diverse aspects of lymphocyte biology and signal via the small adaptor molecule SAP. Mutations affecting SAP lead to X-linked lymphoproliferative syndrome Type 1, a severe immunodysregulation characterized by fulminant mononucleosis, dysgammaglobulinemia, and lymphoproliferation/lymphomas. Patients and mice having mutations affecting SAP also lack germinal centers due to a defect in T:B cell interactions and are devoid of invariant NKT (iNKT) cells. However, which and how SLAM family members contribute to these phenotypes remains uncertain. Three SLAM family members: SLAMF1, SLAMF5 and SLAMF6, are highly expressed on T follicular helper cells and germinal center B cells. SLAMF1 and SLAMF6 are also implicated in iNKT development. Although individual receptor knockout mice have limited iNKT and germinal center phenotypes compared to SAP knockout mice, the generation of multi-receptor knockout mice has been challenging, due to the genomic linkage of the genes encoding SLAM family members. Here, we used Cas9/CRISPR-based mutagenesis to generate mutations simultaneously in Slamf1, Slamf5 and Slamf6. Genetic disruption of all three receptors in triple-knockout mice (TKO) did not grossly affect conventional T or B cell development and led to mild defects in germinal center formation post-immunization. However, the TKO worsened defects in iNKT cells development seen in SLAMF6 single gene-targeted mice, supporting data on positive signaling and potential redundancy between these receptors. PMID:27258160

  18. New insight into the role of the β3 subunit of the GABAA-R in development, behavior, body weight regulation, and anesthesia revealed by conditional gene knockout

    Directory of Open Access Journals (Sweden)

    Hileman Stanley M

    2007-10-01

    Full Text Available Abstract Background The β3 subunit of the γ-aminobutyric acid type A receptor (GABAA-R has been reported to be important for palate formation, anesthetic action, and normal nervous system function. This subunit has also been implicated in the pathogenesis of Angelman syndrome and autism spectrum disorder. To further investigate involvement of this subunit, we previously produced mice with a global knockout of β3. However, developmental abnormalities, compensation, reduced viability, and numerous behavioral abnormalities limited the usefulness of that murine model. To overcome many of these limitations, a mouse line with a conditionally inactivated β3 gene was engineered. Results Gene targeting and embryonic stem cell technologies were used to create mice in which exon 3 of the β3 subunit was flanked by loxP sites (i.e., floxed. Crossing the floxed β3 mice to a cre general deleter mouse line reproduced the phenotype of the previously described global knockout. Pan-neuronal knockout of β3 was achieved by crossing floxed β3 mice to Synapsin I-cre transgenic mice. Palate development was normal in pan-neuronal β3 knockouts but ~61% died as neonates. Survivors were overtly normal, fertile, and were less sensitive to etomidate. Forebrain selective knockout of β3 was achieved using α CamKII-cre transgenic mice. Palate development was normal in forebrain selective β3 knockout mice. These knockouts survived the neonatal period, but ~30% died between 15–25 days of age. Survivors had reduced reproductive fitness, reduced sensitivity to etomidate, were hyperactive, and some became obese. Conclusion Conditional inactivation of the β3 gene revealed novel insight into the function of this GABAA-R subunit. The floxed β3 knockout mice described here will be very useful for conditional knockout studies to further investigate the role of the β3 subunit in development, ethanol and anesthetic action, normal physiology, and pathophysiologic processes.

  19. Normal gonadotropin production and fertility in gonadotrope-specific Bmpr1a knockout mice.

    Science.gov (United States)

    Zhou, Xiang; Wang, Ying; Ongaro, Luisina; Boehm, Ulrich; Kaartinen, Vesa; Mishina, Yuji; Bernard, Daniel J

    2016-06-01

    Pituitary follicle-stimulating hormone (FSH) synthesis is regulated by transforming growth factorβsuperfamily ligands, most notably the activins and inhibins. Bone morphogenetic proteins (BMPs) also regulate FSHβ subunit (Fshb) expression in immortalized murine gonadotrope-like LβT2 cells and in primary murine or ovine primary pituitary cultures. BMP2 signals preferentially via the BMP type I receptor, BMPR1A, to stimulate murine Fshb transcription in vitro Here, we used a Cre-lox approach to assess BMPR1A's role in FSH synthesis in mice in vivo Gonadotrope-specific Bmpr1a knockout animals developed normally and had reproductive organ weights comparable with those of controls. Knockouts were fertile, with normal serum gonadotropins and pituitary gonadotropin subunit mRNA expression. Cre-mediated recombination of the floxed Bmpr1a allele was efficient and specific, as indicated by PCR analysis of diverse tissues and isolated gonadotrope cells. Furthermore, BMP2 stimulation of inhibitor of DNA binding 3 expression was impaired in gonadotropes isolated from Bmpr1a knockout mice, confirming the loss of functional receptor protein in these cells. Treatment of purified gonadotropes with small-molecule inhibitors of BMPR1A (and the related receptors BMPR1B and ACVR1) suppressed Fshb mRNA expression, suggesting that an autocrine BMP-like molecule might regulate FSH synthesis. However, deletion of Bmpr1a and Acvr1 in cultured pituitary cells did not alter Fshb expression, indicating that the inhibitors had off-target effects. In sum, BMPs or related ligands acting via BMPR1A or ACVR1 are unlikely to play direct physiological roles in FSH synthesis by murine gonadotrope cells. PMID:27029473

  20. CXCR2 knockout mice are protected against DSS-colitis-induced acute kidney injury and inflammation.

    Science.gov (United States)

    Ranganathan, Punithavathi; Jayakumar, Calpurnia; Manicassamy, Santhakumar; Ramesh, Ganesan

    2013-11-15

    Organ cross talk exists in many diseases of the human and animal models of human diseases. A recent study demonstrated that inflammatory mediators can cause acute kidney injury and neutrophil infiltration in a mouse model of dextran sodium sulfate (DSS)-colitis. However, the chemokines and their receptors that may mediate distant organ effects in colitis are unknown. We hypothesized that keratinocyte chemoattractant (KC)/IL-8 receptor chemokine (C-X-C motif) ligand 2 (CXCL2) mediates DSS-colitis-induced acute kidney injury. Consistent with our hypothesis, wild-type (WT) mice developed severe colitis with DSS treatment, which was associated with inflammatory cytokine and chemokine expression and neutrophil infiltration in the colon. DSS-colitis in WT was accompanied by acute kidney injury and enhanced expression of inflammatory cytokines in the kidney. However, CXCR2 knockout mice were protected against DSS-colitis as well as acute kidney injury. Moreover, the expression of cytokines and chemokines and neutrophil infiltration was blunted in CXCR2 knockout mice in the colon and kidney. Administration of recombinant KC exacerbated DSS-colitis-induced acute kidney injury. Our results suggest that KC/IL-8 and its receptor CXCR2 are critical and major mediators of organ cross talk in DSS colitis and neutralization of CXCR2 will help to reduce the incidence of acute kidney injury due to ulcerative colitis and Crohn's disease in humans.

  1. Phenotypic Knockout of CXCR4 on Molt-4 with SDF-1α/54 Attached with KDEL

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective :To investigate the mechanism of phenotypic knockout of CXCR4 on T-cell leukemia cell line Molt-4 via SDF-1α/54/KDEL intrakine technology, which the mutant SDF-1α/54, human stromal cell-derived Faceor-1 (SDF-1α) was deleted its Cterminal α-helix and attached with a endoplasimc reticulum retention signal 4-peptide-KDEL encoding gene, so that retain the newly synthesized receptor CXCR4 within the Molt-4 cells endoplasmic reticulum. Methods: The recombinant vector pEGFP-C3/SDF-1α/54/KDEL were transfected into Cos-7 cells by liposome, SDF-1α/54/KDEL fusion protein was confirmed with western blot. The recombinant plasmids were transfected transiently into Molt-4 by electroporation. Results:Western blot confirmed SDF-1α/54/KDEL expression in Cos-7. A dramatic downregulation of CXCR4 expression on Molt-4 was demonstrated by flow cytometric (FCM) analysis. Conclusion:SDF-1α/54/KDEL and SDF-1αKDEL have no significant deviation for phenotypic knockout of CXCR4. These suggest that the phenotypic knockout effects of SDF-1α/54 against CXCR4 are not influenced by deleting of SDF-1α helix in the C-terminal.

  2. Impaired spine formation and learning in GPCR kinase interacting protein-1 (GIT1) knockout mice

    OpenAIRE

    Menon, Prashanthi; Deane, Rashid; Sagare, Abhay; Lane, Steven M.; Zarcone, Troy J; O’Dell, Michael R.; Yan, Chen; Zlokovic, Berislav V.; Berk, Bradford C.

    2010-01-01

    The G-protein coupled receptor (GPCR)-kinase interacting proteins 1 and 2 (GIT1 and GIT2) are scaffold proteins with ADP-ribosylating factor GTPase activity. GIT1 and GIT2 control numerous cellular functions and are highly expressed in neurons, endothelial cells and vascular smooth muscle cells (VSMC). GIT1 promotes dendritic spine formation, growth and motility in cultured neurons, but its role in brain in vivo is unknown. By using global GIT1 knockout mice (GIT1 KO), we show that deletion o...

  3. Physiological roles of the melanocortin MC3 receptor

    OpenAIRE

    Renquist, Benjamin J.; Lippert, Rachel; Sebag, Julien A.; Ellacott, Kate L.J; Cone, Roger D.

    2011-01-01

    The melanocortin MC3 receptor remains the most enigmatic of the melanocortin receptors with regard to its physiological functions. The receptor is expressed both in the CNS and in multiple tissues in the periphery. It appears to be an inhibitory autoreceptor on proopiomelanocortin neurons, yet global deletion of the receptor causes an obesity syndrome. Knockout of the receptor increases adipose mass without a readily measurable increase in food intake or decrease in energy expenditure. And fi...

  4. ATP Synthase β-Chain Overexpression in SR-BI Knockout Mice Increases HDL Uptake and Reduces Plasma HDL Level

    Directory of Open Access Journals (Sweden)

    Kexiu Song

    2014-01-01

    Full Text Available HDL cholesterol is known to be inversely correlated with cardiovascular disease due to its diverse antiatherogenic functions. SR-BI mediates the selective uptake of HDL-C. SR-BI knockout diminishes but does not completely block the transport of HDL; other receptors may be involved. Ectopic ATP synthase β-chain in hepatocytes has been previously characterized as an apoA-I receptor, triggering HDL internalization. This study was undertaken to identify the overexpression of ectopic ATP synthase β-chain on DIL-HDL uptake in primary hepatocytes in vitro and on plasma HDL levels in SR-BI knockout mice. Human ATP synthase β-chain cDNA was delivered to the mouse liver by adenovirus and GFP adenovirus as control. The adenovirus-mediated overexpression of β-chain was identified at both mRNA and protein levels on mice liver and validated by its increasing of DiL-HDL uptake in primary hepatocytes. In response to hepatic overexpression of β-chain, plasma HDL-C levels and cholesterol were reduced in SR-BI knockout mice, compared with the control. The present data suggest that ATP synthase β-chain can serve as the endocytic receptor of HDL, and its overexpression can reduce plasma HDL-C.

  5. Common arterial trunk and ventricular non-compaction in Lrp2 knockout mice indicate a crucial role of LRP2 in cardiac development

    NARCIS (Netherlands)

    Baardman, Maria E.; Zwier, Mathijs V.; Wisse, Lambertus J.; Gittenberger-de Groot, Adriana C.; Kerstjens-Frederikse, Wilhelmina S.; Hofstra, Robert M. W.; Jurdzinski, Angelika; Hierck, Beerend P.; Jongbloed, Monique R. M.; Berger, Rolf M. F.; Plosch, Torsten; DeRuiter, Marco C.

    2016-01-01

    Lipoprotein-related receptor protein 2 (LRP2) is important for development of the embryonic neural crest and brain in both mice and humans. Although a role in cardiovascular development can be expected, the hearts of Lrp2 knockout (KO) mice have not yet been investigated. We studied the cardiovascul

  6. 吡格列酮对载脂蛋白E-/-小鼠动脉粥样硬化中Toll样受体4/丝裂原活化蛋白激酶信号通路的影响%Effects of pioglitazone on Toll-like receptor 4/mitogen-activated protein kinase pathway in atherosclerosis of apolipoprotein E knockout mice

    Institute of Scientific and Technical Information of China (English)

    余益本; 陈欣; 程立; 聂鑫; 王建平

    2014-01-01

    Objective To study the effects of piogitazone on Toll-like receptor 4/MAPKs pathway in atherosclerosis of apolipoprotein E knockout (ApoE-/ -) mouse. Methods The 8 male mice of C3H, 10 weeks aged, were fed with common food for 4 weeks as control group. In addition, The same age male mice of ApoE-/ - fed with high fatty food for setting up atherosclerosis animal models were selected as experimental group ( n=24 ) , and the experimental mice were randomly divided into three groups: model group only receiving high fatty food for 6 weeks, low-dose treated group receiving piogitazone administered via gastric tube at 5 mg·kg-1·d-1 for consecutive 6 weeks and high-dose treated group receiving piogitazone administered via gastric tube at 10 mg·kg-1·d-1 for consecutive 6 weeks. The expression of pERK1/2, JNK and p38MAPK, and levels of their phosphorylation were measured by Western blotting in control group and experimental group. Results The expression of TLR4 was significantly increased in all ApoE-/ - mice than in control group (P ﹤0. 01). Compared with the control group, the activities of p-ERK1/2 and p-JNK were significantly increased in each experimental group (P ﹤ 0. 05), but the expression level of p38MAPK was similar among the groups (P > 0. 05). Compared with model group, the expressions of p-ERK1/2 and p- JNK were significantly decreased (P ﹤ 0. 05), moreover, these changes were more significant in high-dose treated group (for ERK1/2: 0. 5037 ± 0. 0438 in low-dose treated group, 0. 3843 ± 0. 0236 in high-dose treated group, and 0. 8800 ±0. 0436 in control group; for JNK: 0. 5037 ±0. 0437 in low-dose treated group, 0. 3843 ± 0. 0237 in high-dose treated group and 0. 7900 ± 0. 0308 in control group, all P ﹤ 0. 05) .%目的:探讨吡格列酮对载脂蛋白E( ApoE)-/-小鼠主动脉粥样硬化病变中Toll样受体4/丝裂原活化蛋白激酶(TLR4/MAPKs)信号通路的影响。方法取8只10周龄雄性C3H小鼠作为对照组,

  7. Generation of ER{alpha}-floxed and knockout mice using the Cre/LoxP system

    Energy Technology Data Exchange (ETDEWEB)

    Antonson, P., E-mail: per.antonson@ki.se [Department of Biosciences and Nutrition, Karolinska Institutet, Novum, SE-141 83 Huddinge (Sweden); Omoto, Y.; Humire, P. [Department of Biosciences and Nutrition, Karolinska Institutet, Novum, SE-141 83 Huddinge (Sweden); Gustafsson, J.-A. [Department of Biosciences and Nutrition, Karolinska Institutet, Novum, SE-141 83 Huddinge (Sweden); Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204 (United States)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer ER{alpha} floxed and knockout mice were generated. Black-Right-Pointing-Pointer Disruption of the ER{alpha} gene results in sterility in both male and female mice. Black-Right-Pointing-Pointer ER{alpha}{sup -/-} mice have ovaries with hemorrhagic follicles and hypoplastic uterus. Black-Right-Pointing-Pointer Female ER{alpha}{sup -/-} mice develop obesity. -- Abstract: Estrogen receptor alpha (ER{alpha}) is a nuclear receptor that regulates a range of physiological processes in response to estrogens. In order to study its biological role, we generated a floxed ER{alpha} mouse line that can be used to knock out ER{alpha} in selected tissues by using the Cre/LoxP system. In this study, we established a new ER{alpha} knockout mouse line by crossing the floxed ER{alpha} mice with Cre deleter mice. Here we show that genetic disruption of the ER{alpha} gene in all tissues results in sterility in both male and female mice. Histological examination of uterus and ovaries revealed a dramatically atrophic uterus and hemorrhagic cysts in the ovary. These results suggest that infertility in female mice is the result of functional defects of the reproductive tract. Moreover, female knockout mice are hyperglycemic, develop obesity and at the age of 4 months the body weight of these mice was more than 20% higher compared to wild type littermates and this difference increased over time. Our results demonstrate that ER{alpha} is necessary for reproductive tract development and has important functions as a regulator of metabolism in females.

  8. Sleep in Kcna2 knockout mice

    Directory of Open Access Journals (Sweden)

    Messing Albee

    2007-10-01

    Full Text Available Abstract Background Shaker codes for a Drosophila voltage-dependent potassium channel. Flies carrying Shaker null or hypomorphic mutations sleep 3–4 h/day instead of 8–14 h/day as their wild-type siblings do. Shaker-like channels are conserved across species but it is unknown whether they affect sleep in mammals. To address this issue, we studied sleep in Kcna2 knockout (KO mice. Kcna2 codes for Kv1.2, the alpha subunit of a Shaker-like voltage-dependent potassium channel with high expression in the mammalian thalamocortical system. Results Continuous (24 h electroencephalograph (EEG, electromyogram (EMG, and video recordings were used to measure sleep and waking in Kcna2 KO, heterozygous (HZ and wild-type (WT pups (P17 and HZ and WT adult mice (P67. Sleep stages were scored visually based on 4-s epochs. EEG power spectra (0–20 Hz were calculated on consecutive 4-s epochs. KO pups die by P28 due to generalized seizures. At P17 seizures are either absent or very rare in KO pups ( Conclusion Kv1.2, a mammalian homologue of Shaker, regulates neuronal excitability and affects NREM sleep.

  9. The correlation of Apelin with diabetes, diabetes complications, and its comorbid disease%Apelin与糖尿病及其血管并发症相关性研究进展

    Institute of Scientific and Technical Information of China (English)

    陈薇; 赵晓娟; 王楠楠

    2013-01-01

    胰岛功能缺陷与胰岛素抵抗是2型糖尿病发病的两个关键因素。近年研究认为,氧化应激、炎症反应与脂肪内分泌相互作用,从而引起胰岛素抵抗和β细胞功能障碍。因此,对上述机制进行干预成为实验研究及临床治疗的一个热点。脂肪因子Apelin具有影响胰岛素敏感性、影响心血管功能、抗炎及抗氧化应激等作用。本文就Apelin与糖尿病、糖尿病血管并发症的关系展开综述。%Islet B cell function defect and insulin resistance are two key factors for type 2 diabetes. Recent studies suggest that the interaction of oxidative stress, inflammation, and fat endocrine cause insulin resistance and beta cell dysfunction. Therefore, the intervention of above mechanism become a focus in the experimental study and clinical treatment. The fat factor--Apelin influences insulin sensitivity and cardiovascular function, anti-inflammatory and anti-oxidative stress, and so on. The relationship between Apelin and diabetes, vascular complications of diabetes were summarized in this review.

  10. Manipulation of Mouse Embryonic Stem Cells for Knockout Mouse Production

    OpenAIRE

    Limaye, Advait; Hall, Bradford; Kulkarni, Ashok B.

    2009-01-01

    The establishment of mouse embryonic stem (ES) cell liness has allowed for the generation of the knockout mouse. ES cells that are genetically altered in culture can then be manipulated to derive a whole mouse containing the desired mutation. To successfully generate a knockout mouse, however, the ES cells must be carefully cultivated in a pluripotent state throughout the gene targeting experiment. This unit describes detailed step-by-step protocols, reagents, equipment, and strategies needed...

  11. Construction of Deletion-knockout Mutant Fowlpox Virus (FWPV)

    OpenAIRE

    Laidlaw, Stephen M.; Skinner, Michael A.

    2014-01-01

    The construction of deletion-knockout poxviruses is a useful approach to determining the function of specific virus genes. This protocol is an adaptation of the transient dominant knockout selection protocol published by Falkner and Moss (1990) for use with vaccinia virus. The protocol makes use of the dominant selectable marker Escherichia coli guanine phosphoribosyltransferase (gpt) gene (Mulligan and Berg, 1981), under the control of an early/late poxvirus promoter. The deletion viruses th...

  12. Pleiotropic effects in Eya3 knockout mice

    Directory of Open Access Journals (Sweden)

    Naton Beatrix

    2008-12-01

    Full Text Available Abstract Background In Drosophila, mutations in the gene eyes absent (eya lead to severe defects in eye development. The functions of its mammalian orthologs Eya1-4 are only partially understood and no mouse model exists for Eya3. Therefore, we characterized the phenotype of a new Eya3 knockout mouse mutant. Results Expression analysis of Eya3 by in-situ hybridizations and β-Gal-staining of Eya3 mutant mice revealed abundant expression of the gene throughout development, e.g. in brain, eyes, heart, somites and limbs suggesting pleiotropic effects of the mutated gene. A similar complex expression pattern was observed also in zebrafish embryos. The phenotype of young adult Eya3 mouse mutants was systematically analyzed within the German Mouse Clinic. There was no obvious defect in the eyes, ears and kidneys of Eya3 mutant mice. Homozygous mutants displayed decreased bone mineral content and shorter body length. In the lung, the tidal volume at rest was decreased, and electrocardiography showed increased JT- and PQ intervals as well as decreased QRS amplitude. Behavioral analysis of the mutants demonstrated a mild increase in exploratory behavior, but decreased locomotor activity and reduced muscle strength. Analysis of differential gene expression revealed 110 regulated genes in heart and brain. Using real-time PCR, we confirmed Nup155 being down regulated in both organs. Conclusion The loss of Eya3 in the mouse has no apparent effect on eye development. The wide-spread expression of Eya3 in mouse and zebrafish embryos is in contrast to the restricted expression pattern in Xenopus embryos. The loss of Eya3 in mice leads to a broad spectrum of minor physiological changes. Among them, the mutant mice move less than the wild-type mice and, together with the effects on respiratory, muscle and heart function, the mutation might lead to more severe effects when the mice become older. Therefore, future investigations of Eya3 function should focus on

  13. Establishment and phenotypic analysis of an Mstn knockout rat.

    Science.gov (United States)

    Gu, Hao; Cao, Yong; Qiu, Bin; Zhou, Zhiqiang; Deng, Ran; Chen, Zhuang; Li, Rongfeng; Li, Xueling; Wei, Qiang; Xia, Xianzhu; Yong, Weidong

    2016-08-12

    Myostatin (Mstn) is an inhibitor of myogenesis, regulating the number and size of skeletal myocytes. In addition to its myogenic regulatory function, Mstn plays important roles in the development of adipose tissues and in metabolism. In the present study, an Mstn knockout rat model was generated using the zinc finger nuclease (ZFN) technique in order to further investigate the function and mechanism of Mstn in metabolism. The knockout possesses a frame shift mutation resulting in an early termination codon and a truncated peptide of 109 amino acids rather than the full 376 amino acids. The absence of detectable mRNA confirmed successful knockout of Mstn. Relative to wild-type (WT) littermates, Knockout (KO) rats exhibited significantly greater body weight, body circumference, and muscle mass. However, no significant differences in grip force was observed, indicating that Mstn deletion results in greater muscle mass but not greater muscle fiber strength. Additionally, KO rats were found to possess less body fat relative to WT littermates, which is consistent with previous studies in mice and cattle. The aforementioned results indicate that Mstn knockout increases muscle mass while decreasing fat content, leading to observed increases in body weight and body circumference. The Mstn knockout rat model provides a novel means to study the role of Mstn in metabolism and Mstn-related muscle hypertrophy. PMID:27289021

  14. Benefit of farnesoid X receptor inhibition in obstructive cholestasis

    OpenAIRE

    Stedman, Catherine; Liddle, Christopher; Coulter, Sally; Sonoda, Junichiro; Alvarez, Jacqueline G.; Evans, Ronald M; Downes, Michael

    2006-01-01

    The nuclear hormone receptors farnesoid X receptor (FXR) and pregnane X receptor have been implicated in regulating bile acid, lipid, carbohydrate, and xenobiotic metabolism. Bile duct ligation was used to increase endogenous bile acids and evaluate the roles of these receptors in modulating cholestatic liver injury. FXR knockout (KO) mice were found to be protected from obstructive cholestasis. Concurrent deletion of FXR also could ameliorate an increase in liver injury that is seen usually ...

  15. Impaired conditioned taste aversion learning in spinophilin knockout mice.

    Science.gov (United States)

    Stafstrom-Davis, C A; Ouimet, C C; Feng, J; Allen, P B; Greengard, P; Houpt, T A

    2001-01-01

    Plasticity in dendritic spines may underlie learning and memory. Spinophilin, a protein enriched in dendritic spines, has the properties of a scaffolding protein and is believed to regulate actin cytoskeletal dynamics affecting dendritic spine morphology. It also binds protein phosphatase-1 (PP-1), an enzyme that regulates dendritic spine physiology. In this study, we tested the role of spinophilin in conditioned taste aversion learning (CTA) using transgenic spinophilin knockout mice. CTA is a form of associative learning in which an animal rejects a food that has been paired previously with a toxic effect (e.g., a sucrose solution paired with a malaise-inducing injection of lithium chloride). Acquisition and extinction of CTA was tested in spinophilin knockout and wild-type mice using taste solutions (sucrose or sodium chloride) or flavors (Kool-Aid) paired with moderate or high doses of LiCl (0.15 M, 20 or 40 mL/kg). When sucrose or NaCl solutions were paired with a moderate dose of LiCl, spinophilin knockout mice were unable to learn a CTA. At the higher dose, knockout mice acquired a CTA but extinguished more rapidly than wild-type mice. A more salient flavor stimulus (taste plus odor) revealed similar CTA learning at both doses of LiCl in both knockouts and wild types. Sensory processing in the knockouts appeared normal because knockout mice and wild-type mice expressed identical unconditioned taste preferences in two-bottle tests, and identical lying-on-belly responses to acute LiCl. We conclude that spinophilin is a candidate molecule required for normal CTA learning. PMID:11584074

  16. Necroptotic Cell Death Signaling and Execution Pathway: Lessons from Knockout Mice

    Directory of Open Access Journals (Sweden)

    José Belizário

    2015-01-01

    Full Text Available Under stress conditions, cells in living tissue die by apoptosis or necrosis depending on the activation of the key molecules within a dying cell that either transduce cell survival or death signals that actively destroy the sentenced cell. Multiple extracellular (pH, heat, oxidants, and detergents or intracellular (DNA damage and Ca2+ overload stress conditions trigger various types of the nuclear, endoplasmic reticulum (ER, cytoplasmatic, and mitochondrion-centered signaling events that allow cells to preserve the DNA integrity, protein folding, energetic, ionic and redox homeostasis, thus escaping from injury. Along the transition from reversible to irreversible injury, death signaling is highly heterogeneous and damaged cells may engage autophagy, apoptotic, or necrotic cell death programs. Studies on multiple double- and triple- knockout mice identified caspase-8, flip, and fadd genes as key regulators of embryonic lethality and inflammation. Caspase-8 has a critical role in pro- and antinecrotic signaling pathways leading to the activation of receptor interacting protein kinase 1 (RIPK1, RIPK3, and the mixed kinase domain-like (MLKL for a convergent execution pathway of necroptosis or regulated necrosis. Here we outline the recent discoveries into how the necrotic cell death execution pathway is engaged in many physiological and pathological outcome based on genetic analysis of knockout mice.

  17. Adipose-specific knockout of SEIPIN/BSCL2 results in progressive lipodystrophy.

    Science.gov (United States)

    Liu, Lu; Jiang, Qingqing; Wang, Xuhong; Zhang, Yuxi; Lin, Ruby C Y; Lam, Sin Man; Shui, Guanghou; Zhou, Linkang; Li, Peng; Wang, Yuhui; Cui, Xin; Gao, Mingming; Zhang, Ling; Lv, Ying; Xu, Guoheng; Liu, George; Zhao, Dong; Yang, Hongyuan

    2014-07-01

    Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) is the most severe form of human lipodystrophy, characterized by an almost complete loss of adipose tissue and severe insulin resistance. BSCL2 is caused by loss-of-function mutations in the BSCL2/SEIPIN gene, which is upregulated during adipogenesis and abundantly expressed in the adipose tissue. The physiological function of SEIPIN in mature adipocytes, however, remains to be elucidated. Here, we generated adipose-specific Seipin knockout (ASKO) mice, which exhibit adipocyte hypertrophy with enlarged lipid droplets, reduced lipolysis, adipose tissue inflammation, progressive loss of white and brown adipose tissue, insulin resistance, and hepatic steatosis. Lipidomic and microarray analyses revealed accumulation/imbalance of lipid species, including ceramides, in ASKO adipose tissue as well as increased endoplasmic reticulum stress. Interestingly, the ASKO mice almost completely phenocopy the fat-specific peroxisome proliferator-activated receptor-γ (Pparγ) knockout (FKO-γ) mice. Rosiglitazone treatment significantly improved a number of metabolic parameters of the ASKO mice, including insulin sensitivity. Our results therefore demonstrate a critical role of SEIPIN in maintaining lipid homeostasis and function of adipocytes and reveal an intimate relationship between SEIPIN and PPAR-γ.

  18. One-neutron knockout from Ne24-28 isotopes

    CERN Document Server

    Rodriguez-Tajes, C; Caamano, M; Faestermann, T; Cortina-Gil, D; Zhukov, M; Simon, H; Nilsson, T; Borge, M J G; Alvarez-Pol, H; Winkler, M; Prochazka, A; Nociforo, C; Weick, H; Kanungo, R; Perez-Loureiro, D; Kurtukian, T; Suemmerer, K; Eppinger, K; Perea, A; Chatillon, A; Maierbeck, P; Benlliure, J; Pascual-Izarra, C; Gernhaeuser, R; Geissel, H; Aumann, T; Kruecken, R; Larsson, K; Tengblad, O; Benjamim, E; Jonson, B; Casarejos, E

    2010-01-01

    One-neutron knockout reactions of Ne24-28 in a beryllium target have been studied in the Fragment Separator (FRS), at GSI. The results include inclusive one-neutron knockout cross-sections as well as longitudinal-momentum distributions of the knockout fragments. The ground-state structure of the neutron-rich neon isotopes was obtained from an analysis of the measured momentum distributions. The results indicate that the two heaviest isotopes, Ne-27 and Ne-28, are dominated by a configuration in which a s(1/2) neutron is coupled to an excited state of the Ne-26 and Ne-27 core, respectively. (C) 2010 Elsevier B.V. All rights reserved.

  19. Functional deficits in PAK5, PAK6 and PAK5/PAK6 knockout mice.

    Directory of Open Access Journals (Sweden)

    Melody A Furnari

    Full Text Available The p21-activated kinases are effector proteins for Rho-family GTPases. PAK4, PAK5, and PAK6 are the group II PAKs associated with neurite outgrowth, filopodia formation, and cell survival. Pak4 knockout mice are embryonic lethal, while Pak5, Pak6, and Pak5/Pak6 double knockout mice are viable and fertile. Our previous work found that the double knockout mice exhibit locomotor changes and learning and memory deficits. We also found some differences with Pak5 and Pak6 single knockout mice and the present work further explores the potential differences of the Pak5 knockout and Pak6 knockout mice in comparison with wild type mice. The Pak6 knockout mice were found to weigh significantly more than the other genotypes. The double knockout mice were found to be less active than the other genotypes. The Pak5 knockout mice and the double knockout mice performed worse on the rotorod test. All the knockout genotypes were found to be less aggressive in the resident intruder paradigm. The double knockout mice were, once again, found to perform worse in the active avoidance assay. These results indicate, that although some behavioral differences are seen in the Pak5 and Pak6 single knockout mice, the double knockout mice exhibit the greatest changes in locomotion and learning and memory.

  20. Dopamine beta-hydroxylase knockout mice have alterations in dopamine signaling and are hypersensitive to cocaine.

    Science.gov (United States)

    Schank, Jesse R; Ventura, Rossella; Puglisi-Allegra, Stefano; Alcaro, Antonio; Cole, Charlene D; Liles, L Cameron; Seeman, Philip; Weinshenker, David

    2006-10-01

    Multiple lines of evidence demonstrate that the noradrenergic system provides both direct and indirect excitatory drive onto midbrain dopamine (DA) neurons. We used DA beta-hydroxylase (DBH) knockout (Dbh-/-) mice that lack norepinephrine (NE) to determine the consequences of chronic NE deficiency on midbrain DA neuron function in vivo. Basal extracellular DA levels were significantly attenuated in the nucleus accumbens (NAc) and caudate putamen (CP), but not prefrontal cortex (PFC), of Dbh-/- mice, while amphetamine-induced DA release was absent in the NAc and attenuated in the CP and PFC. The decrease in dopaminergic tone was associated with a profound increase in the density of high-affinity state D1 and D2 DA receptors in the NAc and CP, while DA receptors in the PFC were relatively unaffected. As a behavioral consequence of these neurochemical changes, Dbh-/- mice were hypersensitive to the psychomotor, rewarding, and aversive effects of cocaine, as measured by locomotor activity and conditioned place preference. Antagonists of DA, but not 5-HT, receptors attenuated the locomotor hypersensitivity to cocaine in Dbh-/- mice. As DBH activity in humans is genetically controlled and the DBH inhibitor disulfiram has shown promise as a pharmacotherapy for cocaine dependence, these results have implications for the influence of genetic and pharmacological DBH inhibition on DA system function and drug addiction. PMID:16395294

  1. The mammalian gene function resource: The International Knockout Mouse Consortium

    NARCIS (Netherlands)

    A. Bradley (Allan); K. Anastassiadis (Konstantinos); A. Ayadi (Abdelkader); J.F. Battey (James); C. Bell (Cindy); M.-C. Birling (Marie-Christine); J. Bottomley (Joanna); S.D.M. Brown (Steve); F. Bürger (Friederike); C.J. Bult (Carol); W. Bushell (Wendy); F.S. Collins (Francis); C. Desaintes (Christian); B. Doe (Brendan); E. Aris (Economides); J.T. Eppig (Janan); R.H. Finnell (Richard); C. Fletcher (Colin); M. Fray (Martin); D. Frendewey (David); R.H. Friedel (Roland); F.G. Grosveld (Frank); J. Hansen; Y. Hérault (Yann); G. Hicks (Geoffrey); A. Hörlein (Andreas); C. Houghton (Catherine); M. Hrabé De Angelis (Martin); D. Huylebroeck (Danny); V. Iyer (Vivek); P.J. de Jong (Pieter); J.A. Kadin (James); C. Kaloff (Cornelia); K. Kennedy (Karen); M. Koutsourakis (Manousos); K.C. Kent Lloyd (K.); S. Marschall (Susan); J. Mason (Jeremy); C. McKerlie (Colin); M.P. McLeod (Michael); H. von Melchner (Harald); M. Moore (Matt); A.O. Mujica (Alejandro); A. Nagy (Andras); M. Nefedov (Mikhail); L.M. Nutter (Lauryl); G. Pavlovic (Guillaume); J.L. Peterson (Jane); I. Pollock; R. Ramirez-Solis (Ramiro); D.E. Rancourt (Derrick); M. Raspa (Marcello); J.E. Remacle (Jacques); M. Ringwald (Martin); B. Rosen (Barry); N. Rosenthal (Nadia); J. Rossant (Janet); P. Ruiz Noppinger (Patricia); S. Ryder; J.Z. Schick (Joel Zupicich); F. Schnütgen (Frank); C.J. Schofield (Christopher); C. Seisenberger (Claudia); M. Selloum (Mohammed); E.M. Simpson (Elizabeth); W.C. Skarnes (William); D. Smedley (Damian); W.L. Stanford (William); A. Francis Stewart (A.); K. Stone (Kevin); K. Swan (Kate); H. Tadepally (Hamsa); J.L. Teboul (Jean Louis); G.P. Tocchini-Valentini (Glauco); D. Valenzuela (David); A.P. West (Anthony); K.-I. Yamamura (Ken-Ichi); Y. Yoshinaga (Yuko); M. Wurst (Martin)

    2012-01-01

    textabstractIn 2007, the International Knockout Mouse Consortium (IKMC) made the ambitious promise to generate mutations in virtually every protein-coding gene of the mouse genome in a concerted worldwide action. Now, 5 years later, the IKMC members have developed highthroughput gene trapping and, i

  2. Threshold Energies for Single Carbon Knockout from Polycyclic Aromatic Hydrocarbons

    CERN Document Server

    Stockett, M H; Chen, T; de Ruette, N; Giacomozzi, L; Wolf, M; Schmidt, H T; Zettergren, H; Cederquist, H

    2015-01-01

    We have measured absolute cross sections for ultrafast (fs) single-carbon knockout from Polycyclic Aromatic Hydrocarbon (PAH) cations as functions of He-PAH center-of-mass collision energy in the range 10-200 eV. Classical Molecular Dynamics (MD) simulations cover this range and extend up to 10$^5$ eV. The shapes of the knockout cross sections are well described by a simple analytical expression yielding experimental and MD threshold energies of $E_{th}^{Exp}=32.5\\pm 0.4$ eV and $E_{th}^{MD}=41.0\\pm 0.3$ eV, respectively. These are the first measurements of knockout threshold energies for molecules isolated \\emph{in vacuo}. We further deduce semi-empirical (SE) and MD displacement energies --- \\emph{i.e.} the energy transfers to the PAH molecules at the threshold energies for knockout --- of $T_{disp}^{SE}=23.3\\pm 0.3$ eV and $T_{disp}^{MD}=27.0\\pm 0.3$ eV. The semi-empirical results compare favorably with measured displacement energies for graphene $T_{disp}=23.6$ eV [Meyer \\emph{et al.} Phys. Rev Lett. \\tex...

  3. Role of estrogen receptor-α on food demand elasticity.

    Science.gov (United States)

    Minervini, Vanessa; Rowland, Neil E; Robertson, Kimberly L; Foster, Thomas C

    2015-05-01

    Estrogens have been shown to have an inhibitory effect on food intake under free-feeding conditions, yet the effects of estrogens on food-maintained operant responding have been studied to a much lesser extent and, thus, are not well understood. Therefore, the purpose of the present experiment was to use a behavioral economics paradigm to assess differences in demand elasticity between mice with knockout of the estrogen receptor subtype α, knockout of subtype β, and their wild type controls. The mice responded in a closed economy, and the price of food was increased by increasing the fixed-ratio response requirement every four sessions. Overall, we found that mice with the knockout of receptor subtype α had the most elastic demand functions. Therefore, under these conditions, estrogens increased food seeking via activation of the receptor subtype α. The results were inconsistent with those reported by previous studies that employed free-feeding conditions. PMID:25869426

  4. 腺苷A2A受体基因敲除对小鼠的空间参考记忆和工作记忆的影响%Effect of adenosine A2A receptors gene knock-out on spatial working memory and reference memory in mice

    Institute of Scientific and Technical Information of China (English)

    周赛君; 何金彩; 陈江帆; 舒丹; 朱美娥

    2008-01-01

    Objective To investigate the effects and mechanism of adenosine A2A receptors (A2A R)on spatial memory in mice. Methods Mice with adenosine A2A receptors gene knocked out (A2A RKO, n = 13) were compared to their wild type littermates ( WT, n = 15 ). Eight-arm radial maze and Morris water maze were used to measure their spatial reference memory and spatial working memory. Results Compared to the WT littermates,A2A RKO mice displayed significantly improved working memory in both MWM and radial maze performance. However there was no significant difference in spatial reference memory in MWM test between the A2A RKO mice and WT littermate. Conclusion Genetic inactivation of A2A receptors significantly enhances spatial memory in both MWM and radial maze tests, indicating the important role of adenosine A2A receptors in learning spatial memory in mice. This enhancement of spatial memory is particularly evident for spatial working memory by A2A receptor inactivation.%目的 观察腺苷A2A受体基因敲除对小鼠空间学习记忆过程的影响,探讨腺苷A2A受体与空间学习记忆的关系及可能的调节机制.方法 选用腺苷A2A受体基因敲除小鼠模型(A2ARKO组,n=13)和同窝野生型小鼠(WT组,n=15).采用Morris水迷宫和八臂迷宫两种实验方法分别检测其空间参考记忆和工作记忆能力.结果 腺苷A2A受体基因敲除小鼠在八臂迷宫训练中工作记忆错误数显著少于野生型(RANOVA组间效应:F=146.11,P<0.01);在Morris水迷宫重复获得试验中工作记忆成绩显著优于野生型(trial4/trial1指数组间效应:F=6.17,P=0.026),而八臂迷宫训练空间参考记忆错误数(组间效应:F=0.083,P=0.777)及Morris水迷宫定位航行(组间效应:F=2.552,P=0.132)和空间探索试验成绩(A2ARKO:4.50±2.27;WT:2.50±1.93;t=1.901,P=0.078),2组差异无显著性.结论 腺苷A2A受体基因敲除小鼠表现为空间工作记忆增强,可见脑内腺苷A2A受体参与空间学习记忆的调节,它对

  5. APJ ACTS AS A DUAL RECEPTOR IN CARDIAC HYPERTROPHY

    OpenAIRE

    Scimia, Maria Cecilia; Hurtado, Cecilia; Ray, Saugata; Metzler, Scott; Wei, Ke; Wang, Jianming; Woods, Chris E.; Purcell, Nicole H.; Catalucci, Daniele; Akasaka, Takashi; Bueno, Orlando F.; Vlasuk, George P.; Kaliman, Perla; Bodmer, Rolf; Smith, Layton H.

    2012-01-01

    Cardiac hypertrophy is initiated as an adaptive response to sustained overload but progresses pathologically as heart failure ensues 1 . Here we report that genetic loss of APJ confers resistance to chronic pressure overload by dramatically reducing myocardial hypertrophy and heart failure. In contrast, mice lacking apelin (the endogenous APJ ligand) remain sensitive, suggesting an apelin independent function of APJ. Freshly isolated APJ-null cardiomyocytes exhibit an attenuated response to s...

  6. Cortical Gene Expression After a Conditional Knockout of 67 kDa Glutamic Acid Decarboxylase in Parvalbumin Neurons.

    Science.gov (United States)

    Georgiev, Danko; Yoshihara, Toru; Kawabata, Rika; Matsubara, Takurou; Tsubomoto, Makoto; Minabe, Yoshio; Lewis, David A; Hashimoto, Takanori

    2016-07-01

    In the cortex of subjects with schizophrenia, expression of glutamic acid decarboxylase 67 (GAD67), the enzyme primarily responsible for cortical GABA synthesis, is reduced in the subset of GABA neurons that express parvalbumin (PV). This GAD67 deficit is accompanied by lower cortical levels of other GABA-associated transcripts, including GABA transporter-1, PV, brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B, somatostatin, GABAA receptor α1 subunit, and KCNS3 potassium channel subunit mRNAs. In contrast, messenger RNA (mRNA) levels for glutamic acid decarboxylase 65 (GAD65), another enzyme for GABA synthesis, are not altered. We tested the hypothesis that this pattern of GABA-associated transcript levels is secondary to the GAD67 deficit in PV neurons by analyzing cortical levels of these GABA-associated mRNAs in mice with a PV neuron-specific GAD67 knockout. Using in situ hybridization, we found that none of the examined GABA-associated transcripts had lower cortical expression in the knockout mice. In contrast, PV, BDNF, KCNS3, and GAD65 mRNA levels were higher in the homozygous mice. In addition, our behavioral test battery failed to detect a change in sensorimotor gating or working memory, although the homozygous mice exhibited increased spontaneous activities. These findings suggest that reduced GAD67 expression in PV neurons is not an upstream cause of the lower levels of GABA-associated transcripts, or of the characteristic behaviors, in schizophrenia. In PV neuron-specific GAD67 knockout mice, increased levels of PV, BDNF, and KCNS3 mRNAs might be the consequence of increased neuronal activity secondary to lower GABA synthesis, whereas increased GAD65 mRNA might represent a compensatory response to increase GABA synthesis. PMID:26980143

  7. Human Genetic Disorders and Knockout Mice Deficient in Glycosaminoglycan

    Directory of Open Access Journals (Sweden)

    Shuji Mizumoto

    2014-01-01

    Full Text Available Glycosaminoglycans (GAGs are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases and sulfotransferases. The structural diversity of GAG polysaccharides, including their sulfation patterns and sequential arrangements, is essential for a wide range of biological activities such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Studies using knockout mice of enzymes responsible for the biosynthesis of the GAG side chains of proteoglycans have revealed their physiological functions. Furthermore, mutations in the human genes encoding glycosyltransferases, sulfotransferases, and related enzymes responsible for the biosynthesis of GAGs cause a number of genetic disorders including chondrodysplasia, spondyloepiphyseal dysplasia, and Ehlers-Danlos syndromes. This review focused on the increasing number of glycobiological studies on knockout mice and genetic diseases caused by disturbances in the biosynthetic enzymes for GAGs.

  8. Knockout driven reactions in complex molecules and their clusters

    Science.gov (United States)

    Gatchell, Michael; Zettergren, Henning

    2016-08-01

    Energetic ions lose some of their kinetic energy when interacting with electrons or nuclei in matter. Here, we discuss combined experimental and theoretical studies on such impulse driven reactions in polycyclic aromatic hydrocarbons (PAHs), fullerenes, and pure or mixed clusters of these molecules. These studies show that the nature of excitation is important for how complex molecular systems respond to ion/atom impact. Rutherford-like nuclear scattering processes may lead to prompt atom knockout and formation of highly reactive fragments, while heating of the molecular electron clouds in general lead to formation of more stable and less reactive fragments. In this topical review, we focus on recent studies of knockout driven reactions, and present new calculations of the angular dependent threshold (displacement) energies for such processes in PAHs. The so-formed fragments may efficiently form covalent bonds with neighboring molecules in clusters. These unique molecular growth processes may be important in astrophysical environments such as low velocity shock waves.

  9. Neutron knockout in neutral-current neutrino-oxygen interactions

    CERN Document Server

    Ankowski, Artur M

    2013-01-01

    The ongoing and future searches for diffuse supernova neutrinos and sterile neutrinos carried out with large water-Cherenkov detectors require a precise determination of the backgrounds, especially those involving gamma rays. Of great importance, in this context, is the process of neutron knockout through neutral-current (NC) scattering of atmospheric neutrinos on oxygen. Nuclear reinteractions of the produced neutron may in fact lead to the production of gamma rays of energies high enough to mimic the processes of interest. In this Letter, we focus on the kinematical range suitable for simulations of atmospheric-neutrino interactions and provide the neutron-knockout cross sections computed using the formalism based on realistic nuclear spectral function. The role of the strange-quark contribution to the NC axial form factor is also analyzed. Based on the available experimental information, we give an estimate of the associated uncertainty.

  10. One-neutron knockout from {sup 51-55}Sc

    Energy Technology Data Exchange (ETDEWEB)

    Schwertel, S.; Maierbeck, P.; Gernhaeuser, R.; Bildstein, V.; Boehmer, M.; Eppinger, K.; Faestermann, T.; Friese, J.; Fabbietti, L.; Maier, L.; Winkler, S. [Technische Universitaet Muenchen, Physik Department E12, Garching (Germany); Kruecken, R. [Technische Universitaet Muenchen, Physik Department E12, Garching (Germany); TRIUMF, Vancouver (Canada); University of British Columbia, Department of Physics and Astronomy, Vancouver (Canada); Kroell, T. [Technische Universitaet Muenchen, Physik Department E12, Garching (Germany); Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Alvarez-Pol, H.; Benjamim, E.A.; Benlliure, J.; Caamano, M.; Cortina-Gil, D.; Gascon, M.; Kurtukian, T.; Perez, D.; Rodriguez-Tajes, C. [Universidade de Santiago de Compostela, Departamento de Fisica de Particulas, Santiago de Compostela (Spain); Aksouh, F.; Aumann, T.; Behr, K.; Boretzky, K.; Bruenle, A.; Chatillon, A.; Chulkov, L.V.; Geissel, H.; Gerl, J.; Gorska, M.; Kojouharov, I.; Klimkiewicz, A.; Kurz, N.; Nociforo, C.; Schaffner, H.; Simon, H.; Stanoiu, M.; Suemmerer, K.; Weick, H. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Borge, M.J.G.; Pascual-Izarra, C.; Perea, A.; Tengblad, O. [CSIC, Instituto de Estructura de la Materia, Madrid (Spain); Buerger, A. [University of Oslo, SAFE/OCL, Oslo (Norway); CEA, Gif-sur-Yvette (France); Casarejos, E.; Brown, B.A. [University of Vigo, Vigo (Spain); Enders, J.; Schrieder, G. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Hansen, P.G. [Michigan State University, NSCL, East Lansing, Michigan (United States); Jonson, B.; Nyman, G. [Chalmers Tekniska Hoegskola och Goeteborgs Universitet, Experimentell Fysik, Goeteborg (Sweden); Kanungo, R. [TRIUMF, Vancouver (Canada); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Saint Mary' s University, Halifax (Canada); Kiselev, O. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Johannes Gutenberg Universitaet, Mainz (Germany); Paul Scherrer Institut, Villigen (Switzerland); Larsson, K. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Chalmers Tekniska Hoegskola och Goeteborgs Universitet, Experimentell Fysik, Goeteborg (Sweden); Le Bleis, T. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); IN2P3-CNRS/Universite Louis Pasteur, Institut Pluridisciplinaire Hubert Curien, Strasbourg Cedex 2 (France); Mahata, K. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Paul Scherrer Institut, Villigen (Switzerland); Nilsson, T. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Chalmers Tekniska Hoegskola och Goeteborgs Universitet, Experimentell Fysik, Goeteborg (Sweden); Prochazka, A. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Comenius University, Faculty of Mathematics and Physics, Bratislava (Slovakia); Rossi, D. [Johannes Gutenberg Universitaet, Mainz (Germany); Sitar, B. [Comenius University, Faculty of Mathematics and Physics, Bratislava (Slovakia); Otsuka, T. [University of Tokyo, Hongo, Bunkyo-ku, Department of Physics, Tokyo (Japan); Tostevin, J.A. [University of Surrey, Department of Physics, Faculty of Engineering and Physical Sciences, Guildford (United Kingdom); Rae, W.D.M. [Garsington, Oxfordshire (United Kingdom)

    2012-12-15

    Results are presented from a one-neutron knockout experiment at relativistic energies of {approx} 420 A MeV on {sup 51-55}Sc using the GSI Fragment Separator as a two-stage magnetic spectrometer and the MINIBALL array for gamma-ray detection. Inclusive longitudinal momentum distributions and cross-sections were measured enabling the determination of the contributions corresponding to knockout from the {nu}p{sub 1/2}, {nu}p{sub 3/2}, (L = 1) and {nu}f{sub 7/2}, {nu}f{sub 5/2} (L = 3) neutron orbitals. The observed L = 1 and L = 3 contributions are compared with theoretical cross-sections using eikonal knockout theory and spectroscopic factors from shell model calculations using the GXPF1A interaction. The measured inclusive knockout cross-sections generally follow the trends expected theoretically and given by the spectroscopic strength predicted from the shell model calculations. However, the deduced L = 1 cross-sections are generally 30-40% higher while the L = 3 contributions are about a factor of two smaller than predicted. This points to a promotion of neutrons from the {nu}f{sub 7/2} to the {nu}p{sub 3/2} orbital indicating a weakening of the N = 28 shell gap in these nuclei. While this is not predicted for the phenomenological GXPF1A interaction such a weakening is predicted by recent calculations using realistic low-momentum interactions V{sub low} {sub k} obtained by evolving a chiral N3LO nucleon-nucleon potential. (orig.)

  11. Impaired Conditioned Taste Aversion Learning in Spinophilin Knockout Mice

    OpenAIRE

    Stafstrom-Davis, Carrie A.; Ouimet, Charles C.; Feng, Jian; Allen, Patrick B; Greengard, Paul; Houpt, Thomas A.

    2001-01-01

    Plasticity in dendritic spines may underlie learning and memory. Spinophilin, a protein enriched in dendritic spines, has the properties of a scaffolding protein and is believed to regulate actin cytoskeletal dynamics affecting dendritic spine morphology. It also binds protein phosphatase-1 (PP-1), an enzyme that regulates dendritic spine physiology. In this study, we tested the role of spinophilin in conditioned taste aversion learning (CTA) using transgenic spinophilin knockout mice. CTA is...

  12. Lessons from hepatocyte-specific cyp51 knockout mice

    OpenAIRE

    Keber, Rok; Lorbek, Gregor; Lewinska, Monika; Juvan, Peter; Perše, Martina; Bjorkhem, Ingemar; Rozman, Damjana; Horvat, Simon; Jeruc, Jera; Gutiérrez Mariscal, Francisco Miguel; Gebhardt, Rolf

    2016-01-01

    We demonstrate unequivocally that defective cholesterol synthesis is an independent determinant of liver inflammation and fibrosis. We prepared a mouse hepatocyte-specific knockout (LKO) of lanosterol 14 a -demethylase (CYP51) from the part of cholesterol synthesis that is already committed to cholesterol. LKO mice developed hepatomegaly with oval cell proliferation, fibrosis and inflammation, but without steatosis. The key trigger was reduced cholesterol esters that provoked cell cycle arres...

  13. Screening Methods to Identify TALEN-Mediated Knockout Mice

    OpenAIRE

    Nakagawa, Yoshiko; Yamamoto, Takashi; Suzuki, Ken-Ichi; Araki, Kimi; Takeda, Naoki; Ohmuraya, Masaki; Sakuma, Tetsushi

    2014-01-01

    Genome editing with site-specific nucleases, such as zinc-finger nucleases or transcription activator-like effector nucleases (TALENs), and RNA-guided nucleases, such as the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) system, is becoming the new standard for targeted genome modification in various organisms. Application of these techniques to the manufacture of knockout mice would be greatly aided by simple and easy methods for genotyping of mutant...

  14. Behavioural and neuroplastic properties of chronic lurasidone treatment in serotonin transporter knockout rats.

    Science.gov (United States)

    Luoni, Alessia; Hulsken, Sjoerd; Cazzaniga, Greta; Racagni, Giorgio; Homberg, Judith R; Riva, Marco A

    2013-07-01

    Second-generation antipsychotics (SGA) are multi-target agents widely used for the treatment of schizophrenia and bipolar disorder that also hold potential for the treatment of impaired emotional control, thanks to their diverse receptor profiles as well as their potential in modulating neuroadaptive changes in key brain regions. The aim of this study was thus to establish the ability of lurasidone, a novel SGA characterized by a multi-receptor signature, to modulate behavioural and molecular defects associated with a genetic model of impaired emotional control, namely serotonin transporter knockout (SERT KO) rats. At behavioural level, we found that chronic lurasidone treatment significantly increased fear extinction in SERT KO rats, but not in wild-type control animals. Moreover, at molecular level, lurasidone was able to normalize the reduced expression of the neurotrophin brain-derived neurotrophic factor in the prefrontal cortex of SERT KO rats, an effect that occurred through the regulation of specific neurotrophin transcripts (primarily exon VI). Furthermore, chronic lurasidone treatment was also able to restore the reduced expression of different GABAergic markers that is present in these animals. Our results show that lurasidone can improve emotional control in SERT KO rats, with a primary impact on the prefrontal cortex. The adaptive changes set in motion by repeated treatment with lurasidone may in fact contribute to the amelioration of functional capacities, closely associated with neuronal plasticity, which are deteriorated in patients with schizophrenia, bipolar disease and major depression. PMID:23164505

  15. Expression of PPARα modifies fatty acid effects on insulin secretion in uncoupling protein-2 knockout mice

    Directory of Open Access Journals (Sweden)

    Chan Catherine B

    2007-03-01

    Full Text Available Abstract Aims/hypothesis In uncoupling protein-2 (UCP2 knockout (KO mice, protection of beta cells from fatty acid exposure is dependent upon transcriptional events mediated by peroxisome proliferator-activated receptor-α (PPARα. Methods PPARα expression was reduced in isolated islets from UCP2KO and wild-type (WT mice with siRNA for PPARα (siPPARα overnight. Some islets were also cultured with oleic or palmitic acid, then glucose stimulated insulin secretion (GSIS was measured. Expression of genes was examined by quantitative RT-PCR or immunoblotting. PPARα activation was assessed by oligonucleotide consensus sequence binding. Results siPPARα treatment reduced PPARα protein expression in KO and WT islets by >85%. In siPPARα-treated UCP2KO islets, PA but not OA treatment significantly decreased the insulin response to 16.5 mM glucose. In WT islets, siPPARα treatment did not modify GSIS in PA and OA exposed groups. In WT islets, PA treatment significantly increased UCP2 mRNA and protein expression. Both PA and OA treatment significantly increased PPARα expression in UCP2KO and WT islets but OA treatment augmented PPARα protein expression only in UCP2KO islets (p Conclusion These data show that the negative effect of saturated fatty acid on GSIS is mediated by PPARα/UCP2. Knockout of UCP2 protects beta-cells from PA exposure. However, in the absence of both UCP2 and PPARα even a short exposure (24 h to PA significantly impairs GSIS.

  16. Differential suppression of seizures via Y2 and Y5 neuropeptide Y receptors

    DEFF Research Database (Denmark)

    Woldbye, David P D; Nanobashvili, Avtandil; Sørensen, Andreas Vehus;

    2005-01-01

    Neuropeptide Y (NPY) prominently inhibits epileptic seizures in different animal models. The NPY receptors mediating this effect remain controversial partially due to lack of highly selective agonists and antagonists. To circumvent this problem, we used various NPY receptor knockout mice...... with the same genetic background and explored anti-epileptic action of NPY in vitro and in vivo. In Y2 (Y2-/-) and Y5 (Y5-/-) receptor knockouts, NPY partially inhibited 0 Mg2+-induced epileptiform activity in hippocampal slices. In contrast, in double knockouts (Y2Y5-/-), NPY had no effect, suggesting...... that in the hippocampus in vitro both receptors mediate anti-epileptiform action of NPY in an additive manner. Systemic kainate induced more severe seizures in Y5-/- and Y2Y5-/-, but not in Y2-/- mice, as compared to wild-type mice. Moreover, kainate seizures were aggravated by administration of the Y5 antagonist L-152...

  17. Robust and sensitive analysis of mouse knockout phenotypes.

    Directory of Open Access Journals (Sweden)

    Natasha A Karp

    Full Text Available A significant challenge of in-vivo studies is the identification of phenotypes with a method that is robust and reliable. The challenge arises from practical issues that lead to experimental designs which are not ideal. Breeding issues, particularly in the presence of fertility or fecundity problems, frequently lead to data being collected in multiple batches. This problem is acute in high throughput phenotyping programs. In addition, in a high throughput environment operational issues lead to controls not being measured on the same day as knockouts. We highlight how application of traditional methods, such as a Student's t-Test or a 2-way ANOVA, in these situations give flawed results and should not be used. We explore the use of mixed models using worked examples from Sanger Mouse Genome Project focusing on Dual-Energy X-Ray Absorptiometry data for the analysis of mouse knockout data and compare to a reference range approach. We show that mixed model analysis is more sensitive and less prone to artefacts allowing the discovery of subtle quantitative phenotypes essential for correlating a gene's function to human disease. We demonstrate how a mixed model approach has the additional advantage of being able to include covariates, such as body weight, to separate effect of genotype from these covariates. This is a particular issue in knockout studies, where body weight is a common phenotype and will enhance the precision of assigning phenotypes and the subsequent selection of lines for secondary phenotyping. The use of mixed models with in-vivo studies has value not only in improving the quality and sensitivity of the data analysis but also ethically as a method suitable for small batches which reduces the breeding burden of a colony. This will reduce the use of animals, increase throughput, and decrease cost whilst improving the quality and depth of knowledge gained.

  18. Helicobacter pylori arginase mutant colonizes arginase Ⅱ knockout mice

    Institute of Scientific and Technical Information of China (English)

    Songhee H Kim; Melanie L Langford; Jean-Luc Boucher; Traci L Testerman; David J McGee

    2011-01-01

    AIM: To investigate the role of host and bacterial argi-nases in the colonization of mice by Helicobacter pylori (H. Pylori).METHODS: H. Pylori produces a very powerful urease that hydrolyzes urea to carbon dioxide and ammonium, which neutralizes acid. Urease is absolutely essential to H. Pylori pathogenesis; therefore, the urea substrate must be in ample supply for urease to work efficiently. The urea substrate is most likely provided by arginase activity, which hydrolyzes L-arginine to L-ornithine and urea. Previous work has demonstrated that H. Pylori arginase is surprisingly not required for colonization of wild-type mice. Hence, another in vivo source of the critical urea substrate must exist. We hypothesized that the urea source was provided by host arginase Ⅱ, since this enzyme is expressed in the stomach, and H. Pylori has previously been shown to induce the expres-sion of murine gastric arginase Ⅱ. To test this hypoth-esis, wild-type and arginase (rocF) mutant H. Pylori strain SS1 were inoculated into arginase Ⅱ knockout mice. RESULTS: Surprisingly, both the wild-type and rocF mutant bacteria still colonized arginase Ⅱ knock-out mice. Moreover, feeding arginase Ⅱ knockout mice the host arginase inhibitor S-(2-boronoethyl)-L-cysteine (BEC), while inhibiting > 50% of the host arginase Ⅰactivity in several tissues, did not block the ability of the rocF mutant H. Pylori to colonize. In con-trast, BEC poorly inhibited H. Pylori arginase activity. CONCLUSION: The in vivo source for the essential urea utilized by H. Pylori urease is neither bacterial arginase nor host arginase Ⅱ; instead, either residual host arginase Ⅰor agmatinase is probably responsible.

  19. Genetically Controlled Upregulation of Adenosine A(1) Receptor Expression Enhances the Survival of Primary Cortical Neurons

    NARCIS (Netherlands)

    Serchov, Tsvetan; Atas, Hasan-Cem; Normann, Claus; van Calker, Dietrich; Biber, Knut

    2012-01-01

    Adenosine has a key endogenous neuroprotective role in the brain, predominantly mediated by the adenosine A(1) receptor (A(1)R). This has been mainly explored using pharmacological tools and/or receptor knockout mice strains. It has long been suggested that the neuroprotective effects of A(1)R are i

  20. The effect of steroid receptor coactivator-3 knock-out on AP-1 during the inflammatory response%类固醇受体辅活化子-3基因敲除对炎症反应中活化蛋白-1的影响

    Institute of Scientific and Technical Information of China (English)

    李军; 田伏洲; 粟永萍; 王军平

    2011-01-01

    目的 观察类固醇受体辅活化子(SRC)-3基因敲除对脂多糖(LPS)诱导的炎症反应中活化蛋白-1(AP-1)表达水平及活性的影响.方法 健康清洁野生型(SRC-3+/+)小鼠、SRC-3基因敲除(SRC-3-/-)小鼠各20只,雌性,体质量约20 g,分为SRC-3+/+组和SRC-3-/-组,每组设正常(N)、1 h、4 h、12 h四个时相点,每个时相点各5只小鼠.采用腹腔注射5 mg/kg体质量LPS构建炎症反应动物模型,Western blot测定肝、脾组织c-Jun、c-Fos的蛋白表达.结果 SRC-3+/+组、SRC-3-/-组小鼠肝、脾组织在LPS刺激后c-Jun、c-Fos蛋白表达水平均显著增加,在相应时相点SRC-3-/-组小鼠显著低于SRC-3+/+组.LPS刺激后1、4 h两组小鼠肝组织c-Jun核转位程度显著增加,且SRC-3-/-组仅在1 h显著低于SRC-3+/+组;两组脾组织c-Jun、肝脾组织c-Fos核转位在所有时相点均显著增加,但在相应时相点SRC-3-/-组小鼠均显著低于SRC-3+/+组.结论 LPS刺激后引起AP-1的表达和活性显著增加,SRC-3蛋白缺失可部分抑制AP-1的表达及活性,这可能与致炎细胞因子合成释放减少有关.%Objective To observe the effect of the absence of steroid receptor coactivator (SRC) - 3 on the level of LPS - induced activator protein ( AP) - 1 expression and its activity.Methods We use 20 healthy SPF - grade SRC - 3+/+ mice and SRC - 3 -/- mice respectively, all of which are female, 20 g and are named SRC -3 +/+ group and SRC - 3 -/- group. Then we set four phase points: normal, 1 h, 4 h, and 12 h. Each of the phase points has five mice. On the model of inflammatory response induced by an intraperitoneal injection of LPS ( 5 mg/kg body weight) , western blot was used to detect the expression of c - Jun and c - Fos in liver and spleen. Results After an intraperitoneal injection of LPS with a dose of 5mg/kg body weight, the level of LPS - induced c - Jun and c - Fos expression in liver and spleen were significantly increased in both SRC - 3+/+ group and SRC -3

  1. Generation and Validation of a Mouse Line with a Floxed SRC-3/AIB1 Allele for Conditional Knockout

    Directory of Open Access Journals (Sweden)

    Zhaoliang Liu, Lan Liao, Suoling Zhou, Jianming Xu

    2008-01-01

    Full Text Available The steroid receptor coactivator-3 (SRC-3, also known as AIB1, ACTR, p/CIP and NCOA3, is a transcriptional coactivator for nuclear receptors and certain other transcription factors. SRC-3 is widely expressed and plays important physiological functions and pathogenic roles in breast and prostate cancers. SRC-3 knockout (SRC-3-/- mice display genetic background-dependent embryonic lethality and multiple local and systemic abnormalities. Since both the partial lethality and the systemic effects caused by global SRC-3 knockout interfere with downstream investigation of tissue-specific function of SRC-3, we have generated floxed SRC-3 (SRC-3f/f mice with conditional alleles carrying loxP sites in introns 10 and 12 by a gene-targeting strategy. The two SRC-3f/f mouse lines (A and B are indistinguishable from wild type mice. To test if deletion of the floxed exons 11 and 12 for SRC-3 nuclear receptor interaction domains and disruption of its downstream sequence for transcriptional activation domains would inactivate SRC-3 function, SRC-3f/f mice were crossbred with EIIa-Cre mice to generate SRC-3d/d mice with germ line deletion of the floxed SRC-3 gene. Both lines of SRC-3d/d mice exhibited growth retardation and low IGF-I levels, which was similar to that observed in SRC-3-/- mice. The line A SRC-3d/d mice showed normal viability, while line B SRC-3d/d mice showed partial lethality similar to SRC-3-/- mice, probably due to variable distributions of genetic background during breeding. These results demonstrate that the floxed SRC-3 mouse lines have been successfully established. These mice will be useful for investigating the cell type- and developmental stage-specific functions of SRC-3.

  2. Assessing the neuronal serotonergic target-based antidepressant stratagem: impact of in vivo interaction studies and knockout models.

    Science.gov (United States)

    Rajkumar, R; Mahesh, R

    2008-09-01

    Depression remains a challenge in the field of affective neuroscience, despite a steady research progress. Six out of nine basic antidepressant mechanisms rely on serotonin neurotransmitter system. Preclinical studies have demonstrated the significance of serotonin receptors (5-HT(1-3,6,7)), its signal transduction pathways and classical down stream targets (including neurotrophins, neurokinins, other peptides and their receptors) in antidepressant drug action. Serotonergic control of depression embraces the recent molecular requirements such as influence on proliferation, neurogenesis, plasticity, synaptic (re)modeling and transmission in the central nervous system. The present progress report analyses the credibility of each protein as therapeutically relevant target of depression. In vivo interaction studies and knockout models which identified these targets are foreseen to unearth new ligands and help them transform to drug candidates. The importance of the antidepressant assay selection at the preclinical level using salient animal models/assay systems is discussed. Such test batteries would definitely provide antidepressants with faster onset, efficacy in resistant (and co-morbid) types and with least adverse effects. Apart from the selective ligands, only those molecules which bring an overall harmony, by virtue of their affinities to various receptor subtypes, could qualify as effective antidepressants. Synchronised modulation of various serotonergic sub-pathways is the basis for a unique and balanced antidepressant profile, as that of fluoxetine (most exploited antidepressant) and such a profile may be considered as a template for the upcoming antidepressants. In conclusion, 5-HT based multi-targeted antidepressant drug discovery supported by in vivo interaction studies and knockout models is advocated as a strategy to provide classic molecules for clinical trials. PMID:19506722

  3. Intestinal tumor suppression in ApcMin/+ mice by prostaglandin D2 receptor PTGDR

    International Nuclear Information System (INIS)

    Our earlier work showed that knockout of hematopoietic prostaglandin D synthase (HPGDS, an enzyme that produces prostaglandin D2) caused more adenomas in ApcMin/+ mice. Conversely, highly expressed transgenic HPGDS allowed fewer tumors. Prostaglandin D2 (PGD2) binds to the prostaglandin D2 receptor known as PTGDR (or DP1). PGD2 metabolites bind to peroxisome proliferator-activated receptor γ (PPARG). We hypothesized that Ptgdr or Pparg knockouts may raise numbers of tumors, if these receptors take part in tumor suppression by PGD2. To assess, we produced ApcMin/+ mice with and without Ptgdr knockouts (147 mice). In separate experiments, we produced ApcMin/+ mice expressing transgenic lipocalin-type prostaglandin D synthase (PTGDS), with and without heterozygous Pparg knockouts (104 mice). Homozygous Ptgdr knockouts raised total numbers of tumors by 30–40% at 6 and 14 weeks. Colon tumors were not affected. Heterozygous Pparg knockouts alone did not affect tumor numbers in ApcMin/+ mice. As mentioned above, our Pparg knockout assessment also included mice with highly expressed PTGDS transgenes. ApcMin/+ mice with transgenic PTGDS had fewer large adenomas (63% of control) and lower levels of v-myc avian myelocytomatosis viral oncogene homolog (MYC) mRNA in the colon. Heterozygous Pparg knockouts appeared to blunt the tumor-suppressing effect of transgenic PTGDS. However, tumor suppression by PGD2 was more clearly mediated by receptor PTGDR in our experiments. The suppression mechanism did not appear to involve changes in microvessel density or slower proliferation of tumor cells. The data support a role for PGD2 signals acting through PTGDR in suppression of intestinal tumors

  4. The role of P2X receptors in bone biology

    DEFF Research Database (Denmark)

    Jørgensen, N R; Syberg, S; Ellegaard, M

    2015-01-01

    come from studies on murine knockout models and from pharmacologic studies on cells and animals. More recently, the role of P2X receptors in human bone diseases has been documented. Loss-of-functions polymorphisms in the P2X7 receptorare associated with bone loss and increased fracture risk. Very...

  5. Scavenger receptor BI boosts hepatocyte permissiveness to Plasmodium infection.

    NARCIS (Netherlands)

    Yalaoui, S.; Huby, T.; Franetich, J.F.; Gego, A.; Rametti, A.; Moreau, M.; Collet, X.; Siau, A.; Gemert, G.J.A. van; Sauerwein, R.W.; Luty, A.J.F.; Vaillant, J.C.; Hannoun, L.; Chapman, J.; Mazier, D.; Froissard, P.

    2008-01-01

    Infection of hepatocytes by Plasmodium falciparum sporozoites requires the host tetraspanin CD81. CD81 is also predicted to be a coreceptor, along with scavenger receptor BI (SR-BI), for hepatitis C virus. Using SR-BI-knockout, SR-BI-hypomorphic and SR-BI-transgenic primary hepatocytes, as well as s

  6. Knockout reaction induced by 6He at 61.2 MeV/u

    Institute of Scientific and Technical Information of China (English)

    LU Lin-Hui; CAO Zhong-Xin; SONG Yu-Shou; XIAO Jun; LI Qi-Te; QIAO Rui; YOU Hai-Bo; CHEN Rui-Jiu; XU Hu-Shan; WANG Jian-Song; GUO Zhong-Yan; YE Yan-Lin; ZHANG Xue-Ying; LI Chen; HU Zheng-Guo; CHEN Ruo-FU; WANG Meng; XU Zhi-Guo; YUE Ke; TANG Bin; ZANG Yong-Dong; ZHANG Xue-Heng; JIANG Dong-Xing; YAO Xiang-Wu; CHEN Jin-Da; BAI Zhen; HUA Hui; ZHENG Tao; LI Zhi-Huan; GE Yu-Cheng; LI Xiang-Qing; LOU Jian-Ling

    2011-01-01

    A knockout reaction induced by 6He at 61.2 MeV/u was carried out at the HIRFL-RIBLL radioactive beam line.The α core fragments at forward angles were detected in coincidence with the recoiled protons at large angles.From this coincident measurement the valence nucleon knockout mechanism and the core knockout mechanism can be separated according to the polar angle correlation between the core fragments and the recoiled protons.It is demonstrated that,when reconstructing the resonant state of a weakly bound nucleus,the contamination resulting from the core knockout mechanism should be eliminated in order to obtain the correct structure information.

  7. Hair-Cell Mechanotransduction Persists in TRP Channel Knockout Mice.

    Science.gov (United States)

    Wu, Xudong; Indzhykulian, Artur A; Niksch, Paul D; Webber, Roxanna M; Garcia-Gonzalez, Miguel; Watnick, Terry; Zhou, Jing; Vollrath, Melissa A; Corey, David P

    2016-01-01

    Members of the TRP superfamily of ion channels mediate mechanosensation in some organisms, and have been suggested as candidates for the mechanotransduction channel in vertebrate hair cells. Some TRP channels can be ruled out based on lack of an inner ear phenotype in knockout animals or pore properties not similar to the hair-cell channel. Such studies have excluded Trpv4, Trpa1, Trpml3, Trpm1, Trpm3, Trpc1, Trpc3, Trpc5, and Trpc6. However, others remain reasonable candidates. We used data from an RNA-seq analysis of gene expression in hair cells as well as data on TRP channel conductance to narrow the candidate group. We then characterized mice lacking functional Trpm2, Pkd2, Pkd2l1, Pkd2l2 and Pkd1l3, using scanning electron microscopy, auditory brainstem response, permeant dye accumulation, and single-cell electrophysiology. In all of these TRP-deficient mice, and in double and triple knockouts, mechanotransduction persisted. Together with published studies, these results argue against the participation of any of the 33 mouse TRP channels in hair cell transduction. PMID:27196058

  8. Hair-Cell Mechanotransduction Persists in TRP Channel Knockout Mice.

    Directory of Open Access Journals (Sweden)

    Xudong Wu

    Full Text Available Members of the TRP superfamily of ion channels mediate mechanosensation in some organisms, and have been suggested as candidates for the mechanotransduction channel in vertebrate hair cells. Some TRP channels can be ruled out based on lack of an inner ear phenotype in knockout animals or pore properties not similar to the hair-cell channel. Such studies have excluded Trpv4, Trpa1, Trpml3, Trpm1, Trpm3, Trpc1, Trpc3, Trpc5, and Trpc6. However, others remain reasonable candidates. We used data from an RNA-seq analysis of gene expression in hair cells as well as data on TRP channel conductance to narrow the candidate group. We then characterized mice lacking functional Trpm2, Pkd2, Pkd2l1, Pkd2l2 and Pkd1l3, using scanning electron microscopy, auditory brainstem response, permeant dye accumulation, and single-cell electrophysiology. In all of these TRP-deficient mice, and in double and triple knockouts, mechanotransduction persisted. Together with published studies, these results argue against the participation of any of the 33 mouse TRP channels in hair cell transduction.

  9. A STAT-1 knockout mouse model for Machupo virus pathogenesis

    Directory of Open Access Journals (Sweden)

    Shurtleff Amy C

    2011-06-01

    Full Text Available Abstract Background Machupo virus (MACV, a member of the Arenaviridae, causes Bolivian hemorrhagic fever, with ~20% lethality in humans. The pathogenesis of MACV infection is poorly understood, and there are no clinically proven treatments for disease. This is due, in part, to a paucity of small animal models for MACV infection in which to discover and explore candidate therapeutics. Methods Mice lacking signal transducer and activator of transcription 1 (STAT-1 were infected with MACV. Lethality, viral replication, metabolic changes, hematology, histopathology, and systemic cytokine expression were analyzed throughout the course of infection. Results We report here that STAT-1 knockout mice succumbed to MACV infection within 7-8 days, and presented some relevant clinical and histopathological manifestations of disease. Furthermore, the model was used to validate the efficacy of ribavirin in protection against infection. Conclusions The STAT-1 knockout mouse model can be a useful small animal model for drug testing and preliminary immunological analysis of lethal MACV infection.

  10. Polyhydramnios in Lrp4 knockout mice with bilateral kidney agenesis: Defects in the pathways of amniotic fluid clearance.

    Science.gov (United States)

    Tanahashi, Hiroshi; Tian, Qing-Bao; Hara, Yoshinobu; Sakagami, Hiroyuki; Endo, Shogo; Suzuki, Tatsuo

    2016-01-01

    Amniotic fluid volume during mid-to-late gestation depends mainly on the urine excretion from the foetal kidneys and partly on the fluid secretion from the foetal lungs during foetal breathing-like movements. Urine is necessary for foetal breathing-like movements, which is critical for foetal lung development. Bilateral renal agenesis and/or obstruction of the urinary tract lead to oligohydramnios, which causes infant death within a short period after birth due to pulmonary hypoplasia. Lrp4, which functions as an agrin receptor, is essential for the formation of neuromuscular junctions. Herein, we report novel phenotypes of Lrp4 knockout (Lrp4(-/-)) mice. Most Lrp4(-/-) foetuses showed unilateral or bilateral kidney agenesis, and Lrp4 knockout resulted in polyhydramnios. The loss of Lrp4 compromised foetal swallowing and breathing-like movements and downregulated the expression of aquaporin-9 in the foetal membrane and aquaporin-1 in the placenta, which possibly affected the amniotic fluid clearance. These results suggest that amniotic fluid removal was compromised in Lrp4(-/-) foetuses, resulting in polyhydramnios despite the impairment of urine production. Our findings indicate that amniotic fluid removal plays an essential role in regulating the amniotic fluid volume.

  11. Polyhydramnios in Lrp4 knockout mice with bilateral kidney agenesis: Defects in the pathways of amniotic fluid clearance.

    Science.gov (United States)

    Tanahashi, Hiroshi; Tian, Qing-Bao; Hara, Yoshinobu; Sakagami, Hiroyuki; Endo, Shogo; Suzuki, Tatsuo

    2016-01-01

    Amniotic fluid volume during mid-to-late gestation depends mainly on the urine excretion from the foetal kidneys and partly on the fluid secretion from the foetal lungs during foetal breathing-like movements. Urine is necessary for foetal breathing-like movements, which is critical for foetal lung development. Bilateral renal agenesis and/or obstruction of the urinary tract lead to oligohydramnios, which causes infant death within a short period after birth due to pulmonary hypoplasia. Lrp4, which functions as an agrin receptor, is essential for the formation of neuromuscular junctions. Herein, we report novel phenotypes of Lrp4 knockout (Lrp4(-/-)) mice. Most Lrp4(-/-) foetuses showed unilateral or bilateral kidney agenesis, and Lrp4 knockout resulted in polyhydramnios. The loss of Lrp4 compromised foetal swallowing and breathing-like movements and downregulated the expression of aquaporin-9 in the foetal membrane and aquaporin-1 in the placenta, which possibly affected the amniotic fluid clearance. These results suggest that amniotic fluid removal was compromised in Lrp4(-/-) foetuses, resulting in polyhydramnios despite the impairment of urine production. Our findings indicate that amniotic fluid removal plays an essential role in regulating the amniotic fluid volume. PMID:26847765

  12. Study on the Relationship between Serum Nesfatin-1,Apelin and Insulin-resistance in Newly Diagnosed Type 2 Diabetic Patients%新诊断2型糖尿病患者血清nesfatin-1及apelin与胰岛素抵抗的关系研究

    Institute of Scientific and Technical Information of China (English)

    谭丽艳; 徐海波; 谭丽萍; 潘佳秋

    2013-01-01

    目的 探讨新诊断2型糖尿病(T2DM)患者血清nesfatin-1、apelin与胰岛素抵抗(IR)的关系.方法 选取2011年6月-2012年2月在我院就诊的新诊断2型糖尿病患者60例(T2DM组)及同期体检健康者30例(NC组).采用酶联免疫吸附法(ELISA法)测定两组受检者空腹血清nesfatin-1、apelin水平,同时测定空腹血糖(FPG)、空腹胰岛素(FINS)、血脂水平.应用稳态模型评估的胰岛素抵抗指数(HOMA-IR)、胰岛素敏感性指数(ISI)评价胰岛素敏感性,用稳态模型评估的胰岛β细胞功能指数(HOMA-β)评价胰岛β细胞功能.采用Spearman秩相关及多元线性逐步回归分析观察nesfatin-1、apelin与糖代谢、IR的关系.结果 T2DM组患者血清nesfatin-1、apelin水平均高于NC组,差异有统计学意义(P<0.01);且二者均与体质指数(BMI)、空腹血糖(FPG)、三酰甘油(TG)、总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C)、空腹胰岛素(FINS)、HOMA-IR呈正相关(P<0.05),与高密度脂蛋白胆固醇(HDL-C)、HOMA-β、ISI呈负相关(P<0.01),且nesfatin-1与apelin呈正相关(P<0.01).多元线性逐步回归分析发现,apelin是nesfatin-1的独立影响因素,常数项为0.018,β=0.574,P<0.01.结论 新诊断2型糖尿病患者血清nesfatin-1、apelin水平较健康者显著升高,并与IR存在一定的相关性.提示nesfatin-1、apelin可能参与了T2DM及IR的病理生理过程.%Objective To investigate the relationship between nesfatin - 1, apelin and insulin resistance in newly diagnosed type 2 diabetes mellitus ( T2DM ) patients. Methods A total of 60 T2DM patients ( T2DM group ) and 30 non - diabetic controls ( NC group ) admitted to our hospital from June 2011 to February 2012 were recruited. Fasting plasma nesfatin - 1 and apelin levels were assayed by enzyme - linked immunosorbent assay ( ELISA ) . At the same time, the fasting plasma glucose ( FPG ), fasting insulin ( FINS ) and blood lipid indexes were detected. Homeostasis model

  13. Adult Conditional Knockout of PGC-1α Leads to Loss of Dopamine Neurons.

    Science.gov (United States)

    Jiang, Haisong; Kang, Sung-Ung; Zhang, Shuran; Karuppagounder, Senthilkumar; Xu, Jinchong; Lee, Yong-Kyu; Kang, Bong-Gu; Lee, Yunjong; Zhang, Jianmin; Pletnikova, Olga; Troncoso, Juan C; Pirooznia, Shelia; Andrabi, Shaida A; Dawson, Valina L; Dawson, Ted M

    2016-01-01

    Parkinson's disease (PD) is a chronic progressive neurodegenerative disorder. Recent studies have implicated a role for peroxisome proliferator-activated receptor γ coactivator protein-1α (PGC-1α) in PD and in animal or cellular models of PD. The role of PGC-1α in the function and survival of substantia nigra pars compacta (SNpc) dopamine neurons is not clear. Here we find that there are four different PGC-1α isoforms expressed in SH-SY5Y cells, and these four isoforms are expressed across subregions of mouse brain. Adult conditional PGC-1α knock-out mice show a significant loss of dopaminergic neurons that is accompanied by a reduction of dopamine in the striatum. In human PD postmortem tissue from the SNpc, there is a reduction of PGC-1α isoforms and mitochondria markers. Our findings suggest that all four isoforms of PGC-1α are required for the proper expression of mitochondrial proteins in SNpc DA neurons and that PGC-1α is essential for SNpc DA neuronal survival, possibly through the maintenance of mitochondrial function. PMID:27622213

  14. GRK5-Knockout Mice Generated by TALEN-Mediated Gene Targeting.

    Science.gov (United States)

    Nanjidsuren, Tsevelmaa; Park, Chae-Won; Sim, Bo-Woong; Kim, Sun-Uk; Chang, Kyu-Tae; Kang, Myung-Hwa; Min, Kwan-Sik

    2016-10-01

    Transcription activator-like effector nucleases (TALENs) are a new type of engineered nuclease that is very effective for directed gene disruption in any genome sequence. We investigated the generation of mice with genetic knockout (KO) of the G protein-coupled receptor kinase (GRK) 5 gene by microinjection of TALEN mRNA. TALEN vectors were designed to target exons 1, 3, and 5 of the mouse GRK5 gene. Flow cytometry showed that the activity of the TALEN mRNAs targeted to exons 1, 3, and 5 was 8.7%, 9.7%, and 12.7%, respectively. The TALEN mRNA for exon 5 was injected into the cytoplasm of 180 one-cell embryos. Of the 53 newborns, three (5.6%) were mutant founders (F0) with mutations. Two clones from F028 showed a 45-bp deletion and F039 showed the same biallelic non-frame-shifting 3-bp deletions. Three clones from F041 were shown to possess a combination of frame-shifting 2-bp deletions. All of the mutations were transmitted through the germline but not to all progenies (37.5%, 37.5%, and 57.1% for the F028, F039, and F041 lines, respectively). The homozygote GRK5-KO mice for 28 and 41 lines created on F3 progenies and the homozygous genotype was confirmed by PCR, T7E1 assay and sequencing. PMID:27565865

  15. Improving expression of recombinant human IGF-1 using IGF-1R knockout CHO cell lines.

    Science.gov (United States)

    Romand, Sandrine; Jostock, Thomas; Fornaro, Mara; Schmidt, Joerg; Ritter, Anett; Wilms, Burkhard; Laux, Holger

    2016-05-01

    Chinese Hamster Ovary (CHO) cells are widely used for the large-scale production of recombinant biopharmaceuticals. However, attempts to express IGF-1 (a mutated human Insulin-like growth factor 1 Ea peptide (hIGF-1Ea mut)) in CHO cells resulted in poor cell growth and low productivity (0.1-0.2 g/L). Human IGF-1 variants negatively impacted CHO cell growth via the IGF-1 receptor (IGF-1R). Therefore knockout (KO) of the IGF-1R gene in two different CHO cell lines as well as knockdown (KD) of IGF-1R in one CHO cell line were performed. These cell line engineering approaches decreased significantly the hIGF-1 mediated cell growth inhibition and increased productivity of both KO CHO cell lines as well as of the KD CHO cell line. A productivity increase of 10-fold at pool level and sevenfold at clone level was achieved, resulting in a titer of 1.3 g/L. This data illustrate that cell line engineering approaches are powerful tools to improve the yields of recombinant proteins which are difficult to produce in CHO cells. Biotechnol. Bioeng. 2016;113: 1094-1101. © 2015 Wiley Periodicals, Inc. PMID:26523469

  16. Increased desensitization of dopamine D₂ receptor-mediated response in the ventral tegmental area in the absence of adenosine A(2A) receptors.

    Science.gov (United States)

    Al-Hasani, R; Foster, J D; Metaxas, A; Ledent, C; Hourani, S M O; Kitchen, I; Chen, Y

    2011-09-01

    G-protein coupled receptors interact to provide additional regulatory mechanisms for neurotransmitter signaling. Adenosine A(2A) receptors are expressed at a high density in striatal neurons, where they closely interact with dopamine D₂ receptors and modulate effects of dopamine and responses to psychostimulants. A(2A) receptors are expressed at much lower densities in other forebrain neurons but play a more prominent yet opposing role to striatal receptors in response to psychostimulants in mice. It is, therefore, possible that A(2A) receptors expressed at low levels elsewhere in the brain may also regulate neurotransmitter systems and modulate neuronal functions. Dopamine D₂ receptors play an important role in autoinhibition of neuronal firing in dopamine neurons of the ventral tegmental area (VTA) and dopamine release in other brain areas. Here, we examined the effect of A(2A) receptor deletion on D₂ receptor-mediated inhibition of neuronal firing in dopamine neurons in the VTA. Spontaneous activity of dopamine neurons was recorded in midbrain slices, and concentration-dependent effects of the dopamine D₂ receptor agonist, quinpirole, was compared between wild-type and A(2A) knockout mice. The potency of quinpirole applied in single concentrations and the expression of D₂ receptors were not altered in the VTA of the knockout mice. However, quinpirole applied in stepwise escalating concentrations caused significantly reduced maximal inhibition in A(2A) knockout mice, indicating an enhanced agonist-induced desensitization of D₂ receptors in the absence of A(2A) receptors. The A(2A) receptor agonist, CGS21680, did not exert any effect on dopamine neuron firing or response to quinpirole, revealing a novel non-pharmacological interaction between adenosine A(2A) receptors and dopaminergic neurotransmission in midbrain dopamine neurons. Altered D₂ receptor desensitization may result in changes in dopamine neuron firing rate and pattern and dopamine

  17. Repetitive grooming and sensorimotor abnormalities in an ephrin-A knockout model for Autism Spectrum Disorders

    Science.gov (United States)

    Wurzman, Rachel; Forcelli, Patrick A.; Griffey, Christopher J.; Kromer, Lawrence F.

    2014-01-01

    EphA receptors and ephrin-A ligands play important roles in neural development and synaptic plasticity in brain regions where expression persists into adulthood. Recently, EPHA3 and EPHA7 gene mutations were linked with Autism Spectrum Disorders (ASDs) and developmental neurological delays, respectively. Furthermore, deletions of ephrin-A2 or ephrin-A3, which exhibit high binding affinity for EphA3 and EphA7 receptors, are associated with subtle deficits in learning and memory behavior and abnormalities in dendritic spine morphology in the cortex and hippocampus in mice. To better characterize a potential role for these ligands in ASDs, we performed a comprehensive behavioral characterization of anxiety-like, sensorimotor, learning, and social behaviors in ephrin-A2/-A3 double knockout (DKO) mice. The predominant phenotype in DKO mice was repetitive and self-injurious grooming behaviors such as have been associated with corticostriatal circuit abnormalities in other rodent models of neuropsychiatric disorders. Consistent with ASDs specifically, DKO mice exhibited decreased preference for social interaction in the social approach assay, decreased locomotor activity in the open field, increased prepulse inhibition of acoustic startle, and a shift towards self-directed activity (e.g., grooming) in novel environments, such as marble burying. Although there were no gross deficits in cognitive assays, subtle differences in performance on fear conditioning and in the Morris water maze resembled traits observed in other rodent models of ASD. We therefore conclude that ephrin-A2/-A3 DKO mice have utility as a novel ASD model with an emphasis on sensory abnormalities and restricted, repetitive behavioral symptoms. PMID:25281279

  18. Mood and memory-associated behaviors in neuropeptide Y5 knockout mice.

    Science.gov (United States)

    Ito, Masanobu; Dumont, Yvan; Quirion, Remi

    2013-04-01

    Recent data led to suggest that in addition to Y1 and Y2 subtypes, Y5 receptors may be involved in mood-related behaviors (Morales-Medina et al., 2010). In the present study, using a battery of behavioral tests to assess anxiety and depression-like paradigms, as well as memory function, we evaluated the potential behavioral changes induced in mice devoid of Y5 receptors. Those paradigms were assessed using the open field (OF), elevated plus maze (EPM), forced swim test (FST), social interaction test (SI), object recognition test (ORT) and Morris water maze (MWM) in Y5 knockout (KO) mice and wild type (WT) animals. In the tests associated to anxiety related behaviors (OF, EPM and SI), no difference for locomotion and time spent in the lateral area of open field were observed between Y5 KO and WT mice. Similar results were observed for time and number of entries in open arms in EPM. Additionally, in SI test, Y5 KO mice spent same amount of time and number of entries in the stranger chamber as compared to WT animals. In the FST, as compared to WT mice, Y5 KO mice had similar immobility time on day 1. No memory dysfunction was observed in the MWM and ORT in Y5 KO mice, as compared to WT. Altogether these data suggest that under basal conditions Y5 KO and WT mice display similar mood behaviors and memory functions. However, as compared to WT, Y5 KO mice display increased grooming and rearing in the OF, lower ratio entries in open arms in the EPM and increased immobility time on the second day of the FST.

  19. Repetitive grooming and sensorimotor abnormalities in an ephrin-A knockout model for Autism Spectrum Disorders.

    Science.gov (United States)

    Wurzman, Rachel; Forcelli, Patrick A; Griffey, Christopher J; Kromer, Lawrence F

    2015-02-01

    EphA receptors and ephrin-A ligands play important roles in neural development and synaptic plasticity in brain regions where expression persists into adulthood. Recently, EPHA3 and EPHA7 gene mutations were linked with Autism Spectrum Disorders (ASDs) and developmental neurological delays, respectively. Furthermore, deletions of ephrin-A2 or ephrin-A3, which exhibit high binding affinity for EphA3 and EphA7 receptors, are associated with subtle deficits in learning and memory behavior and abnormalities in dendritic spine morphology in the cortex and hippocampus in mice. To better characterize a potential role for these ligands in ASDs, we performed a comprehensive behavioral characterization of anxiety-like, sensorimotor, learning, and social behaviors in ephrin-A2/-A3 double knockout (DKO) mice. The predominant phenotype in DKO mice was repetitive and self-injurious grooming behaviors such as have been associated with corticostriatal circuit abnormalities in other rodent models of neuropsychiatric disorders. Consistent with ASDs specifically, DKO mice exhibited decreased preference for social interaction in the social approach assay, decreased locomotor activity in the open field, increased prepulse inhibition of acoustic startle, and a shift towards self-directed activity (e.g., grooming) in novel environments, such as marble burying. Although there were no gross deficits in cognitive assays, subtle differences in performance on fear conditioning and in the Morris water maze resembled traits observed in other rodent models of ASD. We therefore conclude that ephrin-A2/-A3 DKO mice have utility as a novel ASD model with an emphasis on sensory abnormalities and restricted, repetitive behavioral symptoms.

  20. Piroxicam treatment augments bone abnormalities in interleukin-10 knockout mice

    DEFF Research Database (Denmark)

    Holgersen, Kristine; Dobie, Ross; Farquharson, Colin;

    2015-01-01

    inflammation in an experimental colitis model. METHODS: Colitis was induced in interleukin-10 knockout mice (PAC IL-10 k.o.) by peroral administration of piroxicam for 12 days. The degree of colitis was assessed by clinical, macroscopic, and microscopic evaluation. Trabecular and cortical bone...... microarchitecture of tibia were determined using micro-computed tomography. Moreover, the serum levels of bone formation and bone resorption biomarkers were measured, and inflammatory protein profiling was performed on colons. RESULTS: PAC IL-10 k.o. mice developed severe colitis, characterized by hyperplasia...... and focal transmural inflammation, which was consistent with Crohn's disease-like pathology. The gut inflammation was accompanied by a 14% and 12% reduction in trabecular thickness relative to piroxicam-treated wild type and untreated wild type mice, respectively (P

  1. Antiatherogenic effects of oleanolic acid in apolipoprotein E knockout mice

    DEFF Research Database (Denmark)

    Buus, Niels Henrik; Hansson, Nicolaj Christopher; Rodriguez-Rodriguez, Rosalia;

    2011-01-01

    Oleanolic acid (OA) is a plant triterpenoid steroid with potentially antiatherogenic properties. We investigated whether OA affected atherosclerosis development and vascular function in apolipoprotein E knockout (ApoE(-/-)) mice. ApoE(-/-) mice were fed a high cholesterol Western-type diet...... in combination with OA (100 mg/kg/day), fluvastatin (5 mg/kg/day) or vehicle, with wild type (WT) mice serving as controls. After 8 weeks of treatment atherosclerotic plaque areas in the aortic arch and plasma lipid concentrations were determined. Vasoconstriction and relaxation of the proximal part of aorta...... were investigated in vitro. Inducible nitric oxide synthase (iNOS) was visualized using immunoblotting. As opposed to WT and fluvastatin- and vehicle-treated mice, OA-fed ApoE(-/-) mice gained no weight during the treatment period. Plasma concentrations of total-cholesterol and triglyceride were...

  2. Medium effects on spin observables of proton knockout reactions

    Energy Technology Data Exchange (ETDEWEB)

    Krein, G. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Maris, T.A.J.; Rodrigues, B.B.; Veit, E.A. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica

    1994-07-01

    Medium modifications of the properties of bound nucleons and mesons are investigated by means of medium energy quasi free proton knockout reactions with polarized incident protons. The sensitivity of the spin observables of these reactions to modifications of the nucleon and meson properties is studied using the Bonn one-boson exchange model of the nucleon-nucleon interaction. A method proposed to extract the pp analysing power in medium from the (p, 2 p) asymmetries indicates a reduction of this quantity compared to its free space value. This reduction is linked to modifications of masses and coupling constants of the nucleons and mesons in the nucleus. The implications of these modifications for another spin observable to be measured in the future are discussed. (author). 39 refs, 9 figs.

  3. RF-knockout Extraction System for the CNAO Synchrotron

    CERN Document Server

    Carmignani, Nicola; Serio, Mario; Balbinot, Giovanni; Bressi, Erminia; Caldara, Michele; Pullia, Marco; Bosser, Jacques; Venchi, Giuseppe

    2010-01-01

    The National Centre for Oncological Hadrontherapy (CNAO) is a centre in Italy for the treatment of patients affected by tumours with proton and carbon ions beams accelerated in a synchrotron. The synchrotron extraction method is based on the use of a betatron core. This work aims to verify, through a theoretical study and a simulation, the possibility of using the RF-knockout extraction method exploiting the existing hardware. A simulation program has been written to simulate the extraction system of the synchrotron with the purpose to define the parameters of the radio frequency. Two types of radio frequencies have been compared in order to obtain a constant spill with the minimum ripple: a carrier wave with a frequency and amplitude modulation, and a gaussian narrow band noise modulated in amplitude. Results of the simulation and considerations on the kicker characteristics are presented

  4. Reduced Extinction of Hippocampal-Dependent Memories in CPEB Knockout Mice

    Science.gov (United States)

    Zearfoss, N. Ruth; Richter, Joel D.; Berger-Sweeney, Joanne

    2006-01-01

    CPEB is a sequence-specific RNA binding protein that regulates translation at synapses. In neurons of CPEB knockout mice, synaptic efficacy is reduced. Here, we have performed a battery of behavioral tests and find that relative to wild-type animals, CPEB knockout mice, although similar on many baseline behaviors, have reduced extinction of…

  5. Preaxial Polydactyly in Sost/Sostdc1 Double Knockouts

    Energy Technology Data Exchange (ETDEWEB)

    Yee, C M; Collette, N M; Loots, G G

    2011-07-29

    In the United States, {approx}5% are born with congenital birth defects due to abnormal function of cellular processes and interactions. Sclerosteosis, a rare autosomal recessive disease, causes hyperostosis of the axial and appendicular skeleton, and patients present radial deviation, digit syndactyly, nail dysplasia, and overall high bone mineral density. Sclerosteosis is due to a loss of function of sclerostin (Sost). Sost is a Wnt (abbrev.) antagonist; when mutated, nonfunctional Sost results in hyperactive osteoblast activity which leads to abnormal high bone mass. Previous studies have shown that Sost overexpression in transgenic mice causes reduced bone mineral density and a variety of limb phenotypes ranging from lost, fused, and split phalanges. Consistent with clinical manifestations of Sclerosteosis, Sost knockout mice exhibit increased generalized bone mineral density and syndactyly of the digits. Sostdc1 is a paralog of Sost that has also been described as an antagonist of Wnt signaling, in developing tooth buds. Unlike Sost knockouts, Sostdc1 null mice do not display any limb abnormalities. To determine if Sost and Sostdc1 have redundant functions during limb patterning, we examined Sost; Sostdc1 mice determined that they exhibit a novel preaxial polydactyly phenotype with a low penetrance. LacZ staining, skeletal preparations, and in situ hybridization experiments were used to help characterize this novel phenotype and understand how this phenotype develops. We find Sost and Sostdc1 to have complementary expression patterns during limb development, and the loss of their expression alters the transcription of several key limb regulators, such as Fgf8, Shh and Grem.

  6. miR-132/212 knockout mice reveal roles for these miRNAs in regulating cortical synaptic transmission and plasticity.

    Directory of Open Access Journals (Sweden)

    Judit Remenyi

    Full Text Available miR-132 and miR-212 are two closely related miRNAs encoded in the same intron of a small non-coding gene, which have been suggested to play roles in both immune and neuronal function. We describe here the generation and initial characterisation of a miR-132/212 double knockout mouse. These mice were viable and fertile with no overt adverse phenotype. Analysis of innate immune responses, including TLR-induced cytokine production and IFNβ induction in response to viral infection of primary fibroblasts did not reveal any phenotype in the knockouts. In contrast, the loss of miR-132 and miR-212, while not overtly affecting neuronal morphology, did affect synaptic function. In both hippocampal and neocortical slices miR-132/212 knockout reduced basal synaptic transmission, without affecting paired-pulse facilitation. Hippocampal long-term potentiation (LTP induced by tetanic stimulation was not affected by miR-132/212 deletion, whilst theta burst LTP was enhanced. In contrast, neocortical theta burst-induced LTP was inhibited by loss of miR-132/212. Together these results indicate that miR-132 and/or miR-212 play a significant role in synaptic function, possibly by regulating the number of postsynaptic AMPA receptors under basal conditions and during activity-dependent synaptic plasticity.

  7. Increased oxidative stress in scavenger receptor BI knockout mice with dysfunctional HDL

    NARCIS (Netherlands)

    Van Eck, Miranda; Hoekstra, Menno; Hildebrand, Reeni B.; Yaong, Yuemang; Stengel, Dominique; Kruijt, J. Kar; Sattler, Wolfgang; Tietge, Uwe J. F.; Ninio, Ewa; Van Berkel, Theo J. C.; Pratico, Domenico

    2007-01-01

    Objective-In the current study the effect of disruption of SR-BI, a prominent regulator of HDL metabolism, on the activity of the HDL-associated antioxidant enzymes PON1 and PAF-AH as well as in vivo oxidative stress were investigated. Methods and Results-SR-BI deficiency resulted in 1.4-fold (P Con

  8. Attenuated renovascular constrictor responses to angiotensin II in adenosine 1 receptor knockout mice

    DEFF Research Database (Denmark)

    Hansen, Pernille B; Hashimoto, Seiji; Briggs, Josie;

    2003-01-01

    control conditions (450.5 +/- 60 vs. 475.2 +/- 62.5 microl/min) but fell significantly less in A1AR -/- mice during infusion of ANG II at 1.5 ng/min (A1AR +/+: 242 +/- 32.5 microl/min, A1AR -/-: 371 +/- 42 microl/min; P = 0.03). Bolus injection of 1, 10, and 100 ng of ANG II reduced renal blood flow...... vessels and to reduce GFR....

  9. Atherosclerosis in low density lipoprotein receptor knockout mice fed cholesterol and soybean oil

    DEFF Research Database (Denmark)

    Mortensen, Alicja; Olsen, P.; Frandsen, H.

    1999-01-01

    In order to study aortic atherosclerosis and atherosclerotic response to dietary cholesterol and soybean oil in homozygous LDLR-/- mice, the 16 weeks old animals were randomized in 4 groups either fed standard diet (no cholesterol added, group I, 12 male and 12 female), standard diet added 0.......9 +/- 0.07 (group III), 32.6 +/-0.1 (group IV), and of females 6.9 +/- 2.7 (group I) and 31.7 +/- 4.4 (group II). No apparent difference in plasma triglyceride levels was observed between the groups of either sexes. Aortic atherosclerosis (ratio intima/media) in males was 0.17 +/- 0.09 (SD) (group I), 0...

  10. 5-HT1B receptors and serotonin function : microdialysis studies in rats and knockout mice

    NARCIS (Netherlands)

    Groote, Lotte de

    2002-01-01

    The serotonergic system is an important target in the treatment of psychiatric disorders. Selective serotonin reuptake inhibitors (SSRIs) are widely used in the treatment of depression and anxiety disorders, but a clinical problem is the delayed therapeutic effect. This delayed onset of action sugge

  11. Phenobarbital and Insulin Reciprocate Activation of the Nuclear Receptor Constitutive Androstane Receptor through the Insulin Receptor.

    Science.gov (United States)

    Yasujima, Tomoya; Saito, Kosuke; Moore, Rick; Negishi, Masahiko

    2016-05-01

    Phenobarbital (PB) antagonized insulin to inactivate the insulin receptor and attenuated the insulin receptor downstream protein kinase B (AKT)-forkhead box protein O1 and extracellular signal-regulated kinase 1/2 signals in mouse primary hepatocytes and HepG2 cells. Hepatic AKT began dephosphorylation in an early stage of PB treatment, and blood glucose levels transiently increased in both wild-type and constitutive androstane receptor (CAR) knockout (KO) mice. On the other hand, blood glucose levels increased in wild-type mice, but not KO mice, in later stages of PB treatment. As a result, PB, acting as an insulin receptor antagonist, elicited CAR-independent increases and CAR-dependent decreases of blood glucose levels at these different stages of treatment, respectively. Reciprocally, insulin activation of the insulin receptor repressed CAR activation and induction of its target CYP2B6 gene in HepG2 cells. Thus, PB and insulin cross-talk through the insulin receptor to regulate glucose and drug metabolism reciprocally.

  12. Serotonergic hyperinnervation and effective serotonin blockade in an FGF receptor developmental model of psychosis

    OpenAIRE

    Klejbor, Ilona; Kucinski, Aaron; Wersinger, Scott R.; Corso, Thomas; Spodnik, Jan H.; Dziewiątkowski, Jerzy; Moryś, Janusz; Hesse, Renae A.; Rice, Kenner C.; Miletich, Robert; Stachowiak, Ewa K.; Stachowiak, Michal K.

    2009-01-01

    The role of fibroblast growth factor receptors (FGFR) in normal brain development has been well-documented in transgenic and knock-out mouse models. Changes in FGF and its receptors have also been observed in schizophrenia and related developmental disorders. The current study examines a transgenic th(tk-)/th(tk-) mouse model with FGF receptor signaling disruption targeted to dopamine (DA) neurons, resulting in neurodevelopmental, anatomical, and biochemical alterations similar to those obser...

  13. Roles of transferrin receptors in erythropoiesis.

    Science.gov (United States)

    Kawabata, Hiroshi; Sakamoto, Soichiro; Masuda, Taro; Uchiyama, Tatsuki; Ohmori, Katsuyuki; Koeffler, H Phillip; Takaori-Kondo, Akifumi

    2016-07-01

    Erythropoiesis requires large amounts of iron for hemoglobin synthesis, which is mainly provided by macrophages and the intestines in a transferrin (Tf)-bound form. Bone marrow erythroblasts incorporate Tf through endocytosis, which is mediated by transferrin receptor 1 (TFR1). Recently, human TFR1, aside from its role as a Tf receptor, was also found to be a receptor for the H-subunit of ferritin (FTH). In humans, hematopoietic erythroid precursor cells express high levels of TFR1 and specifically take up the FTH homopolymer (H-ferritin). H-ferritin inhibits the formation of burst forming unit-erythroid colonies in vitro. TFR2, which is also a Tf receptor, is predominantly expressed in hepatocytes and erythroid precursor cells. In the liver, TFR2 forms a complex with HFE, a hereditary hemochromatosis-associated protein, and acts as an iron sensor. In mice, hepatocyte-specific knockout of the TFR2 gene has been shown to cause systemic iron-overload with decreased expression of hepcidin, the central regulator of iron homeostasis. In erythroid cells, TFR2 forms a complex with the erythropoietin receptor and facilitates its trafficking to the cell membrane. Moreover, hematopoietic cell-specific knockout of the TFR2 gene causes microcytic erythrocytosis in mice. This review focuses on the molecular evolution and functions of these TFRs and their ligands. PMID:27498743

  14. 不同体质指数心力衰竭患者的血浆apelin水平及相关因素分析%Study on levels of plasma apelin and its related factors in heart failure patients with different body mass index

    Institute of Scientific and Technical Information of China (English)

    郑毅; 王勇; 付研

    2010-01-01

    Objective To investigate the correlations of body mass index (BMI) with plasma apelin, waist-hip ratio (WHR), fasting plasma glucose (FPG), glycosylated hemoglobin (HbAlc), biochemical indicator, blood fat and ultrasonic cardiogram (UCG) figures in patients with congestive heart failure (CHF).Methods A total of 41 elderly CHF patients (20 males and 21 females, aged 66.0±12.3 years) were divided into 3 groups according to BMI: normal group (n= 16), overweight group (n=13) and obese group (n= 12).And they were also divided into 2 subgroups: grade Ⅲ heart function group (n=22) and grade Ⅳ heart function group (n= 19).Enzyme linked immunosorbent assay was used to detect the levels of plasma apelin, and BMI, WHR, C-reactive protein (CRP), FPG, creatine kinase (CK), CK-MB, blood fat, electrolyte and UCG of all patients were detected .Results There were significant differences in waist circumference, hip circumference and WHR among the 3 groups (P 0.05).The apelin level was higher in obese group than in normal group and in overweight group ((0.48±0.15) mg/L vs.(0.18±0.15) mg/L and (0.27±0.06) mg/L, both P<0.01].And the plasma apelin level was higher in grade Ⅳ heart function group than in grade Ⅲ heart function group [(0.35±0.16) mg/L vs.(0.26±0.13)mg/L, P<0.05].The level of plasma apelin was positively correlated with BMI, white blood cell, CK, hemoglobin and TG, and was negatively correlated with cardiac function and LVEF.The influencing factors for the plasma apelin were BMI (β=0.672, P<0.01), age (β=0.244, P<0.05) and HDL (β=-1.000, P<0.01).Conclusions The plasma apelin level is closely correlated with the development of heart failure.Cardiac dysfunction is more severer when the level of plasma apelin is higher.The high level of plasma apelin may be one of factors for the higher survival rate of the obese CHF patients.Plasma apelin level may be used as an indicator of state of illness.%目的 探讨充血性心力衰竭患者的体质指数与血

  15. Final-state interactions in two-nucleon knockout reactions

    Science.gov (United States)

    Colle, Camille; Cosyn, Wim; Ryckebusch, Jan

    2016-03-01

    Background: Exclusive two-nucleon knockout after electroexcitation of nuclei [A (e ,e'N N ) in brief] is considered to be a primary source of information about short-range correlations (SRCs) in nuclei. For a proper interpretation of the data, final-state interactions (FSIs) need to be theoretically controlled. Purpose: Our goal is to quantify the role of FSI effects in exclusive A (e ,e'p N ) reactions for four target nuclei representative of the whole mass region. Our focus is on processes that are SRC driven. We investigate the role of FSIs for two characteristic detector setups corresponding to "small" and "large" coverage of the available phase space. Method: Use is made of a factorized expression for the A (e ,e'p N ) cross section that is proportional to the two-body center-of-mass (c.m.) momentum distribution of close-proximity pairs. The A (e ,e'p p ) and A (e ,e'p n ) reactions for the target nuclei 12C,27Al,56Fe, and 208Pb are investigated. The elastic attenuation mechanisms in the FSIs are included using the relativistic multiple-scattering Glauber approximation (RMSGA). Single-charge exchange (SCX) reactions are also included. We introduce the nuclear transparency TAp N, defined as the ratio of exclusive (e ,e'p N ) cross sections on nuclei to those on "free" nucleon pairs, as a measure for the aggregated effect of FSIs in p N knockout reactions from nucleus A . A toy model is introduced in order to gain a better understanding of the A dependence of TAp N. Results: The transparency TAp N drops from 0.2 -0.3 for 12C to 0.04 -0.07 for 208Pb. For all considered kinematics, the mass dependence of TAp N can be captured by the power law TAp N∝A-λ with 0.4 ≲λ ≲0.5 . Apart from an overall reduction factor, we find that FSIs only modestly affect the distinct features of SRC-driven A (e ,e'p N ) which are dictated by the c.m. distribution of close-proximity pairs. Conclusion: The SCX mechanisms represent a relatively small (order of a few percent

  16. The hallucinogen N,N-dimethyltryptamine (DMT) is an endogenous sigma-1 receptor regulator.

    Science.gov (United States)

    Fontanilla, Dominique; Johannessen, Molly; Hajipour, Abdol R; Cozzi, Nicholas V; Jackson, Meyer B; Ruoho, Arnold E

    2009-02-13

    The sigma-1 receptor is widely distributed in the central nervous system and periphery. Originally mischaracterized as an opioid receptor, the sigma-1 receptor binds a vast number of synthetic compounds but does not bind opioid peptides; it is currently considered an orphan receptor. The sigma-1 receptor pharmacophore includes an alkylamine core, also found in the endogenous compound N,N-dimethyltryptamine (DMT). DMT acts as a hallucinogen, but its receptor target has been unclear. DMT bound to sigma-1 receptors and inhibited voltage-gated sodium ion (Na+) channels in both native cardiac myocytes and heterologous cells that express sigma-1 receptors. DMT induced hypermobility in wild-type mice but not in sigma-1 receptor knockout mice. These biochemical, physiological, and behavioral experiments indicate that DMT is an endogenous agonist for the sigma-1 receptor.

  17. The hallucinogen N,N-dimethyltryptamine (DMT) is an endogenous sigma-1 receptor regulator.

    Science.gov (United States)

    Fontanilla, Dominique; Johannessen, Molly; Hajipour, Abdol R; Cozzi, Nicholas V; Jackson, Meyer B; Ruoho, Arnold E

    2009-02-13

    The sigma-1 receptor is widely distributed in the central nervous system and periphery. Originally mischaracterized as an opioid receptor, the sigma-1 receptor binds a vast number of synthetic compounds but does not bind opioid peptides; it is currently considered an orphan receptor. The sigma-1 receptor pharmacophore includes an alkylamine core, also found in the endogenous compound N,N-dimethyltryptamine (DMT). DMT acts as a hallucinogen, but its receptor target has been unclear. DMT bound to sigma-1 receptors and inhibited voltage-gated sodium ion (Na+) channels in both native cardiac myocytes and heterologous cells that express sigma-1 receptors. DMT induced hypermobility in wild-type mice but not in sigma-1 receptor knockout mice. These biochemical, physiological, and behavioral experiments indicate that DMT is an endogenous agonist for the sigma-1 receptor. PMID:19213917

  18. Abolished synthesis of cholic acid reduces atherosclerotic development in apolipoprotein E knockout mice[S

    OpenAIRE

    Slätis, Katharina; Gåfvels, Mats; Kannisto, Kristina; Ovchinnikova, Olga; Paulsson-Berne, Gabrielle; Parini, Paolo; Jiang, Zhao-Yan; Eggertsen, Gösta

    2010-01-01

    To investigate the effects of abolished cholic acid (CA) synthesis in the ApoE knockout model [apolipoprotein E (apoE) KO],a double-knockout (DKO) mouse model was created by crossbreeding Cyp8b1 knockout mice (Cyp8b1 KO), unable to synthesize the primary bile acid CA, with apoE KO mice. After 5 months of cholesterol feeding, the development of atherosclerotic plaques in the proximal aorta was 50% less in the DKO mice compared with the apoE KO mice. This effect was associated with reduced inte...

  19. Generation and characterisation of keratin 7 (K7 knockout mice.

    Directory of Open Access Journals (Sweden)

    Aileen Sandilands

    Full Text Available Keratin 7 (K7 is a Type II member of the keratin superfamily and despite its widespread expression in different types of simple and transitional epithelia, its functional role in vivo remains elusive, in part due to the lack of any appropriate mouse models or any human diseases that are associated with KRT7 gene mutations. Using conventional gene targeting in mouse embryonic stem cells, we report here the generation and characterisation of the first K7 knockout mouse. Loss of K7 led to increased proliferation of the bladder urothelium although this was not associated with hyperplasia. K18, a presumptive type I assembly partner for K7, showed reduced expression in the bladder whereas K20, a marker of the terminally differentiated superficial urothelial cells was transcriptionally up-regulated. No other epithelia were seen to be adversely affected by the loss of K7 and western blot and immunofluorescence microscopy analysis revealed that the expression of K8, K18, K19 and K20 were not altered in the absence of K7, with the exception of the kidney where there was reduced K18 expression.

  20. Drop tests of the Three Mile Island knockout canister

    International Nuclear Information System (INIS)

    A type of Three Mile Island Unit 2 (TMI-2) defueling canister, called a ''knockout'' canister, was subjected to a series of drop tests at the Oak Ridge National Laboratory's Drop Test Facility. These tests were designed to confirm the structural integrity of internal fixed neutron poisons in support of a request for NRC licensing of this type of canister for the shipment of TMI-2 reactor fuel debris to the Idaho National Engineering Laboratory (INEL) for the Core Examination R and D Program. Work conducted at the Oak Ridge National Laboratory included (1) precise physical measurements of the internal poison rod configuration before assembly, (2) canister assembly and welding, (3) nondestructive examination (an initial hydrostatic pressure test and an x-ray profile of the internals before and after each drop test), (4) addition of a simulated fuel load, (5) instrumentation of the canister for each drop test, (6) fabrication of a cask simulation vessel with a developed and tested foam impact limiter, (7) use of refrigeration facilities to cool the canister to well below freezing prior to three of the drops, (8) recording the drop test with still, high-speed, and normal-speed photography, (9) recording the accelerometer measurements during impact, (10) disassembly and post-test examination with precise physical measurements, and (11) preparation of the final report

  1. Generation and behavior characterization of CaMKIIβ knockout mice.

    Directory of Open Access Journals (Sweden)

    Adam D Bachstetter

    Full Text Available The calcium/calmodulin-dependent protein kinase II (CaMKII is abundant in the brain, where it makes important contributions to synaptic organization and homeostasis, including playing an essential role in synaptic plasticity and memory. Four genes encode isoforms of CaMKII (α, β, δ, γ, with CaMKIIα and CaMKIIβ highly expressed in the brain. Decades of molecular and cellular research, as well as the use of a large number of CaMKIIα mutant mouse lines, have provided insight into the pivotal roles of CaMKIIα in brain plasticity and cognition. However, less is known about the CaMKIIβ isoform. We report the development and extensive behavioral and phenotypic characterization of a CaMKIIβ knockout (KO mouse. The CaMKIIβ KO mouse was found to be smaller at weaning, with an altered body mass composition. The CaMKIIβ KO mouse showed ataxia, impaired forelimb grip strength, and deficits in the rotorod, balance beam and running wheel tasks. Interestingly, the CaMKIIβ KO mouse exhibited reduced anxiety in the elevated plus maze and open field tests. The CaMKIIβ KO mouse also showed cognitive impairment in the novel object recognition task. Our results provide a comprehensive behavioral characterization of mice deficient in the β isoform of CaMKII. The neurologic phenotypes and the construction of the genotype suggest the utility of this KO mouse strain for future studies of CaMKIIβ in brain structure, function and development.

  2. Final-state interactions in two-nucleon knockout reactions

    CERN Document Server

    Colle, Camille; Ryckebusch, Jan

    2015-01-01

    Background: Exclusive two-nucleon knockout after electroexcitation of nuclei ($A(e,e'NN)$ in brief) is considered to be a primary source of information about short-range correlations (SRC) in nuclei. For a proper interpretation of the data, final-state interactions (FSI) need to be theoretically controlled. Purpose: Our goal is to quantify the role of FSI effects in exclusive $A(e,e'pN)$ reactions for four target nuclei representative for the whole mass region. Our focus is on processes that are SRC driven. We investigate the role of FSI for two characteristic detector setups corresponding with a "small" and "large" coverage of the available phase space. Results: The transparency $T^{pN}_{A}$, defined as the ratio of exclusive $(e,e'pN)$ cross sections on nuclei to those on "free" nucleon pairs, drops from $ 0.2-0.3 $ for $^{12}$C to $0.04-0.07$ for $^{208}$Pb. For all considered kinematics, the mass dependence of the $T^{pN}_{A}$ can be captured by the power law $T^{pN}_{A} \\propto A^{- \\lambda}$ with $ 0.4 ...

  3. The role of P2X receptors in bone biology

    DEFF Research Database (Denmark)

    Jørgensen, N R; Syberg, S; Ellegaard, M

    2015-01-01

    receptors regulate bone metabolism and especially for the P2X7 receptor an impressive amount of evidence has now documented its expression in osteoblasts, osteoclasts, and osteocytes as well as important functional roles in proliferation, differentiation, and function of the cells of bone. Key evidence has...... come from studies on murine knockout models and from pharmacologic studies on cells and animals. More recently, the role of P2X receptors in human bone diseases has been documented. Loss-of-functions polymorphisms in the P2X7 receptorare associated with bone loss and increased fracture risk. Very...

  4. Decreased Neointimal Extracellular Matrix Formation in RAGE-Knockout Mice After Microvascular Denudation

    Energy Technology Data Exchange (ETDEWEB)

    Groezinger, Gerd, E-mail: gerd.groezinger@med.uni-tuebingen.de; Schmehl, Joerg, E-mail: joerg.schmehl@med.uni-tuebingen.de; Bantleon, Ruediger, E-mail: ruediger.bantleon@med.uni-tuebingen.de; Kehlbach, Rainer, E-mail: rainer.kehlbach@uni-tuebingen.de [University of Tuebingen, Department of Diagnostic and Interventional Radiology (Germany); Mehra, Tarun, E-mail: tarun.mehra@med.uni-tuebingen.de [University of Tuebingen, Department of Dermatology (Germany); Claussen, Claus, E-mail: gerd.groezinger@med.uni-tuebingen.de; Wiesinger, Benjamin, E-mail: benjamin.wiesinger@med.uni-tuebingen.de [University of Tuebingen, Department of Diagnostic and Interventional Radiology (Germany)

    2012-12-15

    Purpose: To evaluate in vivo the role of RAGE (receptor for advanced glycated end products) in the development of restenosis and neointimal proliferation in RAGE-deficient knockout (KO) mice compared with wild-type (WT) mice in an animal model. Materials and Methods: Sixteen WT and 15 RAGE-deficient mice underwent microvascular denudation of the common femoral artery under general anaesthesia. Contralateral arteries underwent a sham operation and served as controls. Four weeks after the intervention, all animals were killed, and paraformaldehyde-fixed specimens of the femoral artery were analysed with different stains (hematoxylin and eosin and Elastica van Gieson) and several different types of immunostaining (proliferating cell nuclear antigen, {alpha}-actin, collagen, von Willebrand factor, RAGE). Luminal area, area of the neointima, and area of the media were measured in all specimens. In addition, colony-formation assays were performed, and collagen production by WT smooth muscle cells (SMCs) and RAGE-KO SMCs was determined. For statistical analysis, P < 0.05 was considered statistically significant. Results: Four weeks after denudation, WT mice showed a 49.6% loss of luminal area compared with 14.9% loss of luminal area in RAGE-deficient mice (sham = 0% loss) (P < 0.001). The neointima was 18.2 (*1000 {mu}m{sup 2} [n = 15) in the WT group compared with only 8.4 (*1000 {mu}m{sup 2} [n = 16]) in the RAGE-KO group. RAGE-KO SMCs showed significantly decreased proliferation activity and production of extracellular matrix protein. Conclusion: RAGE may be shown to play a considerable role in the formation of neointima leading to restenosis after vascular injury.

  5. Autism spectrum disorder traits in Slc9a9 knock-out mice.

    Science.gov (United States)

    Yang, Lina; Faraone, Stephen V; Zhang-James, Yanli

    2016-04-01

    Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders which begin in childhood and persist into adulthood. They cause lifelong impairments and are associated with substantial burdens to patients, families, and society. Genetic studies have implicated the sodium/proton exchanger (NHE) nine gene, Slc9a9, to ASDs and attention-deficit/hyperactivity disorder(ADHD). Slc9a9 encodes, NHE9, a membrane protein of the late recycling endosomes. The recycling endosome plays an important role in synapse development and plasticity by regulating the trafficking of membrane neurotransmitter receptors and transporters. Here we tested the hypothesis that Slc9a9 knock-out (KO) mice would show ADHD-like and ASD-like traits. Ultrasonic vocalization (USV) recording showed that Slc9a9 KO mice emitted fewer calls and had shorter call durations, which suggest communication impairment. Slc9a9 KO mice lacked a preference for social novelty, but did not show deficits in social approach; Slc9a9 KO mice spent more time self-grooming, an indicator for restricted and repetitive behavior. We did not observe hyperactivity or other behavior impairments which are commonly comorbid with ASDs in human, such as anxiety-like behavior. Our study is the first animal behavior study that links Slc9a9 to ASDs. By eliminatingNHE9 activity, it provides strong evidence that lack of Slc9a9leads to ASD-like behaviors in mice and provides the field with a new mouse model of ASDs. PMID:26755066

  6. Pregnenolone rescues schizophrenia-like behavior in dopamine transporter knockout mice.

    Directory of Open Access Journals (Sweden)

    Peiyan Wong

    Full Text Available Pregnenolone belongs to a class of endogenous neurosteroids in the central nervous system (CNS, which has been suggested to enhance cognitive functions through GABA(A receptor signaling by its metabolites. It has been shown that the level of pregnenolone is altered in certain brain areas of schizophrenic patients, and clozapine enhances pregnenolone in the CNS in rats, suggesting that pregnenolone could be used to treat certain symptoms of schizophrenia. In addition, early phase proof-of-concept clinical trials have indicated that pregnenolone is effective in reducing the negative symptoms and cognitive deficits of schizophrenia patients. Here, we evaluate the actions of pregnenolone on a mouse model for schizophrenia, the dopamine transporter knockout mouse (DAT KO. DAT KO mice mirror certain symptoms evident in patients with schizophrenia, such as the psychomotor agitation, stereotypy, deficits of prepulse inhibition and cognitive impairments. Following acute treatment, pregnenolone was found to reduce the hyperlocomotion, stereotypic bouts and pre-pulse inhibition (PPI deficits in DAT KO mice in a dose-dependent manner. At 60 mg/kg of pregnenolone, there were no significant differences in locomotor activities and stereotypy between wild-type and DAT KO mice. Similarly, acute treatment of 60 mg/kg of pregnenolone fully rescued PPI deficits of DAT KO mice. Following chronic treatment with pregnenolone at 60 mg/kg, the cognitive deficits of DAT KO mice were rescued in the paradigms of novel object recognition test and social transmission of food preference test. Pregnenolone thus holds promise as a therapeutic candidate in schizophrenia.

  7. Comprehensive behavioral analysis of pituitary adenylate cyclase-activating polypeptide (PACAP knockout mice

    Directory of Open Access Journals (Sweden)

    Satoko eHattori

    2012-10-01

    Full Text Available Pituitary adenylate cyclase-activating polypeptide (PACAP is a neuropeptide acting as a neurotransmitter, neuromodulator, or neurotrophic factor. PACAP is widely expressed throughout the brain and exerts its functions through the PACAP-specific receptor (PAC1. Recent studies reveal that genetic variants of the PACAP and PAC1 genes are associated with mental disorders, and several behavioral abnormalities of PACAP knockout (KO mice are reported. However, an insufficient number of backcrosses was made using PACAP KO mice on the C57BL/6J background due to their postnatal mortality. To elucidate the effects of PACAP on neuropsychiatric function, the PACAP gene was knocked out in F1 hybrid mice (C57BL/6J x 129SvEv for appropriate control of the genetic background. The PACAP KO mice were then subjected to a behavioral test battery. PACAP deficiency had no significant effects on neurological screen. As shown previously, the mice exhibited significantly increased locomotor activity in a novel environment and abnormal anxiety-like behavior, while no obvious differences between genotypes were shown in home cage activity. In contrast to previous reports, the PACAP KO mice showed normal prepulse inhibition and slightly decreased depression-like behavior. Previous study demonstrates that the social interaction in a resident-intruder test was decreased in PACAP KO mice. On the other hand, we showed that PACAP KO mice exhibited increased social interaction in Crawley’s three-chamber social approach test, although PACAP KO had no significant impact on social interaction in a home cage. PACAP KO mice also exhibited mild performance deficit in working memory in an eight-arm radial maze and the T-maze, while they did not show any significant abnormalities in the left-right discrimination task in the T-maze. These results suggest that PACAP has an important role in the regulation of locomotor activity, social behavior, anxiety-like behavior and, potentially

  8. Alpha-asarone improves striatal cholinergic function and locomotor hyperactivity in Fmr1 knockout mice.

    Science.gov (United States)

    Qiu, Guozhen; Chen, Shengqiang; Guo, Jialing; Wu, Jie; Yi, Yong-Hong

    2016-10-01

    Hyperactivity is a symptom found in several neurological and psychiatric disorders, including Fragile X syndrome (FXS). The animal model of FXS, fragile X mental retardation gene (Fmr1) knockout (KO) mouse, exhibits robust locomotor hyperactivity. Alpha (α)-asarone, a major bioactive component isolated from Acorus gramineus, has been shown in previous studies to improve various disease conditions including central nervous system disorders. In this study, we show that treatment with α-asarone alleviates locomotor hyperactivity in Fmr1 KO mice. To elucidate the mechanism underlying this improvement, we evaluated the expressions of various cholinergic markers, as well as acetylcholinesterase (AChE) activity and acetylcholine (ACh) levels, in the striatum of Fmr1 KO mice. We also analyzed the AChE-inhibitory activity of α-asarone. Striatal samples from Fmr1 KO mice showed decreased m1 muscarinic acetylcholine receptor (m1 mAChR) expression, increased AChE activity, and reduced ACh levels. Treatment with α-asarone improved m1 mAChR expression and ACh levels, and attenuated the increased AChE activity. In addition, α-asarone dose-dependently inhibited AChE activity in vitro. These results indicate that direct inhibition of AChE activity and up-regulation of m1 mAChR expression in the striatum might contribute to the beneficial effects of α-asarone on locomotor hyperactivity in Fmr1 KO mice. These findings might improve understanding of the neurobiological mechanisms responsible for locomotor hyperactivity. PMID:27316341

  9. Attenuation of acute lung inflammation induced by cigarette smoke in CXCR3 knockout mice

    Directory of Open Access Journals (Sweden)

    Cheng Deyun

    2008-12-01

    Full Text Available Abstract Background CD8+ T cells may participate in cigarette smoke (CS induced-lung inflammation in mice. CXCL10/IP-10 (IFNγ-inducible protein 10 and CXCL9/Mig (monokine induced by IFN-γ are up-regulated in CS-induced lung injury and may attract T-cell recruitment to the lung. These chemokines together with CXCL11/ITAC (IFN-inducible T-cell alpha chemoattractant are ligands for the chemokine receptor CXCR3 which is preferentially expressed chiefly in activated CD8+ T cells. The purpose of this investigation was to study the contribution of CXCR3 to acute lung inflammation induced by CS using CXCR3 knockout (KO mice. Methods Mice (n = 8 per group were placed in a closed plastic box connected to a smoke generator and were exposed whole body to the tobacco smoke of five cigarettes four times a day for three days. Lung pathological changes, expression of inflammatory mediators in bronchoalveolar lavage (BAL fluid and lungs at mRNA and protein levels, and lung infiltration of CD8+ T cells were compared between CXCR3-/- mice and wild type (WT mice. Results Compared with the WT littermates, CXCR3 KO mice showed less CS-induced lung inflammation as evidenced by less infiltration of inflammatory cells in airways and lung tissue, particularly fewer CD8+ T cells, lower levels of IFNγ and CXCR3 ligands (particularly CXCL10. Conclusion Our findings show that CXCR3 is important in promoting CD8+ T cell recruitment and in initiating IFNγ and CXCL10 release following CS exposure. CXCR3 may represent a promising therapeutic target for acute lung inflammation induced by CS.

  10. Tissue inhibitor of metalloproteinase-3 knockout mice exhibit enhanced energy expenditure through thermogenesis.

    Directory of Open Access Journals (Sweden)

    Yohsuke Hanaoka

    Full Text Available Tissue inhibitors of metalloproteinases (TIMPs regulate matrix metalloproteinase activity and maintain extracellular matrix homeostasis. Although TIMP-3 has multiple functions (e.g., apoptosis, inhibition of VEGF binding to VEGF receptor, and inhibition of TNFα converting enzyme, its roles in thermogenesis and metabolism, which influence energy expenditure and can lead to the development of metabolic disorders when dysregulated, are poorly understood. This study aimed to determine whether TIMP-3 is implicated in metabolism by analyzing TIMP-3 knockout (KO mice. TIMP-3 KO mice had higher body temperature, oxygen consumption, and carbon dioxide production than wild-type (WT mice, although there were no differences in food intake and locomotor activity. These results suggest that metabolism is enhanced in TIMP-3 KO mice. Real-time PCR analysis showed that the expression of PPAR-δ, UCP-2, NRF-1 and NRF-2 in soleus muscle, and PGC-1α and UCP-2 in gastrocnemius muscle, was higher in TIMP-3 KO mice than in WT mice, suggesting that TIMP-3 deficiency may increase mitochondrial activity. When exposed to cold for 8 hours to induce thermogenesis, TIMP-3 KO mice had a higher body temperature than WT mice. In the treadmill test, oxygen consumption and carbon dioxide production were higher in TIMP-3 KO mice both before and after starting exercise, and the difference was more pronounced after starting exercise. Our findings suggest that TIMP-3 KO mice exhibit enhanced metabolism, as reflected by a higher body temperature than WT mice, possibly due to increased mitochondrial activity. Given that TIMP-3 deficiency increases energy expenditure, TIMP-3 may present a novel therapeutic target for preventing metabolic disorders.

  11. Motor dysfunction in cerebellar Purkinje cell-specific vesicular GABA transporter knockout mice

    Directory of Open Access Journals (Sweden)

    Mikiko eKayakabe

    2014-01-01

    Full Text Available γ-Aminobutyric acid (GABA is a major inhibitory neurotransmitter in the adult mammalian central nervous system and plays modulatory roles in neural development. The vesicular GABA transporter (VGAT is an essential molecule for GABAergic neurotransmission due to its role in vesicular GABA release. Cerebellar Purkinje cells (PCs are GABAergic projection neurons that are indispensable for cerebellar function. To elucidate the significance of VGAT in cerebellar PCs, we generated and characterized PC-specific VGAT knockout (L7-VGAT mice. VGAT mRNAs and proteins were specifically absent in the 40-week-old L7-VGAT PCs. The morphological charactereistics, such as lamination and foliation of the cerebellar cortex, of the L7-VGAT mice were similar to those of the control littermate mice. Moreover, the protein expression levels and patterns of pre- (calbindin and parvalbumin and postsynaptic (GABA-A receptor α1 subunit (GABAARα1 and gephyrin molecules between the L7-VGAT and control mice were similar in the deep cerebellar nuclei that receive PC projections. However, the L7-VGAT mice performed poorly in the accelerating rotarod test and displayed ataxic gait in the footprint test. The L7-VGAT mice also exhibited severer ataxia as VGAT deficits progressed. These results suggest that VGAT in cerebellar Purkinje cells is not essential for the rough maintenance of cerebellar structure, but does play an important role in motor coordination. The L7-VGAT mice are a novel model of ataxia without PC degeneration, and would also be useful for studying the role of Purkinje cells in cognition and emotion.

  12. Glutamate Delta-1 Receptor Regulates Metabotropic Glutamate Receptor 5 Signaling in the Hippocampus.

    Science.gov (United States)

    Suryavanshi, Pratyush S; Gupta, Subhash C; Yadav, Roopali; Kesherwani, Varun; Liu, Jinxu; Dravid, Shashank M

    2016-08-01

    The delta family of ionotropic glutamate receptors consists of glutamate delta-1 (GluD1) and glutamate delta-2 receptors. We have previously shown that GluD1 knockout mice exhibit features of developmental delay, including impaired spine pruning and switch in the N-methyl-D-aspartate receptor subunit, which are relevant to autism and other neurodevelopmental disorders. Here, we identified a novel role of GluD1 in regulating metabotropic glutamate receptor 5 (mGlu5) signaling in the hippocampus. Immunohistochemical analysis demonstrated colocalization of mGlu5 with GluD1 punctas in the hippocampus. Additionally, GluD1 protein coimmunoprecipitated with mGlu5 in the hippocampal membrane fraction, as well as when overexpressed in human embryonic kidney 293 cells, demonstrating that GluD1 and mGlu5 may cooperate in a signaling complex. The interaction of mGlu5 with scaffold protein effector Homer, which regulates mechanistic target of rapamycin (mTOR) signaling, was abnormal both under basal conditions and in response to mGlu1/5 agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) in GluD1 knockout mice. The basal levels of phosphorylated mTOR and protein kinase B, the signaling proteins downstream of mGlu5 activation, were higher in GluD1 knockout mice, and no further increase was induced by DHPG. We also observed higher basal protein translation and an absence of DHPG-induced increase in GluD1 knockout mice. In accordance with a role of mGlu5-mediated mTOR signaling in synaptic plasticity, DHPG-induced internalization of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunits was impaired in the GluD1 knockout mice. These results demonstrate that GluD1 interacts with mGlu5, and loss of GluD1 impairs normal mGlu5 signaling potentially by dysregulating coupling to its effector. These studies identify a novel role of the enigmatic GluD1 subunit in hippocampal function. PMID:27231330

  13. Lactobacillus acidophilus ATCC 4356 prevents atherosclerosis via inhibition of intestinal cholesterol absorption in apolipoprotein E-knockout mice.

    Science.gov (United States)

    Huang, Ying; Wang, Jinfeng; Quan, Guihua; Wang, Xiaojun; Yang, Longfei; Zhong, Lili

    2014-12-01

    The objective of this study was to investigate the effect of Lactobacillus acidophilus ATCC 4356 on the development of atherosclerosis in apolipoprotein E-knockout (ApoE(-/-)) mice. Eight-week-old ApoE(-/-) mice were fed a Western diet with or without L. acidophilus ATCC 4356 daily for 16 weeks. L. acidophilus ATCC 4356 protected ApoE(-/-) mice from atherosclerosis by reducing their plasma cholesterol levels from 923 ± 44 to 581 ± 18 mg/dl, likely via a marked decrease in cholesterol absorption caused by modulation of Niemann-Pick C1-like 1 (NPC1L1). In addition, suppression of cholesterol absorption induced reverse cholesterol transport (RCT) in macrophages through the peroxisome proliferator-activated receptor/liver X receptor (PPAR/LXR) pathway. Fecal lactobacillus and bifidobacterium counts were significantly (P small intestine, colon, and feces during the feeding trial. The bacterial levels remained high even after the administration of lactic acid bacteria had been stopped for 2 weeks. These results suggest that administration of L. acidophilus ATCC 4356 can protect against atherosclerosis through the inhibition of intestinal cholesterol absorption. Therefore, L. acidophilus ATCC 4356 may be a potential therapeutic material for preventing the progression of atherosclerosis.

  14. Central nervous system-specific knockout of steroidogenic factor 1 results in increased anxiety-like behavior.

    Science.gov (United States)

    Zhao, Liping; Kim, Ki Woo; Ikeda, Yayoi; Anderson, Kimberly K; Beck, Laurel; Chase, Stephanie; Tobet, Stuart A; Parker, Keith L

    2008-06-01

    Steroidogenic factor 1 (SF-1) plays key roles in adrenal and gonadal development, expression of pituitary gonadotropins, and development of the ventromedial hypothalamic nucleus (VMH). If kept alive by adrenal transplants, global knockout (KO) mice lacking SF-1 exhibit delayed-onset obesity and decreased locomotor activity. To define specific roles of SF-1 in the VMH, we used the Cre-loxP system to inactivate SF-1 in a central nervous system (CNS)-specific manner. These mice largely recapitulated the VMH structural defect seen in mice lacking SF-1 in all tissues. In multiple behavioral tests, mice with CNS-specific KO of SF-1 had significantly more anxiety-like behavior than wild-type littermates. The CNS-specific SF-1 KO mice had diminished expression or altered distribution in the mediobasal hypothalamus of several genes whose expression has been linked to stress and anxiety-like behavior, including brain-derived neurotrophic factor, the type 2 receptor for CRH (Crhr2), and Ucn 3. Moreover, transfection and EMSAs support a direct role of SF-1 in Crhr2 regulation. These findings reveal important roles of SF-1 in the hypothalamic expression of key regulators of anxiety-like behavior, providing a plausible molecular basis for the behavioral effect of CNS-specific KO of this nuclear receptor.

  15. Metabolomic Characterization of Knockout Mutants in Arabidopsis: Development of a Metabolite Profiling Database for Knockout Mutants in Arabidopsis.

    Science.gov (United States)

    Fukushima, Atsushi; Kusano, Miyako; Mejia, Ramon Francisco; Iwasa, Mami; Kobayashi, Makoto; Hayashi, Naomi; Watanabe-Takahashi, Akiko; Narisawa, Tomoko; Tohge, Takayuki; Hur, Manhoi; Wurtele, Eve Syrkin; Nikolau, Basil J; Saito, Kazuki

    2014-05-14

    Despite recent intensive research efforts in functional genomics, the functions of only a limited number of Arabidopsis (Arabidopsis thaliana) genes have been determined experimentally, and improving gene annotation remains a major challenge in plant science. As metabolite profiling can characterize the metabolomic phenotype of a genetic perturbation in the plant metabolism, it provides clues to the function(s) of genes of interest. We chose 50 Arabidopsis mutants, including a set of characterized and uncharacterized mutants, that resemble wild-type plants. We performed metabolite profiling of the plants using gas chromatography-mass spectrometry. To make the data set available as an efficient public functional genomics tool for hypothesis generation, we developed the Metabolite Profiling Database for Knock-Out Mutants in Arabidopsis (MeKO). It allows the evaluation of whether a mutation affects metabolism during normal plant growth and contains images of mutants, data on differences in metabolite accumulation, and interactive analysis tools. Nonprocessed data, including chromatograms, mass spectra, and experimental metadata, follow the guidelines set by the Metabolomics Standards Initiative and are freely downloadable. Proof-of-concept analysis suggests that MeKO is highly useful for the generation of hypotheses for genes of interest and for improving gene annotation. MeKO is publicly available at http://prime.psc.riken.jp/meko/.

  16. Establishment of murine Smad5 double knockout ES cells and the studies on their properties

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Smad5 is an intracellular transducer of TGF-b signals. Targeteddisruption of murine Smad5 gene resulted in embryonic lethal. To study the function of Smad5 in organgenesis, we generated Smad5 double knockout ES cells by homologous recombination. We deleted the neo gene of the Smad5 targeted ES cells using Cre-LoxP system. Smad5 double knockout ES cells were obtained by transfecting the targeted ES cells using the same targeting construct. The results of chimeric study showed that Smad5 might play an important role during the development of heart and neural tube. Smad5 double knockout ES cells formed teratoma when injected subcutaneously into nude mice. They differentiated into several types of cells, including neural cells, muscle cells, chondrocytes, endothelial cells and glandaceous cells. Smad5 double knockout ES cells are useful for studying the function of Smad5 mediated TGF- b during the organgenesis and the in vitro differentiation of ES cells.

  17. Improved cognitive flexibility in serotonin transporter knockout rats is unchanged following chronic cocaine self-administration

    NARCIS (Netherlands)

    Nonkes, L.J.; Maes, J.H.R.; Homberg, J.R.

    2013-01-01

    Cocaine dependence is associated with orbitofrontal cortex (OFC)-dependent cognitive inflexibility in both humans and laboratory animals. A critical question is whether cocaine self-administration affects pre-existing individual differences in cognitive flexibility. Serotonin transporter knockout (5

  18. Rare complete knockouts in humans: population distribution and significant role in autism spectrum disorders

    Science.gov (United States)

    Lim, Elaine T.; Raychaudhuri, Soumya; Sanders, Stephan J.; Stevens, Christine; Sabo, Aniko; MacArthur, Daniel G.; Neale, Benjamin M.; Kirby, Andrew; Ruderfer, Douglas M.; Fromer, Menachem; Lek, Monkol; Liu, Li; Flannick, Jason; Ripke, Stephan; Nagaswamy, Uma; Muzny, Donna; Reid, Jeffrey G.; Hawes, Alicia; Newsham, Irene; Wu, Yuanqing; Lewis, Lora; Dinh, Huyen; Gross, Shannon; Wang, Li-San; Lin, Chiao-Feng; Valladares, Otto; Gabriel, Stacey B.; dePristo, Mark; Altshuler, David M.; Purcell, Shaun M.; State, Matthew W.; Boerwinkle, Eric; Buxbaum, Joseph D.; Cook, Edwin H.; Gibbs, Richard A.; Schellenberg, Gerard D.; Sutcliffe, James S.; Devlin, Bernie; Roeder, Kathryn; Daly, Mark J.

    2013-01-01

    SUMMARY To characterize the role of rare complete human knockouts in autism spectrum disorders (ASD), we identify genes with homozygous or compound heterozygous loss-of-function (LoF) variants (defined as nonsense and essential splice sites) from exome sequencing of 933 cases and 869 controls. We identify a two-fold increase in complete knockouts of autosomal genes with low rates of LoF variation (≤5% frequency) in cases and estimate a 3% contribution to ASD risk by these events, confirming this observation in an independent set of 563 probands and 4,605 controls. Outside the pseudo-autosomal regions on the X-chromosome, we similarly observe a significant 1.5-fold increase in rare hemizygous knockouts in males, contributing to another 2% of ASDs in males. Taken together these results provide compelling evidence that rare autosomal and X-chromosome complete gene knockouts are important inherited risk factors for ASD. PMID:23352160

  19. Plasma apelin level and its clinical significance following autologous bone marrow mononuclear cell transplantation in patients with severe ischemic heart failure%自体骨髓单个核细胞移植治疗后重度缺血性心力衰竭患者血浆Apelin水平变化及其临床意义

    Institute of Scientific and Technical Information of China (English)

    曹毅; 陈宇; 张宁坤; 王志国; 杨晔

    2011-01-01

    Objective To study the change in plasma apelin level in different states of cardiac function, and before and after its treatment in patients with severe ischemic heart failure (IHF). Methods Forty patients with IHF were assigned to the autologous bone marrow mononuclear cell (BMMC) transplantation group and conventional therapy group (20 each), and they underwent BMMC transplantation and conventional therapy respectively. Another 20 healthy subjects with normal heart function served as normal control. The baseline data of plasma apelin level and brain natriuretic peptide (BNP) of each group were collected, and the plasma apelin level and BNP of the two IHF groups were determined after treatment For all the patients with IHF, echocardiogram was recorded before and after treatment Results Before treatment, the plasma apelin level was significantly lower and the baseline level of plasma BNP was obviously higher in both BMMC transplantation and conventional therapy groups than in healthy control group (P0. 05). After BMMC transplantation, the NYHA class declined and 24h urine output increased in BMMC group, but no evident change was found in conventional therapy group. In BMMC transplantation group, the plasma apelin level increased significantly 5 days after treatment (P0.05). Compared between the two IHF groups, the plasma apelin level was higher 7 days after treatment (P0. 05). Compared between the two IHF groups, the plasma BNP level was lower in BMMC transplantation group than in conventional therapy group at both 7 and 21 days after treatment (P<0. 05). Conclusion BMMC transplantation may obviously improve the cardiac function of patients with severe IHF by increasing the plasma apelin level.%目的 研究骨髓单个核细胞(BMMC)移植治疗前后缺血性心力衰竭(IHF)患者血浆Apelin水平及心功能的变化.方法 纳入40例IHF患者,分为自体骨髓单个核细胞(BMMC)移植组(n=20)及常规治疗组(n=20),分别行BMMC移植

  20. Efficient Gene Knockout in Goats Using CRISPR/Cas9 System

    OpenAIRE

    Ni, Wei; Qiao, Jun; Hu, Shengwei; Zhao, Xinxia; Regouski, Misha; Yang, Min; Polejaeva, Irina A.; Chen, Chuangfu

    2014-01-01

    The CRISPR/Cas9 system has been adapted as an efficient genome editing tool in laboratory animals such as mice, rats, zebrafish and pigs. Here, we report that CRISPR/Cas9 mediated approach can efficiently induce monoallelic and biallelic gene knockout in goat primary fibroblasts. Four genes were disrupted simultaneously in goat fibroblasts by CRISPR/Cas9-mediated genome editing. The single-gene knockout fibroblasts were successfully used for somatic cell nuclear transfer (SCNT) and resulted i...

  1. Maximal Oxygen Consumption Is Reduced in Aquaporin-1 Knockout Mice.

    Science.gov (United States)

    Al-Samir, Samer; Goossens, Dominique; Cartron, Jean-Pierre; Nielsen, Søren; Scherbarth, Frank; Steinlechner, Stephan; Gros, Gerolf; Endeward, Volker

    2016-01-01

    We have measured maximal oxygen consumption ([Formula: see text]O2,max) of mice lacking one or two of the established mouse red-cell CO2 channels AQP1, AQP9, and Rhag. We intended to study whether these proteins, by acting as channels for O2, determine O2 exchange in the lung and in the periphery. We found that [Formula: see text]O2,max as determined by the Helox technique is reduced by ~16%, when AQP1 is knocked out, but not when AQP9 or Rhag are lacking. This figure holds for animals respiring normoxic as well as hypoxic gas mixtures. To see whether the reduction of [Formula: see text]O2,max is due to impaired O2 uptake in the lung, we measured carotid arterial O2 saturation (SO2) by pulse oximetry. Neither under normoxic (inspiratory O2 21%) nor under hypoxic conditions (11% O2) is there a difference in SO2 between AQP1null and WT mice, suggesting that AQP1 is not critical for O2 uptake in the lung. The fact that the % reduction of [Formula: see text]O2,max is identical in normoxia and hypoxia indicates moreover that the limitation of [Formula: see text]O2,max is not due to an O2 diffusion problem, neither in the lung nor in the periphery. Instead, it appears likely that AQP1null animals exhibit a reduced [Formula: see text]O2,max due to the reduced wall thickness and muscle mass of the left ventricles of their hearts, as reported previously. We conclude that very likely the properties of the hearts of AQP1 knockout mice cause a reduced maximal cardiac output and thus cause a reduced [Formula: see text]O2,max, which constitutes a new phenotype of these mice. PMID:27559317

  2. Characterization of Heterogeneous Prostate Tumors in Targeted Pten Knockout Mice.

    Directory of Open Access Journals (Sweden)

    Hanneke Korsten

    Full Text Available Previously, we generated a preclinical mouse prostate tumor model based on PSA-Cre driven inactivation of Pten. In this model homogeneous hyperplastic prostates (4-5m developed at older age (>10m into tumors. Here, we describe the molecular and histological characterization of the tumors in order to better understand the processes that are associated with prostate tumorigenesis in this targeted mouse Pten knockout model. The morphologies of the tumors that developed were very heterogeneous. Different histopathological growth patterns could be identified, including intraductal carcinoma (IDC, adenocarcinoma and undifferentiated carcinoma, all strongly positive for the epithelial cell marker Cytokeratin (CK, and carcinosarcomas, which were negative for CK. IDC pattern was already detected in prostates of 7-8 month old mice, indicating that it could be a precursor stage. At more than 10 months IDC and carcinosarcoma were most frequently observed. Gene expression profiling discriminated essentially two molecular subtypes, denoted tumor class 1 (TC1 and tumor class 2 (TC2. TC1 tumors were characterized by high expression of epithelial markers like Cytokeratin 8 and E-Cadherin whereas TC2 tumors showed high expression of mesenchyme/stroma markers such as Snail and Fibronectin. These molecular subtypes corresponded with histological growth patterns: where TC1 tumors mainly represented adenocarcinoma/intraductal carcinoma, in TC2 tumors carcinosarcoma was the dominant growth pattern. Further molecular characterization of the prostate tumors revealed an increased expression of genes associated with the inflammatory response. Moreover, functional markers for senescence, proliferation, angiogenesis and apoptosis were higher expressed in tumors compared to hyperplasia. The highest expression of proliferation and angiogenesis markers was detected in TC2 tumors. Our data clearly showed that in the genetically well-defined PSA-Cre;Pten-loxP/loxP prostate tumor

  3. Comprehensive behavioral analysis of cluster of differentiation 47 knockout mice.

    Directory of Open Access Journals (Sweden)

    Hisatsugu Koshimizu

    Full Text Available Cluster of differentiation 47 (CD47 is a member of the immunoglobulin superfamily which functions as a ligand for the extracellular region of signal regulatory protein α (SIRPα, a protein which is abundantly expressed in the brain. Previous studies, including ours, have demonstrated that both CD47 and SIRPα fulfill various functions in the central nervous system (CNS, such as the modulation of synaptic transmission and neuronal cell survival. We previously reported that CD47 is involved in the regulation of depression-like behavior of mice in the forced swim test through its modulation of tyrosine phosphorylation of SIRPα. However, other potential behavioral functions of CD47 remain largely unknown. In this study, in an effort to further investigate functional roles of CD47 in the CNS, CD47 knockout (KO mice and their wild-type littermates were subjected to a battery of behavioral tests. CD47 KO mice displayed decreased prepulse inhibition, while the startle response did not differ between genotypes. The mutants exhibited slightly but significantly decreased sociability and social novelty preference in Crawley's three-chamber social approach test, whereas in social interaction tests in which experimental and stimulus mice have direct contact with each other in a freely moving setting in a novel environment or home cage, there were no significant differences between the genotypes. While previous studies suggested that CD47 regulates fear memory in the inhibitory avoidance test in rodents, our CD47 KO mice exhibited normal fear and spatial memory in the fear conditioning and the Barnes maze tests, respectively. These findings suggest that CD47 is potentially involved in the regulation of sensorimotor gating and social behavior in mice.

  4. Targeting cancer using KAT inhibitors to mimic lethal knockouts

    Science.gov (United States)

    Brown, James A.L.; Bourke, Emer; Eriksson, Leif A.; Kerin, Michael J.

    2016-01-01

    Two opposing enzyme classes regulate fundamental elements of genome maintenance, gene regulation and metabolism, either through addition of an acetyl moiety by histone acetyltransferases (HATs) or its removal by histone de-acetyltransferases (HDAC), and are exciting targets for drug development. Importantly, dysfunctional acetylation has been implicated in numerous diseases, including cancer. Within the HAT superfamily the MYST family holds particular interest, as its members are directly involved in the DNA damage response and repair pathways and crucially, several members have been shown to be down-regulated in common cancers (such as breast and prostate). In the present study we focus on the development of lysine (K) acetyltransferase inhibitors (KATi) targeting the MYST family member Tip60 (Kat5), an essential protein, designed or discovered through screening libraries. Importantly, Tip60 has been demonstrated to be significantly down-regulated in many cancers which urgently require new treatment options. We highlight current and future efforts employing these KATi as cancer treatments and their ability to synergize and enhance current cancer treatments. We investigate the different methods of KATi production or discovery, their mechanisms and their validation models. Importantly, the utility of KATi is based on a key concept: using KATi to abrogate the activity of an already down-regulated essential protein (effectively creating a lethal knockout) provides another innovative mechanism for targeting cancer cells, while significantly minimizing any off-target effects to normal cells. This approach, combined with the rapidly developing interest in KATi, suggests that KATi have a bright future for providing truly personalized therapies. PMID:27528742

  5. Cocaine inhibits dopamine D2 receptor signaling via sigma-1-D2 receptor heteromers.

    Directory of Open Access Journals (Sweden)

    Gemma Navarro

    Full Text Available Under normal conditions the brain maintains a delicate balance between inputs of reward seeking controlled by neurons containing the D1-like family of dopamine receptors and inputs of aversion coming from neurons containing the D2-like family of dopamine receptors. Cocaine is able to subvert these balanced inputs by altering the cell signaling of these two pathways such that D1 reward seeking pathway dominates. Here, we provide an explanation at the cellular and biochemical level how cocaine may achieve this. Exploring the effect of cocaine on dopamine D2 receptors function, we present evidence of σ1 receptor molecular and functional interaction with dopamine D2 receptors. Using biophysical, biochemical, and cell biology approaches, we discovered that D2 receptors (the long isoform of the D2 receptor can complex with σ1 receptors, a result that is specific to D2 receptors, as D3 and D4 receptors did not form heteromers. We demonstrate that the σ1-D2 receptor heteromers consist of higher order oligomers, are found in mouse striatum and that cocaine, by binding to σ1 -D2 receptor heteromers, inhibits downstream signaling in both cultured cells and in mouse striatum. In contrast, in striatum from σ1 knockout animals these complexes are not found and this inhibition is not seen. Taken together, these data illuminate the mechanism by which the initial exposure to cocaine can inhibit signaling via D2 receptor containing neurons, destabilizing the delicate signaling balance influencing drug seeking that emanates from the D1 and D2 receptor containing neurons in the brain.

  6. R-spondin 2 promotes acetylcholine receptor clustering at the neuromuscular junction via Lgr5

    Science.gov (United States)

    Nakashima, Hiroaki; Ohkawara, Bisei; Ishigaki, Shinsuke; Fukudome, Takayasu; Ito, Kenyu; Tsushima, Mikito; Konishi, Hiroyuki; Okuno, Tatsuya; Yoshimura, Toshiro; Ito, Mikako; Masuda, Akio; Sobue, Gen; Kiyama, Hiroshi; Ishiguro, Naoki; Ohno, Kinji

    2016-01-01

    At the neuromuscular junction (NMJ), acetylcholine receptor (AChR) clustering is mediated by spinal motor neuron (SMN)-derived agrin and its receptors on the muscle, the low-density lipoprotein receptor-related protein 4 (LRP4) and muscle-specific receptor tyrosine kinase (MuSK). Additionally, AChR clustering is mediated by the components of the Wnt pathway. Laser capture microdissection of SMNs revealed that a secreted activator of Wnt signaling, R-spondin 2 (Rspo2), is highly expressed in SMNs. We found that Rspo2 is enriched at the NMJ, and that Rspo2 induces MuSK phosphorylation and AChR clustering. Rspo2 requires Wnt ligands, but not agrin, for promoting AChR clustering in cultured myotubes. Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5), an Rspo2 receptor, is also accumulated at the NMJ, and is associated with MuSK via LRP4. Lgr5 is required for Rspo2-mediated AChR clustering in myotubes. In Rspo2-knockout mice, the number and density of AChRs at the NMJ are reduced. The Rspo2-knockout diaphragm has an altered ultrastructure with widened synaptic clefts and sparse synaptic vesicles. Frequency of miniature endplate currents is markedly reduced in Rspo2-knockout mice. To conclude, we demonstrate that Rspo2 and its receptor Lgr5 are Wnt-dependent and agrin-independent regulators of AChR clustering at the NMJ. PMID:27328992

  7. Altered sleep homeostasis in rev-erbα knockout mice

    OpenAIRE

    Mang, Géraldine M.; La Spada, Francesco; Emmenegger, Yann; Chappuis, Sylvie; Ripperger, Jürgen A; Albrecht, Urs; Franken, Paul

    2016-01-01

    Study Objectives: The nuclear receptor REV-ERBα is a potent, constitutive transcriptional repressor critical for the regulation of key circadian and metabolic genes. Recently, REV-ERBα's involvement in learning, neurogenesis, mood, and dopamine turnover was demonstrated suggesting a specific role in central nervous system functioning. We have previously shown that the brain expression of several core clock genes, including Rev-erbα, is modulated by sleep loss. We here test the consequen...

  8. Altered neurocircuitry in the dopamine transporter knockout mouse brain.

    Directory of Open Access Journals (Sweden)

    Xiaowei Zhang

    Full Text Available The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI. Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn(2+ into the prefrontal cortex indicated that DAT KO mice have a truncated Mn(2+ distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn(2+ transport into more posterior midbrain nuclei and contralateral

  9. Deficits in Sensory-Specific Devaluation Task Performance Following Genetic Deletions of Cannabinoid (CB1) Receptor

    Science.gov (United States)

    Crombag, Hans S.; Johnson, Alexander W.; Zimmer, Anne M.; Zimmer, Andreas; Holland, Peter C.

    2010-01-01

    Cannabinoid CB1 receptor is abundantly expressed throughout the CNS and is implicated in numerous physiological and behavioral functions, including appetite and feeding. In the present study, wild-type and CB1 heterozygous and homozygous knockout mice were tested on an instrumental outcome-selective devaluation task to assess changes in acquired…

  10. The Receptor for Advanced Glycation End Products Is a Central Mediator of Asthma Pathogenesis

    OpenAIRE

    Pavle S Milutinovic; Alcorn, John F.; Englert, Judson M; Crum, Lauren T.; Oury, Tim D.

    2012-01-01

    The receptor for advanced glycation end products (RAGE) is a multiligand receptor that has been shown to contribute to the pathogenesis of diabetes, atherosclerosis, and neurodegeneration. However, its role in asthma and allergic airway disease is largely unknown. These studies use a house dust mite (HDM) mouse model of asthma/allergic airway disease. Respiratory mechanics were assessed and compared between wild-type and RAGE knockout mice. Bronchovascular architecture was assessed with quant...

  11. Endothelial cell leptin receptor mutant mice have hyperleptinemia and reduced tissue uptake

    OpenAIRE

    Hsuchou, Hung; Jayaram, Bhavaani; Kastin, Abba J; Wang, Yuping; Ouyang, Suidong; Pan, Weihong

    2013-01-01

    Hyperleptinemia is usually associated with obesity and leptin resistance. Endothelial cell leptin receptor knockout (ELKO) mice without a signaling membrane-bound leptin receptor in endothelia, however, have profound hyperleptinemia without signs of leptin resistance. Leptin mRNA in adipose tissue was unchanged. To test the hypothesis that the ELKO mutation results in delayed degradation and slowed excretion, we determined the kinetics of leptin transfer in groups of ELKO and wildtype mice af...

  12. Gustatory sensory cells express a receptor responsive to protein breakdown products (GPR92)

    OpenAIRE

    Haid, Désirée; Widmayer, Patricia; Voigt, Anja; Chaudhari, Nirupa; Boehm, Ulrich; Breer, Heinz

    2013-01-01

    The ingestion of dietary protein is of vital importance for the maintenance of fundamental physiological processes. The taste modality umami, with its prototype stimulus, glutamate, is considered to signal the protein content of food. Umami was thought to be mediated by the heterodimeric amino acid receptor, T1R1+T1R3. Based on knockout studies, additional umami receptors are likely to exist. In addition to amino acids, certain peptides can also elicit and enhance umami taste suggesting that ...

  13. P2Y2 receptor activation decreases blood pressure and increases renal Na+ excretion

    OpenAIRE

    Rieg, Timo; Gerasimova, Maria; Boyer, José L.; Insel, Paul A.; Vallon, Volker

    2011-01-01

    ATP and UTP are endogenous agonists of P2Y2/4 receptors. To define the in vivo effects of P2Y2 receptor activation on blood pressure and urinary excretion, we compared the response to INS45973, a P2Y2/4 receptor agonist and UTP analog, in wild-type (WT) and P2Y2 receptor knockout (P2Y2−/−) mice. INS45973 was administered intravenously as a bolus injection or continuous infusion to determine effects on blood pressure and renal function, respectively. Within seconds, bolus application of INS459...

  14. Gene expression profiling of gastric mucosa in mice lacking CCK and gastrin receptors

    DEFF Research Database (Denmark)

    Zhao, Chun-Mei; Kodama, Yosuke; Flatberg, Arnar;

    2014-01-01

    The stomach produces acid, which may play an important role in the regulation of bone homeostasis. The aim of this study was to reveal signaling pathways in the gastric mucosa that involve the acid secretion and possibly the bone metabolism in CCK1 and/or CCK2 receptor knockout (KO) mice. Gastric...... acid secretion was impaired and the ECL cell signaling pathway was inhibited in CCK2 receptor KO mice but not in CCK1 receptor KO mice. However, in CCK1+2 receptor double KO mice the acid secretion in response to pylorus ligation-induced vagal stimulation and the ECL cell pathway were partially...

  15. Tendon fascicle gliding in wild type, heterozygous, and lubricin knockout mice.

    Science.gov (United States)

    Kohrs, Ross T; Zhao, Chunfeng; Sun, Yu-Long; Jay, Gregory D; Zhang, Ling; Warman, Matthew L; An, Kai-Nan; Amadio, Peter C

    2011-03-01

    The objective of this study was to investigate the role of lubricin in the lubrication of tendon fascicles. Lubricin, a glycoprotein, lubricates cartilage and tendon surfaces, but the function of lubricin within the tendon fascicle is unclear. We developed a novel method to assess the gliding resistance of a single fascicle in a mouse tail model and used it to test the hypothesis that gliding resistance would be increased in lubricin knockout mice. Thirty-six mouse tails were used from 12 wild type, 12 heterozygous, and 12 lubricin knockout mice. A 15 mm long fascicle segment was pulled proximally after being divided distally. The peak resistance during fascicle pullout and the fascicle perimeter were measured. Lubricin expression was evaluated by immunohistochemistry. The peak gliding resistance in the lubricin knockout mice was significantly higher than in the wild type (p < 0.05). Fascicles from heterozygous mice were intermediate in value, but not significantly different from either wild type or lubricin knockout fascicles in peak gliding resistance. No significant difference was found in fascicle perimeter among the three groups. No correlation was observed between fascicle perimeter and gliding resistance. While lubricin was detected by immunostaining on the fascicle surface in wild type and heterozygous mice, lubricin was not detectable in the tendons of knockout mice. We conclude that the absence of lubricin is associated with increased interfascicular friction and that lubricin may play an important role in interfascicular lubrication.

  16. Impact of asialoglycoprotein receptor deficiency on the development of liver injury

    Institute of Scientific and Technical Information of China (English)

    Serene ML Lee; Carol A Casey; Benita L McVicker

    2009-01-01

    The asialoglycoprotein (ASGP) receptor is a wellcharacterized hepatic receptor that is recycled via the common cellular process of receptor-mediated endocytosis (RME). The RME process plays an integral part in the proper trafficking and routing of receptors and ligands in the healthy cell. Thus, the missorting or altered transport of proteins during RME is thought to play a role in several diseases associated with hepatocyte and liver dysfunction. Previously,we examined in detail alterations that occur in hepatocellular RME and associated receptor functions as a result of one particular liver injury, alcoholic liver disease (ALD). The studies revealed profound ethanolmediated impairments to the ASGP receptor and the RME process, indicating the importance of this receptor and the maintenance of proper endocytic events in normal tissue. To further clarify these observations,studies were performed utilizing knockout mice (lacking a functional ASGP receptor) to which were administered several liver toxicants. In addition to alcohol, we examined the effects following administration of anti-Fas (CD95) antibody, carbon tetrachloride (CCl4) and lipopolysaccharide (LPS)/galactosamine. The results of these studies demonstrated that the knockout mice sustained enhanced liver injury in response to all of the treatments, as shown by increased indices of liver damage, such as enhancement of serum enzyme levels,histopathological scores, as well as hepatocellular death.Overall, the work completed to date suggests a possible link between hepatic receptors and liver injury. In particular, adequate function and content of the ASGP receptor may provide protection against various toxinmediated liver diseases.

  17. Physiological impact of CB1 receptor expression by hippocampal GABAergic interneurons.

    Science.gov (United States)

    Albayram, Önder; Passlick, Stefan; Bilkei-Gorzo, Andras; Zimmer, Andreas; Steinhäuser, Christian

    2016-04-01

    A subset of hippocampal GABAergic neurons, which are cholecystokinin-positive, highly express cannabinoid type 1 (CB1) receptors. Activation of these receptors inhibits GABA release and thereby limits inhibitory control. While genetic deletion of CB1 receptors from GABAergic neurons led to behavioural alterations and neuroinflammatory reactions, it remained unclear whether these changes in the knockout animals were a direct consequence of the enhanced transmitter release or reflected developmental deficits. The hippocampus is vital for the generation of spatial, declarative and working memory. Here, we addressed the question how CB1 receptors in GABAergic neurons influence hippocampal function. Patch clamp and field potential recordings in mice devoid of CB1 receptors in GABAergic neurons revealed an enhanced frequency and faster kinetics of spontaneous inhibitory postsynaptic currents in CA1 pyramidal neurons while tonic inhibition, paired-pulse facilitation and long-term potentiation in the hippocampus were not affected. Evaluation of cognitive functions demonstrated impaired acquisition of spatial memory and deficits in novel object recognition and partner recognition in the knockout mice, while working memory and spatial memory remained intact. The density of GABAergic neurons was also similar in knockout mice and their littermates, which argues against global deficits in hippocampal development. Together, these results suggest that CB1 receptors in GABAergic neurons influence specific aspects of neuronal excitability and hippocampal learning.

  18. Lack of the vitamin D receptor is associated with reduced epidermal differentiation and hair follicle growth.

    Science.gov (United States)

    Xie, Zhongjion; Komuves, László; Yu, Qian-Chun; Elalieh, Hashem; Ng, Dean C; Leary, Colin; Chang, Sandra; Crumrine, Debra; Yoshizawa, Tatsuya; Kato, Shigeaki; Bikle, Daniel D

    2002-01-01

    The active vitamin D metabolite, 1,25-dihydroxyvitamin D, acting through the vitamin D receptor, regulates the expression of genes in a variety of vitamin D-responsive tissues, including the epidermis. To investigate the role of the vitamin D receptor in mediating epidermal differentiation, we examined the histomorphology and expression of differentiation markers in the epidermis of vitamin D receptor knockout mice generated by gene targeting. The homozygous knockout mouse displayed a phenotype that closely resembles vitamin D-dependent rickets type II in humans, including the development of rickets and alopecia. Hair loss developed by 3 mo after birth and gradually led to nearly total hair loss by 8 mo. Histologic analysis of the skin of homozygous knockout mice revealed dilation of the hair follicles with the formation of dermal cysts starting at the age of 3 wk. These cysts increased in size and number with age. Epidermal differentiation markers, including involucrin, profilaggrin, and loricrin, detected by immunostaining and in situ hybridization, showed decreased expression levels in homozygous knockout mice from birth until 3 wk, preceding the morphologic changes observed in the hair follicles. Keratin 10 levels, however, were not reduced. At the ultrastructural level, homozygous knockout mice showed increased numbers of small dense granules in the granular layer with few or no surrounding keratin bundles and a loss of keratohyalin granules. Thus, both the interfollicular epidermis and the hair follicle appear to require the vitamin D receptor for normal differentiation. The temporal abnormalities between the two processes reflect the apparent lack of requirement for the vitamin D receptor during the anagen phase of the first (developmental) hair cycle, but with earlier effects on the terminal differentiation of the interfollicular epidermis.

  19. High-temperature expansion and knock-out properties of moulding sands with water glass

    Directory of Open Access Journals (Sweden)

    Major-Gabryś K.

    2007-01-01

    Full Text Available The article focuses on the topic of improving the knock-out properties of moulding sand with water glass and ester hardener. It is settled that the cause of worse knock-out properties of moulding sand can be brought by their thermal expansion in increased temperatures. There is a presentation of the influence of different additives, containing Al2O3, on moulding sands’ expansion in increased temperatures. Within the frames of research, there was an elaboration of the influence of authors own additive- Glassex, on the expansion phenomenon of moulding sands with water glass and ester hardener. It is concluded, that the new additive stops the expansion of moulding sands and as well it improves their knock-out properties.

  20. MR histology of advanced atherosclerotic lesions of ApoE- knockout mice

    Science.gov (United States)

    Naumova, A.; Yarnykh, V.; Ferguson, M.; Rosenfeld, M.; Yuan, C.

    2016-02-01

    The purposes of this study were to examine the feasibility of determining the composition of advanced atherosclerotic plaques in fixed ApoE-knockout mice and to develop a time-efficient microimaging protocol for MR histological imaging on mice. Five formalin-fixed transgenic ApoE-knockout mice were imaged at the 9.4T Bruker BioSpec MR scanner using 3D spoiled gradient-echo sequence with an isotropic field of view of 24 mm3; TR 20.8 ms; TE 2.6 ms; flip angle 20°, resulted voxel size 47 × 63 × 94 pm3. MRI examination has shown that advanced atherosclerotic lesions of aorta, innominate and carotid arteries in ApoE-knockout mice are characterized by high calcification and presence of the large fibrofatty nodules. MRI quantification of atherosclerotic lesion components corresponded to histological assessment of plaque composition with a correlation coefficient of 0.98.

  1. One-neutron knockout from {sup 24-28}Ne isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Tajes, C., E-mail: carme.rodriguez@usc.e [Departamento de Fisica de Particulas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Cortina-Gil, D.; Alvarez-Pol, H. [Departamento de Fisica de Particulas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Aumann, T. [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Benjamim, E.; Benlliure, J. [Departamento de Fisica de Particulas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Borge, M.J.G. [Instituto de Estructura de la Materia, CSIC, 28006 Madrid (Spain); Caamano, M.; Casarejos, E. [Departamento de Fisica de Particulas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Chatillon, A. [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Eppinger, K.; Faestermann, T. [Physik Department E12, Technische Universitaet Muenchen, 85748 Garching (Germany); Gascon, M. [Departamento de Fisica de Particulas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Geissel, H. [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Gernhaeuser, R. [Physik Department E12, Technische Universitaet Muenchen, 85748 Garching (Germany); Jonson, B. [Fundamental Fysik, Chalmers Tekniska Hoegskola, 412 96 Goeteborg (Sweden); PH Department, CERN, 1211 Geneve 23 (Switzerland); Kanungo, R. [Astronomy and Physics Department, Saint Mary' s University, Halifax, NS B3H 3C3 (Canada); Kruecken, R. [Physik Department E12, Technische Universitaet Muenchen, 85748 Garching (Germany); Kurtukian, T. [Departamento de Fisica de Particulas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Larsson, K. [Fundamental Fysik, Chalmers Tekniska Hoegskola, 412 96 Goeteborg (Sweden)

    2010-04-05

    One-neutron knockout reactions of {sup 24-28}Ne in a beryllium target have been studied in the Fragment Separator (FRS), at GSI. The results include inclusive one-neutron knockout cross-sections as well as longitudinal-momentum distributions of the knockout fragments. The ground-state structure of the neutron-rich neon isotopes was obtained from an analysis of the measured momentum distributions. The results indicate that the two heaviest isotopes, {sup 27}Ne and {sup 28}Ne, are dominated by a configuration in which a s{sub 1/2} neutron is coupled to an excited state of the {sup 26}Ne and {sup 27}Ne core, respectively.

  2. A simplified method to prepare PCR template DNA for screening of transgenic and knockout mice.

    Science.gov (United States)

    Ren, S; Li, M; Cai, H; Hudgins, S; Furth, P A

    2001-03-01

    Polymerase chain reaction (PCR) amplification of DNA is the most widely used technique for screening of large numbers of genetically engineered transgenic or knockout mice (Mus musculus). In this report, we present a new DNA preparation procedure for running diagnostic PCR. In this procedure, mouse ear tissue was used directly for PCR after the tissue underwent brief digestion in a solution containing only proteinase K. Using this method, we have successfully screened several lines of single, double, and triple transgenic and knockout mice. The results are reliable and reproducible. The advantage of this new method is that DNA purification by organic extraction or isolation kit was omitted. DNA purification is the limiting factor in terms of time and money when screening transgenic and knockout mice by PCR. In addition, using ear instead of tail tissue can reduce distress of animals because the samples can be obtained when the mice are labeled by ear punch.

  3. TFF3 knockout in human pituitary adenoma cell HP75 facilitates cell apoptosis via mitochondrial pathway.

    Science.gov (United States)

    Gao, Feng; Pan, Suxia; Liu, Bing; Zhang, Huanzhi

    2015-01-01

    Trefoil factor 3 (TFF3), a regulatory protein composed of 59 amino acids, has been suggested to be involved in pathogenesis, proliferation, differentiation, invasion, migration and apoptosis in multiple malignant tumors. This study thus investigated the effect of TFF3 knockout in human pituitary adenoma cell line HP75 on cell apoptosis and related pathways. RNA interference approach was used to knock down the expression of TFF3 protein. The gene silencing was validated by RNA denaturing gel electrophoresis and Western blotting. The effect of TFF3 knockout on cell apoptosis was analyzed by Western blotting and flow cytometry. TFF3 protein level in pituitary adenoma was about 3.61 ± 0.48 folds of that in normal tissues (P TFF3, the apoptotic ration was significantly elevated (P TFF3 protein knockout can facilitate apoptosis of human pituitary adenoma HP75 cells via mitochondrial pathway.

  4. TFF3 knockout in human pituitary adenoma cell HP75 facilitates cell apoptosis via mitochondrial pathway

    Science.gov (United States)

    Gao, Feng; Pan, Suxia; Liu, Bing; Zhang, Huanzhi

    2015-01-01

    Trefoil factor 3 (TFF3), a regulatory protein composed of 59 amino acids, has been suggested to be involved in pathogenesis, proliferation, differentiation, invasion, migration and apoptosis in multiple malignant tumors. This study thus investigated the effect of TFF3 knockout in human pituitary adenoma cell line HP75 on cell apoptosis and related pathways. RNA interference approach was used to knock down the expression of TFF3 protein. The gene silencing was validated by RNA denaturing gel electrophoresis and Western blotting. The effect of TFF3 knockout on cell apoptosis was analyzed by Western blotting and flow cytometry. TFF3 protein level in pituitary adenoma was about 3.61 ± 0.48 folds of that in normal tissues (P TFF3, the apoptotic ration was significantly elevated (P TFF3 protein knockout can facilitate apoptosis of human pituitary adenoma HP75 cells via mitochondrial pathway. PMID:26823779

  5. Effect of knockout of α2δ-1 on action potentials in mouse sensory neurons.

    Science.gov (United States)

    Margas, Wojciech; Ferron, Laurent; Nieto-Rostro, Manuela; Schwartz, Arnold; Dolphin, Annette C

    2016-08-01

    Gene deletion of the voltage-gated calcium channel auxiliary subunit α2δ-1 has been shown previously to have a cardiovascular phenotype, and a reduction in mechano- and cold sensitivity, coupled with delayed development of neuropathic allodynia. We have also previously shown that dorsal root ganglion (DRG) neuron calcium channel currents were significantly reduced in α2δ-1 knockout mice. To extend our findings in these sensory neurons, we have examined here the properties of action potentials (APs) in DRG neurons from α2δ-1 knockout mice in comparison to their wild-type (WT) littermates, in order to dissect how the calcium channels that are affected by α2δ-1 knockout are involved in setting the duration of individual APs and their firing frequency. Our main findings are that there is reduced Ca(2+) entry on single AP stimulation, particularly in the axon proximal segment, reduced AP duration and reduced firing frequency to a 400 ms stimulation in α2δ-1 knockout neurons, consistent with the expected role of voltage-gated calcium channels in these events. Furthermore, lower intracellular Ca(2+) buffering also resulted in reduced AP duration, and a lower frequency of AP firing in WT neurons, mimicking the effect of α2δ-1 knockout. By contrast, we did not obtain any consistent evidence for the involvement of Ca(2+)-activation of large conductance calcium-activated potassium (BK) and small conductance calcium-activated potassium (SK) channels in these events. In conclusion, the reduced Ca(2+) elevation as a result of single AP stimulation is likely to result from the reduced duration of the AP in α2δ-1 knockout sensory neurons.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. PMID:27377724

  6. Germ line knockout of IGFBP-3 reveals influences of the gene on mammary gland neoplasia.

    Science.gov (United States)

    Blouin, Marie-José; Bazile, Miguel; Birman, Elena; Zakikhani, Mahvash; Florianova, Livia; Aleynikova, Olga; Powell, David R; Pollak, Michael

    2015-02-01

    Insulin-like growth factor binding protein-3 (IGFBP-3) is an important carrier protein for insulin-like growth factors (IGFs) in the circulation. IGFBP-3 antagonizes the growth-promoting and anti-apoptotic activities of IGFs in experimental systems, but in certain contexts can increase IGF bioactivity, probably by increasing its half-life. The goal of this study was to investigate the role of IGFBP-3 in breast carcinogenesis and breast cancer metastasis. In the first part of the study, we exposed IGFBP-3 knockout and wild-type female mice to dimethylbenz[a]anthracene (DMBA) and followed them for appearance of primary tumors for up to 13 months. In the second part, mice of each genotype received an IV injection of 4T1 mammary carcinoma cells and then lung nodules were counted. Our results show that IGFBP-3 knockout mice developed breast tumors significantly earlier than the wild-type (13.9 ± 1.1 versus 22.5 ± 3.3 weeks, respectively, P = 0.0144), suggesting tumor suppression activity of IGFBP-3. In tumors of IGFBP-3 knockout mice, levels of phospho-AKT(Ser473) were increased compared to wild-type mice. The lung metastasis assay showed significantly more and larger lung nodules in IGFBP-3 knockout mice than in wild-type mice. While we observed increased levels of IGFBP-5 protein in the IGFBP-3 knockout mice, our findings suggest that this was not sufficient to completely compensate for the absence of IGFBP-3. Even though knockout of IGFBP-3 is associated with only a subtle phenotype under control conditions, our results reveal that loss of this gene has measurable effects on breast carcinogenesis and breast cancer metastasis. PMID:25614235

  7. Melanocortin Receptors, Melanotropic Peptides and Penile Erection

    Science.gov (United States)

    King, Stephen H.; Mayorov, Alexander V.; Balse-Srinivasan, Preeti; Hruby, Victor J.; Vanderah, Todd W.; Wessells, Hunter

    2009-01-01

    Penile erection is a complex physiologic event resulting from the interactions of the nervous system on a highly specialized vascular organ. Activation of central nervous system melanocortinergic (MC) receptors with either endogenous or synthetic melanotropic ligands may initiate and/or facilitate spontaneous penile erection. While the CNS contains principally the MC3 and MC4 receptor subtypes, there is conflicting data as to which receptor mediates erection. Although the MC4R is emerging as the principle effector of MC induced erection, the role of the MC3R is poorly understood. Manipulation of each receptor subtype with newly synthesized receptor specific agonists and antagonists, as well as knockout mice, has elucidated their individual contributions. Novel data from our laboratories suggests that antagonism of forebrain MC3R may enhance melanocortin-induced erections. Furthermore, melanocortin agents may interact with better-studied systems such as oxytocinergic pathways at the hypothalamic, brainstem or spinal level. Current therapies for erectile dysfunction target end organ vascular tissue. Manipulation of MC receptors may provide an alternative, centrally mediated therapeutic approach for erectile and other sexual dysfunctions. The non-specific “superpotent” MC agonist, PT-141, which is the carboxylate derivative of MT-II, has reached phase II human trials. Through their centrally mediated activity, melanocortin agonists have potential to treat erectile dysfunction as well as possible applications to the unmet medical needs of decreased sexual motivation and loss of libido. PMID:17584130

  8. Relativistic predictions of polarization phenomena in exclusive proton-induced proton-knockout reactions

    CERN Document Server

    Hillhouse, G C; Noro, T; Van der Ventel, B I S

    2006-01-01

    Whereas a nonrelativistic distorted wave model fails to quantitatively describe analyzing power data for exclusive proton-induced proton-knockout from the 3s_{1/2} state in Pb-208 at 202 MeV, the corresponding relativistic prediction provides a perfect description, thus suggesting that the Dirac equation is the more appropriate underlying dynamical equation. We check the consistency of this rsult by comparing predictions for both dynamical models to new high resolution data for 3s_{1/2} knockout in Pb-208 at a higher incident energy of 392 MeV.

  9. Effects of Chronic Mild Stress in Female Bax Inhibitor-1-Gene Knockout Mice

    OpenAIRE

    Sui, Zhi-Yan; Chae, Han-Jung; Huang, Guang-Biao; Zhao, Tong; Shrestha Muna, Sushma; Chung, Young-Chul

    2012-01-01

    Objective The anti-apoptotic protein Bax inhibitor-1 (BI-1) is a regulator of apoptosis linked to endoplasmic reticulum (ER) stress, and BI-1-/- mice exhibit increased sensitivity to tissue damage. The purpose of this study was to investigate the role of BI-1 in the pathogenesis of chronic mild stress (CMS)-induced depression-like behaviors in BI-1-/- mice. Methods We delivered CMS for 2 or 6 weeks in BI-1-knockout and wild-type mice. Control groups of BI-1-knockout and wild-type mice were le...

  10. Maternal profiling of corticotropin-releasing factor receptor 2 deficient mice in association with restraint stress

    OpenAIRE

    D’Anna, Kimberly L.; Sharon A Stevenson; Gammie, Stephen C.

    2008-01-01

    Mice deficient in corticotropin releasing factor receptor 2 (CRF2) (C57BL/6J:129Sv background) exhibit impaired maternal defense (protection of offspring) and are more reactive to stressors than wild-type mice. To further understand CRF2’s role in maternal behavior, we crossed the knockout mice with a line bred for high maternal defense that also has elevated maternal care relative to inbred lines. Maternal care was normal in knockout mice (relative to wild-type). Maternal defense was impaire...

  11. Decreased Levels of Proapoptotic Factors and Increased Key Regulators of Mitochondrial Biogenesis Constitute New Potential Beneficial Features of Long-lived Growth Hormone Receptor Gene–Disrupted Mice

    OpenAIRE

    Gesing, Adam; Masternak, Michal M.; Lewinski, Andrzej; Karbownik-Lewinska, Malgorzata; Kopchick, John J.; Bartke, Andrzej

    2012-01-01

    Decreased somatotrophic signaling is among the most important mechanisms associated with extended longevity. Mice homozygous for the targeted disruption of the growth hormone (GH) receptor gene (GH receptor knockout; GHRKO) are obese and dwarf, are characterized by a reduced weight and body size, undetectable levels of GH receptor, high concentration of serum GH, and greatly reduced plasma levels of insulin and insulin-like growth factor-I, and are remarkably long lived. Recent results sugges...

  12. The GluK4 kainate receptor subunit regulates memory, mood, and excitotoxic neurodegeneration.

    Science.gov (United States)

    Lowry, E R; Kruyer, A; Norris, E H; Cederroth, C R; Strickland, S

    2013-04-01

    Though the GluK4 kainate receptor subunit shows limited homology and a restricted expression pattern relative to other kainate receptor subunits, its ablation results in distinct behavioral and molecular phenotypes. GluK4 knockout mice demonstrated impairments in memory acquisition and recall in a Morris water maze test, suggesting a previously unreported role for kainate receptors in spatial memory. GluK4 knockout mice also showed marked hyperactivity and impaired pre-pulse inhibition, thereby mirroring two of the hallmark endophenotypes of patients with schizophrenia and bipolar disorder. Furthermore, we found that GluK4 is a key mediator of excitotoxic neurodegeneration: GluK4 knockout mice showed robust neuroprotection in the CA3 region of the hippocampus following intrahippocampal injection of kainate and widespread neuroprotection throughout the hippocampus following hypoxia-ischemia. Biochemical analysis of kainate- or sham-treated wild-type and GluK4 knockout hippocampal tissue suggests that GluK4 may act through the JNK pathway to regulate the molecular cascades that lead to excitotoxicity. Together, our findings suggest that GluK4 may be relevant to the understanding and treatment of human neuropsychiatric and neurodegenerative disorders.

  13. Receptor regulation of senile phenoptosis.

    Science.gov (United States)

    Skulachev, M V; Severin, F F; Skulachev, V P

    2014-10-01

    Here we present a concept that considers organism aging as an additional facultative function promoting evolution, but counterproductive for an individual. We hypothesize that aging can be inhibited or even arrested when full mobilization of all resources is needed for the survival of an individual. We believe that the organism makes such a decision based on the analysis of signals of special receptors that monitor a number of parameters of the internal and external environment. The amount of available food is one of these parameters. Food restriction is perceived by the organism as a signal of coming starvation; in response to it, the organism inhibits its counterproductive programs, in particular, aging. We hypothesize that the level of protein obtained with food is estimated based on blood concentration of one of the essential amino acids (methionine), of carbohydrates - via glucose level, and fats - based on the level of one of the free fatty acids. When the amount of available food is sufficient, these receptors transmit the signal allowing aging. In case of lack of food, this signal is cancelled, and as a result aging is inhibited, i.e. age-related weakening of physiological functions is inhibited, and lifespan increases (the well-known geroprotective effect of partial food restriction). In Caenorhabditis elegans, lowering of the ambient temperature has a similar effect. This geroprotective effect is removed by the knockout of one of the cold receptors, and replacement of the C. elegans receptor by a similar human receptor restores the ability of low temperature to increase the lifespan of the nematode. A chain of events linking the receptor with the aging mechanism has been discovered in mice - for one of the pain receptors in neurons, the nerve endings of which entwine pancreas β-cells. Age-related activation of these receptors inhibits the work of insulin genes in β-cells. Problems with insulin secretion lead to oxidative stress, chronic inflammation

  14. Lentivirus-ABCG1 instillation reduces lipid accumulation and improves lung compliance in GM-CSF knock-out mice

    Energy Technology Data Exchange (ETDEWEB)

    Malur, Anagha; Huizar, Isham [Program in Lung Cell Biology and Translational Research, Division of Pulmonary, Critical Care and Sleep Medicine, East Carolina University, Greenville, NC (United States); Wells, Greg [Department of Microbiology and Immunology, East Carolina University, Greenville, NC (United States); Barna, Barbara P. [Program in Lung Cell Biology and Translational Research, Division of Pulmonary, Critical Care and Sleep Medicine, East Carolina University, Greenville, NC (United States); Malur, Achut G. [Department of Microbiology and Immunology, East Carolina University, Greenville, NC (United States); Thomassen, Mary Jane, E-mail: thomassenm@ecu.edu [Program in Lung Cell Biology and Translational Research, Division of Pulmonary, Critical Care and Sleep Medicine, East Carolina University, Greenville, NC (United States); Department of Microbiology and Immunology, East Carolina University, Greenville, NC (United States)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Lentivirus-ABCG1 reduces lipid accumulation in lungs of GM-CSF knock-out mice. Black-Right-Pointing-Pointer Up-regulation of ABCG1 improves lung function. Black-Right-Pointing-Pointer Upregulation of ABCG1 improves surfactant metabolism. -- Abstract: We have shown decreased expression of the nuclear transcription factor, peroxisome proliferator-activated receptor-gamma (PPAR{gamma}) and the PPAR{gamma}-regulated ATP-binding cassette transporter G1 (ABCG1) in alveolar macrophages from patients with pulmonary alveolar proteinosis (PAP). PAP patients also exhibit neutralizing antibodies to granulocyte-macrophage colony stimulating factor (GM-CSF), an upregulator of PPAR{gamma}. In association with functional GM-CSF deficiency, PAP lung is characterized by surfactant-filled alveolar spaces and lipid-filled alveolar macrophages. Similar pathology characterizes GM-CSF knock-out (KO) mice. We reported previously that intratracheal instillation of a lentivirus (lenti)-PPAR{gamma} plasmid into GM-CSF KO animals elevated ABCG1 and reduced alveolar macrophage lipid accumulation. Here, we hypothesized that instillation of lenti-ABCG1 might be sufficient to decrease lipid accumulation and improve pulmonary function in GM-CSF KO mice. Animals received intratracheal instillation of lenti-ABCG1 or control lenti-enhanced Green Fluorescent Protein (eGFP) plasmids and alveolar macrophages were harvested 10 days later. Alveolar macrophage transduction efficiency was 79% as shown by lenti-eGFP fluorescence. Quantitative PCR analyses indicated a threefold (p = 0.0005) increase in ABCG1 expression with no change of PPAR{gamma} or ABCA1 in alveolar macrophages of lenti-ABCG1 treated mice. ABCG1 was unchanged in control lenti-eGFP and PBS-instilled groups. Oil Red O staining detected reduced intracellular neutral lipid in alveolar macrophages from lenti-ABCG1 treated mice. Extracellular cholesterol and phospholipids were also decreased as shown by

  15. Lentivirus-ABCG1 instillation reduces lipid accumulation and improves lung compliance in GM-CSF knock-out mice

    International Nuclear Information System (INIS)

    Highlights: ► Lentivirus-ABCG1 reduces lipid accumulation in lungs of GM-CSF knock-out mice. ► Up-regulation of ABCG1 improves lung function. ► Upregulation of ABCG1 improves surfactant metabolism. -- Abstract: We have shown decreased expression of the nuclear transcription factor, peroxisome proliferator-activated receptor-gamma (PPARγ) and the PPARγ-regulated ATP-binding cassette transporter G1 (ABCG1) in alveolar macrophages from patients with pulmonary alveolar proteinosis (PAP). PAP patients also exhibit neutralizing antibodies to granulocyte–macrophage colony stimulating factor (GM-CSF), an upregulator of PPARγ. In association with functional GM-CSF deficiency, PAP lung is characterized by surfactant-filled alveolar spaces and lipid-filled alveolar macrophages. Similar pathology characterizes GM-CSF knock-out (KO) mice. We reported previously that intratracheal instillation of a lentivirus (lenti)-PPARγ plasmid into GM-CSF KO animals elevated ABCG1 and reduced alveolar macrophage lipid accumulation. Here, we hypothesized that instillation of lenti-ABCG1 might be sufficient to decrease lipid accumulation and improve pulmonary function in GM-CSF KO mice. Animals received intratracheal instillation of lenti-ABCG1 or control lenti-enhanced Green Fluorescent Protein (eGFP) plasmids and alveolar macrophages were harvested 10 days later. Alveolar macrophage transduction efficiency was 79% as shown by lenti-eGFP fluorescence. Quantitative PCR analyses indicated a threefold (p = 0.0005) increase in ABCG1 expression with no change of PPARγ or ABCA1 in alveolar macrophages of lenti-ABCG1 treated mice. ABCG1 was unchanged in control lenti-eGFP and PBS-instilled groups. Oil Red O staining detected reduced intracellular neutral lipid in alveolar macrophages from lenti-ABCG1 treated mice. Extracellular cholesterol and phospholipids were also decreased as shown by analysis of bronchoalveolar lavage fluid. Lung compliance was diminished in untreated GMCSF KO mice

  16. cGMP-dependent protein kinase type II knockout mice exhibit working memory impairments, decreased repetitive behavior, and increased anxiety-like traits.

    Science.gov (United States)

    Wincott, Charlotte M; Abera, Sinedu; Vunck, Sarah A; Tirko, Natasha; Choi, Yoon; Titcombe, Roseann F; Antoine, Shannon O; Tukey, David S; DeVito, Loren M; Hofmann, Franz; Hoeffer, Charles A; Ziff, Edward B

    2014-10-01

    Neuronal activity regulates AMPA receptor trafficking, a process that mediates changes in synaptic strength, a key component of learning and memory. This form of plasticity may be induced by stimulation of the NMDA receptor which, among its activities, increases cyclic guanosine monophosphate (cGMP) through the nitric oxide synthase pathway. cGMP-dependent protein kinase type II (cGKII) is ultimately activated via this mechanism and AMPA receptor subunit GluA1 is phosphorylated at serine 845. This phosphorylation contributes to the delivery of GluA1 to the synapse, a step that increases synaptic strength. Previous studies have shown that cGKII-deficient mice display striking spatial learning deficits in the Morris Water Maze compared to wild-type littermates as well as lowered GluA1 phosphorylation in the postsynaptic density of the prefrontal cortex (Serulle et al., 2007; Wincott et al., 2013). In the current study, we show that cGKII knockout mice exhibit impaired working memory as determined using the prefrontal cortex-dependent Radial Arm Maze (RAM). Additionally, we report reduced repetitive behavior in the Marble Burying task (MB), and heightened anxiety-like traits in the Novelty Suppressed Feeding Test (NSFT). These data suggest that cGKII may play a role in the integration of information that conveys both anxiety-provoking stimuli as well as the spatial and environmental cues that facilitate functional memory processes and appropriate behavioral response. PMID:24752151

  17. Striatal dopamine D1 receptor is essential for contextual fear conditioning.

    Science.gov (United States)

    Ikegami, Masaru; Uemura, Takeshi; Kishioka, Ayumi; Sakimura, Kenji; Mishina, Masayoshi

    2014-02-05

    Fear memory is critical for animals to trigger behavioural adaptive responses to potentially threatening stimuli, while too much or inappropriate fear may cause psychiatric problems. Numerous studies have shown that the amygdala, hippocampus and medial prefrontal cortex play important roles in Pavlovian fear conditioning. Recently, we showed that striatal neurons are required for the formation of the auditory fear memory when the unconditioned stimulus is weak. Here, we found that selective ablation of striatal neurons strongly diminished contextual fear conditioning irrespective of the intensity of footshock. Furthermore, contextual fear conditioning was strongly reduced in striatum-specific dopamine D1 receptor knockout mice. On the other hand, striatum-specific dopamine D2 receptor knockout mice showed freezing responses comparable to those of control mice. These results suggest that striatal D1 receptor is essential for contextual fear conditioning.

  18. GLUT2 and the incretin receptors are involved in glucose-induced incretin secretion

    DEFF Research Database (Denmark)

    Cani, Patrice D; Holst, Jens Juul; Drucker, Daniel J;

    2007-01-01

    content was reduced only in GIP and GLUT2 receptors knockout mice suggesting that this impairment could contribute to the phenotype. Intestinal GIP content was similar in all mice studied. Furthermore, the impaired incretins secretion was associated with a reduced glucose-stimulated insulin secretion...... to those described for beta-cells, brain and hepatoportal sensors. We determined the role of GLUT2, GLP-1 or GIP receptors in glucose-induced incretins secretion, in the corresponding knockout mice. GLP-1 secretion was reduced in all mutant mice, while GIP secretion did not require GLUT2. Intestinal GLP-1...... and an impaired glucose tolerance in all mice. In conclusion, both incretins secretion depends on mechanisms involving their own receptors and GLP-1 further requires GLUT2....

  19. TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation.

    Science.gov (United States)

    Ji, Rui; Tian, Shifu; Lu, Helen J; Lu, Qingjun; Zheng, Yan; Wang, Xiaomin; Ding, Jixiang; Li, Qiutang; Lu, Qingxian

    2013-12-15

    TAM tyrosine kinases play multiple functional roles, including regulation of the target genes important in homeostatic regulation of cytokine receptors or TLR-mediated signal transduction pathways. In this study, we show that TAM receptors affect adult hippocampal neurogenesis and loss of TAM receptors impairs hippocampal neurogenesis, largely attributed to exaggerated inflammatory responses by microglia characterized by increased MAPK and NF-κB activation and elevated production of proinflammatory cytokines that are detrimental to neuron stem cell proliferation and neuronal differentiation. Injection of LPS causes even more severe inhibition of BrdU incorporation in the Tyro3(-/-)Axl(-/-)Mertk(-/-) triple-knockout (TKO) brains, consistent with the LPS-elicited enhanced expression of proinflammatory mediators, for example, IL-1β, IL-6, TNF-α, and inducible NO synthase, and this effect is antagonized by coinjection of the anti-inflammatory drug indomethacin in wild-type but not TKO brains. Conditioned medium from TKO microglia cultures inhibits neuron stem cell proliferation and neuronal differentiation. IL-6 knockout in Axl(-/-)Mertk(-/-) double-knockout mice overcomes the inflammatory inhibition of neurogenesis, suggesting that IL-6 is a major downstream neurotoxic mediator under homeostatic regulation by TAM receptors in microglia. Additionally, autonomous trophic function of the TAM receptors on the proliferating neuronal progenitors may also promote progenitor differentiation into immature neurons.

  20. Knockout mouse model for Fxr2: a model for mental retardation

    NARCIS (Netherlands)

    C.J.M. Bontekoe (Carola); L. Kirkpatrick; C.E. Bakker (Cathy); A.T. Hoogeveen (Andre); R. McAninch; M. Merriweather; B.A. Oostra (Ben); N.C. Cheng (Ngan Ching); K.L. McIlwain; I.M. Nieuwenhuizen (Ingeborg); L.A. Yuva-Paylor; R. Paylor; A. Nellis; R. Willemsen (Rob); Z. Fang; D. Nelson

    2002-01-01

    textabstractFragile X syndrome is a common form of mental retardation caused by the absence of the FMR1 protein, FMRP. Fmr1 knockout mice exhibit a phenotype with some similarities to humans, such as macro-orchidism and behavioral abnormalities. Two homologs of FMRP have been ident

  1. Crucial role of alkaline sphingomyelinase in sphingomyelin digestion: a study on enzyme knockout mice

    DEFF Research Database (Denmark)

    Zhang, Yao; Cheng, Yajun; Hansen, Gert H;

    2011-01-01

    Alkaline sphingomyelinase (alk-SMase) hydrolyses sphingomyelin (SM) to ceramide in the gut. To evaluate the physiological importance of the enzyme, we generated alk-SMase knockout (KO) mice by the Cre-recombinase-Locus of X-over P1(Cre-LoxP) system and studied SM digestion. Both wild-type (WT...

  2. Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Jørgensen, Sebastian Beck; Wojtaszewski, Jørgen; Viollet, Benoit;

    2005-01-01

    We tested the hypothesis that 5'AMP-activated protein kinase (AMPK) plays an important role in regulating the acute, exercise-induced activation of metabolic genes in skeletal muscle, which were dissected from whole-body a2- and a1-AMPK knockout (KO) and wild-type (WT) mice at rest, after treadmi...

  3. Hypervitaminosis D mediates compensatory Ca2+ hyperabsorption in TRPV5 knockout mice.

    NARCIS (Netherlands)

    Renkema, K.Y.R.; Nijenhuis, T.; Eerden, B.C. van der; Kemp, J.W.C.M. van der; Weinans, H.; Leeuwen, J.P.P.M. van; Bindels, R.J.M.; Hoenderop, J.G.J.

    2005-01-01

    Vitamin D plays an important role in Ca(2+) homeostasis by controlling Ca(2+) (re)absorption in intestine, kidney, and bone. The epithelial Ca(2+) channel TRPV5 mediates the Ca(2+) entry step in active Ca(2+) reabsorption. TRPV5 knockout (TRPV5(-/-)) mice show impaired Ca(2+) reabsorption, hypercalc

  4. Serotonin Transporter Knockout Rats Show Improved Strategy Set-Shifting and Reduced Latent Inhibition

    Science.gov (United States)

    Nonkes, Lourens J. P.; van de Vondervoort, Ilse I. G. M.; de Leeuw, Mark J. C.; Wijlaars, Linda P.; Maes, Joseph H. R.; Homberg, Judith R.

    2012-01-01

    Behavioral flexibility is a cognitive process depending on prefrontal areas allowing adaptive responses to environmental changes. Serotonin transporter knockout (5-HTT[superscript -/-]) rodents show improved reversal learning in addition to orbitofrontal cortex changes. Another form of behavioral flexibility, extradimensional strategy set-shifting…

  5. Effects of ptb knockout on butyric acid fermentation by Clostridium tyrobutyricum.

    Science.gov (United States)

    Zhang, Yali; Yu, Mingrui; Yang, Shang-Tian

    2012-01-01

    Clostridium tyrobutyricum ATCC 25755 is an anaerobic, rod-shaped, gram-positive bacterium that produces butyrate, acetate, hydrogen, and carbon dioxide from various saccharides, including glucose and xylose. Phosphotransbutyrylase (PTB) is a key enzyme in the butyric acid synthesis pathway. In this work, effects of ptb knockout by homologous recombination on metabolic flux and product distribution were investigated. When compared with the wild type, the activities of PTB and butyrate kinase in ptb knockout mutant decreased 76 and 42%, respectively; meanwhile, phosphotransacetylase and acetate kinase increased 7 and 29%, respectively. However, ptb knockout did not significantly reduce butyric acid production from glucose or xylose in batch fermentations. Instead, it increased acetic acid and hydrogen production 33.3-53.8% and ≈ 11%, respectively. Thus, the ptb knockout did increase the carbon flux toward acetate synthesis, resulting in a significant decrease (28-35% reduction) in the butyrate/acetate ratio in ptb mutant fermentations. In addition, the mutant displayed a higher specific growth rate (0.20 h(-1) vs. 0.15 h(-1) on glucose and 0.14 h(-1) vs. 0.10 h(-1) on xylose) and tolerance to butyric acid. Consequently, batch fermentation with the mutant gave higher fermentation rate and productivities (26-48% increase for butyrate, 81-100% increase for acetate, and 38-46% increase for hydrogen). This mutant thus can be used more efficiently than the parental strain in fermentations to produce butyrate, acetate, and hydrogen from glucose and xylose.

  6. Brief Report: Altered Social Behavior in Isolation-Reared "Fmr1" Knockout Mice

    Science.gov (United States)

    Heitzer, Andrew M.; Roth, Alexandra K.; Nawrocki, Lauren; Wrenn, Craige C.; Valdovinos, Maria G.

    2013-01-01

    Social behavior abnormalities in Fragile X syndrome (FXS) are characterized by social withdrawal, anxiety, and deficits in social cognition. To assess these deficits, a model of FXS, the "Fmr1" knockout mouse ("Fmr1" KO), has been utilized. This mouse model has a null mutation in the fragile X mental retardation 1 gene ("Fmr1") and displays…

  7. CRISPR-Cas9-based knockout of the prion protein and its effect on the proteome.

    Directory of Open Access Journals (Sweden)

    Mohadeseh Mehrabian

    Full Text Available The molecular function of the cellular prion protein (PrPC and the mechanism by which it may contribute to neurotoxicity in prion diseases and Alzheimer's disease are only partially understood. Mouse neuroblastoma Neuro2a cells and, more recently, C2C12 myocytes and myotubes have emerged as popular models for investigating the cellular biology of PrP. Mouse epithelial NMuMG cells might become attractive models for studying the possible involvement of PrP in a morphogenetic program underlying epithelial-to-mesenchymal transitions. Here we describe the generation of PrP knockout clones from these cell lines using CRISPR-Cas9 knockout technology. More specifically, knockout clones were generated with two separate guide RNAs targeting recognition sites on opposite strands within the first hundred nucleotides of the Prnp coding sequence. Several PrP knockout clones were isolated and genomic insertions and deletions near the CRISPR-target sites were characterized. Subsequently, deep quantitative global proteome analyses that recorded the relative abundance of>3000 proteins (data deposited to ProteomeXchange Consortium were undertaken to begin to characterize the molecular consequences of PrP deficiency. The levels of ∼ 120 proteins were shown to reproducibly correlate with the presence or absence of PrP, with most of these proteins belonging to extracellular components, cell junctions or the cytoskeleton.

  8. Immunopathologic effects associated with Sarcocystis neurona-infected interferon-gamma knockout mice

    OpenAIRE

    Witonsky, S. G.; Gogal, R. M.; Duncan, R. B.; Lindsay, D S

    2003-01-01

    Interferon-gamma knockout (IFN-gamma KO) mice were infected with Sarcocystis neurona merozoites to characterize the immunopathology associated with infection. By day 14 postinfection (PI), mice developed splenomegaly and lymphadenopathy, characterized by marked lymphoid hyperplasia with increased numbers of germinal centers. Additional histopathologic changes included increased extramedullary hematopoiesis, multifocal mixed inflammatory infiltrates in the liver, perivascular infiltrate of the...

  9. Histidine decarboxylase knockout mice, a genetic model of Tourette syndrome, show repetitive grooming after induced fear.

    Science.gov (United States)

    Xu, Meiyu; Li, Lina; Ohtsu, Hiroshi; Pittenger, Christopher

    2015-05-19

    Tics, such as are seen in Tourette syndrome (TS), are common and can cause profound morbidity, but they are poorly understood. Tics are potentiated by psychostimulants, stress, and sleep deprivation. Mutations in the gene histidine decarboxylase (Hdc) have been implicated as a rare genetic cause of TS, and Hdc knockout mice have been validated as a genetic model that recapitulates phenomenological and pathophysiological aspects of the disorder. Tic-like stereotypies in this model have not been observed at baseline but emerge after acute challenge with the psychostimulant d-amphetamine. We tested the ability of an acute stressor to stimulate stereotypies in this model, using tone fear conditioning. Hdc knockout mice acquired conditioned fear normally, as manifested by freezing during the presentation of a tone 48h after it had been paired with a shock. During the 30min following tone presentation, knockout mice showed increased grooming. Heterozygotes exhibited normal freezing and intermediate grooming. These data validate a new paradigm for the examination of tic-like stereotypies in animals without pharmacological challenge and enhance the face validity of the Hdc knockout mouse as a pathophysiologically grounded model of tic disorders.

  10. The NOP (ORL1) receptor antagonist Compound B stimulates mesolimbic dopamine release and is rewarding in mice by a non-NOP-receptor-mediated mechanism.

    Science.gov (United States)

    Koizumi, Miwako; Sakoori, Kazuto; Midorikawa, Naoko; Murphy, Niall P

    2004-09-01

    1. Compound B (1-[(3R, 4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one, CompB) is a nociceptin/orphanin FQ (N/OFQ) antagonist showing high selectivity for the NOP (ORL1) receptor over classical opioid receptors. We studied the effect of subcutaneous CompB administration on the release of mesolimbic dopamine (DA) and the expression of hedonia in mice. 2. CompB (0.3-30 mg kg(-1)) dose dependently stimulated mesolimbic DA release as measured by in vivo freely moving microdialysis, without any change in locomotor activity. However, intracerebroventricular administered N/OFQ (endogenous agonist of the NOP receptor, 6 nmol) did not influence CompB- (10 mg kg(-1)) induced DA release, despite clearly suppressing release when administered alone. 3. Studies using NOP receptor knockout mice and no-net-flux microdialysis revealed mildly, but not statistically significantly higher endogenous DA levels in mice lacking the NOP receptor compared to wild-type mice. Administration of CompB (10 mg kg(-1)) induced identical increases in mesolimbic DA release in wild-type and NOP receptor knockout mice. 4. CompB was rewarding in approximately the same dose range in which CompB induced major increases in mesolimbic DA release when assayed using a conditioned place preference paradigm. The rewarding effect of CompB (30 mg kg(-1)) was maintained in NOP receptor knockout mice. 5. These results show that CompB stimulates mesolimbic DA release and is rewarding by an action independent of the NOP receptor, the precise site of which is unclear. Consequently, caution should be exercised when interpreting the results of studies using this drug, particularly when administered by a peripheral route. PMID:15289286

  11. IgG Suppresses Antibody Responses in Mice Lacking C1q, C3, Complement Receptors 1 and 2, or IgG Fc-Receptors.

    Science.gov (United States)

    Bergström, Joakim J E; Heyman, Birgitta

    2015-01-01

    Antigen-specific IgG antibodies, passively administered to mice or humans together with large particulate antigens like erythrocytes, can completely suppress the antibody response against the antigen. This is used clinically in Rhesus prophylaxis, where administration of IgG anti-RhD prevents RhD-negative women from becoming immunized against RhD-positive fetal erythrocytes aquired transplacentally. The mechanisms by which IgG suppresses antibody responses are poorly understood. We have here addressed whether complement or Fc-receptors for IgG (FcγRs) are required for IgG-mediated suppression. IgG, specific for sheep red blood cells (SRBC), was administered to mice together with SRBC and the antibody responses analyzed. IgG was able to suppress early IgM- as well as longterm IgG-responses in wildtype mice equally well as in mice lacking FcγRIIB (FcγRIIB knockout mice) or FcγRI, III, and IV (FcRγ knockout mice). Moreover, IgG was able to suppress early IgM responses equally well in mice lacking C1q (C1qA knockout mice), C3 (C3 knockout mice), or complement receptors 1 and 2 (Cr2 knockout mice) as in wildtype mice. Owing to the previously described severely impaired IgG responses in the complement deficient mice, it was difficult to assess whether passively administered IgG further decreased their IgG response. In conclusion, Fc-receptor binding or complement-activation by IgG does not seem to be required for its ability to suppress antibody responses to xenogeneic erythrocytes. PMID:26619292

  12. IgG Suppresses Antibody Responses in Mice Lacking C1q, C3, Complement Receptors 1 and 2, or IgG Fc-Receptors.

    Directory of Open Access Journals (Sweden)

    Joakim J E Bergström

    Full Text Available Antigen-specific IgG antibodies, passively administered to mice or humans together with large particulate antigens like erythrocytes, can completely suppress the antibody response against the antigen. This is used clinically in Rhesus prophylaxis, where administration of IgG anti-RhD prevents RhD-negative women from becoming immunized against RhD-positive fetal erythrocytes aquired transplacentally. The mechanisms by which IgG suppresses antibody responses are poorly understood. We have here addressed whether complement or Fc-receptors for IgG (FcγRs are required for IgG-mediated suppression. IgG, specific for sheep red blood cells (SRBC, was administered to mice together with SRBC and the antibody responses analyzed. IgG was able to suppress early IgM- as well as longterm IgG-responses in wildtype mice equally well as in mice lacking FcγRIIB (FcγRIIB knockout mice or FcγRI, III, and IV (FcRγ knockout mice. Moreover, IgG was able to suppress early IgM responses equally well in mice lacking C1q (C1qA knockout mice, C3 (C3 knockout mice, or complement receptors 1 and 2 (Cr2 knockout mice as in wildtype mice. Owing to the previously described severely impaired IgG responses in the complement deficient mice, it was difficult to assess whether passively administered IgG further decreased their IgG response. In conclusion, Fc-receptor binding or complement-activation by IgG does not seem to be required for its ability to suppress antibody responses to xenogeneic erythrocytes.

  13. Global Nav1.7 knockout mice recapitulate the phenotype of human congenital indifference to pain.

    Directory of Open Access Journals (Sweden)

    Jacinthe Gingras

    Full Text Available Clinical genetic studies have shown that loss of Nav1.7 function leads to the complete loss of acute pain perception. The global deletion is reported lethal in mice, however, and studies of mice with promoter-specific deletions of Nav1.7 have suggested that the role of Nav1.7 in pain transduction depends on the precise form of pain. We developed genetic and animal husbandry strategies that overcame the neonatal-lethal phenotype and enabled construction of a global Nav1.7 knockout mouse. Knockouts were anatomically normal, reached adulthood, and had phenotype wholly analogous to human congenital indifference to pain (CIP: compared to littermates, knockouts showed no defects in mechanical sensitivity or overall movement yet were completely insensitive to painful tactile, thermal, and chemical stimuli and were anosmic. Knockouts also showed no painful behaviors resulting from peripheral injection of nonselective sodium channel activators, did not develop complete Freund's adjuvant-induced thermal hyperalgesia, and were insensitive to intra-dermal histamine injection. Tetrodotoxin-sensitive sodium current recorded from cell bodies of isolated sensory neurons and the mechanically-evoked spiking of C-fibers in a skin-nerve preparation each were reduced but not eliminated in tissue from knockouts compared to littermates. Results support a role for Nav1.7 that is conserved between rodents and humans and suggest several possibly translatable biomarkers for the study of Nav1.7-targeted therapeutics. Results further suggest that Nav1.7 may retain its key role in persistent as well as acute forms of pain.

  14. Sdhd and SDHD/H19 knockout mice do not develop paraganglioma or pheochromocytoma.

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Bayley

    Full Text Available BACKGROUND: Mitochondrial succinate dehydrogenase (SDH is a component of both the tricarboxylic acid cycle and the electron transport chain. Mutations of SDHD, the first protein of intermediary metabolism shown to be involved in tumorigenesis, lead to the human tumors paraganglioma (PGL and pheochromocytoma (PC. SDHD is remarkable in showing an 'imprinted' tumor suppressor phenotype. Mutations of SDHD show a very high penetrance in man and we postulated that knockout of Sdhd would lead to the development of PGL/PC, probably in aged mice. METHODOLOGY/PRINCIPAL FINDINGS: We generated a conventional knockout of Sdhd in the mouse, removing the entire third exon. We also crossed this mouse with a knockout of H19, a postulated imprinted modifier gene of Sdhd tumorigenesis, to evaluate if loss of these genes together would lead to the initiation or enhancement of tumor development. Homozygous knockout of Sdhd results in embryonic lethality. No paraganglioma or other tumor development was seen in Sdhd KO mice followed for their entire lifespan, in sharp contrast to the highly penetrant phenotype in humans. Heterozygous Sdhd KO mice did not show hyperplasia of paraganglioma-related tissues such as the carotid body or of the adrenal medulla, or any genotype-related pathology, with similar body and organ weights to wildtype mice. A cohort of Sdhd/H19 KO mice developed several cases of profound cardiac hypertrophy, but showed no evidence of PGL/PC. CONCLUSIONS: Knockout of Sdhd in the mouse does not result in a disease phenotype. H19 may not be an initiator of PGL/PC tumorigenesis.

  15. P-glycoprotein interaction with risperidone and 9-OH-risperidone studied in vitro, in knock-out mice and in drug-drug interaction experiments

    DEFF Research Database (Denmark)

    Ejsing, Thomas B.; Pedersen, Anne D.; Linnet, Kristian

    2005-01-01

    P-glycoprotein, risperidone, nortriptyline, cyclosporine A, drug-drug interaction, blood-brain barrier, knock-out mice......P-glycoprotein, risperidone, nortriptyline, cyclosporine A, drug-drug interaction, blood-brain barrier, knock-out mice...

  16. Toward Selective Drug Development for the Human 5-Hydroxytryptamine 1E Receptor: A Comparison of 5-Hydroxytryptamine 1E and 1F Receptor Structure-Affinity RelationshipsS⃞

    OpenAIRE

    Klein, Michael T.; Dukat, Małgorzata; Glennon, Richard A.; Teitler, Milt

    2011-01-01

    The 5-hydroxytryptamine (5-HT) 1E receptor is highly expressed in the human frontal cortex and hippocampus, and this distribution suggests the function of 5-HT1E receptors might be linked to memory. To test this hypothesis, behavioral experiments are needed. Because rats and mice lack a 5-HT1E receptor gene, knockout strategies cannot be used to elucidate this receptor's functions. Thus, selective pharmacological tools must be developed. The tryptamine-related agonist BRL54443 [5-hydroxy-3-(1...

  17. Functional polymorphisms in the P2X7 receptor gene are associated with osteoporosis

    DEFF Research Database (Denmark)

    Husted, L B; Harsløf, T; Stenkjær, L;

    2013-01-01

    UNLABELLED: The P2X(7) receptor is an ATP-gated cation channel. We investigated the effect of both loss-of-function and gain-of-function polymorphisms in the P2X(7) receptor gene on BMD and risk of vertebral fractures and found that five polymorphisms and haplotypes containing three of these poly......UNLABELLED: The P2X(7) receptor is an ATP-gated cation channel. We investigated the effect of both loss-of-function and gain-of-function polymorphisms in the P2X(7) receptor gene on BMD and risk of vertebral fractures and found that five polymorphisms and haplotypes containing three...... of these polymorphisms were associated with BMD and fracture risk. INTRODUCTION: The P2X(7) receptor is an ATP-gated cation channel. P2X(7) receptor knockout mice have reduced total bone mineral content, and because several functional polymorphisms have been identified in the human P2X(7) receptor gene, we wanted...... variant allele, which has been associated with increased receptor function in monocytes, was associated with increased total hip BMD in women. With the exception of His155Tyr for which we found conflicting results in men and women, our results are consistent with the phenotype of the knockout mouse...

  18. Promyelocytic leukemia zinc finger protein activates GATA4 transcription and mediates cardiac hypertrophic signaling from angiotensin II receptor 2.

    Directory of Open Access Journals (Sweden)

    Ning Wang

    Full Text Available BACKGROUND: Pressure overload and prolonged angiotensin II (Ang II infusion elicit cardiac hypertrophy in Ang II receptor 1 (AT(1 null mouse, whereas Ang II receptor 2 (AT(2 gene deletion abolishes the hypertrophic response. The roles and signals of the cardiac AT(2 receptor still remain unsettled. Promyelocytic leukemia zinc finger protein (PLZF was shown to bind to the AT(2 receptor and transmit the hypertrophic signal. Using PLZF knockout mice we directed our studies on the function of PLZF concerning the cardiac specific transcription factor GATA4, and GATA4 targets. METHODOLOGY AND PRINCIPAL FINDINGS: PLZF knockout and age-matched wild-type (WT mice were treated with Ang II, infused at a rate of 4.2 ng·kg(-1·min(-1 for 3 weeks. Ang II elevated systolic blood pressure to comparable levels in PLZF knockout and WT mice (140 mmHg. WT mice developed prominent cardiac hypertrophy and fibrosis after Ang II infusion. In contrast, there was no obvious cardiac hypertrophy or fibrosis in PLZF knockout mice. An AT(2 receptor blocker given to Ang II-infused wild type mice prevented hypertrophy, verifying the role of AT(2 receptor for cardiac hypertrophy. Chromatin immunoprecipitation and electrophoretic mobility shift assay showed that PLZF bound to the GATA4 gene regulatory region. A Luciferase assay verified that PLZF up-regulated GATA4 gene expression and the absence of PLZF expression in vivo produced a corresponding repression of GATA4 protein. CONCLUSIONS: PLZF is an important AT(2 receptor binding protein in mediating Ang II induced cardiac hypertrophy through an AT(2 receptor-dependent signal pathway. The angiotensin II-AT(2-PLZF-GATA4 signal may further augment Ang II induced pathological effects on cardiomyocytes.

  19. Oxytocin-induced analgesia and scratching are mediated by the vasopressin-1A receptor in the mouse

    OpenAIRE

    Schorscher-Petcu, Ara; Sotocinal, Susana; Ciura, Sorana; Dupré, Anouk; Ritchie, Jennifer; Sorge, Robert E; Crawley, Jacqueline N; Hu, Shuang-Bao; Nishimori, Katsuhiko; Young, Larry J.; Tribollet, Eliane; Quirion, Rémi; Mogil, Jeffrey S.

    2010-01-01

    The neuropeptides oxytocin (OXT) and arginine vasopressin (AVP) contribute to the regulation of diverse cognitive and physiological functions including nociception. Indeed, OXT has been reported to be analgesic when administered directly into the brain, the spinal cord or systemically. Here, we characterized the phenotype of oxytocin receptor (OTR) and vasopressin-1A receptor (V1AR) null mutant mice in a battery of pain assays. Surprisingly, OTR knockout mice displayed a pain phenotype identi...

  20. Reevaluation of Fatty Acid Receptor 1 as a Drug Target for the Stimulation of Insulin Secretion in Humans

    OpenAIRE

    Wagner, Robert; Kaiser, Gabriele; Gerst, Felicia; Christiansen, Elisabeth; Due-Hansen, Maria E.; Grundmann, Manuel; Machicao, Fausto; Peter, Andreas; Kostenis, Evi; Ulven, Trond; Fritsche, Andreas; Häring, Hans-Ulrich; Ullrich, Susanne

    2013-01-01

    The role of free fatty acid receptor 1 (FFAR1/GPR40) in glucose homeostasis is still incompletely understood. Small receptor agonists stimulating insulin secretion are undergoing investigation for the treatment of type 2 diabetes. Surprisingly, genome-wide association studies did not discover diabetes risk variants in FFAR1. We reevaluated the role of FFAR1 in insulin secretion using a specific agonist, FFAR1-knockout mice and human islets. Nondiabetic individuals were metabolically phenotype...

  1. Highly segmented CVD diamond detectors and high-resolution momentum measurements in knockout reactions; Hochsegmentierte CVD Diamant Detektoren und hochaufloesende Impulsmessungen in Knockout Reaktionen

    Energy Technology Data Exchange (ETDEWEB)

    Schwertel, Sabine

    2009-11-26

    In recent years knockout reactions have proven to be important tools for investigations of the structure of light exotic nuclei. In spring 2006 an experiment was performed with the fragment separator at GSI in Darmstadt to extend this method to medium-mass nuclei with energies of about 400 AMeV. An experiment with a stable and well-known {sup 48}Ca primary beam was performed as a reference. The FRS was set for the reaction {sup 56}Ti{yields}{sup 55}Ti. Because of the high acceptance of the FRS, mother and daughter nuclei of one-neutron knockout reactions in the Sc isotopes {sup 51,52,53,54,55}Sc were also transported with high efficiency. These are investigated in the first part of this thesis. Inclusive cross sections of 77(10) mbarn for one-neutron knockout from {sup 48}Ca and 78(12) mbarn, 99(15) mbarn, 101(15) mbarn, 113(17) mbarn and 72(14) mbarn for knockout from {sup 51,52,53,54,55}Sc, respectively, were measured for the first time. For the Sc isotopes the reduction factors are close to 1. For the one-neutron knockout reactions in {sup 48}Ca and the Sc isotopes, respectively, the momentum distributions could be measured with a relative resolution of 0.17-0.27 %. From the momentum distributions spectroscopic factors of the involved orbitals could be extracted. In the future, further knockout experiments should be performed using the R{sup 3}B setup at FAIR. The available beam intensity will be up to four orders of magnitude higher. As the beam has to be tracked from the dispersive plane of the Super-FRS up to the R{sup 3}B target, radiation hard detectors are needed. In the framework of this thesis extensive measurements were performed at the tandem accelerator in Munich with numerous small (10 x 10 mm{sup 2}) test detectors. Samples using new manufacturing methods were characterized. A dose of some 10{sup 11} ions/mm{sup 2} was determined as a limit for the exposure of the material with heavy ions of high ionisation density. It could be shown that even

  2. Low dose pramipexole causes D3 receptor-independent reduction of locomotion and responding for a conditioned reinforcer.

    Science.gov (United States)

    McCormick, P N; Fletcher, P J; Wilson, V S; Browne, J D C; Nobrega, J N; Remington, G J

    2015-02-01

    Pramipexole is a clinically important dopamine receptor agonist with reported selectivity for dopamine D3 receptors over other dopaminergic and non-dopaminergic sites. Many of its behavioural effects are therefore attributed to D3 receptor activity. Here we relate pramipexole's ex vivo D2 and D3 receptor binding (measured using [(3)H]-(+)-PHNO binding experiments) to its effects on locomotion and operant responding for primary and conditioned reinforcers. We show that pramipexole has inhibitory behavioural effects on all three behaviours at doses that occupy D3 but not D2 receptor. However, these effects are 1) not inhibited by a D3 selective dose of the antagonist SB-277011-A, and 2) present in D3 receptor knockout mice. These results suggest that a pharmacological mechanism other than D3 receptor activity must be responsible for these behavioural effects. Finally, our receptor binding results also suggest that these behavioural effects are independent of D2 receptor activity. However, firmer conclusions regarding D2 involvement would be aided by further pharmacological or receptor knock-out experiments. The implications of our findings for the understanding of pramipexole's behavioural and clinical effects are discussed. PMID:25283483

  3. Gliosis after traumatic brain injury in conditional ephrinB2-knockout mice

    Institute of Scientific and Technical Information of China (English)

    LIU Ling; CHEN Xiao-lin; YANG Jian-kai; REN Ze-guang; WANG Shuo

    2012-01-01

    Background In response to the injury of the central nervous system (CNS),the astrocytes upregulate the expression of glial fibrillary acidic protein (GFAP),which largely contributes to the reactive gliosis after brain injury.The regulatory mechanism of this process is still not clear.In this study,we aimed to compare the ephrin-B2 deficient mice with the wild type ones with regard to gliosis after traumatic brain injury.Methods We generated ephrin-B2 knockout mice specifically in CNS astrocytes.Twelve mice from this gene-knockout strain were randomly selected along with twelve mice from the wild type littermates.In both groups,a modified controlled cortical impact injury model was applied to create a closed traumatic brain injury.Twenty-eight days after the injury,Nissl staining and GFAP immunofluorescence staining were used to compare the brain atrophy and GFAP immunoreactivity between the two groups.All the data were analyzed by t-test for between-group comparison.Results We successfully set up the conditional ephrin-B2 knockout mice strain,which was confirmed by genotyping and ephrin-B2/GFAP double staining.These mice developed normally without apparent abnormality in general appearance.Twenty-eight days following brain injury,histopathology revealed by immunohistochemistry showed different degrees of cerebral injuries in both groups.Compared with wild-type group,the ephrin-B2 knockout group exhibited less brain atrophy ratio for the injured hemispheres (P=0.005) and hippocampus (P=0.027).Also the wild-type group demonstrated greater GFAP immunoreactivity increment within hippocampal regions (P=0.008).Conclusions The establishment of conditional ephrin-B2 knockout mice provides us with a new way to explore the role of ephrin-B2 in astrocytes.Our findings revealed less atrophy and GFAP immunoreactivity in the knockout mice strain after traumatic brain injury,which implied ephrin-B2 could be one of the promoters to upregulate gliosis following brain injury.

  4. Highly segmented CVD diamond detectors and high-resolution momentum measurements in knockout reactions

    International Nuclear Information System (INIS)

    In recent years knockout reactions have proven to be important tools for investigations of the structure of light exotic nuclei. In spring 2006 an experiment was performed with the fragment separator at GSI in Darmstadt to extend this method to medium-mass nuclei with energies of about 400 AMeV. An experiment with a stable and well-known 48Ca primary beam was performed as a reference. The FRS was set for the reaction 56Ti→55Ti. Because of the high acceptance of the FRS, mother and daughter nuclei of one-neutron knockout reactions in the Sc isotopes 51,52,53,54,55Sc were also transported with high efficiency. These are investigated in the first part of this thesis. Inclusive cross sections of 77(10) mbarn for one-neutron knockout from 48Ca and 78(12) mbarn, 99(15) mbarn, 101(15) mbarn, 113(17) mbarn and 72(14) mbarn for knockout from 51,52,53,54,55Sc, respectively, were measured for the first time. For the Sc isotopes the reduction factors are close to 1. For the one-neutron knockout reactions in 48Ca and the Sc isotopes, respectively, the momentum distributions could be measured with a relative resolution of 0.17-0.27 %. From the momentum distributions spectroscopic factors of the involved orbitals could be extracted. In the future, further knockout experiments should be performed using the R3B setup at FAIR. The available beam intensity will be up to four orders of magnitude higher. As the beam has to be tracked from the dispersive plane of the Super-FRS up to the R3B target, radiation hard detectors are needed. In the framework of this thesis extensive measurements were performed at the tandem accelerator in Munich with numerous small (10 x 10 mm2) test detectors. Samples using new manufacturing methods were characterized. A dose of some 1011 ions/mm2 was determined as a limit for the exposure of the material with heavy ions of high ionisation density. It could be shown that even highly segmented detectors with an efficiency ε>98 % could be built from this

  5. Phenotypes Associated with Knockouts of Eight Dense Granule Gene Loci (GRA2-9) in Virulent Toxoplasma gondii.

    Science.gov (United States)

    Rommereim, Leah M; Bellini, Valeria; Fox, Barbara A; Pètre, Graciane; Rak, Camille; Touquet, Bastien; Aldebert, Delphine; Dubremetz, Jean-François; Cesbron-Delauw, Marie-France; Mercier, Corinne; Bzik, David J

    2016-01-01

    Toxoplasma gondii actively invades host cells and establishes a parasitophorous vacuole (PV) that accumulates many proteins secreted by the dense granules (GRA proteins). To date, at least 23 GRA proteins have been reported, though the function(s) of most of these proteins still remains unknown. We targeted gene knockouts at ten GRA gene loci (GRA1-10) to investigate the cellular roles and essentiality of these classical GRA proteins during acute infection in the virulent type I RH strain. While eight of these genes (GRA2-9) were successfully knocked out, targeted knockouts at the GRA1 and GRA10 loci were not obtained, suggesting these GRA proteins may be essential. As expected, the Δgra2 and Δgra6 knockouts failed to form an intravacuolar network (IVN). Surprisingly, Δgra7 exhibited hyper-formation of the IVN in both normal and lipid-free growth conditions. No morphological alterations were identified in parasite or PV structures in the Δgra3, Δgra4, Δgra5, Δgra8, or Δgra9 knockouts. With the exception of the Δgra3 and Δgra8 knockouts, all of the GRA knockouts exhibited defects in their infection rate in vitro. While the single GRA knockouts did not exhibit reduced replication rates in vitro, replication rate defects were observed in three double GRA knockout strains (Δgra4Δgra6, Δgra3Δgra5 and Δgra3Δgra7). However, the virulence of single or double GRA knockout strains in CD1 mice was not affected. Collectively, our results suggest that while the eight individual GRA proteins investigated in this study (GRA2-9) are not essential, several GRA proteins may provide redundant and potentially important functions during acute infection. PMID:27458822

  6. Lipoxin Receptors

    Directory of Open Access Journals (Sweden)

    Mario Romano

    2007-01-01

    Full Text Available Lipoxins (LXs represent a class of arachidonic acid (AA metabolites that carry potent immunoregulatory and anti-inflammatory properties, LXA4 and LXB4 being the main components of this series. LXs are generated by cooperation between 5-lipoxygenase (LO and 12- or 15-LO during cell-cell interactions or by single cell types. LX epimers at carbon 15, the 15-epi-LXs, are formed by aspirin-acetylated cyclooxygenase-2 (COX-2 in cooperation with 5-LO. 15-epi-LXA4 is also termed aspirin-triggered LX (ATL. In vivo studies with stable LX and ATL analogs have established that these eicosanoids possess potent anti-inflammatory activities. A LXA4 receptor has been cloned. It belongs to the family of chemotactic receptors and clusters with formyl peptide receptors on chromosome 19. Therefore, it was initially denominated formyl peptide receptor like 1 (FPRL1. This receptor binds with high affinity and stereoselectivity LXA4 and ATL. It also recognizes a variety of peptides, synthetic, endogenously generated, or disease associated, but with lower affinity compared to LXA4. For this reason, this receptor has been renamed ALX. This review summarizes the current knowledge on ALX expression, signaling, and potential pathophysiological role. The involvement of additional recognition sites in LX bioactions is also discussed.

  7. Abnormal social behavior, hyperactivity, impaired remote spatial memory, and increased D1-mediated dopaminergic signaling in neuronal nitric oxide synthase knockout mice

    Directory of Open Access Journals (Sweden)

    Tanda Koichi

    2009-06-01

    Full Text Available Abstract Background Neuronal nitric oxide synthase (nNOS is involved in the regulation of a diverse population of intracellular messenger systems in the brain. In humans, abnormal NOS/nitric oxide metabolism is suggested to contribute to the pathogenesis and pathophysiology of some neuropsychiatric disorders, such as schizophrenia and bipolar disorder. Mice with targeted disruption of the nNOS gene exhibit abnormal behaviors. Here, we subjected nNOS knockout (KO mice to a battery of behavioral tests to further investigate the role of nNOS in neuropsychiatric functions. We also examined the role of nNOS in dopamine/DARPP-32 signaling in striatal slices from nNOS KO mice and the effects of the administration of a dopamine D1 receptor agonist on behavior in nNOS KO mice. Results nNOS KO mice showed hyperlocomotor activity in a novel environment, increased social interaction in their home cage, decreased depression-related behavior, and impaired spatial memory retention. In striatal slices from nNOS KO mice, the effects of a dopamine D1 receptor agonist, SKF81297, on the phosphorylation of DARPP-32 and AMPA receptor subunit GluR1 at protein kinase A sites were enhanced. Consistent with the biochemical results, intraperitoneal injection of a low dose of SKF81297 significantly decreased prepulse inhibition in nNOS KO mice, but not in wild-type mice. Conclusion These findings indicate that nNOS KO upregulates dopamine D1 receptor signaling, and induces abnormal social behavior, hyperactivity and impaired remote spatial memory. nNOS KO mice may serve as a unique animal model of psychiatric disorders.

  8. Nicotine reward and affective nicotine withdrawal signs are attenuated in calcium/calmodulin-dependent protein kinase IV knockout mice.

    Directory of Open Access Journals (Sweden)

    Kia J Jackson

    Full Text Available The influx of Ca(2+ through calcium-permeable nicotinic acetylcholine receptors (nAChRs leads to activation of various downstream processes that may be relevant to nicotine-mediated behaviors. The calcium activated protein, calcium/calmodulin-dependent protein kinase IV (CaMKIV phosphorylates the downstream transcription factor cyclic AMP response element binding protein (CREB, which mediates nicotine responses; however the role of CaMKIV in nicotine dependence is unknown. Given the proposed role of CaMKIV in CREB activation, we hypothesized that CaMKIV might be a crucial molecular component in the development of nicotine dependence. Using male CaMKIV genetically modified mice, we found that nicotine reward is attenuated in CaMKIV knockout (-/- mice, but cocaine reward is enhanced in these mice. CaMKIV protein levels were also increased in the nucleus accumbens of C57Bl/6 mice after nicotine reward. In a nicotine withdrawal assessment, anxiety-related behavior, but not somatic signs or the hyperalgesia response are attenuated in CaMKIV -/- mice. To complement our animal studies, we also conducted a human genetic association analysis and found that variants in the CaMKIV gene are associated with a protective effect against nicotine dependence. Taken together, our results support an important role for CaMKIV in nicotine reward, and suggest that CaMKIV has opposing roles in nicotine and cocaine reward. Further, CaMKIV mediates affective, but not physical nicotine withdrawal signs, and has a protective effect against nicotine dependence in human genetic association studies. These findings further indicate the importance of calcium-dependent mechanisms in mediating behaviors associated with drugs of abuse.

  9. Low-dose nicotine facilitates spatial memory in ApoE-knockout mice in the radial arm maze.

    Science.gov (United States)

    Sultana, Ruby; Ameno, Kiyoshi; Jamal, Mostofa; Miki, Takanori; Tanaka, Naoko; Ono, Junichiro; Kinoshita, Hiroshi; Nakamura, Yu

    2013-06-01

    Here, we investigated the effects of nicotine on spatial memory in ApoE-knockout (ApoE-KO) and wild-type (WT) mice in a radial arm maze. Training occurred on three consecutive days and the test was performed on day 4, with one trial per day. Then on day 4, animals were administered nicotine (0.1, 0.25, 0.5, and 1.0 mg/kg) or the antagonist of nicotinic receptors (nAChRs) mecamylamine (MEC 2 mg/kg) alone or together with 0.1 mg/kg nicotine. The number of errors in the first eight choices was recorded. The results were that 0.1 mg/kg nicotine decreased errors in ApoE-KO mice, while 0.1 and 0.25 mg/kg nicotine reduced errors in WT mice, indicating that lower doses of nicotine elicit a memory improvement. In contrast, 1.0 mg/kg nicotine increased errors in WT mice, but not in ApoE-KO mice. MEC alone had no noticeable effect on errors in either strain of mice. However, co-administration of 0.1 mg/kg nicotine and MEC increased errors and reduced the effects of nicotine in WT mice, but not in ApoE-KO mice. Our study found a biphasic effect of nicotine in WT mice: it improves spatial memory at lower doses and impairs it at a higher dose. In ApoE-KO mice, nicotine improves memory at a low dose and has no effect at a higher dose, suggesting that the ApoE deficiency may influence the efficacy of nicotine. Moreover, a reversal of nicotinic effects with MEC was seen in WT mice, indicating the likelihood of the involvement of nAChRs in the spatial-memory response to nicotine.

  10. The FKBP5 Gene Affects Alcohol Drinking in Knockout Mice and Is Implicated in Alcohol Drinking in Humans

    Science.gov (United States)

    Qiu, Bin; Luczak, Susan E.; Wall, Tamara L.; Kirchhoff, Aaron M.; Xu, Yuxue; Eng, Mimy Y.; Stewart, Robert B.; Shou, Weinian; Boehm, Stephen L.; Chester, Julia A.; Yong, Weidong; Liang, Tiebing

    2016-01-01

    FKBP5 encodes FK506-binding protein 5, a glucocorticoid receptor (GR)-binding protein implicated in various psychiatric disorders and alcohol withdrawal severity. The purpose of this study is to characterize alcohol preference and related phenotypes in Fkbp5 knockout (KO) mice and to examine the role of FKBP5 in human alcohol consumption. The following experiments were performed to characterize Fkpb5 KO mice. (1) Fkbp5 KO and wild-type (WT) EtOH consumption was tested using a two-bottle choice paradigm; (2) The EtOH elimination rate was measured after intraperitoneal (IP) injection of 2.0 g/kg EtOH; (3) Blood alcohol concentration (BAC) was measured after 3 h limited access of alcohol; (4) Brain region expression of Fkbp5 was identified using LacZ staining; (5) Baseline corticosterone (CORT) was assessed. Additionally, two SNPs, rs1360780 (C/T) and rs3800373 (T/G), were selected to study the association of FKBP5 with alcohol consumption in humans. Participants were college students (n = 1162) from 21–26 years of age with Chinese, Korean or Caucasian ethnicity. The results, compared to WT mice, for KO mice exhibited an increase in alcohol consumption that was not due to differences in taste sensitivity or alcohol metabolism. Higher BAC was found in KO mice after 3 h of EtOH access. Fkbp5 was highly expressed in brain regions involved in the regulation of the stress response, such as the hippocampus, amygdala, dorsal raphe and locus coeruleus. Both genotypes exhibited similar basal levels of plasma corticosterone (CORT). Finally, single nucleotide polymorphisms (SNPs) in FKBP5 were found to be associated with alcohol drinking in humans. These results suggest that the association between FKBP5 and alcohol consumption is conserved in both mice and humans. PMID:27527158

  11. The FKBP5 Gene Affects Alcohol Drinking in Knockout Mice and Is Implicated in Alcohol Drinking in Humans

    Directory of Open Access Journals (Sweden)

    Bin Qiu

    2016-08-01

    Full Text Available FKBP5 encodes FK506-binding protein 5, a glucocorticoid receptor (GR-binding protein implicated in various psychiatric disorders and alcohol withdrawal severity. The purpose of this study is to characterize alcohol preference and related phenotypes in Fkbp5 knockout (KO mice and to examine the role of FKBP5 in human alcohol consumption. The following experiments were performed to characterize Fkpb5 KO mice. (1 Fkbp5 KO and wild-type (WT EtOH consumption was tested using a two-bottle choice paradigm; (2 The EtOH elimination rate was measured after intraperitoneal (IP injection of 2.0 g/kg EtOH; (3 Blood alcohol concentration (BAC was measured after 3 h limited access of alcohol; (4 Brain region expression of Fkbp5 was identified using LacZ staining; (5 Baseline corticosterone (CORT was assessed. Additionally, two SNPs, rs1360780 (C/T and rs3800373 (T/G, were selected to study the association of FKBP5 with alcohol consumption in humans. Participants were college students (n = 1162 from 21–26 years of age with Chinese, Korean or Caucasian ethnicity. The results, compared to WT mice, for KO mice exhibited an increase in alcohol consumption that was not due to differences in taste sensitivity or alcohol metabolism. Higher BAC was found in KO mice after 3 h of EtOH access. Fkbp5 was highly expressed in brain regions involved in the regulation of the stress response, such as the hippocampus, amygdala, dorsal raphe and locus coeruleus. Both genotypes exhibited similar basal levels of plasma corticosterone (CORT. Finally, single nucleotide polymorphisms (SNPs in FKBP5 were found to be associated with alcohol drinking in humans. These results suggest that the association between FKBP5 and alcohol consumption is conserved in both mice and humans.

  12. The FKBP5 Gene Affects Alcohol Drinking in Knockout Mice and Is Implicated in Alcohol Drinking in Humans.

    Science.gov (United States)

    Qiu, Bin; Luczak, Susan E; Wall, Tamara L; Kirchhoff, Aaron M; Xu, Yuxue; Eng, Mimy Y; Stewart, Robert B; Shou, Weinian; Boehm, Stephen L; Chester, Julia A; Yong, Weidong; Liang, Tiebing

    2016-08-05

    FKBP5 encodes FK506-binding protein 5, a glucocorticoid receptor (GR)-binding protein implicated in various psychiatric disorders and alcohol withdrawal severity. The purpose of this study is to characterize alcohol preference and related phenotypes in Fkbp5 knockout (KO) mice and to examine the role of FKBP5 in human alcohol consumption. The following experiments were performed to characterize Fkpb5 KO mice. (1) Fkbp5 KO and wild-type (WT) EtOH consumption was tested using a two-bottle choice paradigm; (2) The EtOH elimination rate was measured after intraperitoneal (IP) injection of 2.0 g/kg EtOH; (3) Blood alcohol concentration (BAC) was measured after 3 h limited access of alcohol; (4) Brain region expression of Fkbp5 was identified using LacZ staining; (5) Baseline corticosterone (CORT) was assessed. Additionally, two SNPs, rs1360780 (C/T) and rs3800373 (T/G), were selected to study the association of FKBP5 with alcohol consumption in humans. Participants were college students (n = 1162) from 21-26 years of age with Chinese, Korean or Caucasian ethnicity. The results, compared to WT mice, for KO mice exhibited an increase in alcohol consumption that was not due to differences in taste sensitivity or alcohol metabolism. Higher BAC was found in KO mice after 3 h of EtOH access. Fkbp5 was highly expressed in brain regions involved in the regulation of the stress response, such as the hippocampus, amygdala, dorsal raphe and locus coeruleus. Both genotypes exhibited similar basal levels of plasma corticosterone (CORT). Finally, single nucleotide polymorphisms (SNPs) in FKBP5 were found to be associated with alcohol drinking in humans. These results suggest that the association between FKBP5 and alcohol consumption is conserved in both mice and humans.

  13. Diacylglycerol kinase β knockout mice exhibit attention-deficit behavior and an abnormal response on methylphenidate-induced hyperactivity.

    Directory of Open Access Journals (Sweden)

    Mitsue Ishisaka

    Full Text Available BACKGROUND: Diacylglycerol kinase (DGK is an enzyme that phosphorylates diacylglycerol to produce phosphatidic acid. DGKβ is one of the subtypes of the DGK family and regulates many intracellular signaling pathways in the central nervous system. Previously, we demonstrated that DGKβ knockout (KO mice showed various dysfunctions of higher brain function, such as cognitive impairment (with lower spine density, hyperactivity, reduced anxiety, and careless behavior. In the present study, we conducted further tests on DGKβ KO mice in order to investigate the function of DGKβ in the central nervous system, especially in the pathophysiology of attention deficit hyperactivity disorder (ADHD. METHODOLOGY/PRINCIPAL FINDINGS: DGKβ KO mice showed attention-deficit behavior in the object-based attention test and it was ameliorated by methylphenidate (MPH, 30 mg/kg, i.p.. In the open field test, DGKβ KO mice displayed a decreased response to the locomotor stimulating effects of MPH (30 mg/kg, i.p., but showed a similar response to an N-methyl-d-aspartate (NMDA receptor antagonist, MK-801 (0.3 mg/kg, i.p., when compared to WT mice. Examination of the phosphorylation of extracellular signal-regulated kinase (ERK, which is involved in regulation of locomotor activity, indicated that ERK1/2 activation induced by MPH treatment was defective in the striatum of DGKβ KO mice. CONCLUSIONS/SIGNIFICANCE: These findings suggest that DGKβ KO mice showed attention-deficit and hyperactive phenotype, similar to ADHD. Furthermore, the hyporesponsiveness of DGKβ KO mice to MPH was due to dysregulation of ERK phosphorylation, and that DGKβ has a pivotal involvement in ERK regulation in the striatum.

  14. The FKBP5 Gene Affects Alcohol Drinking in Knockout Mice and Is Implicated in Alcohol Drinking in Humans.

    Science.gov (United States)

    Qiu, Bin; Luczak, Susan E; Wall, Tamara L; Kirchhoff, Aaron M; Xu, Yuxue; Eng, Mimy Y; Stewart, Robert B; Shou, Weinian; Boehm, Stephen L; Chester, Julia A; Yong, Weidong; Liang, Tiebing

    2016-01-01

    FKBP5 encodes FK506-binding protein 5, a glucocorticoid receptor (GR)-binding protein implicated in various psychiatric disorders and alcohol withdrawal severity. The purpose of this study is to characterize alcohol preference and related phenotypes in Fkbp5 knockout (KO) mice and to examine the role of FKBP5 in human alcohol consumption. The following experiments were performed to characterize Fkpb5 KO mice. (1) Fkbp5 KO and wild-type (WT) EtOH consumption was tested using a two-bottle choice paradigm; (2) The EtOH elimination rate was measured after intraperitoneal (IP) injection of 2.0 g/kg EtOH; (3) Blood alcohol concentration (BAC) was measured after 3 h limited access of alcohol; (4) Brain region expression of Fkbp5 was identified using LacZ staining; (5) Baseline corticosterone (CORT) was assessed. Additionally, two SNPs, rs1360780 (C/T) and rs3800373 (T/G), were selected to study the association of FKBP5 with alcohol consumption in humans. Participants were college students (n = 1162) from 21-26 years of age with Chinese, Korean or Caucasian ethnicity. The results, compared to WT mice, for KO mice exhibited an increase in alcohol consumption that was not due to differences in taste sensitivity or alcohol metabolism. Higher BAC was found in KO mice after 3 h of EtOH access. Fkbp5 was highly expressed in brain regions involved in the regulation of the stress response, such as the hippocampus, amygdala, dorsal raphe and locus coeruleus. Both genotypes exhibited similar basal levels of plasma corticosterone (CORT). Finally, single nucleotide polymorphisms (SNPs) in FKBP5 were found to be associated with alcohol drinking in humans. These results suggest that the association between FKBP5 and alcohol consumption is conserved in both mice and humans. PMID:27527158

  15. Have gene knockouts caused evolutionary reversals in the mammalian first arch?

    Science.gov (United States)

    Smith, K K; Schneider, R A

    1998-03-01

    Many recent gene knockout experiments cause anatomical changes to the jaw region of mice that several investigators claim are evolutionary reversals. Here we evaluate these mutant phenotypes and the assertions of atavism. We argue that following the knockout of Hoxa-2, Dlx-2, MHox, Otx2, and RAR genes, ectopic cartilages arise as secondary consequences of disruptions in normal processes of cell specification, migration, or differentiation. These disruptions cause an excess of mesenchyme to accumulate in a region through which skeletal progenitor cells usually migrate, and at a site of condensation that is normally present in mammals but that is too small to chondrify. We find little evidence that these genes, when disrupted, cause a reversion to any primitive condition and although changes in their expression may have played a role in the evolution of the mammalian jaw, their function during morphogenesis is not sufficiently understood to confirm such hypotheses. PMID:9631652

  16. A model of knock-out of oxygen by charged particle irradiation of Bi-2212

    International Nuclear Information System (INIS)

    A model of knock-out of oxygen by charged particle (α and proton) irradiation of Bi2Sr2CaCu2O8+x (Bi-2212) is proposed on the basis of Monte Carlo TRIM calculations. In Bi-2212, the loosely bound excess oxygen is vulnerable to be displaced by particle irradiation. Binding energy and hence, displacement energy of this loosely bound excess oxygen is less compared to that of stoichiometric lattice bound oxygen and other atoms. The displaced or knocked out oxygen goes to pores or intergranular region and generates large pressure inside the sample. Because of porosity of the material, this displaced oxygen diffuses out and there is a net reduction of oxygen content of the sample. The irradiation induced oxygen knock-out is dominant in the bulk where nonionizing energy loss is maximum. (author). 29 refs., 1 fig., 3 tabs

  17. Single-Step Generation of Conditional Knockout Mouse Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Matyas Flemr

    2015-07-01

    Full Text Available Induction of double-strand DNA breaks (DSBs by engineered nucleases, such as CRISPR/Cas9 or transcription activator-like effector nucleases (TALENs, stimulates knockin of exogenous DNA fragments via homologous recombination (HR. However, the knockin efficiencies reported so far have not allowed more complex in vitro genome modifications such as, for instance, simultaneous integration of a DNA fragment at two distinct genomic sites. We developed a reporter system to enrich for cells with engineered nuclease-assisted HR events. Using this system in mouse embryonic stem cells (mESCs, we achieve single-step biallelic and seamless integration of two loxP sites for Cre recombinase-mediated inducible gene knockout, as well as biallelic endogenous gene tagging with high efficiency. Our approach reduces the time and resources required for conditional knockout mESC generation dramatically.

  18. Voluntary exercise decreases atherosclerosis in nephrectomised ApoE knockout mice.

    Directory of Open Access Journals (Sweden)

    Cecilia M Shing

    Full Text Available Cardiovascular disease is the main cause of morbidity and mortality in patients with kidney disease. The effectiveness of exercise for cardiovascular disease that is accelerated by the presence of chronic kidney disease remains unknown. The present study utilized apolipoprotein E knockout mice with 5/6 nephrectomy as a model of combined kidney disease and cardiovascular disease to investigate the effect of exercise on aortic plaque formation, vascular function and systemic inflammation. Animals were randomly assigned to nephrectomy or control and then to either voluntary wheel running exercise or sedentary. Following 12-weeks, aortic plaque area was significantly (p0.05. Nephrectomy increased IL-6 and TNF-α concentrations compared with control mice (p0.05. Exercise was an effective non-pharmacologic approach to slow cardiovascular disease in the presence of kidney disease in the apolipoprotein E knockout mouse.

  19. The mitochondrial function was impaired in APP knockout mouse embryo fibroblast cells

    Institute of Scientific and Technical Information of China (English)

    SHENG BaiYang; NIU Ying; ZHOU Hui; YAN JiaXin; ZHAO NanMing; ZHANG XiuFang; GONG YanDao

    2009-01-01

    The amyloid precursor protein (APP) is recognized as the source of Aβ, which plays an important role in Alzheimer's disease. However, the biological function of APP is obscure. Previous studies showed that mitochondria could be a target of APP. In this work, APP knockout mouse embryo fibroblast (MEF) cells were used to test if APP plays any role in maintaining the mitochondrial function. As the result, APP knockout MEF cells (APP-/- cells) showed the abnormal mitochondrial function, including slower cell proliferation, lower mitochondrial membrane potential, lower intracellular ROS, higher mitochon-drial membrane fluidity and lower cytochrome c oxidase activity than their wild-type counterparts. However, no change was found in the amount of mitochondria in MEF APP-/- cells.

  20. Outcome of urogenital infection with Chlamydia muridarum in CD-14 gene knockout mice

    Directory of Open Access Journals (Sweden)

    Ramsey Kyle H

    2006-09-01

    Full Text Available Abstract Background CD14 has been postulated to play a role in chlamydial immunity and immunopathology. There is evidence to support this role in human infections but its function in a mouse model has not been investigated. Methods Female CD14 gene knockout and C57BL/6J wild type mice were infected intravaginally with Chlamydia muridarum. The infection course was monitored by detection of viable chlamydiae from serially collected cervical-vaginal swabs. The sequela of tubal factor infertility was assessed using hydrosalpinx formation as a surrogate marker. Results A significantly abbreviated infection course was observed in the CD14 gene knockout mice but hydrosalpinx formation occurred at similar rates between the two groups. Conclusion Involvement of CD14 during chlamydial infection impedes infection resolution but this does not affect the sequela of infertility as assessed by hydrosalpinx formation.

  1. STRIATAL-ENRICHED PROTEIN TYROSINE PHOSPHATASE (STEP) KNOCKOUT MICE HAVE ENHANCED HIPPOCAMPAL MEMORY

    OpenAIRE

    Venkitaramani, Deepa V.; Moura, Paula J.; Picciotto, Marina R.; Lombroso, Paul J.

    2011-01-01

    STEP is a brain-specific phosphatase that opposes synaptic strengthening by the regulation of key synaptic signaling proteins. Previous studies suggest a possible role for STriatal-Enriched protein tyrosine Phosphatase (STEP) in learning and memory. To demonstrate the functional importance of STEP in learning and memory, we generated STEP knockout (KO) mice and examined the effect of deletion of STEP on behavioral performance, as well as the phosphorylation and expression of its substrates. H...

  2. Production of p53 gene knockout rats by homologous recombination in embryonic stem cells

    OpenAIRE

    Tong, Chang; Li, Ping; Wu, Nancy L; Yan, Youzhen; Ying, Qi-Long

    2010-01-01

    The use of homologous recombination to modify genes in embryonic stem (ES) cells provides a powerful means to elucidate gene function and create disease models1. Application of this technology to engineer genes in rats has previously been impossible in the absence of germline competent ES cells in this species. We have recently established authentic rat ES cells2, 3. Here we report the generation of the first gene knockout rats using the ES cell-based gene targeting technology. We designed a ...

  3. Trafficking defects in WASH-knockout fibroblasts originate from collapsed endosomal and lysosomal networks

    OpenAIRE

    Gomez, Timothy S.; Gorman, Jacquelyn A.; Artal-Martinez de Narvajas, Amaia; Koenig, Alexander O.; BILLADEAU, DANIEL D.

    2012-01-01

    The Arp2/3-activator Wiskott–Aldrich syndrome protein and Scar homologue (WASH) is suggested to regulate actin-dependent membrane scission during endosomal sorting, but its cellular roles have not been fully elucidated. To investigate WASH function, we generated tamoxifen-inducible WASH-knockout mouse embryonic fibroblasts (WASHout MEFs). Of interest, although EEA1+ endosomes were enlarged, collapsed, and devoid of filamentous-actin and Arp2/3 in WASHout MEFs, we did not observe elongated mem...

  4. Transgenic knockout mice with exclusively human sickle hemoglobinand sickle cell disease

    Energy Technology Data Exchange (ETDEWEB)

    Paszty, C.; Brion, C.; Manci, E.; Witkowska, E.; Stevens, M.; Narla, M.; Rubin, E.

    1997-06-13

    To create mice expressing exclusively human sicklehemoglobin (HbS), transgenic mice expressing human alpha-, gamma-, andbeta[S]-globin were generated and bred with knockout mice that haddeletions of the murine alpha- and beta-globin genes. These sickle cellmice have the major features (irreversibly sickled red cells, anemia,multiorgan pathology) found in humans with sickle cell disease and, assuch, represent a useful in vivo system to accelerate the development ofimproved therapies for this common genetic disease.

  5. Sirh7/Ldoc1 knockout mice exhibit placental P4 overproduction and delayed parturition

    OpenAIRE

    Naruse, Mie; Ono, Ryuichi; Irie, Masahito; Nakamura, Kenji; Furuse, Tamio; Hino, Toshiaki; Oda, Kanako; Kashimura, Misho; Yamada, Ikuko; Wakana, Shigeharu; Yokoyama, Minesuke; Ishino, Fumitoshi; Kaneko-Ishino, Tomoko

    2014-01-01

    Sirh7/Ldoc1 [sushi-ichi retrotransposon homolog 7/leucine zipper, downregulated in cancer 1, also called mammalian retrotransposon-derived 7 (Mart7)] is one of the newly acquired genes from LTR retrotransposons in eutherian mammals. Interestingly, Sirh7/Ldoc1 knockout (KO) mice exhibited abnormal placental cell differentiation/maturation, leading to an overproduction of placental progesterone (P4) and placental lactogen 1 (PL1) from trophoblast giant cells (TGCs). The placenta is an organ tha...

  6. Effects of disulfiram and dopamine beta-hydroxylase knockout on cocaine-induced seizures

    OpenAIRE

    Gaval-Cruz, Meriem; Schroeder, Jason P; Liles, L. Cameron; Javors, Martin A.; Weinshenker, David

    2008-01-01

    The antialcoholism drug disulfiram has shown recent promise as a pharmacotherapy for treating cocaine dependence, probably via inhibition of dopamine β-hydroxylase (DBH), the enzyme that catalyzes the conversion of dopamine (DA) to norepinephrine (NE). We previously showed that DBH knockout (Dbh -/-) mice, which lack NE, are susceptible to seizures and are hypersensitive to the psychomotor, rewarding, and aversive effects of cocaine, suggesting that disulfiram might exacerbate cocaine-induced...

  7. Molecular mechanisms of cocaine reward: Combined dopamine and serotonin transporter knockouts eliminate cocaine place preference

    OpenAIRE

    Sora,Ichiro; Hall, F. Scott; Andrews, Anne M.; Itokawa, Masanari; Li, Xiao-Fei; Wei, Hong-Bing; Wichems, Christine; Lesch, Klaus-Peter; Murphy, Dennis L.; Uhl, George R.

    2001-01-01

    Cocaine blocks uptake by neuronal plasma membrane transporters for dopamine (DAT), serotonin (SERT), and norepinephrine (NET). Cocaine reward/reinforcement has been linked to actions at DAT or to blockade of SERT. However, knockouts of neither DAT, SERT, or NET reduce cocaine reward/reinforcement, leaving substantial uncertainty about cocaine's molecular mechanisms for reward. Conceivably, the molecular bases of cocaine reward might display sufficient redundancy th...

  8. Voluntary Exercise Decreases Atherosclerosis in Nephrectomised ApoE Knockout Mice

    OpenAIRE

    Shing, Cecilia M.; Fassett, Robert G.; Peake, Jonathan M.; Coombes, Jeff S.

    2015-01-01

    Cardiovascular disease is the main cause of morbidity and mortality in patients with kidney disease. The effectiveness of exercise for cardiovascular disease that is accelerated by the presence of chronic kidney disease remains unknown. The present study utilized apolipoprotein E knockout mice with 5/6 nephrectomy as a model of combined kidney disease and cardiovascular disease to investigate the effect of exercise on aortic plaque formation, vascular function and systemic inflammation. Anima...

  9. Comprehensive reanalysis of transcription factor knockout expression data in Saccharomyces cerevisiae reveals many new targets

    OpenAIRE

    Reimand, Jüri; Vaquerizas, Juan M.; Todd, Annabel E.; Vilo, Jaak; Luscombe, Nicholas M.

    2010-01-01

    Transcription factor (TF) perturbation experiments give valuable insights into gene regulation. Genome-scale evidence from microarray measurements may be used to identify regulatory interactions between TFs and targets. Recently, Hu and colleagues published a comprehensive study covering 269 TF knockout mutants for the yeast Saccharomyces cerevisiae. However, the information that can be extracted from this valuable dataset is limited by the method employed to process the microarray data. Here...

  10. Fetal growth retardation and lack of hypotaurine in ezrin knockout mice.

    Directory of Open Access Journals (Sweden)

    Tomohiro Nishimura

    Full Text Available Ezrin is a membrane-associated cytoplasmic protein that serves to link cell-membrane proteins with the actin-based cytoskeleton, and also plays a role in regulation of the functional activities of some transmembrane proteins. It is expressed in placental trophoblasts. We hypothesized that placental ezrin is involved in the supply of nutrients from mother to fetus, thereby influencing fetal growth. The aim of this study was firstly to clarify the effect of ezrin on fetal growth and secondly to determine whether knockout of ezrin is associated with decreased concentrations of serum and placental nutrients. Ezrin knockout mice (Ez(-/- were confirmed to exhibit fetal growth retardation. Metabolome analysis of fetal serum and placental extract of ezrin knockout mice by means of capillary electrophoresis-time-of-flight mass spectrometry revealed a markedly decreased concentration of hypotaurine, a precursor of taurine. However, placental levels of cysteine and cysteine sulfinic acid (precursors of hypotaurine and taurine were not affected. Lack of hypotaurine in Ez(-/- mice was confirmed by liquid chromatography with tandem mass spectrometry. Administration of hypotaurine to heterogenous dams significantly decreased the placenta-to-maternal plasma ratio of hypotaurine in wild-type fetuses but only slightly decreased it in ezrin knockout fetuses, indicating that the uptake of hypotaurine from mother to placenta is saturable and that disruption of ezrin impairs the uptake of hypotaurine by placental trophoblasts. These results indicate that ezrin is required for uptake of hypotaurine from maternal serum by placental trophoblasts, and plays an important role in fetal growth.

  11. Lack of stress responses to long-term effects of corticosterone in Caps2 knockout mice

    OpenAIRE

    MISHIMA, Yuriko; Shinoda, Yo; Sadakata, Tetsushi; Kojima, Masami; Wakana, Shigeharu; Furuichi, Teiichi

    2015-01-01

    Chronic stress is associated with anxiety and depressive disorders, and can cause weight gain. Ca2+-dependent activator protein for secretion 2 (CAPS2) is involved in insulin release. Caps2 knockout (KO) mice exhibit decreased body weight, reduced glucose-induced insulin release, and abnormal psychiatric behaviors. We chronically administered the stress hormone corticosterone (CORT), which induces anxiety/depressive-like behavior and normally increases plasma insulin levels, via the drinking ...

  12. CARD9 knockout ameliorates myocardial dysfunction associated with high fat diet-induced obesity.

    Science.gov (United States)

    Cao, Li; Qin, Xing; Peterson, Matthew R; Haller, Samantha E; Wilson, Kayla A; Hu, Nan; Lin, Xin; Nair, Sreejayan; Ren, Jun; He, Guanglong

    2016-03-01

    Obesity is associated with chronic inflammation which plays a critical role in the development of cardiovascular dysfunction. Because the adaptor protein caspase recruitment domain-containing protein 9 (CARD9) in macrophages regulates innate immune responses via activation of pro-inflammatory cytokines, we hypothesize that CARD9 mediates the pro-inflammatory signaling associated with obesity en route to myocardial dysfunction. C57BL/6 wild-type (WT) and CARD9(-/-) mice were fed normal diet (ND, 12% fat) or a high fat diet (HFD, 45% fat) for 5months. At the end of 5-month HFD feeding, cardiac function was evaluated using echocardiography. Cardiomyocytes were isolated and contractile properties were measured. Immunofluorescence was performed to detect macrophage infiltration in the heart. Heart tissue homogenates, plasma, and supernatants from isolated macrophages were collected to measure the concentrations of pro-inflammatory cytokines using ELISA kits. Western immunoblotting analyses were performed on heart tissue homogenates and isolated macrophages to explore the underlying signaling mechanism(s). CARD9 knockout alleviated HFD-induced insulin resistance and glucose intolerance, prevented myocardial dysfunction with preserved cardiac fractional shortening and cardiomyocyte contractile properties. CARD9 knockout also significantly decreased the number of infiltrated macrophages in the heart with reduced myocardium-, plasma-, and macrophage-derived cytokines including IL-6, IL-1β and TNFα. Finally, CARD9 knockout abrogated the increase of p38 MAPK phosphorylation, the decrease of LC3BII/LC3BI ratio and the up-regulation of p62 expression in the heart induced by HFD feeding and restored cardiac autophagy signaling. In conclusion, CARD9 knockout ameliorates myocardial dysfunction associated with HFD-induced obesity, potentially through reduction of macrophage infiltration, suppression of p38 MAPK phosphorylation, and preservation of autophagy in the heart. PMID

  13. Impact of temporal variation on design and analysis of mouse knockout phenotyping studies.

    Directory of Open Access Journals (Sweden)

    Natasha A Karp

    Full Text Available A significant challenge facing high-throughput phenotyping of in-vivo knockout mice is ensuring phenotype calls are robust and reliable. Central to this problem is selecting an appropriate statistical analysis that models both the experimental design (the workflow and the way control mice are selected for comparison with knockout animals and the sources of variation. Recently we proposed a mixed model suitable for small batch-oriented studies, where controls are not phenotyped concurrently with mutants. Here we evaluate this method both for its sensitivity to detect phenotypic effects and to control false positives, across a range of workflows used at mouse phenotyping centers. We found the sensitivity and control of false positives depend on the workflow. We show that the phenotypes in control mice fluctuate unexpectedly between batches and this can cause the false positive rate of phenotype calls to be inflated when only a small number of batches are tested, when the effect of knockout becomes confounded with temporal fluctuations in control mice. This effect was observed in both behavioural and physiological assays. Based on this analysis, we recommend two approaches (workflow and accompanying control strategy and associated analyses, which would be robust, for use in high-throughput phenotyping pipelines. Our results show the importance in modelling all sources of variability in high-throughput phenotyping studies.

  14. Memory formation and retention are affected in adult miR-132/212 knockout mice.

    Science.gov (United States)

    Hernandez-Rapp, Julia; Smith, Pascal Y; Filali, Mohammed; Goupil, Claudia; Planel, Emmanuel; Magill, Stephen T; Goodman, Richard H; Hébert, Sébastien S

    2015-01-01

    The miR-132/212 family is thought to play an important role in neural function and plasticity, while its misregulation has been observed in various neurodegenerative disorders. In this study, we analyzed 6-month-old miR-132/212 knockout mice in a battery of cognitive and non-cognitive behavioral tests. No significant changes were observed in reflexes and basic sensorimotor functions as determined by the SHIRPA primary screen. Accordingly, miR-132/212 knockout mice did not differ from wild-type controls in general locomotor activity in an open-field test. Furthermore, no significant changes of anxiety were measured in an elevated plus maze task. However, the mutant mice showed retention phase defects in a novel object recognition test and in the T-water maze. Moreover, the learning and probe phases in the Barnes maze were clearly altered in knockout mice when compared to controls. Finally, changes in BDNF, CREB, and MeCP2 were identified in the miR-132/212-deficient mice, providing a potential mechanism for promoting memory loss. Taken together, these results further strengthen the role of miR-132/212 in memory formation and retention, and shed light on the potential consequences of its deregulation in neurodegenerative diseases.

  15. Connecting tubule-selective knockout of AQP2 causes a mild urinary concentrating defect

    DEFF Research Database (Denmark)

    Kortenoeven, Marleen; Pedersen, Nis Borbye; Fenton, Robert A.

    . However, rat, mouse and humans were shown to express AQP2 in the CNT, which is regulated by vasopressin. Besides this, micropuncture studies showed a substantial water reabsorption in the CNT. To study the role of AQP2 in the CNT, AQP2-CNT-KO mice were generated by mating mice harboring loxP sites around...... exon 3 of the AQP2 gene with mice expressing Cre recombinase driven by the promoter region of the B1 subunit of V-ATPase. It was shown previously that this leads to Cre activity in 50% of the principal cells in the CNT. Knockout and wildtype mice were kept in metabolic cages for a total of 5 days...... groups (2616±188 mOsm/l in knockout animals vs. 2758±177 in the wildtype). Altogether, these data show that the AQP2-CNT-KO mice demonstrate a mild urinary concentrating defect. However, when challenged with an injection of dDAVP, the knockout mice were able to concentrate their urine to the same extent...

  16. Neutrino induced pion production and nucleon knockout within the GiBUU transport model

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, T.; Mosel, U. [Inst. fuer Theoretische Physik, Univ. Giessen (Germany); Alvarez-Ruso, L. [Univ. de Valencia (Spain)

    2007-07-01

    There is an extensive experimental effort aiming at the precise determination of neutrino oscillation parameters. Its success depends critically on a good knowledge of neutrino-nucleus interactions in order to minimize the systematic uncertainties in neutrino fluxes, backgrounds and detector responses. We describe such charged and neutral current neutrino-nucleus interactions at intermediate neutrino energies within the Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) coupled-channel transport model. We account for in-medium effects such as Fermi motion, Pauli blocking, nuclear binding, and final-state interactions which allows us to study exclusive channels as pion production and nucleon knockout. We find that final-state interactions modify considerably the distributions through rescattering, charge-exchange and absorption. Side-feeding induced by charge-exchange scattering is important in both cases. In the case of pions, there is a strong absorption associated with the in-medium pionless decay modes of the Delta, while nucleon knockout exhibits a considerable enhancement of low energy nucleons due to rescattering. At neutrino energies above 1 GeV, we also obtain that the contribution to nucleon knockout from Delta excitation is comparable to that from quasielastic scattering. (orig.)

  17. Administration of exogenous 1,25(OH)2D3 normalizes overactivation of the central renin-angiotensin system in 1α(OH)ase knockout mice.

    Science.gov (United States)

    Zhang, Wei; Chen, Lulu; Zhang, Luqing; Xiao, Ming; Ding, Jiong; Goltzman, David; Miao, Dengshun

    2015-02-19

    Previously, we reported that active vitamin D deficiency in mice causes secondary hypertension and cardiac dysfunction, but the underlying mechanism remains largely unknown. To clarify whether exogenous active vitamin D rescues hypertension by normalizing the altered central renin-angiotensin system (RAS) via an antioxidative stress mechanism, 1-alpha-hydroxylase [1α(OH)ase] knockout mice [1α(OH)ase(-/-)] and their wild-type littermates were fed a normal diet alone or with 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], or a high-calcium, high-phosphorus "rescue" diet with or without antioxidant N-acetyl-l-cysteine (NAC) supplementation for 4 weeks. Compared with their wild-type littermates, 1α(OH)ase(-/-)mice had high mean arterial pressure, increased levels of renin, angiotensin II (Ang II), and Ang II type 1 receptor, and increased malondialdehyde levels, but decreased anti-peroxiredoxin I and IV proteins and the antioxidative genes glutathione reductase (Gsr) and glutathione peroxidase 4 (Gpx4) in the brain samples. Except Ang II type 1 receptor, these pathophysiological changes were rescued by exogenous 1,25(OH)2D3 or NAC plus rescue diet, but not by rescue diet alone. We conclude that 1,25(OH)2D3 normalizes the altered central RAS in 1α(OH)ase(-/-)mice, at least partially, through a central antioxidative mechanism.

  18. Age-Dependent Long-Term Potentiation Deficits in the Prefrontal Cortex of the Fmr1 Knockout Mouse Model of Fragile X Syndrome.

    Science.gov (United States)

    Martin, Henry G S; Lassalle, Olivier; Brown, Jonathan T; Manzoni, Olivier J

    2016-05-01

    The most common inherited monogenetic cause of intellectual disability is Fragile X syndrome (FXS). The clinical symptoms of FXS evolve with age during adulthood; however, neurophysiological data exploring this phenomenon are limited. TheFmr1knockout (Fmr1KO) mouse models FXS, but studies in these mice of prefrontal cortex (PFC) function are underrepresented, and aging linked data are absent. We studied synaptic physiology and activity-dependent synaptic plasticity in the medial PFC ofFmr1KO mice from 2 to 12 months. In young adultFmr1KO mice, NMDA receptor (NMDAR)-mediated long-term potentiation (LTP) is intact; however, in 12-month-old mice this LTP is impaired. In parallel, there was an increase in the AMPAR/NMDAR ratio and a concomitant decrease of synaptic NMDAR currents in 12-month-oldFmr1KO mice. We found that acute pharmacological blockade of mGlu5receptor in 12-month-oldFmr1KO mice restored a normal AMPAR/NMDAR ratio and LTP. Taken together, the data reveal an age-dependent deficit in LTP inFmr1KO mice, which may correlate to some of the complex age-related deficits in FXS. PMID:25750254

  19. How to determine a dineutron correlation in Borromean nuclei via a quasi-free knockout ($p,pn$) reaction?

    CERN Document Server

    Kikuchi, Yuma; Kubota, Yuki; Sasano, Masaki; Uesaka, Tomohiro

    2016-01-01

    The quasi-free neutron knockout reaction on $^6$He is investigated to discuss the dineutron correlation in the ground state. In the present work, the momentum distributions of the two emitted neutrons are calculated with the $\\alpha$~+~$n$~+~$n$ three-body model and the simple reaction model, and the effects of the knockout process via the $^5$He resonance and the target dependence in the momentum distributions are discussed. From the calculation, it is found that a clear signature of the dineutron correlation can be obtained by choosing the kinematical condition to exclude the process via the $^5$He resonance, while the inclusion of the $^5$He resonance drastically changes the momentum distributions. It is also shown to be important to use the proton target in the quantitative discussion on the dineutron correlation by the knockout reaction. In addition to theoretical arguments, a possible experimental setup to determine the dineutron correlation via the quasi-free knockout reaction is considered.

  20. Frequency-dependent cannabinoid receptor-independent modulation of glycine receptors by endocannabinoid 2-AG

    Directory of Open Access Journals (Sweden)

    Natalia eLozovaya

    2011-07-01

    Full Text Available Endocannabinoids are known as retrograde messengers, being released from the postsynaptic neuron and acting on specific presynaptic G-protein-coupled cannabinoid (CB receptors to decrease neurotransmitter release. Also, at physiologically relevant concentrations cannabinoids can directly modulate the function of voltage-gated and receptor-operated ion channels. Using patch-clamp recording we analyzed the consequences of the direct action of an endocannabinoid, 2-arachidonoylglycerol (2-AG, on the functional properties of glycine receptor channels (GlyRs and ionic currents in glycinergic synapses. At physiologically relevant concentrations (0.1-1 µM, 2-AG directly affected the functions of recombinant homomeric alpha1H GlyR: it inhibited peak amplitude and dramatically enhanced desensitization. The action of 2-AG on GlyR-mediated currents developed rapidly, within ~300 milliseconds. Addition of 1 µM 2-AG strongly facilitated the depression of glycine-induced currents during repetitive (4-10 Hz application of short (2-ms duration pulses of glycine to outside-out patches. In brainstem slices from CB1 receptor-knockout mice, 2-AG significantly decreased the extent of facilitation of synaptic currents in hypoglossal motoneurons during repetitive (10-20 Hz stimulation. These observations suggest that endocannabinoids can modulate postsynaptic metaplasticity of glycinergic synaptic currents in a CB1 receptor-independent manner.

  1. The hGFAP-driven conditional TSPO knockout is protective in a mouse model of multiple sclerosis

    OpenAIRE

    Daniel J. Daugherty; Olga Chechneva; Florian Mayrhofer; Wenbin Deng

    2016-01-01

    The mitochondrial translocator protein (TSPO) has been implicated in CNS diseases. Here, we sought to determine the specific role of TSPO in experimental autoimmune encephalomyelitis (EAE), the most studied animal model of multiple sclerosis (MS). To fundamentally elucidate the functions of TSPO, we first developed a viable TSPO knockout mouse. A conditional TSPO knockout mouse was generated by utilizing the Cre-Lox system. We generated a TSPO floxed mouse, and then crossed this mouse with a ...

  2. CB1 receptors modulate affective behaviour induced by neuropathic pain.

    Science.gov (United States)

    Rácz, Ildikó; Nent, Elisa; Erxlebe, Edda; Zimmer, Andreas

    2015-05-01

    Patients suffering from chronic pain are often diagnosed with a psychiatric condition, in particular generalized anxiety and major depression. The underlying pathomechanisms contributing to this comorbidity, however, are not entirely clear. In this manuscript we have focussed on the potential role of the cannabinoid receptor CB1, because it is known to modulate neuronal circuits contributing to chronic pain states and affective behaviours. For this purpose we analysed the consequences of a partial sciatic nerve ligation on anxiety- and depression-related behaviours in mice lacking CB1 receptors. Our results show that the development of mechanical hypersensitivity was similar in CB1 deficient mice and wild type controls. However, CB1 knockouts showed much more pronounced behavioural manifestations of anxiety-related behaviours in the light-dark and zero-maze tests, sucrose anhedonia, and disturbed home-cage activity. These results indicate that the endocannabinoid system affects chronic pain-induced mood changes through CB1 receptors.

  3. Time course degeneration and expression of glial fibrillary acidic protein in mer-knockout mice

    Institute of Scientific and Technical Information of China (English)

    LIANG Xiao-ying; WANG Huai-zhou; WANG Ning-li

    2010-01-01

    Background Muller cells in the mammalian retina normally express low levels of glial fibrillary acidic protein (GFAP); however, its expression is upregulated in response to the loss of retinal neurons. The change in expression of GFAP is one of the earliest indicators of retinal damage and is correlated with the time course of disease. The aim of this study was to investigate the time course of degeneration and the expression of GFAP in the retina of mer knockout mice. Methods A total of 30 mer knockout mice, aged from 15-20 days to 1 year and 32 age-matched wild type mice as controls were tested. Immunohistochemistry was used to show the expression of GFAP in the central and peripheral retina of mer knockout and control mice at postnatal age of 15 days (P15d), 20 days (P20d), 4 weeks (P4w), 6 weeks (P6w), 8 weeks (P8w), 3 months (P3m), 6 months (P6m) and 1 years (P1y).Results The expression of GFAP in the central and peripheral retina of wild type mice was limited to the retinal ganglion cell and nerve fiber layers. In the central retina of mer knockout mice, GFAP expression was upregulated at P4w and GFAP immunolabelling penetrates across the entire thickness of the retina at P8w; whereas in the peripheral retina, the GFAP expression was upregulated at P20d and GFAP immunolabelling penetrates the entire retina after P4w. Conclusions Increased expression of GFAP in Muller cells of mer knockout mice occur at P20d in the peripheral retina and P4w in the central retina. GFAP expression in Muller cells appears to be a secondary response to the loss of retinal neurons. Increased expression of GFAP may occur prior to any detectable morphological changes in the retina. This study suggests that the loss of retinal neurons may begin in the early stages of retinitis pigmentosa, prior to the discovery of any morphological changes in the retina.

  4. Importance of GluA1 subunit-containing AMPA glutamate receptors for morphine state-dependency.

    Directory of Open Access Journals (Sweden)

    Teemu Aitta-aho

    Full Text Available In state-dependency, information retrieval is most efficient when the animal is in the same state as it was during the information acquisition. State-dependency has been implicated in a variety of learning and memory processes, but its mechanisms remain to be resolved. Here, mice deficient in AMPA-type glutamate receptor GluA1 subunits were first conditioned to morphine (10 or 20 mg/kg s.c. during eight sessions over four days using an unbiased procedure, followed by testing for conditioned place preference at morphine states that were the same as or different from the one the mice were conditioned to. In GluA1 wildtype littermate mice the same-state morphine dose produced the greatest expression of place preference, while in the knockout mice no place preference was then detected. Both wildtype and knockout mice expressed moderate morphine-induced place preference when not at the morphine state (saline treatment at the test; in this case, place preference was weaker than that in the same-state test in wildtype mice. No correlation between place preference scores and locomotor activity during testing was found. Additionally, as compared to the controls, the knockout mice showed unchanged sensitization to morphine, morphine drug discrimination and brain regional μ-opioid receptor signal transduction at the G-protein level. However, the knockout mice failed to show increased AMPA/NMDA receptor current ratios in the ventral tegmental area dopamine neurons of midbrain slices after a single injection of morphine (10 mg/kg, s.c., sliced prepared 24 h afterwards, in contrast to the wildtype mice. The results indicate impaired drug-induced state-dependency in GluA1 knockout mice, correlating with impaired opioid-induced glutamate receptor neuroplasticity.

  5. Effect of apolipoprotein M on high density lipoprotein metabolism and atherosclerosis in low density lipoprotein receptor knock-out mice

    DEFF Research Database (Denmark)

    Christoffersen, Christina; Jauhiainen, Matti; Moser, Markus;

    2008-01-01

    To investigate the role of apoM in high density lipoprotein (HDL) metabolism and atherogenesis, we generated human apoM transgenic (apoM-Tg) and apoM-deficient (apoM(-/-)) mice. Plasma apoM was predominantly associated with 10-12-nm alpha-migrating HDL particles. Human apoM overexpression (11-fold......) increased plasma cholesterol concentration by 13-22%, whereas apoM deficiency decreased it by 17-21%. The size and charge of apoA-I-containing HDL in plasma were not changed in apoM-Tg or apoM(-/-) mice. However, in plasma incubated at 37 degrees C, lecithin:cholesterol acyltransferase-dependent conversion...... of alpha- to pre-alpha-migrating HDL was delayed in apoM-Tg mice. Moreover, lecithin: cholesterol acyltransferase-independent generation of pre-beta-migrating apoA-I-containing particles in plasma was increased in apoM-Tg mice (4.2 +/- 1.1%, p = 0.06) and decreased in apoM(-/-) mice (0.5 +/- 0.3%, p = 0...

  6. Lupus eritematoso sistémico en ratones MRL lpr/lpm y knockouts del receptor de quimioquina CCR2

    OpenAIRE

    Camarasa Lillo, Natalia

    2009-01-01

    INTRODUCCIÓN El lupus eritematoso sistémico es una enfermedad autoinmune cuya principal manifestación y debut de la enfermedad es la glomerulonefritis mediada por complejos inmunes. Los ratones MRL/MpJ-Fas lpr/J (MRL/lpr) llevan una mutación en el gen Fas de la apoptosis que da lugar a una proliferación de linfocitos autoreactivos y son considerados un modelo de ratón que reproduce muy bien la enfermedad lúpica en el humano, con linfadenopatía asociada a proliferación aberrante de células T,...

  7. Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity

    DEFF Research Database (Denmark)

    Zhang, Li Li; Yan Liu, Dao; Ma, Li Qun;

    2007-01-01

    We tested the hypothesis that activation of transient receptor potential vanilloid type-1 (TRPV1) by capsaicin prevents adipogenesis. TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans were detected by immunoblotting and quantitative real-time RT-PCR. The effect......-activated receptor-gamma, and expression of fatty acid synthase. Long-term feeding experiments were undertaken in wild-type mice and TRPV1 knockout mice. We detected TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans. In vitro, the TRPV1 agonist capsaicin dose-dependently induced...... in visceral adipose tissue from obese humans was accompanied by reduced capsaicin-induced calcium influx. The oral administration of capsaicin for 120 days prevented obesity in male wild type mice but not in TRPV1 knockout mice assigned to high fat diet. We conclude that the activation of TRPV1 channels...

  8. Immune complex-induced inhibition of osteoclastogenesis is mediated via activating but not inhibitory Fc gamma receptors on myeloid precursor cells

    NARCIS (Netherlands)

    L.C. Grevers; T.J. de Vries; V. Everts; J.S. Verbeek; W.B. van den Berg; P.L.E.M. van Lent

    2013-01-01

    Objective To investigate the role of Fcγ receptors (FcγRs) in osteoclastogenesis and osteoclast function. Methods Bone destruction was analysed in arthritic knee joints of several FcγR-knockout mouse strains. Unfractionated bone marrow cells were differentiated in vitro towards osteoclasts in the ab

  9. Glutamate receptors

    DEFF Research Database (Denmark)

    Kristensen, Anders S; Geballe, Matthew T; Snyder, James P;

    2006-01-01

    Fast excitatory synaptic transmission in the CNS relies almost entirely on the neurotransmitter glutamate and its family of ion channel receptors. An appreciation of the coupling between agonist binding and channel opening has advanced rapidly during the past five years, largely as a result of ne...

  10. Somatostatin receptors

    DEFF Research Database (Denmark)

    Møller, Lars Neisig; Stidsen, Carsten Enggaard; Hartmann, Bolette;

    2003-01-01

    In 1972, Brazeau et al. isolated somatostatin (somatotropin release-inhibiting factor, SRIF), a cyclic polypeptide with two biologically active isoforms (SRIF-14 and SRIF-28). This event prompted the successful quest for SRIF receptors. Then, nearly a quarter of a century later, it was announced...

  11. Astrocytic β2 Adrenergic Receptor Gene Deletion Affects Memory in Aged Mice

    Science.gov (United States)

    Jensen, Cathy Joanna; Demol, Frauke; Bauwens, Romy; Kooijman, Ron; Massie, Ann; Villers, Agnès; Ris, Laurence; De Keyser, Jacques

    2016-01-01

    In vitro and in vivo studies suggest that the astrocytic adrenergic signalling enhances glycogenolysis which provides energy to be transported to nearby cells and in the form of lactate. This energy source is important for motor and cognitive functioning. While it is suspected that the β2-adrenergic receptor on astrocytes might contribute to this energy balance, it has not yet been shown conclusively in vivo. Inducible astrocyte specific β2-adrenergic receptor knock-out mice were generated by crossing homozygous β2-adrenergic receptor floxed mice (Adrb2flox) and mice with heterozygous tamoxifen-inducible Cre recombinase-expression driven by the astrocyte specific L-glutamate/L-aspartate transporter promoter (GLAST-CreERT2). Assessments using the modified SHIRPA (SmithKline/Harwell/Imperial College/Royal Hospital/Phenotype Assessment) test battery, swimming ability test, and accelerating rotarod test, performed at 1, 2 and 4 weeks, 6 and 12 months after tamoxifen (or vehicle) administration did not reveal any differences in physical health or motor functions between the knock-out mice and controls. However deficits were found in the cognitive ability of aged, but not young adult mice, reflected in impaired learning in the Morris Water Maze. Similarly, long-term potentiation (LTP) was impaired in hippocampal brain slices of aged knock-out mice maintained in low glucose media. Using microdialysis in cerebellar white matter we found no significant differences in extracellular lactate or glucose between the young adult knock-out mice and controls, although trends were detected. Our results suggest that β2-adrenergic receptor expression on astrocytes in mice may be important for maintaining cognitive health at advanced age, but is dispensable for motor function. PMID:27776147

  12. Dopamine receptor-mediated regulation of neuronal “clock” gene expression

    OpenAIRE

    Imbesi, Marta; Yildiz, Sevim; Arslan, Ahmet Dirim; Sharma, Rajiv; Manev, Hari; Uz, Tolga

    2008-01-01

    Using transgenic mice model (i.e., “clock” knockouts), clock transcription factors have been suggested as critical regulators of dopaminergic behaviors induced by drugs of abuse. Moreover, it has been shown that systemic administration of psychostimulants, such as cocaine and methamphetamine regulate the striatal expression of clock genes. However, it is not known whether dopamine receptors mediate these regulatory effects of psychostimulants at the cellular level. Primary striatal neurons in...

  13. The role of melanin-concentrating hormone and its receptors in energy homeostasis

    OpenAIRE

    DouglasJMacNeil

    2013-01-01

    Extensive studies in rodents with melanin-concentrating hormone (MCH) have demonstrated that the neuropeptide hormone is a potent orexigen. Acutely, MCH causes an increase in food intake, while chronically it leads to increased weight gain, primarily as an increase in fat mass. Multiple knockout mice models have confirmed the importance of MCH in modulating energy homeostasis. Animals lacking MCH, MCH-containing neurons, or the MCH receptor all are resistant to diet-induced obesity. These gen...

  14. Abnormal lipoprotein metabolism and reversible female infertility in HDL receptor (SR-BI)–deficient mice

    OpenAIRE

    Miettinen, Helena E.; Rayburn, Helen; Krieger, Monty

    2001-01-01

    Mammalian female fertility depends on complex interactions between the ovary and the extraovarian environment (e.g., the hypothalamic-hypophyseal ovarian axis). The role of plasma lipoproteins in fertility was examined using HDL-receptor SR-BI knockout (KO) mice. SR-BI KO females have abnormal HDLs, ovulate dysfunctional oocytes, and are infertile. Fertility was restored when the structure and/or quantity of abnormal HDL was altered by inactivating the apoAI gene or administering the choleste...

  15. Interleukin-6 receptor expression in contracting human skeletal muscle: regulating role of IL-6

    DEFF Research Database (Denmark)

    Keller, Pernille; Penkowa, Milena; Keller, Charlotte;

    2005-01-01

    and rest (n=6+5), or recombinant human IL-6 infusion (rhIL-6) or saline infusion (n=6+6). We further obtained skeletal muscle samples from IL-6 knockout (KO) mice and wild-type C57/BL-6 mice in response to a 1-h bout of exercise. In exercising human skeletal muscle, IL-6 receptor mRNA increased...

  16. Selectivity and specificity of sphingosine-1-phosphate receptor ligands: caveats and critical thinking in characterizing receptor-mediated effects

    Directory of Open Access Journals (Sweden)

    Christian eWaeber

    2011-02-01

    Full Text Available Receptors for sphingosine-1-phosphate (S1P have been identified only recently. Their medicinal chemistry is therefore still in its infancy, and few selective agonists or antagonists are available. Furthermore, the selectivity of S1P receptor agonists or antagonists is not well established. JTE-013 and BML-241 (also known as CAY10444, used extensively as specific S1P2 and S1P3 receptors antagonists respectively, are cases in point. When analyzing S1P-induced vasoconstriction in mouse basilar artery, we observed that JTE-013 inhibited not only the effect of S1P, but also the effect of U46619, endothelin-1 or high KCl; JTE-013 strongly inhibited responses to S1P in S1P2 receptor knockout mice. Similarly, BML-241 has been shown to inhibit increases in intracellular Ca2+ concentration via P2 receptor or α1A-adrenoceptor stimulation and α1A-adrenoceptor-mediated contraction of rat mesenteric artery, while it did not affect S1P3-mediated decrease of forskolin-induced cyclic AMP accumulation. Another putative S1P1/3 receptor antagonist, VPC23019, does not inhibit S1P3-mediated vasoconstriction. With these examples in mind, we discuss caveats about relying on available pharmacological tools to characterize receptor subtypes.

  17. Deletion of growth hormone receptor gene but not visceral fat removal decreases expression of apoptosis-related genes in the kidney—potential mechanism of lifespan extension

    OpenAIRE

    Gesing, Adam; Masternak, Michal M.; Wang, Feiya; Karbownik-Lewinska, Malgorzata; Bartke, Andrzej

    2011-01-01

    Mice homozygous for the targeted disruption of the growth hormone (GH) receptor (Ghr) gene (GH receptor knockout; GHRKO; KO) are hypoinsulinemic, highly insulin sensitive, normoglycemic, and long-lived. Visceral fat removal (VFR) is a surgical intervention which improves insulin signaling in normal (N) mice and rats and extends longevity in rats. We have previously demonstrated decreased expression level of certain pro-apoptotic genes in skeletal muscles and suggested that this may contribute...

  18. NPY receptor subtype specification for behavioral adaptive strategies during limited food access.

    Science.gov (United States)

    Pjetri, E; Adan, R A; Herzog, H; de Haas, R; Oppelaar, H; Spierenburg, H A; Olivier, B; Kas, M J

    2012-02-01

    The neuropeptide Y (NPY) system in the brain regulates a wide variety of behavioral, metabolic and hormonal homeostatic processes required for energy balance control. During times of limited food availability, NPY promotes behavioral hyperactivity necessary to explore and prepare for novel food resources. As NPY can act via 5 different receptor subtypes, we investigated the path through which NPY affects different behavioral components relevant for adaptation to such conditions. We tested NPY Y1 and Y2 receptor knockout mice and their wild-type littermate controls in a daily scheduled limited food access paradigm with unlimited access to running wheel. Here we show that NPY Y1 receptor deficient mice lack the expression of appetitive behavior and that NPY Y2 receptors control the level of hyperactive behavior under these conditions. Thus, receptor specificity determines the differential expression of NPY-mediated behavioral adaptations to overcome a negative energy status.

  19. IKKε knockout prevents high fat diet induced arterial atherosclerosis and NF-κB signaling in mice.

    Directory of Open Access Journals (Sweden)

    Changchun Cao

    Full Text Available AIMS: Atherosclerosis is a public health concern affecting many worldwide, but its pathogenesis remains unclear. In this study we investigated the role of IKKε during the formation of atherosclerosis and its molecular mechanism in the mouse aortic vessel wall. METHODS AND RESULTS: C57BL/6 wild-type or IKKε knockout mice bred into the ApoE knockout genetic background were divided into 4 groups: (1 wild-type (WT, (2 ApoE knockout (AK, (3 IKKε knockout (IK, (4 or both ApoE and IKKε knockout (DK. Each group of mice were fed with a high fat diet (HFD for 12 weeks from 8 weeks of age. Immunohistochemistry and Western blotting analysis demonstrated obvious increases in the expression of IKKε in the AK group compared with the WT group, especially in the intima. Serum lipid levels were significantly higher in the AK and DK groups than in the other two groups. Staining with hematoxylin-eosin and Oil Red, as well as scanning electron microscopy revealed less severe atherosclerotic lesions in the DK group than in the AK group. Immunofluorescence and Western blot analysis demonstrated obvious increases in the expression of NF-κB pathway components and downstream factors in the AK group, especially in the intima, while these increases were blocked in the DK group. CONCLUSION: The knockout of IKKε prevented significant atherosclerosis lesions in the mouse aorta from in both wild-type and ApoE knockout mice fed a HFD, suggesting that IKKε may play a vital role in HFD-induced atherosclerosis and would be an important target for the treatment of atherosclerosis.

  20. Perseverative instrumental and Pavlovian responding to conditioned stimuli in serotonin transporter knockout rats.

    Science.gov (United States)

    Nonkes, Lourens J P; Homberg, Judith R

    2013-02-01

    Environmental stimuli can influence behavior via the process of Pavlovian conditioning. Recent genetic research suggests that some individuals are more sensitive to environmental stimuli for behavioral guidance than others. One important mediator of this effect is serotonin transporter (5-HTT) genetic variance, which increases sensitivity to Pavlovian conditioned stimuli through changes in the build-up of corticolimbic circuits. As these stimuli can have reinforcing effects on instrumental responding, we here investigated their effects on instrumental behavior in 5-HTT knockout rats and their wild-type counterparts by means of the signal attenuation paradigm. In this paradigm animals acquired a Pavlovian association between a stimulus and food reward, and subsequently they had to lever press in order to gain access to this food reward-associated stimulus. Thereafter, half of the animals underwent extinction training during which extinction of the primary Pavlovian association was induced via non-reinforced stimulus presentations, whereas the other half did not receive this training. During a final test session all animals were tested for instrumental responding for the non-reinforced Pavlovian conditioned stimulus, as well as instrumental and Pavlovian responding to the stimulus after an initial lever-press. No genotype differences were observed during the training and extinction sessions. However, during the test session 5-HTT knockout rats that had not received prior extinction training displayed excessive instrumental responding. This was specifically observed during presentation of the stimulus (induced by the first lever press) and was accompanied by an increased number of feeder visits after termination of the stimulus presentation. An additionally performed c-Fos immunohistochemistry study revealed that the behaviors in these animals were associated with abnormal c-Fos immunoreactivity in the orbitofrontal cortex and basolateral amygdala, regions important

  1. Unintentional miRNA ablation is a risk factor in gene knockout studies: a short report.

    Directory of Open Access Journals (Sweden)

    Ivan Osokine

    2008-02-01

    Full Text Available One of the most powerful techniques for studying the function of a gene is to disrupt the expression of that gene using genetic engineering strategies such as targeted recombination or viral integration of gene trap cassettes. The tremendous utility of these tools was recognized this year with the awarding of the Nobel Prize in Physiology or Medicine to Capecchi, Evans, and Smithies for their pioneering work in targeted recombination mutagenesis in mammals. Another noteworthy discovery made nearly a decade ago was the identification of a novel class of non-coding genes called microRNAs. MicroRNAs are among the largest known classes of regulatory elements with more than 1000 predicted to exist in the mouse genome. Over 50% of known microRNAs are located within introns of coding genes. Given that currently about half of the genes in mouse have been knocked out, we investigated the possibility that intronic microRNAs may have been coincidentally deleted or disrupted in some of these mouse models. We searched published murine knockout studies and gene trap embryonic stem cell line databases for cases where a microRNA was located within or near the manipulated genomic loci, finding almost 200 cases where microRNA expression may have been disrupted along with another gene. Our results draw attention to the need for careful planning in future knockout studies to minimize the unintentional disruption of microRNAs. These data also raise the possibility that many knockout studies may need to be reexamined to determine if loss of a microRNA contributes to the phenotypic consequences attributed to loss of a protein-encoding gene.

  2. Prohormone convertase 2 activity is increased in the hippocampus of Wfs1 knockout mice

    Directory of Open Access Journals (Sweden)

    Karin eTein

    2015-08-01

    Full Text Available BackgroundMutations in WFS1 gene cause Wolfram syndrome, which is a rare autosomal recessive disorder, characterized by diabetes insipidus, diabetes mellitus, optic nerve atrophy and deafness (DIDMOAD. The WFS1 gene product wolframin is located in the endoplasmic reticulum. Mice lacking this gene exhibit disturbances in the processing and secretion of peptides, such as vasopressin and insulin. In the brain, high levels of the wolframin protein have been observed in the hippocampus, amygdala and limbic structures. The aim of this study was to investigate the effect of Wfs1 knockout on peptide processing in mouse hippocampus. A peptidomic approach was used to characterize individual peptides in the hippocampus of wild-type and Wfs1 knockout mice. ResultsWe identified 126 peptides in hippocampal extracts and the levels of 10 peptides differed between Wfs1 KO and wild-type mice at P<0.05. The peptide with the largest alteration was little-LEN, which level was 25 times higher in the hippocampus of Wfs1 KO mice compared to wild-type mice. Processing (cleavage of little-LEN from the Pcsk1n gene product proSAAS involves prohormone convertase 2 (PC2. Thus, PC2 activity was measured in extracts prepared from the hippocampus of Wfs1 knockout mice. The activity of PC2 in Wfs1 mutant mice was significantly higher (149.9±2.3%, p<0.0001, n=8 than in wild-type mice (100.0±7.0%, n=8. However, Western blot analysis showed that protein levels of 7B2, proPC2 and PC2 were same in both groups, and so were gene expression levels.ConclusionsProcessing of proSAAS is altered in the hippocampus of Wfs1-KO mice, which is caused by increased activity of PC2. Increased activity of PC2 in Wfs1 knockout mice is not caused by alteration in the levels of PC2 protein. Our results suggest a functional link between Wfs1 and PC2. Thus, the detailed molecular mechanism of the role of Wfs1 in the regulation of PC2 activity needs further investigation.

  3. Wip1 knockout inhibits the proliferation and enhances the migration of bone marrow mesenchymal stem cells

    International Nuclear Information System (INIS)

    Mesenchymal stem cells (MSCs), a unique population of multipotent adult progenitor cells originally found in bone marrow (BM), are extremely useful for multifunctional therapeutic approaches. However, the growth arrest and premature senescence of MSCs in vitro prevent the in-depth characterization of these cells. In addition, the regulatory factors involved in MSCs migration remain largely unknown. Given that protein phosphorylation is associated with the processes of MSCs proliferation and migration, we focused on wild-type p53-inducible phosphatase-1 (Wip1), a well-studied modulator of phosphorylation, in this study. Our results showed that Wip1 knockout significantly inhibited MSCs proliferation and induced G2-phase cell-cycle arrest by reducing cyclinB1 expression. Compared with WT-MSCs, Wip1−/− MSCs displayed premature growth arrest after six passages in culture. Transwell and scratch assays revealed that Wip1−/− MSCs migrate more effectively than WT-MSCs. Moreover, the enhanced migratory response of Wip1−/− MSCs may be attributed to increases in the induction of Rac1-GTP activity, the pAKT/AKT ratio, the rearrangement of filamentous-actin (f-actin), and filopodia formation. Based on these results, we then examined the effect of treatment with a PI3K/AKT and Rac1 inhibitor, both of which impaired the migratory activity of MSCs. Therefore, we propose that the PI3K/AKT/Rac1 signaling axis mediates the Wip1 knockout-induced migration of MSCs. Our findings indicate that the principal function of Wip1 in MSCs transformation is the maintenance of proliferative capacity. Nevertheless, knocking out Wip1 increases the migratory capacity of MSCs. This dual effect of Wip1 provides the potential for purposeful routing of MSCs. - Highlights: • Wip1 knockout inhibited MSCs proliferation through reducing cyclinB1 expression. • Wip1−/− MSCs displayed premature growth arrest in vitro after six passages. • Knocking out Wip1 increases the migratory capacity

  4. Spectroscopy of 23F by quasi-free proton knockout reaction

    Science.gov (United States)

    Tang, Tsz Leung

    2014-09-01

    The separation energy of quasi-free proton knockout reactioncan be a good probe for the single particle energy of each orbit inside a nucleus. The spectroscopic factor can also bededuced from the measured cross section. The effective single particle energy (ESPE)can then be calculated as a spectroscopic factor weighted mean of single particle energy. The ESPE can reveal the strength of spin-orbit splitting. This splitting is further related to the effects of tensor force, 3N force and spin-orbit coupling of nuclear force. Florine has 1 proton on the s-d shell. The single particle picture should be suitable to explain its behavior. However, in the neutron rich isotopes, this picture may be broken due to the effect of excessive neutrons on the s-d shell. The possible effects are s-d shell mixing and reduction of shell gap energy. We are going to present the experimental setup and condition, data analysis process and the latest data analysis result for exclusive measurement of F(p,2p)O* knockout reaction. The excitation energy spectrum of residual nucleus will be discussed. The yield will be compared with the theoretical calculation of the cross section by code THREEDEE. The separation energy of quasi-free proton knockout reactioncan be a good probe for the single particle energy of each orbit inside a nucleus. The spectroscopic factor can also bededuced from the measured cross section. The effective single particle energy (ESPE)can then be calculated as a spectroscopic factor weighted mean of single particle energy. The ESPE can reveal the strength of spin-orbit splitting. This splitting is further related to the effects of tensor force, 3N force and spin-orbit coupling of nuclear force. Florine has 1 proton on the s-d shell. The single particle picture should be suitable to explain its behavior. However, in the neutron rich isotopes, this picture may be broken due to the effect of excessive neutrons on the s-d shell. The possible effects are s-d shell mixing and

  5. Behavioral analysis of male and female Fmr1 knockout mice on C57BL/6 background

    OpenAIRE

    Ding, Qi; Sethna, Ferzin; Wang, Hongbing

    2014-01-01

    Fragile X syndrome (FXS) is a monogenic disease caused by mutations in the FMR1 gene. The Fmr1 knockout (KO) mice show many aspects of FXS-related phenotypes, and have been used as a major pre-clinical model for FXS. Although FXS occurs in both male and female patients, most studies on the mouse model use male animals. Few studies test whether gender affects the face validity of the mouse model. Here, we examined multiple behavioral phenotypes with male hemizygous and female homozygous Fmr1 K...

  6. A role for Mints in transmitter release: Mint 1 knockout mice exhibit impaired GABAergic synaptic transmission

    OpenAIRE

    Ho, Angela; Morishita, Wade; Hammer, Robert E.; Malenka, Robert C.; Südhof, Thomas C.

    2003-01-01

    Mints (also called X11-like proteins) are adaptor proteins composed of divergent N-terminal sequences that bind to synaptic proteins such as CASK (Mint 1 only) and Munc18-1 (Mints 1 and 2) and conserved C-terminal PTB- and PDZ-domains that bind to widely distributed proteins such as APP, presenilins, and Ca2+ channels (all Mints). We find that Mints 1 and 2 are similarly expressed in most neurons except for inhibitory interneurons that contain selectively high levels of Mint 1. Using knockout...

  7. Global Nav1.7 Knockout Mice Recapitulate the Phenotype of Human Congenital Indifference to Pain

    OpenAIRE

    Jacinthe Gingras; Sarah Smith; Matson, David J.; Danielle Johnson; Kim Nye; Lauren Couture; Elma Feric; Ruoyuan Yin; Moyer, Bryan D.; Peterson, Matthew L.; Rottman, James B.; Beiler, Rudolph J.; Annika B Malmberg; McDonough, Stefan I.

    2014-01-01

    Clinical genetic studies have shown that loss of Nav1.7 function leads to the complete loss of acute pain perception. The global deletion is reported lethal in mice, however, and studies of mice with promoter-specific deletions of Nav1.7 have suggested that the role of Nav1.7 in pain transduction depends on the precise form of pain. We developed genetic and animal husbandry strategies that overcame the neonatal-lethal phenotype and enabled construction of a global Nav1.7 knockout mouse. Knock...

  8. Mirror Energy Differences at Large Isospin Studied through Direct Two-Nucleon Knockout

    CERN Document Server

    Davies, P J; Henry, T W; Simpson, E C; Gade, A; Lenzi, S M; Baugher, T; Bazin, D; Berryman, J S; Bruce, A M; Diget, C Aa; Iwasaki, H; Lemasson, A; McDaniel, S; Napoli, D R; Ratkiewicz, A; Scruton, L; Shore, A; Stroberg, R; Tostevin, J A; Weisshaar, D; Wimmer, K; Winkler, R

    2013-01-01

    The first spectroscopy of excited states in 52Ni (Tz=2) and 51Co (Tz=-3/2) has been obtained using the highly selective two-neutron knockout reaction. Mirror energy differences between isobaric analogue states in these nuclei and their mirror partners are interpreted in terms of isospin nonconserving effects. A comparison between large scale shell-model calculations and data provides the most compelling evidence to date that both electromagnetic and an additional isospin nonconserving interactions for J=2 couplings, of unknown origin, are required to obtain good agreement.

  9. Generating Targeted Gene Knockout Lines in Physcomitrella patens to Study Evolution of Stress-Responsive Mechanisms

    Science.gov (United States)

    Maronova, Monika; Kalyna, Maria

    2016-01-01

    The moss Physcomitrella patens possesses highly efficient homologous recombination allowing targeted gene manipulations and displays many features of the early land plants including high tolerance to abiotic stresses. It is therefore an invaluable model organism for studies of gene functions and comparative studies of evolution of stress responses in plants. Here, we describe a method for generating targeted gene knockout lines in P. patens using a polyethylene glycol-mediated transformation of protoplasts including basic in vitro growth, propagation, and maintenance techniques. PMID:26867627

  10. Wip1 knockout inhibits the proliferation and enhances the migration of bone marrow mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yiting [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China); Liu, Lan [State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China); Sheng, Ming [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Xiong, Kai [Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870 Frederiksberg C (Denmark); Huang, Lei; Gao, Qian; Wei, Jingliang; Wu, Tianwen; Yang, Shulin [State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China); Liu, Honglin, E-mail: liuhonglinnjau@163.com [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Mu, Yulian, E-mail: muyulian76@iascaas.net.cn [State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China); Li, Kui [State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China)

    2015-06-10

    Mesenchymal stem cells (MSCs), a unique population of multipotent adult progenitor cells originally found in bone marrow (BM), are extremely useful for multifunctional therapeutic approaches. However, the growth arrest and premature senescence of MSCs in vitro prevent the in-depth characterization of these cells. In addition, the regulatory factors involved in MSCs migration remain largely unknown. Given that protein phosphorylation is associated with the processes of MSCs proliferation and migration, we focused on wild-type p53-inducible phosphatase-1 (Wip1), a well-studied modulator of phosphorylation, in this study. Our results showed that Wip1 knockout significantly inhibited MSCs proliferation and induced G2-phase cell-cycle arrest by reducing cyclinB1 expression. Compared with WT-MSCs, Wip1{sup −/−} MSCs displayed premature growth arrest after six passages in culture. Transwell and scratch assays revealed that Wip1{sup −/−} MSCs migrate more effectively than WT-MSCs. Moreover, the enhanced migratory response of Wip1{sup −/−} MSCs may be attributed to increases in the induction of Rac1-GTP activity, the pAKT/AKT ratio, the rearrangement of filamentous-actin (f-actin), and filopodia formation. Based on these results, we then examined the effect of treatment with a PI3K/AKT and Rac1 inhibitor, both of which impaired the migratory activity of MSCs. Therefore, we propose that the PI3K/AKT/Rac1 signaling axis mediates the Wip1 knockout-induced migration of MSCs. Our findings indicate that the principal function of Wip1 in MSCs transformation is the maintenance of proliferative capacity. Nevertheless, knocking out Wip1 increases the migratory capacity of MSCs. This dual effect of Wip1 provides the potential for purposeful routing of MSCs. - Highlights: • Wip1 knockout inhibited MSCs proliferation through reducing cyclinB1 expression. • Wip1{sup −/−} MSCs displayed premature growth arrest in vitro after six passages. • Knocking out Wip1

  11. The mechanism of the (p,α) reaction: pick-up or knock-out

    International Nuclear Information System (INIS)

    Several early studies of the (p,α) reaction to discrete states of the final nucleus indicated that it proceeds mainly by the pick-up mechanism, whereas more recent experiments provide qualitative arguments in favour of the knock-out mechanism. This paper reports calculations showing that the angular distributions and analysing powers of the sup(90,92)Zr(p,α)sup(87,89)Y and 118Sn(p,α)115In reactions can be equally well fitted by distorted wave calculations using either mechanism. (author)

  12. Relevant feature set estimation with a knock-out strategy and random forests

    DEFF Research Database (Denmark)

    Ganz, Melanie; Greve, Douglas N; Fischl, Bruce;

    2015-01-01

    Group analysis of neuroimaging data is a vital tool for identifying anatomical and functional variations related to diseases as well as normal biological processes. The analyses are often performed on a large number of highly correlated measurements using a relatively smaller number of samples...... unintuitive and difficult to determine. In this article, we propose a novel MVPA method for group analysis of high-dimensional data that overcomes the drawbacks of the current techniques. Our approach explicitly aims to identify all relevant variations using a "knock-out" strategy and the Random Forest...

  13. Knockout of proton-neutron pairs from $^{16}$O with electromagnetic probes

    CERN Document Server

    Middleton, D G; Barbieri, C; Giusti, C; Grabmayr, P; Hehl, T; MacGregor, I J D; Martin, I; McGeorge, J C; Moschini, F; Pacati, F D; Schwamb, M; Watts, D

    2009-01-01

    After recent improvements to the Pavia model of two-nucleon knockout from $^{16}$O with electromagnetic probes the calculated cross sections are compared to experimental data from such reactions. Comparison with data from a measurement of the $^{16}$O(e,e$'$pn) reaction show much better agreement between experiment and theory than was previously observed. In a comparison with recent data from a measurement of the $^{16}$O($\\gamma$,pn) reaction the model over-predicts the measured cross section at low missing momentum.

  14. Knockout of proton-neutron pairs from {sup 16}O with electromagnetic probes

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, D.G.; Grabmayr, P.; Hehl, T.; Martin, I.; Moschini, F. [Universitaet Tuebingen, Kepler Centre for Astro and Particle Physics, Physikalisches Institut, Tuebingen (Germany); Annand, J.R.M.; MacGregor, I.J.D.; McGeorge, J.C. [University of Glasgow, Department of Physics and Astronomy, Glasgow, Scotland (United Kingdom); Barbieri, C. [RIKEN Nishina Center, Theoretical Nuclear Physics Laboratory, Wako (Japan); Giusti, C.; Pacati, F.D. [Dipartimento di Fisica Nucleare e Teorica dell' Universita degli Studi di Pavia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia (Italy); Schwamb, M. [Johannes-Gutenberg Universitaet Mainz, Institut fuer Kernphysik, Mainz (Germany); Watts, D. [University of Edinburgh, School of Physics, Edinburgh (United Kingdom)

    2010-02-15

    After recent improvements to the Pavia model of two-nucleon knockout from {sup 16}O with electromagnetic probes the calculated cross-sections are compared to experimental data from such reactions. Comparison with data from a measurement of the {sup 16}O (e,e' pn) reaction cross-section shows much better agreement between the experimental data and the results of the theoretical model than was previously observed. In a comparison with recent data from a measurement of the {sup 16}O({gamma},pn) reaction cross-section the model over-predicts the measured cross-section at low missing momentum. (orig.)

  15. Evaluation of the In Vivo and Ex Vivo Binding of Novel BC1 Cannabinoid Receptor Radiotracers

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A.; Gatley, J.; Gifford, A.

    2002-01-01

    The primary active ingredient of marijuana, 9-tetrahydrocannabinol, exerts its psychoactive effects by binding to cannabinoid CB1 receptors. These receptors are found throughout the brain with high concentrations in the hippocampus and cerebellum. The current study was conducted to evaluate the binding of a newly developed putative cannabinoid antagonist, AM630, and a classical cannabinoid 8-tetrahydrocannabinol as potential PET and/or SPECT imaging agents for brain CB1 receptors. For both of these ligands in vivo and ex vivo studies in mice were conducted. AM630 showed good overall brain uptake (as measure by %IA/g) and a moderately rapid clearance from the brain with a half-clearance time of approximately 30 minutes. However, AM630 did not show selective binding to CB1 cannabinoid receptors. Ex vivo autoradiography supported the lack of selective binding seen in the in vivo study. Similar to AM630, 8-tetrahydrocanibol also failed to show selective binding to CB1 receptor rich brain areas. The 8-tetrahydrocanibol showed moderate overall brain uptake and relatively slow brain clearance as compared to AM630. Further studies were done with AM2233, a cannabinoid ligand with a similar structure as AM630. These studies were done to develop an ex vivo binding assay to quantify the displacement of [131I]AM2233 binding by other ligands in Swiss-Webster and CB1 receptor knockout mice. By developing this assay we hoped to determine the identity of an unknown binding site for AM2233 present in the hippocampus of CB1 knockout mice. Using an approach based on incubation of brain slices prepared from mice given intravenous [131I]AM2233 in either the presence or absence of AM2233 (unlabelled) it was possible to demonstrate a significant AM2233-displacable binding in the Swiss-Webster mice. Future studies will determine if this assay is appropriate for identifying the unknown binding site for AM2233 in the CB1 knockout mice.

  16. Fscn1 is required for the trafficking of TGF-β family type I receptors during endoderm formation

    Science.gov (United States)

    Liu, Zhaoting; Ning, Guozhu; Xu, Ranran; Cao, Yu; Meng, Anming; Wang, Qiang

    2016-01-01

    Microtubules function in TGF-β signalling by facilitating the cytoplasmic trafficking of internalized receptors and the nucleocytoplasmic shuttling of Smads. However, nothing is known about whether actin filaments are required for these processes. Here we report that zebrafish actin-bundling protein fscn1a is highly expressed in mesendodermal precursors and its expression is directly regulated by the TGF-β superfamily member Nodal. Knockdown or knockout of fscn1a leads to a reduction of Nodal signal transduction and endoderm formation in zebrafish embryos. Fscn1 specifically interacts with TGF-β family type I receptors, and its depletion disrupts the association between receptors and actin filaments and sequesters the internalized receptors into clathrin-coated vesicles. Therefore, Fscn1 acts as a molecular linker between TGF-β family type I receptors and the actin filaments to promote the trafficking of internalized receptors from clathrin-coated vesicles to early endosomes during zebrafish endoderm formation. PMID:27545838

  17. Scavenger receptor BI: A multi-purpose player in cholesterol and steroid metabolism

    Institute of Scientific and Technical Information of China (English)

    Menno; Hoekstra; Theo; JC; Van; Berkel; Miranda; Van; Eck

    2010-01-01

    Scavenger receptor class B type Ⅰ (SR-BI) is an important member of the scavenger receptor family of integral membrane glycoproteins. This review highlights studies in SR-BI knockout mice, which concern the role of SR-BI in cholesterol and steroid metabolism. SR-BI in hepatocytes is the sole molecule involved in selective uptake of cholesteryl esters from high-density lipoprotein (HDL). SR-BI plays a physiological role in binding and uptake of native apolipoprotein B (apoB)-containing lipoproteins by hepato...

  18. The farnesoid X receptor induces fetuin-B gene expression in human hepatocytes

    OpenAIRE

    Murakami, Takeshi; Walczak, Robert; Caron, Sandrine; Duhem, Christian; Vidal, Vincent; Darteil, Raphaël; Staels, Bart

    2007-01-01

    Abstract Farnesoid X receptor (FXR), a nuclear receptor activated by bile acids, is a key factor in the regulation of bile acid, lipid and carbohydrate metabolism. The recent development of synthetic FXR agonists and knock-out mouse models has accelerated the discovery of FXR target genes. In this study we identify human Fetuin-B as a novel FXR target gene. Treatment with FXR agonists increased Fetuin-B expression in human primary hepatocytes and in the human hepatoma HepG2 cell li...

  19. Role of dopamine D2 receptors in optimizing choice strategy in a dynamic and uncertain environment

    OpenAIRE

    Kwak, Shinae; Huh, Namjung; Seo, Ji-Seon; Lee, Jung-Eun; Han, Pyung-Lim; Min W Jung

    2014-01-01

    In order to investigate roles of dopamine receptor subtypes in reward-based learning, we examined choice behavior of dopamine D1 and D2 receptor-knockout (D1R-KO and D2R-KO, respectively) mice in an instrumental learning task with progressively increasing reversal frequency and a dynamic two-armed bandit task. Performance of D2R-KO mice was progressively impaired in the former as the frequency of reversal increased and profoundly impaired in the latter even with prolonged training, whereas D1...

  20. β-Lactotensin derived from bovine β-lactoglobulin exhibits anxiolytic-like activity as an agonist for neurotensin NTS(2) receptor via activation of dopamine D(1) receptor in mice.

    Science.gov (United States)

    Hou, I-Ching; Suzuki, Chihiro; Kanegawa, Norimasa; Oda, Ayako; Yamada, Ayako; Yoshikawa, Masaaki; Yamada, Daisuke; Sekiguchi, Masayuki; Wada, Etsuko; Wada, Keiji; Ohinata, Kousaku

    2011-11-01

    β-Lactotensin (His-Ile-Arg-Leu) is a bioactive peptide derived from bovine milk β-lactoglobulin, acting as a natural agonist for neurotensin receptors. We found that β-lactotensin exhibited anxiolytic-like activity in an elevated plus-maze test after its intraperitoneal (i.p.) administration in mice. β-Lactotensin was also orally active. The anxiolytic-like activity of β-lactotensin after i.p. administration was blocked by levocabastine, an antagonist for the neurotensin NTS(2) receptor. β-Lactotensin had anxiolytic-like activity in wild-type but not Ntsr2-knockout mice. β-Lactotensin increased intracellular Ca(2+) flux in glial cells derived from wild-type mice but not Ntsr2 knockout mice. These results suggest that β-lactotensin acts as an NTS(2) receptor agonist having anxiolytic-like activity. The anxiolytic-like activity of β-lactotensin was also blocked by SCH23390 and SKF83566, antagonists for dopamine D(1) receptor, but not by raclopride, an antagonist for D(2) receptor. Taken together, β-lactotensin may exhibit anxiolytic-like activity via NTS(2) receptor followed by D(1) receptor.

  1. Pathogenicty and immune prophylaxis of cag pathogenicity island gene knockout homogenic mutants

    Institute of Scientific and Technical Information of China (English)

    Huan-Jian Lin; Jing Xue; Yang Bai; Ji-De Wang; Ya-Li Zhang; Dian-Yuan Zhou

    2004-01-01

    AIM: To clarify the role of cag pathogenicity island (cagPAI)of Helicobacter pylori(H pylori) in the pathogenicity and immune prophylaxis of H pyloriinfection.METHODS: Three pairs of H pylori including 3 strains of cagPAI positive wildtype bacteria and their cagPAI knockout homogenic mutants were utilized. H pylori binding to the gastric epithelial cells was analyzed by flow cytometry assays.Apoptosis of gastric epithelial cells induced by H pylori was determined by ELISA assay. Prophylaxis effect of the wildtype and mutant strains was compared by immunization with the sonicate of the bacteria into mice model.RESULTS: No difference was found in the apoptasis between cagPAI positive and knockout H pylori strains in respective of the ability in the binding to gastric epithelial cells as well as the induction of apoptosis. Both types of the bacteria were able to protect the mice from the infection of H pylori after immunization, with no difference between them regarding to the protection rate as well as the stimulation of the proliferation of splenocytes of the mice.CONCLUSION: The role of cagPAI in the pathogenicity and prophylaxis of H pylori infection remains to be cleared.

  2. Differential proteomic analysis of STAT6 knockout mice reveals new regulatory function in liver lipid homeostasis.

    Science.gov (United States)

    Iff, Joël; Wang, Wei; Sajic, Tatjana; Oudry, Nathalie; Gueneau, Estelle; Hopfgartner, Gérard; Varesio, Emmanuel; Szanto, Ildiko

    2009-10-01

    Increased inflammatory signaling is a key feature of metabolic disorders. In this context, the role of increased pro-inflammatory signals has been extensively studied. By contrast, no efforts have been dedicated to study the contrasting scenario: the attenuation of anti-inflammatory signals and their role in metabolic homeostasis. IL-4 and IL-13 are anti-inflammatory cytokines signaling through the Signal Transducer and Activator of Transcription 6 (STAT6). Our study was aimed at evaluating the lack of STAT6 signaling on liver homeostasis. To this end we analyzed the liver proteome of wild type and STAT6 knock-out mice using 2D nanoscale LC-MS/MS with iTRAQ labeling technique. The coordinated changes in proteins identified by this quantitative proteome analysis indicated disturbed lipid homeostasis and a state of hepatocellular stress. Most significantly, the expression of the liver fatty acid binding protein (FABP1) was increased in the knock-out mice. In line with the elevated FABP1 expression we found latent liver lipid accumulation in the STAT6-deficient mice which was further aggravated when mice were challenged by a high fat diet. In conclusion, our study revealed a so far uncharacterized role for STAT6 in regulating liver lipid homeostasis and demonstrates the importance of anti-inflammatory signaling in the defense against the development of liver steatosis. PMID:19663508

  3. Hitting two birds with one stone: The unforeseen consequences of nested gene knockouts in Caenorhabditis elegans.

    Science.gov (United States)

    Jovelin, Richard; Cutter, Asher D

    2016-01-01

    Nested genes represent an intriguing form of non-random genomic organization in which the boundaries of one gene are fully contained within another, longer host gene. The C. elegans genome contains over 10,000 nested genes, 92% of which are ncRNAs, which occur inside 16% of the protein coding gene complement. Host genes are longer than non-host coding genes, owing to their longer and more numerous introns. Indel alleles are available for nearly all of these host genes that simultaneously alter the nested gene, raising the possibility of nested gene disruption contributing to phenotypes that might be attributed to the host gene. Such dual-knockouts could represent a source of misinterpretation about host gene function. Dual-knockouts might also provide a novel source of synthetic phenotypes that reveal the functional effects of ncRNA genes, whereby the host gene disruption acts as a perturbed genetic background to help unmask ncRNA phenotypes. PMID:27386165

  4. Measurement of ν-values for TARN by the RF knock-out method

    International Nuclear Information System (INIS)

    The number of betatron oscillations per revolution (ν-value) can be measured experimentally by an RF knock-out method. The principle of the method is formulated. The RF knock-out system for TARN was desgned and constructed. Its design and specifications are described in detail. The experimental results with H2+ and He2+ beams with the kinetic energy of 7 MeV/u are compared with the calculation with the computer program SYNCH. The νsub(x) and νsub(z) were measured to be 2.29 and 2.12, respectively, for the excitation currents of the quadrupole magnets; I sub(D) = 121 A (G sub(D) = 0.212 kG/cm) and I sub(F) = 74.5 A (G sub(F) = 0.131 kG/cm). The calculation indicates that the corresponding values are 2.21 and 2.19, respectively, which are in fairly good agreement with the experimental ones. (author)

  5. CRISPR-Mediated VHL Knockout Generates an Improved Model for Metastatic Renal Cell Carcinoma.

    Science.gov (United States)

    Schokrpur, Shiruyeh; Hu, Junhui; Moughon, Diana L; Liu, Peijun; Lin, Lucia C; Hermann, Kip; Mangul, Serghei; Guan, Wei; Pellegrini, Matteo; Xu, Hua; Wu, Lily

    2016-01-01

    Metastatic renal cell carcinoma (mRCC) is nearly incurable and accounts for most of the mortality associated with RCC. Von Hippel Lindau (VHL) is a tumour suppressor that is lost in the majority of clear cell RCC (ccRCC) cases. Its role in regulating hypoxia-inducible factors-1α (HIF-1α) and -2α (HIF-2α) is well-studied. Recent work has demonstrated that VHL knock down induces an epithelial-mesenchymal transition (EMT) phenotype. In this study we showed that a CRISPR/Cas9-mediated knock out of VHL in the RENCA model leads to morphologic and molecular changes indicative of EMT, which in turn drives increased metastasis to the lungs. RENCA cells deficient in HIF-1α failed to undergo EMT changes upon VHL knockout. RNA-seq revealed several HIF-1α-regulated genes that are upregulated in our VHL knockout cells and whose overexpression signifies an aggressive form of ccRCC in the cancer genome atlas (TCGA) database. Independent validation in a new clinical dataset confirms the upregulation of these genes in ccRCC samples compared to adjacent normal tissue. Our findings indicate that loss of VHL could be driving tumour cell dissemination through stabilization of HIF-1α in RCC. A better understanding of the mechanisms involved in this phenomenon can guide the search for more effective treatments to combat mRCC. PMID:27358011

  6. Sirh7/Ldoc1 knockout mice exhibit placental P4 overproduction and delayed parturition.

    Science.gov (United States)

    Naruse, Mie; Ono, Ryuichi; Irie, Masahito; Nakamura, Kenji; Furuse, Tamio; Hino, Toshiaki; Oda, Kanako; Kashimura, Misho; Yamada, Ikuko; Wakana, Shigeharu; Yokoyama, Minesuke; Ishino, Fumitoshi; Kaneko-Ishino, Tomoko

    2014-12-01

    Sirh7/Ldoc1 [sushi-ichi retrotransposon homolog 7/leucine zipper, downregulated in cancer 1, also called mammalian retrotransposon-derived 7 (Mart7)] is one of the newly acquired genes from LTR retrotransposons in eutherian mammals. Interestingly, Sirh7/Ldoc1 knockout (KO) mice exhibited abnormal placental cell differentiation/maturation, leading to an overproduction of placental progesterone (P4) and placental lactogen 1 (PL1) from trophoblast giant cells (TGCs). The placenta is an organ that is essential for mammalian viviparity and plays a major endocrinological role during pregnancy in addition to providing nutrients and oxygen to the fetus. P4 is an essential hormone in the preparation and maintenance of pregnancy and the determination of the timing of parturition in mammals; however, the biological significance of placental P4 in rodents is not properly recognized. Here, we demonstrate that mouse placentas do produce P4 in mid-gestation, coincident with a temporal reduction in ovarian P4, suggesting that it plays a role in the protection of the conceptuses specifically in this period. Pregnant Sirh7/Ldoc1 knockout females also displayed delayed parturition associated with a low pup weaning rate. All these results suggest that Sirh7/Ldoc1 has undergone positive selection during eutherian evolution as a eutherian-specific acquired gene because it impacts reproductive fitness via the regulation of placental endocrine function. PMID:25468940

  7. Spectroscopy of $^{35}$P using the one-proton knockout reaction

    CERN Document Server

    Mutschler, A; Lemasson, A; Bazin, D; Borcea, C; Borcea, R; Gade, A; Iwasaki, H; Khan, E; Lepailleur, A; Recchia, F; Roger, T; Rotaru, F; Stanoiu, M; Stroberg, R; Tostevin, J A; Vandebrouck, M; Weisshaar, D; Wimmer, K

    2016-01-01

    The structure of $^{35}$P was studied with a one-proton knockout reaction at88~MeV/u from a $^{36}$S projectile beam at NSCL. The $\\gamma$ rays from thedepopulation of excited states in $^{35}$P were detected with GRETINA, whilethe $^{35}$P nuclei were identified event-by-event in the focal plane of theS800 spectrograph. The level scheme of $^{35}$P was deduced up to 7.5 MeV using$\\gamma-\\gamma$ coincidences. The observed levels were attributed to protonremovals from the $sd$-shell and also from the deeply-bound $p\\_{1/2}$ orbital.The orbital angular momentum of each state was derived from the comparisonbetween experimental and calculated shapes of individual ($\\gamma$-gated)parallel momentum distributions. Despite the use of different reactions andtheir associate models, spectroscopic factors, $C^2S$, derived from the$^{36}$S $(-1p)$ knockout reaction agree with those obtained earlier from$^{36}$S($d$,\

  8. Oxygen knock-out and other studies in α-irradiated polycrystalline Bi-2212 superconductor

    International Nuclear Information System (INIS)

    Bulk polycrystalline samples of Bi2Sr2CaCu2O8+σ (Bi-2212) have been irradiated with 40 MeV α-particles. Tc increases up to a certain dose. The increase in Tc is correlated with the knock-out of oxygen, which has been verified by the determination of the oxygen contents of the irradiated samples by iodometry. A model of the knock-out of oxygen is proposed on the basis of Monte-Carlo TRIM calculations. Resistivity versus temperature of the irradiated samples shows fairly metallic behaviour up to a certain dose. Excess conductivity analysis shows a cross-over from 2D to 3D behaviour in conductivity for the unirradiated sample. However, for irradiated samples, the critical fluctuation regime sets in. The interlayer coupling strengths decrease with the increase in the irradiation dose. The sample with the highest dose shows a nonmetallic behaviour in resistivity. A detailed analysis shows a conductivity behaviour in the nonmetallic region characteristic of three-dimensional variable range hopping of charge carriers. (orig.)

  9. Oxygen knock-out and other studies in {alpha}-irradiated polycrystalline Bi-2212 superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, S.K. [Variable Energy Cyclotron Centre, Calcutta (India); Ghosh, A.K. [Jadavpur Univ., Calcutta (India). Dept. of Physics; Barat, P. [Variable Energy Cyclotron Centre, Calcutta (India); Sen Pintu [Variable Energy Cyclotron Centre, Calcutta (India); Basu, A.N. [Jadavpur Univ., Calcutta (India). Dept. of Physics; Ghosh, B. [Saha Inst. of Nuclear Physics, Calcutta (India)

    1997-08-16

    Bulk polycrystalline samples of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{sigma}} (Bi-2212) have been irradiated with 40 MeV {alpha}-particles. T{sub c} increases up to a certain dose. The increase in T{sub c} is correlated with the knock-out of oxygen, which has been verified by the determination of the oxygen contents of the irradiated samples by iodometry. A model of the knock-out of oxygen is proposed on the basis of Monte-Carlo TRIM calculations. Resistivity versus temperature of the irradiated samples shows fairly metallic behaviour up to a certain dose. Excess conductivity analysis shows a cross-over from 2D to 3D behaviour in conductivity for the unirradiated sample. However, for irradiated samples, the critical fluctuation regime sets in. The interlayer coupling strengths decrease with the increase in the irradiation dose. The sample with the highest dose shows a nonmetallic behaviour in resistivity. A detailed analysis shows a conductivity behaviour in the nonmetallic region characteristic of three-dimensional variable range hopping of charge carriers. (orig.)

  10. MAO A knockout attenuates adrenocortical response to various kinds of stress.

    Science.gov (United States)

    Popova, Nina K; Maslova, Larissa N; Morosova, Ekaterina A; Bulygina, Veta V; Seif, Isabelle

    2006-02-01

    The effect of a lack of the gene encoding monoamine oxidase A (MAO A) in transgenic Tg 8 mice on the corticosterone response to restraint, cold, water deprivation-induced, or social acute stress as well as chronic variable stress was studied. It was found that Tg 8 mice with genetic MAO A knockout and wild-type C3H/HeJ (C3H) strain showed similar plasma corticosterone resting level. MAO A knockout mice differed from C3H mice by attenuated response to restraint (60 min), cold (4 degrees C, 60 min), and water deprivation (48 h) as well as to a chronic (15 days) variable stress. No difference between Tg 8 and C3H strains in the response to psychosocial stress (encounters for 30 min of six previously isolated mice) has been found. ACTH administration to dexamethasone-pretreated mice produced a similar corticosterone effect in Tg 8 and C3H mice, indicating that the decreased stress response in MAO A-deficient mice was due rather to the central mechanisms regulating stress-induced ACTH release than to adrenocortical responsiveness to ACTH.

  11. The mechanical properties of tail tendon fascicles from lubricin knockout, wild type and heterozygous mice.

    Science.gov (United States)

    Reuvers, John; Thoreson, Andrew R; Zhao, Chunfeng; Zhang, Ling; Jay, Gregory D; An, Kai-Nan; Warman, Matthew L; Amadio, Peter C

    2011-10-01

    The purpose of this study was to analyze the effects of lubricin on tendon stiffness and viscoelasticity. A total of 36 mice were tested with 12 mice in each of the following groups: lubricin knock-out ⁻/⁻, heterozygous ⁺/⁻ and wild-type ⁺/⁺. A ramp test was used to determine the elastic modulus by pulling the fascicles to 2.5% strain amplitude at a rate of 0.05 mm/s. Then, followed by a relaxation test that pulled the fascicles to 5% strain amplitude at a rate of 2 mm/s. The fascicles were allowed to relax for 2 min at the maximum strain and a single-cycle relaxation ratio was used to characterize viscoelastic properties. There was no significant difference in the Young's modulus between the three groups (p > 0.05), but the knockout mice had a significantly (p < 0.05) lower relaxation ratio than the wild type mice. Based on these data, we concluded that lubricin expression has an effect on the viscoelastic properties of tendon fascicles. The clinical significance of this finding, if any, remains to be demonstrated.

  12. Improving cold storage and processing traits in potato through targeted gene knockout.

    Science.gov (United States)

    Clasen, Benjamin M; Stoddard, Thomas J; Luo, Song; Demorest, Zachary L; Li, Jin; Cedrone, Frederic; Tibebu, Redeat; Davison, Shawn; Ray, Erin E; Daulhac, Aurelie; Coffman, Andrew; Yabandith, Ann; Retterath, Adam; Haun, William; Baltes, Nicholas J; Mathis, Luc; Voytas, Daniel F; Zhang, Feng

    2016-01-01

    Cold storage of potato tubers is commonly used to reduce sprouting and extend postharvest shelf life. However, cold temperature stimulates the accumulation of reducing sugars in potato tubers. Upon high-temperature processing, these reducing sugars react with free amino acids, resulting in brown, bitter-tasting products and elevated levels of acrylamide--a potential carcinogen. To minimize the accumulation of reducing sugars, RNA interference (RNAi) technology was used to silence the vacuolar invertase gene (VInv), which encodes a protein that breaks down sucrose to glucose and fructose. Because RNAi often results in incomplete gene silencing and requires the plant to be transgenic, here we used transcription activator-like effector nucleases (TALENs) to knockout VInv within the commercial potato variety, Ranger Russet. We isolated 18 plants containing mutations in at least one VInv allele, and five of these plants had mutations in all VInv alleles. Tubers from full VInv-knockout plants had undetectable levels of reducing sugars, and processed chips contained reduced levels of acrylamide and were lightly coloured. Furthermore, seven of the 18 modified plant lines appeared to contain no TALEN DNA insertions in the potato genome. These results provide a framework for using TALENs to quickly improve traits in commercially relevant autotetraploid potato lines. PMID:25846201

  13. Apolipoprotein E-knockout mice show increased titers of serum anti-nuclear and anti-dsDNA antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuehai [Cardiovascular Department, Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000 (China); Huang, Ziyang, E-mail: huangziyang666@126.com [Cardiovascular Department, Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000 (China); Lu, Huixia [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan, Shandong 250012 (China); Lin, Huili; Wang, Zhenhua [Cardiovascular Department, Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000 (China); Chen, Xiaoqing [Department of Rheumatism and Immunology, Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000 (China); Ouyang, Qiufang [Cardiovascular Department, Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000 (China); Tang, Mengxiong; Hao, Panpan [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan, Shandong 250012 (China); Ni, Jingqin [Cardiovascular Department, Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000 (China); Xu, Dongming [Department of Rheumatism and Immunology, Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000 (China); Zhang, Mingxiang; Zhang, Qunye [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan, Shandong 250012 (China); Lin, Ling [Department of Rheumatism and Immunology, Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000 (China); and others

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer Titers of ANA and anti-dsDNA antibodies were higher in ApoE{sup -/-} than C57B6/L mice. Black-Right-Pointing-Pointer Spleen was greater and splenocyte apoptosis lower in ApoE{sup -/-} than B6 mice. Black-Right-Pointing-Pointer Level of TLR4 was lower in spleen tissue of ApoE{sup -/-} than B6 mice. Black-Right-Pointing-Pointer The TLR4 pathway may participate in maintaining the balance of splenocyte apoptosis. Black-Right-Pointing-Pointer The TLR4 pathway may participate in antibody production in spleen tissue. -- Abstract: Apolipoprotein E-knockout (ApoE{sup -/-}) mice, atherosclerosis-prone mice, show an autoimmune response, but the pathogenesis is not fully understood. We investigated the pathogenesis in female and male ApoE{sup -/-} mice. The spleens of all ApoE{sup -/-} and C57BL/6 (B6) mice were weighed. The serum IgG level and titers of anti-nuclear antibody (ANA) and anti-double-stranded DNA (anti-dsDNA) antibody were assayed by ELISA. Apoptosis of spleen tissue was evaluated by TUNEL. TLR4 level in spleen tissue was tested by immunohistochemistry and Western blot analysis. Levels of MyD88, p38, phosphorylated p38 (pp38), interferon regulatory factor 3 (IRF3) and Bcl-2-associated X protein (Bax) in spleen tissue were detected by Western blot analysis. We also survey the changes of serum autoantibodies, spleen weight, splenocyte apoptosis and the expressions of TLR4, MyD88, pp38, IRF3 and Bax in spleen tissue in male ApoE{sup -/-} mice after 4 weeks of lipopolysaccharide (LPS), Toll-like receptor 4 ligand, administration. ApoE{sup -/-} mice showed splenomegaly and significantly increased serum level of IgG and titers of ANA and anti-dsDNA antibody as compared with B6 mice. Splenocyte apoptosis and the expression of TLR4, MyD88, pp38, IRF3 and Bax in spleen tissue were significantly lower in ApoE{sup -/-} than B6 mice. The expression of TLR4, MyD88, IRF3, pp38, and Bax differed by sex in ApoE{sup -/-} spleen tissue. The

  14. Apolipoprotein E-knockout mice show increased titers of serum anti-nuclear and anti-dsDNA antibodies

    International Nuclear Information System (INIS)

    Highlights: ► Titers of ANA and anti-dsDNA antibodies were higher in ApoE−/− than C57B6/L mice. ► Spleen was greater and splenocyte apoptosis lower in ApoE−/− than B6 mice. ► Level of TLR4 was lower in spleen tissue of ApoE−/− than B6 mice. ► The TLR4 pathway may participate in maintaining the balance of splenocyte apoptosis. ► The TLR4 pathway may participate in antibody production in spleen tissue. -- Abstract: Apolipoprotein E-knockout (ApoE−/−) mice, atherosclerosis-prone mice, show an autoimmune response, but the pathogenesis is not fully understood. We investigated the pathogenesis in female and male ApoE−/− mice. The spleens of all ApoE−/− and C57BL/6 (B6) mice were weighed. The serum IgG level and titers of anti-nuclear antibody (ANA) and anti-double-stranded DNA (anti-dsDNA) antibody were assayed by ELISA. Apoptosis of spleen tissue was evaluated by TUNEL. TLR4 level in spleen tissue was tested by immunohistochemistry and Western blot analysis. Levels of MyD88, p38, phosphorylated p38 (pp38), interferon regulatory factor 3 (IRF3) and Bcl-2-associated X protein (Bax) in spleen tissue were detected by Western blot analysis. We also survey the changes of serum autoantibodies, spleen weight, splenocyte apoptosis and the expressions of TLR4, MyD88, pp38, IRF3 and Bax in spleen tissue in male ApoE−/− mice after 4 weeks of lipopolysaccharide (LPS), Toll-like receptor 4 ligand, administration. ApoE−/− mice showed splenomegaly and significantly increased serum level of IgG and titers of ANA and anti-dsDNA antibody as compared with B6 mice. Splenocyte apoptosis and the expression of TLR4, MyD88, pp38, IRF3 and Bax in spleen tissue were significantly lower in ApoE−/− than B6 mice. The expression of TLR4, MyD88, IRF3, pp38, and Bax differed by sex in ApoE−/− spleen tissue. The down-regulation of TLR4 signal molecules induced by LPS led to decreased expression of Bax and increased serum titers of ANA and anti

  15. Metabolomic Characterization of Knockout Mutants in Arabidopsis: Development of a Metabolite Profiling Database for Knockout Mutants in Arabidopsis1[W][OPEN

    Science.gov (United States)

    Fukushima, Atsushi; Kusano, Miyako; Mejia, Ramon Francisco; Iwasa, Mami; Kobayashi, Makoto; Hayashi, Naomi; Watanabe-Takahashi, Akiko; Narisawa, Tomoko; Tohge, Takayuki; Hur, Manhoi; Wurtele, Eve Syrkin; Nikolau, Basil J.; Saito, Kazuki

    2014-01-01

    Despite recent intensive research efforts in functional genomics, the functions of only a limited number of Arabidopsis (Arabidopsis thaliana) genes have been determined experimentally, and improving gene annotation remains a major challenge in plant science. As metabolite profiling can characterize the metabolomic phenotype of a genetic perturbation in the plant metabolism, it provides clues to the function(s) of genes of interest. We chose 50 Arabidopsis mutants, including a set of characterized and uncharacterized mutants, that resemble wild-type plants. We performed metabolite profiling of the plants using gas chromatography-mass spectrometry. To make the data set available as an efficient public functional genomics tool for hypothesis generation, we developed the Metabolite Profiling Database for Knock-Out Mutants in Arabidopsis (MeKO). It allows the evaluation of whether a mutation affects metabolism during normal plant growth and contains images of mutants, data on differences in metabolite accumulation, and interactive analysis tools. Nonprocessed data, including chromatograms, mass spectra, and experimental metadata, follow the guidelines set by the Metabolomics Standards Initiative and are freely downloadable. Proof-of-concept analysis suggests that MeKO is highly useful for the generation of hypotheses for genes of interest and for improving gene annotation. MeKO is publicly available at http://prime.psc.riken.jp/meko/. PMID:24828308

  16. CB2 cannabinoid receptors contribute to bacterial invasion and mortality in polymicrobial sepsis.

    Directory of Open Access Journals (Sweden)

    Balázs Csóka

    Full Text Available BACKGROUND: Sepsis is a major healthcare problem and current estimates suggest that the incidence of sepsis is approximately 750,000 annually. Sepsis is caused by an inability of the immune system to eliminate invading pathogens. It was recently proposed that endogenous mediators produced during sepsis can contribute to the immune dysfunction that is observed in sepsis. Endocannabinoids that are produced excessively in sepsis are potential factors leading to immune dysfunction, because they suppress immune cell function by binding to G-protein-coupled CB(2 receptors on immune cells. Here we examined the role of CB(2 receptors in regulating the host's response to sepsis. METHODS AND FINDINGS: The role of CB(2 receptors was studied by subjecting CB(2 receptor wild-type and knockout mice to bacterial sepsis induced by cecal ligation and puncture. We report that CB(2 receptor inactivation by knockout decreases sepsis-induced mortality, and bacterial translocation into the bloodstream of septic animals. Furthermore, CB(2 receptor inactivation decreases kidney and muscle injury, suppresses splenic nuclear factor (NF-kappaB activation, and diminishes the production of IL-10, IL-6 and MIP-2. Finally, CB(2 receptor deficiency prevents apoptosis in lymphoid organs and augments the number of CD11b(+ and CD19(+ cells during CLP. CONCLUSIONS: Taken together, our results establish for the first time that CB(2 receptors are important contributors to septic immune dysfunction and mortality, indicating that CB(2 receptors may be therapeutically targeted for the benefit of patients suffering from sepsis.

  17. Loss of dopamine D2 receptors increases parvalbumin-positive interneurons in the anterior cingulate cortex.

    Science.gov (United States)

    Graham, Devon L; Durai, Heather H; Garden, Jamie D; Cohen, Evan L; Echevarria, Franklin D; Stanwood, Gregg D

    2015-02-18

    Disruption to dopamine homeostasis during brain development has been implicated in a variety of neuropsychiatric disorders, including depression and schizophrenia. Inappropriate expression or activity of GABAergic interneurons are common features of many of these disorders. We discovered a persistent upregulation of GAD67+ and parvalbumin+ neurons within the anterior cingulate cortex of dopamine D2 receptor knockout mice, while other GABAergic interneuron markers were unaffected. Interneuron distribution and number were not altered in the striatum or in the dopamine-poor somatosensory cortex. The changes were already present by postnatal day 14, indicating a developmental etiology. D2eGFP BAC transgenic mice demonstrated the presence of D2 receptor expression within a subset of parvalbumin-expressing cortical interneurons, suggesting the possibility of a direct cellular mechanism through which D2 receptor stimulation regulates interneuron differentiation or survival. D2 receptor knockout mice also exhibited decreased depressive-like behavior compared with wild-type controls in the tail suspension test. These data indicate that dopamine signaling modulates interneuron number and emotional behavior and that developmental D2 receptor loss or blockade could reveal a potential mechanism for the prodromal basis of neuropsychiatric disorders. PMID:25393953

  18. Dopamine receptor-mediated regulation of neuronal "clock" gene expression.

    Science.gov (United States)

    Imbesi, M; Yildiz, S; Dirim Arslan, A; Sharma, R; Manev, H; Uz, T

    2009-01-23

    Using a transgenic mice model (i.e. "clock" knockouts), clock transcription factors have been suggested as critical regulators of dopaminergic behaviors induced by drugs of abuse. Moreover, it has been shown that systemic administration of psychostimulants, such as cocaine and methamphetamine regulates the striatal expression of clock genes. However, it is not known whether dopamine receptors mediate these regulatory effects of psychostimulants at the cellular level. Primary striatal neurons in culture express dopamine receptors as well as clock genes and have been successfully used in studying dopamine receptor functioning. Therefore, we investigated the role of dopamine receptors on neuronal clock gene expression in this model using specific receptor agonists. We found an inhibitory effect on the expression of mClock and mPer1 genes with the D2-class (i.e. D2/D3) receptor agonist quinpirole. We also found a generalized stimulatory effect on the expression of clock genes mPer1, mClock, mNPAS2 (neuronal PAS domain protein 2), and mBmal1 with the D1-class (i.e. D1) receptor agonist SKF38393. Further, we tested whether systemic administration of dopamine receptor agonists causes similar changes in striatal clock gene expression in vivo. We found quinpirole-induced alterations in mPER1 protein levels in the mouse striatum (i.e. rhythm shift). Collectively, our results indicate that the dopamine receptor system may mediate psychostimulant-induced changes in clock gene expression. Using striatal neurons in culture as a model, further research is needed to better understand how dopamine signaling modulates the expression dynamics of clock genes (i.e. intracellular signaling pathways) and thereby influences neuronal gene expression, neuronal transmission, and brain functioning. PMID:19017537

  19. Alleviation of high-fat diet-induced fatty liver damage in group IVA phospholipase A2-knockout mice.

    Science.gov (United States)

    Ii, Hiromi; Yokoyama, Naoki; Yoshida, Shintaro; Tsutsumi, Kae; Hatakeyama, Shinji; Sato, Takashi; Ishihara, Keiichi; Akiba, Satoshi

    2009-12-01

    Hepatic fat deposition with hepatocellular damage, a feature of non-alcoholic fatty liver disease, is mediated by several putative factors including prostaglandins. In the present study, we examined whether group IVA phospholipase A(2) (IVA-PLA(2)), which catalyzes the first step in prostanoid biosynthesis, is involved in the development of fatty liver, using IVA-PLA(2)-knockout mice. Male wild-type mice on high-fat diets (20% fat and 1.25% cholesterol) developed hepatocellular vacuolation and liver hypertrophy with an increase in the serum levels of liver damage marker aminotransferases when compared with wild-type mice fed normal diets. These high-fat diet-induced alterations were markedly decreased in IVA-PLA(2)-knockout mice. Hepatic triacylglycerol content was lower in IVA-PLA(2)-knockout mice than in wild-type mice under normal dietary conditions. Although high-fat diets increased hepatic triacylglycerol content in both genotypes, the degree was lower in IVA-PLA(2)-knockout mice than in wild-type mice. Under the high-fat dietary conditions, IVA-PLA(2)-knockout mice had lower epididymal fat pad weight and smaller adipocytes than wild-type mice. The serum level of prostaglandin E(2), which has a fat storage effect, was lower in IVA-PLA(2)-knockout mice than in wild-type mice, irrespective of the kind of diet. In both genotypes, high-fat diets increased serum leptin levels equally between the two groups, but did not affect the serum levels of adiponectin, resistin, free fatty acid, triacylglycerol, glucose, or insulin. Our findings suggest that a deficiency of IVA-PLA(2) alleviates fatty liver damage caused by high-fat diets, probably because of the lower generation of IVA-PLA(2) metabolites, such as prostaglandin E(2). IVA-PLA(2) could be a promising therapeutic target for obesity-related diseases including non-alcoholic fatty liver disease.

  20. The Expression of TALEN before Fertilization Provides a Rapid Knock-Out Phenotype in Xenopus laevis Founder Embryos.

    Directory of Open Access Journals (Sweden)

    Kei Miyamoto

    Full Text Available Recent advances in genome editing using programmable nucleases have revolutionized gene targeting in various organisms. Successful gene knock-out has been shown in Xenopus, a widely used model organism, although a system enabling less mosaic knock-out in founder embryos (F0 needs to be explored in order to judge phenotypes in the F0 generation. Here, we injected modified highly active transcription activator-like effector nuclease (TALEN mRNA to oocytes at the germinal vesicle (GV stage, followed by in vitro maturation and intracytoplasmic sperm injection, to achieve a full knock-out in F0 embryos. Unlike conventional injection methods to fertilized embryos, the injection of TALEN mRNA into GV oocytes allows expression of nucleases before fertilization, enabling them to work from an earlier stage. Using this procedure, most of developed embryos showed full knock-out phenotypes of the pigmentation gene tyrosinase and/or embryonic lethal gene pax6 in the founder generation. In addition, our method permitted a large 1 kb deletion. Thus, we describe nearly complete gene knock-out phenotypes in Xenopus laevis F0 embryos. The presented method will help to accelerate the production of knock-out frogs since we can bypass an extra generation of about 1 year in Xenopus laevis. Meantime, our method provides a unique opportunity to rapidly test the developmental effects of disrupting those genes that do not permit growth to an adult able to reproduce. In addition, the protocol shown here is considerably less invasive than the previously used host transfer since our protocol does not require surgery. The experimental scheme presented is potentially applicable to other organisms such as mammals and fish to resolve common issues of mosaicism in founders.