WorldWideScience

Sample records for ap-3 transport vesicles

  1. Mutation in AP-3 delta in the mocha mouse links endosomal transport to storage deficiency in platelets, melanosomes, and synaptic vesicles.

    Science.gov (United States)

    Kantheti, P; Qiao, X; Diaz, M E; Peden, A A; Meyer, G E; Carskadon, S L; Kapfhamer, D; Sufalko, D; Robinson, M S; Noebels, J L; Burmeister, M

    1998-07-01

    The mouse mutant mocha, a model for the Hermansky-Pudlak storage pool deficiency syndrome, is characterized by defective platelets, coat and eye color dilution, lysosomal abnormalities, inner ear degeneration, and neurological deficits. Here, we show that mocha is a null allele of the delta subunit of the adaptor-like protein complex AP-3, which is associated with coated vesicles budding from the trans-Golgi network, and that AP-3 is missing in mocha tissues. In mocha brain, the ZnT-3 transporter is reduced, resulting in a lack of zinc-associated Timm historeactivity in hippocampal mossy fibers. Our results demonstrate that the AP-3 complex is responsible for cargo selection to lysosome-related organelles such as melanosomes and platelet dense granules as well as to neurotransmitter vesicles. PMID:9697856

  2. Evolution of chloroplast vesicle transport.

    Science.gov (United States)

    Westphal, Sabine; Soll, Jürgen; Vothknecht, Ute C

    2003-02-01

    Vesicle traffic plays a central role in eukaryotic transport. The presence of a vesicle transport system inside chloroplasts of spermatophytes raises the question of its phylogenetic origin. To elucidate the evolution of this transport system we analyzed organisms belonging to different lineages that arose from the first photosynthetic eukaryote, i.e. glaucocystophytes, chlorophytes, rhodophytes, and charophytes/embryophytes. Intriguingly, vesicle transport is not apparent in any group other than embryophytes. The transfer of this eukaryotic-type vesicle transport system from the cytosol into the chloroplast thus seems a late evolutionary development that was acquired by land plants in order to adapt to new environmental challenges.

  3. Intracellular transport of MHC class II and associated invariant chain in antigen presenting cells from AP-3-deficient mocha mice.

    Science.gov (United States)

    Sevilla, L M; Richter, S S; Miller, J

    2001-06-15

    MHC class II-restricted antigen presentation requires trafficking of newly synthesized class II-invariant chain complexes from the trans-Golgi network to endosomal, peptide-loading compartments. This transport is mediated by dileucine-like motifs within the cytosolic tail of the invariant chain. Although these signals have been well characterized, the cytosolic proteins that interact with these dileucine signals and mediate Golgi sorting and endosomal transport have not been identified. Recently, an adaptor complex, AP-3, has been identified that interacts with dileucine motifs and mediates endosomal/lysosomal transport in yeast, Drosophila, and mammals. In this report, we have assessed class II-invariant chain trafficking in a strain of mice (mocha) which lacks expression of AP-3. Our studies demonstrate that the lack of AP-3 does not affect the kinetics of invariant chain degradation, the route of class II-invariant chain transport, or the rate and extent of class II-peptide binding as assessed by the generation of SDS-stable dimers. The possible role of other known or unknown adaptor complexes in class II-invariant chain transport is discussed. PMID:11520080

  4. Mapping of the spontaneous deletion in the Ap3d1 gene of mocha mice: fast and reliable genotyping

    OpenAIRE

    Delenclos Marion; Holm Mai; Drasbek Kim; Jensen Kimmo

    2008-01-01

    Abstract Background The mocha mouse carries a spontaneous deletion in the Ap3d1 gene, encoding the delta 1 subunit of the adaptor related protein complex 3, (Ap3d1), and subsequently lack the expression of functional AP-3. This leads to a deficiency in vesicle transport and storage, which affects neurotransmitter vesicle turnover and release in the central nervous system. Since the genomic sequence of the Ap3d1 gene of mocha mouse is not known, precise mapping of the deletion as well as relia...

  5. Compartmentalization and Transport in Synthetic Vesicles

    Directory of Open Access Journals (Sweden)

    Christine eSchmitt

    2016-02-01

    Full Text Available Nano-scale vesicles have become a popular tool in life sciences. Besides liposomes that are generated from phospholipids of natural origin, polymersomes fabricated of synthetic block copolymers enjoy increasing popularity, as they represent more versatile membrane building blocks that can be selected based on their specific physicochemical properties, like permeability, stability or chemical reactivity.In this review, we focus on the application of simple and nested artificial vesicles in synthetic biology. First, we provide an introduction into the utilization of multi-compartmented vesosomes as compartmentalized nano-scale bioreactors. In the bottom-up development of protocells from vesicular nano-reactors, the specific exchange of pathway intermediates across compartment boundaries represents a bottleneck for future studies. To date, most compartmented bioreactors rely on unspecific exchange of substrates and products. This is either based on changes in permeability of the coblock polymer shell by physicochemical triggers or by the incorporation of unspecific porin proteins into the vesicle membrane. Since the incorporation of membrane transport proteins into simple and nested artificial vesicles offers the potential for specific exchange of substances between subcompartments, it opens new vistas in the design of protocells. Therefore we devote the main part of the review to summarize the technical advances in the use of phospholipids and block copolymers for the reconstitution of membrane proteins.

  6. Altered retinal cell differentiation in the AP-3 delta mutant (Mocha) mouse.

    Science.gov (United States)

    Baguma-Nibasheka, Mark; Kablar, Boris

    2009-11-01

    Adaptor-related protein complex 3 delta 1 (Ap3d1) encodes the delta 1 subunit of an adaptor protein regulating intracellular vesicle-mediated transport, and the Ap3d-deletion mutant (Mocha) mouse undergoes rapid photoreceptor degeneration leading to blindness soon after birth. Previous microarray analysis revealed Ap3d down-regulation in the retina of mouse embryos specifically lacking cholinergic amacrine cells as a result of the absence of skeletal musculature. To investigate the role of Ap3d in the determination of retinal cell fate, the present study examined retinal morphology in newborn Ap3d-/- mice. The Ap3d-/- retina showed a complete absence of cholinergic amacrine cells and a decrease in parvalbumin-expressing amacrine cells and syntaxin- and VC1.1-expressing amacrine precursor cells, but had a normal number of cell layers and number of cells in each layer with no detectable difference in cell proliferation or apoptosis. These findings indicate that, despite having no apparent effect on the basic spatial organization of the retina at this stage of development, Ap3d could be involved in the regulation of progenitor cell competence and the eventual ratio of resulting differentiated cells. Finding the mouse mutant which phenocopies the eye defect seen in fetuses with no striated muscle was accomplished by the Systematic Subtractive Microarray Analysis Approach (SSMAA), explained in the discussion section. PMID:19631730

  7. The puzzle of chloroplast vesicle transport – involvement of GTPases

    Directory of Open Access Journals (Sweden)

    Sazzad eKarim

    2014-09-01

    Full Text Available In the cytosol of plant cells vesicle transport occurs via secretory pathways among the endoplasmic reticulum (ER network, Golgi bodies, secretory granules, endosome and plasma membrane. Three systems transfer lipids, proteins and other important molecules through aqueous spaces to membrane-enclosed compartments, via vesicles that bud from donor membranes, being coated and uncoated before tethered and fused with acceptor membranes. In addition, molecular, biochemical and ultrastructural evidence indicates presence of a vesicle transport system in chloroplasts. Little is known about the protein components of this system. However, as chloroplasts harbour the photosynthetic apparatus that ultimately supports most organisms on the planet, close attention to their pathways is warranted. This may also reveal novel diversification and/or distinct solutions to the problems posed by the targeted intra-cellular trafficking of important molecules. To date two homologues to well-known yeast cytosolic vesicle transport proteins, CPSAR1 and CPRabA5e, have been shown to have roles in chloroplast vesicle transport, both being GTPases. Bioinformatic data indicate that several homologues of cytosolic vesicle transport system components are putatively chloroplast-localized and in addition other proteins have been implicated to participate in chloroplast vesicle transport, including vesicle-inducing protein in plastids 1 (VIPP1, thylakoid formation 1 (THF1, snowy cotyledon 2/cotyledon chloroplast biogenesis factor (SCO2/CYO1, curvature thylakoid 1 (CURT1 proteins, and a dynamin like GTPase FZO-like (FZL protein. Several putative potential cargo proteins have also been identified, including building blocks of the photosynthetic apparatus. Here we discuss details of the largely unknown putative chloroplast vesicle transport system, focusing on GTPase-related components.

  8. Compartmentalization and Transport in Synthetic Vesicles

    OpenAIRE

    Schmitt, Christine; Lippert, Anna H.; Bonakdar, Navid; Sandoghdar, Vahid; Voll, Lars M

    2016-01-01

    Nanoscale vesicles have become a popular tool in life sciences. Besides liposomes that are generated from phospholipids of natural origin, polymersomes fabricated of synthetic block copolymers enjoy increasing popularity, as they represent more versatile membrane building blocks that can be selected based on their specific physicochemical properties, such as permeability, stability, or chemical reactivity. In this review, we focus on the application of simple and nested artificial vesicles in...

  9. Single-vesicle imaging reveals different transport mechanisms between glutamatergic and GABAergic vesicles.

    Science.gov (United States)

    Farsi, Zohreh; Preobraschenski, Julia; van den Bogaart, Geert; Riedel, Dietmar; Jahn, Reinhard; Woehler, Andrew

    2016-02-26

    Synaptic transmission is mediated by the release of neurotransmitters, which involves exo-endocytotic cycling of synaptic vesicles. To maintain synaptic function, synaptic vesicles are refilled with thousands of neurotransmitter molecules within seconds after endocytosis, using the energy provided by an electrochemical proton gradient. However, it is unclear how transmitter molecules carrying different net charges can be efficiently sequestered while maintaining charge neutrality and osmotic balance. We used single-vesicle imaging to monitor pH and electrical gradients and directly showed different uptake mechanisms for glutamate and γ-aminobutyric acid (GABA) operating in parallel. In contrast to glutamate, GABA was exchanged for protons, with no other ions participating in the transport cycle. Thus, only a few components are needed to guarantee reliable vesicle filling with different neurotransmitters. PMID:26912364

  10. Spatial and temporal characteristics of normal and perturbed vesicle transport.

    Directory of Open Access Journals (Sweden)

    Gary J Iacobucci

    Full Text Available Efficient intracellular transport is essential for healthy cellular function and structural integrity, and problems in this pathway can lead to neuronal cell death and disease. To spatially and temporally evaluate how transport defects are initiated, we adapted a primary neuronal culture system from Drosophila larval brains to visualize the movement dynamics of several cargos/organelles along a 90 micron axonal neurite over time. All six vesicles/organelles imaged showed robust bi-directional motility at both day 1 and day 2. Reduction of motor proteins decreased the movement of vesicles/organelles with increased numbers of neurite blocks. Neuronal growth was also perturbed with reduction of motor proteins. Strikingly, we found that all blockages were not fixed, permanent blocks that impeded transport of vesicles as previously thought, but that some blocks were dynamic clusters of vesicles that resolved over time. Taken together, our findings suggest that non-resolving blocks may likely initiate deleterious pathways leading to death and degeneration, while resolving blocks may be benign. Therefore evaluating the spatial and temporal characteristics of vesicle transport has important implications for our understanding of how transport defects can affect other pathways to initiate death and degeneration.

  11. Mapping of the spontaneous deletion in the Ap3d1 gene of mocha mice: fast and reliable genotyping

    Directory of Open Access Journals (Sweden)

    Delenclos Marion

    2008-11-01

    Full Text Available Abstract Background The mocha mouse carries a spontaneous deletion in the Ap3d1 gene, encoding the delta 1 subunit of the adaptor related protein complex 3, (Ap3d1, and subsequently lack the expression of functional AP-3. This leads to a deficiency in vesicle transport and storage, which affects neurotransmitter vesicle turnover and release in the central nervous system. Since the genomic sequence of the Ap3d1 gene of mocha mouse is not known, precise mapping of the deletion as well as reliable genotyping protocols are lacking. Findings We sequenced the Ap3d1 gene (HGNC GeneID: 8943 around the deletion site in the mocha mouse and revealed a 10639 bp deletion covering exon 2 to 6. Subsequently, new PCR primers were designed yielding a reliable genotyping protocol of both newborn and adult tissue. To examine the genotypes further, hippocampal neurons were cultured from mocha and control mice. Patch-clamp recordings showed that mocha neurons had a higher input resistance, and that autaptic EPSC in mocha cultures depressed faster and stronger as compared with control cultures. Conclusion Our study reports the sequence of the deleted part of the Ap3d1 gene in mocha mice, as well as a reliable PCR-based genotyping protocol. We cultured hippocampal neurons from control and mocha mice, and found a difference in input resistance of the neurons, and in the synaptic short-term plasticity of glutamatergic autapses showing a larger synaptic depression than controls. The described procedures may be useful for the future utilization of the mocha mouse as a model of defective vesicle biogenesis. Importantly, as genotyping by eye color is complicated in newborn mice, the designed protocol is so fast and reliable that newborn mice could rapidly be genotyped and hippocampal neurons dissociated and cultured, which is normally best done at P0-P2.

  12. Calmodulin stimulation of calcium transport in carrot microsomal vesicles

    International Nuclear Information System (INIS)

    ATP-dependent 45Ca2+ uptake into microsomal vesicles isolated from cultured carrot cells (Daucus carota Danvers) was stimulated 2-3 fold by 5 ug/ml calmodulin (CaM). Microsomal vesicles separated with a linear sucrose gradient showed two peaks with CaM-stimulated Ca2+ uptake activities. One peak (at 1.12 g/cc) comigrated with the activity of the antimycin A-insensitive NADH-dependent cytochrome c reductase. This transport activity was enhanced 10-20 fold by 10 mM oxalate and appeared to be associates with vesicles derived primarily from the ER. The other peak of CaM-stimulated Ca2+ uptake (at 1.17 g/cc) was not affected by oxalate. These vesicles are probably derived from the plasma membrane. Preliminary experiments with the low-density vesicles (ER) vesicles, indicate that inositol-1,4,5-trisphosphate caused a transient reduction in intravesicular Ca2+. These results are consistent with the ER being an important site of intracellular Ca2+ regulation

  13. Rab proteins: The key regulators of intracellular vesicle transport

    International Nuclear Information System (INIS)

    Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied by cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes. - Highlights: • Rab proteins regulate different signalling pathways. • Deregulation of Rabs is the fundamental causes of a variety of human diseases. • This paper gives potential directions in developing therapeutic targets. • This paper also gives ample directions for modulating pathways central to normal physiology. • These are the huge challenges for drug discovery and delivery in near future

  14. Rab proteins: The key regulators of intracellular vesicle transport

    Energy Technology Data Exchange (ETDEWEB)

    Bhuin, Tanmay [Cell and Developmental Biology Unit, Department of Zoology, The University of Burdwan, Golapbag 713104 (India); Roy, Jagat Kumar, E-mail: jkroy@bhu.ac.in [Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005 (India)

    2014-10-15

    Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied by cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes. - Highlights: • Rab proteins regulate different signalling pathways. • Deregulation of Rabs is the fundamental causes of a variety of human diseases. • This paper gives potential directions in developing therapeutic targets. • This paper also gives ample directions for modulating pathways central to normal physiology. • These are the huge challenges for drug discovery and delivery in near future.

  15. Differential Trafficking of Transport Vesicles Contributes to the Localization of Dendritic Proteins

    Directory of Open Access Journals (Sweden)

    Sarmad Al-Bassam

    2012-07-01

    Full Text Available In neurons, transmembrane proteins are targeted to dendrites in vesicles that traffic solely within the somatodendritic compartment. How these vesicles are retained within the somatodendritic domain is unknown. Here, we use a novel pulse-chase system, which allows synchronous release of exogenous transmembrane proteins from the endoplasmic reticulum to follow movements of post-Golgi transport vesicles. Surprisingly, we found that post-Golgi vesicles carrying dendritic proteins were equally likely to enter axons and dendrites. However, once such vesicles entered the axon, they very rarely moved beyond the axon initial segment but instead either halted or reversed direction in an actin and Myosin Va-dependent manner. In contrast, vesicles carrying either an axonal or a nonspecifically localized protein only rarely halted or reversed and instead generally proceeded to the distal axon. Thus, our results are consistent with the axon initial segment behaving as a vesicle filter that mediates the differential trafficking of transport vesicles.

  16. Membrane vesicles: A simplified system for studying auxin transport

    Energy Technology Data Exchange (ETDEWEB)

    Goldsmith, M.H.M.

    1989-01-01

    Indoleacetic acid (IAA), the auxin responsible for regulation of growth, is transported polarly in plants. Several different models have been suggested to account for IAA transport by cells and its accumulation by membrane vesicles. One model sees diffusion of IAA driven by a pH gradient. The anion of a lipophilic weak acid like IAA or butyrate accumulates in an alkaline compartment in accord with the size of the pH gradient The accumulation of IAA may be diminished by the permeability of its lipophilic anion. This anion leak may be blocked by NPA. With anion efflux blocked, a gradient of two pH units would support an IAA accumulation of less than 50-fold at equilibrium (2) Another model sees diffusion of IAA in parallel with a saturable symport (IAA[sup [minus

  17. Yarrowia lipolytica vesicle-mediated protein transport pathways

    Directory of Open Access Journals (Sweden)

    Beckerich Jean-Marie

    2007-11-01

    Full Text Available Abstract Background Protein secretion is a universal cellular process involving vesicles which bud and fuse between organelles to bring proteins to their final destination. Vesicle budding is mediated by protein coats; vesicle targeting and fusion depend on Rab GTPase, tethering factors and SNARE complexes. The Génolevures II sequencing project made available entire genome sequences of four hemiascomycetous yeasts, Yarrowia lipolytica, Debaryomyces hansenii, Kluyveromyces lactis and Candida glabrata. Y. lipolytica is a dimorphic yeast and has good capacities to secrete proteins. The translocation of nascent protein through the endoplasmic reticulum membrane was well studied in Y. lipolytica and is largely co-translational as in the mammalian protein secretion pathway. Results We identified S. cerevisiae proteins involved in vesicular secretion and these protein sequences were used for the BLAST searches against Génolevures protein database (Y. lipolytica, C. glabrata, K. lactis and D. hansenii. These proteins are well conserved between these yeasts and Saccharomyces cerevisiae. We note several specificities of Y. lipolytica which may be related to its good protein secretion capacities and to its dimorphic aspect. An expansion of the Y. lipolytica Rab protein family was observed with autoBLAST and the Rab2- and Rab4-related members were identified with BLAST against NCBI protein database. An expansion of this family is also found in filamentous fungi and may reflect the greater complexity of the Y. lipolytica secretion pathway. The Rab4p-related protein may play a role in membrane recycling as rab4 deleted strain shows a modification of colony morphology, dimorphic transition and permeability. Similarly, we find three copies of the gene (SSO encoding the plasma membrane SNARE protein. Quantification of the percentages of proteins with the greatest homology between S. cerevisiae, Y. lipolytica and animal homologues involved in vesicular

  18. Oligomerization of a Cargo Receptor Directs Protein Sorting into COPII-coated Transport Vesicles

    OpenAIRE

    Sato, Ken; Nakano, Akihiko

    2003-01-01

    Secretory proteins are transported from the endoplasmic reticulum (ER) to the Golgi complex in vesicles coated with coat protein complex II (COPII). The incorporation of certain transport molecules (cargo) into the COPII vesicles is thought to be mediated by cargo receptors. Here we show that Emp47p, a type-I membrane protein, is specifically required for the transport of an integral membrane protein, Emp46p, from the ER. Exit of Emp46p from the ER was saturable and de...

  19. A perspective from transport protein particle: vesicle tether and human diseases.

    Science.gov (United States)

    Li, Chunman; Yu, Sidney

    2014-02-25

    Vesicle-mediated transport of proteins is a highly regulated, multi-step process. When the vesicle is approaching its target membrane compartment, many factors are required to provide specificity and tethering between the incoming vesicle and the target membrane, before vesicle fusion can occur. Tethering factors, which include multisubunit complexes, coiled-coil proteins, with the help of small GTPases, provide the initial interaction between the vesicle and its target membrane. Of the multisubunit tethering factors, the transport protein particle (TRAPP) complexes function in a number of trafficking steps, including endoplasmic reticulum (ER)-to-Golgi transport, intra- and post-Golgi traffic and autophagosome formation. In this review, we summarize the updated progress in structure and function of TRAPP complexes as well as human diseases caused by genetic mutations in TRAPP.

  20. Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle.

    Science.gov (United States)

    Cai, Huaqing; Reinisch, Karin; Ferro-Novick, Susan

    2007-05-01

    Tethering factors have been shown to interact with Rabs and SNAREs and, more recently, with coat proteins. Coat proteins are required for cargo selection and membrane deformation to bud a transport vesicle from a donor compartment. It was once thought that a vesicle must uncoat before it recognizes its target membrane. However, recent findings have revealed a role for the coat in directing a vesicle to its correct intracellular destination. In this review we will discuss the literature that links coat proteins to vesicle targeting events. PMID:17488620

  1. Vesicle Photonics

    Energy Technology Data Exchange (ETDEWEB)

    Vasdekis, Andreas E.; Scott, E. A.; Roke, Sylvie; Hubbell, J. A.; Psaltis, D.

    2013-04-03

    Thin membranes, under appropriate boundary conditions, can self-assemble into vesicles, nanoscale bubbles that encapsulate and hence protect or transport molecular payloads. In this paper, we review the types and applications of light fields interacting with vesicles. By encapsulating light-emitting molecules (e.g. dyes, fluorescent proteins, or quantum dots), vesicles can act as particles and imaging agents. Vesicle imaging can take place also under second harmonic generation from vesicle membrane, as well as employing mass spectrometry. Light fields can also be employed to transport vesicles using optical tweezers (photon momentum) or directly pertrurbe the stability of vesicles and hence trigger the delivery of the encapsulated payload (photon energy).

  2. A Novel Pulse-Chase Paradigm to Visualize the Trafficking of Transport Vesicles in Neurons

    Science.gov (United States)

    Al-Bassam, Sarmad

    In neurons transmembrane proteins are targeted to dendrites in vesicles that traffic solely within the somatodendritic compartment. How these vesicles are retained within the somatodendritic domain is unknown. Here we adapt a novel pulse chase system that allows synchronous release of exogenous transmembrane proteins from the endoplasmic reticulum using FKBP12 and Rapamycin. We demonstrate proof-of-concept and establish protein trafficking controls in incremental steps. We demonstrate the utility of this approach in studying protein trafficking and establish parameters for analysis of time-lapse images. We implement this novel pulse-chase strategy to track the movements of post-Golgi transport vesicles. Surprisingly, we found that post-Golgi vesicles carrying dendritic proteins were equally likely to enter axons and dendrites. However, once such vesicles entered the axon they very rarely moved beyond the axon initial segment, but instead either halted or reversed direction in an actin and Myosin Va-dependent manner. In contrast, vesicles carrying either an axonal or a nonspecifically localized protein only rarely halted or reversed and instead generally proceeded to the distal axon. Thus, our results are consistent with the axon initial segment behaving as a vesicle filter that mediates the differential trafficking of transport vesicles.

  3. Calcium transport in vesicles energized by cytochrome oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Rosier, Randy N.

    1979-01-01

    Experiments on the reconstitution of cytochrome oxidase into phospholipid vesicles were carried out using techniques of selectivity energizing the suspensions with ascorbate and cytochrome c or ascorbate, PMS, and internally trapped cytochrome c. It was found that the K/sup +/ selective ionophore valinomycin stimulated the rate of respiration of cytochrome oxidase vesicles regardless of the direction of the K/sup +/ flux across the vesicle membranes. The stimulation occurred in the presence of protonophoric uncouplers and in the complete absence of potassium or in detergent-lysed suspensions. Gramicidin had similar effects and it was determined that the ionophores acted by specific interaction with cytochrome oxidase rather than by the previously assumed collapse of membrane potentials. When hydrophobic proteins and appropriate coupling factors were incorporated into the cytochrome oxidase, vesicles phosphorylation of ADP could be coupled to the oxidation reaction of cytochrome oxidase. Relatively low P:O, representing poor coupling of the system, were problematical and precluded measurements of protonmotive force. However the system was used to study ion translocation.

  4. Transport vesicle tethering at the trans Golgi network: coiled coil proteins in action

    Directory of Open Access Journals (Sweden)

    Pak-yan Patricia Cheung

    2016-03-01

    Full Text Available The Golgi complex is decorated with so-called Golgin proteins that share a common feature: a large proportion of their amino acid sequences are predicted to form coiled-coil structures. The possible presence of extensive coiled coils implies that these proteins are highly elongated molecules that can extend a significant distance from the Golgi surface. This property would help them to capture or trap inbound transport vesicles and to tether Golgi mini-stacks together. This review will summarize our current understanding of coiled coil tethers that are needed for the receipt of transport vesicles at the trans Golgi network. How do long tethering proteins actually catch vesicles? Golgi-associated, coiled coil tethers contain numerous binding sites for small GTPases, SNARE proteins, and vesicle coat proteins. How are these interactions coordinated and are any or all of them important for the tethering process? Progress towards understanding these questions and remaining, unresolved mysteries will be discussed.

  5. Ectopic expression of FaesAP3, a Fagopyrum esculentum (Polygonaceae) AP3 orthologous gene rescues stamen development in an Arabidopsis ap3 mutant.

    Science.gov (United States)

    Fang, Zheng-wu; Qi, Rui; Li, Xiao-fang; Liu, Zhi-xiong

    2014-10-25

    Arabidopsis thaliana APETALA3 (AP3) and Antirrhinum majus DEFICIENS (DEF) MADS box genes are required to specify petal and stamen identity. AP3 and DEF are members of the euAP3 lineage, which arose by gene duplication coincident with radiation of the core eudicots. In order to investigate the molecular mechanisms underlying organ development in early diverging clades of core eudicots, we isolated and identified an AP3 homolog, FaesAP3, from Fagopyrum esculentum (buckwheat, Polygonaceae), a multi-food-use pseudocereal with healing benefits. Protein sequence alignment and phylogenetic analyses revealed that FaesAP3 grouped into the euAP3 lineage. Expression analysis showed that FaesAP3 was transcribed only in developing stamens, and differed from AP3 and DEF, which expressed in developing petals and stamens. Moreover, ectopic expression of FaesAP3 rescued stamen development without complementation of petal development in an Arabidopsis ap3 mutant. Our results suggest that FaesAP3 is involved in the development of stamens in buckwheat. These results also suggest that FaesAP3 holds some potential for biotechnical engineering to create a male sterile line of F. esculentum. PMID:25149019

  6. The AP-3 adaptor complex is required for vacuolar function in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Maria Zwiewka; Elena Feraru; Barbara M(o)ller; Inhwan Hwang; Mugurel I Feraru; Jürgen Kleine-Vehn; Dolf Weijers; Ji(n) Friml

    2011-01-01

    Subcellular trafficking is required for a multitude of functions in eukaryotic cells.It involves regulation of cargo sorting,vesicle formation,trafficking and fusion processes at multiple levels.Adaptor protein (AP) complexes are key regulators of cargo sorting into vesicles in yeast and mammals but their existence and function in plants have not been demonstrated.Here we report the identification of the protein-affected trafficking 4 (pat4) mutant defective in the putative δ subunit of the AP-3 complex.pat4 and pat2,a mutant isolated from the same GFP imaging-based forward genetic screen that lacks a functional putative AP-3 β,as well as dominant negative AP-3 μ transgenic lines display undistinguishable phenotypes characterized by largely normal morphology and development,but strong intracellular accumulation of membrane proteins in aberrant vacuolar structures.All mutants are defective in morphology and function of lytic and protein storage vacuoles (PSVs) but show normal sorting of reserve proteins to PSVs.Immunoprecipitation experiments and genetic studies revealed tight functional and physical associations of putative AP-3 β and AP-3 δ subunits.Furthermore,both proteins are closely linked with putative AP-3 μ and σ subunits and several components of the clathrin and dynamin machineries.Taken together,these results demonstrate that AP complexes,similar to those in other eukaryotes,exist in plants,and that AP-3 plays a specific role in the regulation of biogenesis and function of vacuoles in plant cells.

  7. Light-activated amino acid transport in Halobacterium halobium envelope vesicles

    Science.gov (United States)

    Macdonald, R. E.; Lanyi, J. K.

    1977-01-01

    Vesicles prepared from Halobacterium halobium cell envelopes accumulate amino acids in response to light-induced electrical and chemical gradients. Nineteen of 20 commonly occurring amino acids have been shown to be actively accumulated by these vesicles in response to illumination or in response to an artificially created Na+ gradient. On the basis of shared common carriers the transport systems can be divided into eight classes, each responsible for the transport of one or several amino acids: arginine, lysine, histidine; asparagine, glutamine; alanine, glycine, threonine, serine; leucine, valine, isoleucine, methionine; phenylalanine, tyrosine, tryptophan; aspartate; glutamate; proline. Available evidence suggests that these carriers are symmetrical in that amino acids can be transported equally well in both directions across the vesicle membranes. A tentative working model to account for these observations is presented.

  8. Transporting of a Cell-Sized Phospholipid Vesicle Across Water/Oil Interface

    CERN Document Server

    Hase, M; Hamada, T; Yoshikawa, K; Hase, Masahiko; Yamada, Ayako; Hamada, Tsutomu; Yoshikawa, Kenichi

    2006-01-01

    When a cell-sized water droplet, with a diameter of several tens of micro meter, is placed in oil containing phospholipids, a stable cell-sized vesicle is spontaneously formed as a water-in-oil phospholipid emulsion (W/O CE) with a phospholipid monolayer. We transferred the lipid vesicle thus formed in the oil phase to the water phase across the water/oil interface by micromanipulation, which suggests that the vesicle is transformed from a phospholipid monolayer as W/O CE into a bilayer. The lipid vesicle can then be transported back into the oil phase. This novel experimental procedure may be a useful tool for creating a model cellular system, which, together with a microreactor, is applicable as a micrometer-scale biochemical reaction field.

  9. A novel multiprotein complex is required to generate the prechylomicron transport vesicle from intestinal ER[S

    OpenAIRE

    Siddiqi, Shahzad; Saleem, Umair; Abumrad, Nada A.; Davidson, Nicholas O.; Storch, Judith; Siddiqi, Shadab A.; Mansbach, Charles M.

    2010-01-01

    Dietary lipid absorption is dependent on chylomicron production whose rate-limiting step across the intestinal absorptive cell is the exit of chylomicrons from the endoplasmic reticulum (ER) in its ER-to-Golgi transport vesicle, the prechylomicron transport vesicle (PCTV). This study addresses the composition of the budding complex for PCTV. Immunoprecipitation (IP) studies from rat intestinal ER solubilized in Triton X-100 suggested that vesicle-associated membrane protein 7 (VAMP7), apolipo...

  10. Uptake of auxins into membrane vesicles isolated from pea stems: an in vitro auxin transport system

    Energy Technology Data Exchange (ETDEWEB)

    Slone, J.H.

    1985-01-01

    The objective of this research was to test the applicability of the chemiosmotic theory of auxin transport to a subcellular system. Membrane vesicles were isolated from the basal portion of the third internode of etiolated pea plants (Pisum sativum L. var. Alaska) by differential centrifugation. Uptake of auxin was determined by adding /sup 14/C-labeled indoleacetic acid (IAA) to vesicles. Nigericin, a monovalent cation ionophore, and the electrogenic protonophore, carbonyl-cyanide m-chlorophenylhydrazone (CCCP), at micromolar concentrations abolished saturable uptake. Bursting vesicles by sonication, osmotic shock and freeze/thawing also eliminated saturable uptake. As the temperature increased from 0 to 30/sup 0/C, saturable uptake decreased markedly. Nonsaturable auxin uptake was less affected by these treatments. The pH gradient-dependent uptake of auxin appeared to be a transmembrane uptake of auxin into the vesicles rather than surface binding. Unlabeled IAA, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-naphthaleneacetic acid (NAA) at low concentrations reduced the saturable accumulation of (/sup 14/C)IAA in vesicles, while phenylacetic acid, benzoic acid, and 1-NAA were effective only at high concentrations. Kinetic analysis revealed two types of sites: a high affinity site with an uptake capacity of 25 to 40 pmoles/g tissue, and a low affinity site with an uptake capacity of 260 to 600 pmole/g tissue, fresh wt. In conclusion, several principal elements of an auxin transport system, as specific by the chemiosmotic theory of polar auxin transport, were present in membrane vesicles isolated from relatively mature pea stem tissue. However, one important aspect of the theory was not demonstrated in this in vitro system - a TIBA/NPA-sensitive auxin efflux. The kinetics and specificity of auxin uptake strongly suggested that this system was physiologically significant.

  11. The complexity of vesicle transport factors in plants examined by orthology search.

    Directory of Open Access Journals (Sweden)

    Puneet Paul

    Full Text Available Vesicle transport is a central process to ensure protein and lipid distribution in eukaryotic cells. The current knowledge on the molecular components and mechanisms of this process is majorly based on studies in Saccharomyces cerevisiae and Arabidopsis thaliana, which revealed 240 different proteinaceous factors either experimentally proven or predicted to be involved in vesicle transport. In here, we performed an orthologue search using two different algorithms to identify the components of the secretory pathway in yeast and 14 plant genomes by using the 'core-set' of 240 factors as bait. We identified 4021 orthologues and (co-orthologues in the discussed plant species accounting for components of COP-II, COP-I, Clathrin Coated Vesicles, Retromers and ESCRTs, Rab GTPases, Tethering factors and SNAREs. In plants, we observed a significantly higher number of (co-orthologues than yeast, while only 8 tethering factors from yeast seem to be absent in the analyzed plant genomes. To link the identified (co-orthologues to vesicle transport, the domain architecture of the proteins from yeast, genetic model plant A. thaliana and agriculturally relevant crop Solanum lycopersicum has been inspected. For the orthologous groups containing (co-orthologues from yeast, A. thaliana and S. lycopersicum, we observed the same domain architecture for 79% (416/527 of the (co-orthologues, which documents a very high conservation of this process. Further, publically available tissue-specific expression profiles for a subset of (co-orthologues found in A. thaliana and S. lycopersicum suggest that some (co-orthologues are involved in tissue-specific functions. Inspection of localization of the (co-orthologues based on available proteome data or localization predictions lead to the assignment of plastid- as well as mitochondrial localized (co-orthologues of vesicle transport factors and the relevance of this is discussed.

  12. How to get to the right place at the right time: Rab/Ypt small GTPases and vesicle transport.

    Science.gov (United States)

    Ragnini-Wilson, A

    1999-01-01

    Vesicles often must be transported over long distances in a very crowded cytoplasmic environment encumbered by the cytoskeleton and membranes of different origin that provide an important barrier to their free diffusion. In animal cells with specialised tasks, such as neurons or endothelial cells, vesicles that are directed to the cell periphery are linked to the microtubular cytoskeleton tracks via association with motor proteins that allow their vectorial movement. In lower eukaryotes the actin cytoskeleton plays a prominent role in organising vesicle movement during polarised growth and mating. The Ras-like small GTPases of the Rab/Ypt family play an essential role in vesicle trafficking and due to their diversity and specific localisation have long been implicated in the selective delivery of vesicles. Recent evidence has cast doubt on the classical point of view of how this class of proteins acts in vesicle transport and suggests their involvement also in the events that permit vesicle anchoring to the cytoskeleton. Therefore, after a brief review of what is known about how vesicle movement is achieved in mammalian and yeast systems, and how Rab/Ypt proteins regulate the vesicle predocking events, it is discussed how these proteins might participate in the events that lead to vesicle movement through association with the cytoskeleton machinery. PMID:18987791

  13. Transdermal delivery of flurbiprofen from surfactant-based vesicles: particle characterization and the effect of water on in vitro transport.

    Science.gov (United States)

    Uchino, Tomonobu; Matsumoto, Yuiko; Murata, Akiko; Oka, Toshihiko; Miyazaki, Yasunori; Kagawa, Yoshiyuki

    2014-04-10

    Flurbiprofen loaded rigid and elastic vesicles comprising the bilayer-forming surfactant sucrose-ester laurate were prepared by the film rehydration and extrusion method. The charge-inducing agent sodium dodecyl sulfate, and the micelle-forming surfactants, sorbitan monolaurate, polyethylene glycol monolaurate, and polysorbate 20, were used to enhance elasticity. Vesicle formulations were evaluated for size, zeta potential, (1)H and (19)F nuclear magnetic resonance (NMR) spectra, and in vitro skin permeation across Yucatan micropig (YMP) skin. Vesicle formulations were stable for 2 weeks and their mean sizes were 95-135 nm. NMR spectroscopy showed that flurbiprofen molecular mobility was restricted by interaction with vesicle components because of entrapment in vesicle bilayers. Moreover, sorbitan monolaurate-containing vesicles strongly retained flurbiprofen molecules. After non-occlusive application to YMP skin, flurbiprofen transport from all vesicle formulations was superior to that of flurbiprofen alone and remarkably decreased after water vaporization. Polarization microscopy and small-angle X-ray diffraction analysis showed that the vesicle formulation was transferred to liquid crystalline state. Suppression of vesicle transition to the liquid crystalline state was observed with applications of both large quantities and diluted samples. The presence of water in the formulations was associated with maintenance of the vesicle structure and greater flurbiprofen transport across YMP skin.

  14. Synapse-Assembly Proteins Maintain Synaptic Vesicle Cluster Stability and Regulate Synaptic Vesicle Transport in Caenorhabditis elegans.

    Science.gov (United States)

    Edwards, Stacey L; Yorks, Rosalina M; Morrison, Logan M; Hoover, Christopher M; Miller, Kenneth G

    2015-09-01

    The functional integrity of neurons requires the bidirectional active transport of synaptic vesicles (SVs) in axons. The kinesin motor KIF1A transports SVs from somas to stable SV clusters at synapses, while dynein moves them in the opposite direction. However, it is unclear how SV transport is regulated and how SVs at clusters interact with motor proteins. We addressed these questions by isolating a rare temperature-sensitive allele of Caenorhabditis elegans unc-104 (KIF1A) that allowed us to manipulate SV levels in axons and dendrites. Growth at 20° and 14° resulted in locomotion rates that were ∼3 and 50% of wild type, respectively, with similar effects on axonal SV levels. Corresponding with the loss of SVs from axons, mutants grown at 14° and 20° showed a 10- and 24-fold dynein-dependent accumulation of SVs in their dendrites. Mutants grown at 14° and switched to 25° showed an abrupt irreversible 50% decrease in locomotion and a 50% loss of SVs from the synaptic region 12-hr post-shift, with no further decreases at later time points, suggesting that the remaining clustered SVs are stable and resistant to retrograde removal by dynein. The data further showed that the synapse-assembly proteins SYD-1, SYD-2, and SAD-1 protected SV clusters from degradation by motor proteins. In syd-1, syd-2, and sad-1 mutants, SVs accumulate in an UNC-104-dependent manner in the distal axon region that normally lacks SVs. In addition to their roles in SV cluster stability, all three proteins also regulate SV transport.

  15. Spatial modeling of vesicle transport and the cytoskeleton: the challenge of hitting the right road.

    Directory of Open Access Journals (Sweden)

    Michael Klann

    Full Text Available The membrane trafficking machinery provides a transport and sorting system for many cellular proteins. We propose a mechanistic agent-based computer simulation to integrate and test the hypothesis of vesicle transport embedded into a detailed model cell. The method tracks both the number and location of the vesicles. Thus both the stochastic properties due to the low numbers and the spatial aspects are preserved. The underlying molecular interactions that control the vesicle actions are included in a multi-scale manner based on the model of Heinrich and Rapoport (2005. By adding motor proteins we can improve the recycling process of SNAREs and model cell polarization. Our model also predicts that coat molecules should have a high turnover at the compartment membranes, while the turnover of motor proteins has to be slow. The modular structure of the underlying model keeps it tractable despite the overall complexity of the vesicle system. We apply our model to receptor-mediated endocytosis and show how a polarized cytoskeleton structure leads to polarized distributions in the plasma membrane both of SNAREs and the Ste2p receptor in yeast. In addition, we can couple signal transduction and membrane trafficking steps in one simulation, which enables analyzing the effect of receptor-mediated endocytosis on signaling.

  16. Peri-Golgi vesicles contain retrograde but not anterograde proteins consistent with the cisternal progression model of intra-Golgi transport

    OpenAIRE

    José A Martínez-Menárguez; Prekeris, Rytis; Oorschot, Viola M J; Scheller, Richard; Slot, Jan W.; Geuze, Hans J.; Klumperman, Judith

    2001-01-01

    A cisternal progression mode of intra-Golgi transport requires that Golgi resident proteins recycle by peri-Golgi vesicles, whereas the alternative model of vesicular transport predicts anterograde cargo proteins to be present in such vesicles. We have used quantitative immuno-EM on NRK cells to distinguish peri-Golgi vesicles from other vesicles in the Golgi region. We found significant levels of the Golgi resident enzyme mannosidase II and the transport machinery proteins giantin, KDEL-rece...

  17. Secretory vesicle transport velocity in living cells depends on the myosin-V lever arm length.

    Science.gov (United States)

    Schott, Daniel H; Collins, Ruth N; Bretscher, Anthony

    2002-01-01

    Myosins are molecular motors that exert force against actin filaments. One widely conserved myosin class, the myosin-Vs, recruits organelles to polarized sites in animal and fungal cells. However, it has been unclear whether myosin-Vs actively transport organelles, and whether the recently challenged lever arm model developed for muscle myosin applies to myosin-Vs. Here we demonstrate in living, intact yeast that secretory vesicles move rapidly toward their site of exocytosis. The maximal speed varies linearly over a wide range of lever arm lengths genetically engineered into the myosin-V heavy chain encoded by the MYO2 gene. Thus, secretory vesicle polarization is achieved through active transport by a myosin-V, and the motor mechanism is consistent with the lever arm model.

  18. Analysis of COPII Vesicles Indicates a Role for the Emp47-Ssp120 Complex in Transport of Cell Surface Glycoproteins.

    Science.gov (United States)

    Margulis, Neil G; Wilson, Joshua D; Bentivoglio, Christine M; Dhungel, Nripesh; Gitler, Aaron D; Barlowe, Charles

    2016-03-01

    Coat protein complex II (COPII) vesicle formation at the endoplasmic reticulum (ER) transports nascent secretory proteins forward to the Golgi complex. To further define the machinery that packages secretory cargo and targets vesicles to Golgi membranes, we performed a comprehensive proteomic analysis of purified COPII vesicles. In addition to previously known proteins, we identified new vesicle proteins including Coy1, Sly41 and Ssp120, which were efficiently packaged into COPII vesicles for trafficking between the ER and Golgi compartments. Further characterization of the putative calcium-binding Ssp120 protein revealed a tight association with Emp47 and in emp47Δ cells Ssp120 was mislocalized and secreted. Genetic analyses demonstrated that EMP47 and SSP120 display identical synthetic positive interactions with IRE1 and synthetic negative interactions with genes involved in cell wall assembly. Our findings support a model in which the Emp47-Ssp120 complex functions in transport of plasma membrane glycoproteins through the early secretory pathway.

  19. The synapse-specific phosphoprotein F1-20 is identical to the clathrin assembly protein AP-3.

    Science.gov (United States)

    Zhou, S; Tannery, N H; Yang, J; Puszkin, S; Lafer, E M

    1993-06-15

    F1-20 and AP-3 are independently described, synapse-associated, developmentally regulated phosphoproteins with similar apparent molecular masses on SDS-polyacrylamide gel electrophoresis (PAGE). F1-20 was cloned and characterized because of its synapse specificity. AP-3 was purified and studied biochemically because of its function as a clathrin assembly protein. Here we present evidence that establishes the identity of F1-20 and AP-3. Monoclonal antibodies against F1-20 and AP-3 both specifically recognize a single protein from mouse brain with an apparent molecular mass of 190 kDa on SDS-PAGE. These monoclonal antibodies also specifically recognize the cloned F1-20 protein expressed in Escherichia coli. The anti-F1-20 monoclonal antibody (mAb) stains a bovine protein with an apparent molecular mass on SDS-PAGE of 190 kDa that copurifies with brain clathrin-coated vesicles (CCVs) and that can be extracted from the brain CCVs under conditions that extract AP-3. The anti-F1-20 and anti-AP-3 mAbs specifically recognize the same spot on a two-dimensional gel run on a bovine brain clathrin-coated vesicle extract. AP-3 purified from bovine brain CCVs is recognized by both the anti-F1-20 and anti-AP-3 mAbs. Purified preparations of bovine AP-3 and bacterially expressed mouse F1-20 give identical patterns of protease digestion with bromelain and subtilisin. Sequence analyses reveal that F1-20 has an essentially neutral 30-kDa NH2-terminal domain with an amino acid composition typical of a globular structure and an acidic COOH-terminal domain rich in proline, serine, threonine, and alanine. This is consistent with proteolysis experiments that suggested that AP-3 could be divided into a 30-kDa globular uncharged clathrin-binding domain and an acidic, anomalously migrating domain.

  20. ATP-dependent transport of vinblastine in vesicles from human multidrug-resistant cells

    Energy Technology Data Exchange (ETDEWEB)

    Horio, M.; Gottesman, M.M.; Pastan, I. (National Institutes of Health, Bethesda, MD (USA))

    1988-05-01

    Resistance of human cancer cells to multiple cytotoxic hydrophobic agents (multidrug resistance) is due to overexpression of the MDR1 gene, whose product is the plasma membrane P-glycoprotein. Plasma membrane vesicles partially purified from multidrug-resistant human KB carcinoma cells, but not from drug-sensitive cells, accumulate ({sup 3}H)vinblastine in an ATP-dependent manner. This transport is osmotically sensitive, with an apparent K{sub m} of 38 {mu}M for ATP and of {approx} 2 {mu}M for vinblastine. The nonhydrolyzable analog adenosine 5{prime}-({beta},{gamma}-imido)triphosphate does not substitute for ATP but is a competitive inhibitor of ATP for the transport process. Vanadate, and ATPase inhibitor, is a potent noncompetitive inhibitor of transport. These results indicate that hydrolysis of ATP is probably required for active transport vinblastine. Several other drugs to which multidrug-resistant cell lines are resistant inhibit transport, with relative potencies as follows: vincristine > actinomycin D > daunomycin > colchicine = puromycin. Verapamil and quinidine, which reverse the multidrug-resistance phenotype, are good inhibitors of the transport process. These results confirm that multidrug-resistant cells express an energy-dependent plasma membrane transporter for hydrophobic drugs, and establish a system for the detailed biochemical analysis of this transport process.

  1. Effect of vanadate on glucose transporter (GLUT4) intrinsic activity in skeletal muscle plasma membrane giant vesicles

    DEFF Research Database (Denmark)

    Kristiansen, S; Youn, J; Richter, Erik

    1996-01-01

    vanadate (NaVO3) on glucose transporter (GLUT4) intrinsic activity (V(max) = intrinsic activity x [GLUT4 protein]) was studied in muscle plasma membrane giant vesicles. Giant vesicles (average diameter 7.6 microns) were produced by collagenase treatment of rat skeletal muscle. The vesicles were incubated......) 55% and 60%, respectively, compared with control. The plasma membrane GLUT4 protein content was not changed in response to vanadate. It is concluded that vanadate decreased glucose transport per GLUT4 (intrinsic activity). This finding suggests that regulation of glucose transport in skeletal muscle......Maximally effective concentrations of vanadate (a phosphotyrosine phosphatase inhibitor) increase glucose transport in muscle less than maximal insulin stimulation. This might be due to vanadate-induced decreased intrinsic activity of GLUT4 accompanying GLUT4 translocation. Thus, the effect of...

  2. VESICULAR TRANSPORT. A structure of the COPI coat and the role of coat proteins in membrane vesicle assembly.

    Science.gov (United States)

    Dodonova, S O; Diestelkoetter-Bachert, P; von Appen, A; Hagen, W J H; Beck, R; Beck, M; Wieland, F; Briggs, J A G

    2015-07-10

    Transport of material within cells is mediated by trafficking vesicles that bud from one cellular compartment and fuse with another. Formation of a trafficking vesicle is driven by membrane coats that localize cargo and polymerize into cages to bend the membrane. Although extensive structural information is available for components of these coats, the heterogeneity of trafficking vesicles has prevented an understanding of how complete membrane coats assemble on the membrane. We combined cryo-electron tomography, subtomogram averaging, and cross-linking mass spectrometry to derive a complete model of the assembled coat protein complex I (COPI) coat involved in traffic between the Golgi and the endoplasmic reticulum. The highly interconnected COPI coat structure contradicted the current "adaptor-and-cage" understanding of coated vesicle formation.

  3. Use of membrane vesicles as a simplified system for studying auxin transport of auxin: Progress report

    International Nuclear Information System (INIS)

    Indoleacetic acid (IAA), the auxin regulating growth, is transported polarly in plants. IAA stimulates a rapid increase in the rate of electrogenic proton secretion by the plasma membrane. This not only increases the magnitude of the pH and electrical gradients providing the driving force for polar auxin transport and uptake of sugars, amino acids and inorganic ions, but, by acidifying the cell wall, also leads to growth. We find that auxin uptake by membrane vesicles isolated from actively growing plant tissues exhibits some of the same properties as by cells: the accumulation depends on the pH gradient, is saturable and specific for auxin, and enhanced by herbicides that inhibit polar auxin transport. We are using accumulation of a radioactive weak acid to quantify the pH gradient and distribution of fluorescent cyanine dyes to monitor the membrane potential. The magnitude of IAA accumulation exceeds that predicted from the pH gradient, and in the absence of a pH gradient, a membrane potential fails to support any auxin accumulation, leading to the conclusion that the transmembrane potential is not a significant driving force for auxin accumulation in this system. Since increasing the external ionic strength decreases saturable auxin accumulation, we are investigating how modifying the surface potential of the vesicles affects the interaction of the amphipathic IAA molecules with the membranes and whether protein modifying reagents affect the saturability and stimulation by NPA. These studies should provide information on the location and function of the auxin binding site and may enable us to identify the solubilized protein. 5 refs

  4. Use of membrane vesicles as a simplified system for studying auxin transport of auxin: Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Goldsmith, M.H.M.

    1986-01-01

    Indoleacetic acid (IAA), the auxin regulating growth, is transported polarly in plants. IAA stimulates a rapid increase in the rate of electrogenic proton secretion by the plasma membrane. This not only increases the magnitude of the pH and electrical gradients providing the driving force for polar auxin transport and uptake of sugars, amino acids and inorganic ions, but, by acidifying the cell wall, also leads to growth. We find that auxin uptake by membrane vesicles isolated from actively growing plant tissues exhibits some of the same properties as by cells: the accumulation depends on the pH gradient, is saturable and specific for auxin, and enhanced by herbicides that inhibit polar auxin transport. We are using accumulation of a radioactive weak acid to quantify the pH gradient and distribution of fluorescent cyanine dyes to monitor the membrane potential. The magnitude of IAA accumulation exceeds that predicted from the pH gradient, and in the absence of a pH gradient, a membrane potential fails to support any auxin accumulation, leading to the conclusion that the transmembrane potential is not a significant driving force for auxin accumulation in this system. Since increasing the external ionic strength decreases saturable auxin accumulation, we are investigating how modifying the surface potential of the vesicles affects the interaction of the amphipathic IAA molecules with the membranes and whether protein modifying reagents affect the saturability and stimulation by NPA. These studies should provide information on the location and function of the auxin binding site and may enable us to identify the solubilized protein. 5 refs.

  5. Membrane vesicles: A simplified system for studying auxin transport. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Goldsmith, M.H.M.

    1989-12-31

    Indoleacetic acid (IAA), the auxin responsible for regulation of growth, is transported polarly in plants. Several different models have been suggested to account for IAA transport by cells and its accumulation by membrane vesicles. One model sees diffusion of IAA driven by a pH gradient. The anion of a lipophilic weak acid like IAA or butyrate accumulates in an alkaline compartment in accord with the size of the pH gradient The accumulation of IAA may be diminished by the permeability of its lipophilic anion. This anion leak may be blocked by NPA. With anion efflux blocked, a gradient of two pH units would support an IAA accumulation of less than 50-fold at equilibrium (2) Another model sees diffusion of IAA in parallel with a saturable symport (IAA{sup {minus}} + nH{sup +}), driven by both the pH gradient and membrane voltage. Such a symport should be highly accumulative, however, with a lipophilic weak acid such as IAA, net diffusive efflux of IAAH whenever IAAHI{sub i} > IAAH{sub o} would constitute a leak. (3) A third model sees a pH change driven IAA uptake and saturable symport enhanced by internal binding sites. Following pH gradient-driven accumulation of IAA, the anion may bind to an intravesicular site, permitting further uptake of IAA. NPA, by blocking anion efflux, enhances this binding. We have reported that membrane vesicles isolated from actively growing plant tissues are a good system for studying the mechanisms involved in the transport and accumulation of auxin.

  6. Effect of medium-chain glycerides on the membrane transport of D-glucose and sulfanilic acid in the intestinal brush-border membrane vesicles.

    Science.gov (United States)

    Sagara, K; Higaki, K; Yamazaki, A; Hashida, M; Sezaki, H

    1990-01-01

    To clarify the influence of medium-chain glycerides (MCG) on a biological membrane, we investigated the membrane transport of D-glucose and sulfanilic acid in the brush-border membrane (BBM) vesicles pretreated with MCG. The size distribution of the BBM vesicles determined by electron microscopic observation was not significantly different between the vesicles incorporated with MCG and those of the control. However, the amount of D-glucose taken up by the vesicles at an equilibrated stage (30 min) was significantly decreased in the MCG-treated ones based on unit content of protein. Based on these results we estimated the membrane transport of D-glucose and sulfanilic acid in consideration of vesiculation or filter-capturing efficiency in MCG-treated vesicles. The rates of Na+ gradient-independent D-glucose transport and sulfanilic acid transport were significantly greater in MCG-treated vesicles than in the control. On the other hand, the magnitude of overshooting effect in Na+ gradient-dependent uptake of D-glucose in MCG-treated vesicles was maintained similar to the control. Comparison of kinetic parameters for active D-glucose transport at different concentrations indicated that Km and Vmax were not significantly different between MCG-treated and the control vesicles. These results indicated that passive diffusion of D-glucose and sulfanilic acid was significantly increased but Na(+)-glucose cotransporter was not significantly changed by the incorporation of MCG in the intestinal BBM vesicles.

  7. Evidence that coated vesicles transport acetylcholine receptors to the surface membrane of chick myotubes

    OpenAIRE

    1984-01-01

    Coated vesicles are present in the myoplasm of embryonic chick myotubes grown in vitro. They are most numerous beneath regions of the surface membrane that contain a high density of acetylcholine receptors (AChR). Prolonged exposure of myotubes to saline extract of chick brain increases the number of intracellular AChR and the number of coated vesicles. This suggests that coated vesicles contain AChR, and this hypothesis was tested with horseradish peroxidase-alpha-bungarotoxin (HRP-alpha BTX...

  8. Insulin-stimulated plasma membrane fusion of Glut4 glucose transporter-containing vesicles is regulated by phospholipase D1.

    Science.gov (United States)

    Huang, Ping; Altshuller, Yelena M; Hou, June Chunqiu; Pessin, Jeffrey E; Frohman, Michael A

    2005-06-01

    Insulin stimulates glucose uptake in fat and muscle by mobilizing Glut4 glucose transporters from intracellular membrane storage sites to the plasma membrane. This process requires the trafficking of Glut4-containing vesicles toward the cell periphery, docking at exocytic sites, and plasma membrane fusion. We show here that phospholipase D (PLD) production of the lipid phosphatidic acid (PA) is a key event in the fusion process. PLD1 is found on Glut4-containing vesicles, is activated by insulin signaling, and traffics with Glut4 to exocytic sites. Increasing PLD1 activity facilitates glucose uptake, whereas decreasing PLD1 activity is inhibitory. Diminished PA production does not substantially hinder trafficking of the vesicles or their docking at the plasma membrane, but it does impede fusion-mediated extracellular exposure of the transporter. The fusion block caused by RNA interference-mediated PLD1 deficiency is rescued by exogenous provision of a lipid that promotes fusion pore formation and expansion, suggesting that the step regulated by PA is late in the process of vesicle fusion. PMID:15772157

  9. Dimethyltryptamine and other hallucinogenic tryptamines exhibit substrate behavior at the serotonin uptake transporter and the vesicle monoamine transporter.

    Science.gov (United States)

    Cozzi, Nicholas V; Gopalakrishnan, Anupama; Anderson, Lyndsey L; Feih, Joel T; Shulgin, Alexander T; Daley, Paul F; Ruoho, Arnold E

    2009-12-01

    N,N-dimethyltryptamine (DMT) is a potent plant hallucinogen that has also been found in human tissues. When ingested, DMT and related N,N-dialkyltryptamines produce an intense hallucinogenic state. Behavioral effects are mediated through various neurochemical mechanisms including activity at sigma-1 and serotonin receptors, modification of monoamine uptake and release, and competition for metabolic enzymes. To further clarify the pharmacology of hallucinogenic tryptamines, we synthesized DMT, N-methyl-N-isopropyltryptamine (MIPT), N,N-dipropyltryptamine (DPT), and N,N-diisopropyltryptamine. We then tested the abilities of these N,N-dialkyltryptamines to inhibit [(3)H]5-HT uptake via the plasma membrane serotonin transporter (SERT) in human platelets and via the vesicle monoamine transporter (VMAT2) in Sf9 cells expressing the rat VMAT2. The tryptamines were also tested as inhibitors of [(3)H]paroxetine binding to the SERT and [(3)H]dihydrotetrabenazine binding to VMAT2. Our results show that DMT, MIPT, DPT, and DIPT inhibit [(3)H]5-HT transport at the SERT with K ( I ) values of 4.00 +/- 0.70, 8.88 +/- 4.7, 0.594 +/- 0.12, and 2.32 +/- 0.46 microM, respectively. At VMAT2, the tryptamines inhibited [(3)H]5-HT transport with K ( I ) values of 93 +/- 6.8, 20 +/- 4.3, 19 +/- 2.3, and 19 +/- 3.1 muM, respectively. On the other hand, the tryptamines were very poor inhibitors of [(3)H]paroxetine binding to SERT and of [(3)H]dihydrotetrabenazine binding to VMAT2, resulting in high binding-to-uptake ratios. High binding-to-uptake ratios support the hypothesis that the tryptamines are transporter substrates, not uptake blockers, at both SERT and VMAT2, and also indicate that there are separate substrate and inhibitor binding sites within these transporters. The transporters may allow the accumulation of tryptamines within neurons to reach relatively high levels for sigma-1 receptor activation and to function as releasable transmitters. PMID:19756361

  10. Vps10p Transport from the trans-Golgi Network to the Endosome Is Mediated by Clathrin-coated Vesicles

    OpenAIRE

    Deloche, Olivier; Yeung, Bonny G.; Payne, Gregory S.; Schekman, Randy

    2001-01-01

    A native immunoisolation procedure has been used to investigate the role of clathrin-coated vesicles (CCVs) in the transport of vacuolar proteins between the trans-Golgi network (TGN) and the prevacuolar/endosome compartments in the yeast Saccharomyces cerevisiae. We find that Apl2p, one large subunit of the adaptor protein-1 complex, and Vps10p, the carboxypeptidase Y vacuolar protein receptor, are associated with clathrin molecules. Vps10p packaging in CCVs is re...

  11. Functional characterization of the Plasmodium falciparum chloroquine-resistance transporter (PfCRT in transformed Dictyostelium discoideum vesicles.

    Directory of Open Access Journals (Sweden)

    Janni Papakrivos

    Full Text Available BACKGROUND: Chloroquine (CQ-resistant Plasmodium falciparum malaria has been a global health catastrophe, yet much about the CQ resistance (CQR mechanism remains unclear. Hallmarks of the CQR phenotype include reduced accumulation of protonated CQ as a weak base in the digestive vacuole of the erythrocyte-stage parasite, and chemosensitization of CQ-resistant (but not CQ-sensitive P. falciparum by agents such as verapamil. Mutations in the P. falciparum CQR transporter (PfCRT confer CQR; particularly important among these mutations is the charge-loss substitution K→T at position 76. Dictyostelium discoideum transformed with mutant PfCRT expresses key features of CQR including reduced drug accumulation and verapamil chemosensitization. METHODOLOGY AND FINDINGS: We describe the isolation and characterization of PfCRT-transformed, hematin-free vesicles from D. discoideum cells. These vesicles permit assessments of drug accumulation, pH, and membrane potential that are difficult or impossible with hematin-containing digestive vacuoles from P. falciparum-infected erythrocytes. Mutant PfCRT-transformed D. discoideum vesicles show features of the CQR phenotype, and manipulations of vesicle membrane potential by agents including ionophores produce large changes of CQ accumulation that are dissociated from vesicular pH. PfCRT in its native or mutant form blunts the ability of valinomycin to reduce CQ accumulation in transformed vesicles and decreases the ability of K(+ to reverse membrane potential hyperpolarization caused by valinomycin treatment. CONCLUSION: Isolated vesicles from mutant-PfCRT-transformed D. discoideum exhibit features of the CQR phenotype, consistent with evidence that the drug resistance mechanism operates at the P. falciparum digestive vacuole membrane in malaria. Membrane potential apart from pH has a major effect on the PfCRT-mediated CQR phenotype of D. discoideum vesicles. These results support a model of PfCRT as an

  12. Golgi Fragmentation in ALS Motor Neurons. New Mechanisms Targeting Microtubules, Tethers, and Transport Vesicles

    Science.gov (United States)

    Haase, Georg; Rabouille, Catherine

    2015-01-01

    Pathological alterations of the Golgi apparatus, such as its fragmentation represent an early pre-clinical feature of many neurodegenerative diseases and have been widely studied in the motor neuron disease amyotrophic lateral sclerosis (ALS). Yet, the underlying molecular mechanisms have remained cryptic. In principle, Golgi fragmentation may result from defects in three major classes of proteins: structural Golgi proteins, cytoskeletal proteins and molecular motors, as well as proteins mediating transport to and through the Golgi. Here, we present the different mechanisms that may underlie Golgi fragmentation in animal and cellular models of ALS linked to mutations in SOD1, TARDBP (TDP-43), VAPB, and C9Orf72 and we propose a novel one based on findings in progressive motor neuronopathy (pmn) mice. These mice are mutated in the TBCE gene encoding the cis-Golgi localized tubulin-binding cofactor E, one of five chaperones that assist in tubulin folding and microtubule polymerization. Loss of TBCE leads to alterations in Golgi microtubules, which in turn impedes on the maintenance of the Golgi architecture. This is due to down-regulation of COPI coat components, dispersion of Golgi tethers and strong accumulation of ER-Golgi SNAREs. These effects are partially rescued by the GTPase ARF1 through recruitment of TBCE to the Golgi. We hypothesize that defects in COPI vesicles, microtubules and their interaction may also underlie Golgi fragmentation in human ALS linked to other mutations, spinal muscular atrophy (SMA), and related motor neuron diseases. We also discuss the functional relevance of pathological Golgi alterations, in particular their potential causative, contributory, or compensatory role in the degeneration of motor neuron cell bodies, axons and synapses. PMID:26696811

  13. Chemical-genetic disruption of clathrin function spares adaptor complex 3–dependent endosome vesicle biogenesis

    OpenAIRE

    Zlatic, Stephanie A.; Grossniklaus, Emily J.; Ryder, Pearl V.; Salazar, Gloria; Mattheyses, Alexa L.; Peden, Andrew A.; Faundez, Victor

    2013-01-01

    A role for clathrin in AP-3–dependent vesicle biogenesis has been inferred from biochemical interactions and colocalization between this adaptor and clathrin. The functionality of these molecular associations, however, is controversial. We comprehensively explore the role of clathrin in AP-3–dependent vesicle budding, using rapid chemical-genetic perturbation of clathrin function with a clathrin light chain–FKBP chimera oligomerizable by the drug AP20187. We find that AP-3 interacts and coloc...

  14. Functional analysis of the two Brassica AP3 genes involved in apetalous and stamen carpelloid phenotypes.

    Directory of Open Access Journals (Sweden)

    Yanfeng Zhang

    Full Text Available The Arabidopsis homeotic genes APETALA3 (AP3 and PISTILLATA (PI are B genes which encode MADS-box transcription factors and specify petal and stamen identities. In the current study, the stamen carpelloid (SC mutants, HGMS and AMS, of B. rapa and B. napus were investigated and two types of AP3 genes, B.AP3.a and B.AP3.b, were functional characterized. B.AP3.a and B.AP3.b share high similarity in amino acid sequences except for 8 residues difference located at the C-terminus. Loss of this 8 residues in B.AP3.b led to the change of PI-derived motifs. Meanwhile, B.AP3.a specified petal and stamen development, whereas B.AP3.b only specified stamen development. In B. rapa, the mutations of both genes generated the SC mutant HGMS. In B. napus that contained two B.AP3.a and two B.AP3.b, loss of the two B.AP3.a functions was the key reason for the apetalous mutation, however, the loss-of-function in all four AP3 was related to the SC mutant AMS. We inferred that the 8 residues or the PI-derived motif in AP3 gene probably relates to petal formation.

  15. Functional Analysis of the Two Brassica AP3 Genes Involved in Apetalous and Stamen Carpelloid Phenotypes

    OpenAIRE

    Zhang, Yanfeng; Wang, Xuefang; Zhang, Wenxue; Yu, Fei; Tian, Jianhua; Li, Dianrong; Guo, Aiguang

    2011-01-01

    The Arabidopsis homeotic genes APETALA3 (AP3) and PISTILLATA (PI) are B genes which encode MADS-box transcription factors and specify petal and stamen identities. In the current study, the stamen carpelloid (SC) mutants, HGMS and AMS, of B. rapa and B. napus were investigated and two types of AP3 genes, B.AP3.a and B.AP3.b, were functional characterized. B.AP3.a and B.AP3.b share high similarity in amino acid sequences except for 8 residues difference located at the C-terminus. Loss of this 8...

  16. Unc-51/ATG1 controls axonal and dendritic development via kinesin-mediated vesicle transport in the Drosophila brain.

    Directory of Open Access Journals (Sweden)

    Hiroaki Mochizuki

    Full Text Available BACKGROUND: Members of the evolutionary conserved Ser/Thr kinase Unc-51 family are key regulatory proteins that control neural development in both vertebrates and invertebrates. Previous studies have suggested diverse functions for the Unc-51 protein, including axonal elongation, growth cone guidance, and synaptic vesicle transport. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we have investigated the functional significance of Unc-51-mediated vesicle transport in the development of complex brain structures in Drosophila. We show that Unc-51 preferentially accumulates in newly elongating axons of the mushroom body, a center of olfactory learning in flies. Mutations in unc-51 cause disintegration of the core of the developing mushroom body, with mislocalization of Fasciclin II (Fas II, an IgG-family cell adhesion molecule important for axonal guidance and fasciculation. In unc-51 mutants, Fas II accumulates in the cell bodies, calyx, and the proximal peduncle. Furthermore, we show that mutations in unc-51 cause aberrant overshooting of dendrites in the mushroom body and the antennal lobe. Loss of unc-51 function leads to marked accumulation of Rab5 and Golgi components, whereas the localization of dendrite-specific proteins, such as Down syndrome cell adhesion molecule (DSCAM and No distributive disjunction (Nod, remains unaltered. Genetic analyses of kinesin light chain (Klc and unc-51 double heterozygotes suggest the importance of kinesin-mediated membrane transport for axonal and dendritic development. Moreover, our data demonstrate that loss of Klc activity causes similar axonal and dendritic defects in mushroom body neurons, recapitulating the salient feature of the developmental abnormalities caused by unc-51 mutations. CONCLUSIONS/SIGNIFICANCE: Unc-51 plays pivotal roles in the axonal and dendritic development of the Drosophila brain. Unc-51-mediated membrane vesicle transport is important in targeted localization of guidance molecules

  17. Molecular transport into and out of ionic-liquid filled block copolymer vesicles in water

    Science.gov (United States)

    Lodge, Timothy; Yao, Letitia; So, Soonyong

    We have developed a method to prepare stable, size-controlled block copolymer vesicles that contain ionic liquid in the interior, but that are dispersed in water. Such nanoemulsions are of interest as nanoreactors, because the mass transfer and cost limitations of ionic liquids are circumvented. However, a crucial question is whether target molecules (e . g ., reagents and products) can enter and leave the vesicles, respectively, on a useful time scale (i . e ., seconds or shorter). In this talk we will briefly describe methods to prepare such vesicles with narrow size distributions, using poly(styrene)-block-poly(ethylene oxide) and poly(butadiene)-block-poly(ethylene oxide) copolymers of various compositions. We will then present results of pulsed-field gradient NMR measurements of probe diffusion that yield independent measurements of the entry and escape rates for selected small molecules, as a function of membrane thickness and temperature.

  18. Use of membrane vesicles as a simplified system for studying transport of auxin. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Goldsmith, M.H.

    1985-01-01

    The accumulation of indoleacetic acid (IAA) inside microsomal vesicles depends on the presence of a pH gradient and is reversible when the ..delta..pH is collapsed by ionosphores. Accumulation is stimulated by either napthylphthalamic acid or TIBA. The accumulation of IAA by the vesicles can be saturated. At concentrations of 1 ..mu..M or less, IAA, synthetic auxins, or auxin antagonists do not affect the pH gradient, but decrease the accumulation of /sup 3/H-IAA, and therefore compete specifically for uptake. Concentrations of 10 ..mu..M and above, uptake of either the auxins or weak acids is sufficient to overcome the buffering capacity of the solution within the vesicles. The collapse of the pH gradient by such high concentrations affects uptake of either /sup 3/H-IAA or /sup 14/C-BA to similar extents and thus is nonspecific. 3 refs.

  19. A vacuolar-type proton pump in a vesicle fraction enriched with potassium transporting plasma membranes from tobacco hornworm midgut

    Energy Technology Data Exchange (ETDEWEB)

    Wieczorek, H.; Weerth, S.; Schindlbeck, M.; Klein, U.

    1989-07-05

    Mg-ATP dependent electrogenic proton transport, monitored with fluorescent acridine orange, 9-aminoacridine, and oxonol V, was investigated in a fraction enriched with potassium transporting goblet cell apical membranes of Manduca sexta larval midgut. Proton transport and the ATPase activity from the goblet cell apical membrane exhibited similar substrate specificity and inhibitor sensitivity. ATP and GTP were far better substrates than UTP, CTP, ADP, and AMP. Azide and vanadate did not inhibit proton transport, whereas 100 microM N,N'-dicyclohexylcarbodiimide and 30 microM N-ethylmaleimide were inhibitors. The pH gradient generated by ATP and limiting its hydrolysis was 2-3 pH units. Unlike the ATPase activity, proton transport was not stimulated by KCl. In the presence of 20 mM KCl, a proton gradient could not be developed or was dissipated. Monovalent cations counteracted the proton gradient in an order of efficacy like that for stimulation of the membrane-bound ATPase activity: K+ = Rb+ much greater than Li+ greater than Na+ greater than choline (chloride salts). Like proton transport, the generation of an ATP dependent and azide- and vanadate-insensitive membrane potential (vesicle interior positive) was prevented largely by 100 microM N,N'-dicyclohexylcarbodiimide and 30 microM N-ethylmaleimide. Unlike proton transport, the membrane potential was not affected by 20 mM KCl. In the presence of 150 mM choline chloride, the generation of a membrane potential was suppressed, whereas the pH gradient increased 40%, indicating an anion conductance in the vesicle membrane. Altogether, the results led to the following new hypothesis of electrogenic potassium transport in the lepidopteran midgut. A vacuolar-type electrogenic ATPase pumps protons across the apical membrane of the goblet cell, thus energizing electroneutral proton/potassium antiport. The result is a net active and electrogenic potassium flux.

  20. Role of tetanus neurotoxin insensitive vesicle-associated membrane protein (TI-VAMP) in vesicular transport mediating neurite outgrowth.

    Science.gov (United States)

    Martinez-Arca, S; Alberts, P; Zahraoui, A; Louvard, D; Galli, T

    2000-05-15

    How vesicular transport participates in neurite outgrowth is still poorly understood. Neurite outgrowth is not sensitive to tetanus neurotoxin thus does not involve synaptobrevin-mediated vesicular transport to the plasma membrane of neurons. Tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP) is a vesicle-SNARE (soluble N-ethylmaleimide-sensitive fusion protein [NSF] attachment protein [SNAP] receptor), involved in transport to the apical plasma membrane in epithelial cells, a tetanus neurotoxin-resistant pathway. Here we show that TI-VAMP is essential for vesicular transport-mediating neurite outgrowth in staurosporine-differentiated PC12 cells. The NH(2)-terminal domain, which precedes the SNARE motif of TI-VAMP, inhibits the association of TI-VAMP with synaptosome-associated protein of 25 kD (SNAP25). Expression of this domain inhibits neurite outgrowth as potently as Botulinum neurotoxin E, which cleaves SNAP25. In contrast, expression of the NH(2)-terminal deletion mutant of TI-VAMP increases SNARE complex formation and strongly stimulates neurite outgrowth. These results provide the first functional evidence for the role of TI-VAMP in neurite outgrowth and point to its NH(2)-terminal domain as a key regulator in this process.

  1. A molecular network for the transport of the TI-VAMP/VAMP7 vesicles from cell center to periphery.

    Science.gov (United States)

    Burgo, Andrea; Proux-Gillardeaux, Véronique; Sotirakis, Emmanuel; Bun, Philippe; Casano, Alessandra; Verraes, Agathe; Liem, Ronald K H; Formstecher, Etienne; Coppey-Moisan, Maïté; Galli, Thierry

    2012-07-17

    The compartmental organization of eukaryotic cells is maintained dynamically by vesicular trafficking. SNARE proteins play a crucial role in intracellular membrane fusion and need to be targeted to their proper donor or acceptor membrane. The molecular mechanisms that allow for the secretory vesicles carrying the v-SNARE TI-VAMP/VAMP7 to leave the cell center, load onto microtubules, and reach the periphery to mediate exocytosis are largely unknown. Here, we show that the TI-VAMP/VAMP7 partner Varp, a Rab21 guanine nucleotide exchange factor, interacts with GolginA4 and the kinesin 1 Kif5A. Activated Rab21-GTP in turn binds to MACF1, an actin and microtubule regulator, which is itself a partner of GolginA4. These components are required for directed movement of TI-VAMP/VAMP7 vesicles from the cell center to the cell periphery. The molecular mechanisms uncovered here suggest an integrated view of the transport of vesicles carrying a specific v-SNARE toward the cell surface.

  2. Insulin-stimulated Plasma Membrane Fusion of Glut4 Glucose Transporter-containing Vesicles Is Regulated by Phospholipase D1D⃞

    OpenAIRE

    Huang, Ping; Altshuller, Yelena M.; Hou, June Chunqiu; Jeffrey E Pessin; Frohman, Michael A.

    2005-01-01

    Insulin stimulates glucose uptake in fat and muscle by mobilizing Glut4 glucose transporters from intracellular membrane storage sites to the plasma membrane. This process requires the trafficking of Glut4-containing vesicles toward the cell periphery, docking at exocytic sites, and plasma membrane fusion. We show here that phospholipase D (PLD) production of the lipid phosphatidic acid (PA) is a key event in the fusion process. PLD1 is found on Glut4-containing vesicles, is activated by insu...

  3. ACTIVE CALCIUM TRANSPORT IN PLASMA MEMBRANE VESICLES FROM DEVELOPING COTYLEDONS OF COMMON BEAN

    Institute of Scientific and Technical Information of China (English)

    黄建中; 陈子元

    1995-01-01

    Plasma membrane vesicles were prepared from the developing cotyledons of common bean (Phaseolus vulgaris L cv Diyundou)by aqueous two-phase partitioning and characterized as to their purity by assaying marker enzymes for other membranes.The putative plasma membrane fraction was minimalyy contaminated by membranes other than plasma membrane and hence was of high purity,It exhibited a Ca2+-dependent ATPase activity,which was inhibited by 1umol/L EB and promoted by calcium ionophore A23187.Such an activity was responsible for the observed ATP dependent 45Ca2+ uptake into inside-out plasma membrane vesicles.This process was stimulated by 0.5μmol/L CaM and 20μmol/L IAA but inhibited by 2μmol/L ABA and abolished by A23187,Possible role of cytoplasmic Ca2+ in mediating phytohormones activity is discussed.

  4. Constitutive Expression of Sense & Antisense PtAP3, an AP3 Homologue Gene of Populus tomentosa, Affects Growth and Flowering Time in Transgenic Tobacco

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To analyze the function of PtAP3, an APETALA3 (AP3) homologue gene isolated from Populus tomentosa Carr., the full length sequence (1 797 bp) and a fragment (870 bp) of PtAP3 were fused to a CaMV 35S promoter of pBI121 to generate the sense and antisense constructs of PtAP3. These constructs were transformed into tobacco by Agrobacterium infection of leaf disks and selection on kanamycin medium. Some sense and antisense transgenic tobacco plants were obtained by PCR and Southern blot analysis. Great phenotypic differences in transgenic tobacco plants were observed. Almost all of sense PtAP3 to transgenic tobaccos showed a higher growth rate than those of antisense transformants and a few developed pregnancy earlier than wild type seedlings and antisense transformants under the same conditions.

  5. Differential recognition of a dileucine-based sorting signal by AP-1 and AP-3 reveals a requirement for both BLOC-1 and AP-3 in delivery of OCA2 to melanosomes

    OpenAIRE

    Sitaram, Anand; Dennis, Megan K.; Chaudhuri, Rittik; De Jesus-Rojas, Wilfredo; Tenza, Danièle; Setty, Subba Rao Gangi; Wood, Christopher S.; Sviderskaya, Elena V.; Bennett, Dorothy C.; Raposo, Graça; Bonifacino, Juan S.; Marks, Michael S.

    2012-01-01

    Cell types that generate unique lysosome-related organelles (LROs), such as melanosomes in melanocytes, populate nascent LROs with cargoes that are diverted from endosomes. Cargo sorting toward melanosomes correlates with binding via cytoplasmically exposed sorting signals to either heterotetrameric adaptor AP-1 or AP-3. Some cargoes bind both adaptors, but the relative contribution of each adaptor to cargo recognition and their functional interactions with other effectors during transport to...

  6. Taurocholate transport by brush-border membrane vesicles from the developing rabbit ileum: Structure/function relationships

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, S.M.; Watkins, J.B.; Ling, S.C. (New York Medical College, Valhalla (USA))

    1990-05-01

    To examine the ontogenesis of bile acid transport in the rabbit ileum, brush-border membrane vesicles (12- to 20-fold purified) were prepared from 14- to 49-day-old animals. Taurocholate uptake was characterized by the emergence of secondary active, Na(+)-dependent transport at the start of weaning (21 days). Transient intravesicular accumulation (overshoot) of taurocholate occurred at 5-10 s of incubation, and the overshoot maximum increased significantly from 21 days (349.2 +/- 22.4 nmol/mg protein) to 35 days (569.0 +/- 84.3 nmol/mg protein; p less than 0.001), without further increase at maturity (49 days, not equal to 607.6 +/- 136.7 nmol/mg protein). No significant taurocholate active uptake component was noted at 14 days; however, ileal vesicles from sucklings showed carrier-mediated, Na+ D-glucose cotransport. In greater than or equal to 35-day-old rabbits, osmolarity studies at 20 s of incubation showed that only approximately 12% of (14C)taurocholate uptake was secondary to bile acid-to-membrane binding. Conversely, at 20 min, greater than 95% of radiolabel incorporation represented solute bound to the external and/or internal membrane surface. Arrhenius plots establish brush-border membrane taurocholate uptake as an intrinsic, lipid-dependent process, with a slope discontinuity between 24 and 28 degrees C, similar to the membrane lipid thermotropic transition region. Steady-state fluorescence polarization studies (1,6-diphenyl-1,3,5-hexatriene) demonstrate a temporal association between the maturation of taurocholate uptake and age-related decreases in ileal brush-border membrane fluidity. These data indicate that maturation of bile acid secondary active transport in the rabbit ileum may be regulated, at least in part, by changes in brush-border membrane lipid dynamics.

  7. Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes

    NARCIS (Netherlands)

    P. Dhonukshe (Pankaj); I. Grigoriev (Ilya); R. Fischer (Rainer); M. Tominaga (Motoki); D.G. Robinson (David); J. Hašek (Jiří); T. Paciorek (Tomasz); J. Petrášek (Jan); D. Seifertová (Daniela); R. Tejos (Ricardo); L.A. Meisel (Lee); E. Zažímalová (Eva); T.W.J. Gadella (Theodorus); Y.D. Stierhof; T. Ueda (Takashi); K. Oiwa (Kazuhiro); A.S. Akhmanova (Anna); R. Brock (Roland); A. Spang (Anne); J. Friml (Jiří)

    2008-01-01

    textabstractMany aspects of plant development, including patterning and tropisms, are largely dependent on the asymmetric distribution of the plant signaling molecule auxin. Auxin transport inhibitors (ATIs), which interfere with directional auxin transport, have been essential tools in formulating

  8. Live-cell imaging of post-golgi transport vesicles in cultured hippocampal neurons

    DEFF Research Database (Denmark)

    Jensen, Camilla Stampe; Misonou, Hiroaki

    2015-01-01

    The subcellular localization of neuronal membrane signaling molecules such as receptors and ion channels depends on intracellular trafficking mechanisms. Essentially, vesicular trafficking mechanisms ensure that a large number of membrane proteins are correctly targeted to different subcellular...... compartments of neurons. In the past two decades, the establishment and advancement of fluorescent protein technology have provided us with opportunities to study how proteins are trafficked in living cells. However, live imaging of trafficking processes in neurons necessitate imaging tools to distinguish...... mechanisms by which post-Golgi vesicles are trafficked in neurons. Our protocol uniquely combines the classic temperature-block with close monitoring of the transient expression of transfected protein tagged with fluorescent proteins, and provides a quick and easy way to study protein trafficking in living...

  9. Tetrahymena gene encodes a protein that is homologous with the liver-specific F-antigen and associated with membranes of the Golgi apparatus and transport vesicles

    DEFF Research Database (Denmark)

    Hummel, R; Nørgaard, P; Andreasen, P H;

    1992-01-01

    of the Golgi apparatus and transport vesicles pointing to a role of TF-ag in membrane trafficking. Transcription of the TF-ag gene, as determined by run-on analyses, was only detectable in growing cells, and following transfer to starvation condition pre-existing TF-ag mRNA was rapidly degraded. The abundance...

  10. Effect of alpha interferon on glucose and alanine transport by rat renal brush border membrane vesicles

    International Nuclear Information System (INIS)

    To investigate the pathogenetic mechanisms of interferon nephrotoxicity, we studied the effect of recombinant interferon alfa-2b on the uptake of 14C-D-glucose and 14C-L-alanine by rat renal brush-border-membrane vesicles. Interferon significantly inhibited 20 sec. sodium-dependent and 5 and 10 min. equilibrium uptake of both glucose and alanine. The inhibitory effect was dose dependent with maximum effect achieved at interferon concentration of 5 x 10-8M in the uptake media. The half-maximal inhibitory concentrations, IC50, of interferon on glucose uptake was 1.8 x 10-8M, and 5.4 x 10-9M on alanine uptake. Dixon plot analysis of uptake data was consistent with pure non-competitive inhibition. The inhibition constants, Ki, 1.5 x 10-8M for glucose uptake, and 7.3 x 10-9M for alanine uptake, derived from Dixon plots were in close agreement with the IC50s calculated from the semilog dose response curves. These observations reveal that direct interactions at the proximal tubule cell membrane are involved in the pathogenesis of interferon nephrotoxicity, and that its mechanism of nephrotoxicity is similar to that of other low molecular weight proteins

  11. Transport of receptors, receptor signaling complexes and ion channels via neuropeptide-secretory vesicles

    Institute of Scientific and Technical Information of China (English)

    Bo Zhao; Hai-Bo Wang; Ying-Jin Lu; Jian-Wen Hu; Lan Bao; Xu Zhang

    2011-01-01

    Stimulus-induced exocytosis of large dense-core vesicles(LDCVs)leads to discharge of neuropeptides and fusion of LDCV membranes with the plasma membrane. However, the contribution of LDCVs to the properties of the neuronal membrane remains largely unclear. The present study found that LDCVs were associated with multiple receptors, channels and signaling molecules, suggesting that neuronal sensitivity is modulated by an LDCV-mediated mechanism. Liquid chromatography-mass spectrometry combined with immunoblotting of subcellular fractions identified 298 proteins in LDCV membranes purified from the dorsal spinal cord, including Gprotein-coupled receptors, Gproteins and other signaling molecules, ion channels and trafficking-related proteins. Morphological assays showed that δ-opioid receptor 1(DORI), β2 adrenergic receptor(AR), Gα12,voltage-gated calcium channel a2δ1subunit and P2X purinoceptor 2 were localized in substance P(SP)-positive LDCVs in small-diameter dorsal root ganglion neurons, whereas β1 AR, Wnt receptor frizzled 8 and dishevelled 1 were present in SP-negative LDCVs.Furthermore, DOR1/α12/Gβ1γ5/phospholipase C β2 complexes were associated with LDCVs. Blockade of the DOR1/Gαi2 interaction largely abolished the LDCV localization of Gαi2 and impaired stimulation-induced surface expression of Gαi2. Thus, LDCVs serve as carriers of receptors, ion channels and preassembled receptor signaling complexes, enabling a rapid, activity-dependent modulation of neuronal sensitivity.

  12. Chloroquine causes similar electroretinogram modifications, neuronal phospholipidosis and marked impairment of synaptic vesicle transport in Albino and Pigmented Rats

    International Nuclear Information System (INIS)

    Retinal toxicity of chloroquine has been known for several years, but the mechanism(s) of toxicity remain controversial; some author support the idea that the binding of chloroquine to melanin pigments in the retinal pigmented epithelium (RPE) play a major toxic role by concentrating the drug in the eye. In our study, 12 albinos Sprague-Dawley (SD) and 12 pigmented Brown Norway (BN) rats were treated orally for 3 months with chloroquine to compare functional and pathological findings. On Flash electroretinograms (ERG) performed in scotopic conditions, similar and progressive (time-dependent) delayed onset and decreased amplitudes of oscillatory potentials (from Day 71) and b-waves (on Day 92) were identified in both BN and SD rats. In both strains, identical morphological changes consisted of neuronal phospholipidosis associated with UV auto-fluorescence without evidence of retinal degeneration and gliosis; the RPE did not show any morphological lesions or autofluorescence. IHC analyses demonstrated a decrease in GABA expression in the inner nuclear layer. In addition, a marked accumulation of synaptic vesicles coupled with a marked disruption of neurofilaments in the optic nerve fibers was identified. In conclusion, ERG observations were very similar to those described in humans. Comparable ERG modifications, histopathology and immunohistochemistry findings were observed in the retina of both rat strains suggesting that melanin pigment is unlikely involved. chloroquine-induced impairment of synaptic vesicle transport, likely related to disruption of neurofilaments was identified and non-previously reported. This new mechanism of toxicity may also be responsible for the burry vision described in humans chronically treated with chloroquine

  13. Vesicles and vesicle fusion: coarse-grained simulations

    DEFF Research Database (Denmark)

    Shillcock, Julian C.

    2010-01-01

    Biological cells are highly dynamic, and continually move material around their own volume and between their interior and exterior. Much of this transport encapsulates the material inside phospholipid vesicles that shuttle to and fro, fusing with, and budding from, other membranes. A feature...... of vesicles that is crucial for this transport is their ability to fuse to target membranes and release their contents to the distal side. In industry, some personal care products contain vesicles to help transport reagents across the skin, and research on drug formulation shows that packaging active...... compounds inside vesicles delays their clearance from the blood stream. In this chapter, we survey the biological role and physico-chemical properties of phospholipids, and describe progress in coarse-grained simulations of vesicles and vesicle fusion. Because coarse-grained simulations retain only those...

  14. COPI vesicle transport is a common requirement for tube expansion in Drosophila.

    Directory of Open Access Journals (Sweden)

    Satish Arcot Jayaram

    Full Text Available BACKGROUND: Tube expansion defects like stenoses and atresias cause devastating human diseases. Luminal expansion during organogenesis begins to be elucidated in several systems but we still lack a mechanistic view of the process in many organs. The Drosophila tracheal respiratory system provides an amenable model to study tube size regulation. In the trachea, COPII anterograde transport of luminal proteins is required for extracellular matrix assembly and the concurrent tube expansion. PRINCIPAL FINDINGS: We identified and analyzed Drosophila COPI retrograde transport mutants with narrow tracheal tubes. gammaCOP mutants fail to efficiently secrete luminal components and assemble the luminal chitinous matrix during tracheal tube expansion. Likewise, tube extension is defective in salivary glands, where it also coincides with a failure in the luminal deposition and assembly of a distinct, transient intraluminal matrix. Drosophila gammaCOP colocalizes with cis-Golgi markers and in gammaCOP mutant embryos the ER and Golgi structures are severely disrupted. Analysis of gammaCOP and Sar1 double mutants suggests that bidirectional ER-Golgi traffic maintains the ER and Golgi compartments and is required for secretion and assembly of luminal matrixes during tube expansion. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate the function of COPI components in organ morphogenesis and highlight the common role of apical secretion and assembly of transient organotypic matrices in tube expansion. Intraluminal matrices have been detected in the notochord of ascidians and zebrafish COPI mutants show defects in notochord expansion. Thus, the programmed deposition and growth of distinct luminal molds may provide distending forces during tube expansion in diverse organs.

  15. Properties of the mitochondrial carrier of adenine-nucleotide after purification. Study of the transport protein under isolated form and reincorporated form in phospho-lipidic vesicles

    International Nuclear Information System (INIS)

    The first part of this research thesis addresses the reconstitution of the ADP/ATP transport by incorporation of the specific carrier, isolated in presence of detergent, in phospholipids vesicles. Fundamental properties of the reconstituted transport are identical to that of transport in mitochondria, notably as far as the exchange stoichiometry, the turn over and the transport Km are concerned, as well as the asymmetric orientation of the carrier in the membrane. The second part of this research addresses the study of interactions of specific ligands with the ADP/ATP transport protein in presence of detergent. The study of the variations of the intrinsic fluorescence of the isolated ADP/ATP carrier highlights conformational changes exclusively induced by the presence of transportable nucleotides which are modulated in a different manner by carboxy-atractyloside or bongkrekic acid. Moreover, by using the isolated protein, a detailed analysis of binding parameters of fluorescent analogues of ATP is reported

  16. Vesicle transport in oligodendrocytes: probable role of Rab40c protein.

    Science.gov (United States)

    Rodriguez-Gabin, A G; Almazan, G; Larocca, J N

    2004-06-15

    Intracellular membrane trafficking plays an essential role in the structural and functional organization of oligodendrocytes, which synthesize a large amount of membrane to form myelin. Rab proteins are key components in intracellular vesicular transport. We cloned a novel Rab protein from an oligodendrocyte cDNA library, designating it Rab40c because of its homology with Rab40a and Rab40b. The DNA sequence of Rab40c shows an 843-base pair open reading frame. The deduced amino acid sequence is a protein with 281 amino acids, with a molecular weight of 31,466 Da and an isoelectric point of 9.83. Rab40c presents a number of distinct structural features including a carboxyl terminal extension and amino acid substitutions in the consensus sequence of the GTP-binding motifs. The carboxyl terminal region contains motifs that permit isoprenylation and palmitoylation. Binding studies indicate that Rab40c binds guanosine 5'-0-(3-thiotriphosphate) (GTP gamma S) with a K(d) of 21 microM and has a higher affinity for guanosine triphosphate (GTP) than for guanosine diphosphate (GDP). Rab40c is localized in the perinuclear recycling compartment, suggesting its involvement in endocytic events such as receptor recycling. The importance of this recycling in myelin formation is suggested by the increase in both Rab40c mRNA and Rab40c protein as oligodendrocytes differentiate. PMID:15160388

  17. The glucose transporter (GLUT-4) and vesicle-associated membrane protein-2 (VAMP-2) are segregated from recycling endosomes in insulin- sensitive cells

    Science.gov (United States)

    1996-01-01

    Insulin stimulates glucose transport in adipocytes by translocation of the glucose transporter (GLUT-4) from an intracellular site to the cell surface. We have characterized different synaptobrevin/vesicle- associated membrane protein (VAMP) homologues in adipocytes and studied their intracellular distribution with respect to GLUT-4. VAMP-1, VAMP- 2, and cellubrevin cDNAs were isolated from a 3T3-L1 adipocyte expression library. VAMP-2 and cellubrevin were: (a) the most abundant isoforms in adipocytes, (b) detectable in all insulin responsive tissues, (c) translocated to the cell surface in response to insulin, and (d) found in immunoadsorbed GLUT-4 vesicles. To further define their intracellular distribution, 3T3-L1 adipocytes were incubated with a transferrin/HRP conjugate (Tf/HRP) and endosomes ablated following addition of DAB and H2O2. While this resulted in ablation of > 90% of the transferrin receptor (TfR) and cellubrevin found in intracellular membranes, 60% of GLUT-4 and 90% of VAMP-2 was not ablated. Immuno-EM on intracellular vesicles from adipocytes revealed that VAMP-2 was colocalized with GLUT-4, whereas only partial colocalization was observed between GLUT-4 and cellubrevin. These studies show that two different v-SNAREs, cellubrevin and VAMP-2, are partially segregated in different intracellular compartments in adipocytes, implying that they may define separate classes of secretory vesicles in these cells. We conclude that a proportion of GLUT-4 is found in recycling endosomes in nonstimulated adipocytes together with cellubrevin and the transferrin receptor. In addition, GLUT-4 and VAMP-2 are selectively enriched in a postendocytic compartment. Further study is required to elucidate the function of this latter compartment in insulin-responsive cells. PMID:8707843

  18. The prokaryotic V4R domain is the likely ancestor of a key component of the eukaryotic vesicle transport system

    Directory of Open Access Journals (Sweden)

    Makarova Kira S

    2008-01-01

    Full Text Available Abstract Intracellular vesicle traffic that enables delivery of proteins between the endoplasmic reticulum, Golgi and various endosomal subcompartments is one of the hallmarks of the eukaryotic cell. Its evolutionary history is not well understood but the process itself and the core vesicle traffic machinery are believed to be ancient. We show here that the 4-vinyl reductase (V4R protein domain present in bacteria and archaea is homologous to the Bet3 subunit of the TRAPP1 vesicle-tethering complex that is conserved in all eukaryotes. This suggests, for the first time, a prokaryotic origin for one of the key eukaryotic trafficking proteins. Reviewers This article was reviewed by Gaspar Jekely and Mark A. Ragan

  19. AP-3 and Rabip4' coordinately regulate spatial distribution of lysosomes.

    Directory of Open Access Journals (Sweden)

    Viorica Ivan

    Full Text Available The RUN and FYVE domain proteins rabip4 and rabip4' are encoded by RUFY1 and differ in a 108 amino acid N-terminal extension in rabip4'. Their identical C terminus binds rab5 and rab4, but the function of rabip4s is incompletely understood. We here found that silencing RUFY1 gene products promoted outgrowth of plasma membrane protrusions, and polarized distribution and clustering of lysosomes at their tips. An interactor screen for proteins that function together with rabip4' yielded the adaptor protein complex AP-3, of which the hinge region in the β3 subunit bound directly to the FYVE domain of rabip4'. Rabip4' colocalized with AP-3 on a tubular subdomain of early endosomes and the extent of colocalization was increased by a dominant negative rab4 mutant. Knock-down of AP-3 had an ever more dramatic effect and caused accumulation of lysosomes in protrusions at the plasma membrane. The most peripheral lysosomes were localized beyond microtubules, within the cortical actin network. Our results uncover a novel function for AP-3 and rabip4' in regulating lysosome positioning through an interorganellar pathway.

  20. The AP-3 adaptor complex is required for vacuolar function in Arabidopsis

    NARCIS (Netherlands)

    Zwiewka, M.; Feraru, E.; Moller, B.K.; Hwang, I.; Feraru, M.I.; Kleine-Vehn, J.; Weijers, D.; Friml, J.

    2011-01-01

    Subcellular trafficking is required for a multitude of functions in eukaryotic cells. It involves regulation of cargo sorting, vesicle formation, trafficking and fusion processes at multiple levels. Adaptor protein (AP) complexes are key regulators of cargo sorting into vesicles in yeast and mammals

  1. Dynamics of intracellular clathrin/AP1 and clathrin/AP3 containing carriers

    OpenAIRE

    2012-01-01

    Clathrin/AP1 and clathrin/AP3 coated vesicular carriers originate from endosomes and the TGN. We report here the real-time visualization of these structures in living cells reliably tracked by using rapid, three-dimensional imaging with a spinning-disk confocal microscope. We imaged relatively sparse, diffraction-limited, fluorescent objects containing chimeric fluorescent protein (clathrin light chain, σ adaptor subunits or dynamin2) with a spatial precision of up to ~ 30 nm and a temporal r...

  2. Proteolytic cleavage of cellubrevin and vesicle-associated membrane protein (VAMP) by tetanus toxin does not impair insulin-stimulated glucose transport or GLUT4 translocation in rat adipocytes.

    Science.gov (United States)

    Hajduch, E; Aledo, J C; Watts, C; Hundal, H S

    1997-01-01

    Acute insulin stimulation of glucose transport in fat and skeletal muscle occurs principally as a result of the hormonal induced translocation of the GLUT4 glucose transporter from intracellular vesicular stores to the plasma membrane. The precise mechanisms governing the fusion of GLUT4 vesicles with the plasma membrane are very poorly understood at present but may share some similarities with synaptic vesicle fusion, as vesicle-associated membrane protein (VAMP) and cellubrevin, two proteins implicated in the process of membrane fusion, are resident in GLUT4-containing vesicles isolated from rat and murine 3T3-L1 adipocytes respectively. In this study we show that proteolysis of both cellubrevin and VAMP, induced by electroporation of isolated rat adipocytes with tetanus toxin, does not impair insulin-stimulated glucose transport or GLUT4 translocation. The hormone was found to stimulate glucose uptake by approx. 16-fold in freshly isolated rat adipocytes. After a single electroporating pulse, the ability of insulin to activate glucose uptake was lowered, but the observed stimulation was nevertheless nearly 5-fold higher than the basal rate of glucose uptake. Electroporation of adipocytes with 600 nM tetanus toxin resulted in a complete loss of both cellubrevin and VAMP expression within 60 min. However, toxin-mediated proteolysis of both these proteins had no effect on the ability of insulin to stimulate glucose transport which was elevated approx. 5-fold, an activation of comparable magnitude to that observed in cells electroporated without tetanus toxin. The lack of any significant change in insulin-stimulated glucose transport was consistent with the finding that toxin-mediated proteolysis of both cellubrevin and VAMP had no detectable effect on insulin-induced translocation of GLUT4 in adipocytes. Our findings indicate that, although cellubrevin and VAMP are resident proteins in adipocyte GLUT4-containing vesicles, they are not required for the acute insulin

  3. Toxicity of the synthetic polymeric 3-alkylpyridinium salt (APS3) is due to specific block of nicotinic acetylcholine receptors.

    Science.gov (United States)

    Grandič, Marjana; Aráoz, Romulo; Molgó, Jordi; Turk, Tom; Sepčić, Kristina; Benoit, Evelyne; Frangež, Robert

    2013-01-01

    The in vivo and in vitro toxic effects of the synthetic polymeric 3-alkylpyridinium salt (APS3), from the Mediterranean marine sponge Reniera sarai, were evaluated on mammals, with emphasis to determine its mode of action. The median lethal doses of APS3 were 7.25 and higher that 20mg/kg in mouse and rat, respectively. Intravenous administration of 7.25 and 20mg/kg APS3 to rat caused a significant fall followed by an increase in mean arterial blood pressure accompanied by tachycardia. In addition, cumulative doses of APS3 (up to 60 mg/kg) inhibited rat nerve-evoked skeletal muscle contraction in vivo, with a median inhibitory dose (ID(50)) of 37.25mg/kg. When administrated locally by intramuscular injection to mouse, APS3 decreased the compound muscle action potential recorded in response to in vivo nerve stimulation, with an ID(50) of 0.5mg/kg. In vitro experiments confirmed the inhibitory effect of APS3 on mouse hemidiaphragm nerve-evoked muscle contraction with a median inhibitory concentration (IC(50)) of 20.3 μM, without affecting directly elicited muscle contraction. The compound inhibited also miniature endplate potentials and nerve-evoked endplate potentials with an IC(50) of 7.28 μM in mouse hemidiaphragm. Finally, APS3 efficiently blocked acetylcholine-activated membrane inward currents flowing through Torpedo nicotinic acetylcholine receptors (nAChRs) incorporated to Xenopus oocytes, with an IC(50) of 0.19 μM. In conclusion, our results strongly suggest that APS3 blocks muscle-type nAChRs, and show for the first time that in vivo toxicity of APS3 is likely to occur through an antagonist action of the compound on these receptors.

  4. Phylogenetic utility of the AP3/DEF K-domain and its molecular evolution in Impatiens (Balsaminaceae)

    OpenAIRE

    Janssens, S.; Geuten, K.; Viaene, T.; Yong-Ming, Y.; Yi, S; Smets, E.

    2007-01-01

    APETALA3 (AP3)/DEFICIENS (DEF) is a MADS-box transcription factor that is involved in establishing the identity of petal and stamen floral organs. The AP3/DEF gene lineage has been extensively examined throughout the angiosperms in order to better understand its role in floral diversity and evolution. As a result, a large number of cloned AP3/DEF orthologues are available, which can be used for the design of taxon specific primers for phylogeny reconstruction of close relatives of the group o...

  5. Sodium-Dependent Transport of Neutral Amino Acids by Whole Cells and Membrane Vesicles of Streptococcus bovis, a Ruminal Bacterium

    NARCIS (Netherlands)

    Russell, James B.; Strobel, Herbert J.; Driessen, Arnold J.M.; Konings, Wilhelmus

    1988-01-01

    Streptococcus bovis JB1 cells were able to transport serine, threonine, or alanine, but only when they were incubated in sodium buffers. If glucose-energized cells were washed in potassium phosphate and suspended in potassium phosphate buffer, there was no detectable uptake. Cells deenergized with 2

  6. The putative Cationic Amino acid Transporter 9 is targeted to vesicles and may be involved in plant amino acid homeostasis

    Directory of Open Access Journals (Sweden)

    Huaiyu eYang

    2015-04-01

    Full Text Available Amino acids are major primary metabolites. Their uptake, translocation, compartmentation and re-mobilization require a diverse set of cellular transporters. Here, the broadly expressed gene product of CATIONIC AMINO ACID TRANSPORTER 9 (CAT9 was identified as mainly localized to vesicular membranes that are involved in vacuolar trafficking, including those of the trans-Golgi network. In order to probe whether and how these compartments are involved in amino acid homeostasis, a loss-of-function cat9-1 mutant and ectopic over-expressor plants were isolated. Under restricted nitrogen supply in soil, cat9-1 showed a chlorotic phenotype, which was reversed in the over-expressors. The total soluble amino acid pools were affected in the mutants, but this was only significant under poor nitrogen supply. Upon nitrogen starvation, the major soluble amino acid leaf pools decreased. This decrease was lower in cat9-1 and augmented in the over-expressor. Over-expression generally affected total soluble amino acid concentrations and finally improved the survival upon severe nitrogen starvation. The results potentially identify a novel function of vesicular amino acid transport mediated by CAT9 in the cellular nitrogen-dependent amino acid homeostasis.

  7. Trafficking of astrocytic vesicles in hippocampal slices

    International Nuclear Information System (INIS)

    The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing live cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.

  8. Trafficking of astrocytic vesicles in hippocampal slices

    Energy Technology Data Exchange (ETDEWEB)

    Potokar, Maja; Kreft, Marko [Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana (Slovenia); Celica Biomedical Center, Technology Park 24, 1000 Ljubljana (Slovenia); Lee, So-Young; Takano, Hajime; Haydon, Philip G. [Department of Neuroscience, Room 215, Stemmler Hall, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104 (United States); Zorec, Robert, E-mail: Robert.Zorec@mf.uni-lj.si [Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana (Slovenia); Celica Biomedical Center, Technology Park 24, 1000 Ljubljana (Slovenia)

    2009-12-25

    The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing live cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.

  9. Engineered Asymmetric Synthetic Vesicles

    Science.gov (United States)

    Lu, Li; Chiarot, Paul

    2013-11-01

    Synthetic vesicles are small, fluid-filled spheres that are enclosed by a bilayer of lipid molecules. They can be used as models for investigating membrane biology and as delivery vehicles for pharmaceuticals. In practice, it is difficult to simultaneously control membrane asymmetry, unilamellarity, vesicle size, vesicle-to-vesicle uniformity, and luminal content. Membrane asymmetry, where each leaflet of the bilayer is composed of different lipids, is of particular importance as it is a feature of most natural membranes. In this study, we leverage microfluidic technology to build asymmetric vesicles at high-throughput. We use the precise flow control offered by microfluidic devices to make highly uniform emulsions, with controlled internal content, that serve as templates to build the synthetic vesicles. Flow focusing, dielectrophoretic steering, and interfacial lipid self-assembly are critical procedures performed on-chip to produce the vesicles. Fluorescent and confocal microscopy are used to evaluate the vesicle characteristics.

  10. POLYELEOSTEARIC ACID VESICLES

    Institute of Scientific and Technical Information of China (English)

    LI Zichen; XIE Ximng; FAN Qinghua; FANG Yifei

    1992-01-01

    α-Eleostearic acid and β-eleostearic acid formed vesicles in aqueous medium when an ethanol solutionofeleostearic acid was injected rapidly into a vigorously vortexed aqueous phase. Formation of the vesicles was demonstrated by electron microscopic observation and bromothymol blue encapsulation experiments. Polymerizations of the eleostearic acids in the formed vesicles carried out by UV irradiation produced poly-α-eleostearic acid and poly-β-eleostearic acid vesicles.

  11. Vesicles Are Persistent Features of Different Plastids.

    Science.gov (United States)

    Lindquist, Emelie; Solymosi, Katalin; Aronsson, Henrik

    2016-10-01

    Peripheral vesicles in plastids have been observed repeatedly, primarily in proplastids and developing chloroplasts, in which they are suggested to function in thylakoid biogenesis. Previous observations of vesicles in mature chloroplasts have mainly concerned low temperature pretreated plants occasionally treated with inhibitors blocking vesicle fusion. Here, we show that such vesicle-like structures occur not only in chloroplasts and proplastids, but also in etioplasts, etio-chloroplasts, leucoplasts, chromoplasts and even transforming desiccoplasts without any specific pretreatment. Observations are made both in C3 and C4 species, in different cell types (meristematic, epidermis, mesophyll, bundle sheath and secretory cells) and different organs (roots, stems, leaves, floral parts and fruits). Until recently not much focus has been given to the idea that vesicle transport in chloroplasts could be mediated by proteins, but recent data suggest that the vesicle system of chloroplasts has similarities with the cytosolic coat protein complex II system. All current data taken together support the idea of an ongoing, active and protein-mediated vesicle transport not only in chloroplasts but also in other plastids, obviously occurring regardless of chemical modifications, temperature and plastid developmental stage.

  12. Vesicles Are Persistent Features of Different Plastids.

    Science.gov (United States)

    Lindquist, Emelie; Solymosi, Katalin; Aronsson, Henrik

    2016-10-01

    Peripheral vesicles in plastids have been observed repeatedly, primarily in proplastids and developing chloroplasts, in which they are suggested to function in thylakoid biogenesis. Previous observations of vesicles in mature chloroplasts have mainly concerned low temperature pretreated plants occasionally treated with inhibitors blocking vesicle fusion. Here, we show that such vesicle-like structures occur not only in chloroplasts and proplastids, but also in etioplasts, etio-chloroplasts, leucoplasts, chromoplasts and even transforming desiccoplasts without any specific pretreatment. Observations are made both in C3 and C4 species, in different cell types (meristematic, epidermis, mesophyll, bundle sheath and secretory cells) and different organs (roots, stems, leaves, floral parts and fruits). Until recently not much focus has been given to the idea that vesicle transport in chloroplasts could be mediated by proteins, but recent data suggest that the vesicle system of chloroplasts has similarities with the cytosolic coat protein complex II system. All current data taken together support the idea of an ongoing, active and protein-mediated vesicle transport not only in chloroplasts but also in other plastids, obviously occurring regardless of chemical modifications, temperature and plastid developmental stage. PMID:27405297

  13. Using FM4-64 FX to Lable Transport Vesicles of Rat Vascular Smooth Muscle Cells%利用FM4-64FX标记大鼠血管平滑肌细胞的囊泡运输

    Institute of Scientific and Technical Information of China (English)

    姜隽; 王勇; 李涛; 聂利霞

    2015-01-01

    囊泡运输是大分子物质进入细胞的途径,血管平滑肌细胞(vascular smooth muscle cells,VSMCs)与外界存在频繁的信息和物质交换,该研究通过标识内吞囊泡来研究VSMCs的囊泡运输.体外培养大鼠胸主动脉VSMCs,用血管紧张素Ⅱ(angiotensin Ⅱ,Ang Ⅱ)刺激,加入FM4-64FX短暂孵育后固定.通过免疫组化方法标记VSMCs血管紧张素Ⅱ 1型受体(angiotensin Ⅱ receptor type 1,AT1R),检测内吞囊泡和AR1R转运之间的关系.受到Ang Ⅱ的激活后,VSMC快速形成内吞囊泡,将AT1R转运至胞质;存在血管紧张素受体阻断剂(angiotensin receptor blocker,ARB)时,内吞囊泡数量少,AT1R较少进入胞质.通过FM4-64 FX对胞内囊泡进行标识可以显示VSMCs的大分子物质运输,可观察特定的分子在内吞囊泡上的分布和运输情况.%This study aims to investigate vascular smooth muscle cells (VSMCs) vesicle transport by endocytic vesicles labeling.Rat VSMCs from the thoracic aortic were cultivated in vitro.VSMCs were stimulated with angiotensin Ⅱ (Ang Ⅱ) and incubated with FM4-64 FX shortly.Then VSMCs were fixed with paraformaldehyde and marked with angiotensin Ⅱ type 1 receptor (AT1R) antibody by immunohistochemistry.With Ang Ⅱ stimu-lation,VSMCs rapid formed endocytic vesicles and with it,AT1R was transported into the cytoplasm.Presence of an angiotensin receptor blocker (ARB) inhibited the number of endocytic vesicles formation and less AT1R entered the cytoplasm.Macromolecules transport of VSMCs can be illustrated by labeling the intracellular vesicles with FM4-64 FX dye.With this method,early endocytosis of VSMCs when the external environment changed can be investigated.

  14. Kinetic regulation of coated vesicle secretion

    CERN Document Server

    Foret, Lionel

    2008-01-01

    The secretion of vesicles for intracellular transport often rely on the aggregation of specialized membrane-bound proteins into a coat able to curve cell membranes. The nucleation and growth of a protein coat is a kinetic process that competes with the energy-consuming turnover of coat components between the membrane and the cytosol. We propose a generic kinetic description of coat assembly and the formation of coated vesicles, and discuss its implication to the dynamics of COP vesicles that traffic within the Golgi and with the Endoplasmic Reticulum. We show that stationary coats of fixed area emerge from the competition between coat growth and the recycling of coat components, in a fashion resembling the treadmilling of cytoskeletal filaments. We further show that the turnover of coat components allows for a highly sensitive switching mechanism between a quiescent and a vesicle producing membrane, upon a slowing down of the exchange kinetics. We claim that the existence of this switching behaviour, also tri...

  15. Vesicle Size Regulates Nanotube Formation in the Cell

    OpenAIRE

    Qian Peter Su; Wanqing Du; Qinghua Ji; Boxin Xue; Dong Jiang; Yueyao Zhu; Jizhong Lou; Li Yu; Yujie Sun

    2016-01-01

    Intracellular membrane nanotube formation and its dynamics play important roles for cargo transportation and organelle biogenesis. Regarding the regulation mechanisms, while much attention has been paid on the lipid composition and its associated protein molecules, effects of the vesicle size has not been studied in the cell. Giant unilamellar vesicles (GUVs) are often used for in vitro membrane deformation studies, but they are much larger than most intracellular vesicles and the in vitro st...

  16. Thermodynamics and dynamics of the formation of spherical lipidic vesicles

    CERN Document Server

    Zapata, E Hernandez; Santamaría-Holek, I

    2009-01-01

    We propose a free energy expression accounting for the formation of spherical vesicles from planar lipidic membranes and derive a Fokker-Planck equation for the probability distribution describing the dynamics of vesicle formation. We found that formation may occur as an activated process for small membranes and as a transport process for sufficiently large membranes. We give explicit expressions for the transition rates and the characteristic time of vesicle formation in terms of the relevant physical parameters.

  17. Induction and transport of Wnt 5a during macrophage-induced malignant invasion is mediated by two types of extracellular vesicles

    Science.gov (United States)

    Gross, Julia Christina; Pukrop, Tobias; Wenzel, Dirk; Binder, Claudia

    2013-01-01

    Recently, we have shown that macrophage (MΦ)-induced invasion of breast cancer cells requires upregulation of Wnt 5a in MΦ leading to activation of β-Catenin-independent Wnt signaling in the tumor cells. However, it remained unclear, how malignant cells induce Wnt 5a in MΦ and how it is transferred back to the cancer cells. Here we identify two types of extracellular particles as essential for this intercellular interaction in both directions. Plasma membrane-derived microvesicles (MV) as well as exosomes from breast cancer cells, although biologically distinct populations, both induce Wnt 5a in MΦ. In contrast, the particle-free supernatant and vesicles from benign cells, such as platelets, have no such effect. Induction is antagonized by the Wnt inhibitor Dickkopf-1. Subsequently, Wnt 5a is shuttled via responding MΦ-MV and exosomes to the tumor cells enhancing their invasion. Wnt 5a export on both vesicle fractions depends at least partially on the cargo protein Evenness interrupted (Evi). Its knockdown leads to Wnt 5a depletion of both particle populations and reduced vesicle-mediated invasion. In conclusion, MV and exosomes are critical for MΦ-induced invasion of cancer cells since they are responsible for upregulation of MΦ-Wnt 5a as well as for its delivery to the recipient cells via a reciprocal loop. Although of different biogenesis, both populations share common features regarding function and Evi-dependent secretion of non-canonical Wnts. PMID:24185202

  18. Extracellular Vesicle (EV) Array

    DEFF Research Database (Denmark)

    Jørgensen, Malene; Bæk, Rikke; Pedersen, Shona;

    2013-01-01

    Exosomes are one of the several types of cell-derived vesicles with a diameter of 30-100 nm. These extracellular vesicles are recognized as potential markers of human diseases such as cancer. However, their use in diagnostic tests requires an objective and high-throughput method to define...

  19. Synaptic vesicle endocytosis.

    Science.gov (United States)

    Saheki, Yasunori; De Camilli, Pietro

    2012-09-01

    Neurons can sustain high rates of synaptic transmission without exhausting their supply of synaptic vesicles. This property relies on a highly efficient local endocytic recycling of synaptic vesicle membranes, which can be reused for hundreds, possibly thousands, of exo-endocytic cycles. Morphological, physiological, molecular, and genetic studies over the last four decades have provided insight into the membrane traffic reactions that govern this recycling and its regulation. These studies have shown that synaptic vesicle endocytosis capitalizes on fundamental and general endocytic mechanisms but also involves neuron-specific adaptations of such mechanisms. Thus, investigations of these processes have advanced not only the field of synaptic transmission but also, more generally, the field of endocytosis. This article summarizes current information on synaptic vesicle endocytosis with an emphasis on the underlying molecular mechanisms and with a special focus on clathrin-mediated endocytosis, the predominant pathway of synaptic vesicle protein internalization.

  20. Fusion of Nonionic Vesicles

    DEFF Research Database (Denmark)

    Bulut, Sanja; Oskolkova, M. Z.; Schweins, R.;

    2010-01-01

    We present an experimental study of vesicle fusion using light and neutron scattering to monitor fusion events. Vesicles are reproducibly formed with an extrusion procedure using an single amphiphile triethylene glycol mono-n-decyl ether in water. They show long-term stability for temperatures...... around 20 C, but at temperatures above 26 C we observe an increase in the scattered intensity due to fusion. The system is unusually well suited for the study of basic mechanisms of vesicle fusion. The vesicles are flexible with a bending rigidity of only a few k(H)T. The monolayer spontaneous curvature......, Ho, depends strongly on temperature in a known way and is thus tunable. For temperatures where H-0 > 0 vesicles tyre long-term stable, while in the range H-0 fusion rate increases the more negative the Spontaneous curvature Through a quantitative;analysis of the fusion rate we arrive tit...

  1. Complex mechanical behaviour of extracellular vesicles and artificial liposomes

    NARCIS (Netherlands)

    Roos, W.H.; Vorselen, D.; Van Dommelen, S.M.; Van Loon, J.J.W.A.; Mackintosh, F.C.; Schiffelers, R.M.; Wuite, G.J.L.

    2015-01-01

    Small and large unilamellar vesicles are ubiquitously present in cell biology, a prime example are extracellular vesicles (EVs). EVs are endogenous particles involved in cell to cell communication. EVs transport proteins and RNA, play a role in disease and are potentially useful as a drug delivery s

  2. Preparation of large monodisperse vesicles.

    Directory of Open Access Journals (Sweden)

    Ting F Zhu

    Full Text Available Preparation of monodisperse vesicles is important both for research purposes and for practical applications. While the extrusion of vesicles through small pores (approximately 100 nm in diameter results in relatively uniform populations of vesicles, extrusion to larger sizes results in very heterogeneous populations of vesicles. Here we report a simple method for preparing large monodisperse multilamellar vesicles through a combination of extrusion and large-pore dialysis. For example, extrusion of polydisperse vesicles through 5-microm-diameter pores eliminates vesicles larger than 5 microm in diameter. Dialysis of extruded vesicles against 3-microm-pore-size polycarbonate membranes eliminates vesicles smaller than 3 microm in diameter, leaving behind a population of monodisperse vesicles with a mean diameter of approximately 4 microm. The simplicity of this method makes it an effective tool for laboratory vesicle preparation with potential applications in preparing large monodisperse liposomes for drug delivery.

  3. Characterization of yeast extracellular vesicles: evidence for the participation of different pathways of cellular traffic in vesicle biogenesis.

    Directory of Open Access Journals (Sweden)

    Débora L Oliveira

    Full Text Available BACKGROUND: Extracellular vesicles in yeast cells are involved in the molecular traffic across the cell wall. In yeast pathogens, these vesicles have been implicated in the transport of proteins, lipids, polysaccharide and pigments to the extracellular space. Cellular pathways required for the biogenesis of yeast extracellular vesicles are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: We characterized extracellular vesicle production in wild type (WT and mutant strains of the model yeast Saccharomyces cerevisiae using transmission electron microscopy in combination with light scattering analysis, lipid extraction and proteomics. WT cells and mutants with defective expression of Sec4p, a secretory vesicle-associated Rab GTPase essential for Golgi-derived exocytosis, or Snf7p, which is involved in multivesicular body (MVB formation, were analyzed in parallel. Bilayered vesicles with diameters at the 100-300 nm range were found in extracellular fractions from yeast cultures. Proteomic analysis of vesicular fractions from the cells aforementioned and additional mutants with defects in conventional secretion pathways (sec1-1, fusion of Golgi-derived exocytic vesicles with the plasma membrane; bos1-1, vesicle targeting to the Golgi complex or MVB functionality (vps23, late endosomal trafficking revealed a complex and interrelated protein collection. Semi-quantitative analysis of protein abundance revealed that mutations in both MVB- and Golgi-derived pathways affected the composition of yeast extracellular vesicles, but none abrogated vesicle production. Lipid analysis revealed that mutants with defects in Golgi-related components of the secretory pathway had slower vesicle release kinetics, as inferred from intracellular accumulation of sterols and reduced detection of these lipids in vesicle fractions in comparison with WT cells. CONCLUSIONS/SIGNIFICANCE: Our results suggest that both conventional and unconventional pathways of secretion are

  4. Identification of minor components of coated vesicles by use of permeation chromatography

    OpenAIRE

    1981-01-01

    Coated vesicles are thought to be vehicles for the intracellular transport of membranes. Clathrin is the major protein component of coated vesicles. Minor components of these organelles can be identified in highly purified preparations if they can be shown to copurify with clathrin. To show copurification we have made use of the relatively uniform diameter of coated vesicles (50-150 nm) to fractionate conventionally purified coated vesicles according to size in glass bead columns of 200-nm po...

  5. Adaptor protein complexes AP-1 and AP-3 are required by the HHV-7 Immunoevasin U21 for rerouting of class I MHC molecules to the lysosomal compartment.

    Directory of Open Access Journals (Sweden)

    Lisa A Kimpler

    Full Text Available The human herpesvirus-7 (HHV-7 U21 gene product binds to class I major histocompatibility complex (MHC molecules and reroutes them to a lysosomal compartment. Trafficking of integral membrane proteins to lysosomes is mediated through cytoplasmic sorting signals that recruit heterotetrameric clathrin adaptor protein (AP complexes, which in turn mediate protein sorting in post-Golgi vesicular transport. Since U21 can mediate rerouting of class I molecules to lysosomes even when lacking its cytoplasmic tail, we hypothesize the existence of a cellular protein that contains the lysosomal sorting information required to escort class I molecules to the lysosomal compartment. If such a protein exists, we expect that it might recruit clathrin adaptor protein complexes as a means of lysosomal sorting. Here we describe experiments demonstrating that the μ adaptins from AP-1 and AP-3 are involved in U21-mediated trafficking of class I molecules to lysosomes. These experiments support the idea that a cellular protein(s is necessary for U21-mediated lysosomal sorting of class I molecules. We also examine the impact of transient versus chronic knockdown of these adaptor protein complexes, and show that the few remaining μ subunits in the cells are eventually able to reroute class I molecules to lysosomes.

  6. Astrocytic Vesicle Mobility in Health and Disease

    Directory of Open Access Journals (Sweden)

    Robert Zorec

    2013-05-01

    Full Text Available Astrocytes are no longer considered subservient to neurons, and are, instead, now understood to play an active role in brain signaling. The intercellular communication of astrocytes with neurons and other non-neuronal cells involves the exchange of molecules by exocytotic and endocytotic processes through the trafficking of intracellular vesicles. Recent studies of single vesicle mobility in astrocytes have prompted new views of how astrocytes contribute to information processing in nervous tissue. Here, we review the trafficking of several types of membrane-bound vesicles that are specifically involved in the processes of (i intercellular communication by gliotransmitters (glutamate, adenosine 5'-triphosphate, atrial natriuretic peptide, (ii plasma membrane exchange of transporters and receptors (EAAT2, MHC-II, and (iii the involvement of vesicle mobility carrying aquaporins (AQP4 in water homeostasis. The properties of vesicle traffic in astrocytes are discussed in respect to networking with neighboring cells in physiologic and pathologic conditions, such as amyotrophic lateral sclerosis, multiple sclerosis, and states in which astrocytes contribute to neuroinflammatory conditions.

  7. Astrocytic vesicle mobility in health and disease.

    Science.gov (United States)

    Potokar, Maja; Vardjan, Nina; Stenovec, Matjaž; Gabrijel, Mateja; Trkov, Saša; Jorgačevski, Jernej; Kreft, Marko; Zorec, Robert

    2013-01-01

    Astrocytes are no longer considered subservient to neurons, and are, instead, now understood to play an active role in brain signaling. The intercellular communication of astrocytes with neurons and other non-neuronal cells involves the exchange of molecules by exocytotic and endocytotic processes through the trafficking of intracellular vesicles. Recent studies of single vesicle mobility in astrocytes have prompted new views of how astrocytes contribute to information processing in nervous tissue. Here, we review the trafficking of several types of membrane-bound vesicles that are specifically involved in the processes of (i) intercellular communication by gliotransmitters (glutamate, adenosine 5'-triphosphate, atrial natriuretic peptide), (ii) plasma membrane exchange of transporters and receptors (EAAT2, MHC-II), and (iii) the involvement of vesicle mobility carrying aquaporins (AQP4) in water homeostasis. The properties of vesicle traffic in astrocytes are discussed in respect to networking with neighboring cells in physiologic and pathologic conditions, such as amyotrophic lateral sclerosis, multiple sclerosis, and states in which astrocytes contribute to neuroinflammatory conditions.

  8. Direct imaging of RAB27B-enriched secretory vesicle biogenesis in lacrimal acinar cells reveals origins on a nascent vesicle budding site.

    Directory of Open Access Journals (Sweden)

    Lilian Chiang

    Full Text Available This study uses YFP-tagged Rab27b expression in rabbit lacrimal gland acinar cells, which are polarized secretory epithelial cells, to characterize early stages of secretory vesicle trafficking. Here we demonstrate the utility of YFP-Rab27b to delineate new perspectives on the mechanisms of early vesicle biogenesis in lacrimal gland acinar cells, where information is significantly limited. Protocols were developed to deplete the mature YFP-Rab27b-enriched secretory vesicle pool in the subapical region of the cell, and confocal fluorescence microscopy was used to track vesicle replenishment. This analysis revealed a basally-localized organelle, which we termed the "nascent vesicle site," from which nascent vesicles appeared to emerge. Subapical vesicular YFP-Rab27b was co-localized with p150(Glued, a component of the dynactin cofactor of cytoplasmic dynein. Treatment with the microtubule-targeted agent, nocodazole, did not affect release of mature secretory vesicles, although during vesicle repletion it significantly altered nascent YFP-Rab27b-enriched secretory vesicle localization. Instead of moving to the subapical region, these vesicles were trapped at the nascent vesicle site which was adjacent to, if not a sub-compartment of, the trans-Golgi network. Finally, YFP-Rab27b-enriched secretory vesicles which reached the subapical cytoplasm appeared to acquire the actin-based motor protein, Myosin 5C. Our findings show that Rab27b enrichment occurs early in secretory vesicle formation, that secretory vesicles bud from a visually discernable nascent vesicle site, and that transport from the nascent vesicle site to the subapical region requires intact microtubules.

  9. Membrane Protrusion Coarsening and Nanotubulation within Giant Unilamellar Vesicles

    KAUST Repository

    Węgrzyn, Ilona

    2011-11-16

    Hydrophobic side groups on a stimuli-responsive polymer, encapsulated within a single giant unilamellar vesicle, enable membrane attachment during compartment formation at elevated temperatures. We thermally modulated the vesicle through implementation of an IR laser via an optical fiber, enabling localized directed heating. Polymer-membrane interactions were monitored using confocal imaging techniques as subsequent membrane protrusions occurred and lipid nanotubes formed in response to the polymer hydrogel contraction. These nanotubes, bridging the vesicle membrane to the contracting hydrogel, were retained on the surface of the polymer compartment, where they were transformed into smaller vesicles in a process reminiscent of cellular endocytosis. This development of a synthetic vesicle system containing a stimuli-responsive polymer could lead to a new platform for studying inter/intramembrane transport through lipid nanotubes. © 2011 American Chemical Society.

  10. Open Syntaxin Docks Synaptic Vesicles

    OpenAIRE

    Marc Hammarlund; Mark T Palfreyman; Shigeki Watanabe; Shawn Olsen; Erik M. Jorgensen

    2007-01-01

    Author Summary Like Olympic swimmers crouched on their starting blocks, synaptic vesicles prepare for fusion with the neuronal plasma membrane long before the starting gun fires. This preparation enables vesicles to fuse rapidly, synchronously, and in the correct place when the signal finally arrives. A well-known but poorly understood part of vesicle preparation is docking, in which vesicles prepare for release by attaching to the plasma membrane at the eventual site of release. Here, we out...

  11. Erv41p and Erv46p: New components of COPII vesicles involved in transport between the ER and Golgi complex

    DEFF Research Database (Denmark)

    Otte, S; Belden, W J; Heidtman, M;

    2001-01-01

    but display cold sensitivity. The expression levels of Erv41p and Erv46p are interdependent such that Erv46p was reduced in an erv41Delta strain, and Erv41p was not detected in an erv46Delta strain. When the erv41Delta or ev46Delta alleles were combined with other mutations in the early secretory...... pathway, altered growth phenotypes were observed in some of the double mutant strains. A cell-free assay that reproduces transport between the ER and Golgi indicates that deletion of the Erv41p-Erv46p complex influences the membrane fusion stage of transport....

  12. Equilibrium of nematic vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Napoli, Gaetano [Dipartimento di Ingegneria dell' Innovazione, Universita del Salento, via per Monteroni, Edificio ' Corpo O' , 73100 Lecce (Italy); Vergori, Luigi, E-mail: gaetano.napoli@unisalento.i, E-mail: luigi.vergori@unisalento.i [Dipartimento di Matematica, Universita del Salento, Strada Prov. Lecce-Arnesano, 73100 Lecce (Italy)

    2010-11-05

    A variational scheme is proposed which allows the derivation of a concise and elegant formulation of the equilibrium equations for closed fluid membranes, endowed with a nematic microstructure. The nematic order is described by an in-plane nematic director and a degree of orientation, as customary in the theory of uniaxial nematics. The only constitutive ingredient in this scheme is a free-energy density which depends on the vesicle geometry and order parameters. The stress and the couple stress tensors related to this free-energy density are provided. As an application of the proposed scheme, a certain number of special theories are deduced: soap bubbles, lipid vesicles, chiral and achiral nematic membranes, and nematics on curved substrates.

  13. Synaptic Vesicle Exocytosis

    OpenAIRE

    Südhof, Thomas C; Rizo, Josep

    2011-01-01

    Presynaptic nerve terminals release neurotransmitters by synaptic vesicle exocytosis. Membrane fusion mediating synaptic exocytosis and other intracellular membrane traffic is affected by a universal machinery that includes SNARE (for “soluble NSF-attachment protein receptor”) and SM (for “Sec1/Munc18-like”) proteins. During fusion, vesicular and target SNARE proteins assemble into an α-helical trans-SNARE complex that forces the two membranes tightly together, and SM proteins likely wrap aro...

  14. Cooperative stabilization of Mycobacterium tuberculosis rrnAP3 promoter open complexes by RbpA and CarD.

    Science.gov (United States)

    Rammohan, Jayan; Ruiz Manzano, Ana; Garner, Ashley L; Prusa, Jerome; Stallings, Christina L; Galburt, Eric A

    2016-09-01

    The essential mycobacterial transcriptional regulators RbpA and CarD act to modulate transcription by associating to the initiation complex and increasing the flux of transcript production. Each of these factors interacts directly with the promoter DNA template and with RNA polymerase (RNAP) holoenzyme. We recently reported on the energetics of CarD-mediated open complex stabilization on the Mycobacterium tuberculosis rrnAP3 ribosomal promoter using a stopped-flow fluorescence assay. Here, we apply this approach to RbpA and show that RbpA stabilizes RNAP-promoter open complexes (RPo) via a distinct mechanism from that of CarD. Furthermore, concentration-dependent stopped-flow experiments with both factors reveal positive linkage (cooperativity) between RbpA and CarD with regard to their ability to stabilize RPo The observation of positive linkage between RbpA and CarD demonstrates that the two factors can act on the same transcription initiation complex simultaneously. Lastly, with both factors present, the kinetics of open complex formation is significantly faster than in the presence of either factor alone and approaches that of E. coli RNAP on the same promoter. This work provides a quantitative framework for the molecular mechanisms of these two essential transcription factors and the critical roles they play in the biology and pathology of mycobacteria. PMID:27342278

  15. Cooperative stabilization of Mycobacterium tuberculosis rrnAP3 promoter open complexes by RbpA and CarD

    Science.gov (United States)

    Rammohan, Jayan; Ruiz Manzano, Ana; Garner, Ashley L.; Prusa, Jerome; Stallings, Christina L.; Galburt, Eric A.

    2016-01-01

    The essential mycobacterial transcriptional regulators RbpA and CarD act to modulate transcription by associating to the initiation complex and increasing the flux of transcript production. Each of these factors interacts directly with the promoter DNA template and with RNA polymerase (RNAP) holoenzyme. We recently reported on the energetics of CarD-mediated open complex stabilization on the Mycobacterium tuberculosis rrnAP3 ribosomal promoter using a stopped-flow fluorescence assay. Here, we apply this approach to RbpA and show that RbpA stabilizes RNAP-promoter open complexes (RPo) via a distinct mechanism from that of CarD. Furthermore, concentration-dependent stopped-flow experiments with both factors reveal positive linkage (cooperativity) between RbpA and CarD with regard to their ability to stabilize RPo. The observation of positive linkage between RbpA and CarD demonstrates that the two factors can act on the same transcription initiation complex simultaneously. Lastly, with both factors present, the kinetics of open complex formation is significantly faster than in the presence of either factor alone and approaches that of E. coli RNAP on the same promoter. This work provides a quantitative framework for the molecular mechanisms of these two essential transcription factors and the critical roles they play in the biology and pathology of mycobacteria. PMID:27342278

  16. Studies of matrix vesicle-induced mineralization in a gelatin gel

    Science.gov (United States)

    Boskey, A. L.; Boyan, B. D.; Doty, S. B.; Feliciano, A.; Greer, K.; Weiland, D.; Swain, L. D.; Schwartz, Z.

    1992-01-01

    Matrix vesicles isolated from fourth-passage cultures of chondrocytes were tested for their ability to induce hydroxyapatite formation in a gelatin gel in order to gain insight into the function of matrix vesicles in in situ mineralization. These matrix vesicles did not appear to be hydroxyapatite nucleators per se since the extent of mineral accumulation in the gel diffusion system was not altered by the presence of matrix vesicles alone, and in the vesicle containing gels, mineral crystals were formed whether associated with vesicles or not. In gels with these matrix vesicles and beta-glycerophosphate, despite the presence of alkaline phosphatase activity, there was no increase in mineral deposition. This suggested that in the gel system these culture-derived vesicles did not increase local phosphate concentrations. However, when known inhibitors of mineral crystal formation and growth (proteoglycan aggregates [4 mg/ml], or ATP [1 mM], or both proteoglycan and ATP) were included in the gel, more mineral was deposited in gels with the vesicles than in comparable gels without vesicles, indicating that enzymes within these vesicles were functioning to remove the inhibition. These data support the suggestion that one function of the extracellular matrix vesicles is to transport enzymes for matrix modification.

  17. 牛磺酸跨膜转运的研究进展%Research progress of taurine transport in membrane vesicles

    Institute of Scientific and Technical Information of China (English)

    刘虹; 刘贺; 王新; 胡建民; 姚鹏杰; 陈永生

    2007-01-01

    牛磺酸(taurine,TAU)是动物组织细胞内含量丰富的游离β-氨基酸,具有广泛的生物学效应,而牛磺酸跨膜转运是其发挥生物学效应的基础.本文综述了牛磺酸转运体(taurine transporter,TAUT)的特征、分布、影响因素等方面,阐明了牛磺酸转运体在牛磺酸跨膜转运中的重要作用.

  18. Overexpression of Vesicle-associated Membrane Protein (VAMP) 3, but Not VAMP2, Protects Glucose Transporter (GLUT) 4 Protein Translocation in an in Vitro Model of Cardiac Insulin Resistance*

    Science.gov (United States)

    Schwenk, Robert W.; Angin, Yeliz; Steinbusch, Laura K. M.; Dirkx, Ellen; Hoebers, Nicole; Coumans, Will A.; Bonen, Arend; Broers, Jos L. V.; van Eys, Guillaume J. J. M.; Glatz, Jan F. C.; Luiken, Joost J. F. P.

    2012-01-01

    Cardiac glucose utilization is regulated by reversible translocation of the glucose transporter GLUT4 from intracellular stores to the plasma membrane. During the onset of diet-induced insulin resistance, elevated lipid levels in the circulation interfere with insulin-stimulated GLUT4 translocation, leading to impaired glucose utilization. Recently, we identified vesicle-associated membrane protein (VAMP) 2 and 3 to be required for insulin- and contraction-stimulated GLUT4 translocation, respectively, in cardiomyocytes. Here, we investigated whether overexpression of VAMP2 and/or VAMP3 could protect insulin-stimulated GLUT4 translocation under conditions of insulin resistance. HL-1 atrial cardiomyocytes transiently overexpressing either VAMP2 or VAMP3 were cultured for 16 h with elevated concentrations of palmitate and insulin. Upon subsequent acute stimulation with insulin, we measured GLUT4 translocation, plasmalemmal presence of the fatty acid transporter CD36, and myocellular lipid accumulation. Overexpression of VAMP3, but not VAMP2, completely prevented lipid-induced inhibition of insulin-stimulated GLUT4 translocation. Furthermore, the plasmalemmal presence of CD36 and intracellular lipid levels remained normal in cells overexpressing VAMP3. However, insulin signaling was not retained, indicating an effect of VAMP3 overexpression downstream of PKB/Akt. Furthermore, we revealed that endogenous VAMP3 is bound by the contraction-activated protein kinase D (PKD), and contraction and VAMP3 overexpression protect insulin-stimulated GLUT4 translocation via a common mechanism. These observations indicate that PKD activates GLUT4 translocation via a VAMP3-dependent trafficking step, which pathway might be valuable to rescue constrained glucose utilization in the insulin-resistant heart. PMID:22936810

  19. Overexpression of vesicle-associated membrane protein (VAMP) 3, but not VAMP2, protects glucose transporter (GLUT) 4 protein translocation in an in vitro model of cardiac insulin resistance.

    Science.gov (United States)

    Schwenk, Robert W; Angin, Yeliz; Steinbusch, Laura K M; Dirkx, Ellen; Hoebers, Nicole; Coumans, Will A; Bonen, Arend; Broers, Jos L V; van Eys, Guillaume J J M; Glatz, Jan F C; Luiken, Joost J F P

    2012-10-26

    Cardiac glucose utilization is regulated by reversible translocation of the glucose transporter GLUT4 from intracellular stores to the plasma membrane. During the onset of diet-induced insulin resistance, elevated lipid levels in the circulation interfere with insulin-stimulated GLUT4 translocation, leading to impaired glucose utilization. Recently, we identified vesicle-associated membrane protein (VAMP) 2 and 3 to be required for insulin- and contraction-stimulated GLUT4 translocation, respectively, in cardiomyocytes. Here, we investigated whether overexpression of VAMP2 and/or VAMP3 could protect insulin-stimulated GLUT4 translocation under conditions of insulin resistance. HL-1 atrial cardiomyocytes transiently overexpressing either VAMP2 or VAMP3 were cultured for 16 h with elevated concentrations of palmitate and insulin. Upon subsequent acute stimulation with insulin, we measured GLUT4 translocation, plasmalemmal presence of the fatty acid transporter CD36, and myocellular lipid accumulation. Overexpression of VAMP3, but not VAMP2, completely prevented lipid-induced inhibition of insulin-stimulated GLUT4 translocation. Furthermore, the plasmalemmal presence of CD36 and intracellular lipid levels remained normal in cells overexpressing VAMP3. However, insulin signaling was not retained, indicating an effect of VAMP3 overexpression downstream of PKB/Akt. Furthermore, we revealed that endogenous VAMP3 is bound by the contraction-activated protein kinase D (PKD), and contraction and VAMP3 overexpression protect insulin-stimulated GLUT4 translocation via a common mechanism. These observations indicate that PKD activates GLUT4 translocation via a VAMP3-dependent trafficking step, which pathway might be valuable to rescue constrained glucose utilization in the insulin-resistant heart.

  20. Freeze-thaw and high-voltage discharge allow macromolecule uptake into ileal brush-border vesicles

    International Nuclear Information System (INIS)

    High-voltage discharge or one cycle of freeze-thawing are shown to transiently permeabilize rabbit ileal brush-border membrane vesicles to macromolecules. Uptake of the radiolabeled macromolecule dextran, mol wt 70,000, used as a marker for vesicle permeability, was determined by a rapid filtration technique, with uptake defined as substrate associated with the vesicle and releasable after incubation of vesicles with 0.1% saponin. Dextran added immediately after electric shock (2000 V) or at the beginning of one cycle of freeze-thawing was taken up approximately eightfold compared with control. ATP also was taken up into freeze-thawed vesicles, whereas there was no significant uptake into control vesicles. The increase in vesicle permeability was reversible, based on Na-dependent D-glucose uptake being decreased when studied 5 but not 15 min after electric shock, and was not significantly decreased after completion of one cycle of freeze-thawing. In addition, adenosine 3',5'-cyclic monophosphate and Ca2+-calmodulin-dependent protein kinase activity were similar in control vesicles and vesicles exposed to high-voltage discharge or freeze-thawing. Also, vesicles freeze-thawed with [32P]ATP demonstrated increased phosphorylation compared with nonfrozen vesicles, while freeze-thawing did not alter vesicle protein as judged by Coomassie blue staining. These techniques should allow intestinal membrane vesicles to be used for studies of intracellular control of transport processes, for instance, studies of protein kinase regulation of transport

  1. Spontaneous Vesicles Modulated by Polymers

    OpenAIRE

    Francisco Ortega; M. Mercedes Velázquez; Margarita Valero

    2011-01-01

    Vesicles are widely used in technological applications including cosmetic products, in microencapsulation for drug delivery, as anticancer agents and in the technology of adhesives, paints and inks. The vesicle size and the surface charge are very important properties from a technological point of view. Thus, the challenge in formulation is to find inexpensive stable vesicles with well-defined sizes and to modulate the surface charge of these aggregates. In this work we analyze the effect of ...

  2. Vesicles in a Poiseuille flow

    CERN Document Server

    Danker, Gerrit; Misbah, Chaouqi

    2008-01-01

    Vesicle dynamics in unbounded Poiseuille flow is analyzed using a small-deformation theory. Our analytical results quantitatively describe vesicle migration and provide new physical insights. At low ratio between the inner and outer viscosity $\\lambda$ (i.e. in the tank-treading regime), the vesicle always migrates towards the flow centerline, unlike other soft particles such as drops. Above a critical $\\lambda$, vesicle tumbles and cross-stream migration vanishes. A novel feature is predicted, namely the coexistence of two types of nonequilibrium configurations at the centreline, a bullet-like and a parachute-like shapes.

  3. Vesicle Size Regulates Nanotube Formation in the Cell

    Science.gov (United States)

    Su, Qian Peter; Du, Wanqing; Ji, Qinghua; Xue, Boxin; Jiang, Dong; Zhu, Yueyao; Lou, Jizhong; Yu, Li; Sun, Yujie

    2016-01-01

    Intracellular membrane nanotube formation and its dynamics play important roles for cargo transportation and organelle biogenesis. Regarding the regulation mechanisms, while much attention has been paid on the lipid composition and its associated protein molecules, effects of the vesicle size has not been studied in the cell. Giant unilamellar vesicles (GUVs) are often used for in vitro membrane deformation studies, but they are much larger than most intracellular vesicles and the in vitro studies also lack physiological relevance. Here, we use lysosomes and autolysosomes, whose sizes range between 100 nm and 1 μm, as model systems to study the size effects on nanotube formation both in vivo and in vitro. Single molecule observations indicate that driven by kinesin motors, small vesicles (100–200 nm) are mainly transported along the tracks while a remarkable portion of large vesicles (500–1000 nm) form nanotubes. This size effect is further confirmed by in vitro reconstitution assays on liposomes and purified lysosomes and autolysosomes. We also apply Atomic Force Microscopy (AFM) to measure the initiation force for nanotube formation. These results suggest that the size-dependence may be one of the mechanisms for cells to regulate cellular processes involving membrane-deformation, such as the timing of tubulation-mediated vesicle recycling. PMID:27052881

  4. Vesicle Size Regulates Nanotube Formation in the Cell.

    Science.gov (United States)

    Su, Qian Peter; Du, Wanqing; Ji, Qinghua; Xue, Boxin; Jiang, Dong; Zhu, Yueyao; Lou, Jizhong; Yu, Li; Sun, Yujie

    2016-04-07

    Intracellular membrane nanotube formation and its dynamics play important roles for cargo transportation and organelle biogenesis. Regarding the regulation mechanisms, while much attention has been paid on the lipid composition and its associated protein molecules, effects of the vesicle size has not been studied in the cell. Giant unilamellar vesicles (GUVs) are often used for in vitro membrane deformation studies, but they are much larger than most intracellular vesicles and the in vitro studies also lack physiological relevance. Here, we use lysosomes and autolysosomes, whose sizes range between 100 nm and 1 μm, as model systems to study the size effects on nanotube formation both in vivo and in vitro. Single molecule observations indicate that driven by kinesin motors, small vesicles (100-200 nm) are mainly transported along the tracks while a remarkable portion of large vesicles (500-1000 nm) form nanotubes. This size effect is further confirmed by in vitro reconstitution assays on liposomes and purified lysosomes and autolysosomes. We also apply Atomic Force Microscopy (AFM) to measure the initiation force for nanotube formation. These results suggest that the size-dependence may be one of the mechanisms for cells to regulate cellular processes involving membrane-deformation, such as the timing of tubulation-mediated vesicle recycling.

  5. VAMP-1: a synaptic vesicle-associated integral membrane protein.

    Science.gov (United States)

    Trimble, W S; Cowan, D M; Scheller, R H

    1988-01-01

    Several proteins are associated with, or are integral components of, the lipid bilayer that forms the delineating membrane of neuronal synaptic vesicles. To characterize these molecules, we used a polyclonal antiserum raised against purified cholinergic synaptic vesicles from Torpedo to screen a cDNA expression library constructed from mRNA of the electromotor nucleus. One clone encodes VAMP-1 (vesicle-associated membrane protein 1), a nervous-system-specific protein of 120 amino acids whose primary sequence can be divided into three domains: a proline-rich amino terminus, a highly charged internal region, and a hydrophobic carboxyl-terminal domain that is predicted to comprise a membrane anchor. Tryptic digestion of intact and lysed vesicles suggests that the protein faces the cytoplasm, where it may play a role in packaging, transport, or release of neurotransmitters. Images PMID:3380805

  6. Concurrent imaging of synaptic vesicle recycling and calcium dynamics.

    Directory of Open Access Journals (Sweden)

    Haiyan eLi

    2011-11-01

    Full Text Available Synaptic transmission involves the calcium-dependent release of neurotransmitter from synaptic vesicles. Genetically encoded optical probes emitting different wavelengths of fluorescent light in response to neuronal activity offer a powerful approach to understand the spatial and temporal relationship of calcium dynamics to the release of neurotransmitter in defined neuronal populations. To simultaneously image synaptic vesicle recycling and changes in cytosolic calcium, we developed a red-shifted reporter of vesicle recycling based on a vesicular glutamate transporter, VGLUT1-mOrange2 (VGLUT1-mOr2, and a presynaptically-localized green calcium indicator, synaptophysin-GCaMP3 (SyGCaMP3 with a large dynamic range. The fluorescence of VGLUT1-mOr2 is quenched by the low pH of synaptic vesicles. Exocytosis upon electrical stimulation exposes the luminal mOr2 to the neutral extracellular pH and relieves fluorescence quenching. Re-acidification of the vesicle upon endocytosis again reduces fluorescence intensity. Changes in fluorescence intensity thus monitor synaptic vesicle exo- and endocytosis, as demonstrated previously for the green VGLUT1-pHluorin. To monitor changes in calcium, we fused the synaptic vesicle protein synaptophysin to the recently improved calcium indicator GCaMP3. SyGCaMP3 is targeted to presynaptic varicosities, and exhibits changes in fluorescence in response to electrical stimulation consistent with changes in calcium concentration. Using real-time imaging of both reporters expressed in the same synapses, we determine the time course of changes in VGLUT1 recycling in relation to changes in presynaptic calcium concentration. Inhibition of P/Q- and N-type calcium channels reduces calcium levels, as well as the rate of synaptic vesicle exocytosis and the fraction of vesicles released.

  7. Concurrent Imaging of Synaptic Vesicle Recycling and Calcium Dynamics

    Science.gov (United States)

    Li, Haiyan; Foss, Sarah M.; Dobryy, Yuriy L.; Park, C. Kevin; Hires, Samuel Andrew; Shaner, Nathan C.; Tsien, Roger Y.; Osborne, Leslie C.; Voglmaier, Susan M.

    2011-01-01

    Synaptic transmission involves the calcium dependent release of neurotransmitter from synaptic vesicles. Genetically encoded optical probes emitting different wavelengths of fluorescent light in response to neuronal activity offer a powerful approach to understand the spatial and temporal relationship of calcium dynamics to the release of neurotransmitter in defined neuronal populations. To simultaneously image synaptic vesicle recycling and changes in cytosolic calcium, we developed a red-shifted reporter of vesicle recycling based on a vesicular glutamate transporter, VGLUT1-mOrange2 (VGLUT1-mOr2), and a presynaptically localized green calcium indicator, synaptophysin-GCaMP3 (SyGCaMP3) with a large dynamic range. The fluorescence of VGLUT1-mOr2 is quenched by the low pH of synaptic vesicles. Exocytosis upon electrical stimulation exposes the luminal mOr2 to the neutral extracellular pH and relieves fluorescence quenching. Reacidification of the vesicle upon endocytosis again reduces fluorescence intensity. Changes in fluorescence intensity thus monitor synaptic vesicle exo- and endocytosis, as demonstrated previously for the green VGLUT1-pHluorin. To monitor changes in calcium, we fused the synaptic vesicle protein synaptophysin to the recently improved calcium indicator GCaMP3. SyGCaMP3 is targeted to presynaptic varicosities, and exhibits changes in fluorescence in response to electrical stimulation consistent with changes in calcium concentration. Using real time imaging of both reporters expressed in the same synapses, we determine the time course of changes in VGLUT1 recycling in relation to changes in presynaptic calcium concentration. Inhibition of P/Q- and N-type calcium channels reduces calcium levels, as well as the rate of synaptic vesicle exocytosis and the fraction of vesicles released. PMID:22065946

  8. Ca2+-dependent mobility of vesicles capturing anti-VGLUT1 antibodies

    International Nuclear Information System (INIS)

    Several aspects of secretory vesicle cycle have been studied in the past, but vesicle trafficking in relation to the fusion site is less well understood. In particular, the mobility of recaptured vesicles that traffic back toward the central cytoplasm is still poorly defined. We exposed astrocytes to antibodies against the vesicular glutamate transporter 1 (VGLUT1), a marker of glutamatergic vesicles, to fluorescently label vesicles undergoing Ca2+-dependent exocytosis and examined their number, fluorescence intensity, and mobility by confocal microscopy. In nonstimulated cells, immunolabeling revealed discrete fluorescent puncta, indicating that VGLUT1 vesicles, which are approximately 50 nm in diameter, cycle slowly between the plasma membrane and the cytoplasm. When the cytosolic Ca2+ level was raised with ionomycin, the number and fluorescence intensity of the puncta increased, likely because the VGLUT1 epitopes were more accessible to the extracellularly applied antibodies following Ca2+-triggered exocytosis. In nonstimulated cells, the mobility of labeled vesicles was limited. In stimulated cells, many vesicles exhibited directional mobility that was abolished by cytoskeleton-disrupting agents, indicating dependence on intact cytoskeleton. Our findings show that postfusion vesicle mobility is regulated and may likely play a role in synaptic vesicle cycle, and also more generally in the genesis and removal of endocytic vesicles

  9. Nonmuscle Myosin II helps regulate synaptic vesicle mobility at the Drosophila neuromuscular junction

    OpenAIRE

    Qiu Xinping; Seabrooke Sara; Stewart Bryan A

    2010-01-01

    Abstract Background Although the mechanistic details of the vesicle transport process from the cell body to the nerve terminal are well described, the mechanisms underlying vesicle traffic within nerve terminal boutons is relatively unknown. The actin cytoskeleton has been implicated but exactly how actin or actin-binding proteins participate in vesicle movement is not clear. Results In the present study we have identified Nonmuscle Myosin II as a candidate molecule important for synaptic ves...

  10. Vesicle Priming in a SNAP

    OpenAIRE

    Müller, Martin; Davis, Graeme W.

    2010-01-01

    In this issue of Neuron, Burgalossi et al. (2010) investigate synaptic vesicle priming using presynaptic Ca2+ uncaging at a small, glutamatergic, central synapse. Combining this technique with mouse genetics, the authors demonstrate that vesicle priming during ongoing neural activity can be limited by the recycling of recently used SNARE complexes.

  11. Identification of a QTL in Mus musculus for alcohol preference, withdrawal, and Ap3m2 expression using integrative functional genomics and precision genetics.

    Science.gov (United States)

    Bubier, Jason A; Jay, Jeremy J; Baker, Christopher L; Bergeson, Susan E; Ohno, Hiroshi; Metten, Pamela; Crabbe, John C; Chesler, Elissa J

    2014-08-01

    Extensive genetic and genomic studies of the relationship between alcohol drinking preference and withdrawal severity have been performed using animal models. Data from multiple such publications and public data resources have been incorporated in the GeneWeaver database with >60,000 gene sets including 285 alcohol withdrawal and preference-related gene sets. Among these are evidence for positional candidates regulating these behaviors in overlapping quantitative trait loci (QTL) mapped in distinct mouse populations. Combinatorial integration of functional genomics experimental results revealed a single QTL positional candidate gene in one of the loci common to both preference and withdrawal. Functional validation studies in Ap3m2 knockout mice confirmed these relationships. Genetic validation involves confirming the existence of segregating polymorphisms that could account for the phenotypic effect. By exploiting recent advances in mouse genotyping, sequence, epigenetics, and phylogeny resources, we confirmed that Ap3m2 resides in an appropriately segregating genomic region. We have demonstrated genetic and alcohol-induced regulation of Ap3m2 expression. Although sequence analysis revealed no polymorphisms in the Ap3m2-coding region that could account for all phenotypic differences, there are several upstream SNPs that could. We have identified one of these to be an H3K4me3 site that exhibits strain differences in methylation. Thus, by making cross-species functional genomics readily computable we identified a common QTL candidate for two related bio-behavioral processes via functional evidence and demonstrate sufficiency of the genetic locus as a source of variation underlying two traits.

  12. Sequential interactions with Sec23 control the direction of vesicle traffic

    OpenAIRE

    LORD, christopher; Bhandari, Deepali; Menon, Shekar; Ghassemian, Majid; Nycz, Deborah; Hay, Jesse; Ghosh, Pradipta; Ferro-Novick, Susan

    2011-01-01

    How the directionality of vesicle traffic is achieved remains an important unanswered question in cell biology. The Sec23p/Sec24p coat complex sorts the fusion machinery (SNAREs) into vesicles as they bud from the endoplasmic reticulum. Vesicle tethering to the Golgi begins when the tethering factor TRAPPI binds to Sec23p. Where the coat is released and how this event relates to membrane fusion is unknown. Here we use a yeast transport assay to demonstrate that an ER-derived vesicle retains i...

  13. Impaired recycling of synaptic vesicles after acute perturbation of the presynaptic actin cytoskeleton

    DEFF Research Database (Denmark)

    Shupliakov, Oleg; Bloom, Ona; Gustafsson, Jenny S;

    2002-01-01

    the site of synaptic vesicle recycling, the endocytic zone. Compounds interfering with actin function, including phalloidin, the catalytic subunit of Clostridium botulinum C2 toxin, and N-ethylmaleimide-treated myosin S1 fragments were microinjected into the axon. In unstimulated, phalloidin...... fragments caused accumulation of aggregates of synaptic vesicles between the endocytic zone and the vesicle cluster, suggesting that vesicle transport was inhibited. Phalloidin, as well as C2 toxin, also caused changes in the structure of clathrin-coated pits in stimulated synapses. Our data provide...

  14. Synaptic vesicle pools: an update

    Directory of Open Access Journals (Sweden)

    Annette Denker

    2010-10-01

    Full Text Available During the last few decades synaptic vesicles have been assigned to a variety of functional and morphological classes or pools. We have argued in the past (Rizzoli SO and Betz WJ, 2005, Synaptic vesicle pools, Nat. Rev. Neurosci. 6, 57-69 that synaptic activity in several preparations is accounted for by the function of three vesicle pools: the readily releasable pool (docked at active zones and ready to go upon stimulation, the recycling pool (scattered throughout the nerve terminals and recycling upon moderate stimulation, and finally the reserve pool (occupying most of the vesicle clusters and only recycling upon strong stimulation. We discuss here the advancements in the vesicle pool field which took place in the ensuing years, focusing on the behavior of different pools under both strong stimulation and physiological activity. Several new findings have enhanced the three-pool model, with, for example, the disparity between recycling and reserve vesicles being underlined by the observation that the former are mobile, while the latter are fixed. Finally, a number of altogether new concepts have also evolved such as the current controversy on the identity of the spontaneously recycling vesicle pool.

  15. Variation in PTCHD2, CRISP3, NAP1L4, FSCB, and AP3B2 associated with spherical equivalent

    Science.gov (United States)

    Chen, Fei; Duggal, Priya; Klein, Barbara E.K.; Lee, Kristine E.; Truitt, Barbara; Klein, Ronald; Iyengar, Sudha K.

    2016-01-01

    Purpose Ocular refraction is measured in spherical equivalent as the power of the external lens required to focus images on the retina. Myopia (nearsightedness) and hyperopia (farsightedness) are the most common refractive errors, and the leading causes of visual impairment and blindness in the world. The goal of this study is to identify rare and low-frequency variants that influence spherical equivalent. Methods We conducted variant-level and gene-level quantitative trait association analyses for mean spherical equivalent, using data from 1,560 individuals in the Beaver Dam Eye Study. Genotyping was conducted using the Illumina exome array. We analyzed 34,976 single nucleotide variants and 11,571 autosomal genes across the genome, using single-variant tests as well as gene-based tests. Results Spherical equivalent was significantly associated with five genes in gene-based analysis: PTCHD2 at 1p36.22 (p = 3.6 × 10−7), CRISP3 at 6p12.3 (p = 4.3 × 10−6), NAP1L4 at 11p15.5 (p = 3.6 × 10−6), FSCB at 14q21.2 (p = 1.5 × 10−7), and AP3B2 at 15q25.2 (p = 1.6 × 10−7). The variant-based tests identified evidence suggestive of association with two novel variants in linkage disequilibrium (pairwise r2 = 0.80) in the TCTE1 gene region at 6p21.1 (rs2297336, minor allele frequency (MAF) = 14.1%, β = –0.62 p = 3.7 × 10−6; rs324146, MAF = 16.9%, β = –0.55, p = 1.4 × 10−5). In addition to these novel findings, we successfully replicated a previously reported association with rs634990 near GJD2 at 15q14 (MAF = 47%, β = –0.29, p=1.8 × 10−3). We also found evidence of association with spherical equivalent on 2q37.1 in PRSS56 at rs1550094 (MAF = 31%, β = –0.33, p = 1.7 × 10−3), a region previously associated with myopia. Conclusions We identified several novel candidate genes that may play a role in the control of spherical equivalent. However, further studies are needed to replicate these findings. In addition, our results contribute to the

  16. Rab proteins specify motorized vesicle transport

    NARCIS (Netherlands)

    Wanschers, B.F.J.

    2008-01-01

    Small GTPases of the Rab-family are key regulators of intracellular membrane traffic. These proteins constantly cycle between an 'active' GTP-bound and 'inactive' GDP-bound state. In their GTP-bound conformation Rab proteins can engage in complex formation with so called effector proteins. It is at

  17. Nanotube-Enabled Vesicle-Vesicle Communication: A Computational Model.

    Science.gov (United States)

    Zhang, Liuyang; Wang, Xianqiao

    2015-07-01

    Cell-to-cell communications via the tunneling nanotubes or gap junction channels are vital for the development and maintenance of multicellular organisms. Instead of these intrinsic communication pathways, how to design artificial communication channels between cells remains a challenging but interesting problem. Here, we perform dissipative particle dynamics (DPD) simulations to analyze the interaction between rotational nanotubes (RNTs) and vesicles so as to provide a novel design mechanism for cell-to-cell communication. Simulation results have demonstrated that the RNTs are capable of generating local disturbance and promote vesicle translocation toward the RNTs. Through ligand pattern designing on the RNTs, we can find a suitable nanotube candidate with a specific ligand coating pattern for forming the RNT-vesicle network. The results also show that a RNT can act as a bridged channel between vesicles, which facilitates substance transfer. Our findings provide useful guidelines for the molecular design of patterned RNTs for creating a synthetic channel between cells. PMID:26266730

  18. Congenital agenesis of seminal vesicle

    Institute of Scientific and Technical Information of China (English)

    Hong-Fei Wu; Di Qiao; Li-Xin Qian; Ning-Hong Song; Ning-Han Feng; Li-Xin Hua; Wei Zhang

    2005-01-01

    Congenital agenesis of the seminal vesicle (CASV) is frequently associated with congenital absence of the vas deferens (CAVD) or ipsilateral congenital vasoureteral communication. We reported two cases of a rare condition that the vas deferens open ectopically into Mullerian duct cyst associated with agenesis of the ipsilateral seminal vesicle. The diagnosis was confirmed by vasography. Transurethral unroofing of the Mullerian duct cyst was performed in both patients with favourable results, however, assisted reproductive technology (ART) was still necessary for them to father children.

  19. Spontaneous Vesicles Modulated by Polymers

    Directory of Open Access Journals (Sweden)

    Francisco Ortega

    2011-08-01

    Full Text Available Vesicles are widely used in technological applications including cosmetic products, in microencapsulation for drug delivery, as anticancer agents and in the technology of adhesives, paints and inks. The vesicle size and the surface charge are very important properties from a technological point of view. Thus, the challenge in formulation is to find inexpensive stable vesicles with well-defined sizes and to modulate the surface charge of these aggregates. In this work we analyze the effect of different polymers on the structural properties of vesicles of the biodegradable surfactant sodium bis(2-ethyl-hexyl sulfosuccinate, Aerosol OT. Using fluorescence, conductivity, electrophoretic mobility and dynamic light scattering measurements we study the effect of the polymer nature, molecular weight and polymer concentration on the stability and the vesicle size properties. Results demonstrate that it is possible to modulate both the size and the electric surface charge of spontaneous vesicles of Aerosol OT by the addition of very small percentages of poly(allylamine and poly(maleic anhydride-alt-1-octadecen.

  20. From Self-Assembled Vesicles to Protocells

    OpenAIRE

    Chen, Irene A.; Walde, Peter

    2010-01-01

    Self-assembled vesicles are essential components of primitive cells. We review the importance of vesicles during the origins of life, fundamental thermodynamics and kinetics of self-assembly, and experimental models of simple vesicles, focusing on prebiotically plausible fatty acids and their derivatives. We review recent work on interactions of simple vesicles with RNA and other studies of the transition from vesicles to protocells. Finally we discuss current challenges in understanding the ...

  1. Display of GPI-anchored anti-EGFR nanobodies on extracellular vesicles promotes tumour cell targeting

    NARCIS (Netherlands)

    Kooijmans, Sander A A; Aleza, Clara Gómez; Roffler, Steve R; van Solinge, Wouter W; Vader, Pieter; Schiffelers, Raymond M

    2016-01-01

    BACKGROUND: Extracellular vesicles (EVs) are attractive candidate drug delivery systems due to their ability to functionally transport biological cargo to recipient cells. However, the apparent lack of target cell specificity of exogenously administered EVs limits their therapeutic applicability. In

  2. The protein machinery of vesicle budding and fusion.

    OpenAIRE

    Rothman, J E

    1996-01-01

    A general protein machinery that buds and fuses transport vesicles is harnessed to generate the complex web of intracellular transport pathways critical for such diverse processes as cell growth, endocytosis, hormone release, and neurotransmission. With this appreciation, the challenge of understanding the precise molecular mechanisms of these many facets of cell biology has been reduced to a series of problems in protein structure and chemistry.

  3. Nonmuscle Myosin II helps regulate synaptic vesicle mobility at the Drosophila neuromuscular junction

    Directory of Open Access Journals (Sweden)

    Qiu Xinping

    2010-03-01

    Full Text Available Abstract Background Although the mechanistic details of the vesicle transport process from the cell body to the nerve terminal are well described, the mechanisms underlying vesicle traffic within nerve terminal boutons is relatively unknown. The actin cytoskeleton has been implicated but exactly how actin or actin-binding proteins participate in vesicle movement is not clear. Results In the present study we have identified Nonmuscle Myosin II as a candidate molecule important for synaptic vesicle traffic within Drosophila larval neuromuscular boutons. Nonmuscle Myosin II was found to be localized at the Drosophila larval neuromuscular junction; genetics and pharmacology combined with the time-lapse imaging technique FRAP were used to reveal a contribution of Nonmuscle Myosin II to synaptic vesicle movement. FRAP analysis showed that vesicle dynamics were highly dependent on the expression level of Nonmuscle Myosin II. Conclusion Our results provide evidence that Nonmuscle Myosin II is present presynaptically, is important for synaptic vesicle mobility and suggests a role for Nonmuscle Myosin II in shuttling vesicles at the Drosophila neuromuscular junction. This work begins to reveal the process by which synaptic vesicles traverse within the bouton.

  4. Transferring intercellular signals and traits between cancer cells: extracellular vesicles as "homing pigeons".

    Science.gov (United States)

    Cesi, Giulia; Walbrecq, Geoffroy; Margue, Christiane; Kreis, Stephanie

    2016-01-01

    Extracellular vesicles are cell-derived vesicles, which can transport various cargos out of cells. From their cell of origin, the content molecules (proteins, non-coding RNAs including miRNAs, DNA and others) can be delivered to neighboring or distant cells and as such extracellular vesicles can be regarded as vehicles of intercellular communication or "homing pigeons". Extracellular vesicle shuttling is able to actively modulate the tumor microenvironment and can partake in tumor dissemination. In various diseases, including cancer, levels of extracellular vesicle secretion are altered resulting in different amounts and/or profiles of detectable vesicular cargo molecules and these distinct content profiles are currently being evaluated as biomarkers. Apart from their potential as blood-derived containers of specific biomarkers, the transfer of extracellular vesicles to surrounding cells also appears to be involved in the propagation of phenotypic traits. These interesting properties have put extracellular vesicles into the focus of many recent studies.Here we review findings on the involvement of extracellular vesicles in transferring traits of cancer cells to their surroundings and briefly discuss new data on oncosomes, a larger type of vesicle. A pressing issue in cancer treatment is rapidly evolving resistance to many initially efficient drug therapies. Studies investigating the role of extracellular vesicles in this phenomenon together with a summary of the technical challenges that this field is still facing, are also presented. Finally, emerging areas of research such as the analysis of the lipid composition on extracellular vesicles and cutting-edge techniques to visualise the trafficking of extracellular vesicles are discussed. PMID:27282631

  5. Souffle/Spastizin controls secretory vesicle maturation during zebrafish oogenesis.

    Directory of Open Access Journals (Sweden)

    Palsamy Kanagaraj

    2014-06-01

    Full Text Available During oogenesis, the egg prepares for fertilization and early embryogenesis. As a consequence, vesicle transport is very active during vitellogenesis, and oocytes are an outstanding system to study regulators of membrane trafficking. Here, we combine zebrafish genetics and the oocyte model to identify the molecular lesion underlying the zebrafish souffle (suf mutation. We demonstrate that suf encodes the homolog of the Hereditary Spastic Paraplegia (HSP gene SPASTIZIN (SPG15. We show that in zebrafish oocytes suf mutants accumulate Rab11b-positive vesicles, but trafficking of recycling endosomes is not affected. Instead, we detect Suf/Spastizin on cortical granules, which undergo regulated secretion. We demonstrate genetically that Suf is essential for granule maturation into secretion competent dense-core vesicles describing a novel role for Suf in vesicle maturation. Interestingly, in suf mutants immature, secretory precursors accumulate, because they fail to pinch-off Clathrin-coated buds. Moreover, pharmacological inhibition of the abscission regulator Dynamin leads to an accumulation of immature secretory granules and mimics the suf phenotype. Our results identify a novel regulator of secretory vesicle formation in the zebrafish oocyte. In addition, we describe an uncharacterized cellular mechanism for Suf/Spastizin activity during secretion, which raises the possibility of novel therapeutic avenues for HSP research.

  6. Autonomous movement of chemically powered vesicle

    CERN Document Server

    Gupta, Shivam; Thakur, Snigdha

    2015-01-01

    A mechanism for self propulsion of deformable vesicle has been proposed, vesicle moves by sensing the self-generated chemical gradient. Like many molecular motors they suffer strong perturbations from the environment in which they move as a result of thermal fluctuations and do not rely on inertia for their propulsion. Motion of the vesicle is driven by an asymmetric distribution of reaction products. The propulsive velocity of the device is calculated as well as the scale of the velocity fluctuations. We present the simulation results on velocity of vesicle, reorientation of vesicle, and shape transformation of vesicles.

  7. Identification of three coated vesicle components as alpha- and beta- tubulin linked to a phosphorylated 50,000-dalton polypeptide

    OpenAIRE

    1983-01-01

    Coated vesicles are involved in the intracellular transport of membrane proteins between a variety of membrane compartments. The coats of bovine brain coated vesicles contain at least six polypeptides in addition to an 180,000-dalton polypeptide called clathrin. In this report we show that the 54,000- and 56,000-dalton coated vesicle polypeptides are alpha- and beta-tubulin, determined by immunoblotting and two-dimensional gel electrophoresis. An affinity-purified tubulin antiserum can precip...

  8. Plasmadesmatal frequency, apoplast-symplast ratio, and photosynthetic transfer in grapefruit juice vesicles

    International Nuclear Information System (INIS)

    Structure and function were examined in phloem-free vesicles and vesicle stalks of grapefruit (Citrus paradisi Macf.) by light and electron microscopy and 14C-photosynthate transport in intact and dissected tissues. Plasmodesmatal frequencies were approximately 0.3 to 0.5 μm-1 cell wall interface (3 to 5 μm-2), less than that of known secretory structures but similar to root parenchyma. Cell wall or apoplast comprised 18 to 24% of the total cross-sectional area of the vesicle stalk. The mass of total photosynthate transfer through individual vesicle stalks was ca. 0.5 μg C h-1 and rate of 14C-movement 0.1 to 0.4 mm h-1. Transport continued in rows of vesicles dissected in association with a vascular bundle. If isolated from fully-expanded fruit, translocation was similar for systems with frozen vs. non-frozen vesicle stalks. Similar freezing treatment decreased transport in vesicles from younger fruit. Symplastic and apoplastic pathways may therefore both operate in this system

  9. 3D ESTIMATION OF SYNAPTIC VESICLE DISTRIBUTIONS IN SERIAL SECTION TRANSMISSION ELECTRON MICROSCOPY

    DEFF Research Database (Denmark)

    Khanmohammadi, Mahdieh; Darkner, Sune; Nava, Nicoletta;

    To transfer information between neurons, synaptic vesicles move toward the presynaptic membrane, called the active zone, and fuse with it, releasing neurotransmitters into the synaptic cleft. Thus, the shortest distance from vesicles to the active zone affects the speed of signal transportation...... directly. It is hypothesized that in a rat model of behavioral stress the vesicles distribution varies. We propose methods for estimating the 3-dimensional distribution of synaptic vesicles from the active zone through serial section transmission electron microscope images (ssTEM) from Sprague-Dawley rat...... difference in the results with p-values less than 10^(-10) in both cases. We conclude that the two proposed modeling significantly improves the measures on the estimated synaptic vesicle distribution in relation to the active zone....

  10. Endocytic structures and synaptic vesicle recycling at a central synapse in awake rats.

    Science.gov (United States)

    Körber, Christoph; Horstmann, Heinz; Sätzler, Kurt; Kuner, Thomas

    2012-12-01

    The synaptic vesicle (SV) cycle has been studied extensively in cultured cells and slice preparations, but not much is known about the roles and relative contributions of endocytic pathways and mechanisms of SV recycling in vivo, under physiological patterns of activity. We employed horseradish peroxidase (HRP) as an in vivo marker of endocytosis at the calyx of Held synapse in the awake rat. Ex vivo serial section scanning electron microscopy and 3D reconstructions revealed two categories of labelled structures: HRP-filled SVs and large cisternal endosomes. Inhibition of adaptor protein complexes 1 and 3 (AP-1, AP-3) by in vivo application of Brefeldin A (BFA) disrupted endosomal SV budding while SV recycling via clathrin-mediated endocytosis (CME) remained unaffected. In conclusion, our study establishes cisternal endosomes as an intermediate of the SV cycle and reveals CME and endosomal budding as the predominant mechanisms of SV recycling in a tonically active central synapse in vivo.

  11. Biomimetic proteolipid vesicles for targeting inflamed tissues

    Science.gov (United States)

    Molinaro, R.; Corbo, C.; Martinez, J. O.; Taraballi, F.; Evangelopoulos, M.; Minardi, S.; Yazdi, I. K.; Zhao, P.; De Rosa, E.; Sherman, M. B.; de Vita, A.; Toledano Furman, N. E.; Wang, X.; Parodi, A.; Tasciotti, E.

    2016-09-01

    A multitude of micro- and nanoparticles have been developed to improve the delivery of systemically administered pharmaceuticals, which are subject to a number of biological barriers that limit their optimal biodistribution. Bioinspired drug-delivery carriers formulated by bottom-up or top-down strategies have emerged as an alternative approach to evade the mononuclear phagocytic system and facilitate transport across the endothelial vessel wall. Here, we describe a method that leverages the advantages of bottom-up and top-down strategies to incorporate proteins derived from the leukocyte plasma membrane into lipid nanoparticles. The resulting proteolipid vesicles--which we refer to as leukosomes--retained the versatility and physicochemical properties typical of liposomal formulations, preferentially targeted inflamed vasculature, enabled the selective and effective delivery of dexamethasone to inflamed tissues, and reduced phlogosis in a localized model of inflammation.

  12. Biomimetic proteolipid vesicles for targeting inflamed tissues.

    Science.gov (United States)

    Molinaro, R; Corbo, C; Martinez, J O; Taraballi, F; Evangelopoulos, M; Minardi, S; Yazdi, I K; Zhao, P; De Rosa, E; Sherman, M B; De Vita, A; Toledano Furman, N E; Wang, X; Parodi, A; Tasciotti, E

    2016-09-01

    A multitude of micro- and nanoparticles have been developed to improve the delivery of systemically administered pharmaceuticals, which are subject to a number of biological barriers that limit their optimal biodistribution. Bioinspired drug-delivery carriers formulated by bottom-up or top-down strategies have emerged as an alternative approach to evade the mononuclear phagocytic system and facilitate transport across the endothelial vessel wall. Here, we describe a method that leverages the advantages of bottom-up and top-down strategies to incorporate proteins derived from the leukocyte plasma membrane into lipid nanoparticles. The resulting proteolipid vesicles-which we refer to as leukosomes-retained the versatility and physicochemical properties typical of liposomal formulations, preferentially targeted inflamed vasculature, enabled the selective and effective delivery of dexamethasone to inflamed tissues, and reduced phlogosis in a localized model of inflammation. PMID:27213956

  13. Clathrin-coated vesicles in nervous tissue are involved primarily in synaptic vesicle recycling

    OpenAIRE

    1992-01-01

    The recycling of synaptic vesicles in nerve terminals is thought to involve clathrin-coated vesicles. However, the properties of nerve terminal coated vesicles have not been characterized. Starting from a preparation of purified nerve terminals obtained from rat brain, we isolated clathrin-coated vesicles by a series of differential and density gradient centrifugation steps. The enrichment of coated vesicles during fractionation was monitored by EM. The final fraction consisted of greater tha...

  14. Pathologic potential of astrocytic vesicle traffic: new targets to treat neurologic diseases?

    Science.gov (United States)

    Vardjan, Nina; Verkhratsky, Alexei; Zorec, Robert

    2015-01-01

    Vesicles are small intracellular organelles that are fundamental for constitutive housekeeping of the plasmalemma, intercellular transport, and cell-to-cell communications. In astroglial cells, traffic of vesicles is associated with cell morphology, which determines the signaling potential and metabolic support for neighboring cells, including when these cells are considered to be used for cell transplantations or for regulating neurogenesis. Moreover, vesicles are used in astrocytes for the release of vesicle-laden chemical messengers. Here we review the properties of membrane-bound vesicles that store gliotransmitters, endolysosomes that are involved in the traffic of plasma membrane receptors, and membrane transporters. These vesicles are all linked to pathological states, including amyotrophic lateral sclerosis, multiple sclerosis, neuroinflammation, trauma, edema, and states in which astrocytes contribute to developmental disorders. In multiple sclerosis, for example, fingolimod, a recently introduced drug, apparently affects vesicle traffic and gliotransmitter release from astrocytes, indicating that this process may well be used as a new pathophysiologic target for the development of new therapies.

  15. From self-assembled vesicles to protocells.

    Science.gov (United States)

    Chen, Irene A; Walde, Peter

    2010-07-01

    Self-assembled vesicles are essential components of primitive cells. We review the importance of vesicles during the origins of life, fundamental thermodynamics and kinetics of self-assembly, and experimental models of simple vesicles, focusing on prebiotically plausible fatty acids and their derivatives. We review recent work on interactions of simple vesicles with RNA and other studies of the transition from vesicles to protocells. Finally we discuss current challenges in understanding the biophysics of protocells, as well as conceptual questions in information transmission and self-replication. PMID:20519344

  16. Analysing the distribution of synaptic vesicles using a spatial point process model

    DEFF Research Database (Denmark)

    Khanmohammadi, Mahdieh; Waagepetersen, Rasmus; Nava, Nicoletta;

    2014-01-01

    Stress can affect the brain functionality in many ways. As the synaptic vesicles have a major role in nervous signal transportation in synapses, their distribution in relationship to the active zone is very important in studying the neuron responses. We study the effect of stress on brain...... functionality by statistically modelling the distribution of the synaptic vesicles in two groups of rats: a control group subjected to sham stress and a stressed group subjected to a single acute foot-shock (FS)-stress episode. We hypothesize that the synaptic vesicles have different spatial distributions...

  17. Formation of Oligovesicular Vesicles by Micromanipulation

    Directory of Open Access Journals (Sweden)

    Yukihisa Okumura

    2011-09-01

    Full Text Available Cell-sized lipid bilayer membrane vesicles (giant vesicles, GVs or semi-vesicles were formed from egg yolk phosphatidylcholine on a platinum electrode under applied electric voltage by electroformation. Micromanipulation of the semi-vesicle by first pressing its membrane with a glass microneedle and then withdrawing the needle left a GV in the interior of the vesicle. During the process, an aqueous solution of Ficoll that filled the needle was introduced into the newly formed inner vesicle and remained encapsulated. Approximately 50% of attempted micromanipulation resulted in the formation of an inner daughter vesicle, “microvesiculation”. By repeating the microvesiculation process, multiple inner GVs could be formed in a single parent semi-vesicle. A semi-vesicle with inner GVs could be detached from the electrode by scraping with a microneedle, yielding an oligovesicular vesicle (OVV with desired inner aqueous contents. Microvesiculation of a GV held on the tip of a glass micropipette was also possible, and this also produced an OVV. Breaking the membrane of the parent semi-vesicle by micromanipulation with a glass needle after microvesiculation, released the inner GVs. This protocol may be used for controlled formation of GVs with desired contents.

  18. Active uptake of tetracycline by membrane vesicles from susceptible Escherichia coli.

    OpenAIRE

    McMurry, L M; Cullinane, J C; Petrucci, R E; Levy, S. B.

    1981-01-01

    A major portion of tetracycline accumulation by susceptible bacterial cells is energy dependent. Inner membrane vesicles prepared from susceptible Escherichia coli cells concentrated tetracycline 2.5 to 5 times above the external concentration when the electron transport substrate D-lactate or reduced phenazine methosulfate was added. This stimulation was reversed by cyanide, 2,4-dinitrophenol, and carbonyl cyanide m-chlorophenyl hydrazone. These vesicles data showed that proton motive force ...

  19. A novel class of clathrin-coated vesicles budding from endosomes

    OpenAIRE

    1996-01-01

    Clathrin-coated vesicles transport selective integral membrane proteins from the plasma membrane to endosomes and from the TGN to endosomes. Recycling of proteins from endosomes to the plasma membrane occurs via unidentified vesicles. To study this pathway, we used a novel technique that allows for the immunoelectron microscopic examination of transferrin receptor-containing endosomes in nonsectioned cells. Endosomes were identified as separate discontinuous tubular-vesicular entities. Each e...

  20. Immunotherapeutic potential of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Bin eZhang

    2014-10-01

    Full Text Available Extracellular vesicles or EVs is a term that encompasses all classes of secreted lipid membrane vesicles. Despite being scientific novelties, EVs are gaining importance as a mediator of important physiological and pathological intercellular activities possibly through the transfer of their cargo of protein and RNA between cells. In particular, exosomes the currently best characterized EVs have been notable for their in vitro and in vivo immunomodulatory activities. Exosomes are nanometer-sized endosome-derived vesicles secreted by many cell types and their immunomodulatory potential is independent of their cell source. Besides immune cells such as dendritic cells, macrophages and T cells, cancer and stem cells also secrete immunologically active exosomes that could influence both physiological and pathological processes. The immunological activities of exosomes affect both innate and adaptive immunity and include antigen presentation, T cell activation, T cell polarisation to Tregs, immune suppression and anti-inflammation. As such, exosomes carry much immunotherapeutic potential as a therapeutic agent and a therapeutic target.

  1. Quantifying mixing in vesicle suspensions using numerical simulations in two dimensions

    Science.gov (United States)

    Kabacaoglu, Gokberk; Biros, George; Quaife, Bryan

    2015-11-01

    Vesicles, which resist bending and are locally inextensible, serve as an experimental and numerical proxy for red blood cells. In this work, we study the effect of the presence of vesicles to mixing. The motivating application is the study of transport phenomena in microcirculation. We investigate transport specifically in a Couette apparatus, which is governed by an advection-diffusion equation, and we consider mixing in the absence and presence of vesicles using numerical simulations in two dimensions. The advection-diffusion equation is discretized spectrally in space, and with a second-order L-stable Strang splitting in time. To our knowledge, there are no universally accepted measures of mixing. Here, we study two measures: the ``mix-norm'' defined by a Sobolev norm of negative index and a standard moment fluctuation of the transported species. We define mixing efficiency in terms of mixing measure in the absence of vesicles relative to the measure in the presence of vesicles. We then study the correlation of mixing efficiency with the Peclet number, the volume fraction of the vesicle suspension, and the type of initial conditions.

  2. Development and characterization of nanopore system for nano-vesicle analysis

    Science.gov (United States)

    Goyal, Gaurav

    Nano-vesicles have recently attracted a lot of attention in research and medical communities and are very promising next-generation drug delivery vehicles. This is due to their biocompatibility, biodegradability and their ability to protect drug cargo and deliver it to site-specific locations, while maintaining the desired pharmacokinetic profile. The interaction of these drug loaded vesicles with the recipient cells via adsorption, endocytosis or receptor mediated internalization involve significant bending and deformation and is governed by mechanical properties of the nano-vesicles. Currently, the mechanical characteristics of nano-vesicles are left unexplored because of the difficulties associated with vesicle analysis at sub-100 nm length scale. The need for a complete understanding of nano-vesicle interaction with each other and the recipient cells warrants development of an analytical tool capable of mechanical investigation of individual vesicles at sub-100 nm scale. This dissertation presents investigation of nano-vesicle deformability using resistive pulse sensing and solid-state nanopore devices. The dissertation is divided into four chapters. Chapter 1 discusses the motivation, specific aims and presents an overview of nanoparticle characterization techniques, resistive pulse sensing background and principles, techniques for fabricating solid-state nanopores, as well the deformation behavior of giant vesicles when placed in electric field. Chapter 2 is dedicated to understanding of the scientific principles governing transport of sub-100 nm particles in dilute solutions. We investigated the translocation of rigid nanoparticles through nanopores at salt concentrations exosomes derived from human breast cancer cell line. Exosomes also exhibit co-translocational deformation behavior; however, they appear to be less affected by the deforming force inside the nanopore compared to the DOPC liposomes. We believe, the results of this research will bring about a

  3. Spontaneous Vesicle Recycling in the Synaptic Bouton

    Directory of Open Access Journals (Sweden)

    Sven eTruckenbrodt

    2014-12-01

    Full Text Available The trigger for synaptic vesicle exocytosis is Ca2+, which enters the synaptic bouton following action potential stimulation. However, spontaneous release of neurotransmitter also occurs in the absence of stimulation in virtually all synaptic boutons. It has long been thought that this represents exocytosis driven by fluctuations in local Ca2+ levels. The vesicles responding to these fluctuations are thought to be the same ones that release upon stimulation, albeit potentially triggered by different Ca2+ sensors. This view has been challenged by several recent works, which have suggested that spontaneous release is driven by a separate pool of synaptic vesicles. Numerous articles appeared during the last few years in support of each of these hypotheses, and it has been challenging to bring them into accord. We speculate here on the origins of this controversy, and propose a solution that is related to developmental effects. Constitutive membrane traffic, needed for the biogenesis of vesicles and synapses, is responsible for high levels of spontaneous membrane fusion in young neurons, probably independent of Ca2+. The vesicles releasing spontaneously in such neurons are not related to other synaptic vesicle pools and may represent constitutively releasing vesicles (CRVs rather than bona fide synaptic vesicles. In mature neurons, constitutive traffic is much dampened, and the few remaining spontaneous release events probably represent bona fide spontaneously releasing synaptic vesicles (SRSVs responding to Ca2+ fluctuations, along with a handful of CRVs that participate in synaptic vesicle turnover.

  4. Spontaneous vesicle recycling in the synaptic bouton.

    Science.gov (United States)

    Truckenbrodt, Sven; Rizzoli, Silvio O

    2014-01-01

    The trigger for synaptic vesicle exocytosis is Ca(2+), which enters the synaptic bouton following action potential stimulation. However, spontaneous release of neurotransmitter also occurs in the absence of stimulation in virtually all synaptic boutons. It has long been thought that this represents exocytosis driven by fluctuations in local Ca(2+) levels. The vesicles responding to these fluctuations are thought to be the same ones that release upon stimulation, albeit potentially triggered by different Ca(2+) sensors. This view has been challenged by several recent works, which have suggested that spontaneous release is driven by a separate pool of synaptic vesicles. Numerous articles appeared during the last few years in support of each of these hypotheses, and it has been challenging to bring them into accord. We speculate here on the origins of this controversy, and propose a solution that is related to developmental effects. Constitutive membrane traffic, needed for the biogenesis of vesicles and synapses, is responsible for high levels of spontaneous membrane fusion in young neurons, probably independent of Ca(2+). The vesicles releasing spontaneously in such neurons are not related to other synaptic vesicle pools and may represent constitutively releasing vesicles (CRVs) rather than bona fide synaptic vesicles. In mature neurons, constitutive traffic is much dampened, and the few remaining spontaneous release events probably represent bona fide spontaneously releasing synaptic vesicles (SRSVs) responding to Ca(2+) fluctuations, along with a handful of CRVs that participate in synaptic vesicle turnover.

  5. Alignment of synaptic vesicle macromolecules with the macromolecules in active zone material that direct vesicle docking.

    Directory of Open Access Journals (Sweden)

    Mark L Harlow

    Full Text Available Synaptic vesicles dock at active zones on the presynaptic plasma membrane of a neuron's axon terminals as a precondition for fusing with the membrane and releasing their neurotransmitter to mediate synaptic impulse transmission. Typically, docked vesicles are next to aggregates of plasma membrane-bound macromolecules called active zone material (AZM. Electron tomography on tissue sections from fixed and stained axon terminals of active and resting frog neuromuscular junctions has led to the conclusion that undocked vesicles are directed to and held at the docking sites by the successive formation of stable connections between vesicle membrane proteins and proteins in different classes of AZM macromolecules. Using the same nanometer scale 3D imaging technology on appropriately stained frog neuromuscular junctions, we found that ∼10% of a vesicle's luminal volume is occupied by a radial assembly of elongate macromolecules attached by narrow projections, nubs, to the vesicle membrane at ∼25 sites. The assembly's chiral, bilateral shape is nearly the same vesicle to vesicle, and nubs, at their sites of connection to the vesicle membrane, are linked to macromolecules that span the membrane. For docked vesicles, the orientation of the assembly's shape relative to the AZM and the presynaptic membrane is the same vesicle to vesicle, whereas for undocked vesicles it is not. The connection sites of most nubs on the membrane of docked vesicles are paired with the connection sites of the different classes of AZM macromolecules that regulate docking, and the membrane spanning macromolecules linked to these nubs are also attached to the AZM macromolecules. We conclude that the luminal assembly of macromolecules anchors in a particular arrangement vesicle membrane macromolecules, which contain the proteins that connect the vesicles to AZM macromolecules during docking. Undocked vesicles must move in a way that aligns this arrangement with the AZM

  6. Resident CAPS on dense-core vesicles docks and primes vesicles for fusion.

    Science.gov (United States)

    Kabachinski, Greg; Kielar-Grevstad, D Michelle; Zhang, Xingmin; James, Declan J; Martin, Thomas F J

    2016-02-15

    The Ca(2+)-dependent exocytosis of dense-core vesicles in neuroendocrine cells requires a priming step during which SNARE protein complexes assemble. CAPS (aka CADPS) is one of several factors required for vesicle priming; however, the localization and dynamics of CAPS at sites of exocytosis in live neuroendocrine cells has not been determined. We imaged CAPS before, during, and after single-vesicle fusion events in PC12 cells by TIRF micro-scopy. In addition to being a resident on cytoplasmic dense-core vesicles, CAPS was present in clusters of approximately nine molecules near the plasma membrane that corresponded to docked/tethered vesicles. CAPS accompanied vesicles to the plasma membrane and was present at all vesicle exocytic events. The knockdown of CAPS by shRNA eliminated the VAMP-2-dependent docking and evoked exocytosis of fusion-competent vesicles. A CAPS(ΔC135) protein that does not localize to vesicles failed to rescue vesicle docking and evoked exocytosis in CAPS-depleted cells, showing that CAPS residence on vesicles is essential. Our results indicate that dense-core vesicles carry CAPS to sites of exocytosis, where CAPS promotes vesicle docking and fusion competence, probably by initiating SNARE complex assembly. PMID:26700319

  7. Loss of vps54 function leads to vesicle traffic impairment, protein mis-sorting and embryonic lethality.

    Science.gov (United States)

    Karlsson, Páll; Droce, Aida; Moser, Jakob M; Cuhlmann, Simon; Padilla, Carolina Ortiz; Heimann, Peter; Bartsch, Jörg W; Füchtbauer, Annette; Füchtbauer, Ernst-Martin; Schmitt-John, Thomas

    2013-01-01

    The identification of the mutation causing the phenotype of the amyotrophic lateral sclerosis (ALS) model mouse, wobbler, has linked motor neuron degeneration with retrograde vesicle traffic. The wobbler mutation affects protein stability of Vps54, a ubiquitously expressed vesicle-tethering factor and leads to partial loss of Vps54 function. Moreover, the Vps54 null mutation causes embryonic lethality, which is associated with extensive membrane blebbing in the neural tube and is most likely a consequence of impaired vesicle transport. Investigation of cells derived from wobbler and Vps54 null mutant embryos demonstrates impaired retrograde transport of the Cholera-toxin B subunit to the trans-Golgi network and mis-sorting of mannose-6-phosphate receptors and cargo proteins dependent on retrograde vesicle transport. Endocytosis assays demonstrate no difference between wobbler and wild type cells, indicating that the retrograde vesicle traffic to the trans-Golgi network, but not endocytosis, is affected in Vps54 mutant cells. The results obtained on wobbler cells were extended to test the use of cultured skin fibroblasts from human ALS patients to investigate the retrograde vesicle traffic. Analysis of skin fibroblasts of ALS patients will support the investigation of the critical role of the retrograde vesicle transport in ALS pathogenesis and might yield a diagnostic prospect.

  8. Synaptic vesicle proteins and active zone plasticity

    Directory of Open Access Journals (Sweden)

    Robert J Kittel

    2016-04-01

    Full Text Available Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone. The complex molecular architecture of active zones mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of active zones vary significantly, even for a given connection. Thus, there appear to be distinct active zone states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the active zone.The protein-rich cytomatrix at the active zone (CAZ provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1 and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and active zone states, which has heretofore received little attention.

  9. Synaptic Vesicle Proteins and Active Zone Plasticity.

    Science.gov (United States)

    Kittel, Robert J; Heckmann, Manfred

    2016-01-01

    Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone (AZ). The complex molecular architecture of AZs mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of AZs vary significantly, even for a given connection. Thus, there appear to be distinct AZ states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the AZ. The protein-rich cytomatrix at the active zone (CAZ) provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1) and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and AZ states, which has heretofore received little attention.

  10. Phase Transition Induced Fission in Lipid Vesicles

    CERN Document Server

    Leirer, C; Myles, V M; Schneider, M F

    2010-01-01

    In this work we demonstrate how the first order phase transition in giant unilamellar vesicles (GUVs) can function as a trigger for membrane fission. When driven through their gel-fluid phase transition GUVs exhibit budding or pearl formation. These buds remain connected to the mother vesicle presumably by a small neck. Cooling these vesicles from the fluid phase (T>Tm) through the phase transition into the gel state (Tvesicle remains intact. Pearling tubes which formed upon heating break-up and decay into multiple individual vesicles which then diffuse freely. Finally we demonstrate that mimicking the intracellular bulk viscosity by increasing the bulk viscosity to 40cP does not affect the overall fission process, but leads to a significant decrease in size of the released vesicles.

  11. Ultrasound-responsive ultrathin multiblock copolyamide vesicles

    Science.gov (United States)

    Huang, Lei; Yu, Chunyang; Huang, Tong; Xu, Shuting; Bai, Yongping; Zhou, Yongfeng

    2016-02-01

    This study reports the self-assembly of novel polymer vesicles from an amphiphilic multiblock copolyamide, and the vesicles show a special structure with an ultrathin wall thickness of about 4.5 nm and a combined bilayer and monolayer packing model. Most interestingly, the vesicles are ultrasound-responsive and can release the encapsulated model drugs in response to ultrasonic irradiation.This study reports the self-assembly of novel polymer vesicles from an amphiphilic multiblock copolyamide, and the vesicles show a special structure with an ultrathin wall thickness of about 4.5 nm and a combined bilayer and monolayer packing model. Most interestingly, the vesicles are ultrasound-responsive and can release the encapsulated model drugs in response to ultrasonic irradiation. Electronic supplementary information (ESI) available: Details of experiments and characterization, and FT-IR, TEM, DPD, FL and micro-DSC results. See DOI: 10.1039/c5nr08596a

  12. Identification of coated vesicles in Saccharomyces cerevisiae

    OpenAIRE

    1984-01-01

    Clathrin-coated vesicles were found in yeast, Saccharomyces cerevisiae, and enriched from spheroplasts by a rapid procedure utilizing gel filtration on Sephacryl S-1000. The coated vesicles (62-nm diam) were visualized by negative stain electron microscopy and clathrin triskelions were observed by rotary shadowing. The contour length of a triskelion leg was 490 nm. Coated vesicle fractions contain a prominent band with molecular weight of approximately 185,000 when analyzed by SDS PAGE. The p...

  13. Autonomous movement of a chemically powered vesicle

    Science.gov (United States)

    Gupta, Shivam; Sreeja, K. K.; Thakur, Snigdha

    2015-10-01

    We investigate the diffusio-phoretic motion of a deformable vesicle. A vesicle is built from the linked catalytic and noncatalytic vertices that consumes fuel in the environment and utilize the resulting self-generated concentration gradient to exhibit propulsive motion. Under nonequilibrium conditions it is found that the self-propulsion velocity of the vesicle depends on its shape, which in turn is controlled by the bending rigidity of the membrane and solvent density around it. The self-propulsion velocity of the vesicle for different shapes has been calculated and the factors which affect the velocity are identified.

  14. Transcriptome of extracellular vesicles released by hepatocytes.

    Directory of Open Access Journals (Sweden)

    Felix Royo

    Full Text Available The discovery that the cells communicate through emission of vesicles has opened new opportunities for better understanding of physiological and pathological mechanisms. This discovery also provides a novel source for non-invasive disease biomarker research. Our group has previously reported that hepatocytes release extracellular vesicles with protein content reflecting the cell-type of origin. Here, we show that the extracellular vesicles released by hepatocytes also carry RNA. We report the messenger RNA composition of extracellular vesicles released in two non-tumoral hepatic models: primary culture of rat hepatocytes and a progenitor cell line obtained from a mouse foetal liver. We describe different subpopulations of extracellular vesicles with different densities and protein and RNA content. We also show that the RNA cargo of extracellular vesicles released by primary hepatocytes can be transferred to rat liver stellate-like cells and promote their activation. Finally, we provide in vitro and in vivo evidence that liver-damaging drugs galactosamine, acetaminophen, and diclofenac modify the RNA content of these vesicles. To summarize, we show that the extracellular vesicles secreted by hepatocytes contain various RNAs. These vesicles, likely to be involved in the activation of stellate cells, might become a new source for non-invasive identification of the liver toxicity markers.

  15. Isolation of functional, coated, endocytic vesicles

    OpenAIRE

    1991-01-01

    Brief internalization of [125I]transferrin was used to label coated endocytic vesicles, which were then purified using a combination of 2H2O and 2H2O/Ficoll density gradients. Purification was monitored using an assay measuring fusion of endocytic organelles, so as to isolate functional vesicles. Isolated vesicles had all the properties of clathrin-coated vesicles, being enriched for the major components of clathrin coats and uncoated by either 1 M Tris-HCl or an uncoating ATPase. Nearly half...

  16. Vesicle Motion during Sustained Exocytosis in Chromaffin Cells: Numerical Model Based on Amperometric Measurements.

    Science.gov (United States)

    Jarukanont, Daungruthai; Bonifas Arredondo, Imelda; Femat, Ricardo; Garcia, Martin E

    2015-01-01

    Chromaffin cells release catecholamines by exocytosis, a process that includes vesicle docking, priming and fusion. Although all these steps have been intensively studied, some aspects of their mechanisms, particularly those regarding vesicle transport to the active sites situated at the membrane, are still unclear. In this work, we show that it is possible to extract information on vesicle motion in Chromaffin cells from the combination of Langevin simulations and amperometric measurements. We developed a numerical model based on Langevin simulations of vesicle motion towards the cell membrane and on the statistical analysis of vesicle arrival times. We also performed amperometric experiments in bovine-adrenal Chromaffin cells under Ba2+ stimulation to capture neurotransmitter releases during sustained exocytosis. In the sustained phase, each amperometric peak can be related to a single release from a new vesicle arriving at the active site. The amperometric signal can then be mapped into a spike-series of release events. We normalized the spike-series resulting from the current peaks using a time-rescaling transformation, thus making signals coming from different cells comparable. We discuss why the obtained spike-series may contain information about the motion of all vesicles leading to release of catecholamines. We show that the release statistics in our experiments considerably deviate from Poisson processes. Moreover, the interspike-time probability is reasonably well described by two-parameter gamma distributions. In order to interpret this result we computed the vesicles' arrival statistics from our Langevin simulations. As expected, assuming purely diffusive vesicle motion we obtain Poisson statistics. However, if we assume that all vesicles are guided toward the membrane by an attractive harmonic potential, simulations also lead to gamma distributions of the interspike-time probability, in remarkably good agreement with experiment. We also show that

  17. Vesicle Motion during Sustained Exocytosis in Chromaffin Cells: Numerical Model Based on Amperometric Measurements.

    Directory of Open Access Journals (Sweden)

    Daungruthai Jarukanont

    Full Text Available Chromaffin cells release catecholamines by exocytosis, a process that includes vesicle docking, priming and fusion. Although all these steps have been intensively studied, some aspects of their mechanisms, particularly those regarding vesicle transport to the active sites situated at the membrane, are still unclear. In this work, we show that it is possible to extract information on vesicle motion in Chromaffin cells from the combination of Langevin simulations and amperometric measurements. We developed a numerical model based on Langevin simulations of vesicle motion towards the cell membrane and on the statistical analysis of vesicle arrival times. We also performed amperometric experiments in bovine-adrenal Chromaffin cells under Ba2+ stimulation to capture neurotransmitter releases during sustained exocytosis. In the sustained phase, each amperometric peak can be related to a single release from a new vesicle arriving at the active site. The amperometric signal can then be mapped into a spike-series of release events. We normalized the spike-series resulting from the current peaks using a time-rescaling transformation, thus making signals coming from different cells comparable. We discuss why the obtained spike-series may contain information about the motion of all vesicles leading to release of catecholamines. We show that the release statistics in our experiments considerably deviate from Poisson processes. Moreover, the interspike-time probability is reasonably well described by two-parameter gamma distributions. In order to interpret this result we computed the vesicles' arrival statistics from our Langevin simulations. As expected, assuming purely diffusive vesicle motion we obtain Poisson statistics. However, if we assume that all vesicles are guided toward the membrane by an attractive harmonic potential, simulations also lead to gamma distributions of the interspike-time probability, in remarkably good agreement with experiment. We

  18. OVARIAN CALCIFICATION MIMICKING VESICLE CALCULUS

    Directory of Open Access Journals (Sweden)

    Pallavi

    2013-04-01

    Full Text Available INTRODUCTION: Calcification in ovary is usually dystrophic in natu re, forming secondary to degeneration of the epithelium or in association wit h areas of necrosis. It may occur in cases of endometriosis [1] or in some ovarian tumor eg. Fibro thecoma [2] , Brenner’s tumor [3] , cavernous hemangioma [4] etc. Benign unilateral densely calcified ovary wit hout any association with tumor or endometriosis has not been reported previously. We report a case of heavily calcified left ovary which mimicked as vesicle calculus on X- ray leading to confusion in diagnosis.

  19. Binding and Unbinding of Vesicles and Capsules in Axisymmetric Flow

    Science.gov (United States)

    Leal, L. Gary; Keh, Martin

    2014-11-01

    Prof. Andreas Acrivos pioneered the use of scaling and asymptotic analysis, as well as the use of boundary integral methods, by chemical engineers in fluid flow and transport problems. These are skills that have been used by many of his former students in their own research. Here we consider the title problem using a combination of boundary-integral based numerical methods and scaling analysis to study the dynamics and mechanisms of adhesion and de-adhesion of vesicles at a solid boundary in the presence of flow. The adhesion process is dominated by drainage of the thin film down to a point where non-hydrodynamic attractive forces cause adherence. The unbinding process is dominated by peeling, though the final force to pull a vesicle from a solid surface is larger than expected due to lubrication effects.

  20. A vesicle carrier that mediates peroxisome protein traffic from the endoplasmic reticulum.

    Science.gov (United States)

    Lam, Sheung Kwan; Yoda, Naofumi; Schekman, Randy

    2010-12-14

    Pex19p, a soluble cytoplasmic transport protein, is required for the traffic of the peroxisomal membrane proteins Pex3p and Pex15p from the endoplasmic reticulum (ER) to the peroxisome. We documented Pex15p traffic from the ER using a chimeric protein containing a C-terminal glycosylation acceptor peptide. Pex15Gp expressed in wild-type yeast cells is N-glycosylated and functions properly in the peroxisome. In contrast, pex19Δ-mutant cells accumulate the glycoprotein Pex15Gp in the ER. We developed a cell-free preperoxisomal vesicle-budding reaction in which Pex15Gp and Pex3p are packaged into small vesicles in the presence of cytosol, Pex19p, and ATP. Secretory vesicle budding (COPII) detected by the packaging of a SNARE protein (soluble N-ethylmaleimide-sensitive attachment protein receptor) occurs in the same incubation but does not depend on Pex19p. Conversely a dominant GTPase mutant Sar1p which inhibits COPII has no effect on Pex3p packaging. Pex15Gp and Pex3p budded vesicles sediment as low-buoyant-density membranes on a Nycodenz gradient and copurify by affinity isolation using native but not Triton X-100-treated budded vesicles. ER-peroxisome transport vesicles appear to rely on a novel budding mechanism requiring Pex19p and additional unknown factors.

  1. Cholesterol transport in model membranes

    Science.gov (United States)

    Garg, Sumit; Porcar, Lionel; Butler, Paul; Perez-Salas, Ursula

    2010-03-01

    Physiological processes distribute cholesterol unevenly within the cell. The levels of cholesterol are maintained by intracellular transport and a disruption in the cell's ability to keep these normal levels will lead to disease. Exchange rates of cholesterol are generally studied in model systems using labeled lipid vesicles. Initially donor vesicles have all the cholesterol and acceptor vesicles are devoid of it. They are mixed and after some time the vesicles are separated and cholesterol is traced in each vesicle. The studies performed up to date have significant scatter indicating that the methodologies are not consistent. The present work shows in-situ Time-Resolved SANS studies of cholesterol exchange rates in unsaturated PC lipid vesicles. Molecular dynamics simulations were done to investigate the energetic and kinetic behavior of cholesterol in this system. This synergistic approach will provide insight into our efforts to understand cholesterol traffic.

  2. Long-term, repeated dose in vitro neurotoxicity of the glutamate receptor antagonist L-AP3, demonstrated in rat hippocampal slice cultures by using continuous propidium iodide incubation

    DEFF Research Database (Denmark)

    Kristensen, Bjarne W; Blaabjerg, Morten; Noraberg, Jens;

    2007-01-01

    Most in vitro models are only used to assess short-term effects of test compounds. However, as demonstrated here, hippocampal slice cultures can be used for long-term studies. The test compound used was the metabotropic glutamate receptor antagonist, L(+)-2-amino-3-phosphonopropionic acid (L-AP3)...

  3. Amyloglucosidase enzymatic reactivity inside lipid vesicles

    Directory of Open Access Journals (Sweden)

    Kim Jin-Woo

    2007-10-01

    Full Text Available Abstract Efficient functioning of enzymes inside liposomes would open new avenues for applications in biocatalysis and bioanalytical tools. In this study, the entrapment of amyloglucosidase (AMG (EC 3.2.1.3 from Aspergillus niger into dipalmitoylphosphatidylcholine (DPPC multilamellar vesicles (MLVs and large unilamellar vesicles (LUVs was investigated. Negative-stain, freeze-fracture, and cryo-transmission electron microscopy images verified vesicle formation in the presence of AMG. Vesicles with entrapped AMG were isolated from the solution by centrifugation, and vesicle lamellarity was identified using fluorescence laser confocal microscopy. The kinetics of starch hydrolysis by AMG was modeled for two different systems, free enzyme in aqueous solution and entrapped enzyme within vesicles in aqueous suspension. For the free enzyme system, intrinsic kinetics were described by a Michaelis-Menten kinetic model with product inhibition. The kinetic constants, Vmax and Km, were determined by initial velocity measurements, and Ki was obtained by fitting the model to experimental data of glucose concentration-time curves. Predicted concentration-time curves using these kinetic constants were in good agreement with experimental measurements. In the case of the vesicles, the time-dependence of product (glucose formation was experimentally determined and simulated by considering the kinetic behavior of the enzyme and the permeation of substrate into the vesicle. Experimental results demonstrated that entrapped enzymes were much more stable than free enyzme. The entrapped enzyme could be recycled with retention of 60% activity after 3 cycles. These methodologies can be useful in evaluating other liposomal catalysis operations.

  4. Molecular underpinnings of synaptic vesicle pool heterogeneity.

    Science.gov (United States)

    Crawford, Devon C; Kavalali, Ege T

    2015-04-01

    Neuronal communication relies on chemical synaptic transmission for information transfer and processing. Chemical neurotransmission is initiated by synaptic vesicle fusion with the presynaptic active zone resulting in release of neurotransmitters. Classical models have assumed that all synaptic vesicles within a synapse have the same potential to fuse under different functional contexts. In this model, functional differences among synaptic vesicle populations are ascribed to their spatial distribution in the synapse with respect to the active zone. Emerging evidence suggests, however, that synaptic vesicles are not a homogenous population of organelles, and they possess intrinsic molecular differences and differential interaction partners. Recent studies have reported a diverse array of synaptic molecules that selectively regulate synaptic vesicles' ability to fuse synchronously and asynchronously in response to action potentials or spontaneously irrespective of action potentials. Here we discuss these molecular mediators of vesicle pool heterogeneity that are found on the synaptic vesicle membrane, on the presynaptic plasma membrane, or within the cytosol and consider some of the functional consequences of this diversity. This emerging molecular framework presents novel avenues to probe synaptic function and uncover how synaptic vesicle pools impact neuronal signaling.

  5. Leiomyoma of the seminal vesicles: laparoscopic excision.

    Science.gov (United States)

    Casado Varela, Javier; Hermida Gutiérrez, Juan Francisco; Castillón Vela, Ignacio T; León Rueda, Maria Eugenia; Ortega Medina, Luis; Moreno Sierra, Jesús

    2014-01-01

    Leiomyoma of the seminal vesicles is an extremely rare type of benign tumor of the genitourinary system and can cause lower urinary tract symptoms. Despite their low incidence, these tumors can be identified with transrectal ultrasound of the seminal vesicles during prostate examination. The removal of these tumors is facilitated by a laparoscopic approach.

  6. A Vesicle Superpool Spans Multiple Presynaptic Terminals in Hippocampal Neurons

    OpenAIRE

    Staras, K.; Branco, T.; Burden, J. J.; Pozo, K.; Darcy, K.; Marra, V; Ratnayaka, A.; Goda, Y

    2010-01-01

    Synapse-specific vesicle pools have been widely characterized at central terminals. Here, we demonstrate a vesicle pool that is not confined to a synapse but spans multiple terminals. Using fluorescence imaging, correlative electron microscopy, and modeling of vesicle dynamics, we show that some recycling pool vesicles at synapses form part of a larger vesicle "superpool." The vesicles within this superpool are highly mobile and are rapidly exchanged between terminals (turnover: similar to 4%...

  7. [Transvesical Removal of Seminal Vesicle Cystadenoma].

    Science.gov (United States)

    Takayasu, Kenta; Harada, Jiro; Kawa, Gen; Ota, Syuichi; Sakurai, Takanori

    2015-07-01

    Primary tumors of the seminal vesicles are extremely rare. There have been 25 reports of this tumor from overseas and most cases are cystadenoma. We report a case of seminal vesicle cystadenoma in a 70-year-old man who presented with lower abdominal pain and urinary frequency. A digital rectal examination detected a projecting and hard mass in the right side of the prostate. Magnetic resonance imaging (MRI) showed a 15 cm multiple cystic mass continuous with the right seminal vesicle. A transrectal needle biopsy revealed benign tissue. The tumor was resected using an open transvesical approach that enabled full exposure of the seminal vesicle without damaging the nerves and blood supply of the bladder. Pathology was consistent with a benign seminal vesicle cystadenoma. We describe the natural history, pathology,and surgical approach in this case.

  8. Alternative methods for characterization of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Fatemeh eMomen-Heravi

    2012-09-01

    Full Text Available Extracellular vesicles are nano-sized vesicles released by all cells in vitro as well as in vivo. Their role has been implicated mainly in cell-cell communication, but also in disease biomarkers and more recently in gene delivery. They represent a snapshot of the cell status at the moment of release and carry bioreactive macromolecules such as nucleic acids, proteins and lipids. A major limitation in this emerging new field is the availability/awareness of techniques to isolate and properly characterize Extracellular vesicles. The lack of gold standards makes comparing different studies very difficult and may potentially hinder some Extracellular vesicles -specific evidence. Characterization of Extracellular vesicles has also recently seen many advances with the use of Nanoparticle Tracking Analysis (NTA, flow cytometry, cryo-EM instruments and proteomic technologies. In this review, we discuss the latest developments in translational technologies involving characterization methods including the facts in their support and the challenges they face.

  9. Reversibly formed bilayer vesicles: Energetics and polydispersity

    DEFF Research Database (Denmark)

    Bergstöm, M.

    1997-01-01

    statistical-mechanical factor that accounts for the fluctuations in composition, chain packing density and shape. We demonstrate that the free energy required to form a spherical vesicle is made up of two main contributions: the (size-independent) work of bending the constituent monolayers and the work of......Model calculations based on the multiple equilibrium approach indicate that the spontaneous formation of geometrically closed bilayer vesicles is geared primarily by the bilayer tension which in turn is largely determined by the work of bending the bilayer into a spherical vesicle. and a...... stretching the bilayer that is determined by the planar bilayer tension. A previously undiscovered contribution to the work of bending a vesicle bilayer, originating from geometrical packing constraints, is presented. On this basis we obtain vesicle size distributions with maxima located at radii several...

  10. Coordinated trafficking of synaptic vesicle and active zone proteins prior to synapse formation

    Directory of Open Access Journals (Sweden)

    Sabo Shasta L

    2011-05-01

    Full Text Available Abstract Background The proteins required for synaptic transmission are rapidly assembled at nascent synapses, but the mechanisms through which these proteins are delivered to developing presynaptic terminals are not understood. Prior to synapse formation, active zone proteins and synaptic vesicle proteins are transported along axons in distinct organelles referred to as piccolo-bassoon transport vesicles (PTVs and synaptic vesicle protein transport vesicles (STVs, respectively. Although both PTVs and STVs are recruited to the same site in the axon, often within minutes of axo-dendritic contact, it is not known whether or how PTV and STV trafficking is coordinated before synapse formation. Results Here, using time-lapse confocal imaging of the dynamics of PTVs and STVs in the same axon, we show that vesicle trafficking is coordinated through at least two mechanisms. First, a significant proportion of STVs and PTVs are transported together before forming a stable terminal. Second, individual PTVs and STVs share pause sites within the axon. Importantly, for both STVs and PTVs, encountering the other type of vesicle increases their propensity to pause. To determine if PTV-STV interactions are important for pausing, PTV density was reduced in axons by expression of a dominant negative construct corresponding to the syntaxin binding domain of syntabulin, which links PTVs with their KIF5B motor. This reduction in PTVs had a minimal effect on STV pausing and movement, suggesting that an interaction between STVs and PTVs is not responsible for enhancing STV pausing. Conclusions Our results indicate that trafficking of STVs and PTVs is coordinated even prior to synapse development. This novel coordination of transport and pausing might provide mechanisms through which all of the components of a presynaptic terminal can be rapidly accumulated at sites of synapse formation.

  11. Three-dimensional flow in Kupffer's Vesicle

    CERN Document Server

    Montenegro-Johnson, Thomas D; Smith, David J; Lopes, Susana S

    2016-01-01

    Whilst many vertebrates appear externally left-right symmetric, the arrangement of internal organs is asymmetric. In zebrafish, the breaking of left-right symmetry is organised by Kupffer's Vesicle (KV): an approximately spherical, fluid-filled structure that begins to form in the embryo 10 hours post fertilisation. A crucial component of zebrafish symmetry breaking is the establishment of a cilia-driven fluid flow within KV. However, it is still unclear (a) how dorsal, ventral and equatorial cilia contribute to the global vortical flow, and (b) if this flow breaks left-right symmetry through mechanical transduction or morphogen transport. Fully answering these questions requires knowledge of the three-dimensional flow patterns within KV, which have not been quantified in previous work. In this study, we calculate and analyse the three-dimensional flow in KV. We consider flow from both individual and groups of cilia, and (a) find anticlockwise flow can arise purely from excess of cilia on the dorsal roof over...

  12. Emerging role of the scaffolding protein Dlg1 in vesicle trafficking.

    Science.gov (United States)

    Walch, Laurence

    2013-09-01

    Discs large 1 (Dlg1) is a modular scaffolding protein implicated in the control of cell polarity through assembly of specific multiprotein complexes, including receptors, ion channels and signaling proteins, at specialized zones of the plasma membrane. Recent data have shown that in addition to these well-known interaction partners, Dlg1 may also recruit components of the vesicle trafficking machinery either to the plasma membrane or to transport vesicles. Here, we discuss Dlg1 function in vesicle formation, targeting, tethering and fusion, in both the exocytotic and endocytotic pathways. These pathways contribute to cell functions as major and diverse as glutamatergic activity in the neurons, membrane homeostasis in Schwann cell myelination, insulin stimulation of glucose transport in adipocytes, or endothelial secretion of the hemostatic protein, von Willebrand factor (VWF).

  13. RhoGTPase-binding proteins, the exocyst complex and polarized vesicle trafficking.

    Science.gov (United States)

    Mukherjee, Debarati; Sen, Arpita; Aguilar, R Claudio

    2014-01-01

    Cell polarity, the asymmetric distribution of proteins and lipids, is essential for a variety of cellular functions. One mechanism orchestrating cell polarity is polarized vesicle trafficking; whereby cargo loaded secretory vesicles are specifically transported to predetermined areas of the cell. The evolutionarily conserved exocyst complex and its small GTPase regulators play crucial roles in spatiotemporal control of polarized vesicle trafficking. In studies on neuronal membrane remodeling and synaptic plasticity, conserved mechanisms of exocyst regulation and cargo recycling during polarized vesicle trafficking are beginning to emerge as well. Recently, our lab demonstrated that RhoGTPase-binding proteins in both yeast (Bem3) and mammals (Ocrl1) are also required for the efficient traffic of secretory vesicles to sites of polarized growth and signaling. Together with our studies, we highlight the evolutionary conservation of the basic elements essential for polarized vesicle traffic across different cellular functions and model systems. In conclusion, we emphasize that studies on RhoGTPase-binding proteins in these processes should be included in the next level of investigation, for a more complete understanding of their hitherto unknown roles in polarized membrane traffic and exocyst regulation.

  14. Sequential interactions with Sec23 control the direction of vesicle traffic.

    Science.gov (United States)

    Lord, Christopher; Bhandari, Deepali; Menon, Shekar; Ghassemian, Majid; Nycz, Deborah; Hay, Jesse; Ghosh, Pradipta; Ferro-Novick, Susan

    2011-05-12

    How the directionality of vesicle traffic is achieved remains an important unanswered question in cell biology. The Sec23p/Sec24p coat complex sorts the fusion machinery (SNAREs) into vesicles as they bud from the endoplasmic reticulum (ER). Vesicle tethering to the Golgi begins when the tethering factor TRAPPI binds to Sec23p. Where the coat is released and how this event relates to membrane fusion is unknown. Here we use a yeast transport assay to demonstrate that an ER-derived vesicle retains its coat until it reaches the Golgi. A Golgi-associated kinase, Hrr25p (CK1δ orthologue), then phosphorylates the Sec23p/Sec24p complex. Coat phosphorylation and dephosphorylation are needed for vesicle fusion and budding, respectively. Additionally, we show that Sec23p interacts in a sequential manner with different binding partners, including TRAPPI and Hrr25p, to ensure the directionality of ER-Golgi traffic and prevent the back-fusion of a COPII vesicle with the ER. These events are conserved in mammalian cells.

  15. Extracellular vesicles and a novel form of communication in the brain

    Directory of Open Access Journals (Sweden)

    Manuela eBasso

    2016-03-01

    Full Text Available In numerous neurodegenerative diseases, the interplay between neurons and glia modulates the outcome and progression of pathology. One particularly intriguing mode of interaction between neurons, astrocytes, microglia, and oligodendrocytes is characterized by the release of extracellular vesicles that transport proteins, lipids, and nucleotides from one cell to another. Notably, several proteins that cause disease, including the prion protein and mutant SOD1, have been detected in glia-derived extracellular vesicles and observed to fuse with neurons and trigger pathology in vitro. Here we review the structural and functional characterization of such extracellular vesicles in neuron-glia interactions. Furthermore, we discuss possible mechanisms of extracellular vesicle biogenesis and release from activated glia and microglia, and their effects on neurons. Given that exosomes, the smallest type of extracellular vesicles, have been reported to recognize specific cellular populations and act as carriers of very specialized cargo, a thorough analysis of these vesicles may aid in their engineering in vitro and targeted delivery in vivo, opening opportunities for therapeutics.

  16. On the Computing Potential of Intracellular Vesicles.

    Directory of Open Access Journals (Sweden)

    Richard Mayne

    Full Text Available Collision-based computing (CBC is a form of unconventional computing in which travelling localisations represent data and conditional routing of signals determines the output state; collisions between localisations represent logical operations. We investigated patterns of Ca2+-containing vesicle distribution within a live organism, slime mould Physarum polycephalum, with confocal microscopy and observed them colliding regularly. Vesicles travel down cytoskeletal 'circuitry' and their collisions may result in reflection, fusion or annihilation. We demonstrate through experimental observations that naturally-occurring vesicle dynamics may be characterised as a computationally-universal set of Boolean logical operations and present a 'vesicle modification' of the archetypal CBC 'billiard ball model' of computation. We proceed to discuss the viability of intracellular vesicles as an unconventional computing substrate in which we delineate practical considerations for reliable vesicle 'programming' in both in vivo and in vitro vesicle computing architectures and present optimised designs for both single logical gates and combinatorial logic circuits based on cytoskeletal network conformations. The results presented here demonstrate the first characterisation of intracelluar phenomena as collision-based computing and hence the viability of biological substrates for computing.

  17. Arabidopsis myosin XI-K localizes to the motile endomembrane vesicles associated with F-actin

    Directory of Open Access Journals (Sweden)

    Valera V. Peremyslov

    2012-09-01

    Full Text Available Plant myosins XI were implicated in cell growth, F-actin organization, and organelle transport, with myosin XI-K being a critical contributor to each of these processes. However, subcellular localization of myosins and the identity of their principal cargoes remain poorly understood. Here, we generated a functionally competent, fluorescent protein-tagged, myosin XI-K, and investigated its spatial distribution within Arabidopsis cells. This myosin was found to associate primarily not with larger organelles (e.g., Golgi as was broadly assumed, but with endomembrane vesicles trafficking along F-actin. Subcellular localization and fractionation experiments indicated that the nature of myosin-associated vesicles is organ- and cell type-specific. In leaves, a large proportion of these vesicles aligned and co-fractionated with a motile ER subdomain. In roots, non-ER vesicles were a dominant myosin cargo. Myosin XI-K showed a striking polar localization at the tips of growing, but not mature, root hairs. These results strongly suggest that a major mechanism whereby myosins contribute to plant cell physiology is vesicle transport, and that this activity can be regulated depending on the growth phase of a cell.

  18. Uptake of Helicobacter pylori Vesicles Is Facilitated by Clathrin-Dependent and Clathrin-Independent Endocytic Pathways

    OpenAIRE

    Olofsson, Annelie; Nygård Skalman, Lars; Obi, Ikenna; Lundmark, Richard; Arnqvist, Anna

    2014-01-01

    UNLABELLED: Bacteria shed a diverse set of outer membrane vesicles that function as transport vehicles to deliver effector molecules and virulence factors to host cells. Helicobacter pylori is a gastric pathogen that infects half of the world's population, and in some individuals the infection progresses into peptic ulcer disease or gastric cancer. Here we report that intact vesicles from H. pylori are internalized by clathrin-dependent endocytosis and further dynamin-dependent processes, as ...

  19. Monte Carlo simulations of fluid vesicles

    Science.gov (United States)

    Sreeja, K. K.; Ipsen, John H.; Kumar, P. B. Sunil

    2015-07-01

    Lipid vesicles are closed two dimensional fluid surfaces that are studied extensively as model systems for understanding the physical properties of biological membranes. Here we review the recent developments in the Monte Carlo techniques for simulating fluid vesicles and discuss some of their applications. The technique, which treats the membrane as an elastic sheet, is most suitable for the study of large scale conformations of membranes. The model can be used to study vesicles with fixed and varying topologies. Here we focus on the case of multi-component membranes with the local lipid and protein composition coupled to the membrane curvature leading to a variety of shapes. The phase diagram is more intriguing in the case of fluid vesicles having an in-plane orientational order that induce anisotropic directional curvatures. Methods to explore the steady state morphological structures due to active flux of materials have also been described in the context of Monte Carlo simulations.

  20. Physiopathologic dynamics of vesicle traffic in astrocytes.

    Science.gov (United States)

    Potokar, Maja; Stenovec, Matjaž; Kreft, Marko; Gabrijel, Mateja; Zorec, Robert

    2011-02-01

    The view of how astrocytes, a type of glial cells, contribute to the functioning of the central nervous system (CNS) has changed greatly in the last decade. Although glial cells outnumber neurons in the mammalian brain, it was considered for over a century that they played a subservient role to neurons. This view changed. Functions thought to be exclusively present in neurons, i.e. excitability mediated release of chemical messengers, has also been demonstrated in astrocytes. In this process, following an increase in cytosolic calcium activity, membrane bound vesicles, storing chemical messengers (gliotransmitters), fuse with the plasma membrane, a process known as exocytosis, permitting the exit of vesicle cargo into the extracellular space. Vesicles are delivered to and are removed from the site of exocytosis by an amazingly complex set of processes that we have only started to learn about recently. In this paper we review vesicle traffic, which is subject to physiological regulation and may be changed under pathological conditions.

  1. Hybrid, Nanoscale Phospholipid/Block Copolymer Vesicles

    Directory of Open Access Journals (Sweden)

    Bo Liedberg

    2013-09-01

    Full Text Available Hybrid phospholipid/block copolymer vesicles, in which the polymeric membrane is blended with phospholipids, display interesting self-assembly behavior, incorporating the robustness and chemical versatility of polymersomes with the softness and biocompatibility of liposomes. Such structures can be conveniently characterized by preparing giant unilamellar vesicles (GUVs via electroformation. Here, we are interested in exploring the self-assembly and properties of the analogous nanoscale hybrid vesicles (ca. 100 nm in diameter of the same composition prepared by film-hydration and extrusion. We show that the self-assembly and content-release behavior of nanoscale polybutadiene-b-poly(ethylene oxide (PB-PEO/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC hybrid phospholipid/block copolymer vesicles can be tuned by the mixing ratio of the amphiphiles. In brief, these hybrids may provide alternative tools for drug delivery purposes and molecular imaging/sensing applications and clearly open up new avenues for further investigation.

  2. New mechanisms of vesicles migration.

    Science.gov (United States)

    Aursulesei, Viviana; Vasincu, Decebal; Timofte, Daniel; Vrajitoriu, Lucia; Gatu, Irina; Iacob, Dan D; Ghizdovat, Vlad; Buzea, Calin; Agop, Maricel

    2016-07-01

    In multicellular organisms, both health and disease are defined by means of communication patterns involving the component cells. Despite the intricate networks of soluble mediators, cells are also programed to exchange complex messages pre-assembled as multimolecular cargo of membranous structures known as extracellular vesicles (EVs). Several biogenetic pathways produce EVs with different properties able to orchestrate neighboring cell reactions or to establish an environment ripe for spreading tumor cells. Such an effect is in fact an extension of similar physiological roles played by exosomes in guiding cell migration under nontumoral tissue remodeling and organogenesis. We start with a biological thought experiment equivalent to Bénard's experiment, involving a fluid layer of EVs adherent to an extracellular matrix, in a haptotactic gradient, then, we build and present the first Lorenz model for EVs migration. Using Galerkin's method of reducing a system of partial differential equations to a system of ordinary differential equations, a biological Lorenz system is developed. Such a physical frame distributing individual molecular or exosomal type cell-guiding cues in the extracellular matrix space could serve as a guide for tissue neoformation of the budding pattern in nontumoral or tumoral instances. PMID:27045674

  3. A possible route to prebiotic vesicle reproduction.

    Science.gov (United States)

    Luisi, Pier Luigi; Rasi, Pasquale Stano Silvia; Mavelli, Fabio

    2004-01-01

    Spherical bounded structures such as those formed by surfactant aggregates (mostly micelles and vesicles), with an inside that is chemically and physically different from the outside medium, can be seen as primitive cell models. As such, they are fundamental structures for the theory of autopoiesis as originally formulated by Varela and Maturana. In particular, since self-reproduction is a very important feature of minimal cellular life, the study of self-reproduction of micelles and vesicles represents a quite challenging bio-mimetic approach. Our laboratory has put much effort in recent years into implementing self-reproduction of vesicles as models for self-reproduction of cellular bounded structures, and this article is a further contribution in this direction. In particular, we deal with the so-called matrix effect of vesicles, related to the fact that when fresh surfactant is added to an aqueous solution containing preformed vesicles of a very narrow size distribution, the newly formed vesicles (instead of being polydisperse, as is usually the case) have dimensions very close to those of the preformed ones. In practice, this corresponds to a mechanism of reproduction of vesicles of the same size. In this article, the matrix effect is re-elaborated in the perspective of the origin of life, and in particular in terms of the prebiotic mechanisms that might permit the growth and reproduction of vesicles. The data are analyzed by dynamic light scattering with a new program that permits the calculation of the number-weighted size distribution. It is shown that, on adding a stoichiometric amount of oleate micelles to preformed oleate vesicles extruded at 50 and 100 nm, the final distribution contains about twice the initial number of particles, centered around 50 and 100 nm. The same holds when oleate is added to preformed phospholipid liposomes. By contrast, when the same amount of oleate is added to an aqueous solution (as a control experiment), a very broad

  4. Vesicle-associated melanization in Cryptococcus neoformans

    OpenAIRE

    Eisenman, Helene C; FRASES, SUSANA; Nicola, André M; Rodrigues, Marcio L.; Casadevall, Arturo

    2009-01-01

    Recently, several pathogenic fungi were shown to produce extracellular vesicles that contain various components associated with virulence. In the human pathogenic fungus Cryptococcus neoformans, these components included laccase, an enzyme that catalyses melanin synthesis. Spherical melanin granules have been observed in the cell wall of C. neoformans. Given that melanin granules have dimensions that are comparable to those of extracellular vesicles, and that metazoan organisms produce melani...

  5. Bacterial Outer Membrane Vesicles and Vaccine Applications

    OpenAIRE

    Acevedo, Reinaldo; Fernández, Sonsire; Zayas, Caridad; Acosta, Armando; Sarmiento, Maria Elena; Valerie A. Ferro; Rosenqvist, Einar; Campa, Concepcion; Cardoso, Daniel; Garcia, Luis; Perez, Jose Luis

    2014-01-01

    Vaccines based on outer membrane vesicles (OMV) were developed more than 20 years ago against Neisseria meningitidis serogroup B. These nano-sized structures exhibit remarkable potential for immunomodulation of immune responses and delivery of meningococcal antigens or unrelated antigens incorporated into the vesicle structure. This paper reviews different applications in OMV Research and Development (R&D) and provides examples of OMV developed and evaluated at the Finlay Institute in Cuba. A...

  6. BACTERIAL OUTER MEMBRANE VESICLES AND VACCINE APPLICATIONS

    OpenAIRE

    Reinaldo eAcevedo; Sonsire eFernandez; Caridad eZayas; Armando eAcosta; Maria Elena Sarmiento; Valerie A. Ferro; Einar eRosenqvist; Concepcion eCampa; Daniel eCardoso; Luis eGarcia; Jose Luis Perez

    2014-01-01

    Vaccines based on outer membrane vesicles (OMV) were developed more than 20 years ago against Neisseria meningitidis serogroup B. These nano-sized structures exhibit remarkable potential for immunomodulation of immune responses and delivery of self meningococcal antigens or unrelated antigens incorporated into the vesicle structure. This paper reviews different applications in OMV Research and Development (R&D) and provides examples of OMV developed and evaluated at the Finlay Institute in Cu...

  7. Aquaporins in Urinary Extracellular Vesicles (Exosomes)

    OpenAIRE

    Sayaka Oshikawa; Hiroko Sonoda; Masahiro Ikeda

    2016-01-01

    Since the successful characterization of urinary extracellular vesicles (uEVs) by Knepper’s group in 2004, these vesicles have been a focus of intense basic and translational research worldwide, with the aim of developing novel biomarkers and therapeutics for renal disease. Along with these studies, there is growing evidence that aquaporins (AQPs), water channel proteins, in uEVs have the potential to be diagnostically useful. In this review, we highlight current knowledge of AQPs in uEVs fro...

  8. Sucrose induces vesicle accumulation and autophagy.

    Science.gov (United States)

    Higuchi, Takahiro; Nishikawa, Jun; Inoue, Hiroko

    2015-04-01

    It has been shown that the treatment of mammalian cells with sucrose leads to vacuole accumulation associated with lysosomes and upregulation of lysosomal enzyme expression and activity. Autophagy is an evolutionarily conserved homeostatic process by which cells deliver cytoplasmic material for degradation into lysosomes, thus it is probable that sucrose affects the autophagic activity. The role of sucrose in autophagy is unknown; however, another disaccharide, trehalose has been shown to induce autophagy. In the current study, we used mouse embryonic fibroblasts to investigate whether sucrose induces autophagy and whether vesicle formation is associated with autophagy. The results showed that sucrose induces autophagy while being accumulated within the endosomes/lysosomes. These vesicles were swollen and packed within the cytoplasm. Furthermore, trehalose and the trisaccharide raffinose, which are not hydrolyzed in mammalian cells, increased the rate of vesicles accumulation and LC3-II level (a protein marker of autophagy). However, fructose and maltose did not show the same effects. The correlation between the two processes, vesicle accumulation and autophagy induction, was confirmed by treatment of cells with sucrose plus invertase, or maltose plus acarbose-the α-glucosidase inhibitor-and by sucrose deprivation. Results also showed that vesicle accumulation was not affected by autophagy inhibition. Therefore, the data suggest that sucrose-induced autophagy through accumulation of sucrose-containing vesicles is caused by the absence of hydrolysis enzymes.

  9. Hierarchical unilamellar vesicles of controlled compositional heterogeneity.

    Directory of Open Access Journals (Sweden)

    Maik Hadorn

    Full Text Available Eukaryotic life contains hierarchical vesicular architectures (i.e. organelles that are crucial for material production and trafficking, information storage and access, as well as energy production. In order to perform specific tasks, these compartments differ among each other in their membrane composition and their internal cargo and also differ from the cell membrane and the cytosol. Man-made structures that reproduce this nested architecture not only offer a deeper understanding of the functionalities and evolution of organelle-bearing eukaryotic life but also allow the engineering of novel biomimetic technologies. Here, we show the newly developed vesicle-in-water-in-oil emulsion transfer preparation technique to result in giant unilamellar vesicles internally compartmentalized by unilamellar vesicles of different membrane composition and internal cargo, i.e. hierarchical unilamellar vesicles of controlled compositional heterogeneity. The compartmentalized giant unilamellar vesicles were subsequently isolated by a separation step exploiting the heterogeneity of the membrane composition and the encapsulated cargo. Due to the controlled, efficient, and technically straightforward character of the new preparation technique, this study allows the hierarchical fabrication of compartmentalized giant unilamellar vesicles of controlled compositional heterogeneity and will ease the development of eukaryotic cell mimics that resemble their natural templates as well as the fabrication of novel multi-agent drug delivery systems for combination therapies and complex artificial microreactors.

  10. Sucrose induces vesicle accumulation and autophagy.

    Science.gov (United States)

    Higuchi, Takahiro; Nishikawa, Jun; Inoue, Hiroko

    2015-04-01

    It has been shown that the treatment of mammalian cells with sucrose leads to vacuole accumulation associated with lysosomes and upregulation of lysosomal enzyme expression and activity. Autophagy is an evolutionarily conserved homeostatic process by which cells deliver cytoplasmic material for degradation into lysosomes, thus it is probable that sucrose affects the autophagic activity. The role of sucrose in autophagy is unknown; however, another disaccharide, trehalose has been shown to induce autophagy. In the current study, we used mouse embryonic fibroblasts to investigate whether sucrose induces autophagy and whether vesicle formation is associated with autophagy. The results showed that sucrose induces autophagy while being accumulated within the endosomes/lysosomes. These vesicles were swollen and packed within the cytoplasm. Furthermore, trehalose and the trisaccharide raffinose, which are not hydrolyzed in mammalian cells, increased the rate of vesicles accumulation and LC3-II level (a protein marker of autophagy). However, fructose and maltose did not show the same effects. The correlation between the two processes, vesicle accumulation and autophagy induction, was confirmed by treatment of cells with sucrose plus invertase, or maltose plus acarbose-the α-glucosidase inhibitor-and by sucrose deprivation. Results also showed that vesicle accumulation was not affected by autophagy inhibition. Therefore, the data suggest that sucrose-induced autophagy through accumulation of sucrose-containing vesicles is caused by the absence of hydrolysis enzymes. PMID:25389129

  11. Phosphorylcholine substituted polyolefins: New syntheses, solution assemblies, and polymer vesicles

    Science.gov (United States)

    Kratz, Katrina A.

    This thesis describes the synthesis and applications of a new series of amphiphilic homopolymers and copolymers consisting of hydrophobic polyolefin backbone and hydrophilic phosphorylcholine (PC) pendant groups. These polymers are synthesized by ring opening metathesis polymerization (ROMP) of a novel PC- cyclooctene monomer, and copolymerization of various functionalized cyclooctene comonomers. Incorporation of different comonomers into the PC-polyolefin backbone affords copolymers with different functionalities, including crosslinkers, fluorophores, and other reactive groups, that tune the range of applications of these polymers, and their hydrophobic/hydrophilic balance. The amphiphilic nature of PC-polyolefins was exploited in oil-water interfacial assembly, providing robust polymer capsules to encapsulate and deliver nanoparticles to damaged regions of a substrate in a project termed `repair-and-go.' In repair-and-go, a flexible microcapsule filled with a solution of nanoparticles probes an imperfection-riddled substrate as it rolls over the surface. The thin capsule wall allows the nanoparticles to escape the capsules and enter into the cracks, driven in part by favorable interactions between the nanoparticle ligands and the cracked surface (i.e., hydrophobic-hydrophobic interactions). The capsules then continue their transport along the surface, filling more cracks and depositing particles into them. The amphiphilic nature of PC-polyolefins was also exploited in aqueous assembly, forming novel polymer vesicles in water. PC-polyolefin vesicles ranged in size from 50 nm to 30 µm. The mechanical properties of PC-polyolefin vesicles were measured by micropipette aspiration techniques, and found to be more robust than conventional liposomes or polymersomes prepared from block copolymers. PC-polyolefin vesicles have potential use in drug delivery; it was found that the cancer drug doxorubicin could be encapsulated efficiently in PC-polyolefin vesicles. In

  12. Mobility and Turnover of Vesicles at the Synaptic Ribbon

    OpenAIRE

    LoGiudice, Lisamarie; Sterling, Peter; Matthews, Gary

    2008-01-01

    Ribbon synapses release neurotransmitter continuously at high rates, and the ribbons tether a large pool of synaptic vesicles. To determine if the tethered vesicles are actually released, we tracked vesicles labeled with FM4-64 dye in mouse retinal bipolar cell terminals whose ribbons had been labeled with a fluorescent peptide. We photobleached vesicles in regions with ribbons and without them and then followed recovery of fluorescence as bleached regions were repopulated by labeled vesicles...

  13. Purification of coated vesicles by agarose gel electrophoresis

    OpenAIRE

    1981-01-01

    We have applied agarose gel electrophoresis as a novel step in the purification of clathrin-coated vesicles. Preparations of coated vesicles obtained by sedimentation velocity and isopycnic centrifugation are resolved into two distinct fractions upon electrophoresis. The slower migrating fraction contains smooth vesicles, whereas the faster contains only coated vesicles and empty clathrin coats. The faster mobility of the coated vesicles is primarily caused by the acidic nature of clathrin. C...

  14. Universal relationships to determine adhesion energy from vesicle-substrate interactions

    CERN Document Server

    Irajizad, Ehsan

    2016-01-01

    Adhesion molecules play an integral role in diverse biological functions ranging from cellular growth to transport. Estimation of their binding affinity, therefore, becomes important to quantify their biophysical impact on these phenomena. In this paper, we use curvature elasticity to present non-intuitive, yet remarkably simple, universal relationships to tease out adhesion energy from vesicle-substrate experiments. Our study reveals that the inverse of the height, exponential of the contact area, and the force required to detach the vesicle from the substrate vary linearly with the square root of the adhesion energy. We validate the modeling predictions with experimental data from two previous studies.

  15. Characterization of GLUT4-containing vesicles in 3T3-L1 adipocytes by total internal reflection fluorescence microscopy

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Insulin-responsive GLUT4(glucose transporter 4) translocation plays a major role in regulating glucose uptake in adipose tissue and muscle.Whether or not there is a specialized secretory GSV(GLUT4 storage vesicle) pool,and more importantly how GSVs are translocated to the PM(plasma membrane) under insulin stimulation is still under debate.In the present study,we systematically analyzed the dynamics of a large number of single GLUT4-containing vesicles in 3T3-L1 adipocytes by TIRFM(total internal reflection fluorescence microscopy).We found that GLUT4-containing vesicles can be classified into three groups according to their mobility,namely vertical,stable,and lateral GLUT4-containing vesicles.Among these groups,vertical GLUT4-containing vesicles exclude transferrin receptors and move towards the PM specifically in response to insulin stimulation,while stable and lateral GLUT4-containing vesicles contain transferrin receptors and show no insulin responsiveness.These data demonstrate that vertical GLUT4-containing vesicles correspond to specialized secretory GSVs,which approach the PM directly and bypass the constitutive recycling pathway.

  16. Endocytic proteins drive vesicle growth via instability in high membrane tension environment

    CERN Document Server

    Walani, Nikhil; Agrawal, Ashutosh

    2015-01-01

    Clathrin-mediated endocytosis (CME) is a key pathway for transporting cargo into cells via membrane vesicles. It plays an integral role in nutrient import, signal transduction, neurotransmission and cellular entry of pathogens and drug-carrying nanoparticles. As CME entails substantial local remodeling of the plasma membrane, the presence of membrane tension offers resistance to bending and hence, vesicle formation. Experiments show that in such high tension conditions, actin dynamics is required to carry out CME successfully. In this study, we build upon these pioneering experimental studies to provide fundamental mechanistic insights into the roles of two key endocytic proteins, namely, actin and BAR proteins in driving vesicle formation in high membrane tension environment. Our study reveals a new actin force induced `snap-through instability' that triggers a rapid shape transition from a shallow invagination to a highly invaginated tubular structure. We show that the association of BAR proteins stabilizes...

  17. Exosomes and other extracellular vesicles in neural cells and neurodegenerative diseases.

    Science.gov (United States)

    Janas, Anna M; Sapoń, Karolina; Janas, Teresa; Stowell, Michael H B; Janas, Tadeusz

    2016-06-01

    The function of human nervous system is critically dependent on proper interneuronal communication. Exosomes and other extracellular vesicles are emerging as a novel form of information exchange within the nervous system. Intraluminal vesicles within multivesicular bodies (MVBs) can be transported in neural cells anterogradely or retrogradely in order to be released into the extracellular space as exosomes. RNA loading into exosomes can be either via an interaction between RNA and the raft-like region of the MVB limiting membrane, or via an interaction between an RNA-binding protein-RNA complex with this raft-like region. Outflow of exosomes from neural cells and inflow of exosomes into neural cells presumably take place on a continuous basis. Exosomes can play both neuro-protective and neuro-toxic roles. In this review, we characterize the role of exosomes and microvesicles in normal nervous system function, and summarize evidence for defective signaling of these vesicles in disease pathogenesis of some neurodegenerative diseases.

  18. Size distribution and radial density profile of synaptic vesicles by SAXS and light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Castorph, Simon; Salditt, Tim [Institute for X-ray Physics, Goettingen (Germany); Holt, Matthew; Jahn, Reinhard [Max Plank Institute for Biophysical Chemistry, Goettingen (Germany); Sztucki, Michael [European Synchrotron Radiation Facility, Grenoble (France)

    2008-07-01

    Synaptic vesicles are small membraneous organelles within the nerve terminal, encapsulating neurotransmitters by a lipid bilayer. The transport of the neurotransmitter, the fusion at the plasma membrane, and the release of the stored neurotransmitters into the synaptic cleft are since long know as essential step in nerve conduction of the chemical synapse. A detailed structural view of these molecular mechanisms is still lacking, not withstanding the enormous progress in the field during recent years. From measurements and quantitative fitting of small angle X-ray scattering curves and dynamic light scattering the averaged structural properties of synaptic vesicles can be determined. We present SAXS measurements and fits revealing the width of the size distribution function and details of the radial scattering length profile of synaptic vesicles from rat brain. Representative values for the inner and outer radius and the size polydispersity as well as the density and width of the outer protein layer are obtained.

  19. Polycyclic aromatic hydrocarbons storage by Fusarium solani in intracellular lipid vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Verdin, Anthony [Laboratoire de Mycologie/Phytopathologie/Environnement, Universite du Littoral-Cote d' Opale, 17 avenue Bleriot, BP 699, 62228 Calais Cedex (France); Lounes-Hadj Sahraoui, Anissa [Laboratoire de Mycologie/Phytopathologie/Environnement, Universite du Littoral-Cote d' Opale, 17 avenue Bleriot, BP 699, 62228 Calais Cedex (France)]. E-mail: lounes@univ-littoral.fr; Newsam, Ray [Department of Biosciences, University of Kent, Canterbury CT2 7NJ (United Kingdom); Robinson, Gary [Department of Biosciences, University of Kent, Canterbury CT2 7NJ (United Kingdom); Durand, Roger [Laboratoire de Mycologie/Phytopathologie/Environnement, Universite du Littoral-Cote d' Opale, 17 avenue Bleriot, BP 699, 62228 Calais Cedex (France)

    2005-01-01

    Accumulation and elimination of polycyclic aromatic hydrocarbons (PAHs) were studied in the fungus Fusarium solani. When the fungus was grown on a synthetic medium containing benzo[a]pyrene, hyphae of F. solani contained numerous lipid vesicles which could be stained by the lipid-specific dyes: Sudan III and Rhodamine B. The fluorescence produced by Rhodamine B and PAH benzo[a]pyrene were at the same locations in the fungal hyphae, indicating that F. solani stored PAH in pre-existing lipid vesicles. A passive temperature-independent process is involved in the benzo[a]pyrene uptake and storage. Sodium azide, a cytochrome c oxidation inhibitor, and the two cytoskeleton inhibitors colchicine and cytochalasin did not prevent the transport and accumulation of PAH in lipid vesicles of F. solani hyphae. F. solani degraded a large range of PAHs at different rates. PAH intracellular storage in lipid vesicles was not necessarily accompanied by degradation and was common to numerous other fungi. - Fungi can store PAHs intracellularly in lipid vesicles independently of their PAH degradation abilities.

  20. Getting to know the extracellular vesicle glycome.

    Science.gov (United States)

    Gerlach, Jared Q; Griffin, Matthew D

    2016-04-01

    Extracellular vesicles (EVs) are a diverse population of complex biological particles with diameters ranging from approximately 20 to 1000 nm. Tremendous interest in EVs has been generated following a number of recent, high-profile reports describing their potential utility in diagnostic, prognostic, drug delivery, and therapeutic roles. Subpopulations, such as exosomes, are now known to directly participate in cell-cell communication and direct material transfer. Glycomics, the 'omic' portion of the glycobiology field, has only begun to catalog the surface oligosaccharide and polysaccharide structures and also the carbohydrate-binding proteins found on and inside EVs. The EV glycome undoubtedly contains vital clues essential to better understanding the function, biogenesis, release and transfer of vesicles, however getting at this information is technically challenging and made even more so because of the small physical size of the vesicles and the typically minute yield from physiological-scale biological samples. Vesicle micro-heterogeneity which may be related to specific vesicle origins and functions presents a further challenge. A number of primary studies carried out over the past decade have turned up specific and valuable clues regarding the composition and roles of glycan structures and also glycan binding proteins involved EV biogenesis and transfer. This review explores some of the major EV glycobiological research carried out to date and discusses the potential implications of these findings across the life sciences.

  1. Activation of calcineurin by phosphotidylserine containing vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Politino, M.; King, M.M.

    1986-05-01

    Calcineurin (CaN) is a Ca/sup 2 +/- and calmodulin-regulated phosphatase. Recent findings suggested an association of CaN with biological membranes and prompted the present investigation into the interactions of the phosphatase with phospholipids in vitro. In the absence of calmodulin, sonicated preparations of phosphatidylserine (PS) provided a five-fold activation of the Ni- and Mn-supported activities of CaN towards (/sup 32/P) histone Hl; activation in the presence of calmodulin was much less pronounced. Half-maximal activation in the absence of calmodulin required approximately 0.1 mg/ml of PS. Activation of CaN was also observed with mixed vesicles of phosphatidylcholine (PC) containing 20% PS but not with PC alone, or with phosphatidylethanolamine (PE). Molecular sieve chromatography on Ultrogel AcA 34 provided further evidence that CaN associates with phospholipid vesicles composed of PS, or PC containing 20% PS, but not with vesicles of PC or PE. Complete association with medium sized vesicles of PS and PC/PS required Ca/sup 2 +/ ions; in the absence of the metal ion at least 60% of the enzyme failed to interact with the lipids while the remainder preferentially migrated with larger vesicles. These results suggest a role for Ca/sup 2 +/ in regulating CaN's interaction with phospholipids.

  2. Haloarchaea and the Formation of Gas Vesicles

    Directory of Open Access Journals (Sweden)

    Felicitas Pfeifer

    2015-02-01

    Full Text Available Halophilic Archaea (Haloarchaea thrive in salterns containing sodium chloride concentrations up to saturation. Many Haloarchaea possess genes encoding gas vesicles, but only a few species, such as Halobacterium salinarum and Haloferax mediterranei, produce these gas-filled, proteinaceous nanocompartments. Gas vesicles increase the buoyancy of cells and enable them to migrate vertically in the water body to regions with optimal conditions. Their synthesis depends on environmental factors, such as light, oxygen supply, temperature and salt concentration. Fourteen gas vesicle protein (gvp genes are involved in their formation, and regulation of gvp gene expression occurs at the level of transcription, including the two regulatory proteins, GvpD and GvpE, but also at the level of translation. The gas vesicle wall is solely formed of proteins with the two major components, GvpA and GvpC, and seven additional accessory proteins are also involved. Except for GvpI and GvpH, all of these are required to form the gas permeable wall. The applications of gas vesicles include their use as an antigen presenter for viral or pathogen proteins, but also as a stable ultrasonic reporter for biomedical purposes.

  3. EXTRACELLULAR VESICLES: CLASSIFICATION, FUNCTIONS AND CLINICAL RELEVANCE

    Directory of Open Access Journals (Sweden)

    A. V. Oberemko

    2014-12-01

    Full Text Available This review presents a generalized definition of vesicles as bilayer extracellular organelles of all celular forms of life: not only eu-, but also prokaryotic. The structure and composition of extracellular vesicles, history of research, nomenclature, their impact on life processes in health and disease are discussed. Moreover, vesicles may be useful as clinical instruments for biomarkers, and they are promising as biotechnological drug. However, many questions in this area are still unresolved and need to be addressed in the future. The most interesting from the point of view of practical health care represents a direction to study the effect of exosomes and microvesicles in the development and progression of a particular disease, the possibility of adjusting the pathological process by means of extracellular vesicles of a particular type, acting as an active ingredient. Relevant is the further elucidation of the role and importance of exosomes to the surrounding cells, tissues and organs at the molecular level, the prospects for the use of non-cellular vesicles as biomarkers of disease.

  4. Functionalization of Block Copolymer Vesicle Surfaces

    Directory of Open Access Journals (Sweden)

    Wolfgang Meier

    2011-01-01

    Full Text Available In dilute aqueous solutions certain amphiphilic block copolymers self-assemble into vesicles that enclose a small pool of water with a membrane. Such polymersomes have promising applications ranging from targeted drug-delivery devices, to biosensors, and nanoreactors. Interactions between block copolymer membranes and their surroundings are important factors that determine their potential biomedical applications. Such interactions are influenced predominantly by the membrane surface. We review methods to functionalize block copolymer vesicle surfaces by chemical means with ligands such as antibodies, adhesion moieties, enzymes, carbohydrates and fluorophores. Furthermore, surface-functionalization can be achieved by self-assembly of polymers that carry ligands at their chain ends or in their hydrophilic blocks. While this review focuses on the strategies to functionalize vesicle surfaces, the applications realized by, and envisioned for, such functional polymersomes are also highlighted.

  5. alpha-Latrotoxin affects mitochondrial potential and synaptic vesicle proton gradient of nerve terminals.

    Science.gov (United States)

    Tarasenko, A S; Storchak, L G; Himmelreich, N H

    2008-02-01

    Ca(2+)-independent [(3)H]GABA release induced by alpha-latrotoxin was found to consist of two sequential processes: a fast initial release realized via exocytosis and more delayed outflow through the plasma membrane GABA transporters [Linetska, M.V., Storchak, L.G., Tarasenko, A.S., Himmelreich, N.H., 2004. Involvement of membrane GABA transporters in alpha-latrotoxin-stimulated [(3)H]GABA release. Neurochem. Int. 44, 303-312]. To characterize the toxin-stimulated events attributable to the transporter-mediated [(3)H]GABA release from rat brain synaptosomes we studied the effect of alpha-latrotoxin on membrane potentials and generation of the synaptic vesicles proton gradient, using fluorescent dyes: potential-sensitive rhodamine 6G and pH-sensitive acridine orange. We revealed that alpha-latrotoxin induced a progressive dose-dependent depolarization of mitochondrial membrane potential and an irreversible run-down of the synaptic vesicle proton gradient. Both processes were insensitive to the presence of cadmium, a potent blocker of toxin-formed transmembrane pores, indicating that alpha-latrotoxin-induced disturbance of the plasma membrane permeability was not responsible to these effects. A gradual dissipation of the synaptic vesicle proton gradient closely coupled with lowering the vesicular GABA transporter activity results in a leakage of the neurotransmitter from synaptic vesicles to cytoplasm. As a consequence, there is an essential increase in GABA concentration in a soluble cytosolic pool that appears to be critical parameter for altering the mode of the plasma membrane GABA transporter operation from inward to outward. Thus, our data allow clarifying what cell processes underlain a recruitment of the plasma membrane transporter-mediated pathway in alpha-LTX-stimulated secretion.

  6. Toroidal membrane vesicles in spherical confinement

    CERN Document Server

    Bouzar, Lila; Müller, Martin Michael

    2015-01-01

    We investigate the morphology of a toroidal fluid membrane vesicle confined inside a spherical container. The equilibrium shapes are assembled in a geometrical phase diagram as a function of scaled area and reduced volume of the membrane. For small area the vesicle can adopt its free form. When increasing the area, the membrane cannot avoid contact and touches the confining sphere along a circular contact line, which extends to a zone of contact for higher area. The elastic energies of the equilibrium shapes are compared to those of their confined counterparts of spherical topology to predict under which conditions a topology change is favored energetically.

  7. Toroidal membrane vesicles in spherical confinement

    Science.gov (United States)

    Bouzar, Lila; Menas, Ferhat; Müller, Martin Michael

    2015-09-01

    We investigate the morphology of a toroidal fluid membrane vesicle confined inside a spherical container. The equilibrium shapes are assembled in a geometrical phase diagram as a function of scaled area and reduced volume of the membrane. For small area the vesicle can adopt its free form. When increasing the area, the membrane cannot avoid contact and touches the confining sphere along a circular contact line, which extends to a zone of contact for higher area. The elastic energies of the equilibrium shapes are compared to those of their confined counterparts of spherical topology to predict under which conditions a topology change is favored energetically.

  8. Aquaporins in Urinary Extracellular Vesicles (Exosomes)

    Science.gov (United States)

    Oshikawa, Sayaka; Sonoda, Hiroko; Ikeda, Masahiro

    2016-01-01

    Since the successful characterization of urinary extracellular vesicles (uEVs) by Knepper’s group in 2004, these vesicles have been a focus of intense basic and translational research worldwide, with the aim of developing novel biomarkers and therapeutics for renal disease. Along with these studies, there is growing evidence that aquaporins (AQPs), water channel proteins, in uEVs have the potential to be diagnostically useful. In this review, we highlight current knowledge of AQPs in uEVs from their discovery to clinical application. PMID:27322253

  9. Aquaporins in Urinary Extracellular Vesicles (Exosomes).

    Science.gov (United States)

    Oshikawa, Sayaka; Sonoda, Hiroko; Ikeda, Masahiro

    2016-01-01

    Since the successful characterization of urinary extracellular vesicles (uEVs) by Knepper's group in 2004, these vesicles have been a focus of intense basic and translational research worldwide, with the aim of developing novel biomarkers and therapeutics for renal disease. Along with these studies, there is growing evidence that aquaporins (AQPs), water channel proteins, in uEVs have the potential to be diagnostically useful. In this review, we highlight current knowledge of AQPs in uEVs from their discovery to clinical application. PMID:27322253

  10. Hepatocellular transport proteins and their role in liver disease

    Institute of Scientific and Technical Information of China (English)

    Carmen Stanca; Diana Jung; Peter J. Meier; Gerd A. Kullak-Ublick

    2001-01-01

    @@MOLECULAR PHYSIOLLGY OF HEPATOCELLULAR TRANSPORT PROTEINS Basolaferal transport systems Na+-dependent bile salt uptake Uptake of bile salts into the liver was first isolated perfused rat liver[1],isolated hepatocyte cultures and basolateral plasma membrane vesicles [2,4].

  11. Vesicle-MaNiA: extracellular vesicles in liquid biopsy and cancer.

    Science.gov (United States)

    Torrano, Veronica; Royo, Felix; Peinado, Héctor; Loizaga-Iriarte, Ana; Unda, Miguel; Falcón-Perez, Juan M; Carracedo, Arkaitz

    2016-08-01

    Normal and tumor cells shed vesicles to the environment. Within the large family of extracellular vesicles, exosomes and microvesicles have attracted much attention in the recent years. Their interest ranges from mediators of cancer progression, inflammation, immune regulation and metastatic niche regulation, to non-invasive biomarkers of disease. In this respect, the procedures to purify and analyze extracellular vesicles have quickly evolved and represent a source of variability for data integration in the field. In this review, we provide an updated view of the potential of exosomes and microvesicles as biomarkers and the available technologies for their isolation. PMID:27366992

  12. Endocytic pathway rapidly delivers internalized molecules to lysosomes: an analysis of vesicle trafficking, clustering and mass transfer.

    Science.gov (United States)

    Pangarkar, Chinmay; Dinh, Anh-Tuan; Mitragotri, Samir

    2012-08-20

    Lysosomes play a critical role in intracellular drug delivery. For enzyme-based therapies, they represent a potential target site whereas for nucleic acid or many protein drugs, they represent the potential degradation site. Either way, understanding the mechanisms and processes involved in routing of materials to lysosomes after cellular entry is of high interest to the field of drug delivery. Most therapeutic cargoes other than small hydrophobic molecules enter the cells through endocytosis. Endocytosed cargoes are routed to lysosomes via microtubule-based transport and are ultimately shared by various lysosomes via tethering and clustering of endocytic vesicles followed by exchange of their contents. Using a combined experimental and numerical approach, here we studied the rates of mass transfer into and among the endocytic vesicles in a model cell line, 3T3 fibroblasts. In order to understand the relationship of mass transfer with microtubular transport and vesicle clustering, we varied both properties through various pharmacological agents. At the same time, microtubular transport and vesicle clustering were modeled through diffusion-advection equations and the Smoluchowski equations, respectively. Our analysis revealed that the rate of mass transfer is optimally related to microtubular transport and clustering properties of vesicles. Further, the rate of mass transfer is highest in the innate state of the cell. Any perturbation to either microtubular transport or vesicle aggregation led to reduced mass transfer to lysosome. These results suggest that in the absence of an external intervention the endocytic pathway appears to maximize molecular delivery to lysosomes. Strategies are discussed to reduce mass transfer to lysosomes so as to extend the residence time of molecules in endosomes or late endosomes, thus potentially increasing the likelihood of their escape before disposition in the lysosomes.

  13. Bacteroides gingivalis vesicles bind to and aggregate Actinomyces viscosus.

    OpenAIRE

    Ellen, R P; Grove, D A

    1989-01-01

    Isolated Bacteroides gingivalis 2561 vesicles aggregated suspensions of Actinomyces viscosus and Actinomyces naeslundii of all taxonomy clusters. Vesicles bound near A. viscosus cell walls and among its surface fibrils. Tritiated vesicles bound slightly better to saliva-coated hydroxyapatite (SHA) than to SHA coated with A. viscosus; saturation was approached at the concentrations that were tested. Pretreatment of A. viscosus-coated SHA with vesicles impaired the subsequent adherence of B. gi...

  14. Adaptor protein complexes and intracellular transport

    OpenAIRE

    2014-01-01

    The AP (adaptor protein) complexes are heterotetrameric protein complexes that mediate intracellular membrane trafficking along endocytic and secretory transport pathways. There are five different AP complexes: AP-1, AP-2 and AP-3 are clathrin-associated complexes; whereas AP-4 and AP-5 are not. These five AP complexes localize to different intracellular compartments and mediate membrane trafficking in distinct pathways. They recognize and concentrate cargo proteins into vesicular carriers th...

  15. Preparation of vesicles entrapped lycopene extract.

    Science.gov (United States)

    Luxsuwong, Dhitaree; Indranupakorn, Ratana; Wongtrakul, Paveena

    2014-01-01

    Lycopene, a lipophilic carotenoid, has been known as an effective antioxidant in supporting the cutaneous defensive system. However, it is unstable when exposed to light and water. In this study, lycopene was isolated from tomatoes and a vesicular delivery system was developed to entrap and stabilize the lycopene in the aqueous system. A simple process, maceration in ethyl acetate, was used to extract lycopene from the tomatoes. The extract was then chromatographed on the Sephadex LH20 column using acetone as a solvent system to yield 995 μg of lycopene per gram of dried tomato weight. The vesicular delivery system was prepared from a combination of ascorbic acid-6-palmitate (AP), cholesterol and dicetyl phosphate using a thin film hydration method. The formulation was composed of AP, cholesterol and dicetyl phosphate at a 44:44:12 molar ratio and with 2.12 μmol/ml of the isolated lycopene. Both blank vesicles and lycopene loaded vesicles were kept for a period of 3 months at 4±2°C and at the room temperature (28±2°C) to evaluate the effect of the encapsulation on the characteristic of the vesicles and on the antioxidant activity of the encapsulated lycopene. The result implied that lycopene could be stabilized in the vesicles and its scavenging activity against DPPH free radicals was superior to that of the free lycopene solution. PMID:24829133

  16. Hyperviscosity and hypofunction of the seminal vesicles.

    Science.gov (United States)

    Gonzales, G F; Kortebani, G; Mazzolli, A B

    1993-01-01

    The study was designed to determine whether hyperviscosity of the semen sample is related to dysfunction of the male accessory glands. It was carried out on men who consecutively attended an infertility clinic between June 1989 and June 1991, and the men were grouped according to viscosity of semen samples (normal viscosity or higher viscosity). Semen samples from 229 infertility patients were studied. From these, 155 had normal viscosity and 74 showed hyperviscosity. The effect of hyperviscosity of semen samples on seminal quality and the function of the prostate was evaluated by acid phosphatase measurement, and the seminal vesicles by measurement of corrected fructose. Sperm motility (grades II-III), sperm vitality, and corrected fructose were significantly reduced in samples with high viscosity (p hyperviscosity in semen samples was associated with only hypofunction of the seminal vesicles. In fact, 36.5% of subjects with hyperviscosity showed reduced levels of corrected fructose. The same association with hyperviscosity was not observed when only hypofunction of the prostate was present, or when hypofunction of both prostate and seminal vesicles was present (P:NS). Further analysis showed that high viscosity is observed mainly when corrected seminal fructose levels were below 1.5 mg/mL x 10(6) spz/mL. It would appear that hyperviscosity affects sperm motility and is associated with hypofunction of the seminal vesicles. PMID:8420506

  17. Vesicle Pools: Lessons from Adrenal Chromaffin Cells

    Directory of Open Access Journals (Sweden)

    David R Stevens

    2011-02-01

    Full Text Available The adrenal chromaffin cell serves as a model system to study fast Ca2+-dependent exocytosis. Membrane capacitance measurements in combination with Ca2+ uncaging offers a temporal resolution in the millisecond range and reveals that catecholamine release occurs in three distinct phases. Release of a readily releasable (RRP and a slowly releasable (SRP pool are followed by sustained release, due to maturation and release of vesicles which were not release-ready at the start of the stimulus. Trains of depolarizations, a more physiological stimulus, induce release from a small immediately releasable pool of vesicles residing adjacent to calcium channels, as well as from the RRP. The SRP is poorly activated by depolarization. A sequential model, in which non-releasable docked vesicles are primed to a slowly releasable state, and then further mature to the readily releasable state, has been proposed. The docked state, dependent on membrane proximity, requires SNAP-25, synaptotagmin and syntaxin. The ablation or modification of SNAP-25 and syntaxin, components of the SNARE complex, as well as of synaptotagmin, the calcium sensor, and modulators such complexins and Snapin alter the properties and/or magnitudes of different phases of release, and in particular can ablate the RRP. These results indicate that the composition of the SNARE complex and its interaction with modulatory molecules drives priming and provides a molecular basis for different pools of releasable vesicles.

  18. Formation of Giant Protein Vesicles by a Lipid Cosolvent Method

    DEFF Research Database (Denmark)

    Hansen, Jesper S.; Vararattanavech, Ardcharaporn; Vissing, Thomas;

    2011-01-01

    This paper describes a method to create giant protein vesicles (GPVs) of ≥10 μm by solvent‐driven fusion of large vesicles (0.1–0.2 μm) with reconstituted membrane proteins. We found that formation of GPVs proceeded from rotational mixing of protein‐reconstituted large unilamellar vesicles (LUVs...

  19. Mechanisms, pools, and sites of spontaneous vesicle release at synapses of rod and cone photoreceptors.

    Science.gov (United States)

    Cork, Karlene M; Van Hook, Matthew J; Thoreson, Wallace B

    2016-08-01

    Photoreceptors have depolarized resting potentials that stimulate calcium-dependent release continuously from a large vesicle pool but neurons can also release vesicles without stimulation. We characterized the Ca(2+) dependence, vesicle pools, and release sites involved in spontaneous release at photoreceptor ribbon synapses. In whole-cell recordings from light-adapted horizontal cells (HCs) of tiger salamander retina, we detected miniature excitatory post-synaptic currents (mEPSCs) when no stimulation was applied to promote exocytosis. Blocking Ca(2+) influx by lowering extracellular Ca(2+) , by application of Cd(2+) and other agents reduced the frequency of mEPSCs but did not eliminate them, indicating that mEPSCs can occur independently of Ca(2+) . We also measured release presynaptically from rods and cones by examining quantal glutamate transporter anion currents. Presynaptic quantal event frequency was reduced by Cd(2+) or by increased intracellular Ca(2+) buffering in rods, but not in cones, that were voltage clamped at -70 mV. By inhibiting the vesicle cycle with bafilomycin, we found the frequency of mEPSCs declined more rapidly than the amplitude of evoked excitatory post-synaptic currents (EPSCs) suggesting a possible separation between vesicle pools in evoked and spontaneous exocytosis. We mapped sites of Ca(2+) -independent release using total internal reflectance fluorescence (TIRF) microscopy to visualize fusion of individual vesicles loaded with dextran-conjugated pHrodo. Spontaneous release in rods occurred more frequently at non-ribbon sites than evoked release events. The function of Ca(2+) -independent spontaneous release at continuously active photoreceptor synapses remains unclear, but the low frequency of spontaneous quanta limits their impact on noise.

  20. Mechanisms, pools, and sites of spontaneous vesicle release at synapses of rod and cone photoreceptors.

    Science.gov (United States)

    Cork, Karlene M; Van Hook, Matthew J; Thoreson, Wallace B

    2016-08-01

    Photoreceptors have depolarized resting potentials that stimulate calcium-dependent release continuously from a large vesicle pool but neurons can also release vesicles without stimulation. We characterized the Ca(2+) dependence, vesicle pools, and release sites involved in spontaneous release at photoreceptor ribbon synapses. In whole-cell recordings from light-adapted horizontal cells (HCs) of tiger salamander retina, we detected miniature excitatory post-synaptic currents (mEPSCs) when no stimulation was applied to promote exocytosis. Blocking Ca(2+) influx by lowering extracellular Ca(2+) , by application of Cd(2+) and other agents reduced the frequency of mEPSCs but did not eliminate them, indicating that mEPSCs can occur independently of Ca(2+) . We also measured release presynaptically from rods and cones by examining quantal glutamate transporter anion currents. Presynaptic quantal event frequency was reduced by Cd(2+) or by increased intracellular Ca(2+) buffering in rods, but not in cones, that were voltage clamped at -70 mV. By inhibiting the vesicle cycle with bafilomycin, we found the frequency of mEPSCs declined more rapidly than the amplitude of evoked excitatory post-synaptic currents (EPSCs) suggesting a possible separation between vesicle pools in evoked and spontaneous exocytosis. We mapped sites of Ca(2+) -independent release using total internal reflectance fluorescence (TIRF) microscopy to visualize fusion of individual vesicles loaded with dextran-conjugated pHrodo. Spontaneous release in rods occurred more frequently at non-ribbon sites than evoked release events. The function of Ca(2+) -independent spontaneous release at continuously active photoreceptor synapses remains unclear, but the low frequency of spontaneous quanta limits their impact on noise. PMID:27255664

  1. Vesicles as tools for the modulation of skin permeability.

    Science.gov (United States)

    Dubey, Vaibhav; Mishra, Dinesh; Nahar, Manoj; Jain, Narendra K

    2007-11-01

    Human skin is a remarkably efficient barrier designed to keep our insides in and the outside out. The modulation of this efficient barrier's properties, including its permeability to chemicals, drugs and biologically active agents is the prime target for various dermal, transdermal, drug, antigen and gene delivery approaches. Therefore, several methods have been attempted to enhance the permeation rate of biologically active agents, temporarily and locally. One of the approaches is the application of drug-laden vesicular formulations. This review presents various mechanisms involved in increasing drug transport across the skin via different vesicular approaches, such as liposomes, elastic vesicles and ethosomes, along with compiling the research work conducted in this field. PMID:17970662

  2. Pob1 ensures cylindrical cell shape by coupling two distinct rho signaling events during secretory vesicle targeting.

    Science.gov (United States)

    Nakano, Kentaro; Toya, Mika; Yoneda, Aki; Asami, Yukiko; Yamashita, Akira; Kamasawa, Naomi; Osumi, Masako; Yamamoto, Masayuki

    2011-06-01

    Proper cell morphogenesis requires the co-ordination of cell polarity, cytoskeletal organization and vesicle trafficking. The Schizosaccharomyces pombe mutant pob1-664 has a curious lemon-like shape, the basis of which is not understood. Here, we found abundant vesicle accumulation in these cells, suggesting that Pob1 plays a role in vesicle trafficking. We identified Rho3 as a multicopy suppressor of this phenotype. Because Rho3 function is related to For3, an actin-polymerizing protein, and Sec8, a component of the exocyst complex, we analyzed their functional relationship with Pob1. Pob1 was essential for the formation of actin cables (by interacting with For3) and for the polarized localization of Sec8. Although neither For3 nor Sec8 is essential for polarized growth, their simultaneous disruption prevented tip growth and yielded a lemon-like cell morphology similar to pob1-664. Thus, Pob1 may ensure cylindrical cell shape of S. pombe by coupling actin-mediated vesicle transport and exocyst-mediated vesicle tethering during secretory vesicle targeting.

  3. SpatTrack: an imaging toolbox for analysis of vesicle motility and distribution in living cells

    DEFF Research Database (Denmark)

    Lund, Frederik Wendelboe; Jensen, Marie Louise; Christensen, Tanja;

    2014-01-01

    The endocytic pathway is a complex network of highly dynamic organelles, which has been traditionally studied by quantitative fluorescence microscopy. The data generated by this method can be overwhelming and its analysis, even for the skilled microscopist, is tedious and error-prone. We developed...... SpatTrack, an open source, platform-independent program collecting a variety of methods for analysis of vesicle dynamics and distribution in living cells. SpatTrack performs 2D particle tracking, trajectory analysis and fitting of diffusion models to the calculated mean square displacement. It allows...... a subpopulation of late endosomes/lysosomes (LE/LYSs). This was paralleled by repositioning and active transport of NPC2-containing vesicles to the cell surface. The potential of SpatTrack for other applications in intracellular transport studies will be discussed....

  4. Salt-free vesicle-phases and their template effect

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Researches on the construction, structure, and formation of vesicles formed from surfactants have attracted great attention from colloid and interface chemists. The vesicles formed from salt-free cationic-anionic surfactant systems are very different from those with excess salts, having many particular properties. In this paper, we introduce the properties of vesicles prepared from salt-free surfactant systems, according to our own results, especially the vesicles formed from surfactants with divalent metal ions as counterions in aqueous solutions and room temperature ionic liquids. Moreover, the primary results on template effect of the metal-ligand vesicles have also been summarized.

  5. Genetically Controlled Fusion, Exocytosis and Fission of Artificial Vesicles

    DEFF Research Database (Denmark)

    Bönzli, Eva; Hadorn, Maik; De Lucrezia, Davide;

    Artificial vesicles represent ideal candidates as a model for artificial cells. It was shown that artificial genetic programs and the required cellular machinery (cell-free expression systems) can be incorporated into vesicles and allow the synthesis of proteins. Vesicles were shown to fuse...... vesicles in the presence of peptides. This project may present a step towards personalized drug delivery. Specific drugs or prodrugs enclosed into vesicles may be released upon an external signal related to a disease, e.g. a tumor, to activate gene expression and synthesis of fusion peptides to induce...

  6. Display of GPI-anchored anti-EGFR nanobodies on extracellular vesicles promotes tumour cell targeting

    OpenAIRE

    Sander A. A. Kooijmans; Gómez Aleza, Clara; Roffler, Steve R; van Solinge, Wouter W.; Vader, Pieter; Schiffelers, Raymond M.

    2016-01-01

    Background: Extracellular vesicles (EVs) are attractive candidate drug delivery systems due to their ability to functionally transport biological cargo to recipient cells. However, the apparent lack of target cell specificity of exogenously administered EVs limits their therapeutic applicability. In this study, we propose a novel method to equip EVs with targeting properties, in order to improve their interaction with tumour cells.Methods: EV producing cells were transfected with vectors enco...

  7. Role of vesicle tethering factors in the ER-Golgi membrane traffic

    OpenAIRE

    Sztul, Elizabeth; Lupashin, Vladimir

    2009-01-01

    Tethers are a diverse group of loosely related proteins and protein complexes grouped into 3 families based on structural and functional similarities. A well-accepted role for tethering factors is the initial attachment of transport carriers to acceptor membranes prior to fusion. However, accumulating evidence indicates that tethers are more than static bridges. Tethers have been shown to interact with components of the fusion machinery and with components involved in vesicle formation. Tethe...

  8. Mutations in human dynamin block an intermediate stage in coated vesicle formation

    OpenAIRE

    1993-01-01

    The role of human dynamin in receptor-mediated endocytosis was investigated by transient expression of GTP-binding domain mutants in mammalian cells. Using assays which detect intermediates in coated vesicle formation, the dynamin mutants were found to block endocytosis at a stage after the initiation of coat assembly and preceding the sequestration of ligands into deeply invaginated coated pits. Membrane transport from the ER to the Golgi complex was unaffected indicating that dynamin mutant...

  9. Extracellular Vesicles and a Novel Form of Communication in the Brain

    OpenAIRE

    Basso, Manuela; Bonetto, Valentina

    2016-01-01

    In numerous neurodegenerative diseases, the interplay between neurons and glia modulates the outcome and progression of pathology. One particularly intriguing mode of interaction between neurons, astrocytes, microglia, and oligodendrocytes is characterized by the release of extracellular vesicles that transport proteins, lipids, and nucleotides from one cell to another. Notably, several proteins that cause disease, including the prion protein and mutant SOD1, have been detected in glia-derive...

  10. Surface degassing and modifications to vesicle size distributions in active basalt flows

    Science.gov (United States)

    Cashman, K.V.; Mangan, M.T.; Newman, S.

    1994-01-01

    The character of the vesicle population in lava flows includes several measurable parameters that may provide important constraints on lava flow dynamics and rheology. Interpretation of vesicle size distributions (VSDs), however, requires an understanding of vesiculation processes in feeder conduits, and of post-eruption modifications to VSDs during transport and emplacement. To this end we collected samples from active basalt flows at Kilauea Volcano: (1) near the effusive Kupaianaha vent; (2) through skylights in the approximately isothermal Wahaula and Kamoamoa tube systems transporting lava to the coast; (3) from surface breakouts at different locations along the lava tubes; and (4) from different locations in a single breakout from a lava tube 1 km from the 51 vent at Pu'u 'O'o. Near-vent samples are characterized by VSDs that show exponentially decreasing numbers of vesicles with increasing vesicle size. These size distributions suggest that nucleation and growth of bubbles were continuous during ascent in the conduit, with minor associated bubble coalescence resulting from differential bubble rise. The entire vesicle population can be attributed to shallow exsolution of H2O-dominated gases at rates consistent with those predicted by simple diffusion models. Measurements of H2O, CO2 and S in the matrix glass show that the melt equilibrated rapidly at atmospheric pressure. Down-tube samples maintain similar VSD forms but show a progressive decrease in both overall vesicularity and mean vesicle size. We attribute this change to open system, "passive" rise and escape of larger bubbles to the surface. Such gas loss from the tube system results in the output of 1.2 ?? 106 g/day SO2, an output representing an addition of approximately 1% to overall volatile budget calculations. A steady increase in bubble number density with downstream distance is best explained by continued bubble nucleation at rates of 7-8/cm3s. Rates are ???25% of those estimated from the vent

  11. Interaction of insulin with SDS/CTAB catanionic Vesicles

    International Nuclear Information System (INIS)

    In the present study, a novel method was used for entrapping the protein, insulin into the catanionic SDS/CTAB vesicle membrane. The anionic SDS and cationic CTAB formed catanionic vesicles at particular concentration (35:65 by volume). In this study, vesicle membrane can be considered as model membrane. The vesicle formation and entrapment efficiency depend on the pH of the aqueous solution. The insulin molecules have attached with the vesicular membrane at pH 7.0. However, at acidic pH, the vesicles were ruptured and the insulin did not entrap into the vesicle membrane, whereas at alkaline pH insulin became fibriller. The scanning electron microscope (SEM), Dynamic light scattering (DLS), and Zeta potential studies established the self-assembled structure formation of insulin and catanionic vesicles. To know the protein confirmations, Circular dichroism (CD) was also employed. The temperature dependent steady state and time resolved emission spectroscopy show that at room temperature (25 °C), apart from the 305 nm tyrosine fluorescence, a new emission peak at 450 nm was observed only in case of insulin-vesicle system, and was assigned as the tyrosine phosphorescence. This phosphorescence peak is the signature of the entrapment of insulin into the vesicle membrane. Highlights: • SDS-CTAB based catanionic vesicle has been fabricated. • Insulin has been successfully immobilized on these vesicles. • Immobilized insulin shows room temperature phosphorescence

  12. Interaction of insulin with SDS/CTAB catanionic Vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Tah, Bidisha; Pal, Prabir; Talapatra, G.B., E-mail: spgbt@iacs.res.in

    2014-01-15

    In the present study, a novel method was used for entrapping the protein, insulin into the catanionic SDS/CTAB vesicle membrane. The anionic SDS and cationic CTAB formed catanionic vesicles at particular concentration (35:65 by volume). In this study, vesicle membrane can be considered as model membrane. The vesicle formation and entrapment efficiency depend on the pH of the aqueous solution. The insulin molecules have attached with the vesicular membrane at pH 7.0. However, at acidic pH, the vesicles were ruptured and the insulin did not entrap into the vesicle membrane, whereas at alkaline pH insulin became fibriller. The scanning electron microscope (SEM), Dynamic light scattering (DLS), and Zeta potential studies established the self-assembled structure formation of insulin and catanionic vesicles. To know the protein confirmations, Circular dichroism (CD) was also employed. The temperature dependent steady state and time resolved emission spectroscopy show that at room temperature (25 °C), apart from the 305 nm tyrosine fluorescence, a new emission peak at 450 nm was observed only in case of insulin-vesicle system, and was assigned as the tyrosine phosphorescence. This phosphorescence peak is the signature of the entrapment of insulin into the vesicle membrane. Highlights: • SDS-CTAB based catanionic vesicle has been fabricated. • Insulin has been successfully immobilized on these vesicles. • Immobilized insulin shows room temperature phosphorescence.

  13. Ultrastructural and functional fate of recycled vesicles in hippocampal synapses.

    Science.gov (United States)

    Rey, Stephanie A; Smith, Catherine A; Fowler, Milena W; Crawford, Freya; Burden, Jemima J; Staras, Kevin

    2015-01-01

    Efficient recycling of synaptic vesicles is thought to be critical for sustained information transfer at central terminals. However, the specific contribution that retrieved vesicles make to future transmission events remains unclear. Here we exploit fluorescence and time-stamped electron microscopy to track the functional and positional fate of vesicles endocytosed after readily releasable pool (RRP) stimulation in rat hippocampal synapses. We show that most vesicles are recovered near the active zone but subsequently take up random positions in the cluster, without preferential bias for future use. These vesicles non-selectively queue, advancing towards the release site with further stimulation in an actin-dependent manner. Nonetheless, the small subset of vesicles retrieved recently in the stimulus train persist nearer the active zone and exhibit more privileged use in the next RRP. Our findings reveal heterogeneity in vesicle fate based on nanoscale position and timing rules, providing new insights into the origins of future pool constitution.

  14. The role of Arabidopsis 5PTase13 in root gravitropism through modulation of vesicle trafficking

    Institute of Scientific and Technical Information of China (English)

    Yuan Wang; Wen-Hui Lin; Xu Chen; Hong-Wei Xue

    2009-01-01

    Inositol polyphosphate 5-phosphatases (5PTases) are enzymes of phosphatidylinositoi metabolism that affect various aspects of plant growth and development. Arabidopsis 5PTasel3 regulates auxin homeostasis and hormone-related cotyledon vein development, and here we demonstrate that its knockout mutant 5pt13 has elevated sensitivity to gravistimulation in root gravitropic responses. The altered responses of 5pt13 mutants to 1-N-naphthylphthalamic acid (an auxin transport inhibitor) indicate that 5PTasel3 might be involved in the regulation of auxin transport. Indeed, the auxin efflux carrier PIN2 is expressed more broadly under 5PTasel3 deficiency, and observations of the internalization of the membrane-selective dye FM4-64 reveal altered vesicle trafficking in 5pt13 mutants. Compared with wild-type, 5pt13 mutant seedlings are less sensitive to the inhibition by brefeldin A of vesicle cycling, seedling growth, and the intracellular cycling of the PINI and PIN2 proteins. Further, auxin redistribution upon gravitropic stimulation is stimulated under 5PTasel3 deficiency. These results suggest that 5PTasel3 may modulate auxin trans-port by regulating vesicle trafficking and thereby play a role in root gravitropism.

  15. Membrane-elasticity model of Coatless vesicle budding induced by ESCRT complexes.

    Directory of Open Access Journals (Sweden)

    Bartosz Różycki

    Full Text Available The formation of vesicles is essential for many biological processes, in particular for the trafficking of membrane proteins within cells. The Endosomal Sorting Complex Required for Transport (ESCRT directs membrane budding away from the cytosol. Unlike other vesicle formation pathways, the ESCRT-mediated budding occurs without a protein coat. Here, we propose a minimal model of ESCRT-induced vesicle budding. Our model is based on recent experimental observations from direct fluorescence microscopy imaging that show ESCRT proteins colocalized only in the neck region of membrane buds. The model, cast in the framework of membrane elasticity theory, reproduces the experimentally observed vesicle morphologies with physically meaningful parameters. In this parameter range, the minimum energy configurations of the membrane are coatless buds with ESCRTs localized in the bud neck, consistent with experiment. The minimum energy configurations agree with those seen in the fluorescence images, with respect to both bud shapes and ESCRT protein localization. On the basis of our model, we identify distinct mechanistic pathways for the ESCRT-mediated budding process. The bud size is determined by membrane material parameters, explaining the narrow yet different bud size distributions in vitro and in vivo. Our membrane elasticity model thus sheds light on the energetics and possible mechanisms of ESCRT-induced membrane budding.

  16. Trafficking vesicles: pro or contra pathogens?

    Science.gov (United States)

    Frei dit Frey, Nicolas; Robatzek, Silke

    2009-08-01

    Membrane compartmentalization and trafficking are pivotal for eukaryotic life and demand a higher order of coordination. Even in their resting state, most plant cells exhibit a polarized localization of membrane compartments, which is redirected when plant cells are attacked by microbes. Repositioning of organelles at pathogen penetration sites has been reported since more than a decade; however, only recently has targeted vesicle trafficking upon biotic stress emerged. It has become evident that vesicle secretion and endocytic pathways are engaged in the plant's immune system to actively defend against potential pathogens. By contrast, invasive pathogens have evolved means to utilize these trafficking pathways for the suppression of plant defenses and to the benefit of microbial proliferation. This review summarizes recent findings of host intracellular endomembrane adaptations in response to pathogens and how pathogens exploit them. PMID:19608452

  17. Pulsatile lipid vesicles under osmotic stress

    CERN Document Server

    Chabanon, Morgan; Liedberg, Bo; Parikh, Atul N; Rangamani, Padmini

    2016-01-01

    The response of lipid bilayers to osmotic stress is an important part of cellular function. Previously, in [Oglecka et al. 2014], we reported that cell-sized giant unilamellar vesicles (GUVs) exposed to hypotonic media, respond to the osmotic assault by undergoing a cyclical sequence of swelling and bursting events, coupled to the membrane's compositional degrees of freedom. Here, we seek to deepen our quantitative understanding of the essential pulsatile behavior of GUVs under hypotonic conditions, by advancing a comprehensive theoretical model for vesicle dynamics. The model quantitatively captures our experimentally measured swell-burst parameters for single-component GUVs, and reveals that thermal fluctuations enable rate dependent pore nucleation, driving the dynamics of the swell-burst cycles. We further identify new scaling relationships between the pulsatile dynamics and GUV properties. Our findings provide a fundamental framework that has the potential to guide future investigations on the non-equili...

  18. Docking of secretory vesicles is syntaxin dependent.

    Directory of Open Access Journals (Sweden)

    Heidi de Wit

    Full Text Available Secretory vesicles dock at the plasma membrane before they undergo fusion. Molecular docking mechanisms are poorly defined but believed to be independent of SNARE proteins. Here, we challenged this hypothesis by acute deletion of the target SNARE, syntaxin, in vertebrate neurons and neuroendocrine cells. Deletion resulted in fusion arrest in both systems. No docking defects were observed in synapses, in line with previous observations. However, a drastic reduction in morphologically docked secretory vesicles was observed in chromaffin cells. Syntaxin-deficient chromaffin cells showed a small reduction in total and plasma membrane staining for the docking factor Munc18-1, which appears insufficient to explain the drastic reduction in docking. The sub-membrane cortical actin network was unaffected by syntaxin deletion. These observations expose a docking role for syntaxin in the neuroendocrine system. Additional layers of regulation may have evolved to make syntaxin redundant for docking in highly specialized systems like synaptic active zones.

  19. Ciliary extracellular vesicles: Txt msg orgnlls

    OpenAIRE

    WANG, Juan; Barr, Maureen M.

    2016-01-01

    Cilia are sensory organelles that protrude from cell surfaces to monitor the surrounding environment. In addition to its role as sensory receiver, the cilium also releases extracellular vesicles (EVs). The release of sub-micron sized EVs is a conserved form of intercellular communication used by all three kingdoms of life. These extracellular organelles play important roles in both short and long range signaling between donor and target cells and may coordinate systemic responses within an or...

  20. Exosomes : Nano-vesicles in immune regulation

    OpenAIRE

    Johansson, Sara M

    2008-01-01

    Nano-vesicles (30-100 nm) with an endosome-derived limiting membrane are called exosomes. These are released from the cell when the endosome fuses with the outer cell membrane. Exosomes from antigen presenting cells (APC) carry MHC class I and class II as well as integrins, tetraspanins and co-stimulatory molecules. They can either stimulate T cell responses or induce tolerance. Exosomes are presently being evaluated as therapeutic tools but still little is known about their...

  1. Lipid bilayer vesicle generation using microfluidic jetting.

    Science.gov (United States)

    Coyne, Christopher W; Patel, Karan; Heureaux, Johanna; Stachowiak, Jeanne; Fletcher, Daniel A; Liu, Allen P

    2014-01-01

    Bottom-up synthetic biology presents a novel approach for investigating and reconstituting biochemical systems and, potentially, minimal organisms. This emerging field engages engineers, chemists, biologists, and physicists to design and assemble basic biological components into complex, functioning systems from the bottom up. Such bottom-up systems could lead to the development of artificial cells for fundamental biological inquiries and innovative therapies(1,2). Giant unilamellar vesicles (GUVs) can serve as a model platform for synthetic biology due to their cell-like membrane structure and size. Microfluidic jetting, or microjetting, is a technique that allows for the generation of GUVs with controlled size, membrane composition, transmembrane protein incorporation, and encapsulation(3). The basic principle of this method is the use of multiple, high-frequency fluid pulses generated by a piezo-actuated inkjet device to deform a suspended lipid bilayer into a GUV. The process is akin to blowing soap bubbles from a soap film. By varying the composition of the jetted solution, the composition of the encompassing solution, and/or the components included in the bilayer, researchers can apply this technique to create customized vesicles. This paper describes the procedure to generate simple vesicles from a droplet interface bilayer by microjetting. PMID:24637415

  2. Routes and mechanisms of extracellular vesicle uptake

    Directory of Open Access Journals (Sweden)

    Laura Ann Mulcahy

    2014-08-01

    Full Text Available Extracellular vesicles (EVs are small vesicles released by donor cells that can be taken up by recipient cells. Despite their discovery decades ago, it has only recently become apparent that EVs play an important role in cell-to-cell communication. EVs can carry a range of nucleic acids and proteins which can have a significant impact on the phenotype of the recipient. For this phenotypic effect to occur, EVs need to fuse with target cell membranes, either directly with the plasma membrane or with the endosomal membrane after endocytic uptake. EVs are of therapeutic interest because they are deregulated in diseases such as cancer and they could be harnessed to deliver drugs to target cells. It is therefore important to understand the molecular mechanisms by which EVs are taken up into cells. This comprehensive review summarizes current knowledge of EV uptake mechanisms. Cells appear to take up EVs by a variety of endocytic pathways, including clathrin-dependent endocytosis, and clathrin-independent pathways such as caveolin-mediated uptake, macropinocytosis, phagocytosis, and lipid raft–mediated internalization. Indeed, it seems likely that a heterogeneous population of EVs may gain entry into a cell via more than one route. The uptake mechanism used by a given EV may depend on proteins and glycoproteins found on the surface of both the vesicle and the target cell. Further research is needed to understand the precise rules that underpin EV entry into cells.

  3. Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements.

    Science.gov (United States)

    Cevc, Gregor; Schätzlein, Andreas; Richardsen, Holger

    2002-08-19

    The stability of various aggregates in the form of lipid bilayer vesicles was tested by three different methods before and after crossing different semi-permeable barriers. First, polymer membranes with pores significantly smaller than the average aggregate diameter were used as the skin barrier model; dynamic light scattering was employed to monitor vesicle size changes after barrier passage for several lipid mixtures with different bilayer elasticities. This revealed that vesicles must adapt their size and/or shape, dependent on bilayer stability and elasto-mechanics, to overcome an otherwise confining pore. For the mixed lipid aggregates with highly flexible bilayers (Transfersomes), the change is transient and only involves vesicle shape and volume adaptation. The constancy of ultradeformable vesicle size before and after pores penetration proves this. This is remarkable in light of the very strong aggregate deformation during an enforced barrier passage. Simple phosphatidylcholine vesicles, with less flexible bilayers, lack such capability and stability. Conventional liposomes are therefore fractured during transport through a semi-permeable barrier; as reported by other researchers, liposomes are fragmented to the size of a narrow pore if sufficient pressure is applied across the barrier; otherwise, liposomes clog the pores. The precise outcome depends on trans-barrier flux and/or on relative vesicle vs. pore size. Lipid vesicles applied on the skin behave accordingly. Mixed lipid vesicles penetrate the skin if they are sufficiently deformable. If this is the case, they cross inter-cellular constrictions in the organ without significant composition or size modification. To prove this, we labelled vesicles with two different fluorescent markers and applied the suspension on intact murine skin without occlusion. The confocal laser scanning microscopy (CLSM) of the skin then revealed a practically indistinguishable distribution of both labels in the stratum

  4. Release of canine parvovirus from endocytic vesicles.

    Science.gov (United States)

    Suikkanen, Sanna; Antila, Mia; Jaatinen, Anne; Vihinen-Ranta, Maija; Vuento, Matti

    2003-11-25

    Canine parvovirus (CPV) is a small nonenveloped virus with a single-stranded DNA genome. CPV enters cells by clathrin-mediated endocytosis and requires an acidic endosomal step for productive infection. Virion contains a potential nuclear localization signal as well as a phospholipase A(2) like domain in N-terminus of VP1. In this study we characterized the role of PLA(2) activity on CPV entry process. PLA(2) activity of CPV capsids was triggered in vitro by heat or acidic pH. PLA(2) inhibitors inhibited the viral proliferation suggesting that PLA(2) activity is needed for productive infection. The N-terminus of VP1 was exposed during the entry, suggesting that PLA(2) activity might have a role during endocytic entry. The presence of drugs modifying endocytosis (amiloride, bafilomycin A(1), brefeldin A, and monensin) caused viral proteins to remain in endosomal/lysosomal vesicles, even though the drugs were not able to inhibit the exposure of VP1 N-terminal end. These results indicate that the exposure of N-terminus of VP1 alone is not sufficient to allow CPV to proliferate. Some other pH-dependent changes are needed for productive infection. In addition to blocking endocytic entry, amiloride was able to block some postendocytic steps. The ability of CPV to permeabilize endosomal membranes was demonstrated by feeding cells with differently sized rhodamine-conjugated dextrans together with the CPV in the presence or in the absence of amiloride, bafilomycin A(1), brefeldin A, or monensin. Dextran with a molecular weight of 3000 was released from vesicles after 8 h of infection, while dextran with a molecular weight of 10,000 was mainly retained in vesicles. The results suggest that CPV infection does not cause disruption of endosomal vesicles. However, the permeability of endosomal membranes apparently changes during CPV infection, probably due to the PLA(2) activity of the virus. These results suggest that parvoviral PLA(2) activity is essential for productive

  5. Controlled deformation of vesicles by flexible structured media

    Science.gov (United States)

    Zhang, Rui; Zhou, Ye; Martínez-González, José A.; Hernández-Ortiz, Juan P.; Abbott, Nicholas L.; de Pablo, Juan J.

    2016-01-01

    Liquid crystalline (LC) materials, such as actin or tubulin networks, are known to be capable of deforming the shape of cells. Here, elements of that behavior are reproduced in a synthetic system, namely, a giant vesicle suspended in a LC, which we view as a first step toward the preparation of active, anisotropic hybrid systems that mimic some of the functionality encountered in biological systems. To that end, we rely on a coupled particle-continuum representation of deformable networks in a nematic LC represented at the level of a Landau–de Gennes free energy functional. Our results indicate that, depending on its elastic properties, the LC is indeed able to deform the vesicle until it reaches an equilibrium, anisotropic shape. The magnitude of the deformation is determined by a balance of elastic and surface forces. For perpendicular anchoring at the vesicle, a Saturn ring defect forms along the equatorial plane, and the vesicle adopts a pancake-like, oblate shape. For degenerate planar anchoring at the vesicle, two boojum defects are formed at the poles of the vesicle, which adopts an elongated, spheroidal shape. During the deformation, the volume of the topological defects in the LC shrinks considerably as the curvature of the vesicle increases. These predictions are confirmed by our experimental observations of spindle-like shapes in experiments with giant unilamellar vesicles with planar anchoring. We find that the tension of the vesicle suppresses vesicle deformation, whereas anchoring strength and large elastic constants promote shape anisotropy. PMID:27532056

  6. Focus on Extracellular Vesicles: Development of Extracellular Vesicle-Based Therapeutic Systems

    Directory of Open Access Journals (Sweden)

    Shin-ichiro Ohno

    2016-02-01

    Full Text Available Many types of cells release phospholipid membrane vesicles thought to play key roles in cell-cell communication, antigen presentation, and the spread of infectious agents. Extracellular vesicles (EVs carry various proteins, messenger RNAs (mRNAs, and microRNAs (miRNAs, like a “message in a bottle” to cells in remote locations. The encapsulated molecules are protected from multiple types of degradative enzymes in body fluids, making EVs ideal for delivering drugs. This review presents an overview of the potential roles of EVs as natural drugs and novel drug-delivery systems.

  7. Metabolic and Signaling Functions of Cancer Cell-Derived Extracellular Vesicles.

    Science.gov (United States)

    Fonseca, P; Vardaki, I; Occhionero, A; Panaretakis, T

    2016-01-01

    Extracellular vesicles have gained tremendous attention in the recent years as a novel mechanism of cell to cell communication. There are several types of extracellular vesicles, including exosomes, microvesicles, exosome, like vesicles, apoptotic bodies that differ mainly in the mechanism of biogenesis and secretion. The most well studied type of extracellular vesicles are the exosomes which are endosome-derived vesicles with a diameter of 50-150nm and enriched in ESCRT proteins including Alix, TSG101, Hsp70, and tetraspanins. It is now well established that exosomes promote tumor growth, alter the tumor microenvironment, facilitate the dissemination of cancer cells in an organotropic manner, modulate immune responses, and mediate resistance to therapy. Exosomes have also been recently implicated in an emerging hallmark of cancer, the cancer cell metabolism. The metabolic state of the cell defines, to a certain extent, both the rate of secretion and the molecular content of tumor-derived exosomes. Furthermore, exosomes have been shown to possess intrinsic metabolic activity since they can synthesize ATP by glycolysis. It follows that exosomes carry a number of metabolic enzymes and metabolites, including lactate, PGE, LDH isoforms, pyruvate, and monocarboxylate transporters. Last but not the least, exosomes are implicated in fatty acid synthesis and cholesterol metabolism and are thought to be crucial for the transcellular metabolism procedure. Uptake of exosomes is thought to alter the intracellular metabolic state of the cell. In summary, we describe the state of the art on the role of metabolism in the secretion, uptake, and the biological effects of exosomes in the metabolism of recipient cells. PMID:27572129

  8. Development and Characterization of Non-Ionic Surfactant Vesicles (Niosomes for Oral delivery of Lornoxicam

    Directory of Open Access Journals (Sweden)

    K B Bini

    2012-09-01

    Full Text Available Niosomes are non-ionic surfactant vesicles obtained on hydration of synthetic nonionic surfactants, with or without incorporation of cholesterol or other lipids. They are vesicular systems similar to liposomes that can be used as carriers of amphiphilic and lipophilic drugs. Niosomes are promising vehicle for drug delivery and being non-ionic, it is less toxic and improves the therapeutic index of drug by restricting its action to target cells. They are lamellar structures that are microscopic in size. They are now widely used as alternative to liposomes. Niosomal dispersion in an aqueous phase can be emulsified in a non-aqueous phase to regulate the delivery rate of drug and administer normal vesicle in external non-aqueous phase. Stable niosome dispersion must exhibit a constant particle size and a constant level of entrapped drug. Span 60 is the better surfactant of all because it is having high phase transition temperature and low HLB (Hydrophilic Lipophilic Balance so it will form vesicles of good size.one more reason for the selection of span 60 and that was the critical packing factor which is between 0.5 and 1 for this surfactant so it forms spherical vesicles. If CPP factor is below 0.5 it cause micelles to form and if it was above 1 it will form inverted vesicles. Lornoxicam loaded niosomes were prepared by Lipid film hydration method with different surfactant to cholesterol ratio. The niosome formulations were evaluated for FT-IR study,microscopy. The niosomal suspensions were further evaluated for entrapment efficiency, In vitro release study, Kinetic data analysis, Stability study. The formulation F4 which showed higher entrapment efficiency of 80.54 ±0.99. Release was best explained by the zero order kinetics. Kinetic analysis shows that the drug release follows super case II transport diffusion. Niosome formulation has showed appropriate stability for 90 days.

  9. Integration of transport pathways in Yeast

    OpenAIRE

    Alfaro, Gabriel

    2012-01-01

    Cell polarity is maintained via a balance of exocytosis and endocytosis; the protein machinery that mediates these transport processes must be co-ordinated with membrane lipid signals. This lipid signalling is, in part, dependent on the establishment of membrane domains through lipid transport. Cholesterol is transported via a poorly defined route that is independent of vesicle-mediated secretory protein transport. This “non-vesicular” sterol transport is postulated to involve the conserved f...

  10. Deformation of giant lipid bilayer vesicles in shear flow

    OpenAIRE

    Haas,; Blom, C.; Ende, van den, D.; Duits, M. H. G.; Mellema, J.

    1997-01-01

    We describe experimental studies of the deformation of giant lipid bilayer vesicles in shear flow. The experiments are carried out with a counterrotating Couette apparatus. The deformation depends on the mechanical properties of the lipid bilayer, the vesicle radius, and the viscosity of the surrounding Newtonian liquid. We show that the relevant mechanical parameter is the bending rigidity. A simple model has been developed that describes the deformation of a vesicle. This model takes therma...

  11. From Vesicles to Protocells: The Roles of Amphiphilic Molecules

    OpenAIRE

    Yuka Sakuma; Masayuki Imai

    2015-01-01

    It is very challenging to construct protocells from molecular assemblies. An important step in this challenge is the achievement of vesicle dynamics that are relevant to cellular functions, such as membrane trafficking and self-reproduction, using amphiphilic molecules. Soft matter physics will play an important role in the development of vesicles that have these functions. Here, we show that simple binary phospholipid vesicles have the potential to reproduce the relevant functions of adhes...

  12. ETHOSOMES AS ELASTIC VESICLES IN TRANSDERMAL DRUG DELIVERY: AN OVERVIEW

    OpenAIRE

    N. B. Gupta et al.

    2012-01-01

    Ethosomes are as novel vesicles in transdermal drug delivery show significant effects of drug penetration through the biological membrane with slight modification of well established drug carrier liposomes. Ethosomes are soft, malleable vesicles composed mainly of phospholipids, ethanol and water. The size of ethosome vesicles can be modulated from tens of nanometer to microns. The ethosomes can be prepared by Hot as well as Cold method. The evaluation parameters of ethosomes include visualiz...

  13. Spontaneous vesicle formation from DSB/AOT mixed system

    Institute of Scientific and Technical Information of China (English)

    CHEN Wenjun; ZHAI Limin; LI Ganzuo; MENG Xiangguang; ZENG Xiancheng

    2003-01-01

    Spontaneous vesicles from the aqueous mixtures of dodecyl sulfonate betaine (DSB) and sodium bis (2-ethylhexyl) sulfosuccinate (AOT) at certain mixingratios have been demonstrated by using calorimetry, freeze-frac- ture transmission electronic microscopy (TEM), negative- staining TEM and dynamic light scattering (DLS) methods. The addition of NaCl will promote vesicle formation and the heat effect of monodisperse vesicle system is greatest. Meanwhile the mechanism was analyzed from the viewpoint of packing parameter f, molecular geometry structure and interaction.

  14. SpatTrack: an imaging toolbox for analysis of vesicle motility and distribution in living cells.

    Science.gov (United States)

    Lund, Frederik W; Jensen, Maria Louise V; Christensen, Tanja; Nielsen, Gitte K; Heegaard, Christian W; Wüstner, Daniel

    2014-12-01

    The endocytic pathway is a complex network of highly dynamic organelles, which has been traditionally studied by quantitative fluorescence microscopy. The data generated by this method can be overwhelming and its analysis, even for the skilled microscopist, is tedious and error-prone. We developed SpatTrack, an open source, platform-independent program collecting a variety of methods for analysis of vesicle dynamics and distribution in living cells. SpatTrack performs 2D particle tracking, trajectory analysis and fitting of diffusion models to the calculated mean square displacement. It allows for spatial analysis of detected vesicle patterns including calculation of the radial distribution function and particle-based colocalization. Importantly, all analysis tools are supported by Monte Carlo simulations of synthetic images. This allows the user to assess the reliability of the analysis and to study alternative scenarios. We demonstrate the functionality of SpatTrack by performing a detailed imaging study of internalized fluorescence-tagged Niemann Pick C2 (NPC2) protein in human disease fibroblasts. Using SpatTrack, we show that NPC2 rescued the cholesterol-storage phenotype from a subpopulation of late endosomes/lysosomes (LE/LYSs). This was paralleled by repositioning and active transport of NPC2-containing vesicles to the cell surface. The potential of SpatTrack for other applications in intracellular transport studies will be discussed.

  15. Membrane trafficking. The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins.

    Science.gov (United States)

    Wong, Mie; Munro, Sean

    2014-10-31

    The Golgi apparatus is a multicompartment central sorting station at the intersection of secretory and endocytic vesicular traffic. The mechanisms that permit cargo-loaded transport vesicles from different origins to selectively access different Golgi compartments are incompletely understood. We developed a rerouting and capture assay to investigate systematically the vesicle-tethering activities of 10 widely conserved golgin coiled-coil proteins. We find that subsets of golgins with distinct localizations on the Golgi surface have capture activities toward vesicles of different origins. These findings demonstrate that golgins act as tethers in vivo, and hence the specificity we find to be encoded in this tethering is likely to make a major contribution to the organization of membrane traffic at the Golgi apparatus.

  16. Floating Escherichia coli by expressing cyanobacterial gas vesicle genes

    Science.gov (United States)

    Wang, Tianhe; Kang, Li; Li, Jiaheng; Wu, Wenjie; Zhang, Peiran; Gong, Minghao; Lai, Weihong; Zhang, Chunyan; Chang, Lei; Peng, Yong; Yang, Zhongzhou; Li, Lian; Bao, Yingying; Xu, Haowen; Zhang, Xiaohua; Sui, Zhenghong; Yang, Guanpin; Wang, Xianghong

    2015-02-01

    Gas vesicles are hollow, air-filled polyprotein structures that provide the buoyancy to cells. They are found in a variety of prokaryotes. In this study, we isolated a partial gas vesicle protein gene cluster containing gvpA and gvpC20Ψ from Planktothrix rubescens, and inserted it into an expression vector and expressed it in E. coli. The gas vesicle was developed in bacterial cells, which made bacterial cells to float on medium surface. We also amplified gvpA and gvpC20Ψ separately and synthesized an artificial operon by fusing these two genes with the standardized gene expression controlling elements of E. coli. The artificial operon was expressed in E. coli, forming gas vesicles and floating bacteria cells. Our findings verified that the whole set of genes and the overall structure of gas vesicle gene cluster are not necessary for developing gas vesicles in bacteria cells. Two genes, gvpA and gvpC20Ψ, of the gas vesicle gene cluster are sufficient for synthesizing an artificial operon that can develop gas vesicles in bacteria cells. Our findings provided a wide range of applications including easing the harvest of cultured microalgae and bacteria, as well as enriching and remediating aquatic pollutants by constructing gas vesicles in their cells.

  17. From Vesicles to Protocells: The Roles of Amphiphilic Molecules

    Directory of Open Access Journals (Sweden)

    Yuka Sakuma

    2015-03-01

    Full Text Available It is very challenging to construct protocells from molecular assemblies. An important step in this challenge is the achievement of vesicle dynamics that are relevant to cellular functions, such as membrane trafficking and self-reproduction, using amphiphilic molecules. Soft matter physics will play an important role in the development of vesicles that have these functions. Here, we show that simple binary phospholipid vesicles have the potential to reproduce the relevant functions of adhesion, pore formation and self-reproduction of vesicles, by coupling the lipid geometries (spontaneous curvatures and the phase separation. This achievement will elucidate the pathway from molecular assembly to cellular life.

  18. From vesicles to protocells: the roles of amphiphilic molecules.

    Science.gov (United States)

    Sakuma, Yuka; Imai, Masayuki

    2015-01-01

    It is very challenging to construct protocells from molecular assemblies. An important step in this challenge is the achievement of vesicle dynamics that are relevant to cellular functions, such as membrane trafficking and self-reproduction, using amphiphilic molecules. Soft matter physics will play an important role in the development of vesicles that have these functions. Here, we show that simple binary phospholipid vesicles have the potential to reproduce the relevant functions of adhesion, pore formation and self-reproduction of vesicles, by coupling the lipid geometries (spontaneous curvatures) and the phase separation. This achievement will elucidate the pathway from molecular assembly to cellular life. PMID:25738256

  19. Aminosilane/oleic acid vesicles as model membranes of protocells.

    Science.gov (United States)

    Douliez, Jean-Paul; Zhendre, Vanessa; Grélard, Axelle; Dufourc, Erick J

    2014-12-16

    Oleic acid vesicles represent good models of membrane protocells that could have existed in prebiotic times. Here, we report the formation, growth polymorphism, and dynamics of oleic acid spherical vesicles (1-10 μm), stable elongated vesicles (>50 μm length; 1-3 μm diameter), and chains of vesicles (pearl necklaces, >50 μm length; 1-3 μm diameter) in the presence of aminopropyl triethoxysilane and guanidine hydrochloride. These vesicles exhibit a remarkable behavior with temperature: spherical vesicles only are observed when keeping the sample at 4 °C for 2 h, and self-aggregated spherical vesicles occur upon freezing/unfreezing (-20/20 °C) samples. Rather homogeneous elongated vesicles are reformed upon heating samples at 80 °C. The phenomenon is reversible through cycles of freezing/heating or cooling/heating of the same sample. Deuterium NMR evidences a chain packing rigidity similar to that of phospholipid bilayers in cellular biomembranes. We expect these bilayered vesicles to be surrounded by a layer of aminosilane oligomers, offering a variant model for membrane protocells. PMID:25420203

  20. Sugar-Decorated Sugar Vesicles : Lectin-Carbohydrate Recognition at the Surface of Cyclodextrin Vesicles

    NARCIS (Netherlands)

    Voskuhl, Jens; Stuart, Marc C. A.; Ravoo, Bart Jan

    2010-01-01

    An artificial glycocalix self-assembles when unilamellar bilayer vesicles of amphiphilic beta-cyclodextrins are decorated with maltose and lactose by host-guest interactions. To this end, maltose and lactose were conjugated with adamantane through a tetra(ethyleneglycol) spacer. Both carbohydrate-ad

  1. Nonenzymatic glycation of phosphatidylethanolamine in erythrocyte vesicles

    International Nuclear Information System (INIS)

    Unsealed inside-out and right-side out vesicles were prepared from human red cells. The vesicles were incubated with D-glucose [14C(U)] and sodium cyanoborohydride in phosphate buffer, pH 7.4. After incubation, lipids were extracted with 1-butanol and non-lipid contaminants removed by Sephadex G-25 chromatography. Phosphatidylethanolamine-sorbitol was purified by chromatography on columns of silicic acid and phenylboronate agarose gel. Phospholipase C (B. cereus) liberated phosphoethanolamine-sorbitol (I) which comigrated on TLC with synthetic I prepared by reductive condensation of phosphoethanolamine and D-glucose and also with the product of phospholipase C (B. cereus) hydrolysis of reference phosphatidylethanolamine-sorbitol. Exposure of I to alkaline phosphatase (E. coli) gave P/sub i/ and ethanolamine-sorbitol (II) which comigrated on TLC with synthetic II prepared by reductive condensation of ethanolamine and D-glucose or by phospholipase D hydrolysis of reference phosphatidylethanolamine-sorbitol. These studies demonstrate that vesicular phosphatidylethanolamine can be reductively glycated and illustrate the applicability of both phospholipase C and phospholipase D in characterizing glycated phosphoglycerides

  2. Role of Extracellular Vesicles in Hematological Malignancies

    Directory of Open Access Journals (Sweden)

    Stefania Raimondo

    2015-01-01

    Full Text Available In recent years the role of tumor microenvironment in the progression of hematological malignancies has been widely recognized. Recent studies have focused on how cancer cells communicate within the microenvironment. Among several factors (cytokines, growth factors, and ECM molecules, a key role has been attributed to extracellular vesicles (EV, released from different cell types. EV (microvesicles and exosomes may affect stroma remodeling, host cell functions, and tumor angiogenesis by inducing gene expression modulation in target cells, thus promoting cancer progression and metastasis. Microvesicles and exosomes can be recovered from the blood and other body fluids of cancer patients and contain and deliver genetic and proteomic contents that reflect the cell of origin, thus constituting a source of new predictive biomarkers involved in cancer development and serving as possible targets for therapies. Moreover, due to their specific cell-tropism and bioavailability, EV can be considered natural vehicles suitable for drug delivery. Here we will discuss the recent advances in the field of EV as actors in hematological cancer progression, pointing out the role of these vesicles in the tumor-host interplay and in their use as biomarkers for hematological malignancies.

  3. Vesicle trafficking in plant immune responses.

    Science.gov (United States)

    Robatzek, Silke

    2007-01-01

    In plants, perception of pathogen-associated molecular patterns at the surface is the first line of defence in cellular immunity. This review summarizes recent evidence of the involvement of vesicle trafficking in the plant's immune response against pathogens. I first discuss aspects of ligand-stimulated receptor endocytosis. The best-characterized pattern-recognition receptor (PRR), FLS2, is a transmembrane leucine-rich repeat receptor kinase that recognizes bacterial flagellin. FLS2 was recently shown to undergo internalization upon activation with its cognate ligand. An animal PRR, TLR4 that mediates perception of bacterial-derived lipopolysaccharides, similarly exhibits ligand-stimulated endocytosis. The second focus is N-ethylmaleimide-sensitive factor adaptor protein receptor (SNARE)-mediated immunity involving syntaxins and their cognate partners. One of the genes involved in basal immunity in Arabidopsis, PEN1, encodes a syntaxin that focally accumulates at fungal penetration sites, raising the possibility that induced exocytosis is important for active defence. Pathogen-triggered endocytic and exocytic processes have to be balanced to ensure host cell homeostasis. Thus, understanding how phytopathogens have evolved strategies to exploit host cell vesicle trafficking to manipulate immune responses is currently an area of intense study. PMID:17081192

  4. Coated vesicles contain a phosphatidylinositol kinase

    International Nuclear Information System (INIS)

    When coated vesicles (CVs) are incubated with [gamma-32P]ATP, radioactivity is rapidly incorporated into a compound identified by thin layer chromatography as phosphatidylinositol 4-phosphate. This activity has been identified in CVs isolated from bovine brain as well as from rat liver and chick embryo skeletal muscle. Phosphatidylinositol (PI) kinase is not separated from CVs during agarose electrophoresis, which produces CVs of greater than 95% purity, indicating that the activity present does not derive from contamination. The specific activity of these highly purified CVs was demonstrated to be approximately twice that of synaptic plasma membranes, further ruling out contamination from this source. The PI kinase remains associated with the vesicle upon removal of clathrin and its associated proteins and is solubilized by nonionic detergents, suggesting it is an integral membrane protein. The authors have been unable to demonstrate the formation of significant amounts of phosphatidylinositol 4,5-bisphosphate in any of the CV preparations. In the presence of exogenous PI, activity is stimulated, with maximal phosphorylation occurring at 0.1 mM. The enzyme appears to be maximally stimulated by 200 mM MgCl2 and 1 mM ATP and is most active at pH 7.25. Calculations indicate that, under optimal conditions, approximately 25 molecules of PIP are produced per CV within 60 s, suggesting that these structures may play an important role in cellular PI metabolism

  5. Bacterial outer membrane vesicles and vaccine applications.

    Science.gov (United States)

    Acevedo, Reinaldo; Fernández, Sonsire; Zayas, Caridad; Acosta, Armando; Sarmiento, Maria Elena; Ferro, Valerie A; Rosenqvist, Einar; Campa, Concepcion; Cardoso, Daniel; Garcia, Luis; Perez, Jose Luis

    2014-01-01

    Vaccines based on outer membrane vesicles (OMV) were developed more than 20 years ago against Neisseria meningitidis serogroup B. These nano-sized structures exhibit remarkable potential for immunomodulation of immune responses and delivery of meningococcal antigens or unrelated antigens incorporated into the vesicle structure. This paper reviews different applications in OMV Research and Development (R&D) and provides examples of OMV developed and evaluated at the Finlay Institute in Cuba. A Good Manufacturing Practice (GMP) process was developed at the Finlay Institute to produce OMV from N. meningitidis serogroup B (dOMVB) using detergent extraction. Subsequently, OMV from N. meningitidis, serogroup A (dOMVA), serogroup W (dOMVW), and serogroup X (dOMVX) were obtained using this process. More recently, the extraction process has also been applied effectively for obtaining OMV on a research scale from Vibrio cholerae (dOMVC), Bordetella pertussis (dOMVBP), Mycobacterium smegmatis (dOMVSM), and BCG (dOMVBCG). The immunogenicity of the OMV has been evaluated for specific antibody induction, and together with functional bactericidal and challenge assays in mice has shown their protective potential. dOMVB has been evaluated with non-neisserial antigens, including with a herpes virus type 2 glycoprotein, ovalbumin, and allergens. In conclusion, OMV are proving to be more versatile than first conceived and remain an important technology for development of vaccine candidates. PMID:24715891

  6. BACTERIAL OUTER MEMBRANE VESICLES AND VACCINE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Reinaldo eAcevedo

    2014-03-01

    Full Text Available Vaccines based on outer membrane vesicles (OMV were developed more than 20 years ago against Neisseria meningitidis serogroup B. These nano-sized structures exhibit remarkable potential for immunomodulation of immune responses and delivery of self meningococcal antigens or unrelated antigens incorporated into the vesicle structure. This paper reviews different applications in OMV Research and Development (R&D and provides examples of OMV developed and evaluated at the Finlay Institute in Cuba. A Good Manufacturing Practice (GMP process was developed at the Finlay Institute to produce OMV from N. meningitidis serogroup B (dOMVB using detergent extraction. Subsequently, OMV from N. meningitidis, serogroup A (dOMVA, serogroup W (dOMVW and serogroup X (dOMVX were obtained using this process. More recently, the extraction process has also been applied effectively for obtaining OMV on a research scale from Vibrio cholerae (dOMVC, Bordetella pertussis (dOMVBP, Mycobacterium smegmatis (dOMVSM and BCG (dOMVBCG. The immunogenicity of the OMV have been evaluated for specific antibody induction, and together with functional bactericidal and challenge assays in mice have shown their protective potential. dOMVB has been evaluated with non-self neisserial antigens, including with a herpes virus type 2 glycoprotein, ovalbumin and allergens. In conclusion, OMV are proving to be more versatile than first conceived and remain an important technology for development of vaccine candidates.

  7. In vivo neuron-wide analysis of synaptic vesicle precursor trafficking.

    Science.gov (United States)

    Maeder, Celine I; San-Miguel, Adriana; Wu, Emily Ye; Lu, Hang; Shen, Kang

    2014-03-01

    During synapse development, synaptic proteins must be targeted to sites of presynaptic release. Directed transport as well as local sequestration of synaptic vesicle precursors (SVPs), membranous organelles containing many synaptic proteins, might contribute to this process. Using neuron-wide time-lapse microscopy, we studied SVP dynamics in the DA9 motor neuron in Caenorhabditis elegans. SVP transport was highly dynamic and bi-directional throughout the entire neuron, including the dendrite. While SVP trafficking was anterogradely biased in axonal segments prior to the synaptic domain, directionality of SVP movement was stochastic in the dendrite and distal axon. Furthermore, frequency of movement and speed were variable between different compartments. These data provide evidence that SVP transport is differentially regulated in distinct neuronal domains. It also suggests that polarized SVP transport in concert with local vesicle capturing is necessary for accurate presynapse formation and maintenance. SVP trafficking analysis of two hypomorphs for UNC-104/KIF1A in combination with mathematical modeling identified directionality of movement, entry of SVPs into the axon as well as axonal speeds as the important determinants of steady-state SVP distributions. Furthermore, detailed dissection of speed distributions for wild-type and unc-104/kif1a mutant animals revealed an unexpected role for UNC-104/KIF1A in dendritic SVP trafficking.

  8. Interaction of Phenol-Soluble Modulins with Phosphatidylcholine Vesicles

    Directory of Open Access Journals (Sweden)

    Anthony C. Duong

    2012-07-01

    Full Text Available Several members of the staphylococcal phenol-soluble modulin (PSM peptide family exhibit pronounced capacities to lyse eukaryotic cells, such as neutrophils, monocytes, and erythrocytes. This is commonly assumed to be due to the amphipathic, α-helical structure of PSMs, giving PSMs detergent-like characteristics and allowing for a relatively non-specific destruction of biological membranes. However, the capacities of PSMs to lyse synthetic phospholipid vesicles have not been investigated. Here, we analyzed lysis of synthetic phosphatidylcholine (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC vesicles by all Staphylococcus aureus and S. epidermidis PSMs. In addition, we investigated the lytic capacities of culture filtrates obtained from different S. aureus PSM deletion mutants toward POPC vesicles. Our results show that all staphylococcal PSMs have phospholipid vesicle-lysing activity and the capacity of S. aureus culture filtrate to lyse POPC vesicles is exclusively dependent on PSMs. Notably, we observed largely differing capacities among PSM peptides to lyse POPC vesicles. Interestingly, POPC vesicle-lytic capacities did not correlate with those previously seen for the lysis of eukaryotic cells. For example, the β-type PSMs were strongly lytic for POPC vesicles, but are known to exhibit only very low lytic capacities toward neutrophils and erythrocytes. Thus our results also suggest that the interaction between PSMs and eukaryotic membranes is more specific than previously assumed, potentially depending on additional structural features of those membranes, such as phospholipid composition or yet unidentified docking molecules.

  9. Deformation of giant lipid bilayer vesicles in shear flow

    NARCIS (Netherlands)

    Haas, de K.H.; Blom, C.; Ende, van den D.; Duits, M.H.G.; Mellema, J.

    1997-01-01

    We describe experimental studies of the deformation of giant lipid bilayer vesicles in shear flow. The experiments are carried out with a counterrotating Couette apparatus. The deformation depends on the mechanical properties of the lipid bilayer, the vesicle radius, and the viscosity of the surroun

  10. Polydiacetylene vesicles as a novel drug sustained-release system.

    Science.gov (United States)

    Guo, Caixin; Liu, Shaoqin; Dai, Zhifei; Jiang, Chang; Li, Wenyuan

    2010-03-01

    Aiming at the enhancement of the physicochemical stability as well as the sustained-release property of conventional liposomes, a novel polymerized vesicular carrier, 10,12-pentacosadiynoic acid (PCDA) vesicles, loaded with paclitaxel as a model hydrophobic drug has been successfully constituted by incorporation of a polymerizable diacetylene into the lipid bilayer vesicles. The polymerized vesicles have been characterized in terms of particle size distribution and zeta-potential. Altering their lipid composition causes the zeta-potential to change from -3+/-1mV to more than -25mV, with a concomitant change in particle size distribution from 29+/-4nm to 149+/-18nm. Dynamic light scattering (DLS) showed that the stability of polymerized vesicles against Triton X-100 was improved greatly compared with the conventional liposomes. In vitro drug release studies show that PCDA-incorporating vesicles reduce the paclitaxel release over the conventional phospholipids vesicles. 69+/-6% paclitaxel is released within 24h from the conventional vesicles, but the insertion of 50% and 75% molar ratio of PCDA changes the amount to 57+/-1% and 32+/-4%, respectively. Our results demonstrate that such novel polymerized vesicles have very good prospect as an anticancer drug carrier. PMID:19896808

  11. Encapsulation of antitumor drug methotrexate in liposome vesicles

    International Nuclear Information System (INIS)

    Liposome vesicles containing antitumor drug methotrexate (MTX) were prepared. MTX was labelled by the tritium ion beam method. After purification by TLC, the specific radioactivity of 3H-MTX was 1.19 GBq/mmol with radiochemical purity orver 95%. Under various forming conditions of liposome vesicles, the efficiency of encapsulation was 21-53%

  12. Slow sedimentation and deformability of charged lipid vesicles.

    Directory of Open Access Journals (Sweden)

    Iván Rey Suárez

    Full Text Available The study of vesicles in suspension is important to understand the complicated dynamics exhibited by cells in in vivo and in vitro. We developed a computer simulation based on the boundary-integral method to model the three dimensional gravity-driven sedimentation of charged vesicles towards a flat surface. The membrane mechanical behavior was modeled using the Helfrich Hamiltonian and near incompressibility of the membrane was enforced via a model which accounts for the thermal fluctuations of the membrane. The simulations were verified and compared to experimental data obtained using suspended vesicles labelled with a fluorescent probe, which allows visualization using fluorescence microscopy and confers the membrane with a negative surface charge. The electrostatic interaction between the vesicle and the surface was modeled using the linear Derjaguin approximation for a low ionic concentration solution. The sedimentation rate as a function of the distance of the vesicle to the surface was determined both experimentally and from the computer simulations. The gap between the vesicle and the surface, as well as the shape of the vesicle at equilibrium were also studied. It was determined that inclusion of the electrostatic interaction is fundamental to accurately predict the sedimentation rate as the vesicle approaches the surface and the size of the gap at equilibrium, we also observed that the presence of charge in the membrane increases its rigidity.

  13. Functionally heterogeneous synaptic vesicle pools support diverse synaptic signalling.

    Science.gov (United States)

    Chamberland, Simon; Tóth, Katalin

    2016-02-15

    Synaptic communication between neurons is a highly dynamic process involving specialized structures. At the level of the presynaptic terminal, neurotransmission is ensured by fusion of vesicles to the membrane, which releases neurotransmitter in the synaptic cleft. Depending on the level of activity experienced by the terminal, the spatiotemporal properties of calcium invasion will dictate the timing and the number of vesicles that need to be released. Diverse presynaptic firing patterns are translated to neurotransmitter release with a distinct temporal feature. Complex patterns of neurotransmitter release can be achieved when different vesicles respond to distinct calcium dynamics in the presynaptic terminal. Specific vesicles from different pools are recruited during various modes of release as the particular molecular composition of their membrane proteins define their functional properties. Such diversity endows the presynaptic terminal with the ability to respond to distinct physiological signals via the mobilization of specific subpopulation of vesicles. There are several mechanisms by which a diverse vesicle population could be generated in single presynaptic terminals, including distinct recycling pathways that utilize various adaptor proteins. Several additional factors could potentially contribute to the development of a heterogeneous vesicle pool such as specialized release sites, spatial segregation within the terminal and specialized delivery pathways. Among these factors molecular heterogeneity plays a central role in defining the functional properties of different subpopulations of vesicles. PMID:26614712

  14. Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community Annotation

    NARCIS (Netherlands)

    H. Kalra (Hina); R.J. Simpson (Richard); H. Ji (Hong); M. Aikawa (Masanori); P. Altevogt (Peter); P. Askenase (Philip); V.C. Bond (Vincent); F.E. Borràs (Francesc); X. Breakefield (Xandra); V. Budnik (Vivian); E. Buzas (Edit); G. Camussi (Giovanni); A. Clayton (Aled); E. Cocucci (Emanuele); J.M. Falcon-Perez (Juan); S. Gabrielsson (Susanne); Y.S. Gho (Yong Song); D. Gupta (Dwijendra); H.C. Harsha (H.); A. Hendrix (An); A.F. Hill (Andrew); J.M. Inal (Jameel); G.W. Jenster (Guido); E.-M. Krämer-Albers (Eva-Maria); S.K. Lim (Sai Kiang); A. Llorente (Alicia); J. Lötvall; A. Marcilla (Antonio); L. Mincheva-Nilsson (Lucia); I. Nazarenko (Irina); C.C.M. van Nieuwland (Carolien); E.N.M. Nolte-'t Hoen (Esther); A. Pandey (Akhilesh); T. Patel (Tushar); M.D. Piper; S. Pluchino (Stefano); T.S.K. Prasad (T. S. Keshava); L. Rajendran (Lawrence); L. Raposo (Luís); M. Record (Michel); G.E. Reid (Gavin); F. Sánchez-Madrid (Francisco); R.M. Schiffelers (Raymond); P. Siljander (Pia); A. Stensballe (Allan); W. Stoorvogel (Willem); D. Taylor (Deborah); C. Thery; H. Valadi (Hadi); B.W.M. van Balkom (Bas); R. Vázquez (Rolando); M. Vidal (Michel); M.H.M. Wauben (Marca); M. Yáñez-Mó (María); M. Zoeller (Margot); S. Mathivanan (Suresh)

    2012-01-01

    textabstractExtracellular vesicles (EVs) are membraneous vesicles released by a variety of cells into their microenvironment. Recent studies have elucidated the role of EVs in intercellular communication, pathogenesis, drug, vaccine and gene-vector delivery, and as possible reservoirs of biomarkers.

  15. Gas vesicles in actinomycetes : old buoys in novel habitats?

    NARCIS (Netherlands)

    Keulen, Geertje van; Hopwood, David A.; Dijkhuizen, Lubbert; Sawers, R. Gary

    2005-01-01

    Gas vesicles are gas-filled prokaryotic organelles that function as flotation devices. This enables planktonic cyanobacteria and halophilic archaea to position themselves within the water column to make optimal use of light and nutrients. Few terrestrial microbes are known to contain gas vesicles. G

  16. ISEV position paper: extracellular vesicle RNA analysis and bioinformatics

    Directory of Open Access Journals (Sweden)

    Andrew F. Hill

    2013-12-01

    Full Text Available Extracellular vesicles (EVs are the collective term for the various vesicles that are released by cells into the extracellular space. Such vesicles include exosomes and microvesicles, which vary by their size and/or protein and genetic cargo. With the discovery that EVs contain genetic material in the form of RNA (evRNA has come the increased interest in these vesicles for their potential use as sources of disease biomarkers and potential therapeutic agents. Rapid developments in the availability of deep sequencing technologies have enabled the study of EV-related RNA in detail. In October 2012, the International Society for Extracellular Vesicles (ISEV held a workshop on “evRNA analysis and bioinformatics.” Here, we report the conclusions of one of the roundtable discussions where we discussed evRNA analysis technologies and provide some guidelines to researchers in the field to consider when performing such analysis.

  17. ETHOSOMES AS ELASTIC VESICLES IN TRANSDERMAL DRUG DELIVERY: AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    N. B. Gupta et al.

    2012-03-01

    Full Text Available Ethosomes are as novel vesicles in transdermal drug delivery show significant effects of drug penetration through the biological membrane with slight modification of well established drug carrier liposomes. Ethosomes are soft, malleable vesicles composed mainly of phospholipids, ethanol and water. The size of ethosome vesicles can be modulated from tens of nanometer to microns. The ethosomes can be prepared by Hot as well as Cold method. The evaluation parameters of ethosomes include visualization, vesicle size and zeta potential, transition temperature, surface tension activity measurement, vesicle stability, drug content, penetration and permeation studies. Ethosomes have been found to be much more efficient at delivering drug to the skin than either liposomes or hydroalcoholic solution. Thus, it can be a logical conclusion that ethosomal formulation possesses promising future in effective dermal/transdermal delivery of bioactive agents.

  18. Slow sedimentation and deformability of charged lipid vesicles

    CERN Document Server

    Suarez, Ivan Rey; Tellez, Gabriel; Gay, Guillaume; Gonzalez-Mancera, Andres

    2013-01-01

    The study of vesicles in suspension is important to understand the complicated dynamics exhibited by cells in vivo and in vitro. We developed a computer simulation based on the boundary-integral method to model the three dimensional gravity-driven sedimentation of charged vesicles towards a flat surface. The membrane mechanical behavior was modeled using the Helfrich Hamiltonian and near incompressibility of the membrane was enforced via a model which accounts for the thermal fluctuations of the membrane. The simulations were verified and compared to experimental data obtained using suspended vesicles labelled with a fluorescent probe, which allows visualization using fluorescence microscopy and confers the membrane with a negative surface charge. The electrostatic interaction between the vesicle and the surface was modeled using the linear Derjaguin approximation for a low ionic concentration solution. The sedimentation rate as a function of the distance of the vesicle to the surface was determined both expe...

  19. Translocation of an Incompressible Vesicle through a Pore.

    Science.gov (United States)

    Shojaei, Hamid R; Muthukumar, Murugappan

    2016-07-01

    We have derived the free energy landscape for the translocation of a single vesicle through a narrow pore by accounting for bending and stretching of the vesicle, and the deformation of the vesicle by the pore. Emergence of a free energy barrier for translocation is a general result, and the magnitude of the barrier is calculated in terms of the various material parameters. The extent of the reduction in the barrier by the presence of an external constant force is calculated. Using the Fokker-Planck formalism, we have calculated the average translocation time corresponding to the various free energy landscapes representing different parameter sets. The dependencies of the average translocation time on the strength of the external force, vesicle size, bending and stretching moduli of the vesicle, and radius and length of the pore are derived, and the computed results are discussed. PMID:27089012

  20. A transient solution for vesicle electrodeformation and relaxation

    CERN Document Server

    Zhang, Jia; Tan, Wenchang; Lin, Hao

    2012-01-01

    A transient analysis for vesicle deformation under DC electric fields is developed. The theory extends from a droplet model, with the additional consideration of a lipid membrane separating two fluids of arbitrary properties. For the latter, both a membrane-charging and a membrane-mechanical model are supplied. The vesicle is assumed to remain spheroidal in shape for all times. The main result is an ODE governing the evolution of the vesicle aspect ratio. The effects of initial membrane tension and pulse length are examined. The model prediction is extensively compared with experimental data, and is shown to accurately capture the system behavior in the regime of no or weak electroporation. More importantly, the comparison reveals that vesicle relaxation obeys a universal behavior regardless of the means of deformation. The process is governed by a single timescale that is a function of the vesicle initial radius, the fluid viscosity, and the initial membrane tension. This universal scaling law can be used to...

  1. ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma and vacuolar membranes

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Y.C.; Liu, C.

    2010-12-28

    Lignin is a complex biopolymer derived primarily from the condensation of three monomeric precursors, the monolignols. The synthesis of monolignols occurs in the cytoplasm. To reach the cell wall where they are oxidized and polymerized, they must be transported across the cell membrane. However, the molecular mechanisms underlying the transport process are unclear. There are conflicting views about whether the transport of these precursors occurs by passive diffusion or is an energized active process; further, we know little about what chemical forms are required. Using isolated plasma and vacuolar membrane vesicles prepared from Arabidopsis, together with applying different transporter inhibitors in the assays, we examined the uptake of monolignols and their derivatives by these native membrane vesicles. We demonstrate that the transport of lignin precursors across plasmalemma and their sequestration into vacuoles are ATP-dependent primary-transport processes, involving ATP-binding cassette-like transporters. Moreover, we show that both plasma and vacuolar membrane vesicles selectively transport different forms of lignin precursors. In the presence of ATP, the inverted plasma membrane vesicles preferentially take up monolignol aglycones, whereas the vacuolar vesicles are more specific for glucoconjugates, suggesting that the different ATP-binding cassette-like transporters recognize different chemical forms in conveying them to distinct sites, and that glucosylation of monolignols is necessary for their vacuolar storage but not required for direct transport into the cell wall in Arabidopsis.

  2. A v-SNARE implicated in intra-Golgi transport

    OpenAIRE

    1996-01-01

    We report the identification of a putative v-SNARE (GOS-28), localized primarily to transport vesicles at the terminal rims of Golgi stacks. In vitro, GOS-28, A Golgi SNARE of 28 kD, is efficiently packaged into Golgi-derived vesicles, which are most likely COPI coated. Antibodies directed against GOS-28 block its ability to bind alpha-SNAP, partially inhibit transport from the cis to the medial cisternae, and do not inhibit budding of COP-coated vesicles, but do accumulate docked uncoated ve...

  3. Physicochemical characterization of surfactant incorporating vesicles that incorporate colloidal magnetite.

    Science.gov (United States)

    de Melo Barbosa, Raquel; Luna Finkler, Christine L; Bentley, Maria Vitória L B; Santana, Maria Helena A

    2013-03-01

    Drug administration through the transdermal route has optimized for the comfort of patients and easy application. However, the main limitation of transdermal drug delivery is the impermeability of the human skin. Recent advances on improvement of drug transport through the skin include elastic liposomes as a penetration enhancer. Entrapment of ferrofluids in the core of liposomes produces magnetoliposomes, which can be driven by a high-gradient magnetic field. The association of both strategies could enhance the penetration of elastic liposomes. This work relies on the preparation and characterization of elastic-magnetic liposomes designed to permeate through the skin. The incorporation of colloidal magnetite and the elastic component, octaethylene glycol laurate (PEG-8-L), in the structure of liposomes were evaluated. The capability of the elastic magnetoliposomes for permeation through nanopores of two stacked polycarbonate membranes was compared to conventional and elastic liposomes. Magnetite incorporation was dependent on vesicle diameter and size distribution as well as PEG-8-L incorporation into liposomes, demonstrating the capability of the fluid bilayer to accommodate the surfactant without disruption. On the contrary, PEG-8-L incorporation into magnetoliposomes promoted a decrease of average diameter and a lower PEG-8-L incorporation percentage as a result of reduction on the fluidity of the bilayer imparted by iron incorporation into the lipid structure. Elastic liposomes demonstrated an enhancement of the deformation capability, as compared with conventional liposomes. Conventional and elastic magnetoliposomes presented a reduced capability for deformation and permeation. PMID:23363304

  4. Gas Vesicle Nanoparticles for Antigen Display

    Directory of Open Access Journals (Sweden)

    Shiladitya DasSarma

    2015-09-01

    Full Text Available Microorganisms like the halophilic archaeon Halobacterium sp. NRC-1 produce gas-filled buoyant organelles, which are easily purified as protein nanoparticles (called gas vesicles or GVNPs. GVNPs are non-toxic, exceptionally stable, bioengineerable, and self-adjuvanting. A large gene cluster encoding more than a dozen proteins has been implicated in their biogenesis. One protein, GvpC, found on the exterior surface of the nanoparticles, can accommodate insertions near the C-terminal region and results in GVNPs displaying the inserted sequences on the surface of the nanoparticles. Here, we review the current state of knowledge on GVNP structure and biogenesis as well as available studies on immunogenicity of pathogenic viral, bacterial, and eukaryotic proteins and peptides displayed on the nanoparticles. Recent improvements in genetic tools for bioengineering of GVNPs are discussed, along with future opportunities and challenges for development of vaccines and other applications.

  5. Polymer-coated vesicles: development and characterization.

    Science.gov (United States)

    Venkatesan, N; Vyas, S P

    1998-01-01

    Unilamellar polyacrylonitrile-coated niosomes were prepared using an interfacial pH induced polymerization technique. Polymer coated niosomes were then compared with plain niosomes for their physical characteristics, i.e., shape, size, lamellarity, and release profile. It was observed that polymer-coated niosomes could maintain their shape and size under osmotic stresses. The trapping efficiency of the polymer-coated system was slightly higher when compared to plain niosomes, and the release rate was slower. However, the release rate was also found to be anomolous and followed near zero-order kinetics. The effect of osmotic stress on the release rate was also investigated. It was observed that the polymer-coated vesicles did not show any significant change in release rate profile under osmotic variations. PMID:19569992

  6. Sexual selection affects the sizes of the mammalian prostate gland and seminal vesicles

    Institute of Scientific and Technical Information of China (English)

    Matthew J.ANDERSON; Alan F.DIXSON

    2009-01-01

    The accessory reproductive glands of male mammals contribute the bulk of the secretions in which spermatozoa are transported to the female tract during copulation. Despite their morphological diversity,and the chemical complexity of their products,little is known about the possible effects of sexual selection upon these glands in mammals. Here we consider the seminal vesicles and prostate glands in a sample of 89 species and 60 genera representing 8 Orders of mammals. The sizes of the accessory glands are analysed in relation to body weight and testes weight. Both the seminal vesicles size and prostate size (corrected for body weight) correlate positively with relative testes size in this sample; this finding remains highly significant after application of procedures to correct for possible phylogenetic biases in the data set. The accessory reproductive glands are also significantly larger in those mammals which have large relative testes sizes,and in which the likelihood of sperm competition is greatest. These results support the hypothesis that sexual selection has played an important role in the evolution of the mammalian prostate gland and seminal vesicles.

  7. Signal transduction meets vesicle traffic: the software and hardware of GLUT4 translocation.

    Science.gov (United States)

    Klip, Amira; Sun, Yi; Chiu, Tim Ting; Foley, Kevin P

    2014-05-15

    Skeletal muscle is the major tissue disposing of dietary glucose, a function regulated by insulin-elicited signals that impart mobilization of GLUT4 glucose transporters to the plasma membrane. This phenomenon, also central to adipocyte biology, has been the subject of intense and productive research for decades. We focus on muscle cell studies scrutinizing insulin signals and vesicle traffic in a spatiotemporal manner. Using the analogy of an integrated circuit to approach the intersection between signal transduction and vesicle mobilization, we identify signaling relays ("software") that engage structural/mechanical elements ("hardware") to enact the rapid mobilization and incorporation of GLUT4 into the cell surface. We emphasize how insulin signal transduction switches from tyrosine through lipid and serine phosphorylation down to activation of small G proteins of the Rab and Rho families, describe key negative regulation step of Rab GTPases through the GTPase-activating protein activity of the Akt substrate of 160 kDa (AS160), and focus on the mechanical effectors engaged by Rabs 8A and 10 (the molecular motor myosin Va), and the Rho GTPase Rac1 (actin filament branching and severing through Arp2/3 and cofilin). Finally, we illustrate how actin filaments interact with myosin 1c and α-Actinin4 to promote vesicle tethering as preamble to fusion with the membrane.

  8. Seminal vesicle intrafraction motion analysed with cinematic magnetic resonance imaging

    International Nuclear Information System (INIS)

    This study analyses seminal vesicle displacement relative to the prostate and in relation to treatment time. A group of eleven patients undergoing prostate cancer radiotherapy were imaged with a continuous 3 T cine-MRI in the standard treatment setup position. Four images were recorded every 4 seconds for 15 minutes in the sagittal plane and every 6.5 seconds for 12 minutes in the coronal plane. The prostate gland and seminal vesicles were contoured on each MRI image. The coordinates of the centroid of the prostate and seminal vesicles on each image was analysed for displacement against time. Displacements between the 2.5 percentile and 97.5 percentile (i.e. the 2.5% trimmed range) for prostate and seminal vesicle centroid displacements were measured for 3, 5, 10 and 15 minutes time intervals in the anterior-posterior (AP), left-right (LR) and superior-inferior (SI) directions. Real time prostate and seminal vesicle displacement was compared for individual patients. The 2.5% trimmed range for 3, 5, 10 and 15 minutes for the seminal vesicle centroids in the SI direction measured 4.7 mm; 5.8 mm; 6.5 mm and 7.2 mm respectively. In the AP direction, it was 4.0 mm, 4.5 mm, 6.5 mm, and 7.0 mm. In the LR direction for 3, 5 and 10 minutes; for the left seminal vesicle, it was 2.7 mm, 2.8 mm, 3.4 mm and for the right seminal vesicle, it was 3.4 mm, 3.3 mm, and 3.4 mm. The correlation between the real-time prostate and seminal vesicle displacement varied substantially between patients indicating that the relationship between prostate displacement and seminal vesicles displacement is patient specific with the majority of the patients not having a strong relationship. Our study shows that seminal vesicle motion increases with treatment time, and that the prostate and seminal vesicle centroids do not move in unison in real time, and that an additional margin is required for independent seminal vesicle motion if treatment localisation is to the prostate

  9. Development, characterization, and skin delivery studies of related ultradeformable vesicles: transfersomes, ethosomes, and transethosomes.

    Science.gov (United States)

    Ascenso, Andreia; Raposo, Sara; Batista, Cátia; Cardoso, Pedro; Mendes, Tiago; Praça, Fabíola Garcia; Bentley, Maria Vitória Lopes Badra; Simões, Sandra

    2015-01-01

    Ultradeformable vesicles (UDV) have recently become a promising tool for the development of improved and innovative dermal and transdermal therapies. The aim of this work was to study three related UDV: transfersomes, ethosomes, and transethosomes for the incorporation of actives of distinct polarities, namely, vitamin E and caffeine, and to evaluate the effect of the carrier on skin permeation and penetration. These actives were incorporated in UDV formulations further characterized for vesicles imaging by transmission electron microscopy; mean vesicle size and polydispersity index by photon correlation spectroscopy; zeta potential by laser-Doppler anemometry; deformability by pressure-driven transport; and incorporation efficiency (IE) after actives quantification by high-performance liquid chromatography. Topical delivery studies were performed in order to compare UDV formulations regarding the release, skin permeation, and penetration profiles. All UDV formulations showed size values within the expected range, except transethosomes prepared by "transfersomal method", for which size was smaller than 100 nm in contrast to that obtained for vesicles prepared by "ethosomal method". Zeta potential was negative and higher for formulations containing sodium cholate. The IE was much higher for vitamin E- than caffeine-loaded UDV as expected. For flux measurements, the following order was obtained: transethosomes (TE) > ethosomes (E) ≥ transfersomes (T). This result was consistent with the release and skin penetration profiles for Vitamin E-loaded UDV. However, the releasing results were totally the opposite for caffeine-loaded UDV, which might be explained by the solubility and thermodynamic activity of this active in each formulation instead of the UDV deformability attending to the higher non-incorporated fraction of caffeine. Anyway, a high skin penetration and permeation for all caffeine-loaded UDV were obtained. Transethosomes were more deformable than ethosomes

  10. Development, characterization, and skin delivery studies of related ultradeformable vesicles: transfersomes, ethosomes, and transethosomes.

    Science.gov (United States)

    Ascenso, Andreia; Raposo, Sara; Batista, Cátia; Cardoso, Pedro; Mendes, Tiago; Praça, Fabíola Garcia; Bentley, Maria Vitória Lopes Badra; Simões, Sandra

    2015-01-01

    Ultradeformable vesicles (UDV) have recently become a promising tool for the development of improved and innovative dermal and transdermal therapies. The aim of this work was to study three related UDV: transfersomes, ethosomes, and transethosomes for the incorporation of actives of distinct polarities, namely, vitamin E and caffeine, and to evaluate the effect of the carrier on skin permeation and penetration. These actives were incorporated in UDV formulations further characterized for vesicles imaging by transmission electron microscopy; mean vesicle size and polydispersity index by photon correlation spectroscopy; zeta potential by laser-Doppler anemometry; deformability by pressure-driven transport; and incorporation efficiency (IE) after actives quantification by high-performance liquid chromatography. Topical delivery studies were performed in order to compare UDV formulations regarding the release, skin permeation, and penetration profiles. All UDV formulations showed size values within the expected range, except transethosomes prepared by "transfersomal method", for which size was smaller than 100 nm in contrast to that obtained for vesicles prepared by "ethosomal method". Zeta potential was negative and higher for formulations containing sodium cholate. The IE was much higher for vitamin E- than caffeine-loaded UDV as expected. For flux measurements, the following order was obtained: transethosomes (TE) > ethosomes (E) ≥ transfersomes (T). This result was consistent with the release and skin penetration profiles for Vitamin E-loaded UDV. However, the releasing results were totally the opposite for caffeine-loaded UDV, which might be explained by the solubility and thermodynamic activity of this active in each formulation instead of the UDV deformability attending to the higher non-incorporated fraction of caffeine. Anyway, a high skin penetration and permeation for all caffeine-loaded UDV were obtained. Transethosomes were more deformable than ethosomes

  11. The Emp24 complex recruits a specific cargo molecule into endoplasmic reticulum-derived vesicles

    OpenAIRE

    Muniz, M.; Nuoffer, C; Hauri, H P; Riezman, H

    2000-01-01

    Members of the yeast p24 family, including Emp24p and Erv25p, form a heteromeric complex re- quired for the efficient transport of selected proteins from the endoplasmic reticulum (ER) to the Golgi ap- paratus. The specific functions and sites of action of this complex are unknown. We show that Emp24p is di- rectly required for efficient packaging of a lumenal cargo protein, Gas1p, into ER-derived vesicles. Emp24p and Erv25p can be directly cross-linked to Gas...

  12. Amyloidosis of Seminal Vesicles; Incidence and Pathologic Characteristics

    Directory of Open Access Journals (Sweden)

    Asuman ARGON

    2012-01-01

    Full Text Available Objective: Amyloidosis is a rare disease with various etiologies with extracellular amyloid protein depositions. At present, at least 26 distinctive amyloid forms have been detected with different clinical importance and treatment. They have characteristic staning fetaures with Congo red. Amyloid may be detected in 2-10% of prostates that have been removed because of hyperplasia or carcinoma. Amyloidosis of seminal vesicles is accepted as senil amyloidosis and it is not accompanied by systemic amyloidosis or clinical symptoms. This condition is the most common form of localized amyloidosis. In this study we aimed to investigate incidence and histologic characteristics of amyloidosis of seminal vesicles in radical prostatectomy materials of the patients whose prostate carcinomas were treated surgically.Material and Method: Amyloid depositions in seminal vesicles of 207 radical prostatectomy materials that prostates had been removed due to localized prostate carcinoma. Amyloid depositions were confirmed with Congo red staining and polarization microscope.Results: Amyloidosis of seminal vesicles was detected in 10 (4.8% of cases. Mean age of the patients is 66.2 years. Amyloid depositions tend to be nodular and bilateral in subepithelial region of affected seminal vesicles. Amyloid depositions were not detected in blood vessels in seminal vesicles or prostate parenchyma.Conclusion: Localized amyloidosis of seminal vesicles is not an unusual finding. amyloidosis of seminal vesicles incidence in Turkish patients included in this study and histopathologic characteristics of these patients are not different from the other studies. Systemic AA amyloidosis is the most common form of amyloidosis in our country. To be aware of amyloidosis of seminal vesicles is of importance in discrimination from the other forms of amyloidosis.

  13. Colocalization of synapsin and actin during synaptic vesicle recycling

    DEFF Research Database (Denmark)

    Bloom, Ona; Evergren, Emma; Tomilin, Nikolay;

    2003-01-01

    activity, however, synapsin was detected in the pool of vesicles proximal to the active zone. In addition, actin and synapsin were found colocalized in a dynamic filamentous cytomatrix at the sites of synaptic vesicle recycling, endocytic zones. Synapsin immunolabeling was not associated with clathrin......-coated intermediates but was found on vesicles that appeared to be recycling back to the cluster. Disruption of synapsin function by microinjection of antisynapsin antibodies resulted in a prominent reduction of the cytomatrix at endocytic zones of active synapses. Our data suggest that in addition to its known...

  14. Generic sorting of raft lipids into secretory vesicles in yeast

    DEFF Research Database (Denmark)

    Surma, Michal A; Klose, Christian; Klemm, Robin W;

    2011-01-01

    Previous work has showed that ergosterol and sphingolipids become sorted to secretory vesicles immunoisolated using a chimeric, artificial raft membrane protein as bait. In this study, we have extended this analysis to three populations of secretory vesicles isolated using natural yeast plasma...... membrane (PM) proteins: Pma1p, Mid2p and Gap1*p as baits. We compared the lipidomes of the immunoisolated vesicles with each other and with the lipidomes of the donor compartment, the trans-Golgi network, and the acceptor compartment, the PM, using a quantitative mass spectrometry approach that provided...

  15. Extracellular vesicles round off communication in the nervous system

    Science.gov (United States)

    Budnik, Vivian; Ruiz-Cañada, Catalina; Wendler, Franz

    2016-01-01

    Functional neural competence and integrity require interactive exchanges among sensory and motor neurons, interneurons and glial cells. Recent studies have attributed some of the tasks needed for these exchanges to extracellular vesicles (such as exosomes and microvesicles), which are most prominently involved in shuttling reciprocal signals between myelinating glia and neurons, thus promoting neuronal survival, the immune response mediated by microglia, and synapse assembly and plasticity. Such vesicles have also been identified as important factors in the spread of neurodegenerative disorders and brain cancer. These extracellular vesicle functions add a previously unrecognized level of complexity to transcellular interactions within the nervous system. PMID:26891626

  16. Extracellular vesicles are the Trojan horses of viral infection.

    Science.gov (United States)

    Altan-Bonnet, Nihal

    2016-08-01

    Extracellular vesicles have recently emerged as a novel mode of viral propagation exploited by both enveloped and non-enveloped viruses. In particular non-enveloped viruses utilize the hosts' production of extracellular vesicles to exit from cells non-lytically and to hide and manipulate the immune system. Moreover, challenging the long held idea that viruses behave as independent genetic units, extracellular vesicles enable multiple viral particles and genomes to collectively traffic in and out of cells, which can promote genetic cooperativity among viral quasispecies and enhance the fitness of the overall viral population. PMID:27232382

  17. Glioblastoma extracellular vesicles: reservoirs of potential biomarkers

    Directory of Open Access Journals (Sweden)

    Redzic JS

    2014-02-01

    Full Text Available Jasmina S Redzic,1 Timothy H Ung,2 Michael W Graner2 1Skaggs School of Pharmacy and Pharmaceutical Sciences, 2Department of Neurosurgery, School of Medicine, University of Colorado Denver, Aurora, CO, USA Abstract: Glioblastoma multiforme (GBM is the most frequent and most devastating of the primary central nervous system tumors, with few patients living beyond 2 years postdiagnosis. The damage caused by the disease and our treatments for the patients often leave them physically and cognitively debilitated. Generally, GBMs appear after very short clinical histories and are discovered by imaging (using magnetic resonance imaging [MRI], and the diagnosis is validated by pathology, following surgical resection. The treatment response and diagnosis of tumor recurrence are also tracked by MRI, but there are numerous problems encountered with these monitoring modalities, such as ambiguous interpretation and forms of pseudoprogression. Diagnostic, prognostic, and predictive biomarkers would be an immense boon in following treatment schemes and in determining recurrence, which often requires an invasive intracranial biopsy to verify imaging data. Extracellular vesicles (EVs are stable, membrane-enclosed, virus-sized particles released from either the cell surface or from endosomal pathways that lead to the systemic release of EVs into accessible biofluids, such as serum/plasma, urine, cerebrospinal fluid, and saliva. EVs carry a wide variety of proteins, nucleic acids, lipids, and other metabolites, with many common features but with enough individuality to be able to identify the cell of origin of the vesicles. These components, if properly interrogated, could allow for the identification of tumor-derived EVs in biofluids, indicating tumor progression, relapse, or treatment failure. That knowledge would allow clinicians to continue with treatment regimens that were actually effective or to change course if the therapies were failing. Here, we review

  18. Dolichol phosphate induces non-bilayer structures, vesicle fusion and transbilayer movements of lipids in model membranes

    Energy Technology Data Exchange (ETDEWEB)

    de Kruijff, B.; Van Duijn, G.; Valtersson, C.; Chojnacki, T.; Verkleij, A.J.; Dallner, G.

    1987-05-01

    The effect of dolichols, polyprenols, dolichol esterified with fatty acids, and dolichol phosphate on the structure and fluidity of model membranes was studied using different biophysical techniques. These studies suggest that (1) dolichol and dolichol derivatives destabilize unsaturated PE-containing bilayers and promote hexagonal II phase formation; (2) high concentrations of dolichol induce lipid structures characterized by isotropic T P NMR and particulate fracture faces. The effect of dolichol and dolichyl phosphate on fusion between large unilamellar vesicles of DOPC and DOPE was studied using a fluroescence resonance energy transfer assay. The influence of dolichyl phosphate on the transbilary movement of DOPC in multilamellar vesicles (MLV) and large unilamellar vesicles (LUV) composed of DOPC and DOPE (1:2) was investigated by using the PC-specified transfer protein. The results indicate that: (1) both dolichol and dolichyl phosphate enhance vesicle fusion in a comparable and concentration-dependent way; (2) the amount of exchangeable PC from MLVs is increased by dolichyl phosphate probably as a result of fusion processes. It thus appears that these polyprenols are potent destabilizers of bilayer structure and that this process is accompanied by membrane fusion and transbilayer transport of phospholipids.

  19. Dolichol phosphate induces non-bilayer structures, vesicle fusion and transbilayer movements of lipids in model membranes

    International Nuclear Information System (INIS)

    The effect of dolichols, polyprenols, dolichol esterified with fatty acids, and dolichol phosphate on the structure and fluidity of model membranes was studied using different biophysical techniques. These studies suggest that (1) dolichol and dolichol derivatives destabilize unsaturated PE-containing bilayers and promote hexagonal II phase formation; (2) high concentrations of dolichol induce lipid structures characterized by isotropic 31P NMR and particulate fracture faces. The effect of dolichol and dolichyl phosphate on fusion between large unilamellar vesicles of DOPC and DOPE was studied using a fluroescence resonance energy transfer assay. The influence of dolichyl phosphate on the transbilary movement of DOPC in multilamellar vesicles (MLV) and large unilamellar vesicles (LUV) composed of DOPC and DOPE (1:2) was investigated by using the PC-specified transfer protein. The results indicate that: (1) both dolichol and dolichyl phosphate enhance vesicle fusion in a comparable and concentration-dependent way; (2) the amount of exchangeable PC from MLVs is increased by dolichyl phosphate probably as a result of fusion processes. It thus appears that these polyprenols are potent destabilizers of bilayer structure and that this process is accompanied by membrane fusion and transbilayer transport of phospholipids

  20. Assembly of cells and vesicles for organ engineering

    Directory of Open Access Journals (Sweden)

    Tetsushi Taguchi

    2011-01-01

    Full Text Available The development of materials and technologies for the assembly of cells and/or vesicles is a key for the next generation of tissue engineering. Since the introduction of the tissue engineering concept in 1993, various types of scaffolds have been developed for the regeneration of connective tissues in vitro and in vivo. Cartilage, bone and skin have been successfully regenerated in vitro, and these regenerated tissues have been applied clinically. However, organs such as the liver and pancreas constitute numerous cell types, contain small amounts of extracellular matrix, and are highly vascularized. Therefore, organ engineering will require the assembly of cells and/or vesicles. In particular, adhesion between cells/vesicles will be required for regeneration of organs in vitro. This review introduces and discusses the key technologies and materials for the assembly of cells/vesicles for organ regeneration.

  1. Assembly of cells and vesicles for organ engineering

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, Tetsushi, E-mail: taguchi.tetsushi@nims.go.jp [Biofunctional Materials Unit, Nano-Bio Field, Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2011-12-15

    The development of materials and technologies for the assembly of cells and/or vesicles is a key for the next generation of tissue engineering. Since the introduction of the tissue engineering concept in 1993, various types of scaffolds have been developed for the regeneration of connective tissues in vitro and in vivo. Cartilage, bone and skin have been successfully regenerated in vitro, and these regenerated tissues have been applied clinically. However, organs such as the liver and pancreas constitute numerous cell types, contain small amounts of extracellular matrix, and are highly vascularized. Therefore, organ engineering will require the assembly of cells and/or vesicles. In particular, adhesion between cells/vesicles will be required for regeneration of organs in vitro. This review introduces and discusses the key technologies and materials for the assembly of cells/vesicles for organ regeneration. (topical review)

  2. Assembly of cells and vesicles for organ engineering

    Science.gov (United States)

    Taguchi, Tetsushi

    2011-12-01

    The development of materials and technologies for the assembly of cells and/or vesicles is a key for the next generation of tissue engineering. Since the introduction of the tissue engineering concept in 1993, various types of scaffolds have been developed for the regeneration of connective tissues in vitro and in vivo. Cartilage, bone and skin have been successfully regenerated in vitro, and these regenerated tissues have been applied clinically. However, organs such as the liver and pancreas constitute numerous cell types, contain small amounts of extracellular matrix, and are highly vascularized. Therefore, organ engineering will require the assembly of cells and/or vesicles. In particular, adhesion between cells/vesicles will be required for regeneration of organs in vitro. This review introduces and discusses the key technologies and materials for the assembly of cells/vesicles for organ regeneration.

  3. Endocytic traffic: vesicle fusion cascade in the early endosomes.

    Science.gov (United States)

    Brenner, Michael P

    2012-08-01

    New research shows that vesicles in the early endosomal network coalesce according to a classical theoretical description of aggregation put forward by Smoluchowski more than 100 years ago. This gives a new tool for unraveling complexities of the endocytic pathways.

  4. Function of seminal vesicles and their role on male fertility

    Institute of Scientific and Technical Information of China (English)

    Gustavo F. Gonzales

    2001-01-01

    The present review has been designed to update the recent developments on the function of seminal vesicles and their role on male fertility. It is indicated that the true corrected fructose level is a simple method for the assessment of the seminal vesicular function. Measurement of seminal fructose used universally as a marker of the seminal vesicle function is not an appropriate approach due to its inverse relationship with the sperm count. The true corrected fructose defined as [ log. motile sperm concentration ] multiplied by [ seminal fructose concentration ] has been shown to be a better marker of the seminal vesicle function.Seminal vesicular secretion is important for semen coagulation, sperm motility, and stability of sperm chromatin andsuppression of the immune activity in the female reproductive tract.In conclusion, the function of seminal vesicle is important for fertility. Parameters as sperm motility, sperm chromatin stability, and immuno-protection may be changed in case of its hypofunction.

  5. Lipid-Targeting Peptide Probes for Extracellular Vesicles.

    Science.gov (United States)

    Flynn, Aaron D; Yin, Hang

    2016-11-01

    Extracellular vesicles released from cells are under intense investigation for their roles in cell-cell communication and cancer progression. However, individual vesicles have been difficult to probe as their small size renders them invisible by conventional light microscopy. However, as a consequence of their small size these vesicles possess highly curved lipid membranes that offer an unconventional target for curvature-sensing probes. In this article, we present a strategy for using peptide-based biosensors to detect highly curved membranes and the negatively charged membrane lipid phosphatidylserine, we delineate several assays used to validate curvature- and lipid-targeting mechanisms, and we explore potential applications in probing extracellular vesicles released from sources such as apoptotic cells, cancer cells, or activated platelets. J. Cell. Physiol. 231: 2327-2332, 2016. © 2016 Wiley Periodicals, Inc. PMID:26909741

  6. Applying extracellular vesicles based therapeutics in clinical trials

    DEFF Research Database (Denmark)

    Lener, Thomas; Gimona, Mario; Aigner, Ludwig;

    2015-01-01

    Extracellular vesicles (EVs), such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information ...

  7. [Extracellular vesicles and their role in hematological malignancies].

    Science.gov (United States)

    Rzepiel, Andrea; Kutszegi, Nóra; Cs Sági, Judit; Kelemen, Andrea; Pálóczi, Krisztina; F Semsei, Ágnes; Buzás, Edit; Erdélyi, Dániel János

    2016-08-01

    Extracellular vesicles are produced in all organisms. The most intensively investigated categories of extracellular vesicles include apoptotic bodies, microvesicles and exosomes. Among a very wide range of areas, their role has been confirmed in intercellular communication, immune response and angiogenesis (in both physiological and pathological conditions). Their alterations suggest the potential use of them as biomarkers. In this paper the authors give an insight into the research of extracellular vesicles in general, and then focus on published findings in hematological malignancies. Quantitative and qualitative changes of microvesicles and exosomes may have value in diagnostics, prognostics and minimal residual disease monitoring of hematological malignancies. The function of extracellular vesicles in downregulation of natural killer cells' activity has been demonstrated in acute myeloid leukemia. In chronic lymphocytic leukemia, microvesicles seem to play a role in drug resistance. Orv. Hetil., 2016, 157(35), 1379-1384. PMID:27569460

  8. EVpedia : A community web portal for extracellular vesicles research

    NARCIS (Netherlands)

    Kim, Dae Kyum; Lee, Jaewook; Kim, Sae Rom; Choi, Dong Sic; Yoon, Yae Jin; Kim, Ji Hyun; Go, Gyeongyun; Nhung, Dinh; Hong, Kahye; Jang, Su Chul; Kim, Si Hyun; Park, Kyong Su; Kim, Oh Youn; Park, Hyun Taek; Seo, Ji Hye; Aikawa, Elena; Baj-Krzyworzeka, Monika; Van Balkom, Bas W M; Belting, Mattias; Blanc, Lionel; Bond, Vincent; Bongiovanni, Antonella; Borràs, Francesc E.; Buée, Luc; Buzás, Edit I.; Cheng, Lesley; Clayton, Aled; Cocucci, Emanuele; Dela Cruz, Charles S.; Desiderio, Dominic M.; Di Vizio, Dolores; Ekström, Karin; Falcon-Perez, Juan M.; Gardiner, Chris; Giebel, Bernd; Greening, David W.; Christina Gross, Julia; Gupta, Dwijendra; Hendrix, An; Hill, Andrew F.; Hill, Michelle M.; Nolte-'T Hoen, Esther; Hwang, Do Won; Inal, Jameel; Jagannadham, Medicharla V.; Jayachandran, Muthuvel; Jee, Young Koo; Jørgensen, Malene; Kim, Kwang Pyo; Kim, Yoon Keun; Kislinger, Thomas; Lässer, Cecilia; Lee, Dong Soo; Lee, Hakmo; Van Leeuwen, Johannes; Lener, Thomas; Liu, Ming Lin; Lötvall, Jan; Marcilla, Antonio; Mathivanan, Suresh; Möller, Andreas; Morhayim, Jess; Mullier, Francois; Nazarenko, Irina; Nieuwland, Rienk; Nunes, Diana N.; Pang, Ken; Park, Jaesung; Patel, Tushar; Pocsfalvi, Gabriella; Del Portillo, Hernando; Putz, Ulrich; Ramirez, Marcel I.; Rodrigues, Marcio L.; Roh, Tae Young; Royo, Felix; Sahoo, Susmita; Schiffelers, Raymond; Sharma, Shivani; Siljander, Pia; Simpson, Richard J.; Soekmadji, Carolina; Stahl, Philip; Stensballe, Allan; Stepień, Ewa; Tahara, Hidetoshi; Trummer, Arne; Valadi, Hadi; Vella, Laura J.; Wai, Sun Nyunt; Witwer, Kenneth; Yánez-Mó, Maria; Youn, Hyewon; Zeidler, Reinhard; Gho, Yong Song

    2015-01-01

    Motivation: Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. Results: We prese

  9. EVpedia : a community web portal for extracellular vesicles research

    NARCIS (Netherlands)

    Kim, Dae-Kyum; Lee, Jaewook; Kim, Sae Rom; Choi, Dong-Sic; Yoon, Yae Jin; Kim, Ji Hyun; Go, Gyeongyun; Nhung, Dinh; Hong, Kahye; Jang, Su Chul; Kim, Si-Hyun; Park, Kyong-Su; Kim, Oh Youn; Park, Hyun Taek; Seo, Ji Hye; Aikawa, Elena; Baj-Krzyworzeka, Monika; van Balkom, Bas W M; Belting, Mattias; Blanc, Lionel; Bond, Vincent; Bongiovanni, Antonella; Borràs, Francesc E; Buée, Luc; Buzás, Edit I; Cheng, Lesley; Clayton, Aled; Cocucci, Emanuele; Dela Cruz, Charles S; Desiderio, Dominic M; Di Vizio, Dolores; Ekström, Karin; Falcon-Perez, Juan M; Gardiner, Chris; Giebel, Bernd; Greening, David W; Gross, Julia Christina; Gupta, Dwijendra; Hendrix, An; Hill, Andrew F; Hill, Michelle M; Nolte-'t Hoen, Esther; Hwang, Do Won; Inal, Jameel; Jagannadham, Medicharla V; Jayachandran, Muthuvel; Jee, Young-Koo; Jørgensen, Malene; Kim, Kwang Pyo; Kim, Yoon-Keun; Kislinger, Thomas; Lässer, Cecilia; Lee, Dong Soo; Lee, Hakmo; van Leeuwen, Johannes; Lener, Thomas; Liu, Ming-Lin; Lötvall, Jan; Marcilla, Antonio; Mathivanan, Suresh; Möller, Andreas; Morhayim, Jess; Mullier, François; Nazarenko, Irina; Nieuwland, Rienk; Nunes, Diana N; Pang, Ken; Park, Jaesung; Patel, Tushar; Pocsfalvi, Gabriella; Del Portillo, Hernando; Putz, Ulrich; Ramirez, Marcel I; Rodrigues, Marcio L; Roh, Tae-Young; Royo, Felix; Sahoo, Susmita; Schiffelers, Raymond; Sharma, Shivani; Siljander, Pia; Simpson, Richard J; Soekmadji, Carolina; Stahl, Philip; Stensballe, Allan; Stępień, Ewa; Tahara, Hidetoshi; Trummer, Arne; Valadi, Hadi; Vella, Laura J; Wai, Sun Nyunt; Witwer, Kenneth; Yáñez-Mó, María; Youn, Hyewon; Zeidler, Reinhard; Gho, Yong Song; Nolte - t Hoen, Esther

    2014-01-01

    MOTIVATION: Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. RESULTS: We prese

  10. Towards traceable size determination of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Zoltán Varga

    2014-02-01

    Full Text Available Background: Extracellular vesicles (EVs have clinical importance due to their roles in a wide range of biological processes. The detection and characterization of EVs are challenging because of their small size, low refractive index, and heterogeneity. Methods: In this manuscript, the size distribution of an erythrocyte-derived EV sample is determined using state-of-the-art techniques such as nanoparticle tracking analysis, resistive pulse sensing, and electron microscopy, and novel techniques in the field, such as small-angle X-ray scattering (SAXS and size exclusion chromatography coupled with dynamic light scattering detection. Results: The mode values of the size distributions of the studied erythrocyte EVs reported by the different methods show only small deviations around 130 nm, but there are differences in the widths of the size distributions. Conclusion: SAXS is a promising technique with respect to traceability, as this technique was already applied for traceable size determination of solid nanoparticles in suspension. To reach the traceable measurement of EVs, monodisperse and highly concentrated samples are required.

  11. Dysregulations of Synaptic Vesicle Trafficking in Schizophrenia.

    Science.gov (United States)

    Egbujo, Chijioke N; Sinclair, Duncan; Hahn, Chang-Gyu

    2016-08-01

    Schizophrenia is a serious psychiatric illness which is experienced by about 1 % of individuals worldwide and has a debilitating impact on perception, cognition, and social function. Over the years, several models/hypotheses have been developed which link schizophrenia to dysregulations of the dopamine, glutamate, and serotonin receptor pathways. An important segment of these pathways that have been extensively studied for the pathophysiology of schizophrenia is the presynaptic neurotransmitter release mechanism. This set of molecular events is an evolutionarily well-conserved process that involves vesicle recruitment, docking, membrane fusion, and recycling, leading to efficient neurotransmitter delivery at the synapse. Accumulated evidence indicate dysregulation of this mechanism impacting postsynaptic signal transduction via different neurotransmitters in key brain regions implicated in schizophrenia. In recent years, after ground-breaking work that elucidated the operations of this mechanism, research efforts have focused on the alterations in the messenger RNA (mRNA) and protein expression of presynaptic neurotransmitter release molecules in schizophrenia and other neuropsychiatric conditions. In this review article, we present recent evidence from schizophrenia human postmortem studies that key proteins involved in the presynaptic release mechanism are dysregulated in the disorder. We also discuss the potential impact of dysfunctional presynaptic neurotransmitter release on the various neurotransmitter systems implicated in schizophrenia. PMID:27371030

  12. Semi-permeable vesicles composed of natural clay

    OpenAIRE

    Subramaniam, Anand B.; Wan, Jiandi; Gopinath, Arvind; Stone, Howard A.

    2010-01-01

    We report a simple route to form robust, inorganic, semi-permeable compartments composed of montmorillonite, a natural plate-like clay mineral that occurs widely in the environment. Mechanical forces due to shear in a narrow gap assemble clay nanoplates from an aqueous suspension onto air bubbles. Translucent vesicles suspended in a single-phase liquid are produced when the clay-covered air bubbles are exposed to a variety of water-miscible organic liquids. These vesicles of clay are mechanic...

  13. Photoresponsive vesicle permeability based on intramolecular host-guest inclusion.

    Science.gov (United States)

    Kauscher, Ulrike; Samanta, Avik; Ravoo, Bart Jan

    2014-01-28

    This article describes light-responsive vesicles that can release their contents in response to a light-sensitive molecular trigger. To this end, liposomes were equipped with amphiphilic β-cyclodextrin that was covalently labeled with azobenzene. Using dye encapsulation and confocal laser scanning microscopy, we show that the permeability of these vesicles strongly increases upon UV irradiation (λ = 350 nm) with concomitant isomerization of apolar trans-azobenzene to polar cis-azobenzene on the liposome surface. PMID:24287588

  14. Concurrent Imaging of Synaptic Vesicle Recycling and Calcium Dynamics

    OpenAIRE

    Li, Haiyan; Foss, Sarah M.; Dobryy, Yuriy L.; Park, C. Kevin; Hires, Samuel Andrew; Shaner, Nathan C.; Tsien, Roger Y.; Osborne, Leslie C.; Voglmaier, Susan M.

    2011-01-01

    Synaptic transmission involves the calcium dependent release of neurotransmitter from synaptic vesicles. Genetically encoded optical probes emitting different wavelengths of fluorescent light in response to neuronal activity offer a powerful approach to understand the spatial and temporal relationship of calcium dynamics to the release of neurotransmitter in defined neuronal populations. To simultaneously image synaptic vesicle recycling and changes in cytosolic calcium, we developed a red-sh...

  15. Concurrent imaging of synaptic vesicle recycling and calcium dynamics.

    OpenAIRE

    Haiyan eLi; Foss, Sarah M.; Yuriy eDobryy; C. Kevin ePark; Samuel Andrew Hires; Shaner, Nathan C.; Tsien, Roger Y.; Osborne, Leslie C.; Voglmaier, Susan M.

    2011-01-01

    Synaptic transmission involves the calcium-dependent release of neurotransmitter from synaptic vesicles. Genetically encoded optical probes emitting different wavelengths of fluorescent light in response to neuronal activity offer a powerful approach to understand the spatial and temporal relationship of calcium dynamics to the release of neurotransmitter in defined neuronal populations. To simultaneously image synaptic vesicle recycling and changes in cytosolic calcium, we developed a red-...

  16. Spreading of bio-adhesive vesicles on DNA carpets

    OpenAIRE

    Hisette, Marie-Laure; Haddad, Paula; Gisler, Thomas; Marques, Carlos Manuel; Schröder, André Pierre

    2008-01-01

    Cell-adhesion events involve often the formation of a contact region between phospholipid membranes decorated with a variety of bio-macromolecular species. We mimic here such hairy bio-adhesive contact zones by spreading phospholipid vesicles onto surfaces carpeted with end-grafted l-phage DNA. Our study reveals that the spreading front acts as a scraper that strongly stretches the DNA molecules, and that the multiple bonds created during vesicle spreading effectively staple the stretched cha...

  17. Bridging the Gap between Glycosylation and Vesicle Traffic

    OpenAIRE

    Fisher, Peter; Ungar, Daniel

    2016-01-01

    Glycosylation is recognized as a vitally important posttranslational modification. The structure of glycans that decorate proteins and lipids is largely dictated by biosynthetic reactions occurring in the Golgi apparatus. This biosynthesis relies on the relative distribution of glycosyltransferases and glycosidases, which is maintained by retrograde vesicle traffic between Golgi cisternae. Tethering of vesicles at the Golgi apparatus prior to fusion is regulated by Rab GTPases, coiled-coil te...

  18. Cystadenoma of the seminal vesicle. A case report

    DEFF Research Database (Denmark)

    Lundhus, E; Bundgaard, N; Sørensen, Flemming Brandt

    1984-01-01

    Cystadenomas of the seminal vesicle are extremely rare benign tumours, which only have been reported seven times earlier in the literature. The first Danish case is reported with discussion of symptomatology, pathology and treatment.......Cystadenomas of the seminal vesicle are extremely rare benign tumours, which only have been reported seven times earlier in the literature. The first Danish case is reported with discussion of symptomatology, pathology and treatment....

  19. Ultradeformable phospholipid vesicles as a drug delivery system: a review

    OpenAIRE

    Romero, Eder Lilia

    2015-01-01

    Maria Jose Morilla, Eder Lilia RomeroNanomedicine Research Program, Department of Science and Technology, National University of Quilmes, Buenos Aires, Argentina Abstract: Ultradeformable vesicles are highly deformable (elastic/flexible) liposomes made of phospholipids plus highly mobile hydrophilic detergents capable of penetrating the intact skin across the stratum corneum and reaching the viable epidermis. Ultradeformable vesicles are more effective than conventional liposomes in deliveri...

  20. Dielectric Spectroscopy Study on Vesicles of CTAB/SDBS System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Amphiphilic molecules can form into different structures, such as micelle, microemulsion, vesicle, liposome, liquid crystals, and so on by self-associating. The Dielectric Spectroscopy (DS) method has been applied to the systems of micelle and microemulsion successfully. For the first time the author put the method to the system of vesicle of CTAB/SDBS. The experiments show clear dielectric relaxation and the results were discussed primarily.

  1. Studies on the incorporation of lipase in synthetic polymerisable vesicles.

    OpenAIRE

    Mosmuller, E.W.J.

    1993-01-01

    This thesis describes studies on the suitability of synthetic polymerisable vesicles for the incorporation and stabilisation of lipase for the bioconversion of organic chemical compounds.In chapter 1 , some characteristics are reviewed of hydrolytic enzymes, and more specific those of lipases. In chapter 2 an overview is presented of the features and properties of surfactants and vesicles.In chapter 3 , the incorporation is described of lipase from Candida cylindracea (CCL) into polymerisable...

  2. Three-dimensional visualization of coated vesicle formation in fibroblasts

    OpenAIRE

    1980-01-01

    Fibroblasts apparently ingest low density lipoproteins (LDL) by a selective mechanism of receptor-mediated endocytosis involving the formation of coated vesicles from the plasma membrane. However, it is not known exactly how coated vesicles collect LDL receptors and pinch off from the plasma membrane. In this report, the quick-freeze, deep- etch, rotary-replication method has been applied to fibroblasts; it displays with unusual clarity the coats that appear under the plasma membrane at the s...

  3. Vesicles prepared with the complex salts dioctadecyldimethylammonium polyacrylates.

    Science.gov (United States)

    Alves, Fernanda Rosa; Loh, Watson

    2012-02-15

    The effect of a polymeric counterion on the thermotropic behavior of sonicated vesicles formed by complex salts in aqueous solution and with decanol (C(10)OH) and tetradecanol (C(14)OH) was investigated. The complex salts were prepared with dioctadecyldimethylammonium bromide (DODAB) and polyacrylic acids (PAA, containing 30 or 6000 repeating units), being referred to as DODAPA(30) and DODAPA(6000). Vesicles containing polymeric counterions presented higher contents of multilamellar vesicles that were dependent on the complex salt concentration and on the counterion chain length. For comparison, studies were performed with DODAAc, with the counterion acetate, resulting in the formation of mostly unilamellar vesicles, as expected due greater dissociation, leading to greater electrical repulsion between bilayers. Mixtures of these complex salts and DODAX (where X=acetate or bromide) were also investigated with respect to their vesicles thermotropic behavior and size. This study opens the possibility of applying the methodology of direct complex salt preparation (as opposed to mixing the surfactant and polymeric components) to produce vesicles with controlled composition and properties. PMID:22172692

  4. Charge Interactions of Unilamellar Vesicles in Aqueous Suspensions

    Science.gov (United States)

    Park, Seongmin; Junio, Joseph; Kim, Mahn-Won; Ou-Yang, H. D.

    2009-03-01

    This project reports the results of an experimental optical trapping study of the charge interactions between phosphor-lipid unilamellar vesicles. A 1064nm laser coupled into a high NA objective lens provided the optical trap. Using fluorescently labeled vesicles, we were able to monitor the particle number density by using a 532nm excitation beam aligned to be parfocal with the trapping beam through the same objective. Fluorescent signals from the focal region common to both beams were band-passed to a pinhole for confocal detection. Using the number density of the vesicles in the focal spot as a function of trapping intensity and a force balance model, we were able to calculate the effective trapping energy per vesicle as well as the osmotic virial coefficients for a system of lipid vesicles prepared with DOPG, cholesterol, and DiI. We measured the compressibility of these vesicle suspensions as a function of surface charge and ionic strength of the suspending medium. Compared to conventional scattering methods, this optical trapping method is advantageous, since it can be used for concentrated suspensions, yielding an in situ measurement of colloidal interactions.

  5. Extracellular Streptomyces lividans vesicles: composition, biogenesis and antimicrobial activity

    Science.gov (United States)

    Schrempf, Hildgund; Merling, Philipp

    2015-01-01

    We selected Streptomyces lividans to elucidate firstly the biogenesis and antimicrobial activities of extracellular vesicles that a filamentous and highly differentiated Gram-positive bacterium produces. Vesicle types range in diameter from 110 to 230 nm and 20 to 60 nm, respectively; they assemble to clusters, and contain lipids and phospholipids allowing their in situ imaging by specific fluorescent dyes. The presence of the identified secondary metabolite undecylprodigiosin provokes red fluorescence of a portion of the heterogeneous vesicle populations facilitating in vivo monitoring. Protuberances containing vesicles generate at tips, and alongside of substrate hyphae, and enumerate during late vegetative growth to droplet-like exudates. Owing to in situ imaging in the presence and absence of a green fluorescent vancomycin derivative, we conclude that protuberances comprising vesicles arise at sites with enhanced levels of peptidoglycan subunits [pentapeptide of lipid II (C55)-linked disaccharides], and reduced levels of polymerized and cross-linked peptidoglycan within hyphae. These sites correlate with enhanced levels of anionic phospholipids and lipids. Vesicles provoke pronounced damages of Aspergillus proliferans, Verticillium dahliae and induced clumping and distortion of Escherichia coli. These harmful effects are likely attributable to the action of the identified vesicular compounds including different enzyme types, components of signal transduction cascades and undecylprodigiosin. Based on our pioneering findings, we highlight novel clues with environmental implications and application potential. PMID:25851532

  6. Extracellular Membrane Vesicles and Phytopathogenicity of Acholeplasma laidlawii PG8

    Directory of Open Access Journals (Sweden)

    Vladislav M. Chernov

    2012-01-01

    Full Text Available For the first time, the phytopathogenicity of extracellular vesicles of Acholeplasma laidlawii PG8 (a ubiquitous mycoplasma that is one of the five common species of cell culture contaminants and is a causative agent for phytomycoplasmoses in Oryza sativa L. plants was studied. Data on the ability of extracellular vesicles of Acholeplasma laidlawii PG8 to penetrate from the nutrient medium into overground parts of Oryza sativa L. through the root system and to cause alterations in ultrastructural organization of the plants were presented. As a result of the analysis of ultrathin leaf sections of plants grown in medium with A. laidlawii PG8 vesicles, we detected significant changes in tissue ultrastructure characteristic to oxidative stress in plants as well as their cultivation along with bacterial cells. The presence of nucleotide sequences of some mycoplasma genes within extracellular vesicles of Acholeplasma laidlawii PG8 allowed a possibility to use PCR (with the following sequencing to perform differential detection of cells and bacterial vesicles in samples under study. The obtained data may suggest the ability of extracellular vesicles of the mycoplasma to display in plants the features of infection from the viewpoint of virulence criteria—invasivity, infectivity—and toxigenicity—and to favor to bacterial phytopathogenicity.

  7. Bubble-induced microstreaming: guiding and destroying lipid vesicles

    Science.gov (United States)

    Marmottant, Philippe; Hilgenfeldt, Sascha

    2002-11-01

    Micron-sized bubbles respond with strong oscillations when submitted to ultrasound. This has led to their use as echographic contrast enhancers. The large energy and force densities generated by the collapsing bubbles also make them non-invasive mechanical tools: Recently, it has been reported that the interaction of cavitating bubbles with nearby cells can render the latter permeable to large molecules (sonoporation), suggesting prospects for drug delivery and gene transfection. We have developed a laboratory setup that allows for a controlled study of the interaction of single microbubbles with single lipid bilayer vesicles. Substituting vesicles for cell membranes is advantageous because the mechanical properties of vesicles are well-known. Microscopic observations reveal that vesicles near a bubble follow the vivid streaming motion set up by the bubble. The vesicles "bounce" off the bubble, being periodically accelerated towards and away from it, and undergo well-defined shape deformations along their trajectory in accordance with fluid-dynamical theory. Break-up of vesicles could also be observed.

  8. Kinetics of a Multilamellar Lipid Vesicle Ripening: Simulation and Theory.

    Science.gov (United States)

    Xu, Rui; He, Xuehao

    2016-03-10

    Lipid vesicle ripening via unimolecular diffusion and exchange greatly influences the evolution of complex vesicle structure. However, this behavior is difficult to capture using conventional experimental technology and molecular simulation. In the present work, the ripening of a multilamellar lipid vesicle (MLV) is effectively explored using a mesoscale coarse-grained molecular model. The simulation reveals that a small MLV evolves into a unilamellar vesicle over a very long time period. In this process, only the outermost bilayer inflates, and the inner bilayers shrink. With increasing MLV size, the ripening process becomes complex and depends on competition between a series of adjacent bilayers in the MLV. To understand the diffusion behavior of the unimolecule, the potentials of mean force (PMFs) of a single lipid molecule across unilamellar vesicles with different sizes are calculated. It is found that the PMF of lipid dissociation from the inner layer is different than that of the outer layer, and the dissociation energy barrier sensitively depends on the curvature of the bilayer. A kinetics theoretical model of MLV ripening that considers the lipid dissociation energy for curved bilayers is proposed. The model successfully interprets the MLV ripening process with various numbers of bilayers and shows potential to predict the ripening kinetics of complex lipid vesicles. PMID:26882997

  9. Studies of vesicle distribution patterns in Hawaiian lavas

    Science.gov (United States)

    Walker, George P. L.

    1987-01-01

    Basaltic lava flows are generally vesicular, and the broader facts relating to vesicle distribution have long been established; few studies have yet been made with a view to determining how and when vesicles form in the cooling history of the lava, explaining vesicle shape and size distribution, and gaining enough understanding to employ vesicles as a geological tool. Various avenues of approach exist by which one may seek to gain a better understanding of these ubiquitous structures and make a start towards developing a general theory, and three such avenues have recently been explored. One avenue involves the study of pipe vesicles; these are a well known feature of lava flows and are narrow pipes which occur near the base of many pahoehoe flow units. Another avenue of approach is that presented by the distinctive spongy pahoehoe facies of lava that is common in distal locations on Hawaiian volcanoes. A third avenue of approach is that of the study of gas blisters in lava. Gas blisters are voids, which can be as much as tens of meters wide, where the lava split along a vesicle-rich layer and the roof up-arched by gas pressure. These three avenues are briefly discussed.

  10. Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate

    DEFF Research Database (Denmark)

    Schotten, Sebastiaan; Meijer, Marieke; Walter, Alexander Matthias;

    2015-01-01

    by hypertonic solutions. We show that complexinI/II deficiency or phorbol ester stimulation indeed affects responses to hypertonic solution in a supralinear manner. An additive vs multiplicative relationship between activation energy and fusion rate provides a novel explanation for previously observed non......The energy required to fuse synaptic vesicles with the plasma membrane (‘activation energy’) is considered a major determinant in synaptic efficacy. From reaction rate theory, we predict that a class of modulations exists, which utilize linear modulation of the energy barrier for fusion to achieve...... supralinear effects on the fusion rate. To test this prediction experimentally, we developed a method to assess the number of releasable vesicles, rate constants for vesicle priming, unpriming, and fusion, and the activation energy for fusion by fitting a vesicle state model to synaptic responses induced...

  11. Development, characterization, and skin delivery studies of related ultradeformable vesicles: transfersomes, ethosomes, and transethosomes

    Directory of Open Access Journals (Sweden)

    Ascenso A

    2015-09-01

    Full Text Available Andreia Ascenso,1 Sara Raposo,1 Cátia Batista,2 Pedro Cardoso,2 Tiago Mendes,2 Fabíola Garcia Praça,3 Maria Vitória Lopes Badra Bentley,3 Sandra Simões1 1Instituto de Investigação do Medicamento (iMed.ULisboa, 2Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal; 3Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Monte Alegre, Ribeirão Preto, São Paulo, Brazil Abstract: Ultradeformable vesicles (UDV have recently become a promising tool for the development of improved and innovative dermal and transdermal therapies. The aim of this work was to study three related UDV: transfersomes, ethosomes, and transethosomes for the incorporation of actives of distinct polarities, namely, vitamin E and caffeine, and to evaluate the effect of the carrier on skin permeation and penetration. These actives were incorporated in UDV formulations further characterized for vesicles imaging by transmission electron microscopy; mean vesicle size and polydispersity index by photon correlation spectroscopy; zeta potential by laser-Doppler anemometry; deformability by pressure-driven transport; and incorporation efficiency (IE after actives quantification by high-performance liquid chromatography. Topical delivery studies were performed in order to compare UDV formulations regarding the release, skin permeation, and penetration profiles. All UDV formulations showed size values within the expected range, except transethosomes prepared by “transfersomal method”, for which size was smaller than 100 nm in contrast to that obtained for vesicles prepared by “ethosomal method”. Zeta potential was negative and higher for formulations containing sodium cholate. The IE was much higher for vitamin E- than caffeine-loaded UDV as expected. For flux measurements, the following order was obtained: transethosomes (TE > ethosomes (E ≥ transfersomes (T. This result was consistent with the release and skin penetration

  12. Polarized exocyst-mediated vesicle fusion directs intracellular lumenogenesis within the C. elegans excretory cell

    OpenAIRE

    Armenti, Stephen T.; Chan, Emily; Nance, Jeremy

    2014-01-01

    Lumenogenesis of small seamless tubes occurs through intracellular membrane growth and directed vesicle fusion events. Within the C. elegans excretory cell, which forms seamless intracellular tubes (canals) that mediate osmoregulation, lumens grow in length and diameter when vesicles fuse with the expanding lumenal surface. Here, we show that lumenal vesicle fusion depends on the small GTPase RAL-1, which localizes to vesicles and acts through the exocyst vesicle-tethering complex. Loss of ei...

  13. GTP hydrolysis is required for vesicle fusion during nuclear envelope assembly in vitro

    OpenAIRE

    1992-01-01

    Nuclear envelope assembly was studied in vitro using extracts from Xenopus eggs. Nuclear-specific vesicles bound to demembranated sperm chromatin but did not fuse in the absence of cytosol. Addition of cytosol stimulated vesicle fusion, pore complex assembly, and eventual nuclear envelope growth. Vesicle binding and fusion were assayed by light and electron microscopy. Addition of ATP and GTP to bound vesicles caused limited vesicle fusion, but enclosure of the chromatin was not observed. Thi...

  14. Spontaneous Vesicle Formation in Mixed Aqueous Solution of Poly-tailed Cationic and Anionic Surfactants

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Spontaneous vesicles from the mixed aqueous solution of poly-tailed cationic surfactant PTA and anionic surfactant AOT are firstly obtained. Vesicle formation and characterizations are demonstrated by negative-staining TEM and dynamic light scattering. A monodisperse vesicle system is obtained with a polydispersity of 0.082. Ultrasonication can promote the vesicle formation. Mechanism of vesicle formation is discussed from the viewpoint of molecular interaction.

  15. Coated vesicles participate in the receptor-mediated endocytosis of insulin

    OpenAIRE

    1983-01-01

    We have purified coated vesicles from rat liver by differential ultracentrifugation. Electron micrographs of these preparations reveal only the polyhedral structures typical of coated vesicles. SDS PAGE of the coated vesicle preparation followed by Coomassie Blue staining of proteins reveals a protein composition also typical of coated vesicles. We determined that these rat liver coated vesicles possess a latent insulin binding capability. That is, little if any specific binding of 125I-insul...

  16. Brush border membrane vesicles from dipteran midgut: a tool for studies on nutrient absorption

    Directory of Open Access Journals (Sweden)

    MG Leonardi

    2006-12-01

    Full Text Available Brush border membrane vesicles (BBMV from insects midgut can be successfully used to study several membrane phenomena, including nutrient absorption, ions permeability and insecticides mode of action. Midgut BBMV, purified from Musca domestica whole larvae, were used for the functional characterization of leucine transport. The amino acid uptake was accelerated in the presence of sodium or potassium and increased significantly when the extravesicular pH was 5.0, in agreement with the luminal pH in vivo. Radiolabelled leucine uptake was significantly reduced by an excess of cold leucine, histidine, serine and glycine, suggesting that the amino acid transporter is a broad scope carrier that does not recognize proline, glutamine and the dibasic amino acids lysine and arginine.Midgut BBMV were also obtained from homogenization of M. domestica and Bactrocera oleae adults. The final preparations showed a high enrichment in the specific activity of the BBM marker enzymes aminopeptidase N and γ-glutamyl transpeptidase, and were poorly contaminated by basolateral membranes, as indicated by the low specific activities of their marker enzyme Na+/K+ ATPase. Electron microscopy of B. oleae BBM fraction showed the presence of closed vesicles. Similar SDS-PAGE patterns, with numerous distinct bands, were detected for both B. oleae and M. domestica BBMV.

  17. Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles

    Directory of Open Access Journals (Sweden)

    Nunzio Iraci

    2016-02-01

    Full Text Available Extracellular vesicles (EVs are a heterogeneous population of secreted membrane vesicles, with distinct biogenesis routes, biophysical properties and different functions both in physiological conditions and in disease. The release of EVs is a widespread biological process, which is conserved across species. In recent years, numerous studies have demonstrated that several bioactive molecules are trafficked with(in EVs, such as microRNAs, mRNAs, proteins and lipids. The understanding of their final impact on the biology of specific target cells remains matter of intense debate in the field. Also, EVs have attracted great interest as potential novel cell-free therapeutics. Here we describe the proposed physiological and pathological functions of EVs, with a particular focus on their molecular content. Also, we discuss the advances in the knowledge of the mechanisms regulating the secretion of EV-associated molecules and the specific pathways activated upon interaction with the target cell, highlighting the role of EVs in the context of the immune system and as mediators of the intercellular signalling in the brain.

  18. Oncogenic extracellular vesicles in brain tumor progression.

    Science.gov (United States)

    D'Asti, Esterina; Garnier, Delphine; Lee, Tae H; Montermini, Laura; Meehan, Brian; Rak, Janusz

    2012-01-01

    The brain is a frequent site of neoplastic growth, including both primary and metastatic tumors. The clinical intractability of many brain tumors and their distinct biology are implicitly linked to the unique microenvironment of the central nervous system (CNS) and cellular interactions within. Among the most intriguing forms of cellular interactions is that mediated by membrane-derived extracellular vesicles (EVs). Their biogenesis (vesiculation) and uptake by recipient cells serves as a unique mechanism of intercellular trafficking of complex biological messages including the exchange of molecules that cannot be released through classical secretory pathways, or that are prone to extracellular degradation. Tumor cells produce EVs containing molecular effectors of several cancer-related processes such as growth, invasion, drug resistance, angiogenesis, and coagulopathy. Notably, tumor-derived EVs (oncosomes) also contain oncogenic proteins, transcripts, DNA, and microRNA (miR). Uptake of this material may change properties of the recipient cells and impact the tumor microenvironment. Examples of transformation-related molecules found in the cargo of tumor-derived EVs include the oncogenic epidermal growth factor receptor (EGFRvIII), tumor suppressors (PTEN), and oncomirs (miR-520g). It is postulated that EVs circulating in blood or cerebrospinal fluid (CSF) of brain tumor patients may be used to decipher molecular features (mutations) of the underlying malignancy, reflect responses to therapy, or molecular subtypes of primary brain tumors [e.g., glioma or medulloblastoma (MB)]. It is possible that metastases to the brain may also emit EVs with clinically relevant oncogenic signatures. Thus, EVs emerge as a novel and functionally important vehicle of intercellular communication that can mediate multiple biological effects. In addition, they provide a unique platform to develop molecular biomarkers in brain malignancies. PMID:22934045

  19. Oncogenic extracellular vesicles in brain tumour progression

    Directory of Open Access Journals (Sweden)

    Esterina eD'Asti

    2012-07-01

    Full Text Available The brain is a frequent site of neoplastic growth, including both primary and metastatic tumours. The clinical intractability of many brain tumours and their distinct biology are implicitly linked to the unique microenvironment of the central nervous system (CNS and cellular interactions within. Among the most intriguing forms of cellular interactions is that mediated by membrane-derived extracellular vesicles (EVs. Their biogenesis (vesiculation and uptake by recipient cells serves as a unique mechanism of intercellular trafficking of complex biological messages including the exchange of molecules that cannot be released through classical secretory pathways, or that are prone to extracellular degradation. Tumour cells produce EVs containing molecular effectors of several cancer-related processes such as growth, invasion, drug resistance, angiogenesis, and coagulopathy. Notably, tumour-derived EVs (oncosomes also contain oncogenic proteins, transcripts, DNA and microRNA (miR. Uptake of this material may change properties of the recipient cells and impact the tumour microenvironment. Examples of transformation-related molecules found in the cargo of tumour-derived EVs include the oncogenic epidermal growth factor receptor (EGFRvIII, tumour suppressors (PTEN and oncomirs (miR-520g. It is postulated that EVs circulating in blood or cerebrospinal fluid (CSF of brain tumour patients may be used to decipher molecular features (mutations of the underlying malignancy, reflect responses to therapy or molecular subtypes of primary brain tumours (e.g. glioma or medulloblastoma. It is possible that metastases to the brain may also emit EVs with clinically relevant oncogenic signatures. Thus EVs emerge as a novel and functionally important vehicle of intercellular communication that can mediate multiple biological effects. In addition, they provide a unique platform to develop molecular biomarkers in brain malignancies.

  20. Surface glycosylation profiles of urine extracellular vesicles.

    Directory of Open Access Journals (Sweden)

    Jared Q Gerlach

    Full Text Available Urinary extracellular vesicles (uEVs are released by cells throughout the nephron and contain biomolecules from their cells of origin. Although uEV-associated proteins and RNA have been studied in detail, little information exists regarding uEV glycosylation characteristics. Surface glycosylation profiling by flow cytometry and lectin microarray was applied to uEVs enriched from urine of healthy adults by ultracentrifugation and centrifugal filtration. The carbohydrate specificity of lectin microarray profiles was confirmed by competitive sugar inhibition and carbohydrate-specific enzyme hydrolysis. Glycosylation profiles of uEVs and purified Tamm Horsfall protein were compared. In both flow cytometry and lectin microarray assays, uEVs demonstrated surface binding, at low to moderate intensities, of a broad range of lectins whether prepared by ultracentrifugation or centrifugal filtration. In general, ultracentrifugation-prepared uEVs demonstrated higher lectin binding intensities than centrifugal filtration-prepared uEVs consistent with lesser amounts of co-purified non-vesicular proteins. The surface glycosylation profiles of uEVs showed little inter-individual variation and were distinct from those of Tamm Horsfall protein, which bound a limited number of lectins. In a pilot study, lectin microarray was used to compare uEVs from individuals with autosomal dominant polycystic kidney disease to those of age-matched controls. The lectin microarray profiles of polycystic kidney disease and healthy uEVs showed differences in binding intensity of 6/43 lectins. Our results reveal a complex surface glycosylation profile of uEVs that is accessible to lectin-based analysis following multiple uEV enrichment techniques, is distinct from co-purified Tamm Horsfall protein and may demonstrate disease-specific modifications.

  1. Sugar-based gemini surfactant with a vesicle-to-micelle transition at acidic pH and a reversible vesicle flocculation near neutral pH

    NARCIS (Netherlands)

    Johnsson, M; Wagenaar, A; Engberts, JBFN

    2003-01-01

    A sugar-based (reduced glucose) gemini surfactant forms vesicles in dilute aqueous solution near neutral pH. At lower pH, there is a vesicle-to-micelle transition within a narrow pH region (pH 6.0-5.6). The vesicles are transformed into large cylindrical micelles that in turn are transformed into sm

  2. Liposome-based engineering of cells to package hydrophobic compounds in membrane vesicles for tumor penetration.

    Science.gov (United States)

    Lee, Junsung; Kim, Jiyoung; Jeong, Moonkyoung; Lee, Hyoungjin; Goh, Unbyeol; Kim, Hyaeyeong; Kim, Byungji; Park, Ji-Ho

    2015-05-13

    Natural membrane vesicles (MVs) derived from various types of cells play an essential role in transporting biological materials between cells. Here, we show that exogenous compounds are packaged in the MVs by engineering the parental cells via liposomes, and the MVs mediate autonomous intercellular migration of the compounds through multiple cancer cell layers. Hydrophobic compounds delivered selectively to the plasma membrane of cancer cells using synthetic membrane fusogenic liposomes were efficiently incorporated into the membrane of MVs secreted from the cells and then transferred to neighboring cells via the MVs. This liposome-mediated MV engineering strategy allowed hydrophobic photosensitizers to significantly penetrate both spheroids and in vivo tumors, thereby enhancing the therapeutic efficacy. These results suggest that innate biological transport systems can be in situ engineered via synthetic liposomes to guide the penetration of chemotherapeutics across challenging tissue barriers in solid tumors.

  3. Functional Nanoscale Imaging of Synaptic Vesicle Cycling with Superfast Fixation.

    Science.gov (United States)

    Schikorski, Thomas

    2016-01-01

    Functional imaging is the measurement of structural changes during an ongoing physiological process over time. In many cases, functional imaging has been implemented by tracking a fluorescent signal in live imaging sessions. Electron microscopy, however, excludes live imaging which has hampered functional imaging approaches on the ultrastructural level. This barrier was broken with the introduction of superfast fixation. Superfast fixation is capable of stopping and fixing membrane traffic at sufficient speed to capture a physiological process at a distinct functional state. Applying superfast fixation at sequential time points allows tracking of membrane traffic in a step-by-step fashion.This technique has been applied to track labeled endocytic vesicles at central synapses as they pass through the synaptic vesicle cycle. At synapses, neurotransmitter is released from synaptic vesicles (SVs) via fast activity-dependent exocytosis. Exocytosis is coupled to fast endocytosis that retrieves SVs components from the plasma membrane shortly after release. Fluorescent FM dyes that bind to the outer leaflet of the plasma membrane enter the endocytic vesicle during membrane retrieval and remain trapped in endocytic vesicles have been widely used to study SV exo-endocytic cycling in live imaging sessions. FM dyes can also be photoconverted into an electron-dense diaminobenzidine polymer which allows the investigation of SV cycling in the electron microscope. The combination of FM labeling with superfast fixation made it possible to track the fine structure of endocytic vesicles at 1 s intervals. Because this combination is not specialized to SV cycling, many other cellular processes can be studied. Furthermore, the technique is easy to set up and cost effective.This chapter describes activity-dependent FM dye labeling of SVs in cultured hippocampal neurons, superfast microwave-assisted fixation, photoconversion of the fluorescent endocytic vesicles, and the analysis of

  4. Dynamic tracking and mobility analysis of single GLUT4 storage vesicle in live 3T3-L1 cells

    Institute of Scientific and Technical Information of China (English)

    Chen Hong LI; Li BAI; Dong Dong LI; Sheng XIA; Tao XU

    2004-01-01

    Glucose transporter 4 (GLUT4) is responsible for insulin-stimulated glucose transporting into the insulin-sensitive fat and muscle cells. The dynamics of GLUT4 storage vesicles (GSVs) remains to be explored and it is unclear how GSVs are arranged based on their mobility. We examined this issue in 3T3-L1 cells via investigating the three-dimensional mobility of single GSV labeled with EGFP-fused GLUT4. A thin layer of cytosol right adjacent to the plasma membrane was illuminated and successively imaged at 5 Hz under a total internal reflection fluorescence microscope with a penetration depth of 136 nm. Employing single particle tracking, the three-dimensional subpixel displacement of single GSV was tracked at a spatial precision of 22 nm. Both the mean square displacement and the diffusion coefficient were calculated for each vesicle. Tracking results revealed that vesicles moved as if restricted within a cage that has a mean radius of 160 nm, suggesting the presence of some intracellular tethering matrix. By constructing the histogram of the diffusion coefficients of GSVs, we observed a smooth distribution instead of the existence of distinct groups. The result indicates that GSVs are dynamically retained in a continuous and wide range of mobility rather than into separate classes.

  5. Extracellular Vesicles in Brain Tumor Progression.

    Science.gov (United States)

    D'Asti, Esterina; Chennakrishnaiah, Shilpa; Lee, Tae Hoon; Rak, Janusz

    2016-04-01

    Brain tumors can be viewed as multicellular 'ecosystems' with increasingly recognized cellular complexity and systemic impact. While the emerging diversity of malignant disease entities affecting brain tissues is often described in reference to their signature alterations within the cellular genome and epigenome, arguably these cell-intrinsic changes can be regarded as hardwired adaptations to a variety of cell-extrinsic microenvironmental circumstances. Conversely, oncogenic events influence the microenvironment through their impact on the cellular secretome, including emission of membranous structures known as extracellular vesicles (EVs). EVs serve as unique carriers of bioactive lipids, secretable and non-secretable proteins, mRNA, non-coding RNA, and DNA and constitute pathway(s) of extracellular exit of molecules into the intercellular space, biofluids, and blood. EVs are also highly heterogeneous as reflected in their nomenclature (exosomes, microvesicles, microparticles) attempting to capture their diverse origin, as well as structural, molecular, and functional properties. While EVs may act as a mechanism of molecular expulsion, their non-random uptake by heterologous cellular recipients defines their unique roles in the intercellular communication, horizontal molecular transfer, and biological activity. In the central nervous system, EVs have been implicated as mediators of homeostasis and repair, while in cancer they may act as regulators of cell growth, clonogenicity, angiogenesis, thrombosis, and reciprocal tumor-stromal interactions. EVs produced by specific brain tumor cell types may contain the corresponding oncogenic drivers, such as epidermal growth factor receptor variant III (EGFRvIII) in glioblastoma (and hence are often referred to as 'oncosomes'). Through this mechanism, mutant oncoproteins and nucleic acids may be transferred horizontally between cellular populations altering their individual and collective phenotypes. Oncogenic pathways

  6. Pairwise hydrodynamic interactions and diffusion in a vesicle suspension

    CERN Document Server

    Gires, Pierre-Yves; Misbah, Chaouqi; Podgorski, Thomas; Coupier, Gwennou

    2014-01-01

    The hydrodynamic interaction of two deformable vesicles in shear flow induces a net displacement, in most cases an increase of their distance in the transverse direction. The statistical average of these interactions leads to shear-induced diffusion in the suspension, both at the level of individual particles which experience a random walk made of successive interactions, and at the level of suspension where a non-linear down-gradient diffusion takes place, an important ingredient in the structuring of suspension flows. We make an experimental and computational study of the interaction of a pair of lipid vesicles in shear flow by varying physical parameters, and investigate the decay of the net lateral displacement with the distance between the streamlines on which the vesicles are initially located. This decay and its dependency upon vesicle properties can be accounted for by a simple model based on the well established law for the lateral drift of a vesicle in the vicinity of a wall. In the semi-dilute regi...

  7. Preparation of artificial plasma membrane mimicking vesicles with lipid asymmetry.

    Science.gov (United States)

    Lin, Qingqing; London, Erwin

    2014-01-01

    Lipid asymmetry, the difference in lipid distribution across the lipid bilayer, is one of the most important features of eukaryotic cellular membranes. However, commonly used model membrane vesicles cannot provide control of lipid distribution between inner and outer leaflets. We recently developed methods to prepare asymmetric model membrane vesicles, but facile incorporation of a highly controlled level of cholesterol was not possible. In this study, using hydroxypropyl-α-cyclodextrin based lipid exchange, a simple method was devised to prepare large unilamellar model membrane vesicles that closely resemble mammalian plasma membranes in terms of their lipid composition and asymmetry (sphingomyelin (SM) and/or phosphatidylcholine (PC) outside/phosphatidylethanolamine (PE) and phosphatidylserine (PS) inside), and in which cholesterol content can be readily varied between 0 and 50 mol%. We call these model membranes "artificial plasma membrane mimicking" ("PMm") vesicles. Asymmetry was confirmed by both chemical labeling and measurement of the amount of externally-exposed anionic lipid. These vesicles should be superior and more realistic model membranes for studies of lipid-lipid and lipid-protein interaction in a lipid environment that resembles that of mammalian plasma membranes.

  8. Overall energy conversion efficiency of a photosynthetic vesicle.

    Science.gov (United States)

    Sener, Melih; Strumpfer, Johan; Singharoy, Abhishek; Hunter, C Neil; Schulten, Klaus

    2016-08-26

    The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytb⁢c1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in a quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%-5% of full sunlight is calculated to be 0.12-0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination.

  9. Robot-Assisted Laparoscopic Seminal Vesicle Cystadenoma Excision

    Science.gov (United States)

    Mourmouris, Panagiotis; Tufek, İlter; Saglican, Yesim; Obek, Can; Kural, Ali Riza

    2015-01-01

    Abstract Background: Cystadenoma is an extremely rare benign tumor of the seminal vesicle. Diagnosis of these tumors and differential diagnosis from malignant ones may be challenging since most of the time symptoms do not occur. Management of these tumors remains debatable due to the limited data in the literature. We present the first robot-assisted laparoscopic excision of a cystadenoma of the seminal vesicle. Case Presentation: A 48-year-old man presented with diminished ejaculate volume and a 3.5 cm right seminal vesicle mass, which increased its size at 6 cm after the 3-month period. Transrectal ultrasound-guided biopsy revealed no malignancy. Robot-assisted laparoscopic excision of the tumor was performed. Port placement was the same as robot-assisted radical prostatectomy. Operative time and estimated blood loss were 240 minutes and 200 mL, respectively. Patient was discharged on postoperative day 3 without any complications. Final histopathologic examination revealed cystadenoma of the seminal vesicle. Conclusion: Surgical intervention may be considered when a cystadenoma of the seminal vesicle is diagnosed and symptoms or tumor growth occurs. Robot-assisted laparoscopic excision is an alternative in the management of these rare tumors.

  10. Procoagulant tissue factor-exposing vesicles in human seminal fluid.

    Science.gov (United States)

    Franz, C; Böing, A N; Hau, C M; Montag, M; Strowitzki, T; Nieuwland, R; Toth, B

    2013-06-01

    Recent studies indicate that various types of vesicles, like microparticles (MP) and exosomes, are present in blood, saliva, bone marrow, urine and synovial fluid. These vesicles, which are released upon activation or shear stress, are thought to play a role in coagulation, neovascularisation, inflammation and intercellular signalling. Seminal fluid is a cell-, sperm- and protein-rich suspension. Although seminal fluid is known to contain vesicles like prostasomes, MP and exosomes have never been characterised. Therefore, the aim of our study was to analyse and characterise vesicles in seminal fluid in male partners of patients undergoing controlled ovarian stimulation for IVF/ICSI. MP from seminal fluid of patients during routine IVF/ICSI procedures were detected and analysed with flow cytometry (FACS) and transmission electron microscopy (TEM), using antibodies against tissue factor (TF), CD10, CD13, CD26 and annexin V. The coagulant properties of vesicles were studied using a fibrin generation test. MP were detected in human seminal fluid by both flow cytometry and TEM. Seminal fluid-derived MP expressed CD10, CD13, CD26 and TF, which was highly procoagulant and a powerful trigger of the extrinsic pathway of coagulation. The extent to which the procoagulant activity of MP in seminal fluid contributes to the implantation process itself and therefore affects human reproduction needs to be further elucidated.

  11. Interaction of the ectomesenchyme and optic vesicle in mice.

    Science.gov (United States)

    Osipov, V V; Vakhrusheva, M P

    1975-07-01

    We investigated eye development in embryos at the 17, 24, and 31 somite-pair stages homozygous for the two genes white (Mi-wh) and fidget (fi) (Mi-wh/Mi-whfi/fi), single homozygotes (fi/fi and Mi-wh/Mi-wh), and normal mice (the inbred C57 BL/Mib strain). The fi gene retards optic-vesicle growth, while the Mi-wh gene inhibits ectomesenchyme migration. It was shown that the mitotic index of the optic-vesicle wall and the retinal rudiment was considerably higher in Mi-wh/Mi-whfi/fi embryos than in fi/fi embryos and lower than in Mi-wh/Mi-wh and +/+ embryos. Ectomesenchyme affected by the white gene stimulated optic-vesicle growth, to some extent suppressing the effect of the fidget gene. The stimulation of optic-vesicle growth in the double homozygotes led to intensified induction of the lens placode. This indicates that the ectomesenchyme affects the optic rudiment at the optic-vesicle stage.

  12. Overall energy conversion efficiency of a photosynthetic vesicle

    Science.gov (United States)

    Sener, Melih; Strumpfer, Johan; Singharoy, Abhishek; Hunter, C Neil; Schulten, Klaus

    2016-01-01

    The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytb⁢c1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in a quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%–5% of full sunlight is calculated to be 0.12–0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination. DOI: http://dx.doi.org/10.7554/eLife.09541.001 PMID:27564854

  13. GLUT4 in cultured skeletal myotubes is segregated from the transferrin receptor and stored in vesicles associated with TGN

    DEFF Research Database (Denmark)

    Ralston, E; Ploug, Thorkil

    1996-01-01

    There is little consensus on the nature of the storage compartment of the glucose transporter GLUT4, in non-stimulated cells of muscle and fat. More specifically, it is not known whether GLUT4 is localized to unique, specialized intracellular storage vesicles, or to vesicles that are part...... (alpha mannosidase II and giantin), of the trans-Golgi network (TGN38), of lysosomes (lgp110), and of early and late endosomes (transferrin receptor and mannose-6-phosphate receptor, respectively), to define the position of their subcellular compartments. By immunofluorescence, GLUT4 appears concentrated...... in the core of the myotubes. It is primarily found around the nuclei, in a pattern suggesting an association with the Golgi complex, which is further supported by colocalization with giantin and by immunogold electron microscopy. GLUT4 appears to be in the trans-most cisternae of the Golgi complex...

  14. Preparation of pure and intact Plasmodium falciparum plasma membrane vesicles and partial characterisation of the plasma membrane ATPase

    Directory of Open Access Journals (Sweden)

    Smith Pete J

    2002-04-01

    Full Text Available Abstract Background In host erythrocytes, the malaria parasite must contend with ion and drug transport across three membranes; its own plasma membrane, the parasitophorous membrane and the host plasma membrane. Isolation of pure and intact Plasmodium falciparum plasma membrane would provide a suitable model to elucidate the possible role played by the parasite plasma membrane in ion balance and drug transport. Results This study describes a procedure for isolating parasite plasma membrane from P. falciparum-infected erythrocytes. With this method, the trophozoites released by saponin treatment were cleansed of erythrocyte membranes using anti-erythrocyte antibodies fixed to polystyrene beads. These trophozoites were then biotinylated and the parasite plasma membrane was disrupted by nitrogen cavitation. This process allows the membranes to reform into vesicles. The magnetic streptavidin beads bind specifically to the biotinylated parasite plasma membrane vesicles facilitating their recovery with a magnet. These vesicles can then be easily released from the magnetic beads by treatment with dithiotreithol. The parasite plasma membrane showed optimal ATPase activity at 2 mM ATP and 2 mM Mg2+. It was also found that Ca2+ could not substitute for Mg2+ ATPase activity in parasite plasma membranes whereas activity was completely preserved when Mn2+ was used instead of Mg2+. Other nucleoside triphosphates tested were hydrolysed as efficiently as ATP, while the nucleoside monophosphate AMP was not. Conclusions We have described the successful isolation of intact P. falciparum plasma membrane vesicles free of contaminating organelles and determined the experimental conditions for optimum ATPase activity.

  15. Characterization of extracellular vesicles in whole blood: Influence of pre-analytical parameters and visualization of vesicle-cell interactions using imaging flow cytometry.

    Science.gov (United States)

    Fendl, Birgit; Weiss, René; Fischer, Michael B; Spittler, Andreas; Weber, Viktoria

    2016-09-01

    Extracellular vesicles are central players in intercellular communication and are released from the plasma membrane under tightly regulated conditions, depending on the physiological and pathophysiological state of the producing cell. Their heterogeneity requires a spectrum of methods for isolation and characterization, where pre-analytical parameters have profound impact on vesicle analysis, particularly in blood, since sampling, addition of anticoagulants, as well as post-sampling vesicle generation may influence the outcome. Here, we characterized microvesicles directly in whole blood using a combination of flow cytometry and imaging flow cytometry. We assessed the influence of sample agitation, anticoagulation, and temperature on post-sampling vesicle generation, and show that vesicle counts remained stable over time in samples stored without agitation. Storage with gentle rolling mimicking agitation, in contrast, resulted in strong release of platelet-derived vesicles in blood anticoagulated with citrate or heparin, whereas vesicle counts remained stable upon anticoagulation with EDTA. Using imaging flow cytometry, we could visualize microvesicles adhering to blood cells and revealed an anticoagulant-dependent increase in vesicle-cell aggregates over time. We demonstrate that vesicles adhere preferentially to monocytes and granulocytes in whole blood, while no microvesicles could be visualized on lymphocytes. Our data underscore the relevance of pre-analytical parameters in vesicle analysis and demonstrate that imaging flow cytometry is a suitable tool to study the interaction of extracellular vesicles with their target cells. PMID:27444383

  16. Small angle neutron scattering studies of vesicle stability

    Energy Technology Data Exchange (ETDEWEB)

    Mang, J.T.; Hjelm, R.P.

    1997-10-01

    Small angle neutron scattering (SANS) was used to investigate the structure of mixed colloids of egg yolk phosphatidylcholine (EYPC) with the bile salt, cholylglycine (CG), in D{sub 2}O as a function of pressure (P) and temperature (T). At atmospheric pressure, the system forms an isotropic phase of mixed, single bilayer vesicles (SLV`s). Increasing the external hydrostatic pressure brought about significant changes in particle morphology. At T = 25 C, application of a pressure of 3.5 MPa resulted in the collapse of the SLV`s. Further increase of P, up to 51.8 MPa, resulted in a transition from a phase of ordered (stacked), collapsed vesicles to one of stacked, ribbon-like particles. A similar collapse of the vesicles was observed at higher temperature (T = 37 C) with increasing P, but at this temperature, no ribbon phase was found at the highest pressure explored.

  17. Shear-stress sensitive lenticular vesicles for targeted drug delivery

    Science.gov (United States)

    Holme, Margaret N.; Fedotenko, Illya A.; Abegg, Daniel; Althaus, Jasmin; Babel, Lucille; Favarger, France; Reiter, Renate; Tanasescu, Radu; Zaffalon, Pierre-Léonard; Ziegler, André; Müller, Bert; Saxer, Till; Zumbuehl, Andreas

    2012-08-01

    Atherosclerosis results in the narrowing of arterial blood vessels and this causes significant changes in the endogenous shear stress between healthy and constricted arteries. Nanocontainers that can release drugs locally with such rheological changes can be very useful. Here, we show that vesicles made from an artificial 1,3-diaminophospholipid are stable under static conditions but release their contents at elevated shear stress. These vesicles have a lenticular morphology, which potentially leads to instabilities along their equator. Using a model cardiovascular system based on polymer tubes and an external pump to represent shear stress in healthy and constricted vessels of the heart, we show that drugs preferentially release from the vesicles in constricted vessels that have high shear stress.

  18. Lipid lateral organization on giant unilamellar vesicles containing lipopolysaccharides

    DEFF Research Database (Denmark)

    Kubiak, Jakub; Brewer, Jonathan R.; Hansen, Søren;

    2011-01-01

    at physiological salt and pH conditions. Analysis of LPS incorporation into the membrane models (both oligolamellar vesicles and GUVs) shows that the final concentration of LPS is lower than that expected from the initial E. coli lipids/LPS mixture. In particular, our protocol allows incorporation of no more than......We developed a new (to our knowledge) protocol to generate giant unilamellar vesicles (GUVs) composed of mixtures of single lipopolysaccharide (LPS) species and Escherichia coli polar lipid extracts. Four different LPSs that differed in the size of the polar headgroup (i.e., LPS smooth > LPS......-Ra > LPS-Rc > LPS-Rd) were selected to generate GUVs composed of different LPS/E. coli polar lipid mixtures. Our procedure consists of two main steps: 1), generation and purification of oligolamellar liposomes containing LPSs; and 2), electroformation of GUVs using the LPS-containing oligolamellar vesicles...

  19. Bridging the Gap between Glycosylation and Vesicle Traffic.

    Science.gov (United States)

    Fisher, Peter; Ungar, Daniel

    2016-01-01

    Glycosylation is recognized as a vitally important posttranslational modification. The structure of glycans that decorate proteins and lipids is largely dictated by biosynthetic reactions occurring in the Golgi apparatus. This biosynthesis relies on the relative distribution of glycosyltransferases and glycosidases, which is maintained by retrograde vesicle traffic between Golgi cisternae. Tethering of vesicles at the Golgi apparatus prior to fusion is regulated by Rab GTPases, coiled-coil tethers termed golgins and the multisubunit tethering complex known as the conserved oligomeric Golgi (COG) complex. In this review we discuss the mechanisms involved in vesicle tethering at the Golgi apparatus and highlight the importance of tethering in the context of glycan biosynthesis and a set of diseases known as congenital disorders of glycosylation.

  20. Bridging the gap between glycosylation and vesicle traffic

    Directory of Open Access Journals (Sweden)

    Daniel eUngar

    2016-03-01

    Full Text Available Glycosylation is recognised as a vitally important posttranslational modification. The structure of glycans that decorate proteins and lipids is largely dictated by biosynthetic reactions occurring in the Golgi apparatus. This biosynthesis relies on the relative distribution of glycosyltransferases and glycosidases, which is maintained by retrograde vesicle traffic between Golgi cisternae. Tethering of vesicles at the Golgi apparatus prior to fusion is regulated by Rab GTPases, coiled-coil tethers termed golgins and the multisubunit tethering complex known as the conserved oligomeric Golgi (COG complex. In this review we discuss the mechanisms involved in vesicle tethering at the Golgi apparatus and highlight the importance of tethering in the context of glycan biosynthesis and a set of diseases known as congenital disorders of glycosylation.

  1. Inhibition of skin inflammation by baicalin ultradeformable vesicles.

    Science.gov (United States)

    Mir-Palomo, Silvia; Nácher, Amparo; Díez-Sales, Octavio; Ofelia Vila Busó, M A; Caddeo, Carla; Manca, Maria Letizia; Manconi, Maria; Fadda, Anna Maria; Saurí, Amparo Ruiz

    2016-09-10

    The topical efficacy of baicalin, a natural flavonoid isolated from Scutellaria baicalensis Georgi, which has several beneficial properties, such as antioxidative, antiviral, anti-inflammatory and antiproliferative, is hindered by its poor aqueous solubility and low skin permeability. Therefore, its incorporation into appropriate phospholipid vesicles could be a useful tool to improve its local activity. To this purpose, baicalin at increasing concentrations up to saturation, was incorporated in ultradeformable vesicles, which were small in size (∼67nm), monodispersed (PIhuman epidermis was concentration dependent. The in vivo results showed the significant anti-inflammatory activity of baicalin loaded nanovesicles irrespective of the concentration used, as they were able to reduce the skin damage induced by the phorbol ester (TPA) application, even in comparison with dexamethasone, a synthetic drug with anti-inflammatory properties. Overall results indicate that ultradeformable vesicles are promising nanosystems for the improvement of cutaneous delivery of baicalin in the treatment of skin inflammation. PMID:27374324

  2. Elastic vesicles as topical/transdermal drug delivery systems.

    Science.gov (United States)

    Choi, M J; Maibach, H I

    2005-08-01

    Skin acts a major target as well as a principle barrier for topical/transdermal drug delivery. Despite the many advantages of this system, the major obstacle is the low diffusion rate of drugs across the stratum corneum. Several methods have been assessed to increase the permeation rate of drugs temporarily. One simple and convenient approach is application of drugs in formulation with elastic vesicles or skin enhancers. Elastic vesicles are classified with phospholipid (Transfersomes((R)) and ethosomes) and detergent-based types. Elastic vesicles were more efficient at delivering a low and high molecular weight drug to the skin in terms of quantity and depth. Their effectiveness strongly depends on their physicochemical properties: composition, duration and application volume, and entrapment efficiency and application methods. This review focuses on the effect of elastic liposomes for enhancing the drug penetration and defines the action mechanism of penetration into deeper skin. PMID:18492190

  3. Biogenesis and Functions of Exosomes and Extracellular Vesicles.

    Science.gov (United States)

    Dreyer, Florian; Baur, Andreas

    2016-01-01

    Research on extracellular vesicles (EVs) is a new and emerging field that is rapidly growing. Many features of these structures still need to be described and discovered. This concerns their biogenesis, their release and cellular entrance mechanisms, as well as their functions, particularly in vivo. Hence our knowledge on EV is constantly evolving and sometimes changing. In our review we summarize the most important facts of our current knowledge about extracellular vesicles and described some of the assumed functions in the context of cancer and HIV infection. PMID:27317183

  4. A scenario for a genetically controlled fission of artificial vesicles

    DEFF Research Database (Denmark)

    Bönzli, Eva; Hadorn, Maik; Jørgensen, Mikkel Girke;

    2011-01-01

    Artificial vesicles have been used for decades as model systems of biological cells to investigate scientific questions in simulacra. In recent years, the significance of artificial vesicles further increased because they represent ideal candidates to become the building block of a de novo...... construction of a cell in a bottom-up manner. Numerous efforts to build an artificial cell that bridge the living and non-living world will most presumably represent one of the main goals of science in the 21st century. It was shown that artificial genetic programs and the required cellular machinery can...

  5. Extracellular Vesicles as Biomarkers of Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Javier Perez-Hernandez

    2015-01-01

    Full Text Available Systemic lupus erythematosus is an autoimmune disease that predominantly affects women and typically manifests in multiple organs. The damage caused by this disorder is characterized by a chronic inflammatory state. Extracellular vesicles (EVs, including microvesicles (also known as microparticles, apoptotic bodies, and exosomes, are recognized vehicles of intercellular communication, carrying autoantigens, cytokines, and surface receptors. Therefore, the evidence of EVs and their cargo as biomarkers of autoimmune disease is rapidly expanding. This review will focus on biogenesis of extracellular vesicles, their pathophysiological roles, and their potential as biomarkers and therapeutics in inflammatory disease, especially in systemic lupus erythematosus.

  6. Shape transitions of high-genus fluid vesicles

    Science.gov (United States)

    Noguchi, Hiroshi

    2015-12-01

    The morphologies of genus-2 to -8 fluid vesicles are studied by using dynamically triangulated membrane simulations with area-difference elasticity. It is revealed that the alignments of the membrane pores alter the vesicle shapes and the types of shape transitions for the genus g ≥ 3 . At a high reduced volume, a stomatocyte with a circular alignment of g + 1 pores continuously transforms into a discocyte with a line of g pores with increasing intrinsic area difference. In contrast, at a low volume, a stomatocyte transforms into a (g+1) -hedral shape and subsequently exhibits a discrete phase transition to a discocyte.

  7. Potentials and capabilities of the Extracellular Vesicle (EV) Array

    DEFF Research Database (Denmark)

    Jørgensen, Malene Møller; Bæk, Rikke; Varming, Kim

    2015-01-01

    Extracellular vesicles (EVs) and exosomes are difficult to enrich or purify from biofluids, hence quantification and phenotyping of these are tedious and inaccurate. The multiplexed, highly sensitive and high-throughput platform of the EV Array presented by Jørgensen et al., (J Extracell Vesicles......, 2013; 2: 10) has been refined regarding the capabilities of the method for characterization and molecular profiling of EV surface markers. Here, we present an extended microarray platform to detect and phenotype plasma-derived EVs (optimized for exosomes) for up to 60 antigens without any enrichment...

  8. Potentials and capabilities of the Extracellular Vesicle (EV Array

    Directory of Open Access Journals (Sweden)

    Malene Møller Jørgensen

    2015-04-01

    Full Text Available Extracellular vesicles (EVs and exosomes are difficult to enrich or purify from biofluids, hence quantification and phenotyping of these are tedious and inaccurate. The multiplexed, highly sensitive and high-throughput platform of the EV Array presented by Jørgensen et al., (J Extracell Vesicles, 2013; 2: 10 has been refined regarding the capabilities of the method for characterization and molecular profiling of EV surface markers. Here, we present an extended microarray platform to detect and phenotype plasma-derived EVs (optimized for exosomes for up to 60 antigens without any enrichment or purification prior to analysis.

  9. Coordinated recruitment of Spir actin nucleators and myosin V motors to Rab11 vesicle membranes.

    Science.gov (United States)

    Pylypenko, Olena; Welz, Tobias; Tittel, Janine; Kollmar, Martin; Chardon, Florian; Malherbe, Gilles; Weiss, Sabine; Michel, Carina Ida Luise; Samol-Wolf, Annette; Grasskamp, Andreas Till; Hume, Alistair; Goud, Bruno; Baron, Bruno; England, Patrick; Titus, Margaret A; Schwille, Petra; Weidemann, Thomas; Houdusse, Anne; Kerkhoff, Eugen

    2016-01-01

    There is growing evidence for a coupling of actin assembly and myosin motor activity in cells. However, mechanisms for recruitment of actin nucleators and motors on specific membrane compartments remain unclear. Here we report how Spir actin nucleators and myosin V motors coordinate their specific membrane recruitment. The myosin V globular tail domain (MyoV-GTD) interacts directly with an evolutionarily conserved Spir sequence motif. We determined crystal structures of MyoVa-GTD bound either to the Spir-2 motif or to Rab11 and show that a Spir-2:MyoVa:Rab11 complex can form. The ternary complex architecture explains how Rab11 vesicles support coordinated F-actin nucleation and myosin force generation for vesicle transport and tethering. New insights are also provided into how myosin activation can be coupled with the generation of actin tracks. Since MyoV binds several Rab GTPases, synchronized nucleator and motor targeting could provide a common mechanism to control force generation and motility in different cellular processes. PMID:27623148

  10. Mannosidase IA is in Quality Control Vesicles and Participates in Glycoprotein Targeting to ERAD.

    Science.gov (United States)

    Ogen-Shtern, Navit; Avezov, Edward; Shenkman, Marina; Benyair, Ron; Lederkremer, Gerardo Z

    2016-08-14

    Endoplasmic reticulum-associated degradation (ERAD) of a misfolded glycoprotein in mammalian cells requires the removal of 3-4 alpha 1,2 linked mannose residues from its N-glycans. The trimming and recognition processes are ascribed to ER Mannosidase I, the ER-degradation enhancing mannosidase-like proteins (EDEMs), and the lectins OS-9 and XTP3-B, all residing in the ER, the ER-derived quality control compartment (ERQC), or quality control vesicles (QCVs). Folded glycoproteins with untrimmed glycans are transported from the ER to the Golgi complex, where they are substrates of other alpha 1,2 mannosidases, IA, IB, and IC. The apparent redundancy of these enzymes has been puzzling for many years. We have now determined that, surprisingly, mannosidase IA is not located in the Golgi but resides in QCVs. We had recently described this type of vesicles, which carry ER α1,2 mannosidase I (ERManI). We show that the overexpression of alpha class I α1,2 mannosidase IA (ManIA) significantly enhances the degradation of ERAD substrates and its knockdown stabilizes it. Our results indicate that ManIA trims mannose residues from Man9GlcNAc2 down to Man5GlcNAc2, acting in parallel with ERManI and the EDEMs, and targeting misfolded glycoproteins to ERAD.

  11. Components of coated vesicles and nuclear pore complexes share a common molecular architecture.

    Directory of Open Access Journals (Sweden)

    Damien Devos

    2004-12-01

    Full Text Available Numerous features distinguish prokaryotes from eukaryotes, chief among which are the distinctive internal membrane systems of eukaryotic cells. These membrane systems form elaborate compartments and vesicular trafficking pathways, and sequester the chromatin within the nuclear envelope. The nuclear pore complex is the portal that specifically mediates macromolecular trafficking across the nuclear envelope. Although it is generally understood that these internal membrane systems evolved from specialized invaginations of the prokaryotic plasma membrane, it is not clear how the nuclear pore complex could have evolved from organisms with no analogous transport system. Here we use computational and biochemical methods to perform a structural analysis of the seven proteins comprising the yNup84/vNup107-160 subcomplex, a core building block of the nuclear pore complex. Our analysis indicates that all seven proteins contain either a beta-propeller fold, an alpha-solenoid fold, or a distinctive arrangement of both, revealing close similarities between the structures comprising the yNup84/vNup107-160 subcomplex and those comprising the major types of vesicle coating complexes that maintain vesicular trafficking pathways. These similarities suggest a common evolutionary origin for nuclear pore complexes and coated vesicles in an early membrane-curving module that led to the formation of the internal membrane systems in modern eukaryotes.

  12. Calcium uptake by brush-border and basolateral membrane vesicles in chick duodenum

    International Nuclear Information System (INIS)

    Calcium uptake was compared between duodenal brush-border membrane vesicles (BBMV) and basolateral membrane vesicles (BLMV) isolated from vitamin D-deficient chicks and those injected with 625 ng of 1 alpha,25-dihydroxyvitamin D3 [1 alpha,25(OH)2D3]. The uptake by BBMV in the 1 alpha,25-(OH)2D3-treated birds attained a maximum (280% of the control) at 12 h and was maintained at an elevated level (210%) at 24 h after the injection of the vitamin. In contrast, ATP-dependent calcium uptake by BLMV reached a maximum (185% of the control) at 6 h and decreased to the control level at 24 h. The kinetic analysis revealed that 1 alpha,25(OH)2D3 increased Vmax values without any changes in apparent Km values in both BBMV and BLMV. The activity of ATP-dependent calcium uptake was localized exclusively in the basolateral membrane, and the activity was inhibited by vanadate (IC50, 1 microM), but not by oligomycin, theophylline, calmodulin, trifluoperazine, or calbindin D28K. These results indicate that calcium transport through both the brush-border and basolateral membranes is involved in the 1 alpha,25(OH)2D3-dependent intestinal calcium absorption. The initiation of calcium absorption by 1 alpha,25(OH)2D3 appears to be due to an increase in the rate of calcium efflux at the basolateral membrane rather than the rate at the brush-border membrane

  13. Electron microscopic observation and rotational diffusion measurement of bacteriorhodopsin in lipid vesicles

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The morphology of bacteriorhodopsin reconstituted into dimyristoylphosphatidylcholine and egg-phosphatidylcholine vesicles was observed by freeze-fracture electron microscopy. The rotational diffusion of bacteriorhodopsin at different concentrations of melittin was measured by observing flash-induced transient dichroism in dimyristoylphosphatidylcholine vesicles. In the presence of melittin, bacteriorhodopsin molecules in dimyristoylphosphatidylcholine vesicles were aggregated into large particles or patches, and the ability of rotational diffusion of bacteriorhodop sin in vesicles was decreased. This suggests that melittin produces its effect via direct electrostatic interaction with bacteriorhodopsin. Low temperature-induced aggregation of bacteriorhodopsin was also observed in dimyristoylphosphatidylcholine vesicles. Low temperature may cause phase separation. Bacteriorhodopsin was also successfully reconstituted into egg-phosphatidylcholine vesicles, but Iow temperature-induced aggregation of bacteriorhodopsin in dimyristoylphosphati dylcholine cannot appear in egg-phosphatidylcholine vesicles. This suggests that different lipids have different effects on bacteriorhodopsin in vesicles.

  14. How the stimulus defines the dynamics of vesicle pool recruitment, fusion mode, and vesicle recycling in neuroendocrine cells.

    Science.gov (United States)

    Cárdenas, Ana María; Marengo, Fernando D

    2016-06-01

    The pattern of stimulation defines important characteristics of the secretory process in neurons and neuroendocrine cells, including the pool of secretory vesicles being recruited, the type and amount of transmitters released, the mode of membrane retrieval, and the mechanisms associated with vesicle replenishment. This review analyzes the mechanisms that regulate these processes in chromaffin cells, as well as in other neuroendocrine and neuronal models. A common factor in these mechanisms is the spatial and temporal distribution of the Ca(2+) signal generated during cell stimulation. For instance, neurosecretory cells and neurons have pools of vesicles with different locations with respect to Ca(2+) channels, and those pools are therefore differentially recruited following different patterns of stimulation. In this regard, a brief stimulus will induce the exocytosis of a small pool of vesicles that is highly coupled to voltage-dependent Ca(2+) channels, whereas longer or more intense stimulation will provoke a global Ca(2+) increase, promoting exocytosis irrespective of vesicle location. The pattern of stimulation, and therefore the characteristics of the Ca(2+) signal generated by the stimulus also influence the mode of exocytosis and the type of endocytosis. Indeed, low-frequency stimulation favors kiss-and-run exocytosis and clathrin-independent fast endocytosis, whereas higher frequencies promote full fusion and clathrin-dependent endocytosis. This latter type of endocytosis is accelerated at high-frequency stimulation. Synaptotagmins, calcineurin, dynamin, complexin, and actin remodeling, appear to be involved in the mechanisms that determine the response of these processes to Ca(2+) . In chromaffin cells, a brief stimulus induces the exocytosis of a small pool of vesicles that is highly coupled to voltage-dependent Ca(2+) channels (A), whereas longer or high-frequency stimulation provokes a global Ca(2+) increase, promoting exocytosis irrespective of

  15. Concentration-Dependent Staining of Lactotroph Vesicles by FM 4-64

    OpenAIRE

    Stenovec, Matjaž; Poberaj, Igor; Kreft, Marko; Zorec, Robert

    2005-01-01

    Hormones are released from neuroendocrine cells by passing through an exocytotic pore that forms after vesicle and plasma membrane fusion. An elegant way to study this process at the single-vesicle level is to use styryl dyes, which stain not only the membrane, but also the matrix of individual vesicles in some neuroendocrine cells. However, the mechanism by which the vesicle matrix is stained is not completely clear. One possibility is that molecules of the styryl dye in the bath solution di...

  16. Preparation, Stability, and Bio-Compatability of Block Copolymer Vesicles

    Science.gov (United States)

    Discher, Dennis; Lee, James C.-M.; Bermudez, Harry; Bates, Frank; Discher, Bohdana

    2001-03-01

    Vesicles made completely from diblock copolymers polymersomes can be stably prepared by a wide range of techniques common to liposomes. Processes such as film rehydration, sonication, and extrusion can generate many micron giants as well as monodisperse, 100 nm vesicles of PEO-PEE (polyethyleneoxide polyethylethylene) or PEO PBD (polyethyleneoxide polybutadiene). These thick-walled vesicles of polymer can encapsulate macromolecules just as liposomes can, but, unlike many pure liposome systems, these polymersomes exhibit no in-surface thermal transitions and a sub-population even survive autoclaving. Suspension in blood plasma has no immediate ill-effect on vesicle stability, and neither adhesion nor stimulation of phagocytes are apparent when giant polymersomes are held in direct, protracted contact. Proliferating cells, in addition, are unaffected when cultured for an extended time with an excess of polymersomes, and several injections of 10 mg doses into rats show no ill-effect. The results are consistent with the steric stabilization that PEG-lipid can impart to liposomes, but the present single-component polymersomes are far more stable mechanically and are not limited by PEG driven micellization.

  17. Cdk5 is essential for synaptic vesicle endocytosis

    DEFF Research Database (Denmark)

    Tan, Timothy C; Valova, Valentina A; Malladi, Chandra S;

    2003-01-01

    Synaptic vesicle endocytosis (SVE) is triggered by calcineurin-mediated dephosphorylation of the dephosphin proteins. SVE is maintained by the subsequent rephosphorylation of the dephosphins by unidentified protein kinases. Here, we show that cyclin-dependent kinase 5 (Cdk5) phosphorylates dynamin...

  18. Single Vesicle Analysis of Endocytic Fission on Microtubules In Vitro

    Science.gov (United States)

    Wolkoff, Allan W.

    2016-01-01

    Following endocytosis, internalized molecules are found within intracellular vesicles and tubules that move along the cytoskeleton and undergo fission, as demonstrated here using primary cultured rat hepatocytes. Although the use of depolymerizing drugs has shown that the cytoskeleton is not required to segregate endocytic protein, many studies suggest that the cytoskeleton is involved in the segregation of protein in normal cells. To investigate whether cytoskeletal-based movement results in the segregation of protein, we tracked the contents of vesicles during in vitro microscopy assays. These studies showed that the addition of ATP causes fission of endocytic contents along microtubules, resulting in the segregation of proteins that are targeted for different cellular compartments. The plasma membrane proteins, sodium (Na+) taurocholate cotransporting polypeptide (ntcp) and transferrin receptor, segregated from asialoorosomucoid (ASOR), an endocytic ligand that is targeted for degradation. Epidermal growth factor receptor, which is degraded, and the asialoglycoprotein receptor, which remains partially bound to ASOR, segregated less efficiently from ASOR. Vesicles containing ntcp and transferrin receptor had reduced fission in the absence of ASOR, suggesting that fission is regulated to allow proteins to segregate. A single round of fission resulted in 6.5-fold purification of ntcp from ASOR, and 25% of the resulting vesicles were completely depleted of the endocytic ligand. PMID:18284582

  19. Sortilin mediates vascular calcification via its recruitment into extracellular vesicles.

    Science.gov (United States)

    Goettsch, Claudia; Hutcheson, Joshua D; Aikawa, Masanori; Iwata, Hiroshi; Pham, Tan; Nykjaer, Anders; Kjolby, Mads; Rogers, Maximillian; Michel, Thomas; Shibasaki, Manabu; Hagita, Sumihiko; Kramann, Rafael; Rader, Daniel J; Libby, Peter; Singh, Sasha A; Aikawa, Elena

    2016-04-01

    Vascular calcification is a common feature of major cardiovascular diseases. Extracellular vesicles participate in the formation of microcalcifications that are implicated in atherosclerotic plaque rupture; however, the mechanisms that regulate formation of calcifying extracellular vesicles remain obscure. Here, we have demonstrated that sortilin is a key regulator of smooth muscle cell (SMC) calcification via its recruitment to extracellular vesicles. Sortilin localized to calcifying vessels in human and mouse atheromata and participated in formation of microcalcifications in SMC culture. Sortilin regulated the loading of the calcification protein tissue nonspecific alkaline phosphatase (TNAP) into extracellular vesicles, thereby conferring its calcification potential. Furthermore, SMC calcification required Rab11-dependent trafficking and FAM20C/casein kinase 2-dependent C-terminal phosphorylation of sortilin. In a murine model, Sort1-deficiency reduced arterial calcification but did not affect bone mineralization. Additionally, transfer of sortilin-deficient BM cells to irradiated atherosclerotic mice did not affect vascular calcification, indicating a primary role of SMC-derived sortilin. Together, the results of this study identify sortilin phosphorylation as a potential therapeutic target for ectopic calcification/microcalcification and may clarify the mechanism that underlies the genetic association between the SORT1 gene locus and coronary artery calcification. PMID:26950419

  20. Hyperthermophilic archaea produce membrane vesicles that can transfer DNA

    NARCIS (Netherlands)

    Gaudin, M.; Gauliard, E.; Schouten, S.; Houel-Renault, L.; Lenormand, P.; Marguet, E.; Forterre, P.

    2013-01-01

    Thermococcales are hyperthermophilic archaea found in deep-sea hydrothermal vents. They have been recently reported to produce membrane vesicles (MVs) into their culture medium. Here, we have characterized the mode of production and determined the biochemical composition of MVs from two species of T

  1. Intermedin inhibits norepinephrine-inducedcontraction of ratseminal vesicle

    Institute of Scientific and Technical Information of China (English)

    P F Wong; M P L Cheung; WS O; F Tang

    2014-01-01

    Objective:To study the effect of inter medin(IMD) on smooth muscle of rat seminal vesicles including the specific receptors and the signal pathways involved.Methods:The contraction of the seminal vesicle in response to norepinephrine(NE) andADM2/IMD was studied by the organ bath method.The effects of antagonists for calcitonin gene related peptide(CGRP), adrenomedullin(ADM) andIMD receptors, and inhibitors of nitric oxide synthase, [L-NG-NitroarginineMethylEster,L-NAME) and cAMP-dependent protein kinase(PKA),KT5720] were also investigated.The first overshoot, amplitude, frequency and basal tone were measured. Results:There is no significant effect ofIMD on the initial overshoot, frequency and the basal tone in the seminal vesicle contraction.Only the amplitude of the contraction induced byNE was inhibited byIMD.TheIMD inhibitory actions on amplitude were completely blocked by hADM22-52 andL-NAME, but not by hCGRP8-37 orKT5720.Furthermore, the action was diminished byIMD17-47.Conclusion:The results demonstrated that the inhibitory action ofIMD onNE-induced seminal vesicle contraction was mediated via theADM receptor(s) and the nitric oxide production pathway, partially by theIMD receptor, but not by theCGRP receptor and the cAMP-PKA pathway.

  2. Preparation and Properties of Vesicles from Condensable Amphiphilic Amino Acids

    Institute of Scientific and Technical Information of China (English)

    熊向源; 何巍; 李子臣; 李福绵

    2001-01-01

    Three double-chain amphiphiles with amino acid groups as hydrphilic moiety were synthesized. These amphiphiles can be easily dispersed in buffer solution to form transparent dispersion. Examination of the dispersion by transmission electron microscopy (TEM) showed the formation of stable vesicular aggregates, which was also confirmed by the ability to encapsulate water-soluble dyes. Since amino acid groups are located on the surface of the vesicles, water-soluble carbodiimide can induce the condensation of these groups to form peptide. The phase transition temperatures of these vesicles were estimated by differential scanning calorimetry (DSC), and a decrease of phase transition temperature was observed after polycondensation due to the disturbance of the ordered arrangement of the hydrophobic chains. The leakage rate of the vesicles before and after condensation was studied by monitoring the increase of fluorescence intensity of water-soluble dye. These vesicles belong to the least permeable ones and the leakage rate can be controlled by varying the degree of condensation or the temperature.

  3. ULTRADEFORMABLE LIPID VESICLE AS A NOVEL DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Gautam Ambarish

    2012-08-01

    Full Text Available Various new technologies have been developed for the transdermal delivery of some important drugs. Transdermal route will always remain a lucrative area for drug delivery.The transdermal route of drug delivery has gained great interest of pharmaceutical research, as it circumvents number of problems associated with oral route of drug administration. The major barrier in transdermal delivery of drug is the skin intrinsic barrier, the stratum corneum, the outermost envelop of the skin that offers the principal hurdle for diffusion of hydrophilic ionisable bioactives. One of the very recent approaches is the use of ultradeformable carrier system (transfersomes®. Which is composed of phospholipid, surfactant, and water for enhanced transdermal delivery? The transfersomal system was much more efficient at delivering a low and high molecular weight drug to the skin in terms of quantity and depth. The system can be characterized by in vitro for vesicle shape and size, entrapment efficiency, degree of deformability, number of vesicles per cubic mm. Transferosome is an ultradeformable vesicle, elastic in nature which can squeeze itself through a pore which is many times smaller than its size owing to its elasticity. The uniqueness of this type of drug carrier system lies in the fact that it can accommodate hydrophilic, lipophilic as well as amphiphilic drugs. These drugs find place in different places in the elastic vesicle before they get delivered beneath the skin.

  4. Glucose-oxidase based self-destructing polymeric vesicles

    NARCIS (Netherlands)

    Napoli, A.; Boerakker, M.J.; Tirelli, N.; Nolte, R.J.M.; Sommerdijk, N.A.J.M.; Hubbell, J.A.

    2004-01-01

    We have designed oxidation-responsive vesicles from synthetic amphiphilic block copolymers ("polymersomes") of ethylene glycol and propylene sulfide. Thioethers in the hydrophobic poly(propylene sulfide) block are converted into the more hydrophilic sulfoxides and sulfones upon exposure to an oxidat

  5. Breakup of spherical vesicles caused by spontaneous curvature change

    Institute of Scientific and Technical Information of China (English)

    Ping Liu; Ju Li; Yong-Wei Zhang

    2012-01-01

    We present our theoretical analysis and coarsegrained molecular dynamics (CGMD) simulation results to describe the mechanics of breakup of spherical vesicles driven by changes in spontaneous curvature.Systematic CGMD simulations reveal the phase diagrams for the breakup and show richness in breakup morphologies.A theoretical model based on Griffith fracture mechanics is developed and used to predict the breakup condition.

  6. Ultrasound-guided seminal vesicle biopsies in prostate cancer

    NARCIS (Netherlands)

    Wymenga, LFA; Duisterwinkel, FJ; Groenier, K; Mensink, HJA

    2000-01-01

    Invasion of prostatic adenocarcinoma into the seminal vesicles (SV) is generally accepted as an index of poor prognosis. The pre-operative identification of SV invasion is an important element in staging since it may alter subsequent treatment decisions. We studied the possibility of diagnosing SV i

  7. Vesicle Size Distribution as a Novel Nuclear Forensics Tool

    Science.gov (United States)

    Simonetti, Antonio

    2016-01-01

    The first nuclear bomb detonation on Earth involved a plutonium implosion-type device exploded at the Trinity test site (33°40′38.28″N, 106°28′31.44″W), White Sands Proving Grounds, near Alamogordo, New Mexico. Melting and subsequent quenching of the local arkosic sand produced glassy material, designated “Trinitite”. In cross section, Trinitite comprises a thin (1–2 mm), primarily glassy surface above a lower zone (1–2 cm) of mixed melt and mineral fragments from the precursor sand. Multiple hypotheses have been put forward to explain these well-documented but heterogeneous textures. This study reports the first quantitative textural analysis of vesicles in Trinitite to constrain their physical and thermal history. Vesicle morphology and size distributions confirm the upper, glassy surface records a distinct processing history from the lower region, that is useful in determining the original sample surface orientation. Specifically, the glassy layer has lower vesicle density, with larger sizes and more rounded population in cross-section. This vertical stratigraphy is attributed to a two-stage evolution of Trinitite glass from quench cooling of the upper layer followed by prolonged heating of the subsurface. Defining the physical regime of post-melting processes constrains the potential for surface mixing and vesicle formation in a post-detonation environment. PMID:27658210

  8. A Pathogenic Potential of Acinetobacter baumannii-Derived Membrane Vesicles

    Directory of Open Access Journals (Sweden)

    Jong Suk Jin

    2011-12-01

    Full Text Available Acinetobacter baumannii secretes outer membrane vesicles (OMVs. A. baumannii OMVs deliver many virulence factors to host cells and then induce cytotoxicity and innate immune response. OMVs secreted from bacteria contribute directly to host pathology during A. baumannii infection.

  9. Packing states of multilamellar vesicles in a nonionic surfactant system

    DEFF Research Database (Denmark)

    Le, T.D.; Olsson, U.; Mortensen, K.

    2001-01-01

    under shear. Here, we focused only in the MLV region, L-alpha(*), of a temperature sensitive surfactant system (C12E4-water) to investigate the packing of multilamellar vesicles as a function of temperature under constant shear. Two sets of temperature scan experiments were performed in the L...

  10. Intermedin inhibits norepinephrine-induced contraction of rat seminal vesicle

    Directory of Open Access Journals (Sweden)

    P.F. Wong

    2014-09-01

    Conclusion: The results demonstrated that the inhibitory action of IMD on NE-induced seminal vesicle contraction was mediated via the ADM receptor(s and the nitric oxide production pathway, partially by the IMD receptor, but not by the CGRP receptor and the cAMP-PKA pathway.

  11. Biological properties of extracellular vesicles and their physiological functions

    NARCIS (Netherlands)

    Yáñez-Mó, María; Siljander, Pia R-M; Andreu, Zoraida; Zavec, Apolonija Bedina; Borràs, Francesc E; Buzas, Edit I; Buzas, Krisztina; Casal, Enriqueta; Cappello, Francesco; Carvalho, Joana; Colás, Eva; Cordeiro-da Silva, Anabela; Fais, Stefano; Falcon-Perez, Juan M; Ghobrial, Irene M; Giebel, Bernd; Gimona, Mario; Graner, Michael; Gursel, Ihsan; Gursel, Mayda; Heegaard, Niels H H; Hendrix, An; Kierulf, Peter; Kokubun, Katsutoshi; Kosanovic, Maja; Kralj-Iglic, Veronika; Krämer-Albers, Eva-Maria; Laitinen, Saara; Lässer, Cecilia; Lener, Thomas; Ligeti, Erzsébet; Linē, Aija; Lipps, Georg; Llorente, Alicia; Lötvall, Jan; Manček-Keber, Mateja; Marcilla, Antonio; Mittelbrunn, Maria; Nazarenko, Irina; Nolte-'t Hoen, Esther N M; Nyman, Tuula A; O'Driscoll, Lorraine; Olivan, Mireia; Oliveira, Carla; Pállinger, Éva; Del Portillo, Hernando A; Reventós, Jaume; Rigau, Marina; Rohde, Eva; Sammar, Marei; Sánchez-Madrid, Francisco; Santarém, N; Schallmoser, Katharina; Ostenfeld, Marie Stampe; Stoorvogel, Willem; Stukelj, Roman; Van der Grein, Susanne G; Vasconcelos, M Helena; Wauben, Marca H M; De Wever, Olivier

    2015-01-01

    In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functi

  12. Vesicles, amygdales and similar structures in fault-generated pseudotachylytes

    NARCIS (Netherlands)

    Maddock, R.H.; Grocott, J.; Nes, M. van

    1987-01-01

    Amygdales in fault-generated pseudotachylytes from the Outer Hebrides Thrust, Scotland, and the Ikertôq Shear Belt, West Greenland, contain mineral assemblages dominated by K-spar + sphene + epidote + quartz and carbonates respectively. These contrasting assemblages indicate that vesicle infilling t

  13. Studies on the incorporation of lipase in synthetic polymerisable vesicles.

    NARCIS (Netherlands)

    Mosmuller, E.W.J.

    1993-01-01

    This thesis describes studies on the suitability of synthetic polymerisable vesicles for the incorporation and stabilisation of lipase for the bioconversion of organic chemical compounds.In chapter 1 , some characteristics are reviewed of hydrolytic enzymes, and more specific those

  14. Dynamics of Shape Fluctuations of Quasi-spherical Vesicles Revisited

    DEFF Research Database (Denmark)

    Miao, L.; Lomholt, Michael Andersen; Kleis, J.

    2002-01-01

    In this paper, the dynamics of spontaneous shape fluctuations of a single, giant quasi-spherical vesicle formed from a single lipid species is revisited theoretically. A coherent physical theory for the dynamics is developed based on a number of fundamental principles and considerations, and a sy...

  15. Reconciling Ligase Ribozyme Activity with Fatty Acid Vesicle Stability

    Directory of Open Access Journals (Sweden)

    Fabrizio Anella

    2014-12-01

    Full Text Available The “RNA world” and the “Lipid world” theories for the origin of cellular life are often considered incompatible due to the differences in the environmental conditions at which they can emerge. One obstacle resides in the conflicting requirements for divalent metal ions, in particular Mg2+, with respect to optimal ribozyme activity, fatty acid vesicle stability and protection against RNA strand cleavage. Here, we report on the activity of a short L1 ligase ribozyme in the presence of myristoleic acid (MA vesicles at varying concentrations of Mg2+. The ligation rate is significantly lower at low-Mg2+ conditions. However, the loss of activity is overcompensated by the increased stability of RNA leading to a larger amount of intact ligated substrate after long reaction periods. Combining RNA ligation assays with fatty acid vesicles we found that MA vesicles made of 5 mM amphiphile are stable and do not impair ligase ribozyme activity in the presence of approximately 2 mM Mg2+. These results provide a scenario in which catalytic RNA and primordial membrane assembly can coexist in the same environment.

  16. Vesicles generated during storage of red cells are rich in the lipid raft marker stomatin.

    NARCIS (Netherlands)

    Salzer, U.; Zhu, R.; Luten, M.; Isobe, H.; Pastushenko, V.; Perkmann, T.; Hinterdorfer, P.; Bosman, G.J.C.G.M.

    2008-01-01

    BACKGROUND: The release of vesicles by red blood cells (RBCs) occurs in vivo and in vitro under various conditions. Vesiculation also takes place during RBC storage and results in the accumulation of vesicles in RBC units. The membrane protein composition of the storage-associated vesicles has not b

  17. Pseudomonas aeruginosa vesicles associate with and are internalized by human lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Kuehn Meta J

    2009-02-01

    Full Text Available Abstract Background Pseudomonas aeruginosa is the major pathogen associated with chronic and ultimately fatal lung infections in patients with cystic fibrosis (CF. To investigate how P. aeruginosa-derived vesicles may contribute to lung disease, we explored their ability to associate with human lung cells. Results Purified vesicles associated with lung cells and were internalized in a time- and dose-dependent manner. Vesicles from a CF isolate exhibited a 3- to 4-fold greater association with lung cells than vesicles from the lab strain PAO1. Vesicle internalization was temperature-dependent and was inhibited by hypertonic sucrose and cyclodextrins. Surface-bound vesicles rarely colocalized with clathrin. Internalized vesicles colocalized with the endoplasmic reticulum (ER marker, TRAPα, as well as with ER-localized pools of cholera toxin and transferrin. CF isolates of P. aeruginosa abundantly secrete PaAP (PA2939, an aminopeptidase that associates with the surface of vesicles. Vesicles from a PaAP knockout strain exhibited a 40% decrease in cell association. Likewise, vesicles from PAO1 overexpressing PaAP displayed a significant increase in cell association. Conclusion These data reveal that PaAP promotes the association of vesicles with lung cells. Taken together, these results suggest that P. aeruginosa vesicles can interact with and be internalized by lung epithelial cells and contribute to the inflammatory response during infection.

  18. Idiopathic calcification of the seminal vesicles: a rare cause for prostate cancer overstaging.

    Science.gov (United States)

    Pannek, J; Senge, T

    2001-01-01

    Calcification of the seminal vesicles is a rare phenomenon. We present 2 cases in whom calcification of the seminal vesicles led to preoperative overstaging of prostate cancer. Although idiopathic calcifications are extremely rare, calcifications appear more frequently in diabetic patients. Therefore, knowledge of these formations is essential to prevent overstaging, namely infiltration of the seminal vesicles.

  19. The aminosterol antibiotic squalamine permeabilizes large unilamellar phospholipid vesicles.

    Science.gov (United States)

    Selinsky, B S; Zhou, Z; Fojtik, K G; Jones, S R; Dollahon, N R; Shinnar, A E

    1998-03-13

    The ability of the shark antimicrobial aminosterol squalamine to induce the leakage of polar fluorescent dyes from large unilamellar phospholipid vesicles (LUVs) has been measured. Micromolar squalamine causes leakage of carboxyfluorescein (CF) from vesicles prepared from the anionic phospholipids phosphatidylglycerol (PG), phosphatidylserine (PS), and cardiolipin. Binding analyses based on the leakage data show that squalamine has its highest affinity to phosphatidylglycerol membranes, followed by phosphatidylserine and cardiolipin membranes. Squalamine will also induce the leakage of CF from phosphatidylcholine (PC) LUVs at low phospholipid concentrations. At high phospholipid concentrations, the leakage of CF from PC LUVs deviates from a simple dose-response relationship, and it appears that some of the squalamine can no longer cause leakage. Fluorescent dye leakage generated by squalamine is graded, suggesting the formation of a discrete membrane pore rather than a generalized disruption of vesicular membranes. By using fluorescently labeled dextrans of different molecular weight, material with molecular weight squalamine, but material with molecular weight >/=10,000 is retained. Negative stain electron microscopy of squalamine-treated LUVs shows that squalamine decreases the average vesicular size in a concentration-dependent manner. Squalamine decreases the size of vesicles containing anionic phospholipid at a lower squalamine/lipid molar ratio than pure PC LUVs. In a centrifugation assay, squalamine solubilizes phospholipid, but only at significantly higher squalamine/phospholipid ratios than required for either dye leakage or vesicle size reduction. Squalamine solubilizes PC at lower squalamine/phospholipid ratios than PG. We suggest that squalamine complexes with phospholipid to form a discrete structure within the bilayers of LUVs, resulting in the transient leakage of small encapsulated molecules. At higher squalamine/phospholipid ratios, these

  20. Photosynthetic vesicles with bound phycobilisomes from Anabaena variabilis

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, T.; Gantt, E.

    1979-01-01

    Photosynthetically active vesicles with attached phycobilisomes from Anabaena variabilis, were isolated and shown to transfer excitation energy from phycobiliproteins to F696 chlorophyll (Photosystem II). The best results were obtained when cells were disrupted in a sucrose/phosphate/citrate mixture (0.3:0.5:0.3 M, respectively) containing 1.5% serum albumin. The vesicles showed a phycocyanin/chlorophyll ratio essentially identical to that of whole cells, and oxygen evolution rates of 250 ..mu..mol; O/sub 2//h per mg chlorophyll (with 4 mM ferricyanide added as oxidant), whereas whole cells had rates of up to 450. Excitation of the vesicles by 600 nm light produced fluorescence peaks (-196/sup 0/C) at 644, 662, 685, 695, and 730 nm. On aging of the vesicles, or upon dilution, the fluorescence yield of the 695 nm emission peak gradually decreased with an accompanying increase and final predominant peak at 685 nm. This shift was accompanied by a decrease in the quantum efficiency of Photosystem II activity from an initial 0.05 to as low as 0.01 mol O/sub 2//einstein (605 nm), with a lesser change in the V/sub max/ values. The decrease in the quantum efficiency is mainly attributed to excitation uncoupling between phycobilisomes and Photosystem II. It is concluded that the F685 nm emission peak, often exclusively attributed to Photosystem II chlorophyll, arises from more than one component with phycobilisome emission being a major contributor. Vesicles from which phycobilisomes had been removed, as verified by electron microscopy and spectroscopy, had an almost negligible emission at 685 nm.

  1. Photosynthetic vesicles with bound phycobilisomes from Anabaena variabilis

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, T.; Gantt, E.

    1979-01-01

    Photosynthetically active vesicles with attached phycobilisomes from Anabaena variabilis, were isolated and shown to transfer excitation energy from phycobiliproteins to F696 chlorophyll (Photosystem II). The best results were obtained when cells were disrupted in a sucrose/phosphate/citrate mixture (0.3:0.5:0.3 M, respectively) containing 1.5% serum albumin. The vesicles showed a phycocyanin/chlorophyll ratio essentially identical to that of whole cells, and oxygen evolution rates of 250 ..mu..mol O/sub 2//h per mg chlorophyll (with 4 mM ferricyanide added as oxidant), whereas whole cells had rates of up to 450. Excitation of the vesicles by 600 nm light produced fluorescence peaks (-196/sup 0/C) at 644, 662, 685, 695, and 730 nm. On aging of the vesicles, or upon dilution, the fluorescence yield of the 695 nm emission peak gradually decreased with an accompanying increase and final predominant peak at 685 nm. This shift was accompanied by a decrease in the quantum efficiency of Photosystem II activity from an initial 0.05 to as low as 0.01 mol O/sub 2//einstein (605 nm), with a lesser change in the V/sub max/ values. The decrease in the quantum efficiency is mainly attributed to excitation uncoupling between phycobilisomes and Photosystem II. It is concluded that the F685 nm emission peak, often exclusively attributed to Photosystem II chlorophyll, arises from more than one component with phycobilisome emission being a major contributor. Vesicles from which phycobilisomes had been removed, as verified by electron microscopy and spectroscopy, had an almost negligible emission at 685 nm.

  2. A vesicle-trafficking protein commandeers Kv channel voltage sensors for voltage-dependent secretion.

    Science.gov (United States)

    Grefen, Christopher; Karnik, Rucha; Larson, Emily; Lefoulon, Cécile; Wang, Yizhou; Waghmare, Sakharam; Zhang, Ben; Hills, Adrian; Blatt, Michael R

    2015-01-01

    Growth in plants depends on ion transport for osmotic solute uptake and secretory membrane trafficking to deliver material for wall remodelling and cell expansion. The coordination of these processes lies at the heart of the question, unresolved for more than a century, of how plants regulate cell volume and turgor. Here we report that the SNARE protein SYP121 (SYR1/PEN1), which mediates vesicle fusion at the Arabidopsis plasma membrane, binds the voltage sensor domains (VSDs) of K(+) channels to confer a voltage dependence on secretory traffic in parallel with K(+) uptake. VSD binding enhances secretion in vivo subject to voltage, and mutations affecting VSD conformation alter binding and secretion in parallel with channel gating, net K(+) concentration, osmotic content and growth. These results demonstrate a new and unexpected mechanism for secretory control, in which a subset of plant SNAREs commandeer K(+) channel VSDs to coordinate membrane trafficking with K(+) uptake for growth.

  3. Electron tomography of fusiform vesicles and their organization in urothelial cells.

    Directory of Open Access Journals (Sweden)

    Samo Hudoklin

    Full Text Available The formation of fusiform vesicles (FVs is one of the most distinctive features in the urothelium of the urinary bladder. FVs represent compartments for intracellular transport of urothelial plaques, which modulate the surface area of the superficial urothelial (umbrella cells during the distension-contraction cycle. We have analysed the three-dimensional (3D structure of FVs and their organization in umbrella cells of mouse urinary bladders. Compared to chemical fixation, high pressure freezing gave a new insight into the ultrastructure of urothelial cells. Electron tomography on serial sections revealed that mature FVs had a shape of flattened discs, with a diameter of up to 1.2 µm. The lumen between the two opposing asymmetrically thickened membranes was very narrow, ranging from 5 nm to 10 nm. Freeze-fracturing and immunolabelling confirmed that FVs contain two opposing urothelial plaques connected by a hinge region that made an omega shaped curvature. In the central cytoplasm, 4-15 FVs were often organized into stacks. In the subapical cytoplasm, FVs were mainly organized as individual vesicles. Distension-contraction cycles did not affect the shape of mature FVs; however, their orientation changed from parallel in distended to perpendicular in contracted bladder with respect to the apical plasma membrane. In the intermediate cells, shorter and more dilated immature FVs were present. The salient outcome from this research is the first comprehensive, high resolution 3D view of the ultrastructure of FVs and how they are organized differently depending on their location in the cytoplasm of umbrella cells. The shape of mature FVs and their organization into tightly packed stacks makes them a perfect storage compartment, which transports large amounts of urothelial plaques while occupying a small volume of umbrella cell cytoplasm.

  4. Regulation of synaptic vesicle docking by different classes of macromolecules in active zone material.

    Directory of Open Access Journals (Sweden)

    Joseph A Szule

    Full Text Available The docking of synaptic vesicles at active zones on the presynaptic plasma membrane of axon terminals is essential for their fusion with the membrane and exocytosis of their neurotransmitter to mediate synaptic impulse transmission. Dense networks of macromolecules, called active zone material, (AZM are attached to the presynaptic membrane next to docked vesicles. Electron tomography has shown that some AZM macromolecules are connected to docked vesicles, leading to the suggestion that AZM is somehow involved in the docking process. We used electron tomography on the simply arranged active zones at frog neuromuscular junctions to characterize the connections of AZM to docked synaptic vesicles and to search for the establishment of such connections during vesicle docking. We show that each docked vesicle is connected to 10-15 AZM macromolecules, which fall into four classes based on several criteria including their position relative to the presynaptic membrane. In activated axon terminals fixed during replacement of docked vesicles by previously undocked vesicles, undocked vesicles near vacated docking sites on the presynaptic membrane have connections to the same classes of AZM macromolecules that are connected to docked vesicles in resting terminals. The number of classes and the total number of macromolecules to which the undocked vesicles are connected are inversely proportional to the vesicles' distance from the presynaptic membrane. We conclude that vesicle movement toward and maintenance at docking sites on the presynaptic membrane are directed by an orderly succession of stable interactions between the vesicles and distinct classes of AZM macromolecules positioned at different distances from the membrane. Establishing the number, arrangement and sequence of association of AZM macromolecules involved in vesicle docking provides an anatomical basis for testing and extending concepts of docking mechanisms provided by biochemistry.

  5. Localization and mobility of synaptic vesicles in Myosin VI mutants of Drosophila.

    Directory of Open Access Journals (Sweden)

    Marta Kisiel

    Full Text Available BACKGROUND: At the Drosophila neuromuscular junction (NMJ, synaptic vesicles are mobile; however, the mechanisms that regulate vesicle traffic at the nerve terminal are not fully understood. Myosin VI has been shown to be important for proper synaptic physiology and morphology at the NMJ, likely by functioning as a vesicle tether. Here we investigate vesicle dynamics in Myosin VI mutants of Drosophila. RESULTS: In Drosophila, Myosin VI is encoded by the gene, jaguar (jar. To visualize active vesicle cycling we used FM dye loading and compared loss of function alleles of jar with controls. These studies revealed a differential distribution of vesicles at the jar mutant nerve terminal, with the newly endocytosed vesicles observed throughout the mutant boutons in contrast to the peripheral localization visualized at control NMJs. This finding is consistent with a role for Myosin VI in restraining vesicle mobility at the synapse to ensure proper localization. To further investigate regulation of vesicle dynamics by Myosin VI, FRAP analysis was used to analyze movement of GFP-labeled synaptic vesicles within individual boutons. FRAP revealed that synaptic vesicles are moving more freely in the jar mutant boutons, indicated by changes in initial bleach depth and rapid recovery of fluorescence following photobleaching. CONCLUSION: This data provides insights into the role for Myosin VI in mediating synaptic vesicle dynamics at the nerve terminal. We observed mislocalization of actively cycling vesicles and an apparent increase in vesicle mobility when Myosin VI levels are reduced. These observations support the notion that a major function of Myosin VI in the nerve terminal is tethering synaptic vesicles to proper sub-cellular location within the bouton.

  6. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles

    Science.gov (United States)

    Hill, Andrew F.; Hochberg, Fred; Buzás, Edit I.; Di Vizio, Dolores; Gardiner, Christopher; Gho, Yong Song; Kurochkin, Igor V.; Mathivanan, Suresh; Quesenberry, Peter; Sahoo, Susmita; Tahara, Hidetoshi; Wauben, Marca H.; Witwer, Kenneth W.; Théry, Clotilde

    2014-01-01

    Secreted membrane-enclosed vesicles, collectively called extracellular vesicles (EVs), which include exosomes, ectosomes, microvesicles, microparticles, apoptotic bodies and other EV subsets, encompass a very rapidly growing scientific field in biology and medicine. Importantly, it is currently technically challenging to obtain a totally pure EV fraction free from non-vesicular components for functional studies, and therefore there is a need to establish guidelines for analyses of these vesicles and reporting of scientific studies on EV biology. Here, the International Society for Extracellular Vesicles (ISEV) provides researchers with a minimal set of biochemical, biophysical and functional standards that should be used to attribute any specific biological cargo or functions to EVs. PMID:25536934

  7. Model of reversible vesicular transport with exclusion

    Science.gov (United States)

    Bressloff, Paul C.; Karamched, Bhargav R.

    2016-08-01

    A major question in neurobiology concerns the mechanics behind the motor-driven transport and delivery of vesicles to synaptic targets along the axon of a neuron. Experimental evidence suggests that the distribution of vesicles along the axon is relatively uniform and that vesicular delivery to synapses is reversible. A recent modeling study has made explicit the crucial role that reversibility in vesicular delivery to synapses plays in achieving uniformity in vesicle distribution, so called synaptic democracy (Bressloff et al 2015 Phys. Rev. Lett. 114 168101). In this paper we generalize the previous model by accounting for exclusion effects (hard-core repulsion) that may occur between molecular motor-cargo complexes (particles) moving along the same microtubule track. The resulting model takes the form of an exclusion process with four internal states, which distinguish between motile and stationary particles, and whether or not a particle is carrying vesicles. By applying a mean field approximation and an adiabatic approximation we reduce the system of ODEs describing the evolution of occupation numbers of the sites on a 1D lattice to a system of hydrodynamic equations in the continuum limit. We find that reversibility in vesicular delivery allows for synaptic democracy even in the presence of exclusion effects, although exclusion does exacerbate nonuniform distributions of vesicles in an axon when compared with a model without exclusion. We also uncover the relationship between our model and other models of exclusion processes with internal states.

  8. Role of extracellular vesicles in de novo mineralization: an additional novel mechanism of cardiovascular calcification.

    Science.gov (United States)

    New, Sophie E P; Aikawa, Elena

    2013-08-01

    Extracellular vesicles are membrane micro/nanovesicles secreted by many cell types into the circulation and the extracellular milieu in physiological and pathological conditions. Evidence suggests that extracellular vesicles, known as matrix vesicles, play a role in the mineralization of skeletal tissue, but emerging ultrastructural and in vitro studies have demonstrated their contribution to cardiovascular calcification as well. Cells involved in the progression of cardiovascular calcification release active vesicles capable of nucleating hydroxyapatite on their membranes. This review discusses the role of extracellular vesicles in cardiovascular calcification and elaborates on this additional mechanism of calcification as an alternative pathway to the currently accepted mechanism of biomineralization via osteogenic differentiation.

  9. A study of the enhanced sensitizing capacity of a contact allergen in lipid vesicle formulations

    DEFF Research Database (Denmark)

    Simonsson, Carl; Madsen, Jakob Torp; Graneli, Annette;

    2011-01-01

    administered in micro- and nano-scale vesicle formulations. The sensitizing capacity of RBITC was studied using the murine local lymph node assay (LLNA) and the skin penetration properties were compared using diffusion cells in combination with two-photon microscopy (TPM). The lymph node cell proliferation......, an indicator of a compounds sensitizing capacity, increased when RBITC was applied in lipid vesicles as compared to an ethanol:water (Et:W) solution. Micro-scale vesicles showed a slightly higher cell proliferative response compared to nano-scale vesicles. TPM imaging revealed that the vesicle formulations...

  10. Focus on Extracellular Vesicles: Therapeutic Potential of Stem Cell-Derived Extracellular Vesicles

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2016-02-01

    Full Text Available The intense research focus on stem and progenitor cells could be attributed to their differentiation potential to generate new cells to replace diseased or lost cells in many highly intractable degenerative diseases, such as Alzheimer disease, multiple sclerosis, and heart diseases. However, experimental and clinical studies have increasingly attributed the therapeutic efficacy of these cells to their secretion. While stem and progenitor cells secreted many therapeutic molecules, none of these molecules singly or in combination could recapitulate the functional effects of stem cell transplantations. Recently, it was reported that extracellular vesicles (EVs could recapitulate the therapeutic effects of stem cell transplantation. Based on the observations reported thus far, the prevailing hypothesis is that stem cell EVs exert their therapeutic effects by transferring biologically active molecules such as proteins, lipids, mRNA, and microRNA from the stem cells to injured or diseased cells. In this respect, stem cell EVs are similar to EVs from other cell types. They are both primarily vehicles for intercellular communication. Therefore, the differentiating factor is likely due to the composition of their cargo. The cargo of EVs from different cell types are known to include a common set of proteins and also proteins that reflect the cell source of the EVs and the physiological or pathological state of the cell source. Hence, elucidation of the stem cell EV cargo would provide an insight into the multiple physiological or biochemical changes necessary to affect the many reported stem cell-based therapeutic outcomes in a variety of experimental models and clinical trials.

  11. Average Weight of Seminal Vesicles: An Adjustment Factor for Radical Prostatectomy Specimens Weighed With Seminal Vesicles.

    Science.gov (United States)

    Tjionas, George A; Epstein, Jonathan I; Williamson, Sean R; Diaz, Mireya; Menon, Mani; Peabody, James O; Gupta, Nilesh S; Parekh, Dipen J; Cote, Richard J; Jorda, Merce; Kryvenko, Oleksandr N

    2015-12-01

    The International Society of Urological Pathology in 2010 recommended weighing prostates without seminal vesicles (SV) to include only prostate weight in prostate-specific antigen (PSA) density (PSAD) calculation, because SV do not produce PSA. Large retrospective cohorts exist with combined weight recorded that needs to be modified for retrospective analysis. Weights of prostates and SV were separately recorded in 172 consecutive prostatectomies. The average weight of SV and proportion of prostate weight from combined weight were calculated. The adjustment factors were then validated on databases of 2 other institutions. The average weight of bilateral SV was 6.4 g (range = 1-17.3 g). The prostate constituted on average 87% (range = 66% to 98%) of the total specimen weight. There was no correlation between patient age and prostate weight with SV weight. The best performing correction method was to subtract 6.4 g from total radical prostatectomy weight and to use this weight for PSAD calculation. The average weights of retrospective specimens weighed with SV were not significantly different between the 3 institutions. Using our data allowed calibration of the weights and PSAD between the cohorts weighed with and without SV. Thus, prostate weight in specimens including SV weight can be adjusted by subtracting 6.4 g, resulting in significant change of PSAD. Some institution-specific variations may exist, which could further increase the precision of retrospective analysis involving prostate weight and PSAD. However, unless institution-specific adjustment parameters are developed, we recommend that this correction factor be used for retrospective cohorts or in institutions where combined weight is still recorded.

  12. Layer-by-layer deposition of vesicles mediated by supramolecular interactions.

    Science.gov (United States)

    Roling, Oliver; Wendeln, Christian; Kauscher, Ulrike; Seelheim, Patrick; Galla, Hans-Joachim; Ravoo, Bart Jan

    2013-08-13

    Vesicles are dynamic supramolecular structures with a bilayer membrane consisting of lipids or synthetic amphiphiles enclosing an aqueous compartment. Lipid vesicles have often been considered as mimics for biological cells. In this paper, we present a novel strategy for the preparation of three-dimensional multilayered structures in which vesicles containing amphiphilic β-cyclodextrin are interconnected by proteins using cyclodextrin guests as bifunctional linker molecules. We compared two pairs of adhesion molecules for the immobilization of vesicles: mannose-concanavalin A and biotin-streptavidin. Microcontact printing and thiol-ene click chemistry were used to prepare suitable substrates for the vesicles. Successful immobilization of intact vesicles through the mannose-concanavalin A and biotin-streptavidin motifs was verified by fluorescence microscopy imaging and dynamic light scattering, while the vesicle adlayer was characterized by quartz crystal microbalance with dissipation monitoring. In the case of the biotin-streptavidin motif, up to six layers of intact vesicles could be immobilized in a layer-by-layer fashion using supramolecular interactions. The construction of vesicle multilayers guided by noncovalent vesicle-vesicle junctions can be taken as a minimal model for artificial biological tissue. PMID:23898918

  13. Imaging Exocytosis of Single Synaptic Vesicles at a Fast CNS Presynaptic Terminal.

    Science.gov (United States)

    Midorikawa, Mitsuharu; Sakaba, Takeshi

    2015-11-01

    Synaptic vesicles are tethered to the active zone where they are docked/primed so that they can fuse rapidly upon Ca(2+) influx. To directly study these steps at a CNS presynaptic terminal, we used total internal reflection fluorescence (TIRF) microscopy at the live isolated calyx of Held terminal and measured the movements of single synaptic vesicle just beneath the plasma membrane. Only a subset of vesicles within the TIRF field underwent exocytosis. Following exocytosis, new vesicles (newcomers) approached the membrane and refilled the release sites slowly with a time constant of several seconds. Uniform elevation of the intracellular Ca(2+) using flash photolysis elicited an exocytotic burst followed by the sustained component, representing release of the readily releasable vesicles and vesicle replenishment, respectively. Surprisingly, newcomers were not released within a second of high Ca(2+). Instead, already-tethered vesicles became release-ready and mediated the replenishment. Our results reveal an important feature of conventional synapses. PMID:26539890

  14. Dynamics of fatty acid vesicles in response to pH stimuli.

    Science.gov (United States)

    Ikari, Keita; Sakuma, Yuka; Jimbo, Takehiro; Kodama, Atsuji; Imai, Masayuki; Monnard, Pierre-Alain; Rasmussen, Steen

    2015-08-21

    We investigate the dynamics of decanoic acid/decanoate (DA) vesicles in response to pH stimuli. Two types of dynamic processes induced by the micro-injection of NaOH solutions are sequentially observed: deformations and topological transitions. In the deformation stage, DA vesicles show a series of shape deformations, i.e., prolate-oblate-stomatocyte-sphere. In the topological transition stage, spherical DA vesicles follow either of the two pathways, pore formation and vesicle fusion. The pH stimuli modify a critical aggregation concentration of DA molecules, which causes the solubilization of DA molecules in the outer leaflet of the vesicle bilayers. This solubilization decreases the outer surface area of the vesicle, thereby increasing surface tension. A kinetic model based on area difference elasticity theory can accurately describe the dynamics of DA vesicles triggered by pH stimuli. PMID:26166464

  15. Imaging Exocytosis of Single Synaptic Vesicles at a Fast CNS Presynaptic Terminal.

    Science.gov (United States)

    Midorikawa, Mitsuharu; Sakaba, Takeshi

    2015-11-01

    Synaptic vesicles are tethered to the active zone where they are docked/primed so that they can fuse rapidly upon Ca(2+) influx. To directly study these steps at a CNS presynaptic terminal, we used total internal reflection fluorescence (TIRF) microscopy at the live isolated calyx of Held terminal and measured the movements of single synaptic vesicle just beneath the plasma membrane. Only a subset of vesicles within the TIRF field underwent exocytosis. Following exocytosis, new vesicles (newcomers) approached the membrane and refilled the release sites slowly with a time constant of several seconds. Uniform elevation of the intracellular Ca(2+) using flash photolysis elicited an exocytotic burst followed by the sustained component, representing release of the readily releasable vesicles and vesicle replenishment, respectively. Surprisingly, newcomers were not released within a second of high Ca(2+). Instead, already-tethered vesicles became release-ready and mediated the replenishment. Our results reveal an important feature of conventional synapses.

  16. Initiation of waves in BZ encapsulated vesicles using light - towards design of computing architectures

    CERN Document Server

    Costello, Ben de Lacy; Ahearn, Matt; Holley, Julian; Bull, Larry; Adamatzky, Andrew

    2012-01-01

    A gas free analogue of the Belousov-Zhabotinsky reaction catalysed by ferroin and encapsulated in phospholipid stabilised vesicles is reported. A reaction mixture which exhibits spontaneous oscillation and excitation transfer between vesicles was formulated. By adjusting the reagent concentrations a quiescent state with fewer spontaneous oscillations was achieved. Using relatively low power laser sources of specific wavelengths (green 532nm and blue 405nm) it was shown that waves could be reproducibly initiated within the BZ vesicles. Furthermore, despite the reduced excitability of the system overall the initiated waves exhibited vesicle to vesicle transfer. It was possible to manipulate single vesicles and design simple circuits based on a 2D validation of collision based circuits. Therefore, we conclude that this BZ system exhibits promise for computing applications based on 3D networks of vesicles.

  17. Lipid vesicle shape analysis from populations using light video microscopy and computer vision.

    Science.gov (United States)

    Zupanc, Jernej; Drašler, Barbara; Boljte, Sabina; Kralj-Iglič, Veronika; Iglič, Aleš; Erdogmus, Deniz; Drobne, Damjana

    2014-01-01

    We present a method for giant lipid vesicle shape analysis that combines manually guided large-scale video microscopy and computer vision algorithms to enable analyzing vesicle populations. The method retains the benefits of light microscopy and enables non-destructive analysis of vesicles from suspensions containing up to several thousands of lipid vesicles (1-50 µm in diameter). For each sample, image analysis was employed to extract data on vesicle quantity and size distributions of their projected diameters and isoperimetric quotients (measure of contour roundness). This process enables a comparison of samples from the same population over time, or the comparison of a treated population to a control. Although vesicles in suspensions are heterogeneous in sizes and shapes and have distinctively non-homogeneous distribution throughout the suspension, this method allows for the capture and analysis of repeatable vesicle samples that are representative of the population inspected. PMID:25426933

  18. Vesicle Dynamics in a Confined Poiseuille Flow: From Steady-State to Chaos

    CERN Document Server

    Aouane, Othmane; Benyoussef, Abdelilah; Wagner, Christian; Misbah, Chaouqi

    2014-01-01

    Red blood cells (RBCs) are the major component of blood and the flow of blood is dictated by that of RBCs. We employ vesicles, which consist of closed bilayer membranes enclosing a fluid, as a model system to study the behavior of RBCs under a confined Poiseuille flow. We extensively explore two main parameters: i) the degree of confinement of vesicles within the channel, and ii) the flow strength. Rich and complex dynamics for vesicles are revealed ranging from steady-state shapes (in the form of parachute and slipper) to chaotic dynamics of shape. Chaos occurs through a cascade of multiple periodic oscillations of the vesicle shape. We summarize our results in a phase diagram in the parameter plane (degree of confinement, flow strength). This finding highlights the level of complexity of a flowing vesicle in the small Reynolds number where the flow is laminar in the absence of vesicles and can be rendered turbulent due to elasticity of vesicles.

  19. Lipid vesicle shape analysis from populations using light video microscopy and computer vision.

    Directory of Open Access Journals (Sweden)

    Jernej Zupanc

    Full Text Available We present a method for giant lipid vesicle shape analysis that combines manually guided large-scale video microscopy and computer vision algorithms to enable analyzing vesicle populations. The method retains the benefits of light microscopy and enables non-destructive analysis of vesicles from suspensions containing up to several thousands of lipid vesicles (1-50 µm in diameter. For each sample, image analysis was employed to extract data on vesicle quantity and size distributions of their projected diameters and isoperimetric quotients (measure of contour roundness. This process enables a comparison of samples from the same population over time, or the comparison of a treated population to a control. Although vesicles in suspensions are heterogeneous in sizes and shapes and have distinctively non-homogeneous distribution throughout the suspension, this method allows for the capture and analysis of repeatable vesicle samples that are representative of the population inspected.

  20. Dynamics of fatty acid vesicles in response to pH stimuli

    DEFF Research Database (Denmark)

    Ikari, Keita; Sakuma, Yuka; Jimbo, Takehiro;

    2015-01-01

    We investigate the dynamics of decanoic acid/decanoate (DA) vesicles in response to pH stimuli. Two types of dynamic processes induced by the micro injection of NaOH solutions are sequentially observed: deformations and topological transitions. In the deformation stage, DA vesicles show a series...... of shape deformations, i.e., prolate–oblate–stomatocyte-sphere. In the topological transition stage, spherical DA vesicles follow either of the two pathways, pore formation and vesicle fusion. The pH stimuli modify a critical aggregation concentration of DA molecules, which causes the solubilization of DA...... molecules in the outer leaflet of the vesicle bilayers. This solubilization decreases the outer surface area of the vesicle, thereby increasing surface tension. A kinetic model based on area difference elasticity theory can accurately describe the dynamics of DA vesicles triggered by pH stimuli....

  1. Ca2+ transport properties of ionophores A23187, ionomycin, and 4-BrA23187 in a well defined model system.

    OpenAIRE

    Erdahl, W L; Chapman, C J; Taylor, R.W.; Pfeiffer, D R

    1994-01-01

    Models for the electroneutral transport of Ca2+ by ionophores A23187, ionomycin, and 4-BrA23187 have been tested in a defined system comprised of 1-palmitoyl-2-oleoyl-sn-glycerophosphatidylcholine vesicles prepared by freeze-thaw extrusion. Quin-2-loaded and CaCl2-loaded vesicles were employed to allow the investigation of transport in both directions. Simultaneous or parallel measurements of H+ transport and membrane potential, respectively, indicate that for any of these ionophores, electro...

  2. Microfluidic-enabled liposomes elucidate size-dependent transdermal transport.

    Directory of Open Access Journals (Sweden)

    Renee R Hood

    Full Text Available Microfluidic synthesis of small and nearly-monodisperse liposomes is used to investigate the size-dependent passive transdermal transport of nanoscale lipid vesicles. While large liposomes with diameters above 105 nm are found to be excluded from deeper skin layers past the stratum corneum, the primary barrier to nanoparticle transport, liposomes with mean diameters between 31-41 nm exhibit significantly enhanced penetration. Furthermore, multicolor fluorescence imaging reveals that the smaller liposomes pass rapidly through the stratum corneum without vesicle rupture. These findings reveal that nanoscale liposomes with well-controlled size and minimal size variance are excellent vehicles for transdermal delivery of functional nanoparticle drugs.

  3. Comparative Study of Extracellular Vesicles from the Urine of Healthy Individuals and Prostate Cancer Patients.

    Science.gov (United States)

    Bryzgunova, Olga E; Zaripov, Marat M; Skvortsova, Tatyana E; Lekchnov, Evgeny A; Grigor'eva, Alina E; Zaporozhchenko, Ivan A; Morozkin, Evgeny S; Ryabchikova, Elena I; Yurchenko, Yuri B; Voitsitskiy, Vladimir E; Laktionov, Pavel P

    2016-01-01

    Recent studies suggest that extracellular vesicles may be the key to timely diagnosis and monitoring of genito-urological malignancies. In this study we investigated the composition and content of extracellular vesicles found in the urine of healthy donors and prostate cancer patients. Urine of 14 PCa patients and 20 healthy volunteers was clarified by low-speed centrifugation and total extracellular vesicles fraction was obtain by high-speed centrifugation. The exosome-enriched fraction was obtained by filtration of total extracellular vesicles through a 0.1 μm pore filter. Transmission electron microscopy showed that cell-free urine in both groups contained vesicles from 20 to 230 nm. Immunogold staining after ultrafiltration demonstrated that 95% and 90% of extracellular vesicles in healthy individuals and cancer patients, respectively, were exosomes. Protein, DNA and RNA concentrations as well as size distribution of extracellular vesicles in both fractions were analyzed. Only 75% of the total protein content of extracellular vesicles was associated with exosomes which amounted to 90-95% of all vesicles. Median DNA concentrations in total extracellular vesicles and exosome-enriched fractions were 18 pg/ml and 2.6 pg/ml urine, correspondingly. Urine extracellular vesicles carried a population of RNA molecules 25 nt to 200 nt in concentration of no more than 290 pg/ml of urine. Additionally, concentrations of miR-19b, miR-25, miR-125b, and miR-205 were quantified by qRT-PCR. MiRNAs were shown to be differently distributed between different fractions of extracellular vesicles. Detection of miR-19b versus miR-16 in total vesicles and exosome-enriched fractions achieved 100%/93% and 95%/79% specificity/sensitivity in distinguishing cancer patients from healthy individuals, respectively, demonstrating the diagnostic value of urine extracellular vesicles. PMID:27305142

  4. Seminal vesicle intraepithelial involvement by prostate cancer: putative mechanism and clinicopathological significance.

    Science.gov (United States)

    Miyai, Kosuke; Kristiansen, Anna; Egevad, Lars; Pina-Oviedo, Sergio; Divatia, Mukul K; Shen, Steven S; Miles, Brian J; Ayala, Alberto G; Park, Yong Wook; Ro, Jae Y

    2014-09-01

    We have recently shown seminal vesicle intraepithelial involvement of prostate cancer in cases with seminal vesicle invasion (pT3b). Based on the manner of seminal vesicle invasion, there could be 2 possible mechanisms of seminal vesicle intraepithelial involvement: direct intraepithelial invasion from prostate carcinoma in the muscular wall of seminal vesicles or intraepithelial involvement of cancer from the invaginated extraprostatic space (IES)/ejaculatory duct system to extraprostatic seminal vesicle. We aimed to clarify the manner and clinicopathological significance of seminal vesicle intraepithelial involvement. Of 1629 consecutive radical prostatectomies, 109 cases (6.7%) showed seminal vesicle invasion in whole-mounted radical prostatectomy specimens. In these pT3b cases, 18 (17%) showed seminal vesicle intraepithelial involvement by prostate cancer. Stromal invasion of the IES/ejaculatory duct system and ejaculatory duct intraepithelial invasion by prostate cancer were identified in 62 and 5 of 109 pT3b cases, respectively. However, the presence/absence of IES/ejaculatory duct system involvement by prostate cancer does not predict seminal vesicle intraepithelial involvement. No statistically significant correlation was observed between all pathologic parameters/biochemical recurrence and the presence/absence of seminal vesicle intra-epithelial involvement in the pT3b cases. These findings suggest that seminal vesicle intraepithelial involvement is more likely due to direct invasion of carcinoma from the muscular wall of seminal vesicles rather than intraepithelial extension from the ejaculatory duct system in the IES. Further studies with a substantially greater case number are needed to clarify the clinicopathological significance of seminal vesicle intraepithelial involvement in a better manner.

  5. New Insights into the Growth and Transformation of Vesicles: A Free-Flow Electrophoresis Study.

    Science.gov (United States)

    Pereira de Souza, Tereza; Holzer, Martin; Stano, Pasquale; Steiniger, Frank; May, Sylvio; Schubert, Rolf; Fahr, Alfred; Luisi, Pier Luigi

    2015-09-17

    The spontaneous formation of lipid vesicles, in particular fatty acid vesicles, is considered an important physical process at the roots of cellular life. It has been demonstrated previously that the addition of fatty acid micelles to preformed vesicles induces vesicle self-reproduction by a growth-division mechanism. Despite multiple experimental efforts, it remains unresolved how vesicles rearrange upon the addition of fresh membrane-forming compounds, and whether solutes that are initially encapsulated inside the mother vesicles are evenly redistributed among the daughter ones. Here we investigate the growth-division of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) vesicles, which, following the addition of oleate micelles, form mixed oleate/POPC vesicles. Our approach is based on free-flow electrophoresis (FFE) and cryogenic transmission electronmicroscopy (cryo-TEM). Two new features emerge from this study. FFE analysis unexpectedly reveals that the uptake of oleate micelles by POPC vesicles follows two different pathways depending on the micelles/vesicles ratio. At low oleate molar fractions (<0.35), plain incorporation of oleate into pre-existing POPC vesicles is our dominant observation. In contrast, oleate-rich and oleate-poor daughter vesicles are generated from parent POPC vesicles when the oleate molar fraction exceeds 0.35. Cryo-TEM reveals that when ferritin-filled vesicles grow and divide, some vesicles contain ferritin at increased concentrations, others are empty. Intriguingly, in some cases, ferritin appears to be highly concentrated inside the vesicles. These observations imply a specific redistribution (partitioning) of encapsulated solutes among nascent vesicles during the growth-division steps. We have interpreted our observations by assuming that freshly added oleate molecules are taken-up preferentially (cooperatively) by oleate-rich membrane regions that form spontaneously in POPC/oleate vesicles when a certain threshold

  6. Curvature inducing macroion condensation driven shape changes of fluid vesicles

    Science.gov (United States)

    Sreeja, K. K.; Ipsen, John H.; Sunil Kumar, P. B.

    2015-11-01

    We study the effect of curvature inducing macroion condensation on the shapes of charged deformable fluid interfaces using dynamically triangulated Monte Carlo simulations. In the weak electrostatic coupling regime, surface charges are weakly screened and the conformations of a vesicle, with fixed spherical topology, depend on the charge-charge interaction on the surface. While in the strong coupling regime, condensation driven curvature induction plays a dominant role in determining the conformations of these surfaces. Condensation itself is observed to be dependent on the induced curvature, with larger induced curvatures favoring increased condensation. We show that both curvature generation and curvature sensing, induced by the interplay of electrostatics and curvature energy, contribute to determination of the vesicle configurations.

  7. Lipid Rafts Identified on Synaptic Vesicles from Rat Brain

    Institute of Scientific and Technical Information of China (English)

    HE Li; L(U) Jihua; ZHOU Qinghua; SUI Senfang

    2006-01-01

    For a long time, lipid rafts have been thought to participate in regulating neurotransmitter release. However,the existence of lipid rafts on synaptic vesicles (SVs) and the mechanism by which exocytosis-relative proteins distribute on this structure have not been fully investigated. There is also much controversial data concerning rafts on SVs and synaptic vesicle proteins which makes the results difficult to interpret. This study systematically analyzed the existence and properties of lipid rafts on purified SVs by sucrose density gradient centrifugation, cholesterol depletion, and temperature variation. The data reveals that typical lipid rafts on SVs are both cholesterol dependent and temperature sensitive. Previous confusing results may have been caused by improper treatment or side effects of particular reagent. We also screened the lateral distribution of major exocytosis-related SV proteins and found that only the synaptobrevin (syb) and synaptotagmin (syt) produce detectable association with lipid rafts in 1% Triton X-100.

  8. Shear-Induced Deformation of Surfactant Multilamellar Vesicles

    Science.gov (United States)

    Pommella, Angelo; Caserta, Sergio; Guida, Vincenzo; Guido, Stefano

    2012-03-01

    Surfactant multilamellar vesicles (SMLVs) play a key role in the formulation of many industrial products, such as detergents, foodstuff, and cosmetics. In this Letter, we present the first quantitative investigation of the flow behavior of single SMLVs in a shearing parallel plate apparatus. We found that SMLVs are deformed and oriented by the action of shear flow while keeping constant volume and exhibit complex dynamic modes (i.e., tumbling, breathing, and tank treading). This behavior can be explained in terms of an excess area (as compared to a sphere of the same volume) and of microstructural defects, which were observed by 3D shape reconstruction through confocal microscopy. Furthermore, the deformation and orientation of SMLVs scale with radius R in analogy with emulsion droplets and elastic capsules (instead of R3, such as in unilamellar vesicles). A possible application of the physical insight provided by this Letter is in the rationale design of processing methods of surfactant-based systems.

  9. Numerical computations of the dynamics of fluidic membranes and vesicles

    CERN Document Server

    Barrett, John W; Nürnberg, Robert

    2015-01-01

    Vesicles and many biological membranes are made of two monolayers of lipid molecules and form closed lipid bilayers. The dynamical behaviour of vesicles is very complex and a variety of forms and shapes appear. Lipid bilayers can be considered as a surface fluid and hence the governing equations for the evolution include the surface (Navier--)Stokes equations, which in particular take the membrane viscosity into account. The evolution is driven by forces stemming from the curvature elasticity of the membrane. In addition, the surface fluid equations are coupled to bulk (Navier--)Stokes equations. We introduce a parametric finite element method to solve this complex free boundary problem, and present the first three dimensional numerical computations based on the full (Navier--)Stokes system for several different scenarios. For example, the effects of the membrane viscosity, spontaneous curvature and area difference elasticity (ADE) are studied. In particular, it turns out, that even in the case of no viscosit...

  10. CAPS and Munc13: CATCHRs that SNARE vesicles

    Directory of Open Access Journals (Sweden)

    Declan J James

    2013-12-01

    Full Text Available Abstract. CAPS (Calcium-dependent Activator Protein for Secretion, aka CADPS and Munc13 (Mammalian Unc-13 proteins function to prime vesicles for Ca2+-triggered exocytosis in neurons and neuroendocrine cells. CAPS and Munc13 proteins contain conserved C-terminal domains that promote the assembly of SNARE complexes for vesicle priming. Similarities of the C-terminal domains of CAPS/Munc13 proteins with CATCHR (Complex Associated with Tethering Containing Helical Rods domains in multi-subunit tethering complexes have been reported. Multi-subunit tethering complexes coordinate multiple interactions for SNARE complex assembly at constitutive membrane fusion steps. We review aspects of these diverse tethering and priming factors to identify common operating principles.

  11. Magnetic field alignable domains in phospholipid vesicle membranes containing lanthanides.

    Science.gov (United States)

    Beck, Paul; Liebi, Marianne; Kohlbrecher, Joachim; Ishikawa, Takashi; Rüegger, Heinz; Zepik, Helmut; Fischer, Peter; Walde, Peter; Windhab, Erich

    2010-01-14

    Magnetic fields were applied as a structuring force on phospholipid-based vesicular systems, using paramagnetic lanthanide ions as magnetic handles anchored to the vesicle membrane. Different vesicle formulations were investigated using small angle neutron scattering (SANS) in a magnetic field of up to 8 T, cryo-transmission electron microscopy (cryo-TEM), (31)P NMR spectroscopy, dynamic light scattering (DLS), and permeability measurements with a fluorescent water-soluble marker (calcein). The investigated vesicle formulations consisted usually of 80 mol % of the phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 20 mol % of a chelator lipid (DMPE-DTPA; 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-diethylenetriaminepentaacetate) with complexed lanthanide ions (Tm(3+), Dy(3+), or La(3+)), and the total lipid concentration was 15 mM. Vesicles containing the paramagnetic lanthanide Tm(3+) or Dy(3+) exhibited a temperature-dependent response to magnetic fields, which can be explained by considering the formation of lipid domains, which upon reaching a critical size become alignable in a magnetic field. The features of this "magnetic field alignable domain model" are as follows: with decreasing temperature (from 30 to 2.5 degrees C) solid domains, consisting mainly of the higher melting phospholipid (DMPE-DTPA.lanthanide), begin to form and grow in size. The domains assemble the large magnetic moments conferred by the lanthanides and orient in magnetic fields. The direction of alignment depends on the type of lanthanide used. The domains orient with their normal parallel to the magnetic field with thulium (Tm(3+)) and perpendicular with dysprosium (Dy(3+)). No magnetic field alignable domains were observed if DMPE-DTPA is replaced either by POPE-DTPA (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine-diethylenetriamine-pentaacetate) or by DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine).

  12. Lesions of the Seminal Vesicles and their MRI Characteristics

    OpenAIRE

    Reddy, Mahati N; Sadhna Verma

    2014-01-01

    Over the past few decades, MRI of the prostate has made great strides in improving cancer detection and is being embraced by more clinicians each day. This article aims to review the imaging characteristics of common and uncommon, but consequential lesions involving the seminal vesicles (SV), as seen predominantly on MRI. Many of these findings are seen incidentally during imaging of the prostate. Anatomy and embryology of the SV will be described which will help illustrate the associations o...

  13. Aggregation state of melittin in lipid vesicle membranes

    OpenAIRE

    John, Edgar; Jähnig, Fritz

    1991-01-01

    We have performed time-resolved fluorescence energy transfer measurements using melittin as donor and a modified melittin as acceptor. The melittin molecules were bound to fluid vesicle membranes of dimyristoylphosphatidylcholine. Analysis of the temporal decay of the energy transfer and of its variation with the donor and acceptor concentrations led to the conclusion that melittin in fluid membranes is usually monomeric. Only at the high melittin/lipid molar ratio of 1/200 and high ionic str...

  14. Synapsin IIa controls the reserve pool of glutamatergic synaptic vesicles

    OpenAIRE

    Gitler, Daniel; Cheng, Qing; Greengard, Paul; Augustine, George J.

    2008-01-01

    Synapsins regulate synaptic transmission by controlling the reserve pool of synaptic vesicles. Each of the three mammalian synapsin genes is subject to alternative splicing, yielding several isoforms whose roles are unknown. To investigate the function of these isoforms, we examined the synaptic effects of introducing each isoform into glutamatergic cultured hippocampal neurons from synapsin triple knock-out mice. Remarkably, we found that synapsin IIa was the only isoform that could rescue t...

  15. Stealth Polymeric Vesicles via Metal-free Click Coupling

    OpenAIRE

    Isaacman, Michael J.; Corigliano, Eleonora M.; Theogarajan, Luke S.

    2013-01-01

    The strain-promoted azide-alkyne cycloaddition represents an optimal metal-free method for the modular coupling of amphiphilic polymer blocks. Hydrophilic poly(oxazoline) (PMOXA) or poly(ethyleneglycol) (PEG) A-blocks were coupled with a hydrophobic poly(siloxane) B-block to provide triblock copolymers capable of self-assembling into vesicular nanostructures. Stealth properties investigated via a complement activation assay revealed the superior in vitro stealth attributes of polymeric vesicl...

  16. Structural disorder provides increased adaptability for vesicle trafficking pathways.

    Directory of Open Access Journals (Sweden)

    Natalia Pietrosemoli

    Full Text Available Vesicle trafficking systems play essential roles in the communication between the organelles of eukaryotic cells and also between cells and their environment. Endocytosis and the late secretory route are mediated by clathrin-coated vesicles, while the COat Protein I and II (COPI and COPII routes stand for the bidirectional traffic between the ER and the Golgi apparatus. Despite similar fundamental organizations, the molecular machinery, functions, and evolutionary characteristics of the three systems are very different. In this work, we compiled the basic functional protein groups of the three main routes for human and yeast and analyzed them from the structural disorder perspective. We found similar overall disorder content in yeast and human proteins, confirming the well-conserved nature of these systems. Most functional groups contain highly disordered proteins, supporting the general importance of structural disorder in these routes, although some of them seem to heavily rely on disorder, while others do not. Interestingly, the clathrin system is significantly more disordered (~23% than the other two, COPI (~9% and COPII (~8%. We show that this structural phenomenon enhances the inherent plasticity and increased evolutionary adaptability of the clathrin system, which distinguishes it from the other two routes. Since multi-functionality (moonlighting is indicative of both plasticity and adaptability, we studied its prevalence in vesicle trafficking proteins and correlated it with structural disorder. Clathrin adaptors have the highest capability for moonlighting while also comprising the most highly disordered members. The ability to acquire tissue specific functions was also used to approach adaptability: clathrin route genes have the most tissue specific exons encoding for protein segments enriched in structural disorder and interaction sites. Overall, our results confirm the general importance of structural disorder in vesicle trafficking

  17. Structural disorder provides increased adaptability for vesicle trafficking pathways.

    Science.gov (United States)

    Pietrosemoli, Natalia; Pancsa, Rita; Tompa, Peter

    2013-01-01

    Vesicle trafficking systems play essential roles in the communication between the organelles of eukaryotic cells and also between cells and their environment. Endocytosis and the late secretory route are mediated by clathrin-coated vesicles, while the COat Protein I and II (COPI and COPII) routes stand for the bidirectional traffic between the ER and the Golgi apparatus. Despite similar fundamental organizations, the molecular machinery, functions, and evolutionary characteristics of the three systems are very different. In this work, we compiled the basic functional protein groups of the three main routes for human and yeast and analyzed them from the structural disorder perspective. We found similar overall disorder content in yeast and human proteins, confirming the well-conserved nature of these systems. Most functional groups contain highly disordered proteins, supporting the general importance of structural disorder in these routes, although some of them seem to heavily rely on disorder, while others do not. Interestingly, the clathrin system is significantly more disordered (~23%) than the other two, COPI (~9%) and COPII (~8%). We show that this structural phenomenon enhances the inherent plasticity and increased evolutionary adaptability of the clathrin system, which distinguishes it from the other two routes. Since multi-functionality (moonlighting) is indicative of both plasticity and adaptability, we studied its prevalence in vesicle trafficking proteins and correlated it with structural disorder. Clathrin adaptors have the highest capability for moonlighting while also comprising the most highly disordered members. The ability to acquire tissue specific functions was also used to approach adaptability: clathrin route genes have the most tissue specific exons encoding for protein segments enriched in structural disorder and interaction sites. Overall, our results confirm the general importance of structural disorder in vesicle trafficking and suggest

  18. Large bilateral star-shaped calculi in the seminal vesicles.

    Directory of Open Access Journals (Sweden)

    Namjoshi S

    2002-04-01

    Full Text Available Calculi in the seminal vesicles (SV are extremely rare. A patient having large bilateral star-shaped calculi in the SV is reported. They were seen on plain x-ray and confirmed by computed tomography. On the reconstructed CT scans the large stone on the right side measured about 35 X 35 X 50 mm and the one on the left, 30 X 20 X 45 mm. They were not felt on rectal examination, as they were situated laterally.

  19. Electrochemical proton gradient in Micrococcus lysodeikticus cells and membrane vesicles.

    OpenAIRE

    Friedberg, I.; Kaback, H R

    1980-01-01

    Using the distribution of weak acids to measure the pH gradient (delta pH; interior alkaline) and the distribution of the lipophilic cation [3H]tetraphenylphosphonium+ to monitor the membrane potential (delta psi; interior negative), we studied the electrochemical gradient or protons (delta mu- H+) across the membrane of Micrococcus lysodeikticus cells and plasma membrane vesicles. With reduced phenazine methosulfate as electron donor, intact cells exhibited a relatively constant delta mu- H+...

  20. Induction of mutant dynamin specifically blocks endocytic coated vesicle formation

    OpenAIRE

    1994-01-01

    Dynamin is the mammalian homologue to the Drosophila shibire gene product. Mutations in this 100-kD GTPase cause a pleiotropic defect in endocytosis. To further investigate its role, we generated stable HeLa cell lines expressing either wild-type dynamin or a mutant defective in GTP binding and hydrolysis driven by a tightly controlled, tetracycline- inducible promoter. Overexpression of wild-type dynamin had no effect. In contrast, coated pits failed to become constricted and coated vesicles...

  1. Tubulin as a molecular component of coated vesicles

    OpenAIRE

    1983-01-01

    Two proteins of 53,000 and 56,000 mol wt have been found to be associated with coated vesicles (CV) purified from bovine brain and chicken liver. These proteins share molecular weights, isoelectric points, and antigenic determinants with alpha- and beta-tubulins purified from bovine brain. Based on SDS PAGE and electron microscopic analysis of controlled pore glass bead exclusion column fractions, both the tubulins and the major CV polypeptide clathrin were found to chromatograph as component...

  2. Coated vesicle isolation by immunoadsorption on Staphylococcus aureus cells

    OpenAIRE

    1982-01-01

    Porcine brain coated vesicles were isolated from crude fractions of tissue homogenates by affinity separation using anticlathrin-coated STaphylococcus aureus (Staph A) cells as a solid-phase immunoadsorbent. The specificity of the immunoadsorption was monitored by SDS PAGE analysis and by competitive ELISA assays. SDS PAGE of the material immunoadsorbed from a fraction of porcine bran smooth microsomes showed a selective enrichment in a 180,000 mol wt protein. In an ELISA assay, this protein ...

  3. Immunocytochemical localization of coated vesicle protein in rodent nervous system

    OpenAIRE

    1980-01-01

    Immunocytochemistry has been used to study the distribution of the major 180,000-mol wt protein of coated vesicles in rodent cerebellum. An antibody to the coat protein was prepared in rabbits and characterized by immunodiffusion and immunofixation of polyacrylamide gels. At the light microscope level the protein was primarily localized in punctate profiles surrounding Purkinje cells and within the cerebellar glomeruli. At the electron microscope level the punctate distribution was confined t...

  4. Cardiac Extracellular Vesicles in Normal and Infarcted Heart

    OpenAIRE

    Chistiakov, Dimitry A.; Alexander N. Orekhov; Yuri V Bobryshev

    2016-01-01

    Heart is a complex assembly of many cell types constituting myocardium, endocardium and epicardium that intensively communicate to each other in order to maintain the proper cardiac function. There are many types of intercellular intracardiac signals, with a prominent role of extracellular vesicles (EVs), such as exosomes and microvesicles, for long-distant delivering of complex messages. Cardiomyocytes release EVs, whose content could significantly vary depending on the stimulus. In stress, ...

  5. Formation of supported lipid bilayers by vesicle fusion

    DEFF Research Database (Denmark)

    Lind, Tania Kjellerup; Cardenas Gomez, Marite; Wacklin, Hanna

    2014-01-01

    We have investigated the effect of deposition temperature on supported lipid bilayer formation via vesicle fusion. By using several complementary surface-sensitive techniques, we demonstrate that despite contradicting literature on the subject, high-quality bilayers can be formed below the main p...... observed during the deposition process by QCM-D correspond to vesicles absorbed on top of a continuous bilayer and not to a surface-supported vesicular layer as previously reported. © 2014 American Chemical Society.......We have investigated the effect of deposition temperature on supported lipid bilayer formation via vesicle fusion. By using several complementary surface-sensitive techniques, we demonstrate that despite contradicting literature on the subject, high-quality bilayers can be formed below the main...... phase-transition temperature of the lipid. We have carefully studied the formation mechanism of supported DPPC bilayers below and above the lipid melting temperature (Tm) by quartz crystal microbalance and atomic force microscopy under continuous flow conditions. We also measured the structure of lipid...

  6. Myeloid extracellular vesicles: messengers from the demented brain

    Directory of Open Access Journals (Sweden)

    Annamaria eNigro

    2016-01-01

    Full Text Available Blood-borne monocyte derived cells play a pivotal, initially unrecognized, role in most central nervous system disorders, including diseases initially classified as purely neurodegenerative (i.e. AD, PD, and ALS. Their trafficking to the brain and spinal cord has been extensively studied in classical neuroinflammatory disorders such as multiple sclerosis. Central nervous system resident myeloid cells, namely microglia and perivascular macrophages, also are in the spotlight of investigations on neurological disorders. Myeloid cells, such as infiltrating macrophages and microglia, have been described as having both protective and destructive features in neurological disorders, thus identification of their functional phenotype during disease evolution would be of paramount importance. Extracellular vesicles, namely exosomes and shed vesicles, are released by virtually any cell type and can be detected and identified in terms of cell origin in biological fluids. They therefore constitute an ideal tool to access information on cells residing in an inaccessible site such as the brain. We will review here available information on extracellular vesicles detection in neurological disorders with special emphasis on neurodegenerative diseases.

  7. Phase separation in artificial vesicles driven by light and curvature

    Science.gov (United States)

    Rinaldin, Melissa; Pomp, Wim; Schmidt, Thomas; Giomi, Luca; Kraft, Daniela; Physics of Life Processes Team; Soft; Bio Mechanics Collaboration; Self-Assembly in Soft Matter Systems Collaboration

    The role of phase-demixing in living cells, leading to the lipid-raft hypothesis, has been extensively studied. Lipid domains of higher lipid chain order are proposed to regulate protein spatial organization. Giant Unilamellar Vesicles provide an artificial model to study phase separation. So far temperature was used to initiate the process. Here we introduce a new methodology based on the induction of phase separation by light. To this aim, the composition of the lipid membrane is varied by photo-oxidation of lipids. The control of the process gained by using light allowed us to observe vesicle shape fluctuations during phase-demixing. The presence of fluctuations near the critical mixing point resembles features of a critical process. We quantitatively analyze these fluctuations using a 2d elastic model, from which we can estimate the material parameters such as bending rigidity and surface tension, demonstrating the non-equilibrium critical behaviour. Finally, I will describe recent attempts toward tuning the membrane composition by controlling the vesicle curvature.

  8. Microfluidic Fabrication of Pluronic Vesicles with Controlled Permeability.

    Science.gov (United States)

    do Nascimento, Débora F; Arriaga, Laura R; Eggersdorfer, Max; Ziblat, Roy; Marques, Maria de Fátima V; Reynaud, Franceline; Koehler, Stephan A; Weitz, David A

    2016-05-31

    Block copolymers with a low hydrophilic-to-lipophilic balance form membranes that are highly permeable to hydrophilic molecules. Polymersomes with this type of membrane enable the controllable release of molecules without membrane rupture. However, these polymersomes are difficult to assemble because of their low hydrophobicity. Here, we report a microfluidic approach to the production of these polymersomes using double-emulsion drops with ultrathin shells as templates. The small thickness of the middle oil phase enables the attraction of the hydrophobic blocks of the polymers adsorbed at each of the oil/water interfaces of the double emulsions; this results in the dewetting of the oil from the surface of the innermost water drops of the double emulsions and the ultimate formation of the polymersome. This approach to polymersome fabrication enables control of the vesicle size and results in the efficient encapsulation of hydrophilic ingredients that can be released through the polymer membrane without membrane rupture. We apply our approach to the fabrication of Pluronic L121 vesicles and characterize the permeability of their membranes. Furthermore, we show that membrane permeability can be tuned by blending different Pluronic polymers. Our work thus describes a route to producing Pluronic vesicles that are useful for the controlled release of hydrophilic ingredients. PMID:27192611

  9. Extracellular Vesicles and Their Convergence with Viral Pathways

    Directory of Open Access Journals (Sweden)

    Thomas Wurdinger

    2012-01-01

    Full Text Available Extracellular vesicles (microvesicles, such as exosomes and shed microvesicles, contain a variety of molecules including proteins, lipids, and nucleic acids. Microvesicles appear mostly to originate from multivesicular bodies or to bud from the plasma membrane. Here, we review the convergence of microvesicle biogenesis and aspects of viral assembly and release pathways. Herpesviruses and retroviruses, amongst others, recruit several elements from the microvesicle biogenesis pathways for functional virus release. In addition, noninfectious pleiotropic virus-like vesicles can be released, containing viral and cellular components. We highlight the heterogeneity of microvesicle function during viral infection, addressing microvesicles that can either block or enhance infection, or cause immune dysregulation through bystander action in the immune system. Finally, endogenous retrovirus and retrotransposon elements deposited in our genomes millions of years ago can be released from cells within microvesicles, suggestive of a viral origin of the microvesicle system or perhaps of an evolutionary conserved system of virus-vesicle codependence. More research is needed to further elucidate the complex function of the various microvesicles produced during viral infection, possibly revealing new therapeutic intervention strategies.

  10. Origin of life: LUCA and extracellular membrane vesicles (EMVs)

    Science.gov (United States)

    Gill, S.; Forterre, P.

    2016-01-01

    Cells from the three domains of life produce extracellular membrane vesicles (EMVs), suggesting that EMV production is an important aspect of cellular physiology. EMVs have been implicated in many aspects of cellular life in all domains, including stress response, toxicity against competing strains, pathogenicity, detoxification and resistance against viral attack. These EMVs represent an important mode of inter-cellular communication by serving as vehicles for transfer of DNA, RNA, proteins and lipids between cells. Here, we review recent progress in the understanding of EMV biology and their various roles. We focus on the role of membrane vesicles in early cellular evolution and how they would have helped shape the nature of the last universal common ancestor. A membrane-protected micro-environment would have been a key to the survival of spontaneous molecular systems and efficient metabolic reactions. Interestingly, the morphology of EMVs is strongly reminiscent of the morphology of some virions. It is thus tempting to make a link between the origin of the first protocell via the formation of vesicles and the origin of viruses.

  11. Expression of Neurotransmitter Transporters for Structural and Biochemical Studies

    OpenAIRE

    Elbaz, Yael; Danieli, Tsafi; Kanner, Baruch I.; Schuldiner, Shimon

    2010-01-01

    Neurotransmitter transporters play essential roles in the process of neurotransmission. Vesicular neurotransmitter transporters mediate storage inside secretory vesicles in a process that involves the exchange of lumenal H+ for cytoplasmic transmitter. Retrieval of the neurotransmitter from the synaptic cleft catalyzed by sodium-coupled transporters is critical for the termination of the synaptic actions of the released neurotransmitter. Our current understanding of the mechanism of these tra...

  12. Vesicular transport of a ribonucleoprotein to mitochondria

    Directory of Open Access Journals (Sweden)

    Joyita Mukherjee

    2014-10-01

    Full Text Available Intracellular trafficking of viruses and proteins commonly occurs via the early endosome in a process involving Rab5. The RNA Import Complex (RIC-RNA complex is taken up by mammalian cells and targeted to mitochondria. Through RNA interference, it was shown that mito-targeting of the ribonucleoprotein (RNP was dependent on caveolin 1 (Cav1, dynamin 2, Filamin A and NSF. Although a minor fraction of the RNP was transported to endosomes in a Rab5-dependent manner, mito-targeting was independent of Rab5 or other endosomal proteins, suggesting that endosomal uptake and mito-targeting occur independently. Sequential immunoprecipitation of the cytosolic vesicles showed the sorting of the RNP away from Cav1 in a process that was independent of the endosomal effector EEA1 but sensitive to nocodazole. However, the RNP was in two types of vesicle with or without Cav1, with membrane-bound, asymmetrically orientated RIC and entrapped RNA, but no endosomal components, suggesting vesicular sorting rather than escape of free RNP from endosomes. In vitro, RNP was directly transferred from the Type 2 vesicles to mitochondria. Live-cell imaging captured spherical Cav1− RNP vesicles emerging from the fission of large Cav+ particles. Thus, RNP appears to traffic by a different route than the classical Rab5-dependent pathway of viral transport.

  13. Self-Reproduction of Fatty Acid Vesicles: A Combined Experimental and Simulation Study

    Science.gov (United States)

    Markvoort, Albert J.; Pfleger, Nicole; Staffhorst, Rutger; Hilbers, Peter A.J.; van Santen, Rutger A.; Killian, J. Antoinette; de Kruijff, Ben

    2010-01-01

    Dilution of a fatty acid micellar solution at basic pH toward neutrality results in spontaneous formation of vesicles with a broad size distribution. However, when vesicles of a defined size are present before dilution, the size distribution of the newly formed vesicles is strongly biased toward that of the seed vesicles. This so-called matrix effect is believed to be a key feature of early life. Here we reproduced this effect for oleate micelles and seed vesicles of either oleate or dioleoylphosphatidylcholine. Fluorescence measurements showed that the vesicle contents do not leak out during the replication process. We hypothesized that the matrix effect results from vesicle fission induced by an imbalance of material across both leaflets of the vesicle upon initial insertion of fatty acids into the outer leaflet of the seed vesicle. This was supported by experiments that showed a significant increase in vesicle size when the equilibration of oleate over both leaflets was enhanced by either slowing down the rate of fatty acid addition or increasing the rate of fatty acid transbilayer movement. Coarse-grained molecular-dynamics simulations showed excellent agreement with the experimental results and provided further mechanistic details of the replication process. PMID:20816064

  14. Self-reproduction of fatty acid vesicles: a combined experimental and simulation study.

    Science.gov (United States)

    Markvoort, Albert J; Pfleger, Nicole; Staffhorst, Rutger; Hilbers, Peter A J; van Santen, Rutger A; Killian, J Antoinette; de Kruijff, Ben

    2010-09-01

    Dilution of a fatty acid micellar solution at basic pH toward neutrality results in spontaneous formation of vesicles with a broad size distribution. However, when vesicles of a defined size are present before dilution, the size distribution of the newly formed vesicles is strongly biased toward that of the seed vesicles. This so-called matrix effect is believed to be a key feature of early life. Here we reproduced this effect for oleate micelles and seed vesicles of either oleate or dioleoylphosphatidylcholine. Fluorescence measurements showed that the vesicle contents do not leak out during the replication process. We hypothesized that the matrix effect results from vesicle fission induced by an imbalance of material across both leaflets of the vesicle upon initial insertion of fatty acids into the outer leaflet of the seed vesicle. This was supported by experiments that showed a significant increase in vesicle size when the equilibration of oleate over both leaflets was enhanced by either slowing down the rate of fatty acid addition or increasing the rate of fatty acid transbilayer movement. Coarse-grained molecular-dynamics simulations showed excellent agreement with the experimental results and provided further mechanistic details of the replication process. PMID:20816064

  15. Endocytosis of VAMP is facilitated by a synaptic vesicle targeting signal

    Science.gov (United States)

    1996-01-01

    After synaptic vesicles fuse with the plasma membrane and release their contents, vesicle membrane proteins recycle by endocytosis and are targeted to newly formed synaptic vesicles. The membrane traffic of an epitope-tagged form of VAMP-2 (VAMP-TAg) was observed in transfected cells to identify sequence requirements for recycling of a synaptic vesicle membrane protein. In the neuroendocrine PC12 cell line VAMP-TAg is found not only in synaptic vesicles, but also in endosomes and on the plasma membrane. Endocytosis of VAMP-TAg is a rapid and saturable process. At high expression levels VAMP-TAg accumulates at the cell surface. Rapid endocytosis of VAMP-TAg also occurs in transfected CHO cells and is therefore independent of other synaptic proteins. The majority of the measured endocytosis is not directly into synaptic vesicles since mutations in VAMP-TAg that enhance synaptic vesicle targeting did not affect endocytosis. Nonetheless, mutations that inhibited synaptic vesicle targeting, in particular replacement of methionine-46 by alanine, inhibited endocytosis by 85% in PC12 cells and by 35% in CHO cells. These results demonstrate that the synaptic vesicle targeting signal is also used for endocytosis and can be recognized in cells lacking synaptic vesicles. PMID:8647886

  16. Effects of Lipid Composition on the Entry of Cell-Penetrating Peptide Oligoarginine into Single Vesicles.

    Science.gov (United States)

    Sharmin, Sabrina; Islam, Md Zahidul; Karal, Mohammad Abu Sayem; Alam Shibly, Sayed Ul; Dohra, Hideo; Yamazaki, Masahito

    2016-08-01

    The cell-penetrating peptide R9, an oligoarginine comprising nine arginines, has been used to transport biological cargos into cells. However, the mechanisms underlying its translocation across membranes remain unclear. In this report, we investigated the entry of carboxyfluorescein (CF)-labeled R9 (CF-R9) into single giant unilamellar vesicles (GUVs) of various lipid compositions and the CF-R9-induced leakage of a fluorescent probe, Alexa Fluor 647 hydrazide (AF647), using a method developed recently by us. First, we investigated the interaction of CF-R9 with dioleoylphosphatidylglycerol (DOPG)/dioleoylphosphatidylcholine (DOPC) GUVs containing AF647 and small DOPG/DOPC vesicles. The fluorescence intensity of the GUV membrane due to CF-R9 (i.e., the rim intensity) increased with time to a steady-state value, and then the fluorescence intensity of the membranes of the small vesicles in the GUV lumen increased without leakage of AF647. This result indicates that CF-R9 entered the GUV lumen from the outside by translocating across the lipid membrane without forming pores through which AF647 could leak. The fraction of entry of CF-R9 at 6 min in the absence of pore formation, Pentry (6 min), increased with an increase in CF-R9 concentration, but the CF-R9 concentration in the lumen was low. We obtained similar results for dilauroyl-PG (DLPG)/ditridecanoyl-PC (DTPC) (2/8) GUVs. The values of Pentry (6 min) of CF-R9 for DLPG/DTPC (2/8) GUVs were larger than those obtained with DOPG/DOPC (2/8) GUVs at the same CF-R9 concentrations. In contrast, a high concentration of CF-R9 induced pores in DLPG/DTPC (4/6) GUVs through which CF-R9 entered the GUV lumen, so the CF-R9 concentration in the lumen was higher. However, CF-R9 could not enter DOPG/DOPC/cholesterol (2/6/4) GUVs. Analysis of the rim intensity showed that CF-R9 was located only in the outer monolayer of the DOPG/DOPC/cholesterol (2/6/4) GUVs. On the basis of analyses of these results, we discuss the elementary

  17. Influence of Divalent Cations on Deformation and Rupture of Adsorbed Lipid Vesicles.

    Science.gov (United States)

    Dacic, Marija; Jackman, Joshua A; Yorulmaz, Saziye; Zhdanov, Vladimir P; Kasemo, Bengt; Cho, Nam-Joon

    2016-06-28

    The fate of adsorbed lipid vesicles on solid supports depends on numerous experimental parameters and typically results in the formation of a supported lipid bilayer (SLB) or an adsorbed vesicle layer. One of the poorly understood questions relates to how divalent cations appear to promote SLB formation in some cases. The complexity arises from the multiple ways in which divalent cations affect vesicle-substrate and vesicle-vesicle interactions as well as vesicle properties. These interactions are reflected, e.g., in the degree of deformation of adsorbed vesicles (if they do not rupture). It is, however, experimentally challenging to measure the extent of vesicle deformation in real-time. Herein, we investigated the effect of divalent cations (Mg(2+), Ca(2+), Sr(2+)) on the adsorption of zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid vesicles onto silicon oxide- and titanium oxide-coated substrates. The vesicle adsorption process was tracked using the quartz crystal microbalance-dissipation (QCM-D) and localized surface plasmon resonance (LSPR) measurement techniques. On silicon oxide, vesicle adsorption led to SLB formation in all cases, while vesicles adsorbed but did not rupture on titanium oxide. It was identified that divalent cations promote increased deformation of adsorbed vesicles on both substrates and enhanced rupture on silicon oxide in the order Ca(2+) > Mg(2+) > Sr(2+). The influence of divalent cations on different factors in these systems is discussed, clarifying experimental observations on both substrates. Taken together, the findings in this work offer insight into how divalent cations modulate the interfacial science of supported membrane systems.

  18. Cycling of dense core vesicles involved in somatic exocytosis of serotonin by leech neurons

    Directory of Open Access Journals (Sweden)

    Citlali eTrueta

    2012-06-01

    Full Text Available We studied the cycling of dense core vesicles producing somatic exocytosis of serotonin. Our experiments were made using electron microscopy and vesicle staining with fluorescent dye FM1-43 in Retzius neurons of the leech, which secrete serotonin from clusters of dense core vesicles in a frequency-dependent manner. Electron micrographs of neurons at rest or after 1 Hz stimulation showed two pools of dense core vesicles. A perinuclear pool near Golgi apparatuses, from which vesicles apparently form, and a peripheral pool with vesicle clusters at a distance from the plasma membrane. By contrast, after 20 Hz electrical stimulation 47% of the vesicle clusters were apposed to the plasma membrane, with some omega exocytosis structures. Dense core and small clear vesicles apparently originating from endocytosis were incorporated in multivesicular bodies. In another series of experiments, neurons were stimulated at 20 Hz while bathed in a solution containing peroxidase. Electron micrographs of these neurons contained gold particles coupled to anti-peroxidase antibodies in dense core vesicles and multivesicular bodies located near the plasma membrane. Cultured neurons depolarized with high potassium in the presence of FM1-43 displayed superficial fluorescent spots, each reflecting a vesicle cluster. A partial bleaching of the spots followed by another depolarization in the presence of FM1-43 produced restaining of some spots, other spots disappeared, some remained without restaining and new spots were formed. Several hours after electrical stimulation the FM1-43 spots accumulated at the center of the somata. This correlated with electron micrographs of multivesicular bodies releasing their contents near Golgi apparatuses. Our results suggest that dense core vesicle cycling related to somatic serotonin release involves two steps: the production of clear vesicles and multivesicular bodies after exocytosis, and the formation of new dense core vesicles in

  19. Mechanism of ochratoxin A transport in kidney

    Energy Technology Data Exchange (ETDEWEB)

    Sokol, P.P.; Ripich, G.; Holohan, P.D.; Ross, C.R.

    1988-08-01

    The effect of the fungal metabolite (mycotoxin) Ochratoxin A (OTA) on the transport of p-amino(/sup 3/H)hippurate (PAH), a prototypic organic anion, was examined in renal brush border (BBMV) and basolateral membrane vesicles (BLMV). OTA was as effective an inhibitor of PAH uptake in both membranes as probenecid. The dose response curves for OTA in BBMV and BLMV gave IC50 values of 20 +/- 6 and 32 +/- 7 microM, respectively. The effect was specific since the transport of the organic cation N1-methylnicotinamide was not affected. The phenomenon of counterflow was studied to establish that OTA is translocated. OTA produced trans stimulation of PAH transport in both BBMV and BLMV, demonstrating that OTA is transported across both these membranes. The data suggest that OTA interacts with the PAH transport system in both BBMV and BLMV. We conclude that OTA transport in the kidney is mediated via the renal organic anion transport system.

  20. Abundance of zinc ions in synaptic terminals of mocha mutant mice: zinc transporter 3 immunohistochemistry and zinc sulphide autometallography.

    Science.gov (United States)

    Stoltenberg, Meredin; Nejsum, Lene N; Larsen, Agnete; Danscher, Gorm

    2004-02-01

    The mocha mouse is an autosomal recessive pigment mutant on mouse chromosome 10 caused by a deletion in the gene for the delta subunit of the adaptor-like complex AP-3. Based on zinc transporter 3 (ZnT3) immunohistochemistry, zinc TSQ fluorescence and a modified Timm method, previous studies found a lack of histochemically-detectable zinc and a substantial reduction in the ZnT3 immunoreactivity. It has, therefore, been suggested that the mocha mouse could serve as a model for studies of the significance of zinc ions in zinc-enriched (ZEN) neurons. We have chosen the mocha-zinc-model in a study of the significance of ZEN neurons in hypoxia-caused damage in mouse brain. In order to establish that the model was either void of zinc ions or had a significantly decreased level of zinc ions in their ZEN terminals, we repeated the studies that had lead to the above assumption, the only methodology difference being that we used the zinc specific Neo-Timm method instead of the Timm method applied in the original study. We found that, although the ZnS autometallography (AMG) technique revealed a reduction in staining intensity as compared to the littermate controls, there were still plenty of zinc ions in the ZEN terminals, in particular visible in telencephalic structures like neocortex and hippocampus. At ultrastructural levels the zinc ions were found in a pool of vesicles of the ZEN terminals as in the control animals, but additionally zinc ions could be traced in ZEN neuronal somata in the neocortex and hippocampus. The mossy fibres in the hippocampus of mocha mice also bind with TSQ, though less than in the controls. We found ZnS AMG grains in ZEN neuronal somata, which were also immunoreactive for ZnT3. Our study confirmed the decreased ZnT3 immunoreactivity in ZEN terminals of the mocha mouse found in the original study. Based on these findings, we suggest that the mocha mouse may not be an ideal model for studies of the histochemically-detectable zinc ion pool of the

  1. The impact of various preanalytical treatments on the phenotype of small extracellular vesicles in blood analyzed by protein microarray

    DEFF Research Database (Denmark)

    Bæk, Rikke; Søndergaard, Evo K L; Varming, Kim;

    2016-01-01

    The research field of extracellular vesicles (EVs) is increasing immensely and the potential uses of EVs seem endless. They are found in large numbers in various body fluids, and blood samples may well serve as liquid biopsies. However, these small membrane-derived entities of cellular origin...... are not straightforward to work with in regard to isolation and characterization. A broad range of relevant preanalytical issues was tested, with a focus on the phenotypic impact of smaller EVs. The influences of the i) blood collection tube used, ii) incubation time before the initial centrifugation, iii) transportation...... that samples collected in different blood collection tubes suffered to varying degrees from the preanalytical treatments tested here. There is no unequivocal answer to the questions asked. However, in general, the period of time and prospective transportation before the initial centrifugation, choice...

  2. Wolbachia bacteria reside in host Golgi-related vesicles whose position is regulated by polarity proteins.

    Directory of Open Access Journals (Sweden)

    Kyung-Ok Cho

    Full Text Available Wolbachia pipientis are intracellular symbiotic bacteria extremely common in various organisms including Drosophila melanogaster, and are known for their ability to induce changes in host reproduction. These bacteria are present in astral microtubule-associated vesicular structures in host cytoplasm, but little is known about the identity of these vesicles. We report here that Wolbachia are restricted only to a group of Golgi-related vesicles concentrated near the site of membrane biogenesis and minus-ends of microtubules. The Wolbachia vesicles were significantly mislocalized in mutant embryos defective in cell/planar polarity genes suggesting that cell/tissue polarity genes are required for apical localization of these Golgi-related vesicles. Furthermore, two of the polarity proteins, Van Gogh/Strabismus and Scribble, appeared to be present in these Golgi-related vesicles. Thus, establishment of polarity may be closely linked to the precise insertion of Golgi vesicles into the new membrane addition site.

  3. Rab3 proteins involved in vesicle biogenesis and priming in embryonic mouse chromaffin cells

    DEFF Research Database (Denmark)

    Schonn, Jean-Sébastien; van Weering, Jan R T; Mohrmann, Ralf;

    2010-01-01

    chromaffin cells by electron microscopy and electrophysiological measurements. We show that in cells from ABCD(-/-) animals large dense core vesicles (LDCVs) are less abundant while the number of morphologically docked granules is normal. By capacitance measurements, we show that deletion of Rab3s reduces...... the size of the releasable vesicle pools but does not alter their fusion kinetics, consistent with an altered function in vesicle priming. The sustained release component has a sigmoid shape in ABCD(-/-) cells when normalized to the releasable pool size, indicating that vesicle priming follows at a higher...... rate after an initial delay. Rescue experiments showed that short-term (4-6 hours) overexpression of Rab3A or Rab3C suffices to rescue vesicle priming and secretion, but it does not restore the number of secretory vesicles. We conclude that Rab3 proteins play two distinct stimulating roles for LDCV...

  4. Actin- and Myosin-Dependent Vesicle Loading of Presynaptic Docking Sites Prior to Exocytosis.

    Science.gov (United States)

    Miki, Takafumi; Malagon, Gerardo; Pulido, Camila; Llano, Isabel; Neher, Erwin; Marty, Alain

    2016-08-17

    Variance analysis of postsynaptic current amplitudes suggests the presence of distinct docking sites (also called release sites) where vesicles pause before exocytosis. Docked vesicles participate in the readily releasable pool (RRP), but the relation between docking site number and RRP size remains unclear. It is also unclear whether all vesicles of the RRP are equally release competent, and what cellular mechanisms underlie RRP renewal. We address here these questions at single glutamatergic synapses, counting released vesicles using deconvolution. We find a remarkably low variance of cumulative vesicle counts during action potential trains. This, combined with Monte Carlo simulations, indicates that vesicles transit through two successive states before exocytosis, so that the RRP is up to 2-fold higher than the docking site number. The transition to the second state has a very rapid rate constant, and is specifically inhibited by latrunculin B and blebbistatin, suggesting the involvement of actin and myosin. PMID:27537485

  5. Microencapsulation technology by nature: Cell derived extracellular vesicles with therapeutic potential.

    Science.gov (United States)

    Kittel, A; Falus, A; Buzás, E

    2013-06-01

    Cell derived extracellular vesicles are submicron structures surrounded by phospholipid bilayer and released by both prokaryotic and eukaryotic cells. The sizes of these vesicles roughly fall into the size ranges of microbes, and they represent efficient delivery platforms targeting complex molecular information to professional antigen presenting cells. Critical roles of these naturally formulated units of information have been described in many physiological and pathological processes. Extracellular vesicles are not only potential biomarkers and possible pathogenic factors in numerous diseases, but they are also considered as emerging therapeutic targets and therapeutic vehicles. Strikingly, current drug delivery systems, designed to convey therapeutic proteins and peptides (such as liposomes), show many similarities to extracellular vesicles. Here we review some aspects of therapeutic implementation of natural, cell-derived extracellular vesicles in human diseases. Exploration of molecular and functional details of extracellular vesicle release and action may provide important lessons for the design of future drug delivery systems.

  6. Gold nanoparticles covalently assembled onto vesicle structures as possible biosensing platform

    Science.gov (United States)

    Barroso, M Fátima; Luna, M Alejandra; Tabares, Juan S Flores; Delerue-Matos, Cristina; Correa, N Mariano

    2016-01-01

    Summary In this contribution a strategy is shown to covalently immobilize gold nanoparticles (AuNPs) onto vesicle bilayers with the aim of using this nanomaterial as platform for the future design of immunosensors. A novel methodology for the self-assembly of AuNPs onto large unilamellar vesicle structures is described. The vesicles were formed with 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1-undecanethiol (SH). After, the AuNPs photochemically synthesized in pure glycerol were mixed and anchored onto SH–DOPC vesicles. The data provided by voltammetry, spectrometry and microscopy techniques indicated that the AuNPs were successfully covalently anchored onto the vesicle bilayer and decorated vesicles exhibit a spherical shape with a size of 190 ± 10 nm. The developed procedure is easy, rapid and reproducible to start designing a possible immunosensor by using environmentally friendly procedures. PMID:27335755

  7. Porphyromonas gingivalis Outer Membrane Vesicles Mediate Coaggregation and Piggybacking of Treponema denticola and Lachnoanaerobaculum saburreum

    Directory of Open Access Journals (Sweden)

    Daniel Grenier

    2013-01-01

    Full Text Available Porphyromonas gingivalis sheds outer membrane vesicles that contain several virulence factors, including adhesins. In this study, we investigated the ability of P. gingivalis outer membrane vesicles to mediate the coaggregation and piggybacking of Treponema denticola and Lachnoanaerobaculum saburreum. Marked coaggregation between T. denticola and L. saburreum occurred in the presence of P. gingivalis outer membrane vesicles. Sucrose was an effective chemoattractant for the motile species T. denticola. The addition of outer membrane vesicles to a mixture of T. denticola and L. saburreum significantly increased the number of nonmotile bacteria that migrated into a sucrose-filled capillary tube immersed in the bacterial mixture. Under optimal conditions, the number of nonmotile L. saburreum in the capillary tube increased approximately 5-fold, whereas no increase occurred when boiled vesicles were used. This study showed that P. gingivalis outer membrane vesicles mediate coaggregation between T. denticola and L. saburreum and that nonmotile bacteria can be translocated by piggybacking on spirochetes.

  8. Replication of simulated prebiotic amphiphile vesicles controlled by experimental lipid physicochemical properties

    International Nuclear Information System (INIS)

    We present a new embodiment of the graded autocatalysis replication domain (GARD) for the growth, replication and evolution of lipid vesicles based on a semi-empirical foundation using experimentally measured kinetic values of selected extant lipid species. Extensive simulations using this formalism elucidated the details of the dependence of the replication and properties of the vesicles on the physicochemical properties and concentrations of the lipids, both in the environment and in the vesicle. As expected, the overall concentration and number of amphiphilic components strongly affect average replication time. Furthermore, variations in acyl chain length and unsaturation of vesicles also influence replication rate, as do the relative concentrations of individual lipid types. Understanding of the dependence of replication rates on physicochemical parameters opens a new direction in the study of prebiotic vesicles and lays the groundwork for future studies involving the competition between lipid vesicles for available amphiphilic monomers

  9. Proteoliposomes as matrix vesicles' biomimetics to study the initiation of skeletal mineralization

    Directory of Open Access Journals (Sweden)

    A.M.S. Simão

    2010-03-01

    Full Text Available During the process of endochondral bone formation, chondrocytes and osteoblasts mineralize their extracellular matrix by promoting the formation of hydroxyapatite (HA seed crystals in the sheltered interior of membrane-limited matrix vesicles (MVs. Ion transporters control the availability of phosphate and calcium needed for HA deposition. The lipidic microenvironment in which MV-associated enzymes and transporters function plays a crucial physiological role and must be taken into account when attempting to elucidate their interplay during the initiation of biomineralization. In this short mini-review, we discuss the potential use of proteoliposome systems as chondrocyte- and osteoblast-derived MVs biomimetics, as a means of reconstituting a phospholipid microenvironment in a manner that recapitulates the native functional MV microenvironment. Such a system can be used to elucidate the interplay of MV enzymes during catalysis of biomineralization substrates and in modulating in vitro calcification. As such, the enzymatic defects associated with disease-causing mutations in MV enzymes could be studied in an artificial vesicular environment that better mimics their in vivo biological milieu. These artificial systems could also be used for the screening of small molecule compounds able to modulate the activity of MV enzymes for potential therapeutic uses. Such a nanovesicular system could also prove useful for the repair/treatment of craniofacial and other skeletal defects and to facilitate the mineralization of titanium-based tooth implants.

  10. Auxin regulation of a proton translocating ATPase in pea root plasma membrane vesicles. [Pisum sativum. L

    Energy Technology Data Exchange (ETDEWEB)

    Gabathuler, R.; Cleland, R.E.

    1985-12-01

    Pea root microsomal vesicles have been fractionated on a Dextran step gradient to give three fractions, each of which carries out ATP-dependent proton accumulation as measured by fluorescence quenching of quinacrine. The fraction at the 4/6% Dextran interface is enriched in plasma membrane, as determined by UDPG sterol glucosyltransferase and vanadate-inhibited ATPase. The vanadate-sensitive phosphohydrolase is not specific for ATP, has a K/sub m/ of about 0.23 millimolar for MgATP, is only slightly affected by K/sup +/ or Cl/sup -/ and is insensitive to auxin. Proton transport, on the other hand, is more specific for ATP, enhanced by anions (NO/sub 3//sup -/ > Cl/sup -/) and has a K/sub m/ of about 0.7 millimolar. Auxins decrease the K/sub m/ to about 0.35 millimolar, with no significant effect on the V/sub max/, while antiauxins or weak acids have no such effect. It appears that auxin has the ability to alter the efficiency of the ATP-driven proton transport.

  11. Vesicle recycling at ribbon synapses in the finely branched axon terminals of mouse retinal bipolar neurons

    OpenAIRE

    LoGiudice, Lisamarie; Sterling, Peter; Matthews, Gary

    2009-01-01

    In retinal bipolar neurons, synaptic ribbons mark the presence of exocytotic active zones in the synaptic terminal. It is unknown, however, where compensatory vesicle retrieval is localized in this cell type and by what mechanism(s) excess membrane is recaptured. To determine whether endocytosis is localized or diffuse in mouse bipolar neurons, we imaged FM4-64 to track vesicles in cells whose synaptic ribbons were tagged with a fluorescent peptide. In synaptic terminals, vesicle retrieval oc...

  12. Metal ion responsive adhesion of vesicles by conformational switching of a non-covalent linker

    OpenAIRE

    Nalluri, Siva Krishna Mohan; Bultema, Jelle B.; Boekema, Egbert J.; Ravoo, Bart Jan

    2011-01-01

    This contribution describes the metal ion responsive adhesion of vesicles induced by a conformational switch of a non-covalent linker molecule. A p-tert-butylbenzyl dimer with a flexible N,N'-bis(3-aminopropyl)ethylenediamine spacer was used as a non-covalent linker, which induces aggregation and adhesion (but not fusion) of host bilayer vesicles composed of amphiphilic beta-cyclodextrins by the formation of hydrophobic inclusion complexes. The aggregation and adhesion of the vesicles in dilu...

  13. The transbilayer movement of phosphatidylcholine in vesicles reconstituted with intrinsic proteins from the human erythrocyte membrane

    OpenAIRE

    Gerritsen, W.J.; Henricks, P. A. J.; de Kruijff, B.; Van Deenen, L. L. M.

    1980-01-01

    Vesicles have been prepared from 18 : 1c/18 : 1c-phosphatidylcholine with or without purified glycophorin or partially purified band 3 (obtained by organomercurial gel chromatography). The vesicles have been characterized by freeze-fracture electron microscopy, binding studies to DEAE-cellulose, 31P-NMR and K+ trap measurements. Pools of phosphatidylcholine available for exchange have been investigated using phosphatidylcholine exchange protein from bovine liver. The protein-containing vesicl...

  14. Small round blue cell tumor of seminal vesicle in a young patient

    Directory of Open Access Journals (Sweden)

    Adriano A. De Paula

    2006-10-01

    Full Text Available Seminal vesicle tumor is a rare disease with unclear origin. Generally, it is presented as a pelvic mass that can be detected by sonography and digital rectal exam. The authors report a 25-year-old patient with a pelvic mass which the magnetic resonance and surgical specimen reveal a seminal vesicle tumor. Immunohistochemical findings favored a primitive neuroectodermal tumor of the seminal vesicle. Herein, the treatment, histological and histochemical findings of this entity are discussed.

  15. Chromosomal beta-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Ciofu, O; Beveridge, T J; Kadurugamuwa, J;

    2000-01-01

    Membrane vesicles were isolated from one beta-lactam-sensitive and three beta-lactam-resistant Pseudomonas aeruginosa clinical isolates from patients with cystic fibrosis. The presence of the chromosomally encoded beta-lactamase in the membrane vesicles was shown by electron microscopy and enzyma...... and enzymatic studies. This is the first report of extracellular secretion of beta-lactamase in P. aeruginosa and it seems that the enzyme is packaged into membrane vesicles....

  16. Extracellular vesicles during Herpes Simplex Virus type 1 infection: an inquire

    OpenAIRE

    Kalamvoki, Maria; Deschamps, Thibaut

    2016-01-01

    Extracellular vesicles are defined as a heterogeneous group of vesicles that are released by prokaryotic to higher eukaryotic cells and by plant cells in an evolutionary conserved manner. The significance of these vesicles lies in their capacity to transfer selected cargo composed of proteins, lipids and nucleic acids to both recipient and parent cells and to influence various physiological and pathological functions. Microorganisms such as parasites, fungi and protozoa and even single cell o...

  17. Extracellular vesicles from infected cells: potential for direct pathogenesis

    Directory of Open Access Journals (Sweden)

    Angela M Schwab

    2015-10-01

    Full Text Available Infections that result in natural or manmade spread of lethal biological agents are a concern and require national and focused preparedness. In this manuscript, as part of an early diagnostics and pathogen treatment strategy, we have focused on extracellular vesicles (EVs that arise following infections. Although the field of biodefense does not currently have a rich resource in EVs literature, none the less, similar pathogens belonging to the more classical emerging and non-emerging diseases have been studied in their EV/exosomal contents and function. These exosomes are formed in late endosomes and released from the cell membrane in almost every cell type in vivo. These vesicles contain proteins, RNA, and lipids from the cells they originate from and function in development, signal transduction, cell survival, and transfer of infectious material. The current review focuses on how different forms of infection exploit the exosomal pathway and how exosomes can be exploited artificially to treat infection and disease and potentially also be used as a source of vaccine. Virally-infected cells can secrete viral as well as cellular proteins and RNA in exosomes, allowing viruses to cause latent infection and spread of miRNA to nearby cells prior to a subsequent infection. In addition to virally-infected host cells, bacteria, protozoa, and fungi can all release small vesicles that contain Pathogen-Associated Molecular Patterns (PAMPs, regulating the neighboring uninfected cells. Examples of exosomes from both virally and bacterially infected cells point toward a re-programming network of pathways in the recipient cells. Finally, many of these exosomes contain cytokines and miRNAs that in turn can effect gene expression in the recipient cells through the classical TLR and NFkB pathway. Therefore, although exosomes do not replicate as an independent entity, they however facilitate movement of infectious material through tissues and may be the cause of

  18. Isolation and characterization of platelet-derived extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Maria T. Aatonen

    2014-08-01

    Full Text Available Background: Platelet-derived extracellular vesicles (EVs participate, for example, in haemostasis, immunity and development. Most studies of platelet EVs have targeted microparticles, whereas exosomes and EV characterization under various conditions have been less analyzed. Studies have been hampered by the difficulty in obtaining EVs free from contaminating cells and platelet remnants. Therefore, we optimized an EV isolation protocol and compared the quantity and protein content of EVs induced by different agonists. Methods: Platelets isolated with iodixanol gradient were activated by thrombin and collagen, lipopolysaccharide (LPS or Ca2+ ionophore. Microparticles and exosomes were isolated by differential centrifugations. EVs were quantitated by nanoparticle tracking analysis (NTA and total protein. Size distributions were determined by NTA and electron microscopy. Proteomics was used to characterize the differentially induced EVs. Results: The main EV populations were 100–250 nm and over 90% were <500 nm irrespective of the activation. However, activation pathways differentially regulated the quantity and the quality of EVs, which also formed constitutively. Thrombogenic activation was the most potent physiological EV-generator. LPS was a weak inducer of EVs, which had a selective protein content from the thrombogenic EVs. Ca2+ ionophore generated a large population of protein-poor and unselectively packed EVs. By proteomic analysis, EVs were highly heterogeneous after the different activations and between the vesicle subpopulations. Conclusions: Although platelets constitutively release EVs, vesiculation can be increased, and the activation pathway determines the number and the cargo of the formed EVs. These activation-dependent variations render the use of protein content in sample normalization invalid. Since most platelet EVs are 100–250 nm, only a fraction has been analyzed by previously used methods, for example, flow cytometry. As

  19. Improved in vitro and in vivo collagen biosynthesis by asiaticoside-loaded ultradeformable vesicles.

    Science.gov (United States)

    Paolino, Donatella; Cosco, Donato; Cilurzo, Felisa; Trapasso, Elena; Morittu, Valeria M; Celia, Christian; Fresta, Massimo

    2012-08-20

    The potentiality of ultradeformable vesicles as a possible topical delivery system for asiaticoside, a natural compound obtained from Centella asiatica was evaluated, because this compound exhibits collagen biosynthesis promoting activity. Ultradeformable vesicles were prepared by the extrusion technique; these vesicles were composed of Phospholipon 100 and different molar fractions of sodium cholate as the edge activator. The physicochemical properties of the ultradeformable vesicles were investigated through differential scanning calorimetry and light scattering techniques. The potential cyctotoxicity and biological activity of asiaticoside-loaded ultradeformable vesicles were evaluated on primary human dermal fibroblast cells by determining the extracellular lactic dehydrogenase activity, the cellular viability and the biosynthetic production of collagen. In vitro permeation experiments through human stratum corneum and epidermis membranes were also carried out. Ultradeformable vesicles having sodium cholate molar fraction of 0.2 proved to be the most suitable topical carriers for asiaticoside. A sodium cholate content of >0.2 was observed to be cytotoxic probably due to its co-existence with other lipid aggregates, an example being mixed micelles. Asiaticoside-loaded ultradeformable vesicles with a sodium cholate molar fraction of 0.2 elicited the greatest degree of collagen biosynthesis in human fibroblasts. Ultradeformable vesicles provided the greatest in vitro skin permeation of asiaticoside showing a 10-fold increase with respect to the free drug solution and favoured an increase in in vivo collagen biosynthesis. Ultradeformable vesicles are therefore suitable carriers for the pharmaceutical and cosmetic application of the natural agent asiaticoside.

  20. Rough glass surface-mediated formation of vesicles from lauryl sulfobetaine micellar solutions.

    Science.gov (United States)

    Zhu, Xiaoyu; Du, Na; Song, Ruiying; Hou, Wanguo; Song, Shue; Zhang, Renjie

    2014-10-01

    We report novel vesicles composed of the zwitterionic surfactant lauryl sulfobetaine (LSB), which is a simple single-tailed surfactant (STS). The novel vesicles spontaneously formed from LSB micellar solutions with the mediation of a rough glass surface (RGS) in the absence of any cosurfactants or additives. Importantly, the obtained STS vesicles displayed good stability upon long-term storage, exposure to high temperature, and freeze-thawing after the RGS was removed. The pH of the LSB solution (4.0-9.0) and the presence of NaCl (1.0 × 10(-5) and 1.0 × 10(-4) mol/L) in the LSB solution had no obvious influence on the formation and stability of the vesicles. The adsorption configuration of LSB on the RGS was investigated via water contact angle measurements and atomic force microscope observations. The results showed that LSB adsorption bilayers could form on the RGS, and the bilayer adsorption of LSB on the RGS and the roughness of the solid surface played a key role in the vesicle formation. A possible mechanism for the RGS-mediated formation of LSB vesicles is proposed: LSB micelles and molecules adsorb on the RGS to form curved bilayers, and the curved bilayers are then detached from the RGS and close to form vesicles. To the best of our knowledge, this is the first report of LSB alone forming vesicles. This finding extends our understanding of the nature of vesicle systems.